
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Introduction to Directory Services

Heuse, Bernard

Award date:
1989

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/introduction-to-directory-services(e8f68d44-850d-4716-a6fa-9ee6d09e695f).html

Facultés Notre Dame de la Paix, Namur
Institut d'informatique

Année académique 1988-1989

Introduction to

Directory Services
Bernard Heuse

Promoteur : Philippe van Bastelaer

Mémoire presenté en vue de l'obtention
du titre de licencié et maître en informatique

Abstract

The Directory has grown to be an important OSI application as it acts as a focal point
and general support for a number of other applications.

This work first points out directory requirements in the OSI framework and other OSI
applications, as the Mail Handling System.

The first version of the X.500 standard is then described and some Directory related
issues are discussed. In particular, the X.500 Directory as a database system is examined
and some directory service implementations are presented.

Keywords: Directory, X.500, route, routing, address, addressing, name, naming,
database, distributed system.

Condensé

Le 'Directory' s'est imposé comme étant une application OSI stratégique, puisqu'elle
fournit un point de convergence et un soutien pour un certain nombre d'autres
applications.

Ce travail met d'abord en évidence les besoins en répertoires dans le cadre de OSI et
d'autres applications, tel le 'Mail Handling System' (le service de messagerie
électronique).

La première version du standard de Service de Directory', X.500, est décrite.
Quelques sujets relatifs aux répertoires sont ensuite abordés. En particulier, le Directory
X.500 est examiné du point de vue des systèmes de base de données, et quelques
implantations de services de répertoires sont présentées.

Mots-clés: Directory, répertoire, X.500, route, routage, adresse, adressage, nom,
nommage, base de données, système distribué.

Acknowledgements

The realization of this work follows a six month traineeship at the European
Organization for Nuclear Research (CERN). I would like to thank Professor Philippe van
Bastelaer who trusted me and gave me the opportunity to live this experience. With great
attention did he also supervise the redaction of this dissertation.

I would like to thank people and friends met at CERN, who welcomed me and helped
me in the sometimes difficult moments of this period. I think particularly to Concepcion
Merino, Ann-Kari Amundsen, Hanne Evensen, Simon Jaffer and Andy Bloor.

Maria Dimou, Tor Bothner and Denise Haegerty guided me, and together with Frederic
Hemmer and people of the Communication and Software groups helped me to understand
more about E-Mail and other things which are not always easy to learn at University.
Maria Dimou is also the main source of information for this work.

Other staff members at CERN helped me one way or the other. In particular, François
Fluckiger, Brian Carpenter, Marie-Therese Monnet and people of the User Consultancy
Office.

Special thanks to Claire Bawin who kindly read and commented this study.

Introduction to Directory Services Table of contents

Table of Contents

Table of Contents ... I

Intrcx:luction . 1

Part 1 Directory Needs .. 3

1. About Names, Addresses and Routes 4
1.1. Names and Aliases ... 4
1.2. Addresses ... 6
1.3. Routes ... 8

2. Directory Needs in the OSI Reference Model. 10
2.1. The OSI reference model.. 10

Naming, Addressing and Routing 10
The three OSI fonctions 11

2.2. Use of the OSI reference model. 14
2.2.1. The upper level layers 14

Addresses .. 14
Names .. 15
Routes .. 16

2.2.2. The problem of the network routing fonction 17
The problem of internetworking 17
The ECMA solution 18
Difficulties of the ECMA solution 20
The IP approach 21
Directory needs in the IP approach 22

2.2.3. The lower level layers 23

3. Directory Needs in the Mail Handling System 24
3. 1. The Mail Handling System fonctional model 24
3.2. Naming and Addressing 25

Directory Names 26
0/R Names .. 26
0/R Addresses 26
Name resolution 26

3. 3. MHS use of Directory Services 27
User-friendly naming 27
Distribution Lists 27
Recipient UA capabilities 28
Authentification 28

3.4. Further use ofDirectories in the MH Environment 28
3 .4 .1. Information Service 28
3.4.2. Routing .. 29

Classification ofE-Mail Systems 29
X.400 .. 30
MTA Naming .. 31
Functions required for routing in X.400 31

3. 5. Analogy with the OSI reference model. 31

- I -

Introduction to Directory Services Table of contents

4. Other Directory Needs .. 33
4.1. Distribution Lists .. 33
4.2. Applications needs .. 34

4.2.1. FTAM needs .. 34
FT AM Functional Model.. 34
Directory needs 35

4.2.2. MTS needs .. 36
4.2.3. Future Needs .. 36

4.3. General and generic Directory Service functions 36

Part 2 The X.500 Directory Service .. 38

5. Models and Concepts ... 40
5. 1. Functional Model ... 40
5.2. The Directory Information Base 41
5. 3. The Directory Information Tree 42
5.4. Directory Entries and Attributes 43
5.6. Naming ... 44
5. 7. Directory Schema ... 46

5. 7 .1. DIT Structure Definitions 47
5. 7. 2. Object Class Definitions 48
5. 7. 3. Attribute Type Definitions 48
5. 7 .4. Attribute Syntax Definitions 49

5. 8. Access Control .. 50

6. Directory Abstract Service Definition 52
6.1. The Client-Server Model. 52
6.2. Layered Model of the Directory System 54
6. 3. Directory ports and services 55
6. 4. Common Operation Parameters 56

Service Controls 56
Security parameters 57
Other Common Arguments 58
Other Common Results 58
Entry Information Selection 58
Entry Information 58
Filter .. 59
Error reports ... 59

6. 5. The Abstract Service Operations 60
6.5.1. Directory BIND and UNBIND operations 60

Bind operation 60
Unbind operation 61

6. 5. 2. Directory READ operations 61
Read operation 61
Compare operation 61
Abandon operation 62

6.5.3. Directory SEARCH operations 62
List operation .. 63
Search operation 63

6.5.4. Directory MODIFY operations 64
Add-Entry operation 64
Remove-Entry operation 65
Modify-Entry operation 66
Modify-RDN operation 67

- II -

Introduction to Directory Services Table of contents

7. The
7.1.
7.2.
7.3.

7.4.

7.5.

Distributed Directory ... 68
The Distributed Directory System Model 68
Directory Distribution .. 69
DSA interaction rnodel ... 71
7 .3.1. Chaining ... 71
7 .3.2. Multicasting ... 71
7 .3.3. Referral .. 72
7 .3.4. Mode Determination 72
Knowledge .. 73
7.4.1. Minimal Knowledge 73
7 .4.2. Root Context .. 74
7.4.3. Knowledge References 75

Interna! Reference 75
Subordinate Ref erence 7 5
Non-Specific Subordinate Reference 75
Superior Reference 75
Cross Reference 76

7.4.4. Knowledge Administration 76
The Distributed Directory Operations 76
7. 5 .1. DSA-Bind and DSA-Unbind operations 7 6
7 .5.2. Other Distributed Operations 77
7 .5.3. Distributed Operation Arguments 78
7.5.4. Distributed Operation Results 79

Part 3 Directory Issues ... 80

8. X.500: Difficulties and Shortcomings 81
8.1. TR/32 ... 81

Similarities with X.500 81
Replication and Distribution 82

8. 2. Evolution of the Directory Standardization 83
8.3. X.500 Difficulties and Shortcomings 84

Distribution .. 84
Replication ... 85
Access Control 85
Schema ... 85
Knowledge .. 85
Charging and Accounting 85

9. The X.500 Directory as a Data base System 87
9 .1. Database Modelisation of The Directory 88
9.2. The Global Conceptual Schema 89
9. 3. The Local Level Schemata 90
9.4. Mapping .. 92
9. 5. Metalnf ormation .. 93

1 O. The RARE Directory .. 94
10 .1. The need for Directory Services 94
10.2. Network Addresses ... 95
10.3. Application Entity Titles .. 97
10.4. The Proposed Interim Name Structure 98
10.5. Sorne Restrictions to the general X.500 name Structure ... 99

11. Directory Service lmplementations 101
11.1. QUIPU ... 101

Design Princip les . 101
DSA database 102
Access Control 102
Schema ... 103
Distributed operations 103

- III -

Introduction to Directory Services Table of contents

Other characteristics . 103
11.2. THORN .. 103

Design issues 104
IBORN features 104

11.3. The Janet NRS .. 105
Names .. 105
Information update and distribution 105
Mappings ; 105
Characteristics 106

11.4. The ARPA Domain Name Service 106
Nam.es .. 106
Information distribution and update 106
Functions , .. , .. 107
Characteristics.... 107

11.5. The EARN NetServ .. 107
File Server. 108
Node Management. 108
User Directory Service . 108
Access to NetServ 108
Characteristics 108

Part 4 Directory Seivices at CERN ... 110

12. EMNODES ... 111
12 .1. The database and the provided service. 111
12.2. Definition of the new service 111
12.3. Technical analysis and adopted solution 112

Programming Language 112
Level of Service. 113
E-Mail Address 113
User Interface 114
Implementation... 115

12.4. The future of EmNodes 116

13. The EMDIR NameServer ... 117
13 .1. The database and the provided service. 117
13.2. Definition of the new service 117
13.3. Technical analysis and adopted solution 118

Remote Procedure Calls 118
Message Syntax 118
Implementation.. 119
Evaluation .. 120

13.4. ThefutureoftheNameSeiver 120

14. AutoRouter ... 121
14.1. Definition of the new service 121
14.2. Technical analysis and adopted solution 121

Principle of the Solution 121
Implementation 122

14.3. EmDir issues .. 123
Sorne Decisions 123
Security and Reliability 123
Matching Emdir entries and E-Mail Addresses 124

14.4. The future of the AutoRouter 124

Conclusions ... 126

-IV -

Introduction to Directory Services Table of contents

Annexes .. 129

Annex A : The Network Address Format. Al
A.l. ISO 8348/DAD 2 ... Al
A.2. Topologie al example ... A2
A.3. ECMA-117 ... A3
A.4. The X.121 Addressing Scheme A4
A.5. The ISO-DCC A~dressing Scheme A5

Annex B : Distributed Operation Procedures B 1
B .1. DSA Behavior .. B 1
B.2. Managing Distributed Operations B2
B.3. DSA Procedures ... B3

The Operation Dispatcher B3
Name Resolution B4
Evaluation ... B4
Results Merging B4

B.4. Specific Operations .. B4
Single-Object Operations B5
Multiple-Object Operations B5
Abandon Operation B5

Annex C : EmNodes ... Cl
Screen of the EmNodes user Interface C2
Result of the query ... C2

Annex D : Code of the NameServer Dl
Example of message request sent to the NameServer D2
NameServer reply message ... D2

Annex E: Code of the AutoRouter ... El
Emdir.pol. .. E2
Example of message rejected by the AutoRouter E4
Example of message routed by the AutoRouter E4

Annex F :List of Abbreviations ... Fl

Bibliography .. Biblio I

- V -

Introduction to Directory Services Introduction

Introduction

The Directory has grown to be perhaps the most important OSI application as it acts as
a focal point and general support for a number of other applications. It is urgently needed
in both public and private Message Handling Systems. ln the public sector, ail current
telematic services and the telephone service will be using the Directory as an alternative
and, in the longer run, as a replacement for paper directories. ln the private sector, a
number of future application standards, as Fr AM, will make use of the Directory.
Directory services are also required for routing fonctions, both in the Mail Handling
System and, at a lower level, in networking activities. Last but not least, it is planned that
OSI management standards will use the Directory to store management information.

This all point to an urgent need for Directory implementations. Applications will
benefit from having a standardized multi-purpose Directory rather than specific tailor
made versions which are different from supplier to supplier, and hence unreachable
unless the customer has installed the proprietary access protocol.

The Directory standardization process started in 1984. ln 1988, a first Directory
standard, known as the X.500 Directory Service, was jointly released by the ISO and
CCITT standardization organizations. The X.500 Directory Service provides for
accessing, browsing and maintaining a large database distributed over an OSI network,
ant to which users are given remote access using OSI.

This work is an introduction to Directory Services. The first part aims to point out
directory needs. Chapter 1 introduces the concepts of name, address and route. This will
help to understand the next chapters. Chapter 2 describes needs of directory fonctions in
the OSI reference mode! and in real systems. ln particular, the need of directory services
at the OSI network level is discussed. Requirements for Directory services in the Mail
Handling System are examined in chapter 3, and chapter 4 mentions further needs for
various other applications.

The second part introduces the X.500 Directory Service, as described in the
standardization documents. Chapter 5 presents the models and concepts of the X.500
Directory. The abstract Directory Service is described in chapter 6, and the way Directory
distribution and the Directory distributed service are achieved is examined in chapter 7.

The third part discusses some directory related issues. Chapter 8 presents TR/32, the
ECMA Directory, and points out some shortcomings of the X.500 Directory. Chapter 9
considers the X.500 Directory as a database system and examines how a classical
database structure can be mapped onto the X.500 Directory structure. Chapter 10 presents
the RARE Directory, and chapter 11 describes five directory service implementations.

The fourth part describes the directory services implemented at the European
Laboratory for Particle Physics (CERN), where the author followed a traineeship and
upgraded two directory services relative to Electronic-Mail. EmNodes, discussed in
chapter 12, is a directory of E-Mail nodes, whilst EmDir, described in chapter 13, is a
directory ofE-Mail users. The 'AutoRouter' described in chapter 14 is a new service
based on EmDir which allows to use more user-friendly E-Mail addresses.

- 1 -

Introduction to Directory Services Introduction

Annex A presents the network address format as standardized by ISO and
recommended by ECMA. Annex B discusses how distributed operation procedures can
be implemented in the distributed environment of the Directory. Annex C show the user
interface developed for EmNodes, and annexes D and E contain the listings of the set of
programs described in chapters 13 and 14. A list of abbreviations used throughout this
study can be found in annex F.

- 2 -

Introduction to Directory Services Directory Needs

Part 1 Directory Needs

This first part airns to point out directory needs in telecommunication systems, and in
particular in the Open System Interconnection (OSI) framework.

The need for a Directory Seivice arises from the contrast between the constant change
of an OSI network as a whole, and the need to isolate (as far as possible) the user of the
network from those changes. Thus a user of the Directory Setvice is able to view the
network as a more stable entity than a network user who is nota user of the Directory.
For example, if the location of a resource in the network changes, then the user of that
resource will not be affected by that change, provided that a 'name' rather than the
physical location was used to reference the resource.

Another need for Directory Seivices arises from the desire to provide a more 'user
friendly' view of the OSI networks. For example, the use of aliases, the provision of a
yellow page seivice, etc ... help to relieve the burden of finding and using network
information.

After having introduced the concepts of name, address and route, directory needs in
the OSI reference model and the Mail Handling System will be examined. Further needs
are also mentioned in the fourth chapter.

- 3 -

Directory Needs About Names, Addresses and Routes

L About Names, Ad.dresses and Routes

This chapter takes up the concepts introduced in [Shock-78], [Tan-81] and [Huit-88].

Before beginning to speak about any kind of directory service, it is important to clarify
the differences between names, addresses and routes. While closely related, these three
concepts provide different fonctions in the telecommunication world.

In an extremely large definition, one could say [Shock-78]:
- the name of an object indicates what we seek,
- an address indicates where it is, and
- a route tells us how to get there.

1. 1. Names and Aliases

An object can be a person, a resource, a machine, a set of objects, a set of information
about an other object or anything else the user chooses.

A name is a symbol identifying an object in a certain world. To have such a property,
the same name must not be allocated to more than one object. It has to be unique in a
single world. Therefore, naming strategies have to be defined. Two of the most common
are described hereafter [Huit-88].

1) A central registration authority can be set up within a world, which will guarantee
the uniqueness of names. Before allocating a name to an object, the proposition has to be
submitted to the registration authority. The name will be refused if it is already used, or
accepted and added to the set of allocated names if it is not the case. This method is called
flat naming. It requires a central registration authority, and the procedure to allocate a
name may become heavy when the world contains many objects.

2) As a single authority for the whole world is not practical, hierarchical naming is
used. The name space is divided into domains. Object names are then composed of two
parts:

- A domain identifier (e.g. the domain name), and
- An identifying name within the domain.

The domain identifier is allocated by a central registration authority, but the procedure
is faster and easier as domains are far less numerous than objects.

Within a domain, an authority guarantees that the allocated names to objects are
unique. Domains can themselves be divided into subdomains by the domain authority, or
use a fiat naming scheme.

When the domain identifier is missing in a name, it can be defaulted to, for example,
the domain identifier to which the user which specified the name is linked. This has to be
done by a local process when names are specified.

An object can be identified by several names, i.e. different names can be allocated to
the same object.

- 4 -

Directory Needs About Names, Addresses and Routes

A name needs not to be meaningful to all users and needs not to be drawn from a
uniform name space. For example, the division of different domains into subdomains and
the subdomain name allocation can be done in accordance with diff erent independent
criteria, according to the different domain structures or local name syntaxes used in the
domains, and unknown from other users.

To be useful in a telecommunication context, a name has to be mapped into an address.
But the name has not to be bound to the address until the mapping tak:es place.

A name referring to an object may be disallocated. Thereafter, this object cannot be
anymore referred to with this name. The same name may be latter allocated to another
object, in which case it refers to the new object and not the old one.

An object may be located at several different addresses (e.g., an object representing a
person may have two telephone numbers, or two E-Mail addresses). The address or
addresses associated with a particular name may change over time.

The interest of referencing an object by a name rather than by its address is that names
are independent from the location of the objects, whilst addresses are not (an object
address may change over time).

