
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Unstructured documents in EDIFACT

A survey of the inclusion of unstructured documents in the EDIFACT standard, with an
introduction to CALS

Marchal, Benoît

Award date:
1994

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/unstructured-documents-in-edifact(fc494315-e70a-4171-b432-412ffbb00687).html

Facultés Universitaires Notre-Dame de la Paix, Namur
Institut d'Informatique

Academic year 1993-1994

Unstructured documents

in EDIFACT
A survey of the inclusion of unstructured documents in
the EDIFACT standard, with an introduction to CALS.

Benoît Marchar

'What is the use of a book', thought Alice, 'without pictures or
conversations?'
Lewis Caroll

Thesis presented
in order to obtain the degree of
Licencié et Maître en Informatique
by Benoît Marchal
E-mail: 100345.354@compuserve.com

Printed on recycled paper.

Abstract • i

Abstract

This work studies the inclusion of so-called unstructured documents in an EDI stan­
dard, the EDIFACT international standard in particular.

We will show that the notion of business documents, as known in EDI, needs to
widen in order to encompass ail sorts of documents exchanged amongst companies,
notably including technical documents. Indeed EDI is traditionally thought as a
commercial or administrative exchange but EDI can and must be enhanceq to indu­
de other documents.

In the process we will review CALS (Continuous Acquisition and Life-cycle Sup­
port), a US DoD initiative popular for technical data exchange. A significant part of
this work is dedicated to an introduction to the various CALS standards. In the end,
we will see how to include the techniques developéd by CALS in EDIFACT.•

Résumé

Ce travail est consacré à l'introduction de documents dit non structurés dans un
standard EDI, en particulier le standard international EDIFACT.

Nous allons montrer que la notion de documents d'affaires, utilisée dans l'EDI,
doit être élargie pour inclure tous les documents échangés par les entreprises, no­
tamment les documents techniques. De fait l'EDI est traditionnellement perçu com­
me l'échange de documents administratifs ou commerciaux mais l'EDI peut être
appliqué à d'autres documents.

Pour ce faire nous étudierons CALS (Continuous Acquisition and Life-cycle Sup­
port), une initiative du DoD (le ministère de la défense américain) populaire pour
l'échange de documents techniques. Nous terminerons en voyant comment les tech­
niques développées par CALS peuvent être appliquées à EDIFACT.•

Acknowledgements ■ ii

Acknowledgements

In doing this work, we have contracted a debt with many people. Now we are
pleased to thank them all for their help.

First Ph. van Bastelaer, our promoter, for guidance throughout this work.

Ray Walker, SITPRO's Chief Executive, and John Berge, Director of the EDI Stan­
dards department at SITPRO, who admitted us for a five months training period at
SITPRO. In this dynamic environment, we learned a great deal - not only on EDI.

Also ail the personnel of SITPRO, for their sympathy and willingness to help.
There was always someone to assist us when we needed it. In particular we would
like to thank the EDI section: John Berge, Peter Wilson, Kulbir Kaur and Harsha
Karunaratne.

Kulbir and Harsha deserve special thanks for ail the guidance they provided in
early stages of this project.

Numerous other people have contributed to this work in a way or another. Any
attempt to list them all is doomed to fail and would lead to oversights we would re­
gret. But we remember them and want to thank them.

Contents ■ lii

Contents

Abstract

Acknowledgements . ii

• Contents . iii

Introduction 1

1 . Time for a Change . 2

2. A Word on this Document . 3

3. References . 3

Technical Documents . 4

1. Computer-Aided Design and Buzzwords 5

2. Interactive Electronic Technical Manual 5

3. Business Data . 6

4. Management . 6

5. Technical EDI in an EDI Standard 7

5.1 . Structured and unstructured documents . 7

5.2. T echnical Data Exchange . 7

5.2.1 . Need for Standards . 7

5.2.2. Standard Levels . 8

5.3. UN/EDIFACT and Technical Documents 8

6. Reference . 8

CALS . 9

1. Historical Perspective 10

2. CALS Vision and Path 11

3. CALS Activities . 14

3.1 . Standards 14

3.2. Technology Development and Demonstration 15

3.3. Weapon System Contracts and .lncentives . 15

3.4. DoD Systems . 15

3.5. Management . 15

4. CALS Standards . 15

4.1. Military Standards . 16

4.1.1. MIL-STD-1840B 16

4.1.2. MIL-28000 Series 16

5. CALS and EDI . 17

6. What Next? : 17

7. Further Reading 18

8. References ·. 18

Contents• iv

Appendix . 19

Appendix A: the Taft Memorandum of 5 August 1988 19

Compound Documents 20

Back9round on Generalized Markup

1 . Background on Generalized Markup . 22

1.1 . Document Structure and Attributes , . 22

1 .1 .1. First Look . 22

1.1.2. Second Look 23

1.2. Markup History 24

1.2.1 . Mark-up . 24

1 .2.2. Procedural Markup . 24

1.2.3. Generic Coding , . 25

1.2.4. Generalized Markup ·. 25

2. Standard Generalized Markup Language 26

Basic SGML

3. Basic SGML . 27

3.1. SGML Documents 27

3.2. Document Type Definition . 28

4. Minimization . 31

4.1. OMITTAG : 31

4.2. SHORT AG 31

4.3. SHORTREF 31

4.4. Name choice . 31

4.5. Minimized Memorandum 32

4.5.1 . Document 32

4.5.2. Document Type Definition 32

5. lmplementation 33

5.1. Editor . 33

5.2. Parser 33

5.2.1. Structure Conformance . 33

5.2.2. Canonical Form of Documents 34

5.3. Processor . 34

Advanced SGML

6. Syntax 35

6.1. Abstract & Concrete Syntax . 35

6.2. Reference Concrete Syntax · . 35

6.3. SGML declaration 36

7. Entities 37

7.1. General Entities 37

7.2. Parameter Entities 37

· Contents • v

7.3: External Entities 38

7.4. Exotic Characters 39

8. Storage Model . 39

9. Marked Sections . 40

10. Parameters 41

11 . System Dependent Markup . 42

Other Aspects

12. Non Publishing . 43

13. Related Standards . 44

13.1. SGML Document lnterchange Format 44

13.2. Open Document Architecture . 44

13.3. HyTime 45

14. Further readings . 46

15. References 47

Appendices . 48

Appendix A: A Brief History of the Development of SGML 48

Appendix B: Reserved Names and Keywords : 51

Graphies Standards ,54

Background on Computer Graphies Formats

1. Background on Computer Graphies Formats : 55

1.1 . Raster Image 55

1.2. Vector Images 56

1.3. Model Description . 57

1 .4. Need for Different Formats . 57

Computer Graphies Metafi/e

2. Usage ·. 59

3. Organisation of the Standard . 59

3.1. Functional Level 60

3.2. Encoding Level 60

3.3. Organisation of the Standard . 61

4. Structure of a CGM 61

5. Functional . 62

5.1 . Element Classes . 62

5. 1. 1. Delimiter . 62

5.1.2. Metafile Descriptor . 62

5.1.3. Picture Descriptor . 63

5.1.4. Co nt roi . 63

5.1 .5. Graphical Primitives . 63

5. 1 .6. Attributès , 63

5.1.7. Escape : 63

Contents • vi

5.1.8. External 63

5.1.9. Segment 63

5.2. Vector Graphical Primitives 63

5.2.1 . Line and Curves 64

5.2.2. Filed Areas _ · 64

5.2.3. Text 64

5.3. Raster Graphical Primitives . 65

6. Encodings . 65

6.1 . Clear T ext Encoding . 65

6.2. Binary Encoding . 66

6.3. Character Encoding 66

6.4. Private Encoding . 66

7. Non-Standard Standard Elements 67

7.1. GDP and Escape Element 67

7.2. Application Data 67

7.3. Registration 67

8. Profiles 67

8.1. Principal CGM Profiles: . 68

8.2. CALS Profile 68

9. Other ISO Graphies Standards 69

CC/TT Group 4

10. Group 4 70

IGES& STEP

11 . CAO Models . 71

11 .1 . Models for Form or Structure . 71

11 .1.1 . Form & Drawings . 71

11 .1.2. Structure & Diagrams 72

11 .2. From Pen to Plotter 73

11 .2.1. Graphical Assistance 73

11 .2.2. Solid Modelling 73

11 .2.3. Modelling of Non Geometrical Properties . 7 4

11 .2.4. Information Exchange 74

11 .3. Computer-Aided Manufacturing 74

11 .4. Product Data Exchange Standards . 75

12. Initial Graphies Exchange Specification 75

12.1. The Standard · 75

12.1 .1 . File Structure . 75

12.1.2. Elements Overview · 76

1_2.1.3. Extending The Standard -..... 77

12.2. Subsets . 77

13. Standard for Exchange of Product Data . 78

Contents• vii

13.1. The STEP approach .· 79

13.2. The Standard . 80

13.2.1 . Express 80

13.2.2. STEP Data Access Interface 80

13.2.3. Levels of Compatibility . 81

13.2.4. Resource Models & Application Protocols . 81

13.3. Total Lite-Cycle Support Using STEP 82

Other Aspects

14. Further Reading . 83

15. References · : . . . 83

Appendices . 85

Appendix A: Sorne Entities ?upported by IGES 85

Appendix B: STEP Parts 86

Packing _. 87

1. How to : . 88

2. 18408 Overview . 90

2.1. Transfer Units 90

2.2. Naming Convention . 91

2.2.1. Numerals 91

2.2.2. Naming Convention 92

2.3. Transfer Unit Declaration File 93

2.3.1. Transfer Unit Declaration File Content 93

2.4. Data Files . 94

3.. Learning from 18408 . 95

4. References . 96

Appendices . 97

Appendix A: Data File Name Code Letters and File Format 97

Appendix B: Transfer Unit Declaration File Records , 97

Appendix C: Data File Header Records 98

Technical EDIFACT 99

1 . Syntactic Drawbacks . 100

1.1. Background on Binary Vs Text · 100

1.2. Limited Subset of ISO 646 . 100

1.3. Special Characters . 101

1.3.1 . Escape Character · , 102

1.3.2. Counter . 102

2. Inclusion of a Binary Stream in an lnterchange 103

2.1. Binary Segment . 103

2.2. Transparent Envelope . 104

Contents■ viii

2.3. Transmission Protocol Reliance . 104

3. Linkirig Binary with EDI Data . 105

4. References . 105

Views . 106

1 . Links . 106

1.1 . The lndependent . 106

1 .2. Estranged , . 107

2. Last Reflections . 107

2.1. Politics . 107

2.2. Technical Standards 108

2.2.1 . Compound Documents . 108

2.2.2. Graphies Standards : . 108

2.3. Management . 108

2.4. Security 109

2.4.1 . Taping 109

2.4.2. Juridical Protection . 109

3. Reference . 109

Conclusion . 11 O

1 . Conclusion . 111

2. References . 111

Appendices . 112

Common Abbreviations and Acronyms . 113

Collected Ref erences . 115

1
Introduction

Studies serve for delight, for ornament, and for ability.
Francis Bacon

The 3 October 93 an exhibition dedicated to the work of the French designer Phi­
lippe Starck ended in the London Design Museum. Its name was «Is Starck a
designer?».

In ten years, Starck has become France's most celebrated designer and architect,
and the world's most visible designer. What attracts both his ardent followers and
those who recognise the products but ignore the name, is certainly the arresting

. forms that he creates, the wit and sheer originality of his work.

But Starck's work is remarkable not only for what he creates but also for how he
creates. Speed is essential in Starck's working method, «to capture the violence of the
idea».

The most audacious example of Starck's working practice is the Restaurant Man­
in, an architectural project in. Tokyo. Starck never appeared on site until the building
was officially opened. Preliminary rough sketches were passed down the fax be­
tween Paris and Tokyo. Once they were approved, a firm of Japanese structural en­
gineers was called upon to figure it out.

It is a project of which I am very happy conceptually and very proud on
a practical Level, because the whole project was conducted in correspon­
dence, via the fax, and I therefore never saw it before the opening day. [1]

During interviews, Starck talks of a new world where only ideas, not people,
would move. He is enthusiastic with this idea. Of course if one really wants to move
he can, but why not sending a fax?

Although widespread, fax is a limited tool. Limited to transmission of paper
sheet images. One èan improve resolution, speed or size but fax will only move a
sheet of paper copy.

Introduction■ 2

Paper is a linùted medium and we want our networks to exchange every kind of
information. If Starck is right, if we are heading for a world where only ideas move,
technical EDI will bè part of it.

1. Time for a Change

New management tedmiques have been developed to compete successfully in
today's market. Companies seek to reduce time to market and costs, improve quality
and processes. Since they focus on different stages of the production process, these
techniques vary but somehow they all centre on information availability. They make
information availability a key to effective management, with availability meaning
where needed, when needed and in an appropriate form.

For example, traditionally design and manufacturing are considered two sepa­
rate activities, but the lack of communication between the various departments of a
company means that each department must do what it thinks best for the others and
sometimes (often), may be wrong. Therefore nùstakes are common; resolving them
takes time. If something goes wrong in manufacturing the product, then it will go
back to the design phase where the defect will be fixed. The product then re-enters
manufacturing until another defect is found.

Increasingly, the solution to this problem is to have the various people involved
in the product working together throughout the whole product-life cycle, sharing
their knowledge. This can significantly reduce the likelihood of an error. lt requires
new communications facilities, both to store data in some place where they are ac­
cessible to the whole team and to transfer them where they are needed. That is some
sort of shared and, potentially distributed, multimedia corporate database .

.. . In a paper world documents often spend much of their life in some­
one 's in-basket or out-basket. George might have finished his changes ta the
new operations manuals, but Sarah, the reviewer in the quality assurance
department, doesn't know this because the document didn't make the
morning delivery ta her mailbox. White Sarah is wondering why her work­
load is sa light, four other authors are preparing ta send her documents lat­
er in the day - after an unproductive morning Sarah will be working
overtime. Meanwhile, Larry, from advanced manufacturing is in a state of
panic because he has a customer on the factory floor who wants ta see how
well the new operations manual reflects an actual operating procedure -
but where is it? [21

Traditionally in organisations, computers handle structured information. Struc­
tured information can be processed automatically because by definition it is struc­
tured in a semantic way (such as an invoice). This is reflected in commercial and
administrative EDI and traditional database packages.

Structured information, unfortunately, accounts only for about 10% of the total
amount of information a company process. The other 90% are reports, documenta­
tion, manuals, etc. Just look at your desk! Most of the information is presented as
text but also it nùght be graphies or sounds. Figure 1 illustra tes this.

unstructured

1 structured

Figure 1: Structured Vs unstructured information in company

Currently, computers are very helpful editing such documents but they cannot
process them the way they process structured information, i.e. without human inter­
vention. Also databases have just start integrating it and the exchange amongst het­
erogeneous systems is a problem.

Introduction ■ 3

Therefore there is a need, a business need, to treat unstructured information effi­
ciently with computers. This need is reflected in new knowledge/databases and
multimedia bases which store and manipulate almost every sort of information.

In füis work, we will concentrate on the use of EDI, i.e. the electronic exchange of
business data, to communicate unstructured information. By linking commwµcation
techniques and multimedia base, one can prefigure a world of free information ex­
change where the appropriate information is immediately available to the one who
needs it. That vision, not far away from Starck's dream, is also the basis of initiatives
like CALS which we will review.

We will see how EDI needs to evolve to integrate those changes. When EDI is
used to carry unstructured data, it is sometimes referred to as technical EDI, as op­
posed to administrative and commercial EDI. The latest we will abbreviate in com­
mercial EDI.

We will then interest ourselves to the kind of document that need to be ex­
changed, mainly concentrating on engineers needs as the reader is supposed to be
familiar with reports and other forms of documents. We will also study Interactive
Electronic Technical Manuals as an example of modem information techniques used
to represent reports.

Tuen we will have a brief look at the various technologies' issues relating to tech­
nical EDI. As promised we will review the CALS initiative with an overview of the
various standards on which it is built.

We complete our study by the introduction of technical EDI in EDIFACT.

Knowledge of batch commercial and administrative EDI is assumed throughout
this document.

2. A Word on this Document

This work originates during a training period at SITPRO, London. SITPRO, the Sim­
pler Trade Procedure Board, is the UK's trade facilitation body. SITPRO is very ac­
tive in the development and promotion of EDI. As part of its effort, SITPRO actively
supports the development of the UN /ED IF ACT international EDI standard.

Ray Walker, SITPRO's Chief Executive, was the first Western European Rappor­
teur for EDIFACT and Chairman of the Western European EDIFACT Board. He
now chairs the United Nations WP.4/GE.1 committee which is responsible for the
development and maintenance of UN /EDIF ACT.

As we will see in the next chapter, there is a growing demand to incorporate
technical documents within the EDIFACT standard. This work began as part of SIT­
PRO's effort to meet this demand. We surveyed international standards for technical
documents exchange; this document is a sequel of that survey.•

3. References

[1] Design Museum
Is Starck a Designer?
Design Museum, London, 1993

[2] Frank Gilbane
Integrating New Technologies: Workflow Systems
CALS Journal, Summer 1993, p. 65

[3] Technology Appraisals
Open Information lnterchange
Technology Appraisals Ltd., UK, 1993

2
Technical Documents

If they say
Why, why, tell 'em that it's human nature
Michael Jackson

In this introductory chapter, we will now concentrate on a short review of some type
of technical documents that might be exchanged with EDI. We feel it is important to
know what a typical document is and how it is used, to understand the standards to
represent it on a computer. We assume the reader is. already familiar with paper re­
ports or similar documents such as technical notices, so we will concentrate specifi­
cally on engineering documents. We will briefly review Interactive Electronic
Technical Manuals as an example of new technologies used to treat unstructured
documents. Then we will see why it is important to be able to exchange technical
documents using EDI.

Many objects that surround us are engineering products. The cars we are driving,
the road on which we drive them, the dock on our desks are engineering products,
even the computer used to design them all is an engineering product. Engineering
has become a key activity in today's economy.

The design process is the sequence of operations which links a concept, the
idea of a thing existing only inside someone's head, to a description, the com­
plete design of that thing which specifies it with sufficient accuracy and in
sufficient detail for someone to go away and actually make one of them. [3]

Products tend to be more and more complex and must be delivered following
tighter schedules. This requires prçcessing lots of information. Just think of the nu­
merous parts that compose an aircraft. AU of them were designed, manufactured
and will have to be maintained. Not surprisingly engineers have turned to comput­
ers to help them manage such huge amounts of data.

T echnical Documents • 5

1. Computer-Aided Design and Buzzwords

When thinking of technical data, one probably thinks of Computer-Aided Design
(CAD) first. CAD is only one aspect, albeit an important one, of computer assistance
to engineers. Other approaches include concurrent engineering (CE) where the de­
sign is conducted simultaneously by more than one team.

Manufacturing has also benefit from computer technology with techniques
known as Computer-Aided Manufacturing (CAM). CAD and CAM are used togeth­
er to link more closely the design and manufacturing processes. This gave birth to
the acronym CAD/CAM (sometimes written CADCAM to emphasis on the close
integration of both techniques).

Overall one can say without taking any risk that technical data exchange, inte­
grated design or manufacturing, and global product life-cycle management are
in-fashion.

But the field for their application is so broad that not a single system will use ail
the available techniques. By combining them, one can create lots of acronyms
(indeed, that's what many authors do) although their meaning will often overlap.
Each of those words intends to focus on the integration of two or more steps in the
product life-cycle. Sorne are for standards, systems or just commonly used acro­
nyms. We won't even attempt to list them ail.

We will introduce the reader to CAD (and partly to CAM) in chapter 5 when we
will consider standards for the exchange of CAD information.

2. Interactive Electronic Technical Manual

Although they are only in early stage of development Interactive Electronic Techni­
cal Manuals (IETMs) promise to be a better way to deliver technical documentation.
The name is almost self explicit, IETMs are:

• technical manuals presenting technical information (Tl) used by maintenance
technicians;

• in electronic form which means a seamless use of electronic media from author­
ing to distribution and permits the use of animation or sound;

• interactive since they adapt the presentation of information to better suit the
practical problems a technician is confronted to.

IETMs are now made possible by advances in information handling technologies
like greater storage density, powerful microprocessors, high resolution displays,
availability of electronic technical manual repositories through the advance in
computer-aided engineering technologies.

They proved to be more efficient than traditional documentation, in areas like:

• technician training

For example, in a test at Miramar Naval Air Station, using inserted
Jaults in the Navy 's F-14A aircraft [11, nota single inexperienced techni­
cian using a conventional paper Technical Manual was able ta isolate the
Jault without assistance. All [their bold] were able ta isolate the fault with
interactive/y displayed troubleshooting TI. In the same test, only 71.4% of
the experimented technicians were able ta isolate the fault with

Technical Documents■ 6

conventional Tl; but, again, all were able to isolate the fault successfully
using IETM.material. [21

• production costs through use of automated production methods and a coherent
representation throughout the production process: electronic data can even be
directly extracted from CAD systems, databases, etc.

• logistic management processes, e.g. storing, updating, etc.

For example, the US Navy Aegis class cruiser Vincennes carries 23.5 tons of
technical manuals. Note that replacing them by electronic data would rise 7.5 cm
of water or alternatively permit it to carry 20,000 extra litres of fuel below the
water line, when the manuals are kept above the main desk, which would make
the ship more stable.

3. Business Data

So far, we have discussed technical information. In the previous chapter, we showed
that it is business information and consequently should be integrated both in corpo­
rate databases and EDI. This does not mean we must forget commercial data. Com­
mercial data can and should be part of the integration process. lndeed commercial
EDI is often the starting point to so-called advanced management techniques, fo-
cused on the whole product life-cycle. •

The important point is that business data is not limited to commercial EDI data.
All technical documentation referrin:g to a product is business data.

As companies exchange invoices or orders electronically, it is as important for
them not to use slow, error-prone paper when they exchange technical documents.
Consequently, the notion of business data in EDI needs to widen to encompass all
data exchanged between companies, including technicaL

4. Management

To cope with more intensive competition and world-wide recession, new manage­
ment techniques have been devised which intend to reduce costs and lead time, im­
prove quality and consumer satisfaction. They rely heavily on the sharing and the
availability of information.

However, one must understand that those techniques are not specific to EDI, nor
do they require EDI. Though EDI is often the enabler for such a managerial change.
Also, EDI can be used without these techniques and still permits some significant
gains but using EDI without changing the way business is done means ignoring
most of the benefits of electronic trading.

Don't be fooled, the real change is managerial. Electronic exchange of, say, a
drawing certainly creates certain difficulties, but having people from different de­
partments working together is a bigger problem, especially when they have never
worked in close partnership.

To benefit massively from the new communication technologies, a complete
change in the way we conceive business is· required. Better communications will
only bring all the promised benefits if production is reorganised. Design, manufac­
turing and commercial teamwork should no longer exist in isolation but must
cooperate.

The key words are integration and communication. Integrate the systems used to
design, manufacture and sell a product or a service; and have all the people involve
in the product life-cycle communicate. From a technical point of view, this is some­
how a natural evolution. The real revolution cornes from the managerial aspect.

T echnical Documents ■ 7

5. Technical EDI in an EDI Standard

5.1. Structured and unstructured documents

When EDI is used to carry technical document data, we call it technical EDI. Since
technical documents are bus4tess documents, as we saw, they conform to the defini­
tion of EDI:

EDI is the electronic transfer of computer processable data relating ta a
business or administrative transaction using an agreed standard ta struc­
ture the data. [4]

The main difference between technical EDI data and commercial EDI data is that
the semantic of the information is no longer entirely included in the data. Therefore,
those documents are often referred to as unstructured document.

The expression unstructured documents might be misleading. Of course even
so-called unstructured documents are somehow structured, this is mandatory since
computers manipulate them. Rather than unstructured, we should talk of less struc­
tured, i.e. less than so-called structured documents. What the expression unstruc­
tured documents really means is documents that cannot be entirely automatically
processed, from creation to archivai. Structured emphasises on automatic treatment.

Lest the importance of this observation be missed, let us be more direct and take
two examples: an EDIFACT invoice as a structured document and an IGES drawing
as an unstructured document. An EDIFACT invoice can be automatically processed
throughout all its life cycle, from its production by the seller system to its receipt
and treatment by the customer system, ·no human intervention is required+. An IGES
drawing, on the contrary, will require human intervention for its creation and most
of its further processing. The design activity has and will likely defy automation
since it's a creative activity. And this makes all the difference.

5.2. Technical Data Exchange

5.2.1. Need for Standards
We have already identified the need for the exchange of engineering data amongst
companies. Unfortunately since the systems that produce engineering data were de­
veloped by independent enterprises, each uses its own format and exchange is not
directly feasible.

The most trivial way for two companies to exchange technical data is to use the
same systems (same software, same release and same hardware). This is not always
possible, particularly if a company has to tracte with various partners, each using
their own systems.

Another solution is to re-encode systematically the data from one system to
another. This is tedious, error-prone and can be almost impossible when the in­
formation gets complex.

A better solution is to agree on some neutral format understood by systems of
both companies. This has the further advantage that the same data can be used by a
variety of tools, each performing a highly specialised task. Furthermore, it allows for
easy migration from one system to another.

To avoid an exponential growth of the number of format, which would deserve
communication, some sort of standard must be devised. A strong opposition to the
standardised approach came from the graphies industry where standards are often
perceived as the lowest common denominator amongst systems and therefore sel­
dom used. Nevertheless standards are a prerequisite to open exchanges.

t It does not mean that the process will always be automated. Sorne companies p refer to print EDI messages
and process them manually.

Technical Documents ■ 8

5.2.2. Standard Levels
When engineering data have to be exchanged, we can recognise the neèd for 3 levels.
of standards:

• the standards for the presentation of information which existed prior to comput­
ers; they ease the reading of information coming from various sources. This is
especially used with drawings;

■ the· standards for the computer representation of data, e.g. the neutral formats;

• the computer communication standards: they allow the actual electronic ex­
change of data between two or more independent systems.

5.3. UN/EDIFACT and Technical Documents

An EDI standard provides some mechanism for at least two distinct fonctions:

■ the formatting of computer data;

• the contrai of the exchange.

The contrai mechanisms exist in EDI standards, but there is no formatting rules
suitable for technical documents. However there is no need to design new represen­
tation standards, rather EDI can rely on the work already done in this field. So tech­
nical EDI simply needs to use the control mechanism of existing EDI standards with
formatting rules suitable for technical data.

Therefore EDI appears as the federating agent of all business data exchange
whatever they may be. We can see the various databases as a logically single in­
formation base exchanging data, when required, with EDI.

How can we carry technical documents in an EDIFACT interchange? We will see
that some mechanisms must be found to provide transparent inclusion of data in a
non EDI native format, i.e. a binary stream of data.•

6. Reference

[1] Joseph J. Fuller, Theodore J. Post & Anne S. Mavor
Test and Evaluation of the Navy Technical Information Presentation System
(NTIPS), F-14A Field Test Results, DTRC-88-036
US, September 1988

[2] Joseph J. Fuller & Samuel C. Rainey
The Interactive Electronic Technical Manuals
CALS Journal, Winrer 1992, p. 63-69

[3] A. J. Medland & Piers Bµrnett
CAD/CAM in practice
Kogan Page, UK, 1986

[4] SITPRO & PFA
The UN/EDIFACT Workshop - Class Notes
SITPRO & PFA, UK, 1993

3
Experience keeps a dear school but fools will learn at no other.
Maxim prefixed to "Poor Richard's Almanac", 1757

CALS

There is little knowledge on technical document exchange in the EDIFACT commu­
nity which, until recently, was mainly concerned with commercial and administra­
tive documents.

It does not mean that the transfer of technical document is a new area. Other
communities have been involved in such transfers for years. The EDIFACT people
can and ought to learn a lot from these experiences. One of the most famous (if not
the most famous) such community is the CALS community. CALS, which stands for
Continuous Acquisition and Life-cycle Support (formerly Computer-aided Acquisi­
tion and Logistic Support), is an initiative launched by the US Department of De­
fense (DoD) in 1985.

Throughout this document we will draw from CALS experience. This chapter
and the next three are entirely devoted to a (partial) study of CALS and the tech­
niques it has developed. We start our trip in the CALS land in this chapter with an
introduction to the initiative and its development. The reader interested only in the
technical aspects may choose to skip this chapter altogether.

CALS• 10

1. Historical Perspective

Over years CALS has evolved and has grown in popularity until it reached its pres­
ent status. This section describes the evolution of CALS.

CALS was initiated in 1985 when the US Deputy Secretary of Defense William H.
Taft released what is known as the Taft Memorandum of 24 September 1985. CALS
as we now know it was officially launched by the Taft Memorandum of 5 August
1988. Appendix Ais a copy of the latter.

In 1985 CALS stood for Computer Aided Logistic Support. By 1987 it has become
Computer-aided Acquisition and Logis tic Support to reflect the growing importance
of the acquisition of information while retaining the original acronym. In 1989 the
growing importance of concurrent engineering (CE) leads to the inclusion of CE in
CALS. This was reflected in a new acronym: CALS/CE - although CALS remained
the preferred acronym. Recently, in 1993, CALS became Continuous Acquisition and
Life-cycle Support to reflect its strategic rather than technical emphasis. In the mean­
time EDI was included into the CALS program.

CALS started as a DoD initiative to facilitate electronic exchange of information
between the DoD and its suppliers; applying computer technology to the specifica­
tion, design, ordering and maintenance of its weapons systems in order to reduce
lead time, reduce cost and improve the quality of weapon systems. Many western
countries have launched similar CALS programs.

