
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN SOFTWARE
ENGINEERING

Defining referential integrity constraints on NoSQL datastores

Masson, Thibaud; Ravet, Romain

Award date:
2019

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/326317836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/studentthesis/defining-referential-integrity-constraints-on-nosql-datastores(48678168-bfb2-4887-bacf-60475da6fc84).html

Defining referential integrity constraints on

NoSQL datastores

Thibaud MASSON Romain RAVET

RUE GRANDGAGNAGE, 21 l B-5000 NAMUR(BELGIUM)

Université de Namur
Faculty of Computer Science

Academic Year 2018–2019

Defining referential integrity constraints on

NoSQL datastores

Thibaud MASSON Romain RAVET

Internship mentor: Francisco Javier BERMÙDEZ RUIZ

Supervisor: (Signed for Release Approval - Study Rules art. 40)

Anthony CLEVE

A thesis submitted in the partial fulfillment of the requirements
for the degree of Master of Computer Science at the University of Namur

Acknowledgements

This thesis is completely based on a three and a half months internship at
the University of Murcia in Spain, where we were welcomed in the research
laboratory. The Computer Sciences Faculty at this university contains some
researchers who are making interesting works on NoSQL datastores with tools
like Neo4J and MongoDB.

We would like to sincerely thank our supervisor Anthony CLEVE and our send-
ing institution, the University of Namur, for giving us the possibility to live this
grateful experience in a foreign country, for coming to visit us as well as giving
us many advice and a precious feedback about the work.

We would like to also thank our internship mentor, Francisco Javier BERMÚDEZ
RUIZ for his work expertise, his guidance and his help to integrate us into the
social life of this new city by doing regular activities.
Our acknowledgements also go to Jesús GARCÍA MOLINA and Diego SEVILLA
RUIZ for the interesting meetings that we had and the precious advice that they
were able to offer us.

Finally, we would like to thank our respective families, friends and fellow stu-
dents for their support during all the duration of this work.

2

Abstract

Nowadays, information systems have to respond to needs which become more
and more complex. Therefore, they become more difficult to use and have to
take into account a bigger data amount. This is why a lot of people are us-
ing NoSQL datastores now, allowing a better flexibility during the development
than traditional relational databases.
However this kind of database does not handle the data integrity, as well as the
Referential integrity constraints. This is why the idea of defining and validat-
ing these Referential integrity constraints would be a good step forward in the
context of the NoSQL datastores.
On a technical point of view, this referential constraints managing system could
take advantage of the model-driven techniques. Model-driven engineering (MDE)
enables developers to build code generative architectures by means of model
transformations. Specifically, the implemented solution would be a language
representing the definition and the validation of referential integrity constraints.
With that, a code generation tool will also be developed. It remains important
to point out that although this work is confined to the graph-oriented NoSQL
datastores, the language and its supporting is oriented to any NoSQL source.

Keywords : NoSQL datastores, Graph-oriented, Referential Integrity constraints,
Model-driven engineering techniques, Code generation

Résumé
De nos jours, les systèmes d’information doivent répondre à des besoins qui ne
cessent de se complexifier. Ils deviennent donc plus difficile à utiliser et doivent
prendre en compte un plus grand nombre de données. C’est pourquoi à l’heure
actuelle, beaucoup de personnes ont recours aux bases de données NoSQL per-
mettant une meilleure flexibilité lors du développement que les traditionnelles
bases de données relationnelles.
Cependant, le problème de ce type de base de données est qu’elle ne gère pas
l’intégrité des données. C’est pourquoi, l’idée de définir et de valider des con-
traintes d’intégrité référentielle serait une avancée intéressante dans le cadre des
bases de données NoSQL.
D’un point de vue technique, ce système de gestion des contraintes référentielles
pourrait tirer parti des techniques d’ingénierie dirigée par les modèles. L’Ingénierie
dirigée par les modèles (IDM) permet aux développeurs de construire des ar-
chitectures génératrices de code au moyen de transformations de modèles. Plus
précisément, la solution mise en oeuvre serait un langage représentant la définition
et la validation des contraintes d’intégrité référentielle. Avec cela, un outil de
génération de code sera également mis au point. Bien que ce travail soit limité
aux bases de données NoSQL orientées graphiques, le langage et son support
sont orientés vers n’importe quelle source NoSQL.

Mots-clés : Bases de données NoSQL, Orienté-graphe, Contraintes d’intégrité
référentielles, Techniques d’ingénierie dirigée par les modèles, Génération de
code

3

4

Contents

1 Introduction & Motivation 10
1.1 NoSQL Datastores . 10
1.2 Graph-oriented Datastores . 11
1.3 Referential Integrity Constraints 11
1.4 Motivation of the work . 11
1.5 Thesis Contribution . 12
1.6 Model-Driven Engineering concepts 12

1.6.1 Domain-Specific Language 13
1.6.2 Model-To-Text Transformation 13

1.7 Thesis Structure . 13

2 Background 16
2.1 Related work . 16
2.2 Conceptual background . 17

2.2.1 Integrity Constraints . 17
2.2.2 Referential Integrity Constraints 20

2.3 Technical background . 21
2.3.1 Neo4J . 21
2.3.2 Neo4J example . 24
2.3.3 Xtext for defining Domain-Specific Language 30
2.3.4 Model-To-Text Transformation 31

3 Methodology 34
3.1 Methodology end-user . 34

3.1.1 Contextualization . 35
3.2 Methodology of the solution . 36

3.2.1 Step 0 : Draft of the RIC metamodel 36
3.2.2 Step 1 : Writing Referential integrity constraints 37
3.2.3 Step 2 : Apply RICs to check database 37

4 Design 39
4.1 Structure of a relationship . 39

4.1.1 Classic relationship . 39
4.1.2 Tag relationship . 39
4.1.3 Adding bi-directionality 40

4.2 Cardinalities . 40
4.3 Actions . 41

4.3.1 Adding information . 41

5

4.3.2 Deleting information . 43
4.3.3 Deleting information in cascade 43
4.3.4 Showing information . 43
4.3.5 Summary . 44

4.4 Condition . 44
4.5 Final metamodel . 45

5 Implementation 47
5.1 Defining a DSL representing the grammar 48

5.1.1 Ricdsl language definition 48
5.1.2 Advanced features . 53

5.2 Model-To-Text transformation 55
5.2.1 Introduction . 55
5.2.2 JCypher and Java Driver API 55
5.2.3 Develop the Java code corresponding to Neo4J 56
5.2.4 Model-To-Text transformation with Acceleo 64
5.2.5 Generate results . 67

6 Taxonomy of Queries 69
6.1 Getting the value of an attribute for all nodes of a specific entity 70
6.2 Getting the value of an attribute for a specific node 71
6.3 Getting all nodes from a specific entity 71
6.4 Checking a one-way Tag relationship without cardinality 72
6.5 Checking a one-way Tag relationship with cardinality 72
6.6 Existing relationship . 73
6.7 Updating a node . 74
6.8 Creating a relationship . 74
6.9 Deletion of a node . 75
6.10 Retrieve the relationships of a node 75
6.11 Information about a node . 76

7 Experiments 78
7.1 Initial Data . 78
7.2 Example of Referential Integrity Constraints 80
7.3 Data after validation . 85
7.4 Strengths and weaknesses of our proposal 87

8 Conclusion 89

9 Future Works 93
9.1 Integration . 93
9.2 Content assist . 93
9.3 Action improvement . 93

9.3.1 Add cardinality management 93
9.3.2 Implement the “Delete Cascade” action 94

9.4 Algorithms . 94
9.4.1 Map Reduce . 94
9.4.2 Apache Spark . 95

9.5 Improve the validation process 95

6

Appendices 99

A Advanced features code 100
A.1 Syntax coloring code . 100
A.2 Content assistant code . 101

B Acceleo 103
B.1 XMI representation . 103
B.2 Run configuration . 104

C Project output 105
C.1 Generated results in the JSON file 105

7

List of Figures

1.1 Data representation in Neo4J . 11

2.1 Cypher representation . 22
2.2 Neo4J example : Legend of the graph colors 27
2.3 Neo4J example : Final graph . 27
2.4 Neo4J example : Properties of a “Jurisdiction” node 28
2.5 Neo4J example : Properties of a relationship 28

3.1 Diagram representing the steps of the methodology 34
3.2 Initial data for the methodology example 35
3.3 Final data for the methodology example 35
3.4 Initial metamodel of the RIC-DSL 36

4.1 Action Add Info : Before . 41
4.2 Action Add Info : After . 42
4.3 Summary table of the Actions . 44
4.4 Metamodel of a RIC after the Design step 45

5.1 Representation of a RIC in the editor 49
5.2 Representation of a tag relationship in the editor 50
5.3 Representation of the cardinalities in the editor 51
5.4 Representation of a condition in the editor 52
5.5 Representation of actions in the editor 52
5.6 Content assistant for an Entity 53
5.7 Content assistant for an Attribute 54
5.8 Content assistant for the DataSource 54

6.1 Representation of the two APIs in our solution 69

7.1 Initial dataset . 78
7.2 Experiments : Properties of “Actor” nodes before validation . . . 79
7.3 Experiments : Properties of “Movie” nodes before validation . . 79
7.4 Fixed dataset . 85
7.5 Experiments : Properties of “Actor” nodes after validation . . . 86
7.6 Experiments : Properties of “Movie” nodes after validation . . . 86

8

9

Chapter 1

Introduction & Motivation

Since the 1970s, information systems depended on the relational databases.
Nowadays, they become more and more complex and need additional flexibil-
ity to manage an increasingly amount of data. Therefore, the non-relational
databases become more popular within the actual information systems due to
their heterogeneity and their ability to easily adapt themselves. They save data
without explicit structure which has the advantage of a better flexibility on this
structure during the development process.

1.1 NoSQL Datastores

This thesis relies on several technical concepts concerning the non-relational
databases, so it is firstly due to explain this notion. Although in a relational
database, a schema has to be clearly defined before any information addition,
it is not the case for non-relational database.

The focus of this work will be on NoSQL datastores that provide a better per-
formance and flexibility for the modern applications. Datastores is the term
referring to this kind of database, while the Database system is the term used
for traditional databases.

The non-relational databases are classified into four distinct types :

• Key-Value Store Databases : Every item is stored as a key and has a
value.

• Document-Oriented Databases : Link every item with a complex data
structure.

• Column Store Databases : Save the data as columns to optimise
queries.

• Graph-Oriented Databases : Uses nodes and relationships to represent
stored data.

Among these different types of non-relational databases, Graph-oriented databases
are the ones that have been chosen for this work.

10

1.2 Graph-oriented Datastores

Graph-oriented datastores can be used to represent references in a simple way
and which would be more difficult to model in the relational paradigm. This
kind of database uses nodes, edges and properties to build a graph representing
the stored data.

The data items are represented by nodes with properties and edges where prop-
erties correspond to their attributes and edges correspond to their relationships
with other nodes, as shown on the Figure 1.1.

Figure 1.1: Data representation in Neo4J

In our case, Graph-oriented databases are accessed through APIs in the Java
code. We have targeted two APIs in this work that are Neo4J Java Driver and
JCypher. These two APIs will be described in more details in the section 2.3.1
and will be compared later on.

1.3 Referential Integrity Constraints

A Referential Integrity Constraint (RIC) is a rule that will ensure that the ref-
erences and relationships between the elements are correct. In other words, it
prevents users or other applications from impacting negatively the data and the
structure within the DBMS.

The aim is to ensure consistency within the database when several tables have
relationships between them, like a link Foreign Key - Primary Key. A table
cannot be modified or deleted, for example, without impacting the other tables
related to it. A RIC brings a solution to the problem of cascading actions.

A simple example would be : in a situation where an author is linked with
a book, we could write a Referential integrity constraint which would prevent
to delete this author as long as he would have a reference with at least one book.

1.4 Motivation of the work

As we said previously, non-relational datastores are emerging and it can be
noticed that this kind of database does not explicitly handle with the data
integrity. This difference compared to relational databases may discourage some
people from using them. That is why this work aims to find an interesting

11

solution to handle with the data integrity in NoSQL datastores.
Using Referential Integrity Constraints could improve the consistency of the
data and therefore its integrity.

1.5 Thesis Contribution

This thesis aims to develop a solution that manage Referential integrity con-
straints in a non-relational database context. Most of the time, RICs are used
with relational database but rarely in a non-relational context. Therefore, we
will explore this possibility as non-relational database become prominent.

The approach used in this work aims to use Model-Driven engineering techniques
such as creating a Domain-Specific Language and generating code through a
Model-To-Text transformation.

Our process for this work is the following :

• First, establish the research domain and design a metamodel that corre-
sponds to the structure of a RIC. Then, a grammar can be defined with a
DSL following this metamodel.

• After that, it is necessary to create some examples of RICs that will be
save in a model (serialized in a XMI file).

• The next step is to extract the data from the XMI file and to apply on
them a Model-To-Text transformation to get the Java code.

• Finally, all the remains is to valid each RIC, one by one, by executing the
code generated and to check in the Graph-oriented database, managed by
Neo4J, if the relationship is valid or not.

The developed solution will provide an editor tool supporting the DSL and will
enable the RIC validation.

1.6 Model-Driven Engineering concepts

Model-Driven Engineering (MDE) uses models to improve software productiv-
ity and some aspects of software quality such as maintainability and interop-
erability. The advantage is that models and metamodels provide a high level
formalism with which to represent artefacts.
Our solution will be based on two techniques of Model-Driven Engineering
(MDE) that we were able to explore in depth thanks to the book [2].

The two MDE techniques applied in this work are :

1. The creation of a Domain-Specific Language (DSL) for defining the
grammar of Referential integrity constraints on NoSQL datastores.

2. The Model-To-Text (M2T) transformation to generate the code that
will provide the semantic of the previous language.

12

1.6.1 Domain-Specific Language

Domain-Specific Languages (DSL) are made to define the abstract and concrete
syntax of a language. Then, some techniques allow to create the semantic of
the developed language. A DSL offers appropriate constructs and notations to
solve issues in a particular application domain, it can be implemented in three
different methods, like it is explained in the slides of our host institution [18].

Firstly, the external DSLs which are created from scratch and there is needed
to build a parser and an interpreter.
Then, the internal DSLs that are represented in two categories : Embedded
DSLs and Fluent API.
At last, the DSL workbenches, also known as “Metamodel-based tools”. For
this case, a parser, an injector, a generator and an editor are directly generated
from a specification based on a metamodel.

1.6.2 Model-To-Text Transformation

The second part of the work is intended to provide the semantic of the language
by means of a code generation through a M2T transformation language. Starting
from a basic model, the purpose is to obtain an executable code directly usable.
We can pinpoint several benefits :

• Static and dynamic code separation by using a template-based approach
to develop M2T transformations

• Explicit output structure

• Declarative request language

• Reusable basic feature

1.7 Thesis Structure

The chapter 2 is about the Background related to this work. Indeed, this
Chapter will be divided in three parts, the first one being about the Related
Work linked with the previous works made in the context of the thesis, the
second part will be about the Conceptual Background needed. While the
technologies that are used in this work will be explained in the part Technical
Background.

The Chapter 3, Methodology, explains the approach of our solution and de-
tails the choices made during this project in accordance with the internship
supervisor to conduct this work on a proper way.

The Chapter 4 presents the Design and the conception of a Referential in-
tegrity constraint. It is related to the different structural choices made and
their evolution during the work.

The Implementation, Chapter 5, describes all the code implementation made
to lead to the created system.

13

The Chapter 6 describes the Taxonomy of Queries by using JCypher API
and Java Driver API 1.7. The goal will be to explain how queries are con-
structed according to these two languages.

A set of tests has been defined in the Chapter 7, Experiments, covering most
of the possibilities leading to RIC validation. The following code generation and
the behaviour of the selected graph-oriented will also belong to this chapter.

A Conclusion, Chapter 8, summarises this thesis and refers to potential is-
sues that we have faced.

And finally Chapter 9 is dedicated to several thoughts about the possibilities of
Future Works in this area and about what has not been achieved during the
Implementation (Chapter 5) according to the Design (Chapter 4).

Every resource linked with the Bibliography or the Appendix part at the end
of this manuscript will be strictly referenced.

14

15

Chapter 2

Background

The purpose of this chapter will be to explore useful technologies and several
works already accomplished in a similar context to this thesis. It will be divided
into three parts : the first one will be devoted to the related work, the second will
aim to address conceptual information such as Referential integrity constraints,
and finally, the last one will focus on technical topics such as the tools and
methods used.

2.1 Related work

This first part will have the objective to talk about the previous works dealing
with a subject close to this one. Different relevant articles and thesis will be
explained here.

The first work to analyse is a thesis dating from 2018 [10]. This thesis aims to
provide solutions to facilitate the implementation of lost implicit foreign keys.
However, that work focus itself on relational databases while the actual one is
focusing on non-relational databases. The concept of foreign keys is similar to
our thesis, which consists of focusing on references between the elements.

Another thesis is helpful here, talking about referential integrity in cloud NoSQL
datastores [15]. This thesis aims to present an API providing the CRUD opera-
tions to perform on the Database Management Systems ensuring that RICs are
satisfied. That work also deals with the design of RIC in NoSQL datastores,
while the focus is on Key-Value Store Databases (Section 1.1). The results are
oriented about the performance of the CRUD operations under RICs.