An alias is an altemate name for an object. It's worthwhile to distinguish two kinds of
aliases, depending on the scope of their usage.

1) As previously stated, an object may have different names. It is the case if the same
object has to be referenced inside several domains, and has been allocated names by each
domain in order to facilitate object naming by users (see figure 1.1). Such names can be
potentially used by any user to refer to an object in the world, even if they will prefer to
use only one of them. These alias-names have thus a global scope.

2) The way to allocate names may lead to user-unfriendly names (complex hierarchical
name structure or meaningless names). A user (or a set of users) may wish to use a
synonym to refer to an object. This synonym is only significant for this user, as the same
symbol can be used by other users as synonym for other names. Such an alias has thus a
local scope. W e will call it a synonym.

In fact, a synonym does not directly refer to an object, but to the object name which
directly refers to the object. So a synonym to address mapping requires two steps:
- the synonym to object name mapping;
- the object name to address mapping.

The first fonction has to be provided locally by the user or a user's process.

- 5 -

Directory Needs About Names, Addresses and Routes

An example is illustrated in figure 1. 1.

0

Global Naming Context
(Names and Alias-Names)

Computer Center Department

User naming contexts
(Synonyms)

~ (CCD) naming subdomain

l__J~--+----L CCD-LP
ADD-MP
ADD-LP SmartPrinter

~~· =·~

*

Laser Prin ter

John's naming context

DraftPrinter
SmartPrinter

Figure 1.1 : Alias-names and synonyms.

In the above schema, the laser printer * may be referred to as "ADD-LP" in the
CCD subdomain naming context, as "LaserPrinter" in the ADD subdomain naming
context, and as "LP-34303" in the EQD subdomain naming context. If it is assumed
that hierarchical naming is used and that global names are the concatenation of the
object name in a subdomain and the subdomain name separated by a dot, ail the
names "ADD-LP.CCD", "LaserPrinter.ADD" and "LP-34303.EQD" globally refer to
the laser printer *· From the Computer Center Department point of view, both
"LaserPrinter.ADD" and "LP-34303.EQD" are alias-names for the object it refers to
as "ADD-LP". For John, "SmartPrinter" refers to the laserprinter *, while for Andy,
"SmartPrinter" refers to the laser printer 0 • Both are synonyms used to refer the
objects respectively globally known as "LaserPrinter.ADD" and "CCD-LP.CCD".

1. 2. Ad dresses

An addres.s is a data structure whose format has to be recognized by ail the elements
responsible for communications, and which defines an addressable object.

As an address is designed to locate an object within a world, it must be meaningful to
these elements throughout the world, and must thus be drawn from some uniform address
space.

This address space may be a flat one which spans the entire world (such as Ethernet
addresses), or it may be a hierarchical address space (such as telephone numbers).
Address assignment may be done in the same way as name allocation.

An object may be located at several different addresses (e.g. a person may have two E
Mail addresses).

-6-

Directory Needs About Names, Addresses and Routes

To enter in communication with an object, the object name has to be mapped into an
address. If the name to address mapping has produced several different addresses for a
particular object, some form of information may prove useful in selecting a preferred
address.

In the case of alias-names, the alias-name to address mapping can be proceeded in two
ways:

1) If the addresses of an object are associated to every of its alias-names, there is no
difference between a name and an alias-name. The alias-name to address mapping is thus
quite simple: a name to address look:up in some kind of directory is enough to find the
address or addresses of the object the name refers to. But a problem arises when one of
the addresses of the object changes. We have to change the mapping function (the
directory) for every name or alias-name referencing to the object. This can be difficult as,
usually, an object does not point to all of the names referencing it.

2) In order to solve this problem, we can allocate a base-name to an object The
addresses of the object are only associated to this base-name. Alias-names refer to the
base-name of the object. When an address is updated, the mapping fonction has to be
only changed for the base-name. Alias-names can not be directly mapped into addresses.
The address mapping fonction is a little bit more complex: it has to detect and dereference
alias-names. Usually, we will only have one indirection, e.g, no alias-names for alias
names.

An example is illustrated in figure 1.2.

Case 1

Printer Name : ADD-LP.CDD
Location : Off. 343

Printer Name : LaserPrinter.ADD
Location : Off. 343

Printer Name : LP-34303.EQD
Location : Off. 343

Case2

Printer Name : ADD-LP.CDD
Alias for : LP-34303.EQD

Printer Name : LaserPrinter.ADD
Alias for : LP-34303.EQD

Printer N ame : LP-34303.EQD
Location : Off. 343

Figure 1.2 : Alias-name to address mapping.

All entries refer to the same printer object whose address is 'Off. 343'. In case 1,
access to the address from the name is direct, but when the printer moves to another
office, three entries have to be updated. In case 2, "LP-34303.EQD" is the base-name
of the printer while "ADD-LP.CDD" and "LaserPrinter.ADD" are alias-names for this
printer. When the printer moves, only one entry has to be updated (the one
corresponding to the base-name), but access to the address is indirect if the object has
been referred to by an alias name.

At the time one wishes to communicate with a particular address, there will be some
mechanism that will map an address into an appropriate route.

The address need not to be bound to the route until this mapping takes place. The
choice of an appropriate route may change over time.

- 7 -

Directory Needs About Names, Addresses and Routes

The interest of locating an object with an address rather than with a route is that a path
is obviously depending on the origin as well as on the destination, and that a route may
change over time, depending on the availability of the intermediate switching points.

1.3. Routes

A route is a specific information needed to reach an object at its specified address
from a given location.

The routing action may require only one step to reach a destination (a direct route), or it
may require a series of steps in order to forward the information on its way.

Where there is merely one hop in a simple topology, the routing decision is usually
straightforward. The routing information can only consist of the destination address, and
the address to route mapping fonction is useless.

When the path to an address requires several steps, the route defines a path through
intermediate switching points. In some cases, several routes are possible to reach a
particular address.

In categorizing routing mechanisms, one dimension is the place at which each
intermediate routing decision is taken [Shock-78]:

1) The source may specify all of the intermediate routing decisions, and include this
information along with the data being sent (source routing). The source must have fairly
comprehensive information about the environment, but the switching points do not need
to maintain routing tables.

2) Altematively, the source may only specify the destination address, and the
intermediate switching points choose the next portion of the route (hop-by-hop routing).
In this case, the source only needs enough information to reach the first switching point,
but each of the switching points must then have a routing table of some sort.

3) There may be hybrid routing combining these two, in which the source specifies
certain major intermediate points, but allows the underlying system to choose routes
between those points.

A second dimension of the routing mechanisms is the time constant of the information
upon which the routing decisions are based, i.e. when that information is specified, and
how frequently it is modified [Shock-78]:

1) Routing tables may be set once, left unchanged for a relatively long period of time,
and only changed to reflect major modifications to the system (fixed routing).

2) Altematively, routing tables may be updated relatively frequently, reflecting shorter
term changes in the environment (dynarnic routing).

- 8 -

Directory Needs About Names, Addresses and Routes

If there is a dynarnic routing system, providing periodic updates of appropriate
information, a third dimension of the routing process is the control mechanism [Shock-
78]:

1) Individual switching points may try to update their information in an isolated
manner, e.g. by periodically trying various routes and observing performances.

2) Changes in the environment, connectivity or performance may all be reported back
to a central point, which is responsible for promulgating this information to the sources (if
source routing is used) or to the switches (if hop-by-hop routing is used).

3) Altematively, control of the dynarnic update process may be distributed among all
the sources or switches, which individually obtain information about the state of the
system.

Thus, a name may be used to derive an address (by a local process which has to enter
in communication with an object), which may then be used to derive a route (by the
system which is responsible for the communication to take place).

Note that a route can be the name or the address of an object (e.g. of a switching point
or of the destination object), and that an address can be used as a name if one and only
one object is located at this address.

- 9 -

Directory Needs Directory Needs in the OSI Reference Model

2 Directory Needs in the OSI Reference Model

After having briefly described it, the first section points out directory requirements
raised in the OSI reference model. The second section discusses directory needs in real
systems. In particular, requirements for directory services for routing at the network level
is examined.

2 . 1. The OSI ref erence model

This section takes up the concepts relative to naming, addressing and routing described
in the OSI reference model [ISO-7498].

Naming, Addressing and Routing
An Entity is an active element in an open system.

An entity within the OSI environment is identified by its Global-Title (GT), composed
of two parts:

- the Primary-Title-Domain-Name (PTDN), which identifies the layer, and
- the Local-Title (L T), which identifies the entity inside the layer.

A Global-Title is a name.

Local-titles may have a hierarchical structure.

1
An example of GT could be 'Network:CH.CERN.CERNV AX-X25', where

'Network' is the PTDN and 'CH.CERN.CERNY AX-X25' the LT.

In the following, (N) refers to a layer in the OSI reference model, i.e an application,
presentation, session, transport, network, data link or physical layer.

(N)Title refers to the Global Title of a (N)Entity.

A (N)Service-Access-Point ((N)SAP) is a point where the services of the (N)Entity are
provided to the (N+l)Entity.

A (N)Service-Access-Point-Address ((N)SPA or (N)Add) is the address of a (N)SAP.
A (N)Add identifies a (N)SAP.

A (N)Entity can be attached to one or more (N)SAP. A (N)Suffix (also called (N)SAP
Selector) is a part of the (N)Add allowing to select the particular addressed (N)SAP
among the (N)SAPs attached to the (N)Entity.

A (N)SAP is attached to at most one (N)Entity.

A (N)Entity can be attached to one or more (N-1)SAP.

A (N-l)SAP is attached to at most one (N)Entity.

- 10-

Directory Needs Directory Needs in the OSI Reference Model

Figure 2.1 shows a possible configuration of attachment of (N)SAPs and (N-l)SAPs
to (N)Entities.

(N)Add---..

(N)Title

AMF f;-
(N-l)Add- ► .------_

(N)Entity

.k""'(N-l)Add ----.:
Oblique Arrows indicate identifiers.

Figure 2. 1 : Entltles and SAPs.

For example, in the above figure, each entity could represent a transport-entity. A
transport-entity is attached to a network-SAP. A network-SAP address could be an
X.121 address (e.g.: 02281234567890). The address of the transport-SAP through
which this transport entity provides services to a particular session-entity could be
02281234567890-44, where '44' is the transport-suffix allowing the transport-entity
to determine to which session-entity a particular service request has to be forwarded
(i.e. through which Transport-SAP the service has to be provided). AMF represent
the Address Mapping Function, and DF the Directory Function (see OSI fonctions).

The (N-l)Addresses of (N-l)SAPs to which a (N)Entity is attached are the addresses
of this (N)Entity.

A (N)Relay is a (N)fonction by which a (N)Entity forwards data received from one
(N)Entity to an other (N)Entity. (N)Relays correspond to intermediate switching points.

The three OSI functions

The OSI reference model specifies three fonctions which should be achieved at the
layer level:

- (N)Directory fonction: by which the GT of a (N)Entity is translated into the (N
l)Addresses of a (N-l)SAP to which the (N)Entity is attached (A name to address
mapping fonction).

- (N)Address-Mapping fonction: which provides the mapping between the
(N)Addresses and the (N-l)Addresses associated with a (N)Entity (An address to address
mapping fonction).

- (N)Routing fonction: which translates the GT of a (N)Entity or (N-1)Add of the (N-
1)SAP to which the (N)Entity is attached into a path by which the (N)Entity can be
reached (e.g. a (N)Relay to use). Note that a route depends on both the current location of
the information being sent and its destination.

- 11 -

Directory Needs Directory Needs in the OSI Reference Model

Transport
Layer

2.68600
NSAPs---------------

Case 1

334455

Case2

Figure 2.2 : Example of entities and SAPs at the transport level

212223

To illustrate the three fonctions, let's consider the example of figure 2.2, taken at
the transport level. In this example, Network-SAP-Addresses are 6 digits addresses
(e.g. 268600), and two digits numbers (as 44 and 45) are Transport-suffixes.
T:CH.CERN.VXTP4 is the Global-Title of a transport entity, and it is assumed that
T:CH.CERN.TPRelay is the Global-Title of a transport relay, whose NSAP-Add is
102030.

Let's first consider case 1.
- the Transport-Directory fonction maps transport entity titles into Network-SAP

addresses:
e.g. : T:CH.CERN.VXTP4 -> 268600.

- the Transport-Address-Mapping fonction maps a transport-SAP-address into a
network-SAP address:

e.g. : 268600-44 -> 268600.
268600-45 -> 268600.

- the Transport-Routing fonction maps an identifier of transport entity into a route,
e.g. here the Global-Title of a transport entity into the name of a transport-relay:

e.g. : T:CH.CERN.VMTP2 -> T:CH.CERN.TPRelay
This fonction could map the NSAP-Add giving access to the destination transport

entity into the NSAP-Add of a relay to use in order to reach the destination entity:
e.g. : 334455 -> 102030.

In the more complex example of case 2,
- the Transport-Directory fonction maps:

T:CH.CERN.VMTP2 -> (334455, 212223).
- the Transport-Address-Mapping fonction maps, if the hierarchical structure (see

below) of addresses is used:
334455-71 -> 334455.
334455-72 -> 334455.
212223-71 -> 212223.
212223-72 -> 212223.

With this mappings, from an extemal point of view (e.g. from the point of view of
a session entity), a TSAP has several addresses. In fact the different addresses denote
different routes in the OSI stack (usage of one or another NSAP). If a remote session
entity fails to enter in communication with a TSAP with a given address because of
an unreachable network address, it can try another TSAP-Add.

- 12 -

Directory Needs Directory Needs in the OSI Reference Model

Han address routing fonction using tables is used, which maps:
334455-71 -> (334455, 212223).
334455-72 -> (334455, 212233).

then a TSAP may be identified by a single TSAP-Address from an external point of
view. When an attempt to enter in communication with a TSAP fails because of an
unreachable network address, the originator's transport entity can try another
network address produced by the Transport-Address-Mapping fonction. The
transport entities are able to manage incidents at the network level and choose other
routes in the OSI stack. This Address-Mapping fonction allows more flexibility, and
the unavailability of some NSAPs is transparent to the session layer, which is better.

As a (N)SAP is attached to at most one (N+l)Entity, a (N)Add identifies a particular
(N)SAP to which a (N+ l)Entity is attached (see figure 2.1). When the (N+ l)Entity is
detached from the (N)SAP, the (N)Add no longer provides access to the (N+ l)Entity. If
the (N)SAP is reattached to a different (N+ l)Entity, then the (N)Add identifies the new
(N+l)Entity, and not the old one.

The use of a (N-1)Add to identify a (N)Entity is the most efficient mechanism if the
permanence of attachment between (N)Entities and (N-l)SAPs can be assured. If there is
a requirement to identify (N)Entities regardless of their current locations, then the entity
Global-Titles ensures correct identification, and the (N)directory fonction provides the
mean to translate entity Global-Titles into (N-l)Adds to which they are attached. This
fonction corresponds to the name to address mapping mechanism pointed out in chapter
one.

As a (N)SAP can be attached to one and only one (N)Entity, a (N)SAP-Add also
identifies the (N)Entity to which the corresponding (N)SAP is attached. Thus when
Global-Titles are not used to identify a (N)Entity, to use a (N)SAP-Add of one of the
(N)SAPs to which the (N)Entity is attached is a proper way to identify this (N)Entity. In
this case, the use of the (N)Directory fonction is not possible. Thus, interpretation of the
correspondence between the (N)Adds served by a (N)Entity and the (N- l)Adds used for
accessing the (N)Entity is performed by the (N)address-mapping fonction.

Two particular kinds of (N)address-mapping fonctions may exist within a layer:
- hierarchical (N)address-mapping, and
- (N)address-mapping by tables.

If a (N)Add is always mapped into only one (N-l)address, then hierarchical
construction of addresses can be used. The (N)address-mapping fonction needs only to
recognize the hierarchical structure of a (N)Add and extract the (N-l)Add it contains. In
this case, a (N)Add consists of two parts:

- a (N-1)Add of the (N)Entity which is supporting the current (N)SAP of the
(N)Entity.

- a (N)Suffix which makes the (N)SAP uniquely identifiable within the scope of the
(N-l)Add.

For example, at the transport level, a transport-SAP address can be constructed
with an X.121 address plus the transport suffix identifying a particular session
service, e.g.: 02281234567890-44. Transport-address-mapping consists of
extracting the X.121 network-SAP address out of the transport-SAP address, i.e.
02281234567890.

- 13 -

Directory Needs Directory Needs in the OSI Reference Model

Within a given layer, a hierarchical structure of addresses simplifies (N)address
mapping fonctions because of the permanent nature of mapping it presupposes. It is not
imposed by the model in all layers in order to allow more flexibility in (N)address
mappings, in particularin the case where a (N)Entity attached to more than one (N-l)SAP
supports only one (N)SAP. In this case, a (N)SAP may be accessed through several (N-
1)SAPs and thus a (N)Add may be mapped into several (N-l)Adds. Hierarchical
construction of addresses is not suitable if any of these (N-l)Addresses may be used, and
if one does not want to impose to always use the same (N-1)SAP and but wants to keep
using always the same (N)Add (see example of figure 2.2).

Ha (N)Add can be mapped into several (N-1)Adds, or if a (N)Add is not permanent! y
mapped into the same (N-1)Add, then hierarchical construction of addresses is not
possible and the (N)address-mapping fonction may use tables to translate (N)Adds into
(N-l)Adds.

The structure of a (N)Add is known by the (N)Entity which is attached to the identified
(N)SAP. However, the (N+ l)Entity does not know this structure.

