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Analyse et Commande LQG de Systèmes Stochastiques Hamiltoniens à Ports en
Dimension Infinie

par François Lamoline

Résumé : Nous considérons les systèmes stochastiques et déterministes Hamiltoniens
à ports. Les actions de commande et d’observation sur ces systèmes sont effectuées de
manière distribuée sur le domaine spatial ou à la frontière de celui-ci. Le concept de
système bien posé au sens de Weiss et Salamon est généralisé aux systèmes stochas-
tiques de dimension infinie. Cette définition étendue permet de démontrer que, sous
certaines hypothèses, les systèmes stochastiques Hamiltoniens à ports sont bien po-
sés. Nous traitons ensuite le problème de commande LQG pour ces systèmes stochas-
tiques Hamiltoniens à ports dans le cadre d’opérateurs de commande, d’observation
et de bruit bornés. En outre, nous dérivons des conditions sous lesquelles la structure
Hamiltonienne est préservée pour la description dynamique du compensateur LQG.
Tout au long de cette thèse, la théorie est illustrée sur un modèle de corde vibrante
inhomogène sujette à du bruit blanc Gaussien, à dépendance spatiale et temporelle,
représentant les perturbations liées à l’environment dans lequel le système évolue. Fi-
nalement, nous proposons un nouveau modèle basé sur une approche Hamiltonienne
à ports ainsi qu’une loi de commande pour un endoscope bio-médical actionné au
moyen de polymères électroactifs.

Analysis and LQG Control of Infinite-dimensional Stochastic Port-Hamiltonian
Systems

by François Lamoline

Abstract: Stochastic and deterministic port-Hamiltonian systems with both distributed
and boundary controls along with distributed and boundary observations are consid-
ered in this work. The concept of well-posedness in the sense of Weiss-Salamon is
generalized to infinite-dimensional stochastic systems. Under this extended definition,
stochastic port-Hamiltonians systems are proved to be well-posed under some assump-
tions. We then address the LQG control problem for stochastic port-Hamiltonian sys-
tems with bounded control, observation and noise operators. We further derive con-
ditions under which the Hamiltonian framework is preserved in the LQG controller
dynamics. Throughout this thesis, the theory is illustrated on an example of an inho-
mogeneous vibrating string subject to some space and time Gaussian white noise pro-
cess representing environment disturbances. Finally, we propose a new model based
on the port-Hamiltonian approach and a control law for a compliant bio-medical en-
doscope actuated by electro-active polymers.

Thèse de doctorat en Sciences Mathématiques (Ph.D. thesis in Mathematics)
Date: 20/08/2019
Département de Mathématique
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Introduction

A quick tour
In every form of our modern life, we are surrounded by control systems. It helps
us in our daily life and routines, sometimes, without even noticing it. This goes to
the simple thermostat to regulate the ambient temperature to much complex devices
such as automotive control systems. Even our human body is full of control systems.
Cells, organs or tissues are all governed and controlled by chemical and biological
rules. From a denominational point a view, the system being controlled is commonly
referred as the plant, while the system applying the control is referred as the controller.

Most of dynamical systems considered in applications are governed by partial dif-
ferential equations (PDEs). When the physical quantity of interest depends on both the
position and the time, PDEs describe the distribution in space of this physical quantity.
These dynamical systems are often also called distributed parameter systems (DPSs).
DPSs as opposed to lumped parameter systems are dynamical systems for which the
state space is infinite-dimensional, which means that the solution is taking values in an
infinite-dimensional space. Another class of infinite-dimensional systems are delayed
systems, which are governed by delay differential equations. The solutions of such
equations also take values in infinite-dimensional spaces. However, delayed systems
will not be considered in this thesis.

DPSs can be controlled at sections of their physical domain, at punctual locations
or at their physical boundaries. This leads to distributed, point or boundary control
problems. More particularly, boundary control or point control lead to substantial
mathematical difficulties due to the unboundedness of the operators. In a similar man-
ner, measurements may be realised on sections of the physical domains or at punctual
positions. When boundary control and observation come into play, things become
more complicated. Natural questions including admissibility and well-posednes arise.
Pioneered developments were undertaken by Fattorini in [Fat68], where he proposed
an abstract general theory to deal with PDEs having boundary control, that were con-
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2 INTRODUCTION

sidered also in [CZ95] afterwards. More recently, the class of boundary control sys-
tems with boundary observation was studied in [JZ12] and in [RDW16] with Yosida-
Type approximate boundary observation.

Basically, Hamiltonian systems have been introduced to reproduce the inner phys-
ical properties of physical systems encountered in practice. Over the last decades,
linear port-controlled Hamiltonian systems (PHSs) have been proved to be an effi-
cient framework for the modeling, the analysis and the control of dynamical systems
governed either by ordinary differential equations (ODEs) or partial differential equa-
tions (PDEs). This class of dynamical systems covers a wide range of applications
including flexible beams, tubular reactors, electrical networks, irrigation channels,
among many others. A good overview of the theory of finite and infinite-dimensional
port-Hamiltonian systems can be found in [vdSJ14] and [JZ12]. The control of port-
Hamiltonian systems can be performed inside the spatial domain or at the boundary.
The port-Hamiltonian framework is naturally well-adapted for control design and has
been used advantageously with passivity to control complex physical systems. As in
the modeling step, the energy plays a central role in the controller implementation,
which most of the time has an energy interpretation. Lyapunov techniques based on
the intrinsic link between energy and dynamics of the system have been quite popu-
lar for stability analysis or control design for PHSs. It consists in choosing a proper
Lyapunov function related to the Hamiltonian and including the boundary conditions.
Energy shaping methods were developed in [MM04] and [Mac12]. Furthermore, the
dissipation operator of the closed-loop system can be modified with interconnection
and damping assignment passivity-based control. This was first proposed for finite-
dimensional systems in [OvdSME02] and extended for boundary controlled systems
in [RLGMZ14]. More recently, the LQG controller implementation was studied in
[WHGM18] for finite-dimensional port-Hamiltonian systems in the perspective of de-
signing reduced-order controllers.

From a practical point of view, various disturbances such as modeling inaccuracies
or environment disturbances can occur when real plants are to be controlled. This mo-
tivates the stochastic extension of the class of port-Hamiltonian systems. The philoso-
phy of the port-Hamiltonian framework and some hints for a stochastic extension with
respect to a port-based approach will be presented in Section 0.2. In a control con-
text, stochastic port-Hamiltonian systems were first introduced in [SF13] on euclidean
spaces in the nonlinear time varying case, as the stochastic extension of [MvdS92].
More recently, the author proposed a stochastic generalization in [LW17b] of infinite-
dimensional linear port-Hamiltonian systems with boundary control and observation
introduced in [LZM05]. Here, the uncertainties in the dynamical systems coming from
the environment will be assumed to be white noise processes. The main reason lies in
the fact that white noise processes allow one to represent many different kind of noises
encountered in experimental applications, in particular in engineering. This leads us
to the study of stochastic partial differential equations (SPDEs). Many mathemati-
cians have left their footprints on the analysis and the study of SPDEs. Some of them
are Lions, Bensoussan, Pardoux, Curtain, Da Prato, Zabczyk and Hairer, among many
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others. Most of the SPDEs are treated as stochastic differential equations on infinite-
dimensional spaces. The theory of stochastic differential equations was initiated by
the early work of Itô in the mid-1940s, see [Ito44]. One of the main difficulties lies
in the mathematical interpretation of stochastic disturbances. This requires a proper
theory of integration to define the so-called stochastic Itô integrals. One of the most
well-known references devoted to the study of infinite-dimensional SDEs is [DPZ14]
by Da Prato and Zabzcyk. The latter usually requires some understanding and prior
knowledge of infinite-dimensional stochastic analysis and, from the author’s perspec-
tive, would not be recommended as an introductory book on this subject. In chapter 2,
prerequisites on probability measure theory and stochastic processes are presented. In
addition, a construction of the stochastic integral in the Itô sense is given and some of
its properties are reviewed. The author has tried to make it accessible for readers who
are not familiar with stochastic analysis in general.

Linear well-posed systems in the sense of Salamon [Sal89] were introduced to
deal with systems with boundary control and observation operators. This class of
systems is also known to enjoy many useful properties (see e.g. [Sta05]) involving
feedback control, dynamic stabilization, and tracking/disturbance rejection. This is
one of the main motivations for generalizing the well-posedness concept to stochas-
tic systems. As far as known, there are not as many references devoted to stochastic
well-posed systems as for the deterministic case, see [Sta05], [TW14], [WST01] and
[ZGMV10]. Although the study of SPDEs has attracted a lot of attention, the well-
posedness of stochastic systems still seems to be an uncultivated field in systems and
control. As a matter of fact, few works on this topic are available in the literature. See
[Lü15], where a generalization of well-posed linear systems to the stochastic context
is undertaken by providing a formulation of stochastic well-posed linear systems. The
well-posedness study of boundary controlled and observed SPHSs and more generally
of stochastic systems developed in this work falls in line within [Lü15] as an attempt
to fill this blank left in the literature.

Moreover, the control theory of stochastic partial differential equations is still at
its beginning. The main difficulty comes from the lack of tools when compared to
the deterministic setting or even to finite-dimensional SDEs. Nevertheless, paramount
efforts have been made to overcome this difficulty. The Linear Quadratic Gaussian
(LQG) control problem is an efficient way of considering uncertainties in the control
process. It mainly concerns linear dynamical systems subject to some additive noises
on the state and output processes. The system and measurement noises are assumed
to be Gaussian white noise processes. This specific control method usually requires
strong assumptions on the plant such as bounded control and observation operators,
and stabilizability and detectability conditions, see [CP78]. The LQG control problem
is solved by using a separation principle [CI77a], which states that the LQG control
problem can be divided into two separate problems, namely the mean-square estima-
tion of the state process and the optimal control problem with complete observation.
In this work we shall focus more particularly on the LQG control of SPHSs. Since the
LQG controller is somewhat mimicking the dynamics of the controlled system with



4 INTRODUCTION

a correction, the question of conserving the port-Hamiltonian framework in the LQG
controller dynamics arises naturally.

In this thesis it will be assumed that the reader is familiar with functional analysis
and measure theory. One is referred to the books [DS88], [Yos95] and [Bar95] among
many others. In Sections 0.1, 0.3 and 0.4, we introduce some background material to
ease the reading. An overview of the contributions of this work and the organization
of this manuscript ends this chapter.

0.1 Notations and definitions
Throughout this manuscript, we shall use standard notations commonly found in the
literature. Some of them are recalled here below.
Let K denotes the field of real or complex numbers. More particularly, the spaces of
complex, real and real nonnegative numbers are denoted by C, R and R+, respectively.
The functional space L2([a,b];Kn) consists of square-integrable Kn-valued functions
with the usual L2 inner product 〈·, ·〉L2 . The Sobolev space H1([a,b];Kn) is the space
of all Kn-valued functions, which are square integrable, absolutely continuous, and
the derivative yields again a continuous functions. Let X , Y be Hilbert spaces with
corresponding inner products 〈·, ·〉X and 〈·, ·〉Y . We shall simply denote by L(X ,Y )
the space of bounded linear operators from X to Y . When X = Y , it will be shorten
by L(X). Notice that throughout this book, the functional state space will be denoted
by X instead of the usual notation X to avoid any confusion with the capital letter
notation of random variables.

We conclude this section by introducing some standard definitions for differential
calculus in Hilbert spaces. We start with the Fréchet differentiability.

Definition 0.1.1. Let X and Y be separable Hilbert spaces. Given x ∈ X and Ω a
neighbourhood of x, a function f : X → Y is said to be Fréchet differentiable at x if
there exists d f (x) ∈ L(X ,Y ) such that for all h ∈ X ,

lim
‖h‖X→0

‖ f (x+h)− f (x)−d f (x)h‖Y
‖h‖X

= 0. (0.1.1)

In this case d f (x) is unique and said to be the Fréchet derivative of f with respect to
x.

Any function f : X → Y is said to be differentiable if f is Fréchet differentiable.
In the sequel, the derivative of a function f : X → Y in the sense of Fréchet will
be simply denoted by f ′x. It may happen that the bounded linear operator f ′x is also
differentiable at x. Following Definition 0.1.1, a function is said to be two times
Fréchet differentiable at x if there exists d2 f (x) ∈ L(X ×X ,Y ) such that for any
h1,h2 ∈ X ,

lim
‖h2‖X→0

‖d f (x+h2)(h1)−d f (x)(h1)−d2 f (x)(h1,h2)‖Y
‖h2‖X

= 0. (0.1.2)
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The second Fréchet derivative of f is denoted by f ′′xx. The higher order of derivatives
are defined recursively in a similar manner. Note that the concept of first and second
Fréchet derivatives will turn out to be useful when introducing the Itô’s Lemma in
Chapter 2. Let X denotes the Hilbert space L2([a,b];Rn). We will now compute the
Fréchet derivative of a quadratic functional

E(x) =
1
2
〈x,Hx〉L2 =

1
2

∫ b

a
xT (ζ )H(ζ )x(ζ )dζ , (0.1.3)

for all x ∈ X , withH ∈ L∞([a,b];Rn×n) satisfying mI ≤H(ζ )≤MI for almost every
ζ ∈ [a,b]. As a natural candidate, one would consider E ′x(x) as the functional which
associates to any h∈ X , 〈h,Hx〉L2 . To prove this assertion, we show that this candidate
satisfies Definition 0.1.1.
Equation (0.1.1) is equivalent to

| 12 〈x+h,H[x+h]〉− 1
2 〈x,Hx〉−〈h,Hx〉|

‖h‖X

=
| 12 〈x,Hx〉+ 1

2 〈x,Hh〉+ 1
2 〈h,Hx〉+ 1

2 〈h,Hh〉− 1
2 〈x,Hx〉−〈h,Hx〉|

‖h‖X
=

1
‖h‖X

|1
2
〈h,Hx〉+ 1

2
〈h,Hx〉+ 1

2
〈h,Hh〉−〈h,Hx〉|

=
1

2‖h‖X
|〈h,Hh〉|

≤ 1
2‖h‖X

‖h‖X ‖Hh‖X =
1
2
‖Hh‖X ≤

1
2
‖H‖∞‖h‖X ,

which goes to 0 as ‖h‖X tends to 0. By a similar argument, the second Fréchet deriva-
tive E ′′xx is the functional which associates 〈h1,Hh2〉L2 to any h1,h2 ∈ X .

0.2 Port-Hamiltonian formalism with a stochastic ap-
proach

In this section the port-Hamiltonian framework and its connexion with the classical
Hamiltonian equations is developed. In addition, the stochastic component is consid-
ered and expressed while following the port-based approach. To ease the introduction
of the port-Hamiltonian formalism, some technical details are left aside and will be
explained in the next chapters.

Historically, Hamiltonian systems originate from mechanics and are governed by
Hamiltonian equations of motion (or Hamilton’s equations) given by

q̇ =
∂H
∂ p

(q, p), (0.2.1)
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ṗ =−∂H
∂q

(q, p)+u, (0.2.2)

with the generalized coordinates (q, p) ∈ Rn, where q and p are the position and the
momentum, respectively. The input u is an external force applied to the Hamiltonian
system. The equations (0.2.1) and (0.2.2) are obtained by applying the Legendre trans-
formation to the Euler-Lagrange equations. On the other hand, there is the port-based
approach initiated by Paynter and Breedveld in the sixties and which takes its roots
in the modeling of multi-domain systems (mechanical, electrical, thermal, . . . ). This
approach consists in representing any physical systems as the interconnection of sub-
components and by identifying the main physical elements: energy storage, energy
dissipation and energy transportation. The port-Hamiltonian philosophy consists in
mixing both approaches by combining the Hamiltonian equations of motion with the
port-based modeling. This motivates the denomination "port-Hamiltonian systems".

A generalization of equations (0.2.1) and (0.2.2) on the functional state space
L2([a,b];Rn) is given by

ẋ(t) = JHx(t)+Bu(t), (0.2.3)
y(t) = B∗Hx(t), (0.2.4)

where J is a skew-adjoint unbounded linear operator with domain D(J ), H =H∗ ∈
L∞([a,b];Rn×n), B ∈ L(Rm,L2([a,b];Rn)) and y(t) ∈ Rm denotes the output of the
system. The Hamiltonian (i.e. the total energy of the system) is given by

E(x(t)) =
1
2

∫ b

a
xT (ζ , t)H(ζ )x(ζ , t)dζ . (0.2.5)

Notice that (0.2.1) and (0.2.2) are a particular case of (0.2.3) with x = (q, p) and J
being the skew-symmetric operator described by

J =

[
0 I
−I 0

]
and B =

[
0
I

]
,

where I denotes the identity matrix.

The Dirac structure plays a central role for port-Hamiltonian systems and repre-
sents their underlying structure. Let us consider two Hilbert spaces F and E with
inner products 〈·, ·〉F and 〈·, ·〉E . The spaces F and E denotes the flow and the effort
spaces. The flow space represents the space of rate energy variables, while the effort
space is the space of co-energy variables. In addition, let us define the bond space as
B = F ×E equipped with the inner product〈(

f1
e1

)
,

(
f2
e2

)〉
B
= 〈 f1, f2〉F + 〈e1,e2〉E (0.2.6)

for all ( f1,e1),( f2,e2) ∈ B.
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The effort space E is defined as the dual Hilbert space ofF . Therefore, there exists
an isometric isomorphism j : F → E such that

〈 j f1, j f2〉E = 〈 f1, f2〉F , (0.2.7)

for all f1, f2 ∈ F . In order to build a Dirac structure, the bond space is endowed with
the bilinear symmetric pairing given by〈(

f1
e1

)
,

(
f2
e2

)〉
+

= 〈 f1, j−1e2〉F + 〈e1, j f2〉E , (0.2.8)

where j−1 : F → E . The bilinear pairing 〈·, ·〉+ represents the power.

Let V be a linear subspace of B. The orthogonal subspace with respect to the
bilinear pairing 〈·, ·〉+ is defined as

VT := {b ∈ B : 〈b,v〉+ = 0, for all v ∈ V}. (0.2.9)

Let us now define a Dirac structure.

Definition 0.2.1. [vdSM02] A linear subspace D of the bond space B is said to be a
Dirac structure if

DT =D. (0.2.10)

Note that the condition (0.2.10) implies that the power of any element of the Dirac
structure is equal to zero, i.e.,〈(

f
e

)
,

(
f
e

)〉
+

= 2〈 f , j−1e〉F = 0,

for any ( f ,e) ∈ D. The underlying structure of port-Hamiltonian systems forms a
Dirac structure, which links the port-variables in a way that the total power is equal to
zero.

The port-variables are split in two parts: internal ports and external ports. Within
the internal ports, there are resistive ports (or elements) corresponding to the internal
energy dissipation and the energy storing ports corresponding to energy storage. On
the other hand, the external ports represent the interaction of a port-Hamiltonian sys-
tem with its environment or even with other systems. These interactions can occur
either along the domain or at the boundary. The Dirac structure of port-variables is
represented in Figure 0.1.

In this work we shall restrict ourselves to first-order linear port-Hamiltonian sys-
tems. Note that a Dirac structure can be obtained for this class of port-Hamiltonian
systems, see Section 1.1 and [LZM05].

Considering randomness in the modeling entails that further noise ports have to
be added to the port-based structure depending on the nature of the uncertainties.
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D Boundary
Energy

storing

elements

Resistive

elements

Domain

f∂

e∂

fr fr

ex

fx

fd ed

Figure 0.1 – Dirac structure with port-variables

Throughout this thesis, we shall mainly consider some state and measurement noises.
Let us consider the following stochastic port-Hamiltonian system with distributed in-
puts and outputs described by

ẋ(t) = JHx(t)+Bdud(t)+Hη(t),

yd(t) = B∗Hx(t),

yη(t) = H∗Hx(t),
(0.2.11)

where Bd ∈ L(Rm,X ) is the control port and H ∈ L(Z,X ) represents the noise port.
The process η(t) describes an Hilbert space Z-valued white noise process. The pairs
of inputs and outputs [(ud(t),yd(t)),(η(t),yη(t))] correspond to the external ports
(ed , fd). The flow and effort variables are given by fx =

∂

∂ t x and ex =Hx. One could
also consider some input noise along the domain or at the boundary. Nevertheless,
such generalization will not be studied in this manuscript.

0.3 Boundary controlled and observed systems
In this section we introduce the general setting of boundary controlled and observed
systems. Let X ,U,Ub,Y be Hilbert spaces and let us consider the following abstract
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control system with boundary observation

ẋ(t) =Ax(t)+Bdud(t),

u(t) = Bx(t),

y(t) = Cx(t).
(0.3.1)

where A : D(A)→ X and B : D(B)→ U are unbounded linear operators such that
D(A)⊂ D(B)⊂X . The distributed control operator Bd belongs to L(Ud ,X ).
Definition 0.3.1. [CZ95, Definition 3.3.2] An abstract control system with boundary
observation described by (0.3.1) is said to be a boundary controlled and observed
system if the following conditions are satisfied:

1. the operator A : D(A)→ X defined for every x ∈ D(A) = D(A)∩Ker(B) by
Ax =Ax, is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on X ,

2. there exists an operator B ∈ L(U,X ) such that, for every u ∈U, Bu ∈ D(A),
AB ∈ L(U,X ) and BBu = u.

3. The observation operator C ∈ L(D(A),Y ), where D(A) is endowed with the
graph norm of A.

Condition 1 ensures the generation of a C0-semigroup for the homogeneous sys-
tem, i.e. for u(t) = 0. Besides, observe that a direct consequence of Condition 2 is the
surjectivity of B and that the operator B ∈ L(U,D(A)) is the right inverse of B. More-
over, note that the last condition on the boundary observation operator C is equivalent
to the existence of a,b ∈ R such that

‖Cx‖Y ≤ a‖x‖X +b‖Ax‖X , x ∈ D(A). (0.3.2)

The class of boundary controlled and observed port-Hamiltonian systems is known to
satisfy all the conditions of Definition 0.3.1, see [JZ12, Theorem 11.2.2].

0.4 Dissipative systems
Passivity originates from circuit theory and is a cornerstone property in system and
control theory leading to some useful results for control design. This property re-
lates to conservation, dissipation, transport and storage of energy. In this preparatory
section, some useful concepts such as passivity, dissipativity, storage functions and
supply rate are introduced and discussed. This section is mainly based on [HM76],
[Wil72] and [vdS16].

Let X , U and Y denote the state, the input and the output Hilbert spaces, respec-
tively. The concepts of dissipativity and passivity are introduced in a deterministic
setting for the following large enough (but not restricted) class of control systems
described by

ẋ(t) = f (x(t),u(t)), x(t) ∈ X
y(t) = g(x(t),u(t)), u(t) ∈U,y(t) ∈ Y

(0.4.1)
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The system (0.4.1) includes in particular nonlinear systems affine in the input, static
nonlinearity and linear systems. The notion of passivity is intimately related to the
way that a dynamical system is interacting with its environment with respect to its
inputs and corresponding outputs. This is expressed by the function of supply rate
s : U×Y → R.

Definition 0.4.1. A dynamical system (0.4.1) is said to be dissipative with respect to
a supply rate s(u,y) if there exists a storage function S : X → R+, such that, for all
t0 ≤ t f ,

S(x(t f ))−S(x(t0))≤
∫ t f

t0
s(u(r),y(r))dr. (0.4.2)

Remark 0.4.1. 1. If (0.4.2) holds with an equality, the system is said to be loss-
less.

2. If the storage function is differentiable, (0.4.2) can be rewritten as

d
dr

S(x(r))≤ s(u(r),y(r)), r ∈ [t0, t f ]. (0.4.3)

The supply rate represents the energy supplied to the system from some external
sources. Thus, dissipativity in the sense of Definition 0.4.1 means that the system can-
not store more energy than supplied during the time interval [t0, t f ]. In other words,
the system cannot generate energy on its own. In the lossless case, the system stores
exactly the supplied energy.

A specific choice of bilinear supply rate leads to the concept of passivity.

Definition 0.4.2. A dynamical system is said to be passive if the system is dissipative
with respect to the supply rate s(u,y) = uT y.

Passivity leads to several stability results through passivity based control. For
instance, the negative output feedback enables to stabilize asymptotically a passive
system around zero. For further results, the reader is referred to [HM76], [Wil72], and
[vdS16]. Interested readers may also be referred to [KMX+14], where a good survey
including the existing connections between passive and positive real systems is pre-
sented and a list of classical results for stability of passive, positive real and dissipative
systems is given.

Since deterministic port-Hamiltonian systems are known to be passive if the Hamil-
tonian is bounded from below, this begs naturally the question whether their stochastic
extension preserves this property. In this thesis, on the basis of Definition 0.4.2, we
shall extend this notion to stochastic systems as given in [Flo99]. More particularly,
this new notion of passivity will be studied for distributed and boundary controlled
port-Hamiltonian systems.



0.4. DISSIPATIVE SYSTEMS 11

Contributions and outline
The novelty of this work is the exploration of a stochastic extension of boundary con-
trolled and observed port-Hamiltonian systems as presented in [LZM05] and [JZ12].
This aims at describing the plant as a stochastic system and taking advantages of the
port-Hamiltonian framework to express its dynamics and interactions with its envi-
ronment. From a mathematical perspective, the uncertainties coming from the ex-
ternal disturbances and measurement noises are modeled by Gaussian white noise
processes. The notions and concepts of the theory of stochastic integration and the
port-Hamiltonian approach to physical systems modeling are merged with a semi-
group approach for the study of infinite-dimensional stochastic systems.

We believe that this thesis brings several contributions to the field of control of
distributed parameter systems represented under the port-Hamiltonian formalism. In
this thesis we consider both deterministic and stochastic port-Hamiltonian systems
on infinite-dimensional spaces. In Chapter 1, a clarification of [Vil07, Chapter 4] is
given together with a first attempt to summarize the available literature and to inves-
tigate the question on whether eigenvectors may form a Riesz basis in the case of
port-Hamiltonian systems. The first main contribution of this thesis is to provide the
stochastic counterpart of the port-controlled Hamiltonian systems defined in [JZ12]
with additive system’s noise and to describe them as boundary controlled and ob-
served stochastic systems. As a central part of this work, a study of well-posed linear
stochastic systems in the context of boundary control and observation is developed and
an extension of the results of [ZGMV10] to the stochastic context is proposed. In addi-
tion, the passivity property proposed by Florchinger in [Flo99] for finite-dimensional
stochastic systems is extended to infinite-dimensional ones and studied for SPHSs.
Furthermore, the LQG control problem is addressed and solved for this new class of
stochastic systems. As an infinite-dimensional generalization of [WHGM18], condi-
tions are derived to preserve the stochastic port-Hamiltonian framework in the LQG
controller dynamics. In addition, results regarding the exponential stability and de-
tectability of first order linear port-Hamiltonian systems with specific choices of struc-
ture matrices are developed. In the last part of this thesis, we focus on the LQG control
problem of a compliant endoscope actuated by means of electro-active polymers. An
interconnected port-Hamiltonian model is proposed and validated on an experimental
setup. A control law is implemented on the model with real-physical parameters to
improve the time response of the system and to damp out the oscillations of the endo-
scope.

The central part of this thesis is divided in 5 chapters. The content of each chapter
is briefly summarized as follows.

Chapter 1. This first chapter begins with an introduction of linear first order port-
Hamiltonian systems with boundary control and observation. Besides, the Riesz-
basis property is investigated for this class of distributed parameter systems . It
is proved that nice port-Hamiltonian systems are Riesz-spectral systems. Fi-
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nally, this result is applied on an illustrative example of a vibrating string which
is let free at the origin and damped at the other end.

Chapter 2. This chapter introduces the reader with the stochastic calculus in Hilbert
spaces, to the concepts and notions needed for the study of stochastic port-
Hamiltonian systems on infinite-dimensional spaces. Some preliminary results
of probability theory and concepts of the theory of operators on Hilbert spaces
are recalled. The Hilbert space-valued Wiener process and the corresponding
Itô stochastic integral are presented. In addition, some tools are presented for
the manipulation of the Itô integral.

Chapter 3. The class of boundary controlled and observed stochastic port-Hamiltonian
systems is introduced and we proceed to the study of this new class of stochastic
systems. The concept of well-posedness in the sense of Weiss and Salamon is
generalized to the stochastic context. Under this extended definition, stochas-
tic port-Hamiltonian systems are shown to be well-posed. This chapter ends
with the case study of a vibrating string subject to some random forcing. This
stochastic system is proved to be well-posed in the sense introduced in this
chapter.

Chapter 4. The LQG control problem is addressed for stochastic port-Hamiltonian
systems with bounded control, observation and noise ports. This control prob-
lem is solved by using the separation principle. Furthermore, conditions are
derived to keep the stochastic port-Hamiltonian structure of the LQG controller
and thus the closed-loop dynamic can be interpreted as the interconnection
of infinite-dimensional stochastic port-Hamiltonian systems. We also study
briefly the LQG control problem under weaker assumptions, namely strong sta-
bilizability of the plant. We end this chapter by proving that dissipative port-
Hamiltonian systems within a specific framework are exponentially stable. This
helps us in establishing the stabilizability conditions for the study of a concrete
application in Chapter 5.

Chapter 5. In this chapter we mainly focus on a specific application of a compliant
endoscope actuated by means of electro-active polymers. A model for this inter-
connected system is proposed in the port-Hamiltonian framework. The validity
of the proposed model is verified on an experimental setup. We also implement
and design a control law consisting of a positive damping injection to improve
the time response of the system and a LQG controller to damp out the induced
vibrations. The analysis and the results presented in this chapter were essen-
tially obtained within the framework of a collaboration with Professors Yann
Le Gorrec and Yongxin Wu from AS2M Department of FEMTO-ST Institute in
Besançon, France.

At the end of each chapter, conclusions regarding the results discussed in that
chapter are drawn. Finally, this work is closed with a general conclusion and some
recommendations on possible future research directions are also provided. For ease of
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reading, a table of notations and a list of abbreviations have been included.

Most of the research presented in this manuscript has been published in interna-
tional conference proceedings (with peer review process) or submitted for publication
in scientific journals or has been the object of a communication as a talk or a poster
presentation, at scientific and engineering conferences, and workshops. The most im-
portant publications and communications are listed below:

Scientific journals

– F. Lamoline and J.J. Winkin. Well-posedness of boundary controlled and
observed stochastic port-Hamiltonian systems on infinite-dimensional spa-
ces. IEEE Transactions on Automatic Control, 2019, conditionally ac-
cepted;

– A. Hastir, F. Lamoline, J.J. Winkin and D. Dochain. Analysis of the ex-
istence of equilibrium profiles in nonisothermal axial dispersion tubular
reactors. IEEE Transactions on Automatic Control, 2019, accepted, DOI:
10.1109/TAC.2019.2921675;

International conference proceedings and Preprints

– Y. Wu, F. Lamoline, Y. Le Gorrec and J.J. Winkin. Modelling and con-
trol of an IPMC actuated flexible beam under the port-Hamiltonian frame-
work. In Proceedings of the 3rd IFAC Workshop on Control of Systems
governed by Partial Differential Equations, 2019, (May 22-24, Oaxaca,
Mexico);

– F. Lamoline and J.J. Winkin. On LQG control of stochastic port-Hamilton-
ian systems on infinite-dimensional spaces. In Proceedings of the 23rd
Symposium on Mathematical Theory of Networks and Systems, pages
197-203, 2018 (July 16-20, Hong-Kong), with invited oral communica-
tion;

– F. Lamoline and J.J. Winkin. On stochastic port-Hamiltonian systems with
boundary control and observation. In Proceedings of the 56th IEEE Con-
ference on Decision and Control, pages 2492-2497, 2017 (December 12-
15, Melbourne, Australia), with oral communication;

– F. Lamoline and J.J. Winkin. Nice port-Hamiltonian systems are Riesz-
spectral systems. Preprints of the 20th IFAC World Congress. Ed. IFAC,
p. 695-699, 2017 (July 9-14, Toulouse, France) with oral communication;

Communications

– Poster presented at the 2nd Workshop on Stability and Control of Infinite-
Dimensional Systems in Würzburg, Germany:" On LQG control of stochas-
tic port-Hamiltonian systems, 10 to 12 October 2018;
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– Poster presented at the 10th Workshop on Control of Distributed Param-
eter Systems (CDPS) in Bordeaux, France: "Well-posedness of stochas-
tic port-Hamiltonian systems on infinite-dimensional spaces, 3 to 5 July
2017;

– Participation to an international group project under the supervision of
Professors Markus Kunze and Manfred Sauter from Universität Ulm and
presentation at the ISEM 2016 Workshop at Santa Chiara institute, Casalm-
aggiore, Italy: "The strong Feller property for Ornstein-Uhlenbeck semi-
groups and its control theoretic background", 30 May to 4 June 2016.



