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Abstract

Concolic testing has been studied for years in the field of imperative pro-
gramming. However, we can only find a very few cases where this technique
is applied to other paradigms, like logic programming. This master thesis
aims to present a full method to apply both concrete and symbolic execution
in parallel on Prolog programs. Our approach is based on a new definition
of path coverage, specific to logic programming and called ”choice coverage”.
This criteria was defined for the first time by Mesnard et al. (2015). We also
introduce a prototype implementation of our algorithm.

Keywords: Concolic execution, symbolic execution, software testing, choice
coverage, Prolog, logic programming.

Résumé

Le test concolique est étudié depuis de nombreuses années dans le domaine
de la programmation impérative. Cependant, nous ne trouvons dans la litté-
rature que très peu de cas où cette méthode a pu être appliquée à d’autres
paradigmes, comme par exemple en programmation logique. Ce mémoire a
pour objectif de présenter une méthode complète pour appliquer à la fois une
exécution concrète et symbolique en parallèle, sur des programmes Prolog.
Notre approche est basée sur une nouvelle définition de la couverture de che-
mins, appelée ”couverture de choix” et propre à la programmation logique.
Ce critère fut défini pour la première fois par Mesnard et al. (2015). Nous
introduirons aussi un prototype d’implémentation de notre algorithme.

Mots-Clefs : Exécution concolique, exécution symbolique, test logiciel,
choice coverage, Prolog, programmation logique.
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Chapter 1

Introduction: From Symbolic
to Concolic Execution

Software validation is a vast field of computer science. It aims to ensure com-
pliance between implementation and requirements by applying techniques
such as testing. A test case is a set of input data to be executed by the soft-
ware. Testing is a popular approach that consists in creating a test suite (a
list of test cases) and then running the system with these different test cases
to observe its behaviour. Figure 1.1 summarize all the activities composing
software testing.

Figure 1.1: Testing activities (Le Traon 2018)
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We could discuss each of the activities presented in Figure 1.1, but in this
thesis, we will concentrate on the generation of test data. We assume that
the oracle (the mechanism for determining whether the output is correct)
is manual: the user needs to look at the output and tell himself if it is the
expected result.

One of the greatest challenges for testing is to define the test cases to ex-
ecute. This complex and time-consuming task is however necessary because
the program’s input domain is often very large, or even infinite (like integers
for example). It is thus impossible to test all the possible values. So, we need
to define a test suite with ”good” test cases.

Most of the time, we use the notion of coverage (Le Traon 2018) to define
the relevance of the test cases. ”Covered” by a test means being executed at
least by one test case in the test suite. To assess the quality of our test, we
first need to define a coverage criteria. To help us, we can use a control flow
graph. There exist three major criteria (Figure 1.2):

• Statements or node coverage: Each instruction is performed at least
one time.

• Decision or branch coverage: For every choice (intersection in the con-
trol graph), all the possible options are taken at least once.

• Path coverage: Cover all the possible sequences of edges in the graph.

Figure 1.2: Example of different coverage criteria (Learn Testing 2019)
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In this thesis, we use the definition of path coverage and adapt it to our
needs. Our goal is then to define a test suite which cover as many execution
paths as possible.

1 int f ( ) {
2 . . .
3 y = read ( ) ;
4 z = y * 2 ;
5 i f ( z == 12) {
6 f a i l ( ) ;
7 } else {
8 p r i n t f ( ”OK” ) ;
9 }
10 }

Listing 1.1: Code used to illustrate symbolic execution

Among the most popular testing techniques, we can also find symbolic
path execution (Wikipedia 2019b; King 1976; Clarke 1976). The idea is to
execute the program with symbolic input values. Each statement is executed,
creating a new equation. When a conditional statement is reached, the pro-
gram forks into two new branches. In the example shown in Listing 1.1,
we could name the symbolic input λ and then we obtain the two symbolic
execution paths from Figure 1.3.

y = λ

z = λ ∗ 2
then else

λ ∗ 2 = 12 λ ∗ 2 ̸= 12

fail() printf(”OK”)

Figure 1.3: Symbolic execution tree

We can now derive a set of constraints associated to each path:
y = λ

z = λ ∗ 2
λ ∗ 2 = 12


y = λ

z = λ ∗ 2
λ ∗ 2 ̸= 12

Test cases are found by solving those equation systems. For example,
λ = 6 fails and λ = 5 prints ”OK”. These two cases lead to a full path
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coverage.
Unfortunately, real-life cases are not so easy. Sets of constraints quickly

gain in complexity until becoming unsolvable, leading to poor coverage.
To avoid drawbacks of the symbolic execution, one could think of ran-

domly generating the test cases. Unfortunately, this leads to very poor cov-
erage. Nevertheless, some hybrid approaches where the user drives a random
generation exist, such as QuickCheck (Claessen et al. 2000). Although, such
methods are again time-consuming.

A quite recent dynamic variant of symbolic execution, called concolic ex-
ecution (Godefroid, Klarlund, et al. 2005; Sen et al. 2005; Wikipedia 2019a),
mixes symbolic and concrete execution. It could be used either for model
checking or for test case generation. Using real values helps simplifying the
conditions to solve and detects earlier the unfeasible paths.

In this master thesis, we present a new algorithm for concolic testing
in Prolog. We will first introduce concolic testing in general, some Prolog
specificities and why it is interesting to apply concolic methods on declarative
program languages. Then, we will discuss the interest of a SAT solver in our
context. The fourth chapter is devoted to development of our algorithm,
finishing of a complete step-by-step execution. After describing our proof-of-
concept implementation, we will finally conclude by sharing some ideas for
future developments.
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Chapter 2

State of the Art

After describing how concolic testing works, we discuss its applications in
different paradigms and explain why it is interesting to apply it on logic
programming.

2.1 What’s Concolic Testing?
The main idea of this method is to replace some constraints with a concrete
value, reducing their complexity. This simplification helps building more
scalable tools. Many tools are already using concolic execution to test im-
perative programs as for example SAGE (Godefroid, Levin, et al. 2012) and
Java Pathfinder (Pasareanu et al. 2010).

1 void f ( int x , int y ) {
2 int z = 2*y ;
3 i f ( x == 100000) {
4 i f ( x < z ) {
5 a s s e r t ( 0 ) ; /* e r ro r */
6 }
7 }
8 }

Listing 2.1: Code used to illustrate concolic execution

To explain how it works, let’s take the small C code (Wikipedia 2019a)
displayed in Listing 2.1. Our goal is to find a suite of relevant test cases.
In this case, line 5 produce an error, since assert(0) is always false. We will
show how concolic testing highlights this error.

The execution begins with an arbitrary input instantiation. For example,
x = 0 and y = 0. By executing the first step in concrete and symbolic
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execution in parallel, we obtain:

⟨z = 0 ][ z = 2 ∗ y⟩

where the first part of the tuple represent the concrete execution step and
the second the symbolic one. Then, the test x = 100000 fails (0 ̸= 100000).
This inequality is called a path condition. Every execution following the
same path verifies it. At this point, the end of this particular path is reached
(no more instruction to execute). We can add the initial values to the list of
produced test cases and try new values.

To find these new values, we go back to the last path condition encoun-
tered and we negate it. In our case, there is only one: x ̸= 100000. Now, we
need to solve the given constraint x = 100000 in order to find values for the
input x and y. This step could be made by an automated solver.