The (N)routing-function translates a (N)Entity identifier (i.e. a (N-l)Add or a (N)Title)
into a path or route by which the (N)Entity may be reached. This path or route is an
information ((N-1)Add or (N)Title) identifying either the destination (N)Entity if a direct
route can be used, or a (N)Relay entity if the communication cannot take place via a direct
route.

2. 2. Use of the OSI reference model

This section describes the way the OSI reference model is used in the reality, and
points out directory needs in real systems.

Let's here use the term directory to refer to a global system which holds information,
and provides access and update operations on this information.

2.2.1. The up_per level layers

Ad dresses
In the upper level layers (Application, Presentation, Session and Transport layers), the

addresses follow a hierarchical structure.

An application address is the address of the Presentation-SAP (PSAP) to which it is
attached. As a hierarchical address structure is used in the upper level layers, the PSAP
Add is composed of the Session-SAP and the Presentation-Suffix. Applying the same
decomposition to the Session-SAP-Add and the Transport-SAP-Add, one could say an
application address is composed of 4 parts:

Application address = P-Add = N-Add + T-suffix + S-suffix + P-suffix.

Each suffix bas to be optional. It is not necessary in the case where a (N)Entity always
provides its services to the same (N)SAP, i.e. to the same (N+ l)Entity. For example,
many applications use Presentation service entities which are dedicated to an application.

- 14 -

Directory Needs Directory Needs in the OSI Reference Model

Figure 2.3 illustrates a possible layer configuration.

E-Mail FTAM
Application Layer PSAP () PSAP (43)

EM-Pres F-Pres
Presentation Layer SSAP(0l) SSAP()

Session-2
Session Layer TSAP(3021)

Transport Layer NSAP(02281234567890)

NSAP (02281234567891)

Figure 2.3 : Example of layer configuration.

In the above example, an address of the E-Mail application is
<N=02281234567890; T=0022; S=00>, while an address for the FT AM application
is <N=02281234567890; T=3021;P=43>. The Session-1 entity may also be used for
the FTAM activity, so <N=02281234567890; T=0022; S=Ol;P=43> is an alternate
address of the FT AM entity. An alterna te NSAP may also be used, so an alternate
address for the FTAM application is also <N=02281234567891; T=0022; S=01;
P=43>.

The address mapping fonction can thus be performed by a relatively simple algorithm
extracting the (N-l)Add out of the (N)Add. This is done by removing the (N)Suffix out
of the (N)Add. There is no need of any address-mapping fonction to be held in tables,
which could be stored in a directory.

Note that several differents applications can be accessed through the same Network
SAP as their addresses can just differ by the suffixes.

Names
Applications are usually referred to by an Application-Entity-Title (AET), whilst

presentation, session and transport entities are not referred to by any kind of title. They
can only be identified by the (N-l)Add of the (N-l)SAPs to which they are attached. This
can be justified by the fact that their location is stable. Giving AETs to applications is
done in order to provide more user-friendly identifiers to applications. A Directory
fonction has to map AETs into Presentation-Addresses.

In real systems, an AET is associated to only one Presentation-Address. This facilitates
the directory requirements, but indeed involves problems when an entity is moved from a
SAP to another one. Ali applications which have to use its services must be warned of the
address change. This would have been avoided if a (N)Directory-fonction associating the
name of a (N)Entity to its (N-1)Add would exist (a (N)Add being formed of a (N)Entity
name plus a (N)Suffix). In this case, we just would have to update the directory fonction.
But every layer would have to use a directory fonction, which would be quite inefficient.

- 15 -

Directory Needs Directory Needs in the OSI Reference Model

This way of proceeding also prevents to associate alternate addresses to an application.
If, for exarnple (see fig. 2.2), a TSAP is unavailable (e.g. because its corresponding
session-entity is overloaded), and that a sirnilar session-entity is available on the sarne
system through another TSAP, we are unable to use it because the application address
identifies a particular TSAP as being the only one to access the application. If fact, the
problem arises because this address structure also imposes a route through the OSI stack.
An address-mapping function done by tables, associating more than one (N-l)Add to an
(N)Add, could have solved this problem. Another way to deal with it is that a connection
refused diagnostic also specifies an alternate address to access the target (N+ l)Entity. But
this has to be specified in the (N)protocol. We will see that the application-directory
function will at least allow to specify more than one network address.

The first interesting service which could be provided by a directory is thus the
application-directory-function, which translates an AET into the PSAP-Address of the
application entity.

Routes
The use of (N)Relay-Entities is relatively limited in the upper level layers of the OSI

stack.

The first kind of such (N)Relay could be called a switching point. This has to be used
if, for some reason (e.g. because no direct connection is possible, for cost considerations
or because we don't know the route to a destination entity address, but we know the
address of a relay knowing it), a direct route cannot be used to reach or communicate with
the destination. Therefore, we have to use a (N)Relay-Entity. In the Mail Handling
System (MHS), a MTA is a relay.

A particular case occurs when two entities cannot communicate directly between each
other because they are using different protocols. Sorne protocol translation has to be
performed in order to make them understand each other. Such a relay is usually called a
gateway. But this is relatively rare in the upper level layers. One exarnple would be a
TCP/IP-TP4 gateway. A major exception is the use of such a protocol translator at the
application level in the Mail Handling System, in order to interconnect E-Mail systems
using different protocols.

The (N)routing-function provides a path to reach another (N)Entity. A path is a
specific information needed to reach an object at its specified address. The (N)routing
function can be achieved by providing the (N)Global-Title of the destination entity (and
then using the (N)directory-function to get the (N-l)Add), or directly the (N-l)Add to
which the (N)Entity is attached if both entities can directly communicate with each other.
If not, the (N)routing-function has to provide the sarne information about a (N)Relay
entity.

The routing-function is usually provided by tables associating a destination identifier to
the identifier of the next entity to reach (either the destination, or a relay). As a routing
fonction depends both on the source and destination location of the communicating
entities, the tables have to be particular for every (N)Entity.

- 16 -

Directory Needs Directory Needs in the OSI Reference Model

A directory could play arole as routing information provider. At the moment, in most
pragmatic solutions, no use of a real global directory in such arole is made. Entities have
their own routing tables which have to be changed by some starie or dynamic mechanisms
when information of changes in the environment are received. So, the two following
proposais are strictly prospectives:

- The tables could be held in the directory (one per entity). These tables could be
updated by some central or distributed mechanisms extemal to the entity. In some way,
these mechanisms will have to be inf ormed of changes in the configuration topology.
When this occurs, it computes every new table and updates changes.

- Information about the configuration topology could be held in the directory. Entities
have access to this information and use it to update their tables (either on a periodic basis,
or when a connection fails). Changes in the configuration topology have to be echoed in
the directory.

2,2,2, The problem of the networkroutin~ function,

This section is related to the problem of addressing and routing at the network layer
level, in the case where several networks are interconnected. This subject has deeply been
debated in the RARE working groups 3 and 4. The main ideas discussed here are picked
up from [WG3-88].

Describing the NSAP format defined by the standards and the network address formats
are out of the scope of this document. Readers who have no knowledge in this field
should first read Annex A.

The problem of internetworking

Addressing conventions are local to a network (e.g.: Ethernet addresses for Local Area
Networks (LANs), X.121 addresses for Public Data Networks (PDNs), ...). When an
entity wants to reach another entity attached to the same network, it can use the local
addressing scheme, and routing is perf ormed by the network service provider on base of
this address.

When several such networks are interconnected, the term 'subnetwork' is used to refer
to an individual network, whilst the term 'network' is reserved to refer to the global set of
the interconnected subnetworks. The physical network addresses (e.g. Ethernet or X.121
addresses) of entities or relays on a subnetwork are referred to as the 'SubNetwork Point
of Attachment Addresses' (SNPA-Adds).

When an entity attached to a subnetwork wants to reach another entity attached on
another subnetwork, the two subnetworks being interconnected (as shown in figure 2.3),
a network relay has to be used, which picks up data from a subnetwork and forwards
them onto the other subnetwork. Routing to reach the relay is performed by the
(sub)network service provider and based on the SNPA-Add of the relay. But the decision
to use the network relay to route the connection toward the other subnetwork has to be
issued by some higher routing mechanism.

- 17 -

Directory Needs Directory Needs in the OSI Reference Model

1

□
Network-Relay, or Gateway.

Host.

• SubNetwork.

• SubNetwork Point of Attachment.

Figure 2.4: Simple SubNetwork Configuration.

In the case of figure 2.4, when 'Hostl' wants to communicate with 'Host2', the first
step is to set up a connection with the relay (this bas to be detennined in some way),
using the SNP A-Address of the relay in the first subnetwork. Then, in some way, the
relay must know the address of the entity (SNP A-Add of Host2) the originator wants to
enter in communication with.

The ECMA solution
A possible way of solution is that the local address of the relay is followed, in the

address field of the connection request packet (NSAP-Add of the call packet), by the
address of the entity to reach on the other subnetwork. So, the NSAP-Add bas the
following structure:

SNPA-Add of the relay I SNPA-Add of the destination

E.g., in the case of figure 2.4, when Host 1 wants to communicate with Host 2,
the communication bas to pass through the relay interconnecting the two
subnetworks. The SNPA of the relay to subnetwork 1 is pointed by the character '*'.
Its SNPA-Add could be '268600'. The SNPA of Host 2 to subnetwork 2 is pointed
by the character '0 '. Ley's assume its SNPA-Add is '4641'.

When communicating with Host 2, Host 1 gives the following address in the
packets submitted to subnetwork 1 : '268600-4641'. Subnetwork 1 only interprets
the first part of the address (i.e. '268600') to route the packets toward the relay.
When the packets arrive at the relay, the second part of the address is extracted
('4641 '), and used by the relay to forward the submit the packets to subnetwork 2 in
order to forward them toward the destination, i.e. Host 2. A similar situation is found
when a connection oriented communication is considered.

Such a kind of solution is proposed and refined by ECMA-117. This solution is
particularly suitable when simple topologies are involved, and when the originator of the
call is connected to a X.25 network.

That's why such a solution has been adopted by public networks to solve the problem
of internetworking when the originator is directly connected to a PDN. Addresses in
PDNs are based on NSAP-Adds containing X.121 IDis and, optionally, another
subnetwork address in the DSP (both are SNPA-Adds). The X.121 address identifies a
point of attachment of an other non-PDN subnetwork to the PDN (i.e. a relay), and the
information in the DSP identifies the entity to reach on this subnetwork.

- 18 -

Directory Needs Directory Needs in the OSI Reference Model

Note that several interconnected PDNs can be considered as forming a single
subnetwork. The X.121 addressing scheme unify the different address spaces, as a
X.121 address identify both the PDN to which an entity is attached, and the point of
attachment of this entity to its PDN (see Annex A). Interconnection of PDNs is
transparent to end systems.

When such addresses are used, the X.25 network sets up a connection with the relay,
and then the relay can extract the addressing information out of the call packet in order to
set up a connection with the destination entity.

This kind of solution requires that the network address specified in the packet at the
network level can accept more than just an address in accordance to the local addressing
scheme. This is possible in X.25 networks, as the address field may be of variable
length, and only the first specified address is interpreted. Further information in the
address field is ignored.

With this kind of solution, in some cases (e.g. connection of a PDN and a private
X.25 network with a relay simulating a X.75 connection), the relay can be transparent to
the end entities (i.e. no software has to be added in the layered architecture of end entities
in order to deal with internetworking). Figure 2.5 shows such an architecture.

Originating
Host

Transport 0

PDN X.25-3

PDN X.25-2

PDNX.25-1
Pubhc Data

Network-X.25

R l e ay

X.75 *
PDN X.25-3 Pr. X.25-3

PDNX.25-2 Pr. X.25-2

PDN X.25-1 Pr. X.25-1

0 Provides NSAP
* Extracts SNPA

Pnvate X.25
Network

Figure 2.5 : Possible layered architecture
for the ECMA solution.

Destination
Host

Transport

Pr. X.25-3

Pr. X.25-2

Pr. X.25-1

The X.121 address space is equivalent to a single subnetwork. Therefore, there is no
problem for entities directly connected to a X.25-X.121 Public Data Network to have a
connection with entities which are connected to a PDN, or to a subnetwork directly
connected to a PDN.

- 19 -

Directory Needs Directory Needs in the OSI Reference Model

Difficulties of the ECMA solution
The ECMA solution has the apparent advantage of pushing the routing to the real

subnetwork service providers. It is known to work in a majority of cases, but it has the
following disadvantages [WG3-88]:

- This solution only considers connections issued from a X.25-X.121 network: it does
not provide an inter-subnetwork routing in non-X.25 environments (e.g. because the
address field does not tolerate additional information to the local subnetwork address) or
for X.25 networks not part of the X.121 addressing scheme which want to communicate
with entities connected to another subnetwork via a PDN. Such systems need to know
locally how to connect to the X.121 based X.25 subnetwork, and then use the specified
address to set up a connection with the destination entity.

- If the P1Ts change an X.121 address, then the NSAP for all attached systems will
need to be changed (IDI part). The same happens when the physical subnetwork address
format change, e.g following a subnetwork technology change (DSP part).

- The sequence of addresses in the NSAP determines a path for the connection through
the relays specified by their SNPA-Adds. It does not provide altemate routes (e.g.: if a
relay is down) for local systems or real subnetworks that are connected to more than one
X.25 provider, or connected at more than one X.121 address. The generality can
however be achieved by recording more than one NSAP with the PSAP address in the
directory.

- In complex topologies as in figure 2.6, it is necessary to have a more sophisticated
mechanism (e.g., a NSAP-Add comprising a X.121 address, followed by a private X.25
network address, followed by an Ethernet address). Such a sequence of addresses will
not fit in the NSAP-Add field. In fact, it is not possible to specify more than two
addresses in the NSAP-Add field.

ECMA-117 tries to deal with this last problem by only specifying the last SNPA-Add
in the DSP, prefixed by a subnetwork identifier identifying the subnetwork to which this
SNPA-Add is relevant. The relay has to know how to set up a connection with this
subnetwork thanks to his local knowledge of the configuration of the subnetworks and
their characteristics. So a NSAP-Add following the ECMA-117 recommendation bas the
following structure:

X.121 Add (IDI) ! SubNet. Id. + SNPA-Add (DSP)

In the case of figure 2.6, let's assume that the SNPA-Add on the PDN of the relay
interconnecting the X.25 PDN and the Private X.25 network (Pr. X.25), pointed by
the character '*', is '268600'. The SNPA-Add on the Pr. X.25 of the relay
interconnecting the Pr. X.25 and LANS, pointed by "", is '2738 1

• The SNPA-Add
of Host 2 on the LANS, pointed by 101

, is 14641 1
• Eventually, it is assumed that 108'

identifies the LANS in tthe set of subnetworks interconnected to the Pr. X.25.
According to the ECMA address structure, when Host 1 wants communicate with

Host 2, the following address will have to be used : 1268600-08+464 l 1.

As in the former example, the PDN interprets only the first part of the address and
routes the packets toward the relay between th PDN and the Pr. X.25. When packets
arrive at the relay, the second part of the address is extracted by the relay. The
subnetwork identifier 1081 is used by the relay to determine (by some local
mechanism, e.g. table lookup) the SNPA-Add of the next relay to use (i.e. 127381

).

The packets are forwarded to the relay interconnecting the Pr. X.25 and LANS,
where the last part of the address ('4641 ') is used to send the pachets to the
destination, i.e. Host 2. A similar situation is found when a connection oriented
communication is considered.

- 20-

Directory Needs Directory Needs in the OSI Reference Model

In complex topologies, ECMA-117 suggests that it could be necessary to use logical
rather than physical addresses in the DSP, and thus to do at least one look-up of NSAP
Add to SNPA-Add.

Figure 2.6 shows a possible configuration of subnetworks, which can help to
understand the problems involved by such a solution.

Global
Network

1 Network-Relay, or Gateway. •

D Host. 0

- SubNetwork.

SubNetwork Point of Attachment.

Global Network Point of Attachment,
SubN etwork independent

Figure 2.6: Possible SubNetwork Configuration.

The IP approach

In fact, using a sequence of physical SNPA-Adds in NSAP-Adds is equivalent of
putting routing information in the addresses. But an address should be independent from
the routes, as routes vary according to the source and destination locations and the
availability of paths. Moreover, this imposes a routing structure which may not be valid in
the future (e.g. if a physical point of attachment of an relay entity to a subnetwork
changes).

Rather than using some kind of sequence of physical or logical addresses in the
NSAP-Add, another solution is to have an addressing scheme identifying an entity at the
global network level, independently from the real subnetwork to which this entity is
attached (see figure 2.6).

- 21 -

2738

Directory Needs Directory Needs in the OSI Reference Mode!

The NSAP should be a unique global address, carried full y in the calling and called
address fields. At the originating entity, and at the boundaries of the subnetworks (i.e. in
relays between, for example, a X.25 and an Ethernet networks), the subnetwork address
(e.g. X.121 or Ethernet address) that defines the SubNetwork Point of Attachment
(SNP A) of the target or relay entity on the next subnetwork must be derived from the
NSAP (normally by table look-up). The relays between subnetworks will have to derive
from the NSAP address, the addressing information to use in the real next subnetwork
when relaying information.

This approach which is called 'Internet Protocol' (IP) has been developed by the DOD
as part of the ARP A Internet project (the well-known TCP/IP). A protocol similar to 1P
bas been developed by ISO. Both provide a connectionless or datagram service between
end systems. Note that the TCP layer ofTCP/IP provides a connection oriented service
between end systems.