Chapter 1
Deterministic port-Hamiltonian
systems on infinite-dimensional
spaces

Linear port-Hamiltonian systems have been the object of much attention over the last
two decades. This class of systems was first introduced in [MvdS92] in the language of
differential forms. The infinite-dimensional extension was proposed in [vdSM02]. So
far, the port-Hamiltonian framework has been proved to be powerful for the modeling
and the control of distributed parameter systems. This class of systems encompasses
mechanical, electronical and electromechanical systems and can be employed for a
wide range of control applications: reactors [HLDWon], beam equations [MM04],
heat and mass transfer equations [BCE+09], and irrigation channels [HLM06]. Many
others applications can be found in [DMSB09] and references therein.

In addition to introducing linear port-controlled Hamiltonian systems, the Riesz-
basis property will be one of the main concerns of this chapter. This property has a
paramount importance in system and control theory and an extended literature is de-
voted to it. This property leads to some efficient results for establishing controllability,
stabilizability, their dual concepts, and stability. So far, numerous applications includ-
ing the wave equation, traveling waves, heat exchangers, the Timoshenko beam, diffu-
sive tubular reactors falling within the port-Hamiltonian formalism have been proved
to be Riesz-spectral systems. This begs naturally the question of generalizing this re-
sult to the unifying framework of port-Hamiltonian systems.

This chapter is articulated around a main result, namely that nice port-Hamiltonian
systems are Riesz-spectral systems. This is mainly based on [LW17a] and results gath-
ered from [Vil07] and developed in a straightforward manner to deduce the Riesz-basis

15
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property from [Tre00].

This Chapter is organized as follows. Section 1.1 specifies the considered class
of linear first-order port-Hamiltonian systems. In Sections 1.2 and 1.3, the notions of
Riesz basis and the class of Riesz-spectral systems are presented. An interesting sub-
class of port-Hamiltonian systems, namely nice port-Hamiltonian systems, are proved
to be Riesz-spectral systems. Finally, an example of a inhomogeneous vibrating string
is proved to be a nice port-Hamiltonian system and this feature is used to establish its
exponential stability.

1.1 Deterministic port-Hamiltonian systems
In this thesis we consider the class of distributed port-Hamiltonian systems (PHSs)
introduced in [JZ12] and [LZM05].

Definition 1.1.1. A first order linear port-Hamiltonian system is governed by a PDE
of the form

∂x
∂ t

(ζ , t) = P1
∂

∂ζ
(H(ζ )x(ζ , t))+P0H(ζ )x(ζ , t), (1.1.1)

where P1 ∈ Rn×n is invertible and symmetric (PT
1 = P1), P0 ∈ Rn×n is skew-symmetric

(PT
0 = −P0) and H ∈ L∞([a,b];Rn×n) is symmetric and satisfies mI ≤ H(ζ ) ≤ MI

for a.e. ζ ∈ [a,b], for some constants m, M > 0. As state space, we consider X :=
L2([a,b];Rn) endowed with inner product 〈x1,x2〉X = 〈x1,Hx2〉L2 for any x1,x2 ∈X .

Note that, since mI ≤ H(ζ ) ≤ MI, the induced norm ‖ · ‖X is equivalent to the
standard L2-norm. This choice of norm is made in order to match the Hamiltonian/en-
ergy E : X → R of the system given by

E(x) =
1
2
〈x,Hx〉L2 =

1
2

∫ b

a
xT (ζ )H(ζ )x(ζ )dζ . (1.1.2)

To the PDE (1.1.1), we associate some controlled and homogeneous boundary condi-
tions given by

u(t) =WB,1

[
f∂ (t)
e∂ (t)

]
, 0 =WB,2

[
f∂ (t)
e∂ (t)

]
, (1.1.3)

where the boundary port-variables, namely the flow and the effort, are expressed in
the following way:(

f∂ (t)
e∂ (t)

)
=

1√
2

(
P1 −P1
I I

)(
(Hx(t))(b)
(Hx(t))(a)

)
=: R0

(
(Hx(t))(b)
(Hx(t))(a)

)
, (1.1.4)

and WB :=
[

WB,1
WB,2

]
∈ Rn×2n. Notice that the number of rows of WB,1 is given by the

number of boundary controls applied to the PDE (1.1.1).



1.1. DETERMINISTIC PORT-HAMILTONIAN SYSTEMS 17

In order to establish the existence of a unique mild solution for any port-Hamiltonian
system described by the PDE (1.1.1) with the boundary conditions (1.1.3) we rewrite
the PDE (1.1.1) with its boundary conditions (1.1.3) as an abstract differential equa-
tion given by

ẋ(t) = Ax(t), (1.1.5)

where we define the unbounded linear operator

Ax := P1
d

dζ
(Hx)+P0Hx = JHx (1.1.6)

on the domain

D(A) =
{

x ∈ L2([a,b];Rn) :Hx ∈ H1([a,b];Rn),WB

[
f∂

e∂

]
= 0
}
, (1.1.7)

The following result establishes the generation of a C0-semigroup for (1.1.5), see
[Vil07, Theorem 2.13].

Theorem 1.1.1. Consider the operator A with domain D(A) given by (1.1.6)-(1.1.7),
associated to a port-Hamiltonian system (1.1.1) and (1.1.3). Assume that WB is a
n×2n matrix of full rank. Then the following statements are equivalent.

1. A is the generator of a contraction C0-semigroup on L2([a,b];Rn).

2. WBΣW T
B ≥ 0, where Σ =

[
0 I
I 0

]
∈ R2n×2n.

3. Re〈Ax,x〉X ≤ 0.

Furthermore, A is the infinitesimal generator of a unitary group on L2([a,b];Rn) if
and only if WBΣW T

B = 0.

A first order linear port-Hamiltonian system can be formulated on a Dirac structure
as follows. The flow and the effort spaces are given by

F = E = L2([a,b];Rn)×Rn. (1.1.8)

In addition, the flow and the effort variables are taken as

fx =
∂x
∂ t

and ex =Hx, (1.1.9)

respectively. A first order linear port-Hamiltonian system is then described byx(·, t)|


fx
f∂

ex
e∂

 ∈ D
 , (1.1.10)
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where D is given by

D =




fx
f∂

ex
e∂

 ∈ F ×E|ex ∈ H1([a,b];Rn), fx = J ex,

(
f∂

e∂

)
= R0

(
(ex)(b)
(ex)(a)

)}
.

(1.1.11)

In the following proposition, we derive the Hilbert space adjoint of A, see [Vil07,
Proposition 2.24] and [Aug16, Proposition 3.4.3].

Proposition 1.1.2. Let WB be a n× 2n matrix written as WB =
[

W1 W2
]
. Let us

consider the operator A with its associated domain D(A) given by (1.1.6) and (1.1.7),
respectively. Assume that WB has rank n and satisfies WBΣW T

B ≥ 0. Then its adjoint
A∗ is given by

A∗x =−P1
d

dζ
(Hx)−P0(Hx) =−JHx (1.1.12)

for all x in

D(A∗) =
{

x ∈ L2([a,b];Rn) :Hx ∈ H1([a,b];Rn),[
−(I +MT ) (I−MT )

]( f∂

e∂

)
= 0
}
,

(1.1.13)

where I denotes the identity matrix and M = (W1 +W2)
−1(W1−W2).

Proof. The adjoint of an unbounded operator is given by

A∗y = z⇔∀x ∈ D(A),〈Ax,y〉X = 〈x,z〉X (1.1.14)

with domain defined by:

y ∈ D(A∗)⇔∃z ∈ X s.t. ∀x ∈ D(A), 〈Ax,y〉X = 〈x,z〉X .

On one hand, by integrating by parts, we have that

〈Ax,y〉X = [yT (ζ )H(ζ )P1H(ζ )x(ζ )]ba−
∫ b

a

d
dζ

(yT (ζ )H(ζ ))P1(Hx)(ζ )dζ

+
∫ b

a
yT (ζ )H(ζ )P0(Hx)(ζ )dζ ,

(1.1.15)

and, on the other hand,

〈x,A∗y〉X =
∫ b

a
(A∗y(ζ ))TH(ζ )x(ζ )dζ . (1.1.16)
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Since the equality between (1.1.15) and (1.1.16) must hold, we deduce that

A∗y =−P0Hy−P1
d

dζ
(Hy) (1.1.17)

and
[yT (ζ )H(ζ )P1H(ζ )x(ζ )]ba = 0. (1.1.18)

The relation (1.1.18) can be rewritten as([
0 P1
−P1 0

][
(Hy)(a)
(Hy)(b)

])T [
(Hx)(b)
(Hx)(a)

]
= 0. (1.1.19)

The boundary term (1.1.19) can be rewritten as([
0 P1
−P1 0

][
(Hy)(a)
(Hy)(b)

])T [
(Hx)(b)
(Hx)(a)

]
=

(
(Hy)(b)
(Hy)(a)

)T

RT
0 ΣR0

(
(Hx)(b)
(Hx)(a)

)
.

(1.1.20)

Since A generates a contraction C0-semigroup, from [JZ12, Lemma 7.3.2], there exists
a n×n-matrix M such that

ker WB = Ran
[

I−M
−(I +M)

]
, (1.1.21)

where M =(W1+W2)
−1(W1−W2) with WB =

[
W1 W2

]
. Furthermore, since

(
f∂

e∂

)
lies in the kernel of WB, we deduce that[

f∂

e∂

]
=

[
I−M
−(I +M)

]
l (1.1.22)

for some l ∈Rn. Using (1.1.22) in (1.1.20) and defining
(

f∂ ,y
e∂ ,y

)
=R0

[
(Hy)(b)
(Hy)(a)

]
,

we get that (
f∂ ,y
e∂ ,y

)T

Σ

(
I−M
−(I +M)

)
l = 0, (1.1.23)

which is equivalent to(
f∂ ,y
e∂ ,y

)
∈ Ker

(
−(I +MT ) I−MT )

. (1.1.24)

Let us define the observation taken at the boundary as

y(t) =WC

[
f∂ (t)
e∂ (t)

]
:= Cx(t), WC ∈ Rp×2n. (1.1.25)
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Throughout this work, we shall consider two distinct control actions and observations,
on a section of the spatial domain [a,b] and at the boundary of it. Thus, let us consider

ẋ(t) = JHx(t)+Bdud(t),

u(t) =WB,1

[
f∂ (t)
e∂ (t)

]
, 0 =WB,2

[
f∂ (t)
e∂ (t)

]
,

y(t) =WC

[
f∂ (t)
e∂ (t)

]
,

yd(t) = B∗dHx(t),

(1.1.26)

where x(t) ∈ X , ud(t) ∈ Rk, u(t) ∈ Rm, y(t) ∈ Rp,yd(t) ∈ Rk. Here, the distributed
control operator Bd ∈ L(Rk,X ) represents the action of the inputs ud(t) on a spatial
domain and yd(t) is the corresponding power-conjugated output (with respect to inner
product 〈·, ·〉X ). Observe that the distributed inputs and outputs are collocated. From
a practical perspective, this arises when actuators and sensors are implemented at the
same location. As stated in Proposition 1.1.3, the choice of a power-conjugated output
is made to recover the balance equation (1.1.27) with the power supplied uT

d yd . The
boundary control and observation are made through the port-variables f∂ (t) and e∂ (t).
The Hamiltonian of the system represents the total amount of energy stored into the
system. Exchanges of energy with the environment occur through the port-variables
of the system inside the domain and at the boundary. Furthermore, the choice of
inputs and outputs in (1.1.26) entails that the variation of energy of the system is
lower or equal to the power fed through the boundary and the domain. The following
proposition establishes the balance equation for the PHSs described by (1.1.26).

Proposition 1.1.3. Consider a port-Hamiltonian system with distributed inputs/out-
puts and boundary inputs/outputs given by (1.1.26). The balance equation for the
Hamiltonian /energy is given by

dE(t)
dt

= f T
∂
(t)e∂ (t)+ud(t)T yd(t). (1.1.27)

Proof. First, notice that

dE(t)
dt

=
1
2
〈JHx(t)+Bdud(t),x(t)〉X +

1
2
〈x(t),JHx(t)+Bdud(t)〉X . (1.1.28)

Since

1
2
(〈Hx(t),JHx(t)〉L2 + 〈JHx(t),Hx(t)〉L2) =

1
2

[
f∂ (t)
e∂ (t)

]T

Σ

[
f∂ (t)
e∂ (t)

]
,

and by considering that

〈Bdud(t),x(t)〉X = 〈ud(t),B∗dHx(t)〉L2 = ud(t)T yd(t),
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we obtain
dE(t)

dt
= f T

∂
(t)e∂ (t)+ud(t)T yd(t), (1.1.29)

which completes the proof.

By plugging the relations between the port-variables and inputs-outputs given by[
u(t)
y(t)

]
=

[
WB,1
WC

][
f∂ (t)
e∂ (t)

]
,

where
[

WB,1
WC

]
is full rank or equivalently invertible in the ODE (1.1.29), we deduce

that
dE(t)

dt
=

[
u(t)
y(t)

]T

PWB,1WC

[
u(t)
y(t)

]
+ud(t)T yd(t), (1.1.30)

where

PWB,1,WC =

([
WB,1
WC

]
Σ

[
WB,1
WC

])−1

. (1.1.31)

Note that the system (1.1.26) does not contain any internal source.

Example 1.1. Let us consider the example of an inhomogeneous vibrating string on a
spatial domain [a,b]. This example is based on [JZ12, Example 7.2.5]. The dynamics
of this system are governed by the following PDE

∂ 2z
∂ t2 (ζ , t) =

1
ρ(ζ )

∂

∂ζ

(
T (ζ )

∂ z
∂ζ

(ζ , t)
)
, (1.1.32)

where z(ζ , t) is the vertical position of the string at place ζ and time t. T (ζ ) and ρ(ζ )
are the Young’s modulus and the mass density at place ζ , respectively. Let us define
the momentum p(ζ , t) = ρ(ζ ) ∂ z

∂ t (ζ , t) and the strain q(ζ , t) = ∂ z
∂ζ

(ζ , t). This yields

∂

∂ t

[
p(ζ , t)
q(ζ , t)

]
=

[
0 ∂ζ

∂ζ 0

]([ 1
ρ(ζ )

0
0 T (ζ )

][
p(ζ , t)
q(ζ , t)

])
= P1

∂

∂ζ

(
H(ζ )

[
p(ζ , t)
q(ζ , t)

])
. (1.1.33)

Notice that 1
ρ

p and T q correspond to the velocity and the stress of the string, respec-
tively. Boundary conditions depend on the physical situation of the string. In this
example, we consider a string clamped at the extremity a and let free at the extremity
b, i.e.

T (b)
∂ z
∂ζ

(b, t) = u(t) and
∂ z
∂ t

(a, t) = 0. (1.1.34)

In addition, the string is assumed to be actuated near the extremity a by distributed
forces b(ζ )ud(t) on [a+ ε1,a+ ε2] with 0 < ε1 < ε2, where

b(ζ ) =
{

1, ζ ∈ [a+ ε1,a+ ε2],
0, elsewhere.
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The port variables are given by

f∂ (t) =
1√
2

[
T (b) ∂ z

∂ζ
(b, t)−T (a) ∂ z

∂ζ
(a, t)

∂ z
∂ t (b, t)− ∂ z

∂ t (a, t)

]
,

e∂ (t) =
1√
2

[
∂ z
∂ t (b, t)+

∂ z
∂ t (a, t)

T (b) ∂ z
∂ζ

(b, t)+T (a) ∂ z
∂ζ

(a, t)

]
.

Thus, in these variables, the boundary conditions read as follows:[
u(t)

0

]
=

[
T (b) ∂ z

∂ζ
(b, t)

∂ z
∂ t (a, t)

]
,

hence WB = 1√
2

[
1 0 0 1
0 −1 1 0

]
. The boundary matrix WB is full rank and WBΣW T

B =

0, and thus A generates a unitary group, see Theorem 1.1.1.
The velocity is assumed to be observed at the extremity b, i.e.

y(t) =
1√
2

[
0 1 1 0

][ f∂ (t)
e∂ (t)

]
= Cx(t).

The distributed control operator Bd : R→X is given by

Bdud :=
(

b(ζ )
0

)
ud(t). (1.1.35)

The distributed output, which corresponds to the mean velocity observed on [a +
ε1,a+ ε2], is given by

yd(t) =
∫ b

a
b(ζ )

∂ z
∂ t

(ζ , t)dζ . (1.1.36)

The balance equation is then given by

dE(t)
dt

=

[
u(t)
y(t)

]T

PWB,1WC

[
u(t)
y(t)

]
+ud(t)T yd(t),

= ud(t)T yd(t)

where we set u(t) = 0.

For readers who feel they need further examples, they are referred to [Vil07] and
to Sections 5.2 and 5.3, where an actuated bio-endoscope is modeled under the port-
Hamiltonian formalism.

1.2 Riesz basis property
In this section we prove that under some assumptions the dynamical operator de-
scribed by (1.1.6) and (1.1.7) has a Riesz basis of eigenvectors. These are a general-
ization of the concept of orthonormal basis. The simplest way of constructing a new
basis from an original one is through a bounded invertible transformation, see [You01,
Theorem 7].
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Definition 1.2.1. Let X be a Hilbert space. A vector sequence (φn)n∈N for X forms a
Riesz basis if it is obtained from an orthonormal basis by means of a bounded invert-
ible operator, i.e., there exists L ∈ L(X ) such that

∀n ∈ N, φn = Len. (1.2.1)

for some orthonormal basis (en)n∈N.

The reasons for considering this class of basis are numerous: easily checkable cri-
teria regarding controllability, stabilizability, their respective dual concepts, and sta-
bility can be derived. Furthermore, this concept allows one to describe the dynamics
of a system under the form of eigenfunction expansions, see [CZ95]. In the following
theorem, we state equivalent characterization of a Riesz basis.

Theorem 1.2.1. Let X be a Hilbert space and (φn)n∈N be a vector sequence for X .
Then the following assertions are equivalent.

1. The vector sequence (φn)n∈N is a Riesz basis for X ;

2. The vector sequence (φn)n∈N is complete in X , i.e. span{φn} = X , and there
exist positive constants M1 and M2 such that for any N ∈ N and for any cn ∈
K, n = 1,2, ...,N,

M1

N

∑
n=1
|cn|2 ≤ ||

N

∑
n=1

cnφn||2X ≤M2

N

∑
n=1
|cn|2. (1.2.2)

Any vector x ∈ X is uniquely decomposed in a Riesz basis (φn)n∈N as

x =
∞

∑
n=1

cnφn, (1.2.3)

where the scalars cn are uniquely determined by x. The concept of Riesz-spectral
operator can now be defined.

Definition 1.2.2. Consider a closed linear operator A on a Hilbert space X with a
discrete spectrum consisting of simple eigenvalues σp(A) := {λn : n ∈ N} and corre-
sponding eigenvectors (φn)n∈N. If the closure of {λn : n ∈ N} is totally disconnected
and if (φn)n∈N is a Riesz basis on X , then A is said to be a Riesz-spectral operator.

Remark 1.2.1. Assuming that D := {λn : n ∈ N} ⊂ C is totally disconnected means
that every point in D cannot be joined with any other point in D by a segment lying
entirely in D.

Several hints indicating that the class of first order port-Hamiltonian systems sat-
isfies the Riesz basis property are available in the literature. The reader is referred
to [XF02], [MH13], [Vil07] and [CZ95]. The main result of this section consists in
proving that a port-Hamiltonian operator of order 1 possesses a Riesz basis consisting
of eigenvectors. To do so, we mainly use results from [Tre00] and similar reasoning
as in [Vil07, Chapter 4].
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Assumption 1.2.1. The multiplication operator P−1
1 H−1 is assumed to be diagonal-

izable, i.e.,
P−1

1 H−1(ζ ) = S(ζ )A1(ζ )S(ζ )−1, ζ ∈ [a,b], (1.2.4)

where A1 is a diagonal matrix-valued function whose diagonal entries are the eigen-
values (rν)

n
ν=1 of P−1

1 H−1, whereas S is a matrix-valued function whose columns are
corresponding eigenvectors. In addition, S and A1 are assumed to be continuously
differentiable on [a,b].

Observe that P−1
1 H−1 may have eigenvalues that are not simple. Hence, thereafter,

we shall consider that P−1
1 H−1 has l different eigenvalues such that l ≤ n. Let us now

express the eigenvalue problem with boundary conditions as described in [MM03] in
the case of a port-Hamiltonian operator.

Lemma 1.2.2. The eigenvalue problem associated with the operator A given by (1.1.6)
and (1.1.7), namely

P1
d

dζ
((Hx)(ζ ))+P0((Hx)(ζ )) = λx(ζ ), (1.2.5)

where λ ∈ σp(A) and x ∈ D(A) is a corresponding eigenfunction can be formulated
under the form:

d f
dζ

(ζ ) = (λA1(ζ )+A0(ζ )) f (ζ ), ζ ∈ [a,b],

Wb(S f )(b)+Wa(S f )(a) = 0,
(1.2.6)

where Wb := W1P1 +W2 and Wa := −W1P1 +W2 with WB :=
[

W1 W2
]

and f ∈
W 1,2([a,b];Rn) :=

{
f ∈ L2([a,b];Rn) : d f

dζ
∈ L2([a,b];Rn)

}
with matrix coefficients

A0, A1 ∈ L∞([a,b]; Rn×n).

Proof. Let us consider the eigenvalue problem

P1
d

dζ
((Hx)(ζ ))+P0((Hx)(ζ )) = λx(ζ ),

where λ ∈ σp(A) and x∈D(A) is a corresponding eigenfunction satisfying the bound-
ary conditions:

W̃B

[
(Hx)(b)
(Hx)(a)

]
= 0. (1.2.7)

By using the basis transformation S(ζ ) that diagonalizes P−1
1 H−1, this eigenvalue

problem becomes

d f
dζ

(ζ ) = (λA1(ζ )+A0(ζ )) f (ζ ), ζ ∈ [a,b], (1.2.8)
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A,D(A) port-
Hamiltonian

Reformulation of
eigenvalue problem

Af , D(Af )
Af eigenfunctions
form a Riesz basis

Tretter
Result

Bounded invertible
transformation

Figure 1.1 – Proof’s structure of Theorem 1.2.4

where A1 = S−1(HP1)
−1S, A0 =−S−1(P−1

1 P0S+ d
dζ

S) and f (ζ ) = (S−1Hx)(ζ ). Fur-

thermore, the boundary condition W̃B

[
H(b)x(b, t)
H(a)x(a, t)

]
= 0 becomes W̃B

[
(S f )(b)
(S f )(a)

]
= 0,

which finally yields the boundary condition:

Wb(S f )(b)+Wa(S f )(a) = 0, (1.2.9)

where Wb :=W1P1 +W2 and Wa :=−W1P1 +W2 with WB :=
[

W1 W2
]
.

As already mentioned, the rational to prove that the eigenvectors of first order port-
Hamiltonian systems form a Riesz basis relies on [Tre00, Theorem 3.11] as depicted in
Figure 1.1. In connection with the eigenvalue problem (1.2.6), we define the operator
A f as

A f f = A−1
1

d
dζ

f −A−1
1 A0 f = S−1HP1

d
dζ

(S f )+S−1HP0(S f ) (1.2.10)

with domain

D(A f ) = { f ∈ L2([a,b];Rn) : S f ∈ H1([a,b];Rn),Wb(S f )(b)+Wa(S f )(a) = 0}.
(1.2.11)

The operator A f is proved to be related to the original operator A through a bounded
invertible operator S in Lemma 1.2.3.

Lemma 1.2.3. Consider the operator A with domain D(A) given by (1.1.6)-(1.1.7)
and the operator A f with domain D(A f ) defined by (1.2.10)-(1.2.11). Then

S−1HAx = A f S−1Hx, x ∈ D(A), (1.2.12)

and x ∈ D(A) if and only if f = S−1Hx ∈ D(A f ). Moreover, the eigenvalues of A that
are given by (1.2.6) are the same as those of the operator A f . If λ is an eigenvalue of
A f with a corresponding eigenfunction f ∈ D(A f ), then λ is an eigenvalue of A with
eigenfunction x =H−1S f ∈ D(A).
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Proof. The identity (1.2.12) is directly deduced from (1.1.6) and (1.2.10). Let x be in
D(A). Thus x must satisfy Wb(Hx)(b)+Wa(Hx)(a) = 0 and by setting f = S−1Hx,
we get that f ∈ D(A f ) from (1.2.11). Let us now consider an eigenvalue λ ∈ σp(A f )
with corresponding eigenfunction f . From the definition of A f , it follows that

λ f = A f f = S−1HP1
d

dζ
(S f )+S−1HP0(S f )

and from the identity S f =Hx we get λx = Ax.

In order to apply [Tre00, Theorem 3.11], some technical assumptions are needed.

Assumption 1.2.2. For ν ∈{1, ..., l}, let us define Rν(z) :=
∫ z

a rν(ζ )dζ , where (rν(ζ ))
l
ν=1

are the l different eigenvalues of P−1
1 H−1(ζ ) and Eν(z,λ ) := eλRν (z)Inν

, where nν

is the multiplicity of rν(·) and Inν
denotes the nν -dimensional unit matrix such that

l

∑
ν=1

nν = n. We set E(z,λ ) = diag(E0(z,λ ), . . . ,El(z,λ )), z ∈ [a,b]. We shall assume

that the eigenvalue problem (1.2.6) is normal, i.e., for sufficiently large λ , the asymp-
totic expansion of the characteristic determinant of (1.2.6) given by

p(λ ) = ∑
c∈E

(bc +{o(1)}∞)eλc (1.2.13)

has non-zero minimum and maximum coefficients, where

E =
{

l

∑
ν=1

δν Rν(b) : δν ∈ {0,1}
}
⊂ R (1.2.14)

and {o(1)}∞ means that for each c ∈ E the remaining part depending on z ∈ [a,b]
divided by λ tends to 0 in the uniform norm when |λ | → ∞.

From [Vil07, Theorem 4.10], it follows that the non-zero coefficients are given by

∑
c∈E

bceλc = det(WbS(b)Φ0(b)E(b,λ )+WaS(b)), (1.2.15)

where Φ0 ∈W 1,∞([a,b];Rn×n) is determined by

Φ0(ζ )A1 = A1Φ0(ζ ), Φ0(a) = I,
dΦ0,νν

dζ
−A0,νν Φ0,νν = 0, ν = 1, ..., l

(1.2.16)

where A0,νν and Φ0,νν are the elements of the ν th row and the ν th column of A0 and
Φ0 respectively. For more details, see [MM03, Section § 2.8].

Theorem 1.2.4. Assume that the eigenvalue problem (1.2.6) is normal with A0,A1 ∈
W 2,∞([a,b];Rn×n) and A1 is a diagonal matrix with the eigenvalues of P−1

1 H−1 as
diagonal elements with H ∈W 2,∞([a,b];Rn×n). If the eigenvalues have a uniform
gap, i.e., inf

m 6=p
|λm−λp| > 0, then there exists a sequence of eigenfunctions of A f that

forms a Riesz basis of L2([a,b];Rn).
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Proof. Notice that the canonical system of eigenfunctions in [Tre00, Theorem 3.11]
corresponds to the eigenfunctions of the operator A f . In [Tre00, Theorem 3.11], the
eigenvalue problem is also assumed to be non-degenerate, i.e. ρ(T ) 6= /0, where T
is a linear pencil T (λ ) = T0− λT1 of bounded operators T0, T1 ∈ L(H1([a,b];Kn),
L2([a,b];Kn)×Cn) given by

T0 f :=
[ d

dζ
f −A0 f

Wb(S f )(b)+Wa(S f )(a)

]
, T1 f :=

[
A1 f

0

]
.

From [Vil07, Theorem 4.2], we have that C+⊂ ρ(T ). Eventually, since the eigenvalue
problem (1.2.6) is assumed to be normal and the eigenvalues of A f are assumed to have
a uniform gap, we conclude that there exists a sequence of eigenfunctions ( fn)n∈N of
A f that forms a Riesz basis.

Remark 1.2.2. In Theorem 1.2.4, the assumption inf
m 6=p
|λm − λp| > 0 comes from

[Tre00, Theorem 3.11]. This assumption enables to deduce that ( fn)n∈N forms a Riesz
basis without parentheses. A vector sequence (φn)n∈N is said to be a Riesz basis for
X with parentheses if (1.2.3) converges only after putting some of its terms in paren-
theses (whose arrangement is independent of x), see [Shk86].

1.3 Nice port-Hamiltonian systems are Riesz-spectral
systems

As already stated, numerous physical models such as wave equations, traveling waves,
the heat exchanger, the Timoshenko beam, and diffusive tubular reactors have been
proved to be Riesz-spectral systems (see e.g. [CZ95], [Xu05] and [DDW03]), see
Definition 1.3.1. Hence, in order to embed these particular facts into a general frame-
work, the subclass of nice port-Hamiltonian systems is introduced. The latter is proved
to satisfy the Riesz-spectral property. We start by defining the notion of Riesz-spectral
systems.

Definition 1.3.1. A dynamical system

ẋ(t) = Ax(t), x(0) = x0, (1.3.1)

where A : D(A) ⊂ X → X is a linear operator on a Hilbert space X is said to be a
Riesz-spectral system if it satisfies the following conditions:

1. A is a Riesz-spectral operator;

2. A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on X .

Definition 1.3.2. A nice port-Hamiltonian system is a port-Hamiltonian system (ac-
cording to Definition 1.1.1), which satisfies the condition WBΣW T

B ≥ 0 and Assump-
tions 1.2.1 and 1.2.2, and whose generator A given by (1.1.6) has a uniform gap of
eigenvalues, i.e., inf

m6=p
|λm−λp|> 0.
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Theorem 1.3.1. Under the regularity assumptions on the matrix-valued functions A0,
A1 and H in Theorem 1.2.4, any nice port-Hamiltonian system (1.1.1)-(1.1.3) is a
Riesz-spectral system.

Proof. First, since WBΣW T
B ≥ 0, A generates a contraction C0-semigroup, see Theo-

rem 1.1.1. It follows that A is closed.
Second, from [Vil07, Theorem 2.28], the resolvent operator of A is known to be com-
pact, which implies that the spectrum σ(A) is only made of eigenvalues of finite mul-
tiplicity such that σ(A) = σp(A). Since we are counting the eigenvalues with multi-
plicity, the uniform gap between them entails that they are in fact all simple. It proves
that the closure of the set of eigenvalues is totally disconnected.
Finally, from Theorem 1.2.4, it is known that the operator A f has a Riesz basis of
eigenvectors, and in view of Lemma 1.2.3, its eigenfunctions ( fn)n∈N are isomorphic
to the eigenfunctions (xn)n∈N of A. Indeed, fn = S−1Hxn for n ∈ N. Therefore, the
operator A has a Riesz basis of eigenfunctions.

Let us recall the growth bound of a C0-semigroup (T (t))t≥0

ω0 = inf
t>0

(
1
t

log ‖T (t)‖
)
= lim

t→∞

(
1
t

log ‖T (t)‖
)
. (1.3.2)

Definition 1.3.3. A C0-semigroup (T (t))t≥0 on a Hilbert space X is said to be expo-
nentially stable if there exist positive constants M and α such that

‖T (t)‖ ≤Me−αt , t ≥ 0.

Equivalently, the growth bound is negative, i.e., ω0 < 0.

Note that, in infinite dimension, there is a distinction between the spectral bound
and the growth bound, i.e.

ω0 ≤ sup
n≥1

Re λn, λ ∈ σp(A), (1.3.3)

which entails that the eigenvalues does not characterize the exponential stability any-
more. To understand this issue better, the reader is referred to [CZ95]. As a straight-
forward consequence of Theorem 1.3.1 and [CZ95, Theorem 2.3.5], the inequality in
(1.3.3) can be replaced by an equality for nice port-Hamiltonian systems. In this case,
we say that the spectrum-determined growth condition is satisfied.

Corollary 1.3.2. Under the regularity assumptions on the matrix-valued functions A0,
A1 andH in Theorem 1.2.4, any nice port-Hamiltonian system (1.1.1)-(1.1.3) satisfies
the spectrum-determined growth condition. Furthermore, if σp(A) ⊂ C−0 , then the
system (1.1.1)-(1.1.3) is exponentially stable.

