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From Organization Requirements to System Requirements: 
a Library Case Study 

Abstract 

1 

The requirements engineering activity consists in two levels: one of them aims at 

specifying "what" has to be done while the other trys to describe "why" things are 

done the way they are. 

Through the application of the Albert language and the i* (prononced istar) 

framework to the main functionalities of a library system, we show that the two 

levels interaction can be extremely efficient in order to achieve a better 

understanding along with an improvement of the process. Unfortunately, if the 

cooperation of the two frameworks seems efficient, an automatic binding between 

them still looks improbable. 

Résumé 

L'activité d'ingénierie des besoins consiste en deux niveaux: l'un s'attachant à la 

spécification du "quoi", l'autre s'attardant d'avantage à la modélisation du 

"pourquoi" des choses. 

Au travers del' application du langage Albert et de l'approche i* {prononcée istar) 

aux fonctionnalités d'une bibliothèque, nous montrons que l'interaction de ces deux 

niveaux peut se révéler extrêmement efficace en vue d'une meilleure compréhension 

et d'une amélioration sensible du système. Si la cooperation entre ces deux 

approches semble donner de bons résultats, la possibilité de l'établissement d 'un lien 

systematique entre elles reste encore improbable. 
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Chapter 1: Introduction 

Requirements Engineering and Process modelling activities constitue crutial steps in an 

Information System development process. Indeed, these activities allow an analyst to reach a 

full understanding of a work process and this, at different levels. 

On one hand, the requirements specifications will provide a description of what a system is 

supposed to do and on the other hand, Process modelling will lead to the comprehesion of why 

this system is needed. 

In this thesis, we will studied two frameworks (the Albert language and the i* framework), 

each of them "belonging" to one of these to levels. 

In chapter 2, we will describe the Albert language and illustrate its main features through the 

example of a grocer's shop system. We will see its mechanisms of agents decomposition and 

declaration along with the constraints specifications. 

In chapter 3, we will present the i * framework by first describing the Strategic Dependency 

(SD) model followed by the Strategic Rationale (SR) model. Once again, we will illustrate 

these models features through an example. 

Chapter 4 will represent the heart of this thesis. After having specified in an informa! way the 

main functionalities (book acquisition policy and loan policy) of a library case study, we will 

apply both approches (Albert and i*) in order to redesign the library system. The specification 

procedure will be the following: 

• formal specification of the existing system using the Albert language 

• organization modelling of the library using the SD model 

• Research of alternatives and improvement of the work process by the mean of the SR model 

• modelling of the new organization with an SD model 

• formal specification of the resulting library system 

In the last section of this chapter, we will initiate a little analysis in order to respond the 

question of knowing if an Albert specification could automatically induce the corresponding i * 

model and vice versa. 
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Chapter 2: The Albert language 

2.1. Introduction 

« ... Requirements Engineering is the statement of desired functional and performance 

characteristics of a software system independently of any actual realization ... » [Dub86] 

The Requirements Engineering activity is a critical step in the development of information 

systems and softwares. It consists in a work process specification in order to reach a precise 

and complete problem statement. it is thus crucial to cope with functional and non-functional 

requirements. 

« NFRS define global constraints on a software system, such as development costs, operational 

costs, performance, reliability, ... Should not be confused with functional requirements, which 

impose requirements on the fonction of a system.[Mylopoulos95] 

In order to represent requirements, different trends can be identified: in one hand, we have 

different languages based on mathematical and logical theories. [Bub80] [Mylopoulos90] 

On the other hand, based on an object-oriented paradigm, we propose to present in this 

chapter, the Albert' language developed within an ESPRIT II project called ICARUS. 

([DDDP94a], [DDDP94b], [DDP93], [YDDM95]) 

This framework supports the requirements engineering of composite systems within 

organizations. By composite systems, we mean systems composed of heterogeneous 

components. The specification won't be limited to the software developed and will rather take 

into account the environment in which this system will be embedded. It includes, hardware 

pieces, humans, etc. 

The Albert language consists of concepts and models that focus on understanding the "whats" 

underlying the requirements engineering activity. It will include the description of the set of 

functionalities necessary to achieve the organization 's goal. 

1 Agent-oriented Language for Building and Eliciting Requirements for Real-Time systems 
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2.2. The language constructs 

2.2.1. Introduction 

5 

Basically, the formal language is based on a mathematical language, the temporal logic, suited 

for describing histories. This logic is itself an extension of mutli-stored first order logic, still 

based on the concept of variables, predicates and fonctions. Three extensions are taken into 

account : 

• the introduction of actions; 

• the introduction of agents together with their properties (responsibilities for actions, for 

providing perceptions, ... ). This object-oriented concept can also be seen as a possible way 

of constructing large specifications in terms of more fmer pieces, each of them 

corresponding to the specification of an agent guaranteeing a part of a global behaviour of 

the whole system; 

• the identification of typical patterns of constraints which support the analyst in writing 

complex and consistent formulas. In particular, typical patterns of formulas are associated 

with actions. 

Using the language involves two activities: 

• writing declarations in order to introduce the vocabulary of the considered application; 

• expressing constraints, i.e. logical statements which allow the dinstinction between possible 

behaviours of the system and unwanted ones. 

A graphical syntax (with a textual conterpart) is used to introduce declarations and to express 

some typical constraints frequently encountered. The expression of the other constraints is 

purely textual. 

2.2.2. Exemple: the grocer' s shop system 

Throughout this chapter, we will apply the Albert features to a simple example about a 

grocer' s shop and its clients. 
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Description of the case 

Clients go to a grocer' s shop. They choose different items in the shop, and put them in their 

trolley. When they have finished, they go and present their items to the cashier. The latter will 

calculate the bill and present it to the client who will pay it. The grocer has to remove the 

money from the till each tirne the amount is superior to a given lirnit and has to put it in 

security. He/she is also responsible for the contents of the grocer's shop and items in the "fresh 

products" category can't stay in the shelves for more than two weeks. 

2.2.3. Declarations 

In the specification of composite systems, the declarations consist in the identification of the 

agents together with their states structure and the list of the actions. Importation and 

exportation links between agents are also graphically described. 

Declaration of a society or agents hierarchy 

A composite system specification can rapidely become very big, that' s why, in order to reduce 

this complexity, it becomes very useful to group agents into societies. These societies can 

themselves be grouped together to form larger societies. Actually, the agents are organized in 

terms of a hierarchy where we distinguish between: 

• Complex agents (made of finer agents); 

• Terminal agents which can no further be decomposed 

A society have no own structure nor behaviour. Only the behaviour of an individual agent will 

be formaly specified. 

The whole system is of course considered as an agent society. 

Graphically 

A society is represented by an ellipse containging smaller ellipses. Multiple agent classes, made 

of several instances, are represented by cascaded ellipses. Each ellipse is labelled by the agent 

class identifier. 
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The Grocer's shop example 

The graphical declaration associated with Grocery' s System described earlier, 1s depicted 

figure 2.1. 

Grocer' System 

Grocer' s shop 

C) 

Figure 2.1 : Graphical declaration of the Grocer's System 

The society Grocer's system is composed of two terminal agents: A Client (represented by a 

multiple agent class) and the Grocer's shop. 

Declaration of an agent 

The declaration part of an agent consists in the description of its state structure and the list of 

actions happening along its history. 

The structure of a state is defined in terms of entities which can be grouped in populations or 

be individuals, values which are used for characterising attributes of entities and relationships 

between entities. On top of these usual concepts, the Albert language also uses data types 

which correspond to: 

• predifined data types (STRING, BOOLEAN, INTEGER, ... ) equipped with their usual 

operations; 

• more complex types built by the specifier using a set of predifined type constructors like 

Set, List, Cartesian Product, ... 

• elementary types which are defined by the user. For that specific kind of type, there is no 

associated structure; 

• specific types corresponding to agent identifiers. For example, each Client agent has an 

identifier with a CLIENT type. 
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Actions have arguments belonging to data types. 

Graphically 

A state component is represented by a box labelled by the state component identifier with a 

rectangle inside (or two linked rectangles for a table). This rectangle indicates the type of the 

elements of the state component. 

We have different boxes according to the type of the represented state component. See figure 

2.2. 

As shown in figure 2.2(e), a derived component is linked by a broken arrow to the state 

component from which it is derived. 

r-----7 
1 Indiv 1 Seq 
1 1 Table 

1 IType_Elemj 1 IType_Elemj j Index-type HType_Elem j I ______ I 

(b) Individual (c) Sequence 
(d) Table element of elements 

Set 
/ 

Derived 

jType_Eleml IType_Eleml 

{a) Set of {e) Derived 
elements component 

Figure 2.2: graphical representations of state components 

An action is represented by an oval inside a box. The box is labelled by the name of the action. 

Arguments can characterize actions. As we saw, ail arguments are typed and their types are 

linked to the box with an arrow starting from the action box. 

Figure 2.3, the action Action_3 has one argument of type Type_Arg . 

Importation and exportation of elements 

Diagrams also include graphical notations making possible to distinguish between interna! and 

external actions and state components, and to express the visibility guaranteed by the agent to 

the outside. 

The interna! structure of an agent is represented by a parallelogram and information within this 

parallelogram is under the control of the described agent. 
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• lnside the parallelograrn, boxes without dotted arrow (for a state component or an action), 

indicate that this information remains private and therefore, won't be seen from the outside 

(for a state component), or won't have any effect on other agent' s behaviour (for an 

action). 

In figure 2.3, which summarizes global y the graphical representation of an agent declaration, 

one can see that the action Action_] will only affect the behaviour of the concerned agent. 

Equally, the state component Table will only be perceived by this agent. 

Conversely, boxes with arrow(s) denote state components which are exported to the indicated 

agent(s). The action Action_2 }-Vill be exported to Agent_2 and Agent_3 while the Set element 

will be only perceived by Agent_2. 

• Information outside from the parallelogram denotes elements which are imported from 

other agents. Action_3 is from the Agent_3 initiative but will affect the Agent_l's 

behaviour. 

Set Table 

1 Type_elem 1 
!Index_ TypeHElem_Typel 

. 
◄ 

Agent_2 
Action_l 

Action_3 

Type_Arg Agent_3 

Action_2 

. . . . 
• • Agent_2 Agent_3 

r-----7 

1 Indiv Elem 1 
1 - 1 

1 .------, 1 
1 1 Type_elem l 1 

L----.---1 . 
Agent_2 

Figure 2.3 : Graphical declaration of agent_l 
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The Grocer's example 

Figure 2.1. shows us two terminal agents: the Client and the Grocer's agents. 

Their respective graphical representations are shown in figure 2.4, figure 2.5 . 

Declaration of the Client agent 

10 

From the graphical declaration depicted on figure 2.4, it can be read that the Client state is 

made of: 

1. Two interna! state components (Trolley and Status_C) 

Trolley: This component represents the set of the items (item) the client choosed m the 

grocer's shop. 

• The type Item can be described by: 

Name Price Category lt-ID 
(String) (lnteger) (Cat) (lnteger) 

Bach item found in a client's trolley is characterized by its name, its price, a category and an 

identification. 

• The type Cat is defined by: 

Cat = { Fresh products, tinned food, drinks} 

Status C: Once a client has entered the grocer's shop, he/she has a status (Status). 

• The type Status is defined by: 

Status = { shopping, Presenting, has paid} 

A client is shopping or he/she's presenting his/her trolley to the grocer or he/she has already 

paid for the goods. 

2. One extemal state component (Items_Shop). 
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Items Shop: it represents the set of items (Item) available in the shop. 

Trolley 

Item 

' .., 
Grocer's 

Items_ 
Shop 

Item 

Grocer's 

Choose_ 
Item 

. .. 
Item Grocer's 

Pays_Bill 

. .. 
Integer Grocer' s 

Present_ 
Bill 

. 
Integer Grocer' s 

Present_ 
Trolley 

• Grocer's 

Empty_ 
Trolley 

Figure 2.4 : Graphical declaration of the Client agent 

11 

3. Four intemal actions (Choose_Item, Present_Trolley, Pays_Bill and Empty_Trolley) for 

which the Client has the initiative. 

Choose Item: the client agent choose an item (Item) proposed in the grocer's shelves, and put 

it in its trolley. 

Present Trolley: the client presents his/her trolley to the grocer' s in order to pay the different 

items. 

Pays Bill: the agent pays the bill (Integer) to the grocer's . 
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Empty Trolley: the client empties his/her trolley 

4. One action (Present_Bill) perceived by the Client has an extemal initiative. 

Present Bill: The Grocer's gives to the client the bill (Integer) for all its buyed items. 

Declaration of the grocer's agent 

The graphical declaration depicted on figure 2.5 is related to the Grocer' s shop structure. 

We'll only describe the new elements. From this figure, it can be read that: 

1. The Grocer's agent has one extemal state component (Trolley). 

2. Three actions are issued by the Grocer's agent (Present_Bill, Remove_M_Till and 

Remove_Item). 

Remove M Till: the grocer removes the money present in the till and puts it in security. 

Remove Item: the grocer removes an item from the grocer's shelves. 

3. this agent perceives three extemal actions (Present_Trolley, Choose_Item and Pays_Bill) 

from the Client initiative. 

4. Finally, this agent has four intemal state components (Items_Shop, Till, Limit and 

Remove_Time). 

Till: this individual element represents an amount of money present in the till at a certain time. 

Limit: it represents the maximum amount of money allowed to stay in the till 

Remove Time: this state component is derived from the limit and the till components and it 

indicates when it' s time to rem ove the money from the till. 
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Trolley 

ltem_C 

Client 

Remove_ 
M_Till 

Items_ 
Shop 

Item 

. 
"' Client 

Present_ Choose - Pays_Bill 
Trolley Item 

C=:> C=:> C=:> 
-. . 

Client Item 

Present_ 
Bill 

. . . . 
Integer Client Integer Client 

-----, -----, 
: Till : Limit 

1 .----.... 1 1 C=:> : 1 lnteger 1 : :1 .... ln-t-eg-er...,I : 

Intege, Client ~lie:--v---
Remove_ 

Item 

: Remove 1 
Time - 1 

1 .----.... 1 

C=:> 
! 

u~~e~n~: 
Item 

Figure 2.5 : Graphical declaration of the Grocer' s agent 

2.2.3. Constraints 

13 

Each agent is defined by a set of possible lives2 limited by the expression of different kinds of 

constraints. 

Their expression is formal and based on multi-sorted first order logic. They use the concept of 

variables, predicates and fonctions. The different constraints are grouped into three families: 

Basic Constraints, Local constraints and Cooperation Constraints. 

The complete formal specifications associated with the Grocer' s shop and the Client agents 

have been described at the end of this chapter. 

Basic constraints 

Basic constraints are used to describe the initial state of an agent and to give the derivation 

rules for the derived components. 

2 A life is an (in)finite sequence of sates and actions. Each state (structured in terms of entities) is labelled by a 
time value which increase ail along the life. Actions occur between two successive States and can be 
simultaneous. Constraints are used for purning the (usually) infinite set of lives [DDDP94a]. 
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• The derivation rules will give the relationship between derived components values and the 

state components values from which they are derived. 

Remove_Time 1::,. Till~ Limit 

* /t ' s time to remove the money from the tilt when the amount equals or is upper than the 

maximum limit. 

• The intitial valuation groups the constraints describing the initial states of the agent life. 

Trolley= { } 

This means that the client's trolley is empty at the beginning of the system life. 

Local constraints 

Local constraints are related to the internai behaviour of the agent. They are classified under 

four headings: state behaviour, effects of actions, causality and capability. 

• State behaviour 

Constraints under this heading express properties of the states or properties linking states in an 

admissible life of an agent. 

First of all, there are constraints which are true in all states of the possible traces of an agent. 

These constraints are written according to the usual rules of strongly types first order logic. 

They are formed by means of logical connectives: -, (not), A (and), v (or), ⇒ (implies), ç:::> (if 

and only if), V (for all), 3 (there exists). 

On top of constraints which are true in all states (usually referred as invariants), there are 

constraints on the evolution of the system (like, e.g. if this property holds in this state, then it 

holds in all future ones) or referring states at the different times. Writing these constraints 

requires to be able to refer to more than one state at a time. This is done in the language by 

using additional temporal connectives which are prefixing statements to be interpreted in 

different states. These connectives are inspired from temporal logic: 

if 'I' and cp are statements: 

• ◊ cp: cp is true sometimes in the future (including the present); 

• ♦ cp: cp is true sometimes in the past (including the present); 

• D cp: cp is always true in the future (including the present); 

• ■ cp: cp is always true in the past (including the present); 

• cp U' 'I': cp is true from the present until 'I' is true (strict); 
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• <p S 'I': <pis true back from the present since 'I' was true (strict). 

There are constraints related to the expression of real-time properties. There are needed to 

describe delays or time-outs (like, e.g., « an element has to be removed from its population 

within 15 minutes ») and are expressed by subsripting temporal connectives with a time period. 