One of the problem the DoD faces for the maintenance of its weapon systems is
the availability of accurate and reliable information. Weapon systems are particular­
ly challenging in this respect due both to their generally long life-cycle and to their
inherent complexity. Sorne weapon systems are used over very long period of time,
some live more than 30 years. They have to be maintained throughout those years
despite the many problems inherent to long life cycles: the engineers who designed
the systems may have retirèd or <lied, the technology will evolve to the point where
it becomes impossible to order original ·parts and new (hopefully compatible) parts
are used for maintenance. This does not go without pain as two parts are rarely fully
compatible. ·

We may build a product once. But over its 30-years life, ail the main­
taining and upgrading that 's done is like tearing down .and rebuilding it
many more times. {1]

Another problem the DoD faces is the huge number of suppliers it deals with:
300,000 all around the world. The DoD buys not only missiles and guns but also
suits, cars, armchairs and soft drinks! At present it employs 1000 procurement
officers.

To give the reader an idea of the amount of data involved, suffices it to say that a
single weapon system can generate up to a million pages of documentation, split
over 3,500 technical manuals. Of this million, roughly 20 percent need. to be adapted
every year. The US Navy alone holds more than 200,000 separate manuals.

Clearly the traditional paper based process has reached its limits. CALS address­
es all these issues by applying new information technologies to the management of
product documentation - promising improved readiness and ·reduced costs.

Various cost/benefit analyses have been conducted. The interested reader is re­
ferred to them. Such an analysis is presented in chapter 3 of V. Daniel Hunt's Enter­
prise Integration Sourcebook [2]. Similar analyses can be found in Joan M. Smith's
Introduction ta CALS [5] and many other sources.

CALS is not a govemment solution to a government specific solution. The docu­
mentation nightmare is not the privilege of the govemment. The industry faces the

CALS• 11

same challenge and increasingly turns to CALS or CALS-like techniques to solve it.
CALS techniques can and have been successfully applied by the industry.

To name but a few, Rockwell based its Automated Logistics System (AL$) on
CALS standards. ALS reduces maintenance time and costs for Rockwell aircraft and
space-related products. General Motors too is using CALS-like techniques. Says Ian
McEwan, Executive-In-Charge of the General Motors NAO Validation/QRD Center:

.. . as we installed more and more workstations, and proceeded ta install
local area networks, wide area networks and then, eventually, our corporate
network, users quickly focused on their real problem. They could not ex­
change data with their customers and suppliers. While they now had physi­
cal connectivity, they could not read the data they received without massive
manipulation. They could not send out data without long consultations
with the persan receiving the data, even when using the same hardware and
software. [3]

There is a business need to exchange technical information but this exchange is
painful without a coherent standardisation program, like CALS. The CALS program
enables open exchange of data. It does not force people to use a particular system
but frees them from incompatibility problems.

Also one cannot help noticing the similarities between CALS and the new stan­
dard drafted by the automotive industry to address its communication needs. This
standard is based on SGML. McEwan adds:

.. . Because the CALS concept is no longer confined ta the defense indus­
try. It is internationally recognized as a realistic approach for the manage­
ment and exchange of information during product and process
development, for the exchange of manufacturing information, for providing
technical manuals and maintenance records, and for safe disposai. [3]

Overall it is felt that, even if it has to be adapted to particular needs, CALS is a
good basis for open exchange of technical documents in the industry and in the gov­
ernment. The choice of standards is sane and complete.

2. CALS Vision and Path

The CALS vision as defined by the US Defense CALS Executive is:

An integrated data environment created by applying the best commer­
cial technologies, processes and standards for the development, manage­
ment, exchange and use of business and technical information among
governmental and industrial enterprises.1 [4]

CALS aims at producing a single database, the Integrated Weapon System Data
Base (ISWDB), which will contain all information on every weapon system used by
the DoD and which will be accessed by the govemment and authorised industrial
partners.

Of course we mean a logically single database. The size, the complexity, the num­
ber of partners involved call for a distributed approach where data is spread across
multiple physically distinct databases interconnected in such a way as to act as a
unique entity. The database is physically distributed (i.e. implemented as a set of da­
tabases located on different places) but present a single face to the user, which is
fooled into thinking that he accesses one database only.

To achieve this goal (ambitious by current standard), CALS faces two distinct
challenges:

■ the availability of data in electronic form;

■ the integration of those data in the shared database.

CALS• 12

Until recently the preferred exchange mean between the DoD and its contractors
was paper. Surely most of the information was on a computer somewhere in the
world but in formats unsuitable for exchange (like proprietary format of systems un­
supported by the DoD). Information was therefore converted to the lowest common
denominator, namely the infamous paper. After the exchange, it may be re-entered
on DoD computers before being made available to the end user. A process which
was slow and error-prone. ·

With CALS the DoD wants to raise the lowest common denominator to electronic
medium so that the information can transit directly from computer to computer.
This is very similar to the evolution from non-EDI to EDI for commercial and ad­
ministrative documents.

Alas not ail information the DoD processes exist on electronic form. There are
older systems for which maintenance information exists solely on paper (or other
non electronic medium like microfilms or aperture cards). Since, for evident eco­
nomical reasons, the DoD cannot âfford to throw away all its weapon systems,
CALS must incorporate existing systems too. We will see that one of the CALS stan­
dard specifically targets quick conversion of legacy data to electronic form.

Once information is available on electronic medium, the shared database can be
built and data made available. This too raises some interesting problems which are
out of the scope of this document. The interested reader is referred to other sources
like Amjad Umar's book [6] for more information on distributed databases.

Recognising that converting documents and building a database are two distinct
problems, CALS is divided into 2 phases:

■ phase I focuses on the availability of electronic documents. It builds interfaces to
allow data exchange between the DoD and its contractors. This phase focuses
mainly on common conventions for data representation.

There are some benefits inherent to having information in electronic form and
being able to distribute it through electronic medium, even in the absence of a
shared database. Phase I also intends to rip as much of these benefits as is
possible;

• phase II is concerned with the actual building of the database and the integration
of data acquired during phase I.

Lets the reader might be confused by the somehow misleading denomination, we
want to stress that the two phases are not strictly sequential; rather they are intersp­
ersed. Phase II is not due to start once phase I is completed. The two phases should
progress in parallel - admittedly at different paces.

Of course, it is useless to create the database (phase II) before there is some data
to store within (phase I). Furthermore while phase I uses current technologies, phase
II technologies are still under development. So there is some sequencing between
phase I and II due to differences in nature and technical mastership. Phase I is more
advanced than phase II but prototypal implementations of phase II have started al­
though phase I is far from being completed.

CALS• 13

Figure 1 is a classicait scheme to show how data interchange progress from a non-:::~:::tio~I~eQ V

Government

Contractor

Government

Contractor/

Government

V ·V V V , ' , ,
' ~ ' . '

~
INTEGRATED

Figure 1: CALS development

Paperflow
(prier to CALS)

Digital flow
(CALS phase 1)

Shared flow
{CALS phase Il)

Prior to CALS, links were numerous, difficult to manage. The same data typically
existed in 5 different locations, even worse it has often been entered as many times
with great risk of errors. The process was slow and error-prone. Moreover delay_s
existed between the revision of a document and its availability to end users. It was
not uncommon to have various copies at different levels of revision on different
locations. This too leads to many errors and problems.

With the introduction of phase I standards, the flow of information is simpler
and more manageable. Data is available more rapidly since it _is not re-entered for
every copy. Typing errors are reduced. Delays between the correction of a document
and its distribution are reduced.

In the last step, phase II, the information will be accessed through a shared data­
base. Delays will be reduced to an absolute minimum since a correction will be im­
mediately reflected in the database and made available to ail users.

As we already noticed, there is a strong parallel between phase I and EDI. In this
document we will draw heavily on CALS phase I to see how and which techniques
should be included in an EDI standard to prepare it for the exchange of technical
documents.

t This scheme is such a classic of the CALS literature that we felt oblige to put a copy of it somewhere. We
feared this document would have appeared uncomplete otherwise.

CALS• 14

In the next three chapters we will set forth for a study of CALS standards. In
chapter 6 and 7 we will see that _those standards (or other equivalent standards) .
need not to be included in the EDIFACT standard for technical EDI.

Nevertheless, we feel it is important to devote two entire chapters to their study
because we target readers informed of commercial EDI and willing to learn of the
adaptation to technical EDI. Such a reader is presumed ill-at-ease with standards for
techni~al documents. So the study was felt important as it:

■ gives the reader a good background on technical document;

■ illustrates the use of international standards in technical documents and
exchange.

It is our hope that the study will:

■ improve the reader understanding of what technical data might be;

• show some example of current techniques for technical document exchange to
the reader unaware of this subject;

■ help the reader making informed choices based on a good understanding of the
problem.

CALS serves perfectly our purpose because the complexity and variety of weap­
on systems is such that it has selected a variety of standards which cover most do­
mains relevant for technical exchange.

3. CALS Activities

CALS is active in five areas:

■ standards;

• technology development and demonstration;

• weapon system contracts and incentives;

■ DoD systems;

• management.

3.1. Standards

Standards are essential for the success of the CALS vision and the creation of the
ISWDB. When two people want to exchange electronic documents they must agree
on a common convention. lndeed CALS has selected open standards in every area
pertinent for technical documents. The next section describes major CALS
standards.

In the standard arena, CALS is concerned with:

■ data interchange standards which provide common rules for digital encoding of
documents. CALS phase I focuses on this category of standards. Refer to the next
section for a description of currently available standards;

• data management and access standards are the focus of phase IL They will pro­
vide common definition of data elements, their relationship and access rules for
theIWSDB;

• application guidance: the CALS program offers guidance (currently in the form
of the MIL-HDBK-59B military handbook) to guide managers who implement
CALS and help them achieving greater efficiency.

CALS• 15

Two other aspects of data interchange standardisation are explicitly not covered
by the CALS program. They are:

■ functional requirement standards which define information and capabilities re­
quired by the DoD. They are the responsibility of functional managers;

• communication protocols to use networks instead of physical medium (like
tapes). They are developed by specialists such as the Defense Communication
Agency.

3.2. Technology Development and Demonstration

CALS supports the development of integrated database technologies and other
technologies required to achieve its vision of an integrated data environment. CALS
has set up a test network and finances various tests.

3.3. Weapon System Contracts and lncentives

The success of CALS depends on its actual adoption in contracts between the DoD
and the industry. As part of its CALS effort, the DoD encourages investments by the
industry in integrated processes. For example it gives priority to contractors who
comply to CALS when delivering data.

3.4. DoD Systems

In order to be able to receive, manage, store and later retrieve and access informa­
tion delivered in electronic form, the DoD has to modernise its infrastructure. This is
also part of the CALS initiative. -

3.5. Management

CALS is a joint initiative of the DoD and the industry. This is reflected in the man­
agement which is handled by both DoD and industry representatives. The interested
reader is referred to Joan M. Smith's Introduction to CALS [5], chapter 2 for a compre­
hensive introduction to CALS management.

From the very beginning of the CALS initiative, the DoD has adopted an open
approach. For example, the DoD did not use its power as a significant customer to
impose its own set of stap.dards but selected international versions whenever possi­
ble. This openness of mind is probably for a significant part in the success of CALS
within the industry.

4. CALS Standards

What matters for us is less the CALS initiative self than the techniques it puts in
practice. The techniques are based on standards for technical documents representa­
tion. We will therefore study the key CALS standards in the next three chapters.
This section will present them and show how they relate to each other.

CALS standards sit at layers 6 (presentation) and 7 (application) of the OSI model
(Open System lnterconnection).

Apart from MIL-STD-1840B those standards are always based on international
standards or US national standards when no equivalent international standard is
available.

International standards are by definition very general since they must adapt to a
wide variety of situation. They are doomed to be used all around the world by per­
sans from different cultures and must fit amazingly different needs in the widest
combination of environments possible. They must be open and malleable.

CALS• 16

The malleability of international standards is their strength but also their weak­
ness. The price to pay is that international standards must offer options, usually
have conditional parts and even (intended) ambiguities.

Therefore, before using the international standard for actual exchange, the two
parties of the exchange must agree on a common understanding. These agreements
have various names: subsets, profiles or protocol suites.

The standardisation effort of CALS is twofold:

■ select appropriate international standards if available, US national ones other­
. wise, participate in their development;

■ publish an interpretation of the standards, what is known as the CALS stan­
dards, to be used when exchanging data with the DoD i.e. it standardises on
standards.

CALS sets a framework which is particularly well suited for technical
documents.

4.1. Military Standards

4.1.1. MIL-STD-18408
Automated Interchange of Technical Information (MIL-STD-1840B) is the federating
agent of CALS. This standard prescribes the organisation of files in_ an ex change. We
will study MIL-STD-1840B in chapter 6.

4.1.2. MIL-28000 Series
Apart for MIL-STD-1840B, the CALS standards are in the MIL-28000 series. At pres­
ent there are four standards in the MIL-28000 series. We will review them all in
chapters 4 and S.

MIL-D-28000A (amendment 1)

Digital Representation for communication of Product Data: IGES Application subsets and
IGES Application Protocols (MIL-D-28000A) organises the exchange of CAD informa­
tion. It is based on the ANSI standard for product data exchange, IGES.

MIL-M-28001B

Markup Requirements and Generic Style Specification for Electronic Printed Output and
Exchange of Text (MIL-M-28001B) is built on an ISO standard: SGML. lt establishes a
convention for the exchange of texts (manuals, guides, reports, etc.).

MIL-R-28002B

Raster Graphies Representation in Binary Format; Requirements for Quick conversion of
documents (MIL-R-28002B) defines a raster format based on CCITT group 4 fax
standard.

Scanning pages (which produces raster images) is a quick and cheap path for
conversion of paper documents to electronic forms. This standard is specifically in- ·
tended for rapid conversion of existing documents expecting little or no changes.

MIL-D-28003A

Digital Representation for Communication of Illustrative Data; CGM Application Profile
(MIL-D-28003A), which is based on the ISO CGM standard, is used for the exchange
of illustrative images, mainly as part of SGML documents.

In the CALS environment, most illustrations corne from CAD models and could
therefore be coded in IGES. Unfortunately IGES produces very large files for
a practical usage. CGM is the preferred standards for illustrations.

CALS• 17

5. CALS and EDI

The relation between CALS and EDI is not always clear. Depending on whether the
author has an EDI background or a CALS background, CALS is considered an ex­
tension of EDI or EDI is considered part of CALS.

EDI people, who until recently were mainly interested in commercial and admin­
istrative documents, feel that the exchange of technical documents and their inclu­
sions in EDI messages are natural extensions of EDI. They are right.

CALS people, on the other hand, believe the exchange of commercial and admin­
istrative documents along with technical documents is a natural complement of their
strategy. CALS has recently issued statements to announce it will now include EDI.
This is perfectly legitimate.

Whatever the point-of-view however it is clear, and that is what matters, that
EDI and CALS are getting doser to each other. Both communities are looking at
each other. This is coherent with what we said in chapter 2: technical documents are
part of business documents and ought to be exchanged side by side with commercial
and administrative records.

6. What Next?

The next three chapters are devoted to the study of CALS standards. But, apart for
MIL-STD-1840B (studied in chapter 6) which is specific to the DoD, we will focus on
the international versions of the standards, i.e. the broader versions and not their
particular CALS interpretations. We hope this will help in applying CALS to another
area of document exchange.

As we already notice it is not uncommon that industries develop their own sub­
sets or profiles based on the same international standards as CALS. It is logical: in­
dustries operate in another environment than defence and have particular
requirements which require specialised subsets. The fact that the same base stan­
dards are used shows that CALS choice was sane. If we study the international stan­
dards we are better prepared for this sor~ of application.

SGML is the subject of chapter 4. SGML is an ISO standard for the exchange of
textual and compound documents. It is the basis of MIL-M- 28001B.

· Chapter 5 is concerned with graphies standards:

■ general purpose graphies with a study of the ISO CGM standard which is the ba­
sis of MIL-D-28003A;

■ raster graphies with an introduction to the CCITT group 4 standard which is the
basis of MIL-R-28002B;

■ product mode! with some explanations on the ANSI IGES standard which is the
basis of MIL-D-28000A.

We will also adopt a prospective view on product mode! and consider the
emerging international Standard for Exchange of Product Data (STEP). STEP is fun­
damental to phase II and is considered such a major improvement over current stan­
dards that it deserves some consideration in this document if only for the sake of
completeness.

CALS• 18

7. Further Reading

We have only sketched the CALS approach. The interested reader is referred to Joan
M. Smith's Introduction ta CALS [5] for a complete presentation of CALS, including
management issues and standards. A valuable reading for anyone interested in
CALS and in data exchange is the CALS Journal which features both technical and
manageria 1 aspects of present and future approaches therefore covering in a com­
plete and effective way the CALS initiative. The CALS Journal is available from:
CALS Journal, 14407 Big Basin Way, Saratoga CA 95070-9808, USA.•

8. References

[1] Joseph R. Goss and James Brunke
Rockwell Implements CALS
CALS Journal, Winter 1993, p. 42-45

[2] V. Daniel Hunt
Enterprise Integration Sourcebook
The Intégration of CALS, CE, TQM, PDES, RAMP, and CIM
Academic Press, San Diego (US), 1991

[3] Ian McEwan
Product Data Exchange in a Global Manufacturing Economy
CALS Journal, Winter 1993, p. 25-27

[4] Office of the Defense CALS Executive
CALS Definition and Vision Statement
September 21, 1993
in CALS Journal, Winter 1993, p. 11

[5] Joan M. Smith
An Introduction ta CALS:
The Strategy and the Standards
Technology Appraisals, UK, 1990

[6] Amjad Umar
Distributed Computing, a Practical Synthesis
Prentice Hall, New Jersey (US), 1993

CALS• 19

Appendix

Appendix A: the Taft Memorandum of 5 August 1988

MEMORANDUM FOR SECRETARIES OF THE MILITARY DEPARTMENTS DIRECTOR,
DEFENSE LOGISTICS AGENCY

SUBJECT: Computer-aided Acquisition and Logistic Support (CALS)

To achieve productivity and quality improvements, my September 1985. letter on CALS set
the goa l of acquiring technical data in digital form (rather than paper) for weapon systems
entering production in 1990 and beyond. We have now taken a major step toward routine
contrnctual implementation. The Department of Defense (DoD) has coordinated with indus­
try the fir::,t in a series of CALS issuances of national and international standards for digital
data delivery and access. These standards have been published in MIL-STD-1840A, "Auto­
mated lnterchange of Technical Information," and supporting military specifications. The
CALS standards will enable either digital data delivery or goverrunent access to contracter~
maintained technical data bases.

Effective immediately, plans for new weapon systems and related major equipment items
should include use of the CALS standards. Specifically:

■ For systems now in full-scale development or production, program managers shall re­
view specific opportunities for cost savings or quality improvements that could result
from changing weapon system paper deliverables to digital delivery or access using the
CALS standards.

■ For systems entering development after September 1988, acquisition plans, solicitations,
and related documents should require specific schedule and cost proposais for: (1) in­
tegra tion of contracter technical information systems and processes, (2) authorized gov­
ernment access to contract or data bases, and (3) delivery of technical information in
digital form. These proposais shall be given significant weight for their cost and quality
implications in source selection decisions. The CALS standards shall be applied for digital
data deliverables.

DoD components shall program for automated systems to réceive, store, distribute, and use
digital weapon system technical information, including achieving the earliest possible date
for digital input to DoD engineering data repositories. These systems shall be configured or
adapted to support the CALS standards. Plans for CALS implementation and productivity
improvements will be addressed in Defense Acquisition Board and Major Automated In­
formation System Review Council acquisition reviews, and in corresponding Service and
Agency reviews.

Each application decision shall be made on its own merits with respect to the productivity
and quality improvements expected at either prime contracter or subcontractor level. The Un­
der Secretary (Acquisition) will issue further guidance on contract requitements, such as
CALS options, in invitations for bid; opportunities and safeguards for small business and
other vendors and subcontractors; goverrunent and contracter incentives; and funding
mechanisms for productivity-enhancing investments in automation and CALS integration by
defense contractors.

I believe that CALS is one of the most important and far reaching acquisition improvements
we have undertaken. I would appreciate having the Assistant Secretary (Production and Lo­
gistics) receive your plan of action within 90 days, including identification of systems where
opportunities exist for cost savings or quality improvement through application of CALS
technology, the investment required to achieve these benefits, and proposed schedules for
implementation.

William H. Taft, IV

cc: Under Secretary of Defense (Acquisition) Assistant Secretaries of Defense

4 Compound Documents

A programming langu.age is a manifest from its creator declaring
what's good and badin programming. The good becomes a fea­
tu.re, the bad an error.
Robert Jervis

In this chapter we.study a format for the exchange of compound documents, namely
the Standard Generalized Markup Language (SGML, formally ISO 8879t). Com­
pound documents are documents consisting of texts, graphies and, maybe, other
media. They are oft~n referred to as texts although, strictly speaking, they include
non-textual elements.

These are probably the documents we know best because we meet them every
day. They are the letters, books, lists, memorandum, reports, riewsletters, advertise­
ments, catalogues, _notes, diaries, agendas, etc. which pass on our desks every day
(sometimes they even stop) or cluster onto our shelves.

For years, standard character sets (such as ASCII or ISO 646) were all the stan­
dard one needed to exchange texts between computers. In the post-Macintosh era, in
the world of computer assisted publishing this is no longer true. A modern text for­
mat must be concerned with layout, for example fonts or character position.

1

A compound document groups and organises data coming from various sources
therefore its format often acts as federating agent for data presented in various for­
mats. It must provide facilities for non-textual information, mainly graphical one
(logos, charts, etc.).

Ideally such a format will be flexible enough to cope with new reading habits like
hypertexts. Their use will probably spread in the near future (remember the IETMs
introduced in chapter 2) but we do not want to have to re-encode our documents for
every new tool. The format should also be able to integrate new media when they

t Also known as BS 6868, CEN/CENELEC 28879 or AS 3514. These standards (British, European and Austra­
lian respectively) are strictly identical to the ISO standard. SGML forms the basis of CALS MIL-M-20081B
standard.

Compound Documents ■ 21

will be available. Today's computers are definitely graphical ones and they quickly
le,:irn how to deal with sounds and animation.

Numerous incompatible standards for text exchange exist. Sorne are proprietary
like the Rich Text Format (RTF) from Microsoft, used mainly for exchange between
word processors, or Digital's Compound Document Architecture. PDLst (Page De­
scription Languages) such as Adobe's PostScript® might tum out to be a good choice
in some cases. And there is the Open Document Architecture (ODA, ISO 8613) and
SGML alternatives, both being international standards from ISO.

They originate from different worlds and emphasise on different aspects. ODA .
cornes from the business world and manages both the actual appearance of docu­
ments (the layout) and their logical structure. To date ODA has yet to be implem­
ented in real products.

SGML was developed in the publishing industry but its use is wider than pub­
lishing. Unlike ODA, SGML concentrates on the document's structure which ac­
counts for most of its originality and power; it is a very flexible standard with a
multimedia extension. Also, unlike ODA, it is widely implemented. CALS elected it
as the standard for tex_t documents exchange.

Compound documents standards are important because they federate other ex­
change standards. SGML is a very important standard for CALS. Hence we wi1I
study SGML more than the other CALS standards. However, we will not attempt to
provide a complete coverage of SGML in such a short document. Sorne good books
do that better than we can (Cf. 'Further Reading' section at the end of this chapter).
Our goal, in writing this chapter, is to provide the reader with an introduction to
some key aspects of compound documents in general and SGML in particular. What
we consider key aspects, in other words the features we chose to present, may ap- .
pear arbitrary. The choice was guided by a threefold goal. lt is our hope that after
having read this chapter, the reader will:

■ understand what generalized markup is;

■ understand what SGML can be used for;

■ understand what compound documents are and how to represent them on a
computer.

Incidentally, the reader will have a good start for further learning on compound
documents and SGML.

t A PDL is a language which permits the presentation of a complete, formatted page image to output de-­
vices. "Virtual paper" is a good metaphor for PDLs. The most famous one is PostScript" which has given
birth to an ISO standard.

Compound Documents • 22

----Background on Generalized Markup

1. Background on Generalized Markup

1.1. Document Structure and Attributes

1.1.1. First Look
SGML is all about documents structure so we will first interest ourselves with the
document structure and how it relates to text formatting. Hopefully, the reader un­
derstanding will refine as he progresses along this paper. We will first have an infor­
mai introduction by means of an example. The example, which we will use all the
way through this paper, will be the fictitious memorandum depicted in figure 1
(inspired by [61):

Memorandum
To
From

Club Secretary
Oldest Member

P. G. Wodehouse dedicated The Heart of a Goof 'To my daughter Leo­
nora without whose never-failing sympathy and encouragement this book
would have been finished in half the time.' Do you think SGML would
have done some good?

Oldest Member

Figure 1: Memorandum

It looks like a classical memorandum, probably very similar to most memoran­
dum one usually cornes across.

As we are interested in document structure, what matters for us is that, at first
sight, this memo is composed of four distinct elements:

• a document title;

• an introduction which states the sender and recipient names;

• the body text;

• a signature.

These elements are organised in relation to each other following a structure. For
example the title namès the document and the signature ends it.

If we examine the document more closely, we find that the body text itself con­
sists of various elements, namely:

• a paragraph;

which includes:

• a quotation.

Suppose now that the memo was produced with a typewriter. Typewriters, apart
from being less pleasant to use than word processors, offer fewer options for format­
ting. They generally offer only one typeface. With a typewriter, our memorandum

mi ht look like fi re 2:

To : Club Secretary
From : Oldest Member

Compound Documents ■ 23

Memorandum

P. G. Wodehouse dedicated The Heart of a Goof 'To my daughter Leonora
without whose never-failing sympathy and encouragement this book
would have been fini shed in half the time.' Do you think SGML would
have done some good?

07 dest Member

Figure 2: Memorandum

Although the formatting is completely different, poorer than the previous exam-
ple, the structure has not changed. The memorandum still contains:

■ a title;

■ an area for the sender and recipient name;

■ the body text which forther <livides in:

• a paragraph;

containing:

• a quotation;

■ a signature.

In the first version of the document, the author chooses to reflect parts of the
document structure in the formatting. However, the typewriter dictates another
choice. The formatting is influenced also by the taste of the author. For example, the
quotation is not highlighted in any of those two versions.

What we have leamed in this example is that a memorandum is composed of
various elements organised according to a document structure and that this struc­
ture might be partially reflected in the text formatting. Partially only because it de­
pends on the author's taste and the tools he ùsed to print the document.

Our discovery is easily generalised to ariy sort of document.

We have established intuitively the difference between the document structure
and the formatting or text attribute. Let us refine this.

1.1.2. Second Look
Any document, in the abstract, is composed of elements which are organised in rela­
tion to each other according to some structure.

If we consider a book these elements are the parts, chapters and paragraphs.
If we look at a forther level of detail we will find sentences or words. How far to go

· in decomposing the document in its elements depends solely on what to do with the
result of this decomposition.

For SGML, a text . consists of interrelated elements, each contains characters
which serve a particular purpose. A character can be member of more than one ele­
ment, for example it can be in a word which is itself in a quotation, within a para­
graph that is part of some section of a chapter.

We improve a document's readability if we format the text according toits struc­
ture. For example, in this paper, all section titles are in a different typeface to mark
visually the beginning of a new section.

The only direction to go is from structure to formatting (i.e. the attributes depend
on the structure of the text, however the opposite is not true), in other words an ele­
ment occupies a fonction in a text whether or not this fonction is highlighted by

Compound Documents • 24

typographie attributes. To take a trivial example, a title names a section even if its
typeface is not different from the rest of the text.

This does not mean that the formatting is not important and that only the struc­
ture matters. For someone reading a text, good formatting when constantly applies
is an effective help because it clarifies the structure of the text. As we will see, SGML
can help in this tapie.

The actual formatting depends on many things like the system on which
the document is produced, the taste of the author or the intended reader.

Electronic edition using microcomputers means that more people can now pro­
duce publication quality documents. Most documents are now electronically edited.
Unfortunately each system has its own publication oddities. To exchange documents
amongst those systems, some system independent format is required.

1.2. Markup History

The easiest way to understand generalized markup is probably a historical study of
electronic markup i.e. the progression from procedural markup to generalized markup
through generic coding.

1.2.1. Mark-up
Mark-up originates in the publishing industry. When the author and the editor have
agreed on the text of a future book, the manuscript is passed to a typographie de~
signer. The designer will define the appearance of the book in consultation with the
editor.

The typographie designer will supply guidelines for how the text should be made
up into pages. The design information, known as mark-up, will be used by the type­
setter to add the instructions that will produce the correct typeset pages. In tradi­
tional editing this usually involves retyping the text.

1.2.2. Procedural Markup
Similarly text processing and word processing systems require the user to supply
additional, formatting-related, information with the text. This information is the
markup which is stored, as special codes, embedded within the text.

Markup is the term used to describe codes added to electronically pre­
pared text to define the stmcture of the text or the format in which it is ta
appear. (Markup is spelt as one word when applied ta electronically pre­
pared copy to distinguish it from the traditional form of Mitorial or design
mark-up, which is hand-written on the copy.) [7]

The user of an electronic publishing package, whether a typesetter formatting a
book on a professional electronic publishing system or a secretary typing a letter
with a word processor, inserts commands in the stream of the text. These commands
request the output device with some formatting operations. The user chooses those
attributes in a three steps process (although he may not perceive it as such) [2]:

• he analyses the information structure and other attributes of the documents
i.e. he identifies each separate meaningful element;

• he determines the processing information controls that will produce the format
desired for that type of element;

• he inserts the chosen contrais in the texe.

