
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Automatic Generation of Help

Anciaux, Valery; Plier, Christophe

Award date:
1998

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/automatic-generation-of-help(97c00360-7d57-4d0d-8f74-33465038f426).html

Facultés Universitaires Notre-Dame de la Paix
Institut d'Informatique
Rue Grandgagnage, 21

B-5000 Namur (Belgium)

Auto matie Generation of Help

By

Valéry ANCIAUX and Christophe PLIER

Co-Advisers: Professor François BODART and Doctor Jean V ANDERDONCKT

Thesis submitted in fulfillment of the requirements for the degree of
Master of Computer Science

Academic year 1997 - 1998

Abstract:

The purpose of this thesis is to analyze the different tools available for
automatic help generation and to describe the Isolde project (Integrated
Software and On-Line Documentation Environment), a new tool for writing
on-line help.

The objective of Isolde is to automatically generate hypertext based on-line
help. This project exploits the common grounds between task model and
system behavior models. A task modeling tool used to process a particular
model has been implemented and is described in this thesis.

The task modeling tool is aimed at importing a particular task model into a
graphical form and easy to modify structure, then exporting the model in a
format usable for natural language generation. An example is provided,
together with a demo on disk.

Résumé:

L'objectif de ce mémoire est d'analyser les différents outils de
génération d'aide automatique ainsi que de décrire le projet Isolde (Integrated
Software and On-Line Documentation Environment), un nouvel outil de
génération d'aide en ligne.

Isolde a pour but de générer automatiquement de l'aide en ligne sous forme de
fichiers hypertextes. Ce projet exploite les points communs entre un modèle de
la tâche et les modèles de comportement de systèmes. Un éditeur graphique
utilisé pour traiter un modèle particulier a été implémenté et est décrit dans ce
mémoire.

L'éditeur réalisé a pour but d' importer un modèle, de le représenter sous forme
graphique facilement modifiable et de l'exporter dans un format utilisable pour
la génération de langage naturel. Un exemple est traité et une démo sur
disquette est fournie.

Training period:

Commonwealth Scientific and Industrial Research Organization
Mathematical and Information Sciences
Locked Bag 17
North Ryde, NSW 2113
Australia

Thanks

We wish to thank Professor François BODART and
Doctor Jean V ANDERDONCKT for their precious
advice.

We would also like to thank the staff of the CSIRO/MIS
in Sydney, Australia and particularly Sandrine BALBO,
Shijian LU, Nadine OZKAN and Cécile PARIS for their
fabulous welcome and their warm spirit.

We gratefully acknowledge the participation of Keith
V ANDER LINDEN of the Calvin College, USA.

Finally, we want to give a special thanks to ail the
people who have helped us dUTing OUT training and the
preparation of OUT thesis.

Table of contents

1. INTRODUCTION ... 11

2. HELP SYSTEMS .. 13

2. 1 J-IELP 15
2.1.1 The different types of help 15

2.1.1.l The stimulus help (on the fly) 15
2.1.1.2 The contextual help 15
2.1.1.3 Thegeneral help 16
2.1.1.4 Future directions 16

2.1.2 Why do users avoid using help? 17
2.2 J-IELP SYSTEMS 18
2.3 ISOLDE ··········· 18

2. 3.1 Type of documentation Isolde can produce 19

3. ISOLDE VERSUS OmER AUTOMATIC HELP GENERATION SOFIWARES 21

3.1 COMPARISON CRITERIA'S 23
3.2 CARTOONIST: COUPLING A Ul FRAMEWORK WITH AUTOMATIC GENERATION OF CONTEXT-

SENSITIVE ANIMATED HELP 25
3. 2.1 Help messages 2 5
3.2.2 Architecture 25
3.2.3 lmprovements 26
3.2.4 Comparison 26

3.3 CONTEXTUAL HELP FOR FREE WITH FORMAL DIALOGUE DESIGN 27
3.3.1 Introduction 27
3.3.2 User access to contextual help 28
3.3.3 Formai description of the dialogue 28
3.3.4 Automatic help generation 30
3.3.5 Comparison 31

3 .4 J-IELPT ALK: AUTOMA TIC GENERATION OF TEXTUAL, AUDIO, AND ANIMA TED HELP IN THE USER .

INTERFACE DESIGN ENVIRONMENT32
3.4.1 Introduction 33
3. 4.2 What can HelpTalk generate? 33

3.4.2.1 Textual Why help ... 33
3.4.2.2 Audio/animated HOW help 34

3.4.3 Help Knowledge source 34
3.4.4 Architecture 36
3.4.5 Generation algorithms 37
3.4.6 lmplementation 37

8

3.4. 7 Comparison 37
3.5 H3: AUTOMATIC GENERATION OF HELP FROM INTERFACE DESIGN MODELS 38

3. 5.1 Help messages 38
3.5.2 Architecture 39
3.5.3 Comparison 39

3.6 COGENTHELP: A TOOL FOR AUTHORING DYNAMICALLY GENERATED HELP FOR JAVA GUIS40
3.6.11Jesigngoals 41
3.6.2 System 41
3.6.3 Technical/y 42
3. 6. 4 Concretely 42

3.6.4.1 The help window 43
3.6.4.2 Help snippets 43
3.6.4.3 Consistency checking 44
3.6.4.4 Editing the table of contents 45
3.6.4.5 Dynamic help topics 45

3.6.5 Conclusion 46
3.6.6 Comparison 47

4. THE TASK MODEL ... 49

4.1 INTRODUCTION•..51
4.2 A CASE TOOL: RATIONALE RosE 51

4.2. 1 Use cases and use case diagrams 52
4.2.2 Use cases and Task models 53
4.2.3 Interaction diagrams 54
4.2.4 Interaction diagrams and Task models 56
4.2.5 State (transition) diagrams 57
4.2.6 State (transition) diagrams and Task models 58

4.3 T HE DIANE+H FORMALISM 58

5. DEVELOPMENT SOFIW ARES ... 61

5. l JAVA 63
5.1.1 The origins 63
5.1.2 Why this name: Java 63
5.1. 3 Advantages 63

5.1.3.1 Java is simple 63
5.1.3.2 Java is object-oriented 64
5.1 .3.4 Java is compiled 65
5.1.3.5 Java is platform independent 66
5.1.3.6 Java is multi-threaded 66
5.1.3. 7 Java is extensible 67
5.1.3.8 Java is robust 67

5.1.4 Disadvantages 67
5.2 VIsuALAGE 68
5.3 REMARK 68

6. INTERNAL MANAGEMENT .. 69

6.1 ARCHITECTURAL ANALYSIS (SCHEMA OF THE MODEL) 71
6.2 SEMANTICS •. .••.•....... ..•........•.•..•..• .••. .•. 71
6.3 FuNCTIONAL ANAL YSIS (00 APPROACH : DESCRIPTION OF THE OBJETS AND THE 1-0ERARCHY) 73
6.4 THE ROOT AND ITS PROPERTIES •. .. •. •.•.. .. ••••. 75
6.5 DESCRIPTION OF THE PROCEDURES 76

6.5.1 Class JO 76
6.5.2 Class Widget 77
6.5.3 Class Sequence 83
6.5.4 Class Task 85
6.5.5 Class Boolean Connector 88

6.6 How TO CONVERT FILES FROM ROSE INTO THE INTERNAL STRUCTURE••........... 91
6. 6.1 1Jescription of the file generated by Rationale Rose 91
6. 6.2 The reading of the file and the transformation into internai structure 91
6.6.3 The coordinates problem 92

6. 7 MODIFICATIONS OF THE STRUCTURE BY THE TECHNICAL WRITERS 93

Table of contents 9

6.8 SA VING AND RE-OPENING A PARTICULAR MODEL 94
6. 8.1 Second type of file (with coordinates, etc.) : the user file 94

6.9 How TO CONVERT THE INTERNAL STRUCTURE INTO A PREDEFINED (LISP) FORMAT ········ ··· ·········95
6.9.1. Third type of file: the LISP (or export) file (with no coordinates, etc.) 95

7. THE GRAPIDCAL USER IN'I'ERFACE ... 97

7.1 INTRODUCTION 99
7.2 THE FUNCTIONS OF THE INTERFACE 99

7. 2.1 Buttons and checkboxes of the GUI 99
7.2.2 The menu item "File" 101
7.2.3 The menu item "Edit" 102
7.2.4 The menu item "View" 102
7.2.5 The expansion box 103
7.2.6 Various 104

7.3 SUGGESTIONS FOR THE IMPROVING OF THE INTERFACE•............. 107

8. THE NATURAL LANGUAGE GENERATION .. 109

8.1 INTRODUCTION ··· ·· ·· · ··· l l l
8.2 THE TEXf GENERATOR 11 J

8.2.1 Rlustration 111
8.3 A REMARK CONCERNING THE HYPERTEXf SEMANTICS 114

9. AN EXAMPLE .. 115

9.1 UML MODEL 117
9.2 IM.PoRT 117
9.3 DISPLAY 118
9.4 EXPORT 118
9.5 LANGUAGE GENERATION 119

10. CONCLUSION .. 123

BIBLIOGRAPHY ... 125

TABLE OF FIGURES .. 131

A PP END IX A ... 133

A PP END IX B ... 155

CHAPTER 1
Introduction

This thesis is based on three main parts. First of ail, we situate the field of
help systems and the different representations of knowledge (chapters 2 to 4).
Secondly (chapters 5 to 8), we describe the different tools we have used and the
generation process of the Isolde project (Integrated Software and On-Line
Documentation Environ.ment). Finally, we illustrate the Isolde project by an example.

In chapter 2, we focus on the necessity of having help systems in computer
applications and introduce the Isolde project: a new tool for writing on-line help,
supported by a grant to CSIRO (Commonwealth Scientific and lndustrial Research
Organization) from the Office ofNaval Research (ONR).

Chapter 3 compares Isolde with other softwares that generate help automatically.

Chapter 4 describes the formalisms considered in the Isolde project and the choice of
task model for knowledge representation.

In chapter 5, we situate the environ.ment we have worked in: the JDK (Java
Development toolKit) compiler and VisualAge, the java builder from IBM. We also
make some comments about these two softwares.

Chapter 6 describes the task model editor and shows the different steps required to
process a particular model. A simple automatically generated model has to be
converted into an editable, easy to read, graphical form.

The next step (chapter 7) is about displaying a model graphically, using the formalism
defined in chapter 4. We also identify the different commands available, and mention
some hints to improve the current interface.

12 Chapter 1

Chapter 8 covers the last part of the process: the generation of on-line help in an
hypertext form.

In chapter 9, we illustrate the Isolde project with an example, from an UML model to
a task model and :finally hypertext files.

During our training period at CSIRO in Sydney, we have realized the T AMOT (T Ask
MOdeling Tool) for the Isolde project.

Chapters 2, 3, 5 and 7 have been written by Christophe Plier. Chapters 4, 6 and 8
have been written by Valéry Anciaux. The other chapters have been written by both
ofus.

CHAPTER2

Help systems

Resume:

This chapter introduces the notion of help and help systems.

We will compare the existing help generation systems from different criteria's
in the next chapter (chapter 3).

The section 2.1 covers the general notion of help.

In section 2.2, we explain the utility of help systems in computer softwares.

In section 2.3, we introduce Isolde, the automatic generation of help project in
which we have worked during our training period at the CSIRO.

Help systems 15

2.1 Help

Interacting daily with a computer usually presents us with no complicated
problems or unpleasant surprises. We use certain applications with functions we
understand for a small, familiar set of tasks. But ask us to try to accomplish an
unfamiliar task or ask us to use a different word processor, or even to write the
document on a different kind of computer, and the experience is quite different.

We need help!

2.1.1 The different types of help

Help facilities can only alleviate the problems experienced by new or casual

users by providing the desired information when and where it is needed.

There are three forms of help:

2.1.1.1 The stimulus help (on the fly)

► Form: the help is appearing in the information area or in a little rectangle near
the pointed object.

► Contents: short and concise help, which gives information about the pointed
objects by the mouse.

► Accessibility: we put the mouse pointer on the object.

2.1.1.2 The contextual help

► Form: message box (fast contextual help) or help window from the general
help1

•

► Contents: information about the box and the tasks units to execute in the box
(or window) from which the help has been called.

► Accessibility: from the command buttons "Help", or the key FI.

The contextual help is specifically concemed with the current state of human
computer interaction and should ideally answer three basic questions that the user
may be interested in: "What?", "Why not?" and "How?".

The question "What?" corresponds to the interrogation "What can I do from now on?"
The question "Why not?" naturally cornes to the user's mind as soon as he wishes to
trigger an action whose triggering widget is currently grayed out. And the question
"How?" stands for "How can I make that action available again?" The answer to this

1 Cf. infra 2. 1. 1.3

16 Chapter 2

question should naturally complement that of the question "Why not?" by providing
the sequence of commands to trigger in order to enable the desired command.

2.1.1.3 The general help

► Form: arborescence of secondary windows structured in hypertext.

► Contents: information about what the user could do and how to do it.

► Accessibility: it is possible to have access to the different elements of the
general help by the way of the unrolled menu. This one can be unroll from the
"Help" or the"?" item of the menu bar.

When the user presses the HELP key, different kinds ofhelp are available:

1. Overview help: describe the widgets in the current window ("Where we are")
along with a goal-oriented list of all the functions which may be performed in
the context ("What we can do" e.g., "To make a phone call: select an entry,
then use Call ") ; .~ J r~

' ;

2. Problem help: available when a problem (system or user-induced) has
occurred and a message is currently displayed on the screen. Problem help
expands on the cause of the problem and offers possible solutions;

3. Command Help: lists all of the currently valid commands (function-oriented
"What we can do" e.g., "The Call commands places a phone call to the
selected directory entry). More detailed command help is available for each
command listed ;

4. Field Help: describes the field, which the cursor is currently on, if one exists ;

5. Help about help: describes how to use the help service itself;

6. Index: an alphabetical list of all the topics of the task or the object ;

7. Tutorial: educative information about the tasks and the objects;

8. About. .. : display a window with information about the application like
copyright, logo, ...

2.1.1.4 Future directions

Now people usually have to ask for help, but more intelligent systems could
anticipate user needs. This would be particularly useful for situations in which users
may recognize the need for help but not know how to ask for it. Truly intelligent,
active help would reinterpret the actions according to user's intentions. More
advanced systems would not only tell us how to carry out a task but actually perform
it for us.

Help systems 17

Active help systems may present their own special problems and obstacles. First,
there is the difficulty of designing a system that can interpret user's intentions. In the
absence of this capability, the system is likely to develop wrong interpretations,
leading to diagnoses and advises that may be entirely inappropriate, further confusing
the user. Another pitfall is that of the computer taking too much control from the
user, leaving the user feeling like a bystander. The user is put in the position of being
a passive observer rather than an active participant. Computer-initiated help in the
form of unsolicited advice is potentially intrusive and irritating, just as a person
looking over our shoulder offering advice can be.

We canuse advances in other areas to make help more accessible. Different modes of
access for help should be considered. Voice activation is one obvious possibility,
gesture is another.

With regard to the method of presentation of information, animation deserves further
exploration. Motion can effectively add a whole new dimension to the way
information is conveyed.

2.1.2 Why do users avoid using help?

Even if there is on-line help available, the unfortunate fact is that most help
systems tend to exacerbate users' problems. Finding the simplest piece of information
can turn into a complicated exercise. If and when we find what we need, it will
probably take a long time to get back to the task we were working on, if we can even
remember what it was. The process is time-consuming and effortful, and is apt to
leave us feeling ineffective and frustrated.

As a consequence, some people do not even try to use the help provided. People
prefer to flounder around in their work environment, or better yet turn to an in-house
expert, rather than use the on-line help provided by the system.

Here are the common complaints:

• Difficulty of finding information ;

• Failure to deliver relevant information;

• Difficulty of switching between help and the working context ;

• Complexity of the help interface;

• Quality and layout of help information.

So, to have a useful and USED help system, the design must consider these
complaints. And the following five principles which are the general philosophy for
the design must be respected:

1. On-line help should never be a substitute for good interface design.

18 Chapter 2

2. Help should be context-sensitive; it should not take the user away from the
task at hand.

3. Help systems should assist users in :framing their questions and provide
different help for different questions.

4. Help systems should be dynamic and responsive.

5. Users should not need help to get help.

2.2 Help systems

Help systems today are usually developed separately from the system they
support. As a result, building and maintaining help systems requires substantial
effort:

• There is a wide variety oftasks;

• Sorne complex tasks can invoke several dialogue boxes, thus requiring the
users to invoke help on all the dialogue boxes ;

• The design of the help system replicates reasoning that went into the design of
the application ;

• Complex programming is needed because the help system must access internai
application data structures ;

• There is no support for changing the help system when the application is
modified;

• Making help systems have a consistent interface across different applications
is difficult.

That is the reason why a lot of researchers are working in the development of
assisted/computer-aided or automatic generation ofhelp software. That is the case for
the project Isolde. We have made our training period in Sydney (Australia) at the
CSIRO, the national Australian research institute. We were members of the Isolde
team. In the next paragraphs ofthis chapter, we give an overview ofthis project. The
project will be detailed in the next chapters.

2.3 Isolde

The technical writing team from IBM2 Global Services has established a close
relationship with researchers in software engineering, HCI3 and artificial intelligence

2 International Business Machines
3 Human Computer Interaction

Help systems 19

from CSIRO. The result of this collaboration is a new tool for writing on-line help:
Isolde.

Isolde takes as input a high-level description of the functionality of the software to be
documented (called a task mode[) and automatically generates hypertext for a subset
of its on-line documentation. Hence Isolde envisages that instead of producing text
directly, technical writers will produce a description of the system functionalities (in a
task modeling notation), and, once the text is generated automatically, will revise and
correct it.

Isolde is designed based on previous work in natural language generation and the
collaboration between the technical writers and CSIRO. Isolde can be used in two
modes:

1. Stand-alone: to specify formally the functionality of the software, i.e. , to
create task models, manipulate them and generate on-line help from them ;

2. Coupled to a CASE4 tool in order to bootstrap the process and provide the
technical writer with a draft of the task models for the software to be
documented.

Their goal is therefore to develop a software tool, which includes the following
features:

• A specification /anguage formalizing not only the appearance and behavior of
the application but also the domain (or user) tasks to be achieved using the
application, their decomposition and dependencies. They will augment
formalisms already developed for specifying an application and provide a way
of modeling it from the end-user's perspective ;

• Mode/ing faci/ities to allow one to create and modify the model of the
application under development. These facilities will include display and
acquisition methods and will allow for the direct manipulation of the model.
The model will become an explicit statement of what the system is for, not
merely a statement of what it does ;

• A presentation too/, which takes the extended application model and
procedures documentation, in various styles if necessary. This tool will
produce draft hypertext-based on-line help, which can be edited by the
documentation expert. The on-line help generated will be concise, task
oriented and context-sensitive.

2.3.1 Type of documentation Isolde can produce

Isolde focuses on generating procedural help. By procedural help, we mean
the help that basically enumerates the series of steps required to perform a user goal.
Procedural help can be seen as an answer to the question "How to". So, if we

4 Computer Aided Software Engineering

20 Chapter 2

compare this help with the different types of help5
, the procedural help is typically a

contextual help answering to the question "How?" Figure 2.1 shows an example of
procedural help from MSWord97.

Open a document on your disk or a
network

1. Click Open.

2. ln the Look in box, click the
drive, folder, or Internet
location that contains the
document.

3. ln the folder list, double-click
folders until you open the
folder that contains the
document you want.

If you can not find the
document in the folder list,
you can search for it

How?

4. Double-click the document
you want to open

Figure 2. 1: Example ofprocedural help from MSWord97. Part of the screen for "How to open a
file from the bard disk"

This type of help describes user actions in terms of system functions on the user
interface. In this sense, procedural help, by its very nature, closely matches the
functioning of the system lt thus seems feasible to automate its production.

The relevance of procedural type ofhelp is supported by the current trend towards
"minill;.Ullist instructions". The philosophy of minimalist instructions is based on the
argument that learnÏAg software is more effective if software documentation is short,
simple and directed towardsreal work activities. In the light ofthis philosophy,
procedural help, which is task-oriented and therefore focused on the user's activities,
is a central type ofhelp.

5 Cf. supra 2.1.1

CHAPTER3

Isolde versus other
automatic help generation
softwares

Resume:

After introducing the notion of help and presenting Isolde (chapter 2),
this chapter analyzes other automatic help generation softwares and compares
them with Isolde. This way, we make a state-of-the-art of the available
possibilities to automatically generate help.

Chapter 4 will describe the formalism used for knowledge representation in
Isolde.

To be able to compare the different softwares, we define some comparison
criteria's in section 3.1.

The following softwares are described in details: Contextual help for free with
formai dialogue design in section 3.3, HelpTalk in section 3.4 and CogentHelp
in section 3.6. These last ones are just overviewed: Cartoonist in section 3.2
and H3 in section 3.5.

Isolde versus other automatic help generation softwares 23

3. 1 Comparison criteria ~

1. The type of generated help. The help can be task-oriented and answer to
questions like "What can I do from now on?" or "How can I make that action
available again?" It can also be widget-oriented and answer to questions like
"Where can I click, and what will happen?" or "What commands are
available?"

The advantage of the task-oriented approach is that the types of questions we
can ask are very close to human's way of thinking. The disadvantage is the
difficulty of generating this type of help. Opposite to this is the widget
oriented approach with the advantage of easily generating the help. And with
the disadvantage of only accepting questions related to widgets.

2. The style of generated help. It can be mono-media or multi-media. The
media can be textual, audio or animated.

3. The help can be hypertext. It means that we can click on hypertext links and
receive help concerning other topics.

4. The help can be context-sensitive or context-insensitive. It means that the
generated help in a same situation can be different depending on the context.
The contents change according to the current state of the application.

5. The quantity of work needed to automatically generate help. To have a
precise idea of how long it takes to prepare the automatic generation of help,
we are going to score this quantity of work (Figure 3 .1).

0 5 10

Quantity

A lot ofwork Average Nowork

Figure 3. 1: Quantity ofwork needed to automatically generate help

6. The quality of generated help (must be as closest as possible to natural
language). For example: "This item is currently disabled, because the color
Blue is selected in the color list" is quite different from "Because color Blue".
We have made the same scoring as for the point number 5, here 0/10 means a
very bad quality (rough and machine-like) in the generated help and 10/10 is
just the contrary, a very good quality (natural language). See Figure 3.2.

24 Chapter 3

0 5 10

Quality

Very bad Average Excellent

Figure 3. 2: Quality of the generated help

7. The platform independence is very interesting. The help-page generator
does not depend on the platform (UNIX, Windows NT, Mac ...).

8. The difficulty (particularly time-consuming) of refining, by the technical
writer, the generated help. Here too, a scale is existing (Figure 3.3).

0 5 10

Refining

Very difficult Average Veryeasy

Figure 3. 3: Difficulty of refining the generated help

9. The existence of navigability buttons, it is much easier to navigate through
the help if some buttons exist.

1 O. Is it the same interface to create the help as the end-user will use to view it?
Like this there should be no surprise down the road as far as how it will look
when finished.

11. The consistency checking. The ability to check the consistency of the help
with the application being documented.

12. The difficulty (particularly time-consuming) of updating the generated help.
lt means that if the application changes, is it easy to update the associated
help. A scale is existing (Figure 3.4).

0 5 10

Updating

Very difficult Average Veryeasy

Figure 3. 4: Difficulty of updating the generated help

Isolde versus other automatic help generation softwares 25

We now explain some tools and analyze them according to these criteria's. These
tools are presented in the chronological order, from the oldest one to the newest one.
The softwares are explained in details, excepting Cartoonist and H3, which are just
overviewed.

3.2 Cartoonist: coupling a UI framework with automatic generation of
context-sensitive animated help

The authors of this project are:

• Piyawadee "Noi" Sukaviriya and James D. Fo/ey
Dept. ofElectrical Engineering and Computer Science
The George Washington University- Washington

[Sukaviriya 90)

3.2.1 Help messages

Animated help is intended for help questions equivalent to the kind beginning
with, "Show me how to ... ". A question posed to Cartoonist can be interpreted in two
ways - as a question about one of the actions in the knowledge base or as a question
about an activity or a task consisting of more than one action in the knowledge base.
Cartoonist does not endeavor to interpret natural language questions.

Cartoonist demonstrated how to perform an action by showing a mouse icon moving
on the screen onto objects with which the user must interact with, gesturing what
needed to be done with the object such as which button must be pressed, and
simulating the action by generating events to the underlying user interface handler.
Typing was also displayed using a keyboard icon showing characters typed in while
actual character codes are simulated to the underlying interface handler. An animated
help scenario consisted of a series of mouse movements and keyboard animation to
demonstrate how an action must be performed. Cartoonist only silently animated.

3.2.2 Architecture

Cartoonist was the first system, which generated animated help within the user
interface runtime context. Cartoonist has been implemented in Smaltalk-80 running
on both Macintosh II and Sun workstations; its emphasis was automatic generation of
animated help from procedural knowledge. Cartoonist distinguished application and
interface representations and kept the help generation mechanism independent of
application-specific procedures. Cartoonist consisted of a planner which was used to
:fill action context with appropriate parameters, and to derive a series of action which

1.
2.
3.
4.
5.
6.
7.
8.
9.