This time period is made precise by using usual time units: sec, min, hours, days, ... 

Cat (it) = { fresh product} ⇒ -, D >15 days In(ltems_Shop, it) 

* An item of the 'fresh product' category can 't stay for more than 15 days in the grocer 's 

shelves. 

• Effects of actions 

Under this heading, we describe the effects of actions which may alter states in lives. Only 

actions which bring a treacable change are described here. 

In the decription of the effect of an action, we use an iinplicit frame rule saying that states 

components for which no effect of actions are specified do not change their value in the state 

following the happening of a change. 

The effect of an action is expressed in terms of a property characterising the state which 

follows the occurrence of the action. The value of a state component in the resulting state is 

characterised in terms of a relationship reffering to: 

1. the action arguments; 

2. the agent responsible for this action (if this action is an extemal one, the name of the agent 

is prefixing the action); 

3. the previous state of the history. 

In the pattern associated with the definition of an action, the left hand side of the equation 

characterises the state as it results from the occurrence of the action while the right hand side 

refers to the state as it is before the occurrence of the action. 

Choose_Item(it): Trolley= Add(Trolley, it) 

* Each time a client chooses an item in the grocer's shop, it puts it in its trolley, increasing 

the number of the choosen items. 
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• Causality 

This heading is related to the causality relationship existing between some occurences of 

actions. 

Expressing causality rules with usual temporal connectives may appear very cumbersome. To 

this end, the language is enriched with specific connectives which allow to specify, for 

example, that an action has to be issued by the agent as a unique response to the occurrence of 

another action (brought or not by the agent). A common pattern is based on the use of the 

« ➔ » symbol which is not to be comfused with the usual « ⇒ » logical symbol. 

The « ➔ » symbol can be quantified by a temporal operator to express performances 

constraints. 

The right part of a commitment (the reaction) may only refer actions which are issued by the 

agent (i.e. actions which are not prefixed). 

Left and right parts of a commitment may be composed of one or more occurences of actions. 

In case of more than one, occurences may be composed in the following ways: 

1. « actl ;act2 » which means « an occurrence actl followed by an occurrence act2 »; 

2. « actl ® act2 » which means « an occurrence actl and an occurrence act2 (at the same 

time) »; 

3. « actl Il act2 » which means « an occurrence actl and an occurrence act2 (in any order); 

4. « actl EB act2 » which means « an occurrence actl or an occurrence act2 (exculsive or). 

Sorne more complex expressions are provided to express iterative applications of actions. 

Client.Present_Trolley ➔ Present_Bill(i, Client) 

* When a client presents hislher trolley, he/she receives the bill for the chossen items 

• Capability 

Under this heading, is described the role of the agent with respect to the occurrence of its own 

actions. To this end, we are still using an additional extension of the classical first-order and 

temporal logic by making possible to express permissions associated with an agent. We then 

consider three specific connectives allowing the expression of obligations, preventions and 

exclusive obligations (respectively the t,, the F and the Xt, connectives). 

The pattern for an obligation « t, ( <int-action>l<situation>) » expresses that the action has to 

occur if the circumstances expressed in the situation are matched (these circumstances refer to 

conditions on the current state). 
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The pattern for a prevention « F (<int-action> / <situation>) » expresses that the action is 

forbidden when the circumstances expressed in the situation are matched. 

The pattern « Xô (<int-action>/<situation>) » is used to express exclusive obligation, it is a 

shorthand for the combination of « ô (<int-action>/<situation>) » and « F (<int-action> /-, 

<situation>) » . 

The default rule is that all actions are permitted whatever the situation. 

Using the connectives makes possible to express the control that the agent has with respect to 

its interna! actions. 

F(Remove_Item/ Status '# "has paid") 

* A client can only remove the items from hislher trolley if helshe has already paid for them. 

Cooperation constraints 

This family of constraints specifies how the agent interacts with its invironrnent, i.e. how it 

perceives actions performed by other agents (action perception), how it can see parts of the 

state of other agents (state perception), how it lets other agents know what actions it does 

(action information) and how it shows parts of its state to other agents (state information). 

Perception and information provide the specifier a way to add a dynamic dimension to the 

importation and exportation relationship between agents expressed in the declaration part of 

the specification. 

• Action perception 

Beyond this heading, Albert defines how the agent is sensitive to changes occuring in its 

environment, which are made available to it by other agents belonging to the same society. 

Action perception are specified using the K (knowledge), I (ignorance) and ~ (exclusive 

knowledge) connectives. 

The pattern «K (<ext-action> / <situation>)» defines the situation where, if an action is 

issued by external agent, the behaviour of the current agent is influenced. 

The pattern «r (<ext-action> / <situation>)» defines the situation where, if such action is 

issued by extemal agent, it has no influence on current agent's behaviour. 

The pattern « ~ ( <ext-action> / <situation>) » is used to express exclusive obligation, it is a 

shorthand for the combination of «K ( <ext-action> / <situation>) » and «r ( <ext-action> / -, 

<situation>) ». 
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The default rule is that ail imported actions available may be perceived whatever the situation . 

.,lK( _.Present_trolleyffRUE) 

* The grocer's always knows when a client presents hitlher trolley. 

• State perception 

Beyond this heading one defines how the agent sees part of the state of other agents belonging 

to the same society and which are made available to it by them. State perceptions are also 

specified using the K, I and Â'K connectives. 

The default rule is that ail imported state components available may be perceived whatever the 

situation . 

.,lK(grocer' s.Items_ShopffRUE) 

* the client always knows the contents of the grocer's shelves. 

• Action information 

Constraints under this heading specify how occurences of actions performed by an agent are 

made available to other agents belonging to the same society. This is also a dynamic property 

and is expressed using the K, I and Â'K connectives introduced above. 

The pattern « K ( <int-action>.<agent> / <situation>» defines the situation where occurences 

of an internai action are made available to a given agent. 

The pattern « I ( <int-action>.<agent> / <situation>» defines the situation where the 

occurences of an internai action are not made visible for a given agent. 

The pattern « Â'K ( <int-action>.<agent> / <situation>» is used to expressed exclusive 

obligation, it is a shorthand for the combination of « K ( <int-action>.<agent> / <situation>» 

and« I ( <int-action>.<agent> /-,<situation> ». 

The default rule is that ail exported actions may be visible by any agent to which it is exported, 

whatever the situation. 

XK(Present_Bill(i, cl) .c2 / cl = c2) 

* the grocer can only present a bill to the corresponding client 



From Organization Requirements to System Requirements: a Case Library Case Study 19 

• State lnf ormation 

Beyond this heading is defined how the agent shows parts of its state to other agents belonging 

to the sarne society. State information is also specified using the K, I and~ connectives. 

The default rule is that ail exported state components may be visible by any agent to which it is 

exported, whatever the situation . 

.-tt((Trolley.grocer' s/Status = "presenting") 

* Means that the grocer's only sees the content of the trolley when the client has presented 

hislher trolley 

Constraints of the Client agent 

BASIC CONSTRAINTS 

• Initial valuation 

Trolley= { } 

* The client' s trolley is empty at the beginning of the system life. 

Status = {shopping} 

* When a client enters the grocer's shop, he/she's there ta do some shopping. 

LOCAL CONSTRAINTS 

• Effects of actions 

Choose_Item(it): Trolley= Add(Trolley, it) 

* Each time a client chooses an item in the grocer' s shop, it puts it in its trolley, increasing 

the number of the choosen items. 

Present_ Trolley: Status = "presenting" 

* When a client presents hislher trolley ta the grocer, he/she's not shopping anymore. 

Pays_Bill(i): Status = { Has paid} 

Empty_Trolley: Trolley= { } 

/\ Status = "shopping" 
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• Causality 

Grocer' s.Present_Bill(i) ➔ Pays_Bill(i) ; Ernpty _ Trolley 

* Each Present_Bill order issued by the grocer 's, is followed by a Pays_Bill action 

occurrence followed by an Empty _Trolley action. 

• Capability 

F(Rernove_Item/ Status * "has paid") 

F(Choose_ltern/ Status *" shopping") 

COOPERATION CONSTRAINTS 

• State Perception 

ÂK(grocer' s.Iterns_Shop/TRUE) 

* the client always knows the contents of the grocer's shelves. 

• State Information 

ÂK(Trolley.grocer's/Status = "presenting") 

* Means that the grocer 's only sees the content of the trolley when the client has presented 

his/her trolley 

Constraints of the Grocer's agent 

BASIC CONSTRAINTS 

• Derivation rules 

Rernove_Tirne ~ Till ~ Lirnit 

* It' s time to remove the money from the till when the amount equals or is upper than the 

maximum limit. 

20 
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LOCAL CONSTRAINTS 

• State behaviour 

Cat (it) = { fresh product} ⇒ -, □ >15 days ln(Items_Shop, it) 

* An item of the 'fresh product' category can't stay for more than 15 days in the grocer's 

shelves. 

• Eff ects of actions 

Remove_M_ Till: Till = 0 

* After a Remove_M_Till action occurrence, the till is empty. 

Remove_ltem (it) : ltems_Shop = remove(Items_Shop, it) 

* The item it isn 't available anymore after having been removed by the grocer. 

Client.Choose_Item(it): Items_Shop = remove(Items_Shop, it) 

* The item it isn 't available anymore after having been removed by the client. 

Client.Pays_Bill(i): Till = Till + i 

* When a client pays hislher bill, the money is added to the content of the till. 

• Causality 

Client.Present_ Trolley ➔ Present_Bill(i, Client) 

* When a client presents hislher trolley, he/she receives the bill for the chossen items 

• Capability 

F(Present_Bill(total, client)/ total -:t:- IterAssoc(client.Trolley, price(i) + price(j)) 

21 

* The grocer can 't present a bill to a client if the bill isnt correct. The bill must correspond to 

the sum of the prices of the items contained in that client's trolley. 

O(Remove_M_ Till/Remove_ Time) 

* The grocer must react when the amount limit of money present in the till has been reached. 

However, the grocer can decide to remove the money even if the limit is not yet reached. 
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COOPERATION CONSTRAINTS 

• Action Information 

XK(Present_Bill(i, cl).c2 /cl= c2) 

* the grocer can only present a bill to the corresponding client 

• Action Perception 

ÂK( _.Present_trolley/TRUE) 

* The grocer 's always knows when a client presents hitlher trolley. 

1( _.Choose_Item(it)/Quantity(ltems_Shop(i) with item(ltems_Shop(i)) = it) = 0) 

* The gorcer' s ignores the action of choosing an item in the shelves when this particular item 

isn 't available anymore. 

• State Perception 

ÂK( _ .TrolleyffRUE) 

* The grocer 's always sees the content of the clients 

• State Information 

ÂK(ltems_Shop. _/TRUE) 

* The shelves content is always shown to the clients. 
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Chapitre 3: the Istar framework 

3.1. Introduction 

In order to improve the quality of software products, it is necessary to enhance the processes 

used to develop and maintain these products. It is also important to have a good understanding 

of the work process context in which such softwares are being developed. 

Customers demands and the current competitive context induce many companies to reorganize 

their business processes and to adapt or rethink completely their actual technologies and 

organization according to their new objectives. This tendance is underlined by the 

reengineering activity. "At the heart of reengineering is the notion of discontinous thinking, of 

recognizing and breaking away from the outdated rules and fondamental assumptions that 

underlie operations. "[Hammer90] 

In its paper "Reengineering work: don't automate, obliterate", Hammer proposes several 

principles helping to find out brand new solutions to work processes problems instead of 

sirnply automatize the whole business: 

• Organize around outcomes, not tasks 

• Cature information once and at the source 

• Link parallel activities instead of integrating their result 

Such advises can only be taken into account if the analyst succeded to capture organizational 

intentions. "How can we re-engineer this processif we don't have information on the 

intentions of players in the process ... " [Mylopoulos95] 

Most of the models existing in the litterature aimed at describing "what" a work process is 

doing but these models merely express "why" things are like they are. They offer little help to 

find out these new alternatives boosted by the business reengineering activity. 

In this chapter, we will present a new approach , the istar framework developed at the 

university of Toronto. The purpose of this framework is to support process modelling in the 

reenigineering activity. It has already been presented in different contexts such as: 

information systems requirements engineering [Yu93b] 

business process reengineering [Yu93a], [Yu94a], [Yu94c] 

software processes [Yu94b] 
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The latest version of the complete framework has been developed in [Yu94] 

The istar framework is composed of two models, the Strategic Dependency and the Strategic 

Rationale models. The first one, described in section 3.2, models the network of dependencies 

existing between the actors of a business process while the Strategic Rationale model, 

described in section 3.3, aimes at supporting the reasoning hidden behind a particular way of 

working. 

These two models have a formal counterpart represented in the conceptual modelling 

language Telos [Mylopoulos91]. This part won't be developed in this chapter, for more details, 

see [Yu94]. 

3.2.1. Modelling features 

We will now describe the main features of the Strategic Dependency Model and illustrate the 

different notions through different examples and mostly about an assurance system called 

"mutuel" . 

The SD Model is represented by a set of nodes and links. Each node can be assimilated to an 

actor of the process, and the links are the dependencies existing between them. 

The SD Model proposes four types of dependency links: The goal, the task, the resource and 

the softgoal dependencies. The actor who depends on another actor is called the depender, the 

actor who is depended upon is called the dependee and the element for which the depender 

depends on the dependee is called the dependum. Graphically, the dependency between two 

actors is depicted on figure 3.1. 

---+--r--Dependum1--+-J-._ 

Figure 3 .1 : Dependency link between two actors 
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--!rc=J-lr- Resource Dependency 

--&Q--& Goal Dependency 

----9--(:J+ Sottgœl Dependency 

----&Q-&- Task Dependency 

Figure 3.2: SD Model in a medical assurance domain 

Figure 3.2. shows the Strategic Dependency Model of a special kind of medical assurance 

called «Mutuel». It presents some of the relationships among patients, doctors and the 

assurance system. 

A patient depends on a doctor for the treatment of his/her sickness. The doctor depends on the 

patient for the payment of the visit. In exchange, the doctor gives the patient a certificate for a 

partial repayment from the assurance. 

The patient has also to pay a cotisation to the assurance company. 

Dependency types 

We said the SD Model made the distinction between four types of dependencies, based on the 

type of the dependum. We get three types of intentional dependencies: resource dependency, 

task dependency, and goal dependency. The fourth type, called softgoal dependency, is based 

on a notion of non-functional requirements (or quality requirement) in software engineering. 

• "In a goal dependency, the depender depends on the dependee to bring about a certain 

state in the world. The dependee is given the freedom to choose how to doit. With a goal 

dependency, the depender gains the ability to assume that the condition or state of the world 
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will hold, but becomes vulnerable since the dependee may fail to bring about that 

condition." 
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In figure 3.2., the goal dependency "cured(sickness)" tells us that the patient depends on the 

doctor for the treatment of the sickness, but he/she doesn't know how the doctor will achieve 

this goal. Only the result counts for the patient and the doctor has all the necessary freedom to 

succeed. 

Let's take another exemle developed in [Jacobson], about a telephone communication between 

two subscribers. A subscriber (called A_Subscriber) depends on the Exchange to get a 

connection with another subscriber (B_Subscriber). We have a goal dependency because the 

A_Suscriber doesn't know how the exchange will achieve this; all she/he wants is to be able to 

communicate with the B_Subscriber. 

established 
(connection) 

Figure 3.3 : a goal dependency 

• "In a task dependency, the depender depends on the dependee to carry out an activity. A 

task dependency specifies how the task is to be performed, but not why. The depender is 

vulnerable since the dependee may fail to perform the task ( ... ) Task specifications should 

be viewed as constraints rather than as the complete (and therefore adequate) knowhow for 

perf orming the task." 

Figure 3.2. doesn't show any task dependency but one could easily imagine how to introduce 

that particular kind of dependency between for example the patient and the assurance 

company. Let's say that after having provided the certificate, the patient has to fill in a form 

before receiving the repayment. The assurance would then ask the patient answering some 

questions in a specific way without explaining why. This would be modelled by a task 

dependency. 

In the communication exemple, the A-subscriber knows he/she has to dial the number of the B

subscriber if he/she wants the operator to establish the connection between them (without 

knowing how the operator will use these digits to connect them). 

Dial 
(Num) 

Figure 3.4: A task dependency 
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• "In a resource dependency, one actor (the depender) depends on the other (the dependee) 

for the availability of an entity (physical or informational). By establishing this dependency, 

the depender gains the ability to use this entity as a resource." 

The assurance dependency on patient' s fee is modelled as a resource dependency as well as the 

dependency for the deli very of a certificate between the doctor and his/her patient, the 

communications payment dependency between the A_subscriber and the Exchange, .. .. 

