
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

From Organization Requirements to System Requirements

a Library System Case Study

Nigot, Sylvie

Award date:
1995

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/from-organization-requirements-to-system-requirements(2019946f-b9f4-4cd6-9013-deb96e4abd87).html

Facultés Universitaires Notre-Dame de la Paix, Namur
Institut d'Informatique

From Organization Requirements
to System Requirements:

a Library System Case Study

Sylvie Nigot

Promoteur: Eric Dubois

Mémoire réalisé en vue de l'obtention du grade de Licencié et Maître en
informatique

Année académique 1994-1995

Je souhaite remercier ceux qui ont contribué de près ou de loin à la réalisation de ce mémoire
et je tiens plus particulièrement à exprimer ma gratitude envers

Monsieur E. Dubois pour son aide précieuse

M. Petit et l 'équipe ICARUS pour sa disponibilité

E. Yu et J. Mylopoulos pour leur acceuil chaleureux ainsi que leur encadrement au cours de
mon stage

From Organization Requirements to System Requirements: a Case Library Case Study

From Organization Requirements to System Requirements:
a Library Case Study

Abstract

1

The requirements engineering activity consists in two levels: one of them aims at

specifying "what" has to be done while the other trys to describe "why" things are

done the way they are.

Through the application of the Albert language and the i* (prononced istar)

framework to the main functionalities of a library system, we show that the two

levels interaction can be extremely efficient in order to achieve a better

understanding along with an improvement of the process. Unfortunately, if the

cooperation of the two frameworks seems efficient, an automatic binding between

them still looks improbable.

Résumé

L'activité d'ingénierie des besoins consiste en deux niveaux: l'un s'attachant à la

spécification du "quoi", l'autre s'attardant d'avantage à la modélisation du

"pourquoi" des choses.

Au travers del' application du langage Albert et de l'approche i* {prononcée istar)

aux fonctionnalités d'une bibliothèque, nous montrons que l'interaction de ces deux

niveaux peut se révéler extrêmement efficace en vue d'une meilleure compréhension

et d'une amélioration sensible du système. Si la cooperation entre ces deux

approches semble donner de bons résultats, la possibilité de l'établissement d 'un lien

systematique entre elles reste encore improbable.

From Organization Requirements to System Requirements: a Case Library Case Study 2

Table of contents

CHAP'I'ER 1: INTRODUCTION ... 3

CHAP'I'ER 2: THE ALBERT LANGUAGE ... 4

2.1. INTRODUCTION 4
2.2. THE LANGUAGE CONSTRUCTS 5

2.2.1 . Introduction 5
2.2.2. Exemple: the grocer's shop system 5
2.2.3. Declarations 6
2.2.3. Constraints 13

CHAPITRE 3: THE ISTARFRAMEWORK .. 23

3.1. INTRODUCTION 23
3.2.1. Modelling features 24

3.3. THE STRATEGIC RATIONALE M ODEL 32
3.3.1. Modelling features 32

CHAPTER 4: FORMAL SPECIFICATION OF A LIBRARY SYSTEM .. 36

4.1. INTRODUCTION 36
4.2. INFORMAL DESCRIPTION OF THE CASE STUDY 37

4.2.1. Definition 37
4.2.2. Support 37
4.2.3. Access to the library 37
4.2.4. Book acquisition policy 37
4.2.5. Loan policy 38

4.3. SPECIFICATION BEFOREANY CHANGE 40
4.3.1. Albert speciji.cation 40
4.3.2. i* speciji.cation 70

4.4. INTRODUCTION OF THE INFORMATION SYSTEM 79
4.4.1. IS description 79
4.4.2. i* Description 79
4.4.3. Albert speciji.cation 82

4.5. CORRELATION BE1WEEN ALBERT AND I* 93
4.5.1 Common points between i* and Albert 93
4.5.2. Main difference between Albert and i* 94
4.5.3. Binding between Albert and i* 95

CHAP'I'ER 5: CONCLUSION ... 98

APPENDIX 102

From Organization Requirements to System Requirements: a Case Library Case Study 3

Chapter 1: Introduction

Requirements Engineering and Process modelling activities constitue crutial steps in an

Information System development process. Indeed, these activities allow an analyst to reach a

full understanding of a work process and this, at different levels.

On one hand, the requirements specifications will provide a description of what a system is

supposed to do and on the other hand, Process modelling will lead to the comprehesion of why

this system is needed.

In this thesis, we will studied two frameworks (the Albert language and the i* framework),

each of them "belonging" to one of these to levels.

In chapter 2, we will describe the Albert language and illustrate its main features through the

example of a grocer's shop system. We will see its mechanisms of agents decomposition and

declaration along with the constraints specifications.

In chapter 3, we will present the i * framework by first describing the Strategic Dependency

(SD) model followed by the Strategic Rationale (SR) model. Once again, we will illustrate

these models features through an example.

Chapter 4 will represent the heart of this thesis. After having specified in an informa! way the

main functionalities (book acquisition policy and loan policy) of a library case study, we will

apply both approches (Albert and i*) in order to redesign the library system. The specification

procedure will be the following:

• formal specification of the existing system using the Albert language

• organization modelling of the library using the SD model

• Research of alternatives and improvement of the work process by the mean of the SR model

• modelling of the new organization with an SD model

• formal specification of the resulting library system

In the last section of this chapter, we will initiate a little analysis in order to respond the

question of knowing if an Albert specification could automatically induce the corresponding i *

model and vice versa.

From Organization Requirements to System Requirements: a Case Library Case Study 4

Chapter 2: The Albert language

2.1. Introduction

« ... Requirements Engineering is the statement of desired functional and performance

characteristics of a software system independently of any actual realization ... » [Dub86]

The Requirements Engineering activity is a critical step in the development of information

systems and softwares. It consists in a work process specification in order to reach a precise

and complete problem statement. it is thus crucial to cope with functional and non-functional

requirements.

« NFRS define global constraints on a software system, such as development costs, operational

costs, performance, reliability, ... Should not be confused with functional requirements, which

impose requirements on the fonction of a system.[Mylopoulos95]

In order to represent requirements, different trends can be identified: in one hand, we have

different languages based on mathematical and logical theories. [Bub80] [Mylopoulos90]

On the other hand, based on an object-oriented paradigm, we propose to present in this

chapter, the Albert' language developed within an ESPRIT II project called ICARUS.

([DDDP94a], [DDDP94b], [DDP93], [YDDM95])

This framework supports the requirements engineering of composite systems within

organizations. By composite systems, we mean systems composed of heterogeneous

components. The specification won't be limited to the software developed and will rather take

into account the environment in which this system will be embedded. It includes, hardware

pieces, humans, etc.

The Albert language consists of concepts and models that focus on understanding the "whats"

underlying the requirements engineering activity. It will include the description of the set of

functionalities necessary to achieve the organization 's goal.

1 Agent-oriented Language for Building and Eliciting Requirements for Real-Time systems

From Organization Requirements to System Requirements: a Case Library Case Study

2.2. The language constructs

2.2.1. Introduction

5

Basically, the formal language is based on a mathematical language, the temporal logic, suited

for describing histories. This logic is itself an extension of mutli-stored first order logic, still

based on the concept of variables, predicates and fonctions. Three extensions are taken into

account :

• the introduction of actions;

• the introduction of agents together with their properties (responsibilities for actions, for

providing perceptions, ...). This object-oriented concept can also be seen as a possible way

of constructing large specifications in terms of more fmer pieces, each of them

corresponding to the specification of an agent guaranteeing a part of a global behaviour of

the whole system;

• the identification of typical patterns of constraints which support the analyst in writing

complex and consistent formulas. In particular, typical patterns of formulas are associated

with actions.

Using the language involves two activities:

• writing declarations in order to introduce the vocabulary of the considered application;

• expressing constraints, i.e. logical statements which allow the dinstinction between possible

behaviours of the system and unwanted ones.

A graphical syntax (with a textual conterpart) is used to introduce declarations and to express

some typical constraints frequently encountered. The expression of the other constraints is

purely textual.

2.2.2. Exemple: the grocer' s shop system

Throughout this chapter, we will apply the Albert features to a simple example about a

grocer' s shop and its clients.

From Organization Requirements to System Requirements: a Case Library Case Study 6

Description of the case

Clients go to a grocer' s shop. They choose different items in the shop, and put them in their

trolley. When they have finished, they go and present their items to the cashier. The latter will

calculate the bill and present it to the client who will pay it. The grocer has to remove the

money from the till each tirne the amount is superior to a given lirnit and has to put it in

security. He/she is also responsible for the contents of the grocer's shop and items in the "fresh

products" category can't stay in the shelves for more than two weeks.

2.2.3. Declarations

In the specification of composite systems, the declarations consist in the identification of the

agents together with their states structure and the list of the actions. Importation and

exportation links between agents are also graphically described.

Declaration of a society or agents hierarchy

A composite system specification can rapidely become very big, that' s why, in order to reduce

this complexity, it becomes very useful to group agents into societies. These societies can

themselves be grouped together to form larger societies. Actually, the agents are organized in

terms of a hierarchy where we distinguish between:

• Complex agents (made of finer agents);

• Terminal agents which can no further be decomposed

A society have no own structure nor behaviour. Only the behaviour of an individual agent will

be formaly specified.

The whole system is of course considered as an agent society.

Graphically

A society is represented by an ellipse containging smaller ellipses. Multiple agent classes, made

of several instances, are represented by cascaded ellipses. Each ellipse is labelled by the agent

class identifier.

From Organization Requirements to System Requirements: a Case Library Case Study 7

The Grocer's shop example

The graphical declaration associated with Grocery' s System described earlier, 1s depicted

figure 2.1.

Grocer' System

Grocer' s shop

C)

Figure 2.1 : Graphical declaration of the Grocer's System

The society Grocer's system is composed of two terminal agents: A Client (represented by a

multiple agent class) and the Grocer's shop.

Declaration of an agent

The declaration part of an agent consists in the description of its state structure and the list of

actions happening along its history.

The structure of a state is defined in terms of entities which can be grouped in populations or

be individuals, values which are used for characterising attributes of entities and relationships

between entities. On top of these usual concepts, the Albert language also uses data types

which correspond to:

• predifined data types (STRING, BOOLEAN, INTEGER, ...) equipped with their usual

operations;

• more complex types built by the specifier using a set of predifined type constructors like

Set, List, Cartesian Product, ...

• elementary types which are defined by the user. For that specific kind of type, there is no

associated structure;

• specific types corresponding to agent identifiers. For example, each Client agent has an

identifier with a CLIENT type.

From Organization Requirements to System Requirements: a Case Library Case Study 8

Actions have arguments belonging to data types.

Graphically

A state component is represented by a box labelled by the state component identifier with a

rectangle inside (or two linked rectangles for a table). This rectangle indicates the type of the

elements of the state component.

We have different boxes according to the type of the represented state component. See figure

2.2.

As shown in figure 2.2(e), a derived component is linked by a broken arrow to the state

component from which it is derived.

r-----7
1 Indiv 1 Seq
1 1 Table

1 IType_Elemj 1 IType_Elemj j Index-type HType_Elem j I ______ I

(b) Individual (c) Sequence
(d) Table element of elements

Set
/

Derived

jType_Eleml IType_Eleml

{a) Set of {e) Derived
elements component

Figure 2.2: graphical representations of state components

An action is represented by an oval inside a box. The box is labelled by the name of the action.

Arguments can characterize actions. As we saw, ail arguments are typed and their types are

linked to the box with an arrow starting from the action box.

Figure 2.3, the action Action_3 has one argument of type Type_Arg .

Importation and exportation of elements

Diagrams also include graphical notations making possible to distinguish between interna! and

external actions and state components, and to express the visibility guaranteed by the agent to

the outside.

The interna! structure of an agent is represented by a parallelogram and information within this

parallelogram is under the control of the described agent.

From Organization Requirements to System Requirements: a Case Library Case Study 9

• lnside the parallelograrn, boxes without dotted arrow (for a state component or an action),

indicate that this information remains private and therefore, won't be seen from the outside

(for a state component), or won't have any effect on other agent' s behaviour (for an

action).

In figure 2.3, which summarizes global y the graphical representation of an agent declaration,

one can see that the action Action_] will only affect the behaviour of the concerned agent.

Equally, the state component Table will only be perceived by this agent.

Conversely, boxes with arrow(s) denote state components which are exported to the indicated

agent(s). The action Action_2 }-Vill be exported to Agent_2 and Agent_3 while the Set element

will be only perceived by Agent_2.

• Information outside from the parallelogram denotes elements which are imported from

other agents. Action_3 is from the Agent_3 initiative but will affect the Agent_l's

behaviour.

Set Table

1 Type_elem 1
!Index_ TypeHElem_Typel

.
◄

Agent_2
Action_l

Action_3

Type_Arg Agent_3

Action_2

. . . .
• • Agent_2 Agent_3

r-----7

1 Indiv Elem 1
1 - 1

1 .------, 1
1 1 Type_elem l 1

L----.---1 .
Agent_2

Figure 2.3 : Graphical declaration of agent_l

From Organization Requirements to System Requirements: a Case Library Case Study

The Grocer's example

Figure 2.1. shows us two terminal agents: the Client and the Grocer's agents.

Their respective graphical representations are shown in figure 2.4, figure 2.5 .

Declaration of the Client agent

10

From the graphical declaration depicted on figure 2.4, it can be read that the Client state is

made of:

1. Two interna! state components (Trolley and Status_C)

Trolley: This component represents the set of the items (item) the client choosed m the

grocer's shop.

• The type Item can be described by:

Name Price Category lt-ID
(String) (lnteger) (Cat) (lnteger)

Bach item found in a client's trolley is characterized by its name, its price, a category and an

identification.

• The type Cat is defined by:

Cat = { Fresh products, tinned food, drinks}

Status C: Once a client has entered the grocer's shop, he/she has a status (Status).

• The type Status is defined by:

Status = { shopping, Presenting, has paid}

A client is shopping or he/she's presenting his/her trolley to the grocer or he/she has already

paid for the goods.

2. One extemal state component (Items_Shop).

From Organization Requirements to System Requirements: a Case Library Case Study

Items Shop: it represents the set of items (Item) available in the shop.

Trolley

Item

' ..,
Grocer's

Items_
Shop

Item

Grocer's

Choose_
Item

. ..
Item Grocer's

Pays_Bill

. ..
Integer Grocer' s

Present_
Bill

.
Integer Grocer' s

Present_
Trolley

• Grocer's

Empty_
Trolley

Figure 2.4 : Graphical declaration of the Client agent

11

3. Four intemal actions (Choose_Item, Present_Trolley, Pays_Bill and Empty_Trolley) for

which the Client has the initiative.

Choose Item: the client agent choose an item (Item) proposed in the grocer's shelves, and put

it in its trolley.

Present Trolley: the client presents his/her trolley to the grocer' s in order to pay the different

items.

Pays Bill: the agent pays the bill (Integer) to the grocer's .

From Organization Requirements to System Requirements: a Case Library Case Study 12

Empty Trolley: the client empties his/her trolley

4. One action (Present_Bill) perceived by the Client has an extemal initiative.

Present Bill: The Grocer's gives to the client the bill (Integer) for all its buyed items.

Declaration of the grocer's agent

The graphical declaration depicted on figure 2.5 is related to the Grocer' s shop structure.

We'll only describe the new elements. From this figure, it can be read that:

1. The Grocer's agent has one extemal state component (Trolley).

2. Three actions are issued by the Grocer's agent (Present_Bill, Remove_M_Till and

Remove_Item).

Remove M Till: the grocer removes the money present in the till and puts it in security.

Remove Item: the grocer removes an item from the grocer's shelves.

3. this agent perceives three extemal actions (Present_Trolley, Choose_Item and Pays_Bill)

from the Client initiative.

4. Finally, this agent has four intemal state components (Items_Shop, Till, Limit and

Remove_Time).

Till: this individual element represents an amount of money present in the till at a certain time.

Limit: it represents the maximum amount of money allowed to stay in the till

Remove Time: this state component is derived from the limit and the till components and it

indicates when it' s time to rem ove the money from the till.

From Organization Requirements to System Requirements: a Case Library Case Study

Trolley

ltem_C

Client

Remove_
M_Till

Items_
Shop

Item

.
"' Client

Present_ Choose - Pays_Bill
Trolley Item

C=:> C=:> C=:>
-. .

Client Item

Present_
Bill

. . . .
Integer Client Integer Client

-----, -----,
: Till : Limit

1 .----.... 1 1 C=:> : 1 lnteger 1 : :1 ln-t-eg-er...,I :

Intege, Client ~lie:--v---
Remove_

Item

: Remove 1
Time - 1

1 .----.... 1

C=:>
!

u~~e~n~:
Item

Figure 2.5 : Graphical declaration of the Grocer' s agent

2.2.3. Constraints

13

Each agent is defined by a set of possible lives2 limited by the expression of different kinds of

constraints.

Their expression is formal and based on multi-sorted first order logic. They use the concept of

variables, predicates and fonctions. The different constraints are grouped into three families:

Basic Constraints, Local constraints and Cooperation Constraints.

The complete formal specifications associated with the Grocer' s shop and the Client agents

have been described at the end of this chapter.

Basic constraints

Basic constraints are used to describe the initial state of an agent and to give the derivation

rules for the derived components.

2 A life is an (in)finite sequence of sates and actions. Each state (structured in terms of entities) is labelled by a
time value which increase ail along the life. Actions occur between two successive States and can be
simultaneous. Constraints are used for purning the (usually) infinite set of lives [DDDP94a].