Finally, the article [9] explains what “Referential integrity” is and the possi-
bility of using the MapReduce algorithm within them. That work is made for
document-oriented databases, but not for the graph-oriented databases. These
kinds of NoSQL datastores are presented in the section 1.1. The main goal is to
detect incorrect references in Document-oriented datastores due to mistakes in
the code or in the transactions. For “One-To-Many” relationships, it checks the
relationship integrity. This looks like at an approach that was used to implement
the Join operations in NoSQL datastores.

16

2.2 Conceptual background

This section is related to the theoretical concepts that have to be explained in
order to improve our understanding before continuing in the thesis. We are
going to start by addressing the subject of Integrity Constraints.

2.2.1 Integrity Constraints

In the first place, we will approach the Integrity constraints in a non-relational
context with a first paper which is close enough to the subject of our thesis. The
article [21] will focus on the Integrity constraints in Graph-oriented databases.

As we know, Graph-oriented databases brings more flexibility and an easier
schema evolution that relational databases. However, this has a negative im-
pact on the consistency of the data and its management. This can also have
a direct impact on the implementation of Integrity constraints which is more
difficult.
The purpose of these constraints will be to bring consistency to these databases.
Various kinds of Integrity constraints are developed in the article to maintain
the consistency :

• Schema-instance consistency

– Verifies the completeness and existence of data before insertion.

• Data redundancy

– Sort through the information recorded in the database to remove
those that are redundant.

• Identity integrity

– Each node has an identity and can be found thanks to an identifier
attribute.

– Corresponds to Primary key constraint in relational databases.

• Referential integrity

– Only existing entities can be referenced.

– Each entity should have at least one relationship with an entity of
another label to validate a Referential integrity constraint.

– Corresponds to Foreign key constraint in relational databases.

Unlike the relational databases where the same structure must be maintained
for each group of elements, the nodes and relationships in graph databases do
not need to have the same number of attributes. If a value is not known or
defined, we are not required to have this attribute. However, a default value
can still be specified if necessary.
This is why the management of data in this type of database is quite complex
and the addition of Integrity constraints can make it possible to solve this defi-
ciency in NoSQL.

17

We will now look at the variants that can be found in other types of databases
to learn more about data consistency management.

In a relational database context, with SQL for example, we can see that specific
constraints are especially designed to manage data and its consistency.
In the resources [4] and [5], the subject of these constraints is addressed and the
first one will focus in particular on “Check” constraints.

The first resource is actually a tutorial that will allow us to write “Check”
constraints to validate the data in a set of columns.
The first important information about this tutorial is its definition of a “Check”
constraint : “It is an integrity constraint in SQL that allows you to specify that
a value in a column or set of columns must satisfy a Boolean expression.”.

This resource also indicates the syntax of these constraints :

CONSTRAINT constra int name CHECK(Boo l ean expre s s i on)

In a relational case, the “Check” constraint will be satisfied when the Boolean
expression returns the True value or the Null value.
In the following example, defined in the tutorial, we have a constraint that will
ensure that the price of an item for sale is greater than zero.

CONSTRAINT v a l i d s e l l i n g p r i c e CHECK (s e l l i n g p r i c e > 0)

These constraints are a simple way to verify data integrity in a relational context.

Then, the second resource about SQL is a global tutorial whose only part we
will focus on is the part on constraints.
Another utility of the constraints proposed by this resource is to be able to limit
the type of data that can be entered in a table. This will aim to ensure the
reliability of the data.

The advantage of this tutorial is that it explains the different types of con-
straints that can be found in the relational context :

• Not Null constraint : It cannot have a “Null” value in the column.

• Default constraint : If no value is specified, a default value is assigned.

• Unique constraint : Within a column, all values must be different.

• Primary Key : Unique identifier of an element.

• Foreign Key : Reference the unique identifier of another table.

• Check constraint : This constraint is the one explained earlier.

Primary Key, Foreign Key and Unique Constraints are the ones that correspond
to the Integrity constraints.

18

Afterwards, we can analyse an article [24] on a similar subject, also talking
about “Check” constraints, but in a non-relational context this time.

The objective is to explain how to validate JSON values in a non-relational
context on the basis of “Check” constraints.
The principle is exactly the same as in the relational context because they will
specify that the value of Integers must be between 0 and 20 to assign a score to
a TV show episode.

a l t e r t a b l e s c o r e s
add check (r a t i n g >= 0)
add check (r a t i n g <= 20)

We can therefore conclude that “Check” constraints can also simply be imple-
mented in a non-relational context.

Finally, we will look more closely at the non-relational context by focusing on
resources addressing MongoDB [7] and Document-oriented databases [17].

The data within MongoDB is stored as documents thanks to a binary repre-
sentation of JSON, called BSON.
In relation to data management, MongoDB offers two methods to connect doc-
uments :

1. Manual references : The purpose will be to save the identifier field of one
document in another document as a reference.

2. DBRefs : These are references from one document to another using several
fields, not only the identifier, to easily link documents together.

These two methods will make it possible to verify the links between the elements
as a Referential integrity constraint could do.

As a conclusion to this section, we have seen that data integrity in the relational
context is managed by Primary Key, Foreign Key and Unique Constraints. This
therefore corresponds well to the Integrity constraints for the non-relational
domain and, in addition, “Check” constraints could also be used to improve
data consistency.

19

2.2.2 Referential Integrity Constraints

Now that we have an overview of Integrity constraints, we will focus on the spe-
cific type that will interest us for this work : Referential Integrity Constraint.
A first approach of this subject has already been introduced in the section 1.3.

We will begin our analysis by discussing a first article [1]. A Referential in-
tegrity is a protection for the database which makes sure that the references
between the data are valid and undamaged. In other words, we will focus on
the validity of the relationships between the data.
Referential integrity can be compared to the RDBMSs1 because they are each
designed through the concept of Foreign key and Primary key.

These constraints allows several benefits :

• Improve data quality to preserve references.

• Make the development faster.

• Reduce the bugs amount thanks to better data consistency.

• Enhance the consistency through applications.

The syntax for representing Referential integrity constraint in a relational con-
text, for example SQL, is as follows :

ALTER TABLE tableName1
ADD CONSTRAINT constraintName
FOREIGN KEY (columnList)
REFERENCES tableName2 [(columnList)] [onDelete] [onUpdate] ;

With the foreign key in table1 and primary key in table2.

The notion of Referential integrity also applies to OO-DBMSs2 through rela-
tionships between objects, that makes these objects dependent with each other.
No matter the implementation platform that can be a RDBMS, an OO-DBMS,
or even a programming language, it is required to deal with the Referential in-
tegrity.

In the case of a non-relational context such as NoSQL databases and more
specifically Neo4J, we found a short article [11] which aims to show how the
Referential constraints work in Neo4J.
In the case of a relational context, if a row of a table is deleted, Referential
integrity constraints will ensure that the data related to this row will be im-
pacted. This is more complex in NoSQL because if a node is deleted, it will also
be necessary to delete all its relationships because a relationship must have a
start and end node. As this article explains : “Data integrity in Neo4j means
that there should be no relationship without a start or end node and that there
should be no property that is not attached to a node or relationship”.
This is one of the issues that will be addressed in our work.

1Relational Database Management Systems
2Object-Oriented Database Management System

20

2.3 Technical background

All the tools and technologies required for a proper understanding of the con-
tinuation of the thesis will be described in this section.

2.3.1 Neo4J

Neo4J [13] is a NoSQL database management system which uses the Graph-
oriented databases. It allows data to be represented in a graph as nodes con-
nected by a set of arcs. It is mainly related to Cypher which is a language for
querying the database.

Graph Database

As we said previously, Neo4J is based on Graph-oriented databases. These
databases can apply CRUD3 operations on a graph data model. The informa-
tion is represented as nodes that have attributes and relationships to each other
to indicate references.

We can pinpoint several advantages compared to other types of databases :

• Performance : Manage data growth over time.

• Flexibility : Modify the data structure to adapt to the evolution of appli-
cations without risk to current features.

• Agility : Easily adapts to today’s agile and test-oriented development
practices.

The Graph-database become very useful in situations where trees or network
structures are found like for instance social graphs. It is no longer necessary to
make joins between the primary keys, which simplifies the task.
More information about this type of NoSQL datastore is detailed in the article
[14].

Cypher

Cypher is a language that allows to perform queries on the Neo4J database and
it is composed of a set of clauses, keywords and expressions.
This language has the objective of doing operations on the dataset such as
retrieving information about nodes or relationships, as well as modifying them.
It also allows to create or delete nodes, relationships and information on the
database.
As shown in the Figure 2.1, from the Neo4J website [13], we can use some
information to find a specific node like its label or properties, corresponding
respectively to its type and attributes, and its relationships.
In this example, we can translate the query by : Give me each node which are of
type “Person”, which have the value “Ann” for the attribute “name” and who
have a relationship of the type “MARRIED TO” with a node “spouse”.

3Create, Read, Update and Delete

21

Figure 2.1: Cypher representation

To build a Cypher query, several clauses are proposed :

• CREATE : Enables the creation of nodes and relationships.

• RETURN : Allows you to return a result. It can be a node, a relationship
or simply a value of an attribute.

• MATCH : Allows you to select an element of the graph and then modify
it or simply return its values.

• WHERE : Allows you to specify information in relation to an element.

• SET : Enables the modification of an element.

We will now show a simple example of how to use these clauses :

MATCH (node : J u r i s d i c t i o n)−[r e l a t i o n s h i p : Gender]−>(nodeBis : Male) ,
WHERE node . id = 1000 ,
RETURN r e l a t i o n s h i p . number

This query should return the number of “Male” persons who are linked to the
Jurisdiction whose identifier is ’1000’.

Java Driver API 1.7

The Java Driver API aims to manage the Neo4J graph database directly from
the Java code. This API is based on the Cypher language, described in the
previous part. There are three steps to using this API : the database connection,
the execution of queries and the disconnection from the database.

22

Connection

The connection is established as follows, with the URL of the Neo4J graph
database as well as the identifier (user name) and the password.

Driver d r i v e r = GraphDatabase . d r i v e r (ur l ,
AuthTokens . ba s i c (user , password)) ;

S e s s i on s e s s i o n = d r i v e r . s e s s i o n () ;

Query

In the Java code, Cypher queries are created by a concatenation of String and
executed by a run method.
The following code shows the execution of a query by the run method, with the
possibility to provide additional data with the keyword parameters.
The result of a query will be stored in a StatementResult which can be reused
later in the code.

S t r ing query = ‘ ‘MATCH node : Ent ity RETURN node ” ;
s e s s i o n . run (query) ;

Disconnection

After executing all queries, it is necessary to close the connection to the database.
The disconnection is done by calling the following code :

d r i v e r . c l o s e () ;

JCypher

The JCypher API [12] provides another way to execute Cypher requests. It is
considered mainly as a fluent Java API for Cypher whose objective is to simplify
the creation of queries.
Its creator, Wolfgang-Schuetzelhofer, provided the GitHub repository of his
project [25] with the source code and a Wiki page explaining how to use this
API.

Connection

The connection is made in this way with JCypher.

P r o p e r t i e s props = new P r o p e r t i e s () ;
props . s e tProper ty (DBProperties .SERVER ROOT URI, URL) ;
props . s e tProper ty (DBProperties .DATABASE DIR, ‘ ‘C: /NEO4J DBS/01”) ;
dbAccess = DBAccessFactory . createDBAccess (DBType .IN MEMORY,
props , user , password) ;

23

Query

This code shows the creation of queries with JCypher. It is no longer in the
form of a unique String, but with a set of keywords.

JcQuery query = new JcQuery () ;
query . s e tC laus e s (new IClause [] {
CREATE. node (‘ ‘Name”) . l a b e l (‘ ‘ Ent ity ”) . property (‘ ‘ Att r ibute ”)
. va lue (‘ ‘ Value”)

Disconnection

The disconnection with JCypher is made like this.

i f (dbAccess != null) {
dbAccess . c l o s e () ;

dbAccess = null ;
}

2.3.2 Neo4J example

In this section, we will explain an example of a small Neo4J project made in
order to feel comfortable with the technology. The Java Driver API was mainly
used in this exercise.

Context

The first step is to find a large dataset which will allow to perform queries on
a large number of elements. For this purpose, we have looked after some CSV
files that contain many interesting data in order to use them as a graph.

The file that we have selected for this example is about the rate of partici-
pation in an election. For each “Jurisdiction” of a specific country, the number
and percentage of participants are mentioned based on two criteria. The first
one is the gender, either male or female, and the other is the community, for
example “Hispanic Latino” or “American Indian”. There are many different
communities in this dataset but we only used two of them to have an easier
graph to read and understand.

Creation of the dataset

The second step aims to set up the dataset by importing the file and creating
all the nodes and relationships that we need for this.

24

File import

The following code will allow you to read the data from the file. We will have a
“While” loop that will go through all the lines of the file and for each of them,
we will be able to extract information and store them the “jurisdiction” array.
We can then use this array to create the corresponding nodes.

S t r ing c s v F i l e = ‘ ‘ myFile . csv ” ;
BufferedReader br = n u l l ;
S t r ing l i n e = ‘ ‘ ” ;
S t r ing cvsSp l i tBy = ” , ” ;

try {
br = new BufferedReader (new Fi leReader (c s v F i l e)) ;
while ((l i n e = br . readLine ()) != null) {

St r ing [] j u r i s d i c t i o n = l i n e . s p l i t (cvsSp l i tBy) ;

// c r e a t i o n o f nodes and r e l a t i o n s h i p s here

}
} // catch e x c e p t i o n s here

Creation of nodes and relationships

When these data were imported, it was necessary to create the nodes and rela-
tionships in the Neo4J database. First, we created the unique nodes, in other
words the nodes corresponding to genders and communities. So we have a
“Male” and a “Female” node for gender, as well as for communities with a
“Hispanic Latino” and an “American Indian” node.

public void createGenderAndCommunity () {
try (Se s s i on s e s s i o n = d r i v e r . s e s s i o n ()) {

//Gender
St r ing createNodeFemale = ”CREATE (node : Gender) ” +
”SET node . message = ’ Female ’ ” +
”RETURN node” ;
s e s s i o n . run (createNodeFemale) ;
S t r ing createNodeMale = ”CREATE (node : Gender) ” +
”SET node . message = ’ Male ’ ” +
”RETURN node” ;
s e s s i o n . run (createNodeMale) ;

//Community
St r ing createNodeHispLat = ”CREATE (node : Community) ” +
”SET node . message = ’ HispanicLat ino ’ ” +
”RETURN node” ;
s e s s i o n . run (createNodeHispLat) ;

25

St r ing createNodeAmeInd = ”CREATE (node : Community) ” +
”SET node . message = ’ AmericanIndian ’ ” +
”RETURN node” ;
s e s s i o n . run (createNodeAmeInd) ;

}
}

Then, we had to create the nodes corresponding to the “Jurisdiction”. Each line
of the CSV file corresponds to a jurisdiction, so we will have a node for each
line in the file, and the information contained within these lines will represent
the information contained in the relationships with the “Gender” and “Com-
munity” nodes.

The following Java code represents the creation of a “Jurisdiction” node corre-
sponding to a line of the CSV file and its relationships :

public void createNode (St r ing name , int tota lPerson ,
int id) {

try (Se s s i on s e s s i o n = d r i v e r . s e s s i o n ()) {
St r ing createNode = ”CREATE (node : J u r i s d i c t i o n) ” +
”SET node . id = $id , node . message = $name , ” +
”node . to ta lPer son = $tota lPer son ” +
”RETURN node” ;
s e s s i o n . run (createNode , Values . parameters (”name” , name ,
” to ta lPe r son ” , tota lPerson , ” id ” , id)) ;

}
}

Then, the code below is an example of the creation of a “Gender” relationship.
The method for creating “Community” relationships will be built with a similar
approach.

// Creat ion o f a ‘ ‘ Gender” r e l a t i o n s h i p
public void c reateRe la t ionsh ipGender (int number , double
percentage , S t r ing type , int id) {

try (Se s s i on s e s s i o n = d r i v e r . s e s s i o n ()) {

// (number>0) v e r i f i e s t h a t t h e r e i s a t l e a s t one
// corresponding person b e f o r e c r e a t i n g the r e l a t i o n s h i p
i f (number > 0) {

St r ing query = ”MATCH (node : J u r i s d i c t i o n { id : ” + id +
” }) , (nodeGen : Gender {message : ’ ” + type + ” ’}) ” +
”CREATE (node)− [: Re la t ion ” + type + ”{” + type + ” : ” +
number + ” , percentage : ” + percentage + ”}]−>(nodeGen) ” ;

26

s e s s i o n . run (query) ;
}

}
}

Final graph

The graph is now built in Neo4J and it can be accessed through queries.

The Figure 2.2 shows the meaning of the colours of the graph, Figure 2.3,
with the three types of nodes and the four types of relationships.

Figure 2.2: Neo4J example : Legend of the graph colors

Figure 2.3: Neo4J example : Final graph

.

27

We can now see in the Figure 2.3 the graph representation of the first 40 lines
of the CSV file. Each “Jurisdiction” node has a relationship with a “Gender”
and “Community” node if and only if it has at least one person corresponding
to this other node.

Eventually, information on jurisdictions is accessible through the attributes.
A jurisdiction has attributes to represent its identifier (“id”), the total number
of persons who participated in the election (“totalPerson”) and its name (“mes-
sage”).