26 Chapter 3

would satisfy the pre-conditions6 of an action on which help is requested. The
animation algorithm has been re-implemented in C++ for HelpTalk.7•

Currently, they have not worked on a robust interface to help yet. The interface to
help is therefore still simplistic. The user clicks on a help icon, which then brings up
a dialogue box where a command name or a task name can be entered.

3.2.3 lmprovements

One can at least ask the question whether animation really empowers a user
when carrying out a task. Until nowadays, it doesn't exist a scientific experience
which has proved the value of animation.

Although we hope that animation can be valuable, merely using animation in help
does not deliver a perfect help system. Minimal textual explanations must be
presented with the animation to help a user generalize concepts.

It would be more exciting and useful if different animation styles such as mini-screen
animation, different styles of animation story-telling, animation special effects, etc.,
could be supported, tested for effectiveness, and left as options for the application
designer to choose among.

3.2.4 Comparison

After this overview of Cartoonist, we can compare it to Isolde following the
criteria's defined in 3.1 (Figure 3.5).

Criteria Cartoonist Isolde
Type T ask-oriented T ask-oriented
Style Animated Textual
Hypertext No Yes
Context-sensitive, dynamic Yes Yes
Quantity ofwork (1) 5/10 5/10
Quality of the generated help (2) 3/10 6/10
Platform independence No Yes
Refining the generated help (3) 4/10 4/10
Navigability buttons No No

1 O. Same interface to create the help as the end- No No
user will use to view it

11. Consistency checking No No
12. Updating (4) 6/10 6/10

Figure 3. 5: Comparison between Cartoonist and Isolde

6 Pre- and post- conditions in Cartoonist are represented following the first-order predicate calculus
convention
7 Cf. infra 3.4

Isolde versus other automatic help generation softwares 27

Comments:

(1) The quantity ofwork needed to automatically generate help is average because
the construction of the specifications is necessarily.

(2) Cartoonist receives 3/10 for the quality of the generated help because this help
is only animated. And we find that this help is quite poor comparatively with
Isolde, moreover remember what we have written just upper concerning the
impact of animated help on the users.

(3) The refining in both softwares is quite the same because nothing has really
been done to improve the possible refining.

(4) The updating in Isolde or in Cartoonist are quite the same because we must
re~tWëly;éo;i~e,;iàc~'.J0''$e spëçificatioœ,o, to the·t~lç model,·-~ify-.the~e

• " . · ~ ·• , •, • '!. ~ , :. 1 • • • , ~ , • ,. , . ·f;• ,. ·r ~ .,_, ., •

last ones and re-generate the help. · t~;'t, :i
. --

3.3 Contextual help for free with formai dialogue design

The authors ofthis project are:

• Ph. A. Palanque and R. Bastide
L.I.S., Université Toulouse I

• L. Dourte
D.I.R.O., Université de Montréal

(Palanque 93)

3.3.1 Introduction

The benefit of this method is the ability to automatically generate an important
part of the contextual help system. The contextual help should ideally answer three
basic questions that the user may be interested in: "What?", "Why not?" and "How?".

The question "What?" corresponds to the interrogation "What can I do from now on?"

The question "Why not?" naturally cornes to the user's mind as soon as he wishes to
trigger an action whose triggering widget is currently grayed out.

The question "How?" stands for "How can I make that action available again?". The
answer to this question should naturally complement that of the question "Why not?"
by providing the sequence of commands to trigger in order to enable the desired
command.

28 Chapter 3

3.3.2 User access to contextual help

The Select-Cut-Copy-Paste functions of a word processing application will be
modeled to demonstrate how users may access the contextual help.

Novice users may be puzzled if they find several inactivated menu items when they
open the "Edit" menu. For example, when there is no selection on the screen, the
"Cut" and "Copy" functions are not available.

In the help system, the tentative triggering of an inactivated widget is interpreted as a
request for contextual help on that item. This request results in the opening of a help
window (Figure 3.6).

be n

Novi
wher
the

In t
inti

;. Ctl•Z

Gu! . Ctrl+X

este functions of a word processing application
~ - ~----i trete how users mey eccess the contextuel help.

kOPY ClrJ +C
E'.aste C\rl+V
De!ete Del

uzzled if they find severel inectiveted ■enu ite■s
it ■enu. For exe■ple, when th•r• is no selection on

- - -~---nd Copy functions are not auailable.
,Selectâll

. ·lime/Qma 'FS the tentative triggering of a Why not Copy?
- - -~--- est for contextual help on t Because

8

t
res WOrdWrep ..._ ______ ,.,g of a help window (figure 6 Selection is empty.

How to Copy?
First do Button Down
Theo do Drag
Finally do Button Up.

Il OK Il

Figure 3. 6: An example of a contextual help window within a word processing application

3.3.3 Formai description of the dialogue

The high-level Petri net (HLPN) depicted in Figure 3.7 models the forma!
description of the "Select-Cut-Copy-Paste" functions. In the framework of the
method they use a dialect of HLPNs, called Petri Nets with Objects (PNOs), which is
particularly well suited for the design of user-driven interfaces because of its ability to
handle objects (in the object-oriented sense) instead of simple tokens (as in regular
Petri nets) in the reachability of places.

Isolde versus other automatic help generation softwares 29

A net models the potential evolution of the dialogue in the following way: any user
action is associated with one or several transitions in the net (the name of the action is
inscribed inside each transition). An action may be triggered if at least one of its
associated transitions is enabled in the net (i.e. each of the transition's input places
holds at least one token). If the action may not be triggered (none of its associated
transitions is enabled), the widget or menu item triggering this action must be grayed
out. With this semantics, the question "What?" is automatically answered by the set
of all enabled transitions in the net.

ButtonDn Tl

Selection
Started

T2 ButtonDn

Selection
Confirmed

T5 ButtonUp

<sel>

~
<sel> <sel> <sel>

T8 ~
<clip> <clip> <sel> <sel>

<clip>

~ <clip>

Figure 3. 7: A high-level Petri net modeling the "Select-Cut-Copy-Paste" fonctions

T9

30 Chapter 3

A marking m is an assignment of tokens to the places of a Petri net. The number and
position of tokens may change during the execution of the Petri net. The initial
marking (i.e. before the start of the execution) models the state of the interaction when
the application is launched. In that state, only places Clipboard and No Selection hold
a token: the clipboard is supposed to contain the results of previous interactions, and
the selection is initially empty. From that state, the user may (for instance) try to
select something by pushing the mouse button (transition ButtonDn), then dragging
the mouse (transition Drag) and finally releasing the button (transition ButtonUp).

When a selection is done (i.e. there is a token in place Selection, and no token in place
No Se/ection), the functions "Copy" and "Cut" are activated.

3.3.4 Automatic help generation

The question "Why not?" may be answered by examining the net's marking (as
may be done for the question "What?"): an action is unavailable only if the current net
marking enables none of its associated transitions. The question may be answered by
listing ail the places that lack a token in order for one of its associated transition to be
enabled. For example, from the initial marking (Figure 3.7), the function "Copy" is
not available because the place Selection holds no token. The answer to the question
"Why not Copy?" is therefore "Because Selection is empty".

The answer to the question "How?" requires the use of formai techniques from Petri
net theory, namely the construction of the net's reachability graph, which may be
done automatically. In a reachability graph, each node represents a reachable marking
of the net, and an arc flowing from node ni to node n2 corresponds to the transition
whose occurrence transforms marking ni into marking n2. A reachability graph is, in
fmite cases, a finite states automaton, or an augmented transition network if there is
an infinite set of nodes.

The reachability graph corresponding to the net in Figure 3.7 is depicted in Figure 3.8.
The markings must be read in the order (Selection Started, Selection Conjirmed, No
Se/ection, Selection, and Clipboard). This graph is a finite state automaton whose
initial state is the marking (0,0,1,0,1). From this initial state, for example, there is no
arc labeled with Copy, which means that the action copy is not available.

Isolde versus other automatic help generation softwares 31

T3/ButtonUp T9/Cut
(0,0, 1,0, 1)--------,

/'
T 1/ButtonDn T7/Cut

~
T2/ButtonDn ---(0,0 0,1,1), 0 T8/Copy

(0, 1,0,0, 1)

Figure 3. 8: Reachability graph of the Petri net modeling the "Select-Cut-copy-Paste" fonctions

To answer the question "How?", the reachability graph must be used in the following
way: starting from the current state, we must proceed in a breadth first search in the
graph, looking for a state featuring an output arc labeled with the desired action.
When the path is found, the answer consists in listing the sequence of commands
labeling the arcs on the path. The breadth first search ensures that this sequence is the
shortest one.

For example, starting from the initial state outlined, the "Copy" command is not
available. The search on the reachability graph provides the following path to activate
it: ButtonDn, Drag, ButtonUp; the answer to question "How to Copy?" would
therefore be:

First do Button Down
Thendo Drag
Finally do Button Up.

Obviously, a little more work would be necessary to generate more correct English
output. This could be achieved by associating a natural language help messages with
each transition of the Petri net.

3.3.5 Comparison

After this explanation of "Contextual help for free with formai dialogue
design", we can compare it to Isolde following the criteria's defined in 3.1 (Figure
3.9).

32 Chapter 3

Criteria Isolde

1. Type Task-oriented T ask-oriented
2. Style Textual Textual
3. Hypertext No Yes
4. Context-sensitive, dynamic Yes Yes
5. Quantity of work (1) 5/10 5/10
6. Quality of the generated help (2) 4/10 6/10
7. Platform independence No Yes
8. Refining the generated help (3) 4/10 4/10
9. N avigability buttons No No
1 O. Same interface to create the help No No

as the end-user will use to view
it

11. Consistency checking No No
12. Updating (4) 6/10 6/10

Figure 3. 9: Comparison between "Contextual help for free with formai dialogue design" and
Isolde

Comments:

(1) The quantity of work needed to automatically generate help is average because
the construction of a high-level Petri net representing the formai dialogue
design is necessary.

(2) A little more work would be necessary to generate more correct English output
(i.e. first do Button Down, then do Drag, finally do Button Up).

(3) The refining in both softwares is quite the same because nothing has really
been done to improve the possible refining.

(4) The updating in Isolde or in "Contextual help for free with format dialogue
design" are quite the same because we must respectively corne back to the
high-level Petri net or to the task model, modify these last ones and re
generate the help.

3.4 HelpTalk: automatic generation oftextual, audio, and animated help
in the User Interface Design Environment

The authors of this project are:

• Piyawadee "Noi" Sukaviriya and Jeyakumar Muthukumarasamy
Graphies, Visualisation, and Usability Centre
Georgia Institute ofTechnology - Atlanta

Isolde versus other automatic help generation softwares

• Anton Spaans and Hans J.J. de Graaff
Delft University of Technology

[Sukaviriya 94]

3.4.1 Introduction

33

Help needs to catch up with the user interface technology. It needs to utilize
the current media technology to be effective in conveying information to users. With
users and interfaces becoming increasingly sophisticated, and eventually adaptive,
traditional help may not suffi.ce to help users with their specific problems.

The help research is part of broader research project called UIDE8
• The overall

objective of UIDE is to empower user interface development environments with
knowledge about application semantics. The knowledge is captured through a task
oriented, high-level specification. Once captured, the knowledge is used to partially
automate the user interface design process and to provide automatic runtime support
such as generation of help and user task event logging. We are going to present
HelpTalk, the help generation part of the project.

Text, audio, and animation are used as media to deliver automatically generated help.
Currently, the automatic help generation algorithm works well but the quality of the
help generated is still rough and machine-like, especially the sound bites.

3.4.2 What can Helpîalk generate?

Currently, HelpTalk generates answers to only two types of questions: "Why
is this widget disabled?" and "How can one invoke this widget?" Responses to the
first type of questions are currently presented as text strings, while responses to the
second type of questions are presented as audio and animation. The users may not
necessarily type these questions in. They could be embedded as part of an application
interface.

3.4.2.1 Textual Why help

Let's take the example of a computerized reservation system for the German
InterCity Express train (ICE) for German audience. The user has not chosen a city for
an origin or a destination yet. Attempting to select the button labeled "Weg OK"
(confirm the route selection) which is currently disabled causes the help dialogue box
to pop up. HelpTalk detects two unsatisfied pre-conditions for the corresponding
action, AcceptRoute, which states that cities must be chosen for origin and destination
of the route. From these two pre-conditions, the explanation "A station has not been
selected for ORIGIN and a station has not been selected for DESTINATION" is

generated (Figure 3 .10).

8 User Interface Design Environment

34

[AcceptRoute] is disabled because
"A station has not been selected for ORIGIN" and
"A station has not been selected for DESTINATION"
In order to execute the action [AcceptRoute] the action "selectürigin" and
"selectDestination" should be invoked.

Chapter 3

Figure 3. 10: HelpTalk's response to the user's attempt to select the disabled "Weg OK" button
in an InterCity Express (ICE) train reservation system

The same help generation mechanism can be used for two different help access
mechanisms. Help can be explicitly requested or the information can be voluntary
when the user attempts to select a disabled button.

3.4.2.2 Audio/animated HOW help

Clicking on the right mouse button on the disabled "Weg OK" button is a
signal to HelpTalk to animate what needs to be done to make the object enabled. The
planner must look for actions, which will create conditions satisfying the pre
conditions of the AcceptRoute action. Once the planner is done, HelpTalk animates
the plan by selecting an origin with the left mouse button, selecting a destination with
the right mouse button, and selecting the "Weg Ok" button with the left mouse button.

Extracting information from the knowledge base, which corresponds to different parts
of the animation, generates the audio. The audio states "The AcceptRoute cannot be
done in this context. To perform the AcceptRoute action, we must perform
SelectOrigin, SelectDestination first. To SelectOrigin, select this object using the left
mouse button. To SelectDestination, select this object using the right mouse button.
To perform AcceptRoute, select the "Weg OK" button using the left mouse button".

3.4.3 Help Knowledge source

The help messages are possible because procedural knowledge is captured in
UIDE's knowledge base. UIDE separates its specification, or its knowledge, of an
application as two separate models - the application and the interface. The application
model contains action and object descriptions specific to an application domain for
which an interface is designed. The interface model contains interface actions and
objects, which are generic and can be used in various application domains. An
interface model of a particular application consists of those interface actions and
interface objects, which are chosen for the interface of this application. Actions and
objects are related to each other through action-parameter relationships (Figure 3.11).

Isolde versus other automatic help generation softwares

Application
Model

Interface
Mode)

Operation Mode)

Actions

Actions

Interaction
techniques

Data Mode)

Objects

Objects

Figure 3.11: UIDE's knowledge base diagram

35

Since UIDE is a model-based user interface environment, a designer specifies an
application by defining objects and listing actions which users can perform without an
application. Notice that pre- and post-conditions are expressed in the predicate
notation (Figure 3 .12).

Action Rotate
{

Parameters: (gate: GA TE)
(angle: INTEGER)

Pre-conditions: exist (x, GATE)
Post-conditions: angle (gate, angle)

Figure 3. 12: Example of an action representation

The designer then specifies how actions in the application model maps to actions at
the interface level.

36

3.4.4 Architecture

.----_.......,Blackboard
Application

Mode!

Interface
Mode!

UIDE Knowledge Base

HelpTalk

User Interface
Controller

Figure 3. 13: UIDE's runtime architecture with HelpTalk

Chapter 3

Figure 3.13 shows the UIDE's runtime architecture. At the heart ofthis architecture is
the knowledge base which is created from parsing designer inputs of application
actions and how they connect to interface tasks and objects; the former is stored in the
application model, the latter in the interface model. At runtime, the blackboards
associated with the application and the interface models hold declarative status of the
application and its interface, respectively.

The User Interface Controller (UIC) uses the application knowledge and the interface
specification in the knowledge base as its source to drive the dialogue sequencing.
When the user interacts with the screen interface, UIC determines which application
action is invoked, processes the information, and sequences the dialogue accordingly.

Much of the information to answer how-questions is constructed from the application
and the interface models combined. The blackboard contents are facts, which
altogether represent the current context, allowing HelpTalk to complete context
sensitive help messages or scenarios.

Once HelpTalk is ready to show the user how to perform an action, it animates by
first figuring out the animation scenario such as which objects to interact with and in
which nature should the interaction be. It then sends out low-level scripts to the
Animation Server, which plays out the scripts. The Animation Server runs as a
separate process. It responds to low-level commands in scripts such as "move the
mouse to position (20,20)" or play-audio "Select this object using the left mouse
button." The Animation Server draws the mouse on the screen, moves it around, and
sends X events to the application interface, which is controlled by UIC. lt also sends
audio information toits partner, the Audio Server.

Isolde versus other automatic help generation softwares 37

3.4.5 Generation algorithms

A response to a why question is generated based on unsatisfied pre-conditions
associated with an action. A response to a how question is generated based on
traversing the UIDE knowledge model to derive at procedural descriptions.

In the textual why help, the text string could be sent to a speech synthesizer. A why
explanation is generated in two parts. Th first part is the reason part. The second part
is the generation of what needs to be done. lt could be possible to use animation as
part of showing the steps.

3.4.6 lmplementation

Both UIDE and HelpTalk are implemented in C++ running on Sun SPARC
stations. UIDE's knowledge representation is implemented as C++ classes. At
runtime, UIDE, HelpTalk, and the animation Server run as separate processes.

3.4. 7 Comparison

After this explanation of HelpTalk, we can compare it to Isolde following the
criteria's defined in 3.1 (Figure 3.14).

Criteria
1. Type
2. Style

3. Hypertext
4. Context-sensitive, dynamic
5. Quantity ofwork (1)
6. Quality of the generated help (2)
7. Platform independence
8. Refining the generated help (3)
9. Navigability buttons
10. Same interface to create the help as

the end-user will use to view it
11. Consistency checking
12. Updating (4)

Hel Talk
Task-oriented

Textual, audio and
animated

No
Yes
8/10
6/10
No

4/10
No
No

No
6/10

Figure 3. 14: Comparison between HelpTalk and Isolde

Comments:

Isolde
T ask-oriented

Textual

Yes
Yes
5/10
6/10
Yes
4/10
No
No

No
6/10

(1) The quantity of work needed to automatically generate help in HelpTalk is
very low because the knowledge is captured through a task-oriented, high
level specification used to partially automate the user interface design process.

38 Chapter 3

(2) Text, audio, and animation are used as media to deliver automatically
generated help. But the quality of the help generated is still rough and
machine-like, especially the sound bites.

(3) The refining in both softwares is quite the same because nothing has really
been done to improve the possible refining.

(4) The updating in Isolde or in HelpTalk are quite the same because we must
respectively corne back to the specifications or to the task model, modify these
last ones and re-generate the help.

3.5 H3: automatic generation of help from interface design models

H3 stands for Humanoid Hyper help.

The authors ofthis project are:

• Roberto Moriyon
Instituto de Ingenieria del Conocimiento
Universidad Autonoma de Madrid

• Pedro Szekely and Robert Neches
USC/ISI California

(Moriyon 94)

3.5.1 Help messages

H3 can produce basically four kinds of help messages. The first kind is a
summary message describing the item that the user selects for help. The other three
kinds provide answers to the question "What commands are available?", "What is
displayed here?", and "Where can I click, and what will happen?". H3 does not
currently provide task-oriented help to answer questions like "How do I delete a file?"
Producing such help is beyond the scope of rule systems like theirs. It requires a
planner that can compute the sequence of commands needed to perform a given task.

The help information that H3 gives users goes beyond canned texts attached to the
static portions of the display. H3 help messages consist of concatenations ofpieces of
canned texts with embedded links that show where information mentioned in the help
text is displayed, and can also be used to access related information (like in hypertext
systems). In addition, the messages are context sensitive so that asking for help on an
item produces different messages depending on context and application state (e.g.
asking for help on a dimmed item produces a message explaining why the item is
dimmed, where as asking for help when the item is enabled, will tell the user what
object will be affected by the corresponding command).

Isolde versus other automatic help generation softwares 39

In the future the sophistication of the help system will be enhanced. They are
interested in incorporating ideas from Cartoonist9 to be able to show animations, and
to produce task-oriented help.

3.5.2 Architecture

If a user want to ask for help, he points with the mouse to an object on an
application display and presses the HELP key on the keyboard. H3 pops up a window
with the data messages about the smallest graphical or textual element under the
mouse cursor.

H3 constructs a default help system for an application automatically by using the
specifications used to construct the application's user interface. Developers can refine
the automatically generated help system at different levels. The simplest level is to
replace the default pieces of canned text by more appropriate ones. Developers can
also add links to messages, and add messages to display elements that do not produce
messages by default. Advanced developers can change the behavior of the help
system itself by defining new rules in the H3 rule system that computes the help
messages. Humans are much more skilled than computers at writing prose, and since
the quality of the text is critical to the success of the help system, H3 allows humans
to write the text.

In H3 the help messages are specified as rules of the following form:

When Conditions then Message-Descriptions

The conditions identify the context when a particular message is appropriate, and the
message descriptions are templates that specify the text and links of messages to be
generated.

3.5.3 Comparison

After this overview of H3, we can compare it to Isolde following the criteria's
defined in 3.1 (Figure 3.15).

9 Cf. supra 3.2

40 Chapter 3

Criteria H3 Isolde
1. Type Widget-oriented T ask-oriented
2. Style Textual Textual
3. Hypertext Yes Yes
4. Context-sensitive, dynamic Yes Yes
5. Quantity ofwork (1) 8/10 5/10
6. Quality of the generated help (2) 4/10 6/10
7. Platform independence No Yes
8. Refining the generated help (3) 8/10 4/10
9. Navigability buttons No No
10. Same interface to create the help as the end- No No

user will use to view it
11 . Consistency checking No No
12. Updating (4) 6/10 6/10

Figure 3. 15: Comparison between H3 and Isolde

Comments:

(1) The quantity of work needed to automatically generate help in H3 is very low
because it uses the specifications used to construct the application's user
interface and nothing else.

(2) The quality of the generated help is not so good in H3 but the users can refine
the help to improve its quality. So finally the help will be of good quality,
a:fter the refining of the users but no initially!

(3) The possibility to refine the generated help is very good in H3. Three levels of
refining are possible. See 3.5.2 for more details.

(4) The updating in Isolde or in H3 are quite the same because we must
respectively corne back to the specifications or to the task model, modify these
last ones and re-generate the help.

3.6 CogentHelp: a tao/ for authoring dynamically generated help for Java
GU/s

CogentHelp is a prototype tool for authoring dynarnically generated on-line
help for applications whose Graphical User Interfaces (GUis) are built with the Java
Abstract Windowing Toolkit (A WT).

The authors ofthis project are:

• David E. Caldwell and Mickael White
CoGenTex, Inc.

Isolde versus other automatic help generation softwares 41

[Caldwell 97) and [CogentHelp)

3.6.1 Design goals

The first goal was to effectively assist authors in creating high-quality on-line
help documents.

lt means:

• Consistency - the general writing style should be consistent throughout the
help system ;

• Navigability - the use of grouping and formatting should make it easier to find
information about a particular GUI component in the help system ;

• Completeness - all GUI components should be documented ;

• Relevance ;

• Conciseness - redundancy should be avoided;

• Coherence - information about GUI components should be presented m a
logical and contextually appropriate fashion.

The second goal was to support the maintenance of help documents as the
documented application evolves.

lt means:

• Fidelity - the help author should be assisted in producing complete and up-to
date descriptions of GUI components ;

• Reuse - the help author should not have to write the same text twice.

And the final goal was to facilitate use of the technology deployed to achieve the first
two goals. The benefits of the system must be made available at a reasonable cost in
terms of the understanding and effort required of the help author.

3.6.2 System

The help authors write the reference-oriented part of an application's help
system in small pieces (or "snippets"), indexed to the GUI components themselves.
CogentHelp then dynamically assembles the snippets into a set of well-structured help
pages for the end-user to browse.

This general approach (storing many small document components in a structured
database, and using them to generate complex and/or varied documents) has two main

42 Chapter 3

advantages over a "manual" approach to document creation. First it makes easier to
maintain documents. Secondly, having a document generator frees the author to
concentrate on writing accurate content for the snippets, rather than the drudgery of
applying consistent formatting and managing a complex hypertext network.

Consistency is maintained through the use of utilities, which check for missing or
surplus snippets.

Elements of this approach have been used in many systems for software-related
documentation but CogentHelp is the first tool to combine the advantages of
automatic consistency checking and automatic document generation in a tool for
authoring documentation directed at end-users.

3.6.3 Technically

CogentHelp's help-page generator is implemented using Java and HTML for
platform independence, and with a client-server architecture in order to allow
dynarnic generation of help pages which reflect the current state of a GUI. Help
topics are delivered by an HTTP server via the Java Servlet API 10

; for display in a
Web browser. The expandable table of contents and thumbnail hypergraphics are also
implemented in Java, as applets hosted by the browser.

3.6.4 Concretely

When we click on Help button, this brings up the help system in a new
window (Figure 3.16). This window serves a dual purpose: it is help window that the
end-user of the applet will see, but it also hosts CogentHelp's authoring interface.
There should be no surprises down the road as far as how it will look when finished!

10 Application Program Interface: a set of libraries

Isolde versus other automatic belp generation softwares

3.6.4.1 The help window

Expandable table
of contents:

• "General"
tooics

----;-i,;:,i~ Introduction
K=] Procedures
èD Reference

Bel Main Wind ~= • "Reference- _____ !--@ Dari<

oriented" topics ~ Filled
reJ Border ...
LCJ Redraw

~ Color

Detennines the color of the picture.