This process is often referred to as procedural markup because the markup is ef­
fectively some procedure, embedded within the document, to be executed by the

t Luckily, this does not mean that the user actually has to type some codes (like in the good old days of
Wordstar). In ail but the most primitive systems, these codes are inserted by the software when the user se­
lects the appropriate menu option. Embedding some code can be as easy as clicking on a menu!

Compound Documents ■ 25

output device. This closely parallels the traditional mark-up activity. The main dif­
ference is that markup is electronically stored.

This solution has a number of limits [2]:

• information about the document's structure .is lost.

Since more than one sort of element can use the same typographie attributes,
information about the structure of the document is lost. For example, in this
paper, both quotation and highlighted words are italicised therefore no program
can automatically creates an index of highlighted words based on the formatting;

• it is inflexible.

Any change to the formatting rules implies manually changing the codes
wherever they are in the document;

• it is not portable.

The codes can be more or Jess system dependent which reduces portability -
the Jess portable solution being the inclusion of instructions of the target output
device. Even the reliance on some sort of metrics or on the availability of
a particular typeface limits portability;

• it is time-consuming, error-prone and requires a high degree of operator training.

1.2.3. Generic Coding
Systems evolved with the introduction of 'macros' into a process known as 'generic
coding'. A macro is a technique by which the controls are replaced with a call
to some external formatting procedures. A generic identifier (GI) or tag is attached
to each text element. A formatting procedure is further associated with each tag.
A formatter processes the text and replaces Gis by the actual formatting instruction
required by the output device. The benefits over procedural markup are threefold:

• the procedure set can be changed to adapt to various output devices, making it
more portable.

If a set of procedures is associated with each potential output device, the
formatter can output the text on any device without any.change to the markup;

• the scheme is more flexible.

To change the formatting of a piece of text (for example change all the title from
bold to italics), it suffices to change the procedures, not the markup i.e. the text
remains unchanged;

• the markup is doser to describing the structure rather than the attributes.

Users tend to give significant names to the tags, e.g. 'Heading' or 'Quotation' is
preferred to 'B007' or 'X12', clearly recognising the predominance of the structure
over the formatting. Therefore some previously impossible automatic processing
of the document is now possible. It is possible to have a program who
automatically looks for every word tagged as 'Highlighted' to create an index.

1.2.4. Generalized Markup
Generalized markup extends generic coding. A Generalized Markup Language
(GML) requires two characteristics fr~m the markup [2]:

■ markup should describe a document's structure and other attributes, rather than ·
specify processing to be performed on it, as descriptive markup needs to be done
only once and will suffice for all future processing;

• markup should be rigorous, so the techniques available for processing rigorously
defined objects, like programs and databases, can be used for processing docu­
ment as well.

Compound Documents ■ 26

The second characteristic differentiates generalized markup from generic coding.
It means that the markup language can express other attributes than the GI (like at­
taching unique identifiers to elements, etc.).

2. Standard Generalized Markup Language

The Standard Generalized Markup Language (SGML) is an internationally recog­
nised GML. It is based on the early work done by Dr Goldfarb from JBM. The inter­
ested reader will find a complete history of the standard in appendix A.

SGML is one of the most popular ISO standard. SGML was part of the US DoD
Continuous Acquisition and Life-cycle Support (CALS) initiative as early as 1985 be­
fore its first publication as an international standard (1986). The DoD however al­
ready adopted the standard in 1983.

There are two ways to design a markup standard. The standard can be:

■ a standard set of tags to be used by every standard compliant document;

• a standardised language that permits the definition of application specific tags.

The first alternative is clearly unsuitable for an international standard. lt is un­
realistic to hope to be able to design a universal tag set without putting unacceptable
constraints on the author. It is doubtful that a single structure, whatever smart, can
satisfy the need of all authors for all potential documents. SGML follows the only
viable way for an international standard, the second one .

.. . this standard was designed to formalize the way in which documents
are prepared. It does this not by laying down a set of rules saying 'this is
how you should code documents', but by formalizing a set of rules that can
be used by document originators to say 'this is how I have coded my docu­
ment'. [7)

The .SGML mechanism that enables this is the Document Type Definition (DTD).
The DTD is a description, written in SGML, of the structure of a document i.e. au­
thorised tags and the way they are organised.

SGML is an enabling standard, not an a complete document architecture. The
force of SGML is that is a language to describe documents - in many respects simi­
lar to programming languages. It is therefore open and flexible. Standards commit­
tees, industry groups and othèrs use its functionalities to build applications and
document structure. Although SGML does not impose a tag set, it is particularly
well suited for the development of standard sets for specific industries. These sets
target a particular application and therefore legitimately impose a structure.

An example of such a standard is MIL-M-28001B which consists of DTDs for
technical manuals conforming to MIL-M-38784C. MIL-M-38784C is a standard for
technical documents submitted to the DoD. Another example is the design by the
Association of American Publishers (AAP) of three DTDs (for books, articles and
serials). This was the first big application of SGML.

Compound Documents ■ 27

Basic SGML

3. Basic SGML

The reader should now havé a clear understanding of what generalized markup and .
SGML are. It is time to study the actual markup of a SGML document.

3.1. SGML Documents

A SGML document starts with a D0CTYPE statement which declares the document
type and associated DTD.

There are four ways to declare the.DTD, namely to follow the D0CTYPE keyword
and associated document type with:

■ the keyword SYSTEM and a system specific identifier of the DTD (normally a
filename):

< ! D0CTYPE Foo1 SYSTEM "c: \sgml \dtd\ foo. dtd">
■ the keyword PUBLIC and the identifier of a public DTD:

<!D0CTYPE Foo PUBLIC ''.IS0//Foo//1994">
■ the DTD itself between brackets:

<!D0CTYPE Foo -[...]>
■ a mix of one of the first solutions with the last one to supplement some local dec­

laration to the DTD:

<!D0CTYPE Foo SYSTEM "c:\sgml\dtd\foo .dtd" [...]>
These four statements are document declarations. One document declaration

must start every SGML document.

The first two solutions allow DTD to be shared amongst various documents.
A public DTD is normally inaintained by some standardisation authority while
a system DTD is presurned to be local to the system where it is used.

The main difference is for document exchange, as a public DTD can be assurried
to be known by every SGML systems and therefore need not to be exchanged while
a system DTD, being specific to the local system, often has to be exchanged with the
document.

Notice that the- D0CTYPE statement is comprised between '< ! ' and '>'; these sym­
bols enclose every declaration staternent in SGML. Every SGML declaration or tag
must be enclosed in some special strings for the parsertt to differentiate markup
from the actual document.

To mark some part of the text as an element, it suffices to enclose it by:

■ an opening tag, i.e. the element name defined in the DTD between angle brackets
(< >);

<Memo>
■ a closing tag, i.e. the same element name enclosed by '</'and'>'.

</Memo>
There is a limit size of 8 characters to the name of the element.

t F oo is a common nickname to replace any identifier. In an actual SGML document, F 00 would be replaced
with the document type. Foo is not part of the SGML standard.

tt "Parser" is the traditional name of the software which analyses the SGML document. More on this in
section 5.

Compound Documents ■ 28

Here is what the mernorandum example looks like when coded with SGML:

<!DOCTYPE Memo SYSTEM "c:\sgml\dtd\memo .dtd">
<Memo>
<To>Club Secretary</To>
<From>Oldest Member</From>
<Body>
<Para>P. G. Wodehouse dedicated The Heart of a Goof<Quote>To my
daughter Leonora without whose never failing sympathy and
encouragement this book would have been finished in half the
time .</Quote> Do you think SGML would have done some good?</Para>
</Body>
<Sign>Oldest Member</Sign>
</Memo>
As stated by the DOCTYPE, the document is a memo, the actual DTD being stored

in the file 'c:\sgml\dtd\memo.dtd' (this example assumes that an MS-DOS filename
or compatible is used for system identifier). It seems logical to store the DTD in a
separate file as we probably write more than one memo.

The first tag after the document declaration must have the same name as
the name used in the document declaration, e.g. <Memo>. This is the compulsory base
document element and it makes active the document declaration.

The rest of the document consists simply of the various elements enclosed in
their opening tags and closing tags: the To, From, Body and Si gn elements.

The Body element itself consists of a Para (paragraph) elernent which encloses a
Quote (quotation) element.

Notice that the memorandum title is nowhere to be found in the SGML docu­
ment. Similarly, there is no 'To:' and 'From:' labéls before the originator and receiver
elements. This is not required as it can be deduced from the markup. This has noth­
ing to do with the document structure and is best left to formatting routines.

If we use preprinted forms, the formatting routines will skip space accordingly
but if we print on a blank sheet of paper, they will print a title.

In many applications creating a document can be thought of as filling
in a preprinted form. For example, a memo will normally be output on a
sheet of paper that has been preprinted with the name of the company and
special fields for the entn; of the names of the .sender and recipient, and
possibly the subject and date of the memo. These preprinted fields do not, as
such, constitute part of a document. For preprinted sheet forms the docu­
ment is simply the text added ta the preprinted sheet. [7]

Similarly, the quotes are not keyed and considered presentation matter. This is
usually a good idea for some systems might be able to produce different symbols for
opening and ending quotes while others cannot. By looking carefully at the memo­
randum in the first section, one will notice that the word processor version uses dif­
ferent symbols (' ') while the typewriter provides only one sort of quote (').

3.2. Document Type Definition

SGML is not as a standard tag set. Rather than imposing its own text structure on
the author, SGML provides authors with a mechanism to describe their structure.
This mechanism is the Document Type Definition (DTD). The DTD is sometimes
also referred to as a SGML application.

Each SGML document starts with a DTD which defines not only which element
can appear in the document but also the order in which they can appear and wheth­
er an element can be part of another one.

Compound Documents ■ 29

Few SGML users will have to write their own DTD. DTDs writing is a difficult
task to be left to specially trained engineers. It is important however, to understand
what is a DTD to understand when SGML can be used and when it cannot.

An element declaration starts by the keyword ELEMENT followed by the element
name. The declaration ends by the element content - enclosed in'<!' and '>' like any
SGML statement.

The element content is:

■ a model group i.e. one or more element names between brackets;

■ a primitive content token, noted #PCDATA (which stands for parsed character
data). This means tha t, at that point, the element can contain text which has been
checked by the SGML parser to ensure that any embedded tags or entity refer­
ences are resolved.

Alternatively, the element content can simply declare the type of data allowed
within the element. Valid data types are: ·

■ CDATA (character data): valid SGML characters that need no further processing.
This usually corresponds to data to be processed by another processor than the
SGML parser. For example PostScript® instructions.

■ RCDATA (replaceable charàcter data): text, character references and/or entity refer­
ences (entities are studied later) that resolve to character data;

■ EMPTY: the element content is automatically generated by the program.

Connectors indicate the order in which elements must appear in a model group:

■ &: the 'and connecter' specifies that the elements or model groups appearing on
either side of the ampersand must bath appear in the document but in any order;

■ . : the 'sequence connector' specifies that the elements or model groups appearing
on either side of the comma must both appear and in the same order in the
document;

■ 1: the· 'or connecter' specify that either the element or model group on the left­
hand side or on the right-hand side of the vertical bar must appear in the docu­
ment but not both.

Occurrence indicators indicate the repetition of the elements. Notice that occur­
rence indicators have a higher priority than connectors.

■ ?: the 'optional occurrence indicator' indicates that the model group or element
that precedes the question mark may appear once or not at all;

■ +: the 'required and repeatable occurrence indicator' indicates that the element or
~odel group preceding the plus can occur more than once;

■ *: the 'optional and repeatable occurrence indicator' indicates that the element or
model group that precedes the asterisk may occur zero or more times. Wherever
it occurs, #PCDATA is always considered to have an asterisk indicator.

Compound Documents ■ 30

Remember the memorandum introduced in section 1: the figure 3 is a tree which
parallels the structure we identified.

To

Quotatio

Figure 3: Memorandum structure

It is often a good idea to draw a tree with the document structure when writing a
DTD. A tree provides the designer with a clearer, graphical representation of the
structure. This is particularly relevant with complex documents. ·

Now it suffices to express this structure in' a SGML DTD. For our sample merno,
the DTD might loof like:

<!-- DTD for simple office memorandum (partial)-->
<!-- ELEMENTS CONTENT (EXCEPTIONS) -->
<!ELEMENT Memo ((To & From).Body,Sign?) >
<!ELEMENT To (#PCDATA) >
<!ELEMENT From (#PCDATA) >
<!ELEMENT Body (Para)* >
<!ELEMENT Para (#PCDATA!Quote)* >
<!ELEMENT Quote (#PCDATA) >
<!ELEMENT Sign (#PCDATA) >
The DTD simply expresses, in a formal language, the structure of the document.

Let us study the declaration of some relevant elements:

<!ELEMENT Memo ((To & From),Body,Sign?)>
thenotation above indicates the relationship between the elements of a Memo (i.e. the
Memo consists of a group of two elements, To and From or From and To, followed by a
Body element and an optional Sign element).

If we turn to Body's definition:

<!ELEMENT Body (Para)*> .
we find that a Body element is composed of a (potentially ernpty) sequence of
Para (paragraph) elements. Parais defined as:

<!ELEMENT Para (#PCDATA!Quote)*>
i.e. a Para is a sequence of free text and Quote (quotation) elements. Notice how the
priority rule (occurrence indicators have a higher priority than connectors) applies.
If the connector priority was higher than the occurrence indicator, this notation
would mean a sequence of either text or quotation.

Ali the other elements are declared as #PCDATA i.e; they basically contain text. No­
tice that the further we go down in the hierarchy (the doser we get to the tree
leaves) the more likely we find #PCDATA.

Compound Documents ■ 31

4. Minimization

fü;ducing the amount of markup required is an important matter. Firstly if the mark­
up is to be added manually, it saves some typing. However even in the most likely
case where the markup is automatically added, it is important to reduce markup.

Why? Because the markup is an overhead added to the text. It is costly in terms
of storage space. This becomes even more important when the document is to be ex­
changed through a network.

SGML provides five optional mechanisms to reduce the required markup collec­
tively known as minimization. We won't study them all; instead, we will interest
ourselves with the most commonly found ones.

4.1. OMITT AG

The best way to reduce markup is simply not to insert tags. This is the underlying
idea behind the OMITTAG feature.

Looking at the memo in section 3, one will see that some of the markup is redun­
dant. Every element starts with an opening tag and ends with a closing tag. ln most
case, the closing tag of an element is immediately followed by the opening tag of the
next element. Clearly, one of them can be omitted.

OMITTAG is a feature which, when enabled, allows the opening or closing tag of an
element to be omitted provided their presence can be unambiguously deduced from
the tags of the surrounding elements.

When this feature is enabled, two extra characters are required in the declaration
of an element. They must appear between the element name and content, separated
from each other, from adjacent name and content by one or more spaces.

The first character is the letter 0 (the letter 'O', not zero) if the opening tag can be
omitted. It is the hyphen symbol ·(-) if not. Similarly, the second character is 0 if the
second tag can be omitted and hyphen if not.

For example, if we enable the OMITTAG feature, we must change the declaration of
Para and allow the closing tag to be omitted, which writes:

<!ELEMENT Para - 0 C#PCDATAIQuote)*>

4.2. SHORTAG

SHORTAG, when enabled, permits part of the markup to be omitted from the tag. An
empty tag (</>) is assumed by the parser as referring to the previous complete tag.

4.3. SHORTREF

SHORTREF is a feature which allows short references to be used instead of complete
entities. Short references are characters, or strings of characters, that provide a refer­
ence to an entity within the document.

Short references are defined in a short reference map. For example, one can as­
sociate a blank line to the beginning of a new paragraph.

By default, those three minimization options are enabled in SGML. We will see in
the syntax section how to enable or disable minimization options.

4.4. Name choice

Another way to gain on storage room is the intelligent definition of the application
i.e. to use short names for tags.

Compound Documents • 32

It is often a good rule to abbreviate the most commonly used tags to
their first Letter and, when it is no Longer possible, use two letters name for
less common elements, three Letters name if required .. . [91

✓Intelligent application definition can actually save storage.

4.5. Minimized Memorandum

As an illustration, we will now rewrite the memorandum example with the mini­
mization techniques enabled. We will also choose minimal na mes for elements.

4.5.1. Document
<!DOCTYPE Memo SYSTEM "c :\ sgml \dtd\memo .dtd">
<Memo>
<t>Club Secretary
<f>Oldest Member

<p>P . G. Wodehouse ded icated The Heart of a Goof <q>To my daughter
Leonora without whose never-failing sympathy and encouragement this
book would have been finished in half the time</>. Do you think SGML
would have done some good?
<s>Oldest Member
</Memo>
The only element whose name has not been abbreviated is the base document ele­

ment <Memo>. This is required, since its name must match the DOCTYPE declaration
but · it is not very important for this element occurs only once in the whole
document!

Notice that no close tags are required for most elements since their ends canal­
ways be inferred from the beginning of the following elements. Notice also that a
close tag is required for the quotation as its end cannot be inferred from the begin­
ning of another element.

The last tag is the close tag of the base document element (</Memo>). One can ar­
gue that it can be deduced from the end of the file. However it is good practice to
add it especially if the document can be included in another one.

One might worry that abbreviations are less readable and require higher degree
of training from the various Users. This is not a problem if a software tool is used to
mark the text. The software will present the user with a more readable description of
the elements where p, for example, is renamed as paragraph.

Minimization has reduced the size of the document from 394 characters to 340.
This means more than 10% space saved!

4.5.2. Document Type Definition
Of course, the DTD must have been adapted.

<!-- DTD for simple office memorandum -->
<!-- ELEMENTS MIN CONTENT (EXCEPTIONS) -->
<!ELEMENT Memo ((t & f). b.s?) >
<!ELEMENT t - 0 (#PCDATA) >
<!ELEMENT f - 0 (#PCDATA) >
<!ELEMENT b - 0 (p)* >
<!ELEMENT p - 0 (#PCDATAlq)* >
<!ELEMENT q (#PCDATA) >
<!ELEMENT s - 0 (#PCDATA) >

Compound Documents ■ 33

5. lmplementation

An SGML implementation typically consists of three sorts of tools:

• an editor;

■ a parser;

■ a processor ..

5.1. Editor

The first tool in the chain to produce SGML documents is an editor.

One canuse a simple non SGML aware editor and inserts tags manually. Howev­
er it is a better idea to use an SGML aware editor which provides tl:te user with a
better interface.

In particular, such an editor protects the user from SGML markup much the way
a word processor hides its own markup. A specialised SGML editor cati. replace the
abbreviations used for the tag names with a better description and hide the tags
from the text stream while using some sort of highlighting to inform the user of the
tag inserted. Ali very similar to good word processors.

5.2. Parser

An SGML parser is a piece of software that:

• checks that a document conforms to the structure defined in the DTD;

■ resolves references and minimizations.

5.2.1. Structure Conformance
A parser checks if a document respects its structure as defined in the DTD. For ex­
ample, given the previous DTD, had we forgotten the f element:

<!DOCTYPE Memo SYSTEM "c :\sgml\dtd\memo .dtd">
<Memo>
<t>Club Secretary

<p>P . G. Wodehouse dedicated The Heart of a Goof <q>To my daughter
Leonora without whose never-failing sympathy and encouragement this
book would have been finished in half the time .</> Do you think SGML
would have done some good?
<s>Oldest Member
</Memo>

the parser would have complained of some document struéture violation. Sgmls
(a domain public parser) would produce the following error message:

sgmls : SGML error at memo.sgm , line 7 at ">" :
MEMO element ended prematurely: required F omitted

This is a highly interesting feature if SGML is used to enforce a corporate style.
One can be sure that every document produced in the corporation will follow a corn­
mon structure. If a standard output procedure set is associated with the DTD, even
the look and feel of corporate documents can be standardised.

Compound Documents• 34

This also makes SGML particularly suitable for team-written documents, long
documents, documents which must be maintained over a long period of time or any
combinations of the above. In particular, SGML:

• offers a mechanism, the DTD, to communicate the desired structure of the docu­
ment amongst the authors and enforce its respect;

• can be used for system independent document exchange or storage which is es­
pecially valuable for team documents or documents which require a long period
maintenance.

This is the reason why SGML was selected as a major CALS standard. Weapon
system documentation is usually very large (23.5 tons of technical manuals for the
US Navy Aegis class cruiser Vincennes) and has to be maintained over the whole
operational life of the weapons (40 years or so).

5.2.2. Canonical Form of Documents
The parser can also 'complete' the markup by adding omitted tags, resolving refer­
ences (references are introduced later), etc. to give an SGML document suitable as
input for the' processor. The output document is similar to the one we presented in
section 3 before mjnimization is applied. This is sometimes called the canonical or
standard form of SGML documents.

A document in canonical form can be more easily transformed by the processor
in an output program for the output device.

5.3. Processor

The processor takes the text in canonical or standard form and replaces the tags with
formatting instructions to be executed by the output device. At this level only, the
mapping is done between tags and formatting.

This can be as easy as replacing tags with formatting instructions specific to the
output device. For example, to format our memo, it suffices to apply the transforma-
tions defined in the following table: ·

Tag Action
<Memo> change typeface to Palatjno + 'Memorandum'

</Memo> reset typeface to Helvetica

<t> new line + skip half line + 'To' + tab stop

</t> no action

<f> new line + skip half line + 'From' + tab stop

</f> no action

 skip half line

</ b> no action

<p> new line

</p> no action

<q> '"
</q> '" .

<s> skip half.line + go to middle of the line

</s> no action

How these actions will be implemented is device dependent. This can result in a
PostScript® file if the memo is to be printed on a laser printer.

Compound Documents ■ 35

Advanced SGML

6. Syntax

6.1. Abstract & Concrete Syntax

The syntax of a language consists of the rules defining reserved words, their mean­
ings and the meaning of character codes used by the language. SGML does not im­
pose a particular syntax, rather it provides two levels of syntax, which are:

■ the abstract syntax;

• the concrete syntax.

The abstract syntax is used to specify how SGML declarations and document
·type declaration should be constructed using symbolic names instead of symbols
and keywords. The concrete syntax defines the actual set of reserved words and
symbols used by a particular application of SGML.

So, when we said that an opening tag consists of an element name enclosed by
angle brackets ('<' '>'), it was not exactly true. In fact, the element name is enclosed in
markup delimiters which are Start tag open {STAGO) and Tag close {TAGC) in the
abstract syntax. Mapping STAGO and TAGC to whatever string is the purpose of
the concrete syntax.

The syntax defines:

• the markup delimiters;

■ special characters with a system defined meaning, like the Record End (RE);

• the minimization optional features available;

• the character set to be used in the document;

■ the maximum length of names;

• the maximum memory requirements of the document;

■ some other optional fea tures which are out of the scope of this introduction.

6.2. Reference Concrete Syntax

Does it mean that every SGML application has to define its own concrete syntax?
Luckily not, the standard defines what is known as a reference concrete syntax i.e. a
default concrete syntax. When an application has no special requirement on the con­
crete syntax used, it is best to use the reference concrete syntax. If an application has
special needs, it is recommended to modify the reference concrete syntax following
rules defined in ISO 8879 rather than building a new one from scratch, giving what
is named a variant concrete-syntax.

As one might have guessed, '<' is STAGO in the reference concrete syntax and'>'
is TAGC. See àppendix B for the definition of most elements using the abstract
syntax.

Why would an application need to modify the reference concrete syntax? Sup­
pose we are writing a mathematical book, a lot of expressions may use the symbol
'<'. To avoid parsing errors, we must replace'<' by '< :'t every time '<' creates am­
biguities. This might be perceived as an unacceptable burden.

t '& l t ;' is an entity (to .be introduced shortly) which is parsed onto the symbol '<'. Since '<' has a special
meaning for the SGML parser, it cannot be inserted as is in the text without causing parsing errors. The enti­
ty must be inster ted where a '<' will appear in the final text.

Compound Documents ■ 36

Another reason might be to extend the character set used in the document, for
example to include accentuated letters.

In our examples, we will continue to use the reference concrete syntax.

6.3. SGML declaration

Potentially, every application can use a particular syntax tailored for its particular
needs. Therefore when a document is to be exchanged ifs concrete syntax definition
must be exchanged too. That is the role of the document type declaration, also
known as SGML declaration, which is added at the beginning of a document to be
exchanged.

The document type declaration should not be confused with the Document Type
Definition (DTD). The declaration specifies the syntax and the character set used
while the definition states the permissible tags and the document structure.

The declaration always starts with the reference concrete syntax Markup Decla­
ration Open ('< ! ') and ends with the Markup Declaration Close ('>'). The declaration
simply lists all of the elements of the concrete syntax.

Here is the declaration for the reference concrete syntax:

<!SGML "ISO 8879:1986"
CHARSET
BASESET "ISO 646-1983//CHARSET International Reference

Version CIRV)/ /ESC 2/5 4/0"
DESCSET 0 9 UNUSED

9 2 9
11 2 UNUSED
13 1 13
14 18 UNUSED
32 95 32

127 . 1 UNUSED
CAPACITY PUBLIC "ISO 8879: 1986/ /CAPACITY Reference/ /EN"
SCOPE DOCUMENT
SYNTAX PUBLIC "ISO 8879 :1986//SYNTAX Reference//EN"
FEATURES
MINIMIZE DATATAG NO OMITTAG YES RANK NO SHORTTAG YES
LINK SIMPLE NO IMPLICIT NO EXPLICIT NO
OTHER CONCUR NO SUBDOC YES 99999999 FORMAL YES
APPINFO NONE>

The various elements of the SGML declaration are:

■ CHARS ET: starts the declaration of the document character set;

■ BASESET: a standard character set on which the document character set is based.
Here it is possible to choose a character set with accentuated letters for example;

■ DECSET: variation to the character set for this document;

■ CAPACITY: maximal memory storage requirement for the document;

■ SCOPE: whether the declared concrete syntax must be used throughout the whole
document (DOCUMENT) or for the document instance (INSTANCE) only, in which case
the reference concrete syntax is used in the prologue;

■ SYNTAX: syntax used in the document;

■ FEATURES: describes which optional features will be used in the document;

■ APPINFO: application specific information.

Compound Documents ■ 37

7. Entities

ISO 8879 defines an entity as:

A collection of characters that can be referenced as a unit. [16]
Since there is no other limit to the size of an entity than the available computer

memory, a complete SGML document or any subsection of such a document can be
treated as an entity. When an entity contains a complete SGML document, it is
known as an SGML document entity. SGML subdocument entities are used
to incorporate SGML coded text stored as a separate document. A subdocument
might have been prepared with a different DTD.

Entities are important, among other things, for they provide a mechanism to in­
clude non SGML elements (like graphies, sound, etc.) in a document.

There are two sorts of entities:

• general entities;

• parameter entities.

These can be further subdivided into:

• entities which are declared and referred inside the document;

• external entities.

7 .1. General Entities

A general entity can be used wherever parsable text can be entered. It is used
to output previously defined text and/or markup instructions.

A reference to a general entity consists of an entity name preceded by an Entity
reference opener ('&' in the reference concrete syntax) and followed by any of these
three possibilities:

• a reference close (':' in the reference concrete syntax);

• a Record End code (RE) (system specific and often a carriage return);

• a character, such as a space, which is not part of a valid entity name.

An entity is declaréd using the keyword ENTITY (or its previously defined re­
placement), followed by the entity name and the entity text. In its simplest form, the
entity text consists of a string of characters delimited by a pair of quotation marks or
apostrophes.

If we add the following declaration in our DTD memo:

<!ENTITY Sage "Oldest Member">
we can save some typing by keying &Sage: where we want the text 'Oldest Member'
to appear.

We might also declare an entity which contains markup like:

<!ENTITY Quotation "<q>To my daughter Leonora without whose
never-failing sympathy and encouragement this book would have been
finished in half the time .</>">

7 .2. Parameter Entities

Unlike general entities, parameters cannot be used wherever parsable text can be
entered but only in SGML declarations. Their declaration is similar to general enti­
ties except that the name starts with the '%' character. Similarly, a reference to
a parameter entity starts with the character '%' and not '&'.

A typical declaration might be:

<!ENTITY % text "#PCDATAjq">

which will be later used as:

<!ELEMENT p - 0 (%text:)*>

Compound Documents ■ 38

this is in every respect similar to the declaration we used before:

<!ELEMENT p - 0 (#PCDATAjq)*>

7 .3. External Entities

They are two sorts of external entities:

• publicly defined ones ·which, like public DTD, are supposed to be maintained by
a standardisation body;

• system specific ones.

To use a public externat entity it suffices to follow its name by the keyword PU­
BLIC and a public identifier:

<!ENTITY % ISOgrkl PUBLIC "ISO 8879-1986//ENTITIES Greek Letters//EN">
Similarly, system specific externat entities are defined by following the name

with the SYSTEM keyword (or its previously defined replacement) and, potentially, a
system identifier:

<!~NTITY part2 SYSTEM "c :\sgml) doc\part2 .sgm">
This declaration assumes that part2 consists of text markuped in accordance with

the present document DTD. An external entity can also contain a subdocument i.e. a
document markup with its own DTD or even non SGML data. The valid types for an
entity are:

• text markup in accordance with the current DTD;

• subdocumertt i.e. text coded in SGML but using an altemate DTD;

• character data (CDATA, or its previously defined replacement) that contains valid
SGML characters but coded using a special notation. This is data with valid
SGML characters but intended for another processor;

• non SGML data (NDATA, or its previously defined replacement) that contains
codes outside the set declared to be valid SGML characters for the document;

• specific character data (SDATA, or its previously defined replacement) that con­
tains characters whose role is specific to the local system.