This approach imposes a different layered architecture in the systems involved in order
to support internetworking. An 1P layer is inserted between the transport and the
(sub)network layer, whose fonction is to perform the NSAP to SNPA mapping. This is
shown in figure 2. 7.

Originating
Host

Transport 0

IP*
PDN X.25-3

PDN X.25-2

PDN X.25-1 -

Relay

IP*
PDNX.25-3 Pr. X.25-3

PDN X.25-2 Pr. X.25-2

PDNX.25-1 Pr. X.25-1

Relay

IP*

Pr. X.25-3

Pr. X.25-2 - Pr. X.25-1

Public Data
Network-X.25

Private X.25
Network

0 Provides NSAP
* Derives SNPA

Figure 2. 7 : IP layered architecture.

LAN-3

LAN-2

LAN-1 -

Destination
Host

Transport

IP
LAN-3

LAN-2

LAN-1

Local Area
Network

ISO-DCC is a mechanism for allocating such subnetwork independent addresses.
These addresses do not have any physical relationship with the topology or technology of
the subnetworks to which entities are attached. The network address is a unique physical
subnetwork independent identifier.

Directory needs in the IP approach
The use of a network-independent NSAP format (as the ISO-DCC scheme) implies

that a mapping of NSAPs to SNPAs is required in every station and relay entity, e.g. by
some directory look-up mechanism. It must be noted that the NSAP to SNPA relationship
is not globally applicable. It is relevant only to the local subnetwork on which the
information has to be forwarded. The solution to this NSAP-Add to SNPA-Add
resolution problem requires thus a series of directory services at the 1P level that allow the
originating entity and the intermediate relay systems to progress the network service
through interconnected subnetworks.

- 22-

Directory Needs Directory Needs in the OSI Reference Model

This implies that the total body of information needed to perform internetworking is
not just one global directory for the mapping of NSAPs to appropriate SNP As, but
several such directories, potentially one per real subnetwork.

Note that this approach requires two level of routing at the network layer level:
- The first is done at the global network level (IP level), in order to route through the

different subnetworks (deriving SNPAs), and
- The second is done internally in the subnetwork in order to route until the next

SNPA.

So, difficulties arise when one considers the choice of the NSAP format. Subnetwork
independent schemes are preferred because they are not affected by subnetwork
reorganisation, changes in the subnetwork provider nor in the subnetwork technologies.
They may also accommodate more easily multiple connections to the public subnetworks
and altemate routes involving different subnetwork technologies. But adopting such a
scheme will require some directory look-up mechanisms, because it requires some
binding to SNPA-Adds in order to provide a route.

2.2.3. The lower level layers.

On a pure esthetical point of view, it would be interesting to see to what the three
fonctions identified in the OSI reference model are reduced at the Network, Data Link and
Physical levels. In reality, this is highly technology dependent.

Functions can have no existence (there is no need of physical routing fonction, as the
signal can only be sent through the media, whatever the destination is), or can be
provided by external means to the entity, and without it even being aware of them (a
bridge performs a routing fonction at the network level in interconnected LANs).

There is a large variety of solutions. Describing such solutions falls out of the scope of
this discussion. But as it is generally admitted that they are depending on the technology,
the network topology, and the systems configurations, the needed fonctions are provided
locally by the system or the technology itself. So they do not use any fonction which
requires a high level global directory service.

- 23 -

Directory Needs Directory Needs in the Mail Handling System

3. Directory Needs in the Mail Handling System

The Electronic-Mail system upon which this chapter is based is the standard towards
which all current E-mail implementations are heading: the CCITI X.400 series of
recommendations, also known as the X.400 Message Handling System (MHS). The
1988 version of the X.400 MHS makes use of some kind of directory services.

3. 1. The Mail Handling System functional model

A user of the MHS is either a person or a computer process wishing to send or receive
a message by means of the MHS services. A MHS user is referred to as either the
'originator' (when sending a message) or the 'recipient' (when receiving a message).

The model described by the X.400 recommendations is composed of two levels [Der-
88]. The lower level is the Message Transfer System (MTS). The MTS comprises a
number of Message Transfer Agents (MT As) operating together in a store and forward
manner in order to transfer and deliver messages to the intended recipients.

The upper level is composed of User Agents (UAs), which provide a kind of interface
between the MTS and the users they support. There is one UA per user. The originator
prepares messages with the assistance of his or her UA. A User Agent is an application
process that interacts with the Message Transfer System to submit messages on behalf of
the user. The MTS delivers the messages submitted to it to one or more recipients. The
recipient UAs receive messages delivered by the MTS and help users to interpret them.

A UA can offer other services, as storage and retrieval of previous messages, editing
and naming facilities, information or directory services, ...

A UA is associated to one and only one MTA. The main interaction between UAs and
their respective MT As are the submission and the delivery of messages. A MTA first
accepta message submitted by an originator UA, forwards it to the next MTA towards the
destination and so on until the message arrives at the MT A of the destination UA, which
delivers it.

Messages transferred by the MTS between UAs are composed of an envelope and a
content. The envelope carries information that is used by the MTS when transferring the
message, i.e. mainly the originator and recipient identifiers (O/R Names). The content is
the piece of information that the originator UA wishes delivered to one or more recipient
UAs, and which is normally left untouched [X.400-88].

A Distribution List (DL) is a component of the message handling environment that
represents a pre-specified group of users and Distribution Lists, and that is a potential
destination for the messages the MHS conveys [X.400-88].

The Distribution List service enables an originating UA to specify a Distribution List in
place of all the individual recipients (users or other DLs) mentioned therein. The MHS
will add the members of the list to the recipient of the message and send it to those
members. DLs can be members of DLs, in which case the list of recipients can be
successively expanded at several places in the MHS.

- 24-

Directory Needs Directory Needs in the Mail Handling System

MT As are grouped in management domains which own and control them. These
domains can be managed by a public administration, in which case we speak of
ADministration Management Domains (ADMD), or by private organizations, in which
case they are called PRivate Management Domains (PRMD) [Der-88].

The MTS bas been designed to be able to support any kind of connectionless
communication. Cooperating UAs canuse a protocol of their own in the message content
to communicate. The InterPersonal Messaging Service (IPM Service) provides a user
with features to assist in communicating with other 1PM Service users. The 1PM Service
(e.g. Telex) uses the capabilities of the Message Transfer Service for sending and
receiving interpersonal messages.

Figure 3.1 illustrates the functional model of the Mail Handling Environment.

InterPersonal Messaging Service

Message Handling System

Message Transfer System

User

User

User Telex

Figure 3.1 : The MHS Functional Model.

3.2. Naming and Addressing

This section takes up descriptions of [X.400-88].

In the MHS, the principal entities which require naming are the users, i.e. originators
and recipients of messages. In addition, Distribution Lists have names for use in the
MHS.

Users of the MHS and DLs are identified by O/R Names. An O/R Names is composed
of a Directory Name or an O/R Address or both.

The prefix 'O/R' recognizes the fact that user can be acting as either the Originator or
the Recipient of the message.

- 25 -

Directory Needs Directory Needs in the Mail Handling System

Directory Names
Users and DLs can be identified by a name, called a Directory Name. A Directory

Name must be looked up in the Directory to find out its corresponding 0/R Address. The
structure and the components ofDirectory Names are described in Part 2 and defined in
[X.521-88].

The typical Directory Name is more user-friendly and more stable than the typical 0/R
Address because the latter is necessarily expressed in terms of the organizational or
physical structure of the MHS while the former need not to be.

MHS users or DLs will not necessarily have a Directory Name, unless they are
registered in a Directory. As Directories become prevalent, it is expected that Directory
Names will be the preferred method of identifying MHS users to each other. In fact,
many users will lack Directory Names until the Directory is widely available as an adjunct
to the MHS [X.402-88].

O/R Names
An 0/R Name is an identifier by means of which a user can be designated as the

originator or as a potential recipient of a message. Every user or DL has one or more 0/R
Names. An 0/R Name distinguishes a user or DL from another.

An 0/R Name comprises a Directory Name or an 0/R Address or both. The 0/R
Addresses have to be used in order to identify users or DLs if they have no Directory
Names.

O/R Addresses
An 0/R Address contains information that enables the MHS to uniquely identify a user

to deliver a message, and permits the MTS to locate the user relative to its own
organizational or physical structure.

An 0/R Address is a collection of information called attributes. 0/R Addresses are
allocated in a hierarchical way. [X.402-88] specifies how 0/R Addresses are constructed.

Name resolution

In order to reference bis addressee, a user would specify the 0/R Name of the latter.
But since an 0/R Address is also an 0/R Name, it is possible to specify the addressee
directly by his or her 0/R Address, if the latter is known. This has the advantage of being
more cost effective since the Directory lookup necessary to map an 0/R Name into an 0/R
Address is bypassed. But an 0/R Address has the drawback of being uneasily
remembered and of being more likely to change than a Directory Name [Der-88].

- 26-

Directory Needs Directory Needs in the Mail Handling System

When only the Directory Name is specified as O/R Name, a resolution mechanism has
to take place. This may be perfonned thank:s to the Directory. Both UAs and MTAs can
use the Directory to resolve names:

-The UA can directly access the Directory to find out the O/R Address of a user or of a
DL, and provide a full O/R Name (Directory Name and O/R Address) to the MTS at
message submission.

- As an alternative, a UA can supply just the Directory Name to refer to the recipient at
message submission, and the MTS would then itself ask the Directory to resolve the
recipient's O/R Address and add it to the envelope. The originating MTA normally carries
out the Directory Name to O/R Address lookup.

So, either one or both components of an O/R Name can be used on submission of a
message. If only the Directory Name is present, the MHS will access the Directory to
attempt to detennine the O/R Address, which it will then use to route and deliver the
message. If the Directory Name is absent, it will use the O/R Address as given. When
both are given on submission, the MHS will use the O/R Address, but will carry the
Directory Name and present both to the recipient. If the O/R Address is invalid, it will
then attempt to use the Directory Name as described above.

The analogy between the HHS and the OSI reference model is discussed in section
3.5.

3. 3. MHS use of Directory Services

Mainly due to the lack of a standardized Directory Service, the first CCITT X.400
recommendations were designed for use without any kind of standardized Directory
Service. But now that Directory Service standardization is progressing, work is
proceeding within MHS standardization on the use of Directory Services.

X.400-88 describes what could be the use of directory capabilities by the MHS. The
use of the Directory in message handling f alls into the following four categories [X.402-
88].

User-friendly naming

As describe here above, the originator or recipient of a message can be identified by
means of his Directory Name rather than his or her O/R Address. At any time, the MHS
can obtain the latter from the former by consulting the Directory.

Distribution Lists

A group whose membership is stored in a directory can be used as a Distribution List.
The originator simply supplies the name of the Distribution List. At the Distribution List
expansion point, the Directory Names and O/R Addresses of the individual recipients can
be obtained by consulting the Directory. Distribution Lists are further discussed in the
next chapter.

- 27 -

Directory Needs Directory Needs in the Mail Handling System

Recipient UA capabilities
A MHS message can potentially include several types of encoded information (text,

facsimile, picture, graphies and even sound). All UAs are notable to interpret and process
all types of contents, and thus, it can appear that some messages are not deliverable to
such UAs, or that such a message has to be converted from one encoded information type
to another (e.g.: from graphies into pictures). Other UAs characteristics are pertinent to
the MHS (e.g., maximum deliverable content length).

MHS capabilities of a recipient (or originator) UA can be stored in a directory. At any
time, the MHS can obtain (and then act upon) those capabilities by consulting the
Directory.

Authentification
Before two MHS functional entities (two MTAs, or a UA and a MTA) communicate

with one another, each can want to establish the identity of the other. A security policy
can be set up by using authentification capabilities of the MHS based on information
stored in the Directory.

Aspects of an asymmetric key management scheme to support such a policy are
provided by the Directory System Authentification Framework [X.509-88]. The Directory
stores certified copies of public keys for MH users which can be used to provide
authentification and to facilitate key exchange for use in data confidentiality and data
integrity mechanisms. The certificates can be obtained from the Directory.

3 . 4. Further use of Directories in the MH Environment

3.4.1. Information Service

Even if Directory Names are said to be user-friendly, it is not necessarily obvious to
find out the Directory Name of a particular user. It can be necessary to have some kind of
service which would allow, from scattered information known about a MHS user, to find
its Directory Name and/or O/R Address.

For example, a MHS user could designate the recipient of a message by filling up a
form on its screen [Huit-88], e.g. :

Country
City
Organization
Unit
Commonname

CERN ______ _

MariaDimou -----

The O/R Address and Directory Name will be found in the Directory by the UA and
inserted as O/R Name in the envelope of the message.

- 28 -

Directory Needs Directory Needs in the Mail Handling System

To avoid to oblige a user to specify the Directory Name of a user every time he or she
bas to send a message, the UA can offer naming facilities, i.e capabilities to define and
manage local synonyms for O/R Names.

3.4.2. Routing

Routing has soon been noted as a potential application of Directory services, but is not
being pursued in any details. The lack of standardized mechanism to use a directory
service to perform routing is surprising [Kille-6.5/M].

For those concerned with management domains, the need to specify a routing
rnechanism is important. It is desirable that the approach taken will lead itself to using the
standardized directory service when it becomes available.

In the most general case, the routing mechanism has to be performed in two steps
(source routing is not considered):

- The O/R Address to MTA mapping, which determines the next MTA to reach in order
to forward the message toward its destination.

- The MTA to MT A connection information mapping, which allows the local MTA to
get the information to set up a connection with a remote MT A.

In the following sections, after having classified E-Mail systems according to their
topology and some addressing issues, the case of X.400 and the MT A naming issue are
discussed. Then the routing fonctions required by X.400 are described.

Classification of E-Mail Systems

Among existing E-Mail systems, there is clearly two types of topologies [Kille-6.5/M].

1) Systems which have full connectivity (e.g.: based on packed switched networks).
Each MT A can set up a connection with any other MT A.

In such a case, the address to MT A mapping fonction is quite facilitated if the address
is of the form 'user@host' (where the 'host' part denotes the name of the MT A the user is
attached to), because the name of the MT A to reach is directly derivable from the address.
Messages are always transferred in a single hop. UAs are co-resident with MTAs, and the
'user' part simply identifies the UA in the context of the MTA.

Routing is performed simply by extracting the MTA name out of the O/R Address and
looking up the MT A in a table to determine connection information. The table may be
maintained centrally and distributed to all MT As. This is the ARP ANET old style.

But this scheme does not allow decentralized allocation of the 'host' part of O/R
addresses, based on a hierarchical structure of domains. If using 'user@subdomainn,
subdomainn-1· subdomain1. domain' like addresses, the MTA name cannot
necessarily directly be derived from the address, but a lookup table mechanism has to be
used to find out the corresponding MT A name. This table may also be maintained
centrally and distributed to ail MT As.

Having found the MT A name, deriving the MTA connection information is done as
described above. This is the extended ARP ANET old style.

This approach involves that each MTA needs to know every other MT A, and it irnplies
the distribution and maintenance of central tables. Strictly, these are the directory issues.

- 29 -

Directory Needs Directory Needs in the Mail Handling System

2) Systems based on bilateral links between MTAs, which have a rather sparse
connectivity.

Any link is established by bilateral agreement between a pair of MT As. Each MTA
issues a list of its connections. These lists are collected centrally, and then re-issued to
every MT A. Each MT A can then process a full topological sort of the network, and use
this to determine the next hop to any given remote MTA. Processing and distributing this
map clearly become expensive as the number of nodes increases. This is the UUCP style.

If domain hierarchy is used in the addressing scheme, messages can be routed on the
basis of the domain hierarchy, without necessarily identifying the complete path to the
final MT A (i.e. : a message is first routed towards its destination domain or subdomain
rather than directly towards its destination MTA). Such a scheme reduces the map
processing and update effort, at the expense of increasing message traffic through key
nodes of the topology. This is the Australian ACSNet style.

X.400
X.400 falls somewhere between full and sparse connectivity. An OSI purist would say

that ail routing should be done at the network layer, and the only reason for a connection
using one or more MTA hops is due to the lack of adequate directory service. But there
are good reasons for MTA relaying [Kille-6.5/M]:

- The need to interact with systems which support the InterPersonal Messaging Service
with protocol other than the one specified in X.400 (e.g.: other E-Mail systems, Telex,
...);

- To facilitate Encoded Information content conversion;
- In some cases, a sequence of MT A level hop may be more efficient than a single hop.

For example, funnelling traffic through a pair of MT As may optimize utilization of an
expensive communication link;

- To enable transparent operations to take place within Management Domains
boundaries. Having a fixed set of entry points will allow complex or dynamic
reorganization, and yet appear static extemally. The extra cost of tracking changes with
directory lookups might well exceed the cost of an extra MT A level hop;

- If connection between any pair of MT As cannot be full y automated but requires
bilateral agreements and/or human intervention, full connectivity will be difficult to reach;

- When authorization and charging criteria are taken into account on the basis of E-Mail
message level parameters, it is desirable to apply them at the MTA level. For this reason,
PTTs will wish to continue to provide an MTA service, rather than a directory service
which simply announces where other MT As are. Because this indeed would permit
private MTAs to avoid to use the public MTA service when charging becomes heavy.

It is clear that some MT A relaying is desirable. But it should be minimized within the
above constraints.

