
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Study of the Aggregate Concept in the frame of a System-managed Storage
Environment

Weiser, Henry

Award date:
1993

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/study-of-the-aggregate-concept-in-the-frame-of-a-systemmanaged-storage-environment(c79f895a-91fc-4827-987d-b820d0ec68d4).html

Facultés Universitaires Notre-Dame de la Paix
Institut d'Informatique
Rue Grandgagnage, 21

B-5000 NAMUR

Study of the Aggregate Concept
in the frame of a System-managed

Storage Environment

Henry Weiser

Mémoire présenté en vue d'obtenir le grade de
Licencié et Maître en Informatique

Promoteur : Jean Ramaekers

Année académique 1992 - 1993

Abstract

Résumé

This thesis deals with system-managed storage concepts. Though the
need for system-managed storage was established in the mid 1980s, the main
concepts continue to evolve. This paper gives an overview of the storage
concepts, and develops the aggregate concept. The aggregate concept aims
to guarantee the consistency of semantically related data objects in a system
managed storage environment, by providing aggregate-level management
fonctions. It is developed in the frame of the SNI BS2000 environment.

Ce mémoire aborde les concepts de gestion par le système de l'espace
de stockage. Bien que le besoin d'une solution automatisée a été établi au
cours des années 80, les principaux concepts continuent à évoluer. Ce
mémoire décrit une vue d'ensemble des principaux concepts, et étudie le
concept d'aggregat. Ce dernier vise à garantir la cohérence de fichiers
sémantiquement liés dans un environnement géré par le système, en
fournissant des fonctions de gestion au niveau groupe de fichiers. L'étude a
été menée dans le cadre de l'environnement BS2000 de la société SNI.

I would like to show all my gratitude

to my promoter Mr. Ramaekers, for all the helpful advises he gave to me;

to Mr. Piperakis, who made it all possible;

to the team leader Mr. Hucq, for his welcome, his availability and his
contribution to the study;

to the teams SWN15 and STM OS226;

to all the people who helped me in this work.

Table of Contents

Introduction

Part One: General Storage Management Framework 2

1.1. Evolution of the mainframe environment. 3

1.2. Hierarchical Storage Management ... 11

1.3. Conclusion ... 22

Part Two: Aggregate Concept for Storage Management 23

2.1. futroducing the Aggregate Concept.. .. 24

2.2. The Aggregate Object - Feasibility issues 28

2.3. The aggregate object in the SMS-Pool48

2.4. Conclusion ... 57

Bibliography ..•...•.•..•...•....•...... 59

Appendix A: The 8S2000 environment 60

Appendix B: Example of a HSMS-8S2000 installation 63

Introduction

One of the most important fonction needed in a computer system is storage space.
Unfortunately it is not possible to produce an ideal memory support that would be infinitely
fast, infinitely large, infinitely reliable, directly accessible, and cheap.

Rather than an ideal memory support, a wide spectrum of storage technologies is
available, each technology having its own advantages and disadvantages. Combined with other
factors like the ever growing amount of data or new service requirements, storage
administration problems quickly reached significant proportions.

The system-managed storage concepts were developed to meet these problems. Though
the main concepts were introduced in the mid 1980, they continue to evolve. This paper
contributes to their evolution by introducing the aggregate concept.

One of the major concerns of storage management is data consistency. Present
management systems usually guarantee the consistency of individual data objects. The
aggregate concept aims to enhance storage management fonctions for semantically related data
objects. It aims to solve consistency problems among related objects in a system-managed
environment.

The study was conducted in the frame of the Hierarchical Storage Management System
(HSMS) product of the SNI - BS2000 environment.

Part one presents a general storage management framework. The first chapter gives the
main trends of the mainframe environment evolution, with their impact on storage
administration activities. Then an approach of system-managed storage concepts is presented
in order to build a framework for the aggregate concept study. The approach is integrated in a
hierarchical storage manager. Sorne concepts are illustrated with the HSMS product.

Part two presents the aggregate concept study. The first chapter reviews the motivations
and the general requirements. Chapter two presents the main feasibility issues for the aggregate
object. The issues are quite general, though some are linked to the HSMS - BS2000
environment. Chapter three integrates the aggregate object in the system-managed storage
pool concept.

Appendix A presents a survey of the BS2000 environment. The important concepts of
two systems are briefly reviewed: the Data Management System (DMS) and the Hierarchical
Storage Management System (HSMS).

Appendix B presents an example of a BS2000 installation in terms of storage capacity
and backup management policies. Sorne figures are quite interesting, and help to understand
the issues behind system storage management.

Part One:

General Storage Management Framework

Table of Contents

1.1. Evolution of the mainframe environment. 3

1.1.1. Introduction 3

1.1.2. Evolution of storage devices 3

1.1.3. Evolution of data 9

1.1.4. Impact on storage administration ... 9

1.2. Hierarchical Storage Management 11

1.2.1.Introducing the System-managed Storage 11

1.2.2.Logical Storage Hierarchy ... 12

1.2.3.Managing Space and Availability in a Hierarchical
Environment 14
1.2.3 .1. Functions: migration, backup, arc hi val 14
1.2.3.2. Automation of these functions: the Management

Class Concept .. 17

1.2.4. Managing Performance in a Hierarchical Environment.. 19
1.2.4.1. Quality of service at the data object level 19
1.2.4.2. Automation of this function: the Performance Class

Concept ... 19

1.2.5. System-managed Storage Pool .. 21

1.3. Conclusion 22

Part One : General Storage Management Framework 2

1.1. Evolution of the mainframe environment

1.1.1. Introduction

This chapter presents an overview of the evolution of the mainframe environment. This is
essential to understand the issues of storage management. Two main aspects are presented:

• the evolution of storage devices;
• the evolution of data.

In the frame of these two aspects, a third aspect is presented: the evolution of storage
administration.

1.1.2. Evolution of storage devices

Since the early days of modem computing, the need for large storage capabilities has
become more and more apparent. Backed by technological changes, the main trend in the
evolution of storage devices is a constant race to larger capacities, higher access speeds, and
lower costs. As mentioned in [Matick,10], the major factors responsible for these trends can be
summarized in terms of two fondamental laws:

1) Law ofExpanding Computer Power

The law of expanding computer power states that problems expand to fill the
power of the CPU allowed for their execution. The complexity of the jobs is
always growing, demanding more and more CPU power.

2) Law of Expanding Storage

The law of expanding storage states that problems expand to fill the storage
allowed for their completion. The amount of data to be processed is always
growing, requiring more and more storage capacity.

The intensive research efforts led to a drastic progression in ail the components of
mainframes. The figure 1.1 illustrates this progression, but also the outbreak of a performance
gap. Since the introduction of IBM's System 360 in 1965, the capacity of a disk has increased
390 rimes, processor performance has been multiplied by over 220, whereas the performance
of a disk has only improved four rimes.

Part One : General Storage Management Framework 3

Fig 1.1. Device evolution and Perfonnance gap

--+-Dlsk Capaclty

---CPU speed
__._ Dlsk Performance

1965 1970 1975 1980 1985 1990 1995

The discrepancies in the evolution created very early performance gaps between the
various components, like between logic (CPU) and main memory, and between main memory
and disks. In the 1980s, research led to the introduction of new enhancements to help to bridge
the gaps, like cache memory in disk control units, solid-state disks, multi-port controllers and
tape buffers. Despite significant improvements, the performance gap between processors and
1/0 subsystems continues to widen.

Another direct result was the development of a variety of new storage devices, like
magnetic tape cartridges, optical disks CD-ROM or WORM, and opto-magnetic disks. Each
device has its own characteristics in terms of performance, capacity, access method and cost.
Other developments include limited automatic shelves up to fully automated (robotized) library
systems. New ideas were introduced to take better advantage of existing technologies, like the
RAID technology (Redundant Array of Independent Disks) which mainly enhances data
availability and 1/0 concurrence.

Considering capacity, 1/0 performance and cost per megabyte, each storage technology
fits in a hierarchical organization. Figure 1.2 gives a general survey of the storage hierarchy,
and shows that as capacity increases, both performance and cost per megabyte decrease
accordingly.

Many computer manufacturers have adopted this hierarchical approach. As we will see,
1t 1s a sound principle for efficient resource utilization. Each storage technology of the
hierarchy is reviewed in terms of:

• availability: the device is on-line (always accessible) or off-line (accessible after a
mount operation);

• access methods: the device supports random and/or sequential access;
• sharability: the device is dedicated to one task, or can serve several tasks;
• reliability: the device has some protection against failure or not (fault tolerance).

Level l; Procmoc -Main Memory

This top level includes the registers and the small amount of built-in memory of the
processor, and fast main (DRAM) memory. Our study does not consider this level.

Part One : General Storage Management Framework 4

Processor

Disks

.lJHU

Mass
Storage

Semlconductor Storage

Performance Dlsks

Automatlc Llbrary
System

Tapa/ Cartrldge Storage

Capaclty
(bytes)

kilo

mega

glga

tera

Access Prlce
(sec) (ratio)

plco

50.000

nano

mllll

1

1

Fig 1.2. Definition of the Storage Hierarchy

Level 2; On-line Secondary Stora1:e

This level deals with fast on-line storage (mainly disk technology). Solid state disks are
usuaily made of semiconductor memory equipped with a backup battery. Capacity disks are
disks where capacity is the main goal, whereas performance disks are disks equipped with
special enhancements like cache memory to boost their 1/0 performances. Computer
manufacturers propose a wide variety of magnetic disks:

Simple disk:

Single devlce

Image to host

Controller

D
Fig 1.3. Simple Disk

A simple disk is an assembly of a set of magnetic disks and a set of read/write heads (see
figure 1.3). The magnetic disks are piled up and share a unique rotation axis (spindle),
and ail the heads are mounted on a single actuator. The controller drives the actuator for
ail the 1/0s.
This kind of disk is able to serve one request at the time (single device image to host),
and has no protection against failure.

Part One: General Storage Management Framework 5

Multi-actuator disk:

Multl-devlce

Image to host

Splndle

Fig 1.4. Multi-actuator disk

In figure 1.4, the read/write heads are mounted on several independent actuators.
This kind of architecture enhances concurrency, as several requests (one per actuator)
may be served simultaneously.

Dual copy disk:

Single devlce

Image to host

Fig 1.5. Dual copy disk

A dual copy disk (see figure 1.5) is equipped with a special internal controller and an
array of two independent disks. The internal controller ensures a continuous data
mirroring by writing the same information once on each disk.
This kind of architecture enhances the reliability of the complete disk. In case of failure
of one of its disks, the dual copy disk is able to continue operating without any loss of
data or performance.

Cache disk:

Single devlce

Image to host

Controller

Cache
Memory

Fig 1.6. Cache disk
A cache disk (see figure 1.6) is equipped with an intermediate DRAM memory, called
cache memory. In addition to the magnetic disks, the internal controller stores in the
cache memory a set of most recently used records. A record residing in cache is
immediately available for a read operation. A write operation is only written into cache,
and is downloaded on the disk a bit later.

Part One : General Storage Management Framework 6

The caching technique increases the average 1/0 petformances.

Redundant Array of Independent Disks (RAID):

A disk array groups multiple disk devices in a single logical volume (see figure 1. 7). The
RAID technology aims to organize the disks of the array in order to achieve major
benefits:

• increase petformance, by working the components in parallel;
• boost total capacity of a volume, by grouping many disks;
• increase the global reliability of the volume, by storing redundant data on one or

several disks. In case of failure of a disk, it can be replaced and the system is able
to rebuilt the lost data.