From Organization Requirements to System Requirements: a Case Library Case Study 14

• The derivation rules will give the relationship between derived components values and the

state components values from which they are derived.

Remove_Time 1::,. Till~ Limit

* /t ' s time to remove the money from the tilt when the amount equals or is upper than the

maximum limit.

• The intitial valuation groups the constraints describing the initial states of the agent life.

Trolley= { }

This means that the client's trolley is empty at the beginning of the system life.

Local constraints

Local constraints are related to the internai behaviour of the agent. They are classified under

four headings: state behaviour, effects of actions, causality and capability.

• State behaviour

Constraints under this heading express properties of the states or properties linking states in an

admissible life of an agent.

First of all, there are constraints which are true in all states of the possible traces of an agent.

These constraints are written according to the usual rules of strongly types first order logic.

They are formed by means of logical connectives: -, (not), A (and), v (or), ⇒ (implies), ç:::> (if

and only if), V (for all), 3 (there exists).

On top of constraints which are true in all states (usually referred as invariants), there are

constraints on the evolution of the system (like, e.g. if this property holds in this state, then it

holds in all future ones) or referring states at the different times. Writing these constraints

requires to be able to refer to more than one state at a time. This is done in the language by

using additional temporal connectives which are prefixing statements to be interpreted in

different states. These connectives are inspired from temporal logic:

if 'I' and cp are statements:

• ◊ cp: cp is true sometimes in the future (including the present);

• ♦ cp: cp is true sometimes in the past (including the present);

• D cp: cp is always true in the future (including the present);

• ■ cp: cp is always true in the past (including the present);

• cp U' 'I': cp is true from the present until 'I' is true (strict);

From Organization Requirements to System Requirements: a Case Library Case Study 15

• <p S 'I': <pis true back from the present since 'I' was true (strict).

There are constraints related to the expression of real-time properties. There are needed to

describe delays or time-outs (like, e.g., « an element has to be removed from its population

within 15 minutes ») and are expressed by subsripting temporal connectives with a time period.

This time period is made precise by using usual time units: sec, min, hours, days, ...

Cat (it) = { fresh product} ⇒ -, D >15 days In(ltems_Shop, it)

* An item of the 'fresh product' category can 't stay for more than 15 days in the grocer 's

shelves.

• Effects of actions

Under this heading, we describe the effects of actions which may alter states in lives. Only

actions which bring a treacable change are described here.

In the decription of the effect of an action, we use an iinplicit frame rule saying that states

components for which no effect of actions are specified do not change their value in the state

following the happening of a change.

The effect of an action is expressed in terms of a property characterising the state which

follows the occurrence of the action. The value of a state component in the resulting state is

characterised in terms of a relationship reffering to:

1. the action arguments;

2. the agent responsible for this action (if this action is an extemal one, the name of the agent

is prefixing the action);

3. the previous state of the history.

In the pattern associated with the definition of an action, the left hand side of the equation

characterises the state as it results from the occurrence of the action while the right hand side

refers to the state as it is before the occurrence of the action.

Choose_Item(it): Trolley= Add(Trolley, it)

* Each time a client chooses an item in the grocer's shop, it puts it in its trolley, increasing

the number of the choosen items.

From Organization Requirements to System Requirements: a Case Library Case Study 16

• Causality

This heading is related to the causality relationship existing between some occurences of

actions.

Expressing causality rules with usual temporal connectives may appear very cumbersome. To

this end, the language is enriched with specific connectives which allow to specify, for

example, that an action has to be issued by the agent as a unique response to the occurrence of

another action (brought or not by the agent). A common pattern is based on the use of the

« ➔ » symbol which is not to be comfused with the usual « ⇒ » logical symbol.

The « ➔ » symbol can be quantified by a temporal operator to express performances

constraints.

The right part of a commitment (the reaction) may only refer actions which are issued by the

agent (i.e. actions which are not prefixed).

Left and right parts of a commitment may be composed of one or more occurences of actions.

In case of more than one, occurences may be composed in the following ways:

1. « actl ;act2 » which means « an occurrence actl followed by an occurrence act2 »;

2. « actl ® act2 » which means « an occurrence actl and an occurrence act2 (at the same

time) »;

3. « actl Il act2 » which means « an occurrence actl and an occurrence act2 (in any order);

4. « actl EB act2 » which means « an occurrence actl or an occurrence act2 (exculsive or).

Sorne more complex expressions are provided to express iterative applications of actions.

Client.Present_Trolley ➔ Present_Bill(i, Client)

* When a client presents hislher trolley, he/she receives the bill for the chossen items

• Capability

Under this heading, is described the role of the agent with respect to the occurrence of its own

actions. To this end, we are still using an additional extension of the classical first-order and

temporal logic by making possible to express permissions associated with an agent. We then

consider three specific connectives allowing the expression of obligations, preventions and

exclusive obligations (respectively the t,, the F and the Xt, connectives).

The pattern for an obligation « t, (<int-action>l<situation>) » expresses that the action has to

occur if the circumstances expressed in the situation are matched (these circumstances refer to

conditions on the current state).

From Organization Requirements to System Requirements: a Case Library Case Study 17

The pattern for a prevention « F (<int-action> / <situation>) » expresses that the action is

forbidden when the circumstances expressed in the situation are matched.

The pattern « Xô (<int-action>/<situation>) » is used to express exclusive obligation, it is a

shorthand for the combination of « ô (<int-action>/<situation>) » and « F (<int-action> /-,

<situation>) » .

The default rule is that all actions are permitted whatever the situation.

Using the connectives makes possible to express the control that the agent has with respect to

its interna! actions.

F(Remove_Item/ Status '# "has paid")

* A client can only remove the items from hislher trolley if helshe has already paid for them.

Cooperation constraints

This family of constraints specifies how the agent interacts with its invironrnent, i.e. how it

perceives actions performed by other agents (action perception), how it can see parts of the

state of other agents (state perception), how it lets other agents know what actions it does

(action information) and how it shows parts of its state to other agents (state information).

Perception and information provide the specifier a way to add a dynamic dimension to the

importation and exportation relationship between agents expressed in the declaration part of

the specification.

• Action perception

Beyond this heading, Albert defines how the agent is sensitive to changes occuring in its

environment, which are made available to it by other agents belonging to the same society.

Action perception are specified using the K (knowledge), I (ignorance) and ~ (exclusive

knowledge) connectives.

The pattern «K (<ext-action> / <situation>)» defines the situation where, if an action is

issued by external agent, the behaviour of the current agent is influenced.

The pattern «r (<ext-action> / <situation>)» defines the situation where, if such action is

issued by extemal agent, it has no influence on current agent's behaviour.

The pattern « ~ (<ext-action> / <situation>) » is used to express exclusive obligation, it is a

shorthand for the combination of «K (<ext-action> / <situation>) » and «r (<ext-action> / -,

<situation>) ».

From Organization Requirements to System Requirements: a Case Library Case Study 18

The default rule is that ail imported actions available may be perceived whatever the situation .

.,lK(_.Present_trolleyffRUE)

* The grocer's always knows when a client presents hitlher trolley.

• State perception

Beyond this heading one defines how the agent sees part of the state of other agents belonging

to the same society and which are made available to it by them. State perceptions are also

specified using the K, I and Â'K connectives.

The default rule is that ail imported state components available may be perceived whatever the

situation .

.,lK(grocer' s.Items_ShopffRUE)

* the client always knows the contents of the grocer's shelves.

• Action information

Constraints under this heading specify how occurences of actions performed by an agent are

made available to other agents belonging to the same society. This is also a dynamic property

and is expressed using the K, I and Â'K connectives introduced above.

The pattern « K (<int-action>.<agent> / <situation>» defines the situation where occurences

of an internai action are made available to a given agent.

The pattern « I (<int-action>.<agent> / <situation>» defines the situation where the

occurences of an internai action are not made visible for a given agent.

The pattern « Â'K (<int-action>.<agent> / <situation>» is used to expressed exclusive

obligation, it is a shorthand for the combination of « K (<int-action>.<agent> / <situation>»

and« I (<int-action>.<agent> /-,<situation> ».

The default rule is that ail exported actions may be visible by any agent to which it is exported,

whatever the situation.

XK(Present_Bill(i, cl) .c2 / cl = c2)

* the grocer can only present a bill to the corresponding client

From Organization Requirements to System Requirements: a Case Library Case Study 19

• State lnf ormation

Beyond this heading is defined how the agent shows parts of its state to other agents belonging

to the sarne society. State information is also specified using the K, I and~ connectives.

The default rule is that ail exported state components may be visible by any agent to which it is

exported, whatever the situation .

.-tt((Trolley.grocer' s/Status = "presenting")

* Means that the grocer's only sees the content of the trolley when the client has presented

hislher trolley

Constraints of the Client agent

BASIC CONSTRAINTS

• Initial valuation

Trolley= { }

* The client' s trolley is empty at the beginning of the system life.

Status = {shopping}

* When a client enters the grocer's shop, he/she's there ta do some shopping.

LOCAL CONSTRAINTS

• Effects of actions

Choose_Item(it): Trolley= Add(Trolley, it)

* Each time a client chooses an item in the grocer' s shop, it puts it in its trolley, increasing

the number of the choosen items.

Present_ Trolley: Status = "presenting"

* When a client presents hislher trolley ta the grocer, he/she's not shopping anymore.

Pays_Bill(i): Status = { Has paid}

Empty_Trolley: Trolley= { }

/\ Status = "shopping"

From Organization Requirements to System Requirements: a Case Library Case Study

• Causality

Grocer' s.Present_Bill(i) ➔ Pays_Bill(i) ; Ernpty _ Trolley

* Each Present_Bill order issued by the grocer 's, is followed by a Pays_Bill action

occurrence followed by an Empty _Trolley action.

• Capability

F(Rernove_Item/ Status * "has paid")

F(Choose_ltern/ Status *" shopping")

COOPERATION CONSTRAINTS

• State Perception

ÂK(grocer' s.Iterns_Shop/TRUE)

* the client always knows the contents of the grocer's shelves.

• State Information

ÂK(Trolley.grocer's/Status = "presenting")

* Means that the grocer 's only sees the content of the trolley when the client has presented

his/her trolley

Constraints of the Grocer's agent

BASIC CONSTRAINTS

• Derivation rules

Rernove_Tirne ~ Till ~ Lirnit

* It' s time to remove the money from the till when the amount equals or is upper than the

maximum limit.

20

From Organization Requirements to System Requirements: a Case Library Case Study

LOCAL CONSTRAINTS

• State behaviour

Cat (it) = { fresh product} ⇒ -, □ >15 days ln(Items_Shop, it)

* An item of the 'fresh product' category can't stay for more than 15 days in the grocer's

shelves.

• Eff ects of actions

Remove_M_ Till: Till = 0

* After a Remove_M_Till action occurrence, the till is empty.

Remove_ltem (it) : ltems_Shop = remove(Items_Shop, it)

* The item it isn 't available anymore after having been removed by the grocer.

Client.Choose_Item(it): Items_Shop = remove(Items_Shop, it)

* The item it isn 't available anymore after having been removed by the client.

Client.Pays_Bill(i): Till = Till + i

* When a client pays hislher bill, the money is added to the content of the till.

• Causality

Client.Present_ Trolley ➔ Present_Bill(i, Client)

* When a client presents hislher trolley, he/she receives the bill for the chossen items

• Capability

F(Present_Bill(total, client)/ total -:t:- IterAssoc(client.Trolley, price(i) + price(j))

21

* The grocer can 't present a bill to a client if the bill isnt correct. The bill must correspond to

the sum of the prices of the items contained in that client's trolley.

O(Remove_M_ Till/Remove_ Time)

* The grocer must react when the amount limit of money present in the till has been reached.

However, the grocer can decide to remove the money even if the limit is not yet reached.

From Organization Requirements to System Requirements: a Case Library Case Study 22

COOPERATION CONSTRAINTS

• Action Information

XK(Present_Bill(i, cl).c2 /cl= c2)

* the grocer can only present a bill to the corresponding client

• Action Perception

ÂK(_.Present_trolley/TRUE)

* The grocer 's always knows when a client presents hitlher trolley.

1(_.Choose_Item(it)/Quantity(ltems_Shop(i) with item(ltems_Shop(i)) = it) = 0)

* The gorcer' s ignores the action of choosing an item in the shelves when this particular item

isn 't available anymore.

• State Perception

ÂK(_ .TrolleyffRUE)

* The grocer 's always sees the content of the clients

• State Information

ÂK(ltems_Shop. _/TRUE)

* The shelves content is always shown to the clients.

From Organization Requirements to System Requirements: a Case Library Case Study 23

Chapitre 3: the Istar framework

3.1. Introduction

In order to improve the quality of software products, it is necessary to enhance the processes

used to develop and maintain these products. It is also important to have a good understanding

of the work process context in which such softwares are being developed.

Customers demands and the current competitive context induce many companies to reorganize

their business processes and to adapt or rethink completely their actual technologies and

organization according to their new objectives. This tendance is underlined by the

reengineering activity. "At the heart of reengineering is the notion of discontinous thinking, of

recognizing and breaking away from the outdated rules and fondamental assumptions that

underlie operations. "[Hammer90]

In its paper "Reengineering work: don't automate, obliterate", Hammer proposes several

principles helping to find out brand new solutions to work processes problems instead of

sirnply automatize the whole business:

• Organize around outcomes, not tasks

• Cature information once and at the source

• Link parallel activities instead of integrating their result

Such advises can only be taken into account if the analyst succeded to capture organizational

intentions. "How can we re-engineer this processif we don't have information on the

intentions of players in the process ... " [Mylopoulos95]

Most of the models existing in the litterature aimed at describing "what" a work process is

doing but these models merely express "why" things are like they are. They offer little help to

find out these new alternatives boosted by the business reengineering activity.

In this chapter, we will present a new approach , the istar framework developed at the

university of Toronto. The purpose of this framework is to support process modelling in the

reenigineering activity. It has already been presented in different contexts such as:

information systems requirements engineering [Yu93b]

business process reengineering [Yu93a], [Yu94a], [Yu94c]

software processes [Yu94b]

From Organization Requirements to System Requirements: a Case Library Case Study 24

The latest version of the complete framework has been developed in [Yu94]

The istar framework is composed of two models, the Strategic Dependency and the Strategic

Rationale models. The first one, described in section 3.2, models the network of dependencies

existing between the actors of a business process while the Strategic Rationale model,

described in section 3.3, aimes at supporting the reasoning hidden behind a particular way of

working.

These two models have a formal counterpart represented in the conceptual modelling

language Telos [Mylopoulos91]. This part won't be developed in this chapter, for more details,

see [Yu94].

3.2.1. Modelling features

We will now describe the main features of the Strategic Dependency Model and illustrate the

different notions through different examples and mostly about an assurance system called

"mutuel" .

The SD Model is represented by a set of nodes and links. Each node can be assimilated to an

actor of the process, and the links are the dependencies existing between them.

The SD Model proposes four types of dependency links: The goal, the task, the resource and

the softgoal dependencies. The actor who depends on another actor is called the depender, the

actor who is depended upon is called the dependee and the element for which the depender

depends on the dependee is called the dependum. Graphically, the dependency between two

actors is depicted on figure 3.1.

---+--r--Dependum1--+-J-._

Figure 3 .1 : Dependency link between two actors

From Organization Requirements to System Requirements: a Case Library Case Study

Payment
(vistt)

Certificate(s)

Repayment

Fee

Legend

Depender Dependee

25

--!rc=J-lr- Resource Dependency

--&Q--& Goal Dependency

----9--(:J+ Sottgœl Dependency

----&Q-&- Task Dependency

Figure 3.2: SD Model in a medical assurance domain

Figure 3.2. shows the Strategic Dependency Model of a special kind of medical assurance

called «Mutuel». It presents some of the relationships among patients, doctors and the

assurance system.

A patient depends on a doctor for the treatment of his/her sickness. The doctor depends on the

patient for the payment of the visit. In exchange, the doctor gives the patient a certificate for a

partial repayment from the assurance.

The patient has also to pay a cotisation to the assurance company.

Dependency types

We said the SD Model made the distinction between four types of dependencies, based on the

type of the dependum. We get three types of intentional dependencies: resource dependency,

task dependency, and goal dependency. The fourth type, called softgoal dependency, is based

on a notion of non-functional requirements (or quality requirement) in software engineering.

• "In a goal dependency, the depender depends on the dependee to bring about a certain

state in the world. The dependee is given the freedom to choose how to doit. With a goal

dependency, the depender gains the ability to assume that the condition or state of the world

From Organization Requirements to System Requirements: a Case Library Case Study

will hold, but becomes vulnerable since the dependee may fail to bring about that

condition."

26

In figure 3.2., the goal dependency "cured(sickness)" tells us that the patient depends on the

doctor for the treatment of the sickness, but he/she doesn't know how the doctor will achieve

this goal. Only the result counts for the patient and the doctor has all the necessary freedom to

succeed.

Let's take another exemle developed in [Jacobson], about a telephone communication between

two subscribers. A subscriber (called A_Subscriber) depends on the Exchange to get a

connection with another subscriber (B_Subscriber). We have a goal dependency because the

A_Suscriber doesn't know how the exchange will achieve this; all she/he wants is to be able to

communicate with the B_Subscriber.

established
(connection)

Figure 3.3 : a goal dependency

• "In a task dependency, the depender depends on the dependee to carry out an activity. A

task dependency specifies how the task is to be performed, but not why. The depender is

vulnerable since the dependee may fail to perform the task (...) Task specifications should

be viewed as constraints rather than as the complete (and therefore adequate) knowhow for

perf orming the task."