Fee 

Figure 3.5: A resource dependency 

For these three types of dependencies, the dependum is well defined in the sense that both the 

depender and the dependee know exactly what they are waiting for or what they have to do or 

to furnish. But it is not always the case. It may happen that the dependum isn't as sharply 

defined as we would like and this kind of particular dependency will be described by a softgoal 

dependency. 

• "In a softgoal dependency, a depender de pends on the dependee to perform some task that 

meets a softgoal. The meaning of the softgoal is specified in terms of the method that are 

chosen in the course of pursuing the goal. As in a goal dependency, a depender gains the 

ability of having the goal condition brought about, but becomes vulnerable in case the 

dependee fails to bring about that condition. The difference here is that the condition to be 

attained are elaborated as the task is perf ormed." 

The patient pays the full price for the medical visit. He knows he/she' ll have a repayment via 

the assurance and he/she'd like to be repayed as quickly as possible (figure 3.2). What is meant 

by « quickly » is not really defined. 

In the communication exemple, the A-subscriber certainly wants the operator to establish a 

« safe » connection with the B-subscriber. This could be modeled by a softgoal dependency 

because the notion of safety is not clear-cut. 
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Figure 3.6: A softgoal dependency 

Dependency strength 

The Istar framework also allows different strength degrees attached to the dependencies. 

Effectively, the convict to deth prisoner depends contingently on the king for a possible 

reprieve and he/she also depends on his/her warder for a last cigarette. Obviously, the prisoner 

won' t grant the same importance for the two dependencies. 

These different degrees of strength can be applied on both sides of a dependency. 

« On the depender side, a stonger dependency means the depender is more vulnerable, and is 

likely to take stronger measures to mitigate vulnerability. On the dependee side, a stronger 

dependency implies that the dependee will make a greater effort in trying to deliver the 

dependum. ». 

Istar Provide three different types of dependency forces: 

• "In an open dependency, a depender would like to have the dependum goal achieved, task 

performed, or resource available, so that it could be used in some course of action. ( ... ) On 

the dependee side, an open dependency is a claim by the dependee that it is able to achieve 

the dependum for some depender." 

Graphically, an open dependency will be marked by an "o" . 

If we take again the example of the prisoner, the dependency for the cigarette would be an 

open dependency on the depender side. 

Cigarette 

Figure 3.7: Open dependency 

• "In a committed dependency, the depender has goals which would be significantly 

affected- in that some planned course of action would failed - if the dependum is not 
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achieved ( .. . ) On the dependee side, a committed dependency means that the dependee will 

try its best to deliver the dependum." 

Graphically, a committed dependency is unmarked. 

Fill in 
(form) 

Figure 3.8: Committed dependency 

• "In a critical dependency, the depender has goals which would be seriously affected - in 

that all known courses of action would fail - if the dependum is not achieved. In this case, 

we assume that the depender would be concemed not only about the viability of this 

immediate dependency, but also about the viability of the dependee's dependencies, and the 

dependee's dependee's dependencies, and so forth." 

Graphically, we use an "X" for a critical dependency. 

Received 
(repreive) 

Figure 3 .9 : Critical dependency 

Agents, roles and positions 

One can extend the basic Strategic Dependency model by refining the notion of actor. Agent, 

Role and Position are three possible specializations of the notion of actor which provide 

different views of the organization. 

"A role is an abstract actor. Dependencies are associated with a role when these dependencies 

apply regardless of who plays the role [ ... ] 

An agent is an actor with concrete, physical manifestations, such as human individual [ .. . ] 

A position is intermediate in abstraction between a role and an agent. " 

These three notions are related as follows (see figure 3.10): 

An agent occupies a position; 

A position covers a role. 
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Furthermore, these three notions can have subparts and each part or subpart is considered to 

be intentional. 

Figure 3.10: Graphical representation of Agent, Role, Position 

Figure 3 .11 shows a simplified example of a SD model using agent, role and position for the 

communication between subscribers. 

Fee 
(Connection) 

Established 
(Connection) 

Figure 3.11: Agent-Role-Position for the communication exemple 

The Strategic dependency model can help us to achieve a deeper understanding of a work 

process. lt represents the set of intentional dependencies among the actors of the process and 

by following the model links, one can find out who are the more vulnerable actors and for 

what. 
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It' s never good seeing that an actor depends on every other actors in a same work process, and 

this observation usually leads to the search of some ways in order to mitigate this vulnerability. 

Three mechanisms can contribute to enforce an actor position and thus reduce the risks 

inherent to this actor' s dependencies: 

• A depender would be less vulnerable if in his tum, he had some influence on the dependee. 

"A commitment is enforceable if there is some way for the depender to cause some goal of 

the dependee to fail , e.g., if there is a reciprocal dependency." 

Imagine a brewery, it will depend on a cafe for the sale of its beer, but reciproquelly, the 

bistro will depend on the brewery for stocking up with beer and thus beeing able to serve its 

clients. 

• A second possibility is the assurance mechanism and is defined in these terms: "Assurance 

means that there is some evidence that the dependee will deliver the dependum, apart from 

the dependee' s claim." 

• Finally, "Insurance mechanisms reduce the vulnerability of a depender by reducing the 

degree of dependence on a particular dependee." 

Let' s take again the brewery example. We said that the brewery depended on a bistro to sell 

its beer but usually, the brewery is "associated" with more than one cafe. That means that if 

one of them fails to perform its task consisting in selling the beer, the brewery won' t be 

affected too badly. 

These different mechanisms should balance the dependencies and thus enf orce the whole work 

process by enforcing the position of each actor. 
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3.3. The Strategic Rationale Model 

In the previous section, we saw how the Strategic Dependency model of the Istar framework 

could underline the intentional dependencies among actors of a work process. However, this 

model stays very general in the sense that only the extemal dependencies will be modelled. The 

intemal dependencies within an actor remain hidden. 

The Strategic Rationale model will help to understand the intemal structure of an actor 

therefore, we will be able to describe and support this actor's reasoning. 

3.3.1. Modelling features 

The Strategic rationale model can be described as a graph composed of nodes and links. 

There exist four types of nodes already explained in section 3.2 (the goal, the task, the 

resource and the softgoal), and two types of links (the means-ends and the Task

decomposition links). 

The purpose of this graph is to model the actor's "ways of doing things" in order to achieve a 

particular goal, task or softgoal. One can say that the SR model is strategic in the sense that 

we'll only model the elements considered important enough in the achievement of a particular 

goal. 

The task-decomposition links are used to link a task to its sub-components. There exist four 

different types of task-decomposition links based on the sub-component of a task: subtask, 

subgoal, resourceFor and softgoalFor. 

Figure 3.12, one can see that the main goal of the assurance company is the covering of its 

members, and it is represented by the task (Caver member). The assurance will thus ask a fee 

to each member (Takes afee) and when it is needed, it will give them a repayment (repays) . 

The two task-decomposition links used to decompose (caver member) are two subtask. 

What is interesting and new in this model is the freedom let to the actor at each level of the 

decomposition. There can be several ways to achieve a particular goal and this will be 

modelled by the means-ends links between the main goal (the end) and the ways (the means) 

for achieving this goal. Graphically, a means-ends link is represented by an arrow going from 

the sub-component (the means) and pointing towards the principal goal (the end). 

The assurance has to repay some of its members and it has the choice between two different 

ways to do this. Either it repays the patient directly, or it repays the patient's doctor who asked 

the reduced price to his/her patient (see figure 3.12). 
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When an actor has different choices or different ways in achieving some particular goal, we 

introduce the notion of routine. 
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"A routine is a subgraph in the SR graph with a single link to a 'means' node from each "end" 

node [ ... ] the notion of a routine is used to refer to one process and its rationales " 

Figure 3.12, one can find out two different routines. On one hand, we have the subgraph 

including "repays patient" and the subgraph that includes "repays doctor" . 
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Figure 3.12: An SR Mode! showing alternative ways of accomplishing 'Repays' 
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In the SR Model, the softgoals will be handeled differently. One will rather see them as 

qualitative attributes and each "ways of doing things" or routine, will affect these non

functional goals positively or negatively. In a same way, a qualitative goal can also affect or 

influence another qualitative goal. 

For example, figure 3.12, making the customer happy constitues a qualitative goal for the 

assurance company. If the assurance decides to repay directly the doctor instead of its member, 

this choice will contribute positively in making the customer happy. If the customer is happy, it 

will contribute to make the business prosperous. The assurance company will also make a 

good business if it doesn't have to make too many repayments and one can argue that if the 
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assurance repays the doctor instead of the member, it will contribute to increase its 

repayments. Indeed, the patient won't have to handle certificates anymore, he/she won't have 

too go to the assurance office for the repayments; this could encourage them to go more often 

to see a doctor and therefore, this could lead to increasing the repayments to the doctors. 
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Figure 3.13: SR Model for the assurance company process 
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In a SR model, it may also happen that a reasoning includes dependencies on extemal actors. 

In such cases, we'll use the dependency links already explained in the Strategic Dependency 

model. 

In the routine including (repays patient), the assurance actor depends on its members for the 

certificates in order to be able to repay them. We have represented this by a resource 

dependency going from the inside of the assurance boundery towards the Patient. 

In order to have a complete view of the process, it is possible to relate the different SR models 

of the main actors. One can thus analyze the qualitative goals of each stakeholder and 

understand why they privilagiate one way of working instead of another and how a particular 

routine can alter the behaviour of another actor (see fig 3.13) 
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Chapter 4: Forma! specification of a 
library system 

4.1. Introduction 
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Chapters 2 and 3 have proposed two different frameworks (Albert and i*) used in the 

requirements engineering and process modelling activities. 

In this chapter, we will try to show how these two approaches, following different views, could 

be related to a same case study, how they can be complementary and how used together, they 

will lead to a full comprehension of the work process. The case study will be a library system, 

managing book acquisition and loan policies. 

We'll then try to answer the question of knowing if a systematical binding could be established 

bewteen Albert and i*, in order to induce an SD or SR model from Albert formal specifications 

and vice versa. 
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4.2. Informai description of the case study 

We will now describe the academic case study related to the management of a library 

[Darimont]. 

In this section, we will first present an informai specification of the library main functionalities . 

4.2.1. Definition 

The library system aims at supporting the management of a library that is, managing the book 

stock and the book loans. 

There are three classes of users: 

• the staff members; 

• the ordinary members; 

• the extra-members; 

and two classes of books: 

• the critical books which may not be borrowed by ordinary and extra-members; 

• the borrowable books. 

4.2.2. Support 

• two catalogues refer to all books of the library. One of them is indexed by the book authors, 

and the other, by keywords associated with the books; 

• a list of the book loans for ordinary and extra-members (the staff members who want to 

borrow a book don' t have to mention it to the Librarian, they just have to choose the book 

and to bring it back once they have read it); 

• A list of the different book orders in progress; 

• A complete list of the registered members of the library. 

4.2.3. Access to the library 

Staff members can acces the library at any time. The library can be entered by ordinary and 

extra members only during the opening hours. Moreover, the extra-members must be 

explicitely allowed to get to the library by a staff member. 

Any library member must have been registered by the Librarian, before his first access . 

The Librarian will then have to keep the list of registered members up to date. 

4.2.4. Book acquisition policy 
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The staff members are responsible for the good quality of the library contents. They decide 

which book to order, where to classify a new book, which book may not be borrowed by the 

ordinary users and which book must be removed from the shelves. 

As we just mentioned it, books are ordered upon request of the staff members. They transmit 

the book identification to the librarian who will compose the order. An order can only be 

issued if the book identification is complete and if there is a staff member (not necessarily the 

one who initiated the book ordering) who agrees to pay the bill. 

The librarian sends the order either to the cheapest bookshop or to the one which will be able 

to satisfy the order the most quickly, depending on the priority set by the staff member who 

ordered the book. 

When a book is received, a staff member provides the category and the list of keywords 

associated with the book. The publication year and the book number are determined by the 

librarian. The Staff members put the new books in the library shelves by increasing order of 

reference. 

When a librarian introduces a new book, he updates the catalogues by inserting a new entry for 

each author and for each associated keywords list. An entry in a catalogue contains three parts: 

• the index; 

• the complete book identification; 

• a book reference. 

A book reference is a triplet: 

• a category which belongs to a predefined list; 

• the year of the book publication; 

• a number which identifies a book univocally for a given category and year. A letter is 

appended to the triplet in order to distinguish duplicates. 

4.2.5. Loan policy 

Books may be borrowed freely by staff members while ordinary and extra-members have to 

pay a small fee. The users of the library remove directly from the shelves the books they want 

to borrow. 

The ordinary users may keep maximum two borrowable books at once and for 15 days only. 

Nevertheless, a loan period for an ordinary member can be extended once for 15 days if 

nobody else is waiting for the book. The period of time during which an extra-member may 

keep a book is fixed by the staff member who allowed the extra-member to borrow the book. 
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Actually, delay to retuming a book is only detected when another request for the borrowed 

book occurs. In these circumstances, the librarian either phones the indelicate member and 

prompts him to retum his/her book copy as soon as possible, or sends him a reminder (letter or 

electronic mail). 

When a member retums a borrowed book, the Librarian puts it aside; after a while, a Staff 

Member takes all the retumed books and puts them back on the library shelves. After having 

been retumed, a book have to be replaced on its shelf within one day. 

If an ordinary or extra member becomes too undisciplined, a staff member will be able to forbid 

the access of the library. 
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4.3. Specification bef ore any change 

4.3.1. Albert specification 

a) Agents identification 
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From the informai description of the Library System given in section 4.2., we can find out six 

terminal agents. 

If we adopt a functional view of the system, the agents identification could be the following: 

inside the Library System, we have the Extra Member agents and the Ordinacy Member agents. 

They all are users of the Library. 

We also have the Bookshop agents, playing arole in the acquisition policy of the library. 

Inside the Library society itself, we have a Librarian responsible for the whole management of 

the library, and Staff Member agents who help the Librarian for the management. We also 

introduce an agent representing the books tore available for the members of the library. 

The graphical representation of the Library System is depicted figure 4.1. 

Library System 

Library 

0 Extra Member 

C Ordinary Member Bookshop 

C C StaffMember 

C Bookstore 

0 
Figure 4.1 : Graphical declaration of the Library system society 
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b) Book acquisition policy 

Declaration of the Librarian agent 

The graphical declaration of the Librarian agent is depicted on figure 4.2. One can see that the 

state structure is cornposed of: 

1. Six intemal state components (Cat_Book_KW, Cat_Book_Author, Table_Member, 

B_To_Classify, Ord_List and the individual element Todays_Date). 

Cat Book KW: This state component represents a catalogue refering to all books of the 

Library. it is indexed by a list of keywords (KW _List) associated with a list of books (L_Book). 

• The type KW _List can be defined as: 

*I 
Kwd 

(String) 

The index is characterized by a set of keywords of type String. 
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Figure 4.2 : Graphical declaration of the Librarian agent 
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• The types L_Book and Book_Id can be defined as: 

L_Book 

Identification 
(Book_Id) 

L Author Title Edition 
~ 1 (String) (String) 

Author 
(Name) 

Borrowable 
(Boolean) 

Book_ld 

Reference 

Category Pub_Year Number Letter 
(Cat) (Integer) (Integer) (Char) 
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A Book in a catalogue is characterized by its complete identification (its author(s), title, edition 

and a reference composed of a category which belongs to a predifined list, the year of the book 

publication, a number which identifies a book for a given category and year and a letter in 

order to distinguish duplicates), and by a status telling if the book is borrowable or critical. 

• The type Name can be described as: 

lst_Name Last_Name 
(String) (String) 

An author is described by its first and last names. 

Cat Book Author: This component also represents a catalogue refering to ail books of the 

library. It is indexed by the authors (Name) associated with a list of books (L_Book). 

The two types have already been described. 

Table Member: this table contains ail the members registered in the library. It is indexed by the 

category of a member (IDMember) associated with the complete identification of the member 

(Member). 

• The type IDMember can be defined as: 
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.1. . - . .. ... . 
STAFF ORDINARY 

MEMBER MEMBER 

. 
EXTRA 

MEMBER 
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A Member registered in the library is either a staff member or an ordinary member or an extra 

member. The types represent the type of identifiers associated with agent classes. 

• The type Member is the following : 

Narne 
(Narne) 

Address 
(String) 

Phone 
(Integer) 

A member is characterized by his/her name, address and phone number. 

B To Classify: it represents a set of books (Book_ld) which wait to be classified in the library 

Bookstore by a Staff Member. 

Ord List: This list represents all the orders (Order) in progress. 

• The type order can be defined as: 

Book_O Member_O Date Bookshop 
(Book_O) (IDMember) (Date) (BOOKSHOP) 

An order is defined by the identity of the book ordered, the name of the staff member who 

ordered the book, the date and the identity of the bookshop where the order has been issued. 