Single devlce

Image to host

Controller

4-~

4 - §

-fi - §

-tt - §
Fig 1.7. RAID technology

RAID is based on the distribution (striping) of data across multiple synchronized disks.
The striping can be done on a bit level or on a sector level. Pive RAID levels are
established, and each level has its advantages and its trade-offs [Alford, 8].

Level 3 : Off-lige Ma~ Stora&e

This level is the base of the storage hierarchy. It consists mainly of magnetic tapes,
magnetic cartridges, and optical (read only) or opto-magnetic (read and writable) disks. These
devices are removable, so they can be gathered together to form mass storage facilities. They
often require the support of an operator (for mounting), although fully automated libraries are
now available.

It is interesting to compare magnetic disk, optical disk and magnetic tape/cartridge
technologies. The following table (figure 1.8) shows that each technology has its specific
advantages and disadvantages.

Part One: General Storage Management Framework 7

Fig 1.8. Comparative of Storage Technologies
Random Sequential

Online Access Access

Magnetic 000 000 000 Disks

Optical 0 0 0 Disks

Tape ■ ■ 000

cartridges ■ ■ 000

0 to O O O : poor to very good.

■ : Not applicable.

Trans- Data
portable Lifetime

■ 0

0 000

0 0

00 0

Cost
perMb

0

00

000

000

The next graphie illustrates the relation between cost and access rime for disk, optical
and tape devices.

Fig 1.9. Cost Vs Access Time

Law

10 100 1000 (aec> Access Ilroe

Magnetic disks are always on-line, and offer the sub-second access rime required by
many applications. Tape and optical storage technologies are now beginning to compete for
the same market. Magnetic tape is less expensive on a per-megabyte basis than optical, and is
very commonly used in the mainframe area.

Part One : General Storage Management Framework 8

1.1.3. Evolution of data

The evolution of storage devices has been backed by drastic increases of storage capacity
needs. Computers are present in many offices in a wide range of economical sectors. In many
aspects we can talk of evolution of data:

Vast amounts of data:

Mainframes clearly process but also produce more data than ever. Trends are for
bigger and bigger configurations and storage systems. Mainframes have to deal with vast
amounts of data.

Strategic data:

Companies increasingly entrust machines with the task of storing their data. This
means that they become dependent of the machines, especially for strategic data. A major
loss of data would be a real disaster for computerized companies. Computer centers
must be able to overcome any kind of disruption to guarantee the availability of vital
data.

New types of data objects:

Increasing computing power makes it possible to process new types of data
objects, like sounds, images or video recordings. Each new object bas its own
requirements in terms of accessibility, storage consumption, etc. The storage system has
to meet specific requirements.

New services for data objects:

Data objects require new services, like 24-hour-per-day on-line operations or
mass-storage capabilities. New services have a direct impact on the way the computer
center is managed. Computer systems have to respond to new constraints.

As a result, computer systems have to provide specific services to satisfy these requirements.
Furthermore the management principles of computer systems have to be reconsidered.

1.1.4. Impact on storage administration

Storage administration encompasses the tasks of
1) controlling and globally optimizing storage usage;
2) guaranteeing the availability of data.

The traditional way of optimizing storage usage consisted in manual allocation and
movement of data objects, mainly done by the end users themselves. The users determine the
locality of each object. They are directly involved in the storage administration activities,
leading to poor space optimization, low data availability and high configuration dependencies.

Part One : General Storage Management Framework 9

In the mid 70's, a cost-effective way for storage administration was to paya small team to do
the job, as the storage capacity of computer centers was ranging 50 Gigabytes.

Nowadays, it is not conceivable to employ a whole team only to manage storage in the
range of 1000 Gigabytes. Other factors lik:e

• the large variety of storage devices presently available (more diversification and
specialization),

• the ever growing amount of data,
• the data-specific storage requirements,
• the new constraints due to 24-hour on-line operations

make the task still more complicated.

Complexity costs money at many levels. The computer center has to employ a large staff
of qualified people, the end users lose time searching for their data, data are lost or not
available, procedures are configuration dependent, and expensive storage devices and other
system resources are not used at their best.

As the Eighties were the decade of new storage technologies, the Nineties are the decade
of how to exploit these technologies in order to meet ail the requirements in a cost-effective
way.

Part One : General Storage Management Framework 10

1.2. Hierarchical Storage Management

1.2.1. lntroducing the System-managed Storage

In the mid Eighties, computer manufacturers started to develop efficient tools (Storage
Management Systems) to help storage administrators in their job. Space, performance and
availability management are the key principles.

Space management:

This fonction deals with the optimization of storage use. The main principles are quite
straightforward, namely:

• to place frequently used data objects on fast storage devices, in order to deliver best
1/0 performances;

• to redirect less used data objects towards slower and less expensive devices, in order
to free space on fast devices;

• to move obsolete objects towards mass storage devices, to relieve the whole storage
system;

• to delete old data objects which don't need archiving (like temporary files);
• to provide consolidation of multi-extent files (in static allocation systems), in order to

reduce fragmentation of data blocks and unused space;
• to provide data compression techniques to reduce space consumption.

Performance management:

This fonction deals with the disk allocation process. The principle is to allocate data objects
on a fast device which meets specific performance requirements.

A vailability management:

This fonction ensures the availability of data objects. Main ideas are:
• to perf orm regular backup copies of all the data objects of the system;
• to provide a made-to-measure backup service: strategic data objects as well as heavily

used objects must be backed up frequently, whereas there is less need to backup
poorly used or read-only data objects;

• to provide efficient restore operations: catalogs of backups and precise information
over the data objects must always be available;

• to provide for long-term archiving;

A storage management system should also reduce configuration dependencies and user
involvement, by providing a more logical view of the storage system and by automating the
various management fonctions. Finally, it should provide new techniques to redu ce the
nuisance (system stop, etc.) caused by the management fonctions.

Part One : General Storage Management Framework 11

The global benefits are quite attractive:

• It should reduce the time spent for storage management and therefore increase the
system availability for the users.

• It should be possible to increase simultaneously the number of users and the number
of applications supported at once by the system.

• It should optimize the use of expensive storage devices and other system resources.
• It should increase the system performance and global reliability.
• It should reduce the abends (abnormal endings), due to space allocation problems.
• It should ensure for the user a device-transparent access to any data object.
• It should increase the security of data objects.

The space, performance and availability management principles are not independent.
Each one has a direct impact on the two others. For example, availability management
produces several copies of data objects. Multiple copies of data objects reduce the amount of
storage space left and the copy process implies a degradation of system performances.

Therefore an integrated approach is a viable solution. The following sections introduce a
general survey of a solution integrated in a Hierarchical Storage Manager. We will first define
a logical view of the storage hierarchy and present the concepts of processing and background
levels. Tuen we will develop the space and availability management fonctions in the frame of
the logical storage hierarchy. The performance management fonctions and the system-managed
storage pool concept are introduced. Automation of the management fonctions is achieved
with the management class and performance class concepts.

1.2.2. Logical Storage Hierarchy

A physical view of the storage hierarchy would not be very appropriate. U sers would
have to master extensive knowledge about the devices and their organization, and procedures
would be hardware-dependent. Therefore it is usefol to define a set of logical storage levels.

The number of logical levels and their extent is a compromise between friendliness of
use, the flexibility required for a large variety of data objects, and the variety of devices
supported by the system.

In the BS2000 environment, the Hierarchical Storage Management System product
(HSMS) provides three logical storage levels (see figure 1.10):

• The first logical storage level (SLO) is an on-line level made of disk devices which
have a very short access time. It off ers a sub-second direct access to data objects. SLO
is a mandatory level for the HSM system.

• The level SLl includes a set of capacity disks (on-line and short access time). Its
existence is optional.

• The level SL2 is the archive level. Made of tapes and magnetic cartridges, it is off-line
and is characterized by a long access time. An automated library system can be added.
SL2 is mandatory for HSMS.

Part One : General Storage Management Framework 12

Semlconductor Storage

capaclty 1 ------

SLO

SL1
L ___ Dl~ _ _J

SL2 I
1

1

Fig 1.10. Storage levels in the HSM system

In the HSMS view, the SLO is the processing level, whereas SLl and SL2 are
background levels (see figure 1. 11). Only data objects residing on SLO can be directly
processed. The HSM system uses the background levels to store data objects that are not
needed for processing. An object stored on a background level is indirectly available through a
HSM fonction that recalls it to SLO.

Users

L SLO \
Processlng Level ! î HSM system ------ - ----
Background Levels

L
L SL1 \\

SL2

Fig 1.11. Processing / Background Levels

The reason for such a design is to ensure device-transparent access to any data object.
As we have seen in section 1.1.2 (Evolution of storage devices), the various storage devices
don't have the same abilities: magnetic tapes and cartridges of SL2 are only sequential devices,
block sizes are device-dependent, etc. The definition of a processing level ensures that the data
objects needed for processing are stored on fast and on-line disk devices.

The movement policies of objects through the storage levels are developed in the next
section.

Part One : General Storage Management Framework 13

1.2.3. Managing Space and Availability in a Hierarchical
Environment

1.2.3.1. Functions: migration, backup, archivai

This section deals with the space and availability management fonctions. The fonctions
commonly supported by storage management tools are namely migration, backup and
archiving. These are developed in the frame of the HSM system of the BS2000 operating
system.

Migration:

Migration is the task of moving inactive data objects towards a more cost-effective
storage level. A migrated data object is still folly available through a recall fonction.

The HSMS product supports migration from the processing level towards both
background levels, and from SLl to SL2 (see figure 1.12). The aim is to avoid saturation of
the SLO by moving inactive data objects to lower levels.

/ SLO

Migration n ÎÎ
~ LJ Recall

/ SL1 \
Migration

Recall

/ SL2 \
Fig 1.12. Migration / Recall

The migration of a data object produces a migration copy of the object. The original
data object is deleted, but its DMS-catalog entry is preserved and marked 'migrated'. The
migration copies are fully managed by the HSM system. They are stored on SLl or SL2 in
background storage units called archives. A migrated data object is available through a
recall fonction. An attempt to read a migrated object causes a transparent recall to SLO, or a
user can force a recall of an object by issuing a special command.

Backup:

Backup is the task of making short-term copies of a data object to guarantee its
availability. In case of destruction of a data object (deletion, corruption ...), a restore
operation can be performed to rebuild it by using the most recent backup copy of the data
object.

Part One : General Storage Management Framework 14

The HSMS product supports backup/restore fonctions between the processing level
and the background levels (see figure 1.13). Only objects stored on SL0 can be backed up.

/ SLO \
Backupn IÎ .J.!, LJ Restore

/ SL1 \
Backup

Restore

/ SL2 \
Fig 1.13. Backup / Restore

The backup of a data object produces a backup copy of the object. The original object
is not modified. The backup copies are fully managed by the HSM system. They are stored
on SLl or SL2 in background storage units cailed archives. Each archive has an associated
catalog which lists ail the backup copies it contains, as well as important information's like
the backup and retention dates. Backup copies are available through the restore fonction.

The storage administrator is responsible for making regular backups of ail the data
objects of the system. Besides, any user can make a backup of his data objects.

Archiving:

Archiving is the task of moving obsolete data objects towards long-term storage
devices. Long-term archiving is often a legal necessity, although it can be done for private
purposes.

/ SLO \

/ SL1 \
Archlvlng

Restore

/ SL2 \
Fig 1.14. Archiving / Restore

Part One : General Storage Management Framework 15

Archived data objects often don't require high availability. The HSMS only supports
archiving towards cost-effective SL2 (see figure 1.14).