Example 3.1. Let us get back to Example 1.1 of a vibrating string. Let us consider
now the following boundary conditions:

T (b)
∂w
∂ζ

(b, t)+
∂w
∂ t

(b, t) = 0 and T (a)
∂w
∂ζ

(a, t) = 0, (1.3.4)
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which means that the string is let free at the extremity a and is damped at the extremity
b. This choice of boundary conditions is rewritten as[

0
0

]
=

[
T (a) ∂w

∂ζ
(a, t)

T (b) ∂w
∂ζ

(b, t)+ ∂w
∂ t (b, t)

]
=WB

[
f∂ (t)
e∂ (t)

]
, (1.3.5)

where WB = 1√
2

[
−1 0 0 1
1 1 1 1

]
has rank 2 and WBΣW T

B =

[
0 0
0 2

]
≥ 0. The eigen-

values and eigenfunctions of P−1
1 H−1 :=

[
0 1

T (ζ )
ρ(ζ ) 0

]
are given by

r(ζ ) =±
√

ρ(ζ )

T (ζ )
and

[
1√

(T ρ)(ζ )

]
,

[
1

−
√
(T ρ)(ζ )

]
, (1.3.6)

respectively. According to Assumption 1.2.2, P−1
1 H−1 has 2 different eigenvalues

with

R1(z) =
∫ z

a

√
ρ(ζ )

T (ζ )
dζ and R2(z) =−

∫ z

a

√
ρ(ζ )

T (ζ )
dζ . (1.3.7)

This yields

E(z,λ ) =

 exp
(

λ
∫ z

a

√
ρ(ζ )
T (ζ )dζ

)
0

0 exp(−λ
∫ z

a

√
ρ(ζ )
T (ζ )dζ

)


:= diag(E1,E2)(z,λ ).

(1.3.8)

The matrices Wa and Wb introduced in Lemma 1.2.2 are given by

Wa =
√

2
[

0 1
0 0

]
and Wb =

√
2
[

0 0
1 1

]
. (1.3.9)

We now verify the normality assumption of the eigenvalue problem for the vibrating
string. Towards this end, let us compute the expression of the set E and express the
asymptotic expansion of p(λ ) given by (1.2.13).
The set E is given by

E = {0,R1(b),R2(b),R1(b)+R2(b)}=
{∫ b

a

√
ρ(ζ )

T (ζ )
dζ ,−

∫ b

a

√
ρ(ζ )

T (ζ )
dζ ,0

}
.

(1.3.10)
From (1.2.15), the non-zero coefficients are given by

det(WbS(b)Φ0(b)E(b,λ )+WaS(b))

= 2
√
(T ρ)(b)(1+

√
(T ρ)(b))E1(b,λ )+2

√
(T ρ)(b)(1−

√
(T ρ)(b))E2(b,λ ).

(1.3.11)
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As stated in Assumption 1.2.2, the system is said to be normal if (1.3.11) has non-
zero minimum and maximum coefficients, i.e., (1+

√
(T ρ)(b)) and (1−

√
(T ρ)(b))

must be different from zero. This entails that the system is normal if and only if
1 6=

√
((T ρ)(b)).

The roots of the asymptotic expansion of the characteristic determinant (1.2.13) gives
the eigenvalues of A. Developing the sum in (1.2.13) for each elements belonging to
E given by (1.3.10) yields

p(λ ) = {o(1)}∞ +[2
√
(T ρ)(b)(1+

√
(T ρ)(b))+{o(1)}∞]E1(b,λ )

+[2
√

(T ρ)(b)(1−
√
(T ρ)(b))+{o(1)}∞]E2(b,λ )

. (1.3.12)

The roots of (1.3.12) are approximated by (1.2.15). By Rouché’s theorem, the eigen-
values are approximated as λn = λ ∗n +o( 1

n ) for n ∈ N, where

λ
∗
n =


−1

2
∫ b

a

√
ρ(ζ )
T (ζ )

ln
∣∣∣∣√(T ρ)(b)+1√

(T ρ)(b)−1

∣∣∣∣− i πn∫ b
a

√
ρ(ζ )
T (ζ ) dζ

,

−1

2
∫ b

a

√
ρ(ζ )
T (ζ )

ln
∣∣∣∣√(T ρ)(b)+1√

(T ρ)(b)−1

∣∣∣∣− i π(2n+1)

2
∫ b

a

√
ρ(ζ )
T (ζ ) dζ

,

if
√

(T ρ)(b) > 1 or
√
(T ρ)(b) < 1 respectively. Notice that the condition 1 6=√

((T ρ)(b)) from the normality assumption of the system ensures the existence of
the eigenvalues λ ∗n given by (3.1). When

√
(T ρ)(b) tends to 1+, the real part of λ ∗n

goes to −∞. Moreover, from Corollary 1.3.2 and since w0 is given by

w0 = sup
n∈N

Re λn =
−1

2
∫ b

a

√
ρ(ζ )
T (ζ )

ln

∣∣∣∣∣
√
(T ρ)(b)+1√
(T ρ)(b)−1

∣∣∣∣∣< 0, (1.3.13)

the vibrating string described by (1.1.32) and (1.3.4) is exponentially stable.

1.4 Conclusion & perspectives
Most of the content presented in this chapter was published in [LW17a]. Since then,
research is still ongoing in order to relax the conditions presented in Theorem 1.3.1.
Indeed, the Riesz basis property exhibited in Theorem 1.3.1 requires strong assump-
tions on the eigenvalues of A such as a uniform gap of eigenvalues, which narrows the
range of applications. For instance, the coupled vibrating string as described in [JZ12,
Example 7.4] has Jordan blocks. A two-dimensional vibrating string does not satisfy
the eigenvalue uniform gap assumption. This should be seen as a first attempt to study
the Riesz-spectral property of first order port-Hamiltonian systems.

Note that by applying Tretter’s result, no use is made of the existence of a con-
traction C0-semigroup generated by A. Current researches on Riesz basis of port-
Hamiltonian systems tend to go into that direction. See for instance [JK18], where
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the authors prove that, under some assumptions on matrices P1,P0,H,Wa and Wb, the
operator A described by (1.1.6) and (1.1.7) generates a C0-group if and only if A is a
Riesz operator. Nevertheless, a complete characterization for port-Hamiltonian sys-
tem having a Riesz basis still need to be found.

Moreover, a natural extension of the results devoted to the Riesz-spectral property
would be to consider some internal dissipation within the port-Hamiltonian framework
as introduced in [Vil07, Chapter 6] and to see whether the Riesz-spectral property still
holds. Even though the answer seems intuitively positive, proving that the Riesz-basis
property still holds in the presence of dissipative effects is not straightforward and
remains a conjecture that would be appealing to prove.
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Chapter 2
Stochastic calculus in Hilbert
spaces

This chapter serves as an introduction to the basic concepts needed for the study of
stochastic partial differential equations. Some notions of the abstract probability the-
ory and some linear spaces are recalled, and Wiener processes are introduced in Sec-
tion 2.2. A theory of integration is presented and adapted to the range of stochastic
disturbances modelized by Wiener processes considered in this work. This chapter
ends by stating the stochastic counterpart of Tonelli-Fubini Theorem and the so-called
Itô’s formula. This chapter will also help to fix the notations used in this thesis.

The different notions of solutions of infinite-dimensional stochastic differential
equations are postponed to Chapter 3, where the questions of existence and unique-
ness of the SPDE governing the class of stochastic port-Hamiltonian systems will be
discussed. Moreover, to keep this chapter within a reasonable length, the proofs are
omitted and can be found in standard books such as [DPZ14] and [MPBL14].

This Chapter is organized as follows. Section 2.1 introduces background materials
for the study of stochastic processes on functional spaces. In Section 2.2, some of the
best known stochastic processes, namely Wiener processes, are studied and some of
their properties are presented. The stochastic integral with respect to a Wiener process
is defined in Section 2.3. This chapter ends with some results and tools, which will
turn out to be useful in the following chapters.

33
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2.1 Preliminaries
Let (Ω,F ,P) be a probability space, where Ω is a nonempty set of elements ω , F
denotes a σ -algebra of subsets of Ω and P is a probability measure. More precisely,
the family F contains the set Ω and is closed when taking the complement and un-
der countable unions of subsets of Ω. Any point ω ∈Ω is a sample or an experiment,
S∈F is an event and P(S) represents the probability measure of the event S. As usual,
an event S∈F is said to hold P-almost surely (P-a.s.) if P(S) = 1. A probability space
(Ω,F ,P) is said to be complete if for all A ⊂ Ω such that there exists B,C ∈ F with
B⊂ A⊂C and P(B) = P(C), then A ∈ F .

Let X and Z be separable Hilbert spaces. U is a X -valued random variable if the
map G : Ω→X is strongly measurable with respect to the probability measure P, i.e.

G−1(B) := {ω ∈Ω : G(ω) ∈ B} ∈ F for all B ∈ B(X ),

where B(X ) is a Borel σ -algebra on X , i.e. the smallest σ -algebra containing the
open and closed subsets of X . The σ -algebra generated by the random variable G is
given by

σ(G) =
{

G−1(B) : B ∈ B(X )
}

= {{G ∈ B} : B ∈ B(X )}

and represents the smallest σ -algebra on Ω such that the random variable G is strongly
measurable. The σ -algebra σ(G) contains all the information about the random vari-
able G. After observing the outcome of G, we can tell whether an event A ⊂ Ω has
occurred or not. For an integrable (in the Bochner sense) random variable G, we define
its expectation as

E [G] =
∫

Ω

G(ω)dP(ω). (2.1.1)

The most important distribution in probability theory is the Gaussian distribution. We
now give the definition of a Gaussian random variable taking values in X .

Definition 2.1.1. Let G be aX -valued random variable and (ei)i∈N be an orthonormal
basis inX . G is Gaussian if for all i∈N, 〈G,ei〉X is a real Gaussian random variable.

Now we introduce the space of trace class operators L1(Z,X ) and the space of
Hilbert-Schmidt (H-S) operators L2(Z,X ).

Definition 2.1.2. A bounded linear operator T : Z → X is said to be a trace class
operator if there exist sequences (ai)i∈N ⊂ Z and (bi)i∈N ⊂X such that, for all z ∈ Z,

T z =
∞

∑
i=1
〈z,ai〉Zbi ∈ X . (2.1.2)

with
∞

∑
i=1
‖ai‖Z‖bi‖X < ∞. (2.1.3)
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Definition 2.1.3. A bounded linear operator T : Z→X is said to be a Hilbert-Schmidt
operator if

∞

∑
i=1
‖Tei‖2

X < ∞, (2.1.4)

where (ei)iN is an orthonormal basis of Z.

Let us introduce the following subspaces of bounded linear operators:

1. L1(Z,X ) denotes the space of trace class operators endowed with the norm
given by

‖T‖L1 = Tr T̃ :=
∞

∑
i=1
〈T̃ ei,ei〉Z , (2.1.5)

where T̃ = (T ∗T )1/2.

2. L2(Z,X ) denotes the space of H-S operators endowed with the norm given by

‖T‖L2 :=

(
∞

∑
i=1
‖Tei‖2

X

)1/2

. (2.1.6)

Obviously,
L2(Z,X )⊂ L1(Z,X )⊂ L(Z,X )

and if T is a self-adjoint operator, ‖T‖L1 = TrT .

2.2 Wiener processes
In what follows, we introduce some notions and definitions related to stochastic pro-
cesses taking values in Hilbert spaces. To do so, we further assume that the probability
space (Ω,F ,P) is equipped with an increasing (in the sense of set inclusion) sequence
of σ -algebras (Ft)t≥0. Such family of σ -algebras is called a filtration. The usual inter-
pretation of a filtration is that each Ft contains all the information which is available
up to time t.

Definition 2.2.1. A filtration (Ft)t≥0 on a probability space (Ω,F ,P) is said to be
normal if the two following conditions hold:

1. F0 contains all the P-null sets of F;

2. (Ft)t≥0 is right-continuous, i.e. Ft = Ft+ :=
⋂

s≥tFs, for all t ≥ 0.

Condition 1 means that the filtration contains all the negligible sets (relative to P).
Condition 2 implies that taking an infinitesimal step forward in time does not add any
information.
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A stochastic process (ε(t))t≥0 (ε(t) for short) is a random function of two vari-
ables: an experiment ω ∈Ω and a time argument t ∈ [0,∞). For each fixed experiment
ω ∈ Ω, the map ε(ω, ·) is called a realisation or sample path of a stochastic process
(ε(t))t≥0. If we fix now the time argument t, we obtain a random variable ε(·, t).
This corresponds to the naive interpretation of a stochastic process as a collection of
random variables parametrized by the time argument.

Definition 2.2.2. A Z-valued stochastic process (ε(t))t≥0 is a measurable map from
Ω× [0,∞) to Z with respect to the σ -algebra F ×B([0,∞)).

Observe that the definition of a Hilbert space valued stochastic process is more
restrictive since such process has to be measurable in the product space F ×B([0,∞))
and not only measurable with respect to F as for the real case, see [Doo90]. Let us
now recall the definition of a Gaussian process.

Definition 2.2.3. A stochastic process (ε(t))t≥0 is said to be Gaussian if for any n∈N
and for any finite partition 0 ≤ t1 ≤ . . . ≤ tn < ∞, the Zn-valued random variable
(ε(t1), . . . ,ε(tn)) is Gaussian.

We now define the covariance and the correlation operators.

Definition 2.2.4. Let Z be a separable Hilbert space with the inner product 〈·, ·〉Z and
(Ω,F ,P) be a probability space. If the two stochastic processes (X(t))t≥0, (Y (t))t≥0 ∈
L2((Ω,F ,P);Z), then for any t ≥ 0 the covariance operator of X(t) and the correla-
tion operator of X(t) and Y (t) are given by the formulae

Cov(X(t)) = E [(X(t)−E(X(t)))◦ (X(t)−E(X(t)))] , (2.2.1)

and,
Cor(X(t),Y (t)) = E [(X(t)−E(X(t)))◦ (Y (t)−E(Y (t)))] , (2.2.2)

respectively, where X ◦Y ∈ L(Z) is defined by (X ◦Y )h = X〈Y,h〉Z for any h ∈ Z.

Definition 2.2.5. A stochastic process (ε(t))t≥0 is stationary if

1. for all t,s≥ 0, m(t + r) = m(t) and

2. for all t,s,r ≥ 0, R(t + r,s+ r) = R(t,s),

where m(t) = E(ε(t)) and R(t,s) = E((ε(t)−m(t))◦ (ε(s)−m(s))).

Definition 2.2.6. A stochastic process (ε(t))t≥0 is said to have continuous sample
paths almost surely (or continuous) if the mapping t 7→ ε(ω, t) is continuous for almost
every ω ∈Ω.

Definition 2.2.7. A stochastic process (ε(t))t≥0 is said to be F-adapted if ε(t) is Ft -
measurable for all t ≥ 0.

This concept is defined similarly on any interval I ⊂ R+.
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Definition 2.2.8. Consider a filtration (Ft)t≥0 on the probability space (Ω,F ,P) and
a separable Hilbert space Z. A Z-valued stochastic process (Mt)t≥0 is called a F-
martingale on an interval I ⊂ R+ if the following conditions hold:

1. (Mt)t∈I is (Ft)t∈I-adapted;

2. E[Mt ]< ∞ for all t ∈ I;

3. E[Mt |Fs] = Ms for all s, t ∈ I such that 0≤ s≤ t,

where E[· |Fs] denotes the conditional expectation with respect to the σ -algebra Fs.

A large class of stochastic processes can be assumed to be represented by white
noises, which has the nice property to generate uncorrelated shocks. A white noise
process e(t) is defined by a stationary stochastic process whose autocorrelation oper-
ator is a Dirac distribution, i.e., for any g,h ∈ Z

E〈e(t),g〉= 0 and E〈e(t),g〉〈e(s),h〉= δ (t− s)〈Qg,h〉, (2.2.3)

where 0≤ s≤ t, Q is a covariance operator. One usually models a white noise process
as the formal derivative (in the sense of distributions, see [Sch57]) of a Wiener process.
Note that the white noise process has mean zero. In this case, we usually say that the
stochastic process is centred.

Definition 2.2.9. Let Z be a separable Hilbert space. A Z-valued stochastic process
(w(t))t≥0 is a Wiener process if it satisfies the following conditions:

1. w(0) = 0, P-almost surely;

2. The trajectories w(t) with t ≥ 0 are continuous, that is, the mapping t 7→w(t,ω)
is continuous for almost every ω ∈Ω;

3. (w(t))t≥0 has independent increments, that is, for any finite partition 0 = t0 ≤
. . .≤ t f < ∞, the random variables w(t1), w(t2)−w(t1), . . . ,w(tn)−w(tn−1) are
(jointly) independents ;

4. For any 0 ≤ s ≤ t, the random variables w(t)−w(s) are normally distributed
with mean 0 and variance (t− s)Q (i.e.w(t)−w(s)∼N (0,(t− s)Q)).

Moreover, if we further assume that

• w(t) is adapted to Ft for all t ≥ 0 and that

• w(t)−w(s) is independent of Fs for all 0≤ s≤ t,

then w(t) is said to be a Wiener process adapted to the filtration (Ft)t≥0. The co-
variance operator Q represents the increments of w(t). It is a self-adjoint nonnegative
trace class operator that characterizes the distribution of w(t). For each u in Z with the
inner product 〈·, ·〉Z , (〈w(t),u〉Z)t≥0 is a real-valued Wiener process.



38 CHAPTER 2. STOCHASTIC CALCULUS IN HILBERT SPACES

Remark 2.2.1. 1. In the literature it is common to call a Hilbert space-valued
Wiener process with covariance operator Q, a Q-Wiener process. Neverthe-
less, for the sake of simplicity and when this is clear from the context, we shall
simply use the term Wiener process.

2. Note that in Definition 2.2.9, the assumption of a trace class covariance opera-
tor is taken. This choice is required for the definition of well-posed stochastic
systems given in Section 3.4. The trace class assumption means that the noise
is colored with respect to the space variable. As a matter of fact, in this case,
the heterogeneity caused by a finite trace operator induces some correlations
in the spatial domain, on which the noise process is operating. For instance,
it excludes the choice Q as the identity operator. Throughout this thesis, we
restrict ourselves to Q-Wiener processes, but it is also of interest to consider
the so-called cyclindrical Wiener process with covariance operator Q such that
Tr[Q] = ∞. The definition of a stochastic integral given in Section 2.3 requires
the assumption that Q is a trace class operator, but can easily be extended to
the case of cylindrical Wiener processes. Further details on cylindrical Wiener
processes are available in [DPZ14, Section 4.2.1].

In analogy to the Karhunen-Loève expansion [DPZ14, Proposition 4.3], a Wiener
process can be represented as an expansion in the eigenvectors of Q, which is given in
the following proposition.

Proposition 2.2.1. If (w(t))t≥0 is a Wiener process, then there exists a complete or-
thonormal basis (vi)i∈N of Z, such that

w(t) =
∞

∑
i=1

βi(t)vi, (2.2.4)

where (βi(t))i∈N is a sequence of real independent Wiener processes with increments
(qi)i∈N such that the series ∑

∞
i=1 qi is convergent in Z.

An approximation of the sample paths of a Q-Wiener process based on the Karhunen-
Loève expansion is represented in Figure 2.1. One can observe that the sample paths
of the approximated Wiener process are distributed along the spatial domain [0,1].
In addition, notice that the condition 4 of Definition 2.2.9 is recovered since we can
observe that the standard deviation of the stochastic process is a function of

√
t. See

[LPS14, Chapter 10] for further details.

Remark 2.2.2. Observe that there always exists a normal filtration F (see Definition
2.2.1) to which a Wiener process is adapted. Indeed, let us consider all P-null sets

M := {A ∈ F : P(A) = 0}

and let us define

FW
t = σ(w(s) : s ∈ [0, t])⊂Ft , ∀t ≥ 0,



2.2. WIENER PROCESSES 39

Figure 2.1 – Wiener process: ∆t = 0.001 and ∆ζ = 0.001

as the filtration generated by w(t), which contains all sets of the form

{A ∈ F : w(s)A ∈ B(Z),0≤ s≤ t} , ∀t ≥ 0.

The augmented filtration given by

F̂W
t =

⋂
r>t

σ(M∪FW
r ) (2.2.5)

is right-continuous and w(t) is still adapted to F := F̂W
t . In the sequel, the filtered

probability space (Ω,F ,F,P) will be considered, wherein F defined by (2.2.5) is
normal, i.e., it satisfies the assumptions of completeness and right continuity.

Let us conclude this section by introducing some functional spaces, which will
turn out to be useful afterwards:

L2
F([0,T ];L2(Ω;X )) := {ε : Ω× [0,T ]→X : ε(·) is F− adapted and

E
∫ T

0
‖ε(s)‖2

X ds < ∞}

endowed with the norm ‖ε‖2
L2
F([0,T ]×Ω;X )

:= E
∫ T

0 ‖ε(s)‖2
X ds,

C2
F([0,T ];L2(Ω;X )) := {ε : Ω× [0,T ]→X : ε(·) is F− adapted andE‖ε(s)‖2

X ,

E‖ε̇(s)‖2
X are continuous}

endowed with the norm ‖ε‖2
C2
F([0,T ];L

2(Ω;X ))
:= sup

t∈[0,T ]
E‖ε(t)‖2

X and

M2
F([0,T ];Z) := {M : [0,T ]→ Z : M(·) is a continuous F− adapted martingale,

M(0) = 0 and sup
t∈[0,T ]

E‖M(t)‖2
Z < ∞}
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endowed with norm ‖M‖2
M2

T
:= sup

t∈[0,T ]
E‖M(t)‖2

Z , which is a Banach space. In or-

der to simplify the notations, we denote the first two spaces by L2
F([0,T ];X ) and

C2
F([0,T ];X ), respectively.

Remark 2.2.3. Completness of the probability space (Ω,F ,F,P) and normality of the
filtration F will be assumed to hold throughout this thesis. The theory of stochastic
integration is usually developed under these assumptions for convenience. In [DM11],
the authors stress the impact on general results of probability theory when these as-
sumptions are suspended.

2.3 Stochastic integration
This section is devoted to a short introduction to the theory of stochastic integration
with respect to Wiener processes in Hilbert spaces. The theory developed herein is for
stochastic integrals with respect to a Hilbert-space valued Wiener process, which are
also called Itô integrals. Notice that we restrict ourselves to the case of non-random
integrands. Most of this section is based on [DPZ14, Chapter 4], and [Cho14]. For
further reading, we refer to these books.

Let (Ω,F ,P) be a complete filtered probability space with a normal filtration F :=
(Ft)t≥0. Let X and Z be separable Hilbert spaces and let us consider a Z-valued
Wiener process (w(t))t≥0 with covariance operator Q as described in Definition 2.2.9.
Here, the operator Q ∈ L(Z) is assumed to be self-adjoint, nonnegative and to satisfy
Tr[Q]< ∞, where Tr denotes the trace operator of Q defined by (2.1.5). Denote by Z0
the range of the space Z by the square root of the covariance operator: Z0 := Q1/2(Z),
which is a subspace of Z equipped with the norm ‖ · ‖0 associated with the inner
product

〈u,v〉0 = 〈Q−1/2u,Q−1/2v〉Z , u,v ∈ Z0,

where Q−1/2 denotes the pseudo-inverse of Q1/2 defined as

(Q1/2)−1y := argmin
{
‖z‖Z : z ∈ Z,Q1/2z = y

}
for all y ∈ Ran Q1/2.

The range Z0 := Q1/2(Z) is called the reproducing kernel or Cameron-Martin space of
the process (w(t))t≥0.

Proposition 2.3.1. The space of Hilbert-Schmidt operators L0
2 := L2(Z0,X ) equipped

with the norm

‖T‖2
L0

2
= ‖T Q1/2‖2

L2(Z,X ) = Tr[T Q1/2(T Q1/2)∗] = Tr[T QT ∗] (2.3.1)

for any T ∈ L0
2 is a separable Hilbert space.

Proof. For the proof, we refer to [Kuo75, Theorem 1.3].
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We can now turn our attention to the stochastic (Itô) integral definition. As proved
by Dvoretski, Erdos and Kakutani, real-valued Wiener processes (〈w(t),z〉)t≥0 for
each z ∈ Z are nowhere differentiable, see [Bre68, Theorem 12.25]. Hence, an inte-
gral with respect to a Wiener process cannot be defined by pathwise integration in the
Lebesgue-Stieltjes approach by considering ω as a parameter, even with a determin-
istic integrand.

First let f (t) be a L(Z,X )-valued step function with t ∈ [0,T ]. f (t) is a step func-
tion if there exist a partition 0 = t0 < t1 < ... < tn = T and L(Z,X )-valued functions
{ fi}n−1

i=0 strongly measurable such that

f (t) =
n−1

∑
i=0

fi1[ti,ti+1](t), t ∈ [0,T ]. (2.3.2)

Then the stochastic integral of the step function f (t) with respect to (w(t))t≥0 is given
by

IT ( f ) =
∫ T

0
f (t)dw(t) =

n−1

∑
i=0

fi[w(ti+1)−w(ti)] ∈ X , (2.3.3)

which also leads to

It( f ) =
∫ t

0
f (s)dw(s) =

n−1

∑
i=0

fi[w(ti+1∧ t)−w(ti∧ t)] =
n−1

∑
i=0

fi[∆wi(t)], t ∈ [0,T ],

(2.3.4)
where ti∧ t := min(ti, t). We denote the linear space of step functions by E.

Theorem 2.3.2. Consider f as a L(Z,X )-valued step function such that∫ T
0 ‖ f (t)‖2

L0
2
dt < ∞. The stochastic integral I( f ) defined by (2.3.4) is a continuous,

square integrable X -valued martingale on [0,T ] and the following holds:

1. E
∫ t

0 f (s)dw(s) = 0;

2. E‖∫ t
0 f (s)dw(s)‖2

X =
∫ t

0 Tr
[

f (s)Q1/2( f (s)Q1/2)∗
]

ds, t ∈ [0,T ].

Proof. For the proof, we refer to [DPZ14, Proposition 4.20] or [Cho14, Lemma 3.2].

In the literature, the identity 2 is called the Itô’s isometry. It shows that the stochas-
tic integral is an isometry transformation from the space of L(Z,X )-valued step func-
tions to the space of X -valued square integrable martingales denoted byM2

T .

Corollary 2.3.3. Let us consider L(Z,X )-valued step functions f1 and f2 such that
for any t1, t2 ∈ [0,T ],

∫ t1∧t2
0 〈 f1(s), f2(s)〉L0

2
ds < ∞. Then

E
[
〈
∫ t1

0
f1(s)dw(s),

∫ t2

0
f2(s)dw(s)〉X

]
=

[∫ t1∧t2

0
Tr [ f1(s)Q f2(s)∗]ds

]
. (2.3.5)
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Proof. It is a direct consequence of the Itô’s isometry.

SinceM2
T is a Banach space, we may extend the isometry I( f ) : E →M2

T to the
abstract completion of E. This extension remains isometric and is unique. This will
be done in the subsequent step.

The next step is to extend the definition of the stochastic integral to a larger class of
integrands taking values in L0

2 such that
∫ T

0 || f (s)||2L0
2
ds < ∞. Since the step functions

are dense in

N 2
w([0,T ];L0

2) =

{
f : [0,T ]→ L0

2 :
∫ T

0
|| f (s)||2L0

2
ds < ∞

}
,

for any f ∈ L2([0,T ];L(Z0,X )) there exists a sequence of step functions fn such

that lim
n→∞

∫ T

0
|| f (s)− fn(s)||2L0

2
ds = 0, see [DPZ14, Proposition 4.22]. As a conse-

quence, the definition of the stochastic integral can be extended to any function f ∈
N 2

w([0,T ];L0
2).

The stochastic integral of f ∈ N 2
w([0,T ];L0

2) with respect to a Wiener process w(t) is
then defined by ∫ t

0
f (s)dw(s) := lim

n→∞

∫ t

0
fn(s)dw(s), t ∈ [0,T ]. (2.3.6)

Theorem 2.3.2 and Corollary 2.3.3 still hold for the stochastic integral ofN 2
w([0,T ];L0

2)
integrands. This is summarized in the following theorem.

Theorem 2.3.4. Let f ∈N 2
w([0,T ];L0

2). Then the stochastic integral defined by (2.3.6)
is a continuous, square integrable X -valued martingale on [0,T ], and

1. E
∫ T

0 f (s)dw(s) = 0;

2. E‖
∫ T

0
f (s)dw(s)‖2

X =
∫ T

0
Tr[( f (s)Q1/2)( f (s)Q1/2)∗]ds

=
∫ T

0
|| f (s)||2L0

2
ds≤ Tr[Q]

∫ T

0
‖ f (s)‖2

L2
ds.

Proof. This can be shown by applying Theorem 2.3.2 via a sequence of simple func-
tions. For further details, we refer to [DPZ14, P. 98].

Several results from the Bochner integration have their natural counterparts in
stochastic integration.

Lemma 2.3.5. [DPZ14, Proposition 4.30]
Consider a family of bounded linear operators ( f (s))s≥0 on the Hilbert space Z and
let A : D(A) ⊂ X → X be a closed linear operator. If f (s)Q1/2(Z) ⊂ D(A) for all
s ∈ [0, t] and if the following conditions hold:∫ t

0
|| f (s)||2L0

2
ds < ∞ (2.3.7)
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and ∫ t

0
||A f (s)||2L0

2
ds < ∞, (2.3.8)

then
∫ t

0 f (s)dw(s) ∈ D(A) and A
∫ t

0 f (s)dw(s) =
∫ t

0 A f (s)dw(s) P-a.s.

For further details, we refer to [DPZ14, Section 4.2].
In order to study port-Hamiltonian systems driven by additive noises, we need to de-
fine a stochastic integral of the form∫ T

0
S(t,s) f (s)dw(s), (2.3.9)

where S : [0,T ]× [0,T ]→ L(X ) is bounded and strongly continuous for s, t ∈ [0,T ].
The special case S(t,s) = S(t−s) is of great importance and is called the convolutional
stochastic integral.

Theorem 2.3.6. Consider a C0-semigroup (S(t))t≥0 whose the operator A is the in-
finitesimal generator. If∫ T

0
‖S(s) f (s)‖2

L0
2
ds =

∫ T

0
Tr [S(s) f (s)Q(S(s) f (s))∗]ds < ∞,

then the process WA(t) :=
∫ t

0 S(t − s) f (s)dw(s) ∈ C([0,T ];L2(Ω;X )) is a Gaussian
process with covariance

Cov(WA(T )) =
∫ T

0
[S(T − s) f (s)Q(S(T − s) f (s))∗]ds. (2.3.10)

2.4 Some useful tools
In this section we state two important theorems related to stochastic integrals. We first
present the stochastic counterpart of Fubini’s theorem, taken from [DPZ14, Theorem
4.33]. Let F be a map from [0,T ]× [0,T ]→ L(Z,X ). F(s, t) ∈ L(Z,X ) is said to be
strongly measurable if F(s, t)z is measurable for all z ∈ Z and we denote B(L(Z,X ))
as the smallest σ -algebra of subsets of L(Z,X ), F−1(A) = {F ∈ L(Z,X ) : Fz ∈ A}
for all A ∈ B(X ).
Theorem 2.4.1. Let Z and X be separable Hilbert spaces. If the map F : [0,T ]×
[0,T ]→ L(Z,X ) is strongly measurable and

∫ T
0
∫ T

0 ‖F(s, t)‖2
L(Z,X )dsdt < ∞, then∫ T

0

∫ T

0
F(s, t)dw(s)dt =

∫ T

0

∫ T

0
F(s, t)dtdw(s). (2.4.1)

Another important tool that is worth mentioning is Itô’s formula, see [DPZ14,
Theorem 4.32]. This formula will play a key role in the seeking of an energy equality
for stochastic port-Hamiltonian systems.
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Theorem 2.4.2. Let φ(s) be a X -valued, Bochner integrable mapping on [0,T ], H ∈
L0

2, and let X0 be an F0-measurable, X -valued random variable. Then

X(t) := X0 +
∫ t

0
φ(s)ds+

∫ t

0
Hdw(s), t ∈ [0,T ]

is a well-defined stochastic process. Let f : [0,T ]×X → R be a continuous function
satisfying:

1. f (t,x) is differentiable in t and f ′t (t,x) is continuous on [0,T ]×X ;

2. f (t,x) is twice Fréchet differentiable in x, f ′x(t,x) ∈ X and f ′′xx(t,x) ∈ L(X ) are
continuous on [0,T ]×X .

Then P-almost surely, for all t ∈ [0,T ]

f (t,X(t)) = f (0,X(0))+
∫ t

0
〈 f ′x(s,X(s)),Hdw(s)〉X

+
∫ t

0
〈 f ′t (s,X(s))+ f ′x(s,X(s)),φ(s)〉X

+
1
2

Tr
[

f ′′xx(s,X(s))(HQ1/2)(HQ1/2)∗
]

ds.