Suppose we found x = 100000 and y = 0 and we run the program again
with these new inputs. Since 100000 ≥ 0(= z), the program stops and
(x = 100000, y = 0) is added to the test cases, before backtracking to the
last path condition: x ≥ z (with x = 100000). The negation of this path
condition produces the following set of constraints:

z = 2 ∗ y
x = 100000

x < z

At this point, we can find the third and last test case of this example: x =
100000 and y = 50001. This input reaches the erroneous assertion. Since
all path conditions have been explored, this is also the end of this concolic
execution, summarized in Figure 2.1.

if
x ̸= 100000 x = 100000{

x = 0

y = 0
if

x ≥ z x ≤ z{
x = 100000

y = 0

{
x = 100000

y = 50001

Figure 2.1: Concolic execution tree

The tree shown by Figure 2.1 illustrates the creation of three test cases:{
x = 0

y = 0

{
x = 100000

y = 0

{
x = 100000

y = 50001
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Our goal of full path coverage is now satisfied and the third test case covers
the error. If only concrete execution had been used (with random values),
it could have taken a long time before finding relevant values for all the
branches. The error is likely not to be found.

2.2 Concolic Testing for Logic Programming
In this section, we develop research on concolic testing applied to other
paradigms. We focus mainly on the logical paradigm with a small detour
through functional programming.

2.2.1 Different paradigms
Before going further, here is a small reminder about different programming
paradigms. In computer science, There exist two major families of program-
ming languages: imperative and declarative languages.

Imperative programming languages, for example Fortran (Backus et al.
1957), use instructions to modify the state of the program. A state is like a
snapshot on the value of every program variable. Imperatives programming
describes how a program operates. Procedural (Pascal, C, Fortran, etc.)
and object-oriented languages (Java, C++, C#, etc.) are two imperative
paradigms.

On the other hand, declarative programming aims to explain the logic
of the computation and the problem domain, rather than describing how
to accomplish it with a sequence of explicit statements. The ”how” is left
to the implementation of the language. Declarative programming include
functional and logic paradigms.

Functional programming (McCarthy 1959) avoids changing-state and mu-
table data by treating computation as the evaluation of mathematical func-
tions. Functional code avoid all side effects: a function’s return value depends
only on its arguments. In contrast, in imperative, global program state can
affect a function’s output in addition to its arguments. The calculation model
is closer to the specification of the problem and uses a more abstract level.
Functional programs are generally more concise, easier to understand and
maintain, quicker to develop and less prone to errors. Haskell (Jones 2003)
is a well-known functional language.

We finally arrive at logic programming (Colmerauer et al. 1996; Kowalski
1988; Clocksin et al. 2012), which is the paradigm that concerns us here.

Logic programming is largely based on formal logic. Any program writ-
ten in a logic programming language is a set of sentences in logical form, ex-
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pressing facts and rules about some problem domain. A logic language needs
a mechanism of execution which makes it possible to compute these rules.
The main advantages of logic programs are that they allow non-determinism
(multiple solutions), partial relations and multi-directionality (functions and
their inverse). A leader in this paradigm is the Prolog language which is used
in this thesis.

2.2.2 Logic Testing
Before talking about concolic execution in logic programming, we focus on
testing in general for such languages.

PROTest (Belli et al. 1993) is a testing environment for logic programs. It
is one of the first tools describing a method directly designed for declarative
programming and not adapting imperative ideas.

Mercury (Somogyi et al. 1996) is a logic and functional language inspired
by Haskell and mostly Prolog. Degrave et al. (2008) detailed how to au-
tomatically generate test inputs for Mercury programs. It adapts symbolic
path execution from existing work for imperative languages, to deal with
logic features like symbolic data representation, predicate failure and non-
determinism.

Mera et al. (2009) proposed a framework for unit testing and verifica-
tion of the Ciao multi-paradigm system (Hermenegildo et al. 2012). Ciao
supports logic programming, and Prolog in particular. SWI-Prolog (Wiele-
maker et al. 2012) offers a unit testing tool. It can also generate test cases
interactively and analyse coverage (percentage of used and failing clauses).
The SICStus Prolog dialect (Carlsson et al. 2012) and the ECLiPSe con-
straint programming system (Schimpf et al. 2012) can compute the number
of times a statement in the code is executed when a given goal is run.

The closest approach (both in time and substance) to concolic testing in
logic programming is probably Albert et al. (2014). This article depicts a
test case generation technique based on traditional symbolic execution and
using a form of statement coverage.

2.2.3 A Recent History of Concolic Testing
Until 2015 (Vidal 2015; Mesnard et al. 2015), in the context of functional and
logic programming there were only a few testing techniques and none of them
used the concolic method, even if its value had been proven in the imperative
paradigm (Sen et al. 2005; Godefroid, Levin, et al. 2012; Pasareanu et al.
2010). Since then, things have evolved gradually.
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Vidal (2015) developed a concolic execution semantics for logic programs.
At this point, it was only ideas, without any formal result or implementa-
tion. In this method, concrete execution is driven first, producing a trace
which leads the symbolic execution. This step-by-step and conceptually easy
manner, however, brought low quality results. It misses one of the main
advantages of concolic execution (Mesnard et al. 2015): using the concrete
values in symbolic execution. Vidal (2015) also considered a simple statement
coverage.

In Mesnard et al. (2015), a fully automatic scheme for concolic testing in
logic programming and contest, a proof-of-concept implementation are pre-
sented. This algorithm aimed at helping the programmer to systematically
find program bugs and generate test cases with a good code coverage. Ac-
cording to Mesnard et al. (2015), contest was the first fully automatic testing
tool for Prolog that aims at full path coverage (here called choice coverage,
as we explain later in this chapter). This master thesis is an extension of this
article, so it will be our major reference. We will often mention the algorithm
it presents to test Prolog programs thanks to a concolic method. The three
authors published two other articles (Mesnard et al. 2016; Mesnard et al.
2017) detailing some issues of their approach. We discuss these concerns and
how our new algorithm tries to answer them in the next section.

Most of researchers use an augmented interpreter of the language to deal
with concrete and symbolic values in parallel. Unlike them, Palacios et al.
(2015) employed program instrumentation to produce a sequence of events
used to reconstruct the symbolic execution associated with the program.

A few other people (Giantsios et al. 2017; Tikovsky 2017), inspired by
Mesnard et al. (2015), developed a similar approach for functional programs.
CutEr (Tikovsky 2017) is a test tool for the functional subset of Core Er-
lang and ccti (Giantsios et al. 2017) is a test tool for Curry, a language de-
rived from Haskell. Cherep Dragoevich (2016) also used CutEr as a medium
to define a methodology to apply concolic testing, based on pre and post-
conditions.

2.2.4 Prolog Mechanisms
Before introducing some basic concepts useful for concolic testing, we quickly
remind how Prolog works. These definitions are adapted from Vanhoof
(2013).

Prolog programs are made of two basic elements: clauses and atoms. A
clause is a rule, defining (part of) a relationship. It is formed by a head, also
called an atom, and a body in a conjunctive form. A clause with no body is
called a fact. All the clauses form the Prolog database. Each fact is like a
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global parameter, always satisfied.
From an initial request, Prolog build a search tree called SLD tree, for

”Selective Linear Definite”. Its nodes are queries and the root is the initial
query. The construction of the tree is done in depth first. Prolog execution
is based on two mechanisms:

• Unification: Allows to instantiate the variables of the request and,
thus, to calculate answers in case the request is validated. An atom of
the query unifies with the head of a clause if there is a substitution of
variables that makes the two atoms identical:

– A substitution is a mapping of variables to objects (called terms):
σ = {X1/t1, . . . , Xn/tn}

– Such a substitution is called a unifier. There are often multiple
unifiers, but we are usually satisfied with the most general unifier
(M.G.U.).

– Unfolding is the application of a substitution on an atom. Its
result is the atom where all the variables have been replaced si-
multaneously with the corresponding terms.

• Backtracking: Allows to explore several alternatives when looking for a
proof. If the leftmost branch of the tree produces a failure, we try the
next branch until there is no more left. Backtracking is the mechanism
which go up the tree to find a branch that has not been explored yet.