• The type Book_O is the following: 

L_Author 

Author 
(Narne) 

Title 
(String) 

Edition 
(String) 
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A Book is identified by its author(s), title and its edition. 

Todays date: this individual entity represents the date (Date) of the current day. 

2. The Librarian agent has also one extemal state component (Stock_Bookshop). 

Stock Bookshop: This table is from the Bookshop initiative. It represents for each book 

(Book_O) present in a Bookshop stock, its price and its delivery time (P _DT). 

• therefore, the type P _DT can be represented as: 

Price Del_Time 
(lnteger) (lnteger) 
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3. The state structure of the Librarian agent is also characterized by seven interna! actions 

(Determine_Date, Issue_Order, Class_Order, Remove_Order, Add_B_KW, Add_B_Author, 

and Determine_Ref). 

Determine Date: the Librarian determines the current date (Date) 

Issue Order: the Librarian agent sends a book order (Book_O) to a bookshop at a certain 

priority. 

Class Order: he/she classifies a new order (Order) in progress in the Ord_List. 

Remove Order: when the librarian has received an ordered book, he/she can remove the order 

(Order) from the Ord_List. 

Add B KW: he/she adds a new book (Book_ld) in the Cat_Book_KW catalogue with a list of 

keywords (KW _List) as index. 

Add B Author: the Librarian adds a new book (Book_Id) in the Cat_Book_Author catalogue 

with the name (N ame) of the author as index. 

Determine Ref: the librarian determines the reference of a book (Book_O) with its category 

(Cat) and its Keywords list (KW _List). 
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4. The Librarian perceives also five extemal actions (Classify _Books, Send_Book, 

Book_Order, Send_Cat_KW and Pays_Bill) 
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Classify Book: a Staff member decides to classify in the library Bookstore, a book (Book_ld) 

contained in the B_To_Classify list. 

Send Book: a bookshop has sent, an ordered book (Book_O) to the librarian. 

Book Order: a Staff Member asks the Librarian to issue an order for a book (Book_O) to a 

Bookshop at a given priority (Priority). The priority will either be a priority intime or in price. 

Priority = { Time, Price} 

Send Cat KW: a Staff Member provides the librarian with a category (Cat) and a list of 

keywords (KW _List) for a given book (Book_O). 

Pays Bill: a staff Member pays the bill for an ordered book (Book_O). 

Constraints 

j LIBRARIAN 1 

BASIC CONSTRAINTS 

• Initial Valuation 

B_To_Classify = { } 
* There are no books to classify in the library Bookstore 

Ord_List = { } 

* There are no orders in progress. 

LOCAL CONSTRAINTS 

• State Behaviour 

in (B_To_Classify, b) ⇒ >Iday -, in (B_To_Classify, b) 

* A book must be classified in the library Bookstore within one day. 
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• Effect of Actions 

Determine_Date(d): Todays_Date = Date 

* the librarian sets the current date 

Determine_Ref(bo, kwl, c, b): B_To_Classify = add(B_To_Classify, b) 

* When the librarian has de termine the reference of the new book, helshe puts it in the 

B_To_Classify List 

Remove_Order(O): Ord_List = Remove(Ord_List,0) 

* An order about a book (b) is removedfrom the List 'Ord_List'. 

Class_Order (0): Ord_List = Add (Ord_List,0) 

* A new order in progress, is registered in the orders List. 

Add_B_Author (b): Cat_Book_Author = Add (Cat_Book_Author[n], b) 

with n E L_Author(b) 

* A new book is registered in the author catalogue. 

Add_B_KW (kw, b): Cat_Book_KW = Add (Cat_Book_KW[kw], b) 

* A new book is registered in the keyword catalogue. 

Staff Member.Classify_Books (b): B_To_Classify = remove (B_To_Classify ,b) 

* When a Staff Member classifies a book in the library, helshe removes itfrom the list 

"B_To_Classify". 

• Causality 

Staff Member.Book_Order (b, pr); _ . Pays_Bill (b) ➔ Issue_Order (b, pr).bs; 

Class_Order(O) 

with Book_O(O) = b 

Member(O) = Staff Member 

Date(O) = Todays_Date 

Bookshop(O) = bs 
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* When a Staff Member asks the librarian to order a book(b) at a given priority and if a Staff 

Member agrees to pay the bill for that book, then the librarian will issue an order to the 

appropriate bookshop and will register the order in the orders List. 

Staff Member.Send_cat_KW(b, kw, c) ➔ Determine_Ref (b, c, book) 
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with Authors (book)= Authors (b) 

A Title (book) = Title (b) 

A Edition (book) = Edition (b) 

A Category (book) = c; 

Add_B_KW (kw, book); 

Add_B_Author (book) 
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* When a staff member sends the category and a List of keywords associated with a book, the 

librarian can determine the reference of that book and can register it in the two library books 

catalogues 

Bookshop.Send_Book (b) ➔ Remove_0rder (0) 

with Book_0(0) = b 

* When a bookshop has sent a book, the librarian removes one order he chooses from the 

orders List which asked for that book 

• Capability 

F (lssue_0rder(b, p).bs / (lsof p = "price" /\ 

3 bs': Price(bs'.Stock_Bookshop[b]) 

< Price(bs.Stock_Bookshop[b])) 

v (lsof p = "Del_Time" /\ 

3 bs': Del_Time(bs'.Stock_Bookshop[b]) 

< Del_ Time(bs. Stock_Bookshop[b])) 

* the librarian can 't send an order to a bookshop who doesn 't respect the priority in time or in 

delivery time 

COOPERATION CONSTRAINTS 

• Action Perception 

I (Bookshop.Send_Book(b) /-, in (0rd_List, 0): book_0 (0) = b 

/\ bookshop (0) = bookshop) 

* the librarian ignores the book sent by a bookshop, which hasn 't been ordered 

I (Staff member.Classify_Books (b) /-, in (B_To_Classify, b)) 

* the librarian ignores the action of a staff member consisting in removing a book that 

doesn't exist in the "B_To_Classify" List 
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• State Perception 

~ (b.Stock_Bookshop[-]/TRUE) 

* the librarian can always perceive the catalogues of the bookshops 

• State Information 

~ (Cat_Book_Author.Staff Member/TRUE) 

~ (Cat_Book_KW.Staff Member/TRUE) 

~ (B_To_Classify.Staff Member/TRUE) 

* the "Cat_Book_Author", "Cat_Book_KW" catalogues and the "B_To_Classify" list are 

always visible to the staff members. 

• Action Information 

~ (lssue_Order(b, p).Bookshop/TRUE) 
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Declaration of the Staff Member agent 
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Remove_ 
Book 

► 
Bookstore Book_ld 

Figure 4.3 : Graphical declaration of the Staff Member agent 

Classified_ 
Books 

Book_ld 

Bookstore 

The graphical declaration of the Staff member agent is described on figure 4.3. We'll only 

describe the elements which havn't been already described in the previous declaration. 

1. The Staff member agent has four extemal state components (Cat_Book_Author, 

Cat_Book_KW, B_To_Classify and Classified_Books) 

Classified Books: it represents the sequence of the books (Book_ld) present on the library 

Books tore. 
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2. We can see five interna! actions (Book_Order, Pays_Bill, Remove_Book, Send_Cat_KW 

and Classify_Books). 

Remove Book: this action represents the fact that a Staff Member removes a given book 

(Book_Id) from the library Bookstore. 

Classify Book: a Staff Member classifies a book (Book_Id) in the library Bookstore. 

3. Finally, this agent perceives one external action (Send_Book) already described. 

Constraints 

1 STAFF MEMBER 

LOCAL CONSTRAINTS 

• Causality 

Bookshop.Send_Book (b)➔ Send_Cat_KW (b, kw, c) 

* once a bookshop has sent a new book, a staff member sends to the librarian, the category 

and a list of keywords associated with that book 

• Capability 

Xt, (Classify_Books(b) / -, in(B_To_Classify, b)) 

* a staffmember can't classify a book which isn't in the "B_To_Classify" list 

Xt, (Remove_Book(b) /-, in(Classified_Books, b) 

* a staff member can 't remove a book which is not in the bookstore 

COOPERATION CONSTRAINTS 

• Action Perception 

~ (b.Send_Book (b) /TRUE) 

• State Perception 

~ (Bookstore.Classified_Books/TRUE) 

~ (Librarian.Cat_Book_Author/TRUE) 
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Â1< (Librarian.Cat_Book_KW ffRUE) 

Â1< (Librarian.B_To_Classify/TRUE) 
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* the staff members always perceive the catalogues, the bookstore and the B_To_Classify lists 

• Action Information 

;tl< (Classify _Books(b ).m /TRUE) 

;tl< (Remove_Book(b).b/TRUE) 

Declaration of the Bookshop agent 

Stock_Bookshop 

! Book_O H P_LT 

' "' Librarian 

Issue_ 
Order 

. . 

Send_ 
Book 

+ ... 
Book_O Librarian Staff 

Member 

Book-O Librarian 

Figure 4.4 : Graphical declaration of the BookShop agent 

The different elements of the Bookshop state structure have already been described. 

Constraints 

1 BOOKSHOP 1 

LOCAL CONSTRAINTS 

• Causality 

Librarian.Issue_Order (b) ➔ Send_Book (b) 
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COOPERATION CONSTRAINTS 

• Action Perception 

~ (Librarian.Issue_Order (b)/TRUE) 

• Action Information 

~ (Send_Book.Librarian (b)/TRUE) 

~ (Send_Book.Staff Member (b)/TRUE) 

• State lnf ormation 

~ (Stock_Bookshop.Librarian/TRUE) 

Declaration of the Bookstore agent 

Classified_ 
Books 

Book_Id 

' + 
Staff 

Member 

Remove_ 
Book 

Book_Id 
Member 

Classify_ 
Books 

Book_ld Staff 
Member 

Figure 4.5 : Graphical declaration of the Bookstore agent 

Ali elements of the Bookstore structure have been explained 
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Constraints 

1 BOOKSTORE 1 

LOCAL CONSTRAINTS 

• Effects of action 

Staff Member.Classify_Books(b): Classified_Books = Add(Classified_Books, b) 

Staff Member.Remove_Book(b): Classified_Books = Remove(Classified_Books, b) 

COOPERATION CONSTRAINTS 

• Action Perception 

XK (Remove_Book(b).Staff Member/TRUE) 

XK (Classify _Books(b ).Staff Member/TRUE) 

• State lnf ormation 

..t1< (Classified_Books.Staff Member/TRUE) 
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c) Loan policy 

Declaration of the Librarian agent 
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Figure 4 .6 : Graphical declaration of the Librarian agent 
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Figure 4.6 shows us the graphical declaration of the Librarian agent for the book loan process. 

One can read that: 

1. the librarian agent has one external individual state component (Access_Authorized) 

Access Authorized: It indicates the information about the access (Access) of the Extra 

Members 

• The type Access is defined by: 

Access Time Staff_M 
(Boolean) (Integer: (IDMember) 

The state component Access Authorized indicates if an Extra Member has access to the library, 

his/her accorded loan period and the identity of the Staff Member how allowed the library 

access. 

2. this agent has six internai state components (Cat_Book_KW, Cat_Book_Author, 

Table_Member, Loans_list, B_To_Classify and Todays_Date). Only the Loans_List element 

hasn' t already been described. 

Loans List: this element represents the set of the loans (Loan) in process in the library. 

• The type Loan is described by: 

Book_B Borrower Date_L Waiting Length 
(Book_ld) (IDMember) (Date) (Boolean) (Integer) 

A loan is described by the identification of the book borrowed, by the identification of the 

borrower, the loan date, an indicator telling if the book is effectively borrowed or if the 

borrower is waiting after it and by the length of the loan. 

3. The Librarian agent has four internai actions (Detect_Delay, Register_Member, 

Wam_Member, Determine_Date). 
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Detect Delay: the Librarian agent detects that a borrower (IDMember) is late in retuming a 

given book (Book_ld). 

Register Member: this action consists in the registration in Table_Member of a new user 

(IDMember). 

Warn Member: the Librarian warns an Ordinary or Extra member (/DMember) of the library 

for a delay in retuming a given book (Book_Id). 

4. The Librarian perceives eight extemal actions (Pays_Fee, Borrow _Book, Return_Book, 

lst_Access_Library, Ask_Extend, Wait_For_Book, Access_Library and Classify_Books). 

Pays Fee: an Ordinary or Extra member pays a fee for the loan of a book (Book_ld). 

Borrow Book: a member asks the Librarian to borrow a given book (Book_Id) that he/she 

already removed from the library Bookstore. 

Retum Book: a member retums a book (Book_Id) to the librarian. 

1st Access Librru:y: a Staff Member indicates his/her first library access to the Librarian in 

order to be registered. 

Ask Extend: an Ordinary Member asks the Librarian to extend his/her loan length for a given 

book (Book_Id). 

Wait For Book: an Extra or Ordinary Member asks the Librarian to be on a waiting list for a 

given book (Book_Id) which has already been borrowed. 

Access Librru:y: the Librarian controls ail the library accesses of the Ordinary and Extra 

Members. 

Classify Books: this action has been described in the acquisition policy. 
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i LIBRARIAN 1 

BASIC CONSTRAINTS 

• Initial valuation 

Card(Loans_List) = { } 
Card(B_To_Classify) = { } 

* There are no loan in progress and no book to classify 

LOCAL CONSTRAINTS 

• Effects of action 

Register_Member(id, m): Insert(Table_Member, id, m) 

* the librarian registers a new member in the table of members 

m.Retum_Book(b): Loans_List = remove(Loans_List, 1) 

with Book_B(l) = b 

Borrower(l) = m 

* the librarian removes a loan from the loans List 

m.Return_Book(b): B_To_Classify = add (B_To_Classify, b) 
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* when a member returns a book to the library, the librarian puts it the "B_To_Classify" List 

m.Borrow _Book(b) with b = Book_B(l): in (Loans_List, 1): 

Loans_List = modify(Loans_List, 1) 

with Date_L(l) = Todays_Date 

Waiting(l) = FALSE 

(Isof m = ORDINARY MEMBER 

⇒ length(l) = 15) 

(Isof m = EXTRA MEMBER 

⇒ length(l) = m.Time(Access_Authorized) 

* the librarian registers a book loan for an Extra or Ordinary member who was waiting for 

that book 

m.Borrow_Book(b):Loans_List = add (Loans_List, 1) 

with Date_L(l) = Todays_Date 

Waiting(l) = FALSE 

(Isofm = ORDINARY MEMBER 
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⇒ length(l) = 15) 

(lsof m = EXTRA MEMBER 

⇒ length(l) = m.Time(Access_Authorized) 

* the librarian registers a book loanfor an Extra or Ordinary member 

m.Wait_For_Book(b) : add(Loans_List, 1) 

with Book_B(l) = b 

Borrower(l) = m 

Date_L(l) = Todays_Date 

W aiting(l) = TRUE 

Length(l) = UNDEF 

* the librarian indicates that a member is waiting for a book 

m.Ask_Extend(b ): modify(loans_List, 1) 

with Book_B(l) = b 

Borrower(l) = m 

Date_L(l) = Todays __ Date 

* the librarian extends the loan length of a loan 

m.Classify_Books(b): remove(B_To_Classify, b) 

* when a staff member classifies a book, it is removedfrom the List "B_To_Classify" 

Determine_Date(d): Todays_Date = d 

* the Librarian sets the date of the current day 

• Causality 

m.Wait_For_Book(b) ➔Detect_Delay(b, bor); Warn_Member(b, bor) 

* When the librarian detects a delay, he/she warns the borrower 

Staff Member. lst_Access_Library(m) ➔ Register_Member (Staff Member, m) 

* When a staff member enters the library for the first time, helshe will be registered by the 

librarian 

m.Access_Library(member) with-, in-dom(m, Table_mem(m)) 

➔ Register_Member (m, member) 

* If an ordinary member tries to ac ces the library without being registered, the librarian 

registers himlher in the "Table_Member" 
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• Capability 

.ID(Detect_Delay(m,b) / :3 1 E Loans_List : Book_B(l) = b 

Borrower(l) = m 

Date_L(l) + length(l) > Todays_Date) 

* the librarian only detects a delay for a book if the limit date is over 

COOPERATION CONSTRAINTS 

• Action Perception 

XK(m.Classify _Book(b )/TRUE) 

XK(m. lst_Access_Library/TRUE) 

XK(m.Access_Library/TRUE) 

I(m.Ask_Extend(b)/:3 1 E loans_List: Borrower(l) # m 

Book_B(l) = b 

Waiting(l) = TRUE) 
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* the librarian ignores a loan extend request for a given book if somebody else is waiting for 

the book 

• State Information 

XK(Cat_Book_Author.m /TRUE) 

XK(Cat_Book_KW.m /TRUE) 

XK(B_To_Classify.m/TRUE) 

• Action Information 

ÂK(Warn_Member(b, bor).m / bor = m) 

* the librarian can only warn a borrower how is Late in returning a book b 

• State Information 

ÂK(Access_Authorized.m/TRUE) 
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Declaration of the Staff Member agent 

B_To_ 
Classify 

1 Book_Id 1 

Librarian 

Cat_Book_KW 

IKW _ListH L_Book 1 

Borrowed_ 
Books 

Librarian 

lst_Access 
Library 

Cat_Book_Author 

1 Name 1 ~, L_Book 1 

• 
Librarian 

Return_ 
Book 

Book_Id C) 
' ..... 