Selecting a color from this hst causes
the picture to be redrawn in the
selected color.

SeeAlso
~
Dark

,? Eot I X Delete Save]

1Q Check Comoleteness ... j

Sorne additional controls,
which are part of the
authoring interface.

Figure 3. 16: The "Help" window

43

Sorne standard
navigation controls

When we have finished authoring the help system, we will switch it to end-user mode,
and the additional controls will no longer appear.

"General" topics give high-level information about the application, task-oriented help,
etc.; they are written by hand, using a HTML editing tool. And "reference-oriented"
topics describe the functions of individual windows and widgets, they are generated
automatically by CogentHelp using text that is provided in the form of "help
snippets".

3.6.4.2 Help snippets

If we click on the Edit button shown in the "Color" topic, this brings up a
window (Figure 3.17) in which we can edit the help snippets.

44 Chapter 3

i~ CogentHclµ Edit s ruµµct s 101 (olml1st Nct sc..tµt: llllilJ Ei

f La~I] jco lor

This object jctetermines the color of the picture

[Elaboranon] Selecting a color :trom this list causes the
picture to be redrawn i n the selected color.

This object is J
enabled when

To enable it, l

:B.
.., 1

:B.
:B.

See also: •
Liqht

Generate link to: 1 Dark ..:.]

<a href=' HakelifidqetTopic 71ifidgetNam Introduction rk
Procedures

-------1Reference
Update Snippets Main Window Cancel

Color

Figure 3. 17: The "Edit snippets" window

..:.l

Each of the snippets contains a different type of message concerning a widget. The
füst one is simply a label to be used to refer to the widget in the help system. The
second snippet is simply a brief description of the widget's function. The third is an
optional elaboration, which may be a paragraph or so of further explanation. The
fourth and fifth describe conditions under which the widget is enabled, where this is
appropriate, and how to enable it if it is disabled. Finally, the last snippet simply
contains a list of hypertext links to other relevant help topics.

The snippets are written in HTML, this lets us enter anything from plain text, to bold,
italics, and hypertext links; to audio, video, and whatever else is expressible using
HTML.

The window also contains a handy item, which can be used to generate a hypertext
link to any topic in the table of contents.

3.6.4.3 Consistency checking

The most important feature is the ability to check the consistency of the
reference-oriented help with the application being documented. If we click on the
"Check Completeness11 button in the help topic window, this displays a report that lets
us know how we are doing (Figure 3 .18).

CogentHelp tells us about any 11obsolete11 widgets in the help system - ones for which
we have created help topics, but which no longer exist in the application. CogentHelp
also lets us know about new widgets for which help topics have been created, but for
which we have not actually entered any help snippets yet.

Isolde versus other automatic help generation softwares

lt CogentHelp Cons1slency Check Net 111!1~ El

Obsolete itfflls

□ Redraw (Redr:avButton)

Items with no mippets

0 Border ... (Bor:der:Button)

~ Filled (Fil ledCheck)

Figure 3. 18: The "Consistency check" window

3.6.4.4 Editing the table of contents

m· CogentHelp Ed1I Table of Conlenls Nelsc<1pe 111!1~ E3

, -GU Introduction
j---jfil Procedures
éCJ Reference
! @[!11 Main Window

~,,wuwuw
j--~ WidthChoice

:··□ Cancel
Lc:J OK

Labet

URL..

Image ... 11

Update Nocle j

Save and Close j

Figure 3. 19: The "Edit table of contents" window

45

This window (Figure 3.19) lets us move the nodes in the table of contents around
as we see fit. It is also possible to use this window to specify how hand-written
"general" topics fit into the table of contents, by creating new nodes and
specifying the URLs and images associated with them. So CogentHelp also gives
us lots of flexibility to integrate reference-oriented help with our hand-written
topics.

3.6.4.5 Dynarnic help topics

The kind of help topic, whose contents change according to the current
state of the application, is possible because one of the bits of information that is

46 Chapter 3

passed to the help server about each widget when a help request is made is a string
representing its current "state" (Figure 3.20).

tr P1 elu1 e\1,101hhoµ H e lµ N e l sL dlJC lllllliJ E3

= Introduction
= Procedures

Reference

èel;· ·~!"'
Border ...
Redraw

~ BorderDlalog

® Dark

Controls the shade used to draw the
picture.

Selecting this option causes the picture
to be drawn in a dark shade of the
selected color.

Note: 1bis item is currently disabled,
because the color Blue is selected in
the color list. It is enabled when the
color Gray is selected from the color
hst.

SeeAlso
ColorList
Li!!ht

Figure 3. 20: Dynamic help topics

•

3.6.5 Conclusion

• It concentrates the contents of help topics into one unique location, so that
users are sure to get the last update as soon as available.

• Developers of the help system are no longer forced to duplicate recent update
of a help system since the update is available on the WWW 11

•

• It automates much of the "drudge" work involved in creating reference
oriented help, letting us concentrate on getting the content right.

• It helps us to maintain consistency between the help and the application we are
documenting.

• It gives us flex.ibility in how we incorporate hand-written materials into the
help system.

• It can be customized in various ways, including the way in which it generates
dynamic help messages according to the current state of the application.

11 World Wide Web

Isolde versus other automatic help generation softwares 47

3.6.6 Comparison

After this explanation of CogentHelp, we can compare it to Isolde following
the criteria's defined in 3.1 (Figure 3.21).

Criteria Isolde
1. Type Widget-oriented Task-oriented
2. Style Textual Textual
3. Hypertext Yes Yes
4. Context-sensitive, dynamic Yes Yes
5. Quantity ofwork (1) 3/10 5/10
6. Quality of the generated help (2) 8/10 6/10
7. Platform independence Yes Yes
8. Refining the generated help (3) 7/10 4/10
9. Navigability buttons Yes No
1 O. Same interface to create the help as the end- Yes No

user will use to view it
11. Consistency checking (4) Yes No
12. Updating (5) 6/10 6/10

Figure 3. 21: Comparison between CogentHelp and Isolde

Comments:

(1) It takes more tirne to fi.Il ALL the snippets for ALL the widgets than to make a
task model for the application.

(2) The quality of the generated help for the CogentHelp project is much better
than the one frorn Isolde. That is quite normal because the sentences of the
help are the ones corning frorn the snippets and thus, we deterrnine ourselves
the quality of the help.

(3) To refine the help with CogentHelp, it is very easy: we just change the right
snippet. What we put in it will be what we see in our help.

(4) The Isolde project does not have the consistency checking, · 'that is a
disadvantage comparatively to CogentHelp but it is not absolutely necessary.
It is just like an option for a car; we have it, quite well, otherwise do ·not worry
... we still have the car.

(5) For the help's updating in CogentHelp, it is very easy. Just change the
snippets if the speci:fications of the widgets have changed. Moreove{we have
the consistency checking which keep the coherence and the consistency of the
help.

CHAPTER 4
The task model

Resume:

In chapter 3, we have compared Isolde with the other help generation
systems.

This chapter introduces the formalism used for Isolde, describing the different
diagrams in UML and their relation with task models.

The next chapter will describe and examine the tools used to develop our task
model editor: Java and the GUI builder Visua/Age.

A:fter a short introduction (section 4.1) explaining why the task model was the
optic chosen, section 4.2 introduces Rational Rose, the case tool used in the
Isolde project, and some of the diagrams generated by Rational Rose that are
useful to describe task models.

Finally, in section 4.3, we describe Diane+H, the formalism we use to
represent a task model.

The task mode! 51

4. 1 Introduction

Knowledge representation is one of the most important issue of a tool aimed at
producing on-line help. The Object Oriented approach to software development has
become very popular. Yet, object oriented development is mostly system centered and
not adapted to user usage and interaction patterns [Lu 98a].

On the other hand, task analysis provides a user centered view and is designed to
describe users' task.

Popular in interactive software development, task models can help prototyping of the
user interface or can be used as a communication tool between the software engineers,
the HCI specialists, the end-users and the technical writers.

Task analysis and modeling provide 00 with its much needed strength. However, in
order to integrate 00 and task modeling, a proper mechanism has to be in place. The
challenge was to integrate task modeling into the industrial 00 software development
process.

The case tool we will use is Rational ROSE, in conjunction with a T Ask MOdeling
Tool (TAMOT). That tool is the Task model editor we have developed during our
training period at CSIRO.

4.2 A case tao/ : Rationale Rose

In order to produce a model, we have two options : the first one is to start from
scratch. It is difficult, time consuming and a model cannot be reused [Lu 98a] .

The other possibility is to use some information already available and transform it
into a formai graphical notation in order to be easily understood and modified later,
using the TAMOT.

The first step is to extract a primai sketch of a particular model and then add
information manually to turn it in a more complex model. Software developers use
CASE tools to specify programs. An idea would be to reuse information from a CASE
tool and make a task model from there.

In the Isolde project, we use Rationale Rose, an Object Oriented CASE tool
:frequently used in software development.

TAMOT is integrated with ROSE through two transformers: BTT (system Behavior
model To Task model) and TTB (Task model To system Behavior model) which
exploit the semantic common ground between system behavior models and task
models. BTT, built in ROSE script, automatically constructs corresponding task
models :from system behavior models whereas the TTB does the opposite task. This
gives a way to feed the result oftask modeling into ROSE for subsequent design.

52 Chapter 4

System behavior models in an 00 CASE tool like Rationale Rose typically include
use cases, use case diagrams, interaction diagrams and state transition diagrams. We
will focus on use case and use case diagrams (section 4.2.1), interaction diagrams
(section 4.2.3), state diagrams (section 4.2.5) and see respectively in section 4.2.2,
4.2.4 and 4.2.6 the connection to task model [UML 97].

4.2.1 Use cases and use case diagrams

A use case diagram is a graph of actors, a set of use cases enclosed by a
system boundary, communication (participation) associations between the actors and
the use cases, and generalizations among the use cases.

A use case is shown as an ellipse containing the name of the use case.

The following relationships are meaningful within a use case diagram :

• Communicates : The participation of an actor in a use case is shown by
connecting the actor symbol to the use case symbol (solid path);

• Extends : 'Extends' is a relationship between use cases and is shown by a
generalization arrow from the use case providing the extension to the base use
case. A relation from use case A to use case B means that an instance of use
case B may include the behavior specified by A ;

• Uses : 'Uses' is also a relationship between use cases. A relation from use
case A to use case B means that an instance of use case A will also include the
behavior as specified by B.

In Figure 4.1, we can observe a use case relationship where an instance of "Place
Order" includes "Arrange payment" and where an instance of "Place Ortler" may
include "Request Catalog with Order"

Place
Order

.,extends ..

«uses••

Figure 4. 1: A use case relationship

The task model 53

Figure 4.2 is an example of a use case diagram where there is a communication
association between the Customer and the Salesperson for the use case "Place Ortler"

Telephone Catalog

Salespe,son

Customer Shlpping Clerk

Supervisor

Figure 4. 2: A use case diagram

4.2.2 Use cases and Task models

There is a strong similarity between use cases and task models [Artim 97].
Use cases and use case diagram are semantically similar to task models [Lu 98b] .

Use cases capture user requirement for a system by describing how a system will be
used and to what ends. We can compare use cases and task models from the
following points of views:

• A use case can be seen as equivalent to a composite task in a task model ;

• Sorne tasks attributes, like task name and comment, can be obtained directly from
use cases. For example, a task name can be seen as its corresponding use case ;

• Sorne information like task precondition and feedback, needed for task model and
contained in use cases, are more difficult to extract automatically. Since it is part
of a free text, to single it out would require sophisticated language processing.

Besides the characteristics of use cases, use case diagrams have the following
features:

54 Chapter 4

• Ali use cases inside a use case diagram can be seen as sub-tasks of the
composite task corresponding to the use case diagram ;

• The extends relationship between use cases is equivalent to a sequence with a
precondition;

• The uses relationship between use cases is equivalent to a sequence ;

• Unrelated use cases are equivalent to tasks parallel to each other.

4.2.3 Interaction diagrams

A pattern of interaction among objects is shown on an interaction diagram.
Interaction diagrams corne in two forms based on the same underlying information
but each emphasizing a particular aspect of it: sequence diagrams and collaboration
diagrams.

Sequence diagrams:

A sequence diagram shows an interaction arranged intime sequence. In particular, it
shows the objects participating in the interaction by their "lifelines" and the messages
that they exchanged arranged in time sequence. It does not show the associations
among the objects.

A sequence diagram has two dimensions: the vertical dimension represents time, the
horizontal dimension represents different objects. Norrnally time proceeds down the
page. (The dimensions may be reversed if desired.)

Usually, only time sequences are important, but in real-time applications, the time
axis could be an actual metric. There is no significance to the horizontal ordering of
the objects. Objects can be grouped into "swimlanes" on a diagram.

In Figure 4.3, we can see a simple sequence diagram with concurrent objects.

From the time the caller lifts the receiver (time a), meaning that he wants to make a
call, it takes less than a second for the system to send a dial tone to the caller. Then,
the caller must start dialing the phone number within 10 seconds, etc.

The task mode!

alllt exçhanqe rece1x,c

(b - a < 1 sec.}

(c - b < 10 sec.}

The calf is
routed through
the network.

{d' • d< 5 sec.}

Al this point
the parties
can talk.

a

b

C

d

d

Collaboration diagrams :

lift receiver

dlat tone

dial digit

ringlng tone phone rings

stop tone stop ringlng

Figure 4. 3: A sequence diagram

55

A collaboration diagram shows an interaction organized around the objects in the
interaction and their links to each other. Unlike a sequence diagrarn, a collaboration
diagram shows the relationships among the objects. On the other hand, a collaboration
diagram does not show time as a separate dimension, so the sequence of messages and
the concurrent threads must be determined using sequence numbers.

A collaboration is a modeling unit that describes a set of interactions among types. A
collaboration involves two kinds of model constructs: a description of the static
structure of the affected objects, including their relevant relationships, attributes, and
operations; and a description of the sequences of messages exchanged among the
objects to perform work.

A collaboration diagram is a graph of objects and links with message flows attached
toits links. The context of the diagram shows the objects relevant to the performance
of an operation, including objects indirectly affected or accessed during the operation.

The context for an operation includes its arguments and local variables created during
its execution as well as ordinary associations. Objects created during the execution
may be designated as «new»; objects destroyed during the execution maybe
designated as «destroyed»; objects created during the execution and then destroyed
may be designated as «transient».

56 Chapter 4

The invoker of an interaction may be shown on a collaboration diagram as an actor
symbol. The internai messages that implement an operation are numbers starting with
number 1. For a procedural flow of control the subsequent message numbers are
nested in accordance with call nesting. For a nonprocedural sequence of messages
exchanged among concurrent objects, all the sequence numbers are at the same level
(that is, they are not nested).

In Figure 4.4, we can see a collaboration diagram

redisplay() _,. window

·çon1rouer

1: displayPosilions(window)

wtre

l .1 ·(i= 1 . n) : drawSegment(i) wire : Wtre

(temp)
•• local»l~ne

1, 1 .2 cr&alefr0,r1l

:Window

1 ' . , 3 1 : add(self)

oontents {new}

...., ______ ., .1.3· d,splay(wlrioow) __.,

', 1 1 a rO = position() + 1.l .1b: r1:=position()

rjght Beag

Figure 4. 4: A collaboration diagram

4.2.4 Interaction diagrams and Task models

Since sequence diagrams and collaboration diagrarns can be automatically
generated from each other, either can be used. Arbitrarily, sequence diagrams are used
in our studies.

The question is : "How much information contained in sequence diagram could be
reused to generate task models ? "

Based on analysis, we can conclude than task models in part resembles Sequefi~~
diagrarns. A task model describes only users' and system's behavior while sequëllbti
diagrarns represent system's interna! behavior as well.

In general, we have the following observations:

The task model 57

• A sequence diagram can be seen as equivalent to a composite task in a task
model ;

• A message between objects is equivalent to an elementary task ;

• Ail messages inside a sequence diagram can be seen as sub-tasks of the
composite task corresponding to the sequence diagram ;

• A lot of information in a sequence diagram is irrelevant to its corresponding
task-model, such as most interactions between invisible objects ;

• Sorne task attributes (comments, ...) can be obtained automatically from
sequence diagrams. They can be extracted from the corresponding message ;

• Sorne task attributes (Interactive or manual, terminal event or not) can be
implied from sequence diagrarns ;

• Sorne information contained in sequence diagrams and needed in task models
may be difficult to extract, such as sequence preconditions, task precondition,
and feedback.

With the rules listed above, algorithrns can be designed to automatically construct
task models from sequence diagrams.

4.2.5 State (transition) diagrams

A state diagram shows the sequences of states that an object or an interaction
goes through during its life in response to received stimuli, together with its responses
and actions.

In the example of Figure 4.5, ifwe start from state "DialTone" and the calier dials an
invalid digit, the system generates a message. But if the dialing is valid, the system
connects the calier to the receiver and the action "Ring" starts.

58

lift
rec&iVer
iget dial ton~

caJler
hangs up
/disconnect

Tlmeout

dO/ P'aY mtlssage

dii1ldigi1(n)

do! plav dial tcne

CIIIIOO
answers

lnvalld
dol play message

llee
hangs up

Busy

do•' play busy
tone

callee answers
leflRble s~e<::h

Figure 4. 5: A state diagram

busy

4.2.6 State (transition) diagrams and Task models

connected

Rlnglng

pay nng1ng
tol'lé

Chapter 4

State diagrams for a single object is of limited use because an end-user task is
normally delivered through interaction between multiple objects.

State diagrams for the system seem to be more interesting for task models.
Unfortunately, this kind of state diagram seems to be very hard to build.

That is why we will not go further with state diagrams for now, but they might be
used in the future.

4.3 The Diane+H formalism

DIANE+ [Tarby 96] extends the DIANE method to make possible the
automatic generation and the automatic management of the user interface.

DIANE+H is a sub-set of DIANE+, used within the Isolde project, in the context of
automatic on-line help generation. DIANE+'s goal is to automatically manage the
interaction during the execution, while DIANE+H is to automatically generate on-line
help.

In order to have control over the man-machine dialogue, we need to define a few
concepts : these concepts are the operation and the precedence. A precedence is a
sequencing link between operations. An operation is either a process which can be

The task mode) 59

performed (e.g. print the screen), a set of operations (called sub-operations), sets of
sub-operations, and so on.

The questions we consider are :

• Who triggers an operation ? The triggering is optional when it is the user,
and automatic when it is the computer. In the first case, the user can trigger
the operation and decides when to trigger it. In the second case, the user
cannot decide to trigger the operation ;

• Who performs an operation ? The operation is manual if it is the user, (e.g.,
sign a document), automatic if it is the computer (e.g., disconnect), and
interactive if it is both (e.g., enter a name) ;

• Who checks the performing of an operation ? The operation is optional
when the user checks, and required when the computer checks. Example: for
the "Record a client" aim, the "Enter the name of client" operation is required
whereas the "Print a client" operation is optional. All operations of
consultation, printing, etc., are generally optional.

Another kind of operation exists in DIANE+ : the constrained operation. A
constrained operation results of the splitting of an operation into sub-operations,
whereas a constraint is associated in order to define how many sub-operations must be
performed.

Another feature implemented is the boolean connector. lt allows multiple branching
from a task to another. The available boolean connectors are AND, OR and XOR.

We illustrate some graphical notations in Figure 4.6

Task Attribute Graphie al form Explanation

Interactive D User interactive with system

Manual D Performed by user

Automatic D Performed by System

Elementary D Task box without shade

Composite D Task box with shade

Decomposition l j Task refinement

Feed back

~
Describe feedback provided by the
application

Mandatory D Task box in sol id lines.

Optional .. - -- -- -, Task box in dotted lines
.. - - - - - _,

ParaUelism DD Tasks can be performed in parallel

Task sequence • ... Ortler oftask to be performed

60

Sequence
precondition.

Constraint

Name

Comment
Task
precondition

Terminal

T
lfa>O • Q
c=)
(text area)

~
q

Indicates the condition under which the
link will be followed.

The task will be able to be executed a
minimum ofl and maximum ofj times.
Taskname

Task Comment
The task will be blocked until the
precondition becomes true.

The normal end of the task

Figure 4. 6: Sorne graphical notations

Chapter 4

CHAPTER5

Development softwares

Resume:

In chapter 4, we have seen the formalism used in Isolde to describe a
model in Rationale Rose and how some diagrams could be used to make a task
model.

In this chapter, we analyze the development softwares we have used during
our training period for the implementation of Isolde: Java and a builder from
IBM, VisualAge. The advantages and the disadvantages of both softwares are
presented.

The next chapter will describe the architecture of our system and the different
classes and methods in Java.

Section 5.1 gives us an overview of the Java language.

In section 5.2, we analyze the builder we have used to develop our interface:
VisualAge.

We finish (section 5.3) with a remark concerning our experience with both
softwares.

Development softwares 63

5.1 Java

Java is a high-level programming language similar to C, C++ and Pascal. That
is a simple, object-oriented, compiled, platform independent, multi-threaded, robust
and extensible language.

5.1.1 The origins

Java has been created and implemented by a small team headed by James
Gosling 12 at Sun Microsystems in California. This team was working on the
development of an application. After a while, they found that programming
languages like Cor C++ were not appropriate. The programs written in C++ must be
compiled for a particular environment. Each time we are changing of environment, a
new compilation has to be made. Moreover the C++ programs must be recompiled
when the libraries used are changing.

In 1990, James Gosling began the creation of a new programming language that could
not have the disadvantages of the traditional languages like C or C++. Java is the
result.

5.1.2 Why this name: Java

At the beginning, James Gosling called this language "Oak" (from the tree
situated opposite the window of his office). After, the development team found that
this name was already existing, it was the name of a programming language. That is
the reason why another name had to be found. After discussions inside the team, Java
was chosen. Java does not stand for Just Another Vague Acronym!

5.1.3 Advantages

5.1.3.1 Java is simple

Most of the programmers are using C and those working with the object
oriented programming are using C++. Java is very similar to C++, he has less
functions (those which are rarely used or not absolutely needed) because of
simplifications. The most differences between Java and C++ are:

• There is no pointer because there are a lot of bugs in the C++ programs. They
are replaced with objects and with tables of objects. The complex
manipulation of pointers is so replaced with access to tables via indexes ;

• The allocation and the desallocation are automatically made by the way of a
garbage collector. The system decides by himself which are the non
referenced objects and frees them ;

12 He is also responsible for the development of the Emacs (UNIX) and NeWS windows system.

64 Chapter 5

• Every method is linked to a class, there are no global functions like in C.
Moreover this classes can be loaded dynamically. The virtual machine only
uses the needed classes. As soon as a new class is needed, this last one is
memorized;

• The Java language has got exceptions that are represented with classes. They
allow responding to a non-foreseeable situation for the program without
forcing the stop of the pro gram.

One of the purposes of the Java language is to allow the construction of applications
that can be run on small machines. The size of the minimal interpreter and its classes
is 40 kbytes, if we are adding the standard libraries, the size will be 175 kbytes.

Personally, we find that this advantage is particularly true. This language is very easy
to understand and to work with. After a few days, it is possible to have a very good
idea ofhow to develop applications. lt is much easier than C++; for example, there is
no pointer and happily it is possible to do at least the same things as with C++. But
also with the automatic memory (des)allocation, the dynamic loading and the
exception classes. The fact that applications developed in Java can be run on small
machines is also very interesting in our case, because one of the purpose of Isolde is
the possibility to be run on every machine.

5.1.3.2 Java is object-oriented

Java is an object-oriented programming language. To be considered as object
oriented, a language must have at least this four characteristics:

1. Encapsulation: regrouping the methods and its variables inside a class. With
this system, it is impossible to access directly the variables of an object ;

2. Heritage: relation between classes allowing a sub-class to have its attributes
and to share methods defined in the upper class ;

3. Polymorphism: processes allow having multiple implementation of a method
identified by its name. The polymorphism is implemented with the dynamic
binding;

4. Dynamic binding: technique allowing to link the calls of the procedure
(methods) to the corresponding code at the time of the execution and not at the
time of the compilation.

The Java language has got the characteristics below. For example, it is divided in
classes. Each class is containing a set of methods, which is defining the comportment
ofthis object. A particular class can inherit comportments of other classes. The root
of the classes hierarchy is already the Object class.

Development softwares 65

Car

Figure 5. 1: Classes hierarchy

For example in Figure 5.1, we could define a class Car that is inheriting properties of
the class Vehic/e, this last one is inheriting properties from the class Object.

Java has only the simple heritage. lt means that each class can inherit methods from
only one other class. Sorne language have multiple heritage, this can introduce some
confusion and make the language too complicate.

During the declaration of a class in Java, we must indicate the allowed access types to
the variables and to the methods of the class. The classes can be declared:

✓ public - the methods and the variables are available for all the other classes ;

✓ protected - the methods and the variables are only available for the sub-classes
ofthis class and nowhere else;

✓ private - the methods and the variables are only available inside the class in
which they have been declared, they are not available for other classes, even
for the sub-classes.

The object-oriented philosophy of Java is quite powerful, we can re-use objects from
previous applications or from libraries made by others.

This last point has been an advantage in the development of our application because
we have re-used objects from others. The WWW is a good source to find objects that
can be re-used in applications.

5.1.3.4 Java is compiled

Before the execution of a Java program, we must transform it to byte-code.
Byte-code is very similar to machine instructions, it allows the programs written in
Java to be very effective. Nevertheless byte-code is not specific to a particular
machine. So it can be run on a very large range of different computers without
recompiling the start program.