(2.4.2)



Chapter 3
Stochastic port-Hamiltonian
systems on infinite-dimensional
spaces

Over the last decade, the stochastic counterpart of port-Hamiltonian systems has be-
gun to attract more consideration. This is motivated by the presence of uncertainties
and external random fluctuations for dynamical systems operating in random envi-
ronments. Examples of disturbances are wind gusts, environment turbulences, unpre-
dictable fluctuations in the line voltage, fluctuations of the environment temperature
or reaction parameters uncertainty. In order to capture the stochastic nature of these
neglected effects, the class of stochastic port-Hamiltonian systems is introduced.

The concept of stochastic Hamiltonian systems was first introduced in [LCO08]
on Poisson manifolds. In that paper, conserved quantities and underlying geomet-
ric features are characterized. On finite-dimensional spaces, the class of nonlinear
time-varying stochastic port-Hamiltonian systems was introduced in [SF13] as the
stochastic extension of [MvdS92]. In [SF13], Satoh and Fujimoto depicted the per-
formance degradation and the possible nonstabilization of control systems resulting
from stochastic disturbances by considering the problem of controlling a rolling coin
on a horizontal plane. Besides, a passivity-based stabilization method via a stochastic
generalized canonical transformation is proposed. Afterwards, this method was im-
proved to encompass a wider range of stochastic disturbances, notably input noise,
and was applied to stabilize continuous stirred tank reactor processes with stochastic
phenomena in [FG17]. Further stabilization methods for finite-dimensional stochas-
tic port-Hamiltonian systems can be found in [SS14] and [Sat17]. More recently,
in [HRJ18], a stochastic extension of the passivity-based control framework as pro-
posed in [OvdSME02] and [OvdSME99] was developed for nonlinear stochastic port-

45
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Hamiltonian systems.
So far, most of the literature devoted to stochastic port-Hamiltonian systems (SPHSs)
sticks to euclidean state spaces. Recently, a stochastic extension of linear infinite-
dimensional first order port-Hamiltonian systems [LZM05] was proposed in [LW17b].

The main purposes of this chapter are to introduce the new class of boundary con-
trolled and observed stochastic port-Hamiltonian systems governed by Itô stochastic
differential equations (SDEs) on functional spaces and to study some properties of this
new class of stochastic systems. The Sections 3.1, 3.2 and 3.3 are based on the results
presented in [LW17b].

This chapter is organized as follows. In Section 3.1, stochastic port-Hamiltonian
systems with boundary control and observation are introduced. In Section 3.2, the
existence of mild and strong solutions is established with a similar approach as in
[CP78]. Next, the passivity concept is extended to infinite-dimensional stochastic
systems and is investigated for SPHSs. Section 3.4 is devoted to the extension of the
well-posedness concept to boundary controlled and observed stochastic systems. To
be more specific, we shall focus on the well-posedness of SPHSs and the verification
of this property for this specific class of stochastic systems that is considered here. To
conclude this chapter, the theory will be illustrated on an example of a vibrating string
subject to some external random force modelized by a space and time Gaussian white
noise process.

3.1 Stochastic port-Hamiltonian systems
Let (Ω,F ,F,P) be a complete filtered probability space, wherein F is a normal filtra-
tion. To emphasise the distinction between deterministic and stochastic port-Hamil-
tonian systems, we shall denote the state as x(t) and ε(t) for deterministic and stochas-
tic versions, respectively. The state is denoted as a space and time dependent stochastic
process ε(ζ , t) on the state space X := L2([a,b];Rn). The class of first order linear
stochastic port-Hamiltonian systems is governed by the following form of stochastic
partial differential equation (SPDE for short) of the form

∂ε

∂ t
(ζ , t) = P1

∂

∂ζ
(H(ζ )ε(ζ , t))+P0H(ζ )ε(ζ , t)+(Hη(t))(ζ ), (3.1.1)

where P1 ∈Rn×n is invertible and symmetric (PT
1 = P1), P0 ∈Rn×n is skew-symmetric

(PT
0 =−P0) andH∈ L∞([a,b];Rn×n) is self-adjoint and satisfies mI ≤H(ζ )≤MI for

all ζ ∈ [a,b], for some constants m, M > 0. The system’s noise η : Ω× [0,T ]→ Z
is a Gaussian white noise process taking values in a Hilbert space Z with intensity
H ∈ L(Z,X ) and covariance Q ∈ L(Z).

The class of stochastic port-Hamiltonian systems (SPHSs) is interacting with its envi-
ronment by means of ports located at the boundary of the spatial domain. The class
of system under consideration is assumed to be controlled at the boundary (boundary
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control) and on small intervals inside the spatial domain (distributed control). This
entails that energy exchanges occur either at the boundary and/or inside the domain.

Based on Definition 0.3.1, let us explicit the class of boundary controlled and observed
(BCO for short) stochastic systems. This class of stochastic systems is described by
equations of the form:

dε(t) = (Aε(t)+Bdud(t))dt +Hdw(t), ε(0) = ε0,

u(t) = Bε(t),

y(t) = Cε(t),

yd(t) = B∗dHε(t),

(3.1.2)

where ε(t) ∈ X , ud(t) ∈ Rk, u(t) ∈ Rm, y(t) ∈ Rp,yd(t) ∈ Rk. Let us recall that the
distributed control operator Bd ∈L(Rk,X ) represents the action of the inputs ud(t) on
a spatial domain and yd(t) is the corresponding power-conjugated output (with respect
to inner product 〈·, ·〉X ). The boundary control operator B represents the action of the
inputs u(t) pointwisely only at the boundary of the spatial domain. As already stated,
the operators A, B and C are assumed to be unbounded linear operators on the state
space X .

Definition 3.1.1. A BCO stochastic system is a stochastic system described by (3.1.2)
which satisfies the conditions of Definition 0.3.1.

To give a complete characterization of the considered class of SPHSs, some bound-
ary controlled and homogeneous conditions are added to the SPDE (3.1.1) as follows:

u(t) =WB,1

[
f∂ (t)
e∂ (t)

]
, 0 =WB,2

[
f∂ (t)
e∂ (t)

]
,

where the boundary port-variables f∂ (t) and e∂ (t) are given by (1.1.4).
This yields the following definition of BCO stochastic port-Hamiltonian systems.

Definition 3.1.2. A boundary controlled and observed stochastic port-Hamiltonian
system is a BCO stochastic system, which is described by

dε(t) = (Aε(t)+Bdud(t))dt +Hdw(t), ε(0) = ε0, (3.1.3)

u(t) =WB,1

[
f∂ (t)
e∂ (t)

]
=: B [ε(t)] , (3.1.4)

0 =WB,2

[
f∂ (t)
e∂ (t)

]
, (3.1.5)

y(t) =WC

[
f∂ (t)
e∂ (t)

]
=: C [ε(t)] , (3.1.6)

yd(t) = B∗dHε(t), (3.1.7)

where WB :=
[

WB,1
WB,2

]
∈ Rn×2n and WC ∈ Rp×2n, A is a linear operator given by

Aε := P1
d

dζ
(Hε)+P0(Hε) (3.1.8)
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and B : D(B)→ Rm is a linear operator, with the same domain

D(A) :=
{

ε(t) ∈ X :Hε(t) ∈ H1([a,b];Rn) and WB,2

[
f∂

e∂

]
= 0
}

= D(B).
(3.1.9)

The class of SPHSs introduced in Definition 3.1.2 is the stochastic extension
(with distributed disturbance) of deterministic port-Hamiltonian systems described
by (1.1.26). Depending upon the control problem considered, pure boundary or dis-
tributed control can be regarded as particular cases of Definition 3.1.2.

To study the state equation (3.1.3) with the boundary conditions (3.1.4) and (3.1.5),
we make the following assumptions.

Assumption 3.1.1. The matrices WB and WC are full rank, WB satisfies WBΣW T
B ≥ 0

and rank
[

WB,1
WC

]
= m+ p .

Assumption 3.1.2. H ∈ L0
2, i.e. ‖H‖2

L0
2

:= Tr[HQH∗]< ∞ , which ensures that the Itô

integrals
∫ t

0 Hdw(s) and
∫ t

0 T (t− s)Hdw(s) are well-defined.

Note that the boundedness of the control operator Bd yields a well-defined and
continuous input-output mapping with respect to (ud(t),yd(t)). Hence, unless stated
otherwise, we shall set Bd = 0 (pure boundary control and observation) throughout the
rest of this chapter, without affecting the validity of the results herefater.

From [JZ12, Theorem 11.3.2], it is known that the SPHS (3.1.3)-(3.1.5) is a bound-
ary controlled stochastic system as specified in Definition 3.1.1, and thus the change
of state variables: X(ζ , t) = ε(ζ , t)−Bu(t) applied to (3.1.3) leads to an associated
SDE given by

dX(t) = (AX(t)−Bu̇(t)+ABu(t))dt +Hdw(t),

X(0) = X0.
(3.1.10)

Definition 3.1.3. A Hilbert space-valued process (X(t))t∈[0,T ] is said to be a mild
solution of (3.1.10) with respect to (w(t))t∈[0,T ] if

1. X(t) is F-adapted;

2. X(t) ∈C([0,T ];L2(Ω;X ));

3. For all t ∈ [0,T ], P(ω ∈Ω :
∫ T

0 ‖X(ω, t)‖2
X ds < ∞) = 1 and

X(t) = T (t)X0 +
∫ t

0
T (t− s)(ABu(s)−Bu̇(s))ds+

∫ t

0
T (t− s)Hdw(s).

(3.1.11)
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Theorem 3.1.1. Consider a stochastic port-Hamiltonian system (3.1.3)-(3.1.5) as in
Definition 3.1.2, satisfying Assumptions 3.1.1 and 3.1.2. In this setting, the mild so-
lution of (3.1.10) is represented as state trajectories of a stochastic process given by
(3.1.11) and satisfies the following estimate: for any t > 0, there is a constant K(t)> 0
such that

E‖X(t)‖2
X ≤ K(t)

[
E‖X0‖2

X +E‖u‖2
H1([0,t];Rm)+Tr[Q]

]
, (3.1.12)

where ‖ · ‖H1([0,t];Rm) =
∫ t

0 ‖ · ‖Rmds+
∫ t

0 ‖
d(·)
ds ‖Rmds. Moreover, if u is deterministic

such that u(t) = BE[X(t)], for every t > 0:

1. The mean of X(t) is governed by the abstract differential equation (ADE)

ṁX (t) = AmX (t)+ABu(t)−Bu̇(t), (3.1.13)

whose mild solution is mX (t) = T (t)mX0 +
∫ t

0 T (t− s)(ABu(s)−Bu̇(s))ds.

2. The variance of X(t) is governed by the Lyapunov type ADE

˙Cov(X(t)) = ACov(X(t))+Cov(X(t))A∗+HQH∗, (3.1.14)

whose mild solution is Cov(X(t))=T (t)Cov(X0)T (t)∗+
∫ t

0 T (t−s)HQH∗ T (t−
s)∗ds.

Proof. The existence and uniqueness of a mild solution can be directly deduced by
using a probabilistic fixed point argument and its expression is obtained from the
variational constant formula (3.1.11). The estimate is obtained by using Itô’s isometry
and the boundedness of the operators AB, B and H ∈ L0

2:

E‖X(t)‖2
X = E‖T (t)X0 +

∫ t

0
T (t− s)(ABu(s)−Bu̇(s))ds+

∫ t

0
T (t− s)Hdw(s)‖2

X

(1) ≤ 3E‖X0‖2
X +3E

∫ t

0
‖ABu(s)−Bu̇(s)‖2

X ds+3t‖H‖2
L0

2

≤ K(t)
[
E‖X0‖2

X +E‖u‖2
H1([0,t];Rm)+Tr[Q]

]
.

X(t) given by (3.1.11) is F-adapted since WA(t) and u(t) are F-adapted, and X0 is F0-
measurable. The mean-square continuity of X(t) is a straightforward consequence of
the mean-square continuity of WA(t), see Theorem 2.3.6.
Using the vanishing property of the stochastic integral and the fact that X0 has mean
mX0 , (3.1.13) is obtained.
Using the independence of X0 and w(t), (3.1.14) is deduced by Leibniz’ differentiation
rule.

Remark 3.1.1. 1. Theorem 3.1.1 also holds for general BCO stochastic systems
as defined in Definition 3.1.1.

(1)‖a+b+ c‖2
X ≤ 3‖a‖2

X +3‖b‖2
X +3‖c‖2

X , with a,b,c ∈X
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2. Since the mean and the covariance operators determine the Gaussian distribu-
tion of the process X(t) given by (3.1.11), one can compute the distribution of
X(t) by solving the SDEs (3.1.13) and (3.1.14).

Theorem 3.1.2. Assume that the stochastic port-Hamiltonian system (3.1.3)-(3.1.5)
satisfying Assumptions 3.1.1 and 3.1.2 admits a mild solution X(t) given by (3.1.11).
Then X(t) has continuous sample paths.

Proof. Since we already know that the Bochner integral
∫ t

0 T (t−s)(ABu(s)−Bu̇(s))ds
and T (t)X0 are continuous, it remains to prove that

∫ t
0 T (t− s)Hdw(s) is continuous,

P-a.s. By making use of the Sz-Nagy-Foias theory of dilations [SN53] as done in
[HS01], there exists a larger Hilbert space X1 on which the contraction C0-semigroup
(T (t))t≥0 has a unitary dilation (T̄ (t))t≥0. Besides, the state space X is embedded as
a closed subspace of X1 and (T̄ (t))t≥0 is a strongly continuous unitary group on X1
with T (t) =PT̄ (t) for all t ≥ 0, where P is the orthogonal projection ofX1 ontoX . We
denote the infinitesimal generator of (T̄ (t))t≥0 by Ā. Hence the stochastic convolution
of the operator Ā can be decomposed as∫ t

0
T̄ (t− s)Hdw(s) = T̄ (t)

∫ t

0
T̄ (−s)Hdw(s). (3.1.15)

Notice that the sample path continuity of
∫ t

0 T̄ (t− s)Hdw(s) is directly deduced from

the continuity of
∫ t

0 T̄ (−s)Hdw(s). It is known that if
[∫ t

0 ‖T̄ (−s)H‖2
L0

2
ds
]
< ∞, then∫ t

0 T̄ (−s)Hdw(s) is continuous. The continuity of the orthogonal projection P implies
that the stochastic convolution term

∫ t
0 T (t− s)Hdw(s) has continuous sample paths,

which concludes the proof.

Remark 3.1.2. In proof of Theorem 3.1.2, observe that
∫ t

0 T̄ (−s)Hdw(s) is well-
defined since ∫ t

0
Tr[T̄ ∗(s)HQH∗T̄ (s)]ds = t Tr[HQH∗]< ∞.

Unfortunately, the stochastic convolution WA(t) is no longer a martingale, and
thus the Itô’s formula cannot be applied directly to mild solutions. This implies that
applying Itô’s formula to determine the Hamiltonian SDE requires stronger concepts
of solution. In the next section we establish existence and uniqueness theorems for
weak and strong solutions.

3.2 Existence and uniqueness theorems of weak and
strong solutions

To trace the first studies of solutions of stochastic partial differential equations, we
need to go back to [Bak63]. In this paper, the author proved existence theorems
for both stochastic parabolic and hyperbolic equations by rewriting them as integral
equations. This originates the semigroup approach that was developed afterwards for
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existence results of weak and strong solutions for SPDEs, notably by Bensoussan,
Pardoux, Rozovskii, Curtain and Pritchard, among many others.

The notions of weak and strong solutions considered in this work have the same spirit
as those defined for deterministic PDEs. Note that different meanings of weak and
strong solutions with a probabilistic point of view are also available in the literature.

First, we investigate the concept of weak solution, which is obtained by applying
z ∈ D(A∗) to both parts of the SDE (3.1.10).

Definition 3.2.1. A X -valued process (X(t))t∈[0,T ] with T ≥ 0 is said to be a weak
solution of (3.1.10) with respect to the Wiener process (w(t))t∈[0,T ] if the trajectories
X(t) are P-a.s Bochner integrable and if for all z ∈ D(A∗) and t ∈ [0,T ]

〈X(t),z〉X = 〈X0,z〉X +
∫ t

0
[〈X(s),A∗z〉X + 〈ABu(t)−Bu̇(t),z〉X ]ds

+〈Hw(t),z〉X , P−a.s.
(3.2.1)

Theorem 3.2.1. Consider a stochastic port-Hamiltonian system (3.1.3)-(3.1.5) and
let Assumptions 3.1.1 and 3.1.2 hold. Then for every input u ∈C2

F([0,T ];Rm), Hε0 ∈
H1([a,b];Rn) and u(0) = WB

[
f∂ (0)
e∂ (0)

]
, the stochastic differential equation (3.1.10)

admits a unique weak solution given by (3.1.11). Since X(t) defined by (3.1.11) is
almost surely integrable, the mild and weak solutions coincide.

Proof. From [JZ12, Theorem 10.1.8], it is already known that x(t) given by

x(t) = T (t)x0 +
∫ t

0
T (t− s)(ABu(s)−Bu̇(s))ds, t ≥ 0

is the unique weak solution of

ẋ(t) = Ax(t)+ABu(t)−Bu̇(t), x(0) = x0. (3.2.2)

Therefore, it is enough to prove that the process
∫ t

0 T (t− s)Hdw(s) is a unique weak
solution of

dX(t) = AX(t)dt +Hdw(t), X(0) = 0. (3.2.3)

with t > 0. For this we refer to the proof of [DPZ14, Theorem 5.4]

Generally speaking, the strong solution requires more restrictive conditions such
as taking values in D(A). Therefore, the usual way of defining the solution by inte-
grating both parts of the stochastic equation (3.1.10) can be applied.

Definition 3.2.2. A X -valued process (X(t))t∈[0,T ] with T ≥ 0 is said to be a strong
solution of (3.1.10) with respect to the Wiener process (w(t))t∈[0,T ] with the covariance
operator Q satisfying TrQ < ∞ if

1. X(t) belongs to D(A) a.s. and is adapted to F;
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2. X(t) is continuous in t ∈ [0,T ] a.s.;

3.
∫

∞

0 ‖AX(s)‖ds < ∞ P-a.s and the process (X(t))t∈[0,T ] is given by

X(t) = X0 +
∫ t

0
(AX(s)+ABu(s)−Bu̇(s))ds+

∫ t

0
Hdw(s), P−a.s.

(3.2.4)

Observe that ABu(s)−Bu̇(s) ∈ D(A) = D(A)∩KerB would be too restrictive on
u(t). See for instance the example in Section 3.4.2, where u = 0 would have to be
taken. As a consequence, the SDE (3.1.10) does not admit a strong solution. To
encounter this issue, we shall extend the state space X and introduce a family of ap-
proximate systems by using the Yosida approximate. The rationale is then based on a
limiting argument. The extended state space is defined as X e := Rm⊕X , where the
(extended) state is defined as Xe(t) := ( u(t) X(t) )T and ũ(t) = u̇(t). The approx-
imating system of (3.1.10) is given as follows:

dXe(t) =
(

0 0
AB A

)
Xe(t)dt +

(
I
−B

)
ũ(t)dt +

(
0
H

)
dw(t). (3.2.5)

Let us define Ae :=
(

0 0
AB A

)
and Be :=

(
I
−B

)
with domains D(Ae) = Rm⊕

D(A) and D(Be)=Rm and He =

[
0
H

]
. The operator Ae is the infinitesimal generator

of a C0-semigroup T e(t) =
(

I 0
S(t) T (t)

)
, where S(t)u :=

∫ t
0 T (t− s)ABu(s)ds for

all u(t) ∈Rm. To build a family of approximating systems having strong solutions, let
us introduce the following Yosida approximate control operators for all λ ∈ ρ(Ae):

Be
λ

: Rm→X : ũ 7→ Be
λ

ũ := λR(λ ,Ae)Beũ, (3.2.6)

where the resolvent operator R(λ ,Ae) = (λ I−Ae)−1.

Theorem 3.2.2. Consider the stochastic port-Hamiltonian system (3.1.3)-(3.1.5) sat-
isfying Assumptions 3.1.1 and 3.1.2. In addition, we assume that HQ1/2(Z) ⊂ D(A)
and that X0 ∈ D(A). If the following condition holds for all t ≥ 0:∫ t

0
‖AT (t− s)H‖2

L0
2
ds < ∞; (3.2.7)

then for all λ ∈ ρ(Ae),

dXe
λ
(t) = AeXe

λ
(t)dt +Be

λ
ũ(t)dt +Hedw(t); Xe(0) =

(
u(0) X0

)T ∈ D(Ae),
(3.2.8)

has a unique strong solution Xe
λ
(t) with respect to w(t), where Be

λ
ũ = λR(λ ,Ae)Beũ

for all ũ ∈ Rm, such that

sup
0≤s≤t

E‖Xe
λ
(s)−Xe(s)‖2

X e → 0 as λ → ∞, (3.2.9)

where Xe(t) is the mild solution of (3.2.5).
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Proof. First, notice that the uniqueness is a direct outcome of the uniqueness of the
mild solution of (3.2.5). Thus, only the existence of a strong solution needs to be
showed for every t ∈ [0,T ]. Xe

λ
(t) ∈ D(Ae) and Xe

λ
(t) given by

Xe
λ
(t) = T e(t)Xe

0 +
∫ t

0
T e(t− s)Be

λ
ũ(s)ds+

∫ t

0
T e(t− s)Hedw(s) (3.2.10)

satisfies the integral equation

Xe
λ
(t) = Xe

0 +
∫ t

0
(AeXe

λ
(s)+Be

λ
ũ(s))ds+

∫ t

0
Hedw(s). (3.2.11)

Since Xe
0 ∈ D(Ae), we have that T e(t)Xe

0 ∈ D(A) by the first part of [JZ12, Theorem
5.2.2]. Moreover, for any ũ ∈ L2([0,T ];Rm), once more from [JZ12, Theorem 5.2.2],
we obtain that

∫ t
0 T e(t − s)Beũ(s) ds ∈ D(Ae). Eventually, Lemma 2.3.5 entails that∫ t

0 T (t− s)Hdw(s) ∈ D(A) and that A
∫ t

0 T (t− s)Hdw(s) =
∫ t

0 AT (t− s)Hdw(s). This
implies that

∫ t
0 T e(t−s)Hedw(s)∈D(Ae) and thus proves that Xe

λ
(t) belongs to D(Ae).

In order to prove that Xe
λ
(t) satisfies (3.2.11), we mainly base the following rational

on [Liu05]. From the stochastic Fubini Theorem 2.4.1, we have that∫ t

0

∫ s

0
AeT e(s− v)Hedw(v)ds =

∫ t

0

∫ t

v
AeT e(s− v)Hedsdw(v)

=
∫ t

0
T e(t− v)Hedw(v)−

∫ t

0
Hedw(v). (3.2.12)

Moreover, by stochastic Fubini’s Theorem once again,∫ t

0

∫ s

0
AeT e(s− v)Be

λ
ũ(v)dvds =

∫ t

0

∫ t

v
AeT e(s− v)Be

λ
ũ(v)dsdv

=
∫ t

0
T e(t− v)Be

λ
ũ(v)dv

−
∫ t

0
Be

λ
ũ(v)dv. (3.2.13)

By applying Ae to both sides of (3.2.10) and by integrating on [0, t], we get that∫ t

0
AeXe

λ
(s)ds =

∫ t

0
AeT e(s)Xe

0 ds+
∫ t

0

∫ s

0
AeT e(s− v)Hedw(v)ds

+
∫ t

0

∫ s

0
AeT e(s− v)Be

λ
ũ(v)dvds.

(3.2.14)

Using the relations (3.2.12) and (3.2.13), it follows that

Xe
0 +

∫ t

0
AeXe

λ
(s)ds = Xe

λ
(t)−

∫ t

0
Hedw(s)−

∫ t

0
Be

λ
ũ(s)ds,

which means that Xe
λ
(t) satisfies the integral equation (3.2.11).

Moreover, the continuity of Xe
λ
(t) can be deduced from the continuity of

∫ t
0 Hedw(s),
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and since AeXe
λ
(t) is assumed to be integrable,

∫ t
0 AeXe

λ
(s)ds has continuous sample

paths.
We know that lim

λ→∞

λR(λ ,Ae)z = z, z ∈X e. Therefore, since (T (t))t≥0 is a contraction

C0-semigroup and by using ‖λR(λ ,Ae)‖ ≤ 2 for λ large enough, we have that

sup
0≤s≤t

E‖Xe
λ
(s)−Xe(s)‖2

X e ≤
∫ t

0
E‖(I−λR(λ ,Ae))Beũ(r)‖2

X edr.

So, E‖Xe
λ
(s)−Xe(s)‖2

X e → 0 uniformly on [0, t] as λ → ∞.

Remark 3.2.1. The condition
∫ t

0 ‖AT (t − s)H‖2
L0

2
ds < ∞ ensures that the stochastic

Fubini Theorem 2.4.1 can be used. This condition can be replaced by the stronger as-
sumption that AHQ1/2 is a Hilbert-Schmidt operator, i.e. AHQ1/2 ∈ L2(Z,X ). Indeed,
note that ∫ t

0
‖AT (t− s)H‖2

L0
2
=
∫ t

0
‖T (t− s)AHQ1/2‖2

L2
ds

=
∫ t

0
‖T (s)AHQ1/2‖2

L2
ds

≤ ‖AHQ1/2‖2
L2

∫ t

0
‖T (s)‖2ds < ∞.

We now determine the SDE governing the evolution of the energy of SPHSs. By
applying the Itô’s formula to the SDE (3.1.3) with u(t) = 0 and ud(t) = 0, we get the
following balance equation

dE(t) = 〈E ′x(ε(t)),Aε(t)〉L2dt + 〈E ′x(ε(t)),Hdw(t)〉L2 +
1
2

Tr
[
E ′′xx(ε(t))HQH∗

]
dt.

(3.2.15)

The diffusion term Hdw(t) can be interpreted as the incremental work of an exter-
nal force representing the uncertainty about the environment in which the system is
operating. The power supplied to a stochastic port-Hamiltonian system by a random
component can be represented as

〈Hx,Hdw(t)〉L2 = 〈H∗H,dw(t)〉Z = 〈z2(t),dw(t)〉Z , (3.2.16)

where z2(t) consists of a further power-conjugated output disturbance. In the next
result, the energy increments due to the Wiener process w(t) are explicited.

Proposition 3.2.3. The expected energy increment with respect to the Hamiltonian
E(t) due to the noise effect is given by

E[dE(ε(t))|ε0 = x]−dE(E[ε(t)|ε0 = x]) =
1
2

Tr[HHQH∗]dt, (3.2.17)

where ε(t) is the stochastic port-Hamiltonian process defined by (3.1.3)-(3.1.6) with
u = 0, ud = 0 and starting at x ∈ X .
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Proof. First, we compute the expected value of the energy of the process ε(t) starting
at x. Applying Itô’s formula, we have

Ex [dE(ε(t))] = Ex[〈E ′x(ε(t)),Aε(t)〉L2dt

+ 〈E ′x(ε(t)),Hdw(t)〉L2 +
1
2

Tr
[
E ′′xx(ε(t))HQH∗

]
dt].

(3.2.18)

Noticing that the first and second Fréchet derivatives are given by E ′x(ε(t)) =Hε(t)
and E ′′xx(ε(t)) =H. Moreover, since the expectation of the Wiener process increments
vanishes, one gets

Ex [dE(ε(t))] = Ex〈Hε(t),Aε(t)〉L2dt +
1
2

Tr [HHQH∗]dt

= Ex[ f∂ (t)
T e∂ (t)]dt +

1
2

Tr [HHQH∗]dt, (3.2.19)

where e∂ and f∂ are given by (1.1.4).
Second, we compute the expected value of the energy E at time t without noise, which
gives

dE(Ex[ε(t)]) = f∂ (t)
T e∂ (t)dt. (3.2.20)

Finally, by subtracting (3.2.20) from (3.2.19) we get (3.2.17), i.e., 1
2 Tr [HHQH∗] rep-

resents the expected energy increment due to the noise effect.

The energy increment 1
2 Tr [HHQH∗] highlighted in Proposition 3.2.3 is a direct

consequence of the diffusion part generated by w(t) and is specific to the Itô calculus
chosen here. Notice that this energy increment is somehow hidden in the Stratonovich
theory of integration. For the definition of the Itô integral, we have considered the left
extremity ti value of the integrand on each interval [ti, ti+1], see (2.3.3). Whereas for
the Stratonovich integral, the middle point ti+ti+1

2 is considered. In the case of addi-
tive noise (considered here) the two coincide. For further details on the Stratonovich
integral in Hilbert spaces, we refer to [DW14, Chapter 4].

3.3 Passivity of stochastic systems
The notions of dissipativity and passivity have been the object of a lot of attention over
the years. In this section the concept of passivity is generalized for stochastic systems.
When one wants to extent the passivity property of deterministic systems to stochastic
ones, the following questions beg naturally:

• Which regularity conditions must the storage function satisfy?

• With what the time derivative should be replaced?

Let us consider the dynamical system (0.4.1) driven by some Wiener process w(t),
which yields

dX(t) = f (X(t),u(t))dt +Hdw(t), X(t) ∈ X ,
y(t) = g(X(t),u(t)), u(t) ∈U,y(t) ∈ Y.

(3.3.1)
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In order to define the notion of passivity for stochastic systems, we define the infinites-
imal generator of stochastic processes.

Definition 3.3.1. The infinitesimal generator L of a stochastic process (X(t))t≥0 with
an initial condition X(0) = x is the linear operator given by

(L f )(x) = lim
t→0+

Ex[ f (X(t))]− f (x)
t

, (3.3.2)

and acts on the set of Itô functionals

C2
b(X ) :=

{
f ∈C(X ) : f ′x ∈ L(X ), f ′′xx ∈ L(X ,L(X ))

}
,

that lies in

D(L) :=
{

f ∈C2
b(X ) : lim

t→0+

Ex[ f (X(t))]− f (x)
t

exists
}
.

Notice that the operator L given by (3.3.2) is the generator of the stochastic Koop-
man family

U t
s ( f (x)) = Ex[ f (X(t))]. (3.3.3)

The stochastic Koopman family is also known as the transition semigroup for Markov
processes, see [DPZ14, Chapter 9].

According to Itô’s formula, the SDE of a storage function S ∈C2
b(X ) is given by

dS(X(t)) = L(S(X(t)))dt + 〈S′x(x(t)),Hdw(t)〉L2 , (3.3.4)

where

L(·) := 〈d(·)
dx

, f (X(t),u(t))〉+ 1
2

Tr
{

d2(·)
dx2 HQH∗

}
. (3.3.5)

The action of the generator L on f ∈ C2
b(X ) can be deduced by using (3.3.2), and

applying Itô’s formula and the property that the expectation of a stochastic integral
vanishes (see Theorem 2.3.4). A detailed proof for the real case C2

b(R) can be found
in [Hol08, Section 3.3].

The diffusion operator L plays a similar role to the differentiation operator for
deterministic systems. Roughly speaking, the time derivative is replaced by the ex-
pectation of the time derivative for stochastic dynamical systems.
The passivity for infinite-dimensional stochastic systems (3.3.1) can now be defined.

Definition 3.3.2. The stochastic system (3.3.1) is said to be passive (with respect to
the supply rate s(u,y) = uT y) if there exists a function S : X →R+, called the storage
function, such that S ∈C2

b(X ) satisfies for all t ≥ 0,

LS(X(t))≤ uT (t)y(t). (3.3.6)
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Σ1

Σ2

u(t) u1(t) y1(t) y(t)

u2(t)

−

y2(t)

Figure 3.1 – Interconnection of passive systems: u = u1 + y2 and y = y1 = u2

Remark 3.3.1. 1. Taking the expectation, integrating both sides of (3.3.6) and us-
ing Itô’s formula, passivity can be expressed in terms of expectation:

E
∫ t

0
uT (s)y(s)ds≥

∫ t

0
EL(E(X(s)))ds

= E [E(X(t))−E(X(0))] .

The integral E
∫ t

0 uT (s)y(s)ds represents the expected supplied energy to the
system. Hence, passivity means that a stochastic system cannot store in mean
more energy than supplied.

2. If (3.3.6) holds with equality, then the stochastic system (3.3.1) is said to be
lossless with respect to the supply rate uT (t)y(t). The energy is a conserved
quantity.

3. Deterministic passive systems can be seen as a special case of stochastic passive
systems in the sense that when H = 0, the diffusion operator reduces to the time
derivative, and then the deterministic definition of passivity is recovered.

The passivity fundamental result, namely that a negative feedback loop of two
passive systems is again passive, has its stochastic counterpart. This is illustrated in
Figure 3.1.

Proposition 3.3.1. Let us consider two passive stochastic systems Σ1 and Σ2 with
corresponding inputs u1,u2 and outputs y1,y2. The negative feedback interconnection
given by

u = u1 + y2 and u2 = y1 = y (3.3.7)

of Σ1 and Σ2 yields a new interconnected passive stochastic system Σ with a new input
u and output y.
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Proof. Since the stochastic systems Σ1 and Σ2 are assumed to be passive in the sense
of Definition 3.3.2, there exist storage functions S1 and S2 such that

LS1(X1(t))≤ uT
1 (t)y1(t) and LS2(X2(t))≤ uT

2 (t)y2(t).