Figure 3.2. doesn't show any task dependency but one could easily imagine how to introduce

that particular kind of dependency between for example the patient and the assurance

company. Let's say that after having provided the certificate, the patient has to fill in a form

before receiving the repayment. The assurance would then ask the patient answering some

questions in a specific way without explaining why. This would be modelled by a task

dependency.

In the communication exemple, the A-subscriber knows he/she has to dial the number of the B

subscriber if he/she wants the operator to establish the connection between them (without

knowing how the operator will use these digits to connect them).

Dial
(Num)

Figure 3.4: A task dependency

From Organization Requirements to System Requirements: a Case Library Case Study 27

• "In a resource dependency, one actor (the depender) depends on the other (the dependee)

for the availability of an entity (physical or informational). By establishing this dependency,

the depender gains the ability to use this entity as a resource."

The assurance dependency on patient' s fee is modelled as a resource dependency as well as the

dependency for the deli very of a certificate between the doctor and his/her patient, the

communications payment dependency between the A_subscriber and the Exchange,

Fee

Figure 3.5: A resource dependency

For these three types of dependencies, the dependum is well defined in the sense that both the

depender and the dependee know exactly what they are waiting for or what they have to do or

to furnish. But it is not always the case. It may happen that the dependum isn't as sharply

defined as we would like and this kind of particular dependency will be described by a softgoal

dependency.

• "In a softgoal dependency, a depender de pends on the dependee to perform some task that

meets a softgoal. The meaning of the softgoal is specified in terms of the method that are

chosen in the course of pursuing the goal. As in a goal dependency, a depender gains the

ability of having the goal condition brought about, but becomes vulnerable in case the

dependee fails to bring about that condition. The difference here is that the condition to be

attained are elaborated as the task is perf ormed."

The patient pays the full price for the medical visit. He knows he/she' ll have a repayment via

the assurance and he/she'd like to be repayed as quickly as possible (figure 3.2). What is meant

by « quickly » is not really defined.

In the communication exemple, the A-subscriber certainly wants the operator to establish a

« safe » connection with the B-subscriber. This could be modeled by a softgoal dependency

because the notion of safety is not clear-cut.

From Organization Requirements to System Requirements: a Case Library Case Study 28

Figure 3.6: A softgoal dependency

Dependency strength

The Istar framework also allows different strength degrees attached to the dependencies.

Effectively, the convict to deth prisoner depends contingently on the king for a possible

reprieve and he/she also depends on his/her warder for a last cigarette. Obviously, the prisoner

won' t grant the same importance for the two dependencies.

These different degrees of strength can be applied on both sides of a dependency.

« On the depender side, a stonger dependency means the depender is more vulnerable, and is

likely to take stronger measures to mitigate vulnerability. On the dependee side, a stronger

dependency implies that the dependee will make a greater effort in trying to deliver the

dependum. ».

Istar Provide three different types of dependency forces:

• "In an open dependency, a depender would like to have the dependum goal achieved, task

performed, or resource available, so that it could be used in some course of action. (...) On

the dependee side, an open dependency is a claim by the dependee that it is able to achieve

the dependum for some depender."

Graphically, an open dependency will be marked by an "o" .

If we take again the example of the prisoner, the dependency for the cigarette would be an

open dependency on the depender side.

Cigarette

Figure 3.7: Open dependency

• "In a committed dependency, the depender has goals which would be significantly

affected- in that some planned course of action would failed - if the dependum is not

From Organization Requirements to System Requirements: a Case Library Case Study 29

achieved (.. .) On the dependee side, a committed dependency means that the dependee will

try its best to deliver the dependum."

Graphically, a committed dependency is unmarked.

Fill in
(form)

Figure 3.8: Committed dependency

• "In a critical dependency, the depender has goals which would be seriously affected - in

that all known courses of action would fail - if the dependum is not achieved. In this case,

we assume that the depender would be concemed not only about the viability of this

immediate dependency, but also about the viability of the dependee's dependencies, and the

dependee's dependee's dependencies, and so forth."

Graphically, we use an "X" for a critical dependency.

Received
(repreive)

Figure 3 .9 : Critical dependency

Agents, roles and positions

One can extend the basic Strategic Dependency model by refining the notion of actor. Agent,

Role and Position are three possible specializations of the notion of actor which provide

different views of the organization.

"A role is an abstract actor. Dependencies are associated with a role when these dependencies

apply regardless of who plays the role [...]

An agent is an actor with concrete, physical manifestations, such as human individual [.. .]

A position is intermediate in abstraction between a role and an agent. "

These three notions are related as follows (see figure 3.10):

An agent occupies a position;

A position covers a role.

From Organization Requirements to System Requirements: a Case Library Case Study 30

Furthermore, these three notions can have subparts and each part or subpart is considered to

be intentional.

Figure 3.10: Graphical representation of Agent, Role, Position

Figure 3 .11 shows a simplified example of a SD model using agent, role and position for the

communication between subscribers.

Fee
(Connection)

Established
(Connection)

Figure 3.11: Agent-Role-Position for the communication exemple

The Strategic dependency model can help us to achieve a deeper understanding of a work

process. lt represents the set of intentional dependencies among the actors of the process and

by following the model links, one can find out who are the more vulnerable actors and for

what.

From Organization Requirements to System Requirements: a Case Library Case Study 31

It' s never good seeing that an actor depends on every other actors in a same work process, and

this observation usually leads to the search of some ways in order to mitigate this vulnerability.

Three mechanisms can contribute to enforce an actor position and thus reduce the risks

inherent to this actor' s dependencies:

• A depender would be less vulnerable if in his tum, he had some influence on the dependee.

"A commitment is enforceable if there is some way for the depender to cause some goal of

the dependee to fail , e.g., if there is a reciprocal dependency."

Imagine a brewery, it will depend on a cafe for the sale of its beer, but reciproquelly, the

bistro will depend on the brewery for stocking up with beer and thus beeing able to serve its

clients.

• A second possibility is the assurance mechanism and is defined in these terms: "Assurance

means that there is some evidence that the dependee will deliver the dependum, apart from

the dependee' s claim."

• Finally, "Insurance mechanisms reduce the vulnerability of a depender by reducing the

degree of dependence on a particular dependee."

Let' s take again the brewery example. We said that the brewery depended on a bistro to sell

its beer but usually, the brewery is "associated" with more than one cafe. That means that if

one of them fails to perform its task consisting in selling the beer, the brewery won' t be

affected too badly.

These different mechanisms should balance the dependencies and thus enf orce the whole work

process by enforcing the position of each actor.

From Organization Requirements to System Requirements: a Case Library Case Study 32

3.3. The Strategic Rationale Model

In the previous section, we saw how the Strategic Dependency model of the Istar framework

could underline the intentional dependencies among actors of a work process. However, this

model stays very general in the sense that only the extemal dependencies will be modelled. The

intemal dependencies within an actor remain hidden.

The Strategic Rationale model will help to understand the intemal structure of an actor

therefore, we will be able to describe and support this actor's reasoning.

3.3.1. Modelling features

The Strategic rationale model can be described as a graph composed of nodes and links.

There exist four types of nodes already explained in section 3.2 (the goal, the task, the

resource and the softgoal), and two types of links (the means-ends and the Task

decomposition links).

The purpose of this graph is to model the actor's "ways of doing things" in order to achieve a

particular goal, task or softgoal. One can say that the SR model is strategic in the sense that

we'll only model the elements considered important enough in the achievement of a particular

goal.

The task-decomposition links are used to link a task to its sub-components. There exist four

different types of task-decomposition links based on the sub-component of a task: subtask,

subgoal, resourceFor and softgoalFor.

Figure 3.12, one can see that the main goal of the assurance company is the covering of its

members, and it is represented by the task (Caver member). The assurance will thus ask a fee

to each member (Takes afee) and when it is needed, it will give them a repayment (repays) .

The two task-decomposition links used to decompose (caver member) are two subtask.

What is interesting and new in this model is the freedom let to the actor at each level of the

decomposition. There can be several ways to achieve a particular goal and this will be

modelled by the means-ends links between the main goal (the end) and the ways (the means)

for achieving this goal. Graphically, a means-ends link is represented by an arrow going from

the sub-component (the means) and pointing towards the principal goal (the end).

The assurance has to repay some of its members and it has the choice between two different

ways to do this. Either it repays the patient directly, or it repays the patient's doctor who asked

the reduced price to his/her patient (see figure 3.12).

From Organization Requirements to System Requirements: a Case Library Case Study

When an actor has different choices or different ways in achieving some particular goal, we

introduce the notion of routine.

33

"A routine is a subgraph in the SR graph with a single link to a 'means' node from each "end"

node [...] the notion of a routine is used to refer to one process and its rationales "

Figure 3.12, one can find out two different routines. On one hand, we have the subgraph

including "repays patient" and the subgraph that includes "repays doctor" .

e

Fee

1

\

\
\
\

\
\

" "-

Certificate

Takes
a tee

"-

Cover

/
/

/
/

-- --
money

Certificate
money

Figure 3.12: An SR Mode! showing alternative ways of accomplishing 'Repays'

/
/

/

)

In the SR Model, the softgoals will be handeled differently. One will rather see them as

qualitative attributes and each "ways of doing things" or routine, will affect these non

functional goals positively or negatively. In a same way, a qualitative goal can also affect or

influence another qualitative goal.

For example, figure 3.12, making the customer happy constitues a qualitative goal for the

assurance company. If the assurance decides to repay directly the doctor instead of its member,

this choice will contribute positively in making the customer happy. If the customer is happy, it

will contribute to make the business prosperous. The assurance company will also make a

good business if it doesn't have to make too many repayments and one can argue that if the

From Organization Requirements to System Requirements: a Case Library Case Study 34

assurance repays the doctor instead of the member, it will contribute to increase its

repayments. Indeed, the patient won't have to handle certificates anymore, he/she won't have

too go to the assurance office for the repayments; this could encourage them to go more often

to see a doctor and therefore, this could lead to increasing the repayments to the doctors.

-

9/
f
1

1
\
\

\
\.

'-...

/

'

Cured
(sickness)

1
\
\
\

/

/
/

Figure 3.13: SR Model for the assurance company process

1

1

1

1
I

/
/

/

--

/
/ ---

From Organization Requirements to System Requirements: a Case Library Case Study 35

In a SR model, it may also happen that a reasoning includes dependencies on extemal actors.

In such cases, we'll use the dependency links already explained in the Strategic Dependency

model.

In the routine including (repays patient), the assurance actor depends on its members for the

certificates in order to be able to repay them. We have represented this by a resource

dependency going from the inside of the assurance boundery towards the Patient.

In order to have a complete view of the process, it is possible to relate the different SR models

of the main actors. One can thus analyze the qualitative goals of each stakeholder and

understand why they privilagiate one way of working instead of another and how a particular

routine can alter the behaviour of another actor (see fig 3.13)

From Organization Requirements to System Requirements: a Case Library Case Study

Chapter 4: Forma! specification of a
library system

4.1. Introduction

36

Chapters 2 and 3 have proposed two different frameworks (Albert and i*) used in the

requirements engineering and process modelling activities.

In this chapter, we will try to show how these two approaches, following different views, could

be related to a same case study, how they can be complementary and how used together, they

will lead to a full comprehension of the work process. The case study will be a library system,

managing book acquisition and loan policies.

We'll then try to answer the question of knowing if a systematical binding could be established

bewteen Albert and i*, in order to induce an SD or SR model from Albert formal specifications

and vice versa.

From Organization Requirements to System Requirements: a Case Library Case Study 37

4.2. Informai description of the case study

We will now describe the academic case study related to the management of a library

[Darimont].

In this section, we will first present an informai specification of the library main functionalities .

4.2.1. Definition

The library system aims at supporting the management of a library that is, managing the book

stock and the book loans.

There are three classes of users:

• the staff members;

• the ordinary members;

• the extra-members;

and two classes of books:

• the critical books which may not be borrowed by ordinary and extra-members;

• the borrowable books.

4.2.2. Support

• two catalogues refer to all books of the library. One of them is indexed by the book authors,

and the other, by keywords associated with the books;

• a list of the book loans for ordinary and extra-members (the staff members who want to

borrow a book don' t have to mention it to the Librarian, they just have to choose the book

and to bring it back once they have read it);

• A list of the different book orders in progress;

• A complete list of the registered members of the library.

4.2.3. Access to the library

Staff members can acces the library at any time. The library can be entered by ordinary and

extra members only during the opening hours. Moreover, the extra-members must be

explicitely allowed to get to the library by a staff member.

Any library member must have been registered by the Librarian, before his first access .

The Librarian will then have to keep the list of registered members up to date.

4.2.4. Book acquisition policy

From Organization Requirements to System Requirements: a Case Library Case Study 38

The staff members are responsible for the good quality of the library contents. They decide

which book to order, where to classify a new book, which book may not be borrowed by the

ordinary users and which book must be removed from the shelves.

As we just mentioned it, books are ordered upon request of the staff members. They transmit

the book identification to the librarian who will compose the order. An order can only be

issued if the book identification is complete and if there is a staff member (not necessarily the

one who initiated the book ordering) who agrees to pay the bill.

The librarian sends the order either to the cheapest bookshop or to the one which will be able

to satisfy the order the most quickly, depending on the priority set by the staff member who

ordered the book.

When a book is received, a staff member provides the category and the list of keywords

associated with the book. The publication year and the book number are determined by the

librarian. The Staff members put the new books in the library shelves by increasing order of

reference.

When a librarian introduces a new book, he updates the catalogues by inserting a new entry for

each author and for each associated keywords list. An entry in a catalogue contains three parts:

• the index;

• the complete book identification;

• a book reference.

A book reference is a triplet:

• a category which belongs to a predefined list;

• the year of the book publication;

• a number which identifies a book univocally for a given category and year. A letter is

appended to the triplet in order to distinguish duplicates.

4.2.5. Loan policy

Books may be borrowed freely by staff members while ordinary and extra-members have to

pay a small fee. The users of the library remove directly from the shelves the books they want

to borrow.

The ordinary users may keep maximum two borrowable books at once and for 15 days only.

Nevertheless, a loan period for an ordinary member can be extended once for 15 days if

nobody else is waiting for the book. The period of time during which an extra-member may

keep a book is fixed by the staff member who allowed the extra-member to borrow the book.

From Organization Requirements to System Requirements: a Case Library Case Study 39

Actually, delay to retuming a book is only detected when another request for the borrowed

book occurs. In these circumstances, the librarian either phones the indelicate member and

prompts him to retum his/her book copy as soon as possible, or sends him a reminder (letter or

electronic mail).

When a member retums a borrowed book, the Librarian puts it aside; after a while, a Staff

Member takes all the retumed books and puts them back on the library shelves. After having

been retumed, a book have to be replaced on its shelf within one day.

If an ordinary or extra member becomes too undisciplined, a staff member will be able to forbid

the access of the library.

From Organization Requirements to System Requirements: a Case Library Case Study

4.3. Specification bef ore any change

4.3.1. Albert specification

a) Agents identification

40

From the informai description of the Library System given in section 4.2., we can find out six

terminal agents.

If we adopt a functional view of the system, the agents identification could be the following:

inside the Library System, we have the Extra Member agents and the Ordinacy Member agents.

They all are users of the Library.

We also have the Bookshop agents, playing arole in the acquisition policy of the library.

Inside the Library society itself, we have a Librarian responsible for the whole management of

the library, and Staff Member agents who help the Librarian for the management. We also

introduce an agent representing the books tore available for the members of the library.

The graphical representation of the Library System is depicted figure 4.1.

Library System

Library

0 Extra Member

C Ordinary Member Bookshop

C C StaffMember

C Bookstore

0
Figure 4.1 : Graphical declaration of the Library system society

From Organization Requirements to System Requirements: a Case Library Case Study 41

b) Book acquisition policy

Declaration of the Librarian agent

The graphical declaration of the Librarian agent is depicted on figure 4.2. One can see that the

state structure is cornposed of:

1. Six intemal state components (Cat_Book_KW, Cat_Book_Author, Table_Member,

B_To_Classify, Ord_List and the individual element Todays_Date).

Cat Book KW: This state component represents a catalogue refering to all books of the

Library. it is indexed by a list of keywords (KW _List) associated with a list of books (L_Book).

• The type KW _List can be defined as:

*I
Kwd

(String)

The index is characterized by a set of keywords of type String.

From Organization Requirements to System Requirements: a Case Library Case Study

Stock_Bookshop

Book_O H P_DT

Bookshop

Cat_Book_Author

Classify_
Books

Book_ld Staff Member

Cat_Book_KW

Name H L_Book 1 j KW _List H L_Book

"' Staff
Member

"' Staff
Member

Table_Member Class_
Order

Remove_
Order

Determine
_Ref

.-----7
1 Todays_ t
I Date 1

'----. 1
1 j Date l t
, _____ .J

Add_B_
KW

KW _List Book_ld

Send_
Book

ID

Ord_List

Order

Add_B_
Author

c=:,
!

Order

Issue_
Order

. ·,

Order

Name Book_ld Book-O Priority Bookshop

Book_ Send_Cat_
Order KW

Book_O Cat

. .