66 Chapter 5

The fact that Java is compiled has already the same advantage for our application.
We mean that our task modeling tool has the possibility to effectively be run on every
machine.

5.1.3.5 Java is platform independent

Seeing that Java programs are compiled in byte-code, they can be run on every
platform accepting Java. There is no need to recompile a Java program to run it on
another computer.

Java language is identical for every computer type. Surprisingly it is not the case for
modem programming language like Cor C++. Each compiler and each development
environment is lightly different; it makes the portability problem very hard to solve.

Java system gives also an exhaustive classes library, which gives us access to the
operating system. Here are some of the major ones:

► Java.util: useful classes like vectors, enumeration, properties, etc ;

► Java.io: classes managing the input/output flow. They give us access to
the file system ;

► Java.awt: (Abstract Window Toolkit) - tools for creating graphical user
interfaces.

Personally, we have made the task modeling tool on a Windows platform and this
application was correctly running on a UNIX platform, excepting that ALL the
interactive objects were something like 25 pixels upper than with the Windows
version. So after having changed this, it was correctly running.

5.1.3.6 Java is multi-threaded

The multi-threading allows to program applications that are realizing several
parallel operations. Most of the modem computer systems like Unix and Windows95
allow the multi-task. Java also offers this possibility.

A Java program can have more than one task to run in parallel.

It is often very difficult to program with this type of environment because a lot of
events can occur at the same time or in a non-foreseeable order. Java gives
synchronization tips that are facilitating the prograrnming by the way of the Thread13

class. This class also contains a set of methods allowing to run or to stop the
execution of a thread and also to verify its status.

We have not worked with the multi-threading in our application, so it was not really
an advantage for us. But in some application, it can be very interesting.

13 This class belongs to tb.ejava./ang library of the Java language

Development softwares 67

5.1.3.7 Java is extensible

It is also possible to use Java programs inside other programs written in other
languages. Seeing that the data structures of Java are likely to the C ones, it is
relatively easy. The biggest problem is that most programs are not multi-threaded.

This seems very interesting but we did not have to use it during our training period.

5.1.3.8 Java is robust

Java has been imagined to develop applications that have to be robust. The
accent is put on the detection of errors as fast as possible. So the Java compiler is
using a big part of its time to detect syntax errors, before that the program is
distributed.

One of the advantages of typed language (like C++) is that some errors can be
detected during the compilation. Java imposes the programmer the explicit
declarations of variables, methods and their types, contrarily to the C in which we can
make implicit declarations.

Even the Java program can contain bugs. If an unexpected situation occurs, the
program does not stop, it is generating an exception. The Java interpreter will find the
corresponding exceptions and will manage them.

This advantage is very interesting, everybody want an application which is robust. lt
demands a good way of programming because we had to manage some exceptions.
Unfortunately we find that this advantage is not so obvious, we have met a lot of bugs
in the development of our application. This disagreement will be explained in the
next section 14

•

5.1.4 Disadvantages

Unfortunately, Java has also disadvantages. The biggest one is that Java has a
lot of bugs. Sometimes it is possible to work with by doing differently than what was
forecasted. But other times it is really impossible to work properly with these bugs.
For example, it was impossible to remove an object from a container if the mouse was
still on this object. With the WWW, it was possible to send our potential bugs to
SUN, they sent back if it was really a bug and tips to pass through if it was possible.
For example, it was impossible to print a string; after having sent a mail to SUN, the
response was that this bug has already being reported and that it was possible to pass
through this bug by setting the font every time before printing a string.

Another disadvantage is that there is no debugger environment for the JDK, it means
that for debugging we had to write the content of the variables on the screen. lt takes
a lot oftime, too much time.

14 Cf infra 5. l.4

68 Chapter 5

5.2 Visua/Age

VisualAge is quite a very good builder, except from the bugs. It manages the
classes and the methods very properly and it is very easy to find what we are looking
for. The debugger session is powerful and very easy to use. The creation of a
STATIC user interface is going very fast, without major problems. The only
disadvantage is that there are some interactive objects that you cannot create, for
example a thumbnail groove or a predefined message box (warning box ...). But the
problem is that these objects do not existas natural object in Java. However, we can
imagine using extemal libraries (e.g. Tea Set Widgets).

VisualAge is a very good builder for the debugging. We could not use it at the end of
our training period because there were too many bugs and some features were not
implemented in version 1.0.

5.3 Remark

In conclusion, we have taken a lot oftime to try to work with these bugs (fust
Java bugs and after VisualAge bugs). Especially at the beginning, we did not know
that it was possible to have so many bugs in a compiler or in a commercial software,
we thought it was our fault! We thing that the reason ofthis is the youth of Java and
naturally of VisualAge. With the further versions, it will much better and Java will
really be the language of the future.

CHAPTER 6
Internai management

. ' ;,!·

~\ ' ;

Resume:

In chapter 5, we have described the software environment used to
implement the task model editor: Java and VisualAge.

This chapter is airned at describing the system from the technical point of view
whereas chapter 7 will take care of the graphical interface and the Human
Computer Interaction.

We first introduce in section 6.1 the architectural analysis of our research.
Then, in section 6.2, we describe the semantics of the language.
Section 6.3 shows the functional analysis. It describes the objets and their
hierarchy.
In section 6.4, we develop the functional analysis and describe the internai
structure.
In section 6.5, we mention the problem of memorizing a complete model by
keeping in memory a minimum set of information (the root of the tree).
Section 6.6 explains the conversion of a file written in Rose Script into our
internai structure.
Section 6. 7 talks about the ability to modify graphically a model by the
technical writers.
In section 6.8, we describe the user file: a 'work' file containing a final or non
final form of a particular model.
Finally, in section 6.9, we explain how to convert the internai structure into a
LISP file, used later for language generation.

Internai management

6. 1 Architectural analysis (schema of the mode/)

Figure 6.1, describes the compiete process of the task modei editor from the
acquisition of the Rose file to the generation of the LISP file.

Rose file

Section 6.8

User file

Saving in User file

Reading from user
file

Conversion into
internai structure

Display on the
screen

Refining of the
mode! bythe

14-------iTechnical Writers

Section 6.6

Chapter 7

Section 6.7

71

Exporting in LISP
file

Section 6.9

Figure 6. 1: Schema of the model

6.2 Semantics.

There are many ways to describe a model. The one chosen for the Isolde
project is a Task model, as seen in chapter 5. For the internai representation, we use
objects and their attributes. The internai representation is described by sequences of
different objects: Tasks and Booiean connectors.

72 Chapter 6

A Task can be interactive, automatic or manual. It is mandatory or optional and
can have a precondition and/or a feedback. A task is either terminal or not. It can
also have a description.

Sorne Tasks are executed more than once : that is why each Task has a connectivity
field that contains the minimum and the maximum of times it will be executed. A
Task can then have the connectivity (0-n) or (1-5) or (1-1), etc.

A Boolean Connector can be OR, AND, XOR or have no name.

A Sequence is a link between a Task and a Boolean Connector or a link between two
Tasks. A sequence can have a seque,nce pre-condition, which is a condition for using
the sequence that is considered.

In Figure 6.2, we can consider a simple model where each task is elementary.

Task2

Task 1

T3

Boolean
Connector 1

T3

T4

T5

Figure 6. 2: A simple mooel witb elementary Tasks

Seq 6

Another feature of the language is that a Task can be described as a sequence of sub
tasks. Each of the sub-tasks can also be described as a sequence of sub-sub-tasks, etc.

This means that, in order to describe that in our internai representation, we start from
a very high level (very complex task) and refine each task again and again until we
reach a very low level task analysis. In the next example, we can see the
decomposition of a complex task in elementary tasks using successive
decompositions. This is illustrated in Figure 6.3.

Internai management 73

Tl

T6

T6

T3 T5
Seq5

Seq 6

T7 T6

Figure 6. 3: A model witb composite Tasks

6.3 Functional analysis (00 approach : description of the objets and the
hierarchy)

Java is a object-oriented language. The first step was to find a correct hierarchy
for the different objects, in order to be able to describe the model to use the potential
of an object-oriented language.

We use the following decomposition and consider a primitive class: a Widget.

A Widget is a simple object identified by its position on the screen (X and Y integer
coordinates).

It is also characterized by I children (I>=O), J parents (J>=O) and an expansion box
(that can be either null, not null and empty, not null and not empty).

Let's now define two sub-classes that have ail the characteristics of a Widget plus
some more: The Sequence, the Task and the Boolean connector.

A Sequence is a Widget with a pre-condition and a Boolean flag (= TRUE if the
sequence bas a precondition).

A Task is a Widget with some more characteristics specific of the task:
It has a task name, a description, a feedback, a precondition, a style, a choice, a
complexity, flags, and a connectivity (min, max).

74 Chapter 6

A Boolean Connector is a Widget that bas also a Boolean type (OR AND, XOR
none). We can see in Figure 6.4 the relation between the different objects.

Widget

Boolean
Connector

Figure 6. 4: The hierarchy of the objects

Sequence

We can represent of a model in a graph. In order to represent the links between every
Widget, we use a Java class that implements the linked list feature: the
Java.Util.Vector class.

In Figure 6.5, we can see how the information of a model is represented in the internai
structure.

The • arrow represents a sequence of objects.
The _. arrow represents a number of objects linked to the same element.
The~ arrow represents the 'how to' relation, i.e. an expansion box.

Root Root l Root2 Root3

Exp l

Task7 Seq 5-BCI

Seq 2-4
Seq BCI-8 Seq BCl-9

Task3 Task4

Task8 Task9

Figure 6. 5: The internai representation

Internai management 75

Let us remark that, in order to memorize the complete graph, we must only memorize
the first root Vector and ail its connections. From there, knowing the connections of
the different objects we know, we can induce all the other objects. In the next section,
we will see how to manage the root.

6.4 The root and its properties

In order to manipulate a graph, it can be useful to consider a limited number of
nodes that allows us to acces all the other nodes, using the successors of the known
nodes.

First of all, we will consider an oriented graph G, composed of a set of nodes S and a
set of links A(AcSxS). G = (S, A). We assume we have an anti-reflexive relation.

If we consider anode s, its successors are nodes s' such as there exists a link
(s,s ') E A. Anode Sn is accessible from another node so if there exists a set of links
((So,s1), (s1,s2), ... ,(sk-1,sk), (sk,Sn))

Let us consider the function suce : sxG ➔ S that associates to a node s and a
graph G the set of nodes that are accessible by one transition in graph G, i.e. using
only one link.
succ(s,G)={s' tq (s, s') E A}

As for suce, suce• : sxG ➔ S associates to a node s and a graph G the set of
nodes accessible from s.
succ•(s,G)={s' tq 3 So,S1, ... Sn ES: So = s /\ V i: 0 ~ i ~ n, (si, Si+1) E A/\ Sn= s'}

Let us also define the ancêtres function. ancêtres :sxG ➔ S associates to a
node s and a graph Gail the nodes s; (i=l, ... , n) from where we can access s

ancêtres(s,G)={s' : :3 So,S1, ... Sn ES : So = s' /\ V i: 0 ~ i ~ n, (si, Si+1) E A/\ Sn= s}

Now is the time to define the RcS. Ris the minimal cardinality subset such as
every node s E Sis accessible from an element ofR. Formally,

R = set of nodes :
► V SES : 3 r1 ER: suce ·cr1,G) 3 s
► -,3 R2: (#R2 < #R) /\ VsES: 3 r2E R2: succ•(r2,G) 3 s

In a non cyclic graph, we can prove that Ris unique [Anciaux 98].

76

6.5 Description of the procedures

6.5.1 Glass 10

This class has one purpose: taking care of the inputs and outputs.

Method imp

Parameters:

this: not used here
{The 10 is not reaUy an object from the data structure point of view}

dirName, fileName: String

Chapter 6

{In order to use the imp method, we need to know which file to look in, in which directory.}

The method:

This method reads a 'Rose' file (a file containing no coordinates).
In this file, the name of a Widget is its identifier.

The Boolean Connectors, however, are identified by an integer I (1>999999).

After reading the file, the structure contains all the elements but no adequate
coordinates. The task coordinates have the -1 value, and the sequence coordinates
have the O value.

The next step is to add a weight to every Widget in the structure by calling the
addweight method.

When every Widget has a weight, we can call the addcoord method to add coordinates
to every Task and Boolean Connector.

The final step is to call the addcoordseq method to add coordinates to the Sequences.

Method readfile

Parameters:

this: not used here
dirName, fileName: String
{In order to use the readfile method, we need to know which file to look in, in which directory.}

The method:

This method reads a 'user' file (a file containing coordinates)
Remember that every task that has the same name has the same expansion box.

Method savefile

Internai management

Parameters:

this: not used here
dirName, fileName: String
{In order to use the readfile method, we need to know which file to look in, in which directory.}

The method:

This method saves a 'user' file (a file containing coordinates)
It actually opens the file, calls the Widget. wsave method, and closes the file.

Method eexport

Parameters:

this: not used here
dirName, fileName: String
{ln order to use the readfile method, we need to know which file to look in, in which directory.}

The method:

This method exports a file in a 'LISP' format
It actually opens the file, calls the Widget.wexport method, and closes the file.

6.5.2 Glass Widget

Method wsave

Parameters:

this: the root
{We always use the ' top' root as a calling parameter for the wsave method}

dataOutStream: DataOutputStream
{ Class used for files}

dirName: String,
fileName: String
{Directory name and file name}

SS int
{The number oftimes a file has been saved, or exported, since last new, open or import.}

The method:

77

This recursive method goes once to every Widget in the structure, increments its
saven variable then calls the corresponding method, for every Widget:
Task.save
BooleanConnector.save
Sequence.save

78

Widget.saveexp

Method wexport

Parameters:

this: the root
dataOutStream: DataOutputStream
{ Class used for files}

dirName: String,
fileName: String
{Directory name and file name}

SS int
{Parameter containing the number oftimes a file has been saved.}

The method:

Chapter 6

This recursive method goes once to every Widget in the structure, increments saven
then redirects to every particular format, for every Widget except from the Sequence:
Task.export
BooleanConnector.export
Widget.exportexp

Method saveexp

Parameters:

this: the task that is expanded
{In order to write the information about an expansion box, we need to know from which task it is
expanded}

dataOutStream: DataOutputStream
{ Class used for files}

dirName, fileName: String
{ In order to use the saveexp method, we need to know in which file to write, in which directory.}

The method:

This method writes to a user file the information about an expansion box, that is
-The name of the expanded task
-The first nodes of the expansion box
-The coordinates of the expansion box

Method addweight

Parameters:

this: the root

lntemal management 79

flag: boolean
{This recursive method must be first called with flag initialized to true, in order to reinitialize the check
vector, then recursively called with flag initialized to false}

The method:

This method takes a complete structure from a Rose file, but with no coordinates or
weight in it, and returns the same structure with still no coordinates but with a weight
for every Task and Boolean Connector.

The purpose of this method is to add a coordinate to every Task and Boolean
Connector. The way to doit is to consider that the more parents and children a Task
(or BC) has, the bigger weight it has.

The weight of a Widget that is not in the root is (# of parents+# of children)
As a Widget that is in the root intuitively needs more 'space', the weight of a Widget
which is in the root is (11 + 10*(# of children))

This definition is, of course, completely arbitrary, but seems to work quite well.

Method addcoord

Parameters:

this: the root
flag: boolean
{This recursive method must be first called with the flag initialized to true, in order to reinitialize the
check vector, then recursively called with flag initialized to false}

startx: int
{This variable tells the method at which x coordinate the next Widget can be drawn }

starty: int
{This variable tells the method at which y coordinate the next Widget can be drawn}

spacex: int
{This variable tells the method the x space available for the next Widget}

The method:

This recursive method takes a complete structure from a Rose file, with no
coordinates. Every Task and Boolean Connector have just a weight. The method
returns the same structure with coordinates for every Task and Boolean Connector.
To decide which coordinate to give to every object, we proceed like this:

There is a ratio variable: k that is initialized at 1.8 but can be increased if we want
more space between the Widgets, decreased if we want less space between them.
The y coordinates are incremented by 90 for each level
For the x coordinates, according to the weight of every Widget, and the number of
brothers it has, a 'vital space' is proportionally given to every Widget.

80 Chapter 6

Because this method is only called by JO.import, the only type of file we will deal
with are simple Rose files. That means that, in order to compute the coordinates of a
task in an expansion box, we just need to draw them on top of each others, without
using any kind ofweight.

So far, the implementation suits simple models but does not support models with
composite tasks.

The approach we have used is very intuitive and simple, but more elaborate work in
this field can be seen in (Henry 91] and [Ryall 97].

Method addcoordseq

Parameters:
this: the root
flag: boolean
{This recursive method must be first called with flag initialized to true, in order to reinitialize the check
vector, then recursively called with flag initialized to false}

The method:

This recursive method takes a structure with coordinates only for Tasks and Boolean
Connectors. It goes to every Sequence, finds its coordinates according to which
parent and child it has, and returns a structure with coordinates assigned to every
object.

Method find

Parameters:

this
{This parameter is the Widget we start from when performing a search}

name: int
The id of the Task or Boolean Connector we are looking for

found: boolean
{This recursive method must be first called with found initialized to true, in order to reinitialize the
check vector, then recursively called with found initialized to false}

The method:

This recursive method finds an id and returns the object (BC or Task) that is identified
by that id. The boolean variable 'found' returns true if the objet was found, false
otherwise. The method must be first called with found initialized to true, then
recursively with found initialized to false, in order to re-initialize the check counter
before each search.

Remark that this method does not look in the expansion boxes.

Internai management 81

Method find2

This method works exactly the same way as find, except that it takes a task name (a
String) as a parameter, instead of a task id.

It is used with the Rose file, where the task name is identifier.

Method superfind

Parameters:

this
{This parameter can be any Widget we want to start from when performing a search}

name: Task
The Task that has a name we are looking for

found: boolean
{This recursive method must be first called with found initialized to true, in order to reinitialize the
check vector, then recursively called with found initialized to false}

The method:

This method looks for a task. lt returns a Widget if a task with the same name as
'name' is found, null otherwise.

The method has to be called with the boolean variable 'found' initialized to 'true' in
order to clear the check list (to be able to deal with nested tasks)

Remark that this method looks in the expansion boxes as well.

Method superexpanded

Parameters:
Idem superfind

The method:

This method looks for a task name. It returns a Widget if a task with the same name as
'name' is found and expanded, null otherwise. The method has to be called with the
boolean variable 'found' initialized to 'true' in order to clear the check list (to be able
to deal with nested tasks)

Method superfindall

Parameters:

this
{This parameter can be any Widget we want to start from when performing a search}

82 Chapter 6

name: String
{The name of the Task we are looking for}

found: boolean
{This recursive method must be first called with found initialized to true, in order to reinitialize the
check vector, then recursively called with found initialized to false}

exp: Widget
{The expansion box we want to add to every task that bas the same name as 'name' }

The method:

This method adds an expansion box exp to every task that has the task name 'name'

Method superremove

Parameters:

Idem superfind

The method:

This method looks for a task name.
It returns a Widget if the task is found, null otherwise.
The method has to be called with the boolean variable 'found' initialized to 'true' in
order to clear the check list (to be able to deal with nested tasks)

Method closew

Parameters:

expbox: Widget
found: boolean

The method:

This method goes to every Widget and closes all the expansion boxes

Method wcons

Parameters: none

The method:

This is the constructor of a Widget. It initializes saven to savenum. The method is
used when the user creates himself an expansion box, or performs the 'new'
command.

Method wcons2

Internai management 83

Parameters: none

The method:

This is the constructor of a Widget. lt initializes saven to O. The method is used when
opening or importing a file.

Method makeexp

Parameters:

expbox: Widget
found: boolean

The method:

This method draws all the descendants of a root in the same expansion box

Method makeAII

Parameters:

Idem makeexp

The method:

This method goes to every Widget and draws it

6.5.3 Class Sequence

Method cons

Parameters:

this: the sequence we want to create
xl,yl,x2,y2: int
{ Coordinates of the sequence we want to create}

pre: String
{Precondition of the sequence we want to create}

The method:

Taking all the parameters of a Sequence, it returns a Sequence fully loaded
This method is used when the user wants to create a Sequence

Method consopen

84

Parameters:

this: the sequence we want to create
xl,yl,x2,y2: int
{ Coordinates of the sequence we want to create}

pre: String
{Precondition of the sequence we want to create}

The method:

Chapter 6

Taking all the parameters of a Sequence, it returns a Sequence fully loaded
This method is used when the user opens a file

Method create

Parameters:

this: the sequence we want to create
xl,yl,x2,y2: int
{ Coordinates of the sequence we want to create}

wl, w2: Widget
{The widgets we want to link}

w: Widget
{The root: we use it to detect the nested graphs by calling the find method}

The method:

This method creates a new sequence between wl and w2, i.e. wl has a new child (the .
sequence), the sequence has a new child (w2). The method also expands the 'root' of
the tree as mentioned in section 6.4

Method createopen

Parameters:

this: the sequence we want to create
xl,yl,x2,y2: int
{Coordinates of the sequence we want to create}

wl, w2: Widget
{The widgets we want to link}

pre: String
{Precondition of the sequence}

The method:

Creates a new sequence between w 1 and w2 when the user opens a file

Internai management

Metbod createRose

Parameters:

Idem createopen

The method:

Creates a new sequence between w 1 and w2 when the user imports a Rose file

Metbod delete

Parameters:

this: the sequence we want to delete
rr: Widget
{The root}

The method:

85

This method deletes a sequence from a mode 1, and takes care of removing or adding
elements to the root if needed

Metbod save

this: the sequence we want to save
dataOutStream: DataOutputStream
{Class used for files}

dirName, fileName: String
{ln order to use the saveexp method, we need to know in which file to write, in which directory.}

The method:

This method writes to a user file the information about a sequence, that is
-The id of the 'parent' Widget
-The id of the 'child' Widget
-The precondition, blank line otherwise
-The coordinates of the sequence, negative if in an expansion box that is not expanded

6.5.4 Glass Task

Method cons

Parameters:

this: the Task we want to create
xl,yl,x2,y2: int
{Coordinates of the Task we want to create}

86

taskname: String
{Name of the task: not identifier of the Task}

description: String
{Description of the Task}

precondition: String
{Precondition of the Task}

st: String
{Style of the Task}

chce: String
{Choice of the Task}

comp: String
{Complexity of the Task}

tpre, feed, tevent: boolean
{Flags, respectively for preconditioo, feedback and terminal event}

feedback: String
{Feedback ofa Task}

min, max: String
{ Connectivity of the Task}

rr: Widget
{The root we want to add the Task to}

The method:

Taking ail the parameters of a Task, it returns a Task fuily loaded.
This method is used when the user wants to create a Task.
saven is initialized to savenum.

Method consimport

Parameters:

Chapter 6

Idem cons except that here, there is no min or max parameter. The default parameter
for a Task is (1-n)

The method:

Taking ail the parameters of a Task, it returns a Task fuUy loaded.
This method is used when the user imports a Rose file.

Method consopen

Parameters:

Internai management

Idem cons

The method:

Taking all the parameters of a Task, it returns a Task fully loaded.
This method is used when the user opens a file.
saven is initialized to O.

Method create

Parameters:

Idem cons

The method:

87

This method creates a new Task, i.e. adds it to the root. We must be aware that for
adding a task to an expansion box, the root we use is the expansion box itself.

Method createimport

Same as create except that this method is used for importing a Rose file

Method createopen

Same as create except that this method is used for opening a user file

Method delete

Parameters:

this: the Task we want to delete
rr: Widget
{The root}

The method:

This method deletes a Task from a model, and takes care of removing or adding
elements to the root if needed. It can handle any nested loop between the different
elements.

Method export

this: the Task we want to export
dataOutStream: DataOutputStream
{ Class used for files}

dirName, fileName: String
{In order to use the saveexp method, we need to know in which file to write, in whicb directory.}

88

The method:

This method exports the different parameters of a Task, which are:
-The Task id
-The id of its expansion box
-The semantics of the Task
-The different links (children)

Chapter 6

This is also the place where we check whether a Task is a Terminal Event and we
display the information if needed.

Method save

this: the Task we want to save
dataOutStream: DataOutputStream
{ Class used for files}

dirName, fileName: String
{In order to use the saveexp method, we need to know in which file to write, in which directory.}

The method:

This method writes to a user file the information about a Task, that is
-The id of the Task
-The task name
-The minimum
-The maximum
-Yes ifit is a Terminal Event, No otherwise
-The coordinates of the Task
-The task precondition, blank line otherwise
-The feedback, blank line otherwise
-The choice
-The style
-The complexity
-The description
-A blank line

6.5.5 Glass Boolean Connector

Method cons

Parameters:

this: the Boolean Connector we want to create
xl ,yl,x2,y2: int
{ Coordinates of the Boolean Connector we want to create}

boolname: String

Internai management 89

{Name of the Boolean Connector we want to create}

rr: Widget
{The root where to add the Boolean Connector}

The method:

Taking all the parameters of a Boolean Connector, it returns a Boolean Connector
fully loaded.
This method is used when the user wants to create a Boolean Connector

Method consimport

Parameters:

Idem cons except that here, there is no need for a root as a parameter: we always
create a new root in an import operation.

The method:

Taking all the parameters of a Task, it returns a Task fully loaded.
This method is used when the user imports a Rose file.