The attributes of a relationship contain information about a specific jurisdic-
tion. For example, in the Figure 2.5, the relationship “RelationFemale” between
a jurisdiction and the “Female” node of type “Gender” will give us the number
of female person who participated in this specific jurisdiction and the percentage
that this represents in relation to the total number of person for this specific
jurisdiction.

Figure 2.4: Neo4J example : Properties of a “Jurisdiction” node

Figure 2.5: Neo4J example : Properties of a relationship

Queries

To conclude this example, several queries have been set up to access the data
in this graph. The two APIs that will be needed in this work, Java Driver API
and JCypher API, were used to understand how they work.

JCypher API

// Get in format ion about ‘ ‘ J u r i s d i c t i o n ” nodes
stat ic void getHi span icLat ino () {

JcNode n o d e J u r i s d i c t i o n = new JcNode (” J u r i s d i c t i o n ”) ;
JcRe lat ion r e l = new JcRe lat ion (” r e l ”) ;
JcQuery query = new JcQuery () ;
query . s e tC laus e s (new IClause [] {

MATCH. node (n o d e J u r i s d i c t i o n) . label (” J u r i s d i c t i o n ”)
. r e l a t i o n (r e l) . out () . type (” Re la t ionHi span i cLat ino ”)
. node () ,

28

WHERE. valueOf (r e l . property (” HispanicLat ino ”))
.GT(3) ,
RETURN. value (n o d e J u r i s d i c t i o n) .ORDER BY(” id ”) ,
RETURN. value (r e l)
}) ;

JcQueryResult r e s u l t = dbAccess . execute (query) ;
L i s t<GrNode> l i s tNode = r e s u l t . r e s u l t O f (n o d e J u r i s d i c t i o n) ;
L i s t<GrRelation> l i s t R e l = r e s u l t . r e s u l t O f (r e l) ;

for (GrNode node : l i s tNode) {

//For each o f the nodes , pr oce s s the data .

}
return ;

}

In this simple query with JCypher, the objective is to retrieve all the nodes of
the label “Jurisdiction” that have at least four participants coming from the
community “Hispanic Latino” in order to be able to use this data in our java
code later.

Java Driver API

// Get in format ion about r e l a t i o n s h i p
public void getTota lPerson () {

try (Se s s i on s e s s i o n = d r i v e r . s e s s i o n ()) {
St r ing query = ”MATCH (node : J u r i s d i c t i o n)−” +
” [re lMale : Relat ionMale]−(nodeMale : Gender) , ” +
” (node)−[re lFemale : Relat ionFemale]−(nodeFemale : ” +
”Gender) RETURN node . message AS Message , ” +
” re lMale . Male as Male , ” +
” re lFemale . Female AS Female , re lMale . Male + ” +
” re lFemale . Female AS Total , re lMale . percentage ” +
”AS MalePercentage , re lFemale . percentage AS ” +
” FemalePercentage ORDER BY Total ” ;
StatementResult r e s u l t = s e s s i o n . run (query) ;
while (r e s u l t . hasNext ()) {

Record record = r e s u l t . next () ;

//For each o f the nodes , pr oce s s the data .
}

}
}

29

In this example, the “Match” clause selects the nodes that have a relationship
with the node “Male” and the node “Female”. In other words, jurisdictions that
have at least one male and one female person who participated in the election.
The query will return some information about the two relationships like the
number of male and female person and we can calculate with that the total
number of person who participated to the election for a specific jurisdiction.
We can also used an “Order by” clause to sort the values that the query will
return.

2.3.3 Xtext for defining Domain-Specific Language

Xtext is the selected framework to provide the grammar definition language re-
quired for the Referential integrity constraints. When the grammar is defined,
an Ecore metamodel is generated, as we will demonstrate in the Part 5.1. Us-
ing this technology will offer a grammar, an Ecore generated metamodel from
the grammar and a model serializer to create examples based on the generated
Ecore metamodel.

According to the Chapter 6 of the reference book [2], “Modeling Languages
at a Glance”, a few DSLs principles have been set out :

• The language need to provide good abstractions to the developer, to be
intuitive and make life easier, not more complicated.

• The language does not have to depend on an one-man expertise to adapt
or to use it. Its definition has to be shared between the people and be
accepted after some evaluation.

• The language has to evolve, and has to remain maintained following the
context needs, otherwise it is sentenced to death.

• The language has to meet the supported methods and tools, because the
domain experts maximise their productivity by working in their domain.
And they do not want to spend time to create new methods or tools for
the language.

• A good DSL has to respect the open-close principle, which means that
software entities have to be open to extensions and closed to changes.

A few kinds of DSLs exists. The first one which is the external DSLs are created
from scratch and there is needed to build a parser and an interpreter, the parser
generator being ANTLR. A few advantages of this method are the freedom of
notation, errors management and the support of static analysis and optimisation

Then the internal DSLs are represented in two categories :

• Embedded DSLs : DSL embedded into an existing functional or ori-
ented host language, like Ruby or Scala.
For instance, RubyTL is a Model-To-Model Transformation language em-
bedded into Ruby, which is built as a DSL.

30

• Fluent API : An API is created following four techniques :

– Method chaining : Invoke multiple method calls without needing to
store the intermediate values.

– Function sequence : Generate a list of sequential numbers.

– Nested function : Function which is defined within another function.

– Expression builder : Build expressions by selecting items in lists.

At last, there are the DSL workbenches, also known as “Metamodel-based tools”.
For this case, a parser, an injector, a generator and an editor are directly gen-
erated from a specification based on a metamodel.
It is firstly important to introduce the concepts of abstract and concrete syntax.
The abstract syntax defines how the program looks like and the abstract syntax
of some implementation is the tree representation. The concrete syntax is the
set of rules that define how the program looks like. Two kinds of concrete syn-
taxes are supported by the existing frameworks : Graphical Concrete Syntaxes
(GCS) and Textual Concrete Syntaxes (TCS). The focus will be on the TCS
in this work. This kind of concrete syntax is used to work with textual docu-
ments and allows an user-friendly development for textual editors in modelling
language. For the TCS, some of the most commonly used tools are EMFText
and Xtext, whereas for the GCS, there would be MetaEdit+ and Sirius.

2.3.4 Model-To-Text Transformation

As we saw in the introduction, the purpose of the Model-to-Text transformation
will be to generate code.
The work made in the article [6] has similarities to this thesis. Indeed, the
main contributions of the article are interesting for this work realisation.
The first of their stages will be to define a metamodel that allows to represent
implicit structure in Graph databases. Then, they will do a mapping of the
UML diagram to the Graph-oriented database. Finally, they will develop a
framework that will generate the code to access the database.
Their developed tool UMLtoGraphDB has been made under these following
steps :

1. Two inputs : A UML class diagram and OCL constraints.

2. The UML class diagram is transformed to have a GraphDB model and
the OCL constraints are transformed to have a “Gremlin model”.

3. The GraphDB model and the “Gremlin model” are going through the
“Graph2Code transformation”.

4. This transformation leads to the Application Backend and the Graph
Database code is generated.

This article is interesting because it has a similar approach to ours, starting
from the M2T technique to go to Graph-oriented databases.

31

To end this section, there are a few template-based transformation languages
existing such as XSLT, JET, Xpand, MOFScript and Acceleo. This last will be
used for the implementation (Chapter 5) and will be explained here.

Acceleo

Acceleo [8] will be the tool used in this work to perform the Model-to-Text
transformation part. It is part of the Eclipse environment and is developed in
Java.
Thanks to the slides of our host university [19] and [3], which teaches this tool,
we were able to easily adapt to it.
Acceleo will need a model and metamodel at the input and will produce a file
containing code at the output. Within the code, it will be necessary to create
templates that will allow it to be structured.

Another tool that could have been used to perform this task is Xtend. In
addition, it is part of the Xtext tool. Its syntax is very similar to Java, which
makes it rather intuitive.
However, we have chosen to opt for Acceleo in this work.

32

33

Chapter 3

Methodology

This chapter will explain, in the first instance, the methodology to be followed
by the end-user to apply several constraints to a database. We can divide it
into two main steps : writing the Referential integrity constraints and applying
these constraints to a database.
Then, we will look at the methodology used to develop our solution and the
possible links with the first one.

3.1 Methodology end-user

As we said previously, this part will be devoted to the end-user methodology.
The goal is to understand the path that the constraint will follow from the user’s
brain to the database. The figure 3.1 provides a schematic view of it.

Figure 3.1: Diagram representing the steps of the methodology

In this schematic case, we have a person who wants to define several Referen-
tial integrity constraints on his database. The first step will be to write these
constraints and for that it will be necessary to provide the user with a language
allowing him to do that. The result of this first step will be all the RICs written
and ready to be applied.

34

Then, we will use this result and the database targeted by the user to perform
the second phase. The purpose of this step will be to apply the constraints
to all the dataset. Finally, the result of this second step will be our corrected
database.

3.1.1 Contextualization

We will now explain a basic and quick example to put this approach into con-
text. We have a first entity “nodeRed” and a second “nodeBlue” which have
relationships with each other.

Figure 3.2: Initial data for the methodology example

The user can write Referential integrity constraints, corresponding to our Step
1. Let us take the case where he would like to no longer have a “nodeRed”
without a reference in the database, that means a node who has no relationship
with no other. The user will be able to write the following Referential integrity
constraint : For each “nodeRed” element, I want it to have at least one rela-
tionship with any of the “nodeBlue” elements.
The written RICs will be stored in a file and sent to Step 2 which will apply
them to the database.

Figure 3.3: Final data for the methodology example

35

As we can see in the figure 3.3, the node of type “nodeRed” whose name was
“nodeC” has been deleted from the dataset because it had no reference.
In the next chapter, Design, we will discuss the design of the Referential in-
tegrity constraints where we will explain in detail their structure and what can
be done precisely with them.

3.2 Methodology of the solution

During our internship, we followed the approach of the end-user methodology to
develop our solution by dividing our work into two main tasks, corresponding to
those in the figure 3.1. A plan was established with the internship supervisor to
distribute properly the work into several pieces and choose the most appropriate
tools and technologies for each of them. In this chapter, we will also discuss
about the different choices that have been made during this work.

3.2.1 Step 0 : Draft of the RIC metamodel

The initial step in apprehending the domain was to define a draft of the RIC
metamodel, with the EMFText tool. This technology, where EMF means Eclipse
Modeling Framework, is a tool to define the textual syntax of Ecore-based meta-
models.

The following meta-model, Figure 3.4, was then created to represent the de-
sign of our first idea of what a Referential integrity constraint would be.

Figure 3.4: Initial metamodel of the RIC-DSL

As we can see on this metamodel, a Referential integrity constraint is identified
by its ricId and is defined by one or many ColumnRelationship.

The main concept in this diagram is the relationships Source and Target
between the RIC and Property classes. It means that a RIC can have multiple
properties “Source” and multiple properties “Target”. At last, these properties
are linked with at least one Entity.

This metamodel was the starting point of our project and the first version of our
structure of a RIC. During the progress of our work, we have made numerous
changes to this structure by adding the notions of cardinality, bi-directionality,

36

action and condition. We will discuss this more technical subject in the next
chapter, Design, where we will present the evolution of this metamodel until
we get its final version.

3.2.2 Step 1 : Writing Referential integrity constraints

This step will aim to propose to our user a way to write his constraints. Based
on the final meta-model of a RIC, we will have to define a language, simple and
intuitive, that will meet the needs of the end-user.

To achieve this, we must define a concrete syntax to write RICs based on the
XText tool. This task consisted of four sub-steps :

1. First of all, a learning of the Xtext framework had to be done to master
the tool.

2. A simple DSL was then created with the concrete syntax defined and an
editor to write RICs has been developed.

3. Afterwards, the capabilities of XText like the coloring syntax and the con-
tent assist were explored to implement a more advanced and customized
editor.

4. To finish this task, several tests based on the previous DSL were imple-
mented for different datasets.

3.2.3 Step 2 : Apply RICs to check database

The second step will aim to apply the RICs written by the user on a database.
We will have to use the Model-To-Text transformation techniques to achieve this
and in particular the Acceleo tool, to obtain the information from the model
provided.

This task has taken place in five different sub-steps :

1. The first step was to learn how Acceleo was working.

2. To get used with the Graph-oriented databases, a study of the Neo4j Java
Driver and JCypher APIs were required.
The concrete example in the section 2.3.2 has been realised to show how
to use Neo4J in our context.

3. After that, we have started to develop the code. We created several meth-
ods to verify the validity of a RIC according to its type and its character-
istics.

4. When these methods were defined and tested, it was time to create the
Model-To-Text transformation with Acceleo to obtain the constraints writ-
ten by the user.

5. At last, all that remained was to generate the due code representing the
RICs and execute it to fix the database.

37

38

Chapter 4

Design

Starting from the initial meta-model of a Referential integrity constraint, Figure
3.4 in the previous chapter, a few additions have been made through the time
thanks to some discussions with different members of the research group and
during the visit of our supervisor. This chapter will explain how the vision of a
generic Referential integrity constraint has evolved in our minds, to lead to the
final structure of a RIC which is used to control the consistency of the data in
a database.

4.1 Structure of a relationship

As the design progresses, we have determined that a RIC can be of two main
types : Classic relationship or Tag relationship. These are the following :

4.1.1 Classic relationship

The classic relationship is a Referential integrity constraint based on attributes
and is defined in the following way :

e n t i t y 1 . a t t r i b u t e 1 −> e n t i t y 2 . a t t r i b u t e 2

The goal will be to compare the values of the attribute of a first entity with the
values of the attribute of a second entity.
To have a valid relationship, every value contained in attribute1, belonging to
entity1 has to match to a value of attribute2, belonging to entity2.

4.1.2 Tag relationship

The second kind of relationship is the reference between two nodes with an arc
whose label will be the Tag. This type of relationship is defined like this :

e n t i t y 1 −(tag)−> e n t i t y 2

Every node belonging to entity1 should have at least one arc, with the Tag
name, with an entity2 element.

39

4.1.3 Adding bi-directionality

Afterwards we can add two new types of relationships for an RIC, based on the
previous ones.
We chose to add the fact that a relationship can be bi-directional which would
mean that the previous definition will be for both ends of the relationship arrow.
The relationship will first be analyzed from left to right and then from right to
left, as if they were two simple relationships.

Thus, the relationships will be represented like this, going from the Classic
relationship to the Tag relationship, respectively :

e n t i t y 1 . a t t r i b u t e 1 <−> e n t i t y 2 . a t t r i b u t e 2

e n t i t y 1 <−(tag)−> e n t i t y 2

4.2 Cardinalities

The cardinality defined the minimal and maximal number of possibility that an
object has in a relationship. It will be necessary to verify if the value is in this
interval.

In an unidirectional relationship, a cardinality can be added to the destination
part of the arrow (for example after entity2). While in bi-directional relation-
ships, cardinalities can be added to both parts of the relationship at the same
time. Putting cardinalities is not mandatory but it can be interesting for con-
sistency reasons.

Here is an example of their representation :

e n t i t y 1 . a t t r i b u t e 1 −> e n t i t y 2 . a t t r i b u t e 2 [MIN . .MAX]
e n t i t y 1 −(tag)−> e n t i t y 2 [MIN . .MAX]

e n t i t y 1 . a t t r i b u t e 1 [MIN . .MAX] <−> e n t i t y 2 . a t t r i b u t e 2 [MIN . .MAX]
e n t i t y 1 [MIN . .MAX] <−(tag)−> e n t i t y 2 [MIN . .MAX]

While MIN is the minimal cardinality and MAX the maximal one. Here follows
the four different couples of cardinalities that the user can face in his RIC
declaration.

• [0..1] : It means that there should be at most one link between the two
parts of the relationship.

• [0..N] : There will be an undefined number of links for the relationship.

• [1..1] : In this case, we exactly have one relationship.

• [1..N] : There is at least 1 link between both parts of the relationship.

40

4.3 Actions

Actions are defined in order to improve the consistency of the datasource. The
actions are not related to the validity of a RIC, that means that they will be
performed regardless of whether the constraint is valid or not and it will allow
the user to adapt the behaviour of the database. We decided to represent them
under four different cases, that will be explained in this part.
It is important to indicate that this feature will be optional for the user but it
will be his only way to modify the datastore.

4.3.1 Adding information

This first action will add some information in the dataset and its behaviour
depends on the relationship type. In the case of a Classic relationship, an edge
will be created, if it does not already exist, between the node of entity1 and a
node of entity2 whose its attribute2 corresponds to a value in the attribute1.
In other words, every value of the attribute1 will be taking in account, looking if
there is an existing edge with the entity2 node whose its attribute2 corresponds
to this value. If the edge does not exist, it will be created following the infor-
mation put by the user. This step is done for each node of type entity1.

We will illustrate this action with the Figure 4.1.

Figure 4.1: Action Add Info : Before

In the case of a Classic relationship :

ent ityRed . att r ibuteRed −> ent i tyB lue . a t t r i bu t eB lue

With the action “Add Info”, the program will add an edge between nodeA and
nodeC. The value of attributeRed corresponds to the value of attributeBlue of
nodeC meaning that there is a reference between nodeA and nodeC, but there
is no arc on the graph. The “Add Info” action will allow you to add this one.