By defining the storage function of Σ as S = S1 +S2, we get the following relation

LS(X(t)) = LS1(X1(t))+LS2(X2(t))≤ (u(t)− y2(t))T y(t)+ y(t)T y2(t) = u(t)T y(t),
(3.3.8)

which proves the passivity property for the interconnected system Σ.

In the following result, we state necessary and sufficient conditions for SPHSs to
satisfy the passivity property.

Theorem 3.3.2. Consider the stochastic port-Hamiltonian system (3.1.3)-(3.1.6) with
the maximal number of controls and the same number of inputs and outputs at the
boundary (i.e. m = p = n). Then

1. the associated infinitesimal generator is described by

L(E(ε(t))) = 1
2

[
u(t)
y(t)

]T

PWB,WC

[
u(t)
y(t)

]
+ yT

d ud(t)+
1
2

Tr [HHQH∗] ,

(3.3.9)

where PWB,WC is given by

PWB,WC =

([
WB
WC

]
Σ

[
WB
WC

]T
)−1

=

[
WBΣW T

B WBΣW T
C

WCΣW T
B WCΣW T

C

]−1

.

2. Moreover, the system is lossless if and only if the following relations are verified

I = 2SC(I−LCLT )ST , (3.3.10)
Tr [HHQH∗] = 0, (3.3.11)

where the matrices WB and WC are of the form

WB = S
[

I +L I−L
]

WC = SC
[

I +LC I−LC
] (3.3.12)

such that S and SC are nonsingular and L and LC are unitary.

Proof. 1. Relation (3.3.9) is deduced from the following calculation:

L(E(ε(t))) =〈Hε(t),JHε(t)〉L2 + 〈Hε(t),Bdud(t)〉L2 +
1
2

Tr [HHQH∗]

=
1
2

[
u(t)
y(t)

]T

PWB,WC

[
u(t)
y(t)

]
+ 〈B∗dHε(t),ud(t)〉L2

+
1
2

Tr [HHQH∗] .
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2. For the sufficiency, assume that (3.3.10) and (3.3.11) hold. As a consequence
of (3.3.10), WB and WC satisfy

W T
B WC +W T

C WB = Σ, (3.3.13)

where Σ =

[
0 I
I 0

]
∈R2n×2n. The specific choice (3.3.12) of matrices WB and

WC allows to have PWB,WC =
[

0 I
I 0

]
. Hence, from [LZM05, Theorem 4.2], we

get that

L(E(X(t))) = u(t)T y(t)+ yd(t)T ud(t)+
1
2

Tr [HQH∗] . (3.3.14)

By injecting (3.3.11) in (3.3.14), the lossless property is proved. For the neces-
sity part, since PWB,WC =

[
0 I
I 0

]
we have that

Σ =

[
WB
WC

]T

Σ

[
WB
WC

]
=

[
WB
WC

]T [ WC
WB

]
.

From (3.3.6) and (3.3.14), we deduce that Tr[HHQH∗] = 0.

Observe that Theorem 3.3.2 entails that the passivity property cannot be preserved
for SPHSs under the Itô calculus. Indeed, condition (3.3.11) would imply that λi = 0
for all i ∈ N such that Qvi = λivi, which means that there is no noise on the system.
As already mentioned, the incremental work Hdw(t) induces some energy increments
1
2 Tr [HHQH∗], which breaks the passivity property. In order to recover the passiv-
ity property, this energy surplus has to be compensated by internal energy dissipa-
tion (mechanical friction, electrical resistance, etc.) or feedback control. In addition,
note that since the covariance operator is nonnegative, assuming that Tr[HHQH∗]≤ 0
would imply that Tr[HHQH∗] = 0.

The main interest for the passivity property comes from the passivity-based stabi-
lization methods. One can take advantage of this property for output-feedback stabi-
lizations, see [Wil72] and [DMSB09].

A method to recover the passivity property via a stochastic canonical generalized
transformation (SCGT) was proposed in [SF13] for nonlinear and finite-dimensional
SPHSs. To be more specific, the SCGT enables to design both the coordinate transfor-
mation and the feedback controller while preserving the stochastic port-Hamiltonian
structure. The difficulty consists in the identification of a set of transformations that al-
lows mapping any SPHS to a new target one belonging to the same class of stochastic
systems. To recover the passivity property, the energy increments are compensated by
changing the Hamiltonian (i.e. the internal structure) and the input-output mapping.
A generalization of the method proposed in [SF13] to infinite-dimensional SPHSs is
not as straightforward as it seems to be and faces numerous difficulties, mainly the
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spatial coordinate dependence.

In a deterministic setting, a canonical generalized transformation (CGT) was stud-
ied in [MGR17] for boundary controlled port-Hamiltonian systems. This is an exten-
sion to the infinite-dimensional setting case of the CGT proposed in [FS01]. Never-
theless, a similar approach as proposed in [MGR17] and based on exponential trans-
formations seems to be too limited when the energy function depends on the spatial
coordinate. A systematic identification of a set of transformations is not possible any-
more due to the boundary conditions to be satisfied.

3.4 Well-posedness
Now, we come to the question of well-posedness of the class of BCO SPHSs and how
well-posedness has to be defined. So far, we have only treated the question of exis-
tence and uniqueness of the stochastic state equation (3.1.3) with boundary conditions
(3.1.4) and (3.1.5).

On finite-dimensional spaces, the question of well-posedness of a deterministic
system does not really come into play. The reason is that the existence of a unique
solution for sufficiently regular inputs and initial conditions such that the output is
square integrable is usually not even mentioned. This is quite different for infinite-
dimensional systems. The well-posedness becomes of paramount importance, and
even if this is not really a goal in itself from an engineering point of view, it paves the
way for dealing with control/estimation, transfer function, etc.

Since distributed control and observation operators yield well-defined state trajec-
tories and outputs, they do not require an analysis. Hence, throughout this section, we
shall set ud(t) = yd(t) = 0. Denote by X−1 the completion of the state space X with
respect to the norm ‖ · ‖−1 := ‖(αI−A) · ‖X , where α ∈ ρ(A) is fixed. Notice that
D(A)⊂X ⊂X−1.
Let us consider the following control system:

ẋ(t) = A−1x(t)+Bu(t), x(0) = x0,

y(t) = Cx(t),
(3.4.1)

where A−1 ∈ L(X ,X−1), B ∈ L(Rm,X−1) and C ∈ L(D(A),Rp). The C0-semigroup
(T (t))t≥0 is uniquely extended on X−1 to (T−1(t))t≥0, whose generator A−1 is the
unique extension of A. Moreover, (T−1(t))t≥0 and A−1 are unitarily similar to (T (t))t≥0
and A, respectively, i.e. T−1(t) = (λ I − A−1)T (t)(λ I − A−1)

−1 and A−1 = (λ I −
A−1)A(λ I−A−1)

−1. To recover the boundedness of the boundary control and ob-
servation operators B and C, the spaces D(A) and X−1 are considered. Nevertheless,
this leads to some mathematical inconveniences. One is that state trajectories take
values in a larger space, namely X−1. A second is that the pointwise output equation
of control system (3.4.1) does not make any sense unless the observation operator C
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is bounded on the state space X . Notice that in the case of a boundary control system
as in Definition 0.3.1, the operator B is described by

Bu =ABu−A−1Bu,

and belongs to L(Rm,X−1), see [Vil07, Lemma 2.32 and Lemma 2.35].
In order to close the gap between the spaces, the notions of admissible control and
observation operators were introduced, see e.g. [TW09]. Let us recall the concepts of
admissible control and observation operators.

Definition 3.4.1. 1. Let B be in L(Rm,X−1) and let us define the family of opera-
tors (Φt)t≥0 ⊂ L(L2([0, t];Rm),X−1) as

Φtu =
∫ t

0
T (t− s)Bu(s)ds. (3.4.2)

The control operator B is said to be admissible for (T (t))t≥0 if for some t0 ≥ 0,
Range (Φt0)⊂X .

2. Let us define the family of operators (Ψt)t≥0 ⊂ L(D(A),L2([0,∞);X )) as

(Ψtz)(s) =
{

CT (s)z, s ∈ [0, t],
0, s ∈ (t,∞).

(3.4.3)

The observation operator C∈L(D(A),Rp) is said to be admissible for (T (t))t≥0
if for some t0 ≥ 0, Ψt0 has a continuous extension to X .

Furthermore, linear well-posed systems as described in Definition 3.4.2 were in-
troduced by Salamon [Sal89] to deal with systems with boundary control and obser-
vation operators. This class of systems is also known to enjoy many useful properties
(see e.g. [Sta05]) involving feedback control, dynamic stabilization, and tracking/dis-
turbance rejection.

For all the above reasons, the well-posedness of a control system needs to be
checked in first place.

Definition 3.4.2. The BCO system described by

ε̇(t) =Aε(t), ε(0) = ε0 ∈ X , (3.4.4)
u(t) = Bε(t), (3.4.5)
y(t) = Cε(t), (3.4.6)

where A : D(A)→ X , B : D(B)→ Rm and C : D(C)→ Rp are unbounded linear
operators as defined in Definition 0.3.1, is said to be well-posed if:

• The operator A : D(A)→X with D(A) = D(A)∩ ker(B) and

Aε =Aε for ε ∈ D(A)

is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on X ;
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• There exist t f > 0 and m f ≥ 0 such that the following inequality holds for
all ε0 ∈ D(A) and u ∈ C2([0, t f );Rm) with u(0) = Bε(0) (compatibility con-
ditions):

‖ε(t f )‖2
X +

∫ t f

0
‖y(t)‖2

Rpdt ≤ mt f

(
‖ε0‖2

X +
∫ t f

0
‖u(t)‖2

Rmdt
)
. (3.4.7)

Remark 3.4.1. Observe that the inequality (3.4.7) implies that the boundary observa-
tion and control operators are admissible for (T (t))t≥0. We refer the reader to [TW09]
for further details on admissible observation and control operators.

As already pointed out in [Lü15], admissibility is also a suitable concept for the
study of stochastic well-posed systems.

Definition 3.4.3. 1. Let B be in L(Rm,X−1) and let us consider the family of op-
erators (Φt)t≥0⊂L(L2

F([0, t];Rm),L2
Ft
(Ω;X−1)) described by (3.4.2). The con-

trol operator B is said to be stochastically admissible for (T (t))t≥0 if for some
t0 ≥ 0, Range (Φt0)⊂ L2

Ft0
(Ω;X ).

2. Let us consider the family of operators (Ψt)t≥0⊂L(L2(Ω;D(A)),L2
F([0,∞);X ))

described by (3.4.3). The observation operator C ∈ L(D(A),Rp) is said to be
stochastically admissible for (T (t))t≥0 if for some t0 ≥ 0, Ψt0 has a continuous
extension to L2(Ω;X ).

For the stochastic extension, the same spirit as in the deterministic case is fol-
lowed, which is that the inputs (x0,u,w) - outputs (ε,y) mapping has to be bounded.
The extended notion of well-posedness used here for boundary controlled and ob-
served (BCO) stochastic systems is based on the deterministic definition introduced
by Salomon and Weiss, see [Sal89], [Sta05] and [TW09]. The notion of well-posed
BCO stochastic systems is introduced as follows.

Definition 3.4.4. A BCO stochastic system (3.1.2) is said to be well-posed if:

• The operator A : D(A)→X with domain D(A) = D(A)∩ ker(B) and given by

Aε =Aε for ε ∈ D(A)

is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on X ;

• There exist t f > 0 and m f ≥ 0 such that the following inequality holds for all
ε0 ∈ D(A) and u ∈C2

F([0, t f );Rm) with u(0) = Bε(0):

‖ε(t f )‖2
L2
Ft f

(Ω;X )
+‖Cε‖2

L2
F([0,t f ];Rp)

≤mt f

(
‖ε0‖2

L2
F0

(Ω;X )
+‖u(t)‖2

L2
F([0,t f ];Rm)

+ t f Tr[Q]

)
.

(3.4.8)
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Remark 3.4.2. 1. The inequality (3.4.8) is equivalent to

E‖ε(t f )‖2
X +E

∫ t f

0
‖Cε(t)‖2

Rpdt

≤ mt f

(
E‖ε0‖2

X +E
∫ t f

0
‖u(t)‖2

Rmdt + t f Tr[Q]

)
.

(3.4.9)

2. From Theorem 3.1.1, the process

ε(t) = T (t)(ε0−Bu(0))+
∫ t

0
T (t− s)(ABu(s)−Bu̇(s))ds

+
∫ t

0
T (t− s)Hdw(s)+Bu(t)

(3.4.10)

is the mild solution of the boundary controlled and observed stochastic system
(3.1.2) for every ε0 ∈ X and u ∈ H1

F([0, t f ];Rm). The well-posedness of (3.1.2)
entails that the mild solution (3.4.10) can be extended to any u ∈ L2

F([0, t f ];Rm)
such that the output process is mean-square integrable.

For the following study, two cases will be distinguished: either the input u(t) is
stochastic or deterministic. In a first step, it will be showed that if well-posedness is
satisfied at least at one time, it holds for any time (see Theorem 3.4.1). In a second
step, we shall consider the well-posedness of a SPHS (3.1.3)-(3.1.6) with a deter-
ministic input acting on the mean of the process through the boundaries such that
u(t) = BE [ε(t)], where the leitmotiv will be to consider separately the deterministic
and the stochastic dynamics.

3.4.1 Stochastic input u(t) ∈ L2
F([0, t];R

m)

Theorem 3.4.1. If the BCO stochastic system (3.1.2) as in Definition 3.1.1 is well-
posed, then for all t f > 0 there exists a constant mt f > 0 such that (3.4.9) holds.

Proof. In order to prove the time invariance of the well-posedness definition, we rely
on the well-posedness at t0. The main argumentation consists in establishing the in-
equality (3.4.8) for any t ∈ [0, t0] by means of the system nodes formalism [Sta05]
expressed in the stochastic context; next one can prove it for any t ∈ [t0,2t0]; finally
the general case t > 2nt0 for every n ∈ N is deduced by induction.
Step 1.
Let t be in [0, t0]. The inequality (3.4.8) is given through the system nodes operator

Sb(t)
[

ε0
u
w

]
= (ε(t),y(t)) by

‖Sb(t)
[

ε0
u
w

]
‖2 ≤ mt‖

[
ε0
u
w

]
‖2

L2
F0

(Ω;X )⊕L2
F([0,t];Rm)⊕M2

F([0,t];Z)

= mt(E‖ε0‖2
X +E

∫ t

0
‖u(s)‖2

Rmds+ t Tr [Q])
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for all
[

ε0
u
w

]
in the domain

D(Sb(t)) =
{[

ε0
u
w

]
∈ L2

F0
(Ω;X )⊕L2

F([0, t];Rm)⊕M2
F([0, t];Z) :

ε0 ∈ D(A),u ∈C2
F([0, t];Rm),Bε0 = u(0)

}
.

The case where w(t) = 0 is a straightforward adaptation of the argumentation of the
deterministic proof with a random variable ε0 and an F-adapted input u(t). We may
take ε0 = 0 and u= 0 hereinafter. Using the concatenation operator �, which is defined
for any L2-functions f ,g as

( f �
τ

g)(t) =
{

f (t), t < τ,
g(t− τ), t > τ,

(3.4.11)

one observes that Sb
1(t)[w] is bounded for t ∈ [0, t0]. Indeed,

‖Sb
1(t)[w]‖2

L2
F(Ω;X )

= ‖Sb
1(t0)[0 �t0−t

w]‖2
L2
F(Ω;X )

≤ m(t0)‖0 �
t0−t

w‖2
M2
F([0,t0];Z)

= m(t0)‖w(·− t0 + t)‖2
M2
F([t0−t,t0];Z)

= m(t0)‖w(·)‖2
M2
F([0,t];Z)

,

thanks to the well-posedness at t0 and since a Wiener process is invariant under time
translation.
Consider the continuous extension wext on [0, t0] of w(t), such that P(wext = w, ∀s ∈
[0, t]) = 1.
Since Sb

2(t) [w] and Sb
2(t0) [w] take values in L2

F([0, t];Rp), we have that

(Sb
2(t)w)(s) = (Sb

2(t0)w)(s) (3.4.12)

for any s ∈ [0, t]. Now consider the particular extension wext = w�
t

0. Observe that

E
∫ t

0
‖(Sb

2(t)w)(s)‖2
Rpds = E

∫ t

0
‖(Sb

2(t0)(w�t 0)(s)‖2
Rpds

≤ E
∫ t0

0
‖(Sw

2 (t0)(w�t 0)(s)‖2
Rpds

≤ mt0‖w�t 0‖2
M2
F([0,t0];Z)

= mt0‖w‖2
M2
F([0,t];Z)

= mt0t Tr[Q]

from the well-posedness at t0.
Step 2.
In this second step we prove that the inequality holds for any t ∈ [t0,2t0]. Let us
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consider t ∈ [t0,2t0] which can be formulated as t = t0 + t1 with t1 ∈ [0, t0]. Then we
obtain that

Sb
1(t)w =

∫ t

t0
T (t− s)Hdw(s)+

∫ t0

0
T (t− s)Hdw(s)

=
∫ t1

0
T (t1− r)Hd[w(r+ t0)−w(t0)]+T (t1)Sw

1 (t0)w

= Sb
1(t1)w(t0 + ·)+T (t1)Sb

1(t0)w

and that

Sb
2(t)w(s) = C

∫ s

0
T (s− r)Hdw(r)

=

{
(Sb

2(t0)w)(s), s≤ t0,
(Sb

2(t1)w(t0 + ·))(s), s ∈ (t0, t].

From Step 1 and Step 2, we deduce that Sb
1(t1) and Sb

2(t1) have bounded extensions
and so do Sb

1(t) and Sb
2(t). Hence, by induction, we can state that the general case

t > 2nt0 holds, which completes the proof.

Having presented a general concept of well-posedness for BCO stochastic sys-
tems, we shall now focus on the specific class of SPHSs. To establish the well-
posedness property in the next section, the input u(t) will be assumed to be deter-
ministic.

3.4.2 Deterministic input
From [JZ12, Corollary 10.1.4], the sample paths ε(t) given by (3.4.10) satisfy the
following relation:

E‖ε(s)‖2
X

=E‖T (s)ε0 +
∫ s

0
T (s− r)ABu(r)dr−A

∫ s

0
T (s− r)Bu(r)dr

+
∫ s

0
T (s− r)Hdw(r)‖2

X

≤3E‖T (s)ε0‖2
X +3‖

∫ s

0
T (s− r)ABu(r)dr−A

∫ s

0
T (s− r)Bu(r)dr‖2

X

+3E‖
∫ s

0
T (s− r)Hdw(r)‖2

X . (3.4.13)

For the corresponding output Cε(t), we have

E
∫ t

0
‖Cε(s)‖2

Rpds

=E
∫ t

0
‖CT (s)ε0ds+C(

∫ s

0
T (s− r)ABu(r)dr−A

∫ s

0
T (s− r)Bu(r)dr)
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+C
∫ s

0
T (s− r)Hdw(r)‖2

Rpds

≤3E
∫ t

0
‖CT (s)ε0‖2

Rpds+3E
∫ t

0
‖C
∫ s

0
T (s− r)Hdw(r)‖2

Rpds

+3
∫ t

0
‖C(

∫ s

0
T (s− r)ABu(r)dr−A

∫ s

0
T (s− r)Bu(r)dr)‖2

Rpds. (3.4.14)

Theorem 3.4.2 (Well-posedness of SPHSs). Consider a stochastic port-Hamiltonian
system (3.1.3)-(3.1.6) satisfying Assumptions 3.1.1 and 3.1.2. In addition, assume
that:

1. the multiplication operator P1H can be written as

P1H(ζ ) = S−1(ζ )∆(ζ )S(ζ ), ζ ∈ [a,b], (3.4.15)

where ∆ is a diagonal matrix-valued function, S is a matrix-valued function and
both ∆ and S are continuously differentiable on [a,b];

2. HQ1/2Z ⊂ D(A);

3.
∫ t

0 ‖AT (s)H‖2
L0

2
ds < ∞ for all t ≥ 0.

Then the SPHS (3.1.3)-(3.1.6) is well-posed and furthermore, for all t f > 0 there exists
a constant mt f > 0 such that

E‖ε(t f )‖2
X +E

∫ t f

0
‖Cε(t)‖2

Rpdt

≤ mt f

(
E‖ε0‖2

X +
∫ t f

0
‖u(t)‖2

Rmdt + t f Tr[Q]

)
.

(3.4.16)

Proof. The deterministic and the stochastic dynamics are split to obtain

E‖ε(t f )‖2
X +E

∫ t f

0
‖Cε(s)‖2

Rpds

≤3E‖T (t f )ε0‖2
X +3‖

∫ t f

0
T (t f − s)ABu(s)ds−A

∫ t f

0
T (t f − s)Bu(s)ds‖2

X

+3
∫ t f

0
E‖CT (s)ε0‖2

Rpds

+3
∫ t f

0
‖C
∫ s

0
T (s− r)ABu(r)dr−CA

∫ s

0
T (s− r)Bu(r)dr‖2

Rpds

+3E‖
∫ t f

0
T (t f − s)Hdw(s)‖2

X +3E
∫ t f

0
‖C
∫ s

0
T (s− r)Hdw(r)‖2

Rp ds.

(3.4.17)

The deterministic part has already been set out in [ZGMV10, Theorem 2.4] with ε0 =
0. The stochastic part is set out by the stochastic admissibility of C, the fact that H ∈ L0

2
and the following calculation:

E
∫ t f

0
‖C
∫ s

0
T (s− r)Hdw(r)‖2

Rpds =
∫ t f

0

∫ s

0
‖CT (s− r)HQ1/2‖2

L2
dr ds
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∫ t f

0

∫ s

0
‖CT (s− r)HQ1/2‖2

L2
dr ds

≤
∫ t f

0

∫ s

0
c s‖HQ1/2‖2

L2
dr ds+

∫ t f

0

∫ s

0
‖AT (s− r)HQ1/2‖2

L2
dr ds

≤ c(t f )‖H‖2
L2

t f Tr [Q]

where we used Assumptions 2., 3. and the boundedness of C with respect to the graph
norm. This concludes the proof of well-posedness. Moreover, Theorem 3.4.1 entails
that the well-posedness holds for any t f > 0.

Theorem 3.4.2 will now be used to establish the well-posedness of a model of an
inhomogeneous vibrating string as in Example 1.1 and subject to some space and time
dependent Gaussian white noise process. As proved in Example 3.1, the vibrating
string with an appropriate choice of boundary conditions is an example of a nice port-
Hamiltonian system, and thus is a Riesz-spectral system. The vertical position z(ζ , t)
of the string at position ζ ∈ [a,b] and time t ∈ [0,τ] satisfies the following stochastic
partial differential equation

∂ 2z
∂ t2 (ζ , t) =

1
ρ(ζ )

∂

∂ζ

(
T (ζ )

∂ z
∂ζ

(ζ , t)
)
+

1
ρ(ζ )

η(ζ , t), (3.4.18)

where z(ζ ,0) = z0(ζ ) is the initial condition, which may be random. T (ζ ) and ρ(ζ )
are the Young’s modulus and the mass density at position ζ , respectively. The stochas-
tic disturbance is assumed to have intensity 1

ρ(ζ )
, which means that making the string

heavier decreases the impact of the random force.
As boundary conditions, we consider

T (a)
∂ z
∂ζ

(a, t) = u(t), T (b)
∂ z
∂ζ

(b, t)+
∂ z
∂ t

(b, t) = 0, (3.4.19)

where u(t) ∈ L2([0, t];Rm). As it is known, the deterministic dynamics fit in the port-
Hamiltonian framework. Then the SPDE (3.4.18) can be rewritten as (3.1.1), where

P1 =

[
0 1
1 0

]
and H(ζ ) =

[ 1
ρ(ζ )

0
0 T (ζ )

]
.

As the output, we measure the velocity at extremity a, i.e.

y(t) =
∂ z
∂ t

(a, t). (3.4.20)

We are now in position to verify the assumptions of Theorem 3.4.2.∫
τ

0
‖AT (s)H‖2

L0
2
ds =

∫
τ

0
Tr
[
AT (s)HQ1/2(AT (s)HQ1/2)∗

]
ds

=
∞

∑
i=1

∫
τ

0
〈AT (s)HQ1/2 fi,AT (s)HQ1/2 fi〉X ds
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=
∞

∑
i=1

∫
τ

0
‖AT (s)HQ1/2 fi‖2

X ds

=
∞

∑
i=1

∫
τ

0
‖

∞

∑
k=1

λk〈T (s)HQ1/2 fi,ψk〉X φk‖2
X ds

=
∞

∑
i=1

∫
τ

0
‖

∞

∑
k=1

λkeλks〈HQ1/2 fi,ψk〉X φk‖2
X ds,

where we used the eigenfunction expansion of A and (T (t))t≥0. This leads to∫
τ

0
‖AT (s)H‖2

L0
2
ds≤M

∞

∑
i=1

∫
τ

0

∞

∑
k=1
|λk|2|eλks|2|〈HQ1/2 fi,ψk〉X |2ds

= M
∞

∑
i=1

∞

∑
k=1
|λk|2|〈HQ1/2 fi,ψk〉X |2

∫
τ

0
e2 Re λksds

=
M
2

∞

∑
i=1

∞

∑
k=1

|λk|2
Re λk

(e2 Re λkτ −1)qi|〈H fi,ψk〉X |2

≤ K
∞

∑
i=1

∞

∑
k=1

( Im λk)
2qi|〈H fi,ψk〉X |2 < ∞

where the Dominated Convergence Theorem is satisfied under the assumptions that
∞

∑
i=1

∞

∑
k=1

(2k+1)2
π

2(qi)|〈H fi,ψk〉X |2 < ∞, if
√

T ρ(b)< 1

∞

∑
i=1

∞

∑
k=1

(2k)2
π

2(qi)|〈H fi,ψk〉X |2 < ∞, if
√

T ρ(b)> 1
. (3.4.21)

Moreover, the multiplication operator P1H can be rewritten as

P1H=

[
γ −γ
1
ρ

1
ρ

][
γ 0
0 −γ

][ 1
2γ

ρ

2
− 1

2γ

ρ

2

]
, (3.4.22)

where γ =
√

T
ρ

. By using Theorem 3.4.2, one can conclude that the stochastic vibrat-
ing string described by (3.4.18)-(3.4.20) is a well-posed BCO system in the sense of
Definition 3.4.4, and thus for all τ > 0 there exists a constant mτ > 0 such that for any
ε0 ∈ L2

F0
(Ω;X ) and u ∈ L2([0,τ];R) the inequality (3.4.16) holds.

3.5 Conclusion & perspectives
In this chapter we have extended the class of linear port-controlled Hamiltonian sys-
tems to a stochastic setting. Some properties of this class have been investigated such
as passivity and well-posedness.
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This chapter lays the foundation of a theory for boundary controlled and observed
stochastic port-Hamiltonian systems and expresses the author’s willingness to yield
new directions for future research. Further works would be to consider multiplicative
noise and noise in the boundary control and/or observation, which would extend the
range of considered disturbances. Moreover, well-posed linear systems are closely
related to regular systems, i.e. systems for which there is a well-defined feedthrough
term given by the strong limit to infinity of the transfer function [JZ12, Chapter 13].
This would be interesting and maybe challenging to broaden the notion of regular
systems in a stochastic context. As a more general matter, well-posed linear systems
are known to enjoy many useful properties in the context of feedback control and
dynamic stabilization. Hence, investigating which results still hold for well-posed
stochastic systems would be a relevant future research topic.
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Chapter 4
LQG Control of stochastic
port-Hamiltonian systems

In the deterministic setting, the linear quadratic (LQ) optimal control problem has at-
tracted a lot of consideration over the years for finite and infinite-dimensional systems.
More particularly, in the context of infinite-dimensional systems with bounded con-
trol and observation operators, the LQ optimal control problem was mainly studied
by Lions [Lio71], Curtain and Pritchard [CP78], and Balakrishnan [Bal76], among
others in the seventies. In the stochastic setting, the linear quadratic control prob-
lem for finite-dimensional stochastic systems was first studied by Wonham [Won68a]
and [Won68b], and Kushner [Kus62] by means of a dynamic programming approach.
Soon afterwards, an infinite-dimensional generalization was developed by Ichikawa
for bounded control and noise operators [Ich79]. More precisely, the stochastic opti-
mal control is expressed under the form of a feedback control law, via the resolution
of an operator Riccati equation in a similar manner as for the finite-dimensional case.

Furthermore, in addition to environment disturbances, measurement noises can
occur, which are typically related to the quality of the sensors used to observe the
state process. The linear quadratic gaussian (LQG) control problem is an efficient
way to take environment and measurement noises into consideration. A study of the
LQG control problem and a generalization of the so-called separation principle can
be found in [Cur78] and [CI77a]. As far as known, no attempt to develop an adapted
approach to study and solve the LQG control problem for infinite-dimensional SPHSs
has been undertaken in the literature. So far, most of the attention has been oriented to-
wards either general infinite-dimensional systems or very specific classes of systems.

In this chapter general results concerning the optimal control of stochastic port-
Hamiltonian systems with incomplete observation are provided. The LQG control
problem for infinite-dimensional SPHSs is addressed in a stochastic context.

71
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The chapter is organized as follows. In Section 4.1, the class of stochastic port-
Hamiltonian systems under study is presented and the LQG control problem is ad-
dressed and solved for this specific class of stochastic systems. Section 4.2 is mainly
devoted to the port-Hamiltonian structure preserving in the LQG controller dynamics.
In Section 4.3, the exponential stability is proved for PHSs under a specific structure.
This ensures that the usual assumptions for a well-posed LQG control problem are
satisfied. Finally, the exponential stabilizablity and detectability assumptions related
to the existence of a unique feedback control solution to the LQG control problem are
shown to be verified for this subclass of PHSs. This chapter ends with some conclu-
sions and perspectives.

4.1 Problem setting
In this section the LQG control problem for stochastic port-Hamiltonian systems is ad-
dressed, with bounded control, observation and noise operators. The ports of the sys-
tem are assumed to be closed, which means that no exchange of energy occurs at the
boundary. The input is applied on intervals within the spatial domain. Furthermore,
some dissipation occurs inside the domain and is captured by a semi-definite positive
self-adjoint operator R ∈ L(X ). The observation model is taken to be the power-
conjugated output of the system subject to some measurement Wiener noise v(t) with
incremental covariance matrix V ∈ Rm×m and intensity F ∈ Rm×m. Moreover, since
we focus on distributed controls throughout this chapter, the distributed input ud(t)
will be simply denoted by u(t). Hence, we consider stochastic port-Hamiltonian sys-
tems under the form:

dε(t) = ((J −R)Hε(t)+Bu(t))dt +Hdw(t), (4.1.1)
dγ(t) = B∗Hε(t)dt +Fdv(t), (4.1.2)

where ε(0) = ε0 is a X -valued Gaussian random variable. The stochastic system is
interacting with its environment through a distributed control port and a noise port.
The operators B ∈ L(Rm,X ) and H ∈ L(Z,X ) capture the deterministic and stochas-
tic interactions with the environment, respectively.

The LQG control problem consists in minimizing the following functional:

J(u) = lim
T→∞

E
∫ T

0
‖B∗Hε(t)‖2

Rm +‖R̃1/2u(t)‖2
Rmdt, (4.1.3)

under admissible control laws u ∈ L2
F([0,∞);Rm) with a weighting matrix R̃ assumed

to be symmetric and positive definite. To be more specific, we assume that the control
process is mean-square integrable, i.e.

E
∫

∞

0
‖u(s)‖2

Rmds < ∞, (4.1.4)
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Figure 4.1 – Structure of the LQG control problem

and that for all 0 ≤ s ≤ t, u(t) is independent of the Wiener increments w(t)−w(s).
Notice that the independence with respect to the Wiener increments is a usual assump-
tion in stochastic optimal control theory. It ensures that u(t) only relies on the present
information of the noise w(t). Besides, notice thatHBB∗H is positive semi-definite.

We define now the notions of exponentially stabilizable and detectable.

Definition 4.1.1. 1. ((J −R)H,B) is said to be exponentially (exp.) stabilizable
if there exists an operator K ∈ L(X ,Rm) such that (J −R)H−BK generates
an exp. stable C0-semigroup (T(J−R)H−BK(t))t≥0.

2. (B∗H,(J −R)H) is said to be exponentially (exp.) detectable if there exists an
operator L ∈ L(Rm,X ) such that (J −R)H−LB∗H generates an exp. stable
C0-semigroup (T(J−R)H−LB∗H(t))t≥0.