To allow the SGML program to process the entity, the notation used must
be declared using the keyword NOTATION (or its previously defined replacement) fol­
lowed with the notation name and an identifier. The notation name is the one to be
used after CDATA, NDATA or SDATA. A notation can be declared as system specific:

<!NOTATION TIFF SYSTEM "TIFF reader">
When it encounters an entity defined in another notation, the SGML parser will

use the notation to request the system (the computer on which the SGML parser ex­
ecutes) to process the entity data. The system will invoke the appropriate formatter .
When the data have been processed, the system will pass the result to the parser for
blind incorporation in the parsed document.

<!ENTITY graphicl SYSTEM "c :\graphics\foo .tif" NDATA TIFF>
Therefore an SGML document can contain data in any format, even those which

did not exist when the SGML standard was designed. SGML is not concemed at all
by the data notation of those extemal entities, it only knows about their role in the
document structure.

Finally, a locally stored subdocument is declared with the SUBDOC keyword (or its
previously defined replacement):

<!ENTITY appendi x SYSTEM "appendi x. doc" SUBDOC>

Compound Documents ■ 39

7 .4. Exotic Characters

The possibility to insert other characters than those commonly found on a QWERTY
keyboard is a very important feature of an international standard, especially in pub­
lishing. It is often necessary to insert special characters in _a document. By special
characters we mean those reserved by SGML for a special usage('<', '&') and which
cannot therefore be inserted anywhere in the document, any exotic character which
are not part of a normal keyboard (N, ©,~,V, etc.) and, of course, the accented let­
ters (é, î, ë, etc.).

We saw it is possible to redefine the character set used in _ the document when we
studied the concrete syntax. But creating a variant concrete syntax is not always de­
sirable for it might create problems when documents are to be exchanged. This is a
bigger problem when relatively few special characters are to be inserted. Luckily, in
that case, it is also possible to use entities which in most cases implies Jess cumula­
tive effects.

ISO 8879 declares nineteen entity sets to provide for such symbols. These are:

■ sets of alphabetic characters: Latin accentuated characters used in Western Euro-
pean languages, Greek , Cyrillic alphabets;

■ a set of numeric and speèial characters;

• a set of diacritical marks that can be used for building other accented letters;

• a set of publishing characters;

■ a set of box and line drawing characters;

• sets of technical characters;

■ sets of mathematical symbols.

8. Storage Model

SGML does not impose any storage model.

For an SGML system, a document is an entity and may include other entities.
Sorne entities are declared as part of the document while the others are external enti­
ties. The entities constitute the virtual storage model of SGML. The mapping be­
tween the virtual storage and the actual storage is done by an entity manager and is
not standardised.

When external entities are· declared, an external identifier is associated with
them. As we know, the identifier can be either public or specific to the local system.
The identifier is the link between the virtuaI storage model and the actual storage on
the computer. This consists of whatever information is required by the entity man­
ager to do the mapping.

Note that nothing in the model imposes that entities be stored in a different file
than the SGML document; rather entities are a logical division. It is up to the entity
manager to provide the parser with the correct entity.

For example, the whole document can be stored in a database, each entity of the
document being a different record.

The entity manager is also responsible to invoke the appropriate processor when
an entity is in a non SGML format and to pass the result of the processing to the
SGML system. ·

Compound Documents ■ 40

9. Marked Sections

Marked sections are those sections of a document that require special handling to
deterrnine whether they must be output or not, if they must be parsed, etc.

A marked section consists of a markup declaration open ('< ! ' in the reference
concrete syntax) immediately followed by a single declaration subset open('[' in the
reference concrete syntax). Then cornes a status keyword which indicates what spe­
cial handling the section requires. The marked section ends with a marked section
close(']]' in the reference concrete syntax) and a markup declaration close('>' in the
reference concrete syntax).

<![status - keyword [Text with or without markup]J>
Valid status k~ywords are:

• IGNORE: section omitted from processing;

• INCLUOE: section processed;

• TEMP: section temporary part of the document ~ut might be removed later and
treated as an INCLUDE section;

• CDATA: character data. This is a valid SGML character but intended for another
processor;

• RCDATA: replaceable character data, similar to CDATA except that entity reference
are replaced.

Marked sections are particularly useful when used in conjunction with parameter
entities. The status keyword is defined as an entity. If one needs to change
the status, it suffices to change a line at the beginning of the document. Suppose that
the memo exists in two languages (English and French), we want to store them both
in a single document but in such way that only one is used at a time. The solution is
to include the parts that may vary from one language to the other in marked section:

<!DOCTYPE Memo SYSTEM "c : \sgml\dtd\memo .dtd"[
<!ENTITY % ENGLISH "INCLUDE">
<!ENTITY % FRENCH "IGNORE">]>
<Memo>
<t>Club Secretary
<f>Oldest Member

<![%ENGLISH [<p>P . G. Wodehouse dedicated The Heart of a Goof <q>To my
daughter Leonora without whose never-failing sympathy and
encouragement this book would have been finished in half the time</> .
Do you think SGML would have done some good?JJ>
<![%FRENCH [<p>P . G. Wodehouse a dédié The Heart of a Goof <q>A ma
fille Leonora. sans la sympathie et les encouragements de laquelle ce
livre aurait été écrit en la moitié du temps .</>Croyez-vous que SGML
1 'aurait aidé?]]>
<s>Oldest Member
</Memo>

Compound Documents■ 41

1 O. Parameters

We said that the ability to carry more information in the markup is an essential fea­
ture that distinguishes generalized markup from generic coding. In SGML this is ac­
complished through parameters.

Extra arguments can be added like an identifier, useful when concemed with a
database or multimedia. A parameter declaration starts with the ATTLIST keyword
(or its previously defined replacement) followed by the element name we want to
define parameters for, the possible value for the parameter and a default value.

We will enhance our DTD with two parameters:

<!-- DTD for simple office memorandum -->
< ! -- ELEMENTS MIN CONTENT (EXCEPTIONS) -->
<!ELEMENT Memo ((t & f) .b.s?) >
<!ELEMENT t 0 (#PCDATA) >
<!ELEMENT f - 0 (#PCDATA) >
<!ELEMENT b - 0 .(p)* >
<!ELEMENT p - 0 (#PCDATA!q!r)* >
<!ELEMENT q (#PCDATA) >
<!ELEMENT s - 0 (#PCDATA) >
<!ELEMENT r - 0 EMPTY >
< ! -- ELEMENTS NAME VALUE DEFAULT-->
< ! A TTLI ST Memo status (confiden!public) public >
<!ATTLIST p id ID #IMPLIED >
<!ATTLIST r id REF ID #REQUIRED>
A status can be attached to a Memo, giving some information on its confidential­

ity. A Memo can be confidential ('confi den', don't laugh they only give you
8 characters) or public. By default, it is public. This information can be used by the
software which stores the SGML document to restrict the access to authorised per­
sans only. An SGML document can contain its security information.

A paragraph can have an identifier associated with it. The ID keyword (or its pre­
viously defined replacement) means that the value must be a document unique iden­
tifier. The #IMPLIED keyword (or its previously defined replacement) means that the
SGML parser will generate a default value when none is supplied.

To use the reference, we also defined a new element (r) whose content is EMPTY
for it will be automatically generated by the program. The #REQUIRED keyword (or its
previously defined replacement) used for the default value means that the parame­
ter must be supplied in the document.

Now if we want to refer to a paragraph in a document we will:

■ add an identifier to the paragraph:

<p id="unique id">Some text to be referred later on .
• use an r element where we want the reference to appear. This way the SGML

parser will ensure that the reference is up-to-date.

See <r id="unique id"> for more on this .

Compound Documents■ 42

11. System Dependent Markup

lt was impossible, du ring the design of SGML, to foresee every usage that might oc­
cur in the future. Therefore, the designers provided some means to escape the
SGML markup. It is possible to insert processing instructions i.e. instructions specif­
ic to the processing system .

.. . processing instructions serve as a useful escape valve for failures of rule­
based application design or implementation. In a pe,fect world, they would not
be needed, but, as you may have noticed, the world is not perfect. [16)

Basically, there are two ways to insert processing instructions in a document:

■ processing instructions can be added as markup enc.Iosed between '<?'and'>';

<?49 694 moveto 285 0 rlineto>
• entities can be defined as containing processing instruction with the keyword PI.

Those entities are simjlar to a data entity in that they are not parsed by the SGML
parser but they differ in tha t they are not considered to con tain data.

<! ENTITY PSLine PI "49 694 moveto 285 0 rli neto">

Compound Documents• 43

__ Oth~r Aspects

12. Non Publishing

SGML started its life in the publishing area as a better markup mechanjsm. Until
now, we particularly insisted on the publishing aspect of SCML but it would
be a mistake to think that SGML is for publishing business only. SGML is concerned
about document structure, whatever the document, whatever the media.

Notice that nowhere in SGML documents did we talked of pages because pages
are physical matters. The formatting procedures associated to a DTD will take care .
of the mapping to pages, if the media turns out to be paper print.

Documents in SGML format can be printed, stored in a database for on-line con­
sultation, sent by E-mail, etc., with SGML serving as a common storage format.
Likewise, SGML can be used to express the structure of a multimedia database
(Cf. HyTime in the next section).

In the first chapter, we saw that 90% of the total amount of information a compa­
ny processes is unstructured information. It is illustrated in figure S.

unstructured

structured

Figure 5: Structured Vs unstructured documents

In the first section of this chapter, we saw two characteristics generalized markup
must fulfil, the second one was:

markup should be rigorous, sa the techniques available for processing
rigorously defined abjects like programs and databases can be used for pro­
cessing document as well[15]

It seems they were born to meet each other! SGML makes it possible to use tech­
niques developed to process structured information with unstructured information .

... The concept of corporate database was barn. [23]

Therefore SGML usage is much wider than publishing. SGML can be, and has
been, successfully used in other areas. SGML has been selected as a CALS standard
for the exchange of techrucal document, the US Patent and Trademark Office (PTO)
considers the use of SGML as a storage format for exchange of patents [14], the auto­
motive industry is adopting SGML for the exchange of service information [18]. And
SGML is the basis of HyTime, the new hyperdocument interchange standard (to be
introduced shortly).

Lest the importance of this remark be missed, let us repeat it once again: there is
more in SGML than publishing. SGML is about document structure.

Compound Documents• 44

13. Related Standards

13.1. SGML Document lnterchange Format

SGML is independent of storage format. Nevertheless, recognising the need for
a standard interchange format, the ISO designed a standard interchange format
named SGML Document Interchange Format (SDIF) or ISO 9069. ·

Basically SDIF defines a simple rule to transform an SGML document and all its
associated files into a binary stream. The encoding rules are written in the Abstract
Syntax Notation One (ASN.l - ISO 8824) and the actual binary encoding is supposed
to follow the Basic Encoding Rules (ISO 8825). This is the standard for ISO inter­
change of information.

SDIF transforms an SGML document, potentially composed of various entities,
and assembles it in a single data stream. Those entities can be any valid SGML enti­
ties i.e. whatever the computer can handle (as well as document text, it can be vector
or raster graphies, sound, etc.). Associated documents (accompanying letters, me­
mos, etc.) can also be incorporated in the SDIF data stream.

The data stream assigns SDIF names to the data stream self, the SGML document
and its associated entities to provide a unique identifier mechanism throughout the
da ta stream.

The exchange follows a three steps process:

■ the SGML document and associated documents are packed in SDIF format;

• the SDIF stream is exchanged;

• the receiver unpacks the SDIF stream and organises the entities according to its
own local system requirements.

We can visualise SGML documents, with associated entities, as being enveloped
at the time of transmission. This is synonymous to the enveloping of data in a data
interchange syntax, such as EDIFACT.

Everything is transmitted as if the SGML document and ail its associated entities
went in an envelope for the time of the transmission.

13.2. Open Document Architecture
SGML and ODA do not emphasise on the same points. SGML emphasis is on the
transmission of the structure of a document while ODA encodes both the structure
and the layout of the document.

Keep anything concerned with presentation distinct from the informa­
tion content of an SGML document. [22]

This reflects the different backgrounds from which the two standards originated.
ODA originates in an office culture, where the word processor is the dominant pub­
lishing tool. Therefore the emphasis is on presentation. ODA tries to achieve identi­
cal look amongst various platforms.

On the contrary SGML, coming from the publishing industry, leaves presentation
matter to the formatter and is designed specifically to enable exchange of documents
amongst systems with different and potentially incompatible output devices. It per­
mits the output of a draft on a low quality printer and the output of the final docu­
ment on very high quality printer.

SGML is concerned only with structure, sa it is up ta each user com­
munity ta determine document layout. The Document Style Semantics
and Specification Language (DSSSLt) is being developed ta provide a
means of defining further processing of documents. It will also enable the

------~
t This acronyms looks like some sort of joke.

•

Compound Documents • 45

sender of a document to speciftJ hoiv it should be fonnatted for presentation
and printing. [23)

Within CALS, the need to exchange formatting instructions has outpaced the
standardisation of DSSSL. Therefore a special specification with limited scope, the
Formatting Output Specification Instance (FOSI), was incorporated into
MIL-M-28001. It addresses simpler needs than DSSSL and is due to be replaced
when the development of DSSSL will be over.

13.3. HyTime

Hypermedia/Time-Based Structuring Language (HyTime) or, more formally,
ISO 10744 is a standard for the representation and the exchange of hypermedia
documents also known as hyperdocuments. HyTime is an application of SGML.

Wlzat is hypermedia? Hypermedia is the union of two information
processing technologies: hypertext and multimedia. Hypertext information
is accessed in more than one order. Multimedi.a information is communi­
cated by more than one means. [17)

There are numerous hypermedia applications running on a wide variety of plat­
forms, each using its own representation. HyTime provides a universal format for
hyperdocument exchanges amongst those applications.

The pace of evolution in these technologies is a problem for any standardisation
effort. It would have been unrealistic to design a notation that encompasses the
functionalities of ail hypermedia applications (like it is done for graphie interchange
standards). Such a standard would have been obsolete on the day of its adoption!

HyTime resolves this problem by standardising only some facilities of hyperme­
dia applications, those functionalities that are the core of hyperdocuments, in par­
ticular those dealing with the addressing of portions of documents. This includes
linking, alignment and synchronisation, but not data content notation.

As would be expected for an application of SGML, only the central hyperdqcu­
ment must conform to HyTime while the associated documents can be expressed in
whatever notation is best appropriated. Like SGML, HyTime is an enabling stan­
dard, it provides a neutral base for the interchange of application-specific hyperme­
dia information.

There are two parts in HyTime:

■ an hypertext part which provides linking;

■ a multimèdia part which provides time synchronisation.

Like SGML, HyTime is independent of the actual storage but Hypermedia appli­
cations are limited by today's technology. Specifically, they often require the hyper­
document to be self-contained and coded in a format specific to the platform on
which they run, for maximum efficiency. Of course, an ideal interchange format
would be platform independent. Therefore it has been suggested to use two sorts of
interchange standards for HyTime documents:

■ archivai: a system-independent format used to store hyperdocuments for inter­
change or archive;

■ delivery: a system-dependent format, optimised for speed, which is used by the
hypermedia application.

Therefore before a hyperdocument can be read by an application it must have
been translated from the archivai format to the delivery one.

Compound Documents ■ 46

This is probably a transitory situation because of:

■ hardware improvements;

■ SGML-B: a standardised binary encoding of SGML parsed document optimised
for hypertext access.

Hypermedia technology will certainly evolve too; new functionalities will prob­
ably be added over time. Ali this raises the question: «Why use HyTime today?», the
answer is simple: because HyTime documents are ready for evolution. HyTime is
flexible, modular and extensible enough to cope with future innovations. It provides
a path to bring today's hyperdocuments into tomorrow's world.

This makes HyTime an ideal standard for documents with an expected long life­
time, like SGML. This explains why the DoD is so interested by HyTime.

14. Further readings

Despite its apparent simplicitl SGML is a very powerful tool. It is not possible to
introduce every aspect of its use in such a short chapter.

For further study of SGML, the following books are recommended:

■ SGML an Author's Guide [20]: a good introductory book. Particularly concerned
by an author's point of view;

■ Practical SGML [19]: study of some practical issues raised by SGML. Notice that
chapter 13 is concerned with the relation between SGML and EDI;

■ SGML Handbook [16]: the annotated standard by the editor standard. This book
will be of interest to anyone implementing SGML;

■ SGML and Related Standards [22]requires knowledge of SGML, this book pro­
vides a good study of various SGML related issues;

■ SGML: The User's Guide to ISO 8879 [21]: a reference book to ease the reading
and use of the standard, of little use without a copy of the standard. ■

t After ail the SGML standard is not very thick, especially when compared to other standards concerned with
document interchange lice ODA, for example.

Compound Documents ■ 47

15. References

[14] Dr. Donald P. D'Amato and Rex C. Klopfenstein
A Study of the CALS Standards for the Interchange of Patent Documents
CALS Journal, Summer 1993, p. 28-35

[15] Charles F. Goldfarb
A Generalized Approach ta Document Markup

• ACM Sigplan Notices, Volume 16, Number 6, June 1981, p. 68-73

[16] Charles F. Goldfarb
The SGML Handbook
Clarendon Press, UK, 1990

[17] Charles F. Goldfarb
HyTime: A Standard for Structured Hypermedia Interchange
IEEE Computer, August 1991, p. 81-84

[18] James H. Harvey
SGML Applied ta Automotive Service Information
CALS Journal, Fall 1993, p. 27-31

[19] Eric van Herwijnen
Practical SGML
Kluwer Academic Publishers, The Netherlands, 1990

[20] Bryan Martin
SGML an Author's Guide
Addison-Wesley, UK, 1988

[21] Joan M. Smith and Robert Stutely
SGML: The User's Guide ta ISO 8879
Ellis Horwood, UK, 1988

[22] Joan M. Smith
SGML and Related Standards
Ellis Horwood, UK, 1992

[23] Technology Appraisals
Open Information Interchange
Technology Appraisals Ltd, UK, 1993

•

Compound Documents ■ 48

Appendices

Appendix A: A Brief History of the Development of SGMLt

SGML, in its present form, is the result of the efforts of many people, channelled into
four major activities that occurred over the past twenty years: generic coding, the
GML and SGML languages, the SGML standard, and major SGML applications.

The Generic Coding Concept

Historically, electronic manuscripts contained control codes or macros that caused
the document to be formatted in a particular way ('specific coding'). ln contrast, ge­
neric coding, which began in the late 1960s, uses descriptive tags (for example,
'heading', rather than 'format-17') . Many credit the start of the generic coding move­
ment to a presentation made by William Tunnicliffe, chairman of the Graphie Com­
munications Association (GCA) Composition Committee, during a meeting at the
Canadian Govemment Printing Office in September 1967: hls topic - the separation
of the information content of documents from their format.

Also in the late 1960s, a New York book designer named Stanley Rice proposed
the idea of a universal catalogue of parameterized 'editorial structure' tags. Norman
Scharpf, director of the GCA, recognized the significance of these trends, and estab­
Jished a generic coding project in the Composition Committee.

The committee developed the 'GenCode® concept', recognizing that different ge­
neric codes were needed for different kinds of documents, and that smaller docu­
ments could be incorporated as element of larger ones. The project evolved into the
GenCode Committee, whlch later played an instrumental role in the development of
the SGML standard.

GML and SGML: Languages for Generic Coding

In 1969, Charles Goldfarb was leading an IBM research project on integrated law of­
fice information systems. Together with Edward Mosher and Raymond Lorie hein­
vented the Generalized Markup Language (GML) as means of allowing the text
editing, formatting, and information retrieval subsystems to share documents.

GML (whlch, not coincidentally, comprises the initiais of its three inventors) was
based on the generic coding ideas of Rice and Tunnicliffe. Instead of a simple tag­
ging scheme, however, GML introduced the concept of a formally-defined docu­
ment type with an explicit nested element structure.

Major portions of GML were implemented in mainframe 'industrial strength'
publishlng systems, by IBM and others and achleved _substantial industry accep­
tance. IBM itself, reckoned to be world's second largest publisher, adopted GML and
now produces over 90% of its documents with it.

After the completion of GML, Goldfarb continued his research .on document
structures, creating additional concepts, such as short references, link processes, and
concurrent document types, t:}:lat were not part of GML but were later to be devel­
oped as part of SGML.

t The following copyright notice and permission applies onl y to this appendix (Appendix A) of this chapter.
<î;> Copyright SGML Users' Group 1989 (3 June 89)
Permission to reprint is granted provided that no changes are made, and provided thfa notice is included in
ail copies.

Compound Documents ■ 49

Development of SGML as an International Standard

In 1978, the American National Standards Institute (ANSI) committee on Informa­
tion Processing established the Computer Languages for the Processing of Text com­
mittee, chaired by Charles Card, then of Unjvac, with Norman Scharpf as a member.
Goldfarb was asked to join the comnùttee and eventually to lead a project for a text
description language standard based on GML. The GCA GenCode committee sup­
ported the effort and provided a nucleus of dedicated people for the task of devel­
oping Goldfarb's basic language design for SGML into a standard.

The first working draft of the SGML standard was published in 1980. By 1983,
the GCA was able to recommend the sixth working draft as an industry standard
(GCA 101-1983). Major adopters included the US Internai Revenue Service (IRS) and
the US Department of Defense.

In 1984, with feedback from the GCA standard in hand, three more working
drafts were produced. The project, which had been authorized by the International
Organization for Standardization (ISO) as well as ANSI, re-organized. It began regu­
lar international meetings as what is now called ISO/IEC JTC1/SC18/WG8, chairec:l
by James Masan of the US Oak Ridge National Laboratory. Work also continued in
the ANSI committee, now called X3Vl.8, chaired by William Davis of SGML Associ­
ates, and supported by the GCA GenCode committee, chaired by Sharon Alder of
l'BM. Alignment between ISO and ANSI was maintained by Goldfarb continuing as
technical leader, serving as project editor for both groups.

In 1985, a draft proposa! for an international standard was published and the in­
ternational SGML Users' Group was founded in the UK by Joan Smith, who became
its first president. Together with the GCA in North America, it played a vital role in
educating the public about SGML and communicating user reactions and comments
back to the development project.

A draft international standard was published in October 1985, and was adopted
by the Office of Official Publications of the European Community. Another year of
review and comment resulted in the final text, whii:h - using an SGML system de­
veloped by Anders Berglund, then of the European Particle Physics Laboratory
(CERN) -was published in record time after approval (ISO 8.879:1986).

Important Early Applications of SGML

SGML applications are frequently developed for use by a single organization or a
small community of users. Two early applications were developed with much
broader participation: the Electronic Manuscript Project of the Association of Ameri­
can Publishers (AAP), and the documentation component of the Computer-aided
Acquisition and Logistic Support (CALS) initiative of the US Department of
Defense.

Electronic Manuscript Project

From 1983 to 1987, an AAP committee, chaired by Nicholas Alter of University Mi­
crofilms, developed an initial SGML application for book, journal, and article cre­
ation. The application is intended for manuscript interchange between authors and
their publishers, among other uses, and includes optional element definitions for
complex tables and scientific formulas.

The technical work was led by Joan Knoerdel of Aspen Systems, with participa­
tion by over thirty information processing organizations, including the IEEE, Coun­
cil on Library Resources, American Society of Indexers, US Library of Congress,
American Chemical Society, American Institute of Physics, Council of Biology Edi­
tors, and American Mathematical Society.

Compound Documents ■ 50

The AAP industry application standard has achieved signHicant acceptance, and
has particularly been embraced by the emerging CD-ROM publishing industry. It
has been adopted as a formai ANSI application standard (239.59) and a correspond­
ing ISO standard is under development.

Computer-aided Acquisition and Logistic Support (CALS)

The SGML portion of CALS was initiated in February 1987 when Bruce Lepisto of
the Department of Defense organized a committee to address the subject. The com­
mittee consisted of John Bean of Northrop, Pam Gennusa of Datalogics, Ed Herl of
the US Army, and Mary McCarthy and Dave Plimier of the US Navy. They were
subsequently joined by hundreds of representatives of military standard
(MIL-M-28001) in February 1988.

Similar SGML projects are under way in the defence depattments of Canada,
Sweden, and Australia, and are under consideration by other countries. •

Compound Documents • 51

Appendix B: Reserved Names and Keywords

This appendix specifies what can be redefined in the concrete syntax.

This table shows the keywords that can be changed by defining a variant concrete
syntax.

ANY ENDTAG LINK NUTOKEN SGMLREF
APPINFO ENTITIES LINKTYPE 0 SHORTREF
ASNl ENTITY MD OMITTAG SHORTTAG
ATTLIST EXCLUDE MINIMIZE OTHER SHUNCHAR
BASESET EXPLICIT MODEL PACK SIMPLE
CAPACITY FEATURES MS PCDATA SPACE
CDATA FIXED MSICHAR PI SRCNT
CHANGES FORMAL MSOCHAR PUBLIC SRLEN
CHARSET FUNCHAR MSSCHAR POSTLINK STARTTAG
CONCUR GENERAL NAME QUANTITY SUBDOC
CONREF ID NAMECASE RANK SWITCHES
CONTROLS IDREF NAMES RCDATA SYNTAX
CURRENT IDREFS NAMING RE SYSTEM
DATATAG IDLINK NDATA REQUIRED . TEMP

DEFAUL T IGNORE NMTOKEN RESTORE UCNMCHAR
DELIM IMPLICIT NMTOKENS RS UNPACK
DELIMLEN IMPLIED NO SCOPE UNUSED
DECSET INCLUDE NONE SDATA USELINK
DOCTYPE INITIAL NONSGML SOIF USEMAP
DOCUMENT INSTANCE NOTATION SEPCHAR VALIDA TE
ELEMENT LCNMCHAR NUMBER SEQUENCE YES
EMPTY LCNSTRT NUMBERS SGML

Compound Documents ■ 52

The delimiters, which can be changed in a variant concrete syntax, are presented in
the following table with their abstract name, the default assigned by the reference
concrete syntax and their role: ·

Name Default Role

AND & And connecter

COM - - Comment start or end

CRO &# Character Reference Open

ose J Declaration Subset Close

OSO [Declaration Subset Open

DTGC J Data Tag Group Close

DTGO [Data Tag Group Open

ERO & Entity Reference Open

ETAGO </ End-tag Open

GRPC) Group Close

GRPO (Group Open 1

LIT " Literai Start or End

LITA 1 Literai Start or End (Alternative)

MDC > Markup Declaration Close

MDO <! Markup Declaration Open

MINUS - Minus; Exclusion

MSC]] Marked Section Close

NET / Null End-tag

OPT ? Optional Occurrence lndicator

OR 1
Or Connecter

PERO % Parameter Entity Reference Open

PIC > Processing Instruction Close

PIO <? Processing Instruction Open

PLUS + Required and Repeatable; Inclusion

REFC .. Reference Close

REP * Optional and Repeatable

RNI # Reserved Name Indicator

SEQ Sequence Connector

STAGO < Start-tag Open

TAGC > Tag Close

VI = Value Indicator

Compound Documents • 53

H~re is the set of limits defined by the reference concrete syntax that can be changed
in a variant concrete syntax:

Name Value Description

IATICNT 40 Number of attribute names and name tokens in an ele-
ment's attribute definition list.

ATTSPLEN 960 Normalized length of a start-tag's attribute
specifications

BSEQLEN 960 Length of a blank sequence in a short reference string

DTAGLEN 16 Length of a datatag

DTEMPLEN 16 Length of a data tag template or pattern template
(undelimited)

ENTLVL 16 Nesting level of entities (other than primary)

GRPCNT 32 Number of tokens in a group

GRPGTCNT 96 Grand total of content tokens at all levels of a content
model

GRPLVL 16 Nesting level of model groups (including first level)

LITLEN 240 Length of a parameter literal of attribute value literai
(interpreted and undelimited)

NAMELEN 8 Length of a name, name token, number, etc

NORMSEP 2 Used instead of separators when calculating normalized
lengths

PILEN 240 Length of a processing instruction (undelimited)

TAGLEN 960 Length of a start-tag (undelimited)

TAGLVL 24 Nesting level of open elements

5
Graphies Standards

You can dream, create, design and build the most wondeiful
place in the world, but it requires people to make the dream a
reality.
WaltDisney

This chapter présents four graphies standards. Namely:

■ the Computer Graphies Metafile (CGM) standard (ISO 8632), a general-purpose
international standard for graphies;

■ the CCITI Group 4 (CCITI Recommendation T.6) raster graphies compression
scheme;

■ the IGES file format for product data exchange (ANSI Yl4.26M);

■ the STEP draft international standard (ISO 10303) for product model exchange.

The first three standards form the basis of ÇALS standards; respectively
MIL-D-28003A, MIL-R-28002B and MIL-D-28000A.

Because we found that few people clearly understand how computers handle
graphies, this chapter also includes an introduction to computer graphies.

Although computer graphies is an exciting subject, it is also a difficult one partly
because computers have at least three ways of dealing with graphies and partly be­
cause an in-depth study leads to mathematics which are beyond the scope of this
document. As usual we have tried to give the background information for the reader
to understand which problems are involved by the exchange of images.