41

For a Tag relationship, a checking is made to know if there are relationships
between nodeRed nodes and nodeBlue nodes, and if there are some, the identi-
fier of the nodeBlue node is added in the attribute of the nodeRed node.
If we take again the Figure 4.1, in the case of a Tag relationship :

ent ityRed −(Tag)−> ent i tyB lue

The “Add info” action will add the value of the identifier of nodeB in the
AttributeRed of nodeA because we have an edge between nodeA and nodeB,
meaning that there is a reference between them.

We can see, on the figure 4.2, in red the changes made by these two actions :
an arc has been added and a value has been added to nodeA.

Figure 4.2: Action Add Info : After

The goal of this action is, for each node of the entity nodeRed, to have consis-
tency between its attribute AttributeRed, referencing the AttributeBlue of the
entity nodeBlue, and its relationships, targeting node of entity nodeBlue as we
can see in the Figure 4.2. In conclusion, the consistency of the data is both the
reference by arcs and by attributes.

To be as generic as possible and to only not be close-minded to graph-oriented
database, the choice was made to call this action “Adding information” instead
of “Adding edge” or something else only related to this specific kind of non-
relational datastore.

42

4.3.2 Deleting information

The purpose of this action will be to delete an information or node. Caution
should be exercised with this type of action, as it is always risky to delete data
from the database.

In the case of Classic relationship, each value of the AttributeRed are taken.
We will check if there is an nodeBlue that have this value in its AttributeBlue.
If no match exists, the value of the AttributeRed is removed.

For Tag relationships, a node of the source entity nodeRed should have at least
one relationship with a node of the target entity nodeBlue. If there is no rela-
tionship, the first node is deleted.

4.3.3 Deleting information in cascade

Another kind of deletion of information has been found out. Even though in
the case of Classical relationship it will not change anything, it will have an
interest for Tag relationships. If a source node is removed, and this one has
other relations with other entities, this action will permit to delete all of his
relative nodes in cascade.
You have to be very careful with this kind of action that can remove many
elements from the database.

4.3.4 Showing information

The idea here is just to show some information about a node like its attributes,
no matter the kind of relationship. Indeed, it will return all the information
about the node and entity, and its direct relationships with other entities.

43

4.3.5 Summary

This section will provide a summary table of each action, with its respective
description, the related section in the thesis structure and if there is an update
in the database.

Action
Name

Description Related
Section

Update in the
database

Add Info Adding information in the
dataset

Section 4.3.1 Yes

Delete Deleting information de-
pending on the kind of re-
lationship (classic/tag)

Section 4.3.2 Yes

Delete
Cascade

Deleting all the relative
nodes of the chosen entity
in tag relationships

Section 4.3.3 Yes

Info Showing the information
about an entity

Section 4.3.4 No

Figure 4.3: Summary table of the Actions

4.4 Condition

The concept of condition here is to act as an extra-validation for the Referential
integrity constraint by check if the attribute value in the dataset complies with
the written condition to validate the RIC.

Entity . a t t r i b u t e {Relat iona lOperator } value {Logica lOperator }

The initial goal is to compare a property with a value using one of these five
different relational operators : equals (=), greater than (>), lesser than (<),
greater than or equals (≥), lesser than or equals (≤).

A property is the value of an attribute of a particular entity represented like
this : entity.attribute . The compared value can be either a String, an Inte-
ger or a Boolean. This condition can be linked to one or a few more thanks to
these both logical operators that are “AND” and “OR”. In this case, it will be
directly related to the following condition.

44

Here is an example to clarify this concept of condition with the help of the
concrete example of the section 2.3.2 on elections within Jurisdictions.

(J u r i s d i c t i o n . numberMale > 0) AND (J u r i s d i c t i o n . numberFemale > 0)

This means that each jurisdiction must have at least one male and one female
person who participated in the election. If both parts are good, it means that
the condition is respected so the RIC can be validated.

4.5 Final metamodel

The figure 4.4 represents the final state of our Referential integrity constraint
after integrating all the elements discussed in this chapter.
All classes correspond to the elements of this chapter, except the “RicDSL”
class which is new and represents a list including all RICs.

Figure 4.4: Metamodel of a RIC after the Design step

45

46

Chapter 5

Implementation

To create the Referential integrity constraints definition system on NoSQL data-
stores, two main steps were defined according to the Methodology chapter.
The first one was to create a Domain Specific Language (DSL) where the gram-
mar of RICs definitions is created and defined to have a referring metamodel
(.ecore file) to this grammar. This step was made through the XText frame-
work, which is explained in the Part 2.3.3.
The second step is intended to develop the Java code to validate RICs. To do
this, it is necessary to build the code to send requests to the Neo4J datastore.
When the Java code is functional, a Model-To-Text transformation with Acceleo
can be realised to generate the targeted code.

The implementation has been done on the Eclipse IDE in order to match
the tools used and the code is available on the following GitHub repository
: https://github.com/fjavierbr/belgian-projects .

Project hierarchy

The project is composed of five packages :

• org.xtext.stage.ricdsl

• org.xtext.stage.ricdsl.ui

• org.xtext.stage.ricdsl.ide

• org.xtext.stage.ricdsl.tests

• org.xtext.stage.ricdsl.ui.tests

The package org.xtext.stage.ricdsl contains three sub-packages : src, src-gen
and model. The grammar of the ricdsl language, corresponding to the file
RicDsl.xtext, is in src, while all the generated code is in src-gen and the .ecore
generated metamodel will be in the sub-package model.
The second package org.xtext.stage.ricdsl.ui contains all the code related to the
advanced features described in the Section 5.1.2. All the files written will be
described in detail in this Section.
The last three packages are not relevant for the rest of this work.

47

5.1 Defining a DSL representing the grammar

The DSL has been defined following the Design chapter (Chapter 4).

5.1.1 Ricdsl language definition

Here is how the DSL has been written within the Xtext framework. The idea is
to show the grammar code and then to explain it, with references to the Design
chapter to point out how it is represented in the language definition.

Some Xtext features used in the language definition have to be expressed before
showing it :

• Defining a keyword by writing a String between two simple quotes like
this : ‘Keyword’.

• The symbol “+=” (example : attribute+=Entity) means that an Entity
is added to the feature attribute.

• There are four possible cardinalities : exactly one is the one by default,
zero or one is represented by a ‘ ? ’, zero or more by ‘ * ’ and one or more
is represented by ‘ + ’.

RicDSL entity

RicDSL :
(datasource+=Datasource) ’ \n\n ’
(r i c s+=RIC)∗
;

The RicDSL entity may be compared to the root of the generated metamodel of
a RIC. It contains the Datasource entity which will explained right below and
a or more than one RIC. The ‘\n\n’ token is to go two lines lower after all the
information of the Datasource entity has been given.

Datasource

Datasource :
’ DataSource ’ ’ (u r l=’ (u r l=ID) ’ , usr=’ (username=ID)
’ ,pwd=’ (password=ID) ’) ’

;

The keyword DataSource is provided to the user in the editor and directly after
that, the related URL of the datastore is asked, following with the user and
then the password required to access to the database, like it is in the Neo4j
Desktop application. One and only one String will have to be enter by the user,
respectively for the url field, the username and the password.

48

RIC

RIC :
’RIC ’ r i c I d=ID ’ { ’ ’ \n\ t ’
’ message : ’ r i cMessage=ID ’ \n\ t ’
((r e l a t i o n s h i p 1+=R e l a t i o n s h i p c l a s s i c) |
(r e l a t i o n s h i p 2+=R e l a t i o n s h i p t a g)) ’ \n\ t ’
’ in−cond i t i on : ’ (r i cCond i t i on+=Condit ion)∗ ’ \n\ t ’
’ a c t i on ’ (a c t i on+=Action)? ’ \n ’
’ } ’ ’ \n ’
;

The keyword RIC is followed by the id to give to this RIC, then by a ‘{’ to signal
the beginning of the RIC, in the image of this symbol in Java, for instance. The
ricId is mandatory to write and there can only have one. The ‘\n\t’ notation
means to go to the next line and make a tabulation space.
Then comes the keyword message followed by a message that the user can write.
The next line is about the different kinds of relationship that will be explained
below, according to what has been explained in the Chapter 4 Design. The ‘|’
symbol is here to represent the OR operator which means that the relationship
has to be a Classic or a Tag relationship, but not both.
Afterwards comes the keyword in-condition which will be followed by one or
several conditions according to the section 4.4.
The last information to give in a RIC by the user is the action (Section 4.3).
This part is not mandatory, the user can leave this blank or can enter an action.
Then follow the symbol ‘}’ to end the RIC.

The figure 5.1 represent how a RIC is written in the editor.

Figure 5.1: Representation of a RIC in the editor

Relationships

R e l a t i o n s h i p t y p e s :
ONEWAY = ’−> ’ | TWOWAYS = ’<−> ’

;

R e l a t i o n s h i p t y p e s t a g :
TAG ONE WAY = ’−(’ tag=ID ’)−> ’ | TAG BI = ’<−(’ tag=ID ’)−> ’

;

49

R e l a t i o n s h i p c l a s s i c :
(source+=Entity) (c a r d i n a l i t y L e f t+=Card ina l i t ySe t)?
(r e l a t i o n s h i p+=R e l a t i o n s h i p t y p e s) (t a r g e t+=Entity)
(c a r d i n a l i t y R i g h t+=Card ina l i t ySe t)?

;

R e l a t i o n s h i p t a g :
(en t i tySource+=Entity) (c a r d i n a l i t y L e f t+=Card ina l i t ySe t)?
(r e l a t i o n s h i p+=R e l a t i o n s h i p t y p e s t a g)
(ent i tyTarge t+=Entity) (c a r d i n a l i t y R i g h t+=Card ina l i t ySe t)?

;

As seen in the section 4.1.1 and the section 4.1.2, there are two kinds of re-
lationship. These kinds of relationship can also be bi-directional, this is what
the second token is in the Relationship types and Relationship types tag entities,
while the left part represent the uni-directional relationship. A relationship con-
tains the entity at the left of the arrow, called here source or entitySource of
the Entity type (see below). Such as the entity at the right part of the arrow
(target and entityTarget), they may have a cardinality, which is not mandatory.
The implementation about the cardinality will be explained a bit further. The
figure 5.2 shows a Tag relationship that is written in the editor, while the figure
5.1 represents a Classic relationship.

Figure 5.2: Representation of a tag relationship in the editor

Entity

Entity :
entityName=ID(’ . ’ (a t t r i b u t e+=Attr ibute)) ?

;

Att r ibute :
attributeName=ID

;

An entity has its name and may be related to an attribute, like it is described
in the section 4.1. It depends on the relationship type that is faced.

50

Cardinality

Card ina l i t ySe t :
’ [’ (ca rd ina l i tyMin+=Card ina l i t y) ’ . . ’
(card ina l i tyMax+=Card ina l i t y) ’] ’

;

Ca rd ina l i t y :
ZERO = ’ZERO’ | ONE = ’ONE’ | NOT DEFINED = ’MANY’

;

As described in the section 4.2, the minimal and the maximal cardinality of an
attribute or an entity has to be represented among four possibilities. Here is to
what the user is face when he wants to add cardinalities.

Figure 5.3: Representation of the cardinalities in the editor

Condition

Condit ion :
(’ (’) ? (ent+=Entity) (re lat ionOp+=Re la t i ona l Opera to r)
’ ’ ((va lue=ID) | (va lue In t=INT) | (valueBool=(”TRUE” |
”FALSE”))) ’ ‘ ’ (’) ’)? (logOp+=Log ica l Operator)?

;

Re la t i ona l Opera to r :
EQUAL = ’=’ | GREATER = ’> ’ | LESSER = ’< ’ |
GREATER EQUAL = ’<=’ | LESSER EQUAL = ’>=’

;

Log i ca l Operator :
AND = ’AND’ | OR = ’OR’

;

Seeing the section 4.4, the relational operators are represented in Relational Operator,
while the logical operators correspond to the Logical Operator entity.
Each operator is represented by its symbol, like explained in the related part.

51

A bracket can be put by the user, but it is not mandatory. Its use is only to
make the condition most easy to read for the user if this one will be long. The
value that will be compared by a relational operator has to be either a String,
an Integer or a Boolean. The figure 5.4 is an example about how a condition
can be written in the editor.

Figure 5.4: Representation of a condition in the editor

Action

Action :
ADD INFO = ’ADDINFO’ | DELETE = ’DELETE’ | INFO = ’INFO ’

;

Following what has been explained in the section 4.3, three actions are available
to choose by the user. It was not possible for a timing issue to implement the
“Delete Cascade” semantic part and this is why it is not in the grammar. We
will provide details about that issue in the Chapter 9. The figure 5.5 shows
what the user can face in the editor when he wants to add an action to a RIC.

Figure 5.5: Representation of actions in the editor

This ends the Xtext grammar code that will generate an .ecore metamodel.
After that comes the serialization where a dynamic instance of the metamodel
will be created on the “RicDsl” entity. A .xmi file containing all the relevant data
concerning every entities and attributes of the metamodel will be generated. A
relevant example of a serialization is in the Appendix B.1. This file will be the
input for the further step regarding the code generation, that will be explained
in the section 5.2.

52

5.1.2 Advanced features

According to the Xtext - Eclipse Support [23], a few additional features for
the user interface of the created editor can be explored. These are features such
as : quick fixing, syntax coloring, outline view, hyperlinking or content assist.
So, it became interesting to explore some of these advanced features. And the
explored ones for this work are the Syntax coloring and the Content assist.

Syntax coloring

First of all, here is how the RicDslUiModule.xtend file has to be written
to accept the new syntax coloring. It is important to point out that Xtext
provide a default syntax coloring. The motivation was to have something more
customised than it was.

class RicDslUiModule extends AbstractRicDslUiModule {
de f Class<? extends IH igh l i gh t ingCon f i gu ra t i on>
b indISemant i cH igh l i ght ingCa l cu la to r () {

RicDs lH igh l i gh t ingCon f i gu ra t i on
}

}

Then, the file RicDslHighlightingConfiguration.xtend had to be written,
implementing IHighlightingConfiguration to override the configure method
and then being able to update the syntax coloring and font of the keywords and
the plaintext to make it more personal. The linked code to that is in Appendix
A.1 and is quite easy to understand.

Content assist

The related code to this part is in the Appendix A.2 where three methods have
been overrided :

1. complete Entity where you have to write an Entity in the editor, you have
the String “Here should be provided the list of entities in the DataSource.”
For timing issue, this String was shown instead of the list of the entities
coming from the Datasource. The Section 9.2 explains how it should look
like in the future.

Figure 5.6: Content assistant for an Entity

53

2. complete Attribute where the goal here is to give the information about the
Entity where the attribute to enter belong. The method call currentModel
give the information about what is the name of the Entity as it can be
read on the figure 5.7. The content assist shows the name of the Entity
where the attribute belongs.

Figure 5.7: Content assistant for an Attribute

3. complete Datasource where the default information for the connection to a
Neo4j database is given, like shown in the figure 5.8. The content assistant
will give this information when you enter the DataSource keyword.

Figure 5.8: Content assistant for the DataSource

54

5.2 Model-To-Text transformation

5.2.1 Introduction

This section will explain the implementation of the code allowing the validation
of RICs, as well as the choices that result from it. It will be composed of two
important parts: the code to send queries to the NoSQL datastore and then the
code to perform the Model-to-Text transformation with Acceleo.

Project hierarchy

The project is composed of two important packages :

• org.eclipse.acceleo.dsl.uml.gen.java.main

• org.eclipse.acceleo.dsl.uml.gen.java.files

The first one, main, contains the Acceleo files corresponding to the templates
that will generate the target code. There are two files : neo4JApiJava.mtl
corresponding to the Java Driver API version and neo4JApiJCypher.mtl corre-
sponding to the JCypher version.
The second package, files, is the place where the files resulting from the Model-
to-Text transformation will be generated. TransformationJavaApi.java is the
file generated by Acceleo for the Java Driver API version and Transformation-
JCypher.java is the file generated for the JCypher version.
Another important file in this package will be the one where the results of the
RICs will be stored after being tested : RICResult.json. This file will save the
results of the RICs in order to be able to consult them or to use them again
later.

Starting hypothesis

Before starting the implementation of this part, we made an assumption about
the structure of the nodes of the Neo4J datastore : Each node in the dataset is
identified by a property “id” that is an Integer.
It is much easier for us to manage nodes in this way. This attribute will be unique
and will allow us to browse through all the nodes in a simple and efficient way.
This can obviously be modified and adapted later according to future needs.

5.2.2 JCypher and Java Driver API

As indicated several times since the beginning of this thesis, we will use two
different APIs to access the Neo4J database and therefore have two identical
versions of the code for each of them.
The goal will be to be able to compare these two APIs and we will analyze
the creation of queries with each of them in the next chapter, Taxonomy of
Queries.
In the rest of this chapter, we will focus the Java code independently of the two
APIs. This code will therefore be identical in both versions because it does not
directly contain queries to the database.

55

5.2.3 Develop the Java code corresponding to Neo4J

For this part, we will not use Acceleo yet. The goal is to programmatically define
how to validate RICs using Neo4J. It will provide us with the basic models for
code validation. We will use handwritten RICs in the code to perform our tests
until we get to Acceleo. Once this is functional, we will integrate this code into
the Acceleo templates, which is the next step in the work.
The “validateRICJavaDriver” file in the project is the one corresponding to this
part of the work. The focus will be on queries to access the Neo4J datastore.
We wanted to have a “main” method as simple as possible, with only one
processing method, called “validateModel” in which the RICs processing will
take place, as well as the two connection/disconnection methods to the database
(Section 2.3.1).