The archiving of a data object produces an archiving copy of the object. It deletes the
original data objectas well as its catalog entry. The archiving copies are also fully managed
by the HSM system. They are stored on SL2 in background storage units called archives.
Each archive has an associated catalog which lists all the archive copies it contains, as well
as important information like the archiving and retenti.on dates. Archived copies of objects
are available through the restore fonction.

Migration, backup and archiving fonctions are quite linked The way they work
together mainly depends of the behavior of the data object. The following graphies are
examples showing how the management operates in fonction of the probability of use of a
data object.

Example 1:

1

Probablllty

of use

0

Fig 1 .15. Data object Behavior
--- ------ -- -- ------ - ---- - -- -- - ,

SLO ~ ~ JM4

new

1 Rocill 1 1
SLO

1 1 1

1 1 1
11 -I 1 , --11

lsu 11
L su

1
- _j I L .- . -

Migratioo Baclrup
3

Migrauoo
Backup2

Age

An:hiving

old

The data object of figure 1. 15 is first created by the user and is highly active. The
HSM system takes two backups at regular intervals to ensure availability. After a period of
inactivity, the system migrates the object to a lower level (SLl). While the object is
migrated, no more backups are taken because the object is not processed. At expiration
date, the system deletes the backup copy backup 1. The object is then recalled by the user
for processing. Backup3 is taken, then the object is again migrated. Backup2 is deleted. The
object ages unused, and reaches its archiving date. The system archives it on a cost-effective
device (SL2), and deletes the backup3.

This can be the behavior of an electronic mail file.

Part One : General Storage Management Framework 16

Example2:

Fig 1.16. Data object Behavior
- - -- ------ - -- -- ----- - - - - - -- - --,

Probablllty

of use

0

SUl jlad:tlpl ~

IL-.
Backup!Migrallon

new

I L - -Mi .
Backup2 grallon

Age old

The data object of figure 1.16 is used periodically. After the activity period, It is
quickly migrated to a lower level because it is not needed anymore. For security, a new
backup is taken before migration. The data object is recalled when needed.

This can be the behavior of the payroll application.

The two examples show that each data object requires a lot of management attention.
This is not realistic for large storage configurations. An automated solution is a necessity.

1.2.3.2. Automation of these functions: the Management Class Concept

An automated storage management facility is a necessity for dealing with a large number
of data objects. The task is too tedious to only rely on manual interventions of the storage
administrator or of the users.

On the other band, the management of a data object is quite specific to the object itself.
Each data object has its own behavior and requirements in terms of availability, performance ...
and these requirements should influence the way the object is managed by the system.

So the idea is to equip each data object with a set of management attributes. The system
will use these parameters to automatically manage the object [IBM, 5].

Migration attributes:
• automated migration: enable / disable switch;
• delay of inactivity (days) before migration to SLl: controls migration to SLl;
• delay of inactivity (days) before migration to SL2: controls migration to SL2.

Backup attributes:
• automated backup : enable / disable switch;
• backup frequency: controls the selection for backup;
• guaranteed backup: forces a backup before migration;
• number of backups retained while the data object exists;
• number of backups retained while the data object is deleted;
• retention period of a backup.

Part One : General Storage Management Framework 17

Archiving attributes:
• automated archiving: enable / disable switch;
• expiration date or expiration period: date of archiving;
• expiration period after archiving;
• maximum retention period.

Only the owner knows the requirements and the importance of bis data objects.
Therefore it is to the owner to tune the management attributes.

For each data object, the new management attributes could be stored in an extension of
its DMS-catalog entry. This solution allows a fine tuning of the parameters, each object being
independent of the others. On the other hand, it requires a certain amount of space in the
DMS-catalog entries. This is not desirable because space is usually limited and because these
attributes have no sense if the HSM system (which is usually optional) is not present. Another
problem is that the users could define a management incompatible with the capacity of the
computer center, like always defining very long migration delays for every data object, or
defining a backup to tape while there is no operator for mounting operations ...

Another solution is the Management Class. A management class is a pre-defined
management policy. The storage administrator has to set up a collection of named management
classes that are compatible with the computer center policy, and the users have to choose for
each of their data objects a specific management class. This solution gives the storage
administrator enough control over the management policies, reduces the amount of work for
the users, and finally reduces the risk of errors.

Data object X

' 1 Catalog Entry

' 1 Management Class

Data

1

1

Hierarchical Storage Manager

_

1

: ::"i ..__Att-rlbute__, /1-, r-91 _ , -V ~ractor "-1---' L__JJJ
n Management Class

0 database

Selectlon procedure

•j ... ------~ 1 Archlvlng 1

'i ... ----.-------~ 1 Migration 1

Fig 1.17. The Management Class for Automated Storage Management

Figure 1.17 shows a system-managed data object. The management class describes its
requirements in terms of backup, archiving and migration. The HSM system is able to perform
automated space and availability management.

Part One : General Storage Management Framework 18

1.2.4. Managing Performance in a Hierarchical Environment

1.2.4.1. Quality of service at the data object level

This chapter deals with the performance management fonction. This fonction only works
in the field of the processing level SLO of the storage hierarchy, and aims to optimize the use of
fast disk devices.

In section 1.1.2, we introduced the evolution trend of magnetic disk storage.
Technological enhancements can be summarized in two words: specialization and
diversification. Therefore the SLO is nota uniform storage space. Figure 1.18 shows a physical
view of a processing level including a simple disk, a disk equipped with cache, a dual copy disk
and a RAID.

SLO i
~ ~ ~ -~

Simple dlsk wlth dual copy
dlsk cache dlsk RAID

Fig 1.18. SLO diversification

On the other hand, each data object has specific performance requirements. For example:
• a database usually requires high random access performances;
• data objects like sound or video recordings require sequential access performances;
• the system catalogs require very high availability ...

The aim is to allocate the data objects on the disk that meets at best the given
requirements. It should optimize the quality of service for the data objects and globally
optimize the use of expensive disk devices.

1.2.4.2. Automation of this function: the Performance Class
Concept

Again, a physical view of the interna! components of SLO is not desirable. It would
involve the users in the allocation job, imply configuration dependencies and lead to poor
optimization results.

A wiser solution is to provide a logical view of the various disks, and entrust the
allocation job to the system. For each data object, the owner must define a set of performance
attributes [IBM, 5], in terms of

• random access performance: standard/ high;
• sequential access performance: standard/ high;

Part One : General Storage Management Framework 19

• availability (fault tolerance): standard/ high;
• concurrency: standard / high ...

With this logical view, an automated solution is possible. The HSM system has now ail
the needed information to allocate the data objects on the disk that meets at best the given
requirements. If the user modifies the performance attributes of a data object, the HSM system
can reallocate it on a more suitable disk. If the settings of the processing level are changed (add
of a new disk, loss of a disk), the HSM system can adapt the current allocations to the new
situation. These movements are called SLO migrations.

Like for the space and availability management, it is better to introduce the performance
class concept. A performance class is a pre-defined allocation policy. The storage administrator
has to set up a collection of named performance classes that are compatible with the
performances of the SLO disks. The users have to choose for each of their data objects a
specific performance class.

Data object X

' 1 Catalog Entry 1 :

' 1 Perfonnance Class 1 [_ __,

Data

Hierarchical Storage Manager

Attrlbute ô]
extractor /L--,

...____.~
Performance Class

database

Allocation procedure

Fig 1.19. The Performance Class for Automated Performance Management

Figure 1.19 shows a system-managed data object. The performance class describes its
requirements in terms of access performances and availability (fault tolerance). The HSM
system performs automated disk allocation.

Note: In [IBM, 5], the performance class is introduced as the storage class concept. We have
adopted the 'performance class' terminology because it seems less ambiguous.

Part One : General Storage Management Framework 20

1.2.5. System-managed Storage Pool

The storage hierarchy as previously introduced leads to a unique storage system. This is
not always desirable, because:

• trends are for bigger and bigger configurations. A system-wide storage hierarchy
requires a vast amount of metadata. Data object catalogs, archive catalogs etc., are
likely to become inefficient. Accounting and space allocation controls become difficult
to manage;

• it makes storage system reconfigurations quite difficult, because a device volume on
its own is not a self-consistent entity. Space and availability management functions
lead to a distribution of data and metadata among several devices. A device never
contains all its related metadata.

The concept of system-managed storage pool (SMS-Pool) solves these problems (see
figure 1.20). A SMS-Pool is an independent and self-consistent hierarchical storage entity, i.e.
it contains all the data and related metadata.

Mainframe

êI]
i

Storase sÏstem

~ ~
L SL1 ~ / SL2 \

L SLO ~
L SL2 ~ L SL2 ~

SMS-Pool A SMS-Pool B SMS-PoolC

Fig 1.20. System-managed Storage Pools

The management functions (space, availability and performance) are reintroduced within
the SMS-Pool entities. Therefore the SMS-Pool contains ail its data objects, the related system
metadata and all the metadata related to the backup, archive and migration functions.

The advantages of the SMS-Pool topology are straightforward:

• it downsizes the system-wide storage system to smaller entities;
• it eases storage system reconfigurations, as SMS-Pools are independent. A pool can

be easily removed of the storage system. A pool can be added to the storage system
without any disruption;

• in a business-oriented view, a mainframe usually covers the needs of several segments
of a company. One SMS-Pool can be defined per business segment, and tailored to
meet at best the requirements of the stored applications.

Part One : General Storage Management Framework 21

1.3. Conclusion

In the mid Eighties, computer manufacturers started to develop efficient storage
management systems to help storage administrators in their job. System storage management
must comply with the constant evolution of storage devices (specialization and diversification)
and the constant evolution of data (vast amounts of data, vital data, new services etc).

The revolutionary principle is to migrate from a user-managed storage towards a system
managed storage. An approach integrated in a Hierarchical Storage Manager is achieved by

• defining a logical view of the storage devices: three logical storage levels are defined
within the storage hierarchy (one fast processing level and two background levels),
and a logical performance view is defined for the processing level;

• defining logical storage requirements for each data object, in terms of
• space and availability requirements: to control migration, backup and archiving

fonctions between the logical storage levels;
• performance requirements: to control allocation within the processing level.

The management class and performance class concepts are introduced to give the storage
administrator enough control over the storage policies. A data object equipped with a
management class is system-managed for migration, backup and archiving fonctions. A data
object equipped with a performance class is system-managed for the allocation fonction.

To avoid a system-wide storage hierarchy, the system-managed storage pool concept
(SMS-Pool) is introduced. The SMS-Pool concept is a self-consistent hierarchical storage
entity. The space, availability and performance management fonctions are reintroduced within
the SMS-Pools.

This ends our general storage management framework.

Part One : General Storage Management Framework 22

Part Two:

Aggregate Concept for Storage Management

Table of Contents

2.1. lntroducing the Aggregate Concept. ... 24
2.1.1. Overview .. 24

2.1.2. Motivations ... 24
2.1.3.Requirements .. 25

2.1.4. Concept Defmition .. 26

2.2. The Aggregate Object - Feasibility issues 28
2.2.1. Introduction .. 28

2.2.2. The Aggregate sub-system .. 28
2.2.2.1. Overview 28
2.2.2.2. General considerations ... 28
2.2.2.3. BS2000 environment ... 29
2.2.2.4. Summary 32

2.2.3. Aggregate Responsibilities ... 33
2.2.3.1. Overview ... 33
2.2.3.2. Requirements 33
2.2.3.3. Considered solutions .. 34
2.2.3.4. Summary ... 35

2.2.4. Data objects and aggregates .. 36
2.2.4.1. Overview ... 36
2.2.4.2. Connectivity 36
2.2.4.3. Privacy .. 38
2.2.4.4. Assignments .. 39
2.2.4.5. Summary ... 42

2.2.5. Aggregates and archives .. 43
2.2.5.1. Overview 43
2.2.5.2. Connectivity .. 44
2.2.5.3. Archive sharing .. 45
2.2.5.4. Summary 47

2.3. The aggregate object in the SMS-Pool48
2.3.1.0verview .. 48
2.3.2. Cataloging aggregates ... 48
2.3.3. Availability management for aggregates ... 50
2.3.4. Linking data objects to an aggregate .. 51
2.3.5.Linking save-files to an aggregate .. 53
2.3.6. Aggregate operations 55

2.4. Conclusion 57

Part Two: Aggregate Concept for Storage Management 23

2.1. lntroducing the Aggregate Concept

2.1.1. Overview

Traditional data management systems and storage management tools provide services at
the data object level. Data objects are viewed as independent objects.