Method consopen

Idem consimport except that here, there is one more parameter: the Boolean
Connector ID.
This method is used when the user opens a user file.

Method create

Parameters:

Same parameters as cons.

The method:

This method creates a new Boolean Connector, i.e. adds it to the root. We must ~
aware that for adding a Boolean Connector to an expansion box, the root we use is the
expansion box itself.

Method createimport

Same as create, but for importing Rose files only.

Method createopen

Same as create, but for opening users files only.
Same parameters as consopen.

90

Method delete

Parameters:

this: the Boolean Connector we want to delete
rr: Widget
{The root}

The method:

Chapter 6

This method deletes a Boolean Connector from a mode 1, and takes care of removing
or adding elements to the root if needed.

Method export

this: the Boolean Connector we want to export
dataOutStream: DataOutputStream
{Class used for files}

dirName, fileName: String
{In order to use the saveexp method, we need to know in which file to write, in which directory.}

The method:

This method exports the different parameters of a Boolean Connector, which are:
-The Boolean Connector id
-The type of Boolean Connector
-The different links (children)

Method save

this: the Boolean Connector we want to save
dataOutStream: DataOutputStream
{ Class used for files}

dirName, fileName: String
{In order to use the saveexp method, we need to know in which file to write, in which directory.}

rr: Widget
{The root}

The method:

This method writes to a user file the information about a Boolean Connector, that is
-The id of the Boolean Connector
-The Boolean name
-The coordinates of the Boolean Connector

Internai management 91

6.6 How to convert files from Rose into the internai structure

6.6.1 Description of the file generated by Rationale Rose

The file contains some information about the task model. The information
describes the relation between an object and another object.

The file also contains some information about the domain model, which is described
in chapter 5.

6.6.2 The reading of the file and the transformation into internai structure

We first fill our structure with all the elements we read in the Rose file. To do
so, we must consider the different objects present in the Rose file:

• The Tasks
• The Boolean Connectors
• The Sequences
• The expansion boxes

We read the file in three passes: The first pass only takes care of the Tasks and
Boolean Connectors. After this is done, we have a fiat basic structure.

In the second pass, we read the Sequences, and make the connections between Tasks
and Boolean Connectors. After this is done, we have a sequence of objects, but every
object is elementary (not expressed as a sub-sequence of objects).

The final stage is to read the expansion boxes, so we can deal with complex hierarchy
oftasks as well. The coordinates are lacking.

The import command reads a Rose file, converts it to an internai structure which has
to be visualized on the screen.

A major problem is to convert a file structure with no coordinates to an internai
structure with coordinates and a visual representation.

In Figure 6.6, we see the conversion from a Rose file into internai representation with
no coordinates.

92

Rose file:

TASK
Taskl (task name)
5 (task id)

TASK
Task2 (task name)
8 (task id)

SEQUENCE
5 (father)
8 (child)

Chapter 6

Internai representation

root.child(l) =taskl
taskl.child(l)=sequnencel
sequencel.child(l)=task2

Graphical representation

Taskl

Task2

Figure 6. 6: The conversion into internai structure with no coordinates

6.6.3 The coordinates problem

The first step is to return the same structure with still no coordinates but with a
weight for every Task and Boolean Connector. The way to doit is to consider that the
more parents and children a Task (or BC) has, the bigger weight it has.

Practically, we should go through the structure, examine every Task and Boolean
Connector, and assigna weight to each of them. If the object we consider is in the
root, its weight will be higher (for readability reasons).

In Figure 6.7, we see the addition of a weight parameter for every Task and Boolean
Connector.

Internai structure 1 Internai structure 2

taskl.xcoord=O taskl.xcoord=O
taskl.ycoord=O taskl.ycoord=O
task2.xcoord=O task2.xcoord=O
taskl.ycoord=O taskl.ycoord=O
taskl.weight=O taskl.weight=S
sequence.xcoord=O sequence.xcoord=O
sequence.ycoord=O sequence.ycoord=O

Figure 6. 7: Addition of a weight parameter

Internai management 93

Going through the structure again, we can add coordinates to every task and every
Boolean connector. We use three main parameters:

The vital space for x coordinates
The vital space for y coordinates

In Figure 6.8, we add coordinates to every Task and Boolean Connector

Intemal structure 2 Intemal structure 3

taskl.xcoord=O taskl.xcoord=lOO

taskl.ycoord=O taskl.ycoord=SO

task2.xcoord=O task2.xcoord=100

taskl,ycoord=O taskl.ycoord=90

taskl.weight=S taskl.weight=S

sequence.xcoord=O sequence.xcoord=O

sequence.ycoord=O sequence.ycoord=O

Figure 6. 8: Addition of coordinates

The next step is to go through the structure again to add coordinates to the sequences,
knowing the coordinates of the father and son of each sequence (Figure 6.9).

Intemal structure 3 Intemal structure 4

taskl.xcoord=lOO _ taskl. xcoord=lOO
taskl.ycoord=SO taskl.ycoord=SO
task2.xcoord=100 task2.xcoord=100
taskl.ycoord=90 taskl.ycoord=90
taskl.weight=S taskl.weight=S
sequence.xcoord=O sequence.xcoord=120
sequence.ycoord=O sequence.ycoord=SO

Figure 6. 9: Addition of coordinates to the sequences

Now that the structure is complete and that we know the coordinates of each object,
we can go through the structure one more time and draw every object on the screen.

6. 7 Modifications of the structure by the technical writers

Now that we have a primai sketch of a task model, we want to allow the user
(the technical writer) to modify the task model, by adding, deleting, moving the
different objects, and decompose any task in sub-tasks.

94 Chapter 6

When the user performs an operation, the graph must be updated. Besides creating or
deleting a particular object, we must take care of having at ail tunes, a consistent set
ofroots. That ' s why, after some operations, the root must be updated (ANCIAUX,
1998)

6.8 Saving and re-opening a particular mode/

6.8.1 Second type of file (with coordinates, etc.) : the user file

The technical writers can save the model into a user file and re-open it exactly
the way it was before. Let's mention that whereas the Rose file doesn't have any
coordinates, the user file must provide coordinates.

The user file is very similar to the Rose file, except that it provides coordinates for
every element (Task, Boolean Connector, Sequence and Expansion Box).

Tasks

These are the information written in the file:

• The id of the Task
• The task name
• The minimum
• The maximum
• Yes if it is a Terminal Event, No otherwise
• The coordinates of the Task
• The task precondition, blank line otherwise
• The feedback, blank line otherwise
• The choice
• The style
• The complexity
• The déscription
• A blank line

Boolean Connectors

These are the information written in the file:

• The id of the Boolean Connector
• The Boolean name
• The coordinates of the Boolean Connector

Internai management 95

6.9 How to convert the internai structure into a predefined (LISP) format

6.9.1. Third type of file: the LISP (or export) file (with no coordinates, etc.)

When the Technical Writer is satisfied with its final task model, he can export
it to a LISP file.

We must dissociate the different objects to export:

Tasks

The different parameters to be exported are:

• The Task id
• The id of its expansion box
• The semantics of the Task
• The different links (children)

If a Task is a Terminal Event , we display the information as well

Boo/ean Connectors

The different parameters to be exported are:

• The Boolean Connecter id
• The type of Boole an Connecter
• The different links (children)

Sequences

The different parameters to be exported are:

• The id of the 'parent' Widget
• The id of the 'child' Widget
• The precondition, blank line otherwise
• The coordinates of the sequence, negative if in an expansion box that is not

expanded

Expansion Boxes

The different parameters to be exported are: . . --~-~-- -•. , ,.

• The name of the expanded task
• The first nodes of the expansion box
• The coordinates of the expansion box

CHAPTER 7
The Graphical User
Interface

Resume:

In chapter 6, we have covered the technical analysis of the editor. This
chapter is interface-oriented and describes the graphical part of the task
modeling tool.

The next chapter will contain the last part of the Isolde project : the language
generation itself.

After a short introduction (section 7 .1), we illustrate the different functions of
the Graphical User Interface (GUI) in section 7.2.

Section 7 .3 suggests some improvements for the interface.

The Graphical User Interface 99

7. 1 Introduction

The user interface of our task modeling tool was designed based on a user
requirement analysis [Balbo 97].

It is important to notice that only the functions currently implemented will be
presented here. In the further versions of the application, the others functions will be
operational.

7.2 The functions of the interface

In the next pages, when we will be spoken about widgets, we will mean
boolean connector, sequence and task.

7.2.1 Buttons and checkboxes of the GUI

• Clicking on the "Select" button puts us on the "Select" mode.

• Clicking on the "Create Task" button puts us on the "Create Task" mode.

• Clicking on the "Create Boolean Connector" button puts us on the "Create
Boolean Connector" mode.

• Clicking on the "Sequence tasks" button puts us on the "Sequence tasks"
mode.

• Ifwe are in the "Create Task" mode, we can choose to create:

► An "Interactive", an "Automatic" or a "Manual" task;
► A "Mandatory" or an "Optional" task;
► An "Expanded" or an "Elementary" task

With:
A "Task precondition" ;
A "Feedback";
A "Terminal event".

By clicking where we want to put it after have clicked on the corresponding
checkboxes (choice of the kind oftask we want).

• If we are in the "Sequence tasks" mode, we can create a new sequence by
pressing the left button of the mouse on the origin of the sequence (boolean
connector or task) and release it on the extreme of the sequence (boolean
connector or task). It is impossible to create a sequence between 2 boolean
connectors, between 2 times the same widget (task or boolean connector) or
between 2 widget (task or boolean connector) from different levels (for

100 Chapter 7

example an expansion box and another expansion box). It is possible to add a
sequence precondition to this sequence by clicking on the "Sequence
precondition" checkbox before the actual creation.

• If we are in the "Create Boolean Connector" mode, we can create a new
boolean connector by clicking where we want to put it.

Figure 7.1 shows the buttons and the checkboxes of the GUI.

~Isolde U \me111011e\1 suu\NeY1\e11c11 ..,,1,.

"Select" button ------►~ Select Esc j Expansion relatlonshlp

"Interactive" checkbox

"Automatic" checkbox

"Manual" checkbox

Task attributes :

(' Interactive (

(ë Automalic 1

(' Manual L

)

1

7

"Mandatory" checkbox ---• (ê Mandatory ----

(' Oplional -------

"Optional" checkbox

"Expanded" checkbox ----• r Expanded (howlo)

(ë Elementary
"Elementary" checkbox

"Feedback" checkbox

P" Task precondilion

----• P" Feedback

r Terminal Event

"Terminal Event" checkbox

"Create Task" button ---►• Craate Task

"Create Boolean Connector"
button ___. Create Boolean Connector

Sequence attrtbute :

+

"

"Sequence precondition" __ -t►• , I
checkbox r Sequence preconditior ,.

"Sequence tasks" button ___. Sequence tasks

T
i

m
e

r
e
1
a
t
i
0
n
s

?
p

◄

Pre 1

Feed4

Actor Verb Actee

1 -1

OR

Pre 4

Figure 7. 1: Buttons and checkboxes of the Graphical User Interface

p

The Graphical User Interface 101

7.2.2 The menu item "File"

• lt is possible to make a new task model by clicking on the "New" menu item
(File -> New).

• lt is possible to open a file previously saved from the Graphical User Interface
(GUI), by clicking on the "Open" menu item (File-> Open).

• lt is possible to open a file generated from Rose by clicking on the "Import"
menu item (File-> Import).

• lt is possible to save as a GUI format by clicking on the "Save" menu item
(File -> Save).

• lt is possible to export toward the language generation (LISP) by clicking on
the "Export" menu item (File-> Export).

• lt is possible to print the task model by clicking on the "Print" menu item (File
-> Print).

• lt is possible to quit the application by clicking on the "Quit" menu item (File -
> Quit) .

. (

Figure 7.2 shows the menu item "File".

"Save" menu item

"Export" menu item

"Print" menu item

"Quit" menu item

(' Oplional

(' Expanded (how to) +

(i Elementary

Figure 7. 2: The menu item "File"

T
m
e
r
y
f
1
0
n
s
h
i
p

Expansion relattonshlp

Pre 1

ActorVe

Feed 1

102 Chapter 7

7.2.3 The menu item "Edit"

• If a boolean connector or a task is selected, it is possible to eut this selected
widget (copy it to the clip board and delete it :from the task model) by clicking
on the "Cut" menu item (Edit-> Cut).

• If a boolean connector or a task is selected, it is possible to copy this selected
widget (copy it to the clip board) by clicking on the "Copy" menu item (Edit ->
Copy).

• If a boolean connector or a task has been copied to the clipboard (copy or eut),
it is possible to paste it by clicking where we want to put it after have clicked
on the "Paste" menu item (Edit-> Paste).

• When a widget is selected, the deleting of this last is made by pressing the
"Delete" key or clicking on the "Delete" menu item (Edit -> Delete). If this
widget was a boolean connector or a task which had got links (sequences), the
links are deleted at the same time.

Figure 7.3 shows the menu item "Edit".

"Cut" menu item

· "Copy" menu itèm

"Paste" menu item

"Delete" menu item

(" Expanded (how to) +

(i Elementary

T
i

m
e

r
e
1
a
1
0
n

?
p

Figure 7. 3: The menu item "Edit"

7.2.4 The menu item ''View"

Expansion relatlonshlp

Pre 1

ActorVe

Feed 1

• For the legibility of the task model, it is possible to show or to hide some
attributes:

The Graphical User Interface 103

Task preconditions: clicking on the menu item (View -> Task
preconditions).

Sequence preconditions: clicking on the menu item (View ->
Sequence preconditions).

Feedbacks: clicking on the menu item (View -> Feedbacks).

Constraints: clicking on the menu item (View -> Constraints).

Figure 7.4 shows the menu item "View".

. . . ifflftnriJ1'Mll!!!YiiMiiM41il%Mi909ik :U
"Task precond1t10ns" menu item ~ - v.ntow HeJp

. . . ,; TIISlc precondlions Expansion relatlonship
"Sequence precond1t1ons" menu item - fl8lef! . · :::::::=:IP!. ,; Sequence precondl1ons

______ ---1 ___ ,;feedJecks

"Feedbacks" menu item ., Descriptions

"Descriptions" menu item

"Constraints" menu item

7.2.5 The expansion box

.; Conslnlirts

(' Manual / 1
(ê Mandatory ---

(' Optional -------

(' Expanded (how ta) +

(ê Elementary

Figure 7. 4: The menu item "View"

r
e
1
a

l
0
n

~
1
p

Pre 1

ActorVe

Feed 1

• lt is possible to expand the expandable tasks by double clicking on this last
one and choosing the "Expand" button on the dialogue appearing. To
close this expansion box, just click on the top right button of the expansion
box.

Figure 7.5 shows how to expand an expandable task and Figure 7.6 shows how to
close an expansion box.

104

/

/

Name : 1 Actor Verb Actee

_,
1
- ~- Description :

ActorVe

3d 1

Min:f Max:f

Precondlllon : 1 Pre 1

Feedback :j Feed 1

OK J Cancel

Chapter 7

~
Pre 2

Expand "Expand" button

,---

Figure 7. 5: How to expand an expandable task?

Top right button of the expansion box

\~
OR
~

Figure 7. 6: How to close an expansion box?

7.2.6 Various

• lfwe are in the "Select" mode, we can select a widget by clicking on this one;
if another widget was selected, it becomes deselected. Only one widget can be
selected at one time.

The Graphical User Interface 105

• To move a widget (boolean connector or task), press the left button of the
mouse on the widget and drag it where we want to see it. The links
(sequences) to this widget are also moving.

Figure 7.7 shows the Graphical User Interface.

~
IJQ

= .,
ID

;-.J

~
--3 cr
ID

~ .,
I»

'0 cr
;:;·
~
~
"' ID .,
~ = ;-.,
S' n
ID

~ 1 solde Untitled .. r-1 l:J

Select Escl

Task attrlbutes :

ci' Interactive ()
(" Automatic J 1
(" Manual L l
ci' Mandatory

(" Optional -------

ci' Expanded (how to) +

(" Elementary

r Task precondition " r Feedback

r Terminal Event

CreateTask

Create Boolean Connector

Sequence albibute :

r Sequence precond11ior ,.,

SeQuence tasks

T
i

m
e
r
y
f
1
0
n

~
1
p

Expansion relallonshlp

Pre 1

Feed 1

Actor Verb Actee

1 - 1

•
• OR

iPre 4

I

Actor4 Verb4 Aclee4

1 - 1

Feed 4

◄

AND

Pre 1
Pre2

~ -----,
, Actor2 Verb2 Actee2 "

Actor3 Verb3 Actee3

1 - 1

= ~; ~))

...

...
►

-0

°'

The Graphical User Interface 107

7.3 Suggestions for the improving of the interface

We think that a "Sticky" checkbox would be a good idea. What does it mean?
At the present time, after the creation of a widget, we automatically corne back in the
"Select" mode. So ifwe want to create a task model with 10 tasks, we had to click 10
times on the "Create Task" button and it is very boring. Now with a "Sticky"
checkbox, we can choose the present behavior, click each time on the "Create ... "
button or choose the "Sticky" mode, it means that we only click one time and we
create as much widgets as we want. Just deselect it when we have finished with the
creation ofwidgets.

To respect the standards, the menu items that are calling another window when we are
clicking on it must contain " ... " at the end. For example, "Open" -> "Open ... ",
"Import" -> "Import ... ", "Save" -> "Save ... ", "Export" -> "Export ... ".

lt would be better if we could find in the menu bar, menu items with the same
behaviors than the buttons "Select", "Create task", "Create boolean connector",
"Sequence tasks".

A tool bar would be a good idea. We could find there buttons like "New", "Open",
"Save", etc.

CHAPTER8

The natural language
generation

Resume:

In chapter 7, we have described the Graphical User Interface.

After ail the graphical modifications are done, we can move to the last part of
the Isolde project : the language generation itself. This is covered by this
chapter.

Chapter 9 will illustrate the complete process with an example.

In section 8.1, we mention what kind of help we actually pro duce.

In section 8.2, we describe the transition between a the intemal representation
and the LISP file produced.

Section 8.3 is a remark about the knowledge representation.

The natural language generation 111

8. 1 Introduction

Let us remember that the purpose of the Isolde project is to produce end-user
documentation. The information usually produced for end-users includes procedural
help which can be seen as an answer to the question "how to".

Procedural help describes the different steps to perform a particular action and 1s
greatly linked to the programmed behavior of the system itself.

From the technical writers ' perspective, procedural help represents the most routine
part of their work. They have to check thernselves all the possible commands to
perform a particular task. lt is a very long and tedious task to write that manually and
needs not much creativity. That is why we try to doit automatically.

The language used to represent the different steps to perform a user goal must be
simple enough to be used by non-experts. As seen in chapter 5, we use the Diane+H
formalism.

Nowadays, user' s documentation is very often delivered in hypertext form, on-line, as
an integrated component of the software itself lt makes the job oftechnical writers '
job even more laborious because they must include and rnaintain the hypertext links.

8.2 The text generator

The text generator is written in LISP. lt takes the domain and task models as
input and makes texts and sentences. lt generates hypertext instructions in English.

8.2.1 Illustration

Let us consider a very simple example illustrated by the following Diane+
model (Figure 8.1):

quit use case
1-n

user choose quit-option
1-n

,.
quit-option quit simple draw

1-n

Figure 8. 1: A simple example of a composite task

112 Chapter 8

The first part of the input of the text generator is the task model. The first thing to do
is to define every object :

'' ---
, , The task mode l stuff

(de f - diane-exp a n sion Main
:star t (action-tO)
)

Here, we have defined the Main module

(de f - d i ane - expans i on expl
:start (acti on - tl)
)

The next step was to define the expansion box containing the two elementary tasks.
The first task of the expansion box is t1.

(def-d iane-action action-t l
:semantics user-choose-quit-op t i on -2
)

Now, we have defined the :first task: tl , and have assigned a semantics toit.

(def-di a ne-lin k link-1
: domain action-tl
:range action-t2
)

This is a link between the :first and the second task. The domain field corresponds to
the task "from", the range is the task "to".

(def-diane-terminal-event te rm-2
: type NORMAL
)

This is to declare a terminal event, i.e. a task that is not linked to a further task. When
a terminal event is reached, one must perform the action following the closest
expanded task.

(def-diane-action action-t2
:semantics quit-option - quit-simpledraw-3

The second task is defined.

(def-diane-link link-2
:doma i n action-t2
:range term- 2
)

The second task is terminal, so we add a link from that task to a terminal event.

(def-diane-action action -tO
:expansion expl
: semantics quit-use-ca se- 1

Finally, we define the composite task that is decomposed in an expansion box (expl).

(in-packa ge : dm)

The natural language generation 113

The second part of the file is the domain model part. lt helps the system to situate the
objects in the environment.

,, The demain model stuff

(def-dm-instance user
:dm-concept dm-Object
)

(def-dm-instance simpledraw
:dm-concept program-concept
:lexical-root "simpledraw"
)

(def4-dm-instance file-menu
:dm-concept menu-concept
:lexical-root "file menu"
:dm-relations ((dm-part-of simpledraw))
)

(def-dm-instance quit-option
:dm-concept menu-item-concept
:lexical-root "quit option"
:dm-relations ((dm-part-of file-menu))
)

(def-dm-instance quit-use-case-1
:dm-concept dm-action
)

(def-dm-instance user-choose-quit-option-2
:dm-concept dm-action
:lexical-root "user choose quit-option"
:dm-relations ((dm-acter user)

(dm-actee quit-option))

(def-dm-instance quit-option-quit-simpledraw-3
:dm-concept dm-action
:lexical-root "quit-option quit simpledraw"
:dm-relations ((dm-acter quit-option)

(dm-actee simpledraw))

The text generator generates an user's documentation m hypertext form. Here 1s m
Figure 8.2. what the simple example should produce:

What would you like
todo?

•

How?

To quit the use case.

1. From the file menu
choose the quit option .

2. The system quits
simpledraw.

Figure 8. 2: An hypertext example

The 'How' in italic has an hypertext link to the other page.

114 Chapter 8

8.3 A remark conceming the hypertext semantics

Hypertext semantics is very rich and allows any kind of semantic link :from a
file to another. Any word contained in a file can be associated to a particular location
in any other file. The relation between two locations can be of any type.

The Diane+ formalism describes a task model and is lirnited semantically. As seen in
chapter 4, the only relations between two objects can be either a sequence relation, a
parallel execution of tasks or an 'expand' relation when a task is expanded into sub
tasks. The boolean connectors also allow multiple sequences from a particular task.

The first relation is represented by a numbered list in the hypertext file; the second
one is described as several actions available in the same hypertext file; the third one is
represented by a link between the file corresponding to the composite task considered
and the file containing its sub-tasks. Boolean connectors also describe parallel tasks
and the notion of choice in the execution. In the case of sequence preconditions, the
precondition is also added in the hypertext file.

Of course, it would be very interesting to explore more of the hypertext power; but, in
generation, the problem is the knowledge representation. That knowledge must be
represented in an explicit manner to be usable in language generation and the Diane+
formalism, aimed at describing task models, does not allow more relations between
objects.

In the future, it would be nice to create new links to other texts completely wrihen
manually. lt would also be interesting to add different kinds of semantic links from
one file to another.

Another interesting work would be to consider a sequence precondition as a logical
proposition automatically parsed into elementary objects and analyzed more fully to
provide the end-user with more help power and efficiency.

/' ,!

:1 ' /.

CHAPTER 9 ' , !

An example
' / ·

. ,,

Resume:

After describing the Isolde project and analyzing the task editor in
details, this chapter illustrates this thesis with a concrete example.

A demo is also provided on the disk included. The demo is a video sequence
shortly describing the steps required to produce hypertext files plus an
example of the actual help generated.

Considering a Simple Text Editor (STE), we follow all the steps required for
on-line help generation, starting from the Rose file, until the hypertext files
containing the end-user help.

First of all, section 9.1 starts with a UML model describing the STE.

In section 9.2, we consider the import file generated by Rose.

In section 9.3, we can see the actual representation of the model.

Section 9.4 covers the topic of the export file.

In section 9.5, we display some of the final hypertext files produced.

An example 117

9. 1 UML mode/

Figure 9.1 describes a UML diagram related to the STE (Simple Text Editor)
containing information useful for text generation.

A converter extracts useful information to generate the import file containing
information about domain and task model.

: user

choose

9.2 Import

: save option

choose

type file

show

click

: Save file
dialog

Set File Name

Figure 9. 1: UML diagram related to STE

: Save button

In Appendix A, we can see a file generated by Rosescript that describes the
STE.

This file is read by the task model editor in order to be modified by the technical
writers.

118 Chapter 9

9.3 Display

In Figure 9.2, we illustrate the Diane+ representation of the STE model on the
screen. At this moment, the technical writer can modify graphically the model (move
a widget, delete a widget, expand a task, etc.).

Until the model is not completely ready for language generation, the technical writer
can save it and re-open it as many times as he wants.

When the technical writer agrees with a model, he can export it using the ' export '
command.

Select Esc 1

Task al1rlbutes :

(ê lnleracllve C=::J
(' AUtomaUc 1 1

Î Manual l l
(ê Mandatory

(' Optional -- -- ---

(ê Expanded (how to) +

Î Elementary

r Task precondilion .
r Feedback

r Terminal Event

1c reate Task 1

Create Boolean Connecta, 1

Sequence atbibute :

r SequPnCe precon,jltmr >I

5eQuence tasks 1

9.4Export

T
m
e

r
y
i
0
n

?
p

Expansion relationshlp

use stePro
1 - n

create document
1 • n

save document
1 - n

open document

prlnt document

1 - n

Close document

1 · n

save new-document
1- n

save existin(l-document

1 - n

cttoose save-option

1- n

•, mslini>-document

1- n

~--------~--~---~--------------~
Figure 9. 2: Diane+ representation of the STE mode!