We call a derivation a sequence of queries (beginning at the initial one)
such that each successive query is constructed from the previous query by
unifying the leftmost atom with the head of one of the clauses. When the
leftmost atom does not unify with any of the (heads of) rules, the derivation
fails. When we get the empty query, the derivation succeeds and the final
output is the composition of all the unifiers used throughout the derivation.
A derivation can also be infinite.

In this thesis, we call ”dis-unification” the problem consisting in finding
substitution for which the request can not unify with given clauses.

The last concept we need is called ”Groundness”. When a variable is
not bound to any value, we called it a free variable. A grounded variable is
exactly the opposite. A grounded term is a term without any free variable.
It is an important concept for testing since we are searching for test cases
typically in the form of grounded terms.

Here, we only use these basics definitions. In full Prolog, there are several
more advanced concepts such as the negation and the cut that we don’t use
here.
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2.2.5 Basic Concepts for Concolic Testing
Generally, static verification techniques like symbolic execution are complete.
On the other hand, dynamic testing, with concrete input, is sound but as
we mentioned earlier, this validation technique is incomplete. Soundness can
be defined as the absence of false positives: every test case found is a valid
test case for the system under consideration. Incompleteness means that we
usually don’t achieve full coverage. In this thesis, we pursue the work done
in Mesnard et al. (2015) to build a sound but generally incomplete approach.

For this purpose, we reuse the notion of choice coverage defined in Mes-
nard et al. (2015). This concept is a variant of path coverage, adapted for
logic and nondeterministic programming only. Take the following program
for example:

P =

{
p(a).

p(b).

When using full path coverage, we would be tempted to consider only two
test cases:

{p(a), p(b)}
In order to have a full coverage, the notion of choice coverage considers that
we need a goal matching not only the first and the second clauses, but also
no clauses at all and both:

{p(X), p(a), p(b), p(c)}

where p(X) matches both clauses and p(c) none of them.
In the following, we also discuss unification and the problems that arise

from it. In the context of choice coverage, unification means that an atom A
matches the heads of some clauses, say H1, . . . , Hn, but does not match the
heads of some other clauses, say H ′1, . . . , H

′
m (Mesnard et al. 2015).

Mesnard et al. (2015) suggests an algorithm where unification and dis-
unification are key elements to find alternative goals during concolic exe-
cution. Unfortunately, the algorithm proposed to solve the problem called
”selective unification” is incomplete.
Definition 2.2.1 (Selective Unification Problem) Let A be an atom with
G ⊆ Var(A) a set of variables. Let H+ and H− be finite sets of atoms such
that all atoms are pairwise variable disjoint with A and unify with A. Then,
the selective unification problem for A w.r.t. H+ , H− and G is defined as
follows:

P(A,H+,H−, G) =

σVar(A)

∣∣∣∣∣∣
∀ H ∈ H+ : Aσ ≈ H

∧ ∀ H ∈ H− : ¬(Aσ ≈ H)
∧ Gσ is grounded.





12

where:

• Var(A) represents the set of all free variables in A

• σVar(A) is the substitution σ restricted to variables of the atom A

• Aσ is the application of the substitution σ on the atom A

• ≈ denotes the unification

Mesnard et al. (2016) proposes some refinements to complete the algo-
rithm but with some restriction on the linearity of the atoms. Linear means
that it can not contain multiple occurrences of the same variable. In some
cases, this restriction can have a significant impact. In Mesnard et al. (2017),
they even prove that in most practical cases, this selective unification prob-
lem is undecidable for constraint logic programs.

Another problem in the Mesnard et al. (2015) implementation was the
repetitions. Lots of computations were repeated several times. By modifying
the semantics, we could combine some steps to be more efficient and travel
each execution trace only once.

In the next chapters, we introduce a new algorithm to meet those re-
quirements and an implementation under development. This approach could
be useful for other programming languages as well, with the help of several
transformational approaches like the ones presented in Gómez-Zamalloa et
al. (2010).
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Chapter 3

SAT Solver

Most software implementing concolic testing are using a SAT solver. We will
explain why, then we will describe the one we chose and the changes we made
to use it in our context.

3.1 Why Using a Solver?
A SAT problem or boolean satisfiability problem is the problem of determin-
ing, if it exists, an interpretation that satisfies a given Boolean formula. A
SAT solver is a program which aims to solve this kind of problems.

In Mesnard et al. (2015), only unification and dis-unification are used to
produce new alternative goals. This method has been proven not efficient
(see the Selective Unification Problem in the previous chapter). However,
several imperative approaches used SAT solvers to deal with the symbolic
part of the execution. In this thesis, we also choose this way and produce
set of constraints to solve. When performing symbolic execution, each path
creates a new equation. Each of them can be solved efficiently by a SAT
solver. The drastic improvement of these solvers, in term of efficiency and
expressiveness power (Wikipedia 2019a), is one of the reasons why concolic
testing developed so much since 2005.

3.2 Microsoft’s Z3 Solver
We have chosen to use the SAT solver Z3 by Microsoft (Microsoft Research
2019; Github 2019b). This solver designed by Microsoft as an efficient theo-
rem prover, supporting arithmetic, fixed-size bit-vectors, extensional arrays,
data-types, uninterpreted functions and quantifiers. They provide an online
tutorial to understand its mechanism, and a few APIs to use Z3 with several
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programming languages such as C, C++ and Python. This solver has already
been used by others in the context of concolic execution, like for example in
SAGE (Godefroid, Levin, et al. 2012).

3.3 Prolog Interface
In order to use Z3 in combination with Prolog, we need a new interface.
Using the C API (Github 2019a) as a bridge between Prolog and Z3, we
define most of the Z3 functionalities in Prolog. This new interface allows to
define Z3-contexts, push and pop scopes and types for integer and Prolog
terms. With these tools, it is possible to assert a (string) formula, to check
it and to recover the correct model (if any).
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Chapter 4

Concolic Algorithm

In this chapter, we focus on the new algorithm. Firstly, we describe the
semantics used to define the execution of a logic program and the specificities
relative to concolic execution. Then we present the whole test procedure and
finally, we show an application of the algorithm with a complete example.

4.1 Concrete Logic Semantics
For the purpose of the algorithm, we first need to define the semantics we use
for a concrete execution. In fact, we reuse the one described in Mesnard et
al. (2015). This top-down semantics is based upon Ströder et al. (2011) and
specific to definite logic programs. One of its particularity is that each state
contains all the information it needs to perform the next step, in contrast
with SLD approaches like Lloyd (1987). Another one is that we only consider
the first solution for the initial goal, following the way Prolog is mostly used.

Before presenting the concrete semantics, let us introduce some auxiliary
notions and notations from Mesnard et al. (2015):

• The concrete execution of a program P is expressed by a transition sys-
tem whose configurations are

〈
B1
δ1
| . . . |Bn

δn

〉
, where each B represents

a state.

• A goal BH←B
δ can be both labelled by:

– A clause H ← B of the program, which is the leftmost clause
matching B (i.e. defining the next unification to perform). For
simplifying notation, we sometimes use the corresponding label
instead of the clause itself.
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– A substitution δ, which represents the solution so far when it is
restricted to the variables of the initial goal only. Since it is a
top-down semantics, the general substitution is computed step by
step by composing different atomic substitutions.

• There exist two special states, called success and fail and denoting the
end of the current path execution. success is used when we have found
a substitution such that when the program is called with the initial
goal, it eventually stops gracefully (returns true). fail represents the
case where the program returns false.

• As they are static, the program clauses are considered as global param-
eters.

• A sequence of states is denoted S, S ′, . . .

• ϵ represents the empty sequence.

• An initial configuration has the form ⟨Aid⟩ where A is an atomic goal
and id is the identity substitution.

We also need the definition of a new function (Mesnard et al. 2015):

Definition 4.1.1 (clauses) Let A be an atom and P a logic program. The
function clauses(A,P) returns the sequence c1, . . . , cn of clauses from P whose
head unifies with A.