Methods for validating RICs

Our goal will be to develop 8 methods covering the possible types of RICs, we
will then add the actions and conditions that are independent methods.
As we said, eight methods are enough to cover all cases of validation :

• Classic relationship without cardinality

• Classic relationship with cardinality

• Classic relationship without cardinality and bidirectional

• Classic relationship with cardinality and bidirectional

• Tag relationship without cardinality

• Tag relationship with cardinality

• Tag relationship without cardinality and bidirectional

• Tag relationship with cardinality and bidirectional

Explaining each of these methods would be highly repetitive and tedious. That
is why we have decided to present only two of them, Classic relationship and
Tag relationship without cardinality, and to briefly explain the others and their
differences afterwards.

Classic relationship without cardinality :

We will start with the simplest method, corresponding to Classic relationship,
whose purpose will be to verify that all the values present in the attribute1 of
the first node correspond to a value existing in the attribute2 of one of the nodes
of the second entity.

56

for (int id : nodeFi r s tEnt i ty) {
numberElements = getValue (id , f i r s t E n t i t y ,
f i r s t A t t r i b u t e) ;
for (int i = 0 ; i < numberElements . s i z e () ; i++) {

Object va lue = numberElements . get (i) ;
i f (! resultSecondQuery . conta in s (va lue)) {

i f (! idNodeFai l . c onta in s (id)) {
idNodeFai l . add (id) ;

}
}

}
}

We will analyse the corresponding code above.
For each node of the first entity, whose identifiers will be kept in list “node-
FirstEntity”, we will check that the values of its attribute, accessible through
the list “numberElements”, correspond to a value of a node of the second entity.
The “resultSecondQuery” list represents all the values of the specified attribute
of the nodes of the second entity.
Nodes that do not meet this condition will have their identifier added to the list
“idNodeFail”.

For the rest of this method, in the code below, we will need this list of failed
nodes. In case this list is not empty, we know that at least one node has failed,
so the RIC will not be validated and we do not need to test the condition, even
if there is one.
If this list is empty, it means that each node is valid, we can then test the con-
dition if there is any.

“listCondition” is a list containing all subconditions. If it is empty, so if there
is no condition, we can return the result of the RIC. In the opposite case, we
will have to test the condition(s).
If the global condition is valid, the RIC will be validated, otherwise it will fail.

i f (! idNodeFai l . isEmpty ()) {
validRIC = fa l se ;
for (int id : idNodeFai l) {

LinkedHashMap<Str ing , Object> attr ibuteNode =
infoNode (f i r s t E n t i t y , id) ;
nodeFai l . add (attr ibuteNode) ;

}
} else {

i f (! l i s t C o n d i t i o n . isEmpty ()) {
cond i t i on = checkCondit ion (l i s t C o n d i t i o n) ;
for (Entry<Str ing , Boolean> entry :
cond i t i on . entrySet ()) {

57

St r ing key = entry . getKey () ;
i f (key . equa l s (” r e s u l t ”)) {

va l idCond i t i on = entry . getValue () ;
i f (va l idCond i t i on) {

validRIC = true ;
} else {

validRIC = fa l se ;
}
break ;

}
}

} else {
validRIC = true ;

}
}

The method is not yet complete, we must now test the actions. If there is
one, we will call the method “actionAttribute” corresponding to the actions for
Classic relationships.
The methods corresponding to actions and conditions will be presented later in
this chapter.

i f (! a c t i on . equa l s (””)) {
r e s u l t A c t i o n = ac t i onAt t r i bu t e (act ion , f i r s t E n t i t y ,
secondEntity , f i r s t A t t r i b u t e , nodeFirstEnt i ty ,
idNodeFai l) ;

}

Finally, the code below ends our method.
The “generateResult” method will allow to put all the useful information about
the RIC in a list, “listResultRIC”, which we will return.

l i s tResu l tRIC = genera teResu l t (name , validRIC ,
nodeFai l , act ion , r e su l tAct i on , cond i t i on) ;

return l i s tResu l tRIC ;

58

Tag relationship without cardinality :

Now will be discussed the second type of relationship. For Tag relationships,
the purpose is to verify that there is at least one relationship between a specific
node of the first entity and any node of the second entity.
“listIdEntity” corresponds to the list of identifiers of all nodes of the first entity.
We will therefore make a query, for each identifier, that will return the relation-
ships of this node with a node of the second entity.
If the result of the query is null, then the RIC is not valid and the identifier
is added to list “idNodeFail” which corresponds to the identifiers of the nodes
that caused the RIC to fail.

try (Se s s i on s e s s i o n = d r i v e r . s e s s i o n ()) {
for (int id : l i s t I d E n t i t y) {

St r ing query = ”MATCH (node : ” + f i r s t E n t i t y +
”)−[r e l : ” + tag + ”]−>(:” + secondEntity +
”) WHERE node . id= ” + id + ” RETURN r e l ” ;
StatementResult r e s u l t = s e s s i o n . run (query) ;
i f (! r e s u l t . hasNext ()) {

i f (! idNodeFai l . conta in s (id)) {
idNodeFai l . add (id) ;

}
}

}
}

The continuation of this method is almost identical to the one for the classical
relationship.
If the RIC is valid, we will check the condition and obtain the final result of the
RIC. After that, we will check the actions with the “actionTag” method and
finally return the “listResultRIC” list containing the global information on the
RIC.

Bi-directionality :

The principle of bidirectional relationships is really simple. We are just going to
call the unidirectional method twice, from left to right then from right to left.
We will therefore have to recuperate the result of the two relationships and
compare them to obtain the final result.

For example :

Entity1 . Attr ibute1 <−> Entity2 . Att r ibute2

59

This code will be equivalent to :

Entity1 . Attr ibute1 −> Entity2 . Att r ibute2
AND
Entity2 . Attr ibute2 −> Entity1 . Att r ibute1

Cardinality :

The methods for cardinalities work like the classical methods, except that we
will also test the number of elements.
In the case of Classic relationships, we will check that the number of elements
in the specified attribute of the node is greater than the minimum cardinality
and smaller than the maximum cardinality.
In the other case, for Tag relationships, we will check that the number of rela-
tionships, of the specified type with the nodes of the second entity, is greater
than the minimum cardinality and smaller than the maximum cardinality.
In the event that the cardinalities are not respected, the RIC will be considered
invalid.

Action

Now we must add the concept of action. Actions will have different behaviours
depending on whether you are in a Classic relationship or a Tag relationship,
therefore they require two distinct methods.

We will explain how the “Add Info” and “Delete” actions work in both cases
and we will illustrate this with a piece of the corresponding code.

Classic relationship :

The “Add Info” action for Classic relationships corresponds to the code below.
As previously mentioned in the section 4.3.1, the goal of this action will be to add
an arc when required to create a relationship that will improve the consistency
of the dataset.
The following code will check that each value of a node’s attribute (“valueInt”)
corresponds to an identifier of a node of the second entity (“listIdSecondEntity).
If there is a correspondence with an identifier, we will check if there is already
a relationship between the two nodes. Otherwise, we will add this relationship
using the “createRelationship” method.

60

for (Object obj : l i s t V a l u e) {
Value value = (Value) obj ;
int va lue In t = value . a s In t () ;
i f (l i s t I d S e c o n d E n t i t y . conta in s (va lue In t)) {

boolean e x i s t = e x i s t R e l a t i o n s h i p (f i r s t E n t i t y , id ,
secondEntity , va lueInt , a t t r i b u t e) ;
i f (! e x i s t) {

c r e a t e R e l a t i o n s h i p (f i r s t E n t i t y , id , secondEntity ,
va lueInt , a t t r i b u t e) ;
nodeAdd . add (va lue In t) ;

}
}

}

After that, we have the “Delete” action that corresponds to the code below.
In accordance with section 4.3.2, this action will aim to delete the values of the
attribute that do not refer to an existing node.
We will take the values of the first node and check, one by one, that it corre-
sponds to an existing node of the second entity. If this is the case, it is added
to the “updateNodeValue” list. Once all values have been verified, we will up-
date the first node by replacing its current values with the values from the
“updateNodeValue” list.

for (Object obj : l i s t V a l u e) {
Value value = (Value) obj ;
int va lue In t = value . a s In t () ;
i f (l i s t I d S e c o n d E n t i t y . conta in s (va lue In t)) {

updateNodeValue . add (va lue In t) ;
} else {

nodeDelete . add (va lue In t) ;
}

}
updateNodeProperty (f i r s t E n t i t y , idNodeFail ,
updateNodeValue , a t t r i b u t e) ;

Tag relationship :

For the Tag relationship, we will do the opposite of the classical relationships.
Starting from a specific node of the first entity. We will check, for each node of
the second entity one by one, if there is a relationship with the node of the first
entity. If one exists, the value of the second entity is added to the “nodeValue”
list.
After testing each node of the second entity, we will update the first node by
replacing its current values with the values from the “nodeValue” list.
The “nodeAdd” list is used to know precisely which values have been added.

61

for (int idSecond : l i s t I d S e c o n d E n t i t y) {
boolean r e l a t i o n E x i s t s = e x i s t R e l a t i o n s h i p (f i r s t E n t i t y ,
i d F i r s t , secondEntity , idSecond , r e l a t i onTag) ;
i f (r e l a t i o n E x i s t s) {

ArrayList<Object> r e su l tVa lue = getValue (i d F i r s t ,
f i r s t E n t i t y , r e l a t i onTag) ;
ArrayList<Integer> l i s t V a l u e = new ArrayList <>();
for (Object obj : r e su l tVa lue) {

Value value = (Value) obj ;
l i s t V a l u e . add (value . a s In t ()) ;

}
i f (! l i s t V a l u e . conta in s (idSecond)) {

nodeAdd . add (idSecond) ;
}
nodeValue . add (idSecond) ;

}
}
updateNodeProperty (f i r s t E n t i t y , i d F i r s t , nodeValue ,
r e l a t i onTag) ;

Finally, we will finish this part with the “Delete” action for Tag relationships.
The code below is quite simple : we will have the “nodeFail” list which contains
the identifiers of nodes that have not respected the RIC and which we will have
to check again.
We want to know if the RIC failed because the node in question has no rela-
tionship with nodes of the second entity, or did it fail because of cardinalities.
To do this, we will check again that it has at least one relationship with a node
of the second entity. Otherwise, we will be able to delete this node from the
dataset.

for (int idNodeFai l : nodeFai l) {
boolean e x i s t = fa l se ;
for (int secondId : l i s t I d S e c o n d E n t i t y) {

e x i s t = e x i s t R e l a t i o n s h i p (f i r s t E n t i t y , idNodeFail ,
secondEntity , secondId , r e l a t i onTag) ;
i f (e x i s t) {

break ;
}

}
i f (! e x i s t) {

deleteNode (f i r s t E n t i t y , idNodeFai l) ;
}

}

62

Condition

Finally, it was time to add the conditions. Only one version is sufficient for all
relationships as the conditions are not dependent on the type of relationship of
a RIC.

A hypothesis made on the conditions is that the values tested in the condi-
tion are unique values, that means no arrays or lists, and their type must be
either String, Integer or boolean. In addition, when the attribute of a condition
refers to an attribute in the dataset that has a list or array value, each element
of that list or array must comply with the condition to be valid.

The method to check the conditions is quite simple but very long because it
requires a lot of verification. That is why we will not show the code of this
method in the report.
This method will receive a list including the conditions. For each of them,
it will search the value of the attribute in the database. The next step will
be to determine which is the relational operator so that the value of the con-
dition can be compared with the value of the database. In the end, the result
of each condition will be stored in a list that we will identify by its position in it.

The last step will be to obtain the result of the global condition on the basis of
the results calculated for each of the subconditions and their logical operator.
Therefore we have developed a recursive method to calculate the final condition :

private stat ic boolean recurs iveCheck (ArrayList<Boolean>
valueCondit ion , ArrayList<Str ing> operatorCondit ion ,
int s i z e) {

boolean r e s u l t = fa l se ;
boolean va lueRecurs ive = fa l se ;
s i z e = s i z e − 1 ;

i f (s i z e == 0) {
r e s u l t = valueCondit ion . get (s i z e) ;

} else {
St r ing operator = operatorCondi t ion . get (s i z e −1);
i f (operator . equa l s (”AND”)) {

va lueRecurs ive = recurs iveCheck (
valueCondit ion , operatorCondit ion , s i z e) ;
r e s u l t = (va lueCondit ion . get (s i z e) && va lueRecurs ive) ;

} else i f (operator . equa l s (” OR”)) {
va lueRecurs ive = recurs iveCheck (
valueCondit ion , operatorCondit ion , s i z e) ;
r e s u l t = (va lueCondit ion . get (s i z e) | | va lueRecurs ive) ;

}
}
return r e s u l t ;

}

63

The purpose of this is to take the result of the last subconditions in the list,
to take the logical operator of the preceding condition and to call the recursive
method with the remaining subconditions of the list.
This will allow us to calculate the subconditions from left to right and return
the result of the global condition.

5.2.4 Model-To-Text transformation with Acceleo

This step aims to build the Acceleo code containing both the Java methods
developed previously and the Model-to-Text transformation of RICs. To do
this, we will need to access the RIC model containing the RICs that have been
written by the user.
An example of an XMI file can be found in the Appendix (Appendix B.1 on page
103), so we can see its structure. We have the datasource that corresponds to
the connection information, as well as the RICs developed with their properties.

Template

Now we can start writing our code for Acceleo. The first thing to do is to ref-
erence the module of our file, that means the URI of the model linked to the
XMI file on which we will base to generate the objects of this XMI file.
In our case, it will be : “http://www.xtext.org/stage/ricdsl/RicDsl”.

Then, we can design our template with which we will define the creation of
our “TransformationJavaApi.java” file. It is also necessary to indicate the pack-
age in which the file will be generated, to avoid any compilation error when
running the generated file with Java.

[module neo4JApiJava (’ http ://www. xtext . org / s tage / r i c d s l /
RicDsl ’) /]

[template public neo4JApiJava (aRoot : RicDSL)]
[comment @main /]

[f i l e (’ TransformationJavaApi . java ’ , false , ’UTF−8 ’)]
package [’ org . e c l i p s e . a c c e l e o . d s l . uml . gen . java . f i l e s ; ’ /]

// Java Code //

[/ f i l e]
[/ template]

“aRoot” is the main element of our XMI file that will contain all RICs. We will
therefore make a For loop on all these elements to process the RICs of the file
one by one.

64

[for (r i c : RIC | aRoot . r i c s) be f o r e (’ \n ’) s epa ra to r (’ \n ’)]

// RIC p r o c e s s i n g

[/ for]

Now that we have our RICs one by one, we will be able to obtain the information
we are interested in.
Thanks to the code below, we will now determine what type of relationship
it is through conditional clauses. In this code, we will go through the RIC :
ric.relationship1.relationship.TYPE . At this point in the XMI file, the RIC
will have four variables corresponding to the four types of relationships :

1. ONE WAY

2. TWO WAYS

3. TAG ONE WAY

4. TAG BI

Three of them will have a null value while the last will have a not null value.
The one with the not null value will correspond to the type of RIC relationship.

[i f (not r i c . r e l a t i o n s h i p 1 . r e l a t i o n s h i p .ONE WAY−>i t e r a t e
(ch ; acc : S t r ing=’ ’ | acc+ch) . matches (’ ’))]
l i s tResu l tRIC = queryOneWay(” [r i c . r i c I d /] ” ,
” [r i c . r e l a t i o n s h i p 1 . source . entityName /] ” ,
” [r i c . r e l a t i o n s h i p 1 . t a r g e t . entityName /] ” ,
” [r i c . r e l a t i o n s h i p 1 . source . a t t r i b u t e . attributeName /] ” ,
” [r i c . r e l a t i o n s h i p 1 . t a r g e t . a t t r i b u t e . attributeName /] ” ,

act ion ,
cond i t i on) ;

[/ i f]

The conditional clause allows us to know which variable is not null thanks to
“not” and “.matches(’ ’)”. The element “− > iterate(ch; acc : String =′′

|acc+ ch)” will allow us to translate the value of the XMI file into a String that
we can then compare to “.matches(’ ’)” to know if the value is null or not.

In this example, we only test for the “ONE WAY” relationship but we repeat
this in the code for the other three types of relationships. We will also test the
cardinalities for each one to get our 8 types of relationships.

After determining the type of RIC relationship, the corresponding Java method
can be called. In this case, we will call the method “queryOneWay” which will
need the RIC information as arguments. We will have the RIC identifier, the
entity of the first node, the entity of the second node, the attribute of the first

65

node, the attribute of the second node, the action and the condition. These last
two will be explained later.

The principle of actions is the same as for relationships. We have to find out
which of the variables, “ADD INFO / DELETE / INFO”, is not null.
The actions in the XMI file are located : ric.action.TYPE .

[i f (not r i c . a c t i on .ADD INFO−>i t e r a t e (ch ; acc : S t r ing
=’ ’ | acc+ch) . matches (’ ’))] ADD INFO[/ i f]
[i f (not r i c . a c t i on .DELETE−>i t e r a t e (ch ; acc : S t r ing
=’ ’ | acc+ch) . matches (’ ’))]DELETE[/ i f]
[i f (not r i c . a c t i on . INFO−>i t e r a t e (ch ; acc : S t r ing
=’ ’ | acc+ch) . matches (’ ’))] INFO[/ i f]

The conditions contain several elements, so we have chosen to keep them in a
list. In addition, there may be several subconditions, so we must make a “For”
loop to get them.
The “buildCondition” method will therefore create the list containing all the
information about the conditions : the entity, the attribute, the relational op-
erator, the value and the logical operator.