When the model is ready for generation, the technical writer can export the
model into a LISP file used for language generation. The corresponding file for the
stepro (STE program) can be found in Appendix B.

An example 119

9.5 Language generation

Here is the actual hypertëxt files,generated fromthe STE model (Figure 9.3),

To use a stepro

Wh.al would you like to do?

• Create a docwnent .
How?

• Save a docwnent.
How?

• Open a docwnent.
How?

• Print a docwnent.
How?

• Close a docwnent.
How''

.:J

Figure 9. 3: Hypertext file to use a STE program

If the end-user clicks on "How" following "Save a document", this 1s the file
produced (Figure 9.4)

120 Chapter 9

'1 JI 1 ,1,r1i, I• 1 ! Ill /li 1 .,4 1/t fi' 11 I' ' I 1' 1

To save a document

What would you like to do?

• Save a new docrnnent.
How'.1

• Save an existing docwnent.
How"

Note You can save a copy of the active docwnent with a different name or in a different location.

Figure 9. 4: Hypertext file to save a document

Finally, if the user clicks on the "How" following "Save a new document", here is the
hypertext that appears (Figure 9.5)

An example

To save a new document

1. From the file menu choose the save option.
The system shows the save file dialog.

2. Choose the folder .

3. Enter the file uame.

4. Click the save button.
Tii.e system saves the docwnent

Note Ifyou would like to create a new folder in which to save your docwnent. you can click on the New
Folder button on the top of the dialog box.

Figure 9. 5: Hypertext file to save a new document

l :

121

CHAPTER 10
Conclusion

Nowadays, softwares tend to be more and more complex and powerful.
Besides, users expect to be assisted by a user-friendly guide any time they ask for it.

Help systems are undoubtedly essential for any elaborate software, and on-line help is
a crucial aspect of any software system.

The role of technical writers is currently changing, as the support of on-line help has
migrated to hypertext form and that it is desirable to automate production of on-line
help.

Help system generators become usable for concrete utiliz.ation m commercial
softwares and Isolde has a place among them.

Our contribution in the Isolde project was the implementation of the task model
editor. The editor includes the reading of an import file generated by Rosescript, the
import file describing a particular model. The next step is the transformation of the
model into an internai structure and the display of the model on the screen, allowing
the technical writers to make change graphically and to save/open a particular model.
Finally, the editor exports the model into a LISP file used for language generation.

Sorne interesting problems we had to deal with were the conversion from the import
file into graphical representation, the realiz.ation of the graphical interface, and the
managing of the structure and the graphical objects after each modification by the
technical writers. We have also suggested some improvement for the current
interface.

124 Chapter 9

We have learned a lot during our training period at CSIRO working on the Isolde
project. It was a great work experience as well as a wonderful opportunity to work
with very interesting people.

The Isolde project is not finished and the implementation surely needs some
improvements, but we are glad it already produces some good results and is on its
way to become a very promising tool for automatic help generation.

Bibliography

[Anciaux 98]

V. Anciaux, "Travail réalisé dans le cadre de la chaire Francqui", FUNDP, Namur,
1998

[Artim 97]

J.M. Artim, "Integrating user interface design and object-oriented development
through task analysis and use cases", CH/'97 workshop on Object Oriented User
Interfaces, 1997
Available at http://www.cuts·vs.com/ooui/

(Balbo 97]

S. Balbo, N. Ozkan, and C. Paris, ''Novel uses of task models: two case
studies", Proceedings NATOIONR workshop on cognitive tasks, 1997

[Balbo 98]

S. Balbo, N. Ozkan, and C. Paris, "Understanding a Task Model: An
Experiment", Human Computer Interaction '98, 1998

[Burns 93]

L.M. Burns and A. Malhotra, G. Sockut, K.-Y. Whang, "AERIAL: ad-hoc
entity-relationship investigation and learning", /nt. J. Man-Machine Studies,
38, 1993, pages 607 - 623

[Caldwell 97]

D. E. Caldwell, and M. White, "CogentHelp: a tool for authoring Dynamically
Generated Help for Java GUis", 1997, pages 17 - 22

126

[Charney 86]

D. H. Charney, and L. M. Reder, "Designing Interactive Tutorials for
Computer Users", Human-computer interaction, Volume 2, 1986, pages 297 -
317

[CogentHelp]

[Dale]

"CogentHelp Walk-through"
A vailable at http://www.cogentex.com/svstems/cogenthelp/walkthrough.html

~

R. Dale, H. Moisi, and H. Somers, "A Handbook of Natural Language
Processing - Techniques and Applications for the Processing of Languages as
Text"
A vailable at http://www.mri.mg.edu.au/ltg/nlphandbook/contents l .html

[Deaton 96]

M. Deaton, and C. L. Zubak, Designing Windows 65 Help: A Guide to
Creating Online documents, Que, 1996

[Elkerton 90]

J. Elkerton, S. J. Goldstein, and S. L. Palmiter, "Designing a Help System
Using a GOMS Model: A Preliminary Method Execution Analysis",
Proceedings of the Human Factors Society 34th Annual Meeting, Volume 1,
1990, pages 250 - 263
A vailable at
http://www.tu-graz .ac.at/O:x8 l l b0205 0x000cdb7b:intcmal&action=body.action

[Ergoval]

"Thèse, Chapitre 3, La méthode Ergoval"
Available at http://www.lis.univ-tlse l .fr/~ F ARENC/these/chapitre3.htm#ch3-4

[Frank]

M. R. Frank, J.J. "Hans" de Graaff, D. F. Gieskens, and James D. Foley,
"Building user interfaces interactively using pre- and postconditions"

[Gwei 90)

G. M. Gwei, and E. Foxley, "Towards a Consultative On-Line Help System",
International Journal of Man-Machine Studies, Volume 32, Number 4, April
1990, pages 363 - 383

Bibliography 127

[Green 93)

T. R G. Green, "European Association for Cognitive Ergonomies, news,
reviews and reports", International Journal of Man-Machine Studies, Volume
39, 1993, pages 521-528

[Grimm 88)

S. Grimm, J. Malicki, and S. Obermeyer, "A user needs approach to context
sensitive help", SIGCHI Bulletin, Volume 19, Number 3, January 1988, pages
65 - 67

[Henry 91)

T. R Henry, and S. E. Hudson, "Interactive Graph Layout", Proceedings of
the lh ACM Symposium on User Interface Software and Techno/ogy, South
Carolina, 1991, pages 55 - 64

[ISOLDE]

"Isolde: Integrated Software and On-line Documentation Environment, Cecile
Paris, CMIS: Current Research Projects"
Available at http://www.syd.dit. csiro.au/staff/cecile/isolde.html

[Knabe 95)

K. Knabe, "Apple Guide: A Case Study in User-Aided Design of Online
Help", CHI '95 Mosaic of creativity, May 7-11 1995, pages 286-287

[Lalioti 94)

V. Lalioti and P. Loucopoulos, "Visualisation of conceptual specifications",
Informations Systems, Volume 19, Number 3, 1994, pages 291 - 309

[Lu 98a)

S. Lu, C.Paris, and K. Vander Linden, "Towards the Automatic Construction
ofTask Models from Object-Oriented Diagrams", 1998

[Lu 98b]

S. Lu, C. Paris, and K. Vander Linden, "Integrating Task Modeling into the
Object Oriented Design Process: A Pragmatic Approach", 1998

[Mittal 93)

V. O. Mittal, and C. L. Paris, "Intelligent Help Facilities: Generating Natural
Language Description with Examples", Proceedings of the Fifth International
Conference on Human-Computer Interaction, Volume 2, 1993, pages 379 -
384

128

[Moriyon 94)

R. Moriyon, P. Szekely, and R. Neches, "Automatic Generation ofHelp from
Interface Design Models", Proceedings of ACM CHI '94 Conference on
Human Factors in Computing Systems, Volume 2, 1994, pages 225-231

[Newman 97)

B. Newman, and R. W. Riner, "Designing Accessible Online Help", Training
& Deve! opment, March 1997, pages 41-44

[Nichols 96)

M. C. Nichols, and R. R. Berry, "Design Principles for Multi-window Online
Information Systems: Conclusions from Research, Applications, and
Experience", STC technical communication, Journal of the Society for
Technical Communication, Volume 43, number 3, Third quarter, August 1996

[Palanque)

Ph. Palanque, D. Salber, and R. Bastide, "Gestion automatique de l'aide
contextuelle multimédia d'une IHM par exécution de sa spécification formelle"

[Palanque 93)

Ph. A. Palanque, R. Bastide, and L. Dourte, "Contextual help for free with
formal dialogue design", HCI International 93 Conference - Orlando, Florid11,
USA (August 8 - 13 1993), 1993, pages 159 - 164

[Paris 96a)

C. Paris, and K. Vander Linden, "An Interactive Support Tool for Writing
Multilingual Manuals", IEEE Computer, Special Issue on Interactive Natural
Language Processing, 29 (7), July 1996, pages 49 - 56

[Paris 96b)

C. Paris, and K. Vander Linden, "Isolde, Integrated Software and On-Line
Documentation Environment, An authoring Tool for On-Line Help, An
overview ofün-Line Documentation and CASE tools", Report on Tasks: Task
1 and 3, July 1996

[Paris 96c)

C. Paris, K. Vander Linden, "An overview of on-line documentation and
CASE tool: Isolde", Report on task 1 and 3. Technical report ITRI-95-16,
Brighton, 1996

Bibliography 129

[Paris 98)

C. Paris, K. Vander Linden, S. Lu., "A practical approach to the generation of
on-line help", 1998

[Pemberton 96)

L. Pemberton, "Isolde, Integrated Software and On-Line Documentation
Environment, An authoring Tool for On-Line Help, Requirements from
Technical Writing", Report on Task 2, Nov 1996

[Protsko 91)

L. B. Protsko, P. G. Sorenson, J. P. Tremblay, and D. A. Schaefer, "Towards
the Automatic Generation of Software Diagrams", IEEE Transactions on
software engineering, Volume 17, Number 1, January 1991, pages 10 - 21

[Ryall 97)

K. Ryall, J. Marks, and S. Shieber, "An Interactive Constraint-Based System
for Drawing Graphs", UIST 97, Canada, 1997

[Sellen 90)

A. Sellen, and A. Nicol, "Building User-centered On-line Help", 1990, pages
143-153

[Sukaviriya 90)

P. ''Noi" Sukaviriya and J. D. Foley, "Coupling A UI Framework with
Automatic Generation of Context-Sensitive Animated Help", Proceedings of
the ACM SIGGRAPH Symposium on User Interface Software and Techno/ogy,
Snowbird, Utah, USA, October 3-5 1990/sponsored by ACM SIGGRAPH and
ACM SIGCHI, 1990, pages 152-166

[Sukaviriya 94)

P. "Noi" Sukaviriya, J. Muthukumarasamy, A. Spaans, and H. J.J. de Graaf'L
"Automatic Generation of Textual, Audio, and Animated Help in VIDE: The
User Interface Design Environment", 1994, pages 44 - 52

[Tarby 96)

J.-C. Tarby, and M.-F. Barthet, "The Diane+ method", Proc. Second
international workshop on computer-aided design of user interfaces, Namur,
June 1996

130

[UML 97]

"UML, Notation Guide: Unified Modelling Language version 1.0", Rational
Software corporation, 1997

[Vander Linden 97)

"K V ander Linden, Research Interests"
A vailable at http://\\'\vw.calvin.edu/- k\'linden/research.htnù

Table of figures

Figure 2. 1: Example of procedural help from MS Word97. Part of the screen for "How to open a file
from the bard disk" 20

Figure 3. 1: Quantity of work needed to automatically generate help 23
Figure 3. 2: Quality of the generated help 24
Figure 3. 3: Difficulty ofrefining the generated help 24
Figure 3. 4: Difficulty ofupdating the generated help 24
Figure 3. 5: Comparison between Cartoonist and Isolde 26
Figure 3. 6: An example of a contextual help window within a word processing application 28
Figure 3. 7: A high-level Petri net modeling the "Select-Cut-Copy-Paste" functions 29
Figure 3. 8: Reachability graph of the Petri net modeling the "Select-Cut-copy-Paste" functions 31
Figure 3. 9: Comparison between "Contextual help for free with formai dialogue design" and Isolde. 32
Figure 3. 10: HelpTalk's response to the user's attempt to select the disabled "Weg OK" button in an

lnterCity Express (ICE) train reservation system 34
Figure 3. 11: UIDE's knowledge base diagram 35
Figure 3. 12: Example ofan action representation 35
Figure 3. 13: UIDE's runtime architecture with HelpTalk 36
Figure 3. 14: Comparison between HelpTalk and Isolde 37
Figure 3. 15: Comparison between H3 and Isolde 40
Figure 3. 16: The "Help" window 43
Figure 3. 17: The "Edit snippets" window 44
Figure 3. 18: The "Consistency check" window 45
Figure 3. 19: The "Edit table of contents" window 45
Figure 3. 20: Dynamic help topics 46
Figure 3. 21: Comparison between CogentHelp and Isolde 47

Figure 4. 1: A use case relationship 52
Figure 4. 2: A use case diagram 53
Figure 4. 3: A sequence diagram 55
Figure 4. 4: A collaboration diagram 56
Figure 4. 5: A state diagram 58
Figure 4. 6: Sorne graphical notations 60

Figure 5. 1: Classes hierarchy 65

Figure 6. 1: Schema of the mode! 71
Figure 6. 2: A simple mode! with elementary Tasks 72
Figure 6. 3: A model with composite Tasks 73

132

Figure 6. 4: The hierarchy of the objects ... 74
Figure 6. 5: The internai representation 74
Figure 6. 6: The conversion into internai structure with no coordinates 92
Figure 6. 7: Addition of a weight parameter 92
Figure 6. 8: Addition of coordinates 93
Figure 6. 9: Addition of coordinates to the sequences 93

Figure 7. l: Buttons and checkboxes of the Graphical User lnterface .. l 00
Figure 7. 2: The menu item "File" 10 l
Figure 7. 3: The menu item "Edit" 102
Figure 7. 4: The menu item "View" ... 103
Figure 7. 5: How to expand an expandable task? 104
Figure 7. 6: How to close an expansion box? 104
Figure 7. 7: The Graphical User Interface .. 106

Figure 8. l: A simple example of a composite task 111
Figure 8. 2: An hypertext example 113

Figure 9. l: UML diagram related to STE 117
Figure 9. 2: Diane+ representation of the STE mode! 118
Figure 9. 3: Hypertext file to use a STE program 119
Figure 9. 4: Hypertext file to save a document 120
Figure 9. 5: Hypertext file to save a new document.. 12 l

APPENDIXA

Import file

This appendix is the import file automatically generated by Rosescript
for the Simple Text Editor.

Import file

This file generated automatically by Rosescript.

(dm-object)
user
(dm-object)
STE
SystemApplet
STE
(dm-object)
FramePeer
FramePeer
(dm-object)
TextComponent
TextComponent
(dm-object)
Toolkit
Toolkit
(dm-object)
FilenameFilter
FilenameFilter
(dm-object)
ArithmeticException
ArithmeticException
(dm-object)
ClassLoader
ClassLoader
(dm-object)
Double
Double
(dm-object)
InterruptedException
InterruptedException
(dm-object)
NoSuchMethodError
NoSuchMethodError
(dm-object)
String
String
(dm-object)
DatagramSocket
DatagramSocket
(dm-object)
PlainSocketlmpl
PlainSocketlmpl
(dm-object)
Socket
Socket
(dm-object)
SocketlnputStream
SocketlnputStream
(dm-object)
Print-Option
Menultem
file-menu
Print Option
(dm-object)
MenuPeer
MenuPeer
(dm-object)
WindowPeer
WindowPeer
(dm-object)
Checkbox
Checkbox
(dm-object)
Dimension
Dimension

135

136

(dm-object)
Menultem
Menultem
(dm-object)
OutputStream
Output Stream
(dm-object)
PrintStream
PrintStream
(dm-object)
ArrayStoreException
ArrayStoreException
(dm-object)
Boolean
Boolean
(dm-object)
ClassFormatError
ClassFormatError
(dm-object)
LinkageError
LinkageError
(dm-object)
UnknownContentHandler
UnknownContentHandler
(dm-object)
URLConnection
URLConnection
(dm-object)
Vector
Vector
(dm-object)
file-menu
Menu
STE
file menu
(dm-object)
CanvasPeer
CanvasPeer
(dm-object)
MenuComponentPeer
MenuComponentPeer
(dm-object)
AWTError
AWTError
(dm-object)
BorderLayout
BorderLayout
(dm-object)
CheckboxMenultem
CheckboxMenultem
(dm-object)
GridBagConstraints
GridBagConstraints
(dm-object)
FocusManager
FocusManager
(dm-object)
FilelnputStream
FilelnputStream
(dm-object)
FilterlnputStream
FilterlnputStream
(dm-object)
StringBufferlnputStream
StringBufferlnputStream
(dm-object)
SecurityManager

Appendix A

Import file

SecurityManager
(dm-object)
StackOverflowError
StackOverflowError
(dm-object)
UnknownHostException
UnknownHostException
(dm-object)
Hashtable
Hashtable
(dm-object)
HashtableEntry
HashtableEntry
(dm-object)
Print-Dialog
STE
Print Dialog
(dm-object)
Container Peer
Container Peer
(dm-object)
MenuComponent
MenuComponent
(dm-object)
FilterOutputStream
FilterOutputStream
(dm-object)
Process
Process
(dm-object)
RuntimeException
RuntimeException
(dm-object)
StringBu.ffer
StringBuffer
(dm-object)
Random
Random
(dm-object)
document
document
(dm-object)
folder-name
String
document
folder name
(dm-object)
file-name
String
document
file name
(dm-object)
AppletContext
AppletContext
(dm-object)
DialogPeer
DialogPeer
(dm-object)
TextAreaPeer
TextAreaPeer
(dm-object)
MediaEntry
MediaEntry
(dm-object)
Datalnput
Datalnput
(dm-object)

137

138

EOFException
EOFException
(dm-object)
InputStream
Input Stream
(dm-object)
Error
Error
(dm-object)
IllegalAccessException
IllegalAccessException
(dm-object)
Integer
Integer
(dm-object)
UnsatisfiedLinkError
UnsatisfiedLinkError
(dm-object)
UnknownServiceException
UnknownServiceException
(dm-object)
BitSet
BitSet
(dm-object)
Stack
Stack
(dm-object)
PrintJob
PrintJob
(dm-object)
FileDialogPeer
FileDialogPeer
(dm-object)
Canvas
Canvas
(dm-object)
Component
Component
(dm-object)
FileDialog
FileDialog
(dm-object)
GridBagLayout
GridBagLayout
(dm-object)
Insets
Insets
(dm-object)
MediaTracker
MediaTracker
(dm-object)
DataOutputStream
DataOutputStream
(dm-object)
JO Exception
JO Exception
(dm-object)
RandomAccessFile
RandomAccessFile
(dm-object)
ArraylndexOutOffioundsException
ArraylndexOutOffioundsException
(dm-object)
Character
Character
(dm-object)
Class

Appendix A

Import file

Class
(dm-object)
lllegalAccessError
IllegalAccessError
(dm-object)
IncompatibleClassChangeError
IncompatibleClassChangeError
(dm-object)
ThreadDeath
ThreadDeath
(dm-object)
ContentHandler
ContentHandler
(dm-object)
SocketException
SocketException
(dm-object)
Socketlmpl
Socketlmpl
(dm-object)
HashtableEnumerator
HashtableEnumerator
(dm-object)
MemorylmageSource
MemorylmageSource
(dm-object)
PanelPeer
PanelPeer
(dm-object)
CardLayout
CardLayout
(dm-object)
Dialog
Dialog
(dm-object)
FontMetrics
FontMetrics
(dm-object)
BufferedOutputStream
BufferedOutputStream
(dm-object)
DatalnputStream
DatalnputStream
(dm-object)
PipedOutputStream
PipedOutputStream
(dm-object)
ClassNotFoundException
ClassNotFoundException
(dm-object)
OutOfMemoryError
OutOfMemoryError
(dm-object)
VerifyError
VerifyError
(dm-object)
DatagramPacket
DatagramPacket
(dm-object)
InetAddress
InetAddress
(dm-object)
Observable
Observable
(dm-object)
Applet
Applet

139

140

(dm-object)
Event
Event
(dm-object)
MenuContainer
MenuContainer
(dm-object)
Scrollbar
Scrollbar
(dm-object)
FileNotFoundException
FileNotFoundException
(dm-object)
ClassCastException
ClassCastException
(dm-object)
Float
Float
(dm-object)
NegativeArraySizeException
NegativeArraySizeException
(dm-object)
Number
Number
(dm-object)
Observer
Observer
(dm-object)
AppletStub
AppletStub
(dm-object)
PixeIGrabber
PixelGrabber
(dm-object)
CheckboxPeer
CheckboxPeer
(dm-object)
Container
Container
(dm-object)
GridBagLayoutlnfo
GridBagLayoutlnfo
(dm-object)
Image
Image
(dm-object)
FileDescriptor
FileDescriptor
(dm-object)
ClassCircularityError
ClassCircularityError
(dm-object)
Illegal ThreadStateException
Illegal ThreadStateException
(dm-object)
InstantiationException
InstantiationException
(dm-object)
lnternalError
lnternalError
(dm-object)
Math
Math
(dm-object)
Win32Process
Win32Process
(dm-object)

Appendix A

Import file

ContentHandlerFactory
ContentHandlerFactory
(dm-object)
Enumeration
Enumeration
(dm-object)
Properties
Properties
(dm-object)
New-option
Menultem
file-menu
New option
(dm-object)
Save button
Button
Save-file-dialog
Save button
(dm-object)
lmageConsumer
lmageConsumer
(dm-object)
ComponentPeer
ComponentPeer
(dm-object)
ListPeer
ListPeer
(dm-object)
CheckboxGroup
CheckboxGroup
(dm-object)
Rectangle
Rectangle
(dm-object)
TextArea
TextArea
(dm-object)
TextField
TextField
(dm-object)
Stream Tokenizer
Stream Tokenizer
(dm-object)
lnstantiationError
lnstantiationError
(dm-object)
Open-option
Menultem
file-menu
Open option
(dm-object)
DirectColorModel
DirectColorModel
(dm-object)
ChoicePeer
ChoicePeer
(dm-object)
Dataüutput
Dataüutput
(dm-object)
PushbacklnputStream
PushbacklnputStream
(dm-object)
Compiler
Compiler
(dm-object)
Thread

141

142

Thread
(dm-object)
VectorEnumerator
VectorEnumerator
{dm-object)
LabelPeer
LabelPeer
(dm-object)
A WTException
A WTException
(dm-object)
Frame
Frame
(dm-object)
MenuBar
MenuBar
(dm-object)
File
File
(dm-object)
FileOutputStream
FileOutputStream
{dm-object)
LineNumberlnputStream
LineNumberlnputStream
(dm-object)
PipedlnputStream
PipedlnputStream
(dm-object)
SequencelnputStream
SequencelnputStream
(dm-object)
UTFDataFormatException
UTFDataFormatException
(dm-object)
Cloneable
Cloneable
(dm-object)
Exceptionlnlnitializ.erError
Exceptionlnlnitializ.erError
(dm-object)
Long
Long
(dm-object)
NoSuchMethodException
NoSuchMethodException
(dm-object)
UnknownError
UnknownError
(dm-object)
VirtualMachineError
VirtualMachineError
(dm-object)
URL
URL
(dm-object)
URLStreamHandlerFactory
URLStreamHandlerFactory
(dm-object)
user
user
(dm-object)
OK_button
Button
Print-Dialog
OK button
(dm-object)

Appendix A

Import file

FilteredlmageSource
FilteredlmageSource
(dm-object)
ButtonPeer
ButtonPeer
(dm-object)
CheckboxMenulternPeer
CheckboxMenulternPeer
{dm-object)
TextComponentPeer
TextComponentPeer
(dm-object)
TextFieldPeer
TextFieldPeer
(dm-object)
FlowLayout
FlowLayout
(dm-object)
Point
Point
(dm-object)
ByteArraylnputStream
ByteArraylnputStream
(dm-object)
B yteArrayOutputStream
ByteArrayOutputStream
(dm-object)
IllegalMonitorStateException
IllegalMonitorStateException
(dm-object)
IndexOutOilloundsException
lndexOutOilloundsException
(dm-object)
MalformedURLException
MalformedURLException
(dm-object)
SocketOutputStream
SocketOutputStream
(dm-object)
URLEncoder
URLEncoder
(dm-object)
Dictionary
Dictionary
(dm-object)
String Tokeniz.er
StringTokeniz.er
I
(dm-object)
Close-option
Menultem
file-menu
Close option
(dm-object)
Open-File-Dialog
FileDialog
STE
Open File Dialog
(dm-object)
Save-file-dialog
DialogFileDialog
STE
Save file dialog
(dm-object)
file-name
TextField
Save-file-dialog