As it is known from [Cur78], the LQG control problem can be separated in two
problems: the best estimation problem based on the observation (γ(t))t≥0 and the LQ
optimal control problem with complete observation as depicted in Figure 4.1. Under
the assumptions of exp. stabilizability and exp. detectability, we have the following:

• The best estimate ε̂(t) of the state ε(t) is governed by the Kalman filter equation,
i.e.,

dε̂(t) = ((J −R)Hε̂(t)+Bu(t))dt +L(dγ(t)−B∗Hε̂(t)dt),

ε̂(0) = E[ε0],
(4.1.5)

where L := PfHB(FV F∗)−1 in which Pf is the stabilizing nonnegative self-
adjoint solution of the filter operator Riccati equation (FORE) given by

[(J −R)HPf +Pf ((J −R)H)∗−PfHB(FV F∗)−1B∗HPf +HQH∗]x = 0,
(4.1.6)



74 CHAPTER 4. LQG CONTROL OF STOCHASTIC PORT-HAMILTONIAN SYSTEMS

for all x ∈ D(((J −R)H)∗), with Pf (D(((J −R)H)∗))⊂ D((J −R)H).
• The optimal control problem with complete observation of the state process can

be solved using the control operator Riccati equation (CORE)

[((J −R)H)∗Pc +Pc(J −R)H+HBB∗H−PcBR̃−1B∗Pc]x = 0, (4.1.7)

for all x ∈ D((J −R)H), with Pc(D((J −R)H)) ⊂ D(((J −R)H)∗). The
optimal feedback control is given under the feedback form as

u∗(t) =−R̃−1B∗Pcε̂∗(t)

with corresponding optimal estimated state ε̂∗(t).

Observe that the control Riccati equation (4.1.7) is completely deterministic. As a
consequence, the relation between the optimal feedback control and the estimated
state ε̂(t) is also deterministic.

In order to avoid any dependence of the control law with respect to observation
process, the cost (4.1.3) is minimized over a certain class of admissible controls de-
noted by Uad ⊂ L2

F([0,∞)×Ω;Rm). This admissible set is chosen as

Uad = {u : u(t) is adapted to σ(γ(s) : 0≤ s≤ t) and to σ(ϑ(s) : 0≤ s≤ t)} ,
(4.1.8)

where (ϑ(t))t≥0 is the innovation process given by

dϑ(t) = dγ(t)−B∗Hε̂(t)dt (4.1.9)

with incremental covariance matrix FV F∗.
In order to solve the LQG control problem (4.1.1)-(4.1.3) the following Lemma 4.1.1
is needed, in which the solution of the LQ optimal control problem assuming the
complete observation of the state process is given.

Lemma 4.1.1. Assume that ((J −R)H,B) and ((J −R)H,HQ1/2) are exp. sta-
bilizable and that (B∗H, (J −R)H) is exp. detectable. Consider the problem of
minimizing J(u) given by (4.1.3) subject to

dε(t) = ((J −R)H+Bu(t))dt +Hdκ(t), (4.1.10)

where H ∈ L(Rm,X ) and κ(t) is a Rm-valued Wiener process with incremental co-
variance operator F0. Then there exists a unique optimal control u∗ ∈ L2

F([0,∞);Rm)
with corresponding optimal state ε∗(t) such that u∗ is adapted to σ(κ(s) : 0 ≤ s ≤ t)
and given by

u∗(t) =−R̃−1B∗Pcε∗(t) (4.1.11)

with
ε∗(t) = S̃(t)ε0(t)+

∫ t

0
S̃(t− s)Hdκ(s), (4.1.12)

where (S̃(t))t≥0 is the exponentially stable C0-semigroup generated by (J −R)H−
BR̃−1B∗Pc, Pc is the solution of the CORE (4.1.7).
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Proof. See the proof of [CP78, Theorem 7.8] for details.

Remark 4.1.1. Notice that a similar study can be conducted in Lemma 4.1.1 by re-
placing the assumptions of exp. stabilizability of ((J −R)H,B) by the assumption of
an optimizable cost (4.1.3), i.e., for every ε0 ∈ X , there exists u ∈ L2

F([0,∞);Rm) such
that J(u) is finite. Besides remark that the exp. stabilizability ((J −R)H,B) implies
that the cost (4.1.3) is optimizable. For further details, see [BDPDM06, Part 5] and
[WW97b].

By an analysis going along the lines of [CI77b, Theorem 2.3], the separation prin-
ciple can be stated for SPHSs as follows.

Theorem 4.1.2. (Separation principle)
Assume that ((J −R)H,B) and ((J −R)H,HQ1/2) are exp. stabilizable and that
(B∗H, (J −R)H) is exp. detectable. Consider the problem of minimizing J(u) given
by (4.1.3) subject to (4.1.1) and (4.1.2) over the class of admissible controls Uad. Then
there exists a unique optimal control u∗ ∈ Uad given by

u∗(t) =−R̃−1B∗Pcε̂∗(t), (4.1.13)

ε̂∗(t) = S(t)ε̂0 +
∫ t

0
S(t− s)PfHB(FV F∗)−1dγ(s), (4.1.14)

where (S(t))t≥0 is the C0-semigroup generated by ((J −R)H−BR̃−1B∗Pc −PfHB
(FV F∗)−1 B∗H), Pc and Pf are the solutions of the CORE (4.1.7) and the FORE
(4.1.6), respectively. The problem of minimizing J(u) given by (4.1.3) subject to (4.1.1)
and (4.1.2) is equivalent to the problem of minimizing

Ĵ(u) = lim
T→∞

E
∫ T

0
‖B∗Hε̂(s)‖2

Rm +‖R̃1/2u(s)‖2
Rmds (4.1.15)

subject to (4.1.5).

Proof. Since ((J −R)H,B) and ((J −R)H,HQ1/2) are exponentially stabilizable
and (B∗H,(J −R)H) is exponentially detectable, (4.1.7) and (4.1.6) have unique
exponentially stabilizing nonnegative self-adjoint solutions Pc and Pf , respectively, see
[CP78]. The optimal control is characterized among the class of σ(ϑ(s) : 0≤ s≤ t)-
adapted controls. The problem of minimizing J(u) is equivalent to minimizing

Ĵ(u) = lim
T→∞

E
∫ T

0
‖B∗Hε̂(t)‖2

Rm +‖R̃1/2u(t)‖2
Rmdt, (4.1.16)

with

ε̂(t) = T (t)ε̂0 +
∫ t

0
T (t− s)Bu(s)ds+

∫ t

0
T (t− s)PfHB(FV F∗)−1dϑ(s). (4.1.17)

Since ϑ is a Rm-Wiener process with incremental covariance matrix FV F∗, we can ap-
ply Lemma 4.1.1 and deduce the existence of a unique minimizing u∗ ∈ L2

F([0,∞);Rm)
adapted to σ(ϑ(s) : 0≤ s≤ t) and given by

u∗(t) =−R̃−1B∗Pcε̂∗(t) (4.1.18)
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with
ε̂∗(t) = S̃(t)ε̂0 +

∫ t

0
S̃(t− s)PfHB(FV F∗)−1dϑ(s). (4.1.19)

Notice that the innovation process is given by

dϑ(t) = dγ(t)−B∗Hε̂∗(t). (4.1.20)

Substituting (4.1.20) in (4.1.19), we get that

ε̂∗(t) = S̃(t)ε̂0 +
∫ t

0
S̃(t− s)PfHB(FV F∗)−1dγ(s)

−
∫ t

0
S̃(t− s)PfHB(FV F∗)−1B∗Hε̂∗(s)d(s),

(4.1.21)

which is equivalent to

ε̂∗(t) = S(t)ε̂0 +
∫ t

0
S(t− s)PfHB(FV F∗)−1dγ(s), (4.1.22)

where S(t) is defined as the perturbation of S̃(t) by −PfHB(FV F∗)−1B∗H. The rela-
tion (4.1.22) entails that ε̂∗(t) is σ(γ(s) : 0≤ s≤ t)-adapted, and then u∗(t)∈ Uad.

4.2 Structure preserving for the LQG controller
As a direct consequence of Theorem 4.1.2, the LQG controller can be expressed as

uc(t) =−Kε̂(t) :=−R̃−1B∗Pcε̂(t),

dε̂(t) = (J −R)Hε̂(t)dt +Ldϑ(t)+Buc(t)dt

where L := PfHB(FV F∗)−1. Since the output of the controlled system is the input of
the controller, the LQG controller is described by

uc(t) =−Kε̂(t) :=−R̃−1B∗Pcε̂(t), (4.2.1)
dε̂(t) = [(J −R)H−LB∗H−BK] ε̂(t)dt +Ldγ(t), (4.2.2)
ε̂(0) = E [ε(0)] , (4.2.3)
γc(t) = Kε̂(t). (4.2.4)

In (4.2.2) and (4.2.4), the LQG controller is rewritten under the port-Hamiltonian
formalism, i.e.,

dε̂(t) = (J −Rc)Hε̂(t)dt +Ldγ(t),

γc(t) = Kε̂(t),
(4.2.5)

by considering a new dissipative operator

Rc :=R+PfHB(FV F∗)−1B∗+BR̃−1B∗PcH−1 ∈ L(X ), (4.2.6)
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but with the same Hamiltonian density H. Observe that the operator Rc is neither
semi-definite positive nor self-adjoint in general.

In this section conditions are derived to preserve the port-Hamiltonian structure of
the LQG controller. In this way, the LQG control problem could be interpreted as the
power-preserving interconnection of stochastic port-Hamiltonian systems. On finite-
dimensional spaces, a modified LQG controller was proposed for port-Hamiltonian
systems in [WHGM18] in order to ensure that the port Hamiltonian structure and the
passivity are preserved in closed-loop dynamics. This LQG method can be seen as an
adaptation of [JS83]. In Proposition 4.2.1, this passive LQG Hamiltonian controller is
recalled.

Proposition 4.2.1. Let us consider a linear dissipative port-Hamiltonian system de-
scribed by

˙̃x(t) = (J̃− R̃)H̃x̃(t)+ B̃u(t)+ w̃(t),

ỹ(t) = B̃T H̃x̃(t)+ ṽ(t),
(4.2.7)

where the state variable x̃(t) ∈ Rn, the input variable u(t) ∈ Rm, the output variable
ỹ(t) ∈Rm, and the noise processes w̃(t) ∈Rn, ṽ(t) ∈Rm with covariance matrices Q̃w
and Q̃v, respectively.
Consider the LQG control problem with the functional cost

Jc = lim
T→∞

E
∫ T

0
(x̃T R̃xx+uT R̃uu)dt. (4.2.8)

Assume the following relation
Q̃v = R̃u, (4.2.9)

between the covariance matrix Q̃v and the weighting matrix R̃u and the following
relation

Q̃w = H̃−1(2H̃J̃T P̃c +2P̃cJ̃H̃ + R̃x)H̃ (4.2.10)

between the covariance matrix Q̃w and the weighting matrix R̃x. In this case,

P̃cH̃−1 = H̃P̃f . (4.2.11)

Furthermore, by assuming that the port-Hamiltonian system (4.2.7) is stable, the cor-
responding control algebraic Riccati equation and the filter algebraic Riccati equa-
tion admit unique positive semi-definite solutions, the LQG controller is passive, and
the closed-loop system can be written as the feedback interconnection of the port-
Hamiltonian system with the port-Hamiltonian realization of the LQG controller.

A generalization of Proposition 4.2.1 is now proposed on infinite-dimensional
spaces. Under suitable conditions (see Theorem 4.2.2), the LQG controller is proved
to describe a stochastic dissipative port-Hamiltonian system with dissipative operator
Rc ∈ L(X ) given by (4.2.6).
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Theorem 4.2.2. If we assume that the following link

R̃ = FV F∗ (4.2.12)

holds and if the Riccati operators satisfy the relation

HPf x = PcH−1x (4.2.13)

for all x ∈ D((J −R)H) ∩D(((J −R)H)∗), then the LQG controller given by
(4.2.1)-(4.2.4) describes a dissipative stochastic port-Hamiltonian system. Moreover,
the covariance operator Q and the weighting operatorHBB∗H are related by

HBB∗Hx = [HHQH∗H+(JH+HJ )Pc−Pc(JH+H−1JH2)

+(RH−HR)Pc−Pc(H−1RH2−RH)]x,
(4.2.14)

for all x ∈ D((J −R)H)∩D(((J −R)H)∗).
Proof. In order to describe a dissipative stochastic port-Hamiltonian system, the en-
ergy dissipation operator

Rc =R+PfHB(FV F∗)−1B∗+BR̃−1B∗PcH−1 (4.2.15)

must be self-adjoint and positive semi-definite. On one hand, since H and R are
self-adjoint operators, there holds

R∗c =R+B(FV F∗)−1B∗HPf +H−1PcB(R̃∗)−1B∗.

Hence,Rc is self-adjoint if the following conditions hold:

B(FV F∗)−1B∗HPf x = BR̃−1B∗PcH−1x,

H−1PcB(R̃∗)−1B∗x = PfHB(FV F∗)−1B∗x,

for all x ∈ D((J −R)H)∩D(((J −R)H)∗). These conditions will be satisfied if
R̃ = FV F∗ andHPf = PcH−1. On the other hand, the LQG controller ensures the exp.
stability of the closed-loop system. Therefore, all the eigenvalues of the closed-loop
system must be in the left half-plane, and thus the operatorRc has to be positive semi-
definite. Otherwise, there would exist a vector d 6= 0 such that 〈d,Rcd〉X = λ‖d‖2 < 0
for which the dynamics of the closed-loop system would not be exponentially stable.
Indeed, under the relations (4.2.12) and (4.2.13), the closed-loop dynamics are gov-
erned by(

dε(t)
dε̂(t)

)
=

[(
J −BKH−1

LB∗ J

)
−
(
R 0
0 Rc

)](
Hε(t)
Hε̂(t)

)
dt

+

(
H
0

)
dw(t)+

(
0

H−1PcBR̃−1F

)
dv(t).

(4.2.16)

Let us set the conservation operator Jcl and the dissipation operator Rcl of the closed-
loop system as follows

Jcl :=
(
J −BKH−1

LB∗ J

)
, Rcl :=

(
R 0
0 Rc

)
. (4.2.17)
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In addition, we set Acl := (Jcl−Rcl)Hcl , where

Hcl = diag(H,H). (4.2.18)

Notice that for d0 =
[

0 H−1d
]
, there holds

〈d0,eAcl td0〉= e−λ t‖d‖2 +
∫ t

0
e−λ (t−τ)〈d0,JcleAclτ d0〉dτ (4.2.19)

= e−λ t‖d‖2 + 〈d0,
∫ t

0
e−λ (t−τ)JcleAclτ d0 dτ〉 (4.2.20)

= e−λ t(‖d‖2 + 〈d0,
∫ t

0
eλτ JcleAclτ d0 dτ〉), (4.2.21)

which goes to ∞ when t→ ∞.
By using (4.2.12) and (4.2.13) in the FORE, we get that

[(J −R)PcH−1 +H−1PcH−1(−J −R)H−H−1PcBR̃−1B∗PcH−1 +HQH∗]x = 0,

for x ∈ D((J −R)H)∩D(((J −R)H)∗). Factorizing H−1 on both sides and since
H−1 is injective, it follows that

[H(J −R)Pc +PcH−1(−J −R)H2−PcBR̃B∗Pc +HHQH∗H]x = 0. (4.2.22)

Subtracting (4.2.22) from the CORE given by

[(−J −R)HPc +Pc(J −R)H−PcBR̃−1B∗Pc +HBB∗H]x = 0, (4.2.23)

we deduce (4.2.14), which completes the proof.

Under the conditions (4.2.12)-(4.2.14) of Theorem 4.2.2, the LQG controller con-
serves the stochastic port-Hamiltonian structure, and the LQG control problem can
then be interpreted as the feedback interconnection of infinite-dimensional stochastic
port-Hamiltonian systems.

Remark 4.2.1. The feedback interconnection of a stochastic port-Hamiltonian system
with a LQG controller is undertaken as follows

u(t) =−γc(t) and uc(t) = γ(t). (4.2.24)

Observe that this interconnection (4.2.24) is power preserving since

uT (t)γ(t)+uc(t)T
γc(t) = 0.

Hence, the port-Hamiltonian structure is even preserved in the closed-loop dynamics.

In Theorem 4.2.2, it may be noticed that condition (4.2.13) somehow breaks the
separation methodology of Theorem 4.1.2. The optimal control problem and the
mean-square estimation problem cannot be treated separately anymore. By consid-
ering the optimal control problem first, the covariance operators are deduced from the
specific choice of weighting operators. In this case, the covariance operators do not
have any statistical meaning anymore and have to be considered as further control
parameters.
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Remark 4.2.2. When designing an Hamiltonian LQG controller in Chapter 5 for a
bio-medical application, we shall use Proposition 4.2.1 on a finite-dimensional ap-
proximation so that we shall not be facing the domain condition of Theorem 4.2.2.

Definition 4.2.1. A C0-semigroup (T (t))t≥0 is said to be strongly stable on a Hilbert
space X if for all x ∈ X ,

lim
t→∞
‖T (t)x‖X = 0. (4.2.25)

Observe that, when no dissipative effect is occurring (R = 0), the SPHSs gov-
erned by (4.1.1) would only be strongly stabilizable. Assuming the exponential stabi-
lizability would be equivalent to require the exponential stability. Indeed, according
to [CZ95, Theorem 5.2.3], for a bounded control operator B of finite rank, (A,B) can-
not be exponentially stabilizable when there is an infinite number of eigenvalues on
(or arbitrary closed to) the imaginary axis. This entails that, when no dissipative ef-
fects are considered either in the domain or at the boundary, most port-Hamiltonian
systems are only strongly stabilizable. Let us recall the definitions of a strongly sta-
ble C0-semigroup, strong stabilizability of ((J −R)H,B) and strong detectability of
((J −R)H,B∗H).
Definition 4.2.2. Let us consider the system

ẋ(t) = (J −R)Hx(t)+Bu(t),

y(t) = B∗Hx(t),
(4.2.26)

denoted by Σ((J −R)H,B,B∗H).
1. Σ((J −R)H,B,B∗H) is input stable if

Φ̃u := lim
t→∞

∫ t

0
T (t− s)Bu(s)ds ∈ L(L2([0,∞];Rm),X ). (4.2.27)

2. Σ((J −R)H,B,B∗H) is output stable if

Ψ̃x := lim
t→∞

B∗HT (t)x ∈ L(X ,L2([0,∞];Rm)). (4.2.28)

3. Σ((J −R)H,B,B∗H) is strongly stabilizable if there exists an operator K ∈
L(X ,Rm) such that (J −R)H−BK generates a strongly stable C0-semigroup
and Σ((J −R)H−BK,B,

[
K∗ HB

]∗
) is output stable.

4. Σ((J −R)H,B,B∗H) is strongly detectable if there exists an operator L ∈
L(Rm,X ) such that (J −R)H−LB∗H generates a strongly stable C0-semigroup
and Σ((J −R)H−LB∗H,

[
L B

]
B∗H) is input stable.

Theorems 4.1.2 and 4.2.2 can be easily extended to strongly stabilizable port-
Hamiltonian systems. Nonetheless, due to the nature of the strong convergence, du-
ality relationships, as for exp. stabilizable systems, are not completely satisfied any-
more. Indeed, in the case of strongly stabilizable systems, if (J −R)H−BK gen-
erates a strongly stable C0-semigroup, then it does not necessarily entail that ((J −
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R)H−BK)∗ generates a strongly stable C0-semigroup. To overcome this missing
duality property, we take advantage of the compactness of the resolvent operator
of (J −R)H, see [HW97, Remark 3.3]. From [Oos00, Theorem 3.3.2 and 3.3.4]
and [Oos00, Corollary 3.3.5], there exist unique strongly stabilizing nonnegative self-
adjoint solutions Pc and Pf to equations (4.1.7) and (4.1.6). Moreover, by applying
Theorem [Oos00, Theorem 3.3.2] and by duality, the operator ((J −R)H−LB∗H)∗
is strongly stable, and so the compactness of the resolvent of (J −R)H implies that
((J −R)H−LB∗H) is strongly stable.
Therefore, the separation principle still holds under the assumptions of strong stabi-
lizability and detectability. In addition, observe that the arguments of the proof of
Theorem 4.2.2 still hold for strongly stablilizable and detectable infinite-dimensional
PHSs. In this case, the closed-loop system is strongly stable, which entails that there
cannot be eigenvalues on iR. Thus, a similar argument as in the proof of Theorem
4.2.2 can be employed to show that the dissipative operator Rc given by (4.2.6) is
self-adjoint and positive semi-definite. This implies that, under the assumptions of
Theorem 4.2.2, the port-Hamiltonian structure within the dynamics of the LQG con-
troller is still preserved.

In practice, natural dissipation phenomena such as boundary, environmental or
material damping occur, which in most occasions enable to satisfy the exponential
stabilizability assumption. Therefore, in the rest of this thesis, we shall consider dis-
sipative effects in the dynamics when studying the exponential stabilizability and de-
tectability in Section 4.3 and when developing an LQG port-Hamiltonian controller
for an actuated endoscope in Chapter 5. Further details on strongly stabilizable sys-
tems can be found in [Oos00].

4.3 Exponential stability of a class of dissipative port-
Hamiltonian systems

This section deals with exponential stability of a class of dissipative port-Hamiltonian
systems. We start with a repetition of the class of first order linear port-Hamiltonian
systems as introduced in Section 1.1 and subject to some internal dissipation. We
consider the following class of PDEs

∂

∂ t
x(t,ζ ) = P1

∂

∂ζ
(Hx(t))(ζ )+(P0−G0)(Hx(t))(ζ ), (4.3.1)

where x(t,ζ ) = (q, p)(t,ζ ) ∈ R2N with q(t) and p(t) denoting the position and the
momentum. Moreover, we assume that P1 = PT

1 is invertible, PT
0 =−P0, G0 = GT

0 ≥ 0
and H ∈ L∞([a,b];R2N×2N) is symmetric and satisfies mI ≤H(ζ ) ≤MI for a.e. ζ ∈
[a,b], for some constants m, M > 0. The state space X = L2([a,b];R2N) is equipped
with inner product 〈x1,x2〉X = 〈x1,Hx2〉L2 . As already mentioned, this norm ‖ · ‖X
has been selected to match the total energy of the system E = 1

2‖x‖2
X . To the PDE



82 CHAPTER 4. LQG CONTROL OF STOCHASTIC PORT-HAMILTONIAN SYSTEMS

(4.3.1), we associate the following boundary conditions

WB

[
f∂ (t)
e∂ (t)

]
= 0. (4.3.2)

We shall now rewrite the class of PDEs (4.3.1) by splitting the position and the mo-
mentum x(t,ζ ) = (q, p)(t,ζ ) ∈ R2N and by considering specific structures for the
matrices P1,P0 and G0 given by

P1 =

[
0 D

DT 0

]
, P0 =

[
0 D0
−DT

0 0

]
, G0 :=

[
0 0
0 R

]
, (4.3.3)

where D,D0 and R ∈ RN with R positive definite. Moreover, observe that P1 = PT
1 is

nonsingular, P0 =−PT
0 and G0 = GT

0 is nonnegative. Similarly, we consider

H=

[
H1 0
0 H2

]
, (4.3.4)

whereH1,H2 ∈ L∞([a,b];RN×N). The PDE (4.3.1) can then be rewritten with respect
to (q, p) as follows[

q̇
ṗ

]
(ζ , t) =

[
0 D∂ζ +D0

DT ∂ζ −DT
0 −R

][
H1(ζ ) 0

0 H2(ζ )

][
q
p

]
(ζ , t).

(4.3.5)
Besides, we assume that p is set to zero at extremity a and that q is set to zero at
extremity b, i.e.

p(a, t) = 0 and q(b, t) = 0. (4.3.6)

When considering the example of a vibrating string, these conditions are interpreted
as a string fixed at the origin and let free at the other end. In addition, let us define the
variable r(t) such that

d
dt

r(ζ , t) =H2(ζ )p(ζ , t). (4.3.7)

Moreover, observe that, since the momentum at the left extremity is assumed to be set
to 0, we deduce that

r(a, t) = 0. (4.3.8)

Hence, we consider the operator

Adx = P1
d

dζ
Hx+(P0−G0)Hx (4.3.9)

on a domain including the boundary conditions (4.3.6), i.e.,

D(Ad) = {x ∈ L2([a,b];Rn) :Hx ∈ H1([a,b];Rn),WB

[
f∂

e∂

]
= 0}, (4.3.10)
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where WB = 1√
2

[
0 D−T I 0
−D−1 0 0 I

]
. Observe that the operator A with domain

D(Ad) generates a unitary group since

WBΣW T
B =

1
2

[
0 D−T I 0
−D−1 0 0 I

]
I 0
0 I
0 −D−T

D−1 0

=

[
0 0
0 0

]
.

In what follows, we shall consider the exponential stability of the above specific class
of dissipative port-Hamiltonian systems with structure described by (4.3.3). This sta-
bility property is of particular interest since it will allow us to deduce the exponential
stabilizabity and detectability as defined in Definition 4.1.1.

In order to indicate how the exponential stability is established for PHSs described
by (4.3.5) and (4.3.6), the result is first proved for a damped vibrating string in Exam-
ple 3.1. Note that the exponential stability of boundary damped vibrating string was
established in [JZ12, Example 9.2.1]. Here, we consider environment damping, which
results from the motion of the string through viscous fluids such as air or water. The
energy dissipation resulting from environment damping is proportional to the material
velocity. When stability is studied, the difficulty remains in constructing an appropri-
ate Lyapunov functional candidate. The exponential stability is established by means
of the Lyapunov’s direct method in Appendix B.

Example 3.1. Let us consider a vibrating string under the port-Hamiltonian formalism
and governed by (

żζ

z̈

)
=

(
0 ∂ζ

∂ζ −R

)(
zζ

ż

)
, (4.3.11)

where (zζ , ż)(t)∈ L2([a,b];R2) and R is a positive constant. The rationale of the proof
consists in finding a Lyapunov candidate with cross terms between the position and
the velocity. After several attempts, the Lyapunov candidate is chosen as

V (t) =
∫ b

a
(

1
2
(z2

ζ
+ ż2)+βRzż)dζ , (4.3.12)

where β ∈ R+. We first prove that

0≤ λ1E(t)≤V (t)≤ λ2E(t), (4.3.13)

where

E(t) =
1
2

∫ b

a
(z2

ζ
+ ż2)dζ . (4.3.14)

Applying the inequalities (B.0.9) and (B.0.10) to the cross term C(t) =
∫ b

a βRzżdζ

yields

|C(t)| ≤ βR
∫ b

a
|zż|dζ ≤ 1

2
βR
∫ b

a
(z2 + ż2)dζ
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≤ 1
2

βR
∫ b

a
(ż2 +(b−a)2z2

ζ
)dζ

≤ βR max {1,(b−a)2}E(t).

This means that

−βR max {1,(b−a)2}E(t)≤C(t)≤ βR max {1,(b−a)2}E(t), (4.3.15)

which entails that (4.3.13) holds when

λ1 = 1−βR max {1,(b−a)2}> 0, (4.3.16)

λ2 = 1+βR max {1,(b−a)2}, (4.3.17)

with β sufficiently small.
Now, by taking the time derivative of V along the state trajectories of (4.3.11), we get

V̇ (t) =
∫ b

a
zζ żζ + żz̈+βRż2 +βRzz̈dζ . (4.3.18)

By plugging (4.3.11) in (4.3.18), we obtain∫ b

a
zζ żζ + ż(∂ζ zζ −Rż)+βRż2 +βRz(∂ζ zζ −Rż)dζ

=
∫ b

a
−Rż2 +βRż2−βR2zż+ zζ żζ +(ż+βRz)∂ζ zζ dζ .

Integrating by parts gives∫ b

a
(ż+βRz)∂ζ zζ dζ = [(ż+βRz)zζ ]

b
a−

∫ b

a
(∂ζ ż+βR∂ζ z)zζ dζ ,

which yields

V̇ (t) =
∫ b

a
−Rż2 +βRż2−βR2zż−βRz2

ζ
dζ

=
∫ b

a
(β −1)Rż2−βR2zż−βRz2

ζ
dζ

=−
∫ b

a

1
2

Rż2 +
1
2

R2zż+
1
2

Rz2
ζ

dζ ,

where we set β = 1
2 . This gives that

V̇ (t) =−RV (t),

and thus
V (t) = e−RtV (0),

which proves the exponential stability of (4.3.11).
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In Theorem 4.3.1, the exponential stability of dissipative PHSs given by (4.3.5)
and (4.3.6) is established.

Theorem 4.3.1. Consider the port-Hamiltonian system described by (4.3.5)-(4.3.6)
with dynamical operator (4.3.9) and domain (4.3.10). Assume that there exists a
strictly positive constant λ1 such that for

L(t)≥ λ1E(t)≥ 0, (4.3.19)

where E(t) = 1
2
∫ b

a qTH1q + pTH2 pdζ and where the Lyapunov functional L(t) is
given by

L(t) =
∫ b

a
(

1
2
(qTH1q+ pTH2 p)+β rT RH2 p)dζ (4.3.20)

with β > 0. Then the port-Hamiltonian system (4.3.5)-(4.3.6) is exponentially stable.

Proof. First, notice that the inequality (4.3.19) ensures that the Lyapunov functional
(4.3.20) is nonnegative.

By taking the time derivative of (4.3.20) along the state trajectories, we get

L̇(t) =
∫ b

a
(qTH1q̇+ pTH2 ṗ+β pTH2RH2 p+β rT RH2 ṗ)dζ

=
∫ b

a
(qTH1q̇+ pTH2((DT

∂ζ −DT
0 )H1q−RH2 p)+β pTH2RH2 p

+β rT RH2((DT
∂ζ −DT

0 )H1q−RH2 p))dζ . (4.3.21)

Rearranging the terms, (4.3.21) becomes

L̇(t) =
∫ b

a
(−pTH2RH2 p+β pTH2RH2 p−β rT RH2RH2 p+qTH1q̇

+(pTH2 +β rT RH2)(DT
∂ζ −DT

0 )H1q)dζ . (4.3.22)

Integrating by parts the last term of (4.3.22) yields∫ b

a
(pTH2 +β rT RH2)DT

∂ζ (H1q)dζ

= [(pT +β rT R)H2DTH1q]ba−
∫ b

a
∂ζ (H2 p+βH2Rr)T DTH1qdζ .

From the boundary conditions given by (4.3.6) and (4.3.8), we deduce that

[(pT +β rT R)H2DTH1q]ba = 0,

which yields∫ b

a
(H2 p+βH2Rr)T (DT

∂ζ −DT
0 )H1qdζ

=−
∫ b

a
(D∂ζH2 p+βDH2R∂ζ r)TH1qdζ −

∫ b

a
[D0H2 p+βD0H2Rr]TH1qdζ .

(4.3.23)



86 CHAPTER 4. LQG CONTROL OF STOCHASTIC PORT-HAMILTONIAN SYSTEMS

By plugging (4.3.23) in (4.3.22), we get

L̇(t) =
∫ b

a
(−pTH2RH2 p+β pTH2RH2 p−β rT RH2RH2 p

−β (DH2R∂ζ r+D0H2Rr)TH1q)dζ

=
∫ b

a
((β −1)pTH2RH2 p−β rT RH2RH2 p−β (DH2R∂ζ r+D0H2Rr)TH1q)dζ

=
1
2

∫ b

a
(−pTH2RH2 p− rT RH2RH2 p− (DH2R∂ζ r+D0H2Rr)TH1q)dζ

≤−mλmin(R)
1
2

∫ b

a
(pTH2 p+β rT RH2 p+(D∂ζ r+D0r)TH1q)dζ

≤−mλmin(R)L(t),

where m is a positive constant such that mI≤H2(ζ ) for a.e. ζ ∈ [a,b], λmin(R) denotes
the smallest eigenvalue of R and β = 1

2 . This implies that

L(t)≤ e−mλmin(R)tL(0), (4.3.24)

which proves the exponential stability.

Remark 4.3.1. According to Theorem 4.3.1, the operator (4.3.9) with domain (4.3.10)
is exp. stable. As a direct consequence, (Ad ,B) is exp. stabilizable. Moreover, by
duality with respect to 〈·, ·〉X , (B∗H,Ad) is exp. detectable if and only if (A∗d ,B) is exp.
stabilizable. Noticing that for an exp. stable infinitesimal generator A, there exists
a positive constant α such that the generated contraction C0-semigroup (Td(t))t≥0
satisfies

‖Td(t)‖= ‖Td(t)∗‖ ≤ e−αt .

This proves that (B∗H,Ad) is exp. detectable.