Graphies Standards■ 55

----Background on Computer Graphies Formats

1. Background on Computer Graphies Formats

Essentia:Ily there are two types of format to store an image on a computer:

■ a colour sample of individual points in the image. This is the raster format;

■ a description of the image in terms of its geometrical components (like circle, line,
etc.). This is the vector format.

We will also consider a third way: ·

■ a product data model of some artefact like models produced by CAD systems.

This is nof strictly a graphical format as a product model usually includes lots of
non-graphical information, such as the material used, information for the
machine tool, etc.

If the model is 3D, it contains even more non graphical information (like metrics,
etc.). But the model is often viewed and manipulated through a graphie.
Consequently people tend to consider these models as graphical data.
Furthermore, they can be considered as a sort of extension of vector formats.

Notice that each of these formats carries more information than the previous one.
We go from low level formats (samples) to higher level ones (models).

1.1. Raster Image

Conceptually, the raster format is probably the easiest of the three. The colour of the
image is sampled at individual points on a grid which covers the picture.
See figure 11.

I■ / ,/

Figure 1: The image is sampled using a grid

The points are usually. referred to as pixels (abbreviation for picture element).
The set of colour of each pixel constitutes the image data; it is stored in a bitmap
(sometimes spelled bitmap).

The quality of the image is determined, of course, by the sampling frequency,
that is known as the resolution of the image. The problem with raster images, is the
problem of every sample: information is lost during sampling. The colour of every
pixel on the grid is stored; however, everything between two pixels is lost. Given
that, as mathematics teaches us, there is an infinity of dots between two points on a
plane, the information on an infinity of points is lost.

Graphies Standards ■ 56

The resolution is commonly expressed either by the size of the grid, for example
800 by 600 or, for printers, in dot per inches (dpi), for example 300 dpi.

The other parameter that influences the image quality is the number of bits used
to store each pixel colour. Typically used values are:

■ 1 bit for bitonal (often black and white) images;

■ 4 bits which allows the use of 16 different colours;

■ 8 bits for 256 colours. A current use is grey-scale images: human eyes cannot dis­
criminate more than an average of 64 nuances of the same colour; therefore if the
256 colours are all levels of grey, we can store all the visible nuances of a so­
called black and white photograph;

■ 24 bits or True Colours store 16 rrtillions colours; it is generally considered that
this suffices to store all the colours the human eye can discriminate;

■ 32 bits; these are 24 bits picture with an extra byte used to store transparency in­
formation which specifies how 2 images must be superposed.

The sampled nature of raster images raises problems when the image has to be
scaled. It is not uncommon: printers and screens have different resolutions therefore
if the resolution of a raster image is appropriate for the screen, it is not for the print­
er or vice versa. The problem is that the sample does not provide enough informa­
tion to scale wisely. One must resort to complex · transformations that either try to
guess what the missing pixels were (scaling up) or to remove intelligently some pix­
els (scaling down).

To minimise the information lost one may increase the sampling frequency i.e.
sample more points. But this raises the second problem of raster images: the size .. A
raster image is usually huge. For example, a photographie quality image (24 bits) of
640 by 480 pixels will amount to almost a . rrtillion bytes
((640*480) pixel* 3 bytes/pixel) which is commonly considered as big.

The only realistic solution to store raster graphies is to compress the data by
identifying and suppressing redundancies in the image. Many compression tech­
niques have been devised which achieve various savings at various costs.

1.2. Vector Images

Vector formats are geometrical descriptions of images. A vector oriented format
stores an image as a collection of geometric primitives like circles, rectangles; lines.

This. often produces more compact data: a circle, for example, can be represented
by three numbers (the coordinates of its centre and its radius) where it would have
required the storage of a potentially huge bitmap in raster formats. This is shown in
figure 2.

~ ----'.~~i~~ .. <.~l

center (10,25)

Figure 2: A circle is stored as its center and radius

There is no problem to scale the image: to draw ,the circle at a different size, it
suffices to multiply its radius by a scaling factor. These formats store more informa­
tion on the structure of images than the raster ones because they store the geometri­
cal nature of image components, not samples.

Graphies Standards• 57

This power has its drawback. Namely to produce a vector image one must be
able to describe the image mathematically which is not always trivial. A photo for
example is almost impossible to describe completely as a set of vectors.

Realistic use of vector images is limited to a subset of computer generated
images, mainly technical documents and some art images. Raster images on the con­
trary can be used with any sort of images.

1.3. Model Description

The notion of model is central to the design activities. lt is also what CAD tools ma­
nipulate. We will review more thoroughly the notion of model in design in
section 11 of this chapter.

This format stores all the product data which includes non-graphical elements:
the model carries information on which device is represented, eventually how it can
be manufaçtured, etc.

The term product data denotes the totality of data elements that com­
pletely define the product for ail applications over its expected life cycle.
Product data includes the geometry, topology, relationships, tolerances,
attributes, and features necessan; to completely define a component part or
an assembly of parts for the purposes of design, analysis, manufacture, test
and inspection [1].

lt has many properties of the vector oriented description (2D models are in fact a
superset of vector description) but is usually bigger because of the extra information
in the model.

1.4. Need for Different Formats

Those different formats cohabit because they serve different purposes.

Raster formats are very good with so-called natural images, i.e. images of the real
world like photographs, or would-be natural images like photorealistic computer
generated images.

Vector formats are especially appropriate for computer generated images while
model formats are particularly adapted for engineering design.

Let's take some examples which will illustrate the need for different formats.

First, it has already been said that each format carries more information than the
previous one. But in some circumstances, we do not need all the information.

Let's take a building as an example. Assume the building was designed with a
CAD system. lt is not an unrealistic assumption if the building is recent.

Suppose we want to write a booklet to present the building to potential buyers. lt
is important for the buyer to see a drawing of a typical apartment. It would be ineffi­
cient to include the whole CAD model in the booklet file. The model contains archi­
tectural data that are not relevant to the buyer. Rather we will extract a graphie
representation of an apa~tment from the model, probably in a vector format, and in­
clude only this smaller image in the booklet. Notice that the extraction can be done
automatically.

Similarly, we may want to have a photo of the apartment on the cover. A photo is
a natural image, it was not created by a computer and the best way to store it on a
computer is in raster format.

Notice that even on films, photos are colour samples: tiny silver grains play arole
similar to the computer pixels.

Graphies Standards ■ 58

Figure3

. Figure 3: Apartment drawing (vector) and one room (raster)

Another reason to have various encoding techniques is that, for cost reasons,
today most output devices are raster ones. This includes screens and printers. Plot­
ters are the last vector oriented output devices. They draw an image by moving pens
on a piece of paper. Since plotters avoid the sampling process, they draw better
looking images, at least as good as what a designer can do. But plotters, being main­
ly mechanical, are slow and expensive. Moreover they cannot print raster images.
Plotters are mainly used for engineering.

Anyway, it is not because a device is raster oriented that the most efficient way
to control it is raster oriented. Most software tools generate vector drawings; this
includes GUis (a window is in fact a rectangle), presentation packages, spreadsheets,
.etc. Consequently it is not uncommon to control a raster device (like a screen)
through software libraries which accept vector oriented instructions. It achieves a
certain independence from the actual resolution of the device, may save on interna!
storage and means that the difficult routines that rasterised vector primitives can be
reused and shared amongst software products.

So to draw a view of a 3D model, a CAD system will probably first produce a 2D
vector graphie which will then be rasterised by the drawing library that drives the
screen.

In general, it is easier to go from a high-level format to a lower one than to go the
other way, especially if the process is to be automated. Truly some software tools
exist which convert raster images to vector ones but their use is limited.

Again it is important to emphasise that three types of graphies formats exist be­
cause they cover different needs. In document exchange activities, we must provide
for all those needs.

Graphies Standards• 59

----Computer Graphies Metafile

2.Usage

Originally the Computer Graphies Metafile (CGM) was a vector format. Since the
1992 revision, the standard incorpora tes full featured raster graphies support. This
was felt an important requirement by CGM users. Notice that ISO has no dedicated
raster format.

CGMs are used to store pictures:

■ for further processing la ter intime;

• for further processing on another computer;

• for a combination of both previous points.

CGMs are for still pictures only. Though more than one picture can be stored in a
single metafile, it is not appropriate for animated pictures or movies. Also as CGMs
store the state of pictures frozen at a certain moment (like a snapshot), CGMs cannot
be used to record the dynamic sequence of operations that leads to the creation of a
picture.

Before going any further, we will highlight some cases where CGMs are used.
This section does not intend to provide a complete survey of ail potential uses of
CGMs: what is so exciting with graphies is that there are always new, more interest­
ing and funnier ways to use them.

A typical usage of CGM is the insertion of graphies in text documents. The two
international standards for document exchange, the Standard Generalized Markup
Language (SGML) and the Open Document Architecture (ODA), allow the inclusion
of CGMs in a standard way.

Since CGM is a standard, many off-the-shelf applications are capable of interpret­
ing and/or generating CGM files. Many graphical packages, word processors and
desktop publishing systems are now able to process CGMs. This makes CGMs an
excellent choice for the exchange of graphical data whatever they are.

Very often in technical documents, we are not interested by the complete model
of an artefact as exported from a CAO system. The image suffices. It would be ineffi­
cient to store the complete model which includes data used by machine tools, ana­
lysers, etc. Rather an image of the artefact is extracted, potentially as a CGM, and
will become part of the document.

Another potential application of CGMs is to drive output devices like plotters or
printers. CGMs makes the application that requests the output independent from
the output device. In this role, CGM is used instead of PDLs (Page Description Lan­
guage), like PostScript®. This is sometimes necessary because PostScript®, although
device independent, assumes a raster device i.e. nota plotter. To drive plotters there
is only de facto standards like HP-GL1", which CGM can replace.

3. Organisation of the Standard

A file format can attempt to fulfil various requirements. For the applications tar­
geted by the CGM standard, the potential requirements are:

• minimal file size;

■ ease of transfer across networks;

■ speed with which the data can be generated and interpreted;

■ human-readability of the stored files (for debugging).

· Graphies Standards ■ 60

Alas, those requirements are conflicting. For example sophisticated compression
techniques minimise file size at the cost of processing speed and human readability.

The standard elegantly handles these conflicts by dividing its specifications in
two logical levels:

• a functional level;

• an encoding level.

3.1. Functional Level

The functional level defines the functionalities and general organisation of a CGM.
At the functional level, a metafile is described in terms of elements. An element is
defined by a name and a potentially empty list of parameters.

Examples of element are:

• 'Rectangle' which takes two corners as parameters (Cf. figure 4);

• 'Polygon' which takes a list of points as parameters;

• 'Begin Metafile' which takes an identifier as parameter;

• 'New Region' which takes no parameter.

D
Figure 4: A rectangle has two corners as parameters

Note that the notion of instance of an element does not exist in the CGM litera­
ture. Therefore, the word element is used both to describe the abstract notion of ele­
ment (the rectangle seen as a particular sort of polygon) and a particular occurrence
of an element within a file (a rectangle in a given image i.e. where it has a size, a co­
lour, etc.).

3.2. Encoding Level

What elements constitute a metafile and how these elements relate is defined at the
functional level. How these elements will map into an actual file on a computer is
described at the encoding level.

This approach éases the design of various encodings each of which satisfy a dif­
ferent set of requirements while all being functionally equivalent.

Let us, as an example, consider the case of the rectangle element. We saw that the
standard defines a primitive for rectangles. At the functional level, a rectangle is de­
fined by two points givin'g the position of two of its corners. What we consider, at
this level, is the abstract idea of rectangles. We also consider the concept of points
that we defined as two numberst. We are not, at the functional level, interested in
the actual pattern of bits that will represent a rectangle on a given computer.

Transforming this conceptual vision of a rectangle in something that can be writ­
ten to and read from a file is the resort of the encoding level. For example, with the
Clear Text Encoding (to be introduced shortly), we would write something like:

Rectangle (12.15) (25,60) ;
The structure of the metafile is completely defined at the functional level and is

therefore independent from any encoding. This contrasts with older graphies format
where the distinction between functional and encoding levels was not drawn: the
functionalities were described with and by their encodings.

t By default, two integers whose actual precision (number of bits) is e~coding dependant.

Graphies Standards • 61

3.3. Organisation of the Standard

The ISO standard consists of 4 parts. The first one defines the functional level and
the other three, encodings. Those three encodings are designed to be fully compat­
ible i.e. it is possible to convert from one encoding to another without loss of in­
formation. This is logical since they are all based on the same funetionalities.

The three encodings are:

■ character encoding: optimised for electronic communication, it consists only of
characters and is very compact;

■ binary encoding: optimised for speed of decoding, it is close to most computer
representation of elements;

■ clear text encoding: optimised for human readability, it uses meaningful strings
of character to code elements which gives it the look and feel of a computer
language.

Since the functionalities are defined independently from any encoding, it is also
possible to write a CGM in a private encoding.

4. Structure of a CGM

A CGM is organised as a series of layers of detail. These layers are:

■ metafile;

■ pictures;

which consist of:

• a picture descriptor;

• a picture body;

■ elements;

made of:

• aname;

• parameters.

The elements are the building blocks of a metafile. They are defined by a name
and a potentially empty list of parameters. A metafile is simply an ordered sequence
of elements. There are elements to structure the metafile, others to express graphical
primitives, etc. Elements are studied in the next section.

A picture starts with a 'Begin Picture' element and ends with an 'End Picture' ele­
ment. A picture consists of two logically separated parts:

■ the picture descriptor that gives the interpreter+ some information to help it de­
code the picture;

■ the picture body that contains the actual description, in terms of graphical ele­
ments, of the picture.

Zero, cine or more pictures are grouped in a metafile. The metafile is the highest
level of the hierarchy. It starts with a 'Begin Metafile' element and ends with an 'End
Metafile' element. Apart from pictures, metafiles contain metafile descriptors that
supply the interpreter with information which helps it interpret all the pictures of
the metafile.

Each picture in a metafile is independent from the others. Although in practice a
metafile is often processed sequentially, it need not be. •

t In the CGM literature, the software that creates (writes) a CGM is a generator and the one that reads it is an
interpreter.

Graphies Standards ■ 62

The structure of CGM metafiles is illustrated in figure 5 .

...

_B_e_gi_n_.....,_M_e_ta_f_ile _ ___,. ___ P_ic-tu-re ___ ···1.---"--P-ic-tu-re--~-E_n_d_~
Metafile Descriptor . Metafile

.. ::,-:::: ...
Metafile

5. Functional

.•· .. -•·····

Begin
Picture

Picture

Picture
Descriptor

Picture
Body

Figure 5: Format of a CGM metafile

End
Picture

An in-depth study of every element is out of the scope of this paper and of little in­
terest to anyone who is not implementing the standard. Rather we will concentrate
on a high level understanding of the various functionalities. We will adopta twofold
approach:

■ first, we will overlook the classes of elements: the standard organises the ele­
ments in classes. We will briefly review those classes to acquire an high-level un­
derstanding of what functionalities the standard provides;

• next, we will have a deeper study of the graphical primitives for the two sorts of
graphical data supported by the standard:

• vector graphies primitives;

• raster graphies primitives.

For historical reasons there are three versions of CGM in use which are upwardly
compatibie. Version 2 is a superset of version 1, and version 3 is a superset of ver­
sion 1 and 2. A new version (version 4) is currently under development.

5.1. Element Classes

The standard organises the various CGM elements in a few classes. We will now re­
view those classes with some explanation for each of them. The classes are:

• delimiter;

■ metafile descriptor;

■ picture descriptor;

■ control;

■ graphical primitives;

• attributes;

• escape;

• extemal;

• segment.

5.1.1. Delimiter
The delimiter class counts 17 elements that serves to <livide up the metafile into its
structural components. The 'Begin Picture' element, for example, is part of this class.

5.1.2. Metafile Descriptor
The 23 elements of the metafile descriptor class appear at the beginning of the meta­
file to announce features and characteristics which apply to every picture in the me­
tafile. They provide information which assist the interpreter understanding the

Graphies Standards ■ 63

metafile. They even help it decide if it can decode the metafile at all. Examples are
metafile version element or font list element.

5.1.3. Picture Descriptor
There are 19 elements in the picture descriptor class. They supplement the metafile
descriptor with information specific to one picture like background colour or scaling
information.

5.1.4. Control
These 16 control elements define viewing aspects applicable to all graphical primi­
tives. This includes the definition of clipping rectangles or coordinates precision.

5.1.5. Graphical Primitives
There are 29 graphical primitives in the CGM standard which define the drawing
objects supported by the standard (geometrical or i:aster objects). Examples include
'Rectangle' or 'Polygon' elements. (Cf. infra)

5.1.6. Attributes
The 51 attribute elements influence the way the primitives are drawn; they precise
the actual appearance of the graphical primitives. Examples are line width or colour.

5.1.7. Escape
The escape class contains two elements to access non-standard graphical primitives
or attributes. It is recommended that the elements of this class are use only in a reg­
istered context (Registration will be inttoduced shortly).

5.1.8. External
The two external elements permit the communication of non-graphical information,
for example application specific data.

5.1.9. Segment
Segments permit the grouping of collection of graphical primitives and attributes
that are then manipulated as a single entity. Segments provide a convenient short­
hand way of referencing group of elements. Segments can be defined both at the me­
tafile level (where they are shared by ail the pictures of the metafile) or at the picture
level. There are 7 segment elements.

5.2. Vector Graphical Primitives

Historically, this is the most important aspect of CGM. Out of the 29 graphical
primitives, 26 are vector oriented. In its version 3, CGM provides a thorough cover­
age of vector oriented primitives found in common graphical packages.

Three types of vector oriented primitives can be identified:

• line and curves;

• filed areas;

• text.

Graphies Standards• 64

5.2.1. Line and Curves
CGM supports all the graphienl primitives found in common graphical packages.
This includes:

■ p9lyline, circles, circular arcs, eilipses and elliptical arcs as found in presentation
graphies and general computer graphies commercial products;

■ hyperbolic arc, parabolic arc which are in common use in engineering products
(CAD);

■ spline curves including Bezier curves, polynomial B-splines and rational B­
splines widely used in graphies arts packages and in font description.

Bezier curves and B-splines are very powerful equations that can describe any
curve given enough resources. Bezier curves were popularised by PostScript®
which uses them to describe its fonts .

From a mathematical point of view, this makes all the other line and curve
primitives redundant! Nevertheless, less generic primitives are supported by the
standard because they are shorter and more efficient to draw. Furthermore,
every graphical package uses them so that their absence would force tedious
conversions (or more probably disinterest for the CGM standard).

5.2.2. Filed Areas

5.2.3. Text

In many pictures, we need to fill an area in some way: either with a colour or with
some pattern. The CGM standard allows for a number of different specifications of
filled-areas:

■ basic shapes: circle, rectangle, closed circular arc, ellipse, closed ellipse arc. These
are simple, short and easily computationable definitions of simple area to fill;

■ polygon and polygon set: to draw more complex filled-area;

■ closed figure: the closed figure was introduced in version 2 of CGM and sub­
sumes all other filled primitives. It is a composite primitive made up by connect­
ing individual primitives. Therefore they can ~ave any shape as they can include
Bezier curves. The closed figure is considered as a filled-area element.

CGM offers good support for the drawing of text. Including the support of both
ISO 646 and ISO 2022 character sets and advanced support for font description.

ISO 646 is the "ISO 7-bit coded character set for information interchange". It is a
simple character set which roughly corresponds to the ASCII standard. To be cor­
rect, ASCII is the American national code derived from ISO 646.

ISO 2022, the "ISO 7-bit and 8-bit coded character set - Code extension techni­
ques", is more complex and provides, through an escape mechanism, access to an
unlimited number of characters. How this escape mechanism works does not matter
for us; what matters is that ISO 2022 permits the inclusion of text even when written
in the enormous Japanese Kanji character set.

The standard also offers good support for fonts i.e. the typefaces or actual draw­
ings of characters. Font examples are Helvetica, Let ter Got hic or Palatino.

Fonts create specific problems in an open environment because an interpreter
cannot reasonably be expected to have access to all available fontst. It is often impos­
sible to include a font definition in the metafile because most fonts are copyrighted.

The standard tries to resolve this problem by allowing the interpreter to substi­
tute a font it cannot reproduce with another similar one. To help it, there is a Font
Descriptor element that passes enotigh information to the interpreter so that it can
wisely choose a substitute font.

t ISO sets up a registration scherne for fonts and expects 50,000 of thern to be registered!

Graphies Standards ■ 65

5.3. Raster Graphical Primitives

Originally, CGM offered very limited support for raster image data in the form of
the Cell Array primitive. The Cell Array is a parallelogram defined by a bitmap.

Cell Array is usable with very limited amount of raster data only. It was not de­
signed as a real raster primitive. In particular it offers no real compression (although
the encodings use a limited compression technique to actually store the bitmap).

To overcome this limitation and make CGM a full blown raster graphies format,
two new raster primitives that support compression were introduced in version 3.

Many compression schemes have been devised that achieve various levels of sav­
ings at various computational costs; most de facto standards use at least one of them.

The new CGM primitives were designed for easy importing and exporting to and
from major de facto standards. Therefore they support many compression techniques
so that an image can be exported to and from a CGM without being first decom­
pressed and then recompressed. From most de facto standards, it suffices to copy the
compressed data without any other processing. ·

It is not particularly costly ta put a CGM-specific wrapper around 250
Megabytes (Mbyte) of compressed data, or even ta do byte reversai on the
data as il is stuffed into the metafile, but it is considered unacceptable ta
have ta uncompress the data from a standard source and then recompress,
in order ta put into the metafile [6]. [61

6. Encodings

Before explaining the encodings, we first need to define some vocabulary. We saw in
the previous section that each element of the CGM standard is defined by a name
and a potentially empty list of parameters.

To encode them elements are assigned op-codes. All three encodings define op­
code for every element and provide rules to encode the parameters.

1 Op-code I Parameters

In the clear text encoding, it gives something like:

!Rectangle 102.25) (25.60) 1;

The three encodings are defined for total compatibility with each other. They all
implement the functionalities of part 1 of the standard. Therefore they are intertrans­
latable: a CGM in one encoding can be translated into another encoding without loss
of information.

6.1. Clear Text Encoding

The goal of clear text encoding is to provide an encoding humans can read, write
and edit. Therefore the rules are si!llple and flexible but, since it must remain com­
puter processable, they are also unambiguous. This encoding has the flaveur of a
programming language. Its main characteristics are:

■ it uses only characters, as defined in ISO 646, for coding;

■ it provides a mechanism for the insertion of comments;

Graphies Standards■ 66

■ it provides formatting facilities (the characters '_' and '$' can be interspersed for
readability; text formatting characters like CR, LF, etc. are interpreted as empty
characters);

■ op-codes are encoded as meaningful English names while parameters are en­
coded as plain text;

■ it represents numbers as their corresponding ISO 646 characters (the number 646
is encoded as the string '646') .

. Therefore this encoding is the most difficult to read ... for computers.

6.2. Binary Encoding

The binary encoding's goal is speed of processing although compactnèss has not
been forgotten. It is close to the representation that most computers use internally.
Of course, probably nota single computer uses this representation exactly but the
encoding is close enough to common practices so that the required transformation
remains minimal.

The metafile is physically a stream of bits with each bit combination legal.

6.3. Character Encoding

This encoding trades ease of processing in favour of communication issues. lts de­
sign ensures that:

■ the encoding does not produce any bit combinations reserved by some archaic
communication protocols for exchange control (ACK, NAK, etc.);

■ the encoding strikes for compactness;

■ the encoding is relatively invulnerable to errors.

The metafile is still a stream of bits but the ericoding algorithm ensures that,
when the bits are grouped into bytes, only those which have an equivalent in
ISO 646 (excluding some control characters) are used. Although this encoding can be
opened and manipulated with an editor, it is not really human friendly.

The syntax might better be called "character-coded binan/'[6].

Depending on the type of data, character encoding can be up to 25-30% shorter
than the binary encodirig.

The encoding is also designed to permit data recovery from a corrupted file. The
binary e1_1.coding is very sensitive to loss or distortion of data: if one element is dis­
torted, the complete metafile can be unreadab_le. The character encoding takes great
care to limit the effect of a distortion to the corrupted element only.

6.4. Private Encoding

Since the standard specifies abstract functionalities independently of the encoding, it
is possible to write a CGM in a private encoding that follows the principles laid
down in part 1 of the standard.

This is usually not a good idea since it destroys most benefits of using a standard
in the first place. In particular the file requires specific interpreter and generator or it
must be translated before being processed by common CGM software.

Nevertheless if, for whatever reason, a proprietary format that features easy ex­
change to and from CGMs is necessary, a proprietary encoding is probably a good
idea: conversion will be easy as both formats will be functionally equivalent.

Graphies Standards ■ 67

7. Non-Standard Standard Elements

The standard recognises that users may have special 11eeds for which nothing is nor­
mally provided and it leaves open doors by mean of three elements:

■ Escape Element;

■ Generalized Drawing Primitives (GDP);

■ Application Data.

These elements are really a standard way to do non-standard stuff. Consequently
their use should be restricted to elements defined and published by a user group
maybe in a profile (profiles will be introduced shortly). We will also consider the
CGM registration scheme.

7.1. GDP and Escape Element

GDP and Escape Element are similar. Functionally, their first parameter is a code
(registered or not) that tells the interpreter what cornes next. GDP are used to define
new graphical primitives and Escape Element to define new attributes and controls.

7 .2. Application Data

The Application Data element is used to store non graphical information pertinent to
an application. CAD-like data, for example, can be stored as application data.

7.3. Registration

The use of any of these non-standard elements requires that the developers of inter­
preters and generators agreed prior to any exchange can take place. Since their use is
not standardised, these elements bring all the problems of a non-standard format. In
particular if the programmers fail to agree, no exchange is possible.

When an Escape, GDP or Application Data element is agreed on, in a user com­
munity, it might be registered i.e. an international registration body will give it a
worldwide unique identifier and publish its specification.

It eliminates some of the problems raised by the absence of standardisation. In
particular, the specification of a registered element is known (or at least accessible)
by any interpreter developer. This is supposed to give a good karma to the genera­
tor that writes such an element.

Notice that the CGM standard is not the only international standard which re­
sorts to registration.

8. Profiles

The CGM standard is big. Therefore some developers deliberately forget those ele­
ments of the standards they found irrelevant to their targeted audience.

There is no harm if a generator never uses a particular element because it does
not need it. But an interpreter which is unable to understand certain elements limits
the range of metafiles it can read. If there is no agreement between developers of in­
terpreter and generator on which element can be safely dropped and which one
must be kept, exchange quickly becomes impossible. This can obliterate all the bene­
fits of a standardised approach.

Also the standard contains some imprecisions, there are ambiguities. And the
standard is flexible on certain aspects. In short, some issues must be resolved by the
developers. Of course, if they are left on their own, no two developers will resolve
them in the same way.

Graphies Standards ■ 68

There are also the Escape, GDP and Data Application elements which, as we
have just seen, require an agreement between generator and interpreter developers.

All this raises the need for an extra standardisation step. But this step is best left
to user groups than imposed by a standardisation body. In the CGM vocabulary,
user agreements on the use of the standard are called profiles. The first amendment
to CGM:1992 adds rules to help the designer of CGM profiles.

Ideally they should be as few profiles as possible, since in a way every new one
reduces the openness of the standard.

8.1. Principal CGM Profiles:

The most important CGM profiles are:

■ CALS which is studied, as an example, in the next sub-section;

• MAP (Manufacturing Automation Protocols) and TOP (Technical Office Proto­
cols) working groups: these groups from the manufacturing sectors aim to design
a complete OSI compliant open environment. They were the first to select the
CGM standard;

■ regional groups, like the European Workshop for Open Systems (EWOS), also
issue some works in the area of CGM profiles;

• ODA specifies a (very) limited subset of CGM in its FOD26 and FOD36 profiles;

■ CGM Mode! Profile: the amendment 1 of the 1992 edition also defines a profile
for developers who have no other specific profile in mind.

8.2. CALS Profile

As an example of profile, we will consider the CALS profile as defined in the
MIL-D-28003 standard which is currently at its revision A. CALS uses CGM for
graphies that are mostly vector oriented. Graphies containing small amount of raster
data can also be encoded as CGMs. Remember that for purely raster images, CALS
selected CCITT Group 4 fax and for model data exchange, the choice is a subset of
IGES.

The profile supports the three versions of CGMs. The general emphasis is on fi­
delity and predictability of the final image therefore CALS often reduce the flexibil­
ity of the CGM standard. MIL-D-28003 limits the use of particular parameters and
sets maximum for some values. It also defines three conformance classes corre­
sponding to three sorts of pictures:

• monochrome;

■ grey-scale;

• colour.

Sorne line styles and patterns which are relevant to the CALS community (line
styles and patterns used in engineering) are also defined and have been registered.

Graphies Standards ■ 69

9. Other ISO Graphies Standards

In articles and books on CGM, a few other ISO standards are often referenced. The
most important one is the Graphical Kernel System (GKS) which is another graphical
standard from ISO; it specifies a set of functions for computer graphies independent­
ly of applications and devices. GKS functionalities can be mapped onto CGM.

The Graphical Kernel System (GKS) is a system for two-dimensional
graphies and provides no support for three dimensions. The Graphical Ker­
net System for Three Dimensions (GKS-3D) is an extension of GKS to pro­
vide basic functions for computer graphies programming in 3D [2].

Another relevant standard is the Computer Graphies Interface (CGI).