143

144

file name
(dm-object)
folder-list
Panel
Save-file-dialog
folder list
(dm-object)
CroplmageFilter
Crop Image Fil ter
(dm-object)
ImageProducer
ImageProducer
(dm-object)
lndexColorModel
lndexColorModel
(dm-object)
MenuBarPeer
MenuBarPeer
(dm-object)
MenultemPeer
MenultemPeer
(dm-object)
Font
Font
(dm-object)
List
List
(dm-object)
NoClassDefFoundError
NoClassDefFoundError
(dm-object)
NumberFormatException
NumberFormatException
(dm-object)
Runnable
Runnable
(dm-object)
SecurityException
SecurityException
(dm-object)
StringlndexOutOfBoundsException
StringlndexOutOfBoundsException
(dm-object)
System
System
(dm-object)
ProtocolException
ProtocolException
(dm-object)
EmptyStackException
EmptyStackException
(dm-object)
save-option
Menultem
file-menu
save option
(dm-object)
ColorModel
ColorModel
(dm-object)
ImageFilter
ImageFilter
(dm-object)
ImageObserver
ImageObserver
(dm-object)
LayoutManager

Appendix A

Import file

LayoutManager
(dm-object)
ImageMediaEntry
ImageMediaEntry
(dm-object)
Menu
Menu
(dm-object)
AbstractMethodError
AbstractMethodError
(dm-object)
NullPointerException
NullPointerException
(dm-object)
Object
Object
(dm-object)
Runtime
Runtime
(dm-object)
Date
Date
(dm-object)
ObserverList
Observer List
(dm-object)
AudioClip
AudioClip
(dm-object)
GridLayout
GridLayout
(dm-object)
Panel
Panel
(dm-object)
BufferedlnputStream
BufferedlnputStream
(dm-object)
InterruptedIOException
InterruptedlOException
(dm-object)
Exception
Exception
(dm-object)
Illega!ArgumentException
Il legalArgumentException
(dm-object)
Throwable
Throwable
(dm-object)
ServerSocket
ServerSocket
(dm-object)
URLStreamHandler
URLStreamHandler
(dm-object)
NoSuchElementException
NoSuchElementException
(dm-object)
Open_button
Button
Open-File-Dialog
Open_ button
(dm-object)
RGBimageFilter
RGBimageFilter
(dm-object)

145

146

ScrollbarPeer
ScrollbarPeer
(dm-object)
Button
Button
(dm-object)
Choice
Choice
(dm-object)
Color
Color
(dm-object)
Graphies
Graphies
(dm-object)
Label
Label
(dm-object)
Polygon
Polygon
(dm-object)
Window
Window
(dm-object)
CloneNotSupportedException
CloneNotSupportedException
(dm-object)
NoSuchFieldError
NoSuchFieldError
(dm-object)
ThreadGroup
ThreadGroup
(dm-object)
SockethnplFactory
SockethnplFactory
(Task)
use-stePro
use stePro
No
Mandatory
Interactive
Expanded
(Expansion)
use-stePro
create-document
save-document
open-document
print-document
Close-document
(Task)
create-document
create document
No
Mandatory
Interactive
Expanded
(dm-action)
create-document
user
document
create
(Expansion)
create-document
user-choose-New-option-1
(Task)
user-choose-New-option-1
choose New-option

Appendix A

Import file

No
Mandatory
Interactive
Elementary
(Task)
New-option-addDocument-STE-2
addDocument STE
Yes
Mandatory
Automatic
Elementary
(Sequence)
user-choose-New-option-1
New-option-addDocument-STE-2
(dm-action)
user-choose-New-option-1
user
New-option
choose
(dm-action)
New-option-addDocument-STE-2
system
STE
addDocument
(Task)
save-document
save document
No
Mandatory
Interactive
Expanded
(dm-action)
save-document
user
document
save
(Expansion)
save-document
save-new-document
save-existing-document
(Task)
save-new-document
save new-document
No
Mandatory
Interactive
Expanded
(dm-action)
save-new-document
user
new-document
save
(Expansion)
save-new-document
user-choose-save-option-3
(Task)
user-choose-save-option-3
choose save-option
No
Mandatory
Interactive
Elementary
(Task)
save-option-show-Save-file-dialog-4
show Save-file-dialog
No
Mandatory

147

148

Automatic
Elementary
(Task)
user-choose-folder-Save-fi le-dialog-5
choose-folder Save-file-dialog
No
Mandatory
Interactive
Elementary
(Task)
user-type-file-name-Save-file-dialog-6
type-file-name Save-file-dialog
No
Mandatory
Interactive
Elementary
(Task)
user-click-Save button-7
click Save_button
No
Mandatory
Interactive
Elementary
(Task)
Save button-setFileName-document-8
setFileName document
Yes
Mandatory
Automatic
Elementary
(Sequence)
user-choose-save-option-3
save-option-show-Save-fi le-dialog-4
(Sequence)
save-option-show-Save-fi le-dialog-4
user-choose-folder-Save-fi le-dialog-5
(Sequence)
user-choose-folder-Save-file-dialog-5
user-type-file-name-Save-file-dialog-6
(Sequence)
user-type-file-name-Save-file-dialog-6
user-click-Save _ button-7
(Sequence)
user-click-Save button-7
Save_ button-setFileName-document-8
(dm-action)
user-choose-save-option-3
user
save-option
choose
(dm-action)
save-option-show-Save-file-dialog-4
system
Save-file-dialog
show
(dm-action)
user-choose-folder-Save-file-dialog-5
user
Save-file-dialog
choose-folder
(dm-action)
user-type-file-name-Save-file-dialog-6
user
Save-file-dialog
type-file-name
(dm-action)
user-click-Save_ button-7

Appendix A

Import file

user
Save button
click
(dm-action)
Save button-setFileName-document-8
system
document
setFileName
(Task)
save-existing-docurnent
save existing-document
No
Mandatory
Interactive
Expanded
(dm-action)
save-existing-document
user
existing-document
save
(Expansion)
save-existing-document
user-choose-save-option-9
(Task)
user-choose-save-option-9
choose save-option
No
Mandatory
Interactive
Elementary
(Task)
save-option-save-document-10
save document
Yes
Mandatory
Automatic
Elementary
(Sequence)
user-choose-save-option-9
save-option-save-document-10
(dm-action)
user-choose-save-option-9
user
save-option
choose
(dm-action)
save-option-save-document-10
system
document
save
(Task)
open-document
open document
No
Mandatory
Interactive
Expanded
(dm-action)
open-document
user
document
open
(Expansion)
open-document
user-Choose-Open-option-11
(Task)
user-Choose-Open-option-11

149

150

Choose Open-option
No
Mandatory
Interactive
Elementary
{Task)
STE-Show-Open-File-Dialog-12
Show Open-File-Dialog
No
Mandatory
Automatic
Elementary
(Task)
user-Choose-directory-Open-File-Dialog-13
Choose-directory Open-File-Dialog
No
Mandatory
Interactive
Elementary
(Task)
user-Choose-File-Open-File-Dialog-14
Choose-File Open-File-Dialog
No
Mandatory
Interactive
Elementary
(Task)
user-Click-Open_ button-15
Click Open_button
No
Mandatory
Interactive
Elementary
(Task)
Open_ button-getDirectory-Open-File-Dialog-16
getDirectory Open-File-Dialog
Yes
Mandatory
Automatic
Elementary
(Sequence)
user-Choose-Open-option-11
STE-Show-Open-File-Dialog-12
(Sequence)
STE-Show-Open-File-Dialog-12
user-Choose-directory-Open-File-Dialog-13
(Sequence)
user-Choose-directory-Open-File-Dialog-13
user-Choose-Fi le-Open-File-Dialog-14
(Sequence)
user-Choose-File-Open-Fi le-Dialog-14
user-Click-Open_ button-15
(Sequence)
user-Click-Open_button-15
Open_ button-getDirectory-Open-File-Dialog-16
(dm-action)
user-Choose-Open-option-11
user
Open-option
Choose
(dm-action)
STE-Show-Open-File-Dialog-12
system
Open-File-Dialog
Show
(dm-action)
user-Choose-directory-Open-File-Dialog-13

Appendix A

Import file

STE
Open-File-Dialog
Choose-directory
(dm-action)
user-Choose-File-Open-File-Dialog-14
user
Open-File-Dialog
Choose-File
(dm-action)
user-Click-Open_ button-15
user
Open_ button
Click
(dm-action)
Open_ button-getDirectory-Open-File-Dialog-16
system
Open-File-Dialog
getDirectory
(Task)
print-document
print document
No
Mandatory
Interactive
Expanded
(dm-action)
print-document
user
document
print
(Expansion)
print-document
user-Choose-Print-Option-17
(Task)
user-Choose-Print-Option-17
Choose Print-Option
No
Mandatory
lnteracti ve
Elementary
(Task)
Toolkit-show-Print-Dialog-18
show Print-Dialog
No
Mandatory
Automatic
Elementary
(Task)
user-Select-printer-Print-Dialog-19
Select-printer Print-Dialog
No
Mandatory
lnteracti ve
Elementary
(Task)
user-set-No-of-copy-Print-Dialog-20
set-No-of-copy Print-Dialog
No
Mandatory
Interactive
Elementary
(Task)
user-set-print-range-Print-Dialog-21
set-print-range Print-Dialog
No
Mandatory
Interactive

151

152

Elementary
(Task)
user-Click-OK_button-22
Click OK_button
No
Mandatory
Interactive
Elementary
(Task)
OK_ button-getGraphics-PrintJob-23
getGraphics PrintJob
Yes
Mandatory
Automatic
Elementary
(Sequence)
user-Choose-Print-Option-17
Toolkit-show-Print-Dialog-18
(Sequence)
Toolkit-show-Print-Dialog-18
user-Select-printer-Print-Dialog-19
(Sequence)
user-Select-printer-Print-Dialog-19
user-set-No-of-copy-Print-Dialog-20
(Sequence)
user-set-No-of-copy-Print-Dialog-20
user-set-print-range-Print-Dialog-21
(Sequence)
user-set-print-range-Print-Dialog-21
user-Click-OK button-22
(Sequence)
user-Click-OK_button-22
OK_ button-getGraphics-PrintJob-23
(dm-action)
user-Choose-Print-Option-17
user
Print-Option
Choose
(dm-action)
Toolkit-show-Print-Dialog-18
system
Print-Dialog
show
(dm-action)
user-Select-printer-Print-Dialog-19
document
Print-Dialog
Select-printer
(dm-action)
user-set-No-of-copy-Print-Dialog-20
Toolkit
Print-Dialog
set-No-of-copy
(dm-action)
user-set-print-range-Print-Dialog-21
user
Print-Dialog
set-print-range
(dm-action)
user-Click-OK_button-22
user
OK_button
Click
(dm-action)
OK_ button-getGraphics-PrintJob-23
system
PrintJob

Appendix A

Import file

getGraphics
(Task)
Close-document
Close document
No
Mandatory
Interactive
Expanded
(dm-action)
Close-document
user
document
Close
(Expansion)
Close-document
user-choose-Close-option-24
(Task)
user-choose-Close-option-24
choose Close-option
No
Mandatory
Interactive
Elementary
(Task)
Close-option-quit-STE-25
quit STE
Yes
Mandatory
Automatic
Elementary
(Sequence)
user-choose-Close-option-24
Close-option-quit-STE-25
(dm-action)
user-choose-Close-option-24
user
Close-option
choose
(dm-action)
Close-option-quit-STE-25
system
STE
quit
(dm-action)
use-stePro
user
stePro
use

153

APPENDIXB

Export file

This appendix is the Lisp file produced by the task modeling tool for
the Simple Text Editor.

Export file

(in-package :dm)

" ;; The task mode(stuff

-----------------------------------"
(def-diane-expansion Main

:start (action-t33)
)

(def-diane-expansion exp 1
:start (action-t34 action-t37 action-t48 action-t55 action-t63)
)

(def-diane-expansion exp2
:start (action-t35)
)

(def-diane-action action-t35
:semantics user-choose-New-option-1
)

(def-diane-link link-1
:domain action-t35
:range action-t36
)

(def-diane-terminal-event term-36
:type NORMAL
)

(def-diane-action action-t36
:semantics system-create-new-document-2
)

(def-diane-link link-2
:domain action-t36
:range term-36
)

(def-diane-action action-t34
:expansion exp2
:semantics create-document
)

(def-diane-expansion exp3
:start (action-t38 action-t45)
)

(def-diane-expansion exp4
:start (action-t39)
)

(def-diane-action action-t39
:semantics user-choose-save-option-3
)

(def-diane-link link-3
:domain action-t39
:range action-t40
)

(def-diane-action action-t40
:semantics save-option-show-Save-file-dialog-4
)

(def-diane-link link-4
:domain action-t40
:range action-t4 I
)

(def-diane-action action-t4 I
:semantics user-choose-folder-7
)

(def-diane-link link-5
:domain action-t4 I
:range action-t42
)

(def-diane-action action-t42
:semantics user-enter-file-name-8
:documentation "Note You canuse long descriptive file names ifyou want."
)

157

158

(def-diane-link link-6
:domain action-t42
:range action-t43
)

(def-diane-action action-t43
:semantics user-click-Save_ button-7
)

(def-diane-link link-7
:domain action-t43
:range action-t44
)

(def-diane-terminal-event term-44
:type NORMAL
)

(def-diane-action action-t44
:semantics system-save-document-10
)

(def-diane-link link-8
:domain action-t44
:range term-44
)

(def-diane-action action-t38
:expansion exp4
:semantics save-new-document

Appendix B

:documentation "Note Ifyou would like to create a new folder in which to save your document, you can click
on the New Folder button on the top of the dialog box."

)
(def-diane-expansion exp5

:start (action-t46)
)

(def-diane-action action-t46
:semantics user-choose-save-option-9
)

(def-diane-link link-9
:domain action-t46
:range action-t4 7
)

(def-diane-terminal-event term-4 7
:type NORMAL
)

(def-diane-action action-t4 7
:semantics system-save-existing-document-13
)

(def-diane-link link-10
:domain action-t47
:range term-4 7
)

(def-diane-action action-t45
:expansion exp5
:semantics save-existing-document
:documentation "Note You can save a copy of the active document with a different name or in a different

location."

(def-diane-action action-t3 7
:expansion exp3
:semantics save-document
:documentation ''Note You can save a copy of the active document with a different name or in a different

location."
)

(def-diane-expansion exp6
:start (action-t49)
)

(def-diane-action action-t49
:semantics user-Choose-Open-option-11
)

Export file

(def-diane-link link-11
:domain action-t49
:range action-tS0
)

(def-diane-action action-t50
:semantics STE-Show-Open-File-Dialog-12
)

(def-diane-link link-12
:domain action-t50
:range action-tS 1
)

(def-diane-action action-tS 1
:semantics user-Choose-directory-17
)

(def-diane-link link-13
:domain action-t5 l
:range action-t52
)

(def-diane-action action-t52
:semantics user-Choose-File-18
)

(def-diane-link link-14
:domain action-t52
:range action-t53
)

(def-diane-action action-t53
:semantics user-Click-Open_ button-1 S
)

(def-diane-link link-1 S
:domain action-t53
:range action-t54
)

(def-diane-terminal-event term-54
:type NORMAL
)

(def-diane-action action-t54
:semantics system-Open-document-20
)

(def-diane-link link-16
:domain action-t54
:range term-54
)

(def-diane-action action-t48
:expansion exp6
:semantics open-document
)

(def-diane-expansion exp7
:start (action-t56)
)

(def-diane-action action-t56
:semantics user-Choose-Print-Option-17
)

(def-diane-link link-17
:domain action-t56
:range action-t57
)

(def-diane-action action-t57
:semantics Toolkit-show-Print-Dialog-18
)

(def-diane-link link-18
:domain action-t57
:range action-t58
)

(def-diane-action action-t58
:semantics user-Select-printer-24
)

(def-diane-link link-19

159

160

:domain action-t58
:range action-t59
)

(def-diane-action action-t59
:semantics user-set-No-of-copy-25
)

(def-diane-link link-20
:domain action-t59
:range action-t60
)

(def-diane-action action-t60
:semantics user-set-print-range-26
)

(def-diane-link link-21
:domain action-t60
:range action-t6 l
)

(def-diane-action action-t61
:semantics user-Click-OK_ button-22
)

(def-diane-link link-22
:domain action-t61
:range action-t62
)

(def-diane-terrninal-event term-62
:type NORMAL
)

(def-diane-action action-t62
:semantics system-print-document-28
)

(def-diane-Iink link-23
:domain action-t62
:range term-62
)

(def-diane-action action-t55
:expansion exp7
:semantics print-document
)

(def-diane-expansion exp8
:start (action-t64)
)

(def-diane-action action-t64
:semantics user-choose-Close-option-24
)

(def-diane-link link-24
:domain action-t64
:range action-t65
)

(def-diane-terrninal-event term-65
:type NORMAL
)

(def-diane-action action-t65
:semantics Close-option-quit-STE-25
)

(def-diane-link link-25
:domain action-t65
:range term-65
)

(def-diane-action action-t63
:expansion exp8
:semantics Close-document
)

(def-diane-action action-t33
:expansion exp 1
:semantics use-stePro

Appendix B

:documentation "STEpro is a simple text editor program. lt allows you to do standard manipulation of
document."

Export file

)
(in-package :dm)
.. ,,
;; The domain mode! stuff
---------------------------------------,,

(def-dm-instance user
:dm-concept dm-Object
)

(def-dm-instance STE
:dm-concept dm-Object
:lexical-root "STE"
)

(def-dm-instance FramePeer
:dm-concept dm-Object
:lexical-root "FramePeer"
)

(def-dm-instance TextComponent
:dm-concept dm-Object
:lexical-root "TextComponent"
)

(def-dm-instance Toolkit
:dm-concept dm-Object
:lexical-root "Toolkit"
)

(def-dm-instance FilenameFilter
:dm-concept dm-Object
:lexical-root "FilenameFilter"
)

(def-dm-instance ArithmeticException
:dm-concept dm-Object
:lexical-root "ArithmeticException"
)

(def-dm-instance ClassLoader
:dm-concept dm-Object
:lexical-root "ClassLoader"
)

(def-dm-instance Double
:dm-concept dm-Object
:lexical-root "Double"
)

(def-dm-instance InterruptedException
:dm-concept dm-Object
:lexical-root "InterruptedException"
)

(def-dm-instance NoSuchMethodError
:dm-concept dm-Object
:lexical-root "NoSuchMethodError"
)

(def-dm-instance String
:dm-concept dm-Object
:lexical-root "String"
)

(def-dm-instance DatagramSocket
:dm-concept dm-Object
:lexical-root "DatagramSocket"
)

(def-dm-instance PlainSocketlmpl
:dm-concept dm-Object
:lexical-root "PlainSocketlmpl"
)

(def-dm-instance Socket
:dm-concept dm-Object
:lexical-root "Socket"
)

(def-dm-instance SocketlnputStream
:dm-concept dm-Object
:lexical-root "SocketlnputStream"

161

162

)
(def-dm-instance Print-Option

:dm-concept menu-item-concept
:lexical-root "Print Option"
:dm-relations ((dm-part-of file-menu))
)

(def-dm-instance MenuPeer
:dm-concept dm-Object
:lexical-root "MenuPeer"
)

(def-dm-instance WindowPeer
:dm-concept dm-Object
:lexical-root "WindowPeer"
)

(def-dm-instance Checkbox
:dm-concept dm-Object
:lexical-root "Checkbox"
)

(def-dm-instance Dimension
:dm-concept dm-Object
:lexical-root "Dimension"
)

(def-dm-instance Menultem
:dm-concept dm-Object
:Iexical-root "Menultem"
)

(def-dm-instance OutputStream
:dm-concept dm-Object
:lexical-root "OutputStream"
)

(def-dm-instance PrintStream
:dm-concept dm-Object
:lexical-root "PrintStream"
)

(def-dm-instance ArrayStoreException
:dm-concept dm-Object
:lexical-root "ArrayStoreException"
)

(def-dm-instance Boolean
:dm-concept dm-Object
:lexical-root "Boolean"
)

(def-dm-instance ClassFormatError
:dm-concept dm-Object
:Iexical-root "ClassFormatError"
)

(def-dm-instance LinkageError
:dm-concept dm-Object
:lexical-root "LinkageError"
)

(def-dm-instance UnknownContentHandler
:dm-concept dm-Object
:lexical-root "UnknownContentHandler"
)

(def-dm-instance URLConnection
:dm-concept dm-Object
:lexical-root "URLConnection"
)

(def-dm-instance Vector
:dm-concept dm-Object
:lexical-root "Vector"
)

(def-dm-instance file-menu
:dm-conœpt menu-conœpt
:lexical-root "fi1e menu"
:dm-relations ((dm-part-of STE))
)

Appendix B

Export file

(def-dm-instance CanvasPeer
:dm-concept dm-Object
:lexical-root "CanvasPeer"
)

(def-dm-instance MenuComponentPeer
:dm-concept dm-Object
:lexical-root "MenuComponentPeer"
)

(def-dm-instance A WTError
:dm-concept dm-Object
:lexical-root "A WTError"
)

(def-dm-instance BorderLayout
:dm-concept dm-Object
:lexical-root "BorderLayout"
)

(def-dm-instance CheckboxMenultem
:dm-concept dm-Object
:lexical-root "CheckboxMenultem"
)

(def-dm-instance GridBagConstraints
:dm-concept dm-Object
:lexical-root "GridBagConstraints"
)

(def-dm-instance FocusManager
:dm-concept dm-Object
:lexical-root "FocusManager"
)

(def-dm-instance FilelnputStream
:dm-concept dm-Object
:lexical-root "FilelnputStream"
)

(def-dm-instance FilterlnputStream
:dm-concept dm-Object
:lexical-root "FilterlnputStream"
)

(def-dm-instance StringBufferlnputStream
:dm-concept dm-Object
:lexical-root "StringBufferlnputStream"
)

(def-dm-instance SecurityManager
:dm-concept dm-Object
:lexical-root "SecurityManager"
)

(def-dm-instance StacküverflowError
:dm-concept dm-Object
:lexical-root "StacküverflowError"
)

(def-dm-instance UnknownHostException
:dm-concept dm-Object
:lexical-root "UnknownHostException"
)

(def-dm-instance Hashtable
:dm-concept dm-Object
:lexical-root "Hashtable"
)

(def-dm-instance HashtableEntry
:dm-concept dm-Object
:lexical-root "HashtableEntry"
)

(def-dm-instance Print-Dialog
:dm-concept dm-Object
:lexical-root "Print Dialog"
:dm-relations ((dm-part--0f STE))
)

(def-dm-instance ContainerPeer
:dm-concept dm-Object

163

164

:lexicaJ-root "ContainerPeer"
)

(def-dm-instanœ MenuComponent
:dm-conœpt dm-Object
:lexicaJ-root "MenuComponent"
)

(def-dm-instanœ Fi lterOutputStream
:dm-conœpt dm-Object
:lexicaJ-root "FilterOutputStream"
)

(def-dm-instanœ Proœss
:dm-conœpt dm-Object
:lexicaJ-root "Proœss"
)

(def-dm-instanœ RuntimeExœption
:dm-conœpt dm-Object
:lexicaJ-root "RuntimeExœption"
)

(def-dm-instanœ StringBuffer
:dm-conœpt dm-Object
:lexical-root "StringBuffer"
)

(def-dm-instanœ Random
:dm-conœpt dm-Object
:lexicaJ-root "Random"
)

(def-dm-instanœ document
:dm-conœpt dm-Object
:lexicaJ-root "document"
)

(def-dm-instanœ folder-name
:dm-conœpt dm-Object
:lexical-root "folder name"
:dm-relations ((dm-part-of document))
)

(def-dm-instanœ file-name
:dm-conœpt dm-Object
:lexicaJ-root "file name"
:dm-relations ((dm-part-of document))
)

(def-dm-instanœ AppletContext
:dm-conœpt dm-Object
:lexicaJ-root "AppletContext"
)

(def-dm-instanœ DialogPeer
:dm-conœpt dm-Object
:lexical-root "DialogPeer"
)

(def-dm-instanœ TextAreaPeer
:dm-conœpt dm-Object
:lexical-root "TextAreaPeer"
)

(def-dm-instanœ MediaEntry
:dm-conœpt dm-Object
:lexical-root "MediaEntry"
)

(def-dm-instanœ Datalnput
:dm-conœpt dm-Object
:lexicaJ-root "Datalnput"
)

(def-dm-instanœ EOFExœption
:dm-conœpt dm-Object
:lexical-root "EOFExœption"
)

(def-dm-instanœ lnputStream
:dm-concept dm-Object
:lexicaJ-root "InputStream"

Appendix B

Export file

)
(def-dm-instance Error

:dm-concept dm-Object
:lexical-root "Error"
)

(def-dm-instance IllegaIAccessException
:dm-concept dm-Object
:Iexical-root "IllegalAccessException"
)

(def-dm-instance Integer
:dm-concept dm-Object
:Iexical-root "Integer"
)

(def-dm-instance UnsatisfiedLinkError
:dm-concept dm-Object
:Iexical-root "UnsatisfiedLinkError"
)

(def-dm-instance UnknownServiceException
:dm-concept dm-Object
:Iexical-root "UnknownServiceException"
)

(def-dm-instance BitSet
:dm-concept dm-Object
:lexical-root "BitSet"
)

(def-dm-instance Stack
:dm-concept dm-Object
:Iexical-root "Stack"
)