. ... 

Classified_ 
Books 

Book_Id 

Bookstore 

Member Librarian Book_Id Bookstore 

Authorize_ 
Access 

Integer 
Member 

Borrow_ 
Book 

C) 
• 

Bookstore Book_Id 

Classify_ 
Books 

+ · ... 
Book_Id Bookstore Librarian 

Figure 4.7 : Graphical declaration of the Staff Member agent 

The graphical declaration of the Staff Member agent is depicted on figure 4.7 . One can see 

that: 

1. This agent has the perception of four extemal state components (Cat_Book_KW, 

Cat_Book_Author, Classified_Books and B_To_Classify). These components have been 

explained before. 
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2. A Staff Member has an internai state component (Borrowed_Books) representing the set of 

the books (Book_Id) actually borrowed by this agent. 

3. A Staff Member has five internai actions (Borrow_Book, Retum_Book, 

lst_Access_Library, Authorize_Access and Classify_Books). We will only describe the ones 

which havn't already been explained. 
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Borrow Book: the Staff Member selects a book (Book_Icl) in the library Bookstore. 

Authorize Access: a Staff Member gives the authorization to an Extra Member to enter the 

library along with the accorded loan period (lnteger). 

1 STAFF MEMBER 1 

BASIC CONSTRAINTS 

• Initial valuation 

Card(Borrowed_Books) = { } 

* the staff member has no borrowed books 

LOCAL CONSTRAINTS 

• Effects of action 

Retum_Book(b) : Borrowed_Books = remove(Borrowed_Books, b) 

Borrow_Book(b): Borrowed_Books = add(Borrowed_Books, b) 

• Capability 

XO(Retum_Book(b )/in (Borrowed_Books, b)) 

XO(Classify_Books(b)/in (Librarian.B_To_Classify, b)) 

XO(Borrow _Book(b )/in (Bookstore.Classified_Books, b)) 

COOPERATION CONSTRAINTS 

• State perception 

XK(Bookstore.Classified_Books / TRUE) 

.n.(Librarian.Cat_Book_KW / TRUE) 

.n.(Librarian.Cat_Book_Author / TRUE) 

.n.(Librarian.B_To_Classify / TRUE) 

• Action information 

.n.(Borrow_Book(b).Bookstore / TRUE) 

.n.(Retum_Book(b).Bookstore / TRUE) 
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~(lst_Access_Library.Librarian / TRUE) 

~ (Authorize_Access(i).Em / TRUE) 

~ (Classify_Books(b).m / TRUE) 

Declaration of the Ordinary Member agent 

Cat_Book_KW Cat_Book_Author Classified_ 
Books 

Name KW_List 
.__ _ ___.._,.L_Book ...._ _ _...__L_Book 

Librarian 

Borrowed_ 
Books 

Book_ld 

Borrow_ 
Book 

C) 

Librarian 

Return_ 
Book 

. ... 

Book_ld 

Bookstore 

Access_ 
Library 

C) 
J \ 

, Book_ld "' .... Librarian Member Librarian 

Wait_For_ 
Book 

. . 

Book_ld Librarian Bookstore 

Ask_ 
Ex.tend 

C) 
. ... 

◄ Book_Id 
Book_Id Librarian 

Librarian 

Warn_ 
Member 

C) 
. 

Book_ld Librarian 

Pays_ 
Fee 

C) 
. . .. 

Book_id Librarian 

Figure 4.8 : Graphical declaration of the Ordinary Member agent 
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Ail the actions and the state components of the Ordinary member have already been described. 
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1 ORDINARY MEMBER 1 

BASIC CONSTRAINTS 

• Initial valuation 

Card(Borrowed_Books) = { } 

LOCAL CONSTRAINTS 

• State behaviour 

Card(borrowed_Books)~ 2 

• Effects of action 

Retum_Book(b) : Borrowed_Books = remove(Borrowed_Books, b) 

Borrow_Book(b): Borrowed_Books = add(Borrowed_Books, b) 

• Causality 

Borrow _Book(b) ➔ Pays_Fee(b) 

• Capability 

XO(Retum_Book(b )/in (Borrowed_Books, b)) 

XO(Borrow_Book(b)/in (Bookstore.Classified_Books, b)) 

XO(Ask_Extend(b )/in (Borrowed_Books, b) 

F(W ait_For_Book(b )/in (Borrowed_Books, b) 

F(Borrow_Book(b)/card(Borrowed_Books) = 2) 

COOPERATION CONSTRAINTS 

• State perception 

~(Librarian.Cat_Book_KW / TRUE) 

~(Librarian.Cat_Book_Author / TRUE) 

~(Bookstore.Classified_Books / TRUE) 
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• Action information 

..tK(Retum_Book(b).Librarian / TRUE) 

..tK(Access_Library.Librarian / TRUE) 

..tK(Pays_Fee(b).Librarian / TRUE) 

Declaration of the Extra Member agent 

Cat_Book_KW 

IKW _Listi ~ L_Book 1 

Librarian 

Borrowed_ 
Books 

Book_ld 

Cat_Book_Author 

fame] ~L_Booki 

Librarian 

Borrow_ 
Book 

• •• 
Book_ld Librarian Bookstore 

Return_ 
Book 

. •• 
Book_ld Librarian 

Wait_For_ 
Book 

C) . . . ... 

Access_ 
Library 

C) 
. 

Classified_ 
Books 

Book_ld 

Bookstore 

r-----7 
1 Access_ 1 
1 Authorized 1 
1 1 
1 ___ -1 
1 1 Access 11 
I_ - _, ___ 1 J ◄ 

Member Librarian 
. ... 

Librarian 

Pays_ 
Fee 

C) 
I :.. 

Book_ld Librarian Book_ld Librarian 

Warn_ 
Member 

C) 
. 

Book_ld Librarian 

Authorize_ 
Access 

C) 
I ... 

lnteger Slaff 
Member 

Figure 4.9 : Graphical declaration of the Extra Member agent 
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As for the Ordinary member, all the elements of the Extra member structure have been 

described in the previous declarations. 

J EXTRA MEMBER 1 

BASIC CONSTRAINTS 

• Initial valuation 

Card(Borrowed_Books) = { } 

Access_Authorized = F ALSE 

LOCAL CONSTRAINTS 

• State behaviour 

Card(borrowed_Books)~ 2 

• Effects of action 

Return_Book(b): Borrowed_Books = remove(Borrowed_Books, b) 

Borrow_Book(b): Borrowed_Books = add(Borrowed_Books, b) 

m.Authorize_Access : Access_Authorized = TRUE 

• Causality 

Borrow_Book(b) ➔ Pays_Fee(b) 

• Capability 

XO(Return_Book(b )/in (Borrowed_Books, b)) 

XO(Borrow _Book(b )/in (Bookstore.Classified_Books, b)) 

XO(Ask_Extend(b )/in (Borrowed_Books, b) 

F(W ait_For_Book(b )/in (Borrowed_Books, b) 

F(Access_Library/ Access_Authorized = F ALSE) 

F(Borrow_Book(b)/card(Borrowed_Books) = 2) 
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COOPERATION CONSTRAINTS 

• State perception 

ÂK(Librarian.Cat_Book_KW / TRUE) 

ÂK(Librarian.Cat_Book_Author / TRUE) 

ÂK(Bookstore.Classified_Books / TRUE) 

• Action information 

ÂK(Return_Book(b) . Librarian / TRUE) 

ÂK(Access_Library . Librarian / TRUE) 

ÂK(Pays_Fee(b) . Librarian / TRUE) 

• State Information 

ÂK(Access_Authorized.librarian/TRUE) 

• Action Perception 

ÂK(m.Authorize_Access(i)/TRUE) 
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Declaration of the Bookstore agent 

.· .: 
Extra 

Member 

Classified_ 
Books 

Book_ld 1 

+ 
.... 

Staff Ordinary 
Member Member 

Borrow_ 
Book 

Return_ 
Book 

Classify_ 
Books 

• • ♦• . . 
Ordinary Staff Extra Book_ld Book_ld Staff 

Member 
Book_ld Staff 

Member Member Member 

Figure 4.10 : Graphical declaration of the Bookstore agent 

Constraints 

Bookstore 

LOCAL CONSTRAINTS 

• Effects of action 
m.Borrow_Book(b): Classified_Books = Remove(Classified_Books, b) 

m.Return_Book(b): Classified_Books = Add(Classified_Books, b) 

m.Classify_Books(b): Classified_Books = Add(Classified_Books, b) 

COOPERATION CONSTRAINTS 

• Action Perception 

XK(m.Borrow _Book(b )/TRUE) 

XK(m.Return_Book(b )/TRUE) 

XK(m.Classify _Book(b )/TRUE) 

Member 
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• State Information 

~(Classified_Books.mffRUE) 
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4.3.2. i* specification 

a) Agents identification 

The agents identified for the application of the i* famework to the Library system before the 

introduction of any change in the organization, is virtualy completely the same. Nonetheless, 

only the terminal agents will be taken into account. 

The Strategic Dependency models of the acquisition and the loan policies will thus show the 

dependencies between the Librarian, Staff Member, Ordinary Member, Extra Member and the 

Bookshop actors. 

b) Acquisition policy 

Strategic Dependency Model 

We will now model the acquisition policy of the library by a strategic dependency model. We 

saw that this model aimed at supporting the dependencies between actors and that these 

dependencies can be of four different types. We'll try step by step, to find out who depends on 

whom and for what. For each dependency link on figure 4.11 , we'll explain why we have 

choosen a specific type of dependency tather than another. 

First of ail, it is obvious that the main goal of the acquisition policy is just the ordering of a 

new book for the library. The Staff member actors are responsable for the good contents of the 

library and therefore choose which books to order, but they are not allow to issue the order by 

themselves; instead, they have to ask the Librarian to manage the book ordering. This kind of 

dependency should be model by a goal dependency (Ordered (Book)) between the staff 

member and the librarian. 

The Librarian wouldn't be able to issue an order to a bookshop if he/she doesn't know which 

book to order. The librarian will thus depend on the staff member for the identification of the 

book. We're just talking about a simple information, and one could represent this by a resource 

dependency (Book_ld) between the Librarian and the staff member. 

The identification of the book isn't enough to allow the librarian to issue the order. He/she will 

ask a staff member to pay the new book. This dependency is rather a task dependency (Pays 

(Book)) instead of a goal one because this dependency could be viewed as a constraint. 
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Now, the librarian is able to order the book to a bookshop. He/she will depend on the 

bookshop to have the ordered book, and this will be visualized by a goal dependency 

(Received (book)) between the librarian and the bookshop, because the librarian doesn't care 

how the bookshop will achieve this goal. The librarian is just interested by the result of the 

dependency. 

Of course, the bookshop won' t be able to send anything to the librarian if the latter doesn' t 

send him an order. As for the dependency for the book identification between the librarian and 

the staff member, we will represent this by a resource dependency (Order). 

The librarian depends on the staff member for the payment of the ordered book. However, as 

the librarian is the intermediate between the staff member and the bookshop, the latter will also 

depend on the librarian for the payment of the book. Therefore, we'll have the same task 

dependency link (Pays (Book)) between the librarian and the bookshop. 

Once the librarian will have received the book, he/she will have to determine the reference of 

this book and for this reason, he/she'll ask the staff member to determine a category and a list 

of keywords to associate with the book. We have choosen to represent this by a task 

dependency (Find-KW-Cat (Book_O)) between the librarian and the staff member instead of a 

resource dependency because we want to express the fact that the staff member will have to 

carry out an activity. 

Once the librarian will have register the identification and the reference of the new book, 

he/she will depend on the staff member to classify it on a library shelf. We have a goal 

dependency (Classified (Books)) between the librarian and the staff member because the 

librarian doesn't know how the staff member choose to classify the new books. 
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Ordered 
(Book) 

Book_ld 

pays 
(Book) 

Classified 
(Books) 

Received 
(Book_O) 

Figure 4 .11: SD Model Of the acquisition policy 

Strategic Rationale Model 
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Figure 4.12 showed us the different dependency links between the three actors implicated in 

the library acquisition policy. This SD model shows that the librarian is a central actor in the 

acquisition procedure. He/she plays a role of intermediate between the staff members and the 

bookshops. The staregic rationale model can help us to carry out a deeper analysis of the 

librarian role, and to find out some alternatives that could improve the actual way of working. 

We know that the labrarian only issues a book order on a staff member request. This will be 

modelled in the Strategic rationale model by a goal dependency (Ordered (Book)) from the 

staff member actor into the librarian boundary. 

The librarian has to order a book, this is represented by the (order (book)) task. This task 

consists of two components: the subtask of establishing the order (Establish(order)) and the 

subtask of receiving the new book (Manage reception(book)) . We are only modelling the tasks 

that are considered important enough to be of strategic concem to the actor. 

In order to establish a book order, we saw in the strategic dependency model (figure 4.11), 

that the librarian needed the book identification. Once again we will represent this by a 

resource dependency (Book-Id) going from the librarian boundary to the staff member actor. 

The task (establish (order)) will be also composed of two subtasks: (Issue (order)) and 

(Register ( order)). 
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One way to have the order registered (which is the actual way of working), is to update the 

order list manually. We will represent this by the means end link (Register Manually (order)) . 

But ail along the book acquisition process, the librarian is influenced by two qualitative goals. 

On one hand, he/she wants to be efficient. He/she also wants to evolve in an adequate 

environment, with practical working methods, we will call this to be comfortable. 

The fact of register an order (or anything) manually, certainly affects negatively the two 

qualitative goals. It represents a lost of time, a risk of lost, a possibility of data redundancy, ... 

The alternative could requires the use of an information system for the data registration. 

This is depicetd by the means-ends link (use IS). In these circumstances, the librarian would 

depend on the IS for the data gathering or consultation. 

When a librarian receives a new book from a bookshop, he/she has to register the book in the 

library books catalogues. The librarian will first ask the category and a list of keywords to the 

staff member (Cat-Kwds), and then updates the catalogues. One could make here the same 

reasoning as for the registration of an order. Either the librarian handles the old catalogues and 

makes the registration manually, either he/she uses an information system. In order to keep the 

SR modelas clear as possible, we havn't drawn the links affecting the qualitative goals. 
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Figure 4.12: SR Model of the acquisition policy 

c) Loan policy 
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We will describe the loan policy the same way we did for the acquisition policy. The SD Model 

is depicted on figure 4.13. 

Ali the users of the library need to be registered before his/her first access to the library. The 

registration is made by the librarian. So, if a user wants to borrow a book, he/she will first 

depend on the librarian to be registered. We will represent this by a goal dependency (Register 

(member List)) between the staff, ordinary and extra users and the librarian. We'll use a goal 

link because the users are just intrested in the result - beeing registered and thus, authorized to 

acces the library - and not by the procedure the librarian will have to follow in order to register 

them. 



From Organization Requirements to System Requirements: a Case Library Case Study 75 

If he/she wants to register a new user, the librarian will need some information which we will 

represent by a resource dependency (Registration info) between the librarian and the users 

(ordinary, staff and extra members). 

We will now tackle the heart of the loan policy, that is to say, the loan of a library book. The 

extra and ordinary users depend on the librarian for borrowing a book. The librarian is the one 

who manages ail the loan procedure. The goal of these users is very simple, they just want to 

borrow a book and doesn't care about the updating of the loans list etc. It' s the librarian's 

business, that's why we will represent the loan of a book by a goal dependency (Loaned(book)) 

between the extra and ordinary member actors and the librarian. The staff member doesn' t 

have that kind of dependency with the librarian because he/she can borrow a book without 

asking the librarian. 

But an extra or ordinary user will be able to borrow a book only if he/she pays a fee to the 

librarian. We thus have a resource dependency (Fee) between the librarian and the extra and 

ordinary member actors. Once again, we won't see that kind of dependency between the 

librarian and the staff member because the loan is free for the latter. 

When a user (extra or ordinary member) borrows a book, he/she is supposed to keep it for a 

given period of time and not more. The librarian has to trust the user when he/she loans the 

book and will thus depend on him/her for the respect of the loan time. We choosed to 

represent this dependency by a softgoal link (Respect ( Loan time )) between the librarian and 

the extra and ordinary members. 

In the library description, we also saw that the staff member could evict the users who didn't 

behave correctly. In order to avoid that kind of situation, the staff member will depend on the 

extra and ordinary members for having an « adequate » behaviour. This is obviously a softgoal 

dependency (Behave correctly) because the meaning of« adequate » is not clear-cut defined. 