Determine
_Date

c=:>
!
Date

B_To_
Classify

Book_ld

.
"' Staff

Member

Pays_
Bill

Book-O BookShop Book-O Priority '. Staff Book-O Staff
Staff

Member Book_O Cat Member

Figure 4.2 : Graphical declaration of the Librarian agent

42

From Organization Requirements to System Requirements: a Case Library Case Study

• The types L_Book and Book_Id can be defined as:

L_Book

Identification
(Book_Id)

L Author Title Edition
~ 1 (String) (String)

Author
(Name)

Borrowable
(Boolean)

Book_ld

Reference

Category Pub_Year Number Letter
(Cat) (Integer) (Integer) (Char)

43

A Book in a catalogue is characterized by its complete identification (its author(s), title, edition

and a reference composed of a category which belongs to a predifined list, the year of the book

publication, a number which identifies a book for a given category and year and a letter in

order to distinguish duplicates), and by a status telling if the book is borrowable or critical.

• The type Name can be described as:

lst_Name Last_Name
(String) (String)

An author is described by its first and last names.

Cat Book Author: This component also represents a catalogue refering to ail books of the

library. It is indexed by the authors (Name) associated with a list of books (L_Book).

The two types have already been described.

Table Member: this table contains ail the members registered in the library. It is indexed by the

category of a member (IDMember) associated with the complete identification of the member

(Member).

• The type IDMember can be defined as:

From Organization Requirements to System Requirements: a Case Library Case Study

.1. . -
STAFF ORDINARY

MEMBER MEMBER

.
EXTRA

MEMBER

44

A Member registered in the library is either a staff member or an ordinary member or an extra

member. The types represent the type of identifiers associated with agent classes.

• The type Member is the following :

Narne
(Narne)

Address
(String)

Phone
(Integer)

A member is characterized by his/her name, address and phone number.

B To Classify: it represents a set of books (Book_ld) which wait to be classified in the library

Bookstore by a Staff Member.

Ord List: This list represents all the orders (Order) in progress.

• The type order can be defined as:

Book_O Member_O Date Bookshop
(Book_O) (IDMember) (Date) (BOOKSHOP)

An order is defined by the identity of the book ordered, the name of the staff member who

ordered the book, the date and the identity of the bookshop where the order has been issued.

• The type Book_O is the following:

L_Author

Author
(Narne)

Title
(String)

Edition
(String)

From Organization Requirements to System Requirements: a Case Library Case Study

A Book is identified by its author(s), title and its edition.

Todays date: this individual entity represents the date (Date) of the current day.

2. The Librarian agent has also one extemal state component (Stock_Bookshop).

Stock Bookshop: This table is from the Bookshop initiative. It represents for each book

(Book_O) present in a Bookshop stock, its price and its delivery time (P _DT).

• therefore, the type P _DT can be represented as:

Price Del_Time
(lnteger) (lnteger)

45

3. The state structure of the Librarian agent is also characterized by seven interna! actions

(Determine_Date, Issue_Order, Class_Order, Remove_Order, Add_B_KW, Add_B_Author,

and Determine_Ref).

Determine Date: the Librarian determines the current date (Date)

Issue Order: the Librarian agent sends a book order (Book_O) to a bookshop at a certain

priority.

Class Order: he/she classifies a new order (Order) in progress in the Ord_List.

Remove Order: when the librarian has received an ordered book, he/she can remove the order

(Order) from the Ord_List.

Add B KW: he/she adds a new book (Book_ld) in the Cat_Book_KW catalogue with a list of

keywords (KW _List) as index.

Add B Author: the Librarian adds a new book (Book_Id) in the Cat_Book_Author catalogue

with the name (N ame) of the author as index.

Determine Ref: the librarian determines the reference of a book (Book_O) with its category

(Cat) and its Keywords list (KW _List).

From Organization Requirements to System Requirements: a Case Library Case Study

4. The Librarian perceives also five extemal actions (Classify _Books, Send_Book,

Book_Order, Send_Cat_KW and Pays_Bill)

46

Classify Book: a Staff member decides to classify in the library Bookstore, a book (Book_ld)

contained in the B_To_Classify list.

Send Book: a bookshop has sent, an ordered book (Book_O) to the librarian.

Book Order: a Staff Member asks the Librarian to issue an order for a book (Book_O) to a

Bookshop at a given priority (Priority). The priority will either be a priority intime or in price.

Priority = { Time, Price}

Send Cat KW: a Staff Member provides the librarian with a category (Cat) and a list of

keywords (KW _List) for a given book (Book_O).

Pays Bill: a staff Member pays the bill for an ordered book (Book_O).

Constraints

j LIBRARIAN 1

BASIC CONSTRAINTS

• Initial Valuation

B_To_Classify = { }
* There are no books to classify in the library Bookstore

Ord_List = { }

* There are no orders in progress.

LOCAL CONSTRAINTS

• State Behaviour

in (B_To_Classify, b) ⇒ >Iday -, in (B_To_Classify, b)

* A book must be classified in the library Bookstore within one day.

From Organization Requirements to System Requirements: a Case Library Case Study

• Effect of Actions

Determine_Date(d): Todays_Date = Date

* the librarian sets the current date

Determine_Ref(bo, kwl, c, b): B_To_Classify = add(B_To_Classify, b)

* When the librarian has de termine the reference of the new book, helshe puts it in the

B_To_Classify List

Remove_Order(O): Ord_List = Remove(Ord_List,0)

* An order about a book (b) is removedfrom the List 'Ord_List'.

Class_Order (0): Ord_List = Add (Ord_List,0)

* A new order in progress, is registered in the orders List.

Add_B_Author (b): Cat_Book_Author = Add (Cat_Book_Author[n], b)

with n E L_Author(b)

* A new book is registered in the author catalogue.

Add_B_KW (kw, b): Cat_Book_KW = Add (Cat_Book_KW[kw], b)

* A new book is registered in the keyword catalogue.

Staff Member.Classify_Books (b): B_To_Classify = remove (B_To_Classify ,b)

* When a Staff Member classifies a book in the library, helshe removes itfrom the list

"B_To_Classify".

• Causality

Staff Member.Book_Order (b, pr); _ . Pays_Bill (b) ➔ Issue_Order (b, pr).bs;

Class_Order(O)

with Book_O(O) = b

Member(O) = Staff Member

Date(O) = Todays_Date

Bookshop(O) = bs

47

* When a Staff Member asks the librarian to order a book(b) at a given priority and if a Staff

Member agrees to pay the bill for that book, then the librarian will issue an order to the

appropriate bookshop and will register the order in the orders List.

Staff Member.Send_cat_KW(b, kw, c) ➔ Determine_Ref (b, c, book)

From Organization Requirements to System Requirements: a Case Library Case Study

with Authors (book)= Authors (b)

A Title (book) = Title (b)

A Edition (book) = Edition (b)

A Category (book) = c;

Add_B_KW (kw, book);

Add_B_Author (book)

48

* When a staff member sends the category and a List of keywords associated with a book, the

librarian can determine the reference of that book and can register it in the two library books

catalogues

Bookshop.Send_Book (b) ➔ Remove_0rder (0)

with Book_0(0) = b

* When a bookshop has sent a book, the librarian removes one order he chooses from the

orders List which asked for that book

• Capability

F (lssue_0rder(b, p).bs / (lsof p = "price" /\

3 bs': Price(bs'.Stock_Bookshop[b])

< Price(bs.Stock_Bookshop[b]))

v (lsof p = "Del_Time" /\

3 bs': Del_Time(bs'.Stock_Bookshop[b])

< Del_ Time(bs. Stock_Bookshop[b]))

* the librarian can 't send an order to a bookshop who doesn 't respect the priority in time or in

delivery time

COOPERATION CONSTRAINTS

• Action Perception

I (Bookshop.Send_Book(b) /-, in (0rd_List, 0): book_0 (0) = b

/\ bookshop (0) = bookshop)

* the librarian ignores the book sent by a bookshop, which hasn 't been ordered

I (Staff member.Classify_Books (b) /-, in (B_To_Classify, b))

* the librarian ignores the action of a staff member consisting in removing a book that

doesn't exist in the "B_To_Classify" List

From Organization Requirements to System Requirements: a Case Library Case Study

• State Perception

~ (b.Stock_Bookshop[-]/TRUE)

* the librarian can always perceive the catalogues of the bookshops

• State Information

~ (Cat_Book_Author.Staff Member/TRUE)

~ (Cat_Book_KW.Staff Member/TRUE)

~ (B_To_Classify.Staff Member/TRUE)

* the "Cat_Book_Author", "Cat_Book_KW" catalogues and the "B_To_Classify" list are

always visible to the staff members.

• Action Information

~ (lssue_Order(b, p).Bookshop/TRUE)

49

From Organization Requirements to System Requirements: a Case Library Case Study

Declaration of the Staff Member agent

Cat_Book_Author

Name H L_Book

Librarian

Book_
Ortler

1

Cat_Book_KW

1 KW_List H L_Book

Librarian

Pays_
Bill

' +
Priority ·... Book-0 Librarian

Librarian

Send_Cat_
KW

Book_O Cat

.
Librarian

Send_
Book

·.
Book-Id BookShop

1

B_To -
Classify

1 Book_Id 1

Librarian

Classify_
Books

Book_ld :
+

Bookstore

Remove_
Book

►
Bookstore Book_ld

Figure 4.3 : Graphical declaration of the Staff Member agent

Classified_
Books

Book_ld

Bookstore

The graphical declaration of the Staff member agent is described on figure 4.3. We'll only

describe the elements which havn't been already described in the previous declaration.

1. The Staff member agent has four extemal state components (Cat_Book_Author,

Cat_Book_KW, B_To_Classify and Classified_Books)

Classified Books: it represents the sequence of the books (Book_ld) present on the library

Books tore.

50

From Organization Requirements to System Requirements: a Case Library Case Study 51

2. We can see five interna! actions (Book_Order, Pays_Bill, Remove_Book, Send_Cat_KW

and Classify_Books).

Remove Book: this action represents the fact that a Staff Member removes a given book

(Book_Id) from the library Bookstore.

Classify Book: a Staff Member classifies a book (Book_Id) in the library Bookstore.

3. Finally, this agent perceives one external action (Send_Book) already described.

Constraints

1 STAFF MEMBER

LOCAL CONSTRAINTS

• Causality

Bookshop.Send_Book (b)➔ Send_Cat_KW (b, kw, c)

* once a bookshop has sent a new book, a staff member sends to the librarian, the category

and a list of keywords associated with that book

• Capability

Xt, (Classify_Books(b) / -, in(B_To_Classify, b))

* a staffmember can't classify a book which isn't in the "B_To_Classify" list

Xt, (Remove_Book(b) /-, in(Classified_Books, b)

* a staff member can 't remove a book which is not in the bookstore

COOPERATION CONSTRAINTS

• Action Perception

~ (b.Send_Book (b) /TRUE)

• State Perception

~ (Bookstore.Classified_Books/TRUE)

~ (Librarian.Cat_Book_Author/TRUE)

From Organization Requirements to System Requirements: a Case Library Case Study

Â1< (Librarian.Cat_Book_KW ffRUE)

Â1< (Librarian.B_To_Classify/TRUE)

52

* the staff members always perceive the catalogues, the bookstore and the B_To_Classify lists

• Action Information

;tl< (Classify _Books(b).m /TRUE)

;tl< (Remove_Book(b).b/TRUE)

Declaration of the Bookshop agent

Stock_Bookshop

! Book_O H P_LT

' "' Librarian

Issue_
Order

. .

Send_
Book

+ ...
Book_O Librarian Staff

Member

Book-O Librarian

Figure 4.4 : Graphical declaration of the BookShop agent

The different elements of the Bookshop state structure have already been described.

Constraints

1 BOOKSHOP 1

LOCAL CONSTRAINTS

• Causality

Librarian.Issue_Order (b) ➔ Send_Book (b)

From Organization Requirements to System Requirements: a Case Library Case Study

COOPERATION CONSTRAINTS

• Action Perception

~ (Librarian.Issue_Order (b)/TRUE)

• Action Information

~ (Send_Book.Librarian (b)/TRUE)

~ (Send_Book.Staff Member (b)/TRUE)

• State lnf ormation

~ (Stock_Bookshop.Librarian/TRUE)

Declaration of the Bookstore agent

Classified_
Books

Book_Id

' +
Staff

Member

Remove_
Book

Book_Id
Member

Classify_
Books

Book_ld Staff
Member

Figure 4.5 : Graphical declaration of the Bookstore agent

Ali elements of the Bookstore structure have been explained

53

From Organization Requirements to System Requirements: a Case Library Case Study

Constraints

1 BOOKSTORE 1

LOCAL CONSTRAINTS

• Effects of action

Staff Member.Classify_Books(b): Classified_Books = Add(Classified_Books, b)

Staff Member.Remove_Book(b): Classified_Books = Remove(Classified_Books, b)

COOPERATION CONSTRAINTS

• Action Perception

XK (Remove_Book(b).Staff Member/TRUE)

XK (Classify _Books(b).Staff Member/TRUE)

• State lnf ormation

..t1< (Classified_Books.Staff Member/TRUE)

54

From Organization Requirements to System Requirements: a Case Library Case Study

c) Loan policy

Declaration of the Librarian agent

Cat_Book_KW

IKW _ListH L_Book 1

. ,,..
Staff

Cat_Book_Author

Name H L_Book 1
. ,,..

Extra
'

Table_Member

IIDMemberH.__ID _ __,

Extra
Member

Ordinary
Member Member Member

Ordinary
Member

Staff
Member

Loans_
List

Loan

Warn_
Member

,-----7
I Todays_ 1
I Date 1

1 ,-----, 1
1 1 Date I i
I _____ J

IDMember O~in~. • ltxtra
Member Member

B_To_
Classify

Book_Id

' ...
Staff

Member

Determine
_Date

CJ
i
Date

Detect_
Delay

C)

IDMember Book_ld

Re gis ter_
Member

C)
ID

Member Member

55

r-----7

Book_ld

Pays_
Fee

C)
/.:' \

Extra Ordinary
Member Member

Borrow_
Book

Book_ld Ordinary Extra
Member Member

Ask_ l st_Access Return - 1 Access - 1
Extend Library Book 1 Authorized 1

1 1
1 Access 1
1 1 C) C) C)
1----.---' . . .

Book_ld Ordinary Member Staff
Member

Member

Wait_For_
Book

.
' .

Book_ld Ordinary Extra

Access_
Library

Member Member

Classify_
Books

Extra
Member

. .
Book_ld Ordinary Extra

Member Member
Member Ordinary futra

Member Member

Book_ld Staff
Member

Figure 4 .6 : Graphical declaration of the Librarian agent

From Organization Requirements to System Requirements: a Case Library Case Study 56

Figure 4.6 shows us the graphical declaration of the Librarian agent for the book loan process.

One can read that:

1. the librarian agent has one external individual state component (Access_Authorized)

Access Authorized: It indicates the information about the access (Access) of the Extra

Members

• The type Access is defined by:

Access Time Staff_M
(Boolean) (Integer: (IDMember)

The state component Access Authorized indicates if an Extra Member has access to the library,

his/her accorded loan period and the identity of the Staff Member how allowed the library

access.

2. this agent has six internai state components (Cat_Book_KW, Cat_Book_Author,

Table_Member, Loans_list, B_To_Classify and Todays_Date). Only the Loans_List element

hasn' t already been described.

Loans List: this element represents the set of the loans (Loan) in process in the library.

• The type Loan is described by:

Book_B Borrower Date_L Waiting Length
(Book_ld) (IDMember) (Date) (Boolean) (Integer)

A loan is described by the identification of the book borrowed, by the identification of the

borrower, the loan date, an indicator telling if the book is effectively borrowed or if the

borrower is waiting after it and by the length of the loan.

3. The Librarian agent has four internai actions (Detect_Delay, Register_Member,

Wam_Member, Determine_Date).

From Organization Requirements to System Requirements: a Case Library Case Study 57

Detect Delay: the Librarian agent detects that a borrower (IDMember) is late in retuming a

given book (Book_ld).

Register Member: this action consists in the registration in Table_Member of a new user

(IDMember).

Warn Member: the Librarian warns an Ordinary or Extra member (/DMember) of the library

for a delay in retuming a given book (Book_Id).

4. The Librarian perceives eight extemal actions (Pays_Fee, Borrow _Book, Return_Book,

lst_Access_Library, Ask_Extend, Wait_For_Book, Access_Library and Classify_Books).

Pays Fee: an Ordinary or Extra member pays a fee for the loan of a book (Book_ld).

Borrow Book: a member asks the Librarian to borrow a given book (Book_Id) that he/she

already removed from the library Bookstore.

Retum Book: a member retums a book (Book_Id) to the librarian.

1st Access Librru:y: a Staff Member indicates his/her first library access to the Librarian in

order to be registered.

Ask Extend: an Ordinary Member asks the Librarian to extend his/her loan length for a given

book (Book_Id).

Wait For Book: an Extra or Ordinary Member asks the Librarian to be on a waiting list for a

given book (Book_Id) which has already been borrowed.

Access Librru:y: the Librarian controls ail the library accesses of the Ordinary and Extra

Members.

Classify Books: this action has been described in the acquisition policy.