GKS standardizes the interface between graphies systems and applica­
tion programs, but leaves open the question of communication between the
graphies system and the workstation or device. It is this graphies worksta­
tion interface, however, along with ils environment, which is the subject of
the Computer Graphies Interface standard ... [3]

Graphies Standards ■ 70

CCITT Group 4 ----

10. Group 4

A long study of group 4 would be redundani with other sections of this chapter.
Furthermore it is not a very interesting standard from our point of view. As we al­
ready mentioned, group 4 is a compression scheme for raster graphies; it was
adopted by CALS as a quick migration path to electronic form for legacy
documents .

. Nevertheless we mention group 4 for the sake of completeness and because it
provides us with an opportunity for a brief discussion on compression schemes. As
we already mentioned, efficient compression is particularly important with raster
graphies which tend to be very large.

The group 4 compression strategy was originally defined by the CCITI for fax
transmission. lt was published as FIPS PUB 150 (CCITI Recommendation T.6).
Group 4 is limited to black and white images only which is consistent with its fax
background. This is not a problem in the CALS environment where it is used to
compress scanned pages only.

Many techniques have been devised to compress data. The efficiency of a par­
ticular method is highly dependent on the sort of data it works on. For example
some methods will be more efficient with texts while others are at their best with
sounds or graphies. Techniques that target a specific data type, like group 4, can
take benefit from particular data properties and achieve impressive compression ra­
tio. For example, group 4 reduces the overall size of an image by a mean factor of 40
compared with a brute force approach [9] .

The idea behind group 4 is based on a statistical analysis of the data. In a typical
page certain patterns of pixels appear more frequently than others. For example
white areas are more frequent than black ones. A brute force encoding stores every
pattern with the same number of bits. A statistical encoding will use variable length
bit sequence; shorter sequences are used for more frequent pattern white the rarest
are encoded with longer sequences. lt is hoped that on a normal page the overall
size will be reduced significantly. The CCITI had to run extensive analysis of typical
pages to select the most appropriate bit sequence for every pattern of pixel. This
work resulted in the group 4 compression scheme.

MIL-R-28002B defines two file formats to store group 4 compressed images.

Graphies Standards ■ 71

IGES & STEP

11. CAD Models

Apart from raster and vector formats, we identified a third type of graphical data:
product model data as manipulated by CAD systems. Strictly speaking product
models are not restricted to graphiml information but the most common way to use
them today is through graphical representations; therefore they are often referred to
as graphical format.

The bases of Computer-aided design (CAD) are the mode] and its companion no­
tion, the representation of a model. At first sight, CAD can be understood as the use
of computers to manipulate representations of engineering models. A representation
is the particular form in which a mode! is expressed. One can only manipula:te a
model through one of its representation.

During the design process, the design is abstract: no artefact exists. Therefore the
designer needs some model of its design to work on. It serves primarily two roles in
engineering:

■ a reminder of the design for the designer,

■ a communication mean between the people involved in product production.

The design process is a repetitive activity where models are drawn, assessed,
amended and drawn once again. They can take several forms or representations. In
the earliest stages, it can be an idea in the designer's head but, as design refines, a
complete and formai description is often required. Also, the representation frequent­
ly needs to be adapted to a particular work. A major design activity is the drawing
of new representations based on old ones. For example, the representation will differ
whether aesthetic analysis or technical assessment is undertaken. In the first case,
photorealistic representation of the artefact is suitable while an annotated draught­
ing is preferred for assessment.

The tenn product data denotes the totality of data elements that com­
pletely define the product for ail applications over its expected life cycle.
Product data includes the geometry, topology, relationships, tolerances,
attributes, and features necessary to completely define a component part or
an assembly of parts for the purposes of design, analysis, manufacture, test
and inspection[l]

The importance of formal models and the number of representations used tend to
increase when the device is complex and/ or when a large team is involved in the
design process. So does the management complexity.

Product models share some properties with vector formats. Both are a descrip­
tion of something in terms of primitives. But the description of a product is more
complete; it may include information ori volume (solid modeling), size, composition,
etc. of the artefact. Therefore files are bigger which is the reason why CALS provides
both a vector format (CGM) and a product data model format (IGES): CGM is in­
tended to store an image of an artefact when one does not need the whole model,
like pictures in manuals ..

11.1. Models for Form or Structure

11.1.1. Form & Drawings
There are many engineering activities. Each has its own constraints. Two properties
are recurrent to most design, namely the form and the structure. Each is best ren­
dered by a particular type of model.

Graphies Standards ■ 72

Form is the most important property in most engineering activities. This is the
case for the design of cars, bridges, buildings, etc. Form is normally modelled by
drawings. This is usually achieved by a process know as descriptive geometry or
Mongian projection:

Three-dimensional forms are represented in two dimensions by mapping
points on the abject into multiple mutually perpendicular planes of projec­
tion using parallel projectors that are normal to the planes of projection.
From the projection of points may be derived the projection of edges of the
abject, and from the edges the smfaces that bound the object[7] [7] .

Traditionally a solid object (a hammer in figure 6) is modelled as a set of 2D
models:

•
1111 1111

Figure 6: A hammer modelised as a set of 2D models

11.1.2. Structure & Diagrams
Other engineers are more concerned by the assembly of standard elements as in the
electronic industry (this does not mean that electronic engineers are unconcerned by
the form of their circuits, rather that it is relevant only in last steps of design).

When the most important property of a design is the structure of the device, dia­
gram models are used:

In engineering diagrams the logical or physical structure of a system, is
shown by a series of symbols joined by connections [7] .

Figure 7 is a sample diagram of an electronic device (a multi-vibrator) [11]:
+

2

R1 R2 R3 R4

Figure 7: Electronic device diagram

Graphies Standards ■ 73

11.2. From Pen to Plotter

We will conclude this introduction to CAD models with a short overview of the his­
tory of CAD systems. CAD developed in four major steps:

• graphie assistance;

■ 3D modelling;

• modelling of non geometrical properties;

• information exchange.

This evolution reflects the two trends commonly found in the development of
information technologies, i.e. the move towards:

• the integration of more data (here, 3D models and non geometrical data) in cor­
porate database;

■ the availability of the data to those who need it (communication).

11.2.1. Graphical Assistance
The earliest CAD systems were a substitute for the classical designers' pencils and
erasers. When compared with a piece of paper, a computer drawing package offers
erasing facilities and greatly eases repetitive drawings.

The initial computer-made design may take as long to draw as its paper-based
counterpart but computers dramatically simplify amending a design: a paper-based
draughting must be entirely redrawn when a big change is required while with com­
puter draughting only the actual change needs to be redrawn.

Also, with a CAD system, a complex motif (say a gothic window or a transistor),
that had to be repeated identically on various places of the drawing needs to be
drawn only once. With a pencil, it must be redrawn every time it appears.

The CAD systems of this category only provide a replacement to artisanal
draughting. When designing a solid object, the mode} does not include volume in­
formation in itself, the volume is modelled by a set of 2D drawings. This means that
nothing is done by the tool to ensure the coherence of the various draughtings. This
of course was the major improvement in the next generation of CAD systems.

11.2.2. Solid Modelling
With solid modelling systems, the model of a solid object is no longer a set of 2D re­
presentations, the volume information is included in the model itself. This is a better
model of the device since it allows the computer to test the model coherence.

Of course the solid model is mapped to a 2D representation (the screen or paper)
for drawing .or editing. In other words, the computer is able to prod uce the classical
2D projections but, because they are made out of a plain-vanilla 3D model, the com­
puter ensures that 2D projections made from different angles are coherent with each
other.

This is a clear illustration of the difference between the model and its representa­
tion. The model, i.e. the mathematical data that store the properties of an object, is
solid while the representation on screen is fiat.

With these two generations of systems, non geometrical properties such as com­
position, part references or resistance to workload are added to the model as an­
notation texts.

Graphies Standards• 74

11.2.3. Modelling of Non Geometrical Properties
The next improvement is to incorporate non geometrical properties in the mode!;
properties like the materials used, supplier reference, etc. This information is inter­
pretable by the computer. Hence some automated analyses, like resistance to work­
load, are possible. Also the system can generate bill of materials, price predictions or
helps in planning.

With these systems clearly the model is no longer only graphical.

11.2.4. Information Exchange
-We saw that one of the main purpose of models is to allow information interchanges
between the various people engaged in the design process, e.g. the designers and the
manufacturers:

The design process is rare/y undertaken by a single designer, however,
.and therefore the models have a major raie in the communication of the
design between participants in the process, and those involved in the man­
ufacture, development and subsequent use of the product [7] . [7]

An important part of the design process is the generation· of models based on
other models for assessment, manufacturing, etc., e.g. a simpler mode! is extracted
from a complete description to present a product to a potential customer. This gen­
eration process gains being automated. The automation is often done by specialised
tools, diffèrent from the design systems, which must access the design.

Hence we identify two types of information exchange, amongst:

■ the various team members (humans);

• the software tools (computers).

By enabling information exchange we ease both applications.

lntegration is much concemed with communication, i.e. tools or team members
exchanging data. The product management is integrated through the product life­
cycle. The technical database can thus store data concerning design' but also man­
ufacturing, maintenance and commercial data.

11.3. Computer-Aided Manufacturing

EDI is not directly concerned with Computer-aided manufacturing (CAM) because,
if CAM does imply data exchange, it is a highly system dependent one. Neverthe­
less, we have seen that CAD tends to integrate with manufacturing. A brief discus­
sion of CAM will illustrate this trend.

The manufacturing machines in modern factories are usually numerically con­
trolled devices. In other words, they are generic tools adapted to a specific produc­
tion by mean of a program (this is called numerical control or NC) in sharp contrast
to their ancestors which where designed _ for one sort of production only. Today
when one wants to change the machine's production, one just has to change the pro­
gram, like switching from a word processor to a spreadsheet on a PC.

Keep in mind however that if this gives great flexibility, practically those pro­
grams are_ tedious and difficult to develop.

The use of NC could only be justified, therefore, if the cost of creating a
part program could be spread over a long production nm or if the job re­
quired a degree of precision which could n.ot be achieved by any other
means [81 .[81

One way to overcome this problem is to develop computer systems to assist in
programrning. Sorne systems receive their data directly from the CAD systems. In
this respect CAM is linked with CAD. Sorne product models are transferred, as

Graphies Standards ■ 75

CAD data, from the R&D center to the factory potentially using techniques we will
shortly examine.

11.4. Product Data Exchange Standards

We will study two' standards for the exchange of product data model:

■ IGES: the Initial Graphies Exchange Specification is the ANSI standard CALS
elected;

■ STEP: the Standard for Exchange of Product Datais a draft ISO standard.

Although STEP is still under development, it is felt that it will play a significant
role in the near future. It is intended to replace IGES and the other standards for
product data mode) exchange. Hopefully STEP will overcome many limitations of
IGES. Therefore, for product mode) data, we choose not to restrict ourselves to the
CALS standard due to the importance of the STEP initiative.

12. Initial Graphies Exchange Specification

12.1. The Standard

IGES, which stands for Initial Graphies Exchange Specification, is probably the first
significant work in product data exchange. The effort started ·in 1979, supported by
the US National Bureau of Standards. The standard was developed mainly by major
US CAD vendors. Eventually it was adopted as an ANSI standard (ANSI Y14.26M).

The standard originates from the mechanical engineering industry. It has gone
through five revisions, each one broadening the field of application. Now IGES en­
compasses such areas as architectural & construction, electrical applications, solid
modelling, etc. Not all of these revisions have been adopted by the ANSI as stan­
dards. Since version 3.0, IGES provides for solid modelling data transfer.

IGES defines a neutral format. CAD systems work with their own formats which
are then translated to and from the neutral format. Of course this raises problems
since, as we all know, converting data often means losing information. This ap­
proach contrasts with the approach taken by the new ISO standard, STEP (to be in­
troduced shortly).

In the IGES terminology the software which converts a proprietary file into an
IGES one is a pre-processor; the post-processor does just the opposite and creates a
proprietary file from an IGES one.

The underlying concept of IGES is the entity i.e. an element of the model. A com­
panion notion is the entity type i.e. a family of entities which share a common defini­
tion. lt is not uncommon to find the word 'entity' used with the meaning of 'entity
type' . When the context is unambiguous, we will use entity with the latter meaning
in this discussion of IGES.

12.1.1. File Structure
IGES files corne in three flaveurs:

■ the ASCII form is the original form. lt was designed for easy exchange on a
½" tape, which was a popular archivai medium when the IGES format was first
written. ASCII files tends to be much larger than their proprietary counterpart;

• the compressed ASCII form attempts to produce smaller files;

■ the binary form is shorter and quicker to handle.

The file organisation is similar in every format. In particular, the same set of enti­
ties is supported by the three versions. In this document, we will describe the ASCII
format only. This suffices to give the reader a good understanding of the standard
and what it can be used for.

Graphies Standards ■ 76

An ASCII file is partitioned into 80 character-long lines. These lines are grouped
in sections. There are six sections in IGES files. Apart for the flag section, every sec­
tion must appear once and contain at least one line. Their order is also fixed by the
standard.

The six sections are (see also figure 8):

• the flag section is present only in compressed ASCII and binary file; it is used by
the post-processor to recognise a compressed ASCII or a binary file;

■ the start section is not used .by the post-processor. lt is an human readable pro­
logue to the file i.e. a text, written by the persan who initiates the exchange, to
help the receiver decoding the file, some sort of comment one may say;

• the global section provides information on the file, such as sender's identification,
filename, name and version of the IGES pre-processor, etc. and parameters to de­
code the file, for example, IGES version, integer or floating-point precision, maxi­
mum line thickness, largest coordinate value, etc.

■ the directory section contains an entry (a record) for each entity (each instance of
an entity) in the file; it points to associated data in the next section;

• the parameter data section stores entity-specific data, such as coordinate values,
annotation text, etc. Each entry points to the corresponding directory section
entry.

■ the terminaison section ends the file.

Flag Section Start Section Global Directory Parameter Terminaison
Section Section Data Section Section

Figure 8: IGES file structure

Each line has an identifier in columns 73-80. The first character of the identifier is
a letter which indicates the 1iection of the file (start section is indicated with an S, di­
rectory with a D, etc.) and the last 7 characters are the line number. The first line of
each section is always numbered one (1), the following lines are numbered in an as­
cending sequence up to the number of lines in the section.

This structure is depicted in figure 9.

1 72 73 74 80 .----------..................................... ----..--.-----,
The Start Section is a human readable prologue to the file.
It is not used by the post-processor .
lH .. lH : ,7HTESTAF6.11HTESTAF6 13H<unspecified> ,32 ,

Figure 9: Format of a line

12.1.2. Elements Overview

S 0000001
S 0000002
G 0000001

In this document, we won't study every single entity type supported by IGES. Refer
to the standard for a complete description. As usual we limit ourselves to an over­
view of what can be stored in an IGES file.

A product model in IGES is represented as a set of entities where each entity
stores a given property of the product. The standard defines over 70 entity types
which caver every kind of entities commonly found in CAD systems. The entity
types are grouped in three classes:

■ geometry entities represent physical shapes. Examples are points, curves, sur­
faces or solids;

Graphies Standards■ 77

We saw that a product model is not limited to graphical information. Therefore
IGES supports entities for non-geometric data which provide additional information
and enrich the model:

■ annotation entities are used to enhance or clarify the geometric part of the model.
Examples are entities to indicate dimensions, text, etc.

• collection entities organise geometric and non-geometric entities in a single log­
ical unit which must be manipulated as a whole. This is particularly important in
models where a part consists of two or more sub-parts: each sub-part can be
modelled as a separate collection of entities.

Most entity types can exist in more than one form. For example, a plane entity
can exist in any of those three forms:

■ unbounded plane;

• bounded plane;

■ bounded void in a plane.

Therefore there is only one definition of plane in the standard which can be instan­
ciated in three forms instead of three different entity types. This limits the number of
entity types that must be defined in the standard.

IGES entity types are a neutral definition to and from which CAD systems map
their own entities. Here lies one of the major criticism against the neutral format ap­
proach: mapping from a proprietary definition to the neutral one is not always
trivial, it will often result in information loss if great care is not taken.

For example, consider a proprietary format which supports a very expressive en­
tity absent from the neutral format. To create the IGES file, the pre-processor may
map this proprietary entity to a set of IGES entities. Alas such an operation is usual­
ly not reversible: the post-processor, short of conducting heavy analysis, will not be
able to map the set of simple entities to a more powerful entity. In the process in­
formation is lost because in most case a complex component carries more informa­
tion than the sum of its parts. STEP attempts to overcome this problem. We will
consider STEP in the next section.

Appendix A lists the most significant entities supported by IGES.

12.1.3. Extending The Standard
The standard defines entities for information manipulated by most current CAD
systems.

But it may not suffice. This holds particularly true if IGES is used for archivai. In
which case the sending and receiving systems are the same. In this special case map­
ping proprietary entities to their standard counterpart may cause an unacceptable
burden. A system may use special data. For these reasons one may want to extend
the standard and, for these reasons, the standard allows the definition of
implementor-defined entities. It is not a recommended practice as it will inevitably
raise problems as soon as another system tries to edit the file. The standard recom­
mends the use of the macro facility instead. A macro is a non-standard entity de­
scribed in term of standard entities.

12.2. Subsets

IGES is a huge standard. It is rare that an implementation covers it completely. Most
implementors limit their support to a subset of entities. Therefore problems arise
when ~o implementations using different subsets try to exchange data. There is
nothing new under the sun about this.

Subsets are often defined around a particular application type, for example a sub­
set suitable for electrical application or building.

Graphies Standards■ 78

To resolve incompatibilities some organisations further standardise on subsets.
CALS MJL-D-28000A is such a standard. Other significant subsets include NASA 28
entities and VDA IS.

MIL-D-28000A defines five subsets (classes) tailored for different usages. It also
restricts the exchange to ASCII files only, sets limits on the value of parameters and
restricts the set of entity that can be present in a file. The classes are:

• Class I - Technical Illustration Subset is used to encode figures and illustrations
normally found in a technical publication. It emphasises on visual clarity of fig­
ures and illustrations designed for human interpretation;

• Class II - Engineering Drawing Subset which addresses the exchange of product
data acquired in accordance with another military standard, MIL-T-31000.
MIL-T-31000 is nota CALS standard. The subset puts the emphasis on complete­
ness, visual equivalency for human interpretation and functionality of the re­
ceived drawing;

• Class III - Electrical(Electronic Applications Subset is for the exchange of data for
electrical and electronic products. It stresses on compqnent and circuit element
descriptions, their placement, their connectivity and the routing of electrical
paths. The subset supports bath the physical view and the logical view (i.e. a
diagram) of the product;

• Class IV - Geometry for NC Manufacturing Subset encodes product data for the sub­
sequent purposes of manufacturing by numerical contrai;

• Class V - 3D Piping Application Protocol is devoted to the exchange of three di­
mensional piping and related equipment models.

13. Standard for Exchange of Product Data

IGES is not the only proposition for product data exchange. For example, the French
company Aérospatiale developed a standard of its own, SET (Standard d'Echange et de
Transfert) that was eventually adopted by the AFNOR, the French standard body.
The German automotive industry also developed a standard, VDA/FS. Ali these ef­
forts try to overcome perceived limitations of IGES.

Ali this work serves as a basis for the development of an internationally accepted
standard supported by the ISO: the Standard for Exchange of Product Data project,
STEP.

With STEP we choose to depart from our CALS orientation because it is com­
monly agreed that STEP will have a significant impact on data exchange once com­
pleted. Also STEP is based on a different approach than the current standards like
IGES. The DoD has already announced that it is its strategy to include STEP in the
CALS initiative when STEP will be available.

In the US, STEP is known as PDES because the PDES standard (Product Data Ex­
change Standard), which originates from the IGES organization, served as a basis for
the development of STEP. PDES was later renamed Product Data Exchange using
STEP.

At the time of writing, STEP has attained the status of Draft International Stan­
dard under the label ISO 10303. Due to its size the standard is split across various
documents (parts). The parts are developed and standardised,independently; it sim­
plifies maintenance and quickens development (since the whole process is not ham­
pered by the weakest part). Appendix B lists the various parts of the standard.

Graphies Standards• 79

13.1. The STEP approach

We saw that the neutral format approach adopted by IGES is a source of problems,
because it Jacks a standard model which would be used by every CAD system. In­
stead systems have to map their own mode) to and from a neutral representation.

The reader will remember our CGM discussion when we said there are many
mathematical tools to compute a curve definition. It is not such a big problem with
images because most drawing applications support ail of these definitions.

Solid modelling raises a similar but more disturbing problem. Briefly, there are
two ways to model solid parts:

• boundary models which describe a solid by combining geometric information
about its faces, edges and vertices with topological information on how these are
connected;

• consti;uctive solid geometry (CSG) which describes a solid as a combination of
simpler solids such as cylinders, rectangules and the like.

Other techniques exist but those two are by far the most common.

Although both techniques can be used to model the same parts, they exhibit
sharp differences in their mathematical properties which make them somehow an­
tagonists. IGES supports both techniques but if we try to exchange a CSG model to a
system which supports exclusively boundary model, the post-processing will be
impressive and probably will give poor results. Moreover it is irripossible to convert
automatically data from one representation into the other without loosing part of the
information.

Writing an IGES file is not difficult because the pre-processor is likely to find
standard entities for every entity used by the originating system. The real problem is
to read a file. With no agreement before the exchange to specify which entities can
be used, it is unlikely that the target system will have a direct mapping for every en­
tity used in the file. So the post-processor will resort to conversion.

We can think of an analogy. Suppose Philip wants to send a congratulation card
to Arthur. Philip only speaks English while Arthur only speaks French - clearly any
exchange is impossible.

Fortunately both Philip's and Arthur's secretaries speak German. Philip may ask
his secretary to translate his card in German before sending it. Arthur's secretary
will then translate it in French for Arthur to read it.

But we all know that translating from one lartguage to another one is not trivial.
A word can have more than one translation, there is room for interpretation. This
holds particularly true if there is a game of word or similar subtleties. On the whole
the translation will differ slightly from the original.

It is even worse in this example because the card is translated twice to and from a
neutral format (German). None of the secretary is a native German speaker thus
they are likely to make even more mistakes. Differences will accumulate throughout
the exchange. That is the neutral format approach.

STEP relies on a different strategy. STEP recognises that the neutral format ap­
proach is inadequate for product mode] data exchange; it improves on previous ap­
proaches by standardising a conceptual schema which enables applications to access
data in a predictable way. In other words, STEP standardises the model data as it is
used by the applications. In this document, we will particularly concentrate on this
innovative aspect of STEP.

In a normal use of STEP the model will always be expressed as a STEP model.
Therefore data conversions are limited to a minimum, maybe only to conversions
between different representations of numbers. In this case both Philip and Arthur

Graphies Standards• 80

speak German or English or French or whatever language. They have a common
language.

In a STEP system, access to data is by using the conceptual schema,
which enables foreign systems to access data in a predictable manner. In
Jact, if the data in a system can be accessed as if it were created from the
STEP schema then it is a STEP system, regardless of whether the data was
actually generated directly from those models [4] .

13.2. The Standard

Before going any further we must introduce two notions, namely the Express lan­
guage and the STEP Data Access Interface.

13.2.1 . Express
Express is a modelling language specially developed for STEP. It is used to define
formai entities. In Express an entity is a collection of data, associated constraints and
operations on the data. Every entity definition which is part of the standard is writ­
ten in Express. A collection of entities definition is known as a schema.

Here is a potential definition for a point in Express:

ENTITY point :
x coordinate : real:
y_coordinate : real:
z coordinate: real:

END ENTITY:
meaning that a point is composed of three reals.

The language is system independent: it refers to abstract types (string, i nteger)
which are then mapped to a system dependant representation. In the previous ex­
ample, it is referred to a r e al type whose actual representation is system depen­
dent. As opposed to the semantic which is common to ail systems: a point consists
of three reals whatever a real might be on a particular system. The semantic is sys­
tem independent, the storage is system dependent.

In this example we see how a common model minimises data loss. Of course the
precision of reals varies from system to system; therefore data will be lost when go­
ing from a higher precision system to a lower one. But, as opposed to the neutral
format approach, the semantic remains consistent across systems.

For example mathematically there is also a vectorial definition of a point (made
of an angle and a length). The point entity we wrote in Express explicitly excludes
this alternate definition.

In STEP entities are formally defined and used consistently across systems: every
STEP system has the same definition for a point. Of course this becomes particularly
relevant with more complex entities than the point.

Notice that Express was not designed for automatic interpretation but as a for­
mal notation for standard writers. Do not imagine systems where new entities are
added simply by compiling their Express · definition. Although Express is interpret­
able by a machine, it is nota programming language but a convenient notation for
design. lndeed adding new entities to a system is likely to require reprogramming
the system.

13.2.2. STEP Data Access Interface
STEP also standardises an interface to create, access and manipulate a model: the
STEP Data Access Interface (SDAI). SDAI is at the heart of the STEP initiative. To
overcome limitations of a neutral format approach, STEP defines a conceptual
scheme i.e. a standard way to consult a model. Coherent with this approach is the
standardisation of an interface to access, manipulate and modify STEP data. The

Graphies Standards ■ 81

interface separates the storage specific issues from the rest of the application. We
represent this in figure 10:

~ ◄ SDAI ►
Appl ication

Figure 10: STEP Data Access Interface

The data storage is managed by the Storage Manager which implementation is not
standardised. An application can consult the data through the SDAI.

This has some benefits:

■ the storage manager can be used by several applications. We saw that the trend
in CAD systems is toward data sharing where more than one application access
the same data, potentially simultaneously. The separation of fonctions between
the storage manager and the applications eases such an architecture;

■ applications and storage managers can be developed independently. This will
bècome increasingly important since, with the advance of data sharing, storage
manager will become major pieces of software on their own. With STEP it is pos­
sible to develop powerful storage managers on top of which applications will
corne. Database developers do what they do best, they develop databases (SDAI
compliant) and CAD developers benefit from their work through SDAI.

13.2.3. Levels of Compatibility
STEP supports four levels of compatibility. To comply with STEP an application
must support at least one of these levels. The four levels are:

■ Level 1: File Exchange, the data is exchanged as an ASCII file. At this level, STEP
can be used like a neutral format;

■ Level 2: Working Form Exchange which means that the data can be accessed in
STEP format in memory. This level uses the SDAI;

■ Level 3: Shared Database where the product model is directly stored in a database.
Applications access the data through a standard database interrogation language
(such as SQL) or through SDAI. This level implies a direct mapping of the STEP
structure to the database records (or tables or abjects depending on the database
technology). Concurrent access by multiple users of multiple applications is now
possible;

■ Level 4: Knowledgebase. Knowledge systems are new but they will probably pro­
vide sophisticated tools to manipulate STEP models. They will probably be very
similar to databases with the additional ability to be driven by some knowledge.

13.2.4. Resource Models & Application Protocols
The IGES standard is so big that it is rarely completely implemented forcing devel­
opers and users to further standardise on subsets. We examine the CALS subset as
an example. This aspect may seem anecdotal but it is not, the use of incompatible
subsets accounts for most of'the problems when exchanging models with IGES.

STEP is an even bigger standard than IGES. One may reasonably fears that sub­
sets will become a real nightmare with STEP. STEP addresses this problem by stan­
dardising subsets within the standard itself.

There are two sorts of subsets with different usages:

• ■ resource models group entities related to the same area of modelling. Examples
are Draughting, Ship Structure, Finite Element Analysis. Resource models group
logically related standard entities;

■ application protocols are application subsets. STEP identifies a number of appli­
cation demains and defines corresponding application protocols.

Graphies Standards• 82

13.3. Total Life-Cycle Support Using STEP

When we studied the historical evolution of CAD systems, we saw that the trend is
toward the integration of more information in the product model. STEP is particu­
larly interesting in this respect.

For one thing, STEP has (or will have) entities to store non-geometrical informa­
tion in the mode] itsE;lf, In particular, STEP includes data models for approval, ver­
sion and configuration, materials, supplier information and other product related
informationt.

For another thing, STEP is clearly oriented towards database technology. It sup­
ports databases and data sharing in a way which makes it possible for multiple ap­
plications to access the same model.

Therefore it is possible to have different applications which will enrich the model
during the whole life of a product. When this approach will be implemented, the en­
gineer will create an artefact mode! using a CAD system. The model will be ex­
tended by the manufacturer, the commercial, th~ manager each using its own
application and sharing the same model.

STEP data will federate information coming from various sources throughout the
enterprise and through the whole life-cycle of a product. This is very close to the
CALS dream of Continuous Acquisition and Life-cycle Support.

t Part of tlùs additional data may take the form of SGML text. This is still subject to debate in the STEP stan­
dardisation committee [10].

Graphies Standards• 83

---Other Aspects

14. Further Reading

To a reader wanting to learn more about computer graphies, we recommend the
widely appraised Computer Graphies - Principles and Practice [5] (commonly referred
to as Foley and van Dam).

To study CGM any further, we recommend those books:

• The CGM Handbook [6]: definitely the book to read if you are interested by
CGM. It provides a in-depth coverage of the subject;

• CGM and CGI [1]: provides a good introduction to the subject;

■ ISO Standards for Computer Graphies [2): this book proposes a good introduc­
tion to the various graphies standards of ISO.