[for (cond : Condit ion | r i c . r i cCond i t i on) s epara to r (’ \n ’)
a f t e r (’ \n ’)]
c ond i t i on = bui ldCondi t ion (” [cond . ent . entityName /] ” ,
” [cond . ent . a t t r i b u t e . attributeName /] ” , [cond . re lat ionOp] ,
[cond . va lue] , [cond . l og i ca lOp]) ;
[/ for]

Configuration

The entire code presented in the previous section corresponds to what will be
in the Acceleo file. We now need to run it to produce the transformation that
provides the final Java code.
To do this we must launch the file with Acceleo and make some settings, as
shown by Appendix B.2 on page 104. We will have to configure the location of
the XMI file, containing the RICs and the desired location of the generated file.

66

5.2.5 Generate results

This last section of the Implementation part will be devoted to the generation
of a file containing the results of each RIC executed.

JSON

JSON technology, also known as JavaScript Object Notation, is a data exchange
format which is suitable for both humans and machines. Its purpose will be to
store information in text form.
It keeps the data in the form of a pairs, represented by a name and a value.
Each element is called “Object” and corresponds to an unordered set of pairs,
starting with a left brace ’{’ and finish by a right brace ’}’.
The stored values can be of different types such as String, number, boolean,
array or again Object.
The API chosen for our project is JSON-simple which is quite easy to handle.

Application

The creation of this result file is a simple method that will take as a parameter
the RIC with its result to be able to write it into the file.
First, we will check if the file “RICResult.json” already exists. If not, we will
create it. After that, we will take each RIC and process them one by one.

The important information that will be found in the result file is :

• The validity of the RIC.

• Information on nodes that do not comply with the RIC.

• The action, if there is one.

• Changes produced by the action on the dataset.

• The global condition, if there is one.

• The validity of each of the conditions.

Finally, it is possible to create a JSON object for each of them with the following
code :

JSONObject node = new JSONObject () ;
node . put (key , va lue) ;

Once the final result of a RIC is built, it is written to the file.

File representation

An example of a generated result can be found in the Appendix (Appendix C.1
on page 105). The structure of the JSON file corresponds well to the information
presented in the previous section. As the elements of a JSON file have no order,
we have redesigned them in the Appendix to have something readable and clear
to present.

67

68

Chapter 6

Taxonomy of Queries

This chapter aims to explain how the JCypher API and Java Driver API 1.7
queries looks like for each kind of component described in the Chapter 4.
That chapter Design explains a theoretical view of a RIC, while this one will
provide a more practical view about how a RIC or a set of RICs will be verified
in a Neo4j database. This will also be helpful for the researchers who will be
working on this subject, in particular for the Future works (Chapter 9).

Figure 6.1: Representation of the two APIs in our solution

In Figure 6.1, we can see how our second step of the methodology works schemat-
ically. We have as input the list of RICs from the first step and then we have
two identical versions of the code that will handle these constraints.
Depending on the version, we will use the corresponding API to perform database
queries.
The purpose of this chapter will be to analyze the functions that query the
database and to see how they can be built in each of the two versions.
In the future, this could also allow the user to choose which version he wants to
use.

69

6.1 Getting the value of an attribute for all nodes
of a specific entity

This query is used for Classic relationships whose purpose is to obtain the val-
ues of a given attribute for all nodes of a specific entity.

For example :

Entity1 . Attr ibute1 −> Entity2 . Att r ibute2

In this case, the objective is to verify that all values of the “Attribute1” property
of an “Entity1” node correspond to a value present in a “Attribute2” attribute
of one of the “Entity2” nodes. This query will retrieve the values present in the
“Attribute2” attribute of all “Entity2” nodes.

JCypher API query

MATCH. node (node) . label (e n t i t y) ,
RETURN. value (node)

This query will return all nodes corresponding to the desired entity. We can
then, in the Java code, use a “getProperty” method specific to this API, to
obtain the value of the attribute that interests us for each of the nodes.

Java Driver API query

”MATCH (node : ” + e n t i t y + ”) ” +
”RETURN node . ” + a t t r i b u t e + ” AS Attr ibute ”

With this API, we can directly return the value of the attribute for each node.

70

6.2 Getting the value of an attribute for a spe-
cific node

This query will need three parameters : the entity and the identifier of the
specific node as well as the attribute whose value we want to return.

JCypher API query

MATCH. node (node) . label (e n t i t y) ,
WHERE. valueOf (node . property (” id ”)) .EQUALS(id) ,
RETURN. value (node)

As the previous one, this query returns the entire node and we must get the
value of the attribute in the Java code.

Java Driver API query

”MATCH (node : ” + e n t i t y + ”) ” +
”WHERE node . id= ” + id +
”RETURN node . ” + a t t r i b u t e + ” AS Attr ibute ”

6.3 Getting all nodes from a specific entity

The purpose of this query is to return all nodes of a specific entity and then
obtain their identifier and store it in the Java code. As a result, we will have a
list with all the node identifiers for the desired entity.

JCypher API query

MATCH. node (node) . label (e n t i t y) ,
RETURN. value (node)

As the previous one, this query returns the entire node and we must get the
value of the identifier in the Java code.

Java Driver API query

”MATCH (node : ” + e n t i t y + ”) ” +
”RETURN node . id AS ID”

71

6.4 Checking a one-way Tag relationship with-
out cardinality

The purpose of this query will be to verify that there is at least one “Tag”
relationship for each node of the first entity with a node of the second entity,
which will validate the RIC.
To do this, we will return the existing “Tag” relationships between the two
entities and check, in the Java code, that the result of this query is not “null”.

JCypher API query

MATCH. node (nodeFi r s t) . label (f i r s t E n t i t y) . r e l a t i o n (r e l)
. out () . type (tag) . node (nodeSecond) . label (secondEnt ity) ,

WHERE. valueOf (nodeFi r s t . property (” id ”)) .EQUALS(id) ,
RETURN. value (r e l)

Java Driver API query

”MATCH (node : ” + f i r s t E n t i t y + ”)−[r e l : ” + tag + ”]−>(:” +
secondEntity + ”) ” +
”WHERE node . id= ” + id +
”RETURN r e l ”

6.5 Checking a one-way Tag relationship with
cardinality

This query will have the same purpose as the previous one, except that this
time we must take into account the cardinalities.
That is why, in this case, the query will return the exact number of “Tag”
relationships. We can then check in the Java code that this number is within
the cardinality interval to validate the RIC.

JCypher API query

MATCH. node (nodeFi r s t) . label (f i r s t E n t i t y) . r e l a t i o n (r e l)
. out () . type (tag) . node (nodeSecond) . label (secondEnt ity) ,

WHERE. valueOf (nodeFi r s t . property (” id ”)) .EQUALS(id) ,
RETURN. count () . va lue (r e l) . AS(nCount)

72

Java Driver API query

”MATCH (node : ” + f i r s t E n t i t y + ”)−[r e l : ” + tag + ”]−>(:” +
secondEntity + ”) ” +
”WHERE node . id= ” + id +
”RETURN COUNT(r e l) AS Number”

6.6 Existing relationship

This query will check if there is a relationship of a specific type between two
nodes.
This query will need the entity and identifier of each node as well as the type
of relationship.
If the result of the query is not null, we can say that there is a relationship
between the two.

JCypher API query

MATCH. node (nodeFi r s t) . label (f i r s t E n t i t y) . r e l a t i o n (r e l)
. out () . type (tag) . node (nodeSecond) . label (secondEnt ity) ,

WHERE. valueOf (nodeFi r s t . property (” id ”)) .EQUALS(f i r s t I d)
.AND() . valueOf (nodeSecond . property (” id ”)) .EQUALS(secondId) ,
RETURN. value (r e l)

Java Driver API query

”MATCH (nodeFi r s t : ” + f i r s t E n t i t y + ”)−[r e l : ” + tag + ”]−>
(nodeSecond : ” + secondEntity + ”) ” +
”WHERE nodeFi r s t . id= ” + f i r s t I d + ” AND nodeSecond . id= ” +
secondId +
”RETURN r e l ” ;

73

6.7 Updating a node

In the case of actions, it may be necessary to add or remove values from an
attribute of a node.
This query will update the node with its new value after executing an action.

JCypher API query

MATCH. node (node) . label (e n t i t y) ,
WHERE. valueOf (node . property (” id ”)) .EQUALS(id) ,
DO.SET(node . property (a t t r i b u t e)) . to (va lue)

Java Driver API query

”MATCH (node : ” + e n t i t y + ”) ” +
”WHERE node . id= ” + id +
”SET node . ” + a t t r i b u t e + ” = ” + value +
”RETURN node” ;

6.8 Creating a relationship

This query will create a relationship between two predefined nodes.

JCypher API query

MATCH. node (nodeFi r s t) . label (f i r s t E n t i t y) ,
MATCH. node (nodeSecond) . label (secondEnt ity) ,
WHERE. valueOf (nodeFi r s t . property (” id ”)) .EQUALS(f i r s t I d)
.AND() . valueOf (nodeSecond . property (” id ”)) .EQUALS(secondId) ,
CREATE. node (nodeFi r s t) . r e l a t i o n () . out () . type (tag)
. node (nodeSecond)

Java Driver API query

”MATCH (nodeFi r s t : ” + f i r s t E n t i t y + ”) , ” +
” (nodeSecond : ” + secondEnt ity + ”) ” +
”WHERE nodeFi r s t . id= ” + f i r s t I d +
”AND nodeSecond . id= ” + secondId +
”CREATE (nodeFi r s t)− [: ” + tag + ”]−>(nodeSecond) ” ;

74

6.9 Deletion of a node

In the case of a “DELETE” action, we may have to delete a node from the
dataset. This query will allow to delete a specific node using its entity and
identifier.
We will use “DETACH DELETE” instead of a simple “DELETE” to manage
cases where the node still has relationships.

JCypher API query

MATCH. node (node) . label (e n t i t y) ,
WHERE. valueOf (node . property (” id ”)) .EQUALS(id) ,
DO.DETACH DELETE(node)

Java Driver API query

”MATCH (node : ” + e n t i t y + ”) ” +
”WHERE node . id= ” + id +
”DETACH DELETE node” ;

6.10 Retrieve the relationships of a node

This query is intended to know all the relationships, incoming and outgoing, of
a specific node.
It will be useful in particular when you want to display the global information
of a node.

JCypher API query

This query is the only one we have not found a way to reproduce it with JCypher.
The problem being to get all the labels of the relationships of a node.
As it is for informational purposes only and does not directly impact the validity
of a RIC, this will not prevent the program from functioning properly.

Java Driver API query

Two queries will be necessary to obtain the type of relationship and the targeted
nodes.
The first code example will provide all types of relationships related to a node.
The second example of code will allow to know, for each type of relationship,
the nodes targeted by this relationship.

75

”MATCH (node : ” + e n t i t y + ”)−[r e l]−() ” +
”WHERE node . id= ” + id +
”RETURN type (r e l) AS type ” ;

”MATCH (node : ” + e n t i t y + ”)−[r e l : ” + r e l a t i o n +
”]−(nodeSecond) ” +
”WHERE node . id= ” + id +
”RETURN nodeSecond . id AS ID” ;

6.11 Information about a node

This query aims to obtain the information of a node, in particular each of its
properties with the corresponding value.

JCypher API query

As for the first examples of JCypher queries, we will simply return the complete
node and then, in the Java code, fetch the attributes one by one thanks to the
JCypher API.

MATCH. node (node) . label (e n t i t y) ,
WHERE. valueOf (node . property (” id ”)) .EQUALS(id) ,
RETURN. value (node)

Java Driver API query

We will need two queries with the Jave Driver API. One to obtain all the
properties of the node and one to obtain, property by property, the value.

”MATCH (node : ” + e n t i t y + ”) ” +
”WHERE node . id= ” + id +
”UNWIND keys (node) AS key ” +
”RETURN c o l l e c t (d i s t i n c t key) ” ;

”MATCH (node : ” + e n t i t y + ”) ” +
”WHERE node . id= ” + id +
”RETURN node . ” + key + ” AS ” + key ;

76

77

Chapter 7

Experiments

This chapter will represent different kinds of Referential integrity constraints,
vary according their type, the cardinalities of the attribute as well as their pos-
sible condition and/or action. We will take a simple dataset to which we will
apply a set of RICs in order to correct inconsistency errors in the data.
We will start by presenting the initial status of the datastore. Then, the RICs
that will be executed, and finally, the final state of the datastore will be dis-
played. We will end this chapter by reviewing our solution after evaluating it
with these tests.

7.1 Initial Data

We will use a more relevant example to analyse RICs than the previous one
concerning elections in jurisdiction, with the figure 7.1.
This dataset is composed of “Actor” and “Movie” nodes. Only one type of
relationship is represented : the “ACTS IN” relationship from an “Actor” node
to a “Movie” node. This relationship can have an attribute if it is known, that
is the role the actor plays in this film.

Figure 7.1: Initial dataset

78

Properties of “Actor” nodes before validation :

Property Node1 Node2 Node3

name Actor1 Actor2 Actor3

id 101 102 103

ACTS IN [1,2] [1,19]

IS LINKED true true false

numberMovie 2 2 0

Figure 7.2: Experiments : Properties of “Actor” nodes before validation

The “ACTS IN” property contains a list of integers corresponding to the iden-
tifier of the movies in which the actor played. “IS LINKED” is a Boolean
property indicating that an actor has played in at least one movie. Finally,
“numberMovie” corresponds to the number of films to which the actor is linked.

Properties of “Movie” nodes before validation :

Property Node4 Node5 Node6

name Movie1 Movie2 Movie3

id 1 2 3

ACTS IN

Figure 7.3: Experiments : Properties of “Movie” nodes before validation

When we look at these properties, we can see several inconsistencies.
First, the “Actor1” node have only one relationship with a node of label “Movie”
while it has two references in its attribute “ACTS IN”.
Afterwards, the “Actor2” node is linked with a node whose identifier is ‘19’
according to its attribute “ACTS IN”. However, no node in the dataset has
this one which makes it an incorrect reference. It also has a relationship with
the “Movie3” node which is not indicated by its property “ACTS IN”.
Lastly, the “Actor3” node is not relevant because it has no reference with other
nodes.

The program generates the exact result of each RIC in a JSON file. This file,
corresponding to the RICs executed in this chapter, has been attached as an
Appendix (Appendix C.1 on page 105).

79

7.2 Example of Referential Integrity Constraints

In this part, we will talk about RICs and their individual impact on the datas-
tores.
Our objective will be to set up a series of RICs to correct the inconsistencies
found. Another goal will be to ensure that the RICs also work properly depend-
ing on the type of relationship, which is why we will conduct various tests in
this section.

Classic relationship without cardinality

RIC r i c 1 {
message : messageRic1
Actor . ACTS IN−>Movie . id
in−cond i t i on : Actor . IS LINKED = TRUE
act i on : INFO

}
RIC r i c 2 {

message : messageRic2
Actor . ACTS IN−>Movie . id
in−cond i t i on :
a c t i on : DELETE

}
RIC r i c 3 {

message : messageRic3
Actor . ACTS IN−>Movie . id
in−cond i t i on :
a c t i on : ADD INFO

}
RIC r i c 4 {

message : messageRic4
Actor . ACTS IN−>Movie . id
in−cond i t i on : Actor . IS LINKED = TRUE
act i on : INFO

}
RIC r i c 5 {

message : messageRic5
Actor . ACTS IN−>Movie . id
in−cond i t i on : Actor . numberMovie < 5
ac t i on :

}

The first RIC is a simple Classic relationship where we will check that each value
of the “ACTS IN” property of the “Actor” nodes corresponds to a value of a
“id” property of the “Movie” nodes. As the “ACTS IN” property of “Actor2”
has the value ‘19’ but no “Movie” node has this value, the RIC will not be
validated. In addition, we have a condition that will not be verified since we
know that the RIC is not valid. Finally, the “INFO” action will have no impact
on the dataset.

80

The second RIC will provide the same result. The difference here is the “DELETE”
action which will remove the value ‘19’ that is inconsistent since no “Movie”
node has this identifier.

The third RIC will be validated by the program because no value will be in-
correct. However, the “ADD INFO” action will have an impact on the dataset
because it will create a relationship between “Actor1” and “Movie2” as the
“Movie2” identifier corresponds to a value of the “ACTS IN” attribute of “Ac-
tor1” and the relationship between the two does not yet exist.
Another relationship will be added between “Actor2” and “Movie1” for the
same reason.

The next RIC is the same as the first one but, this time, the result of the
relationship will be valid. However, as the relationship is valid, it is now nec-
essary to test the condition and unfortunately, it is not respected by the data
so the final result of the RIC will still be invalid. The “Actor3” node has the
value “False” for its attribute “IS LINKED” which contradicts the condition.

The last RIC of this first part will provide a valid result as the relationship
is valid and the condition is satisfied.