From Organization Requirements to System Requirements: a Case Library Case Study

i LIBRARIAN 1

BASIC CONSTRAINTS

• Initial valuation

Card(Loans_List) = { }
Card(B_To_Classify) = { }

* There are no loan in progress and no book to classify

LOCAL CONSTRAINTS

• Effects of action

Register_Member(id, m): Insert(Table_Member, id, m)

* the librarian registers a new member in the table of members

m.Retum_Book(b): Loans_List = remove(Loans_List, 1)

with Book_B(l) = b

Borrower(l) = m

* the librarian removes a loan from the loans List

m.Return_Book(b): B_To_Classify = add (B_To_Classify, b)

58

* when a member returns a book to the library, the librarian puts it the "B_To_Classify" List

m.Borrow _Book(b) with b = Book_B(l): in (Loans_List, 1):

Loans_List = modify(Loans_List, 1)

with Date_L(l) = Todays_Date

Waiting(l) = FALSE

(Isof m = ORDINARY MEMBER

⇒ length(l) = 15)

(Isof m = EXTRA MEMBER

⇒ length(l) = m.Time(Access_Authorized)

* the librarian registers a book loan for an Extra or Ordinary member who was waiting for

that book

m.Borrow_Book(b):Loans_List = add (Loans_List, 1)

with Date_L(l) = Todays_Date

Waiting(l) = FALSE

(Isofm = ORDINARY MEMBER

From Organization Requirements to System Requirements: a Case Library Case Study 59

⇒ length(l) = 15)

(lsof m = EXTRA MEMBER

⇒ length(l) = m.Time(Access_Authorized)

* the librarian registers a book loanfor an Extra or Ordinary member

m.Wait_For_Book(b) : add(Loans_List, 1)

with Book_B(l) = b

Borrower(l) = m

Date_L(l) = Todays_Date

W aiting(l) = TRUE

Length(l) = UNDEF

* the librarian indicates that a member is waiting for a book

m.Ask_Extend(b): modify(loans_List, 1)

with Book_B(l) = b

Borrower(l) = m

Date_L(l) = Todays __ Date

* the librarian extends the loan length of a loan

m.Classify_Books(b): remove(B_To_Classify, b)

* when a staff member classifies a book, it is removedfrom the List "B_To_Classify"

Determine_Date(d): Todays_Date = d

* the Librarian sets the date of the current day

• Causality

m.Wait_For_Book(b) ➔Detect_Delay(b, bor); Warn_Member(b, bor)

* When the librarian detects a delay, he/she warns the borrower

Staff Member. lst_Access_Library(m) ➔ Register_Member (Staff Member, m)

* When a staff member enters the library for the first time, helshe will be registered by the

librarian

m.Access_Library(member) with-, in-dom(m, Table_mem(m))

➔ Register_Member (m, member)

* If an ordinary member tries to ac ces the library without being registered, the librarian

registers himlher in the "Table_Member"

From Organization Requirements to System Requirements: a Case Library Case Study

• Capability

.ID(Detect_Delay(m,b) / :3 1 E Loans_List : Book_B(l) = b

Borrower(l) = m

Date_L(l) + length(l) > Todays_Date)

* the librarian only detects a delay for a book if the limit date is over

COOPERATION CONSTRAINTS

• Action Perception

XK(m.Classify _Book(b)/TRUE)

XK(m. lst_Access_Library/TRUE)

XK(m.Access_Library/TRUE)

I(m.Ask_Extend(b)/:3 1 E loans_List: Borrower(l) # m

Book_B(l) = b

Waiting(l) = TRUE)

60

* the librarian ignores a loan extend request for a given book if somebody else is waiting for

the book

• State Information

XK(Cat_Book_Author.m /TRUE)

XK(Cat_Book_KW.m /TRUE)

XK(B_To_Classify.m/TRUE)

• Action Information

ÂK(Warn_Member(b, bor).m / bor = m)

* the librarian can only warn a borrower how is Late in returning a book b

• State Information

ÂK(Access_Authorized.m/TRUE)

From Organization Requirements to System Requirements: a Case Library Case Study

Declaration of the Staff Member agent

B_To_
Classify

1 Book_Id 1

Librarian

Cat_Book_KW

IKW _ListH L_Book 1

Borrowed_
Books

Librarian

lst_Access
Library

Cat_Book_Author

1 Name 1 ~, L_Book 1

•
Librarian

Return_
Book

Book_Id C)
'

. ...

Classified_
Books

Book_Id

Bookstore

Member Librarian Book_Id Bookstore

Authorize_
Access

Integer
Member

Borrow_
Book

C)
•

Bookstore Book_Id

Classify_
Books

+ · ...
Book_Id Bookstore Librarian

Figure 4.7 : Graphical declaration of the Staff Member agent

The graphical declaration of the Staff Member agent is depicted on figure 4.7 . One can see

that:

1. This agent has the perception of four extemal state components (Cat_Book_KW,

Cat_Book_Author, Classified_Books and B_To_Classify). These components have been

explained before.

61

2. A Staff Member has an internai state component (Borrowed_Books) representing the set of

the books (Book_Id) actually borrowed by this agent.

3. A Staff Member has five internai actions (Borrow_Book, Retum_Book,

lst_Access_Library, Authorize_Access and Classify_Books). We will only describe the ones

which havn't already been explained.

From Organization Requirements to System Requirements: a Case Library Case Study

Borrow Book: the Staff Member selects a book (Book_Icl) in the library Bookstore.

Authorize Access: a Staff Member gives the authorization to an Extra Member to enter the

library along with the accorded loan period (lnteger).

1 STAFF MEMBER 1

BASIC CONSTRAINTS

• Initial valuation

Card(Borrowed_Books) = { }

* the staff member has no borrowed books

LOCAL CONSTRAINTS

• Effects of action

Retum_Book(b) : Borrowed_Books = remove(Borrowed_Books, b)

Borrow_Book(b): Borrowed_Books = add(Borrowed_Books, b)

• Capability

XO(Retum_Book(b)/in (Borrowed_Books, b))

XO(Classify_Books(b)/in (Librarian.B_To_Classify, b))

XO(Borrow _Book(b)/in (Bookstore.Classified_Books, b))

COOPERATION CONSTRAINTS

• State perception

XK(Bookstore.Classified_Books / TRUE)

.n.(Librarian.Cat_Book_KW / TRUE)

.n.(Librarian.Cat_Book_Author / TRUE)

.n.(Librarian.B_To_Classify / TRUE)

• Action information

.n.(Borrow_Book(b).Bookstore / TRUE)

.n.(Retum_Book(b).Bookstore / TRUE)

62

From Organization Requirements to System Requirements: a Case Library Case Study

~(lst_Access_Library.Librarian / TRUE)

~ (Authorize_Access(i).Em / TRUE)

~ (Classify_Books(b).m / TRUE)

Declaration of the Ordinary Member agent

Cat_Book_KW Cat_Book_Author Classified_
Books

Name KW_List
.__ _ ___.._,.L_Book_ _ _...__L_Book

Librarian

Borrowed_
Books

Book_ld

Borrow_
Book

C)

Librarian

Return_
Book

. ...

Book_ld

Bookstore

Access_
Library

C)
J \

, Book_ld "' Librarian Member Librarian

Wait_For_
Book

. .

Book_ld Librarian Bookstore

Ask_
Ex.tend

C)
. ...

◄ Book_Id
Book_Id Librarian

Librarian

Warn_
Member

C)
.

Book_ld Librarian

Pays_
Fee

C)
. . ..

Book_id Librarian

Figure 4.8 : Graphical declaration of the Ordinary Member agent

63

Ail the actions and the state components of the Ordinary member have already been described.

From Organization Requirements to System Requirements: a Case Library Case Study

1 ORDINARY MEMBER 1

BASIC CONSTRAINTS

• Initial valuation

Card(Borrowed_Books) = { }

LOCAL CONSTRAINTS

• State behaviour

Card(borrowed_Books)~ 2

• Effects of action

Retum_Book(b) : Borrowed_Books = remove(Borrowed_Books, b)

Borrow_Book(b): Borrowed_Books = add(Borrowed_Books, b)

• Causality

Borrow _Book(b) ➔ Pays_Fee(b)

• Capability

XO(Retum_Book(b)/in (Borrowed_Books, b))

XO(Borrow_Book(b)/in (Bookstore.Classified_Books, b))

XO(Ask_Extend(b)/in (Borrowed_Books, b)

F(W ait_For_Book(b)/in (Borrowed_Books, b)

F(Borrow_Book(b)/card(Borrowed_Books) = 2)

COOPERATION CONSTRAINTS

• State perception

~(Librarian.Cat_Book_KW / TRUE)

~(Librarian.Cat_Book_Author / TRUE)

~(Bookstore.Classified_Books / TRUE)

64

From Organization Requirements to System Requirements: a Case Library Case Study

• Action information

..tK(Retum_Book(b).Librarian / TRUE)

..tK(Access_Library.Librarian / TRUE)

..tK(Pays_Fee(b).Librarian / TRUE)

Declaration of the Extra Member agent

Cat_Book_KW

IKW _Listi ~ L_Book 1

Librarian

Borrowed_
Books

Book_ld

Cat_Book_Author

fame] ~L_Booki

Librarian

Borrow_
Book

• ••
Book_ld Librarian Bookstore

Return_
Book

. ••
Book_ld Librarian

Wait_For_
Book

C)

Access_
Library

C)
.

Classified_
Books

Book_ld

Bookstore

r-----7
1 Access_ 1
1 Authorized 1
1 1
1 ___ -1
1 1 Access 11
I_ - _, ___ 1 J ◄

Member Librarian
. ...

Librarian

Pays_
Fee

C)
I :..

Book_ld Librarian Book_ld Librarian

Warn_
Member

C)
.

Book_ld Librarian

Authorize_
Access

C)
I ...

lnteger Slaff
Member

Figure 4.9 : Graphical declaration of the Extra Member agent

65

From Organization Requirements to System Requirements: a Case Library Case Study

As for the Ordinary member, all the elements of the Extra member structure have been

described in the previous declarations.

J EXTRA MEMBER 1

BASIC CONSTRAINTS

• Initial valuation

Card(Borrowed_Books) = { }

Access_Authorized = F ALSE

LOCAL CONSTRAINTS

• State behaviour

Card(borrowed_Books)~ 2

• Effects of action

Return_Book(b): Borrowed_Books = remove(Borrowed_Books, b)

Borrow_Book(b): Borrowed_Books = add(Borrowed_Books, b)

m.Authorize_Access : Access_Authorized = TRUE

• Causality

Borrow_Book(b) ➔ Pays_Fee(b)

• Capability

XO(Return_Book(b)/in (Borrowed_Books, b))

XO(Borrow _Book(b)/in (Bookstore.Classified_Books, b))

XO(Ask_Extend(b)/in (Borrowed_Books, b)

F(W ait_For_Book(b)/in (Borrowed_Books, b)

F(Access_Library/ Access_Authorized = F ALSE)

F(Borrow_Book(b)/card(Borrowed_Books) = 2)

66

From Organization Requirements to System Requirements: a Case Library Case Study

COOPERATION CONSTRAINTS

• State perception

ÂK(Librarian.Cat_Book_KW / TRUE)

ÂK(Librarian.Cat_Book_Author / TRUE)

ÂK(Bookstore.Classified_Books / TRUE)

• Action information

ÂK(Return_Book(b) . Librarian / TRUE)

ÂK(Access_Library . Librarian / TRUE)

ÂK(Pays_Fee(b) . Librarian / TRUE)

• State Information

ÂK(Access_Authorized.librarian/TRUE)

• Action Perception

ÂK(m.Authorize_Access(i)/TRUE)

67

From Organization Requirements to System Requirements: a Case Library Case Study

Declaration of the Bookstore agent

.· .:
Extra

Member

Classified_
Books

Book_ld 1

+
....

Staff Ordinary
Member Member

Borrow_
Book

Return_
Book

Classify_
Books

• • ♦• . .
Ordinary Staff Extra Book_ld Book_ld Staff

Member
Book_ld Staff

Member Member Member

Figure 4.10 : Graphical declaration of the Bookstore agent

Constraints

Bookstore

LOCAL CONSTRAINTS

• Effects of action
m.Borrow_Book(b): Classified_Books = Remove(Classified_Books, b)

m.Return_Book(b): Classified_Books = Add(Classified_Books, b)

m.Classify_Books(b): Classified_Books = Add(Classified_Books, b)

COOPERATION CONSTRAINTS

• Action Perception

XK(m.Borrow _Book(b)/TRUE)

XK(m.Return_Book(b)/TRUE)

XK(m.Classify _Book(b)/TRUE)

Member

68

From Organization Requirements to System Requirements: a Case Library Case Study 69

• State Information

~(Classified_Books.mffRUE)

From Organi:zation Requirements to System Requirements: a Case Library Case Study 70

4.3.2. i* specification

a) Agents identification

The agents identified for the application of the i* famework to the Library system before the

introduction of any change in the organization, is virtualy completely the same. Nonetheless,

only the terminal agents will be taken into account.

The Strategic Dependency models of the acquisition and the loan policies will thus show the

dependencies between the Librarian, Staff Member, Ordinary Member, Extra Member and the

Bookshop actors.

b) Acquisition policy

Strategic Dependency Model

We will now model the acquisition policy of the library by a strategic dependency model. We

saw that this model aimed at supporting the dependencies between actors and that these

dependencies can be of four different types. We'll try step by step, to find out who depends on

whom and for what. For each dependency link on figure 4.11 , we'll explain why we have

choosen a specific type of dependency tather than another.

First of ail, it is obvious that the main goal of the acquisition policy is just the ordering of a

new book for the library. The Staff member actors are responsable for the good contents of the

library and therefore choose which books to order, but they are not allow to issue the order by

themselves; instead, they have to ask the Librarian to manage the book ordering. This kind of

dependency should be model by a goal dependency (Ordered (Book)) between the staff

member and the librarian.

The Librarian wouldn't be able to issue an order to a bookshop if he/she doesn't know which

book to order. The librarian will thus depend on the staff member for the identification of the

book. We're just talking about a simple information, and one could represent this by a resource

dependency (Book_ld) between the Librarian and the staff member.

The identification of the book isn't enough to allow the librarian to issue the order. He/she will

ask a staff member to pay the new book. This dependency is rather a task dependency (Pays

(Book)) instead of a goal one because this dependency could be viewed as a constraint.

From Organization Requirements to System Requirements: a Case Library Case Study 71

Now, the librarian is able to order the book to a bookshop. He/she will depend on the

bookshop to have the ordered book, and this will be visualized by a goal dependency

(Received (book)) between the librarian and the bookshop, because the librarian doesn't care

how the bookshop will achieve this goal. The librarian is just interested by the result of the

dependency.

Of course, the bookshop won' t be able to send anything to the librarian if the latter doesn' t

send him an order. As for the dependency for the book identification between the librarian and

the staff member, we will represent this by a resource dependency (Order).

The librarian depends on the staff member for the payment of the ordered book. However, as

the librarian is the intermediate between the staff member and the bookshop, the latter will also

depend on the librarian for the payment of the book. Therefore, we'll have the same task

dependency link (Pays (Book)) between the librarian and the bookshop.

Once the librarian will have received the book, he/she will have to determine the reference of

this book and for this reason, he/she'll ask the staff member to determine a category and a list

of keywords to associate with the book. We have choosen to represent this by a task

dependency (Find-KW-Cat (Book_O)) between the librarian and the staff member instead of a

resource dependency because we want to express the fact that the staff member will have to

carry out an activity.

Once the librarian will have register the identification and the reference of the new book,

he/she will depend on the staff member to classify it on a library shelf. We have a goal

dependency (Classified (Books)) between the librarian and the staff member because the

librarian doesn't know how the staff member choose to classify the new books.

From Organization Requirements to System Requirements: a Case Library Case Study

Ordered
(Book)

Book_ld

pays
(Book)

Classified
(Books)

Received
(Book_O)

Figure 4 .11: SD Model Of the acquisition policy

Strategic Rationale Model

72

Figure 4.12 showed us the different dependency links between the three actors implicated in

the library acquisition policy. This SD model shows that the librarian is a central actor in the

acquisition procedure. He/she plays a role of intermediate between the staff members and the

bookshops. The staregic rationale model can help us to carry out a deeper analysis of the

librarian role, and to find out some alternatives that could improve the actual way of working.

We know that the labrarian only issues a book order on a staff member request. This will be

modelled in the Strategic rationale model by a goal dependency (Ordered (Book)) from the

staff member actor into the librarian boundary.

The librarian has to order a book, this is represented by the (order (book)) task. This task

consists of two components: the subtask of establishing the order (Establish(order)) and the

subtask of receiving the new book (Manage reception(book)) . We are only modelling the tasks

that are considered important enough to be of strategic concem to the actor.

In order to establish a book order, we saw in the strategic dependency model (figure 4.11),

that the librarian needed the book identification. Once again we will represent this by a

resource dependency (Book-Id) going from the librarian boundary to the staff member actor.

The task (establish (order)) will be also composed of two subtasks: (Issue (order)) and

(Register (order)).

From Organization Requirements to System Requirements: a Case Library Case Study 73

One way to have the order registered (which is the actual way of working), is to update the

order list manually. We will represent this by the means end link (Register Manually (order)) .

But ail along the book acquisition process, the librarian is influenced by two qualitative goals.

On one hand, he/she wants to be efficient. He/she also wants to evolve in an adequate

environment, with practical working methods, we will call this to be comfortable.

The fact of register an order (or anything) manually, certainly affects negatively the two

qualitative goals. It represents a lost of time, a risk of lost, a possibility of data redundancy, ...

The alternative could requires the use of an information system for the data registration.

This is depicetd by the means-ends link (use IS). In these circumstances, the librarian would

depend on the IS for the data gathering or consultation.