- 30 -

Directory Needs Directory Needs in the Mail Handling System

MTA Naming

A key issue will be whether or not to give MT As a namespace separated to that for O/R
Addresses [Kille-6.5/M]. Most of non X.400 systems have the MTA identified within the
O/R Address. However, X.400 has not adopted this solution. This probably cornes from
the historie evolution of X.400. The first decision to identify UAs by address rather than
by name, and the wish to have user friendly identifiers leads to using a hierarchical
domain addressing scheme, independent from MTA names. Separating the MTA
namespace allows O/R Addresses to more naturally reflect the identity of the associated
user, and for users' O/R Addresses to remain unchanged when his or her MTA changes.
As a consequence, there is no natural way to ex tract the MT A component off from an O/R
Address.

Also, O/R Addresses identify UAs. MTAs are separate from UAs, and therefore
should have a separate namespace. This is particularly important to identify intermediate
MT As, which might have no associated U As.

However, none of the X.400 protocols requires a separate MT A namespace, and
managing a second name space could be unnecessary. When directories will be folly
used, UAs will be identified by Directory Names, not by O/R Addresses. Therefore, O/R
Addresses could be structured in a manner which is convenient to the MHS.

It is clear that either approaches can be used to construct a workable scheme. But the
difficulty oflabelling intermediate MTAs and small MTAs (e.g.: on workstations)
suggests that it is usefol for MTAs to have a separate namespace.

Fonctions required for routing in X.400

So clearly, the X.400 will, in a first phase at least, have a sparse connectivity and use a
MT A namespace separated from the O/R Address space. This will require two kinds of
fonctions which could be provided by a directory:

- Routing fonction, in order to determine, from the O/R Address, the next MTA to
reach on the path to the destination of the message, and

- MTA to MTA connection information mapping fonction, to determine how to set up a
connection with a remote MT A given by the first fonction. The connection information
could include the PSAP address of the MT A, the supported protocol versions, and other
MTA capabilities.

Routing mechanisms are not described in X.400. A fortiori, the way routing fonction
could be offered by a directory is not detailed. A solution based on the X.500 directory
service structure is proposed in [Kille-6.5/M].

3. 5. Analogy with the OSI reference model.

If we express the MHE system in terms of a layered model analogous to the OSI
reference model, one can say that the MHS is composed of two levels:

- the MTS layer composed of MTA entities, and whose fonction is to transfer and
deliver messages to the intended UAs;

- the UA layer composed of UA entities, and whose fonction is to provide an interface
between the MTS and MHS users. A UA represents, and is only associated to, one user.

- 31 -

Directory Needs

This is illustrated in figure 3.2.

Directory
Name_,.

Directory Needs in the Mail Handling System

Directory
.,__ Narne

UAI_a~ye_r ______________ ~-~---

O/R Address /

MTS layer

PSAP-Address~

PSAP

'0/R Address

Arrows indicate identifiers.

Figure 3.2 : Layered model of the MHS.

A Directory Name identifies a user, and thus its associated UA entity, in a user
friendly way. A Directory Name is thus similar to a Title.

An O/R. Address is an identifier which allows the MTS to locate a UA entity. An O/R
Address is thus similar to what could be called a 'MTS-SAP Address'.

The Directory fonction identified in the OSI reference model (which maps (N)Titles
into (N-l)Adds) corresponds here to the Directory service fonction which maps a
Directory Name into an O/R. Address.

The routing fonction maps an O/R. Address into the identifier (either the MTA name or
the MTA connection information) of the next MTA to which the message bas to be
forwarded.

The MT A to MT A connection information fonction maps a MTA name into the
connection information needed in order to set up a connection with the named MT A (i.e.
mainly the PSAP-Add of this MT A).

Note that as previously discussed, the MTA namespace will probably be separated
from the O/R. Address space. And thus a fonction which maps an O/R. Address into the
MTA name of the MTA to which the UA corresponding to the O/R Address is attached
will not be able to used some hierarchical structure of the O/R Address (e.g. by extracting
the MT A name out of the O/R. Address), but will have to use some kind of table lookup
mechanism.

Such a fonction will probably not exist as hop by hop routing is preferred than the use
of direct routes. The crucial fonction is thus the routing fonction which directly maps an
O/R. Address into the next MTA to reach (rather than making a routing decision in two
steps, i.e. first mapping the O/R. Address into its corresponding MTA (destination MTA),
and then usage of a routing fonction which determines the next MT A to reach in order to
forward the message toward the destination MTA). The routing fonction will anyway use
tables of some sort as a route is tightly linked to the current location of the message and
the topology of the network.

- 32 -

Directory Needs Other Directory Needs

4. Other Directory Needs

This chapter presents other directory needs which could or should be provided by a
directory service, and is aiming to show that the above described needs are not an
exhaustive list.

The first section is related to Distribution Lists, an extension of the Mail Handling
Service, and describes the X.400 DL service structure with its directory needs.

The second section is about application specific needs, and points out particular needs
of the Ff AM and MTS services.

The third section introduces more general and generic directory services.

4 .1. Distribution Lists

Communications in groups often make use of Distribution Lists (DLs) to allow an
originator to send a message to a list of recipients without the need to directly refer to ail
members. A DL can be seen as a mechanism which maps a single O/R Name (the one of
the group) into a set of O/R Names (the ones of the members of the group) and hence E
Mail addresses.

A submitting entity may submit a message to the list by sending the message to the list
O/R Name. The message is then distributed to the members of the list. This process is
known as the expansion of the list

List expansion is performed in the MTS by a special function of the MT A responsible
for the expansion of the list, and to which the original message is first routed.

As DLs may be members of other DLs, control mechanisms have to be set up to avoid
message looping and duplication problems.

Main properties ofDLs are the following [X.400-88]: a DL has
- An owner : a user who is responsible for the management of the list;
- An expansion point, identified by an O/R Name. The O/R Address identifies the

expansion point, which is the MT A where the O/R names of the members of the DL are
added to the recipients of the message. The message is transported to the expansion point
before expansion;

- Submitting members, i.e. the names of the entities (users or other DLs) who may
submit a message to the list, i.e. send a message to the list;

- Receiving members, i.e. the names of the entities (users or other DLs) who will
receive copies of messages submitted to the list.

- 33 -

Directory Needs Other Directory Needs

Further properties may be defined [Ben-6.5/M]. A DL may have:
- A textual description of the DL fonctions, describing its purpose and general

information relevant to the list, which should be received by any submitting or receiving
member when joining the list;

- A textual description of the joining procedure to the list, both for submitting and
receiving members;

- An auditor, which refers to an entity who is to receive information concerning
confirmations and notifications related to the list activity;

- A moderator, which refers to an entity to whom messages are to be forwarded which
have been submitted to the list without permission to do so. Such messages may be
further forwarded to the list if they pass moderation;

- An administrator, which refers to an entity who performs administrative operations
on the list, as addition of members or changes in the list description;

- Charging algorithms, i.e. a text describing the charging issues for the list;
- Access control, which defines who may perform operations onto a DL.

Operations on DLs may consist of adding, deleting and retrieving submitting or
receiving members of a DL, checking membership of an 0/R name in a DL as submitting
or receiving member. One may also want to create, delete, rename, update a DL or read
the description or properties of a DL.

AH the properties of a DL may be stored in a directory, with appropriate access control.
Processes or entities which have to manage and expand the DL perf orm the described
operations by using a directory service.

4. 2. Applications needs

4.2. 1. FfAM needs
In addition to the PSAP-address of an application entity, another information that is

required by some protocols during the set up of an association between application entities
is the Application-Entity-Title (AET). It is the case in FTAM.

FT AM Functional Model

File Transfer Access and Management (FT AM) is concerned about interchange of files
between end systems. It provides not only file transfer between heterogeneous systems,
but also the ability to perform record access and file management [Handbook].

In order to allow files to be exchanged between different manufacturer equipments,
they must share a common description or definition. ln FT AM, this takes the form of an
externally visible image of an average filestore. This is the Virtual FileStore (VFS). The
VFS is defined as a collection of files, and in such a way that any real computer filestore
can easily be described in VFS terms.

- 34 -

Directory Needs Other Directory Needs

Fr AM is an asymmetric fonction. There is an initiator and a responder. The initiator is
the controlling side, and the image of the VFS resides at the responding end. The image
provided to the user at the initiator site is out of the scope of Fr AM, but could be
managed by a user element plus a user interface. This is illustrated in figure 4.1.

Initiator Site

User Interface User Element

Layer 7

VFS

Responder Site

Real
File
Store

FTAM Entity FTAM Entity

Layer 6 Presentation

Figure 4.1 : ITAM functional model.

The initiator's activity may consist of update operations on the remote files tore, or of
transfer of files from the local site to the remote filestore, or from the remote filestore to
the local site.

Directory needs
FrAM requires that both Application-Entity-Titles (i.e.: filestore names) and PSAP

addresses of the called and calling Fr AM entities must be provided. This information is
actually passed to Ff AM by the initiator when establishing the file ~ervice activity. This
means that the range of this directory fonction must be the complete (or desired) range of
all possible FrAM responders throughout the FfAM service [FfAM-DS].

This has the rather important implication that the directory service must be global.
Filestore Name to PSAP-address binding must be known not only locally, but throughout
the FfAM service. Which is different from the MTS, where we don't need to know the
PSAP-address of the destination MTA, but only the PSAP-address of the next MT A on
the route to the destination.

In a pure Fr AM OSI environment, a fonction mapping the PSAP-address of an Fr AM
entity into its corresponding title is not required, as both are carried in the protocol.
However, in other pre-OSI File Transfer Service, as the Janet FrS (Blue Book), it could
be that there is no provision for carrying the titles of the participating entities in the
protocol.

So when pure ISO Fr AM service and pre-OSI file transfer protocols will have to
internet, a mapping of PSAP-addresses into entity titles is required by the protocol
convertor to resolve the called and calling addresses contained within the pre-OSI protocol
into Fr AM filestore names.

Another fonction related to directory needs of Fr AM would be to provide a mechanism
to deterrnine the filestore name where a specific file or information is stored.

- 35 -

Directory Needs Other Directory Needs

4.2.2. MTS needs

Very similar to AETs are MT A names. When an association is established between two
MTAs, the parameters include a MTA name and an optional password. Bach party is
supposed to fill in its own name, or more precisely, the name by which the local MTA is
known from the remote MT A, and to check the received information, e.g. by verifying
the password or the calling network address against the MTA name [Huit-88].

This last fonction looks like an 'address to name' mapping fonction. But MTA names
could very well be placed in a directory associated with the corresponding MT A address,
and the address verification could then be done by using the 'name to address' mapping
fonction as both are present in the connection information. So using the directory in the
same way to perform verification and usual name resolution.

Moreover, additional information could be needed by MT As in order to set up a
connection with a remote MT A, or to decide routing. For example, it could be usefol for
the local MT A to know the protocol versions and the services supported by the remote
MT A. If the used protocols appear to be incompatible, or if the connection would lead to a
loss of functionality, another route could be selected.

A message could need some kind of fonction to be perf ormed onto it before being
delivered (e.g.: Encoded Information conversion). And it could be that such fonctions are
only offered by a reduced set of MT As. The originator MTA would then first route the
message toward an appropriate special MT A before the message be routed to the
destination MTA. Appropriate information about MTA capabilities to make routing
decisions easier could be stored in the directory, associated with the MT A name to MT A
connection information tables.

4.2.3. Future Needs

Every application bas its specific directory needs. In the incoming standards, as Job
Transfer Access and Management (JT AM) or Virtual Terminal, new needs will probably
appear. It would be desirable that such directory needs can easily be provided by the
emerging directory service standard. The constraint for such a requirement is that
Application Entity Titles are Directory Names, in order to optimize directory access
performance. If it is felt that Directory Names are not convenient, synonyms specific for
the application may be defined, and even managed by the directory.

Network management is an important task for which use of directory services would
be an helpfol tool. Storage and retrieval of long term configuration information maybe
provided by a directory service, because it provides simple query facilities and
mechanisms for distribution of data as well as an authentification framework [COS-88].

4. 3. General and generic Directory Service functions

A global directory service could be designed to satisfy larger and more general needs
than the ones required for telecommunications. It could be usefol that information about
people, organizations, projects and location of facilities and documents be stored and
accessed in a general directory.

Generic directory services are services that a global directory should be able to
provide, and which could be usefol for a large set of applications.

- 36 -

Directory Needs Other Directory Needs

Four main generic fonctions are identified:

- The White Page Service: the basic fonction of a directory service is to map the
Directory Name of an object into another object identifier. It is the case when an O/R
Name is mapped into an O/R Address, or when an AET is mapped into its PSAP-address.

- The Information Service: for a more general use of the directory services, the white
page service should extend the retrieved information to all or a part of the information
stored about an object in the directory entry corresponding to this object. E.g.: the ability
to get all the information about a project.

- The Inverse White Page Service: this directory function maps an object identifier
different from the global Directory Name into its global Directory Name. It the inverse of
the White Page service. E.g.: mapping a PSAP-address into the AET of the
corresponding entity.

- The Y ellow Page Service: this service maps a possible incomplete description of a
directory entry into the list of entries matching the description. E.g.: all 'workstations' in
the 'computer center building'.

- 37 -

Introduction to Directory Services The X.500 Directory Service

Part 2 The X.500 Directory Service

The Directory is a distributed service being jointly defined by ISO and CCITT. ISO
standardization documents are IS-9594 1 to 8. Corresponding CCITT Directory papers
are the X.500 series of recommendations.

The three next chapters aim to introduce models and concepts of the directory, the
abstract service provided by the Directory, and how Directory distribution and the
Directory distributed service are achieved, as described in the standardization documents.

The Directory Service (DS) provides for accessing, browsing and maintaining a
database distributed over an OSI network. The directory standardization has been
produced to facilitate interconnection of infonnation processing systems to provide
directory services. It aims to allow, with a minimum of technical agreements, the
interconnection of directory systems from different manufacturers, under different
managements, of different level of complexity and of different ages [X.500-88].

The set of all such systems, together with the directory infonnation which they hold,
can be viewed as an integrated whole, called the Directory. The infonnation held by the
Directory is collectively known as the Directory Infonnation Base. This infonnation is
typically used to facilitate communication between, with or about objects such as
application entities, people, terminais or distribution lists.

The Directory provides the directory capabilities required by OSI applications, OSI
management processes, other OSI layer entities and telecommunication services. Among
the capabilities which it provides are those of 'user-friendly naming', whereby objects can
be referred to by names which are suitable for citing by human users, and of 'name-to
address mapping' which allows the binding between objects and their location to be
dynamic. The latter capability allows, for example, network operations not to be affected
by addition or removal of objects, or changes in the object location [X.500-88].

In essence, the Directory Service is a database to which a user is given remote access
using OSI. The Directory is not intended to be a general purpose database. It has certain
special characteristics which have led to it not following well known systems of database
structure, although it may partly be built on such systems (e.g.: the relational model)
[Kille-88].

The Directory is intended to be large and distributed. This is a fondamental criterion.
The other characteristics can be viewed as restrictions which facilitate this goal, but are
still acceptable to users of the Directory.

It is assumed, for example, that as is typical with communication directories, there is a
considerably higher frequency of queries than of updates. There is also no need for
instantaneous commitment of updates. Temporary inconsistencies where both old and
new versions of the same inf onnation are available, are quite acceptable.

- 38 -

Introduction to Directory Services The X.500 Directory Service

It is a characteristic of the Directory that, except as a consequence of differing access
rights to the information or unpropagated updates, the results of Directory queries will not
be dependent on the identity or location of the inquirer. This characteristic renders the
Directory unsuitable for some telecommunication application, for example some types of
routing [X.500-88].

- 39 -

Introduction to Directory Services Models and Concepts

5. Models and Concepts

This chapter takes up the main Directory concepts presented in [X.500-88] and
[X.501-88].

S. 1. Functional Model

The Directory Service may be seen, from a user's point of view, as an object holding a
database, called the Directory Information Base (DIB), and a service providing access to
this database. The users of the Directory (e.g. a person or an application process) can read
or modify the information held in the Directory, subject to having permission to do so.

In interacting with the Directory, each user is represented by a Directory User Agent
(OUA), which is the application process actually accessing the Directory on behalf of the
user. The Directory provides one or more Directory access points at which such accesses
can take place. This is illustrated in figure 5.1.

The Directory Environment

The Directory
DSA

DSA

DSA
DSA

• Directory Access Point

Figure 5.1 : The Directory functional model.

The Directory provides a well defined set of access capabilities to its users, known as
the abstract service of the Directory. This service provides simple modification and
retrieval capabilities (see chapter 6).

The Directory is manif ested as a set of one or more application processes known as
Directory Service Agents (DSAs), each of which provides zero, one or more access
points to the Directory. This is illustrated in figure 5.1. If the Directory is composed of
more than one OSA, it is said to be distributed.

Each OSA holds a part of the DIB. DSAs allow thus the physical distribution of the
DIB. DSAs cooperate to achieve the Directory Service provided to users, as the
information must transparently be accessed regardless of its location in the DIB.

- 40-

Introduction to Directory Services Moclels and Concepts

A particular pair of application processes which need to interact in the provision of the
Directory Service (either a DUA and a DSA, or two DSAs) may be located in different
systems. Such interactions are carried out by means of the Directory protocols.

If a DUA and a DSA are located in different systems, the Directory Access Protocol
(DAP) is used to transmit the request from the DUA to the DSA and to return the results
from the OSA to the DUA.

Bach OSA provides direct access to the information held by it, and, by means of
communications with other DSAs via the Directory System Protocol (DSP), to the
complete information base.