The transition rules (Mesnard et al. 2015) shown in Figure 4.1 proceed
as follows:

• Rule success leads to a final state, in case of a successful execution
path. success is a new constant, indexed with the answer substitution
computed in the considered derivation.

• Rule failure produces another final state for failing derivations. It in-
troduces the new constant fail. The δ substitution could be used for
debugging purposes.

• Rule backtrack is used when the first goal fails but there is at least one
alternative goal available.

• Rule choice matches the head of the left most atom (in the SLD tree)
with a clause. If any, it produces as many copies of the goal as there
are solutions of the clauses function.
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(success)
⟨trueδ |S⟩ → ⟨successδ⟩

(failure)
⟨(fail,B)δ⟩ → ⟨failδ⟩

(backtrack) S ̸= ϵ

⟨(fail,B)δ |S⟩ → ⟨S⟩

(choice) clauses(A,P) = (c1, . . . , cn) ∧ n > 0

⟨(A,B)δ |S⟩ → ⟨(A,B)c1δ | . . . |(A,B)
cn
δ |S⟩

(choice_fail) clauses(A,P) = {}
⟨(A,B)δ |S⟩ → ⟨(fail,B)δ |S⟩

(unfold) mgu(A,H1) = σ〈
(A,B)H1←B1

δ |S
〉
→ ⟨(B1σ,Bσ)δσ |S⟩

Figure 4.1: Concrete semantics

• Rule choice_fail returns fail when there is no matching clause. This
leads to backtrack if there is another goal, or to failure if not.

• Rule unfold executes the unfolding in case we have a matching clause.

To understand the underlying mechanism with a concrete example, con-
sider the following logic program (Mesnard et al. 2015):

p(s(a)). q(a). r(a).
p(s(X))← q(X). q(b). r(c).
p(f(X))← r(X).

Given the initial goal p(f(X)), we have the following successful computation
(for clarity, we label each step with the applied rule):

⟨p(f(X))id⟩ →choice
〈
p(f(X))

p(f(Y ))←r(Y )
id

〉
→unfold ⟨r(X)id⟩

→choice
〈
r(X)

r(a)
id |r(X)

r(c)
id

〉
→unfold

〈
true{X/a} |r(X)

r(c)
id

〉
→success 〈

success{X/a}
〉

{X/a} is the first computed answer for the (successful) derivation of
p(f(X)). The correctness of the concrete semantics is an easy consequence
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of the correctness of the semantics in Ströder et al. (2011). The rules of
Mesnard et al. (2015) can be seen as an instance for pure Prolog without
negation, where we only compute the first answer for the initial goal.

4.2 Concolic Execution Semantics
Using the concrete semantics defined previously, we now introduce a concolic
execution semantics for logic programs. This semantic is inspired by Mesnard
et al. (2015). Here is a few unchanged preliminary definitions and notation:

• Concolic states have the form ⟨S ][ S ′⟩, where S and S ′ are sequences of
(possibly labelled) concrete and symbolic goals, respectively. In logic
programming, the notion of symbolic execution is very natural: the
structure of both S and S ′ is the same, and the only difference is that
some atoms might be less instantiated in S ′ than in S.

• Let Z be a set of atoms, Var(Z) represents the set of all free variables
in Z. For a substitution θ, Var(θ) = Dom(θ) ∪ Ran(θ).

• on denotes the sequence of syntactic objects o1, . . . , on.

• Given an atom A, we let root(A) = p/n if A = p(tn).

• We assume that every c clause has a corresponding unique label, which
we denote by ℓ(c).

To these definitions, we add some new ones:

• Since we use a top-down semantics, the execution path of an initial
goal is computed step by step. This path is represented by the labels
of each clauses which unify during the execution. A trace π is a list of
the labels forming (part of) the execution path of the initial goal. If
several different paths lead to the same goal, we only consider the left
most one in the SLD tree. For example, considering the goal p(a) and
the following program:

1 p ( a ) .
2 p (X) .

Then, π = [1] even if p(a) matches with both clauses.

• The symbol ⊥ is used in a trace to mark a failure at the end of a path.

• We denote by σ̂ the constraint formed from the substitution σ. For
example, if σ = {X → a} then σ̂ = (X = a).
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• Given an atom A with root(A) = p/n, an initial concolic state has the
form: 〈

Aid ][ p(Xn)id,[],p(Xn),true,G

〉
where:

– Xn are different fresh variables
– id is the identity substitution
– [ ] is the trace computed so far and since it is the initial state, it

is currently empty
– true is the neutral logic constraint which represents here the fact

that we haven’t found any constraint to solve yet
– G is a subset of Xn containing the variables we want to ground

We also introduce two auxiliary functions:

Definition 4.2.1 (neg_constr) Let A be an atom, G the set of variables
to ground and cn a sequence of clauses. The function neg_constr(A,G, cn)
returns the set of negative constraints. A negative constraint is a (quantified)
constraint in the form:

∀ Var(A) \G, ∀ Var(ck), A ̸= head(ck)

where ck ∈ cn and the function head returns the atom at the head of a clause.

Here is a small example using this definition.

Example 4.2.1 Lets take the following Prolog program:
1 p ( s ( a ) , b ) .
2 p ( s (W) , a ) .
3 p ( f (W) , s (Z ) ) .

And let A be the goal p(X,Y ), with the set of variables to ground G = {X}.
We aim at producing the constraints telling ”A must be different from the
first and second clauses”. Then, we can call the function:

neg_constr(A,G, [p(s(a), b), p(s(X), a)])

which returns the following constraints:

∀ Y, ∀ W, p(X,Y ) ̸= p(s(a), b)

∧ p(X,Y ) ̸= p(s(W ), a)
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Definition 4.2.2 (alts) Let A0 be the initial concrete goal and A a symbolic
one. Let γ be the constraints so far and G the set of variables to ground.
Let ck and dk be the sets of clauses matching the concrete and the symbolic
goal respectively. Then, the function alts(A0, γ, A, ck, dk, G) returns all the
alternative goals to consider. The set of alternatives goals can be defined as:

alts =

Goals

∣∣∣∣∣∣
P ∈ Power_Set(dk)

∧ P ̸= ck
∧ Goals ⊢ (γ ∧ P̂).


where ⊢ can be understand as ”satisfies”, Power_Set is the set of all subsets,
and P̂ is the positive constraint formed from P, i.e. for an initial goal A:

∀ clause ∈ P , ∀ Var(A) \G, ∀ Var(clause), A = head(clause)
∧ ∀ clause ∈ dk \ P , ∀ Var(A) \G, ∀ Var(clause), A ̸= head(clause)
where the function head returns the atom at the head of a clause. In practice,
we use the Z3 SAT solver to solve the constraints computing the alternative
goals.
Example 4.2.2 Lets take the following Prolog program:

1 p ( s ( a ) , b ) .
2 p ( s (X) , a ) :− q (X) .
3 p ( f (X) , s (Y) ) .

5 q ( a ) .
6 q ( b ) .

With A0 = p(X,Y ) the initial goal, a symbolic goal A = q(W ), and the
set of variables to ground G = {X,W}. Let the γ constraints be:

γ = ∀ Y, V, Z p(X,Y ) ̸= p(s(a), b)

∧ p(X,Y ) ̸= p(f(V ), s(Z))

∧ (X = s(W )) ∧ (Y = a)

We want to find the alternative goals for ck = [q(b)] and dk = [q(a), q(b)].
Since we have:

Power_Set(dk) = {{}, {q(a)}, {q(b)}, {q(a), q(b)}}
For each set, we can then make the following deductions:

{} −→ γ ∧ (q(W ) ̸= q(a)) ∧ (q(W ) ̸= q(b)) −→ p(s(c), a)

{q(a)} −→ γ ∧ (q(W ) = q(a)) ∧ (q(W ) ̸= q(b)) −→ no new goal
{q(b)} −→ q(b) = ck −→ no new goal

{q(a), q(b)} −→ γ ∧ (q(W ) = q(a)) ∧ (q(W ) = q(b)) −→ no new goal
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where c is a new fresh constant. The constraints do not need any new
quantifiers since we don’t use another variable than W , which is in G. The
output of the function alts(A0, γ, A, ck, dk, G) is thus the set:

{p(s(c), a)}

Finally, we define two global parameters: Traces and TestCases. The set
Traces contains all the traces already visited. It needs to be initialized
empty. The produced test cases are stored in the TestCases set. This global
parameter is initialized with the initial concrete goal.