This point of view doesn't reflect the semantic relations that can exist between data
objects, like:

• an application is often a set of data objects;
• a set of data objects can have a special meaning for a user;
• a set of data objects can have a special meaning for a group of users;
• a set of data objects can be highly critical for the company.

Storage management should ensure the global consistency of related data objects. This is
presently not the case because objects are independently managed. The aggregate concept has
been introduced to fill this gap. It provides storage management of aggregated data objects.

The aggregate concept was developed in the frame of the HSMS product. Part one of
this document presents a general storage management framework.

The chapter 2.1 describes the motivations under the aggregate concept, the general
requirements and the concept definition.

Chapter 2.2 presents a study of the main feasibility issues. The aggregate concept is
developed in a general HSM framework and more specifically in the BS2000 environment.

Chapter 2.3 presents an integration of the aggregate object within the SMS-Pool
topology. The integration is quite linked to the BS2000 environment.

2.1.2. Motivations

The main motivation for the introduction of this concept is to enhance storage
management for data objects that have something in common, therefore which need to be
managed at once. Two linked motivations are consequences of the introduction of automated
management:

1) The Management Class:

As described in section 1.2.3.2, the management class allows a wide automation of
the backup/archiving/migration fonctions. AU these services are data object-oriented,
whereas data objects are often related to applications. The system is not aware of this. The
aggregate concept aims to give a special semantics to related objects.

The automation of the availability management fonctions at the aggregate level leads
to the concept of management classes for aggregates.

Part Two : Aggregate Concept for Storage Management 24

2) The Performance Class:

The performance class allows the user to give for a data object a set of performance
requirements (see section 1.2.4.2). It is used by the HSM system to select the most suitable
device of the processing level SLO.

This means that for a group of related data objects with various performance
requirements, the objects are very likely to be distributed among many devices of SLO.
Migration will distribute them further on. A device crash at the SLO would be disastrous,
because many applications are likely to be partly damaged. A data object level restore tool
would not be very efficient, and cannot really guarantee full consistency of all the damaged
applications.

A second motivation is to decrease the nuisance of present system backups (i.e., a
complete backup of the system). To reach a consistency point, a system backup usually
requires that the system is completely eut off from the users. The aggregate concept can help
to reach local consistency points. The backup can then be made without a system cutoff. This
reduces the nuisance for the users.

A third motivation is to provide efficient disaster recoveries. A well-tried disaster
recovery plan is the best insurance against a major computer center disaster. The process of
recovery at a remote site is complex. A successful recovery must be done very quickly. Sorne
applications must be restarted as soon as possible, whereas others are less important. Therefore
the administrators must provide regular and independent backups of strategical applications.
The aggregate concept can help them in this task.

Finally, the aggregate concept could be very useful in distributed environments. For a
storage administrator, distributed applications are quite difficult to manage, and workstation
users don't wish to do it. A LAN-based backup server is a prornising solution. Distributed
aggregates could make part of the solution.

2.1.3. Requirements

We introduce a general list of user-related and HSMS-related requirements.
The 'aggregate object' terrninology designates the implementation of the aggregate concept.

A) User Requirements

Al. Any user should be able to create, modify and delete aggregate objects.
A2. The user who created an aggregate object must be the owner of the object and its

administrator.
A3. The aggregate object should be able to meet any application (or any relation) topology.

In particular, the aggregate concept must be independent of the user-ID concept.
Though an aggregate must have an owner (i.e., a user-ID), it can represent a set of data
objects created under several user-IDs. The owner is the administrator of the
aggregate.

Part Two : Aggregate Concept for Storage Management 25

A4. The aggregate object must ensure the confidentiality of the aggregated data objects
(access security).

A5. The aggregate object must offer efficient availability fonctions (backup and restore
operations), and provide for disaster recoveries.

B) HSM Requirements

B1. The aggregate concept must comply with the HSM concepts.
B2. A maximum of compatibility and flexibility must be ensured between aggregate-level

management and the traditional management at the level of the data objects. The
aggregate object should not enforce new restrictions on the use of the current fonctions
of the HSM system:

• data objects that belong to an aggregate object should remain accessible as before
for management at the data object level;

• a backup copy of a set of aggregated data objects should be restorable at the
aggregate level and at the data object level.

B3. The aggregate object must fit in the SMS-Pool topology. It must be local to an SMS
Pool.

B4. Aggregate objects must be safe against device crashes, to ensure recovery.

2.1.4. Concept Definition

The aggregate concept aims to collect under a single name a set of related data objects of
the Data Manager system, and to provide for aggregate-consistent availability management
fonctions. Figure 2.1 illustrates the concept of "aggregate". It collects under a single name:

• a set of related data objects;
• a storage management policy (management class);
• a set of backup and/or archive copies of the aggregate.

Aggregate Concept

1 OWner 11 Name 11 Management Pollcy

8@~~
Set of related data ob)ects

Q_ Q_ Q_
Set of backup and/or archlvlng copies

Fig 2.1 Definition of the Aggregate Concept

Part Two: Aggregate Concept for Storage Management 26

At a lower level, the aggregate object (see figure 2.2) is a set of data structures
including:

• a special catalog entry;
• a set of management attributes;
• a link describing the related (aggregated) data objects;
• a set of archive catalog entries and tape volumes.

Aggregate Object

' 1 Catalog entry 1 '

' 1 Management Attr. 1 '

Unk to the set

of aggregated

data objects

Unk to the set

of backup copies

:[

Fig 2.2. General Definition of the Aggregate Object

The aggregate object will be developed in the next chapters.

Two classes of operations belong to the aggregate object:
• aggregate management functions involve the processing of the aggregate object itself,

like create, modify, delete an aggregate;
• aggregate commands involve the processing of the set of data objects that are collected

under the aggregate, like backup, restore, archiving of an aggregate.

Part Two : Aggregate Concept for Storage Management 27

2.2. The Aggregate Object - Feasibility issues

2.2.1. Introduction

This chapter presents some of the main feasibility issues for the introduction of the
aggregate concept. The study covers the following topics:

• the place of the aggregate object in a typical Operating System;
• the system privileges required for aggregates;
• the relations between data and aggregate objects;
• the relations between aggregate objects and background storage units (archives);

General solutions are reviewed, taking into account the advantages, disadvantages and
possible problems. Sorne topics are quite general to any operating system. Others are quite
related with the HSMS product of the BS2000 environment.

2.2.2. The Aggregate sub-system

2.2.2.1. Overview

In this first issue, we will discuss how to integrate the aggregate object in the Operating
System. A typical Operating System is usually made of a set of independent sub-systems,
where some are mandatory and others optional.

Let's consider two sub-systems: the Data Manager system (DMS) and the Hierarchical
Storage Management system (HSMS). The first system is mandatory, whereas the second one
is usually optional. The question is which system will manage the aggregate object.

This is fondamental because this wi1l determine what wi1l be effectively available for
aggregate operations.

We will study
• the general prospects considering HSM aggregates or DM aggregates;
• the BS2000 environment with the ARCHIVE product.

2.2.2.2. General considerations

Two alternatives are possible.

1) Aggregates are only objects of the HSM system. The Data Manager system is not aware
of the existence of aggregates This means that the HSM system provides aggregate
management fonctions and aggregate commands.

Part Two : Aggregate Concept for Storage Management 28

Main consequences are that:
• extensive backup/recovery support is directly available through the HSMS;
• aggregate operations will be limited to those offered by the HSM system

(backup/archiving/migration activities), unless the HSM system provides a
programming interface for other products. The availability of aggregates would
then depend of the availability of the HSM system, which is optional;

• aggregate requirements will mainly concem the HSM system.

2) Aggregates are new objects of the DM system. This means that the DM system provides
aggregate management fonctions, and any product can directly make use of this new
object.

Main consequences are that:
• backup and recovery support are available through the HSM system;
• aggregate operations may cover usual DM operations, or other sub-system

operations;
• aggregate requirements will concem the DM system and every sub-system

providing aggregate support.

The second alternative is surely the most attractive. The DM system offers the aggregate
object management fonctions, while taking advantage of usefol fonctions already provided by
the HSM system. Although the usefolness may sometimes be unclear, any other sub-system
could actually provide its own set of aggregate commands. This solution is more opened for
future developments.

2.2.2.3. 8S2000 environment

In the BS2000 environment, the HSM system relies directly on a kemel implementing a
set of basic storage management fonctions. This kemel is part of a stand-alone product called
ARCHIVE (see figure 2.3).

1 HSMS 1

---- #if ----
1 ARCHIVE 1 (!;) [Archives 1

-----ffi -----
1 DMS JC;l~

Fig 2.3. The B52000 environment

Part Two : Aggregate Concept for Storage Management 29

The ARCHIVE kemel must be taken into account. So three sub-systems are considered:
the DM system, the HSM system and the ARCHIVE kemel.

1) First alternative is (see figure 2.4)
• aggregate objects are managed by the HSM system;
• the ARCIDVE kemel doesn't know about aggregates;
• the DM system doesn't know about aggregates.

Aggregate
Management function / Command

:::~HSMS t -% - - - -
-Ag-m~-~-m ~1 HSMS 1

---- ~4? ----
1 ARCHWE 1 ~ (Nohi,os 1

- - - - -ffi - - - - -

Field of the
Aggregate

object

1 OMS l~G=J
Fig 2.4. HSMS Aggregates

The main consequences are that
• the HSM system has to provide aggregate management fonctions and commands;
• the HSM system has to provide a transparent processing of aggregated data objects

relying on the present fonctions of the ARCIDVE kemel;
• new requirements for the ARCIDVE kemel are very limited;
• if other sub-systems would like to provide aggregate processing, the HSM system

must offer a special programming interface.

2) Second solution is (see figure 2.5):
• aggregate objects are managed by the ARCIDVE kemel;
• the HSMS product offers aggregated processing;
• the DM system doesn't know about aggregates.

Part Two : Aggregate Concept for Storage Management 30

Aggregate
Management function / Command

::r::HSMS t -% - - - -
1 HSMS 1

----~if - --
~ ~, ARCHIVE ,~[nœ ... j

---- ~ -----

1 DMS l~E~3

Field of the
Aggregate

object

Fig 2.5. ARCHIVE Aggregates

The main consequences are that
• the HSM system can call the ARCHIVE kemel to save or retrieve an aggregate;
• the ARCHIVE kemel has to provide for a transparent processing of aggregated data

objects relying on a data object DM system;
• aggregate requirements concem the HSM system and the ARCHIVE kemel;
• if other systems would like to provide aggregate-level processing, the ARCHIVE

kemel must provide a special programming interface.

3) Third solution is (see figure 2.6)
• aggregate objects are managed by the DM system;
• the HSM system and the ARCHIVE kemel provide support for ail DMS objects,

including the new aggregate object.