A set of one or more DSAs and zero or more DU As managed by a single organization
may form a Directory Management Domain (DMD). The organization concerned specifies
the communications among the functional components within the DMD and certain
aspects of the behavior of their DSAs. It may in fact not make use of the X.500 DS to
govern any interactions among DU As and DSAs which are wholly within the DMD, but
define its own one.

Bach DSA is administrated by an administrative authority. This entity has control over
all the part of the DIB held by it, and in particular on its structure and for allocation of
Directory Names (see sections 5.7 & 5.6).

5. 2. The Directory Information Base

The Directory Information Base is made up of information about 'objects of interest'
(objects) which exists in some world, primarily of interest in the world of
telecommunications. An object can be anything in that world which is identifiable, i.e.
which can be named.

Bvery object belongs to an object class. An object class specifies the characteristics
which are shared by a family of objects.

B.g., every application entity belongs to the Application-Bntity object class. Bvery
object belonging to the Application-Bntity object class has a PSAP-Address and an
Application-Bntity-Name.

An object class may be a subclass of one or more other classes, in which case the latter
are called the superclasses of the former. A subclass always automatically inherits all of
the characteristics of its superclasses (these characteristics must not be redefined for the
subclass). A subclass may be defined to add characteristics to an object class. The
members of the subclass are also considered to be members of their superclasses. There
may be subclasses of subclasses, etc, to an arbitrary depth.

B.g., the MTA object class is a subclass of the Application-Bntity object class and
automatically inherits of all of its characteristics, i.e. has a PSAP-Address and an
Application-Bntity-Title. Moreover, the MTA object class has an additional
characteristic which is the Supported-Protocol-Version. The Application-Bntity object
class is a superclass of the MTA object class. An MT A is an Application-Bntity, and
is thus also a member of the Application-Bntity object class in addition to be member
of the MT A object class ..

The DIB is composed of Directory entries (entries), each of which consists of a
collection of information about a single object.

- 41 -

Introduction to Directory Services Models and Concepts

For any particular object, there is precisely one object entry containing the information
aoout that object in the DIB. The object entry is said to represent the object.

For any particular object, there may, in addition to the object entry, be one or more
alias entries for that object entry. Only object entries may have alias entries, so alias
entries for alias entries is not permitted. Alias entries point in some way to their
corresponding object entty. Alias entries are used to provide alternate names to objects
(see section 5.6).

Each entry contains an indication of the object class of the object to which the entry is
associated. The object class indication in an alias entty indicates in fact that it is an alias
entry. This is shown in figure 5.2.

Alias Entry

Object Class : Alias

Name : Alias-Name-1

Refers to: ... -

Object Entry

Object Class : Object

Name : Object-Name

Description : ...

~

Alias Entry

Object Class : Alias

Name : Alias-Name-2

Refers to:

Figure 5.2 : Objects, object entries and alias entries.

5. 3. The Directory Information Tree

The data in the Directory are structured in a hierarchical manner. The entries of the DIB
are arranged in the form of a tree, the Directory Information Tree (DIT), where vertices
represent the entries. Entries higher in the tree (nearer to the root) will often represent
objects such as countries or organizations, while entries lower in the tree will represent
people or application processes. This is illustrated in figure 5.3.

Directory Information Tree

DE: Directory Object Entry
DAE: Directory Alias Entry

DAE

Figure 5.3: The Directory Information Tree.

- 42-

Objects

Introduction to Directory Services Models and Concepts

Such an organization is designed to facilitate distribution and management of a
potentially very large DIB (see chapter 7), and to ensure that objects can be
unambiguously named (see section 5.6) and their entries found.

The hierarchical relationship found among objects in the tree can be exploited by the
arrangement of the entries in the tree.

1
B.g., a person works for a department, which belongs to an organization, which

is headquartered in a country.

Vertices in the tree are entries. Object entries may be either leaf or non-leaf vertices,
whereas alias entries are always leaf entries. Note that an alias entry can refer to a non-leaf
object entry.

The object represented by an entry is closely related with the naming authority for its
subordinates (see section 5.6). The root can be viewed as a null object entry, representing
the highest level of naming authority for the DIB.

Permitted superior/subordinate relationships among objects, and hence entries, are
governed by the DIT structure definitions (see section 5.7.1).

5. 4. Directory Entries and Attributes

An entry consists of a set of attributes. Bach attribute provides a piece of information
about, or describes a particular characteristic of, the object to which the entry
corresponds. "Attribute" is the Directory lingo for field in a Directory entry.

Bach attribute consists of a type, which indicates the class of information given by the
attribute (i.e. its semantic), and the corresponding attribute values. An attribute type may
have several values.

B.g.: Attribute type: Intemal-Phone-Number
Attribute values: 3391, 2178.

This is shown in figure 5.4.

Entry

Attribute Attribute

Attribute

1 Attribute Type Attribute Value(s)

Attribute value(s)

Distinguished Attribute Value j j Attribute Value l ·. · 1 Attribute Value j

Figure 5.4 : Structure of an entry.

AU attributes in an entry must be of distinct attribute types.

- 43 -

Introduction 10 Directory Services Models and Concepts

There are a number of attribute types which the Directory system knows about and
uses for its own purposes. These include:

- the 'Object-Class' attribute, which appears in every entry and indicates the object
class to which the object corresponding to the entry belongs;

- the 'Aliased-Object-Name' attribute. An attribute of this type appears in every alias
entry, and holds the distinguished name (see section 5.6) of the object entry this alias
entry is an alias of.

The types of attributes which must or may appear in an entry are govemed by rules
applying to the indicated object class: the object class definition (see section 5.7.1). The
object class definition defines, among other things, the mandatory and optional attribute
types which appear in an entry.

1

E.g., entries corresponding to objects of the MT A object class must contain the
'NSAP-Address', 'Application-Entity-Title' and 'Supported-Protocol-Version'
attribute types, and may contain the 'Contact-Person-Phone-Number' attribute type.

Defining an attribute type also involves specifying the syntax for the values of this
attribute (attribute syntax), and hence the data type to which every value in such an
attribute must conform (see sections 5.7.3 & 5.7.4).

1
E.g., the attribute type 'Contact-Person-Phone-Number' bas to be of attribute

syntax 'Numeric-String'.

At most one of the values of an attribute may be designated as a distinguished value, in
which case the value appears in the Relative Distinguished Name of the entry (see section
5.6).

An Attribute Value Assertion (AVA) is a proposition, which may be true, false or
undefined, concerning the attribute values of an entry. It involves an attribute type and an
attribute value. A matching rule specifies when the presented value of the A V A satisfies
the AVA (see section 5.7.4). When no matching rule is specified, the matching rule for
equality is defaulted.

E.g.: the AVA <Application-Entity-Title = MyMTA> is true for a particular entry
if the value of the attribute type 'Application-Entity-Title' in that entry matches the
value 'MyMTA' for equality.

An A V A may have an undefined value when, for example, the attribute syntax of this
attribute type bas no equality matching rule.

5.6. Naming

Managing entries of a worldwide Directory must solve the problem of managing a
worldwide namespace in a flexible and user-friendly way [COS-88]. The name structure
follows the hierarchical structure of the Directory Information Tree. This approach solves
the problem of assigning unique names to entries without the need of a central authority.

A Directory Name (name) is a construct that identifies a particular object among the set
of all objects. However, the name needs not to be the only one identifying the object, i.e.
several different names may unambiguously denote the same object.

Each entry of the Directory bas a Relative Distinguished Name (RDN). A RDN
consists of a set of Attribute Value Assertions (possibly made up of only one AVA), each
of which is true, concerning the distinguished attribute values of the entry. The set
contains exactly one assertion about each distinguished value in the entry.

-44-

Introduction to Directory Services Models and Concepts

The RDN for an entry is chosen when the entry is created. A RDN must identify a
subordinate entry among all subordinate entries of its superior entry. This thus involves
that the RDNs of the entries subordinated to a particular entry are all distinct. It is the
responsibility of the relevant naming authority for the superior entry to ensure that this is
so by appropriately assigning relative distinguished values.

Object Class : Organization

Org. : British Telecom

----------- ----------Object Class : Organizational-Unit Object Class : Organizational-Unit

OU: Sales OU: R&D
Location : Winchester Location : Winchester

Object Class : Organizational-Unit

OU: Sales
Location : London

Figure 5.5: Entries and Relative Distinguised Names.

E.g., in the example of figure 5.5, the RDN <OU = Sales ; Location = London>
identifies a particular entry representing an organizational unit among all subordinate
entries of the entry corresponding to the 'British Telecom' object. The value 'Sales'
of the attribute type 'OU' is a distinguished value for the entry.

The RDN of the root is defined to be null.

The Directory Names of an object are the distinguished name and the alias names of the
object entry corresponding to this object.

The distinguished name of a given entry (object or alias entry) is defined as being the
sequence of the RDNs of the entry which represents the object and those of all its superior
entries, in descending order. Figure 5.6 illustrates this principle.

DIT RDN Distinguished Name

ROOT (} (}

/t\.
Countries C=UK (C=UK}
ô~D

Organizations O=British Telecom (C=UK; O=British Telecom }
d~è:J
Org. Units OU=Sales; (C=UK; O=British Telecom;

~i L=London (OU=Sales; L=London}}

CN=Smith (C=UK; O=British Telecom;

-□ (OU=Sales; L=London }; CN=Smith}

Figure 5.6 : Determination of Distinguished Names.

- 45 -

Introduction to Directory Services Models and Concepts

The aliasing mechanism pennits, in some way, entries to have multiple immediate
superiors among which only one is an object entry, other ones being alias entries.
Moreover, the distinguished name of an alias entry may be considered as an alias name
for the distinguished name of the object entry this alias entry refers to. Therefore, alias
entries provide a basis for alternate names for an object. An alias, or an alias name for an
object is a name where at least one of the RDNs is that of an alias entry.

Div.: DD

Obj. Class : Organization

Org.: CERN

Obj. Class : Division

Div. : Data Division

Obj. Class : People

Name : Amundsen

Exp.: Opal

Obj. Class : Alias-People

Name : A.-K. Amundsen

Figure 5. 7 : Alias entries and alias names.

E.g., in the example shown in figure 5.7, <Org. =CERN; Div.= Data Division;
Name = Amundsen> is the Directory distinguished name of the object (in fact a
person) represented to by this entry. Alias Directory names for this person are <Org.
=CERN; Div. = DD ; Name = Amundsen> and <Org. = CERN ; Exp. = Opal ;
Name = A.-K. Amundsen>. AU are Directory names.

A purported name is a construct which is syntactically a name, but which has not (yet)
been shown to be a valid name.

5.7. Directory Schema

The Directory schema is a set of definitions and constraints concerning the structure of
the DIT, the possible ways entries are named, the information that must or may be held in
an entry, and the attribute types and attribute syntaxes used to represent that information.

Defining the Directory schema is equivalent of defining the structure of a database and
its related constraints to a DataBase Management System. The schema enables the
Directory system to check the validity of the operations performed in the DIT and on the
entries it holds. For example, the Directory system will prevent the creation of an entity if
a value for a mandatory attribute is missing in the 'Add-Entry' operation, or will prevent
the addition of a character-string value to an attribute if its attribute syntax is defined to be
a numeric string value.

There are four kinds of definitions in the Directory schema:
- the DIT structure definitions;
- the object class definitions;
- the attribute type definitions;
- the attribute syntax definitions.

- 46-

Introduction to Directory Services Moclels and Concepts

5.7.1. DIT Structure Definitions

The DIT structure definitions define the ways in which en tries may be related to one
another in the DIT, i.e. the permitted hierarchical relationships between entries . By the
way, they also define the structure distinguished names of en tries may have. The X.500
standard recommends a basic DIT structure described in figure 5.8. The table gives for
each object its Relative Distinguished Name and its possible superiors.

Object Class RDN Root C. Loc. Org. o.u. App.
Proc.

Countrv CountrvName X

Localitv LocalitvName X X X X X

Orn:anization OnranizationName X X X

Organizational Unit OrganizationalUnitNam(X X X

Organizational Person CommonName X X

Qrganizational Rote CommonName X X

Group of Names CommonName X X

Residential Person CommonName X

Application Entitv CommonName X

Device CommonName X X

Application Process CommonName X X

Figure 5.8 : Recommended DIT Structure Definition.

An 'Organizational Person' is a person employed by an organization, or strongly
associated with that organization. It is distinct from the 'Residential Person'. An
'Application Entity' consists of those aspects of an application process pertinent to OSI,
while an 'Application Process' is an element within a real system which performs a
particular application. A 'Group of Names' may represents, for example, a Distribution
List.

Note that the definition is recursive, as for example, a 'Locality' entry can be
subordinated to another 'Locality' entry.

When one attempts to modify the DIT (e.g. when adding an entry somewhere in the
DIT), the Directory system checks whether the operation violates the applicable Directory
structure. If it is the case, the operation fails.

E.g., in the example of the DIT structure defined in figure 5.8, an attempt to add
an entry of the object class 'Residential Person' as subordinate to an entry of the
object class 'Country' will fail. In fact, only entries of the object class 'Locality' may
be superior entries for entries of the object class 'Residential Person'.

The DIT structure definitions also define the permitted RDNs for object class entries,
and hence the possible Directory Name structures for the corresponding objects. The
possible Directory name structures for an entry of a particular object class may be derived
from the DIT structure (see section 5.6). They in fact depend of the possible object
classes of their superior entries and their RDNs. Only one structure is valid for a given
entry. The valid structure depends of the position of the entry in the DIT.

- 47 -

Introduction to Directory Services Moclels and Concepts

E.g., in the example of the DIT structure definitions of figure 5.8, the structure of
a distinguished name for an entry of the object class 'Organization' may be either
<CountryName = ... ; LocalityName = ... ; OrganizationName = ... >,
<CountryName = ... ; OrganizationName = ... >, <OrganizationName = ... >,
<LocalityName = ... ; OrganizationName = ... >,etc ...

5.7.2. Object Class Definitions

The definition of an object class comprises:
- optionally, an identifier for the object class;
- an indication of which class or classes this object is a subclass of;
- the list of the mandatory attribute types that an entry of this object class must contain

(in addition to the mandatory attribute types of a1l its superclasses);
- the list of the optional attribute types that an entry of this object class may contain (in

addition to the optional attribute types of a1l its superclasses).

Example of class definition:
Define Object Class 'Organizational-Person'

- Subclass-of : 'Person' ;
- Object-Class-Id : 103 ;
- Must contain : Organizational-Role;

Intemal-Phone-Number ;
- May contain : Fax-Number;

End of 'Organizational-Person' ;

Note that an object class automatically inherits of a1l of the attribute types of its
superclasses. These attribute types are fully part of the object class definition of its
subclasses.

Every object class is implicitly a subclass of the special object class called Top'.

Every entry contains an attribute type 'Object-Class' (inherited from the 'Top' object
class) which identifies the object class to which the object corresponding to the entry
belongs.

When one attempts to modify an entry of the DIT (e.g. when adding an attribute to an
entry), the Directory system checks whether the operation violates the object class
definition. If it is the case, the operation f ails.

E.g., attempting to delete the mandatory attribute type 'lntemal-Phone-Number' to
an entry of the above 'Organizational-Person' defined object class will fail. The same
happens if one attempts to add to an entry an attribute type which is absent from the
object class definition of that entry.

A special object class 'Alias' is defined. Every alias entry shall have an object class
which is a subclass of the Alias object class.

5. 7. 3. Attribute Type Definitions

The definition of an attribute type involves:
- assigning an identifier for the attribute type;
- indicating or defining the attribute syntax for the attribute type;
- indicating whether an attribute of this type may have only one value, or may have

more than one value.

- 48 -

Introduction to Directory Services Models and Concepts

Example of attribute type definition:
Define Attribute Type 1lntemal-Phone-Number1

- Att.-Type-Id : 1204 ;
- Att.-Syntax : Numeric-String ;
- Multivalued : Yes ;

End of 1Intemal-Phone-Number1
;

The Directory system ensures that the indicated attribute syntax is used for every value
of attribute of this type. The Directory also ensures that attributes of this type have one
and only one value in entries if attributes of this type are defined to have only one value.

The attribute type definition may also define constraints on the attribute values, as a
range of permitted values or a maximum length for an alphabetic string.

5.7.4. Attribute Syntax Definitions

The definition of an attribute syntax involves:
- optionally assigning an identifier to the attribute syntax;
- indicating the data type of the attribute syntax;
- defining rules for matching a presented value with a target attribute value held in the

DIB.

Matching rules may be defined for equality, ordering or substring. A matching rule for
ordering specifies when a presented value is less than, equal to or greater than a target
value.

Example of attribute syntax definition:
Define Attribute Syntax 'Ethernet-Address-Syntax'

- Att.-Syntax-Id : 10203 ;
- Data-Type : BitString ;
- Matches-for : Equality

(Presented equals target when Presented = Target) ;
End of 'Ethernet-Address-Syntax'.

The attribute syntax also defines how values of the data type have to be encoded.

The syntax of distinguished values should always specify a matching rule for equality.

A presented distinguished name value is equal to a target distinguished name value if
and only if:

- the number of RDNs in each is the same;
- corresponding RDNs have the same numbers of A V As;
- corresponding A V As (i.e. those with identical attribute types) have attribute values

which match for equality.

- 49-

Introduction to Directory Services Moclels and Concepts

Figure 5.9 summarizes the relationships between the schema definitions on one side,
and the DIT, directory entries, attribute types and attribute values on the other side.