The transition relation ⇝ has undergone some changes from Mesnard
et al. (2015). The new relation is depicted in Figure 4.2.
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(success)
⟨trueδ |S ][ trueθ,π,A0,γ,G |S ′⟩⇝ ⟨successδ ][ successθ⟩

(failure)
⟨(fail,B)δ ][ (fail,B′)θ,π,A0,γ,G⟩⇝ ⟨failδ ][ failθ⟩

(backtrack) S ̸= ϵ

⟨(fail,B)δ |S ][ (fail,B′)θ,π,A0,γ,G |S ′⟩⇝ ⟨S ][ S ′⟩

(choice)

clauses(A,P) = cn ∧ n > 0 ∧ clauses(A′,P) = dk
γ′ ← neg_constr(A′, dk \ cn)
if π ̸∈ Traces then TestCases← TestCases ∪ alts(A0, γ, A

′, cn, dk, G)
Traces← Traces ∪ π,

⟨(A,B)δ |S ][ (A′,B′)θ,π,A0,γ,G |S ′⟩
⇝ ⟨(A,B)c1δ | . . . |(A,B)cnδ |S

][ (A′,B′)c1θ,π.ℓ(c1),A0,γ∧γ′,G | . . . |(A′,B′)
cn
θ,π.ℓ(cn),A0,γ∧γ′,G |S ′⟩

(choice_fail)

clauses(A,P) = {} ∧ clauses(A′,P) = ck
γ′ ← neg_constr(A′, ck)
if π ̸∈ Traces then TestCases← TestCases ∪ alts(A0, γ, A

′, { }, ck, G)
Traces← Traces ∪ π,

⟨(A,B)δ |S ][ (A′,B′)θ,π,A0,γ,G |S ′⟩⇝ ⟨(fail,B)δ |S ][ (fail,B′)θ,π.⊥,A0,γ∧γ′,G |S ′⟩

(unfold) mgu(A,H1) = σ ∧mgu(A′, H1) = ρ〈
(A,B)H1←B1

δ |S ][ (A′,B′)H1←B1
θ,π,A0,γ,G

|S ′
〉

⇝
〈
(B1σ,Bσ)δσ |S ][ (B1ρ,B′ρ)θρ,π,A0,γ∧ρ̂,G∧Var(Gρ) |S ′

〉
Figure 4.2: Concolic execution semantics

As can be seen, the concrete part of the configurations behaves the same
way as the concrete semantics presented in the previous section. Here are
some explanations about the parallel symbolic execution:

• Rules success and failure behaves like the concrete version: they lead to
a final configuration, indexed with the answer substitution computed
in the considered (successful or failing) derivation.

• Rule backtrack is also similar for concrete and symbolic states. The
idea is just to skip the first failing goal and to continue the derivation
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with the second one. The S ̸= ϵ hypothesis ensures the existence of
this second goal.

• Rule choice finds matching clauses to pursue the concrete execution and
uses the symbolic goals to find new alternatives. The clauses function
is used to compute the clauses matching both the concrete and the
symbolic goals (cn and dk respectively). Obviously, cn ⊆ dk. We also
compute the γ′ negative constraints for all the clauses matching the
symbolic goal but not the concrete one. If the π trace has not already
been considered, then it is added to the set Traces and alternative
goals are computed and added to TestCases. The rule creates as many
new symbolic goals as it creates concrete goals. The indexes of the
symbolic goals are updated as following:

– The label of the matching clause is added to the π trace of each
new symbolic goal.

– γ′ is added to the previous γ constraints.
– The other indexes stay unchanged.

• Rule choice_fail follows the same idea than rule choice, but in the case
where there is no matching clause (clauses(A,P) = {}). So, every
clauses matching the symbolic goal must be negated and instead of a
clause label, we add the special symbol ⊥ to the trace.

• Rule unfold still executes the unfolding in case we have a matching
clause. The only difference with the concrete execution is that now we
need to update the indexes:

– A ρ̂ constraint is added to the previous γ constraints. ρ̂ is a
constraint formed from the new ρ substitution, where each sub-
stituted variable is equalized to the term which unified with it.

– The new variables used in the ρ substitution are added to set of
variables to be grounded if they unify with a variable in G.

– The other indexes stay unchanged.

Let us take a small example from Mesnard et al. (2015) to apply our new
semantics:

Example 4.2.3 Consider the following logic program with clause labels:

(ℓ1) p(s(a)). (ℓ4) q(a). (ℓ6) r(a).
(ℓ2) p(s(X))← q(X). (ℓ5) q(b). (ℓ7) r(c).
(ℓ3) p(f(X))← r(X).
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Given the initial goal p(f(a)), we have the following concolic execution:〈
p(f(a))id ][ p(W )id,[],p(W ),true,[W ]

〉
choice cn = {3}, dk = {1, 2, 3}〈

p(f(a))
p(f(Y ))←r(Y )
id ][ p(W )

p(f(Y ))←r(Y )
id,[3],p(W ),γ,[W ]

〉
unfold〈

r(a)id ][ r(Y ){W→f(Y )},[3],p(W ),γ∧σ̂,[W,Y ]

〉
choice cn = {6}, dk = {6, 7}〈

r(a)
r(a)
id ][ r(Y )

r(a)
{W→f(Y )},[3,6],p(W ),γ∧σ̂∧γ′,[W,Y ]

〉
unfold〈

trueid ][ true{W → f(a)

Y → a

}
,[3,6],p(W ),γ∧σ̂∧γ′∧σ̂′,[W,Y ]

〉

success〈
successid ][ success{W → f(a)

Y → a

}
〉

With:
γ = ∀ X p(W ) ̸= p(s(a))

∧ p(W ) ̸= p(s(X))

σ̂ = (W = f(Y ))

γ′ = r(Y ) ̸= r(b)

σ̂′ = (Y = a)

First, we apply a choice rule. The concrete goal only matches p(f(X)),
when the symbolic one matches p(s(a)), p(s(X)) and p(f(X)). We can then
execute an unfold rule to apply the substitution. The choice rule called again,
this time with {r(a)} and {r(a), r(c)} for the concrete and symbolic goals
respectively. After performing a second unfold rule, we can use the success
rule and the end of the execution path is reached. The concolic execution
stops.

This may seem longer than the previous definition (Mesnard et al. 2015).
This comes from the fact that more computations are done in each step. It
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avoids creating more steps which perform the same computation again and
again. In the old version, the semantics was there only for the concolic exe-
cution. Here, nearly all the testing is already done in parallel. For simplicity,
this example does not take TestCases and Traces global parameters into ac-
count, or the result of the alts function. These are only useful if we wanted
to do a full testing procedure and not only a path execution like now. A
complete example is available in the last section of this chapter.

4.3 Concolic Testing Procedure
In this section, we modify the concolic testing procedure developed in Mes-
nard et al. (2015) to fit the new concolic execution semantics. The presented
algorithm aims to produce concrete initial goals so that all feasible choices
in the execution paths are covered. An implementation of this procedure is
described in the next chapter.