Aggregate Commands

::~:::HSMS t -% - - - -
1 HSMS 1

----~if ----
1 ARCHIVE 1 ~ [Anoiwes 1

---- ~ -----

~~œ ~, DMS l~GiiJ

Field of the
Aggregate

object

Fig 2.6. OMS Aggregates

Part Two : Aggregate Concept for Storage Management 31

Figure 2.6 shows that the DM system manages directly aggregates. The processing of
aggregated data objects is transparent for any sub-system. The ARCIDVE kemel and the HSM
system must know how to handle the aggregate as an object.

2.2.2.4. Summary

The best solution seems to include aggregate objects in the DM system.

In a stepwise approach, a first implementation could be limited to the HSM system. This
will reduce extemal requirements and reduce costs. A first solution could be:

• Aggregates are managed by the HSM system;
• the ARCIDVE kemel knows a minimum about aggregates;
• Migration towards DMS-managed aggregates is foreseen.

We assume this solution for the following issues.

Part Two : Aggregate Concept for Storage Management 32

2.2.3. Aggregate Responsibilities

2.2.3.1. Overview

Security in the mainframe area is a major concern. In large systems, each user has a user
ID and a private workspace. Users are eut off from each other, and cannot peek in someone
else's data objects. Beyond these users, some user-ID's share a set of privileges. These
privileges give to the system administrators comprehensive access to the system.

The SRPM product (System Resources and Privileges Management) provides for
privileges in the BS2000 environment. The privilege with regard to storage management is the
HSMS-Administration privilege. The user-ID granted with this privilege is able to fully control
the HSM system. In addition he is able to take full backups of the DM system. Therefore the
HSMS-Administration has the rights to access all the objects of the Data Manager.

The aggregate concept has new requirements. Only the owner has the full knowledge to
manage an aggregate. He best knows:

• which data objects should take part in the aggregate;
• which objects are critical for the aggregate and need special care;
• when and how often should the aggregate be backed up;
• which migration policy should be attributed to the aggregate;
• which archiving policy should be defined.

Therefore the administrator of an application (or of any set of related data objects) must
be able to create an aggregate object for it, and then take part in its management. We can
distinguish two kinds of aggregates:

• the aggregates created by an unprivileged user, to manage his private data objects;
• the aggregates created by an application administrator, to manage a set of related data

objects saved under several user-ID's.

The security concern appears for the second kind of aggregates.

2.2.3.2. Requirements

We can summarize aggregates requirements as follow:

1. Users require the right to create aggregate objects.
2. Owners require the right to issue aggregate commands for their aggregate objects.
3. As aggregates should meet any application topology, an application administrator

requires the right to access data objects saved under other user-IDs.
4. Security requires restricted access to objects saved by other users.

Part Two: Aggregate Concept for Storage Management 33

2.2.3.3. Considered solutions

Two solutions are considered here:

1) Restrict the use of aggregates to the Storage-Administrator.

The idea is to perf orm all the aggregate operations via the storage administrator.

When a user responsible for an application wants to make use of aggregates, he must
contact the storage administrator. The user can give a description of what he wants, and the
storage administrator can create the corresponding aggregate object. Aggregate operations are
issued by the storage administrator, but under some kind of user supervision.

Ail the requirements are the responsibility of the storage administrator, notably
requirements concerning the confidentiality of data objects.

Advantages:
• nothing new is needed;
• the storage administrator has great control over aggregate operations and over data

object access. He can coordinate operations like backups, and optimize the tape sessions.

Disadvantages:
• the aggregate concept is poorly used. Users don't have direct access to the aggregate

system, so they might not use it at ail;
• it implies the availability of the storage administrator.

Pending problems:
None.

2) Create a new privilege.

The solution is to create a true Aggregate-Administration privilege under the privilege
manager (SRPM in BS2000). The system administrator could give this privilege to selected
users, giving them the rights to issue aggregate operations with aggregates including data
objects saved under other user-IDs.

So the HSM system could have two levels of privilege:
1) HSMS-Administration;
2) HSMS-Aggregate-Administration.

When an ordinary user-ID is granted with the HSMS-Aggregate-Administration privilege
by the system administrator, the following fonctions become available:

• executing normal HSMS statements, like backup or restore;
• processing objects of other users by means of HSMS statements.

Advantages:
• the aggregate concept is used at its best. An aggregate administrator granted with the

privilege can fully take part in the management task.

Part Two : Aggregate Concept for Storage Management 34

Disadvantages:
• there is an external (SRPM) requirement.

Pending problems:
• requirement 4 is not met. Aggregate administrators would have uncontrolled access to ail

objects of the system.
To partially solve this problem, we could add to the Aggregate-Administrator privilege a
concept of "user group". An application administrator only has access to objects saved
under user-ID's registered in his group. But requirement 4 is still not met. An aggregate
administrator would have uncontrolled access to all the data objects of the users of his
group.
Another way to solve this problem is to involve the users (i.e. the data object owners) in
the construction of the aggregate. This will be discussed later on.

2.2.3.4. Summary

The best solution is surely to create a new privilege under the privilege manager. The
system administrator would be able to grant the Aggregate-Administrator privilege to some
user-ID's. This privilege would give them the rights to manage aggregated sets of data objects
beyond the user-ID concept. The user group concept can help to enhance data security.

Part Two: Aggregate Concept for Storage Management 35

2.2.4. Data objects and aggregates

2.2.4.1. Overview

We will discuss of the relation between data objects and aggregates. Let's consider the
following figure:

Fig 2.7. World of Data Objects

UserA · UserB · UserC · ·
1

UserY
1 1 1

UserZ

B : 8 : _____ : __ p __ l _ ~-

: - :- G:i@f: : G
·01 1----·-1- --- -- -i --- -
: 18 1§) :1 IE)
. ---~ -----:----. : : G

Figure 2. 7 show a user-oriented model of the data object system. Bach user owns a set of data
objects (objects Al and A2 for the user userA, objects Bl, B2 and B3 for the user userB, etc.)
Objects surrounded by dotted lines are related.

So issues to discuss are
• the connectivity between data objects and aggregates;
• the privacy of user objects;
• the method of assigning data objects to aggregates.

2.2.4.2. Connectivity

The question of the connectivity between data objects and aggregates is linked with the
underlying relation between data objects.

In the application-level backup/recovery concept, an aggregate is created to collect under
a single name ail the objects belonging to an application. Backup and recovery are performed
at once at the aggregate level, thus ensuring global consistency. In this idea, an object shared
by several aggregates is a potential danger for each application. Consistency cannot be
guaranteed for ail the applications after the first recovery.

On the other hand, the relation between the objects may be of any kind. A general many
to-one connectivity may be too restrictive.

Part Two : Aggregate Concept for Storage Management 36

Three solutions are considered:

1) Enforce a many-to-one connectivity between data objects and aggregates.

A data object can be assigned to only one aggregate. The sets described by aggregate
objects are separate (see figure 2.8).

Fig 2.8. World of Data Objects

Advantages:

Aggregate 1
r-----,

1808 1
1 ~ 1
_____ _J

Aggregate 2
r-----,

180
1
- - - - - __J

• there is no danger of inconsistencies for shared data objects;
• it prevents user's mistakes;
• the connectivity is easy to manage.

Disadvantages:
• it is a very restrictive solution, because it cannot reflect the use of shared objects.

2) Allow a free connectivity, with no other control.

A data object may be freely assigned to several aggregates. The sets described by
aggregate objects are not separate.

Fig 2.9. World of Data Objects

Aggregate 1
r-----,

~B 8f 8[-8:
B

_____ ___J

Aggregate 2

Figure 2. 9 shows that data object C2 is shared by two aggregates. The aim is to ensure
global consistency for each aggregate:

• the shared objects are read-only: there is no problem;
• the shared objects are Read/Write: there is a potential danger of inconsistency.

Advantages of this solution:
• aggregates may cover all the situations;
• there is no connectivity management problems, with no costs.

Part Two : Aggregate Concept for Storage Management 37

Disadvantages:
• the system off ers poor support;
• there must be coordination among the aggregate administrators to avoid dangerous

shared data objects;
• it can lead to serious inconsistencies.

3) Leave the connectivity to the owner's choice, with system control.

System control is based on two rules:
a) for each data object, the owner decides which aggregate(s) his object may belong

to;
b) the owner of an aggregate may decide whether a data object belonging to his

aggregate is authorized or not to become member of other aggregates.

Advantages:
• aggregates may cover ail the situations;
• the system provides support for consistency control.

Disadvantages:
• The connectivity controls are complex. For example there must exist a way to

ensure that a data object is assigned to only one aggregate (i.e. verify the many-to
one constraint).

2.2.4.3. Privacy

There is also a privacy aspect in the relations between data objects and aggregates. The
privacy is related with the topic conceming the Aggregate-Administrator privilege.

The problem is to conciliate two opposite points:
a) give the rights to the aggregate administrators to access objects created under other user

ID's for aggregate operations;
b) ensure the privacy of user's data objects, whether the objects belong or not to an

aggregate.

The privacy of a data object may be endangered when the aggregate administrator selects
objects without the owner's permission. This can happen if a true privilege is used. Two cases
may be distinguished:

1) the owner doesn't want his object to belong to aggregates (a many-to-none connectivity),
but it is selected by an aggregate.

2) the owner wants his object to belong to one (or several) aggregate(s), but it is selected
by another aggregate. This is a many-to-many, where "many" doesn't mean "any", but a
"list of authorized" aggregates.

The privacy will be an important issue in the next section.

Part Two: Aggregate Concept for Storage Management 38

2.2.4.4. Assignments

The question is how to describe the set of data objects that belong to an aggregate.
Recalling the aggregate object definition, this involves the link to the set of aggregated data
objects (figure 2.10).

Aggregate Object

Important issues are:

Unk to the set

of aggregated

data 01>1ects

Data Manager System

Set of related data objects

Data object A

Fig 2.10. Link to Aggregated Data Objects

• whether the aggregate object is a stand-atone object (self-sufficient) or depends of the
availability of other metadata like DM catalogs. After a major disaster (loss of data
objects and system catalogs), the HSM system must know for the recovery process
which data objects belong to the aggregates.

• who is responsible for the setting up of the aggregated set of data objects (either the
administrator of the aggregate, either the owners of the data objects). This issue is
related with the control of connectivity between data objects and aggregates, and with
the privacy of data objects.

• the update capabilities of the aggregates. Data objects which are members of an
aggregate may still be directly processed at the data object level by commands from the
DM system. Normal DMS operations may be carried out as usual, even on objects which
are aggregate members. This is a problem because normal DMS operations may create
inconsistencies between an aggregate object and the underlying data objects. Either the
system has to update the aggregate objects, or someone has to do it.

Three solutions are considered for describing an aggregate set of objects:

Solution 1

• The link included in the aggregate object stores an exhaustive list of fully qualified names
of data objects.

• The owner (administrator) of the aggregate writes this list.
• The users (data objects owners) don't do anything.

Part Two : Aggregate Concept for Storage Management 39

Related data objects

writes '

Administrator ~ ;

1 __ __ ____ _ _ 1

Fig 2.11. Administrator-managed list of aggregated data objects

Figure 2.11 illustrates the solution. When an aggregate command is issued by the
administrator the system reads the list, and processes each data object. The system must
verify that the administrator has the right to access the objects.

Advantages:
• the aggregate object stores a self-sufficient list of names. In case of loss of a device

and the related catalogs, the aggregate object remains available for recovery.