When a librarian receives a new book from a bookshop, he/she has to register the book in the

library books catalogues. The librarian will first ask the category and a list of keywords to the

staff member (Cat-Kwds), and then updates the catalogues. One could make here the same

reasoning as for the registration of an order. Either the librarian handles the old catalogues and

makes the registration manually, either he/she uses an information system. In order to keep the

SR modelas clear as possible, we havn't drawn the links affecting the qualitative goals.

From Organization Requirements to System Requirements: a Case Library Case Study

0
/

/
1

\

I ----<.

Cat-Kwds

lnfo

Figure 4.12: SR Model of the acquisition policy

c) Loan policy

Strategic Dependency Model

Use
IS

Elecironic
lnfo

-

74

-

We will describe the loan policy the same way we did for the acquisition policy. The SD Model

is depicted on figure 4.13.

Ali the users of the library need to be registered before his/her first access to the library. The

registration is made by the librarian. So, if a user wants to borrow a book, he/she will first

depend on the librarian to be registered. We will represent this by a goal dependency (Register

(member List)) between the staff, ordinary and extra users and the librarian. We'll use a goal

link because the users are just intrested in the result - beeing registered and thus, authorized to

acces the library - and not by the procedure the librarian will have to follow in order to register

them.

From Organization Requirements to System Requirements: a Case Library Case Study 75

If he/she wants to register a new user, the librarian will need some information which we will

represent by a resource dependency (Registration info) between the librarian and the users

(ordinary, staff and extra members).

We will now tackle the heart of the loan policy, that is to say, the loan of a library book. The

extra and ordinary users depend on the librarian for borrowing a book. The librarian is the one

who manages ail the loan procedure. The goal of these users is very simple, they just want to

borrow a book and doesn't care about the updating of the loans list etc. It' s the librarian's

business, that's why we will represent the loan of a book by a goal dependency (Loaned(book))

between the extra and ordinary member actors and the librarian. The staff member doesn' t

have that kind of dependency with the librarian because he/she can borrow a book without

asking the librarian.

But an extra or ordinary user will be able to borrow a book only if he/she pays a fee to the

librarian. We thus have a resource dependency (Fee) between the librarian and the extra and

ordinary member actors. Once again, we won't see that kind of dependency between the

librarian and the staff member because the loan is free for the latter.

When a user (extra or ordinary member) borrows a book, he/she is supposed to keep it for a

given period of time and not more. The librarian has to trust the user when he/she loans the

book and will thus depend on him/her for the respect of the loan time. We choosed to

represent this dependency by a softgoal link (Respect (Loan time)) between the librarian and

the extra and ordinary members.

In the library description, we also saw that the staff member could evict the users who didn't

behave correctly. In order to avoid that kind of situation, the staff member will depend on the

extra and ordinary members for having an « adequate » behaviour. This is obviously a softgoal

dependency (Behave correctly) because the meaning of« adequate » is not clear-cut defined.

If an extra member wants to borrow a book, a staff member will first have to authorize this

extra member to enter the library. The extra member depends on the staff member to be

allowed to access the library. This will be represented by a goal dependency

(Authorized(access)) because of the extra member ignorance of the procedure to follow in

order to receive this authorization.

An ordinary member is allowed to borrow a book for a period of fifteen days. An extra

member doesn't have the same loan period. Actually, his/her loan period is given by a staff

From Organization Requirements to System Requirements: a Case Library Case Study 76

member. The extra member has thus a resource dependency (Loan time) on the staff member

actor for the loan length.

Finally, as for the acquisition policy, the librarian depends on the staff member for the ranking

of the retumed books in the library shelves. This is represented by the goal dependency

(Classified (books)) .

Figure 4.13: SD Model of the loan policy

Strategic Rationale Mode)

Authorized
(Access)

We saw that one of the main goals of the librarian was to manage book loans. In order to

acheive this goal, the librarian has to perform three main tasks which are: the rent of books, the

management of the retumed books and he/she also has to manage the delays in returning

books.

At this state of the reasoning, one should wonder what seems important to the librarian. What

are his/her interna! goals? What would he/she want to achieve? We wouldn't be wrong if we

said that the librarian wants the library business prosperous.

The question one should then ask to ourselves is: what would make a library system

prosperous? The answer would probably be the same for most of the businesses: an efficient

management in one hand and customers happy in the other hand. These two parameters would

affect positively the success of the business.

From Organization Requirements to System Requirements: a Case Library Case Study 77

If we go on with this kind of reasoning, one could ask what makes a library user happy?

Probably some flexibility for the loan period with for exemple the possibility to extend the loan

period if nobody else' s waiting for the book, reasonable loan periods. A user doesn' t want

either to wait to long for a book if it' s already borrowed.

Of course, these two qualitative goals are opposed to each other and one will have to make the

balance between them.

In the loan policy described earlier, we saw that the librarian didn' t disco ver delays

systematically but rather at random. He/she discovered that a borrower was late in retuming a

book when another borrower asked for the same book. This way of working could please

some users, taking this opportunity to keep a book for a longer time, but in the other hand, the

chances of beeing on a waiting list increase.

An alternative to this way of working could be the management of the loans delays by an

information system.

Figure 4.14: SR Model of the loan policy

/
/

1

\

1

1

1

1

I
/

Random wouldn't have its place anymore and the librarian would be wamed systematically for

the negligent borrowers.

From Organization Requirements to System Requirements: a Case Library Case Study 78

The extra, ordinary and staff members depend on the librarian for the loan of books. When the

librarian rents a book, he/she has to ask a fee (if the borrower is an ordinary or an extra

member), to take some information (as the book identification) in order to update the loan list.

The librarian is the only one who is authorized to update the loan list. Maybe this way of

working isn't the more adequate or the more effective?

One could imagine the staff members more independant and one way to achieve this, could be

to let them manage their own loans. They would have access to the information system and

could update the loan database by themselves, this way, the staff members would have a little

more responsibilities and the librarian would gain some rime for his/her other tasks.

The Strategic Rationale Model helped us to find some alternatives in order to make the actual

loan process more efficient. it showed that this could be achieved by the introduction of an

information system and by the shift of responsibilities.

From Organization Requirements to System Requirements: a Case Library Case Study 79

4.4. Introduction of the Information System

4.4.1. IS description

The new system to design should integrate the following facilities derived from the analysis

made in section 4.3:

A book database: the system must record any relevant information about the books contained

in the library: it must be able to answer enquiries about books appropriatly: given some

criterion (author(s), keyword(s), title, year of publication, ...), find if there are books matching

the criterion in the library and, if yes, find their locations and status (borrowable, borrowed,

lost).

An order database: the system must keep track of all the books orders in progress; it must be

able to answer questions about the orders, such as: give the list of all the orders in progress,

who has ordered a given book, check wether a book has been ordered, retreive pending orders

issued for one month or more.

A member database: the system must record information about the library members such as the

identity, the member category, where the member can be contacted.

A loan database: the system must record all the book loans (which book, which borrower, the

date of the loan) and must be able to answer enquiries such as: who has a given book, give ail

the books borrowed by a member, give the list of all members being late in retuming books,

who is waiting for a borrowed book.

The book database can be consulted by any member. Staff members can consult any database.

An ordinary or extra member may not receive information about other members. The librarians

are the only people allowed to update the databases. There is an exception however: any staff

member can update the loan database for his/her own loans.

4.4.2. i* Description

a) New agents identification

The actors of the new library system are identical to the terminal agents identified for the

application of the Albert language (except for the shelf agent) . The usual actors will be:

the Staff Members, the Ordinary Members, the Extra Members and the Librarian;

We introduce a new actor: the Information System (IS).

From Organization Requirements to System Requirements: a Case Library Case Study

b) Acquisition policy

Strategic dependency m<><lel

80

The introduction of an information system means the introduction of a new agent, and who

says new agent, says automatically new dependencies. These new links are underlined with a

new strategic dependency model depicted on figure 4.15. Once again, we'll argue the choice of

the new links between the actors.

For the acquisition policy, the main dependency links remain the same. Nonetheless, the

librarian and the staff member actors will depend on the new actor, the information system, in

order to consult the library databases. We'll represent this by a simple resource dependency

link (Information) between the staff member and the IS and between the librarian and the IS.

In its tum, the IS will depend on the librarian for the updating of its information. We have a

task dependency (update (info)) because the procedure is well established. There is only one

way to update an information system.

Ordered
(Book)

Classify
(Book)

Update
(lnfo)

Pays
(Book)

Figure 4.15: SD Model of the acquisition policy after introduction of the IS

From Organization Requirements to System Requirements: a Case Library Case Study 81

c) Loan policy

We'll show via the SD mode! depicted on figure 4.16 that the introduction of the information

system has modified a part of the dependencies between the actors of the loan process.

Nonetheless, some of the dependencies remain the same (Registered(member-list),

Registration info, Borrowed (book), Fee (book)) and we won't explain them anymore.

Furthermore, in order to lighten the mode!, we've only represented the goal (register(member

list)) and the resource (Fee(book)) as dependencies between the ordinary member and the

librarian but it' s obvious that the same dependency links exist between the extra member and

the librarian. We've done the same for the goal (registered(member-list)) and the resource

(registration info); these dependency links exist also between the extra and staff member

actors and the librarian actor.

We saw previously that the librarian discovered the delays more or less at random. Now, this

actor depends on the information system to have systematically the list of negligent borrowers.

We will represent this by a resource dependency (Delays list) between the librarian and the IS.

The librarian is also able to consult the databases of the IS, and thus will depend on it for

answering to his/her enquiries. We have represented this by a goal dependency

(answered(enquiries)) between the librarian and the IS because the librarian doesn't tell the IS

how to answer. He/she is only interested by the outcome.

For responding to the librarian questions, the IS needs some criterion specifying the request.

This is visualized by a resource dependency (Criterion) link: between the IS and the librarian.

The IS needs also to be updated for each loan registration and will depend for this on the

librarian for the extra and ordinary members loans, and it will depend on the staff member

actor for his/her own loans. The procedure for updating the loan database is well established

that's why wel'll represent this dependency by a task link: (Update(loan-DB)).

Finally, the librarian will ask the new information system to have good performance. It will be

represented by a softgoal (good performance) because we don't have a sharply defined

definition of what is a« good performance».

From Organization Requirements to System Requirements: a Case Library Case Study

Classified
(Books)

Fee
(Book)

Answered
(inquieries)

Figure 4.16: SD Model of the loan policy after introduction of the IS

4.4.3. Albert specification

a) New agents identification

82

The former agents remain the same as in the previous organization but the Library society has

a new terminal agent: the Information System.

The new graphical declaration of the library system is shown figure 4.17

Frorn Organization Requirernents to System Requirernents: a Case Library Case Study 83

Library System

Extra Member

<ê) Bookshop

Ordinary Member

<ê)

Figure 4 .17 : Graphical declaration of the Library system society

b) Acquisition policy

Declaration of the Staff Member agent

The new graphical declaration of the Staff Member after introduction of the Information

System is depicted on figure 4.18. The main changes are the following:

1. The Staff Member agent has five extemal state components. Two of them have already been

described (B_To_Classify and Classified_Books). This agent has now the perception of the

Ortler database (Ord_DB), the Member database (Mem_DB) and the two book catalogues

have been merge into one database (Book_DB).

Book DB: this state component represents the set of books (Book) registered in the library.

From Organization Requirements to System Requirements: a Case Library Case Study

• The Book type has been modifed. It is now defined by:

Identification
(Book_ld)

Borrowable
(Boolean)

Kwds
(KW_List)

Borrowed
(Boolean)

Mem_DB Book_DB Ord_DB B_To - Classified
Classiy

Member Book Order
1 Book_Id 1

IS IS IS
Librarian

Book - Pays_ Classify_
Order Bill Books

c=::> c::, C=:>

' '
. .

+
Book-O Librarian Priority ·,.. Book_ld :

Librarian

Send_Cat_
KW

Book_O Cat

. ...
Librarian

Remove_

. .
►

Book

Bookstore Book_ld

Send_
Book

Book-Id BookShop

Bookstore

Books

Book_ld

Bookstore

Figure 4.18 : Graphical declaration of the Staff Member agent

84

From Organization Requirements to System Requirements: a Case Library Case Study 85

Mem DB: This set represents ail the members (Member) registered in the library (they aren't

registered anymore in a table).

• The new type Member is the following:

STAFF MEMBER

ID
(IDMember)

LOCAL CONSTRAINTS

• Causality

Contact
(Member)

Bookshop.Send_Book (b)➔ Send_Cat_KW (b, kw, c)

* once a bookshop has sent a new book, a staff member sends to the librarian, the category

and a list of keywords associated with that book

• Capability

.Xt, (Classify_Books(b) / -, in(B_To_Classify, b))

* a staffmember can't classify a book which isn't in the "B_To_Classify" List

.Xt, (Remove_Book(b) / -, in(Classified_Books, b)

* a staff member can 't remove a book which is not in the bookstore

COOPERATION CONSTRAINTS

• Action Perception

~ (b.Send_Book (b) /TRUE)

• State Perception

~ (Bookstore.Classified_Books/TRUE)

~ (IS.Ord_DB/TRUE)

~ (IS.Book_DB/TRUE)

~ (IS.Mem_DB/TRUE)

~ (Librarian.B_To_Classify/TRUE)

From Organization Requirements to System Requirements: a Case Library Case Study 86

* the stajf memhers always perceive the catalogues, the bookstore and the B_To_Classify lists

• Action Information

..:tK (Classify_Books(b).m /TRUE)

..:tK (Remove_Book(b).b/TRUE)

Declaration of the Librarian agent

We'll just describe the actions and state components that havn't been already described.

The Librarian agent has three new internai actions (Class_Order, Remove_Order and

Add_Book_order):

Class order: the Librarian asks the IS to register a new book order (Order) in the Ord_DB.

Remove order: the Librarian agent would like to remove an order (Order) from the Ord_DB.

Add Book DB: the Librarian registers a new book (Book) in the IS Book database.

From Organization Requirements to System Requirements: a Case Library Case Study

Stock_Bookshop

Book_O H P_DT

Bookshop

Issue_
Order

.

Mem_DB

Member

IS

Determine
_ Ref

Ord_DB

Order

IS

B_To _
C!assify

Book_ld

' ... Book-O l Bookshop
Book_ld Staff

Send_
Book

Priority

Class_
Order

Order

.
◄
IS

Book_O

Remove_
Order

Order

Book_
Order

.
◄
IS

Book-O BookShop Book-O Priority ••
Staff

Cat Member

Add_
Book_DB

Book

Send_Cat_
KW

.
◄
IS

. .
Staff

Member Book_O Cat

Classify_
Books

Book_ld Staff Member

Figure 4.19: Graphical declaration of the Librarian agent

Book_DB

Book

IS

Pays_
Bill

Book-O Staff
Member

87

From Organization Requirements to System Requirements: a Case Library Case Study

Constraints

j LIBRARIAN j

BASIC CONSTRAINTS

• Initial Valuation

B_To_Classify = { }

* There are no books to classify in the library Bookstore

LOCAL CONSTRAINTS

• State Behaviour

in (B_To_Classify, b) ⇒ >lday ---, in (B_To_Classify, b)

* A book must be classified in the library Bookstore within one day.

• Effect of Actions

Determine_Ref(bo, kwl, c, b): B_To_Classify = add(B_To_Classify, b)

* When the librarian has de termine the reference of the new book, he/she puts it in the

B_To_Classify list

Staff Member.Classify_Books (b): B_To_Classify = remove (B_To_Classify ,b)

* When a Staff M ember classifies a book in the library, he/she removes it from the List

"B_To_Classify".

• Causality

Staff Member.Book_Order (b, pr); _. Pays_Bill (b) ➔ Issue_Order (b, pr).bs;

Class_Order(O)

with Book_O(O) = b

Member(O) = Staff Member

Date(O) = Todays_Date

Bookshop(O) = bs

88

* When a Staff Member asks the librarian to order a book(b) at a given priority and if a Staff

Member agrees to pay the bill for that book, then the librarian will issue an order to the

appropriate bookshop and will register the order in the orders list.

From Organization Requirements to System Requirements: a Case Library Case Study

Staff Member.Send_cat_KW(b, kw, c) ➔ Determine_Ref (b, c, book)

with Authors (book) = Authors (b)

Title (book) = Title (b)

Edition (book)= Edition (b)

Category (book)= c;

Add_B ook_D B (b)

with Identification(b) = book

Kwds(b) = kw

Borrowed(b) = FALSE

89

* When a staff member sends the category and a list of keywords associated with a book, the

librarian can de termine the reference of that book and can register it in the IS Book database

Bookshop.Send_Book (b) ➔ Remove_0rder (0)

with Book_0(0) = b

* When a bookshop has sent a book, the librarian removes one order he chooses from the

orders list which asked for that book

• Capability

F (lssue_0rder(b, p).bs / (Isof p = "price" A

3 bs': Price(bs'.Stock_Bookshop[b])

< Price(bs.Stock_Bookshop[b]))

v (lsof p = "Del_Time" A

3 bs': Del_Time(bs'.Stock_Bookshop[b])

< Del_Time(bs.Stock_Bookshop[b]))

* the librarian can 't send an order to a books hop who doesn 't respect the priority in time or in

delivery time

COOPERATION CONSTRAINTS

• Action Perception

I (Bookshop.Send_Book(b) / --i in (IS.0rd_DB, 0): book_0 (0) = b

A bookshop (0) = bookshop)

* the librarian ignores the book sent by a bookshop, which hasn 't been ordered

I (Staff member.Classify_Books (b) / --i in (B_To_Classify, b))

* the librarian ignores the action of a staff member consisting in removing a book that

doesn't exist in the "B_To_Classify" list

From Organization Requirements to System Requirements: a Case Library Case Study

• State Perception

~ (b.Stock_Bookshop[-]/TRUE)

~ (IS.Mem_DB/TRUE)

~ (IS.Ord_DB/TRUE)

~ (IS.Book_DB/TRUE)

* the librarian can always perce ive the catalogues of the bookshops

• State Information

~ (B_To_Classify.Staff Member/TRUE)

* the "B_To_Classify" list is always visible to the staff members.