Our concolic testing procedure (Algorithm 1) takes as input a program, a
set G of variables to be grounded and a random initial atomic goal (generally
provided by the user) denotedmain/n. We also define a function input, which
associates some input arguments to main/n.

We assume that each initial concrete goal main(tn) execution terminates
in a finite number of steps or finitely fails (Vasak et al. 1986).
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Algorithm 1: Concolic testing

Input: a logic (labelled) program P , a set G of variables to ground
and an atom main(tn) with input(main(tn)) ground.

Output: a set TestCases of test cases.
1 Let Pending := {main(tn)}, TestCases := {}, Traces := {}.
2 while |Pending| ̸= 0 do

2.a Take A ∈ Pending, Pending := Pending \ {A},
TestCases := TestCases ∪ {A}.

2.b Apply Concolic execution rules on A, with the initial concolic
state defined as:

C0 =
〈
Aid ][ main(Xn)id,[],p(Xn),true,G

〉

2.c Update Pending by adding each new test case produced
during this execution.

3 end
4 Return TestCases.

Algorithm 1 begins by initializing the global parameters (Pending, TestCases
and Traces), then it considers each pending test case until there are no more
left. For every pending test case, a concolic execution is performed, as de-
scribe in the previous section. At the end of this execution, we add all the
new discovered goals to the set of the pending test cases. When all test cases
have been considered, the procedure returns TestCases.

The soundness of concolic testing comes from the fact that each atom from
TestCases is indeed a test case of the form main(sn) with input(main(sn))
ground.

Unfortunately, we often need to choose between completeness and ter-
mination. If our algorithm terminates, it produces test cases to cover all
feasible paths. In this sense, it could be considered as a complete semi-
algorithm (Mesnard et al. 2015). However, to get full choice coverage, the
algorithm runs forever if the program involves recursion.

Example 4.3.1 Let nat(s(0)) be an initial goal and consider the following
program:

(ℓ1) nat(0). (ℓ2) nat(s(X))← nat(X).
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Here is the concolic trace produced by the initial goal:〈
nat(s(0))id ][ nat(X)id,[],p(X),true,[X]

〉
choice cn = {2}, dk = {1, 2}〈

nat(s(0))
(2)
id ][ nat(X)

(2)
id,[2],p(X),γ,[X]

〉
unfold〈

nat(0)id ][ nat(X ′)σ,[2],p(X),γ∧σ̂,[X,X′]

〉
choice cn = {1}, dk = {1, 2}〈

nat(0)
(1)
id ][ nat(X ′)

(1)
σ,[2,1],p(X),γ∧σ̂∧γ′,[X,X′]

〉
unfold〈

trueid ][ trueσσ′,[2,1],p(X),γ∧σ̂∧γ′∧σ̂′,[X,X′]

〉
success

⟨successid ][ successσσ′⟩

After applying a first choice rule, we can produce alternative goals:

{} −→ nat(1)

{1} −→ nat(0)

{2} −→ nat(s(0)) (already considered)
{1, 2} −→ no solution

Since the trace π = [2] has not been considered yet, the second choice will
also try to generate new goals. We obtain:

{} −→ nat(s(1))

{1} −→ nat(s(0)) (already considered)
{2} −→ nat(s(s(0)))

{1, 2} −→ no solution

With only one concolic execution, we have collected four new goals, in addition
to the initial one:

{nat(s(0)), nat(1), nat(0), nat(s(1)), nat(s(s(0)))}.
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We will not detail here the concolic execution of each new goal, but we still
can make some observations thanks to the structure of the new test cases. If
we compare the test cases produced by the first and the second rule, we can
see they are related. The only difference is that we have applied s once more
time on each test generated by the second choice.

If we had applied the method on the last test case nat(s(s(0))), we would
have needed to use three times the choice rule. The two first calls would have
produced the same traces (and so, no new goals), but the third call would
have generated some new ones like nat(s(s(s(0)))) and so on.

The algorithm, if we let it run forever, produces an infinity of test cases,
with a trace always longer ([1], [2, 1], [2, 2, 1], [2, 2, 2, 1], etc). This is due to
the recursivity of the predicate.

In practice, we generally prefer termination over completeness. There
exist several techniques to stop the algorithm at some point (Mesnard et
al. 2015): a time limit, a bound for the length of concolic executions or a
maximum term depth for the arguments of the generated test cases. The
implementation described in the next chapter uses this last possibility. This
assumption allows to create only a finite number of test cases and thus ensures
the termination.

4.4 Complete Execution
This section describes the step-by-step execution of our algorithm on a con-
crete example. The code displayed in Listing 4.1 is used as the input program.
Each clause is referenced by its line number.

1 p ( s ( a ) , b ) .
2 p ( s (X) , a ) :− q (X) .
3 p ( f (X) , s (Y) ) :− r (X,Y) .

5 q ( a ) .
6 q (b ) .

8 r ( a , b ) .
9 r ( c , b ) .

Listing 4.1: Prolog input program

To test this program, we need an initial call provided by the user. Here,
we use the following one:〈

p(a, Y )id ][ p(W1,W2)id,[],p(W1,W2),true,[W1]

〉
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This means that p(a, Y ) is the atomic concrete goal and that we want only
the first variable (W1) to be grounded at the end of the execution. Since
no substitution has been made, we indexed each goal with id. The trace is
empty, the first symbolic goal is p(W1,W2) and we don’t need to take any
constraint into account (true).

We also need to initialize the set of traces and the set of test cases with
the first concrete goal:

Traces← {}
TestCases← {p(a, Y )}

We are now ready to start the concolic testing procedure. First, we
perform a concolic execution on the initial goal, as shown in Figure 4.3.

〈
p(a, Y )id ][ p(W1,W2)id,[],p(W1,W2),true,[W1]

〉
choice_fail cn = {}, dk = {1, 2, 3}〈
failid ][ failid,[],p(W1,W2),γ,[W1]

〉
failure

⟨failid ][ failid⟩

γ = ∀ W2, X, Y p(W1,W2) ̸= p(s(a), b)

∧ p(W1,W2) ̸= p(s(X), a)

∧ p(W1,W2) ̸= p(f(X), s(Y ))

Traces← Traces ∪ {[ ]}
TestCases← TestCases ∪ {p(s(b),W2), p(f(a),W2), p(s(a),W2)}

Figure 4.3: Execution path of p(a, Y )
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After performing the first complete execution path (Figure 4.3), we have
produced three new test cases: p(s(b),W2), p(f(a),W2) and p(s(a),W2).
Figures 4.4, 4.5 and 4.6 respectively show their concolic execution. We can
notice in Figure 4.6 that the rule choice leads to two different goals. This is a
phenomenon we talked about, when the initial goal matches several clauses.
In this case, the first produced goal leads to a successful path, so we don’t
need to backtrack.
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〈
p(s(b), Y )id ][ p(W1,W2)id,[],p(W1,W2),true,[W1]

〉
choice cn = {2}, dk = {1, 2, 3}〈

p(s(b), Y )
(2)
id ][ p(W1,W2)

(2)
id,[2],p(W1,W2),γ,[W1]

〉
unfold〈

q(b){Y→a} ][ q(W
′)σ,[2],p(W1,W2),γ∧σ̂,[W1,W ′]

〉
choice cn = {6}, dk = {5, 6}〈

q(b)
(6)
{Y→a} ][ q(W

′)
(6)
σ,[2,6],p(W1,W2),γ∧σ̂∧γ′,[W1,W ′]

〉
unfold〈

true{Y→a} ][ trueσσ′,[2,6],p(W1,W2),γ∧σ̂∧γ′∧σ̂′,[W1,W ′]

〉
success〈

success{Y→a} ][ successσσ′
〉

γ = ∀ W2, X, Y p(W1,W2) ̸= p(s(a), b)

∧ p(W1,W2) ̸= p(f(X), s(Y ))