Disadvantages:
• the list of names is quite static. An update is needed to add any data object to the

aggregate;
• big aggregates are difficult and tedious to manage;
• a connectivity constraint would be difficult to control.

Pending problems:
• more means are needed to control a connectivity constraint;
• the privacy of user files is not guaranteed in the case of a privilege for aggregate

administrators, because users are not involved in the selection of their data objects.

Solution 2

• The link included in the aggregate object is made of a sequence of lnclude/Exclude
statements with full or partially qualified names.

• The application administrator writes this sequence.
• The users (file owners) don't do anything.

Related data objects

writes ,

Administrator ~ '.

1 - - - - - - - - - - 1

Fig 2.12. Administrator-managed partial list of aggregated data objects

Part Two : Aggregate Concept for Storage Management 40

Figure 2.12 illustrates the use of partially qualified names. When an aggregate command
is issued by the administrator the system reads the sequence of Include/Exclude
statements to build the exhaustive list of names in comparison with the current state of
the catalogs, and processes each data object.

Advantages:
• the list of names is less static, because a good use of wild cards may automatically

include or exclude new data objects. This is important if for example the
application creates new data objects;

• it is less tedious to manage.

Disadvantages:
• the list is not self-sufficient, because it is dependent of the availability of the DM

catalogs.

Pending problems:
• the list is not self-sufficient. Other means have to be provided to know which data

objects have to be recovered after a disk crash;
• more means are needed to control a connectivity constraint;
• the privacy of user data objects is not guaranteed in case of an Aggregate

Administration privilege, because users are not involved in the selection of their
data objects.

Solution 3

• The link included in the aggregate object is made of a list of partially or fully qualified
names of data objects.

• The aggregate administrator creates the aggregate.
• The users (file owners) have special commands to add or remove data object names from

the aggregate object link.

creatas

Administrator c::::;) , Aggregate object Related data objecta
.. - - - -- - - - ... -- -- - - ---- -

EJB
: ffl~ ~:

Unk:

UserA A•

§) D2

UserD C2

§] C3

UserC

El
----- - -- · --- - ------ '

Fig 2.13. User-managed list of aggregated data objects

Figure 2.13 illustrates this solution. When an aggregate command is issued by the
administrator, the system reads the list, builds the exhaustive list of names by comparing
with the current state of the catalogs, and processes each data object.

Part Two : Aggregate Concept for Storage Management 41

Advantages:
• the list of data object names is very dynamic, because it is updated by the users

themselves;
• it is very easy to manage by the application administrator;
• the privacy problem is partly solved, because the users are involved in the selection

of the their data objects.

Disadvantages:
• the administrator has less control over the aggregate. He is not directly advised of

modifications of the aggregate object;
• new commands must be introduced for the users.

Pending problems:
• the list is not self-sufficient. Other means have to be provided to know which data

objects have to be recovered after a disk crash;
• more means are needed to control a connectivity constraint.

2.2.4.5. Summary

We think that a free (many-to-many) relation between data objects and aggregates is a
good solution. The aggregate administrators are responsible for a good use of aggregates.
Sorne diagnostic tools could be provided to check if data objects are selected by several
aggregates.

For the description of the set of data objects, we propose that the link of the aggregate
object includes a sequence of Include/Exclude statements (solution 2), because it is a dynamic
solution. The self-sufficiency of the aggregate has to be reached by other means.

Part Two : Aggregate Concept for Storage Management 42

2.2.5. Aggregates and archives

2.2.5.1. Overview

This section deals with the relations between aggregate objects and the archive files of
the HSM system. This topic is dependent of the BS2000 environment, so we will first
introduce a simplified and generalized archive concept.

Our general archives are the basic HSM background storage units. A copy of a data
object (produced by a backup, archiving or migration fonction) is stored in an archive. Figure
2.14 gives a summary of the general archive structure.

HSMS
Catalog of

Archive deflnltlons

<archive1_def> ~ , .. ,_.,....... B <archive2_def>

...
<data_object1> ~ -
<data_object2>

<O~~r_info> Q
- save-files -

Fig 2.14. Summary of our general archive structure

An archive consists of:
• an archive definition, intemally stored by the HSM system in the catalog for archive

definitions;
• an associated archive directory, managed by the HSM system;
• a set of files called save-files which contain the copies of the saved data objects. A

save-file contains the data objects saved during one backup or archiving session.

An archive definition entry <archive_deb stores the name of the archive, its type (for
backup, for archiving or for migration), its owner, and the name of the associated archive
directory.

An entry <data_object> in the archive directory stores the name of the data object, and a
list of names identifying the save-files which contain a copy of the object. Other types of
entries are possible, and are summarized by the <Other_info> entry. A new save-file is created
for each backup or archiva! session. A data object can be saved only once in a save-file.

The HSMS administrator can create public archives for backup, archiving and migration.
Besides, any user can create his own private archives for backup or archiving. Private
migration archives are not allowed. A private archive is restricted to the owner.

Let's also recall that aggregates are HSMS-managed objects, and that a maximum of
compatibility must be ensured between aggregate-level storage management and data object
level storage management (requirement B2).

Part Two : Aggregate Concept for Storage Management 43

Therefore issues to discuss are
• the connectivity between aggregates and archives;
• the coexistence of aggregate objects and data objects in save-files.

2.2.5.2. Connectivity

The issue here is the connectivity between aggregates and archives. Note that an
aggregate backup copy should never be split among several archives. Severa! connectivities are
possible:

1) Enforce a mandatory one-to-one relation. Each aggregate has its own unique and
dedicated archive. Conceptually speaking, this is the simplest relation.

Advantages:
• it complies with application reconfigurations and disaster recoveries, because the

archive may be moved around with the application. Nothing is mixed up;
• a one-to-one constraint is easy to manage.

Disadvantages:
• it is very restrictive and will not suit many situations;
• it increases the number of archives.

2) Enforce a mandatory one-to-many relation. Each aggregate has its own set of dedicated
archives. This relation may be justified if an aggregate is backed up for several distinct
purposes, each archive being private and assigned to a different purpose. Remind that
access to a private archive is restricted to the owner.

Advantages:
• it complies with application reconfigurations and disaster recoveries, because the

archives may be moved around with the application;
• a one-to-many constraint is not too difficult to manage.

Disadvantages:
• it is still very restrictive;
• it increases the number of archives.

3) Enforce a mandatory many-to-one relation. Severa! aggregates share a unique archive.
This relation is conceivable if one user is responsible for several aggregates and doesn't
want to manage several archives, or if the archive is a unique public archive.

Advantages:
• less archives are needed.

Disadvantages:
• shared archives make application reconfigurations and disaster recoveries quite

difficult;
• it is still restrictive.

Part Two : Aggregate Concept for Storage Management 44

4) Allow a free (many-to-many) connectivity. Several aggregates share several archives.
This fourth relation may be justified by any combination of the above. Remind that
access to a private archive is restricted to the owner.

Advantages:
• it can suit any situation. It is the user's responsibility to manage correctly his archives;
• less archives are needed;
• no special management is required from the system.

Disadvantages:
• there are no means for a specific control;
• shared archives make application reconfigurations and disaster recoveries quite

difficult.

5) Allow the user to choose a system-managed connectivity. The owner of an archive can
decide which aggregates are allowed to use it. The owner of an aggregate can decide
which archives his aggregate can use. Both permissions have to be verified prior to any
operation.

Advantages:
• it can suit any situation;
• complete access control may be done, so aggregate dedicated archives may be

ensured when needed.
Disadvantages:

• it irnplies complex connectivity management, with high costs.

2.2.5.3. Archive sharing

We have to talk about the coexistence of aggregate objects and data objects in a same
archive. From the HSMS point of view, a save-file contains a sequence of saved objects.
Beside the fact that the objects were saved within the same backup or archiving session, there
is no special relation between the objects. They are ail independently accessible. An aggregate
being a collection of data objects, their status inside a save-file has to be discussed.

General questions are:

(1) whether aggregated data objects and independent data objects may coexist in a same
save-file or not;

(2) if they may coexist, how to later recognize aggregated data objects from independent
data objects within the save-file, for aggregate restores.

Let's recall that the HSM system performs aggregate operations by calling several times
data object level fonctions of the ARCHIVE kernel. The ARCHIVE product is not aware of
aggregates. The HSM system has to organize the way aggregated data objects are saved, to be
able to restore them later as aggregates.

Part Two: Aggregate Concept for Storage Management 45

Let's consider a set of data objects as in figure 2.15. Data objects Al , A2, A3 and Bl are
related by Aggregatel, data objects Bl, B2 and B3 are related by Aggregate2. Cl, C2 and C3
are independent data objects.

(Aggregate1)
1

[Aggregate2]

, ',
, 8-~~ BB
B

Fig 2.15. Set of Data Objects and Aggregates

Aggregates being a set of data objects, the sharing of the archive can be done at the
save-file level or within the save-file.

1) Sharing the archive at the save-file level.

The save-file is a unit for archive sharing. A save-file can contain either
- a set of individual data objects; or
- one aggregated set of data objects.

For the example of figure 2.15, the administrator would have to start three backup
sessions to backup Aggregatel, Aggregate2 and independent objects Cl , C2 and C3. The
resulting archive is shown in figure 2.16. It contains three new save-files.

Archive

Header save-flle N save-flle N+ 1 save-flle N+2

Fig 2.16. Sharing the archive at the save-file level

Advantages:
• as the save-file is a unit for archive sharing, the distinction between data objects saved

as members of an aggregate and independent objects is done at the save-file level.

Disadvantages:
• aggregates have to be saved in separate backup sessions, because they need separate

save-files;
• shared data objects (like object B 1) is saved several times.

Part Two : Aggregate Concept for Storage Management 46

Aggregate restore requirement:
• the HSM system has to be able to find the save-files of the archive containing the

aggregate. An aggregate flag is required at the save-file level;
• if the save-file stores an aggregated set of data objects, ail the objects have to be

restored. Therefore no special flagging is needed at the object level.

2) Sharing the archive within the save-file.

A save-file may contain individual and aggregated data objects. The data object is a unit
for archive sharing. For the example of figure 2.15, the HSM system can save ail the
objects in a single save-file (see figure 2.17).

Archive

Header save-flle N

Fig 2.17. Sharing the archive within the save-file

Advantages:
• individual and aggregated data objects may be saved at once. There is no need for

separate backup sessions;
• shared data objects can be saved only once.

Disadvantages:
• the distinction between objects saved as members of aggregates and other objects has

to be done at the object level. Data objects must be flagged.

Aggregate restore requirements:
• the HSM system has to be able to find the save-file of the archive containing the

aggregate. An aggregate flag is required at the save-file level;
• the HSM system has to know which data objects of the save-file have to be restored

as aggregates. Aggregate flags are also required at the data object level.

2.2.5.4. Summary

We think that a free connectivity between archives and aggregates is a good solution. If a
dedicated archive is needed, it should be created private to restrict access to one responsible
user.

To meet the compatibility requirement (B2), archives are sharable within the save-files. A
save-file may contain data objects and aggregated data objects. Any set of objects can be
backed up in a single backup session.

Special metadata is needed to flag data objects saved as aggregates.

PartTwo: Aggregate Concept/or Storage Management 47

2.3. The aggregate object in the SMS-Pool

2.3.1. Overview

This chapter presents an approach to integrate the aggregate object in the SMS-Pool
topology. Figure 2.18 recalls the definition of the aggregate object.