In Theorem 4.3.1, the inequality (4.3.19) is assumed in order to apply Lyapunov’s
direct method (see Theorem B.0.2). This inequality was proved in the example 3.1
and still has to be proved for port-Hamiltonian systems described by (4.3.5)-(4.3.6).

4.4 Conclusion and perspectives
In this chapter a first investigation of the LQG control problem for infinite-dimensional
stochastic port-Hamiltonian systems is exposed. This LQG control problem is solved
via a separation principle. Besides, the structure preserving of the port-Hamiltonian
framework for the LQG controller is investigated. More specifically, under some con-
ditions, the LQG control problem can be interpreted as the power-preserving intercon-
nection of infinite-dimensional stochastic port-Hamiltonian systems.

The LQG control problem with boundary control and observation is not considered
in this thesis. This would be a natural extension of this work. Results regarding the
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LQ optimal control problem for infinite-dimensional systems with boundary control
and observation are available in [PS87] for a limited class of systems. The LQ control
problem for parabolic/hyperbolic equations (but with unbounded control and bounded
observation operators) is studied for a more general class via the Riccati equation in
[LT14]. Furthermore, a spectral factorization method was developed for regular linear
systems in [Sta95] and in [WW97a]. A LQ control problem with boundary control and
observation is also solved by using the method of spectral factorization by symmetric
extraction in [RDW16]. In this paper a Yosida-Type approximation of the boundary
observation based on the resolvent operator of the dynamics operator is undertaken.
For further reading, we also refer to [Fra86], [DPI85], [BDPDM06] and references
therein.

In [CW92], the method of spectral factorization was considered and investigated.
The latter method would probably require to solve challenging numerical problems
for the class of SPHSs, due to the lack of knowledge on the eigenvalues and eigen-
functions for port-Hamiltonian systems.

The exponential stability of a subclass of linear port-Hamiltonian systems was in-
vestigated. As already pointed out, the condition (4.3.19) still has to be proved for
port-Hamiltonian systems described by (4.3.5)-(4.3.6) in order to obtain a complete
stability theorem. It is worth noticing that the LQG Hamiltonian controller presented
in this paper is itself an infinite-dimensional system. In Chapter 5, an approximation
scheme is proposed for solving the LQG control problem and the associated Riccati
equations for the case of an actuated endoscope under the port-Hamiltonian frame-
work.
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Chapter 5
LQG control of an EAP-actuated
port-Hamiltonian system

In the medical field, continuum robots such as endoscope, colonoscopes and arthro-
scopes have been developed to navigate through the human anatomy and to access nar-
row spaces in the context of noninvasive surgery. This enables to improve the patient
wellness with numerous benefits such as less pain and scaring, and a quicker recovery.
A micro-endoscope (45mm) model was proposed in [CRA14]. This model was de-
veloped in the context of skull base surgery applications for pituitary gland cancer de-
tection, see [BSR+11]. Further applications are beating heart surgery in [DGV+12],
neurosurgery in [BHOC+12] and laser surgery in [RCJW09], for instance. In this
chapter we shall more particularly focus on the endoscope application and the design
of an optimal control strategy in order to set the endoscope in a desired configuration,
while reducing vibrations. The bending of the endoscope is performed by electro-
active polymers (EAPs) patched around the tube. Ionic Polymer Metal Composites
(IPMCs) are some of the most suitable EAPs for actuation and sensing due to their
inherent properties such as light weight, low voltage bending (1−2V ) and durability
(possibility to bend over 106 times) as pointed out in [SK01].

This chapter is mainly intended to focus on the LQG control problem of a com-
pliant endoscope actuated by means of ionic polymer metal composites. We aim
at proposing a port-Hamiltonian model for an IPMC actuated endoscope. The bio-
medical endoscope and the IPMCs are approximated by a Timoshenko beam model
and RLC circuits under the port-Hamiltonian formalism. Thus, the interconnected
port-Hamiltonian model of the IPMC actuated beam is presented.

A first contribution of this chapter is to consider the dynamics of the IPMC actua-
tors in the modeling of the control problem. A second contribution is the proof of the
exponential stability of the interconnected IPMC-beam model. A third contribution is

89
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the implementation of the Hamiltonian LQG controller on the interconnected IPMC-
beam model.

This chapter is structured as follows. Section 5.1 is devoted to the description of
the experimental setup of an IPMC actuated flexible beam, whereas the two next sec-
tions deal with its modeling. In Section 5.4, a coupled PDE-ODE model is proposed
for the interconnected system of a flexible beam with an IPMC. Next, the LQG control
problem for IPMC-beam model is studied and a finite-dimensional approximation of
this system is proposed in Section 5.5. The approximated model is confronted to the
experimental setup in Sections 5.6 and 5.7, respectively. This chapter ends with some
conclusions and perspectives.

5.1 Motivation: experimental setup
In this section we introduce the experimental setup of an IPMC actuated flexible beam
mounted in the AS2M department of FEMTO-ST Institute, see Figure 5.1. The op-
portunity to study and to review lab testing on this experiment was made possible by
Yann Le Gorrec and Yongxin Wu, who introduced both theoretical and experimental
questions to me. They also taught me primarily uses of the testing workbench.

The experimental setup consists of a polyethylene plastic beam of 160 mm to
which an IPMC is patched. The plastic beam is fixed at the origin and let free at
the other end. As already mentioned, the endoscope is actuated when a voltage up to
7V is applied to the IPMC. To measure the displacements of the beam, a laser sensor
from KEYENCE company (LK-G152) is considered. In addition, we also measure
the current in the inductor.

A schematic diagram of the experimental setup considered in this study is depicted
in Figure 5.2. The inputs and the outputs are handled by means of a dSPACE board
connected to a computer and a push and pull amplifier is used to amplify the input
signals to the IPMC controller. The dSPACE has 6 DAC out channels that provide
the control signals to the actuators and 16 A/D in channels for output signals measure-
ment. It allows the real-time manipulation of the actuated IPMC. From channels 1 and
5, we get the observed displacement and current, respectively. Notice that the laser
sensor is placed at 5mm from the free end of the beam. The model representation and
the programming are done by means of SIMULINK® interface. SIMULINK® blocks
are translated into code machine. Once the simulation are undertaken, the data are
exported as files with extension .mat and plotted with Matlab®.

5.2 Modeling of a compliant endoscope
As a simplified model, the compliant endoscope is modeled as a Timoshenko type
beam equation with frictional dissipative terms, see [CRA14]. The partial differential
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IPMC actuator

dSpace

Laser sensor

Figure 5.1 – Experimental setup

Figure 5.2 – Schematic diagram of the experimental setup [WLGW19]



92 CHAPTER 5. LQG CONTROL OF A EAP-ACTUATED PHS

equations of the Timoshenko beam are given by

ρ(ζ )
∂ 2z
∂ t2 (ζ , t) =

∂

∂ζ

(
K(ζ )

(
∂ z
∂ζ

(ζ , t)−φ(ζ , t)
))
−Rt

∂ z
∂ t

(ζ , t), (5.2.1)

Iρ(ζ )
∂ 2φ

∂ t2 (ζ , t) =
∂

∂ζ

(
EeI(ζ )

∂φ

∂ζ
(ζ , t)

)
+K(ζ )

(
∂ z
∂ζ

(ζ , t)−φ(ζ , t)
)

−Ra
∂φ

∂ t
(ζ , t), (5.2.2)

where z(ζ , t) and φ(ζ , t) are the transverse displacement and the rotational angle at
position ζ ∈ [a,b] and time t, respectively. The coefficients are ρ (kg/m3), the mass
per unit length, Ee (Pa), the Young modulus of elasticity, Iρ (kg m), the rotary moment
of inertia of a cross section, I (m4), the moment of inertia of a cross section and K (Pa),
the shear modulus. The damping coefficients Rt (kg m3/s) and Ra (kg m/s) denote
the transversal and angular frictions, respectively. Let us consider the state vector
x(ζ , t) ∈ R4 whose components are given by

x1(ζ , t) = ∂ z
∂ζ

(ζ , t)−φ(ζ , t) (shear displacement)
x2(ζ , t) = ρ(ζ ) ∂ z

∂ t (ζ , t) (momentum)
x3(ζ , t) =

∂φ

∂ζ
(ζ , t) (angular displacement)

x4(ζ , t) = Iρ(ζ )
∂φ

∂ t (ζ , t) (angular momentum).

The state space is given by L2([a,b];R4). The PDEs (5.2.1) and (5.2.2) can then be
rewritten as

∂x
∂ t

(ζ , t) = P1
∂

∂ζ
(H(ζ )x(ζ , t))+(P0−G0)H(ζ )x(ζ , t), (5.2.3)

by setting the matrices P1, P0, G0 andH respectively as

P1 :=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , P0 :=


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 ,

G0 :=


0 0 0 0
0 Rt 0 0
0 0 0 0
0 0 0 Ra

 , H :=


K 0 0 0
0 1

ρ
0 0

0 0 EeI 0
0 0 0 1

Iρ

 .
(5.2.4)

Furthermore, the mechanical energy is given by:

E(x(t)) =
1
2

∫ b

a
(Kx2

1(t)+
1
ρ

x2
2(t)+EeIx2

3(t)+
1
Iρ

x2
4(t))dζ (5.2.5)

= Ek(x(t))+Ep(x(t)),

where Ek(x(t))= 1
2
∫ b

a (
1
ρ

x2
2(t)+

1
Iρ

x2
4(t))dζ and Ep(x(t))= 1

2
∫ b

a (Kx2
1(t)+EeIx2

3(t))dζ

represent the kinetic energy and the potential energy, respectively. The medical en-
doscope is assumed to be clamped at the origin a and let free at its other end b. This
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corresponds to the following boundary conditions:

x2(a, t) = x4(a, t) = x1(b, t) = x3(b, t) = 0. (5.2.6)

The boundary conditions given by (5.2.6) are described through boundary port-variables,
namely the efforts e∂ and the flows f∂ , in the following way:[

0
0

]
=WB

[
f∂ (t)
e∂ (t)

]
, (5.2.7)

where

WB =
1√
2


0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0
−1 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 1

 .
By omitting the spatial dependence, (5.2.3) becomes

ẋ(t) = (J −R)Hx(t), (5.2.8)

where the skew-adjoint operator

J x = P1
d

dζ
x+P0x (5.2.9)

is defined on the domain

D(J ) = {x ∈ H1([a,b];R4),x2(a, t) = x4(a, t) = x1(b, t) = x3(b, t) = 0}, (5.2.10)

and the self-adjoint operatorR∈ L(X) is defined asR= G0.

The endoscope is supposed to be actuated on intervals [ai,bi] with i ∈ {1, . . . ,m}
by distributed forces ud,i(t) through m IPMCs glued to it. The control operator Bd :
Rm→X is then given by

(Bdud(t))(ζ ) =
m

∑
i=1


0
0
0

bi(ζ )

ud,i(t), (5.2.11)

where bi(ζ ) = 1 for ζ ∈ [ai,bi] and bi(ζ ) = 0 otherwise for all i ∈ {1, . . . ,m}. Fur-
thermore, the mean value of the angular velocity is assumed to be measured on each
interval [ai,bi] with i ∈ {1, . . . ,m}. The mean value of the angular velocity for each
interval [ai,bi] is expressed as

yi(t) =
∫ b

a
bi(ζ )

1
Iρ(ζ )

x4(t,ζ )dζ , (5.2.12)

for all i ∈ {1, . . . ,m}. The power conjugated output is then given by

y(t) = [y1, . . . ,ym] = B∗dHx(t). (5.2.13)
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Figure 5.3 – IPMC bending under electric stimulus [WLGW19]

5.3 Modeling of an IPMC actuator as a RLC circuit
An IPMC consists of a polyelectrolyte gel sandwiched between two electrodes as rep-
resented in Figure 5.3. IPMCs can be used as sensors or actuators to both monitor
and control the time response of the plant. Indeed, these smart materials can generate
an electric stimulus when a deformation is applied from a structure, and conversely
applying electric stimulus to IPMCs will produce forces and torques to this structure.
The working mechanism is the following: under an electric stimulus, which entails
a potential difference, cations(1) and water molecules are transferred to the negative
electrode. The resulting swollen induces a swelling effect, which mechanically bends
the IPMC.

In this work the IPMC is approximated by a lumped RLC circuit model as pro-
posed in [GLTY09]. The RLC circuit is represented in Figure 5.4. This RLC cir-
cuit model gives a description of the electrical behaviour of the IPMC. To be more
specific, the r1CL circuit models the ionic current produced by the movement of the
cations under an electric stimulus. The resistance r2 represents the internal resistance
of the electrolyte between the electrodes. Here, Q is the charge of the capacitor, Φ

is the magnetic flux, C is the capacity and L is the inductance. The voltage and the
current are given by V = Q/C and I = Φ/L. Let us denote by VL, Vc, VR and Vin the
voltage across the inductor, the capacitor, the resistor and the voltage source, respec-
tively. Besides, IC, IR and IL denote the current across the capacitor, the resistor and
the inductor, respectively. In addition, the dynamical relations

VL(t) =
dΦ

dt
(t),

IC(t) =
dQ
dt

(t),
(5.3.1)

(1)Cations are molecules with a positive charge.
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+
−Vin

+ −r1
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C

+− L

+

−

r2

Figure 5.4 – RLC circuit

and the constitutive relations
Vr1(t) = r1Ir1(t),

Vr2(t) = r2Ir2(t),

Φ(t) = LIL,

Q(t) =CVC(t)

(5.3.2)

hold for all t ≥ 0.
The first Kirchkoff’s law states that the algebraic sum of currents meeting at any

node of an electrical circuit is zero. The second Kirchkoff’s law states that the directed
sum of potential differences around any closed circuit is zero. By applying the first
and second Kirchkoff’s laws (∑V = 0 and ∑ I = 0), we obtain

IC = IL− Ir2 and Vin =Vr1 +VC +VL. (5.3.3)

By using relations (5.3.3) together with the relations (5.3.1) and (5.3.2), we deduce
the following state space model:

dQ
dt

(t) =
1
L

Φ(t)− 1
r2

1
C

Q(t),

dΦ

dt
(t) =− 1

C
Q(t)− r1

1
L

Φ(t)+Vin(t).
(5.3.4)

Under the port-Hamiltonian formalism, the equations (5.3.4) can be rewritten as[
Φ̇

Q̇

]
(t) =

[ −r1 −1
1 − 1

r2

][
Φ

L
Q
C

]
(t)+

[
1
0

]
Vin(t). (5.3.5)

The associated Hamiltonian of the RLC circuit representing the energy of the system
is given by

Erlc((Φ,Q)(t)) =
1
2

Q2(t)
C

+
1
2

Φ2(t)
L

. (5.3.6)

The port-Hamiltonian system (5.3.5) describes the dynamics of one IPMC with the
applied voltage Vin as an input u(t). Let us now generalize for m IPMC actuators
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attached along a flexible beam. This readily extends as follows. The flux and the
charge (Φ,Q) ∈ R2m are governed by[

Φ̇

Q̇

]
(t) =

[
−R1 −I

I −R2

][
Φ

L
Q
C

]
(t)+

[
I
0

]
u(t)+

[
0
I

]
ua(t), (5.3.7)

where R1 = diag[r1, . . . ,r1] ∈ Rm×m and R2 = diag[ 1
r2
, . . . , 1

r2
] ∈ Rm×m are the resis-

tance matrices. The input u(t) is the applied voltage on the IPMC and the power-
conjugated output y(t) given by

y(t) =
[

I 0
][ Φ

L
Q
C

]
(t) =

Φ

L
(t) (5.3.8)

is the current in the inductor. Besides, we denote by ya(t) the voltage in the capacitor,
i.e.,

ya(t) =
[

0 I
][ Φ

L
Q
C

]
(t) =

Q
C
(t). (5.3.9)

The interconnection between the flexible structure and the RLC circuit is assumed
to be perfect, thus ua(t) and ud(t) are the current applied on the capacitor due to the
movement of the flexible structure and the torque applied on the structure, respectively.
On one hand, the torque applied to the beam comes from the voltage V weighted by
coefficient k̃ and distributed on the interval [ai,bi]. On the other hand, a current is gen-
erated by the beam motion observed on [ai,bi] and acts on the IPMC with coefficient
−k̃. To sum it up, the power-preserving interconnection between the flexible structure
and the actuator is summarised as follows:[

ud
ua

]
(t) =

[
0 k̃
−k̃T 0

][
yd
ya

]
(t), (5.3.10)

with a matrix k̃ = diag[k1, . . . ,km] ∈ Rm×m [Nm/V ].

The Hamiltonian associated to (5.3.7) is given by

ERLC((Φ,Q)(t)) =
1
2

QT (t)
1
C

Q(t)+
1
2

Φ
T (t)

1
L

Φ(t). (5.3.11)

5.4 Interconnection of a Timoshenko beam and a RLC
circuit

In this section the interconnected system consisting of a flexible beam with m IPMC
actuators is introduced. From the power-preserving interconnecting relations (5.3.10),
the IPMC-actuated flexible beam is described as follows:

ẋ(t) =

 J −R 0 Bd k̃
0 −R1 −I

−k̃T B∗d I −R2

 Qx(t)+

 0
I
0

u(t),

y(t) = [ 0 I 0 ]Qx(t),

(5.4.1)
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where the operator Bd is given by (5.2.11), x =
[

x, Φ, Q
]

and the energy matrix
Q is given by

Q = diag[H, 1
L
,

1
C
].

The state space is given by X := L2([a,b];R4)×R2m with inner product

〈x1,x2〉X := 〈x1,x2〉X +QT 1
C

Q+Φ
T 1

L
Φ.

By using matrices D and D0 introduced in Section 4.3 and given by

D =

[
1 0
0 1

]
and D0 =

[
0 −1
0 0

]
, (5.4.2)

the abstract differential equation (5.4.1) can be expanded as
q̇
ṗ
Φ̇

Q̇

(ζ , t) =


0 D∂ζ +D0 0 0
DT ∂ζ −DT

0 −R 0 Bk̃
0 0 −R1 −I
0 −k̃T B∗ I −R2



H1(ζ ) 0 0 0

0 H2(ζ ) 0 0
0 0 1

L 0
0 0 0 1

C




q
p
Φ

Q

(ζ , t)+


0
0
Im
0

u(t).

(5.4.3)

Let us define the unbounded linear operator

A x =


0 Ddζ +D0 0 0

DT dζ −DT
0 −R 0 Bk̃

0 0 −R1 −I
0 −k̃T B∗ I −R2



H1(ζ ) 0 0 0

0 H2(ζ ) 0 0
0 0 1

L 0
0 0 0 1

C

x

=: (J−R)Qx
(5.4.4)

for x in the domain

D(A) =


 x

Φ

Q

 ∈
 XRm

Rm

 ,Hx ∈ H1([a,b];R4),

[
f∂ (t)
e∂ (t)

]
∈ Ker WB

 , (5.4.5)

where X = L2([a,b];R4).

The total energy of the interconnected system is given by

E(x(t)) := E(x(t))+ERLC((Φ,Q)(t)) (5.4.6)

=
1
2
‖x(t)‖2

X +
1
2

QT 1
C

Q+
1
2

Φ
T 1

L
Φ =:

1
2
〈x(t),Qx(t)〉X, (5.4.7)
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where Q = diag[H1,H2,
1
L ,

1
C ]. Moreover, since the power-preserving interconnec-

tion of port-Hamiltonian systems is still a port-Hamiltonian system, we can rely on
this structure to establish the C0-semigroup generation for the interconnected port-
Hamiltonian system. From (5.4.3), we define new matrices P1,P0 and G0 by

P1 =


0 D 0 0

DT 0 0 0
0 0 0 0
0 0 0 0

 , P0 =


0 D0 0 0
−DT

0 0 0 Bk̃
0 0 0 −I
0 −k̃T B∗ I 0

 ,

G0 =


0 0 0 0
0 −R 0 0
0 0 −R1 0
0 0 0 −R2

 . (5.4.8)

The generation of a contraction C0-semigroup of the operator A can be directly de-
duced from Theorem 1.1.1. Since the interconnection is distributed along the spatial
domain, it does not alter the boundary conditions, which satisfy WBΣW T

B ≥ 0. The
generation of a contraction C0-semigroup and the compactness property of the related
resolvent operator are resumed in the following proposition.

Proposition 5.4.1. The linear operator A with domain D(A) generates a contraction
C0-semigroup on the state space X. Moreover, A has a compact resolvent.

Proof. Since WBΣW T
B ≥ 0, A generates a contraction C0-semigroup, see Theorem

1.1.1. The compactness of the resolvent operator of A is a direct consequence of
[Vil07, Theorem 2.28].

5.5 LQG control problem
In the section we address the LQG control problem for the interconnected IPMC-beam
model introduced in Section 5.4. The main objective of the latter control problem con-
sists in setting the endoscope under a specific configuration by means of an admissible
control law u(t) minimizing the functional

J(u) = lim
T→∞

E
∫ T

0
〈x(t), R̄x(t)〉X + 〈u(t), R̃u(t)〉Rmdt, (5.5.1)

where the operator R̄ = R̄T is positive semi-definite and the matrix R̃ = R̃T is positive
definite. As already mentioned in Chapter 4, the control system (5.4.1) must satisfy
the assumptions of exponential (exp.) stabilizability and detectability as defined in
Definition 4.1.1 in order to have a well-defined LQG control problem. These proper-
ties ensure the existence of unique nonnegative self-adjoint solutions for the control
operator Riccati equation (CORE) and the filter operator Riccati equation (FORE).
In Theorem 5.5.1, we shall prove the exponential stability of the system (5.4.1) by
considering a Lyapunov functional candidate and showing that its time derivative is
bounded by the initial condition of the Lyapunov functional. As a direct consequence,
the assumptions of exp. stabilizability and detectability will be satisfied. Notice that,
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due to domain interconnection, cross terms have to be inserted in the Lyapunov func-
tional candidate.

Theorem 5.5.1. Let us consider the interconnected system (5.4.1) on the state space
X with boundary conditions (5.2.6). Assume that there exist β0 > 0 and λ1,λ2 > 0
(that may depend on β0) such that for all γ ∈ (0,β0),

0≤ λ1(E(t)+ERLC(t))≤ L(t)≤ λ2(E(t)+ERLC(t)), (5.5.2)

where the Lyapunov functional L(t) is given by

L(t) =
1
2
[
∫ b

a
(qTH1q+ pTH2 p+ γrT p)dζ +Φ

T 1
L

Φ+QT 1
C

Q]

+γΦ
T Q+ γΦ

T k̃T B∗r
(5.5.3)

with r given by (4.3.7). Assume that for all γ ∈ (0,β0), there exist K1 and K2 such that

|1
2

∫ b

a
γrT pdζ | ≤ K1E(t) |γΦ

T Q+ γΦ
T k̃T B∗r| ≤ K2ERLC(t). (5.5.4)

In addition, assume that the parameter γ satisfy the conditions: γI ≤ R1
1
L and γI ≤

H2R. Then the system (5.4.1) is exponentially stable.

Proof. Notice that (5.5.2) ensures that the Lyapunov functional (5.5.3) is nonnegative.
Taking the time derivative of (5.5.3) along the state trajectories gives

L̇(t) =
∫ b

a

[
qTH1 pTH2 + γrT γ pT ] q̇

ṗ
H2 p

dζ

+
[

ΦT L−1 QTC−1
][ Φ̇

Q̇

]
+ γΦ̇

T Q+ γΦ
T Q̇+ γΦ

T k̃T B∗H2 p+ γΦ̇
T k̃T B∗r.

(5.5.5)

This yields

L̇(t) =
∫ b

a

[
qTH1 pTH2 + γrT ][ 0 D∂ζ +D0 0 0

DT ∂ζ −DT
0 −R 0 Bk̃

]

H1 0 0 0
0 H2 0 0
0 0 1

L 0
0 0 0 1

C




q
p
Φ

Q

dζ +
∫ b

a
γ pTH2 pdζ

+
[

ΦT 1
L QT 1

C

][ 0 0 −R1 −I
0 −k̃T B∗ I −R2

]
H1 0 0 0
0 H2 0 0
0 0 1

L 0
0 0 0 1

C




q
p
Φ

Q


+γΦ̇

T Q+ γΦ
T Q̇+ γΦ

T k̃T B∗H2 p+ γΦ̇
T k̃T B∗r︸ ︷︷ ︸

(])

.

(5.5.6)



100 CHAPTER 5. LQG CONTROL OF A EAP-ACTUATED PHS

Moreover, from (5.3.7), the term (]) becomes

(]) =γ

[
−R1

1
L

Φ− Q
C

]T

Q+ γΦ
T
[
−k̃T B∗H2 p+

1
L

Φ−R2
1
C

Q
]

+ γΦ
T k̃T B∗H2 p− γ(R1

1
L

Φ)T k̃T B∗r− γ(
1
C

Q)T k̃T B∗r.

(5.5.7)

By plugging (5.5.7) in (5.5.6), one gets

L̇(t) =
∫ b

a
qT (H1(D∂ζ +D0)H2 p+ pTH2(DT

∂ζ −DT
0 )H1q+ γrT (DT

∂ζ −DT
0 )H1q

− (pTH2 + γrT )RH2 p+(pTH2 + γrT )Bk̃
1
C

Q)dζ +
∫ b

a
γ pTH2 pdζ

−Φ
T 1

L
R1

1
L

Φ−Φ
T 1

L
1
C

Q−QT 1
C

k̃T B∗H2 p+QT 1
C

1
L

Φ

−QT 1
C

R2
1
C

Q+ γ

[
−R1

1
L

Φ−Q
1
C

]T

Q+ γΦ
T
[
−k̃T B∗H2 p+

1
L

Φ−R2
1
C

Q
]

+ γΦ
T k̃T B∗H2 p− γ(R1

1
L

Φ)T k̃T B∗r− γ(
1
C

Q)T k̃T B∗r.

(5.5.8)

After undergoing some simplifications and by integrating by parts, we obtain

L̇(t) =[(H1q)T DH2 p]ba +[rT DTH1q]ba

+
∫ b

a
(−∂ζ (H1q)T DH2 p+qTH1D0H2 p+ pTH2(DT

∂ζ −DT
0 )H1q

− γ∂ζ rT DTH1q− γrT DT
0H1q− pTH2RH2 p− γrTRH2 p)dζ +

∫ b

a
γ pTH2 pdζ

−Φ
T 1

L
R1

1
L

Φ−QT 1
C

R2
1
C

Q+

(
−γ(R1

1
L

Φ)T Q− γQT 1
C

Q+ γΦ
T 1

L
Φ

)
− γΦ

T R2
1
C

Q− γ(R1
1
L

Φ)T k̃T B∗r.
(5.5.9)

From the boundary conditions (4.3.6) and (4.3.8), it follows that

[(H1q)T DH2 p]ba = 0 and [rT DTH1q]ba = 0. (5.5.10)

This leads to

L̇(t) =
∫ b

a
(−γqTH1q− γrTRH2 p+ pTH2(γI−RH2)p)dζ −Φ

T 1
L
(R1

1
L
− γI)Φ

−QT 1
C

(
R2

1
C
+ γI

)
Q− γΦ

T (
1
L

R1 +R2
1
C
)Q− γ k̃T B∗rR1

1
L

Φ.

(5.5.11)
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Therefore, by using the conditions γI ≤ R1
1
L and γI ≤H2R with (5.5.4), there exists a

positive constant K for sufficiently small γ such that

L̇(t)≤−K(E(t)+ERLC(t))≤−
K
λ2

L(t). (5.5.12)

Finally, this leads to

L(t)≤ e
− K

λ2
t
L(0), (5.5.13)

which proves the exponential stability.

Remark 5.5.1. As already stressed in [RZG17], some feedthrough term is necessary
to damp the high frequency modes of the plant when no internal dissipation is oc-
curring (G0 = 0). When some internal damping inducing the exponential stability of
the plant (5.4.1) is present, the situation is more favorable. Indeed, these dissipation
effects enable to damp the high frequency modes so that the controller has only to act
on the low frequency modes.

From Remark 4.3.1, Theorem 5.5.1 obviously implies the exponential stabilizabil-
ity and detectability of the interconnected system (5.4.1). Hence, since the assump-
tions of stabilizability and detectability hold, we can derive the FORE and the CORE
for the interconnected system (5.4.1). Towards this end, some system and measure-
ment noises are added to (5.4.1), which yields

dx(t) = ((J−R)Qx+Bu(t))dt +Hdw(t),

dy(t) = B∗Qx(t)dt +Fdv(t).
(5.5.14)

w(t) is a Z-valued Wiener process with intensity operator H∈L(Z,X) and covariance
Q ∈ L(Z), and v(t) is a Rm-valued Wiener process with intensity F ∈ Rm×m and
covariance V ∈ Rm×m.

• There exists a unique stabilizing nonnegative self-adjoint solution Pf ∈L(X) of
the FORE given by

[(J−R)QPf +Pf ((J−R)Q)∗−Pf QB(FV F∗)−1B∗QPf +HQH∗]y = 0,
(5.5.15)

for all y ∈ D(((J−R)Q)∗) with Pf (D(((J−R)Q)∗))⊂ D((J−R)Q).

• There exists a unique stabilizing nonnegative self-adjoint solution Pc ∈ L(X) of
the CORE given by

[((J−R)Q)∗Pc +Pc(J−R)Q−PcBR̃−1B∗Pc + R̄]x = 0, (5.5.16)

for all x ∈ D((J−R)Q) Pc(D((J−R)Q))⊂ D(((J−R)Q)∗).

The dynamics of the LQG controller are described by

uc(t) =−Kx̂(t) :=−R̃−1B∗Pcx̂(t), (5.5.17)
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dx̂
dt

(t) = [(J−R)Q−LB∗Q−BK] x̂(t)+Luc(t), (5.5.18)

x̂(0) = x(0), (5.5.19)
γc(t) = Kx̂(t). (5.5.20)

The Riccati equations (5.5.15) and (5.5.16) cannot be exactly solved. Therefore,
a suitable finite-dimensional approximation must be developed. The discretization
method used here is a mixed-finite element discretization as proposed in [GTvdSM04].
To reduce the Timoshenko beam model to a finite-dimensional system, we take advan-
tage of the port-Hamiltonian structure. This method consists of an approximation of
the effort and flow variables by means of differential forms related to their physi-
cal and geometrical natures. In the case of a Timoshenko beam, on one hand, the
torque and the force (effort variables) correspond to zero-forms and, on the other hand,
the translational and angular velocities (flow variables) correspond to one-forms. Let
us consider N infinitesimal subsections of the spatial domain [a,b]. The discretized
port-Hamiltonian model of the Timoshenko beam with internal frictions, governed by
(5.2.3), is given by

ẋab(t) = (Jab−Rab)Habxab(t)+Buab(t), (5.5.21)

where xab ∈ R4N such that Jab =−JT
ab ∈ R4N×4N , Rab = RT

ab ∈ R4N×4N with Rab pos-
itive semi-definite, and Bab ∈ R4N×N . The corresponding Hamiltonian approximation
is given by Eab(t) = 1

2 xT
ab(t)Habxab(t), where Hab is the approximated matrix of the

matrix operatorH which is given by

Hab =


Kab 0 0 0
0 1

ρab
0 0

0 0 EIab 0
0 0 0 1

Iρ,ab

 . (5.5.22)

According to [RL13, Section 4], the discretization of the Timoshenko beam model
(preserving the port-Hamiltonian structure) yields the following matrices:

the skew-symmetric structure matrix Jab is given by

Jab =


0 M 0 S
−MT 0 0 0

0 0 0 M
−ST 0 −MT 0

 , (5.5.23)

where

M =



−2 0 0 . . . 0
4 −2 0 . . . 0
−4 4 −2 . . . 0

...
...

. . . . . .
...

(−1)N−14 (−1)N−24 . . . −2 0
(−1)N4 (−1)N−14 . . . 4 −2


(5.5.24)
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(5.5.25)

and

S = diag[−(b−a), . . . ,−(b−a)]; (5.5.26)

the symmetric matrix Rab is expressed as

Rab = diag
[

0 Rt,ab 0 Ra,ab
]
, (5.5.27)

where

Rt,ab = Rt
b−a

N

[
1 . . . 1

]
∈ RN , (5.5.28)

Ra,ab = Ra
b−a

N

[
1 . . . 1

]
∈ RN . (5.5.29)

The approximated matrix Bab corresponding to the boundary conditions is given by

Bab =



−2 0 0 0
2 0 0 0

(−1)N2 0 0 0
0 (−1)N+12 0 0
...

...
...

...
0 (−1)N2 0 0
0 0 (−1)N+12 0
...

...
...

...
0 0 (−1)N2 0
0 0 0 (−1)N+12
...

...
...