Definitions DIT elements

DIT Structure defines
► DIT rules for

. uses belongs to

Object Class defines
► Entries rules for

uses belongs to

Attribute Type
defines

► Attributes rules for

uses belongs to

Attribute Syntax
defines

► Values rules for

Figure 5.9 : Overview of Directory Schema.

The X.500 International Standard defines a rather extensive set of object classes
[X.521-88], attribute types and attribute syntaxes [X.520-88], covering the general needs
of current telecommunication operations. Specific needs of applications or of user
communities within a national or private Directory system may require extensions to the
standardized definitions which may be met by defining appropriate new object classes,
attribute types and attribute syntaxes.

S . 8. Access Control

Directory users are granted access to the information on the basis of their access
control rights in accordance with the access control policy in force protecting that
information. X.500 has no provision for managing access control to the information held
in the DIB. Although it is recognized that implementations will need to introduce means of
controlling access to the information, access control is left as a local matter by the
standard. However, Annex F of [X.501-88] (which is not part of the standard),
recommends some principles that are to guide the establishment of procedures for
managing access control.

Four levels of protection are presently identified:
- protection of an entire subtree of the DIT;
- protection of an individual entry;
- protection of an entire attribute within an entry;
- protection of selected instances of attribute values.

A need for at least six categories of access is envisaged. If access is not granted to a
protected item in any category, then the Directory, in so far as possible, responds as if the
protected item do not exist at all.

- 50-

Introduction to Directory Services Models and Concepts

The following categories of access are presently identified (the letters denote that the
item which can be so protected is an attribute (A), an entry (E), or both (EA)):

- detect (A) : allows the protected item to be detected;
- compare (A) : allows a presented value to be compared to the protected item;
- read (A) : allows the protected item to be read;
- modify (A) : allows the protected item to be modified;
- add/delete (EA) : allows the creation and deletion of new components (attributes or

attribute values) within the protected item;
- naming (E) : allows the modification of the RDN of, and creation and deletion of,

en tries which are immediately subordinate to the protected entry.

A scheme for managing access control associates with every protected item, either
explicitly or implicitly, a list of access rights. Each item in such a list pairs a set of users
with a set of access categories.

Determining if a user is in one (or more) of the noted sets must be possible from the
information supplied with the request.

- 51 -

The X.500 Directory Service Directory Abstract Service Definition

6 Directory Abstract Service Definition

This chapter describes the abstract Directory Service as defined in the current Directory
standardization documents.

'Abstract' refers to the fact that functionalities are defined regardless of their
implementations. In the standard papers, the abstract Directory Service is formally defined
with the Abstract Syntax Notation One (ASNl).

6. 1. The Client-Server Model

The Directory System is positioned in the OSI application layer, and is constructed in
accordance with the Client-Server model described hereafter [TR/32].

A Server System is a functional entity that performs a set of basic and specific
application services (the Server Services), by means of Service Agents within the Server
System.

A Client System is a system in which one or more Clients of a Server System reside.

A Client is a functional entity that requests services provided by a Service Agent for
that particular service. A Client consumes the services provided by the Server System.

A Client gains access to a Service Agent by means of an Access Protocol.

A Client System may be a User, or a Service Agent of another service (e.g. a MTA
may be a Directory User).

The set of services provided by a Service Agent is made available to its Clients through
Access Points. Each Access Point corresponds to a particular combination of Supplier
Ports. Each Port defines a particular kind of interaction between a Client and a Server,
and provides a particular set of services.

Similarly, the Server System views the Client through Consumer Ports to which the
requested services have to be provided.

Communications between Consumer Ports and Supplier Ports are made thanks to the
Access Protocol.

- 52 -

The X.500 Directory Service Directory Abstract Service Definition

Figure 6.1 illustrates the Client-Server model.

Client
System

Consumer Port 1

Service 1.1
Service 1.2

Consumer Port 2

Service 2.1
Service 2.2

Client

Supplier Port 2

Service 2.1
...... .,___A..,cc_e_s_s _P_r_ot_c_ol_~~--1 Service 2.2

n erac 10n Service 2_3

Figure 6.1 : The Client-Server Model.

Server
System

Service
Agent

One or more Service Agents connected to a network may interact to perform the
requested services. In that case, they cooperate by means of an inter-service Agent
Protocol. Similarly to the Client-Server interaction, the different Service Agents interact
through Ports.

The Access Protocol is the standard way for Clients to gain access to a Service Agent.
It is the mean that allows location of Clients to be remote from Service Agents.

An Agent Protocol is the standard way for a Service Agent to gain access to another
Service Agent of the same specific service. It is the mean that allows a Server System to
be distributed between a number of Service Agents.

- 53 -

The X.500 Directory Service Directory Abstract Service Definition

Figure 6.2 illustrates a distributed Client-Server System.

Client
System

■ Port

Server
System

Figure 6.2 : Distrtbuted Server System.

Agent
Protocol

In the Directory Service system, Clients are made ofDirectory User Agents (DU As),
and Service Agents are made ofDirectory System Agents (DSAs), which are all
supported by application processes. The Access and Agent Protocols are respectively the
Directory Access Protocol (DAP) and the Directory System Protocol (DSP), which are
application level protocols.

6. 2. Layered Model of the Directory System

When a pair of remote Directory application processes have to interact, these
interactions are supported by the DAP if these applications are a DUA and a DSA, and by
the DSP if both are DSAs.

The fonctions of the Application-Entities are provided by a set of Application-Service
Elements (ASEs). There is a one to one correspondence between an ASE and a port.

The Remote Operation Service Element (ROSE) supports the request/reply paradigm of
the abstract operations that occurs at the ports in the model. The Directory ASEs provide
the mapping fonction of the abstract syntax notation of the Directory abstract service onto
the services provided by the ROSE [X.518-88].

The Association Control Service Element (ACSE) supports the establishment and
release of an application association between a pair of application-entities. An association
between a DUA and a DSA may be established only by the DUA. Only the initiator of an
established association can release it [X.518-88].

- 54 -

The X.500 Directory Service Directory Abstract Service Definition

This is illustrated in figure 6.3.

DUAorDSA DSA

DAPorDSP

1 1 1 1
ASEl ASEl

1
ASE2

1 1
ASE2

1

1
ASE3

1 1
ASE3

1

1
ROSE

1 1
ROSE

1

1
ACSE

1 1
ACSE

1
1 1

Presentation Connection

Figure 6.3 : Layered Model of the Directory System

The protocol specifications of the DAP and the DSP are further detailed in [X.519-88]

6. 3. Directory ports and services

The Directory may be seen as an object accessed through Access Points. Each Access
Point corresponds to a particular combination of ports, each of which providing a
particular set of services. The Directory supplies services via three types of Supplier
Ports:

- the Read ports, which support reading information from a particular named entry in
the DIB;

- the Search ports, which allow more exploration of the DIB;
- the Modify ports, which enable the modification of entries in the DIB.

It is intended that in the future, there may be other types of Directory ports.

Similarly, the DU As are seen from the viewpoint of the Directory, as composed of a
combination of Read, Search and Modify Consumer Ports.

Each type of port gives access to a particular set of services. Each service is off ered
thanks to the corresponding operation.

The Read ports provide the 'Read', 'Compare' and 'Abandon' operations. The Search
ports provide the 'List' and 'Search' operations, and the Modify ports provide the 'Add
Entry', 'Remove-Entry', 'Modify-Entry' and 'Modify-RDN' operations. The services
corresponding to these operations are described in the following sections.

In addition to these externally visible ports (visible from the OUA point of view) a
OSA supports a distributed version of these ports, namely Distributed-Read' port,
Distributed-Search' port and Distributed-Modify' port, which allow DSAs to propagate
requests for these services to other DSAs (see chapter 7).

- 55 -

The X.500 Directory Service Directory Abstract Service Definition

6. 4. Common Operation Parameters

This section describes the parameters (arguments and results) which are common to
several Directory operations.

The 'common arguments' information may be present to qualify the invocation of each
operation that the Directory can perform. When absent, the default values (defined in
[X.511-88]) are assumed.

The 'common arguments' comprise five components: the 'service controls', the
'security parameters', the 'requestor distinguished name', the 'operation progress' and
the 'aliased RDN'. These components are described in the following sub-sections.

Comrnon Arguments
comprise : - Service controls;

- Security parameters;
- Requestor distinguished name;
- Operation progress;
- Aliased RDN;

The 'common results' information should be present to qualify the result of each
retrieval operation that the directory can perf orm.

The 'common results' comprise the 'security parameters', the 'requestor distinguished
name' and the 'alias dereferenced' components.

Comrnon Results
comprise : - Security parameters;

- Requestor distinguished name
- Aliased dereferenced;

Further arguments specific to one or more operations are also described. These are the
'entry information selection', the 'entry information', the 'filter' and the 'error reports'.

Service Controls
The 'service controls' argument contains the controls, if any, that are to direct or

constrain the provision of the service.

These parameters comprise the 'options', 'priority', 'time limit', 'size limit' and 'scope
of referral' components.

Service Controls
comprise : - Options;

- Priority;
- Time limit
- Size limit
- Scope of referral

The 'options' component contains indications for the behavior of DSAs when
performing the requested service. Options indicate if chaining is preferred to referrals (see
section 7.3), whether chaining and multicasting are prohibited, if an operation has to be
limited to a local scope (a single DSA or a single DMD), whether copy of the original
information may be used to provide the service and whether aliases used to identify an
entry may or must not be dereferenced while performing an operation.

- 56 -

The X.500 Directory Service Directory Abstract Service Definition

The 'priority' component indicates the priority (low, medium or high) at which the
service is to be provided at the Directory level. There is no relationship implied with the
use of priorities in underlying layers of the OSI stack. Note that there is no guaranties that
the Directory, as a whole, does implement queuing.

The 'time limit' indicates the maximum elapsed time, in seconds, within which the
service should be provided. If this constraint cannot be met, an error is reported. In the
case of a time limit exceeded during a List or Search operation (see section 6.5.3), the
result shall be an arbitrary selection of the accumulated results.

The 'size limit' is only applicable to a List or Search operation (see section 6.5.3). It
indicates the maximum number of objects to be returned. In the case of size limit
exceeded, the results of List or Search operation may be an arbitrary selection of the
accumulated objects, equal in number to the size limit Any further results shall be
discarded.

The 'scope of referral' indicates the scope to which a referral retumed by a DSA
should be relevant (see section 7.3). Only referrals to other DSAs within the selected local
scope (DMD or country), will be retumed. Note that should a DSA be enable to return a
referral within the selected scope, it will nevertheless retum any reference it holds to other
DSAs able to continue the operation.

Certain combination of priority, time limit and size limit may result in a conflict. For
example, a short time limit could conflict with low priority, a high size limit could conflict
with a low time limit, etc ...

Security parameters
The 'security parameters' govem the operation of various security features associated

with a Directory operation.

A digital signature allows a recipient to check whether a received information has been
produced by the indicated originator. The arguments or results of any operation may or
may not be accompanied by a digital signature according to the requested level of
protection.

The 'security parameters' are the 'certification path', the 'name', the 'time' with a
'random number' and the 'target protection requested'.

Service Parameters
comprise: - Certification path;

- Name;
- Time and random number;
- Target protection requested;

The 'certification path' component is used to identify the originator's distinguished
name, and verify the signature on the arguments or results. A sequence of certificate pairs
is required when the recipient of information does not have the same certification authority
as the originator [X.509-88].

The 'name' is the distinguished name of the first intended recipient of the arguments or
results. This information may be forwarded to other agents when the operation is to be
distributed. For example, if a DUA generates a signed argument, the name is the
distinguished name of the DSA to which the operation is submitted.

- 57 -

The X.500 Directory Service Directory Abstract Service Definition

The 'time' is the intended expiry time for the validity of a signature when signed
arguments or results are used. It is in used in conjonction with a 'random number' to
enable the detection of replay attacks when the arguments or results have been signed.

The 'target protection request' appears only in the request for an operation, and
indicates the requestor's preference regarding the degree of protection to be provided on
the results. Two levels are provided: none (no protection requested), and signed (the
directory is requested to sign the results). The actual degree of protection provided may be
equal to or lower than that requested, based on the limitation of the Directory. The degree
of protection actually provided to the result is indicated by a protection indication.

Other Common Arguments
The 'requestor distinguished name' identifies the requestor of a particular operation. It

holds the name of the user who initiates the request, as identified at the time of binding to
the directory. It shall be present only if the results have to be signed.

The 'operation progress' defines the role that the DSA is to play in the distributed
evaluation of the request (see Annex B).

The 'aliased RDN' component indicates to the DSA that the object component of the
operation was created by the dereferencing of an alias on an earlier operation attempt (e.g.
during a previous read attempt in a new read operation perf ormed after having received a
referral, see section 7.3).

Other Common Results
The 'alias dereferenced' component is set to 'true' when the name of an entry which is

a target or a base for an operation included an alias which was dereferenced.

Entry Information Selection
An 'entry information selection' argument indicates what information is being

requested from an entry in a retrieval service. It specifies the set of attributes about which
information is requested.

One may specify all attributes or a list of attributes that are to be returned (the list may
be empty), and if one wants only to retrieve attribute types only, or attribute types and
values. Returning all attribute types and values is defaulted.

An attribute error will be returned if none of the selected attributes are present. A
security error will be returned in the case where access rights preclude the reading of a11
information requested.

Entry Information

An 'entry information' result conveys the selected information from an entry. The
distinguished name of the entry is always included. A parameter indicates whether the
information was obtained from the original entry or from a copy of the original entry. A
set of attribute types are included, each of which may be alone or accompanied by one or
more attribute values.

- 58 -

The X.500 Directory Service Directory Abstract Service Definition

Filter
A 'filter' argument applies a test that is either satisfied or not by a particular entry. The

filter is expressed in terms of assertions about the presence or value of certain attributes of
the entry, and is satisfied if and only of the fil ter is evaluated to 'true'.

A filter is either a filter-item or an expression involving simpler filters composed
together using the logical operators 'and', 'or' and 'not'.

A filter-item is an assertion about the presence of, or value(s) of, an attribute of a
particular type in the entry under test. Bach such assertion is either 'true' or 'false'.

A filter-item is either the indication of an attribute type (when one wants to check the
presence of an attribute type), or an attribute value assertion plus a matching rule to be
applied (when one wants to check the value of an attribute).

Defined matching rules for filter-items are 'equality, 'greater or equal', 'less or equal',
'substring' and 'approximate match'. The 'approximate match' matching rule includes
phonetic match or spelling variations, and is determined by a locally defined approximate
matching algorithm.

Error reports
The Directory provides for 'error reports'.

The Directory does not continue to perform an operation beyond the point at which it
determines that an error is to be reported.

Errors are classified by families. In an error report, the family is specified, plus the
particular problem encountered. The different familles are shortly described hereafter.

The 'abandon' may be reported for any Directory inquiry operation (i.e. 'Read',
'Search', 'Compare', 'List' operations) if the DUA invokes an abandon operation for the
corresponding operation. There is no particular problem to be further reported.

The 'abandon failed' error reports a problem encountered during an attempt to abandon
an operation. The particular problem may be, for example, that the Directory has already
responded to the specified operation, or that an attempt was made to abandon an operation
for which this is prohibited (e.g. for the 'Modify-Bntry' operation).

The 'attribute error' reports an attribute related problem. A parameter identifies the
entry to which the operation was being performed when the error occurred. Bach problem
is accompanied by an indication of the attribute type and, if necessary to avoid ambiguity,
the attribute value which caused the problem. The particular problem may be, for
example, that the named entry Jacks one of the attribute specified as an argument of the
operation, or that there is an attribute definition violation.

The 'name error' reports a problem related to the name provided as argument to an
operation. A parameter contains the name of the lowest entry (object or alias) matched in
the DIB. The problem may be that, for example, the supplied name does not match the
name of any particular object, or that an alias has been dereferenced which names no
object.

- 59 -

The X.500 Directory Service Directory Abstract Service Definition

The 'referral' is not really an error. It redirects the service-user to one or more Access
Points better equipped to carry out the requested operation. The error has a single
parameter which contains the references of the Access Points which can be used to
progress the operation.

A 'security error' reports a problem in carrying out an operation for security reasons,
e.g. if the requestor does not have the right to perform the requested operation, or if there
is an authentification problem (e.g. and invalid password), or if an invalid signature for
the request was found.

A 'service error' reports a problem related to the provision of the service. This may
occur when the Directory is unwilling to perform or proceed an operation, for example
when a part of the Directory is unavailable or bus y, or if a time limit was exceeded.

An 'update error' reports a problem related to attempts to add, delete or modify an
information in the DIB. Such problems occur when an operation would violate the
integrity rules of the Directory, i.e. the Directory schema (e.g. removal of an attribute type
which is part of the RDN).

6. 5. The Abstract Service Operations.

6.5.1. Directmy BIND and UNBIND operations.

The Directory 'Bind' and 'Unbind' operations are used by a DUA at the beginning and
at the end of a particular period of accessing the Directory.

Bind operation.
A Directory-Bind operation is used at the beginning of a period of access to the

Directory.

Directory Bind-Operation
Arg - port ;

- versions;
- credentials

Res - version ;
- credentials;
- error report;

The Bind operation parameters specify as arguments:
- the 'port' to which the service will be requested;
- the 'versions' of the service which the DUA is prepared to participate in;
- the 'credentials' which allow the directory to establish the identity of the user. They

may be either simple (consisting of a name and optionally a password), or strong
(additional information has to be provided to allow secure authentification of the identity
of the originator).