Aggregate Object

' 1 Catalog entry 1 '

' 1 Management Attr. 1 '

Unk to the set

:[:;) of aggregated

data objects

Unk to the set

:[⇒ of save-flles Q_ Q_ Q_

Fig 2.18 Definition of the aggregate object

The HSM system already manages a vast amount of metadata for other management
fonctions. The four components (catalog entry, management attributes, link to the set of
aggregated data objects and link: to the set of save-files) of the aggregate object have to be
integrated in the HSMS metadata and in the SMS-Pool. In addition, aggregate operations have
to be defined.

2.3.2. Cataloging aggregates

The HSM system must keep track of all the aggregate objects that are defined within the
SMS-Pool. Therefore the HSM system must manage a catalog.

HSMS

~ Catalog
~----~

<aggregate1>

<aggregate2>

Fig 2.19. Catalog of aggregates

Fig 2.19 shows a general catalog of aggregates.

Part Two : Aggregate Concept for Storage Management 48

A catalog entry contains
• a field to store the name of the aggregate;
• a field to store the user-ID of the owner;
• a field to store a set of attributes (date of creation ...).

The catalog must be local to a SMS-Pool (requirement B3). It requires to be stored on a
high reliability device, because it is important metadata.

The HSM system already manages a catalog for archive definitions (see the section 2.2.5
Aggregates and Archives) which meets these two requirements. Therefore two solutions are
reviewed:

1) Extend the current catalog of archive definitions.

A new type of entry is defined to catalog aggregate objects. Figure 2.20 illustrates this
solution.

Advantage:

HSMS

~ Catalog of
L====ï) Archive deflnltlons

<archive1_def>

c:aggregate 1 >

Fig 2.20. Extension of the catalog
of Archive definitions

• there is no need to create and manage a new catalog.

Disadvantage:
• the aggregate object is very link:ed to the HSM system. This is not good for future

developments like a migration to DMS-managed aggregates;
• the catalog for archive definitions is misused.

2) Create a new catalog for aggregate objects.

A new catalog is managed for aggregates by the HSM system. Figure 2.21 illustrates this
solution.

HSMS

Catalog of ~ ~ Catalog of
Archive deflnltlons ~ L====ï) Aggregate objecta

<archive1>

c:archive2>

c:aggregate 1 >

c:aggregate2>

Fig 2.21. Special catalog for Aggregates

Part Two: Aggregate Concept for Storage Management 49

Advantage:
• the aggregate catalog is independent of other HSMS metadata. An upgrade to DMS

managed aggregates would be easier.

Disadvantage:
• the HSM system must manage a new catalog.

At this point, an independent catalog for aggregates is preferable. The aggregate metadata are
not mixed up with other metadata.

2.3.3. Availability management for aggregates

The main motivation for introducing the aggregate concept is to enhance the space and
availability management fonctions for related data objects. Questions are

1) which management attributes are needed for aggregates;
2) whether the management class concept is applicable to aggregates or not.

Space and availability fonctions are migration, backup and archiving. Automated backup
and archiving of aggregates are very interesting, whereas automated migration has no sense
because the migration criterion (i.e. inactivity delay) only works for data objects. Manual
migration is useful to send a whole application to a background level.

Interesting backup and archiving attributes are the same as those for data objects.

Backup attributes:
• automated backup of the aggregate: enable / disable switch;
• backup frequency: controls the selection for backup;
• guaranteed backup: forces a backup before manual migration;
• number of backups retained while the aggregate object exists;
• number of backups retained while the aggregate object is deleted;
• retenti.on period of a backup.

Archiving attributes:
• automated archiving of the aggregate: enable / disable switch;
• expiration date or expiration period: date of archiving;
• expiration period after archiving;
• maximum retention period.

The management class concept was introduced in section 1.2.3.2. A management class is
a pre-defined management policy within a SMS-Pool. It enables the storage administrator to
control the management policies allocated to data objects.

Part Two: Aggregate Concept for Storage Management 50

An extended management class concept is useful for aggregates. The differences are:

• The migration attributes are not needed for aggregates.
• Only the administrator of an aggregate really knows the management requirements.

Therefore the aggregate administrators should be able to create management classes
for aggregates.

• Aggregates are likely to be backed up towards private archives. The management
class has to mention which archive(s) should be used.

Aggregate object

: 1 Catalog Entry

: 1 Management Class

Set of aggregated

data objecta

Hierarchical Storage Manager

1 : [j]] Attrlbute I[r--.:.-=-~ _ex_tr_ac_to_r_ C==i
Management Classes

for Aggregates

Selectlon procedure

' ._j ----.--------.~ 1 Archlvlng 1

Fig 2.22. Management Class for Aggregate objects

The figure 2.22 shows a system-managed aggregate object. The management class for
aggregates describes its requirements in terms of backup and archiving.

For each aggregate object, the name of the allocated management class can be stored in
its catalog entry. So the catalog entries are extended, and contain:

• a field to store the name of the aggregate;
• a field to store the user-ID of the owner;
• a field to store a set of attributes (date of creation ...);
• a field to store the name of the management class for aggregates.

2.3.4. Linking data objects to an aggregate

The link to the aggregated data objects describes a collection of data objects. The
question of how to describe the collection is discussed in section 2.2.4.4 (Assignments).
Severa! solutions are reviewed. The proposed solution is to describe the set of data objects
with a list of include and exclude statements with full or partially qualified names, because it
defines a dynamic collection of objects.

Part Two: Aggregate Concept for Storage Management 51

Now the problem is how to store this information. Storage requirements are:
• the information must be stored in the SMS-Pool of the aggregate;
• there is no specific availability requirement. The link information is not critical,

because it can be saved in the backup session.

Two solutions are considered:

1) Extend the entries of the catalog of aggregates.

Considering the catalog of aggregates, the catalog entries are extended, and contain:

• the name of the aggregate;
• the user-ID of the owner;
• a set of attributes (date of creation ...);
• the name of the management class for aggregates;
• the list of Include and Exclude statements with full or partially qualified data object

names.

HSMS

Catalog of
Aggregate objecta

OMS

Catalog of
Data objecta

<.aggregate1> -+---~-----------.. <dat.aM>

<.aggregate2> <dataN>
._____.~ <dataO>

Fig 2.23. Extension of the catalog to store the link

Figure 2.23 illustrates the extension of the catalog entries. An aggregate catalog entry
contains the description of the set of aggregated data objects.

Advantages:
• the HSM system manages all aggregate metadata in a single catalog.

Disadvantages:
• the catalog of aggregates is likely to grow very fast;
• the catalog of aggregates is located on a highly reliable device. The link doesn't

require this service level.

2) Use a file of the DM system.

An easy solution is to use the concepts already managed by the system. The information
can be stored in a data object (a sequential file), and cataloged in the Data Manager catalog
under the same name as the aggregate name.

Part Two: Aggregate Concept for Storage Management 52

HSMS DMS
1

Catalog of
1

Catalog of
Aggregate obfects

1

Data objecta

<aggregalB 1 > • sameJ"ame .. <link_agg1>

<aggrega1B2> <dalaA>

Fig 2.24. Link via an associated DMS file

Figure 2.24 illustrates this solution. Each aggregate has an associated DMS file. The
aggregate and the file have the same name. The link is indirectly available through the DMS
file.

Advantage:
• the catalog of aggregates is not extended;
• the file storing the link can be allocated on a more suitable device.

Disadvantage:
• the aggregate metadata is indirectly available.

At this point, the link stored in an associated file has more advantages. The catalog of
aggregates is not overloaded, and a sequential file is easy to manage.

2.3.5. Linking save-files to an aggregate

The backup and archiving copies (i.e., the save-files) of an aggregate must be related to
the aggregate.

For data objects, this is done via the archive directories. For each archive, the associated
archive directory contains the list of names of data objects which are saved in the archive. An
entry in the directory stores the following fields:

• name of data object;
• list of [save-file-ID].

For a given data object, the archive directory gives the list of save-files that contain a copy of
the object. This information is on-line.

Part Two : Aggregate Concept for Storage Management 53

Previous topics imply new requirements for aggregates:

• Archives are sharable, and save-files can contain a collection of individual and
aggregated data objects. The problem is to recognize aggregated data objects from ail
the objects saved in a save-file. Aggregate objects only include a list of partially
qualified names of data objects. The link to the set of aggregated data objects is not
sufficient to recognize the objects.

• The aggregate object could be unknown in the target SMS-Pool, either because of
deletion or because of a disaster recovery on a new system. In addition, an aggregate
object is very likely to be modified as time goes by. Therefore

• the archive directory must be able to store several versions of the same aggregate;
• enough components of the aggregate object must be included in a backup or

archiving copy, to allow disaster recovery. The link file must be included in the
copy.

Proposed solution:

A new type of entry is introduced in the archive directory. The content of the entry is:

• A-type : type of entry (Aggregate);
• <aggregate-lD>: owner and name of the aggregate;
• list of [save-file-ID; list of [data object name]].

Archive dlrectory

<Aggregate_entry>

<Aggregate _ entry>:

t aggregate-1D;

list of [save-file ID; list of

(data abject name)).

Archive

link-file
data_object1
data_object2
data_object3
data_ object4

Fig 2.25. Aggregate metadata

Figure 2.25 illustrates the solution. For a given aggregate object, the archive directory stores
the list of save-files that contain a copy of the aggregate. With each save-file, it also gives the
list of data objects saved under the aggregate. To comply with the disaster recovery
requirement, the associated DMS file storing the link is added to the save-file.

Part Two: Aggregate Concept for Storage Management 54

2.3.6. Aggregate operations

Two types of aggregate operations have to be defined: aggregate management fonctions
and aggregate commands.

1) Aggregate management fonctions

Aggregate management fonctions deal with the processing of the aggregate object itself,
without the aggregated data objects. Operations include:

• Create an aggregate object: the user must suppl y
• the name of the new object;
• the name of a management class;
• a sequence of include and exclude statements to describe the set of aggregated

data objects.

This operation creates a new entry in the catalog of aggregates and a new DMS
file, both stored under the same name. The user's user-ID, the aggregate name and the
management class name are stored in the catalog entry. The sequence of statements is
stored in the DMS file.

• Modify an aggregate: the owner can modify any component of the aggregate.

• Delete an aggregate: the owner can delete an aggregate. This deletes:
• the entry in the catalog of aggregates;
• the associated DMS file.

This operation doesn't delete the aggregated data objects.

• Test an aggregate: the owner can test an aggregate to ensure that ail the related data
objects are really included in the aggregate.

2) Aggregate commands

Aggregate commands deal with the processing of the aggregated data objects.
Operations are supported in the frame of the HSM system, namely:

• Backup of an aggregate: the owner can issue an aggregate backup command, or the
system can start an automated backup task (defined by the management class). The
backup task receives as parameters the name of the aggregate and the name of the
archive, and performs the following operations:

(1) read the aggregate's entry of the catalog of aggregates;
(2) verify that the owner of the aggregate is the user who issued the command;

if not, stop the backup task.
(3) read the link file of the aggregate;
(4) build the complete list of data objects, by consulting the DMS catalogs and

the link statements;

Part Two : Aggregate Concept for Storage Management 55

(5) add the associated link file to the list;
(6) test if the aggregate has an entry in the archive directory. If not, create one;
(7) create a new save-file, and add the save-file-ID to the archive directory

entry of the aggregate;
(8) For each data object on the list, do

(1) if the user-ID has no Aggregate-Administration privilege, verify that
the user is the owner of the data object. If not, skip this object;

(2) perform a normal backup of the data object;
(3) add the name of the objects to the archive directory entry.

The normal backup of data objects (operation 8.2) ensure that they can be restored
individually at the data object level (compatibility requirement). Backups made for
disaster recoveries must include a copy of the archive directory. The directory is
needed for the restore process.