Classic relationship with cardinality

RIC r i c 6 {
message : messageRic6
Actor . ACTS IN−>Movie . id [ZERO. .ONE]
in−cond i t i on :
a c t i on :

}
RIC r i c 7 {

message : messageRic7
Actor . ACTS IN−>Movie . id [ONE. .ONE]
in−cond i t i on :
a c t i on :

}
RIC r i c 8 {

message : messageRic8
Actor . ACTS IN−>Movie . id [ZERO. .MANY]
in−cond i t i on :
a c t i on :

}
RIC r i c 9 {

message : messageRic9
Actor . ACTS IN−>Movie . id [ONE. .MANY]
in−cond i t i on :
a c t i on :

}

81

We will now test the four possible combinations of cardinality with the classical
relationships.
At the moment in the datastore, “Actor1” has two elements in its “ACTS IN”
property, “Actor2” only one and “Actor3” has none.

RIC number 6 will check if each “Actor” label node has maximum one ele-
ment in its “ACTS IN” attribute. This RIC will fail because the attribute
“ACTS IN” of “Actor1” has two values : [1,2].

The 7th RIC will verify if each “Actor” label node has only one element in
its “ACTS IN” property.
“Actor1” has more than one element and “Actor3” has less so this RIC will fail.

The 8th RIC will be validate because the [zero..many] cardinality is always
satisfied.

The ninth RIC is the last test of this part and will check, for each “Actor”
label node, if there is at least one element in its “ACTS IN” property that cor-
responds to an identifier of a “Movie” node. “Actor3” has none therefore this
RIC will fail.

Tag relationship without cardinality

We are done with Classic relationships, so we will now move on to the Tag
relationships with three more RICs in this subsection.

RIC r i c 1 0 {
message : messageRic10
Actor−(ACTS IN)−>Movie
in−cond i t i on :
a c t i on : INFO

}
RIC r i c 1 1 {

message : messageRic11
Actor−(ACTS IN)−>Movie
in−cond i t i on :
a c t i on : DELETE

}
RIC r i c 1 2 {

message : messageRic12
Actor−(ACTS IN)−>Movie
in−cond i t i on :
a c t i on : ADD INFO

}

The tenth RIC is a simple Tag relationship where we will check that each “Ac-
tor” node have at least one “ACTS IN” relationship targeting a “Movie” node.
This relationship is not valid because the “Actor3” node has no relationship,
therefore the RIC will fail.

82

A proposal to improve the consistency of this dataset would be to remove the
node that has no relationship. That is why we wrote the RIC number 11 which
has the “DELETE” action and which aims to remove nodes that do not have
at least one relationship of type “ACTS IN” with the second entity.
This RIC will not be validated but its action will remove the “Actor3” node of
the datastore.

The third RIC in this part, “ric12”, will be validated because the last two
“Actor” nodes of the dataset have at least one relationship with a node of the
second entity.
The “Add Info” action will improve the consistency of the data by adding the
identifier of the movie number three in the “ACTS IN” attribute of the “Actor2”
node because they have an arc (“ACTS IN”) between them.

Tag relationship with cardinality

Now we are going to try the four possible combinations of cardinality with the
Tag relationships.
At the moment in the datastore, “Actor1” has two “ACTS IN” relationships,
“Actor2” also has two of them and “Actor3” has been removed.

RIC r i c 1 3 {
message : messageRic13
Actor−(ACTS IN)−>Movie [ZERO. .ONE]
in−cond i t i on :
a c t i on :

}
RIC r i c 1 4 {

message : messageRic14
Actor−(ACTS IN)−>Movie [ONE. .ONE]
in−cond i t i on :
a c t i on :

}
RIC r i c 1 5 {

message : messageRic15
Actor−(ACTS IN)−>Movie [ZERO. .MANY]
in−cond i t i on :
a c t i on :

}
RIC r i c 1 6 {

message : messageRic16
Actor−(ACTS IN)−>Movie [ONE. .MANY]
in−cond i t i on :
a c t i on :

}

83

RICs number 13 and number 14 will each fail because they involve not having
more than one “ACTS IN” relationship whereas “Actor1” and “Actor2” have
two of them.

The 15th RIC is the same meaning as the eighth, it will be validate because the
[zero..many] cardinality is always satisfied.

The last RIC of this part, “ric16”, is validate because “Actor1” and “Actor2”
have each at least one “ACTS IN” relationship.

Additional tests

In this last part, we will show an example of a multiple condition as well as two
bidirectional relationships.

RIC r i c 1 7 {
message : messageRic17
Actor . ACTS IN−>Movie . id
in−cond i t i on : (Actor . IS LINKED = FALSE) AND
(Actor . numberMovie < 3) OR
(Actor . numberMovie >= 1)
ac t i on :

}
RIC r i c 1 8 {

message : messageRic18
Actor<−(ACTS IN)−>Movie
in−cond i t i on :
a c t i on :

}
RIC r i c 1 9 {

message : messageRic19
Actor . ACTS IN<−>Movie . ACTS IN
in−cond i t i on :
a c t i on :

}

RIC number 17 represents a multiple condition. The relationship is valid, so
we will check the validity of the condition. We divide it into three distinct
conditions and obtain respectively as a result :

• Condition 1 : False AND

• Condition 2 : True OR

• Condition 3 : True

By following the order of the conditions, we do : (Condition 1 AND Condition
2) OR Condition 3. In other words, we have (False AND True) OR True, which
results in True. The combined result of the relationship and the condition vali-
dates the RIC.

84

The 18th RIC is a Tag relationship but bidirectional. It means that we will
execute the RIC from left to right as a Tag relationship, representing the first
way, but also from right to left, representing the second way. After that, we will
combine the result of the two paths to obtain our final result.
In the first case, from left to right, the result will be positive because each node
has at least one relationship with a “Movie”. The problem comes from the sec-
ond part, from right to left, where the three “Movie” nodes have no relationship
targeting an “Actor” node. Therefore, the final result of this RIC will be invalid.

The last RIC of this test is a Classic relationship but bidirectional. The mean-
ing of this is the same as the previous RIC. In this case, the problem comes to
the first way, from left to right. As the “Movie” nodes have no value in their
“ACTS IN” property, we cannot find any correspondence for the values of the
“ACTS IN” attribute of the “Actor” nodes. That is why this last RIC will fail.

7.3 Data after validation

The Figure 7.4 shows the datastores fixed by RICs. We can see that some
relationships have been added to strengthen the consistency of the data. The
“Actor3” node has finally been removed as it had no reference with other ele-
ments of the graph.
As mentioned earlier, the user must be very careful when deleting data from
the database.

Figure 7.4: Fixed dataset

85

Properties of “Actor” nodes after validation :

Property Node1 Node2

name Actor1 Actor2

id 101 102

ACTS IN [1,2] [1,2]

IS LINKED true true

numberMovie 2 2

Figure 7.5: Experiments : Properties of “Actor” nodes after validation

Properties of “Movie” nodes after validation :

Property Node4 Node5 Node6

name Movie1 Movie2 Movie3

id 1 2 3

ACTS IN

Figure 7.6: Experiments : Properties of “Movie” nodes after validation

Finally, we can see that the properties of the “Actor” label nodes have also been
updated to ensure data consistency.
The “ACTS IN” property has been adapted to match the relationships with
the “Movie” nodes.
Thanks to the RICs applied to this database, each element linked to another
will be linked both by a direct relationship (an edge) and by the value present
in its “ACTS IN” property.

86

7.4 Strengths and weaknesses of our proposal

After these tests, it was time to take a look at our solution.
This section will provide the different strengths and weaknesses of our solution
that we were able to observe in this work.

Strengths

• The writing of Referential integrity constraints is quite intuitive thanks to
the editor’s proposals.

• Code generation is fast and requires only one button press.

• The methodology of our solution is easily understandable as we have seen
in these tests.

• The Project Output section in the Appendix C.1 allow to the reader to
know how the generated results looks like in the JSON file and to be able
to reuse them later.

Weaknesses

• Not every test possibility have been covered.

• Not all actions could be implemented.

• The editor and the tool to generate the code are not linked, they have
not been able to be put together yet. Therefore, it has to be done in two
steps, instead of during the same one.

87

88

Chapter 8

Conclusion

This chapter will summarise the essential results and our personal opinion about
this work.

Summary of the work

The first Chapter Introduction & Motivation describes the goal of the work
and the frame within the work is carried out.
Information systems become more complex and require more flexibility to ad-
dress current needs. For that reason, the non-relational databases are nowadays
more popular thanks to their heterogeneity and adaptability. Their flexibility
is a great help when it comes to processing a very large number of diverse data.
The objective of this thesis was to focus on the consistency of the data in the
NoSQL datastores, and in particular the Graph-oriented databases. This type
of database represents information in the form of nodes and arcs, in particular
thanks to the Neo4J tool and the Cypher language.
The consistency of the data that is not present in NoSQL can be guaranteed
thanks to the Referential Integrity Constraints, which is a key point in this work.
On the basis of all this, we have developed a solution that responds to our needs.

The second Chapter Background describes all the needed resources to carry
out all the work that had to be done. Starting with an analysis of several related
works whose the purpose of which was to learn a little more about what already
exists in relation to our subject.
Next, a more conceptual part addressing the subject of Integrity constraints and
in particular the Referential Integrity Constraints by explaining different ways
of managing data consistency.
Finally, a technical part dealing with the techniques used like the description
of the Neo4j technology to manage the Graph-oriented databases as well as its
two APIs for Java : JCypher and Java Driver. We have also discussed the
subject of some Model Driven Engineering techniques with some explanations
about Domain Specific Language and Model-To-Text Transformation and their
respective tools used in this work. We ended this chapter with an example of
how to create a Neo4J database.

89

After that, comes the Chapter 3 Methodology where the two main steps of
our solution are described to allow a normal user to understand how to use
it. We can draw a parallel between these two steps and the way we developed
our solution because they correspond to the concrete syntax definition through
XText and the semantic part with Acceleo.

The following Chapter called Design is the fourth and explains the several
elements of a RIC. We started from a fairly basic representation of a Referential
Integrity Constraint and explain, step by step, each element we added to it to
obtain the final metamodel corresponding to the final representation of a RIC.
These elements are the kinds of relationship, the cardinalities, the possible ac-
tions and the conditions.

The Implementation Chapter will aim to developed the code corresponding to
the design of RICs and their validation. It will again be divided into two parts.
First, the definition of the Ricdsl language is explained with the advanced fea-
tures linked to the editor. Then, the implementation around the semantic part
is explained with the Model-To-Text transformation and the validation.

Afterwards, both APIs used (Java Driver API 1.7 and JCypher API) for Neo4j
are explained in the Chapter 6 Taxonomy of queries with the respective code
linked to each feature. Queries built into the code are analysed and explained
one by one.
This chapter is useful because it allows us to have an opinion and compare these
two APIs. The advantage of Java Driver API is that it uses the Cypher lan-
guage directly for its queries. It is therefore intuitive, easier to understand and
handle. There is also a lot of documentation and it is easy to find help.
On the other hand, the JCypher API is the fluent API for the Cypher language
which means it is more complex and difficult to handle. Another problem is that
the documentation is limited to the author’s GitHub page and little help can
be found on the forums. Nevertheless, its advantages are to propose a prettier,
more efficient and shorter code that can be an important choice criterion.
From our perspective, the Java Driver API was the most suitable for this short
work because it is easily understandable and allows you to quickly get used to
using Neo4J. However, for use in a larger project, the JCypher API is for us
the most suitable because it is more efficient and optimised, as long as we allow
more time to focus on it.

For a concrete demonstration, a suite of tests is described in the Chapter 7
Experiments with a description of each step. We will start with the pre-
sentation of a database, then we will write some RICs that will aim to solve
the consistency problems of this one and we will analyze the final results and
impacts on this dataset. The JSON output file containing the result of these
RICs are found in the Appendix C.1. This chapter ends with an analysis of the
strengths and weaknesses of our solution.

To end this summary, the Future works containing ideas for improvements
to our solution are described in the next and last Chapter. The ideas to bring
an algorithm for data management, to restructure the validation steps or again
to add a new action are discussed there.

90

Personal opinion

The first part, about the grammar and the Domain Specific Language, was
quite interesting because we had to think about how to write the grammar of
the Ricdsl language. Several meetings with different persons and some talks
led to the actual version of this language. Then developing through the Xtext
framework which was new for us, was quite a good experience too. The final
part of this step was to explore some advanced features to customise the editor
and to provide a better help for the user was quite fun to do, although the
content assistant issue was a bit harder to explore.

For the Model-to-Text transformation part, it was interesting to learn how it
worked and to be able to do it for the first time by ourselves. It was a rather
vague concept to know how to get a code that met our expectations with just a
model.
We choose to use Acceleo for this part because it was a tool used and taught
by our receiving institution. Therefore, we were able to benefit from their class
slides as well as effective help from our supervisor. Despite this, this tool was
a little difficult to learn and required a lot of time to understand. In case of
problems, it was not easy to find help on the forums and it was often needed to
manage on your own.

The last part, about Graph-oriented datastores and Neo4J, was the most en-
joyable part to do. The Graph-oriented version brought a playful side to the
NoSQL datastores.
The Neo4J tool is quite simple to use and has clear documentation. In addi-
tion, as it is a fairly common tool, there is an easy way to find help on forums.
The fact of making two versions of the code with two different APIs allowed to
compare these two versions and to make a personal opinion about them.

91

92

Chapter 9

Future Works

This chapter will end this thesis by addressing some features that were designed
for this work but for which we did not have the time to implement them.

9.1 Integration

The provided editor and the code generation tool developed are not linked to-
gether. These are in two different environments. An interesting thing for the
future would be to join these two parts following the tutorial “Creating a UI
launcher” [8] to have a single tool.

9.2 Content assist

As introduced in the Section 5.1.2, several improvements have to be added in
the content assistant of the Ricdsl language. First of all, in the Section 5.6,
the list of all the entities of the database have to be provided by the content
assistant to better help the user. Then for the case of the “complete Attribute”
method, instead of having a long String with the path of the file like shown in
the Figure 5.7, it has to provide the list of the Attributes in the proper Entity.
It is planned to explore information from the schema inferred.

9.3 Action improvement

Two functionalities concerning actions had been planned but could not be im-
plemented due to lack of time.

9.3.1 Add cardinality management

First, take into account the cardinalities when developing actions.

In the case of relationships, if the number is not in the interval of cardinali-
ties, the idea would be that “Add Info” would add some relationships to reach
the minimum cardinality or the “Delete” action would delete some to avoid
exceeding the maximum cardinality.

93

The problem was to know which ones to delete or with which nodes to add
them. This information is not present in the RIC written by the user.

In the case of Classic relationships, the same idea would be applied to the
number of values in the attribute.

9.3.2 Implement the “Delete Cascade” action

Secondly, a “Delete Cascade” action has been designed to solve some of the
problems of the “Delete” action.
When a node is deleted, it can cause a loss of data consistency, in case this node
can be part of another RIC. The objective of this action would be to delete, in
cascade, the nodes linked to the first one which imply an inconsistency of the
data.

This action was not implemented because it was considered quite complex. It is
necessary to do many tests to know if the node that will be deleted will impact
other RICs. It will be required to determine which other nodes will then be
deleted in cascade, and to check for each of them if their deletion will not again
impact other RICs.
We are in a situation where a lot of nodes could be deleted from the database,
so we have to be careful with this kind of method. Unfortunately, it was not
possible to implement this action within the time allowed of our internship.

9.4 Algorithms

The idea of using an algorithm for the Acceleo part was raised several times
during the development of the project, instead of processing the data manually
like a “Brute force”. It would be useful to process the data from the model
more efficiently.
First, the MapReduce algorithm was mentioned, then we explored Apache Spark.
Finally, neither was implemented due to lack of time, but it would be interesting
to come back to it.

9.4.1 Map Reduce

We started our research on this algorithm by analyzing a paper [9] which dis-
cusses about the use of the MapReduce algorithm to detect incorrect references
in Document-oriented datastores.

The goal of this algorithm is to process the data on large datasets. The main
idea is to separate the function Map and the function Reduce, so to have two
different steps :

1. The map function iterates on large datasets. It will divide the informa-
tion into sub-elements and delegate it.
For each pair (key, value), the map function will give a result list :
list(keyResult, valueResult).

94

2. Then the reduce function groups and sorts intermediate results. It
will forward the result of the intermediate nodes to the parent node :
reduce(keyParent, list(intermediateValue)) to calculate the total value.

Let us take a simple example to be complete, based on elections within the
jurisdictions, where we have a collection of people that are either “Male” or
“Female” and we want to get the average age of the “Male” group and the
average age of the “Female” group.
The map function give each person’s age with a (gender:age) couple for each.
The reduce function will then compute the values average to have a final
result of this form : (male, averageMaleAge) and (female, averageFemaleAge)
where “averageMaleAge” and “averageFemaleAge” are respectively the males
average age and the females average age.

The goal will be to reduce the number of data that will be compared with those
in the database. This algorithm was abandoned because it was not considered
relevant and useful enough for this work.

9.4.2 Apache Spark

Therefore we tried to find another solution to optimize the comparison of data
with the database and that is why we took an interest in Apache Spark.
Spark [22] is an open-source framework for distributed computing. Its goal will
be to process large-scale data by performing complex analyses.
An important advantage [16] compared to other algorithms, and in particular
MapReduce, is its very high computing speed.
However, the main interest of Spark is its use of Resilient Distributed Datasets
(RDD) to apply parallel processing [20] within clusters or computer processors.
It uses a cluster manager to coordinate the work. A cluster is a set of computers
connected and coordinated with each other to process data and calculate.