σ = {W1 → s(W ′),

W2 → a}
σ̂ = (W1 = s(W ′)) ∧ (W2 = a)

γ′ = q(W ′) ̸= q(a)

σ′ = {W ′ → b}
σ̂′ = (W ′ = b)

Traces← Traces ∪ {[2], [2, 6]}
TestCases← TestCases ∪ {p(s(c),W2)}

Figure 4.4: Execution path of p(s(b), Y )
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〈
p(f(a), Y )id ][ p(W1,W2)id,[],p(W1,W2),true,[W1]

〉
choice cn = {3}, dk = {1, 2, 3}〈

p(f(a), Y )
(3)
id ][ p(W1,W2)

(3)
id,[3],p(W1,W2),γ,[W1]

〉
unfold〈

r(a, Y ′){Y→s(Y ′)} ][ r(W
′
1,W

′
2)σ,[3],p(W1,W2),γ∧σ̂,[W1,W ′

1,W
′
2]

〉
choice cn = {8}, dk = {8, 9}〈

r(a, Y ′)
(8)
{Y→s(Y ′)} ][ r(W

′
1,W

′
2)

(8)

σ,[3,8],p(W1,W2),γ∧σ̂∧γ′,[W1,W ′
1,W

′
2]

〉
unfold〈

true{ Y → s(b)

Y ′ → b

} ][ trueσσ′,[3,8],p(W1,W2),γ∧σ̂∧γ′∧σ̂′,[W1,W ′
1,W

′
2]

〉

success〈
success{ Y → s(b)

Y ′ → b

} ][ successσσ′

〉

γ = ∀ W2, X p(W1,W2) ̸= p(s(a), b)

∧ p(W1,W2) ̸= p(s(X), a)

σ = {W1 → f(W ′
1),

W2 → s(W ′
2)}

σ̂ = (W1 = f(W ′
1)) ∧ (W2 = s(W ′

2))

γ′ = ∀ W ′
2 r(W ′

1,W
′
2) ̸= r(c, b)

σ′ = {W ′
1 → a,

W ′
2 → b}

σ̂′ = (W ′
1 = a) ∧ (W ′

2 = b)

Traces← Traces ∪ {[3], [3, 8]}
TestCases← TestCases ∪ {p(f(b),W2), p(f(c),W2)}

Figure 4.5: Execution path of p(f(a), Y )
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〈
p(s(a), Y )id ][ p(W1,W2)id,[],p(W1,W2),true,[W1]

〉
choice cn = {1, 2}, dk = {1, 2, 3}〈

p(s(a), Y )
(1)
id |p(s(a), Y )

(2)
id ][ p(W1,W2)

(1)
id,[1],p(W1,W2),γ,[W1]

|p(W1,W2)
(2)
id,[2],p(W1,W2),γ,[W1]

〉
unfold〈

true{Y→a} |p(s(a), Y )id ][ trueσ,[1],p(W1,W2),γ∧σ̂,[W1] |p(W1,W2)id,[2],p(W1,W2),γ,[W1]

〉
success

⟨successid ][ successid⟩

γ = ∀ W2, X, Y p(W1,W2) ̸= p(f(X), s(Y ))

σ = {W1 → s(W ′),

W2 → a}
σ̂ = (W1 = s(W ′)) ∧ (W2 = a)

Traces← Traces ∪ {[1]}
TestCases← TestCases ∪ {}

Figure 4.6: Execution path of p(s(a), Y )
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The execution in Figure 4.4 leads to the creation of a new goal: p(s(c), Y ).
The corresponding execution is depicted by Figure 4.7.

〈
p(s(c), Y )id ][ p(W1,W2)id,[],p(W1,W2),true,[W1]

〉
choice cn = {2}, dk = {1, 2, 3}〈

p(s(c), Y )
(2)
id ][ p(W1,W2)

(2)
id,[2],p(W1,W2),γ,[W1]

〉
unfold〈

q(c){Y→a} ][ q(W
′)σ,[2],p(W1,W2),γ∧σ̂,[W1,W ′]

〉
choice_fail cn = {}, dk = {5, 6}〈

fail{Y→a} ][ failσ,[2],p(W1,W2),γ∧σ̂∧γ′,[W1,W ′]

〉
failure

⟨failid ][ failid⟩

γ = ∀ W2, X, Y p(W1,W2) ̸= p(s(a), b)

∧ p(W1,W2) ̸= p(f(X), s(Y ))

σ = {W1 → s(W ′),

W2 → a}
σ̂ = (W1 = s(W ′)) ∧ (W2 = a)

γ′ = q(W ′) ≠ q(a)

∧ q(W ′) ̸= q(b)

Traces← Traces
TestCases← TestCases ∪ {}

Figure 4.7: Execution path of p(s(c), Y )
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Figure 4.8 and 4.9 show the concolic execution of p(f(b), Y ) and p(f(c), Y ),
which had been discovered in the execution of Figure 4.5.

〈
p(f(b), Y )id ][ p(W1,W2)id,[],p(W1,W2),true,[W1]

〉
choice cn = {3}, dk = {1, 2, 3}〈

p(f(b), Y )
(3)
id ][ p(W1,W2)

(3)
id,[3],p(W1,W2),γ,[W1]

〉
unfold〈

r(b, Y ′){Y→s(Y ′)} ][ r(W
′
1,W

′
2)σ,[3],p(W1,W2),γ∧σ̂,[W1,W ′

1,W
′
2]

〉
choice_fail cn = {}, dk = {8, 9}〈

fail{Y→s(Y ′)} ][ failσ,[3],p(W1,W2),γ∧σ̂∧γ′,[W1,W ′
1,W

′
2]

〉
failure

⟨failid ][ failid⟩

γ = ∀ W2, X p(W1,W2) ̸= p(s(a), b)

∧ p(W1,W2) ̸= p(s(X), a)

σ = {W1 → f(W ′
1),

W2 → s(W ′
2)}

σ̂ = (W1 = f(W ′
1)) ∧ (W2 = s(W ′

2))

γ′ = ∀ W ′
2 r(W ′

1,W
′
2) ̸= r(a, b)

∧ r(W ′
1,W

′
2) ̸= r(c, b)

Traces← Traces
TestCases← TestCases ∪ {}

Figure 4.8: Execution path of p(f(b), Y )
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〈
p(f(c), Y )id ][ p(W1,W2)id,[],p(W1,W2),true,[W1]

〉
choice cn = {3}, dk = {1, 2, 3}〈

p(f(c), Y )
(3)
id ][ p(W1,W2)

(3)
id,[3],p(W1,W2),γ,[W1]

〉
unfold〈

r(c, Y ′){Y→s(Y ′)} ][ r(W
′
1,W

′
2)σ,[3],p(W1,W2),γ∧σ̂,[W1,W ′

1,W
′
2]

〉
choice cn = {9}, dk = {8, 9}〈

r(c, Y ′)
(9)
{Y→s(Y ′)} ][ r(W

′
1,W

′
2)

(9)

σ,[3,9],p(W1,W2),γ∧σ̂∧γ′,[W1,W ′
1,W

′
2]

〉
unfold〈

true{ Y → s(b)

Y ′ → b

} ][ trueσ′,[3,9],p(W1,W2),γ∧σ̂∧γ′∧σ̂′,[W1,W ′
1,W

′
2]

〉

success〈
success{ Y → s(b)

Y ′ → b

} ][ successid

〉

γ = ∀ W2, X p(W1,W2) ̸= p(s(a), b)

∧ p(W1,W2) ̸= p(s(X), a)

σ = {W1 → f(W ′
1),

W2 → s(W ′
2)}

σ̂ = (W1 = f(W ′
1)) ∧ (W2 = s(W ′

2))

γ′ = ∀ W ′
2 r(W ′

1,W
′
2) ̸= r(a, b)

σ′ = {W ′
1 → c,

W ′
2 → b}

σ̂′ = (W ′
1 = c) ∧ (W ′

2 = b)

Traces← Traces ∪ {[3, 9]}
TestCases← TestCases ∪ {}

Figure 4.9: Execution path of p(f(c), Y )
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Since we have no more test case to perform, the execution stops. In this
particular case, the backtracking rule is never needed. This comes from the
fact that this rule is only performed when two conditions are satisfied:

1. One concrete goal matches with several clauses.

2. The first matching clauses produces a failing path.

In this example, the first condition is only verified once and the second is
not, so the rule is not applicable.