If an extra member wants to borrow a book, a staff member will first have to authorize this 

extra member to enter the library. The extra member depends on the staff member to be 

allowed to access the library. This will be represented by a goal dependency 

(Authorized(access)) because of the extra member ignorance of the procedure to follow in 

order to receive this authorization. 

An ordinary member is allowed to borrow a book for a period of fifteen days. An extra 

member doesn't have the same loan period. Actually, his/her loan period is given by a staff 
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member. The extra member has thus a resource dependency (Loan time) on the staff member 

actor for the loan length. 

Finally, as for the acquisition policy, the librarian depends on the staff member for the ranking 

of the retumed books in the library shelves. This is represented by the goal dependency 

(Classified (books)) . 

Figure 4.13: SD Model of the loan policy 

Strategic Rationale Mode) 

Authorized 
(Access) 

We saw that one of the main goals of the librarian was to manage book loans. In order to 

acheive this goal, the librarian has to perform three main tasks which are: the rent of books, the 

management of the retumed books and he/she also has to manage the delays in returning 

books. 

At this state of the reasoning, one should wonder what seems important to the librarian. What 

are his/her interna! goals? What would he/she want to achieve? We wouldn't be wrong if we 

said that the librarian wants the library business prosperous. 

The question one should then ask to ourselves is: what would make a library system 

prosperous? The answer would probably be the same for most of the businesses: an efficient 

management in one hand and customers happy in the other hand. These two parameters would 

affect positively the success of the business. 
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If we go on with this kind of reasoning, one could ask what makes a library user happy? 

Probably some flexibility for the loan period with for exemple the possibility to extend the loan 

period if nobody else' s waiting for the book, reasonable loan periods. A user doesn' t want 

either to wait to long for a book if it' s already borrowed. 

Of course, these two qualitative goals are opposed to each other and one will have to make the 

balance between them. 

In the loan policy described earlier, we saw that the librarian didn' t disco ver delays 

systematically but rather at random. He/she discovered that a borrower was late in retuming a 

book when another borrower asked for the same book. This way of working could please 

some users, taking this opportunity to keep a book for a longer time, but in the other hand, the 

chances of beeing on a waiting list increase. 

An alternative to this way of working could be the management of the loans delays by an 

information system. 

Figure 4.14: SR Model of the loan policy 
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Random wouldn't have its place anymore and the librarian would be wamed systematically for 

the negligent borrowers. 
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The extra, ordinary and staff members depend on the librarian for the loan of books. When the 

librarian rents a book, he/she has to ask a fee (if the borrower is an ordinary or an extra 

member), to take some information (as the book identification) in order to update the loan list. 

The librarian is the only one who is authorized to update the loan list. Maybe this way of 

working isn't the more adequate or the more effective? 

One could imagine the staff members more independant and one way to achieve this, could be 

to let them manage their own loans. They would have access to the information system and 

could update the loan database by themselves, this way, the staff members would have a little 

more responsibilities and the librarian would gain some rime for his/her other tasks. 

The Strategic Rationale Model helped us to find some alternatives in order to make the actual 

loan process more efficient. it showed that this could be achieved by the introduction of an 

information system and by the shift of responsibilities. 
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4.4. Introduction of the Information System 

4.4.1. IS description 

The new system to design should integrate the following facilities derived from the analysis 

made in section 4.3: 

A book database: the system must record any relevant information about the books contained 

in the library: it must be able to answer enquiries about books appropriatly: given some 

criterion (author(s), keyword(s), title, year of publication, ... ), find if there are books matching 

the criterion in the library and, if yes, find their locations and status (borrowable, borrowed, 

lost). 

An order database: the system must keep track of all the books orders in progress; it must be 

able to answer questions about the orders, such as: give the list of all the orders in progress, 

who has ordered a given book, check wether a book has been ordered, retreive pending orders 

issued for one month or more. 

A member database: the system must record information about the library members such as the 

identity, the member category, where the member can be contacted. 

A loan database: the system must record all the book loans (which book, which borrower, the 

date of the loan) and must be able to answer enquiries such as: who has a given book, give ail 

the books borrowed by a member, give the list of all members being late in retuming books, 

who is waiting for a borrowed book. 

The book database can be consulted by any member. Staff members can consult any database. 

An ordinary or extra member may not receive information about other members. The librarians 

are the only people allowed to update the databases. There is an exception however: any staff 

member can update the loan database for his/her own loans. 

4.4.2. i* Description 

a) New agents identification 

The actors of the new library system are identical to the terminal agents identified for the 

application of the Albert language (except for the shelf agent) . The usual actors will be: 

the Staff Members, the Ordinary Members, the Extra Members and the Librarian; 

We introduce a new actor: the Information System (IS). 
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b) Acquisition policy 

Strategic dependency m<><lel 
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The introduction of an information system means the introduction of a new agent, and who 

says new agent, says automatically new dependencies. These new links are underlined with a 

new strategic dependency model depicted on figure 4.15. Once again, we'll argue the choice of 

the new links between the actors. 

For the acquisition policy, the main dependency links remain the same. Nonetheless, the 

librarian and the staff member actors will depend on the new actor, the information system, in 

order to consult the library databases. We'll represent this by a simple resource dependency 

link (Information) between the staff member and the IS and between the librarian and the IS. 

In its tum, the IS will depend on the librarian for the updating of its information. We have a 

task dependency (update (info)) because the procedure is well established. There is only one 

way to update an information system. 

Ordered 
(Book) 

Classify 
(Book) 

Update 
(lnfo) 

Pays 
(Book) 

Figure 4.15: SD Model of the acquisition policy after introduction of the IS 
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c) Loan policy 

We'll show via the SD mode! depicted on figure 4.16 that the introduction of the information 

system has modified a part of the dependencies between the actors of the loan process. 

Nonetheless, some of the dependencies remain the same (Registered(member-list), 

Registration info, Borrowed (book), Fee (book)) and we won't explain them anymore. 

Furthermore, in order to lighten the mode!, we've only represented the goal (register(member

list)) and the resource (Fee(book)) as dependencies between the ordinary member and the 

librarian but it' s obvious that the same dependency links exist between the extra member and 

the librarian. We've done the same for the goal (registered(member-list)) and the resource 

(registration info ); these dependency links exist also between the extra and staff member 

actors and the librarian actor. 

We saw previously that the librarian discovered the delays more or less at random. Now, this 

actor depends on the information system to have systematically the list of negligent borrowers. 

We will represent this by a resource dependency (Delays list) between the librarian and the IS. 

The librarian is also able to consult the databases of the IS, and thus will depend on it for 

answering to his/her enquiries. We have represented this by a goal dependency 

(answered( enquiries)) between the librarian and the IS because the librarian doesn't tell the IS 

how to answer. He/she is only interested by the outcome. 

For responding to the librarian questions, the IS needs some criterion specifying the request. 

This is visualized by a resource dependency (Criterion) link: between the IS and the librarian. 

The IS needs also to be updated for each loan registration and will depend for this on the 

librarian for the extra and ordinary members loans, and it will depend on the staff member 

actor for his/her own loans. The procedure for updating the loan database is well established 

that's why wel'll represent this dependency by a task link: (Update(loan-DB)). 

Finally, the librarian will ask the new information system to have good performance. It will be 

represented by a softgoal (good performance) because we don't have a sharply defined 

definition of what is a« good performance». 
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Classified 
(Books) 

Fee 
(Book) 

Answered 
(inquieries) 

Figure 4.16: SD Model of the loan policy after introduction of the IS 

4.4.3. Albert specification 

a) New agents identification 

82 

The former agents remain the same as in the previous organization but the Library society has 

a new terminal agent: the Information System. 

The new graphical declaration of the library system is shown figure 4.17 
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Library System 

Extra Member 

<ê) Bookshop 

Ordinary Member 

<ê) 

Figure 4 .17 : Graphical declaration of the Library system society 

b) Acquisition policy 

Declaration of the Staff Member agent 

The new graphical declaration of the Staff Member after introduction of the Information 

System is depicted on figure 4.18. The main changes are the following: 

1. The Staff Member agent has five extemal state components. Two of them have already been 

described (B_To_Classify and Classified_Books). This agent has now the perception of the 

Ortler database (Ord_DB), the Member database (Mem_DB) and the two book catalogues 

have been merge into one database (Book_DB). 

Book DB: this state component represents the set of books (Book) registered in the library. 
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• The Book type has been modifed. It is now defined by: 

Identification 
(Book_ld) 

Borrowable 
(Boolean) 

Kwds 
(KW_List) 

Borrowed 
(Boolean) 

Mem_DB Book_DB Ord_DB B_To - Classified 
Classiy 

Member Book Order 
1 Book_Id 1 

IS IS IS 
Librarian 

Book - Pays_ Classify_ 
Order Bill Books 

c=::> c::, C=:> 

' ' 
. . 

+ .... 
Book-O Librarian Priority ·,.. Book_ld : 

Librarian .... 

Send_Cat_ 
KW 

Book_O Cat 

. ... 
Librarian 

Remove_ 

. . 
► 

Book 

Bookstore Book_ld 

Send_ 
Book 

Book-Id BookShop 

Bookstore 

Books 

Book_ld 

Bookstore 

Figure 4.18 : Graphical declaration of the Staff Member agent 
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Mem DB: This set represents ail the members (Member) registered in the library (they aren't 

registered anymore in a table). 

• The new type Member is the following: 

STAFF MEMBER 

ID 
(IDMember) 

LOCAL CONSTRAINTS 

• Causality 

Contact 
(Member) 

Bookshop.Send_Book (b)➔ Send_Cat_KW (b, kw, c) 

* once a bookshop has sent a new book, a staff member sends to the librarian, the category 

and a list of keywords associated with that book 

• Capability 

.Xt, (Classify_Books(b) / -, in(B_To_Classify, b)) 

* a staffmember can't classify a book which isn't in the "B_To_Classify" List 

.Xt, (Remove_Book(b) / -, in(Classified_Books, b) 

* a staff member can 't remove a book which is not in the bookstore 

COOPERATION CONSTRAINTS 

• Action Perception 

~ (b.Send_Book (b) /TRUE) 

• State Perception 

~ (Bookstore.Classified_Books/TRUE) 

~ (IS.Ord_DB/TRUE) 

~ (IS.Book_DB/TRUE) 

~ (IS.Mem_DB/TRUE) 

~ (Librarian.B_To_Classify/TRUE) 
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* the stajf memhers always perceive the catalogues, the bookstore and the B_To_Classify lists 

• Action Information 

..:tK (Classify_Books(b).m /TRUE) 

..:tK (Remove_Book(b).b/TRUE) 

Declaration of the Librarian agent 

We'll just describe the actions and state components that havn't been already described. 

The Librarian agent has three new internai actions (Class_Order, Remove_Order and 

Add_Book_order): 

Class order: the Librarian asks the IS to register a new book order (Order) in the Ord_DB. 

Remove order: the Librarian agent would like to remove an order (Order) from the Ord_DB. 

Add Book DB: the Librarian registers a new book (Book) in the IS Book database. 
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Stock_Bookshop 

Book_O H P_DT 

Bookshop 

Issue_ 
Order 

. .... 

Mem_DB 

Member 

IS 

Determine 
_ Ref 

Ord_DB 

Order 

IS 

B_To _ 
C!assify 

Book_ld 

' ... Book-O l Bookshop 
Book_ld Staff 

Send_ 
Book 

Priority 

Class_ 
Order 

Order 

. 
◄ 
IS 

Book_O 

Remove_ 
Order 

Order 

Book_ 
Order 

. 
◄ 
IS 

Book-O BookShop Book-O Priority •• 
Staff 

Cat Member 

Add_ 
Book_DB 

Book 

Send_Cat_ 
KW 

. 
◄ 
IS 

. . 
Staff 

Member Book_O Cat 

Classify_ 
Books 

Book_ld Staff Member 

Figure 4.19: Graphical declaration of the Librarian agent 
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Constraints 

j LIBRARIAN j 

BASIC CONSTRAINTS 

• Initial Valuation 

B_To_Classify = { } 

* There are no books to classify in the library Bookstore 

LOCAL CONSTRAINTS 

• State Behaviour 

in (B_To_Classify, b) ⇒ >lday ---, in (B_To_Classify, b) 

* A book must be classified in the library Bookstore within one day. 

• Effect of Actions 

Determine_Ref(bo, kwl, c, b): B_To_Classify = add(B_To_Classify, b) 

* When the librarian has de termine the reference of the new book, he/she puts it in the 

B_To_Classify list 

Staff Member.Classify_Books (b): B_To_Classify = remove (B_To_Classify ,b) 

* When a Staff M ember classifies a book in the library, he/she removes it from the List 

"B_To_Classify". 

• Causality 

Staff Member.Book_Order (b, pr); _. Pays_Bill (b) ➔ Issue_Order (b, pr).bs; 

Class_Order(O) 

with Book_O(O) = b 

Member(O) = Staff Member 

Date(O) = Todays_Date 

Bookshop(O) = bs 
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* When a Staff Member asks the librarian to order a book(b) at a given priority and if a Staff 

Member agrees to pay the bill for that book, then the librarian will issue an order to the 

appropriate bookshop and will register the order in the orders list. 
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Staff Member.Send_cat_KW(b, kw, c) ➔ Determine_Ref (b, c, book) 

with Authors (book) = Authors (b) 

Title (book) = Title (b) 

Edition (book)= Edition (b) 

Category (book)= c; 

Add_B ook_D B (b) 

with Identification(b) = book 

Kwds(b) = kw 

Borrowed(b) = FALSE 
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* When a staff member sends the category and a list of keywords associated with a book, the 

librarian can de termine the reference of that book and can register it in the IS Book database 

Bookshop.Send_Book (b) ➔ Remove_0rder (0) 

with Book_0(0) = b 

* When a bookshop has sent a book, the librarian removes one order he chooses from the 

orders list which asked for that book 

• Capability 

F (lssue_0rder(b, p).bs / (Isof p = "price" A 

3 bs': Price(bs'.Stock_Bookshop[b]) 

< Price(bs.Stock_Bookshop[b])) 

v (lsof p = "Del_Time" A 

3 bs': Del_Time(bs'.Stock_Bookshop[b]) 

< Del_Time(bs.Stock_Bookshop[b])) 

* the librarian can 't send an order to a books hop who doesn 't respect the priority in time or in 

delivery time 

COOPERATION CONSTRAINTS 

• Action Perception 

I (Bookshop.Send_Book(b) / --i in (IS.0rd_DB, 0): book_0 (0) = b 

A bookshop (0) = bookshop) 

* the librarian ignores the book sent by a bookshop, which hasn 't been ordered 

I (Staff member.Classify_Books (b) / --i in (B_To_Classify, b)) 

* the librarian ignores the action of a staff member consisting in removing a book that 

doesn't exist in the "B_To_Classify" list 
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• State Perception 

~ (b.Stock_Bookshop[-]/TRUE) 

~ (IS.Mem_DB/TRUE) 

~ (IS.Ord_DB/TRUE) 

~ (IS.Book_DB/TRUE) 

* the librarian can always perce ive the catalogues of the bookshops 

• State Information 

~ (B_To_Classify.Staff Member/TRUE) 

* the "B_To_Classify" list is always visible to the staff members. 

• Action Information 

~ (Issue_Order(b, p).Bookshop/TRUE) 

..tK (Class_Order(o).IS/TRUE) 

..tK (Remove_Order(o).IS/TRUE) 

..tK (Add_Book_DB(b).IS/TRUE) 
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Declaration of the IS agent 

.-----7 
1 Todays_ t 
I Date 1 
1 .-------, 1 
1 1 Date I i 
, _____ .J 

Book_DB 

1 Member 1 

Mem_DB 

1 Member 1 

Ord_DB 

Order 

. .. . .. . .. 
► ◄ ► ◄ ► ◄ 

Librarian Staff Librarian Staff ibrarian Staff 
Member Member Member 

Class_ 
Order 

Determine 
_Date 

C=:> 
! 
Date 

Remove_ 
Order 

Order Librarian Order Librarian 

Add_ 
Book_DB 

Book Librarian 

Figure 4.20: Graphical declaration of the IS agent 

Constraints 

IS 

BASIC CONSTRAINTS 

• Initial Valuation 

Ord_DB = { } 

* There are no orders in progress in the orders database 

LOCAL CONSTRAINTS 

• Effect of Actions 

Librarian.Class_Order(O): Ord_DB = Add(Ord_DB, 0) 
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Librarian.Remove(0): 0rd_DB = Remove(0rd_DB, 0) 

Add_Book_DB(b): Book_DB = Add(Book_DB, b) 

Determine_Date(d): Todays_Date = d 

COOPERATION CONSTRAINTS 

• Action Perception 

I (Librarian.Remove_0rder(0) /-, in(0rd_DB, 0)) 

.,lK (Librarian.Class_0rder(0) / TRUE) 

.,lK (Librarian.Add_Book_DB(b) / TRUE) 

• State Information 

~ (Book_DB.m / TRUE) 

~ (Mem_DB.m / TRUE) 

~ (0rd_BD.m / TRUE) 

Declaration of the Bookshop agent 

The declaration and the constraints of this agent are the same as figure 4.4. 