• Action Information

~ (Issue_Order(b, p).Bookshop/TRUE)

..tK (Class_Order(o).IS/TRUE)

..tK (Remove_Order(o).IS/TRUE)

..tK (Add_Book_DB(b).IS/TRUE)

90

From Organization Requirements to System Requirements: a Case Library Case Study

Declaration of the IS agent

.-----7
1 Todays_ t
I Date 1
1 .-------, 1
1 1 Date I i
, _____ .J

Book_DB

1 Member 1

Mem_DB

1 Member 1

Ord_DB

Order

.
► ◄ ► ◄ ► ◄

Librarian Staff Librarian Staff ibrarian Staff
Member Member Member

Class_
Order

Determine
_Date

C=:>
!
Date

Remove_
Order

Order Librarian Order Librarian

Add_
Book_DB

Book Librarian

Figure 4.20: Graphical declaration of the IS agent

Constraints

IS

BASIC CONSTRAINTS

• Initial Valuation

Ord_DB = { }

* There are no orders in progress in the orders database

LOCAL CONSTRAINTS

• Effect of Actions

Librarian.Class_Order(O): Ord_DB = Add(Ord_DB, 0)

91

From Organization Requirements to System Requirements: a Case Library Case Study

Librarian.Remove(0): 0rd_DB = Remove(0rd_DB, 0)

Add_Book_DB(b): Book_DB = Add(Book_DB, b)

Determine_Date(d): Todays_Date = d

COOPERATION CONSTRAINTS

• Action Perception

I (Librarian.Remove_0rder(0) /-, in(0rd_DB, 0))

.,lK (Librarian.Class_0rder(0) / TRUE)

.,lK (Librarian.Add_Book_DB(b) / TRUE)

• State Information

~ (Book_DB.m / TRUE)

~ (Mem_DB.m / TRUE)

~ (0rd_BD.m / TRUE)

Declaration of the Bookshop agent

The declaration and the constraints of this agent are the same as figure 4.4.

Declaration of the bookstore agent

The declaration and the constraints of this agent are the same as figure 4.5

c) Loan policy

92

The loan policy after the introduction of the information system has been completely specified

in the annex.

From Organization Requirements to System Requirements: a Case Library Case Study 93

4.5. Correlation between Albert and i*

We have just applied to the concrete example of a library case study, the two frameworks

Albert and i*, developed in chapters two and three. Each of these methods has its own

objectives and characteristics.

In this chapter, following the reverse engineering method, we have first applied the Albert

language to the acquisition and loan policies of the library, allowing us to understand in a

formal way, the functionalities (the" what") of the studied work processes. We've then applied

the i* framework to the existing system in order to discover and to identify the dependencies

existing between the main actors. The Strategic Rationale model of the framework has allowed

us to emphasize some of the work procedure weak points such as the delays detection. This

model also helped us to find out new alternatives in order to improve the present situation.

The introduction of an information system has overturned the dependencies and relationships

within the library system, that' s why we used again the Strategic Dependency model in order

to catch on this brand new organization. Last but not least, we have modelized the new system

the same way we did at the begining, i.e. by the application of the Albert language.

The main goal of this section is to discover if it could be possible to establish a closer link

between the two frameworks. Could it be possible to settle a systematic binding between

Albert and i*, allowing us to infer automatically the Strategic Dependency model from the

formal Albert specification and conversely, to deduce systematically the Albert specification

from the new SD model of the rehandled organization?

We'll first analyze the similarities and differences between Albert and i*, and thanks to these

observations, we'll try to answer the question of knowing if a systematical binding could really

be established.

4.5.1 Common points between i* and Albert

We've decided to underline thwo major similarities between the two methods:

• The composite system aspect

The two frameworks take the composite system notion into account. They are not restricted to

an information system or whatever, to be developed but consider the whole context in which a

new technological structure has to be embedded.

Albert will then identify the different agents involved in a system. Furthermore, it proposes the

regrouping into agent societies in order to handle the real problems complexity. These agents

From Organization Requirements to System Requirements: a Case Library Case Study 94

represent several elements of the system such as human beings, hardware, software pieces, etc.

They can be extemal or intemal to the studied system.

In the library example, the Albert specification has taken into account the librarian how was

part and parcel of the library but also the bookshops which only had an indirect link with the

library management.

The i* framework adopts a similar view. The Strategic Dependency model decomposes the

considered system in several actors. If the society or population of agents notions are not

depicted just as it is in Albert, the Agent-Role-Position model allows to refine the actors

decomposition proposed by the SD model.

• Communication between "actors" or "agents"

The second similarity that we would like to approach in this section, is the communication

between the system components. We explained the Albert and i* decompositions in agents or

actors, but the existence of such elements without any kind of communication between them,

wouldn't mean anything. The two methods express this communication in different ways:

Albert uses the mechanism of importation and exportation links between the components (state

components or actions) of the agents structures, along with the cooperation constraints

associated with each of them. It is therefore possible to answer some questions such as: which

agent modifies another agent's behaviour and how, which agent is able to perceive the intemal

state components of another agent and when, etc.

I* will rather talk about actors dependencies instead of communication between them. The

Strategic Dependency model depicts a work process in terms of dependency links and even

refines this notion by identifying four types of dependencies (goal ,resource, task and softgoal).

Looking at a SD model, one can answer some questions such as: who depends on whom and

for what.

4.5.2. Main difference between Albert and i*

In the previous section, we saw that it exists a clear separation between the two frameworks,

and each of them thaugth us something different about the library system.

From the analysis requirements specified by Albert, we leamed for example, that a retumed

book had to be classified in the library shelves within one day or that an ordinary member

could borrow a book for 15 days. We also leamed what the librarian had to do in order to rent

a book, what informations he/she needed.

From Organization Requirements to System Requirements: a Case Library Case Study 95

The Albert specification gave us a clear view of what the system was doing along with

temporal constraints, but it didn't tell us more. With that kind of specification, it's not always

easy to understand systematicaly what could be wrong in the work process.

Introducing an information system at that stage of the analysis would lead to the mistake raized

by M.Hammer: "Don't automate, obliterate". That's why, before talking about the introduction

of any technologies, we tryed with i* to understand why the present process needed to be

improve.

So, it is obvious that the two frameworks are located at two different levels of comprehension.

Used together, these models lead to a complete undertsanding of the business process, that's

why it would be very useful to find or to create a systematic binding between them. However,

it seems yet very difficult establishing such a link.

4.5.3. Binding between Albert and i*

We'll analyse the binding idea at two levels: between ail the agent declarations in Albert and

the SD model of i* , and between one particular agent declaration in Albert and the SR model

for that actor in i *.

From Albert specifications to the SD model {and reciprocally)

An intuitive way to induce automatically an SD model from Albert specifications for a same

work process, could be the following:

• each agent represented in Albert would be represented by an actor in i*;

• each importation link for an action or a state component, from an agent al to an agent a2

could be represented by a dependency link with the actor al as the depender, the actor a2 as

the dependee and the action or the state component as the dependum;

• each exportation link for an action or a state component from an agent al to an agent a2

could be represented by a dependency link with the actor al as the dependee, the actor a2

as the depender and the action or the state component as the dependum.

For example, from figure 4.2. presenting the librarian declaration for the book acquisition

policy, one could find for the state component « Cat_Book_KW »:

----+-t--, Cat_Book_KW

From Organization Requirements to System Requirements: a Case Library Case Study 96

Unfortunately, one will find out that different problems will occur nearly immediatly

1. The Albert language represents ail the actions the same way, while the SD model proposes

four types of dependum. The problem will then happen in the sense Albert toi*: how choosing

the right representation for a particulal action?

2. It seems obvious that the state components of the Albert language will be represented by

resources in i*. However, Albert has chosen to differentiate its state components

representations according to their types (table, sequences, individual components, ...), while i*

doesn't make any difference between the resource dependencies. This time, the problem will

occur in the sense i * to Albert: how choosing the right representation for a particular resource?

3. i* proposes softgoal dependencies that is to say dependum which are not clearly defined.

This notion doesn't exist in Albert. On the contrary, the studied examples have to be complete

and precise enough to include temporal or performance constraints. How deducing temporal or

peformance constraints from an SD model? How infer softgoals from an Albert specification?

4. In Albert, some of the actions or state components intemal to an agent declaration, have no

importation or exportation links. It means that they won't be represented in the SD model and

it's nota big deal in the sense Albert to i*, but how are we going to find them from an SD

model?

5. This problem concems the actions arguments in Albert. Sorne of them are not enough

strategic to be represented in an SD model. (and which representation should we adopt?)

One could find many other problems compromising the binding aspiration between the two

frameworks . In order to summarize the situation, one could say these problems are directly

related to the fact that the i* framework is too subjective and not enough formal in at least two

domains:

• first of ail, the choice for example between a goal or a task for a same dependum is not

always ovbvious and in most cases, this choice remains very subjective and has to be

supported by convincing arguments.

• the choice of the dependencies that will be modeled, are also very subjective because only

the dependencies that seem to be strategic enough for the analyst will be represented.

From Organization Requirements to System Requirements: a Case Library Case Study 97

From one agent's declaration to the corresponding SR model (and reciprocally)

We've just seen that the binding between the Albert declaration of the agents and the SD model

of the whole work process was very difficult to achieve. Most of the problems raised earlier

can once again, be applied to the link between one agent declaration in Albert and the

corresponding SR model for that particular agent.

Indeed, the SR model destined to catch the rationales inherent to a particular way of doing

things, will only handel the rationales considered to be important enough to be modeled. It also

represents qualitative goals which have no equivalent in the Albert language.

Ali these observations lead to the conclusion that at this stage of the i * life, it seems impossible

to envisage a systematic binding with Albert. The i * framework is still too informal and

conceded a too important place to the subjectivity of the analyst.

From Organization Requirements to System Requirements: a Case Library Case Study 98

Chapter 5: Conclusion

For many companies, Business Reengineering is the only way to face the new client'demands

and the concurrence context. In order to succedd in the introduction of an information system

within a work process, it is really important to define and to understand adequately the work

organization in which such technological support will be embedded.

In this thesis, we have presented two frameworks situated at two different levels in the

requirements engineering activity. We have seen that the Albert language aimed at supporting

the description of what a system is to do while the i* framework (via the SD and SR models),

helpes us to catch the strategic dependencies and rationales inherent to the process actors.

Used together, these two approaches give a full comprehension of a business process but the

idea of an automatical binding between them still seems to remain a sweet dream.

Indeed, the difference of levels and the lack of formalism of i* along with a large subjective

counterpart still constitute an important obstacle.

From Organization Requirements to System Requirements: a Case Library Case Study

Bibliography

[Agostini93] A. Agostini, G. De Michellis, M. A. Grasso, S. Patriarca, Reengineering a
Business Process With an Innovative Workflow Management System: a Case Study,
Coocs '93.

99

[Blomberg86] J. L. Blomberg, The Variable Impact of Computer Technologies on the
Organization of Work Activities, Proceedings of the conference on Computer-Supported
Cooperative Work, pp. 35-42, 1986, also in Computer-Supported Cooperative Work - A
Book of Readings, I. Greif, ed., pp. 771-781.

[Briand94] L. Briand, W. L. Melo, C. Seaman, V. Basili, Characterizing and Assessing a
Large-Scale Software Maintenance Organization-Experience Report-, University of
Maryland.

[Bubenko80] J. Bubenko, Information modelling in the context of system development,
Proceedings IFIP World Congress, 1980.

[Bubenko93] J. A. Bubenko, Extending the Svope of Information Modeling, Proc. 4th /nt.
Workshop on the deductive Approach to information Systems and Databases, Lloret-Costa
Brava, Catalonia, Sept. 20-22, 1993, pp. 73-98.

[Chung94a] K. L. Chung, B. A. Nixon, E. Yu, Using Quality Requirements to Drive Software
Development, ICSE-16 Workshop on Research Issues in the Intersection Between Software
Engineering and Artificial Intelligence, International Conference on Software Engineering,
Sorrento, Italy, May 16-20, 1994.

[Chung94b] K. L. Chung, B. A. Nixon, E. Yu, Using Quality Requirements to Systematically
Develop Quality Software, Fourth International Conference on Software quality, October
3-5, 1994.

[Clement87] A. Clement, C. C. Gotlieb, Evolution of an Organization Interface: The New
Business Department at a Large Insurance Firm, Trans. Office Information Systems, 1987.

[Curtis92] W. Curtis, M. I. Kellner and J. Over, Process Modelling, Comm. ACM, 35 (9) ,
1992, pp. 75-90.

[Dar93] R. Darimont, The Development Context in the ICARUS Process Model: Application
to the Elicitation of KAOS Goals, University of Louvain-La-Neuve (Belgium), Dec 1993.

[DDDP94a] E. Dubois, P. Du Bois, F. Dubru, M. Petit, The Albert Course Voll: the
Language, University of Namur (Belgium), June 1994.

[DDDP94b] E. Dubois, P. Du Bois, F. Dubru, M. Petit, Agent-Oriented Requirements
Engineering: A Case Study using the Albert Language, University of Namur (Belgium),
Septembre 94.

[DDP93] E. Dubois, P. Du Bois, M. Petit, Elicitating and formalising requirements for CIM
information systems, University of Namur (Belgium), june 93.

From Organization Requirements to System Requirements: a Case Library Case Study 100

[DYDM95] P. Du Bois, E. Yu, E. Dubois, J. Mylopoulos, From Organization Models to
System Requirements A « Cooperating Agents » Approach, submitted to the 3rd
International conference on cooperative Information systems Coop/S-95, Vienna (Austria),
May 9-12, 1995.

[Dub86] E. Dubois, J. Hagelstein, E. Lahou, A Rifaut, F. Williams, Proceedings ESPRIT' 85
conference, North Holland, 1986.

[Finkelstein] A Finkelstein, A Course onRequirements Engineering.

[Greenspan94] S. J. Greenspan, J. Mylopoulos, A Borgida, On Formai Requirements
Modeling Languages: RML Revisited, (invited plenary talk), Proc. 16th /nt. Conf Software
Engineering, May 16-211994, Sorrento, Italy, pp. 135-147.

[Hammer90] M. Hammer, Reengineering Work: Don't Automate, Obliterate, Harvard
Business Review, July-August 1990, pp. 104-112.

[Jacobson] I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard, Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley Publishing Company.

[Jarke] M. Jarke, Requirements Engineering in the year 2001: On (Virtually) Managing a
Changing Reality. Workshop on System Requirements: Analysis, Management, and
Exploitation, SchloB Dagstuhl, Saarland, Germany, October 4-7, 1994.

[Medina-Morena92] R. Medina-Mora, T. Winogard, R. Flores, The Action Workflow
Approach to W orkflow Management Technology, Conference on Computer Supported
Cooperative Work, Nov. 1992, pp. 281-288.

[Mylopoulos80] J. Mylopoulos, A. Borgida, M . Jarke, M . Koubarakis, Telos: A Language for
representing knowledge about information systems, ACM Transaction on Information
Systems, vol. 8, n4, 1990, pp. 325-362.

[Mylopoulos95] Conceptual Modeling for Information Systems Engineering, International
chaire at the University of Namur (Belgium), l 995.

[Schael93] T. Schael, B. Zeller, Workflow Management Systems for Financial Services,
Coocs '93.

[Scheer] A W. Scheer, M. Nuttgens, Business Process (Re-)Engineering: Architecture,
Reference Models and Toolset.

[Seaman] C. B. Seaman, OPT: Organization and Process Together, CASCON, Toronto 93.

[Yu93a] E. Yu, An Organization Modelling Framework for Multi-Perspective Information
System Design, requirements Engineering 1993 - Selected Papers, J. Mylopoulos et al. ,
eds., Tech. Rpt. DKBS-TR-93-2, Dept. Comp. Sei., Univ. of Toronto, July 1993, pp. 66-
86.

From Organization Requirements to System Requirements: a Case Library Case Study 101

[Yu93b] E. Yu, J. Mylopoulos, An Actor Dependency Model of Organizational Work- With
Application to Business Process Reengineering, Proc. Conf Organizational Computing
Systems (COOCS'93), Milpitas, Calif., Nov. 1-4, 1993, pp. 258-268.

[Yu93c] E. Yu, An Organization Modelling Framework for Information Systems
Requirements Engineering, Proc. 3rd Workshop on lnfo. Tech. and Systems, (WITS'93),
Orlando, Florida, USA, December4-5, 1993, pp.172-179.

[Yu94] E. Yu, Modelling Strategic Relationships for Process Reengineering, Dept. Comp.
Sei., Univ. of Toronto, October 1994.