If the reader is interested by CAD & CAM and want to learn more aboutit, we
warmly recommend the book CADCAM - From Principles to Practice[7] .■

15. References

[1] D. B. Arnold, P. R. Bono
CGMandCGI
Springer-Verlag, Germany, 1988

[2] D. B. Arnold, D. A. Duce
ISO Standards for Computer Graphies
Butterworths, UK, 1990

[3] Peter R. Bono, José L. Encanaçao, L. Miguel Encarnaçâo, Wolfgang R. Herzner
PC Graphies with GKS
Prentice-Hall, UK, 1990

[4] R. Doty
Product Data Sharing Using STEP Technologies
Digital Equipment Corporation, US, 1992

[5] J.D. Foley, A. van Dam, S.K. Peiner, J.F. Hughes
Computer Graphies - Principles and Practice, Second Edition
Addison-Wesley, Reading (Massachussets), 1990

[6] Lofton R. Henderson, Anne M. Mumford
The CGM Handbook
Academic Press, London (UK), 1993

[7] Chris Mc Mahon, Jimmie Browne
CADCAM - From Principles to Practice
Addison-Wesley, Wokingham (UK), 1993

[8] A. J. Medland, Piers Burnett
CADCAM in Practice - A Manager's Guide to Understanding and Using
CADCAM
Kogan Page, UK, 1986

[9] Christian Monteix
Le Fonnat TIFF et ses Modes de Compression
Eyrolles, France, 1993

[10] Yuri Rubinsky
Technical Documentation in the World of STEP
CALS Journal, Spring 1993, p. 63-66

[11] J. Soelberg - W. Sorokine
Pratiquez l'électronique en 15 leçons
Editions Radio, Paris (Francet 1986

Graphies Standards• 84

Graphies Standards ■ 85

Appendices

Appendix A: Sorne Entities Supported by IGES

Geometric Entities

Circular arc
Composite curve
Conie arc
Copious data
Plane
Line
Parametric spline curve
Parametric spline surface
Point
Ruled surface
Surface of revolution
Tabulated cylinder

Annotation Entities

Angular dimension
Diameter dimension
Flagnote
General label
General note
Leader (arrow)

Structure Entities

Association defini tion
Line font definition
Macro definition
Subfigure definition
Text font defini tion
Text display template
Color definition
Network subfigure definition
Associativity instance

Transformation matrix
Flash
Rational B-spline curve
Rational B-spline surface
Offset curve
Connect point
Node
Fini te element
Nodal displacement and rotation
Offset surface
Curve on a parametric surface
Trimmed parametric surface

Linear dimension
Ordinate dimension
Point dimension
Radius dimension
General symbol
Sectioned area

Drawing
Property
Singular subfigure instance
View
Rectangular array subfigure instance
Circular array subfigure instance
External reference
Node load/constraint
Network subfigure instance

Graphies Standards ■ 86

Appendix B: STEP Parts

These are the various parts of the STEP standard. Parts are identified by a suffix
number. For example, ISO 10303-41 is part 41 of the standard.

Part . Description

1 Overview and fundamental principles
11 Express language
12 Framework
21 Clear text encoding (level 1 file format)
22 STEP data access interface (SDAI)
31 Conformance testing methodology and framework: general concepts
32 Test laboratory requirements
41 Generic product data mode]
42 Shape representation
43 Product shape integration mcidel
44 Product structure and configuration management
45 Materials
46 Presentation
47 Shapes tolerances
48 Form features
49 Product life cycle support

Rèsource Models

101 Draughting resources
102 Ship structures
104 Fini te element analysis
105 Kinematics

Application Protocols

201 Draughting application protocol
202 Exchange of draughting with 3D geometry
203 Exchange of configuration controlled 3D product design
204 Exchange of boundary representation solid models
205 Sculptured surface models

6
Packing

The scientific theory I like best is that the rings of Saturn are
composed entirely of Lost airline luggage.
Mark Russell

It is a good time to stop, look back at the way we have come through and assess
where we are going to.

We are studying the inclusion of technical data in an EDI standard, in particular
EDIFACT. First we reviewed what technical data might be. Then we selected one
initiative for the exchange of technical data, namely CALS, and set to study which
standards it supports.

In the last 2 chapters we surveyed some standards for the formatting of technical
data. We felt it was important to do so to have a better understanding of what tech­
nical data are and of typical formats in which they are stored . lt has been an interest­
ing study in itself but now it is time to revert to our EDI focus.

In this chapter and the following one we will see that specifications for the for­
matting of technical data, although a necessary condition for successful exchange,
are not sufficient. We need other specifications to organise technical documents in
logical groups, be able to reference them, etc. In this chapter we examine the CALS
standard that fulfils this role. In the next chapter we will see how to bring all the
things we have learned so far into a standard for technical EDI.

Packing ■ 88

1. How to ...

One may think it is desirable to extend EDT standards with new segments special­
ised in the encoding of a category of technical document. For example add vector
and raster graphie or product mode! segments to EDIFACT. This approach is
theoretically feasible but hardly practicable or even desirable.

For one thing, it would complicate the EDl standard. Remember the complexity
of the standards we have just examined, take CGM which is a typical vector graphie
standard. It is clear that, to be of any use, a hypothetical E~TFACT .vector graphie
segment would need to be of the same order of complexity as the whole CGM stan­
dard. This segment atone would be the size of a complete standard! Keep in mind
that similar segments would have to be devised for every possible technical data
type, the number of which is a continuously growing figure.

For another thing, i~ is a waste of resources. Both in the standardisation body
which would uselessly duplicate the work of another standardisation organisation
and for the user which would have to convert to and from the EDI specific format
for the sole purpose of transmission. This is in sharp contrast to the most recent ap­
proaches for exchange of _technical documents, as typified by STEP and SGML,
which emphasise on a unique format for both exchange and storage.

And, last but not least, it would greatly slow down the inclusion of technical
documents in EDIFACT. Just remember the history of the development of SGML as
sketched in appendix A of chapter 4. Seventeen years have passed between the first
introduction of Generalized Markup Language (1969) and the publication of the first
version of the SGML standard (1986). The first working draft of the standard was
written in 1980, six years before the final approval of the standard. SGML standar­
disation is not considered to have been particularly slow though. Remember that the
same process would take place for every possible data type.

The only realistic approach for an EDI standard to earn the label technical EDI is
to take advantage of standardisation efforts in the technical document arena. If there
is a mechanism, in the EDI standard, to transparently include data presented in
another format (either a proprietary or an international standard) the problem is half
way solved.

There is an almost obvious solution to this problem: it suffices to consider techni­
cal data expressed in a non EDI standard as a binary stream, to incorporate the
stream in the EDI interchange blindly and to deliver it unmodified to the recipientt.
What one might call a black box approach since it treats non EDI data as a sealed
black box. The data is extracted from the corporate database by appropriate pieces
of software which output binary streams. The stream, the format of which is irrele­
vant to the EDI translater, is passed to the EDI translater which includes it in the
interchange. At the other end, another EDI translater extracts the binary stream and
passes it to appropriate software for further processing.

EDI translators are isolated from the peculiarities of technical document formats,
similarly technical doc:ument formatters are isolated from the EDI interchange.
Those formatters ignore they process data which, at one point, were part of an EDI
exchange so that general purpose products can be used.

Notice that we talk of a binary stream solely because we refuse to open the black
box and look at the stream, it may be that the non EDI data consist of ASCII charac­
ters. It will be the case if we include an IGES file, for example. More on this in the
next chapter.

The data may already be in appropriate format in the database (this is likely if
STEP is the chosen standard) or it may require a conversion from a proprietary

t This is why many people with EDIFACT background use the misleading term of 'binary data' in the mean­
ing of 'technical documents' as used in this paper.

Packing • 89

format to an international standard. ln either case, the extraction and the possible
conversions are handled by speciaLised s<;>ftware, not by the EDI translater which
blindly passes the data to and from those translators.

Figure 1 shows an example in which companjes Up & Co. and Down Ltd. ex­
change the mode) of a plane. It as~umes the mode! is converted to the neutral IGES
format for the transfer.

Corporate
database

Company Up & Co
IGES

pre-processor

Company Down Ltd.

Corporate
database

IGES
post-processor

►

EDIFACT
translator

EDIFACT
translator

Figure 1: A transfer example

The inclusion of a binary stream in an EDIFACT interchange is not really a
though problem but it deserves some examinations. We defer a complete treatment
of the latter topic to the next chapter. For the remainder of this chapter, we assume it
is possible to incorpora te transparently a binary stream within an EDI interchange.

Is this enough for the two comparues to exchange data successfully? Hardly not.

As we said earlier, the problem is only half way solved . What is rnissing is a way
for Up & Co. to say to Down Ltd. «This is the most up-to-date IGES mode] of our ad­
vanced™ plane, it replaces the one you received last year.» I.e. a mechanism to de­
scribe what is in the black box so that the EDIFACT translator of Down Ltd. knows
to which software it must pass the data. Also it allows Down Ltd. to link the data to
previously received data. Shortly what is needed is some sort of packing standard.

As you rnight guess, CALS has such a standard, MIL-STD-1840B (the B means
that it is currently in its third revision) which we are now to review. Our study of
1840B (as it is affectionately known) will differ from that of the other CALS
standards.

SGML, CGM, Group 4, IGES and STEP ail manipulate information independent
from the EDI transmission and doom to remain so. Their study was illustrative and
we tried not to be technical. SCML, CGM, etc. files will undergo the EDI interchange
as sealed binary streams whkh are never open by the EDI translater.

1840B on the contrary deals with just the sort of information one likes to see in
plain vanilla EDI format. For example, the EDI translator will deal with a notion of
data type («this is an IGES file») to know which program to call upon for actùal pro­
cessing of the binary stream. We will therefore shift to a more technical point of
view. Also an entire section of this chapter is devoted to mapping the concepts intro­
duced by 1840B to EDI interchanges.

Packing ■ 90

2. 18408 Overview

Notice that 1840B is not based on an international standard as there is no interna­
tional standard with equivalent functionalities.

For historical reasons 1840B is defined in term of nine-track tapes as the default
exchange medium. Nine-track tapes were a common exchange medium when the
1840 standard was first drafted. This does not mean that 1840B precludes the use of
other media. On the contrary, significant efforts have been made, in the B revision,
to abstract the aspects of nine-track té'lpe so thé'lt the standard is suitable for an·y elec­
tronic medium.

ANSI tape is simply one of the possible medié'I type. In fact, ANSI tape is one of
the_ only non-proprietary electronic medium é'lvailé'lble and is the only one explicitly
referred to in the standard.

Basically 1840B defines two things:

■ a naming convention;

■ a header block scheme;

which provides the following functionalities:

■ organisation of the documents;

• referencing;

• transport of information used by decoders.

Before we get into the hows and whys, let us define the all important term of file.
For 1840B, a file is

A digital repositon; of organized information consisting of records; items
or arrays, and data elements. [1]

This definition is very general. It certainly applies to what is commonly known a
file (i.e. a data unit on a disk or a tape) but it is more general than that. Therefore we
canuse 1840B with other medium than disks or tapes, in particular EDI interchange.

2.1. Transfer Units

With 1840B, the data to be exchanged is organised in transfer units. A transfer unit is
the smallest collection of files necessary to make a successful interchange. The stan­
dard defines five types of transfer units:

• page image transfer unit;

• Page Description Language (PDV) transfer unit;

• SGML document transfer unit;

• product data transfer unit;

• miscellaneous transfer unit.

There is only one sort of data in a transfer unit. Therefore various documents re­
lated to a single product may be split across two or more transfer units if they are
presented in different formats. For example the exchange of both the user manual (in
SGML) and the .model (in IGES) of Up & Co.'s advanced™ plane must be split in two
transfer units. The only exception is if the model illustrates an SGML document but
CGM is the preferred format for illustration.

For best use of high capacity medium, transfer units are grouped in transfer sets
which are themselves grouped in transfer packages. They can be up to 34,695

t Recall from our SGML study that a PDL is a language to describe complete; formatted images of pages to
output devices. 'Virtual paper' is a good metaphor for PDLs. The most famous PDL is PostScript,. from
Adobe Systems Incorporated. Anothcr one, common on PCs, is PCL developed by Hewlett-Packard for its
laser printer range.

Packing ■ 91

transfer unit in a single transfer set. The maximum number of transfer sets grouped
in a single transfer package is left to mutual agreement between sender and
recipient.

As an illustration, let us consider two typical transfer units: the most complex
transfer unit, the SGML document transfer unit and a simpler one, the product data
transfer unit. An SGML document transfer unit consists of:

• a mandatory transfer unit declaration file;

• a Document Type Declaration (DTD) file (one file per transfer unit; this file is op­
tional unless otherwise specified by previous agreement between the sender and
the receiver);

• a SGML coded text source file (one file per transfer unit, mandatory);

• SGML text entity files (one file for each text entity referenced in the transfer unit,
mandatory). Entities with PUBLIC identifiers need not to be transmitted with the
transfer unit when the receiver has access to a copy of the entity;

• illustration files in IGES format, CGM format or raster format, as specified by
contract or other form of agreement. Entities with PUBLIC identifiers need not to
be transmitted with the transfer unit when the receiver has access to a copy of the
entity;

• a Formatting Output Specification Instance (FOSI) data file (one file per transfer
unit, optional). Again FOSI with a PUBLIC identifier need not to be transmitted
with the transfer unit when the receiver has access to a copy of the FOSI;

• special word files as specified by previous agreement between sender and
receiver;

• contract defined data files as specified by previous agreement.

This is the most complex transfer unit because it is made of many files, most of
them being optional. The product data transfer unit is simpler and shall consist of
the following (again most files are optional):

• a manda tory transfer unit declaration file;

• engineering drawing data files in IGES or raster format as specified by previous
agreement;

• electrical/electronic application data files;

• numerical control manufacturing data files .

2.2. Naming Convention

2.2.1. Numerals
Throughout its naming convention 1840B uses numerals. A numeral is an identifier
made of numeric charaèters and upper case letters. The set of all possible numerals
is ordered to form an ascending sequence.

The identifier set extends from '001' to '999' and from there to 'ZZZ'. I.e. the first
identifiers are the numbers from '001' to '999' written as character strings. When the
numbers from '001' to '999' have been exhausted, the upper case letters 'A' to 'Z' shall
be used to extend the set of identifiers as followt:

001. .. 999 .
AOO ... A09 . AOA .. . AOZ . Alü ... AlZ . AZO ... AZZ .
BOO . . . B09 . BOA . .. BOZ . BlO .. . BlZ . BZO ... BZZ .

ZOO . . . Z09 . ZOA ... ZOZ. ZlO ... ZlZ ZZO ... ZZZ

t Once '999' is reached, the set is extended as if it was in base 36 using the alphabet '0' .. .'9' 'A' .. .'Z'.

Packing • 92

It probably seems a bit difficult to the reader. Why using letters only when '999' is
reached? For historical reasons, of course. Jn its initial release, the standard allowed
for only 999 identifiers using the numbers from '001' to '999'. Since new high capacity
medium (like optical disks) can transfer more than 999 typical transfer units, the
standard was adapted but managed to retain ascending compatibility with the old
naming scheme - in an admittedly contrived way. This new scheri1e can build up to
34,695 identifiers.

2.2.2. Naming Convention
Each transfer unit contains exactly one transfer unit declaration file. The transfer
unit declaration file name is made of the letter 'D' followed by a numeral. The nu­
meral for the first transfer unit declaration fil e in the transfer set is '001', it is increm­
ented for subsequent tré;U1sfer unit in the same transfer set. The name is not an
identifier of the transfer unit merely a mechanism to differentiate transfer unit with­
in a given transfer set. The transfer unit is identified by data in the transfer unit dec­
laration file (Refer to the following section).

In addition to a transfer unit declaration file, a transfer unit contains at least one
data file. The name of which is eight characters long and is made of the transfer unit
declaration file name followed by:

• a single letter indicating the data type. Appendix A lists ail admissible code let­
ters and the associated data type;

• a numeral used to differentiate files of the same data type in a single transfer
unit. The numerals are used in ascending sequence starting with '001' for every
new data type in the transfer unit.

Figure 2 is an example, taken from David Peterson [2] of the filenames from a
typical transfer unit. The second column consists of comments only and is not part
of the filenames.

0001
DOOlTOOl
DOOlNOOl
D001N002

D001N007
DOOlCOOl
D002C002

D001C150
DOOlROOl

D001R099
DOOlHOOl

the Transfer Unit Declaration
the SGML Document Entity
an SGML Text Entity (perhaps the DTD)
another Text Enti ty (perhaps Chapter 1)

the last of 7 Text Entities
a CGM graphie
another CGM graphie

the last of 150 CGM graphies
a CCITT raster graphie

the last of 99 raster graphies
the FOSI

Figure 2: A typical transfer unit

Packing ■ 93

This naming convention provides with three things:

• it indicates to which transfer unit in a single transfer set a file belongs. Differen­
tiating transfer sets in a transfer package is left to mutual agreement between
sender and receiver;

• it provides an indication of the type of each file;

• it differentiates between files of the same type in a single transfer set.

It is plain from this naming convention that the receiver can regroup files in
transfer unit based solely on their names. How files are organised on a particular
medium is definitely media-type dependent. Of course some medium offer other
methods to group files than the name, 1840B nevertheless requires adherence toits
naming convention.

2.3. Transfer Unit Declaration File

The transfer unit declaration file provides information to identify the transfer unit
and other information used by the receiver to decode data in the transfer unit.

Every transfer unit contains a mandatory transfer unit declaration file. It unique­
ly identifies the transfer unit.

2.3.1. Transfer Unit Declaration File Content
Transfer unit declaration file data is organised in fixed size records of 128 bytes
each. Record must be padded with blank characters (' ') until they reach the fixed
size. The datais to be written in ASCII. For example the number 128 is represented
as the string '128'.

Each record starts with an identifier followed by a semicolon and exactly one
space as separator. The rest (including additional spaces) is part of the record value.
If the value of a record exists but is not provided (whether it is known or unknown),
the string 'EMPTY' must be used instead. If the value does not exist either the string
'NONE', if the value is alphanumeric, or the string 'O' (the number zero), if the value
is numerical, is to be used.

The allowed records are (please notice that this classification is by theme; appen­
dix B lists the records in the order imposed by the standard):

■ identifiers:

• srcsys: any information as specified by previous agreement to identify the sys­
tem from which the transfer unit originated;

• dstsys: any information as specified by previous agreement to identify the
destination system to which the transfer unit is going;

• srcdocid: document identifier on the source system (e.g. reference number,
file identifier, etc.);

• dstdocid: document identifier on the destination system (e.g. reference num­
ber, file identifier, etc.);

• srcrelid: identifier on the source system of another document to which this
document is closely related (e.g. this document is a supplement to another
document);

• dstrelid: identifier on the destination system of another document to which
this document is closely related (e.g. this document is a supplement to anoth­
er document);

• chglvl: change/revision and date of the document or data product;

• dteisu: date this document was issued;

• dtetrn: date of transfer;

Packing ■ 94

• doctyp: identifier on the source machine of the document type (e.g. supple­
ment, job guide, schematic diagram, work card, assembly drawing, etc.);

• transacttyp: t:he transfer unit type (e.g. SGML, PDL, etc.);

• dlvacc: free form record giving information as specified by previous agree­
ment, such as contract number, CDRL item, etc.;

• miscellaneous

• version: version and revision of the standard used for the transfer,
MIL-STD-1840B constrains this string to: 'MIL-STD-1840B, 0, 19921103';

• filent: the numbers of each type of data file in the transfer unit;

• security

• ttlcls: the security label security /sensitivity level or other restrictions on the
title of the document;

• doccls: the security label highest security/sensitivity level or other restrictions
on any file in the transfer unit;

• docttl: document title (e.g., a technical publication or engineering drawing
title).

Figure 3 is an example of a declaration file unit transfer.

version : MIL-STD-1840B . O. 19921103
srcsys : AJAX Inc . 100 Doe St . San Diego, CA 92110
srcdocid : Fire control system ver 14
srcrelid : F-18 avionics system ver 12
chglvl: REVISION W/CHG. G, 2. 19911201 :1209 :03
dteisu : 19890801/1200 :00
dstsys : ABC System . Wright-Patterson AFB. OH . 45433
dstdocid : 4SA6-11-4
dstrelid : 4SA6-11
dtetrn : 19920710:0900 :31
dlvacc: CDRL item 6 of Contract N33400 -93-C-1052 . Due 19950731
filent : T8. Q4. Cl, Rl
ttlcls : Unclass
doccls: Unclass
doctyp : System schematic
docttl: F-18 fire control system
transacttyp : SGML

Figure 3: Example of a declaration file unit transfer

2.4. Data Files

Each data file starts with a header block (the size of which depends on ·the data file
type) which contains information related to the data. It is not part of the data self
and must be stripped from the file by the receiver.

The convention for record formatting is identical to the one used for transfer unit
declaration file. In particular a semi-colon and a space separate the record name
from its value and the strings 'EMPTY', 'NONE' or 'O' must be used when no value is
provided.

Sorne records are relevant with some data type only. Appendix C lists them ail.

Sorne of the most significant records are:

• specversion: which identifies the version of the standard used to encode the data;

• srcdocid: and dstdocid: with which we are familiar from the declaration file;

Packing ■ 95

• datfilid: which is an identifier of the file content;

• doccls: which encodes security information and is particularly relevant in de­
fence environment.

Record usage varies according to the data file type and_ not all records are re­
quired for every file. I.e. some records are specific to some file types, some are man­
datory, others are condi-tional.

Sorne records receive a value fixed by the formatting standard. A typical example
is the dtype: record in raster files . We overlooked it but MIL-R-28002 defines two
types of file organisation (1 and 2) and the dtype: record indicates which sort of file
is at hand.

3. Learning from 18408

To summarise 1840B provides the two partners of the exchange with:

• grouping and organising of the information in physical and logical entities (files,
transfer units, transfer sets and transfer packages). Somehow this is similar to
segments, messages and interchanges in EDI standards;

• a referencing scheme (srcdocid:, dstdocid:) to uniquely identify data transfer and
link them;

• additional information supplied in accordance with encoding standards to help
the receiver in decoding the data (dtype:).

The first functionality is provided by the naming convention while the other two
are supported by the records.

These three points are all the functionalities a packing standard must provide but
the mechanisms may differ from those adopted by 1840B. Indeed to provide similar
functionalities with an EDI standard, there are two alternatives:

■ declare the EDI standard as a medium type and map 1840B mechanisms to the
EDI standard, for example:

• the transfer unit becomes an interchange;

• the file becomes a message;

• new ·segments are defined to hold the various records of 1840B.

We stress that this mapping is just illustrative and other equally acceptable
mappings are possible. X.12 (the ANSI EDI standard) has such a mapping in the
form of its transaction set 841 which is dedicated to the exchange of
Specifications /Technical Information;

• use other mechanisms (to support the same functionalities) which suit better an
EDI standard than the rather generic 1840B approach.

In conclusion to enable EDIFACT for the exchange of technical documents, we
must enhance it with mechanisms to support the three following functionalities:

■ organisation of the documents;

• referencing;

■ transport of additional information used by decoders.

EDIFACT adds another problem to this list: the inc;Iusion of a binary stream in an
interchange. EDIFACT uses a limited subset of ISO 646 where some bit patterns
have reserved meanings. This has lead to tense debates within the EDIFACT stan­
dardisation committees.

In the next chapter we will survey various techniques to satisfy those four re­
quirements.•

4. References

[1] Department of Defense
MJL-STD-1840B Automated Interchange of Technical Information
Department of Defense, US, November 1992

[2] David Peterson
MIL-STD-1840B: Beyond Ni11e-Track Tape
CALS Journal, Winter 1993, p·.63-65

Packing ■ 96

---Appendices

Appendix A: Data File Name Code Letters· and File
Format

Packing ■ 97

Notice that some files might be in format we have not studied in this document. This
is because 1840B supports file formats which are not part of CALS but are neverthe­
less used by the DoD. This is partly due to the fact that 1840B existed before other
CALS standards.

Code Letter Da ta File Type

A contract defined data file

C CGM

E EDIF

G SGML DTD (file contains no text)

H FOSI

I IPC

N SGML text entity

p PDL

Q IGES

R raster graphie

T SGML coded text

V VHDL

X special word file

z fray scale/color data file

Appendix B: Transfer Unit Declaration File Records

This appendix lists all the records found in a transfer unit declaration file. Records
descriptions are to be found in the text of the chapter, this appendix gives the order

. as imposed by the standard. ·

version:

srcsys:

srcdocid:

srcrelid:

chglvl:

dteisu:

dstsys:

dstdocid:

dstrelid:

dtetrn:

dlvacc:

filent:

ttlcls:

doccls:

doctyp:

· docttl:

transacttyp:

Packing • 98

Appendix C: Data File Header Records

This appendix lists ail the records to use in a data file header with a short descrip­
tion of their meaning.

specversion:

srcdocid:

dstdocid:

datfilid:

moduleid:

dtype:

rorient:

rpelcnt:

rdensty:

didid:

doccls:

fosipubid:

notes:

a character string identifying the specification the data file is in ac­
cordance with
Example: specversion: MIL-R-28002 19881220

a character string used by the source system to uniquely identify the
document to which this file belongs. Normally identical to the
source system document identifier (srcdocid :) of the transfer unit
declara tion file

identical to destination system ideQtifier document identifier
(dstdocid:) of the transfer unit declaration

a contract specified description of the content and processing of this
file

PUBLIC identifier by which this module is known in the SGML
document

type or scope of the data contained in the file (Cf. chapter text for an
example of its use)

raster image orientation, as specified by MIL-R-28002

raster image pel count, as specified by MIL-R-28002

raster image density, as specified by MIL-R-28002

data item description identification number

a string stating the label security /sensitivity level of the data file

PUBLIC identifier of an associated FOSI

free form text

7
Technical EDIFACT

Which innovation leads ta a successful design and which ta a
failure is not completely predictable. Each opportunity ta design
something new, either bridge or airplane or skyscraper, presents
the engineer with clwices that may appear countless. The engi­
neer may decide ta copy as many seemingly good feat11res as he
can from existing designs that have successfully withstood the
forces of man and nature, but he may also decide ta improve
upon those aspects of prior designs that appear ta be rvanting.
Henry Petrosky

In the previous chapter we assumed it was possible to integrate a binary stream,
taken as a black box, in an EDIFACT interchange. We said it was a simplification be­
cause nothing exists yet in the standard to support this fonction. We are now going
to address this problem and see how it can be solved.

EDIFACT syntax has two major drawbacks for the inclusion of a binary stream:

• it uses a limited subset of ISO 646 (or ISO 6937 or ISO 8859t depending on part­
ners agreement) compatible with telex lines;

• it assigns special usage to certain characters.

Today three solutions are considered by the standardisation body. We are going
to review them ail. Each of these solutions addresses the two problems listed above.
The three solutions are:

• segment approach;

• envelope approach;

• . transmission protocol approach.

t Briefly ISO 6937 and ISO 8859 are 8-bit versions of ISO 646. Of course, being an 8-bit character set, thcy en­
code more characters than ISO 646.

Technical EDIFACT ■ 100

1. Syntactic Drawbacks

1.1. Background on Binary Vs Text

Up to this point we have talked of binary and text information as two completely
different things. It was a gross simplification since they are really two different
beasts of the same species. The simplification was fine in previous chapters and
helped to keep things simple. Unfortunately, we can no longer be satisfied with sim­
plifications, the next section requires some understanding of the relationship be­
tween text and binary data. This sub-section intends to remind the reader with some
fac_ts on computer representation. The reader familiar with this aspect will probably
want to skip this sub-section altogether.

In a computer everything is represented as a run of numbers encoded in base 2.
So are characters, numbers, programs, images. If we look at information in a com­
puter memory (be it in central memory or on disks) what we see is a stream of bits,
i.e. a stream of 0 and 1. Since this stream is composed only of 0 and 1 (i.e. using a
two symbols alphabet or binary alphabet) it is often called a binary stream. How we
assign meaning to this binary stream is purely conventional.

Such a convention is ISO 646 whkh associates a 7-bit number to every character
in the Latin alphabet. For example, the letter 'A' (capital a) is number 65 which is
represented as a stream of bits as 1000001. We see that a text string is actually repre­
sented as a binary stream.

For example, take the binary stream 010001100110111101111000. It represents
number 4616056 in decimal. Now what does it mean? In itself, nothing. 4616056 may
be the number of stock options sold in Wall Street today or the distance, in kilo­
metres, a fly accomplishes in its live. We don't know. The binary stream may also be
a raster image coded, for example, in accordance with CCITT Croup 4 in which case
the number 4616056 is meaningless.

To attribute a meaning to the stream 010001100110111101111000, we must know
which encoding scheme was used to produce it. If we are told it is ISO 8859, we can
decode it into the string 'Fox' . •

So what about the relationship between text and binary stream? Internally a com­
puter represents a text as a binary stream.

Now why do we (and other authors) differentiate between texts and binary
streams? Because, prier to the arrivai of multimedia, text was the most common way
to store data. The word text is traditionally used in the literature to qualify binary
streams that must be interpreted as texts as opposed to the expression binary data
which designates binary streams that are not intended to be interpreted as text.

Of course, every binary stream has a text correspondent but if the binary stream
does not actually encode a text, it is likely to decode in a meaningless one. Say we
encode the number 16426, for any reason. It will be stored, 1n a computer, as the
binary stream 0100000000101010. If, by mistake, it is taken for a text, it will decode
into the meaningless string '@*' .

To summarise, the word text is used for bit pattern which must be interpreted as
a run of characters while binary is used in every other case.

1.2. Limited Subset of ISO 646

•

To be able to indude transparently any binary stream in EDIFACT interchanges, one
must be able to write any bit combination in interchange bodies .