The final list of produced test cases is thus:

TestCases = {p(a, Y ), p(s(b),W2), p(f(a),W2), p(s(a),W2), p(s(c),W2),

p(f(b),W2), p(f(c),W2)}

Note that the second argument of p is still a variable. It is in fact the
desired behaviour, since we asked only for the first variable to be grounded.
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Chapter 5

Ongoing Implementation

This chapter presents an overview of our current implementation. First we
describe the execution environment, the used tools and other home-made
files. Then, we focus on the algorithm implementation itself.

5.1 The Working Environment
All the implementation is based on SWI-Prolog (SWI-Prolog 2019; Wiele-
maker et al. 2012) which provides a few interesting features, like a C interface
and methods to deal with external input files.

The program is composed of five files and uses several existing libraries
as shown in Figure 5.1.

Figure 5.1 displays a class diagram showing all the files we used. The
central file of this implementation is concolic_tool.pl, which contain all the
concolic testing procedure. It uses three interfaces: swiplz3.pl, z3_parser.pl
and prolog_reader.pl. In each home-made class (i.e. all of them except the C
libraries), one can find the list of all public methods, available for the other
files.

z3_parser.pl only proposes one public method to transform a String con-
taining a term in Z3-form to a classic Prolog term. prolog_reader.pl provides
some functions to deal with user input and files.

swiplz3.c calls several standard C libraries. We are only interested in
two of them here: z3.h which is the Z3 API for the C language, and SWI-
Prolog.h which is the library to combine C and Prolog. swiplz3.c works with
swiplz3.pl. This file creates the missing functions relative to Z3 and make
the C functions available for the other Prolog files. For clarity, we have not
copied the C functions that the Prolog interface made available for the rest
of the program.
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Figure 5.1: Class diagram of the implementation

Both swiplz3.c and swiplz3.pl aim to offer Z3 functionalities to concolic_tool.pl.
This means that they need to parse Prolog types and constraints into Z3 types
and constraints, and vice versa. Currently, they only work with two types of
data: Prolog terms and regular integers.

The file input.pl represents the input Prolog program we want to test.
We will see in the last section of this chapter the two ways to call it.

5.2 The Core Implementation
In this section, we describe the principal file, called concolic_tool.pl.

As in the version proposed in the previous chapter, the one in Figure 5.2
needs an initial (concrete) atomic goal, p(s(a), X) for example. The initial
configuration is then:〈

p(s(a), X)id ][ p(W1,W2)id,{ },p(W1,W2),true,W1

〉
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(success)
⟨trueδ ][ trueθ,π,A0,γ,G⟩⇝ ⟨successδ ][ successθ⟩

(unfold)

clauses(A,P) = cn ∧ n > 0 ∧ clauses(A′,P) = dk
ci = (Hi ← Bi), i ∈ {1, . . . , n},mgu(A,H1) = σ ∧mgu(A′, H1) = ρ

γ′ ← neg_constr(A′, dk \ cn)
if π ̸∈ Traces then TestCases← TestCases ∪ alts(A0, γ, A

′, cn, dk, G)
Traces← Traces ∪ π,

⟨(A,B)δ ][ (A′,B′)θ,π,A0,γ,G⟩⇝ ⟨(B1σ,Bσ)δσ
][ (B1ρ,B′ρ)θρ,π.ℓ(ci),A0,γ∧γ′∧ρ̂,G∧Var(Gρ)⟩

(failure)

clauses(A,P) = {} ∧ clauses(A′,P) = ck
γ′ ← neg_constr(A′, ck)
if π ̸∈ Traces then TestCases← TestCases ∪ alts(A0, γ, A

′, { }, ck, G)
Traces← Traces ∪ π,

⟨(A,B)δ ][ (A′,B′)θ,π,A0,γ,G⟩⇝ ⟨(fail,B)δ ][ (fail,B′)θ,π,A0,γ∧γ′,G⟩

Figure 5.2: Concolic execution semantics: implicit nondeterminism

where the first argument needs to be grounded. The two global parameters
are set as usual:

Traces← { }
TestCases← {p(s(a), X)}

The algorithm which is implemented in practice (Figure 5.2) has suffered
a few changes from the one presented in the previous chapter. The differences
come from the fact that we take advantage of internal Prolog mechanisms
like backtracking. In the other version, nondeterminism is explicit. In this
version, it becomes implicit. The consequence of this modification is that we
can now combine choice with unfold into one single rule, and rules choice_fail
with failure into another one. Using internal backtracking also means that
we don’t need to consider sequences of goals. Moreover, the selection of the
clause in the new unfold rule is done non-terministically. This rule becomes
thus non-deterministic, as it is usual in the definition of SLD resolution.
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5.3 How to Use It?
Currently, the implementation is still in the development phase and so far,
the results are promising. It should be soon available publicly. Once online,
it will be possible for anybody to try it with some provided small examples,
or to test his or her own Prolog program. This section aims to explain how
to configure and use our implementation.

Before using the test implementation, the SWIPrologZ3 interface must
be installed. This requires a few manipulations because the C source file
must be compiled independently. Once it is done, the Z3 functions can be
used in Prolog files.

The concolic testing tool can be used in two ways:

• The interactive mode: The simplest version, where we just load the
program into SWI-Prolog and then call a predefined example. A folder
with twenty Prolog examples is provided with the program. At the
end of concolic_tool.pl one can find the predefined calls using those
examples.

• The command mode: This more flexible version allows the user to save
the program as a stand alone executable. He can then call it like any
other executable and personalize the call with the parameters of his
own choice. For example the call:

./concolic_tool -cg "p(s(a))" -ground "[1]"
-depth "2" -timeout "10" -file "examples/ex01.pl"

means that:

– p(s(a)) is the concrete initial goal
– Only the first variable must be grounded
– The depth of a path execution is maximum 2
– The program stops after 10 seconds
– The file examples/ex01.pl is the input program

Some other features are also available as for example the possibilities of
giving the symbolic goal as well, or an option to add the computed trace for
each test case produced.
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Chapter 6

Conclusion and Future
Developments

In this master thesis, we presented a new algorithm to test Prolog programs.
This algorithm uses the method called ”concolic testing” to combine both
symbolic and concrete execution. It aims to generate test cases in a fully
automatic way and offering good code coverage. We used a new coverage
criteria, specific for logic programming, called ”choice coverage”. By using Z3
solver and SAT constraints, we have bypassed the unification problem. We
have also combined some steps of the procedure in order to avoid some re-
dundant computations. The complete step-by-step execution gives us a good
hint about the soundness of our method. A proof-of-concept implementation
will be soon publicly available to show the usefulness of the approach.

As future developments, we could remove some of the restrictions we
made until now. We could develop the Z3 interface to deal with other types
like float for example, and to accept more Z3-functions. In the current im-
plementation, only the function we needed to use directly were implemented.
In another context, someone could be interested to have more capabilities,
already provided in the C API but not in our Prolog interface.

Another restriction, still in the implementation but also concerning the
theory of our method is the definition of Prolog. The algorithm could be
extend to full Prolog, to deal with cut and negation. Actually, this extension
has been discussed in the first online appendix of Mesnard et al. (2015). The
search should be continued after being adapted to our algorithm.
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