[Yu94a] E. Yu, J. Mylopoulos, Using Goals, Rules, and Methods To Support Reasoning in
Business Process Reengineering, Proc. 27th Hawaii /nt. Conf System Sciences, Maui,
Hawaii, Jan. 4-7, 1994, vol. IV, pp. 234-243.

[Yu94b] E. Yu, J. Mylopoulos, Understanding « why » in Software process Modelling,
Analysis, and Design, Proc. 16th /nt. Conf Software Engineering, May 16-21, 1994,
Sorrento, ltaly, pp. 159-168.

[Yu94c] E. Yu, J. Mylopoulos, From E-R to A-R - Modelling Strategic Actor Relationships
for Business Process Reengineering, Proc. 13th /nt. Conf Entity-Relationship Approach,
December 13-16 1994, Manchester, U.K., to appear.

[Yu94d] E. Yu, J. Mylopoulos, Towards Modelling Strategic Actor Relationships for
Information Systems Development - with Exemples from Business Process Reengineering,
Proc. 4th Workshop on Information Technologies and Systems (WITS'94), Vancouver,
B.C., Canada, December 17-18, 1994. A version of this paper was presented at the
Workshop on System Requirements: Analysis, management, and Exploitation, SchloB
Dagstuhl, Saarland, october 4-7, 1994.

From Organization Requirements to System Requirements: a Case Library Case Study

Appendix

Declaration of the Librarian agent

r-----7
1 Access_ 1
1 Authorized 1
1 1
1 Access I 1 .__ __ __. 1
L--.--.J

Extra
Member

Loan_DB

Loan

IS

B_To_
Classify

Book_Id

. ...
Staff

Member

Cancel_
Loan

Mem_DB

Member

IS

Register_
Member

...
Member IS

Warn_
Member

Book_DB

Book

.
IS

M_Wait_
Book

• Loan IS

Delays_List

Delay

IS

Re gis ter_
Loan

Loan

Ex.tend_
Period

...... --.---.--' • • Staff

lst_Access
Library

.

◄ Loan IS

. Member
Book_Id; ◄

Extra Ordinary
Member Member

Pays_
Fee

C)
/ .. ◄ ":.

Borrow_
Book

Loan •
IS

Wait_For_
Book

Member Staff
Member

Book_Id Extra Ordinary Book_Id Ordinary Extra Book Id Ordinary Extra
Member Member - Member Member

Access_
Library

Member Ordinary E~tra
Member Member

Member Member

Classify_
Books

Book_Id Staff
Member

Ask_
Extend

Return_
Book

. . . .
• Book_Id Ordinary Extra

Book_Id Ordinary Member Member
Member

Figure al : Grapbical declaration of the Libraian agent

102

From Organization Requirements to System Requirements: a Case Library Case Study

Delays List: the Librarian agent has the list of all the borrowers (Delay) who are late in

retuming their book.

• The type Delay can be described as:

Book Borrower
(Book_ld) (IDMember)

A delay is characterized by the identification of the borrower and of the borrowed book.

Constraints

1 LIBRARIAN 1

BASIC CONSTRAINTS

• Initial valuation

Card(B_To_Classify) = { }

* There are no book to classify

LOCAL CONSTRAINTS

• Effects of action

m.Retum_Book(b): B_To_Classify = add (B_To_Classify, b)

103

* when a member returns a book to the library, the librarian puts it the "B_To_Classify" List

• Causality

Staff Member. lst_Access_Library(m) ➔ Register_Member (Staff Member, m)

* When a staff member enters the library for the first time, helshe will be registered by the

librarian

m.Borrow_Book(b); m.Pays_Fee(b) ➔ Register_Loan(l)

with Book_B(l) = b

Borrower(l) = m

Waiting(l) = FALSE

(lsof m = ORDINARY MEMBER

⇒ length(l) = 15)

From Organization Requirements to System Requirements: a Case Library Case Study 104

(lsof m = EXTRA MEMBER

⇒ length(l) = m.Time(Access_Authorized)

m.Wait_For_Book(b) ➔ M_ Wait_Book(l)

with Book_B(l) = b

Borrower(l) = m

Waiting(l) = TRUE

Length(l) = UNDEF

Date_L(l) = UNDEF

m.Access_Library(member) with -, in(Mem_DB, m)

➔ Register_Member (m, member)

* If an ordinary member tries to acces the library without being registered, the librarian

registers himlher in the member database

m.Ask_Extend(b) ➔ Extend_Period(l)

with Book_B(l) = b

Borrower(l) = m

W aiting(l) = F ALSE

Length(l) = 15

m.Retum_Book(b) ➔ Cancel_Loan(l)

• Capability

with Book_B(l) = b

Borrower(l) = m

.ID(Register_Member(m)/-, in (Mem_DB,m)

.ID(M_ Wait_Book(l)/ in (Book_DB, Book_B(l))

.ID(Wam_Member(b).m/ 3 d E Delays_List: Book(d) = b

Borrower(d) = m)

.ID(Extend_Period(l)/ -,31' E Loan_DB: 1 :tc l'

A Book_B(l) = Book_B(l')

A Waiting(l') = TRUE)

.ID(Cancel_Loan(l)/ in (Loan_DB, 1)

From Organization Requirements to System Requirements: a Case Library Case Study

COOPERATION CONSTRAINTS

• Action Perception

~(m.Classify _Book(b)/TRUE)

~(m. lst_Access_Library/TRUE)

~(m.Access_LibraryfTRUE)

~(m.Return_Book(b)/TRUE)

• State lnf ormation

XK(B_To_Classify.mfTRUE)

• Action Information

~(Warn_Member(b, bor).m / bor = m)

* the librarian can only warn a borrower how is late in returning a book b

• State Perception

~(m.Access_Authorized/TRUE)

~ (IS.Loan_DBfTRUE)

~(IS.Mem_DB/TRUE)

~(IS.Book_DB/TRUE)

~(IS.Delays_List/TRUE)

105

From Organization Requirements to System Requirements: a Case Library Case Study

Declaration of the Staff Member agent

Loan_DB

Loan

IS

Mem_DB

Member

Borrowed_
Books

Book_Id

IS

Book_DB

Book

IS

lst_Access
Library

C)
. ' ◄

Member Librarian

Return_
Book

C) C)
. . . . ♦ ·,

B_To_
Classify

1 Book_Id 1

Librarian

Classified_
Books

Book_Id

Books tore

Borrow_
Book

.
► ...

Bookstore IS Book_ld

Classify_
Books

♦ ·• ...
Book_Id

◄
IS

Book_Id
•
IS Bookstore Book_Id Bookstore Librarian

Ask_
Extend

C)
Book_Id

Authorize_
Access

C)
.
◄

Integer Extra

Warn_
Member

C)
. .

Member

Book_Id Librarian

Figure a2: Graphical declaration of the Staff Member agent

106

From Organization Requirements to System Requirements: a Case Library Case Study

1 STAFF MEMBER j

BASIC CONSTRAINTS

• Initial valuation

Card(Borrowed_Books) = { }

* the staffmember has no borrowed books

LOCAL CONSTRAINTS

• Effects of action

Retum_Book(b): Borrowed_Books = remove(Borrowed_Books, b)

Borrow_Book(b): Borrowed_Books = add(Borrowed_Books, b)

• Capability

.ID(Retum_Book(b)/in (Borrowed_Books, b))

.ID(Classify _Books(b)/in (Librarian.B _ To_ Classify, b))

.ID(Borrow _Book(b)/in (Bookstore.Classified_Books, b))

.ID(Wait_For_Book(b)/ in (Book_DB, book) with Identification(book) = b

Borrowed(book) = TRUE

.ID(Ask_Extend(b)/ (in (Borrowed_Books, b))

A (-. in (Loan_DB, 1)

with Book_B(l) = b

A Waiting(l) = TRUE))

COOPERATION CONSTRAINTS

• State perception

~(Bookstore.Classified_Books / TRUE)

~(IS.Mem_DB / TRUE)

~(IS.Book_DB / TRUE)

~(IS.Loan_DB / TRUE)

~(Librarian.B_To_Classify / TRUE)

107

From Organization Requirements to System Requirements: a Case Library Case Study

• Action information

ÂK(Borrow_Book(b).m / TRUE)

ÂK(Return_Book(b).m / TRUE)

ÂK(lst_Access_Library.Librarian / TRUE)

ÂK(Authorize_Access(i).Em / TRUE)

ÂK(Classify_Books(b).m / TRUE)

ÂK(Ask_Extend(b).IS / TRUE)

ÂK(Wait_For_Book(b).IS / TRUE)

Declaration of the IS agent

..-----7
: Todays_ 1

Date 1
1 ..---------. 1
1 j Date j 1
I _____ .J

Loan_DB

Loan

. .
• ◄

Librarian Staff

Book_DB

Book

► • .
Member Librarian Ordinary

~

Extra

Extend_
Period

Delays_List

Delay

' Librarian

Ask_
Extend

C)
. .

Loan Librarian Book_Id

Mem_DB

j Member 1

. .
• ◄

Librarian Staff
Member

Wait_For_
Book

. . .
Book_Id Staff

Member Member

Determine
_Date

c=:>
!
Date

Return_
Book

C)
Book_Id

. .
Staff

...
Staff

Member

Borrow_
Book

Book_Id Staff
Member Member Member Member

Re gis ter_ Register_ Cancel - M_Wait_
Loan Member Loan Book

c=:> c=:> c=:> c=:>
Loan Librarian Member Librarian Loan Librarian Loan Librarian

Figure a3 : Graphical declaration of the IS agent

108

From Organization Requirements to System Requirements: a Case Library Case Study

IS

BASIC CONSTRAINTS

• Derivation rule

Delays_List = { d} :

V d E Delays_List

⇒ :3 1 E Loans_DB:

Borrower(l) = Borrower(d)

Book_B(l) = Book(d)

Date_L(l) + Length(l) > Todays_Date

• Initial valuation

Card(Borrowed_Books) = { }
Loan_DB = { }

LOCAL CONSTRAINTS

• Effects of action

Deterrnine_Date(d): Todays_Date = d
sm.Borrow_Book(b):Loan_DB = Add(Loan_DB, 1)

with Book_B(l) = b
Borrower(l) = sm
Date_L(l) = Todays_Date
Wainting(l) = FALSE
Length(l) = 15

sm.Return_Book(b): Loan_DB = Remove (Loan_DB, 1)
with Book_B(l) = b
Borrower(l) = sm

sm.Wait_For_Book(b): Loan_DB = Add(Loan_DB, 1)
with Book_B(l) = b
Borrower(l) = sm
Date_L(l) = Todays_Date
Wainting(l) = TRUE
Length(l) = 15

sm.Ask_Extend(b): Loan_DB = Modify(Loan_DB, 1)
with Book_B(l) = b
Borrower(l) = sm
Date_L(l) = Todays_Date
Wainting(l) = FALSE
Length(l) = 15

l.M_Wait_Book(l): Loan_DB = Add(Loan_DB, 1)
with Date_L(l) = todays_Date

109

From Organization Requirements to System Requirements: a Case Library Case Study

l.Cancel_Loan(l): Loan_DB = Remove(Loan_DB, 1)
1. Register_Member(m): Mem_DB = Add(Mem_DB, m)
1.Register_Loan(l): Loan_DB = Add(Loan_DB, 1)

with Date_L(l) = Todays_Date
l.Extend_Period(l): Loan_DB = Modify(Loan_DB, 1)

with Date_L(l) = Todays_Date

COOPERATION CONSTRAINTS

State Information

.;tK(Loan_DB.m/TRUE)

.;tK(Book_DB.rnffRUE)

.;tK(Delays_List.Librarian/TRUE)

.;tK(Mem_DB.mffRUE)

• Action Perception

.;tK(l.Extend_Period(l)ffRUE)

.;tK(l.Register_Loan(l)ffRUE)

.;tK(l.Register_Member(m)ffRUE)

.;tK(l.Cancel_Loan(l)ffRUE)

.;tK(l.M_ Wait_Book(l)/TRUE)

.;tK(srn.Borrow _Book(b)ffRUE)

ÀK(sm.Retum_Book(b)/TRUE)

.;tK(srn. W ait_For_Book(b)ffRUE)

.;tK(sm.Ask_Extend(b)ffRUE)

110

From Organization Requirements to System Requirements: a Case Library Case Study

Declaration of the Ordinary Member agent

Book_DB

Book

.
IS

Classified_
Books

Book_Id

Bookstore

Borrowed_
Books

Ask_
Ex tend

Wait_For
Book

Access_
Library

Book_ld . .
◄ ◄

Book_ld Librarian Book_Id Librarian Member

Borrow_
Book

. ...
Book_ld Librarian

. ••
Bookstore Book_ld

Pays_
Fee

.
◄
Librarian

Warn_
Member

Book_ld .
Librarian

Return_
Book

.
◄

Book_ld Librarian

Figure a4 : Graphical declaration of the Ordinary Member agent

1 ORDINARY MEMBER 1

BASIC CONSTRAINTS

• Initial valuation

Card(Borrowed_Books) = { }

LOCAL CONSTRAINTS

.
◄

Librarian

111

From Organization Requirements to System Requirements: a Case Library Case Study

• State behaviour

Card(borrowed_Books):s; 2

• Effects of action

Return_Book(b): Borrowed_Books = remove(Borrowed_Books, b)

Borrow_Book(b): Borrowed_Books = add(Borrowed_Books, b)

• Causality

Borrow _Book(b) ➔ Pays_Fee(b)

• Capability

XO(Retum_Book(b)/in (Borrowed_Books, b))

XO(Borrow_Book(b)/in (Bookstore.Classified_Books, b))

XO(Ask_Extend(b)/in (Borrowed_Books, b)

F(W ait_For_Book(b)/in (Borrowed_Books, b)

F(Borrow _Book(b)/card(Borrowed_Books) = 2)

COOPERATION CONSTRAINTS

• State perception

ÂK(IS.Book_DB / TRUE)

ÂK(Bookstore.Classified_Books / TRUE)

• Action information

;tK(Return_Book(b).Librarian / TRUE)

;tK(Access_Library.Librarian / TRUE)

;tK(Pays_Fee(b).Librarian / TRUE)

112

From Organization Requirements to System Requirements: a Case Library Case Study

Declaration of the Extra Member agent

Borrowed_
Books

Book_ld

Book_DB

Book

' IS

r-----7
1 Access - 1
1 Authorized 1
1 1
1 Access 1
1 1
L--~--.J

' ...

Classified_
Books

Book_ld

Books tore

Wait_For
Book

~
.
◄

Access -
Library

~
.

Librarian Book_ld Librarian Member
◄

Librarian

Borrow_
Book

' ...
Book_Id Librarian

.
Bookstore Book_ld

Pays_
Fee

.
◄

Librarian

Warn_
Member

Book_ld .
Librarian

Return_
Book

.
◄

Book_Id Librarian

Authorize_
Access

Integer
Member

Figure a5 : Graphical declaration of the Extra Member agent

EXTRA MEMBER 1

BASIC CONSTRAINTS

• Initial valuation

Card(Borrowed_Books) = { }
Access_Authorized = FALSE

113

From Organization Requirements to System Requirements: a Case Library Case Study

LOCAL CONSTRAINTS

• State behaviour

Card(borrowed_Books)~ 2

• Effects of action

Retum_Book(b): Borrowed_Books = remove(Borrowed_Books, b)

Borrow_Book(b) : Borrowed_Books = add(Borrowed_Books, b)

m.Authorize_Access : Access_Authorized = TRUE

• Causality

Borrow_Book(b) ➔ Pays_Fee(b)

• Capability

XO(Retum_Book(b)/in (Borrowed_Books, b))

XO(Borrow_Book(b)/in (Bookstore.Classified_Books, b))

XO(Ask_Extend(b)/in (Borrowed_Books, b)

F(W ait_For_Book(b)/in (Borrowed_Books, b)

F(Access_Library/ Access_Authorized = F ALSE)

F(Borrow _Book(b)/card(Borrowed_Books) = 2)

COOPERATION CONSTRAINTS

• State perception

~(IS.Book_DB / TRUE)

~(Bookstore.Classified_Books / TRUE)

• Action information

~(Retum_Book(b). Librarian / TRUE)

~(Access_Library . Librarian / TRUE)

~(Pays_Fee(b). Librarian / TRUE)

• State Information

114

From Organization Requirements to System Requirements: a Case Library Case Study

.,tK(Access_Authorized.librarian/TRUE)

• Action Perception

.,tK(m.Authorize_Access(i)ffRUE)

Declaration of the Bookstore agent

t,!

Extra
Member

Classified_
Books

Book_ld 1

' +
Staff Ordinary

Member Member

Borrow_ Return - Classify_
Book Book Books

~ C) ~
. . . . ♦ .

♦

Ordinary Staff Extra Book_ld Book_ld Staff Book_ld
Member Member Member Member

Figure a6: Graphical declaration of the Bookstore agent

Constraints

Bookstore

LOCAL CONSTRAINTS

• Effects of action
m.Borrow_Book(b): Classified_Books = Remove(Classified_Books, b)

m.Return_Book(b): Classified_Books = Add(Classified_Books, b)

m.Classify_Books(b): Classified_Books = Add(Classified_Books, b)

COOPERATION CONSTRAINTS

• Action Perception

. . .
Staff

Member

115

From Organization Requirements to System Requirements: a Case Library Case Study

XK(m.Borrow _Book(b)ffRUE)

XK(m.Retum_Book(b)ffRUE)

XK(m.Classify _Book(b)ffRUE)

• State lnf ormation

~(Classified_Books.mffRUE)

116