...
0 0 0 (−1)N2



. (5.5.30)

Eventually, the control operator (5.2.11) is approximated by

Bc,ab =


0
0
0

bab

 , with bab ∈ RN . (5.5.31)

Hence, the port-Hamiltonian structure preserving approximation of the interconnected
system is described by

ẋab(t) = (Jab−Rab)Qabxab(t)+Babu(t), (5.5.32)

yab(t) = BT
abQabxab(t), (5.5.33)
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where

Jab =−JT
ab =

 Jab 0 Bc,abk̃
0 0 −I

−k̃BT
c,ab I 0

 ∈ R(4N+2m)×(4N+2m),

Rab = RT
ab =

 Rab 0 0
0 R1 0
0 0 R2

 ∈ R(4N+2m)×(4N+2m).

Also,
Qab = QT

ab = diag
[
Hab

1
L

1
C

]
∈ R(4N+2m)×(4N+2m)

and

Bab =

 0
I
0

 ∈ R(4N+2m)×m.

Remark 5.5.2. Note that there is no need to approximate the IPMC dynamics since
they are already finite-dimensional.

According to Theorem 4.2.1, the port-Hamiltonian framework can be preserved in
the LQG controller dynamics by considering

Q̃ab = QabBabBT
abQab, (5.5.34)

Pf = Q−1
ab PcQ−1

ab , (5.5.35)

Rc = Rab +BabBT
abPcQ−1

ab +Pf QabBabBT
ab. (5.5.36)

The control Riccati equation of the finite-dimensional approximated system (5.5.32)-
(5.5.33) is given by

[((Jab−Rab)Qab)
T Pc +Pc(Jab−Rab)Qab−PcBabR̃−1

ab BT
abPc + R̄ab]xab = 0, (5.5.37)

where xab ∈ R4N+2m. This Riccati equation (5.5.37) is solved with the Matlab® func-
tion care.

The finite-dimensional approximation of the closed-loop system, i.e. the IPMC-
actuated flexible beam with the Hamiltonian LQG controller, is described by(

xab
x̂ab

)
(t) =

(
Jab −BabBT

abPcQ−1
ab

Pf QabBabBT
ab Jab

)
−
(

Rab 0
0 Rc

)(
Qabxab(t)
Qabx̂ab(t)

)
+

(
Bab
0

)
u(t).

(5.5.38)

By using condition (5.5.34), the functional cost to be minimized is given by

J(u) = lim
T→∞

∫ T

0
〈xab(t), Q̃abxab(t)〉R4N+2m + 〈u(t), R̃abu(t)〉Rmdt (5.5.39)

and consists in finding a trade-off between the cost in energy of the input u(t) and the
intensity of the output current of the interconnected system (5.4.1).
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5.6 Experimental validation of the model
This section is devoted to the validation of the proposed model of an actuated flexible
beam setup described in Section 5.1. It is shown that this model reproduces the main
properties of the experimental setup mounted in the AS2M department of FEMTO-ST
Institute in Besançon (France) and represented in Figure 5.1.

Let us recall that the flexible beam made of polyethylene plastic is assumed to be
fixed at the origin. In the experimental setup, an IPMC is patched along the beam
near its fixed extremity. In addition, we measure the beam displacement by means of
a laser sensor (LK-G152). The laser sensor is placed so that we measure the position
of the beam at 5 mm from its tip at the equilibrium position. In order to discretize
the flexible beam, we consider 100 infinitesimal subsections of beam’s length (160
mm). The discretized port-Hamiltonian model of the Timoshenko beam is given by
Σ((Jab−Rab)Hab,Bab,BT

abHab).

The simulations were conducted in Matlab® and the experimentations were per-
formed several times to ensure the reproducibility of the obtained results. The param-
eters used for the numerical simulations and the experimentations are given in Tables
5.1 and 5.2. The parameter values of the IPMC are taken from [NTMO11].

Some parameters are unknown, in particular the Young and shear modulus, the
transversal and angular frictions, and the coupling constant k̃ of the employed IPMC.
The identification procedure is mainly based on [MWR+]. For the identification
process, we used optimal algorithms for nonlinear model identification (nlgreyest
function) implemented in the Matlab Identification Toolbox®. Besides, sequential
quadratic programming (SQP) and trust-region-reflective algorithms were used with
the Matlab® function fmincon. The results of the identification procedure are de-
picted in Figure 5.5. One can observe that the fitting percentage between the model
with the optimally estimated parameter values (red dashed line) and the experimen-
tal data (black line) is of 89.67%. The identified parameters are listed in Table 5.3.
In addition, the fitting procedure with the optimally estimated parameter values was
undertaken again with the laser sensor placed at 10 mm from the beam tip at the equi-
librium position. In this case, the fitting percentage is of 85.55%, which strengthens
the validity of the numerical values obtained for the parameters.

To complete the experimental validation of the model, a comparison of the dis-
placement of the beam at 155mm between the interconnected model implemented in
SIMULINK® and the experimental data was performed. The parameters of the exper-
imental setup given in Tables 5.1, 5.2 and 5.3 were used for the numerical simulations.
The experimental and simulated data are represented as a dark and a red dashed line,
respectively. Figure 5.6 shows that the flexible beam displacement reaches (the de-
sired equilibrium position of) 5 mm when applying a voltage of 1.5 V. Moreover, one
can observe that the interconnected model reproduces accurately the behaviour of the
experimental setup.
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Table 5.1 – Parameters of the endoscope

Notation Description Value Unit
L Length 1.6×10−1 m
W Width 7×10−3 m
T Thickness 2.2×10−4 m
ρ Mass density 936 kg/m3

I Inertia moment 4.7×10−15 m4

Iρ Angular moment 4.34×10−12 kg m

Table 5.2 – Parameters of the IPMC actuator

Notation Description Value Unit
r1 Resistance 1 30 Ω

r2 Resistance 2 700 Ω

C Capacitance 1.2×10−1 F
LIP Length of IPMC 3×10−2 m

Table 5.3 – Identified parameters

Notation Description Value Unit
Ee Young modulus 4.14×109 Pa
K Shear modulus 1.4178×109 Pa
Ra Angular friction 10−5 kg m/s
Rt Transversal friction 2×10−5 kg m3/s
k̃ Coupling constant 3×10−5 N M/V

Figure 5.7 shows the current responses to an input voltage of 1.5 V. The solid black
and dash red lines correspond to the output current simulated from the IPMC-beam
model and the output current measured from the experimental setup, respectively. The
current responses reach the peak of 0.0408 mA and decay rapidly afterwards. The dif-
ferences between the two curves might be caused by the RLC approximation of the
IPMC.

In [NTMO11], a more accurate but also more complex model of the IPMC is pre-
sented. Indeed, IPMCs are described as interconnected distributed port-Hamiltonian
systems on multiple spatial scales. The proposed model reproduces the coupling be-
tween the electrical dynamics, the dynamics of the polymer gel (inducing the swelling)
and the mechanical beam dynamics of the IPMCs.

5.7 Control of the IPMC-actuated flexible beam
We shall now design a control law for the proposed model that has been validated in
Section 5.6. As already mentioned, the control objective consists in setting the IPMC
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Figure 5.5 – Parameter estimation with displacement measure taken at 155 mm

Figure 5.6 – IPMC actuated beam model vs experimental data: beam tip
displacement comparison
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Figure 5.7 – IPMC actuated beam model vs experimental data: current intensity
comparison

actuated flexible beam in a specific configuration by means of electric stimulus, while
reducing vibrations. The time response of the system is improved by positive damp-
ing injection (see 5.7.2) and the induced vibrations are damped out by the Hamiltonian
LQG controller. A trade-off between the time response of the system and the vibra-
tions has to be found. A schematic diagram of the IPMC actuated beam interconnected
to a LQG control and subject to damping injection is represented in Figure 5.8. We
recall that the interconnection between the beam and the IPMC is given by (5.3.10)
and that the interconnection with the Hamiltonian LQG controller is given by

uc = y and u =−yc. (5.7.1)

On one hand, we consider a positive damping injection given by

u(t) =−rcy(t) (5.7.2)

in order to improve the time response of the system, where y(t) is the output current
and rc < 0 is a control parameter. In order to preserve the stability of the intercon-
nected system, rc must satisfy

rc >−r1. (5.7.3)

The damping injection method is based on [OGC04].

On the other hand, we design an Hamiltonian LQG controller to reduce the vibra-
tions induced by the damping injection. According to Theorem 4.2.1, the parameters
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Figure 5.8 – Schematic diagram of the IPMC actuated beam interconnected to a LQG
control and subject to damping injection

of the LQG control problem have to be set appropriately in order to preserve the port-
Hamiltonian framework in the LQG controller dynamics. Towards this end, let us
consider the optimal control first, and thereby the covariance matrices must be inter-
preted as further control parameters and do not have any statistical meaning anymore.
To be more specific, the control parameters are chosen as

Q̃ab = 1700(QabBab)BT
abQab, (5.7.4)

R̃ab = 1000. (5.7.5)

The discretization method of mixed-finite elements presented in Section 5.5 was
applied for 100 subsections of the beam, which entails that xab(t) ∈R402. The control
Riccati equation was solved with the Matlab® function care to obtain Pc, and the LQG
controller described by (5.5.38) was numerically implemented in SIMULINK®. Fig-
ure 5.9 shows the open-loop time response of the IPMC-actuated beam model in blue,
the closed-loop response with damping injection in red, and the closed-loop response
with positive damping injection and LQG control in dashed black. In addition, the ref-
erence is plotted in yellow. The time response of the open-loop system is drastically
improved by the positive damping injection. One can observe that the positive damp-
ing injection improves the time response of the system and that the LQG controller
reduces the vibrations. As depicted as a dashed black line in Figure 5.9, a trade-off
between time response and oscillations can be found. The feedback control law was
then tested when applying several references, see Figure 5.10. Again, one can observe
that the Hamiltonian LQG controller with positive damping injection provides a good
trade-off between time response and oscillations.

Spatial discretization methods of infinite-dimensional systems often lead to high
dimensional systems, and then to high-dimensional controllers. This motivates the



110 CHAPTER 5. LQG CONTROL OF A EAP-ACTUATED PHS

Figure 5.9 – Comparison between open-loop system and positive damping injection
with Hamiltonian LQG control system

Figure 5.10 – Comparison between open-loop system and positive damping injection
with Hamiltonian LQG control system
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study of model-reduction methods, in particular for the class of port-Hamiltonian sys-
tems. Open-loop reduction methods for high dimensional port-Hamiltonian systems
can be found in [BCL+09]. Nevertheless, when the reduced-order controller is directly
applied to the full order system, the control will act on the low frequency modes but
also on the residual modes (from the unmodeled dynamics), which can induce some
undesired vibrations in the case of a flexible endoscope. This is called the spillover
effect, which can cause performance degradation of the controller or even lead to
instability. The spillover effect can be addressed in the closed-loop dynamics. We
refer to [WHGM18], where a closed-loop reduction method was proposed to design a
reduced-order LQG controller with good closed-loop performances.

Taking advantage of the power-preserving interconnection of port-Hamiltonian
systems, it would be interesting to establish the exponential stability of the closed-
loop system composed of an exponentially stable infinite-dimensional dissipative port-
Hamiltonian system with a finite-dimensional port-Hamiltonian controller. Guaran-
teeing the exponential stability when interconnecting the plant to a finite-dimensional
port-Hamiltonian controller would allow us to avoid the spillover effect. However,
this stability result has so far remained to be proved, leading to Conjecture 5.7.1. No-
tice that a similar situation was studied in [RZG17] where the plant is controlled at the
boundary by an exponentially stable nonlinear dynamical system with a feedthrough
term. When compared to the stabilization problem (5.4.1) with a finite-dimensional
port-Hamiltonian controller, the situation in [RZG17] is less favorable since the con-
troller has to damp both high and low frequency modes, which is quite challenging
from a control perspective.

Conjecture 5.7.1. Let us consider the infinite-dimensional dissipative port-Hamiltonian
system described by

ẋ(t) = (J −R)Hx(t)+Bu(t),

y(t) = B∗Hx(t),
(5.7.6)

where J : D(J )→X is skew-adjoint, R ∈ L(X ) is self-adjoint and B ∈ L(Rm,X ).
Assume that the system (5.7.6) is exponentially stable. In addition, let us consider a
finite-dimensional control system given by

xc(t) = (Jc−Rc)Qcxc(t)+Bc(t)uc(t),

yc(t) = BT Qcxc(t),
(5.7.7)

where Jc =−JT
c , Rc = RT

c ≥ 0, Qc = QT
c > 0 and Bc is full rank.

Then the power-preserving interconnection, which is given by

u =−yc and y = uc,

of (5.7.6) with (5.7.7) is again an exponentially stable port-Hamiltonian system.

In a similar manner as in Theorem 5.5.1, cross terms would have to be included in
the candidate of Lyapunov functional due to the domain interconnection.
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5.8 Conclusion and perspectives
This chapter was devoted to the study of the LQG control problem of an IPMC ac-
tuated endoscope. The IPMC actuated endoscope was modeled as an interconnected
Timoshenko beam model with a RLC circuit. In Section 5.5, the LQG control prob-
lem was addressed for this specific application. Next, in Section 5.6, the validity of
the proposed model for the IPMC-actuated endoscope was studied on the experimen-
tal setup mounted in the AS2M department of the FEMTO-ST Institute in Besançon,
France. It was shown that the main mechanical characteristics of the experimental
setup have been reproduced by the proposed model. In Section 5.7, a feedback con-
trol law is implemented as the sum of a positive damping injection to improve the
time response, and of the stabilizing output of an Hamiltonian LQG controller to re-
duce the mechanic vibrations. Note that the feedback control presented in Section 5.7
is prospective. Further works would be to implement and evaluate the performance
of the Hamiltonian LQG controller on the experimental setup. In addition, notice that
the theory presented in this chapter is developed for an arbitrary number of IPMCs.
Future works would be to implement and experiment it for several IPMCS patched
along the beam to shape it in a desired manner.

As already pointed out in [NTMO11], the actuation and the corresponding bend-
ing force of an IPMC depend on its relative humidity. As a matter of fact, a humid
IPMC is more efficient than a dryer one. This is due to the working mechanism of an
IPMC. The mechanical bending depends on the transport and the swelling of water
and cations molecules in the polyelectrolyte gel. Thus, a better humidity will induce
a better bending of the IPMC. A generalization of the RLC model proposed for the
IPMC would be to consider the fatigue behaviour of the IPMC. Besides, a simplified
model of the IPMC as a RLC circuit was considered in this work. Hence, the polymer
gel dynamics would have to be taken into consideration for future research.

The Riccati equation is the crux when solving a LQ optimal control problem. The
rationale in this chapter was to solve the Riccati equations related to a LQG control
of a finite-dimensional approximation of the controlled system. Nevertheless, a finite-
dimensional approximation leads to some errors when solving the operator Riccati
equations. It would be of great interest to carry out a study of this error. Besides, a
suggestion would be to add a further term in the functional cost to minimize this error.

Finally, in this last chapter, stochastic disturbances are not considered in the plant
dynamics. The covariance operators of the LQG controller are used as further param-
eters to design an Hamiltonian LQG controller. While undertaking manipulations of
the experimental setup, it was noticed that it was highly sensible to environmental dis-
turbances such as acoustic noises or even people walking into the lab. Measurement
noises could also occur. The latter depends on the quality of the sensors used. Ongo-
ing research would be to take under consideration the nature of these neglected effects
(in this chapter) for the design of a feedback control law.
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General conclusion
In this thesis stochastic and deterministic port-Hamiltonian systems with both dis-
tributed and boundary controls along with distributed and boundary observations were
explored. From a mathematical point of view, the stochastic integration theory and the
semigroup approach of infinite-dimensional systems theory are employed together for
the study and the analysis of the stochastic partial differential equation governing this
new class of stochastic systems.

As a first step, the class of first-order linear port-Hamiltonian systems with dis-
tributed and boundary control was presented in a similar way as in [JZ12]. The Riesz
basis property of this class of distributed parameter systems has been investigated. A
subclass of linear port-Hamiltonian systems, namely nice port-Hamiltonian systems,
has been introduced and such systems have been proved to be Riesz-spectral systems.
As a direct consequence, the growth bound condition has been proved to hold for nice
port-Hamiltonian systems. Further contributions are the author’s willingness of giving
a clarification of [Vil07, Chapter 4] and proposing a state of the art on the basis of the
existing literature and current works on this topic.

As a second step, the new class of stochastic port-Hamiltonian systems with dis-
tributed and boundary control and observation is investigated. The passivity property
has been introduced for infinite-dimensional stochastic systems and has been proved
to be not preserved for SPHSs, due to the energy increments induced by the Wiener
process. A well-posedness concept has been presented for boundary controlled and
observed stochastic systems in the spirit of the deterministic well-posedness defini-
tion. Furthermore, theoretical results were illustrated on an example of a stochastic
vibrating string by means of a modal representation via a Riesz basis.

In the second part of this thesis, we have studied the control aspects of stochastic
port-Hamiltonian systems. More particularly, we have introduced a first attempt to

113
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treat the question of LQG control of stochastic port-Hamiltonian systems on infinite-
dimensional spaces with bounded control, observation and noise operators. The gener-
alization of the port-Hamiltonian LQG controller for infinite-dimensional systems has
been performed in Theorem 4.2.2. To be more specific, this result allows one to repre-
sent the LQG control problem of a stochastic port-Hamiltonian system as the power-
preserving interconnection of SPHSs. We have then extended the result to strongly
stabilizable port-Hamiltonian systems based on results borrowed from [Oos00]. In
Section 4.3, by setting conditions on matrices P1, P0 and G0, Theorem 4.3.1 states that
port-Hamiltonian systems with dissipative effects on the momentum components of
the state are exponentially stable. The exponential stabilizability and detectability of
the controlled plant are then easily deduced.

Finally, the port-Hamiltonian formalism has been used for the modeling of a flex-
ible beam interconnected in a power-preserving manner with several IPMC actuators
patched along the beam. This formalism has been used advantageously to take under
consideration the physical dynamics of the actuator in the control process. Moreover,
the proposed interconnected port-Hamiltonian model has been proved to be exponen-
tially stable under some conditions on the parameters. Once a finite-dimensional ap-
proximation obtained via a mixed-finite element approach [GTvdSM04], a validation
of the proposed model has been undertaken by using the physical parameters of an
experimental setup. The main physical characteristics have been proved to be repro-
duced by the simulated model. Furthermore, the feedback control law, which consists
of a damping injection (DI) method with a LQG controller, has been implemented
on an IPMC-actuated flexible beam model. Numerical simulations demonstrate the
efficiency of the feedback DI-LQG control law designed to improve the time response
while reducing the induced vibrations.

This thesis has been mainly intended to propose new perspectives by taking into
account stochastic effects in the port-Hamiltonian modeling for distributed parameter
systems operating in a random environment. This work constitutes a first attempt to
study this new class of stochastic systems and to investigate some of their properties.
The author hopes that the work presented in this thesis will bring some attention to
the study of control and observation of SPDEs. Furthermore, the port-Hamiltonian
formalism has been considered for the modeling and the analysis of the determin-
istic dynamics of distributed parameter systems as well. The author hopes to have
convinced the reader of the interest of this powerful and efficient formalism, which
continues to attract more and more attention from mathematicians and engineers.

The new concepts and results presented in this thesis entail inexorably further
questions and lead to further investigations that could complete the work conducted
throughout this thesis. Some of them are identified and resumed in the next section.
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Suggestions for future work
In the deterministic setting, a complete characterization of the Riesz-spectral property
of port-Hamiltonian systems is still an open question. As a matter of fact, the assump-
tions of simple eigenvalues and of a uniform gap within the eigenvalues considered
for nice port-Hamiltonian systems need to be relaxed in order to include a wider range
of applications. For instance, coupled vibrating strings may have Jordan blocks or a
two-dimensional vibrating string will not satisfy the uniform gap condition. More-
over, the Riesz basis property has not been studied in the context of dissipation effects
from internal friction within the port-Hamiltonian framework.

Clearly, introducing and studying the new class of stochastic port-Hamiltonian
systems open the way to further considerations. In this thesis we have only considered
additive Gaussian white noises occurring along the domain. Following the natural ten-
dency of mathematicians of greater generality, it would be relevant to allow the noise
intensity operator to depend on the state process, which would yield the following
SPDE

dε(t) = (P1
∂

∂ζ
(Hε(t))+P0Hε(t))dt +(Hε(t))dw(t), (5.8.1)

where the noise port H ∈ L(X ,L(Z,X )). Adding stochastic disturbances on bound-
ary and distributed controls would also be recommended for future research. In addi-
tion, Wiener processes considered in this work could be generalized to jump processes
such as Lévy processes. A theory of integration with respect to jump processes can be
found in [App04].

In Chapter 3, the passivity property has been proved to be unpreserved for the
considered SPHSs. This is also known in the finite-dimensional case, see [SF13]. The
recovery of the passivity property of infinite-dimensional SPHSs would in any doubt
be a major research topic. The author believes that a generalization of the stochastic
generalized canonical transformations proposed in [SF13] would enable a passivity
recovery in the infinite-dimensional case. Nevertheless, such generalization is not an
easy task. As already mentioned, the main difficulty lies in the identification of a set of
transformations when the Hamiltonian is spatially dependent. Moreover, notice that in
[CF70], a version of the Itô’s formula (see Theorem 2.4.2) was proposed in a Hilbert
space context, i.e. for any function

f : [0,T ]×X →X , (5.8.2)

where X is a Hilbert space.

In the last part of this thesis, the case of a specific application, which consists of
an ionic polymer metal composite actuated endoscope, has been considered. Some
perspectives of work are listed herebelow.

• The resolution of the operator Riccati equations is the core issue when LQG
control problems are considered. In this work this has been done by using a
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finite-dimensional approximation of the plant. As already mentioned, it would
be interesting to conduct a rigorous error analysis when solving the operator
Riccati equations, and eventually consider a further term in the cost to minimize
the error due to the approximation.

• In the experimental setup described in Section 5.1, we have only considered
one IPMC patched at the fixed extremity of the plastic beam. In order to be able
to shape the beam configuration as desired, it would be interesting to consider
several IPMCs in future works.

• The LQG controller has been designed on a finite-dimensional approximation
of the system in Chapter 5. Even though this LQG controller has been proved
to be efficient to damp out the vibrations, there is no theoretical guarantee that
the controller will still be working on the infinite-dimensional system, i.e. the
experimental setup. Nevertheless, a similar approach as in [RZG17] could be
developed. With a Lyapunov approach as in Theorem 5.5.1, it would be interest-
ing to prove that the finite-dimensional LQG Hamiltonian controller proposed
in Section 5.4 exponentially stabilizes the interconnected system (5.4.1). In
contrast to [RZG17], the plant is exponentially stable, and thus there is no need
to consider a feedthrough term to damp the high frequencies.

• A natural future control method to consider would be H∞ control, which has
been developed to provide robust control and allows disturbances rejection, see
[vK12].

Eventually, one area of investigation that has been neglected in this work is the
study of controllability and observability of stochastic systems. As far as known,
there is so far no clear definitions of these concepts for infinite-dimensional stochastic
systems.
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Appendix A
Power-preserving discretization

In this appendix we give some details on the finite-dimensional approximation of the
Timoshenko beam introduced in Section 5.5, while preserving the port-Hamiltonian
structure. The method is based on an approximation of the effort and flow variables
by means of differential forms. We refer the reader to [GTvdSM04] for a complete
description of the method and to [RL13] for its application to the Timoshenko beam.

Let us consider a spatial domain [a,b] with N infinitesimal subsections. We first
detail the Dirac structure approximation. Let us denote the flow variables and the
effort variables by fxi and exi , i = 1, . . . ,4, respectively. Their approximations on an
infinitesimal section [α,β ] are given by

fxi(t,ζ ) = f αβ
xi

(t)wαβ
xi

(ζ ), (A.0.1)

exi(t,ζ ) = eα
xi
(t)wα

xi
(ζ )+ eβ

xi
(t)wβ

xi
(ζ ), (A.0.2)

where the forms wαβ
xi , wα

xi
and wβ

xi satisfy

wαβ
xi

=
1

β −α
, wα

xi
=

β −ζ

β −α
, wβ

xi
=

ζ −α

β −α
. (A.0.3)

The PDE (5.2.3) describing the dynamics of the Timoshenko beam can then be ap-
proximated by

f αβ
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By taking the derivatives of the density functions, which satisfy (A.0.3), we get that
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By integrating along the subsection domain [α,β ], we obtain the following expression
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x4
(t)+ eβ

x4
(t) (A.0.14)

f αβ
x4

(t) =− eα
x3
(t)+ eβ

x3
(t)+

β −α

2
eα

x1
(t)+

β −α

2
eβ

x1
(t)−Ra

β −α

2
eα

x4
(t)

−Ra
β −α

2
eβ

x4
(t). (A.0.15)

The efforts on the interval are defined as

eαβ
x1

=
1
2

eα
x1
+

1
2

eβ
x1
, eαβ

x2
=

1
2

eα
x2
+

1
2

eβ
x2
,

eαβ
x3

=
1
2

eα
x3
+

1
2

eβ
x3
, eαβ

x4
=

1
2

eα
x4
+

1
2

eβ
x4
.

(A.0.16)

By expressing the approximated flows f αβ
xi and efforts eαβ

xi under the boundary port-
variables f αβ

∂
and eαβ

∂
, we get that

f αβ
x1

f αβ
x2

f αβ
x3

f αβ
x4

=


−1 −β−α

2 1 −β−α

2 0 0 0 0
−Rt

β−α

2 0 −Rt
β−α

2 0 −1 0 −1 0
0 −1 0 1 0 0 0 0
0 −Ra

β−α

2 0 −Ra
β−α

2
β−α

2 −1 β−α

2 1


[

f αβ

∂

eαβ

∂

]
, (A.0.17)
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eαβ

x1

eαβ
x2

eαβ
x3

eαβ
x4

=


0 0 0 0 1

2 0 1
2 0

1
2 0 1

2 0 0 0 0 0
0 0 0 0 0 1

2 0 1
2

0 1
2 0 1

2 0 0 0 0


[

f αβ

∂

eαβ

∂

]
, (A.0.18)

where the approximated selected boundary variables satisfy

f αβ

∂
=


f α

∂ ,x2
f α

∂ ,x4

f β

∂ ,x2

f β

∂ ,x4

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




eα
x2

eα
x4

eβ
x2

eβ
x4

 , (A.0.19)

eαβ

∂
=


eα

∂ ,x1
eα

∂ ,x3

eβ

∂ ,x1

eβ

∂ ,x3

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




eα
x1

eα
x3

eβ
x1

eβ
x3

 . (A.0.20)

Similarly, the approximation of the Hamiltonian on an infinitesimal section [α,β ] is
given by

Eαβ =
1
2

∫
β

α

K(xαβ

1 wαβ
x1

)2 +
1
ρ
(xαβ

2 wαβ
x2

)2 +EeI(xαβ

3 wαβ
x3

)2 +
1
Iρ

(xαβ

4 wαβ
x4

)2dζ .

(A.0.21)
Hence, the equation (A.0.21) yields the following Hamiltonian matrix

Hαβ =


Kαβ 0 0 0

0 1
ραβ

0 0

0 0 (EeI)αβ 0
0 0 0 1

Iρ,αβ

 , (A.0.22)

where

Kαβ =
∫

β

α

K(wαβ
x1

)2dζ =
K

β −α
, (EeI)αβ =

∫
β

α

EeI(wαβ
x3

)2dζ =
EeI

β −α

ραβ =
∫

β

α

ρ

(wαβ
x2 )2

dζ = ρ(β −α) Iρ,αβ =
∫

β

α

Iρ

(wαβ
x4 )2

dζ = Iρ(β −α)

Let us define

fαβ = [ f αβ
x1

, f αβ
x2

, f αβ
x3

, f αβ
x4

, f α

∂ ,x2
, f α

∂ ,x4
, f β

∂ ,x2
, f β

∂ ,x4
], (A.0.23)

eαβ = [eαβ
x1

,eαβ
x2

,eαβ
x3

,eαβ
x4

,eα

∂ ,x1
,eα

∂ ,x3
,eβ

∂ ,x1
,eβ

∂ ,x3
]. (A.0.24)

Rearranging (A.0.17) and (A.0.18), we deduce the following system

D = {( fαβ ,eαβ ) ∈ Fαβ ×Eαβ : Gαβ eαβ +Fαβ fαβ = 0}, (A.0.25)
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which defines a Dirac structure. A state space representation is more convenient for
simulation or control design of the finite-dimensional approximated port-Hamiltonian
system. Towards this end, the boundary inputs and the outputs given by

u(t) =


1
ρ

x2(a, t)
1
Iρ

x4(a, t)
Kx1(b, t)
EIx3(b, t)

 and y(t) =


Kx1(a, t)
EIx3(a, t)
− 1

ρ
x2(b, t)

− 1
Iρ

x4(b, t)

 (A.0.26)

must be assigned properly. We then obtain the following approximated port-Hamiltonian
system on the subsection [α,β ]

ẋαβ (t) = (Jαβ −Rαβ )Hαβ xαβ (t)+Bαβ uαβ (t), (A.0.27)

yαβ (t) = BT
αβ
Hαβ xαβ (t)+Dαβ uαβ (t). (A.0.28)

Finally, the N-subsections are interconnected together to obtain the complete approxi-
mated port-Hamiltonian model for the Timoshenko beam on the spatial domain [a,b].
The efforts and the flows of section i at extremity β are interconnected with the efforts
of section i+ 1 at extremity α . The interconnection of each subsection is performed
as follows[

f b,i
∂ ,x2

f b,i
∂ ,x4

]
=

[
f a,i+1
∂ ,x2

f a,i+1
∂ ,x4

]
and

[
eb,i

∂ ,x1

eb,i
∂ ,x3

]
=

[
eb,i+1

∂ ,x1

eb,i+1
∂ ,x3

]
. (A.0.29)

This leads to the complete interconnected system given by

ẋab(t) = (Jab−Rab)Habxab(t)+Babuab(t), (A.0.30)

yab(t) = BT
abHabxab(t)+Dabuab(t). (A.0.31)

where the matrices Jab, Rab, Bab and Dab are given by (5.5.23), (5.5.27), (5.5.30) and
by

Dab =


0 (−1)N 0 0

(−1)N+1 0 0 0
0 0 0 (−1)N+1

0 0 (−1)N 0

 (A.0.32)



Appendix B
Lyapunov stability theorem

This appendix is mainly devoted to recall the Lyapunov’s direct method for stability.
For further details, see [Lia47], [Rah13, Chapter 3], [Mov59] and [LGM12].

Theorem B.0.1. Let us consider a dynamical system described by

ẋ(t) = Ax(t), x(0) = x0, (B.0.1)

where A is an infinitesimal generator of a C0-semigroup with domain D(A). The state
x(t)= 0 with t ≥ 0 is said to be exponentially stable if there exists a functional V (x(t)) :
X → R+ such that

λ1‖x‖2
X ≤V (x)≤ λ2‖x‖2

X (B.0.2)

and that satisfies the condition

d
dt

V (x(t))≤−K‖x(t)‖2
X (B.0.3)

for all t ≥ 0 and x ∈ D(A).

Note that the condition (B.0.2) implies that

d
dt

V (x(t))≤−K‖x‖2
X ≤−

K
λ2

V (x(t)), (B.0.4)

which yields

V (x(t))≤ e
− K

λ2
t
V (x(0)). (B.0.5)

We have the following variant of Theorem B.0.1.

Theorem B.0.2. Let us consider a dynamical system described by

ẋ(t) = Ax(t), x(0) = x0, (B.0.6)
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where A is an infinitesimal generator of a C0-semigroup with domain D(A). The state
x(t)= 0 with t ≥ 0 is said to be exponentially stable if there exists a functional V (x(t)) :
X → R+ such that

V (x)≥ λ1‖x‖2
X ≥ 0 (B.0.7)

and that satisfies the condition

d
dt

V (x(t))≤−KV (x(t)) (B.0.8)

for all t ≥ 0 and x ∈ D(A).

We end this appendix by recalling some inequalities that enable bounding candi-
date of Lyapunov functionals and their time derivatives.

Lemma B.0.3. For any w1,w2 ∈ Rn and α > 0, the following inequality

−α
2‖w1‖2− 1

α2 ‖w2‖2 ≤ wT
1 w2 +wT

2 w1 ≤ α
2‖w1‖2 +

1
α2 ‖w2‖2 (B.0.9)

holds.

Lemma B.0.4. [Rah13, Lemma 10] With G = {r|r ∈ H1([a,b];Rn),r(a) = 0}, if
r(ζ , t) ∈ G, then

rT (ζ , t)r(ζ , t)≤ (b−a)
∫ b

a
(∂ζ r)T (ζ , t) (∂ζ r)(ζ , t)dζ (B.0.10)

holds for ζ ∈ [a,b].
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