Unfortunately, the EDIFACT syntax rules preclude this. EDIFACT interchanges
must be coded in a subset of ISO 646 which, for example excludes character '@'

(represented by 1000000 in ISO 646). This means that the bit stream 1000000 is illegal

Technical EDIFACT ■ 101

within an EDIFACT interchange, it can appear nowhere in the interchange. Most
combinations of bits are prohibited to appear in the interchange by the current syn­
tax rules. Unfortunately, binary data can, by definition, be made of any bit pattern. lt
is therefore impossible to include arbitrary binary data as is with current syntax
rules.

There is a consensus in the EDIFACT community to amend the syntax rules if
binary streams are to be incorporated in interchanges.

Truly there is another solution than to change the syntax rules but it has its costs.
The alternate solution is to pre-process and post-process the binary stream to trans­
form it into another stream which does not include any illegal bit pattern and is used
for the interchange solely.

The EDIFACT translator on the sender system processes the binary data (s) with
the help of a fonction f() and outputs a binary stream freed from illegal bit pattern
(s'). It is this special binary stream (s') which is used for the exchange:

s'=f(s)

The intermediate binary stream (s') is somehow similar to the character encoding
of CGM as it is composed only of values with a character equivalent. Moreover the
function ensures that only those characters which are accepted by the syntax rules
are used. On the receiver system, the EDIFACT translator processes s' with the help
off() inverse fonction W1

()) to recover s:

s=f·1(s')

Many fonctions can be used for f(). The most trivial (and highly inefficient) one
simply replaces a byte with its two characters long hexadecimal representation
(base 16). For example, 1000001 is replaced by the string '41'. This simple fonction
doubles the stream size. Other fonctions will inflate the stream by a smaller margin
by making use of all the characters (i.e. bit patterns) authorised by the syntax rules.

The reader may wonder if these pre-processings and post-processings are realis­
tic. Somehow yes because the idea is not new and has been used with other systems.

For example, PostScript level 1 can only handle binary data (such as raster
images) if they are mapped to a character representation.

Also Internet users have been doing this for years with their uuencoders and
uudecoders. These are simple programs which transform any binary stream onto
another one with a character equivalent, the only form of data accepted by Internet
mailers.

Nevertheless, there are two major drawbacks to this technique:

• it increases document size, wasting network resources. This is a major problem
for technical documents which are already large by nature;

■ it forces pre-processing and post-processing of binary data by the EDIFACT
translator, wasting processor resource. Once again it is annoying with large tech­
nical documents;

• it makes poor usage of the most recent communications protocols, ail of which
offer: mechanisms to transport efficiently binary data. Telex lines are definitely a
heritage from the past.

Once again, there is a consensus in the EDIFACT community to amend the syn-
tax rules. ·

1.3. Special Characters

EDIFACT assigns a special usage to four characters, by default '+', ':', '?', ' ' ' (the
apostrophe). Of course they can only appear at special places in interchange. This
creates some problems when they are part of the data (such as an apostrophe in an
address). The well known escape character ('?') overcomes this limitation.

Technical EDIFACT ■ 102

Similarly, these characters, or strictly speaking the equivalent of their coding in
ISO 646, may appear in a binary stream. lt is possible to extend the escape character
mechanism but it is not felt desirable. Rather another technique is used to overcome
this problem in binary exchange.

1.3.1. Escape Character
Extending the escape character technique to binary stream has one major drawback:
it requires pre-processing in the sender system and post-processing in the receiving
system.

This is highly undesirable due to the potentially huge size of binary streams. In­
serting and removing escape sequences in a small amount of data (a typical EDI­
FACT message is quite small compared to a typical drawing) incurs little penalty
performance.

With EDIFACT messages, the penalty is reduced to an absolute minimum since
the escape sequences are inserted and removed while encoding or decoding the
data. The translator has to process the message anyway so it needs no to be done in
a separate treatment. But the binary data are not created and processed by EDI­
FACT translators so inserting escape sequences requires separate processing. The
performance penalty is high.

Notice that this problem could be avoided if the binary stream is pre-processed
with the technique we introduced in section 1.2. Although we saw it is unlikely that
this solution will ever be adopted.

1.3.2. Counter
The altemate solution is to prefix the binary stream with its size so that the transla­
tor knows it has to pass a given number of bytes before resuming normal process­
ing. Until it has reached the end of the. binary stream, the translater not longer
attributes special meanings to any character.

This solution is most satisfactory in term of speed (the translator simply copy a
given number of bytes, it did not check the bytes). lts drawback is that it forces the
translater to switch to another method of work for the binary data only. lt is a less
elegant but more efficient technique.

Sorne people fear it would mean throwing away every current EDIFACT transla­
ter. We don't think so for at least two reasons:

■ X.12 (the US EDI standard) has adopted this approach and X.12 translators
adapted well;

• it is not considered a big issue by developers as we leétrned through persona!
communications with lnterbridge developerst. Changes are minimal, according
to them.

Similarly another common objection to this method states that the translater has
to process the interchange to know whether it contains a binary data or not and can
be forced to switch to a special processing method at any time. Again this is not con­
sidered problem by developers but, in any case, it suffices to define a new character
set which will inform the translater that a binary data is part of the interchange.

t Interbridge is Sitpro's EDIFACT translator.

Technical EDIFACT ■ 103

2. Inclusion of a Binary Stream in an lnterchange

In the following sub-sections, we will introduce three figures to illustrate our views.
The key for these figures is in figure 1, please notice that rectangle sizes, in the fig­
ures, are irrelevant:

[7 commercial & administrative segments

B binary data

B UNH/UNT segments

- U NA/U NZ segments

- new segments for binary data envelope

~etwork

Figure 1: Key of figures

2.1. Binary Segment

This solution implies creating a new segment to hold the binary stream (suggested
label is BIN). This segment can be very simple: it suffices to prefix the binary stream
with its size, as we saw previously.

The binary segment is then integrated in a message with other (non binary) seg­
ments - typically reference segments. Either a specific message is designed for tech­
nical data or general purpose ones (like the invoice) includes binary segments.

An instance of the message (which starts and ends with UNH/UNT segments
since it is an ordinary message in every respect) can be included in an interchange,
possibly with other messages some of them may also coniain binary segments. For
message developers, the binary segment is in every way similar to other segments.
In particular, it can be conditional, manda tory and can be mixed freely with any oth­
er segments.

Figure 2 illustrates this solution . .

□□-
// 1

1

12:±1 1
....

/........ ··--...

-==-

··--........... _~ ------

Figure 2: Binary segment

There are three common objections to this approach:

···· ...

• it mixes data of different nature which, conceptually, should be at different levels
and indeed are processed by different programs. This makes it difficult to use
communication protocol facilities for the exchange when they are available;

• if the BIN segment is not part of a dedicated messages, it links binary informa­
tion with other information based solely on locality (there is no need for an ex­
plicit reference) which is not considered the state-of-the-art in referencing
scheme;

• it requires amending the syntax.

T echnical EDI F ACT • 104

lt has one major advantage though. A relatively small amount of binary data (like
a small illustration) can be mixed with other data (such as price and part number)
with minimal overhead. lt is considered that in the case of catalogues where illustra­
tions are numerous and small, the overhead of explicit referencing, as required by
the two other approaches, might be significant.

lt may be worth noting that X.12 uses this technique in its transaction set 841.

2.2. Transparent Envelope

This solution requires the creation of a new entity, at the level of the message, spe­
cifically designed to hold binary str~ams. The new entity would be called a transpar­
ent envelope because it transparently incorporates binary data. Practically, it means
the creation of two new service segments, UND (transparent data header) and UNE
(transparent data trailer) to envelop the binary data.

A new entity is then incorporated in an interchange. Potentially along with other
transparent envelopes or messages. The new service segments must provide at least
a referencing mechanism which links the binary data to messages. Explicit refer­
ences are used. Notice that the binary data is not part of any message.

Refer to figure 3 for an illustration of this solution.

□ DEI ·· ..
,.·· ·• ...

······ ~ ··

Figure 3: Binary envelope

Once again this requires amending the syntax rules. But ail the other problems of
the binary segment are solved with this approach:

• it separates data from different natures (EDI formatted and non-EDI formatted)
which makes it easy to switch to communication protocol facilities when avail­
able. lndeed it is very easy to separate the binary data from the interchange since
no message must be modify;

■ it uses explicit referencing.

This approach duplicates the body parts functionality found in some recent com­
munication protocols such as X.400 and Mime (to be introduced shortly).

It may be worth noting that CII (Japanese national EDI standard) uses a similar
technique.

2.3. Transmission Protocol Reliance

The last technique relies on communication protocols to handle binary exchange.
The interchange and the binary information are passed to the communication proto­
col as two separated but linked entities. A reference mechanism is used to link them.

Sorne recent communication protocols support the transfer of multi-parts docu­
ments. I.e. a single document consists of multiple entities (bodies in X.400 terminolo­
gy), potentially of different types, which are considered as a whole by the
communication protocol [1].

The most famous of these protocols is X.400, an E-mail standard developed by
the CCITT. Internet mail has been extended with support for multiple bodies docu­
ments by the Mime protocol.

Technical EDIFACT • 105

The major drawback of this approach is that it terminates EDIFACT indepen­
dence from communication protocols. Jts main advantage is that it does not require
amending the syntax ru les.

Figure 4 illustra tes this solution.

□□

-
.. ,: ::::::. . \,:':'./::E

■ ■ ■ -·-- --~ --

Figure 4: Communication protocol

3. Linking Binary with EDI Data

In chapter 6 we saw that other information need to be exchanged along with the
binary data. In chapter 6 we said this information is best exchanged in native EDI
format. · In this section, we will see how EDIFACT current facilities support this.
Keep in mind that additional information is required whichever method is chosen
for the inclusion of binary data:

■ grouping and organising of the information: this already exists in EDIFACT in
the form of messages and interchanges;

■ reference scheme to link data from separate transmissions. Techniques exist in
EDIFACT like the RFF (reference) segment;

• additional information to help decoding: segments like the EFI (electronic format
information) or, in a more limited way, FTX (free text) can be used for this func­
tion. New segments may be added to the standard.

Anyway new segments may be added to the standard but there is no need to
change the syntax rules in order to convey this information. The only change in the
syntax rule, if ever, will take place for the transparent transport of binary stream.

The US standard (X.12) has a special segment to include the 1840B records This
segment is usetl solely by transaction set 841 which is dedicated to the exchange of
Specifications /Technical Information.•

4. References

[1] Stanislas van Oost
The Use of CCITT X.400 Recommendations for EDI
FUNDP, Belgium, 1991

8
It is a gaad apharism of software design that the unexpected
wauldn 'i be sa named if it wasn 't sa hard ta predict.
Steve Rimmer

Views

In this chapter we present some personal views on the problems we discussed so
far.

1. Links

We have almost completed our study of the inclusion of technical documents in
EDIFACT. In the Iast chapter we introduced three methods to link EDIFACT inter­
changes with binary data. These approaches are currently discussed in standardisa­
tion bodies.

Our opinion is that the best approach is the second one (the transparent enve­
lope). We consider it to be the best compromise for two reasons:

• it retains EDIFACT independence from communication protocols;

■ it clearly separates EDIFACT formatted information from other information.

1.1. The lndependent

The EDIFACT standard has been designed to be independent of system, machine
and media constraint. To delegate the handling of technlcal documents to the com­
munication protocol clearly marks the end of this independence. It is particularly
worrisome as not all communication protocols support multiple bodies documents.

We consider it is vital for EDIFACT to integrate technical document exchange
today for most of its user. It requires a solution which is independent of communica­
tion protocols as multiple parts protocols are not yet widely adopted .

There is a gap between present needs and common technology which the trans­
parent envelope solution fi lis.

Views• 107

One may fear that this approach uselessly duplicates communication protocol
features in the EDIFACT standard. Duplication is inevitable: to retain independence
from communication protocols EDIFACT has to assume a minimalist protocol and
build on top of it. In fact EDIFACT already duplicates many communication proto­
col features. The most typical example is provided by the interchange sender and
interchange recipient composite data elements of the UNB segments: most if not all
communication protocols already provide this information.

In this particular case however, duplication is minimal. There is no need to sup­
port advanced features in the transparent envelope, just the minimum to transport
arbitrary binary stream.

1.2. Estranged

The main advantage of clearly separating commercial and administrative EDI data
from technical information is that it allows to easily revert back to communication
protocol usage when it is desirable. There is no dependence since communication
protocol can be selected only when there is a strong advantage of using it.

This point may appear to oppose with the previous one. Which it does not. In the
previous point we were concerned with the acceptance of the feature in today's
world. In this sub-section we are concerned with the future of EDIFACT.

It is clear that the future calls for multiple parts communication protocols which
will be perfect for the exchange of technical documents hand in hand with commer­
cial and administrative ones. The X.400 protocol and the new Mime protocol, a mul­
timedia extension of the popular Internet E-mail protocol, are both multiple parts
protocols. This trend is likely to expand in the future.

Nevertheless, today those protocols are not commonly used. The market re­
sponse to X.400 has been one of cold expectation and Mime has not yet reach com­
plete acceptance.

Therefore we think it is vital, for the future of EDIFACT, to provide a solution
which is both acceptable today (i.e. is part of the interchange) but is ready to evolve
to rip the benefits from better communication facilities when made available.

Since the transparent envelope approach clearly separates what is in EDIFACT
format from what is in another format in the interchange, it makes it easy to separate
the two parts and pass them as separate entities to the communication system.

In short we think the present development of EDIFACT should not preclude its
future. The transparent envelope mechanism is flexible enough not to preclude fu­
ture evolution.

2. Last Reflections

In this document we have limited ourselves to a technical analysis because we felt it
was important to have a clear and complete technical corpus on the subject. Also
space and time were short and somehow we had to neglect other aspects. In the last
section of this chapter we want to share some reflections on those issues.

2.1. Politics

As it is always the case when people from all around the world must agree .on a
common way of doing things, the matter is a highly politic issue too.

X.12, the American standard, has adopted a binary segment approach to include
technical documents in EDI interchange. When the solution was adopted, it was in­
troduced as temporary solution while other efforts were on their ways. It turns out
that the temporary solution has become permanent and today Americans are relue­
tant to abandon it in favour of another, albeit compatible, one.

Views ■ 108

Similarly people from the X.400 business push towards a communication proto­
col solution. While some users want the EDIFACT solution to be free from X.400, or
other communication protocol.

The final solution will probably be influenced by those non-technical but never­
theless important issues.

2.2. Technical Standards

We think it is desirable that EDIFACT standardises on a default set of standards for
·unstructured documents, to provide some guidance for EDIFACT users. Due to the
potentially wide use of unstructured documents, it is dubious that any international
committee can make a choice that would please every user. Nevertheless a default
set would help newcomers to unstructured document exchange.

In this work we limited ourselves to CALS standards. Many others exist which
support similar functionalities. Some are best ad~pted to a particular usage than
their CALS equivalent. lt In this section we will briefly examine other ISO standards
and commonly used de facto standards.

We will only consider compound documents and graphies because today these
are the most common unstructured documents. But the situation evolves and our

· choice is likely to widen to other medium like sounds and videos in the near future.
At the time of writing we are unaware of any IS standard in those areas.

2.2.1. Compound Documents
The three ISO standards for compound documents are SGML, ODA and SPDL (a
standard PDL based on PostScript®). We think SGML is the best choice for a default
set because it is simple, powerful, flexible and widely implemented. Furthermore it
can be extended to hyperdocuments.

De facto standards are the Rich Text Format (RTF) developed by Microsoft and
commonly used word processor file formats like WordPerfect and Microsoft Ward.

2.2.2. Graphies Standards
The choice is eased by the fact that there is only one ISO standard: CGM.

Popular de facto standards include TIFF (Tagged Image File Format),
CompuServe GIF (Graphie Interchange Format), Windows Bitmap and Targa files .
Ail of these are raster formats only. EPSF (Encapsulated PostScript File) is another
file format popular for vector and raster graphies.

For product model, we saw that the ISO standard (STEP) is still under develop­
ment. Other standards include IGES, SET, EDIF, etc. A popular de facto standard is
DXF (Drawing Exchange Format) designed by Autodesk for its best-selling
AutoCAD system.

2.3. Management

In the second chapter, we dedicated a section to managerial issues. To dedicate only
a single section to such an important aspect is certainly not enough. The reader
should not be fooled by this short treatment however: the issue is managerial before
being technical. Linking computers together by networks is one thing. Publishing
standards to allow effective data exchange between computers is another, tougher,
problem. But to have various departments work hand in hand can be the real chal­
lenge and it can be accomplished cinly through top managerial commitment.

Unfortunately we are not very competent for managerial issues anq we must di­
rect our reader to other publications, like V. Daniel Hunt's Enterprise Integration
Sourcebook [1] or CALS' own guidance manual (MIL-HDBK-59B). Another valuable
reading for this and many other issues is the CALS Journal we introduced in
chapter 3.

Views ■ 109

2.4. Security

It is clear that the exchange of technical documents of strategic importance between
companies should be attempted only in a secure environment.

Two issues are particularly worth considering:

• taping;

• juridical protection.

Security issues are not specific to technical EDI and this is the reason why we did
not dedicate a chapter to the subject. Nevert eless technical EDI users must be
aware that, for some exchanges, security is paramount. Of course not ail information
requires high level security. Publicly available information, like catalogues, requires
none or little security only.

2.4.1. Taping
Design documents exchanged amongst companies can be of vital importance for the
competitiveness and survival of some or all of em. This is the case if two or more
companies collaborate on a new design. If they achieve a new product that gives
them a competitive edge over the concurrence, it is vital to ensure the secret is well
kept.

It requires security measures both in the companies self and during the exchange
which must be protected from taping by unauthorised third party. The issue is not
specific to technical EDI but the importance of some interchanges makes it particu­
larly relevant with technical EDI.

2.4.2. Juridical Protection
In life threatening application being able to trace design choices can become a matter
of survival for a company. Once again this issue is not specific to technical EDI, in
fact it has nothing to do with EDI but its importance means it should not be over­
looked when preparing technical EDI exchanges.

When a company designs or manufactures a product, it engages its responsibil­
ity. If the product turns out to be faulty and causes an accident, the company surviv­
al (both due to Iegal compensation and loss i notoriety) may depend on whether
the company is able to prove it met security r quirements or to trace to a subcon­
tractor who failed to deliver appropriate quality. Being able to trace the design, and
to record design decisions and requirements can turn out to be a very important is­
sue, perhaps the most important issue of the whole exchange. The records must be
reliable enough to stood the test of time for the responsibility of the company can be
questioned only years after it has delivered the product. Similarly the capacities of a
company to meet its contractually imposed requirement~ can be questioned before a
product actually reveals a fault.

Keith Blacker from Lucas Engineering and Systems Ltd expressed the opinion
that this aspect was the most important one in technical EDit.

We think this issue, mainly a juridical one, should permeate every technical
choice and exchange agreement contracts.•

3. Reference

[1] V. Daniel Hunt
Enterprise Integration Sourcebook
The Integration of CALS, CE, TQM, PDES, RAMP, and CIM
Academic Press, San Diego (US), 1991

t Persona! communicati.ons.

9
Conclusion

I can call spirits from the vasty deep.
Why so can I, or so can any man; but will they came when you
do call for them?
Shakespeare

People communicate al! day long. For pleasure and for business. Apart hermits, few
humans are actually willing to avoid communication. Communication is particularly
important for the success of most businesses.

Most companies must interact with other companies, and divisions
within the same company must interact with each other. Altl1011gh it is in
principle easier to impose a single comp11ting structure on all divisions
within a company, in practice it often tums out that intracompany
computer-mediated communication is nearly as difficult as intercompany
communication, which is a major problem in business today. Indeed, while
the computers of one company can usually exchange strings of letters and
numbers with the computers of another company, fax rather than computer
networking is the standard means of interchange for documents involving
images, notes, and fonnatted text. [11

How came that faxes supplanted computer networks for business communica­
tions? The situation is even more surprising when one consider that most faxes actu­
ally came from computers. It is such that most modems currently on the market are
actually modem/fax devices and turn PCs into fax machines. These systems are
such ingenious that to send faxes, one only has to print onto the fax peripheral.

Sure E-mail is rapidly becoming a çommon way to conduct business and EDI ac­
ceptance is growing. But these are mostly (if not exclusively) used for text commu­
nications. On those days where communication highways gain such attention, one
cahnot help to notice that without a change in our business habits, electronic high­
ways will be under-used.

Conclusion ■ 111

Ian McEwan from General Motors summarises the situation when he says:

Data exchange is one of the fundamental building blacks on which in­
dustry and commerce are based. Tt is also one of the least understood of our
basic requirements. Everybody w1dersta11ds how to send a letter or make a
phone cal/; very few know how to send data . [21

and, concerning electroni.c highways:

However, we will ail find, as CM found, that the highway itself, wflile
essential, is not s11fficient. We also need the open intemational protocols
and standards that will allow us to use it. [21

1. Conclusion

We choose to end our study of technical EDI with some considerations on electronic
highways because these highways seem to bring Starck's dream (a world where only
ideas move) a little doser. Alas anybody who has ever tried to transfer a non trivial
piece of data between two computers, even close to each other, knows it is not
enough.

If the physical link is a prerequisite to any exchange between computers, it is
hardly enough. Lest the computers exchange amorphous and meaningless bit
streams, there is also a need for common convention on information representation.
At present the only truly universal convention is ASCII, but ASCII carries only a low
level semantic. To gain extra levels more expressive conventions are required. In this
document we reviewed some of thern for key aspects of documents interchange. We
were mainly concerned with technical documents exchange in the context of EDI­
FACT but most of the techniques we reviewed can be successfully adapted to other
contexts.

After an introduction on structured versus unstructured documents (chapter 1),
we examined technical documents and concluded there was a need to exchange
.them with EDI (chapter 2). We then look at currently used techniques for technical
document exchanges (chapters 4, 5, 6). ln the process we reviewed the popular
CALS initiative (chapter 3). We terminated our study with some suggestions on the
inclusion of those techniques in EDIFACT (chapters 7, 8).

We hope you have enjoyed the reading.•

2. References

[1] Juris Hartmanis and Herbert Lin (Eds.)
Computing The Future

· National Academy Press, Washington, DC, 1992

[2] Ian McEwan
Product Data Exchange in a Global Manufacturing Economy
CALS Journal, Winter 1993, p. 25-27

Appendices

Appendices ■ 113

Common Abbreviations and Acronyms

2D: 2 Dimensional

3D: 3 Dimensional

AECMA: Association Européenne des Constructeurs de Matériel Aérospatial

ANSI: American National Standards Tnstitute

APLS: Advanced Procurement and Logistic Systems

ASCII: American Standard Code for Tnformation Jnterchange

CAD: Computer-Aided Design

CAE: Computer-Aided Engineering

CALS: Continuous Acquisition and Life-cycle Support

CAM: Computer-Aided Manufacturing

CAx: stands for ail kind of Computer-Aided systems (CAD, CAM, CAE,. ..)

CCITI: Consultative Cornmittee on Tnternatioanl Telegraphy & Telephony

CE: Concurrent Engineering

CIM: Computer Integrated Manufacturing

CÇM: Computer Graphies Metafile

CIM: Computer Integrated Manufacturing

CSG: Constructive Solid Geometry

DB /KB: database/knowledgebase

DIS: Draft International Standard

DNC: Direct Numerical Control

DoD: US Department of Defense

DSSSL: Document Style Semantics and Specification Language

DTD: Document Type Definition

DXF: Drawing Exchange Format

EDI: Electronic Data Jnterchange

EDIF: Electronic Design Interchange Format

EDIFACT: EDI For Administration, Commerce and Transport

EPSF: Encapsulated PostScript File

FOSI: Formatting Output Specification Instance

GIF: Graphie Interchange Format

GOSIP: Govemment Open Systems lnterconnection Profile

IPC: Institute for Interconnection and Packaging Electronic Circuits

ISWDB: Integrated Weapon System Data Base

IT: Information Technologies

HyTime: Hypermedia/Time-Based Structuring Language

IGES: Initial Graphie Exchange Specification

ILS: Integrated Logistic Support

ISO: International Organisation for Standardisation

JIT: Just In Time

LAN: Local Area Network

MAP: Manufacturing Automation Protocol

NC: Numerical Contrai

ODA: Office Document Architecture

OSI: Open Systems Interconnection reference mode)

PDES: Product Data Exchange Using STEP

PDL: Page Description Language

RTF: Rich Text Format

SDAI: STEP Dara Access Interface

SET: Standard d'Echange et de Transfert

SGML: Standard Generalised Markup Language

SPDL: Standard Page Description Language

SQL: Standard Query Language for database

STEP: Standard for Exchange of Product Data

TI: Technical Information

TIFF: Tagged Interchange File Format

TOP: Technical and Office Protocols

VHDL: VHSIC Hardware Description Language

VHSIC: Very High Scale Integrated Circuit

Appendices • 114

Appendices • 115

Collected References

Dr. Donald P. D'Amato and Rex C. Klopfenstein
A Study of the CALS Standards for the fllterchange of Patent Documents
CALS Journal, Summer 1993, p. 28-35

D. B. Arnold, P. R. Bono
CGMandCGI
Springer-Verlag, Germany, 1988

D. B. Arnold, D. A. Duce
ISO Standards for Computer Graphies
Butterworths, UK, 1990

Peter R. Bono, José L. Encanaçao, L. Miguel Encarnaçao, Wolfgang R. Herzner
PC Graphies with GKS
Prentice-Hall, UK, 1990

Department of Defense
MIL-STD-1840B Automated Interchange ofTechnical Information
Department of Defense, US, November 1992

Design Museum
Is Starck a Designer?
Design Museum, London, 1993

R. Doty
Product Data Sharing Using STEP Technologies
Digital Equipment Corporation, US, 1992

J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes
Computer Graphies - Principles and Practice, Second Edition
Addison-Wesley, Reading (Massachussets), 1990

Joseph J. Fuller, Theodore J. Post & Anne S. Mavor
Test and Evaluation of the Navy Technical Information Presentation System (NTIPS),
F-14A Field Test Results, DTRC-88-036
US, September 1988

Joseph J. Fuller & Samuel C. Rainey
The Interactive Electronic Technical Man11als
CALS Journal, Winter 1992, p. 63-69

Frank Gilbane
Integrating New Technologies: Workflow Systems
CALS Journal, Summer 1993, p. 65

Charles F. Goldfarb
A Generalized Approach to Document Markup
ACM Sigplan Notices, Volume 16, Number 6, June 1981, p. 68-73

Charles F. Goldfarb
The SGML Handbook
Clarendon Press, UK, 1990

Charles F. Goldfarb
HyTime: A Standard for Structured Hypermedia Interchange
IEEE Computer, August 1991, p. 81-84

Joseph R. Goss and James Brunke
Rockwell Implements CALS
CALS Journal, Winter 1993, p. 42-45

Juris Hartmanis and Herbert Lin (Eds.)
Computing The Future
National Academy Press, Washington, DC, 1992

James H. Harvey
SCML Applied ta Automotive Service Information
CALS Journal, Fall 1993, p. 27-31

Lofton R. Henderson, Anne M. Mumford
The CGM Handbook
Academic Press, London (UK), 1993

V. Daniel Hunt
Enterprise Integration Sourcebook
The Integration of CALS, CE, TQM, PDES, RAMP, and CIM
Academic Press, San Diego (US), 1991

Bryan Martin
SGML an Author's Guide
Addison-Wesley, UK, 1988

IanMcEwan
Product Data Exchange in a Global Manufacturing Economy
CALS Journal, Winter 1993, p. 25-27

Chris McMahon, Jimmie Browne
CADCAM - From Princip/es ta Practice
Addison-Wesley, Wokingham (UK), 1993

A. J. Medland, Piers Burnett

Appendices • 116

CADCAM in Practice-A Manager 's Guide ta Understanding and Using CADCAM
Kogan Page, UK, 1986

Christian Monteix
Le Format TIFF et ses Modes de Compression
Eyrolles, France, 1993

Office of the Defense CALS Executive
CALS Definition and Vision Statement
September 21, 1993
in CALS Journal, Winter 1993, p. 11

David Peterson
MIL-STD-1840B: Beyond Nine-Track Tape
CALS Journal, Winter 1993, p.63-65

Yuri Rubinsky
Technical documentation in the World of STEP
CALS Journal, Spring 1993, p. 63-66

SITPRO&PFA
The UN/EDIFACT Workshop- Class Notes
SITPRO & PFA, UK, 1993

Joan M. Smith and Robert Stutely
SGML: The User's Guide ta ISO 8879
Ellis Horwood, UK, 1988

Joan M. Smith
An Introduction to CALS:
The Strategy and the Standards
Technology Appraisals,UK, 1990

Joan M. Smith
SGML and Related Standards
Ellis Horwood, UK, 1992

J. Soelberg - W. Sorokine
Pratiquez l'électro11ique en 15 leçons
Editions Radio, Paris (France), 1986

Technology Appraisals
Open Information Interchange
Technology Appraisals Ltd, UK, 1993

Amjad Umar
Distributed Computing, a Practical Sy11thesis
Prentice Hall, New Jersey (US), 1993

Eric van Herwijnen
Practical SGML
Kluwer Academic Publishers, The Netherlands, 1990

Stanislas van Oost
The Use of CCITT X.400 Recommenda fions for ED I
FUNDP, Namur (Belgium), 1991

Appendices ■ 117

..