(def-dm-instance PrintJob
:dm-concept dm-Object
:Iexical-root "PrintJob"
)

(def-dm-instance FileDialogPeer
:dm-concept dm-Object
:Iexical-root "FileDialogPeer"
)

(def-dm-instance Canvas
:dm-concept dm-Object
:lexical-root "Canvas"
)

(def-dm-instance Component
:dm-concept dm-Object
:lexical-root "Component"
)

(def-dm-instance FileDialog
:dm-concept dm-Object
:lexical-root "FileDialog"
)

(def-dm-instance GridBagLayout
:dm-concept dm-Object
:lexical-root "GridBagLayout"
)

(def-dm-instance Insets
:dm-concept dm-Object
:lexical-root "Insets"
)

(def-dm-instance MediaTracker
:dm-concept dm-Object
:lexical-root "MediaTracker"
)

(def-dm-instance DataOutputStream
:dm-concept dm-Object
:lexical-root "DataOutputStream"
)

(def-dm-instance IOException
:dm-concept dm-Object

165

166

:lexical-root "IOException"
)

(def-dm-instance RandomAccessFile
:dm-concept dm-Object
:lexical-root "RandomAccessFile"
)

(def-dm-instance ArraylndexOutOffioundsException
:dm-concept dm-Object
:lexical-root "ArraylndexOutOffioundsException"
)

(def-dm-instance Character
:dm-concept dm-Object
:lexical-root "Character"
)

(def-dm-instance Class
:dm-concept dm-Object
:lexical-root "Class"
)

(def-dm-instance Illega!AccessError
:dm-concept dm-Object
:lexical-root "IllegalAccessError"
)

(def-dm-instance In compati bleClassChangeError
:dm-concept dm-Object
:lexical-root "IncompatibleClassChangeError"
)

(def-dm-instance ThreadDeath
:dm-concept dm-Object
:lexical-root "ThreadDeath"
)

(def-dm-instance ContentHandler
:dm-concept dm-Object
:lexical-root "ContentHandler"
)

(def-dm-instance SocketException
:dm-concept dm-Object
:lexical-root "SocketException"
)

(def-dm-instance Socketlmpl
:dm-concept dm-Object
:lexical-root "Socketlmpl"
)

(def-dm-instance HashtableEnumerator
:dm-concept dm-Object
:lexical-root "HashtableEnumerator"
)

(def-dm-instance MemorylmageSource
:dm-concept dm-Object
:lexical-root "MemorylmageSource"
)

(def-dm-instance PanelPeer
:dm-concept dm-Object
:lexical-root "PanelPeer"
)

(def-dm-instance CardLayout
:dm-concept dm-Object
:lexical-root "CardLayout"
)

(def-dm-instance Dialog
:dm-concept dm-Object
:lexical-root "Dialog"
)

(def-dm-instance FontMetrics
:dm-concept dm-Object
:lexical-root "FontMetrics"
)

(def-dm-instance BufferedOutputStream

Appendix B

Export file

:dm-concept dm-Object
:lexical-root "BufferedOutputStrearn"
)

(def-dm-instance DatalnputStrearn
:dm-concept dm-Object
:lexical-root "DatalnputStream"
)

(def-dm-instance PipedOutputStream
:dm-concept dm-Object
:lexical-root "PipedOutputStream"
)

(def-dm-instance ClassNotFoundException
:dm-concept dm-Object
:lexical-root "ClassNotFoundException"
)

(def-dm-instance OutOfMemoryError
:dm-concept dm-Object
:lexical-root "OutOfMemoryError"
)

(def-dm-instance VerifyError
:dm-concept dm-Object
:lexical-root "VerifyError"
)

(def-dm-instance DatagramPacket
:dm-concept dm-Object
:lexical-root "DatagramPacket"
)

(def-dm-instance InetAddress
:dm-concept dm-Object
:lexical-root "InetAddress"
)

(def-dm-instance Observable
:dm-concept dm-Object
:lexical-root "Observable"
)

(def-dm-instance Applet
:dm-concept dm-Object
:lexical-root "Applet"
)

(def-dm-instance Event
:dm-concept dm-Object
:lexical-root "Event"
)

(def-dm-instance MenuContainer
:dm-concept dm-Object
:lexical-root "MenuContainer"
)

(def-dm-instance Scrollbar
:dm-concept dm-Object
:lexical-root "Scrollbar"
)

(def-dm-instance FileNotFoundException
:dm-concept dm-Object
:lexical-root "FileNotFoundException"
)

(def-dm-instance ClassCastException
:dm-concept dm-Object
:lexical-root "ClassCastException"
)

(def-dm-instance Float
:dm-concept dm-Object
:lexical-root "Float"
)

(def-dm-instance NegativeArraySizeException
:dm-concept dm-Object
:lexical-root "NegativeArraySizeException"
)

167

168

(def-dm-instance Number
:dm-concept dm-Object
:lexical-root ''Nurnber"
)

(def-drn-instance Observer
:dm-concept dm-Object
:lexical-root "Observer"
)

(def-drn-instance AppletStub
:dm-concept dm-Object
:lexical-root "AppletStub"
)

(def-drn-instance PixelGrabber
:dm-concept dm-Object
:lexical-root "PixelGrabber"
)

(def-drn-instance CheckboxPeer
:dm-concept dm-Object
:lexical-root "CheckboxPeer"
)

(def-drn-instance Container
:dm-concept dm-Object
:lexical-root "Container"
)

(def-drn-instance GridBagLayoutlnfo
:dm-concept dm-Object
:lexical-root "GridBagLayoutlnfo"
)

(def-drn-instance Image
:dm-concept dm-Object
:lexical-root "Image"
)

(def-drn-instance FileDescriptor
:dm-concept dm-Object
:lexical-root "FileDescriptor"
)

(def-dm-instance ClassCircularityError
:dm-concept dm-Object
:lexical-root "ClassCircularityError"
)

(def-drn-instance Il legalThreadStateException
:dm-concept dm-Object
:lexical-root "Dlega!ThreadStateException"
)

(def-drn-instance InstantiationException
:dm-concept dm-Object
:lexical-root "lnstantiationException"
)

(def-drn-instance lntema!Error
:dm-concept dm-Object
:lexical-root "lntemalError"
)

(def-drn-instance Math
:dm-concept dm-Object
:lexical-root "Math"
)

(def-drn-instance Win32Process
:dm-concept dm-Object
:lexical-root "Win32Process"
)

(def-drn-instance ContentHandlerFactory
:dm-concept dm-Object
:lexical-root "ContentHandlerFactory"
)

(def-drn-instance Enurneration
:dm-concept dm-Object
:lexical-root "Enurneration"

Appendix B

Export file

)
(def-dm-instance Properties

:dm-concept dm-Object
:lexical-root "Properties"
)

(def-dm-instance New-option
:dm-concept menu-item-concept
:lexical-root "New option"
:dm-relations ((dm-part-of file-menu))
)

(def-dm-instance Save_ button
:dm-concept dm-Object
:lexical-root "Save button"
:dm-relations ((dm-part-of Save-file-dialog))
)

(def-dm-instance Save-file-dialog
:dm-concept dm-Object
)

(def-dm-instance ImageConsumer
:dm-concept dm-Object
:lexical-root "ImageConsumer"
)

(def-dm-instance ComponentPeer
:dm-concept dm-Object
:lexical-root "ComponentPeer"
)

(def-dm-instance ListPeer
:dm-concept dm-Object
:lexical-root "ListPeer"
)

(def-dm-instance CheckboxGroup
:dm-concept dm-Object
:lexical-root "CheckboxGroup"
)

(def-dm-instance Rectangle
:dm-concept dm-Object
:lexical-root "Rectangle"
)

(def-dm-instance TextArea
:dm-concept dm-Object
:lexical-root "TextArea"
)

(def-dm-instance TextField
:dm-concept dm-Object
:lexical-root "TextField"
)

(def-dm-instance StreamTokenizer
:dm-concept dm-Object
:lexical-root "StreamTokenizer"
)

(def-dm-instance InstantiationError
:dm-concept dm-Object
:lexical-root "lnstantiationError"
)

(def-dm-instance Open-option
:dm-concept menu-item-concept
:lexical-root "Open option"
:dm-relations ((dm-part-of file-menu))
)

(def-dm-instance DirectColorModel
:dm-concept dm-Object
:lexical-root "DirectColorModel"
)

(def-dm-instance ChoicePeer
:dm-concept dm-Object
:lexical-root "ChoicePeer"
)

169

170

(def-dm-instance DataOutput
:dm-concept dm-Object
:lexical-root "DataOutput"
)

(def-dm-instance PushbackinputStream
:dm-concept dm-Object
:lexical-root "PushbackinputStream"
)

(def-dm-instance Compiler
:dm-concept dm-Object
:lexical-root "Compiler"
)

(def-dm-instance Thread
:dm-concept dm-Object
:lexical-root "Thread"
)

(def-dm-instance VectorEnumerator
:dm-concept dm-Object
:lexical-root "VectorEnumerator"
)

(def-dm-instance LabelPeer
:dm-concept dm-Object
:lexical-root "LabelPeer"
)

(def-dm-instance A WTException
:dm-concept dm-Object
:lexical-root "A WTException"
)

(def-dm-instance Frame
:dm-concept dm-Object
:lexical-root "Frame"
)

(def-dm-instance MenuBar
:dm-concept dm-Object
:lexical-root "MenuBar"
)

(def-dm-instance File
:dm-concept dm-Object
:lexical-root "File"
)

(def-dm-instance FileOutputStream
:dm-concept dm-Object
:lexical-root "FileOutputStream"
)

(def-dm-instance LineNumberlnputStream
:dm-concept dm-Object
:Iexical-root "LineNumberlnputStream"
)

(def-dm-instance PipedlnputStream
:dm-concept dm-Object
:lexical-root "PipedlnputStream"
)

(def-dm-instance SequencelnputStream
:dm-concept dm-Object
:lexical-root "SequencelnputStream"
)

(def-dm-instance UTFDataFonnatException
:dm-concept dm-Object
:lexical-root "UTFDataFonnatException"
)

(def-dm-instance Cloneable
:dm-concept dm-Object
:lexical-root "Cloneable"
)

(def-dm-instance Exceptionlnlnitializ.erError
:dm-concept dm-Object
:lexical-root "Exceptionlnlnitializ.erError"

Appendix B

Export file

)
(def-dm-instance Long

:dm-concept dm-Object
:lexical-root "Long"
)

(def-dm-instance NoSuchMethodException
:dm-concept dm-Object
:lexical-root "NoSuchMethodException"
)

(def-dm-instance UnknownError
:dm-concept dm-Object
:lexical-root "UnknownError"
)

(def-dm-instance VirtualMachineError
:dm-concept dm-Object
:lexical-root "Virtua!MachineError"
)

(def-dm-instance URL
:dm-concept dm-Object
:lexical-root "URL"
)

(def-dm-instance URLStreamHandJerFactory
:dm-concept dm-Object
:lexical-root "URLStreamHandlerFactory"
)

(def-dm-instance OK_button
:dm-concept dm-Object
:lexical-root "OK_button"
:dm-relations ((dm-part-of Print-Dialog))
)

(def-dm-instance FilteredlmageSource
:dm-concept dm-Object
:lexical-root "FilteredlmageSource"
)

(def-dm-instance ButtonPeer
:dm-concept dm-Object
:lexical-root "ButtonPeer"
)

(def-dm-instance CheckboxMenuitemPeer
:dm-concept dm-Object
:lexical-root "CheckboxMenultemPeer"
)

(def-dm-instance TextComponentPeer
:dm-concept dm-Object
:lexical-root "TextComponentPeer"
)

(def-dm-instance TextFieldPeer
:dm-concept dm-Object
:lexical-root "TextFieldPeer"
)

(def-dm-instance FlowLayout
:dm-concept dm-Object
:lexical-root "Flow Layout"
)

(def-dm-instance Point
:dm-concept dm-Object
:lexical-root "Point"
)

(def-dm-instance ByteArraylnputStream
:dm-concept dm-Object
:lexical-root "ByteArraylnputStream"
)

(def-dm-instance ByteArrayOutputStream
:dm-concept dm-Object
:Jexical-root "ByteArrayOutputStream"
)

(def-dm-instance IllegalMonitorStateException

171

172

:dm-concept dm-Object
:lexical-root "IllegalMonitorStateException"
)

(def-dm-instance IndexOutOfBoundsException
:dm-concept dm-Object
:lexical-root "lndexOutOfBoundsException"
)

(def-dm-instance MalformedURLException
:dm-concept dm-Object
:lexical-root "MalformedURLException"
)

(def-dm-instance SocketOutputStream
:dm-concept dm-Object
:lexical-root "SocketOutputStream"
)

(def-dm-instance URLEncoder
:dm-concept dm-Object
:lexical-root "URLEncoder"
)

(def-dm-instance Dictionary
:dm-concept dm-Object
:lexical-root "Dictionary"
)

(def-dm-instance StringTokeni:zer
:dm-concept dm-Object
:lexical-root "StringTokeni:zer"
)

(def-dm-instance Close-option
:dm-concept menu-item-concept
:lexical-root "Close option"
:dm-relations ((dm-part-of file-menu))
)

(def-dm-instance Open-File-Dialog
:dm-concept dm-Object
:lexical-root "Open File Dialog"
:dm-relations ((dm-part-of STE))
)

(def-dm-instance folder-list
:dm-concept dm-Object
:lexical-root "folder list"
:dm-relations ((dm-part-of Save-file-dialog))
)

(def-dm-instance CroplmageFilter
:dm-concept dm-Object
:lexical-root "CroplmageFilter"
)

(def-dm-instance lmageProducer
:dm-concept dm-Object
:lexical-root "lmageProducer"
)

(def-dm-instance lndexColorModel
:dm-concept dm-Object
:lexical-root "IndexColorModel"
)

(def-dm-instance MenuBarPeer
:dm-concept dm-Object
:lexical-mot "MenuBarPeer"
)

(def-dm-instance MenultemPeer
:dm-concept dm-Object
:lexical-root "MenultemPeer"
)

(def-dm-instance Font
:dm-concept dm-Object
:lexical-root "Font"
)

(def-dm-instance List

Appendix B

Export file

:dm-concept dm-Object
:lexical-root "List"
)

(def-dm-instance NoClassDefFoundError
:dm-concept dm-Object
:lexical-root "NoClassDefFoundError"
)

(def-dm-instance NurnberForrnatException
:dm-concept dm-Object
:lexical-root "NurnberForrnatException"
)

{def-dm-instance Runnable
:dm-concept dm-Object
:lexical-root "Runnable"
)

(def-dm-instance SecurityException
:dm-concept dm-Object
:lexical-root "SecurityException"
)

(def-dm-instance StringlndexOutOfBoundsException
:dm-concept dm-Object
:lexical-root "SttinglndexûutûfBoundsException"
)

(def-dm-instance System
:dm-concept dm-Object
:lexical-root "System"
)

(def-dm-instance Protoco!Exception
:dm-concept dm-Object
:lexical-root "ProtocolException"
)

(def-dm-instance EmptyStackException
:dm-concept dm-Object
:lexical-root "EmptyStackException"
)

(def-dm-instance save--0ption
:dm-concept menu-item-concept
:lexical-root "save option"
:dm-relations ((dm-part--0f file-menu))
)

(def-dm-instance ColorModel
:dm-concept dm-Object
:lexical-root "ColorModel"
)

(def-dm-instance ImageFilter
:dm-concept dm-Object
:lexical-root "lmageFilter"
)

(def-dm-instance lmageûbserver
:dm-concept dm-Object
:lexical-root "lmageûbserver"
)

(def-dm-instance LayoutManager
:dm-concept dm-Object
:lexical-root "LayoutManager"
)

(def-dm-instance lmageMediaEntry
:dm-concept dm-Object
:lexical-root "lmageMediaEntry"
)

(def-dm-instance Menu
:dm-concept dm-Object
:lexical-root "Menu"
)

(def-dm-instance AbstractMethodError
:dm-concept dm-Object

173

174

:lexical-root "AbstractMethodError"
)

(def-dm-instance NullPointerException
:dm-concept dm-Object
:lexical-root "NullPointerException"
)

(def-dm-instance Object
:dm-concept dm-Object
:lexical-root "Object"
)

(def-dm-instance Runtime
:dm-concept dm-Object
:lexical-root "Runtime"
)

(def-dm-instance Date
:dm-concept dm-Object
:lexical-root "Date"
)

(def-dm-instance ObserverList
:dm-concept dm-Object
:lexical-root "ObserverList"
)

(def-dm-instance AudioClip
:dm-concept dm-Object
:lexical-root "AudioClip"
)

(def-dm-instance GridLayout
:dm-concept dm-Object
:lexical-root "GridLayout"
)

(def-dm-instance Panel
:dm-concept dm-Object
:lexical-root "Panel"
)

(def-dm-instance BufferedlnputStream
:dm-concept dm-Object
:lexical-root "BufferedlnputStream"
)

(def-dm-instance InterruptedIOException
:dm-concept dm-Object
:lexical-root "InterruptedIOException"
)

(def-dm-instance Exception
:dm-concept dm-Object
:lexical-root "Exception"
)

(def-dm-instance Il legalArgumentException
:dm-concept dm-Object
:lexical-root "IllegalArgumentException"
)

(def-dm-instance Throwable
:dm-concept dm-Object
:lexical-root "Throwable"
)

(def-dm-instance ServerSocket
:dm-concept dm-Object
:lexical-root "ServerSocket"
)

(def-dm-instance URLStreamHandler
:dm-concept dm-Object
:lexical-root "URLStreamHandler"
)

(def-dm-instance NoSuchElementException
:dm-concept dm-Object
:lexical-root "NoSuchElementException"
)

(def-dm-instance Open_button

Appendix B

Export file

:dm-concept dm-Object
:lexical-root "Open_ button"
:dm-relations ((dm-part-of Open-File-Dialog))
)

(def-dm-instance RGBimageFilter
:dm-concept dm-Object
:lexical-root "RGBimageFilter"
)

(def-dm-instance ScrollbarPeer
:dm-concept dm-Object
:lexical-root "ScrollbarPeer"
)

(def-dm-instance Button
:dm-concept dm-Object
:lexical-root "Button"
)

(def-dm-instance Choice
:dm-concept dm-Object
:lexical-root "Choice"
)

(def-dm-instance Color
:dm-concept dm-Object
:lexical-root "Color"
)

(def-dm-instance Graphies
:dm-concept dm-Object
:lexical-root "Graphies"
)

(def-dm-instance Label
:dm-concept dm-Object
:lexical-root "Label"
)

(def-dm-instance Polygon
:dm-concept dm-Object
:lexical-root "Polygon"
)

(def-dm-instance Window
:dm-concept dm-Object
:lexical-root "Window"
)

(def-dm-instance CloneNotSupportedException
:dm-concept dm-Object
:lexical-root "CloneNotSupportedException"
)

(def-dm-instance NoSuchFieldError
:dm-concept dm-Object
:lexical-root "NoSuchFieldError"
)

(def-dm-instance ThreadGroup
:dm-concept dm-Object
:lexical-root "ThreadGroup"
)

(def-dm-instance SocketlmplFactory
:dm-concept dm-Object
:lexical-root "Socketlmp!Factory"
)

(def-dm-instance system
:dm-concept dm-Object
)

(def-dm-instance new-document
:dm-concept dm-Object
)

(def-dm-instance existing-document
:dm-concept dm-Object
)

(def-dm-instance stePro
:dm-concept dm-Object

175

176

)
(def-dm-instance new

:dm-concept dm-Object
)

(def-dm-instance folder
:dm-concept dm-Object
)

(def-dm-instance printer
:dm-concept dm-Object
)

(def-dm-instance No-of-copy
:dm-concept dm-Object
)

(def-dm-instance print-range
:dm-concept dm-Object
)

(def-dm-instance directory
:dm-concept dm-Object
)

(def-dm-instance create-document
:dm-concept dm-action
:lexical-root "create"
:dm-relations ((dm-actor user)

(dm-actee document))
)

(def-dm-instance user-choose-New-option-1
:dm-concept dm-action
:lexical-root "choose"
:dm-relations ((dm-actor user)

(dm-actee New-option))

(def-dm-instance system-create-new-document-2
:dm-concept dm-action
:lexical-root "create"
:dm-relations ((dm-actor system)

(dm-actee new-document))
)

(def-dm-instance save-document
:dm-concept dm-action
:lexical-root "save"
:dm-relations ((dm-actor user)

(dm-actee document))

(def-dm-instance save-new-document
:dm-concept dm-action
:lexical-root "save"
:dm-relations ((dm-actor user)

(dm-actee new-document))
)

(def-dm-instance user-choose-save-option-3
:dm-concept dm-action
:lexical-root "choose"
:dm-relations ((dm-actor user)

(dm-actee save-option))
)

(def-dm-instance save-option-show-Save-file-dialog-4
:dm-concept dm-action
:lexical-root "show"
:dm-relations ((dm-actor system)

(dm-actee Save-file-dialog))
)

(def-dm-instance user-choose-folder-7
:dm-concept dm-action
:lexical-root "choose"
:dm-relations ((dm-actor user)

(dm-actee folder))

Appendix B

Export file

(def-dm-instance user-enter-file-name-8
:dm-concept dm-action
:lexical-root "enter"
:dm-relations ((dm-actor user)

(dm-actee file-name))
)

(def-dm-instance user-click-Save_ button-7
:dm-concept dm-action
:lexical-root "click"
:dm-relations ((dm-actor user)

(dm-actee Save_button))
)

(def-dm-instance system-save-document-10
:dm-concept dm-action
:lexical-root "save"
:dm-relations ((dm-actor system)

(dm-actee document))
)

(def-dm-instance save-existing-document
:dm-concept dm-action
:lexical-root "save"
:dm-relations ((dm-actor user)

(dm-actee existing-document))
)

(def-dm-instance user-choose-save-option-9
:dm-concept dm-action
:lexical-root "choose"
:dm-relations ((dm-actor user)

(dm-actee save-option))
)

(def-dm-instance system-save-existing-document-13
:dm-concept dm-action
:lexical-root "save"
:dm-relations ((dm-actor system)

(dm-actee existing-document))
)

(def-dm-instance open-document
:dm-concept dm-action
:lexical-root "open"
:dm-relations ((dm-actor user)

(dm-actee document))
)

(def-dm-instance user-Choose-Open-option-11
:dm-concept dm-action
:lexical-root "Choose"
:dm-relations ((dm-actor user)

(dm-actee Open-option))
)

(def-dm-instance STE-Show-Open-File-Dialog-12
:dm-concept dm-action
:lexical-root "Show"
:dm-relations ((dm-actor system)

(dm-actee Open-File-Dialog))
)

(def-dm-instance user-Choose-directory-17
:dm-concept dm-action
:lexical-root "Choose"
:dm-relations ((dm-actor user)

(dm-actee directory))
)

(def-dm-instance user-Choose-File-18
:dm-concept dm-action
:lexical-root "Choose"
:dm-relations ((dm-actor user)

(dm-actee File))
)

(def-dm-instance user-Click-Open _button-15

177

178

:dm-concept dm-action
:lexical-root "Click"
:dm-relations ((dm-actor user)

(dm-actee Open_button))
)

(def-dm-instance system-Open-document-20
:dm-concept dm-action
:lexical-root "Open"
:dm-relations ((dm-actor system)

(dm-actee document))
)

(def-dm-instance print-document
:dm-concept dm-action
:lexical-root "print"
:dm-relations ((dm-actor user)

(dm-actee document))
)

(def-dm-instance user-Choose-Print-Option-17
:dm-concept dm-action
:lexical-root "Choose"
:dm-relations ((dm-actor user)

(dm-actee Print-Option))
)

(def-dm-instance Toolkit-show-Print-Dialog-18
:dm-concept dm-action
:lexical-root "show"
:dm-relations ((dm-actor system)

(dm-actee Print-Dialog))
)

(def-dm-instance user-Select-printer-24
:dm-concept dm-action
:lexical-root "Select"
:dm-relations ((dm-actor user)

(dm-actee printer))
)

(def-dm-instance user-set-No-of-copy-25
:dm-concept dm-action
:lexical-root "set"
:dm-relations ((dm-actor user)

(dm-actee No-of-copy))
)

(def-dm-instance user-set-print-range-26
:dm-concept dm-action
:lexical-root "set"
:dm-relations ((dm-actor user)

(dm-actee print-range))
)

(def-dm-instance user-Click-OK_ button-22
:dm-concept dm-action
:lexical-root "Click"
:dm-relations ((dm-actor user)

(dm-actee OK_button))
)

(def-dm-instance system-print-document-28
:dm-concept dm-action
:lexical-root "print"
:dm-relations ((dm-actor system)

(dm-actee document))
)

(def-dm-instance Close-document
:dm-concept dm-action
:lexical-root "Close"
:dm-relations ((dm-actor user)

(dm-actee document))
)

(def-dm-instance user-choose-Close-option-24
:ckn-concept dm-action

Appendix B

Export file

:lexical-root "choose"
:dm-relations ((dm-actor user)

(dm-actee Close-option))
)

(def-dm-instance Close-option-quit-STE-25
:dm-concept dm-action
:lexical-root "quit"
:dm-relations ((dm-actor system)

(dm-actee STE))
)

(def-dm-instance use-stePro
:dm-concept dm-action
:lexical-root "use"
:dm-relations ((dm-actor user)

(dm-actee stePro))
)

179