This solution for managing the data can be explored in more detail in future
work.

9.5 Improve the validation process

Finally, we will finish this chapter by talking about the structure of RIC valida-
tion. Currently, we check the validity of an RIC, then the condition and finally
the action.

A better structure could be to adapt the validation according to the presence
of an action. In case there is no action, the structure would be similar to what
we have now : check the RIC and if it is valid, check the condition.
If there is an action, it would be necessary to verify twice the validity of the
RIC. Once at the beginning to know the failed nodes and once after the action
to have the new result of the RIC after updating the database with the action.

The structure should be : Validation -> Action -> Second validation -> Con-
dition (if there is one and if the RIC is valid).

95

96

Bibliography

[1] Michael Blaha. Referential integrity is important for databases, 2005.

[2] Marco Brambilla, Jordi Cabot, and Manuel Wimmer.
Model-Driven Software Engineering in Practice. Morgan & Claypool,
2012.

[3] Carlos Javier Fernández Candel. University of murcia, faculty of com-
puter sciences. course : Model-driven software development. practical work
: Model-to-text transformations, 2018.

[4] SQL Check Constraint. http://www.sqltutorial.org/

sql-check-constraint. Accessed: 2019-05-21.

[5] SQL Constraints. https://www.tutorialspoint.com/sql/

sql-constraints.htm. Accessed: 2019-05-21.

[6] Gwendal Daniel, Gerson Sunye, and Jordi Cabot. Umltographdb : Mapping
uml to nosql graph databases, 2016.

[7] V. J. Dindoliwala and R. D. Morena. Comparative study of integrity con-
straints, storage and profile management of relational and non-relational
database using mongodb and oracle, 2018.

[8] Eclipse Documentation for Acceleo. https://wiki.eclipse.org/

Acceleo/Getting_Started. Accessed: From 02/2019 to 05/2019.

[9] Kalin Georgiev. Referential integrity and dependencies between documents
in a document oriented database, 2013.

[10] Carl Henry and Thibaud Staelens. Thesis : Enforcing foreign key con-
straints in legacy systems, 2018.

[11] Neo4J : Referential Integrity. http://alronz.

github.io/Factors-Influencing-NoSQL-Adoption/

site/Neo4j/Data\%20Model/Referential\%20Integrity/

#neo4j-data-model-referential-integrity. Accessed: 2019-05-
23.

[12] JCypher. http://jcypher.iot-solutions.net/. Accessed: 2019-05-10.

[13] Neo4J. https://neo4j.com. Accessed: 2019-05-10.

[14] Peter Neubauer. Graph databases, nosql and neo4j, 2010.

97

[15] Harsha Raja. Thesis : Referential integrity in cloud nosql databases, 2012.

[16] Philip Rathle. Cypher for apache spark, 2017.

[17] MongoDB. Database References. https://docs.mongodb.com/manual/

reference/database-references/. Accessed: 2019-05-21.

[18] Fransisco Javier Bermùdez Ruiz. University of murcia, faculty of computer
sciences. course : Model-driven software development. chapter : Creating
domain-specific languages, 2018.

[19] Fransisco Javier Bermùdez Ruiz. University of murcia, faculty of computer
sciences. course : Model-driven software development. chapter : Model-to-
text transformations, 2018.

[20] Hari Santanam. How to use spark clusters for parallel processing big data,
2018.

[21] Martina Sestak, Kornelije Rabuzin, and Matija Novak. Integrity constraints
in graph databases : Implementation challenges, 2016.

[22] Apache Spark. https://spark.apache.org. Accessed: 2019-05-19.

[23] Xtext Eclipse Support. https://www.eclipse.org/Xtext/

documentation/310_eclipse_support.html. Accessed: From 02/2019
to 05/2019.

[24] How to validate JSON values in NoSQL
with check constraint. https://lefred.be/content/

mysql-8-0-16-how-to-validate-json-values-in-nosql-with-check-constraint/.
Accessed: 2019-05-21.

[25] Wolfgang-Schuetzelhofer. Jcypher : Github repository. https://github.

com/Wolfgang-Schuetzelhofer/jcypher/wiki. Accessed: 2019-05-10.

98

Appendices

99

Appendix A

Advanced features code

A.1 Syntax coloring code

Xtend code related to the section 5.1.2, made to have a personal syntax coloring
for the ricdsl language.

package org . xtext . s tage . r i c d s l . u i . c o n t e n t a s s i s t

import org . e c l i p s e . xtext . u i . e d i t o r . s yn taxco l o r i ng .
I H i g h l i g h t i n g C o n f i g u r a t i o n
import org . e c l i p s e . xtext . u i . e d i t o r . s yn taxco l o r i ng .
IH igh l i gh t ingCon f i gu ra t i onAccepto r
import org . e c l i p s e . xtext . u i . e d i t o r . u t i l s . TextStyle
import org . e c l i p s e . swt . g raph i c s .RGB
import org . e c l i p s e . swt .SWT

class RicDs lH igh l i gh t ingCon f i gu ra t i on implements
I H i g h l i g h t i n g C o n f i g u r a t i o n {

public stat ic f ina l St r ing KEYWORD ID = ”keyword” ;
public stat ic f ina l St r ing DEFAULT ID = ” d e f a u l t ” ;

TextStyle t e x t S t y l e ;

o v e r r i d e c o n f i g u r e (IH igh l i gh t ingCon f i gu ra t i onAccepto r acceptor) {
acceptor . a c c ep tDe fau l tH igh l i gh t ing (KEYWORD ID, ”Keyword” ,
keywordTextStyle ()) ;
acceptor . a c c ep tDe fau l tH igh l i gh t ing (DEFAULT ID, ” Defau l t ” ,
de f au l tTextS ty l e ()) ;

}
de f TextStyle keywordTextStyle () {

t e x t S t y l e = new TextStyle () ;
t e x t S t y l e . s e tCo lo r (new RGB(0 , 0 , 8 5)) ;
t e x t S t y l e . s e t S t y l e (SWT.BOLD) ;
return t e x t S t y l e ;

100

}

de f TextStyle de f au l tTextS ty l e () {
t e x t S t y l e = new TextStyle () ;

t e x t S t y l e . s e tCo lo r (new RGB(127 , 0 , 0)) ;
t e x t S t y l e . s e t S t y l e (SWT. ITALIC) ;
return t e x t S t y l e ;

}
}

A.2 Content assistant code

Xtend code related to the section 5.1.2 to provide a better content assistant to
the user.

/∗
∗ generated by Xtext 2 . 1 6 . 0
∗/

package org . xtext . s tage . r i c d s l . u i . c o n t e n t a s s i s t

import org . e c l i p s e . xtext . u i . e d i t o r . c o n t e n t a s s i s t . ContentAss istContext
import org . e c l i p s e . xtext . u i . e d i t o r . c o n t e n t a s s i s t .
IComplet ionProposalAcceptor
import org . e c l i p s e . emf . e co re . EObject
import org . e c l i p s e . xtext . RuleCal l

/∗∗
∗ See h t t p s ://www. e c l i p s e . org / Xtext / documentation /310 e c l i p s e s u p p o r t .
html#content−a s s i s t
∗ on how to customize the content a s s i s t a n t .
∗/

class RicDs lProposa lProv ider extends AbstractRicDs lProposa lProv ider {

o v e r r i d e void complete Ent i ty (EObject model , RuleCal l ru l eCa l l ,
ContentAss istContext context , IComplet ionProposalAcceptor acceptor){
// c a l l implementat ion o f s u p e r c l a s s
super . complete Ent i ty (model , ru l eCa l l , context , acceptor)
// compute the p l a i n p r o p o s a l
va l S t r ing proposa l = ”Here should be provided the l i s t
o f e n t i t i e s in the DataSource”
// Create and r e g i s t e r the comple t ion p r o p o s a l :
// The p r o p o s a l may be n u l l as the createComple t ionProposa l (. .)
// methods check f o r v a l i d p r e f i x e s and termina l token c o n f l i c t s .

101

// The accep tor hand les n u l l−v a l u e s g r a c e f u l l y .
acceptor . accept (createComplet ionProposa l (proposal , context))

}

o v e r r i d e void comple te Att r ibute (EObject model , RuleCal l ru l eCa l l ,
ContentAss istContext context , IComplet ionProposalAcceptor acceptor){

super . comple te Att r ibute (model , ru l eCa l l , context , acceptor)
va l S t r ing proposa l = ” t e s t ” + context . currentModel
acceptor . accept (createComplet ionProposa l (proposal , context))

}

// D e f a u l t in format ion f o r Neo4j
o v e r r i d e void complete Datasource (EObject model , RuleCal l ru l eCa l l ,
ContentAss istContext context , IComplet ionProposalAcceptor acceptor){

super . complete Datasource (model , ru l eCa l l , context , acceptor)
va l S t r ing proposa l = ”DataSource (u r l=ht tp loca lhos t7674 ,
usr=neo4j , pwd=password) ”
acceptor . accept (createComplet ionProposa l (proposal , context))

}
}

102

Appendix B

Acceleo

B.1 XMI representation

This element represents the structure of the file containing information about
RICs.

103

B.2 Run configuration

This element represents the configuration required to launch the Model-to-Text
transformation in Eclipse.

104

Appendix C

Project output

C.1 Generated results in the JSON file

This last element is an example of a file containing the results generated by
RICs.

[{” r i c 1 ” :{
” va l i d ” : f a l s e ,
” nodeFai l ” :{

” nodeFa i l 1 ” :{
”IS LINKED” :TRUE,
”ACTS IN” : [1 , 1 9] ,
”name” :” Actor2 ” ,
” id ” :102 ,
”numberMovie ” : 2 ,
” Re la t i on sh ip : ACTS IN with ” : [3]
}

} ,
” ac t i on ” :”INFO”
}

}]

[{” r i c 2 ” :{
” va l i d ” : f a l s e ,
” nodeFai l ” :{

” nodeFa i l 1 ” :{
”IS LINKED” :TRUE,
”ACTS IN” : [1 , 1 9] ,
”name” :” Actor2 ” ,
” id ” :102 ,
”numberMovie ” : 2 ,
” Re la t i on sh ip : ACTS IN with ” : [3]
}

} ,
” ac t i on ” :”DELETE” ,

105

” r e su l tAc t i on ” :{
” re su l tNode 1 ” :{

”nodeID ” :102 ,
” va lueDe leted ” : [1 9]
}

}
}

}]

[{” r i c 3 ” :{
” va l i d ” : true ,
” ac t i on ” :”ADD INFO” ,
” r e su l tAc t i on ” :{

” re su l tNode 1 ” :{
”nodeID ” :102 ,
” re lat ionshipAddWith ” : [1]
} ,

” r e su l tNode 2 ” :{
”nodeID ” :101 ,
” re lat ionshipAddWith ” : [2]
}

}
}

}]

[{” r i c 4 ” :{
” va l i d ” : f a l s e ,
” ac t i on ” :”INFO” ,
” cond i t i onVa l id ” : f a l s e ,
” r e su l tCond i t i on ” :{

”Actor . IS LINKED = true ” : f a l s e
}

}
}]

[{” r i c 5 ” :{
” va l i d ” : true ,
” cond i t i onVa l id ” : true ,
” r e su l tCond i t i on ” :{

”Actor . numberMovie < 5 ” : t rue
}

}
}]

[{” r i c 6 ” :{
” va l i d ” : f a l s e ,
” nodeFai l ” :{

” nodeFa i l 1 ” :{
”IS LINKED” :TRUE,
”ACTS IN” : [1 , 2] ,
”name” :” Actor1 ” ,
” id ” :101 ,
”numberMovie ” : 2 ,
” Re la t i on sh ip : ACTS IN with ” : [2 , 1]

106

}
}

}
}]

[{” r i c 7 ” :{
” va l i d ” : f a l s e ,
” nodeFai l ” :{

” nodeFa i l 1 ” :{
”IS LINKED” :TRUE,
”ACTS IN” : [1 , 2] ,
”name” :” Actor1 ” ,
” id ” :101 ,
”numberMovie ” : 2 ,
” Re la t i on sh ip : ACTS IN with ” : [2 , 1]
} ,

” nodeFa i l 2 ” :{
”IS LINKED” :FALSE,
”ACTS IN ” : [] ,
”name” :” Actor3 ” ,
” id ” :103 ,
”numberMovie ” : 0
}

}
}

}]

[{” r i c 8 ” :{
” va l i d ” : t rue
}

}]

[{” r i c 9 ” :{
” va l i d ” : f a l s e ,
” nodeFai l ” :{

” nodeFa i l 1 ” :{
”IS LINKED” :FALSE,
”ACTS IN ” : [] ,
”name” :” Actor3 ” ,
” id ” :103 ,
”numberMovie ” : 0
}

}
}

}]

[{” r i c 1 0 ” :{
” va l i d ” : f a l s e ,
” nodeFai l ” :{

” nodeFa i l 1 ” :{
”IS LINKED” :FALSE,
”ACTS IN ” : [] ,
”name” :” Actor3 ” ,
” id ” :103 ,

107

”numberMovie ” : 0
}

} ,
” ac t i on ” :”INFO”
}

}]

[{” r i c 1 1 ” :{
” va l i d ” : f a l s e ,
” nodeFai l ” :{

” nodeFa i l 1 ” :{
”IS LINKED” :FALSE,
”ACTS IN ” : [] ,
”name” :” Actor3 ” ,
” id ” :103 ,
”numberMovie ” : 0
}

} ,
” ac t i on ” :”DELETE” ,
” r e su l tAc t i on ” :{

” re su l tNode 1 ” :{
” idNodeDelete ” : [1 0 3]
}

}
}

}]

[{” r i c 1 2 ” :{
” va l i d ” : true ,
” ac t i on ” :”ADD INFO” ,
” r e su l tAc t i on ” :{

” re su l tNode 1 ” :{
”nodeAdd ” : [3] ,
”nodeID ”:102
}

}
}

}]

[{” r i c 1 3 ” :{
” va l i d ” : f a l s e ,
” nodeFai l ” :{

” nodeFa i l 1 ” :{
”IS LINKED” :TRUE,
”ACTS IN” : [3 , 1] ,
”name” :” Actor2 ” ,
” id ” :102 ,
”numberMovie ” : 2 ,
” Re la t i on sh ip : ACTS IN with ” : [1 , 3]
} ,

” nodeFa i l 2 ” :{
”IS LINKED” :TRUE,
”ACTS IN” : [2 , 1] ,
”name” :” Actor1 ” ,

108

” id ” :101 ,
”numberMovie ” : 2 ,
” Re la t i on sh ip : ACTS IN with ” : [2 , 1]
}

}
}

}]

[{” r i c 1 4 ” :{
” va l i d ” : f a l s e ,
” nodeFai l ” :{

” nodeFa i l 1 ” :{
”IS LINKED” :TRUE,
”ACTS IN” : [3 , 1] ,
”name” :” Actor2 ” ,
” id ” :102 ,
”numberMovie ” : 2 ,
” Re la t i on sh ip : ACTS IN with ” : [1 , 3]
} ,

” nodeFa i l 2 ” :{
”IS LINKED” :TRUE,
”ACTS IN” : [2 , 1] ,
”name” :” Actor1 ” ,
” id ” :101 ,
”numberMovie ” : 2 ,
” Re la t i on sh ip : ACTS IN with ” : [2 , 1]
}

}
}

}]

[{” r i c 1 5 ” :{
” va l i d ” : t rue
}

}]

[{” r i c 1 6 ” :{
” va l i d ” : t rue
}

}]

[{” r i c 1 7 ” :{
” va l i d ” : true ,
” cond i t i onVa l id ” : true ,
” r e su l tCond i t i on ” :{

”Actor . IS LINKED = f a l s e AND” : f a l s e ,
”Actor . numberMovie < 3 OR” : true ,
”Actor . numberMovie >= 1 ” : t rue
}

}
}]

[{” r i c 1 8 ” :{
” va l i d ” : f a l s e ,

109

” nodeFai l ” :{
” nodeFa i l 1 ” :{

”ACTS IN ” : [] ,
”name” :”Movie3 ” ,
” id ” : 3 ,
” Re la t i on sh ip : ACTS IN with ” : [1 0 2]
} ,

” nodeFa i l 2 ” :{
”ACTS IN ” : [] ,
”name” :”Movie2 ” ,
” id ” : 2 ,
” Re la t i on sh ip : ACTS IN with ” : [1 0 1]
} ,

” nodeFa i l 3 ” :{
”ACTS IN ” : [] ,
”name” :”Movie1 ” ,
” id ” : 1 ,
” Re la t i on sh ip : ACTS IN with ” : [1 0 2 , 1 0 1]
}

}
}

}]

[{” r i c 1 9 ” :{
” va l i d ” : f a l s e ,
” nodeFai l ” :{

” nodeFa i l 1 ” :{
”IS LINKED” :TRUE,
”ACTS IN” : [3 , 1] ,
”name” :” Actor2 ” ,
” id ” :102 ,
”numberMovie ” : 2 ,
” Re la t i on sh ip : ACTS IN with ” : [1 , 3]
} ,

” nodeFa i l 2 ” :{
”IS LINKED” :TRUE,
”ACTS IN” : [2 , 1] ,
”name” :” Actor1 ” ,
” id ” :101 ,
”numberMovie ” : 2 ,
” Re la t i on sh ip : ACTS IN with ” : [2 , 1]
}

}
}

}]

110