Declaration of the bookstore agent 

The declaration and the constraints of this agent are the same as figure 4.5 

c) Loan policy 
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The loan policy after the introduction of the information system has been completely specified 

in the annex. 
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4.5. Correlation between Albert and i* 

We have just applied to the concrete example of a library case study, the two frameworks 

Albert and i*, developed in chapters two and three. Each of these methods has its own 

objectives and characteristics. 

In this chapter, following the reverse engineering method, we have first applied the Albert 

language to the acquisition and loan policies of the library, allowing us to understand in a 

formal way, the functionalities (the" what") of the studied work processes. We've then applied 

the i* framework to the existing system in order to discover and to identify the dependencies 

existing between the main actors. The Strategic Rationale model of the framework has allowed 

us to emphasize some of the work procedure weak points such as the delays detection. This 

model also helped us to find out new alternatives in order to improve the present situation. 

The introduction of an information system has overturned the dependencies and relationships 

within the library system, that' s why we used again the Strategic Dependency model in order 

to catch on this brand new organization. Last but not least, we have modelized the new system 

the same way we did at the begining, i.e. by the application of the Albert language. 

The main goal of this section is to discover if it could be possible to establish a closer link 

between the two frameworks. Could it be possible to settle a systematic binding between 

Albert and i*, allowing us to infer automatically the Strategic Dependency model from the 

formal Albert specification and conversely, to deduce systematically the Albert specification 

from the new SD model of the rehandled organization? 

We'll first analyze the similarities and differences between Albert and i*, and thanks to these 

observations, we'll try to answer the question of knowing if a systematical binding could really 

be established. 

4.5.1 Common points between i* and Albert 

We've decided to underline thwo major similarities between the two methods: 

• The composite system aspect 

The two frameworks take the composite system notion into account. They are not restricted to 

an information system or whatever, to be developed but consider the whole context in which a 

new technological structure has to be embedded. 

Albert will then identify the different agents involved in a system. Furthermore, it proposes the 

regrouping into agent societies in order to handle the real problems complexity. These agents 
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represent several elements of the system such as human beings, hardware, software pieces, etc. 

They can be extemal or intemal to the studied system. 

In the library example, the Albert specification has taken into account the librarian how was 

part and parcel of the library but also the bookshops which only had an indirect link with the 

library management. 

The i* framework adopts a similar view. The Strategic Dependency model decomposes the 

considered system in several actors. If the society or population of agents notions are not 

depicted just as it is in Albert, the Agent-Role-Position model allows to refine the actors 

decomposition proposed by the SD model. 

• Communication between "actors" or "agents" 

The second similarity that we would like to approach in this section, is the communication 

between the system components. We explained the Albert and i* decompositions in agents or 

actors, but the existence of such elements without any kind of communication between them, 

wouldn't mean anything. The two methods express this communication in different ways: 

Albert uses the mechanism of importation and exportation links between the components (state 

components or actions) of the agents structures, along with the cooperation constraints 

associated with each of them. It is therefore possible to answer some questions such as: which 

agent modifies another agent's behaviour and how, which agent is able to perceive the intemal 

state components of another agent and when, etc. 

I* will rather talk about actors dependencies instead of communication between them. The 

Strategic Dependency model depicts a work process in terms of dependency links and even 

refines this notion by identifying four types of dependencies (goal ,resource, task and softgoal). 

Looking at a SD model, one can answer some questions such as: who depends on whom and 

for what. 

4.5.2. Main difference between Albert and i* 

In the previous section, we saw that it exists a clear separation between the two frameworks, 

and each of them thaugth us something different about the library system. 

From the analysis requirements specified by Albert, we leamed for example, that a retumed 

book had to be classified in the library shelves within one day or that an ordinary member 

could borrow a book for 15 days. We also leamed what the librarian had to do in order to rent 

a book, what informations he/she needed. 
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The Albert specification gave us a clear view of what the system was doing along with 

temporal constraints, but it didn't tell us more. With that kind of specification, it's not always 

easy to understand systematicaly what could be wrong in the work process. 

Introducing an information system at that stage of the analysis would lead to the mistake raized 

by M.Hammer: "Don't automate, obliterate". That's why, before talking about the introduction 

of any technologies, we tryed with i* to understand why the present process needed to be 

improve. 

So, it is obvious that the two frameworks are located at two different levels of comprehension. 

Used together, these models lead to a complete undertsanding of the business process, that's 

why it would be very useful to find or to create a systematic binding between them. However, 

it seems yet very difficult establishing such a link. 

4.5.3. Binding between Albert and i* 

We'll analyse the binding idea at two levels: between ail the agent declarations in Albert and 

the SD model of i* , and between one particular agent declaration in Albert and the SR model 

for that actor in i *. 

From Albert specifications to the SD model {and reciprocally) 

An intuitive way to induce automatically an SD model from Albert specifications for a same 

work process, could be the following: 

• each agent represented in Albert would be represented by an actor in i*; 

• each importation link for an action or a state component, from an agent al to an agent a2 

could be represented by a dependency link with the actor al as the depender, the actor a2 as 

the dependee and the action or the state component as the dependum; 

• each exportation link for an action or a state component from an agent al to an agent a2 

could be represented by a dependency link with the actor al as the dependee, the actor a2 

as the depender and the action or the state component as the dependum. 

For example, from figure 4.2. presenting the librarian declaration for the book acquisition 

policy, one could find for the state component « Cat_Book_KW »: 

----+-t--, Cat_Book_KW 
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Unfortunately, one will find out that different problems will occur nearly immediatly 

1. The Albert language represents ail the actions the same way, while the SD model proposes 

four types of dependum. The problem will then happen in the sense Albert toi*: how choosing 

the right representation for a particulal action? 

2. It seems obvious that the state components of the Albert language will be represented by 

resources in i*. However, Albert has chosen to differentiate its state components 

representations according to their types (table, sequences, individual components, ... ), while i* 

doesn't make any difference between the resource dependencies. This time, the problem will 

occur in the sense i * to Albert: how choosing the right representation for a particular resource? 

3. i* proposes softgoal dependencies that is to say dependum which are not clearly defined. 

This notion doesn't exist in Albert. On the contrary, the studied examples have to be complete 

and precise enough to include temporal or performance constraints. How deducing temporal or 

peformance constraints from an SD model? How infer softgoals from an Albert specification? 

4. In Albert, some of the actions or state components intemal to an agent declaration, have no 

importation or exportation links. It means that they won't be represented in the SD model and 

it's nota big deal in the sense Albert to i*, but how are we going to find them from an SD 

model? 

5. This problem concems the actions arguments in Albert. Sorne of them are not enough 

strategic to be represented in an SD model. (and which representation should we adopt?) 

One could find many other problems compromising the binding aspiration between the two 

frameworks . In order to summarize the situation, one could say these problems are directly 

related to the fact that the i* framework is too subjective and not enough formal in at least two 

domains: 

• first of ail, the choice for example between a goal or a task for a same dependum is not 

always ovbvious and in most cases, this choice remains very subjective and has to be 

supported by convincing arguments. 

• the choice of the dependencies that will be modeled, are also very subjective because only 

the dependencies that seem to be strategic enough for the analyst will be represented. 
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From one agent's declaration to the corresponding SR model (and reciprocally) 

We've just seen that the binding between the Albert declaration of the agents and the SD model 

of the whole work process was very difficult to achieve. Most of the problems raised earlier 

can once again, be applied to the link between one agent declaration in Albert and the 

corresponding SR model for that particular agent. 

Indeed, the SR model destined to catch the rationales inherent to a particular way of doing 

things, will only handel the rationales considered to be important enough to be modeled. It also 

represents qualitative goals which have no equivalent in the Albert language. 

Ali these observations lead to the conclusion that at this stage of the i * life, it seems impossible 

to envisage a systematic binding with Albert. The i * framework is still too informal and 

conceded a too important place to the subjectivity of the analyst. 
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Chapter 5: Conclusion 

For many companies, Business Reengineering is the only way to face the new client'demands 

and the concurrence context. In order to succedd in the introduction of an information system 

within a work process, it is really important to define and to understand adequately the work 

organization in which such technological support will be embedded. 

In this thesis, we have presented two frameworks situated at two different levels in the 

requirements engineering activity. We have seen that the Albert language aimed at supporting 

the description of what a system is to do while the i* framework (via the SD and SR models), 

helpes us to catch the strategic dependencies and rationales inherent to the process actors. 

Used together, these two approaches give a full comprehension of a business process but the 

idea of an automatical binding between them still seems to remain a sweet dream. 

Indeed, the difference of levels and the lack of formalism of i* along with a large subjective 

counterpart still constitute an important obstacle. 



From Organization Requirements to System Requirements: a Case Library Case Study 

Bibliography 

[Agostini93] A. Agostini, G. De Michellis, M. A. Grasso, S. Patriarca, Reengineering a 
Business Process With an Innovative Workflow Management System: a Case Study, 
Coocs '93. 

99 

[Blomberg86] J. L. Blomberg, The Variable Impact of Computer Technologies on the 
Organization of Work Activities, Proceedings of the conference on Computer-Supported 
Cooperative Work, pp. 35-42, 1986, also in Computer-Supported Cooperative Work - A 
Book of Readings, I. Greif, ed., pp. 771-781. 

[Briand94] L. Briand, W. L. Melo, C. Seaman, V. Basili, Characterizing and Assessing a 
Large-Scale Software Maintenance Organization-Experience Report-, University of 
Maryland. 

[Bubenko80] J. Bubenko, Information modelling in the context of system development, 
Proceedings IFIP World Congress, 1980. 

[Bubenko93] J. A. Bubenko, Extending the Svope of Information Modeling, Proc. 4th /nt. 
Workshop on the deductive Approach to information Systems and Databases, Lloret-Costa 
Brava, Catalonia, Sept. 20-22, 1993, pp. 73-98. 

[Chung94a] K. L. Chung, B. A. Nixon, E. Yu, Using Quality Requirements to Drive Software 
Development, ICSE-16 Workshop on Research Issues in the Intersection Between Software 
Engineering and Artificial Intelligence, International Conference on Software Engineering, 
Sorrento, Italy, May 16-20, 1994. 

[Chung94b] K. L. Chung, B. A. Nixon, E. Yu, Using Quality Requirements to Systematically 
Develop Quality Software, Fourth International Conference on Software quality, October 
3-5, 1994. 

[Clement87] A. Clement, C. C. Gotlieb, Evolution of an Organization Interface: The New 
Business Department at a Large Insurance Firm, Trans. Office Information Systems, 1987. 

[Curtis92] W. Curtis, M. I. Kellner and J. Over, Process Modelling, Comm. ACM, 35 (9) , 
1992, pp. 75-90. 

[Dar93] R. Darimont, The Development Context in the ICARUS Process Model: Application 
to the Elicitation of KAOS Goals, University of Louvain-La-Neuve (Belgium), Dec 1993. 

[DDDP94a] E. Dubois, P. Du Bois, F. Dubru, M. Petit, The Albert Course Voll: the 
Language, University of Namur (Belgium), June 1994. 

[DDDP94b] E. Dubois, P. Du Bois, F. Dubru, M. Petit, Agent-Oriented Requirements 
Engineering: A Case Study using the Albert Language, University of Namur ( Belgium), 
Septembre 94. 

[DDP93] E. Dubois, P. Du Bois, M. Petit, Elicitating and formalising requirements for CIM 
information systems, University of Namur (Belgium), june 93. 



From Organization Requirements to System Requirements: a Case Library Case Study 100 

[DYDM95] P. Du Bois, E. Yu, E. Dubois, J. Mylopoulos, From Organization Models to 
System Requirements A « Cooperating Agents » Approach, submitted to the 3rd 
International conference on cooperative Information systems Coop/S-95, Vienna (Austria), 
May 9-12, 1995. 

[Dub86] E. Dubois, J. Hagelstein, E. Lahou, A Rifaut, F. Williams, Proceedings ESPRIT' 85 
conference, North Holland, 1986. 

[Finkelstein] A Finkelstein, A Course onRequirements Engineering. 

[Greenspan94] S. J. Greenspan, J. Mylopoulos, A Borgida, On Formai Requirements 
Modeling Languages: RML Revisited, (invited plenary talk), Proc. 16th /nt. Conf Software 
Engineering, May 16-211994, Sorrento, Italy, pp. 135-147. 

[Hammer90] M. Hammer, Reengineering Work: Don't Automate, Obliterate, Harvard 
Business Review, July-August 1990, pp. 104-112. 

[Jacobson] I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard, Object-Oriented Software 
Engineering: A Use Case Driven Approach, Addison-Wesley Publishing Company. 

[Jarke] M. Jarke, Requirements Engineering in the year 2001: On (Virtually) Managing a 
Changing Reality. Workshop on System Requirements: Analysis, Management, and 
Exploitation, SchloB Dagstuhl, Saarland, Germany, October 4-7, 1994. 

[Medina-Morena92] R. Medina-Mora, T. Winogard, R. Flores, The Action Workflow 
Approach to W orkflow Management Technology, Conference on Computer Supported 
Cooperative Work, Nov. 1992, pp. 281-288. 

[Mylopoulos80] J. Mylopoulos, A. Borgida, M . Jarke, M . Koubarakis, Telos: A Language for 
representing knowledge about information systems, ACM Transaction on Information 
Systems, vol. 8, n4, 1990, pp. 325-362. 

[Mylopoulos95] Conceptual Modeling for Information Systems Engineering, International 
chaire at the University of Namur (Belgium), l 995. 

[Schael93] T. Schael, B. Zeller, Workflow Management Systems for Financial Services, 
Coocs '93. 

[Scheer] A W. Scheer, M. Nuttgens, Business Process (Re-)Engineering: Architecture, 
Reference Models and Toolset. 

[Seaman] C. B. Seaman, OPT: Organization and Process Together, CASCON, Toronto 93. 

[Yu93a] E. Yu, An Organization Modelling Framework for Multi-Perspective Information 
System Design, requirements Engineering 1993 - Selected Papers, J. Mylopoulos et al. , 
eds., Tech. Rpt. DKBS-TR-93-2, Dept. Comp. Sei., Univ. of Toronto, July 1993, pp. 66-
86. 



From Organization Requirements to System Requirements: a Case Library Case Study 101 

[Yu93b] E. Yu, J. Mylopoulos, An Actor Dependency Model of Organizational Work- With 
Application to Business Process Reengineering, Proc. Conf Organizational Computing 
Systems (COOCS'93), Milpitas, Calif., Nov. 1-4, 1993, pp. 258-268. 

[Yu93c] E. Yu, An Organization Modelling Framework for Information Systems 
Requirements Engineering, Proc. 3rd Workshop on lnfo. Tech. and Systems, (WITS'93), 
Orlando, Florida, USA, December4-5, 1993, pp.172-179. 

[Yu94] E. Yu, Modelling Strategic Relationships for Process Reengineering, Dept. Comp. 
Sei., Univ. of Toronto, October 1994. 

[Yu94a] E. Yu, J. Mylopoulos, Using Goals, Rules, and Methods To Support Reasoning in 
Business Process Reengineering, Proc. 27th Hawaii /nt. Conf System Sciences, Maui, 
Hawaii, Jan. 4-7, 1994, vol. IV, pp. 234-243. 

[Yu94b] E. Yu, J. Mylopoulos, Understanding « why » in Software process Modelling, 
Analysis, and Design, Proc. 16th /nt. Conf Software Engineering, May 16-21, 1994, 
Sorrento, ltaly, pp. 159-168. 

[Yu94c] E. Yu, J. Mylopoulos, From E-R to A-R - Modelling Strategic Actor Relationships 
for Business Process Reengineering, Proc. 13th /nt. Conf Entity-Relationship Approach, 
December 13-16 1994, Manchester, U.K., to appear. 

[Yu94d] E. Yu, J. Mylopoulos, Towards Modelling Strategic Actor Relationships for 
Information Systems Development - with Exemples from Business Process Reengineering, 
Proc. 4th Workshop on Information Technologies and Systems (WITS'94), Vancouver, 
B.C., Canada, December 17-18, 1994. A version of this paper was presented at the 
Workshop on System Requirements: Analysis, management, and Exploitation, SchloB 
Dagstuhl, Saarland, october 4-7, 1994. 