• Restore of an aggregate: the owner can issue an aggregate restore command. The
restore task receives as parameters the name of the aggregate, the name of the archive
and the save-file-ID, and performs the following operations:

(1) open the archive directory entry of the aggregate, and read until the
requested save-file-ID is reached;

(2) continue reading the archive directory entry, and for each name, do
(1) if the user-ID bas no Aggregate-Administration privilege, verify that

the user is the owner of the data object. If not, skip this object;
(2) restore the data object;

(3) if the aggregate is not cataloged in the catalog of aggregates, create an
entry with the user-ID of the user who issued the command, the name of
the aggregate, and a default management class.

Note that the link file is automatically restored with the aggregated data objects.
In case of disaster recovery, the archive directory must be restored before the
aggregate restore process can take place.

• Archiving of an aggregate: the owner can issue an aggregate archiving command, or
the system can start an automated archiving task (defined by the management class).
The archiving task performs the same operations than the backup task, except that the
data objects are archived.

• Migration of an aggregate: the owner can issue an aggregate migration command.
The migration task performs the same operations than the backup task, except that
the data objects are migrated to a background level.

• Recall of an aggregate: the owner can issue an aggregate recall command. The recall
task moves all the migrated data objects to the processing level of the HSM system.

• Show archive contents: the owner can issue a query to display archive informations
over the aggregate, like the save-file-ID's or the list of aggregated data object, etc.

Part Two : Aggregate Concept for Storage Management 56

2.4. Conclusion

The system-managed storage concepts introduced in Part One don't guarantee the
consistency of related data objects. Data objects are viewed and managed as independent
objects.

The aggregate concept aims to collect under a single name any set of semantically related
data objects and their associated management metadata.

The aggregate object is an implementation of the aggregate concept. It is a new object
managed by the HSM system, and has four components:

• an entry in the catalog of aggregates, which is managed by the HSM system;
• a management class;
• a link to the set of aggregated data objects;
• a link to the set of associated save-files.

Two classes of operations belong to the aggregate object:
• aggregate management functions involve the processing of the aggregate object itself,

lik:e create, modify, delete an aggregate;
• aggregate commands involve the processing of the set of data objects that are

collected under the aggregate, like backup, restore, archiving of an aggregate.

The aggregate objectas integrated in chapter 2.3 complies with the user-related and HSMS
related requirements:

A 1. Any user must be able to create aggregate objects. The owner of an aggregate must be
able to modify or delete it.

The creation function is available to any user. The owner-ID is stored in the catalog
entry of the aggregate. The HSM system can verify if a user is the owner or not.

A2. The user who created an aggregate object must be the owner of the object and its
administrator.

The owner can allocate a management class to the aggregate.
A3. The aggregate object must be able to meet any application topology.

The Aggregate-Administration privilege gives to selected users the rights to access
data objects saved under other user-lD's. These users are called Aggregate
Administrators.

A4. The aggregate object must ensure the confidentiality of the aggregated data objects.
The Aggregate-Administration privilege is only granted to selected user-ID's.
Ordinary users can't have access to data objects of other users.

A5. The aggregate object must offer efficient availability functions, and provide for disaster
recoveries.

The owner can allocate a management class to the aggregate. A new entry type is
introduced for aggregates in the archive directories, and the save-files are able to store
aggregated data objects. Enough metadata can be included in the save-files to provide
for a dis aster recovery.

Bl. The aggregate concept must comply with the HSM concepts.

Part Two: Aggregate Concept for Storage Management 57

The aggregate concept doesn't enforce any restriction on the HSM concepts.
B2. A maximum of compatibility and flexibility must be ensured between aggregate-level

management and the traditional management at the level of the data objects.
Aggregate-level management implies a traditional management of all the aggregated
data objects. Additional metadata is included to be able to restore the data objects as
one aggregate. For example, the backup process of an aggregate implies the normal
backup of all the aggregated data objects, includes the backup of the link file, and
updates the aggregate entry in the archive directory. A backup session can include
aggregate objects and individual data objects.

B3. The aggregate must fit in the SMS-Pool topology.
The aggregate object and its related metadata are local to a SMS-Pool.

B4. Aggregates must be safe against device crashes, to ensure recovery.
The catalog of aggregates is stored on a high availability device.

The aggregate object provides system-managed and aggregate-level storage management
fonctions.

Future developments:

The aggregate concept could be introduced in the Data Management System. First, the
DM system could provide aggregate commands like copy of an aggregate or delete of an
aggregate. Tuen any other sub-system could provide aggregate commands.

The aggregate concept could be very usefol in distributed environments. Trends for
distributed applications make consistent backups quite difficult. A first step solution consists in
the backup server concept: a machine acting as a server is able to perform backup and restore
fonctions for all the LAN-based workstations. An extended aggregate concept could collect
under a single name a set of related data objects residing on several distributed workstations,
and offer aggregate-consistent backup and restore fonctions.

Part Two : Aggregate Concept for Storage Management 58

Bibliography

(1) Siemens Nixdorf lnfonnationssysteme, Hierarchical Storage Management System,
internai documents of Siemens Nixdorf Software.

(2) Siemens Nixdorf lnformationssysteme, Data Manager System, internai documents of
Siemens Nixdorf Software.

(3) Siemens Nixdorf lnformationssysteme, System Resources and Privilege Management,
interna! documents of Siemens Nixdorf Software.

(4) "Getting to Grips with Archives", Siemens magazine COM, June 1989.

(5) IBM, MVS/DFP V3 R3 General Information, GC26-4552-3.

(6) J.P. Gelb, "System-managed Storage", IBM Systems Journal, 1989 Vol 28, No 1, pp
77-103, 0321-5349.

(7) W.B. Harding, C.M. Clark, C.L. Gallo, H. Tang,
"Object Storage Hierarchy Management", IBM Systems Journal, Vol 29, No 3, 1990,
pp 384-397, 0321-5407.

(8) R.C. Alford, "Disk Arrays Explained", BYTE magazine, October 1992, pp 259-266.

(9) J.P. Cardinael, course on "Gestion des Ressources Informatiques", FUNDP Namur,
1993.

(10) Richard E. Matick, "Computer Storage Systems and Technology", Wiley-Interscience
publication, New York (USA), 1977, ISBN 0-471-57629-8.

Bibliography 59

Appendix A:

The 8S2000 environment

This appendix presents an overview of the SNI BS2000 mainframe environment. This
overview is not an exhaustive description of the BS2000 system. It only introduces the
concepts that could help the reader to understand the issues of this paper.

BS2000 is a large operating system that includes a set of mandatory systems and a set of
optional sub-systems. Two systems are concerned by this study: the Data Management System
and the Hierarchical Storage Management System.

Data Management System (OMS)

The Data Management System is a mandatory system. It deals with the task of storing,
organizing, identifying and retrieving data objects. Data objects are mainly files and job
variables. Data objects are listed in DMS-Catalogs. The storage space is implemented by disk
storage organized in pubsets. A pubset groups a set of disks.

Hierarchical Storage Management System (HSMS)

The HSMS product is an optional system. It provides space and availability management
functions in a BS2000 system. The HSMS relies on a set of management functions provided by
the ARCHIVE product. The main concepts are reviewed.

Logical storage levels:

The HSMS supports the definition of three logical storage levels:

• storage level O (SO) is the normal processing level. It is implemented by fast, on
line pubsets. SO is managed directly by the Data Management System.

• storage level 1 (Sl) is the first background level. It is implemented by on-line
pubsets. Data stored on storage level 1 is managed by the HSMS.

• storage level 2 (S2) is the second background level. It consists of magnetic tapes
or magnetic tape cartridges. Data stored on storage level 2 is managed by the
HSMS.

Appendix A : The BS2000 environment 60

HSMS archive

The archive is the basic HSMS management unit. HSMS stores and manages ail data
saved by either backup, archiving or migration in archives. An archive has a type and is
dedicated to one of the three fonctions.

Each HSMS archive consists of
• the archive definition: stored in the control file, contains

• the owner of the archive;
• the type;
• the name of the associated archive directory;
• other attributes.

• an associated archive directory: contains informations about the data managed
in the archive, like:

• names of data objects;
• save-file-lD's;
• save-versions;

• a set of save-files: A save-file is a cataloged DMS file, and contains the saved
data. A save-file contains one or more save-versions. A save-version contains ail
the data and related metadata saved by one request. A data object can be saved
only once in a save-version.

HSMS

Control FIie

<archive1_def>
~ archlve1_dlrectory <archive2_def>

~ ...
<data_object1>

~
~

<data_ object2>

Q <other_info> .. . J

- save-files

Fig A.1 Archive Data Structure

Figure A.1 illustrates the archive data structure. Figure A.2 illustrates the structure of a
save-file and save-versions.

Archive

'

□□·--
'
' Dl[) 1 1 [) 1 D ' data data
'
' head save-version1 save-version 1
'
• Header save-flle N save-flle N+ 1

Fig A.2 Structure of a save-file with several save-versions

In addition, the HSMS provides default system archives for each of the three fonctions.

Appendix A : The 8S2000 environment 61

Fonctions

The HSMS supports migration, backup, archiving within a BS2000 system, and data
transfer between different BS2000 installations.

Migration is the process of moving inactive data from the processing level to a
background level. The migrated data is moved to a migration archive and the storage space it
occupied at the processing level is released. However, the catalog entries of migrated files are
retained at the processing level. When an attempt to read a migrated file is made by the DMS,
the file is automatically recalled to the processing level.

Backup is the task of making or updating copies of the data inventory. In case of f ailure,
the data can be recovered from the latest backup copy. The HSMS supports full backup,
incremental backup and partial backup.

Archivai is the long-term saving of files that are no longer required to cost-effective tape
cartridges at level S2 of the storage hierarchy.

Data transfer allows to copy data objects on magnetic support and to read them on
another BS2000 installation.

System Privilege

The System Resource and Privilege Management (SRPM) provides a special HSMS
privilege: the HSMS-Administration privilege. The users granted with this privilege have the
following rights:

• They have complete access to the HSM system. They can tune all the HSMS
parameters.

• They have comprehensive access to ail the data objects stored by the DMS. This
allows them to run complete system backups.

Ordinary users have restricted access to the HSMS. For example, they can issue a
backup command over their own data objects.

Appendix A : The BS2000 environment 62

Appendix B:

Example of a HSMS-8S2000 installation

Computer installations and storage capacities are confidenrial data. However, thanks to
their kind permission, here are some figures from the computer center of SNI Namur.

The BS2000 environment includes the HSMS product. Only two logical storage levels
are defined:

• storage level 0: the processing level implements about 19 Gigabytes of fast on-line
disk devices.

• storage level 2: the background level implements an automated library of magneric
cartridges (robot tower). Each cartridge has a capacity of about 800 Megabytes.

Storage level 1 is not defined. More interesting are the backup policies:

• every day: incremental backup of all the modified files
• retention period: 14 days kept in the robot tower;
• rime needed: 1h00;
• tapes needed: 10 cartridges.

• every week: full backup of ail files
• retention period: 14 days kept in the fireproof cellar;
• rime needed: 2h30;
• tapes needed: 35 cartridges.

• every 2 weeks: full backup of all files
• retention period: 150 days kept in the robot tower;
• rime needed: 2h30;
• tapes needed: 35 cartridges.

• every 2 weeks: physical save of ail the disks;
• retention period: 30 days kept in the fireproof cellar;
• time needed: 2h30;
• tapes needed: 45 cartridges.

The need for the migration fonction is not high. Therefore migration is poorly used.

Appendix B: Example of a HSMS-BS2000 installation 63