From Organization Requirements to System Requirements: a Case Library Case Study 

Appendix 

Declaration of the Librarian agent 

r-----7 
1 Access_ 1 
1 Authorized 1 
1 1 
1 Access I 1 .__ __ __. 1 
L--.--.J 

Extra 
Member 

Loan_DB 

Loan 

IS 

B_To_ 
Classify 

Book_Id 

. ... 
Staff 

Member 

Cancel_ 
Loan 

Mem_DB 

Member 

IS 

Register_ 
Member 

... 
Member IS 

Warn_ 
Member 

Book_DB 

Book 

. 
IS 

M_Wait_ 
Book 

• Loan IS 

Delays_List 

Delay 

IS 

Re gis ter_ 
Loan 

Loan 

Ex.tend_ 
Period 

...... --.---.--' • • Staff 

lst_Access 
Library 

. 

◄ Loan IS 

. Member 
Book_Id; ◄ 

Extra Ordinary 
Member Member 

Pays_ 
Fee 

C) 
/ .. ◄ ":. 

Borrow_ 
Book 

Loan • 
IS 

Wait_For_ 
Book 

Member Staff 
Member 

Book_Id Extra Ordinary Book_Id Ordinary Extra Book Id Ordinary Extra 
Member Member - Member Member 

Access_ 
Library 

Member Ordinary E~tra 
Member Member 

Member Member 

Classify_ 
Books 

Book_Id Staff 
Member 

Ask_ 
Extend 

Return_ 
Book 

. . . . 
• Book_Id Ordinary Extra 

Book_Id Ordinary Member Member 
Member 

Figure al : Grapbical declaration of the Libraian agent 
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Delays List: the Librarian agent has the list of all the borrowers (Delay) who are late in 

retuming their book. 

• The type Delay can be described as: 

Book Borrower 
(Book_ld) (IDMember) 

A delay is characterized by the identification of the borrower and of the borrowed book. 

Constraints 

1 LIBRARIAN 1 

BASIC CONSTRAINTS 

• Initial valuation 

Card(B_To_Classify) = { } 

* There are no book to classify 

LOCAL CONSTRAINTS 

• Effects of action 

m.Retum_Book(b): B_To_Classify = add (B_To_Classify, b) 

103 

* when a member returns a book to the library, the librarian puts it the "B_To_Classify" List 

• Causality 

Staff Member. lst_Access_Library(m) ➔ Register_Member (Staff Member, m) 

* When a staff member enters the library for the first time, helshe will be registered by the 

librarian 

m.Borrow_Book(b); m.Pays_Fee(b) ➔ Register_Loan(l) 

with Book_B(l) = b 

Borrower(l) = m 

Waiting(l) = FALSE 

(lsof m = ORDINARY MEMBER 

⇒ length(l) = 15) 
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(lsof m = EXTRA MEMBER 

⇒ length(l) = m.Time(Access_Authorized) 

m.Wait_For_Book(b) ➔ M_ Wait_Book(l) 

with Book_B(l) = b 

Borrower(l) = m 

Waiting(l) = TRUE 

Length(l) = UNDEF 

Date_L(l) = UNDEF 

m.Access_Library(member) with -, in(Mem_DB, m) 

➔ Register_Member (m, member) 

* If an ordinary member tries to acces the library without being registered, the librarian 

registers himlher in the member database 

m.Ask_Extend(b) ➔ Extend_Period(l) 

with Book_B(l) = b 

Borrower(l) = m 

W aiting(l) = F ALSE 

Length(l) = 15 

m.Retum_Book(b) ➔ Cancel_Loan(l) 

• Capability 

with Book_B(l) = b 

Borrower(l) = m 

.ID(Register_Member(m)/-, in (Mem_DB,m) 

.ID(M_ Wait_Book(l)/ in (Book_DB, Book_B(l)) 

.ID(Wam_Member(b).m/ 3 d E Delays_List: Book(d) = b 

Borrower(d) = m) 

.ID(Extend_Period(l)/ -,31' E Loan_DB: 1 :tc l' 

A Book_B(l) = Book_B(l') 

A Waiting(l') = TRUE) 

.ID(Cancel_Loan(l)/ in (Loan_DB, 1) 
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COOPERATION CONSTRAINTS 

• Action Perception 

~(m.Classify _Book(b )/TRUE) 

~(m. lst_Access_Library/TRUE) 

~(m.Access_LibraryfTRUE) 

~(m.Return_Book(b )/TRUE) 

• State lnf ormation 

XK(B_To_Classify.mfTRUE) 

• Action Information 

~(Warn_Member(b, bor).m / bor = m) 

* the librarian can only warn a borrower how is late in returning a book b 

• State Perception 

~(m.Access_Authorized/TRUE) 

~ (IS.Loan_DBfTRUE) 

~(IS.Mem_DB/TRUE) 

~(IS.Book_DB/TRUE) 

~(IS.Delays_List/TRUE) 
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Declaration of the Staff Member agent 

Loan_DB 

Loan 

IS 

Mem_DB 

Member 

Borrowed_ 
Books 

Book_Id 

IS 

Book_DB 

Book 

IS 

lst_Access 
Library 

C) 
. ' ◄ 

Member Librarian 

Return_ 
Book 

C) C) 
. . . . ♦ ·, 

B_To_ 
Classify 

1 Book_Id 1 

Librarian 

Classified_ 
Books 

Book_Id 

Books tore 

Borrow_ 
Book 

. 
► ... 

Bookstore IS Book_ld 

Classify_ 
Books 

♦ ·• ... 
Book_Id 

◄ 
IS 

Book_Id 
• 
IS Bookstore Book_Id Bookstore Librarian 

Ask_ 
Extend 

C) 
Book_Id 

Authorize_ 
Access 

C) 
. 
◄ 

Integer Extra 

Warn_ 
Member 

C) 
. . 

Member 

Book_Id Librarian 

Figure a2: Graphical declaration of the Staff Member agent 
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1 STAFF MEMBER j 

BASIC CONSTRAINTS 

• Initial valuation 

Card(Borrowed_Books) = { } 

* the staffmember has no borrowed books 

LOCAL CONSTRAINTS 

• Effects of action 

Retum_Book(b): Borrowed_Books = remove(Borrowed_Books, b) 

Borrow_Book(b): Borrowed_Books = add(Borrowed_Books, b) 

• Capability 

.ID(Retum_Book(b )/in (Borrowed_Books, b)) 

.ID(Classify _Books(b )/in (Librarian.B _ To_ Classify, b)) 

.ID(Borrow _Book(b )/in (Bookstore.Classified_Books, b)) 

.ID(Wait_For_Book(b)/ in (Book_DB, book) with Identification(book) = b 

Borrowed(book) = TRUE 

.ID(Ask_Extend(b)/ (in (Borrowed_Books, b)) 

A (-. in (Loan_DB, 1) 

with Book_B(l) = b 

A Waiting(l) = TRUE)) 

COOPERATION CONSTRAINTS 

• State perception 

~(Bookstore.Classified_Books / TRUE) 

~(IS.Mem_DB / TRUE) 

~(IS.Book_DB / TRUE) 

~(IS.Loan_DB / TRUE) 

~(Librarian.B_To_Classify / TRUE) 
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• Action information 

ÂK(Borrow_Book(b).m / TRUE) 

ÂK(Return_Book(b).m / TRUE) 

ÂK(lst_Access_Library.Librarian / TRUE) 

ÂK(Authorize_Access(i).Em / TRUE) 

ÂK(Classify_Books(b).m / TRUE) 

ÂK(Ask_Extend(b).IS / TRUE) 

ÂK(Wait_For_Book(b).IS / TRUE) 

Declaration of the IS agent 

..-----7 
: Todays_ 1 

Date 1 
1 ..---------. 1 
1 j Date j 1 
I _____ .J 

Loan_DB 

Loan 

. . 
• ◄ 

Librarian Staff 

Book_DB 

Book 

► • . 
Member Librarian Ordinary 

~ 

Extra 

Extend_ 
Period 

Delays_List 

Delay 

' Librarian 

Ask_ 
Extend 

C) 
. . 

Loan Librarian Book_Id 

Mem_DB 

j Member 1 

. . 
• ◄ 

Librarian Staff 
Member 

Wait_For_ 
Book 

. . . 
Book_Id Staff 

Member Member 

Determine 
_Date 

c=:> 
! 
Date 

Return_ 
Book 

C) 
Book_Id 

. . 
Staff 

... 
Staff 

Member 

Borrow_ 
Book 

Book_Id Staff 
Member Member Member Member 

Re gis ter_ Register_ Cancel - M_Wait_ 
Loan Member Loan Book 

c=:> c=:> c=:> c=:> 
Loan Librarian Member Librarian Loan Librarian Loan Librarian 

Figure a3 : Graphical declaration of the IS agent 
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IS 

BASIC CONSTRAINTS 

• Derivation rule 

Delays_List = { d} : 

V d E Delays_List 

⇒ :3 1 E Loans_DB: 

Borrower(l) = Borrower(d) 

Book_B(l) = Book(d) 

Date_L(l) + Length(l) > Todays_Date 

• Initial valuation 

Card(Borrowed_Books) = { } 
Loan_DB = { } 

LOCAL CONSTRAINTS 

• Effects of action 

Deterrnine_Date(d): Todays_Date = d 
sm.Borrow_Book(b):Loan_DB = Add(Loan_DB, 1) 

with Book_B(l) = b 
Borrower(l) = sm 
Date_L(l) = Todays_Date 
Wainting(l) = FALSE 
Length(l) = 15 

sm.Return_Book(b): Loan_DB = Remove (Loan_DB, 1) 
with Book_B(l) = b 
Borrower(l) = sm 

sm.Wait_For_Book(b): Loan_DB = Add(Loan_DB, 1) 
with Book_B(l) = b 
Borrower(l) = sm 
Date_L(l) = Todays_Date 
Wainting(l) = TRUE 
Length(l) = 15 

sm.Ask_Extend(b): Loan_DB = Modify(Loan_DB, 1) 
with Book_B(l) = b 
Borrower(l) = sm 
Date_L(l) = Todays_Date 
Wainting(l) = FALSE 
Length(l) = 15 

l.M_Wait_Book(l): Loan_DB = Add(Loan_DB, 1) 
with Date_L(l) = todays_Date 
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l.Cancel_Loan(l): Loan_DB = Remove(Loan_DB, 1) 
1. Register_Member(m): Mem_DB = Add(Mem_DB, m) 
1.Register_Loan(l): Loan_DB = Add(Loan_DB, 1) 

with Date_L(l) = Todays_Date 
l.Extend_Period(l): Loan_DB = Modify(Loan_DB, 1) 

with Date_L(l) = Todays_Date 

COOPERATION CONSTRAINTS 

State Information 

.;tK(Loan_DB.m/TRUE) 

.;tK(Book_DB.rnffRUE) 

.;tK(Delays_List.Librarian/TRUE) 

.;tK(Mem_DB.mffRUE) 

• Action Perception 

.;tK(l.Extend_Period(l)ffRUE) 

.;tK(l.Register_Loan(l)ffRUE) 

.;tK(l.Register_Member(m)ffRUE) 

.;tK(l.Cancel_Loan(l)ffRUE) 

.;tK(l.M_ Wait_Book(l)/TRUE) 

.;tK(srn.Borrow _Book(b )ffRUE) 

ÀK(sm.Retum_Book(b )/TRUE) 

.;tK(srn. W ait_For_Book(b )ffRUE) 

.;tK(sm.Ask_Extend(b )ffRUE) 
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Declaration of the Ordinary Member agent 

Book_DB 

Book 

. 
IS 

Classified_ 
Books 

Book_Id 

Bookstore 

Borrowed_ 
Books 

Ask_ 
Ex tend 

Wait_For 
Book 

Access_ 
Library 

Book_ld . . 
◄ ◄ 

Book_ld Librarian Book_Id Librarian Member 

Borrow_ 
Book 

. ... 
Book_ld Librarian 

. •• 
Bookstore Book_ld 

Pays_ 
Fee 

. 
◄ 
Librarian 

Warn_ 
Member 

Book_ld . 
Librarian 

Return_ 
Book 

. 
◄ 

Book_ld Librarian 

Figure a4 : Graphical declaration of the Ordinary Member agent 

1 ORDINARY MEMBER 1 

BASIC CONSTRAINTS 

• Initial valuation 

Card(Borrowed_Books) = { } 

LOCAL CONSTRAINTS 

. 
◄ 

Librarian 
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• State behaviour 

Card(borrowed_Books):s; 2 

• Effects of action 

Return_Book(b): Borrowed_Books = remove(Borrowed_Books, b) 

Borrow_Book(b): Borrowed_Books = add(Borrowed_Books, b) 

• Causality 

Borrow _Book(b) ➔ Pays_Fee(b) 

• Capability 

XO(Retum_Book(b )/in (Borrowed_Books, b)) 

XO(Borrow_Book(b)/in (Bookstore.Classified_Books, b)) 

XO(Ask_Extend(b )/in (Borrowed_Books, b) 

F(W ait_For_Book(b )/in (Borrowed_Books, b) 

F(Borrow _Book(b)/card(Borrowed_Books) = 2) 

COOPERATION CONSTRAINTS 

• State perception 

ÂK(IS.Book_DB / TRUE) 

ÂK(Bookstore.Classified_Books / TRUE) 

• Action information 

;tK(Return_Book(b).Librarian / TRUE) 

;tK(Access_Library.Librarian / TRUE) 

;tK(Pays_Fee(b).Librarian / TRUE) 
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Declaration of the Extra Member agent 

Borrowed_ 
Books 

Book_ld 

Book_DB 

Book 

' IS 

r-----7 
1 Access - 1 
1 Authorized 1 
1 1 
1 Access 1 
1 1 
L--~--.J 

' ... 
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Books 

Book_ld 
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Wait_For 
Book 

~ 
. 
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Access -
Library 

~ 
. 

Librarian Book_ld Librarian Member 
◄ 

Librarian 

Borrow_ 
Book 

' ... 
Book_Id Librarian 

. .... 
Bookstore Book_ld 

Pays_ 
Fee 

. 
◄ 

Librarian 

Warn_ 
Member 

Book_ld . 
Librarian 

Return_ 
Book 

. 
◄ 

Book_Id Librarian 
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Integer 
Member 

Figure a5 : Graphical declaration of the Extra Member agent 

EXTRA MEMBER 1 

BASIC CONSTRAINTS 

• Initial valuation 

Card(Borrowed_Books) = { } 
Access_Authorized = FALSE 
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LOCAL CONSTRAINTS 

• State behaviour 

Card(borrowed_Books)~ 2 

• Effects of action 

Retum_Book(b): Borrowed_Books = remove(Borrowed_Books, b) 

Borrow_Book(b) : Borrowed_Books = add(Borrowed_Books, b) 

m.Authorize_Access : Access_Authorized = TRUE 

• Causality 

Borrow_Book(b) ➔ Pays_Fee(b) 

• Capability 

XO(Retum_Book(b)/in (Borrowed_Books, b)) 

XO(Borrow_Book(b)/in (Bookstore.Classified_Books, b)) 

XO(Ask_Extend(b)/in (Borrowed_Books, b) 

F(W ait_For_Book(b )/in (Borrowed_Books, b) 

F(Access_Library/ Access_Authorized = F ALSE) 

F(Borrow _Book(b)/card(Borrowed_Books) = 2) 

COOPERATION CONSTRAINTS 

• State perception 

~(IS.Book_DB / TRUE) 

~(Bookstore.Classified_Books / TRUE) 

• Action information 

~(Retum_Book(b). Librarian / TRUE) 

~(Access_Library . Librarian / TRUE) 

~(Pays_Fee(b). Librarian / TRUE) 

• State Information 
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.,tK(Access_Authorized.librarian/TRUE) 

• Action Perception 

.,tK(m.Authorize_Access(i)ffRUE) 

Declaration of the Bookstore agent 

t,! 

Extra 
Member 

Classified_ 
Books 

Book_ld 1 

' + 
Staff Ordinary 

Member Member 

Borrow_ Return - Classify_ 
Book Book Books 

~ C) ~ 
. . . . ♦ . 

♦ 

Ordinary Staff Extra Book_ld Book_ld Staff Book_ld 
Member Member Member Member 

Figure a6: Graphical declaration of the Bookstore agent 

Constraints 

Bookstore 

LOCAL CONSTRAINTS 

• Effects of action 
m.Borrow_Book(b): Classified_Books = Remove(Classified_Books, b) 

m.Return_Book(b): Classified_Books = Add(Classified_Books, b) 

m.Classify_Books(b): Classified_Books = Add(Classified_Books, b) 

COOPERATION CONSTRAINTS 

• Action Perception 

. . . 
Staff 

Member 
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XK(m.Borrow _Book(b )ffRUE) 

XK(m.Retum_Book(b )ffRUE) 

XK(m.Classify _Book(b )ffRUE) 

• State lnf ormation 

~(Classified_Books.mffRUE) 
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