- 60-

The X.500 Directory Service Directory Abstract Service Definition

Should the bind request succeed, the following results will be returned:
- the 'version' which indicates which of the versions of the service requested by the

DUA is actually going to be provided by the DSA;
- the 'credentials' which allow the user to establish the identity of the Directory, i.e. of

the DSA that will directly provide the Directory Service. They are of the sarne form as
those supplied by the user (i.e. simple or strong);

- a 'security error' or 'service error' report if there is an authentification problem, or if
the Directory is unavailable.

Unbind operation.
The Directory-Unbind operation is used at the end of a period of access to the

Directory and specifies the 'port' to which the unbind is requested.

Directory Unbind-Operation
Arg : - port ;

6.5.2. Directory READ operations.

There are two 'read-like' operations: Read and Compare. The Abandon operation is
grouped with the read operations for convenience.

Read operation.
A Directory-Read operation is used to extract information from an explicitly identified

entry. It may also be used to verify a distinguished narne. The arguments of the operation
may optionally be signed by the requestor. If so requested the Directory may sign the
result.

Directory Read-Operation
Arg - abject name ;

entry information selection
common arguments;

Res entry information
common results

- error report;

Arguments are:
- the 'object narne' which identifies the object entry from which information is

requested. Should the narne involve one or more aliases, they are dereferenced (unless
this is prohibited by the relevant service controls);

- the 'entry information selection' which indicates what information from the entry is
requested;

- the 'common arguments', which specify the service controls applying to the request.

Results are:
- the 'entry information' result which holds the requested information;
- the 'common results' qualifying the results of the operation;
- an 'error report' if the operation fails.

Compare operation.

A Directory-Compare operation is used to compare a value (which is supplied as an
argument of the request) with the value(s) of a particular attribute type in a particular
object entry. The arguments of the operation may optionally be signed by the requestor. If
so requested the Directory may sign the result.

- 61 -

The X.500 Directory Service Directory Abstract Service Definition

Directory Compare-Operation
Arg - abject name;

- attribute value assertion;
- common arguments;

Res - distinguished name
- matched;
- from entry;
- common results
- errer report;

Arguments are:
- the 'object name' which identifies the object entry concemed. Should the name

involve one or more aliases, they are dereferenced (unless this is prohibited by the
relevant service controls);

- the attribute type and value to be compared with in that entry (an 'Attribute Value
Assertion');

- the 'common arguments', which specify the service controls applying to the request.

Results are:
- the 'distinguished name' of the object itself (present only if an alias was

dereferenced);
- the 'matched' result parameter, which holds the result of the comparison. The

parameter takes the value 'true' if the values were compared and matched, and 'false' if
they did not;

- an indication ('from entry') of whether the information was compared against the
original entry information, or against a copy of the original entry information;

- the 'common results' qualifying the results of the operation;
- an 'error report' if the operation fails.

Abandon operation.
Operations that interrogate the Directory may be abandoned using the Directory

Abandon operation if the user is no longer interested in the result. Abandon is only
applicable to interrogation operations (i.e. Read, Compare, List and Search).

Directory Abandon-Operation
Arg : - operation ;
Res : - errer report ;

There is a single argument which identifies the 'operation' that is to be abandoned. The
way the operation is identified is not clearly defined.

Should the request succeed, the original operation will fail with an 'abandon' error,
and the retumed results will not convey any information.

Should the operation fail, the 'abandon failed' error will be reported.

6,5.3. Directory SEARCH o.perations.

There are two 'search-like' operations: List and Search.

- 62-

The X.500 Directory Service Directory Abstract Service Definition

List operation.
A Directory-List operation is used to obtain a list of the immediate subordinates of an

explicitly identified entry. Under some circumstances, the list may be incomplete (e.g.
size limit exceeded). The arguments of the operation may optionally be signed by the
requestor. If so requested the Directory may sign the result.

Directory List-Operation
Arg - abject name;

common arguments;
Res: distinguished name

set of subordinates
limit problem;
unexplored;
common results

- errer report;

Arguments are:
- the 'object name' which identifies the object entry whose immediate subordinates are

to be listed. Should the name involve one or more aliases, they are dereferenced (unless
this is prohibited by the relevant service controls);

- the 'common arguments' specify the service controls and security features applying
to the request.

The request succeeds if the object entry corresponding to the specified named object is
located, regardless of whether the entry has immediate subordinates or not.

Results are:
- the 'distinguished name' of the object entry whose subordinates are listed (present

only if an alias was dereferenced);
- a 'set of subordinates' parameter, conveying the information on the immediate

subordinate entries, if any, of the named entry. Should any of the subordinate en tries be
aliases, they will not be dereferenced. For each subordinate, the following information is
specified:

- the relative distinguished name of the subordinate;
- an indication of whether the information was obtained from the original entry, or

against a copy of the original entry;
- a 'limit problem' parameter indicates whether the rime limit, size limit or an

administrative limit has been reached;
- an 'unexplored' parameter, which shall be present if regions of the DIT were not

explored. The parameter consists of a set of continuation references, allowing the DUA to
continue the processing of the List operation by contacting other Access Points;

- the 'common results' qualifying the results of the operation;
- an 'error report' if the operation fails.

Search operation.
A Directory-Search operation is used to search a portion of the DIT for entries of

interest, and to retum selected information from those entries. The arguments of the
operation may optionally be signed by the requestor. If so requested the Directory may
sign the result

- 63 -

Tue X.500 Directory Service

Directory Search-Operation
Arg: - base object name

filter ;
entry information selection;
common arguments;

Res distinguished name;
set of entry information
limit problem;
unexplored;
common results;

- error report;

Arguments are:

Directory Abstract Service Definition

- the name of the object ('base object name') which identifies the object entry relative to
which the search is to take place, and an indication on whether the search is to be
applicable to the base object only, the immediate subordinates of the base object only (one
level in the DIT), or ail subordinates of the base object (ail subtree). Aliases may be
dereferenced during the search (except if this is prohibited by the relevant service
controls). If an alias is dereferenced, the search continues from the aliased object entry in
its subtree;

- the 'filter' which is used to eliminate entries from the search space which are of no
interest. Information will only be returned on entries which satisfy the filter;

- the 'entry information selection' which indicates what information from entries is
requested;

- the 'common arguments' which specify the service controls and security features
applying to the request.

The request succeeds if the base object is located, regardless of whether there are any
subordinates to be returned.

Results are:
- the 'distinguished name' of the base object itself (only present if an alias was

dereferenced in the base object name):
- the 'set of entry information' which conveys the requested information from each

entry (zero or more) which satisfy the filter;
- a 'limit problem' parameter indicates whether the time limit, size limit or an

administrative limit has been reached;
- an 'unexplored' parameter, which shall be present if regions of the DIT were not

explored. The parameter consists of a set of continuation references, allowing the DUA to
continue the processing of the Search operation by contacting other Access Points;

- the 'common results' qualifying the results of the operation;
- an 'error report' if the operation fails.

6.5.4. Directory MODIFY operations.

There are four operations to modify the Directory Information Base: 'Add-Entry',
'Remove-Entry', 'Modify-Entry' and 'Modify-RDN'. Each of these operations identifies
the target entry by means of its distinguished name (so alias names cannot be used).

Add-Entry operation.
A Directory-Add-Entry operation is used to add a leaf entry (either an object entry or an

alias entry) to the DIT. The arguments of the operation may optionally be signed by the
requestor.

- 64-

The X.500 Directory Service Directory Abstract Service Definition

Note that the operation does not provide any facility for controlling the physical
placement of the entry (i.e. in which DSA the entry will be stored). In general, the
Directory Service only supports adding an entry to the same DSA in which its immediate
superior entry resides. An entry may be added to another DSA than the one in which its
superior entry resides, but this has to be done through bilateral agreements.

Directory Add-Entry-Operation
Arg : - entry name ;

- entry;
- common arguments;

Res: - result;
- error report;

Arguments are:
- the 'entry name' argument, which is the name of the entry to be added. Its immediate

superior entry, which must already exist for the operation to succeed, can be detennined
by removing the last RDN component which belongs to the entry to be created;

- the 'entry' argument, which contains the information which constitutes the entry to be
created. This includes the attributes of the RDN, and a consistency check with the RDN
derived from the entry name argument is made. The Directory shall ensure that the entry
conforms to the Directory schema. If the entry being created is an alias entry, no check is
made to ensure that the 'aliased-object-name' attribute points to a valid entry.

- the 'common arguments' include the specification of the service controls applying to
the request.

Aliases are never deref erenced by this operation.

Should the request succeed, a 'result' will be returned although no information will be
conveyed in it

Should the operation fail, an 'error report' is returned.

Remove-Entry operation.

A Directory-Remove-Entry operation is used to remove a leaf entry (either an object
entry or an alias entry) from the DIT. The arguments of the operation may optionally be
signed by the requestor.

As with Add-Entry, in general, the Directory Service only supports removing an entry
which is in the same DSA in which its immediate superior entry resides. An entry which
is on another DSA than the one in which its superior entry resides may be removed, but
this has to be done through bilateral agreements.

Directory Remove-Entry-Operation
Arg - entry name;

- common arguments;
Res : - result;

- error report;

Arguments are:
- the 'entry name', which is the name of the entry to be deleted. Aliases in the name

will not be dereferenced;
- the 'common arguments' include the specification of the service controls applying to

the request.

- 65 -

The X.500 Directory Service Directory Abstract Service Definition

Should the request succeed, a 'result' will be retumed although no information will be
conveyed in it

Should the operation fail, an 'error report' is retumed.

Modify-Entry operation.
A Directory-Modify-Entry operation is used to perform a series of one or more of the

following modifications to a single entry:
- add a new attribute;
- remove an attribute;
- add attribute values;
- remove attribute values;
- replace attribute values;
The arguments of the operation may optionally be signed by the requestor.

Directory Modify-Entry-Operation
Arg - entry name;

- changes;
- common arguments;

Res : - result;
- error report;

Arguments are:
- the 'entry name', which is the name of the entry to which the modification should be

applied. Any aliases in the name will not be dereferenced;
- the 'changes' argument, which defines a sequence of modifications that are to be

applied in the specified order. If any of the individual modifications f ails, then an error is
generated and the entry is left in the state it was prior to the Modify-Entry operation (i.e.
the operation is atomic). The end result of the sequence of modifications shall not violate
the Directory schema. However it is possible, and sometimes necessary, for the
individual entry modification changes to do so. The following individual types of
modification may occur:

- addition of a new fully specified attribute (i.e. attribute type and attribute values) to
the entry. Any attempt to add an already existing attribute results in an attribute error;

- removal of an attribute (specified by its attribute type) from the entry. Any attempt
to remove a non-existing attribute, a mandatory attribute, or an attribute type present in the
RDN results in an attribute error;

- addition of one or more specified values to a specified attribute. An attempt to add
an already existing value results in an error;

- removal of one or more specified values from the specified attribute. If the values
are not present in the attribute, or if an attempt is made to modify the object-class attribute,
an error occurs.

Attribute values may be replaced by a combination of remove and add value changes
in a single modify entry operation.

- the 'common arguments' include the specification of the service controls applying to
the request.

Aliases are never deref erenced by this operation.

Should the request succeed, a 'result' will be retumed although no information will be
conveyed in it

Should the operation fail, an 'error report' is retumed.

- 66-

The X.500 Directory Service Directory Abstract Service Definition

Modify-RDN operation.
The Directory-Modify-RDN operation is used to change the relative distinguished

name of a leaf entry (either an object entry or an alias entry) in the DIT. The arguments of
the operation may optionally be signed by the requestor.

Directory Modify-RDN-Operation
Arg: - entry narne;

- new RDN;
- delete old RDN flag;
- cornrnon arguments;

Res : - result ;
- error report;

This operation may only be used on a leaf entry.

Arguments are:
- the 'entry name' which is the name of the entry whose RDN is to be modified.

Aliases in the name will not be dereferenced;
- the 'new RDN' which specifies the new RDN of the entry. The attribute values

specified in this argument become the distinguished values of the corresponding attribute
types. If a specified attribute value in the RDN does not already exist in the entry (either
as part of the old RDN or as a non-distinguished value), it is added. If it cannot be added,
an error is retumed.

- a 'delete old RDN flag', which, if set, indicates that all attribute values in the old
RDN which are not in the new RDN are to be deleted. If this flag is not set, the old values
should remain in the entry as non-distinguished values of the corresponding attribute
types. The flag should be set when a single valued attribute type in the RDN has its value
changed by the operation;

- the 'common arguments' include the specification of the service controls applying to
the request.

Should the request succeed, a 'result' will be retumed although no information will be
conveyed in it

Should the operation fails, an 'error report' is retumed.

- 67 -

The X.500 Directory Service The Distributed Directory

7. The Distrlbuted Directory

This chapter aims to present the Directory as a distributed system, and to show how
information distribution and the distributed operations which permit the distributed service
to be performed are achieved. ln particular, the knowledge information, which is the basis
for determining the DSA holding a particular entry, is described.

This chapter follows the description given in [X.518-88]. For further details, Annex B
presents a way the distributed operation procedures can be implemented.

7.1. The Distributed Directory System Model

DSAs are defined in order that distribution of the DIB can be accommodated and that a
number of physically distributed DSAs can interact in a prescribed, cooperative manner to
provide the Directory Services to users of the Directory (DU As).

The ports associated with a DSA are of two types: service-ports and distributed
service-ports.

The service-ports of a DSA are the externally visible ports (i.e. from the DUA point of
view): namely the Read, Search and Modify ports. The service-ports associated with a
DSA constitute an Access Point through which Directory Services described in chapter 6
are made available to DU As.

In addition to the service-ports of the DSAs which accommodate access to the
Directory, a second set of ports for DSAs are defined: the distributed-service-ports. These
permit communication between DSAs, allowing DSAs to propagate requests for services
to other DSAs, in order that the Directory Service can be achieved in a distributed
environment

The types of distributed-service-ports and the operations provided through them are in
direct correspondence to the similarly named service-ports, and are the 'Distributed-Read'
ports, the Distributed-Search' ports and the 'Distributed-Modify' ports.

The Distributed-Read' ports support the 'Distributed-Read', 'Distributed-Compare'
and 'Distributed-Abandon' operations, the 'Distributed-Search' ports support the
'Distributed-List' and 'Distributed-Search' operations, and the 'Distributed-Modify' port
support the Distributed-Add-Entry', 'Distributed-Remove-Entry', Distributed-Modify
Entry' and 'Distributed-Modify-RDN' operations. These operations are described in the
following sections.

- 68 -

The X.500 Directory Service

Figure 7 .1 illustrates the distributed Directory model.

DUA

Access Point

Directory

Distributed
Service Ports

Figure 7.1 : Distributed Directory Model.

7. 2. Directory Distribution

The Distributed Directory

This section describes the principles according to which the DIB can be distributed.

Bach entry within the DIB is administered by one, and only one, DSA's administrator
who is said to have 'administrative authority' for that entry. Maintenance and management
of an entry must tak:e place in a OSA administered by the administrative authority for the
entry.

Bach DSA within the Directory holds one or more fragments of the DIB. The DIB
fragment held by a OSA are described in terms of the DIT, and are called 'naming
contexts'. A naming context is a partial subtree of the DIT defined as starting at the vertex
the closest from the root denoting an entry held by a OSA and extending downwards to
leaf and/or non-leaf vertices denoting en tries held by the same OSA. Vertices denoting
entries belonging to other DSAs denote the start of further naming contexts.

It is possible for a DSA's administrator to have administrative authority for several
disjoint naming contexts, i.e. which not share a same superior entry held in the OSA. For
every naming context for which the OSA has administrative authority, it must logically
hold the sequence of RDNs which leads from the root of the DIT to the initial vertex of
the subtree comprising the narning context. This sequence of RDNs is called the 'context
prefix'.

A OSA administrator may delegate administrative authority for any immediate
subordinate of any entry held locally to another OSA. Delegation of administrative
authority begins with the root and proceeds downwards in the DIT; that is it can only
occur from an entry to its subordinates.

- 69 -

The X.500 Directory Service The Distributed Directory

Figure 7.2 illustrates a hypothetical DIT logically partitioned into five naming contexts
which are physically distributed over three DSAs.

DSAl

CN=def CN=efg CN=fgh

Figure 7.2: Hypothetical DIT.

• DIB Object Entry

8 DIB Alias Entry

The DSA2's administrator has administrative authority for the naming contexts
A,B and E. The administrator of the naming context A has delegated its authority to
the administrator of OSA 1 for the administration of an immediate subordinate of the
naming context A (namely the entry whose name is <C=XX;O=ABC>). This
subordinate starts the naming context C. The context prefix of the naming context C
is <C=XX;O=ABC>.

Note that the root is not held by any OSA.

From the above definitions, the limiting case for a naming context can be either a single
entry, or the whole DIT.

During the process of modifications of en tries, it is possible that the Directory may
become inconsistent This will be particularly likely if modifications involve aliases and
aliased entries which may be in different DSAs. The inconsistency must be corrected by
specific administrator actions, for example to delete aliases if the corresponding aliased
entries have been deleted. The Directory must continue to operate during this period of
inconsistency.

In order for a OUA to begin processing a request, it must hold some information,
specifically the presentation address, about at least one OSA that it can contact initially.
How it acquires and holds this information is a local matter.

Although the Directory does not provide any support for the replication of entries, it is
nevertheless possible to realize replication in two ways:

- copies of an entry may be stored in other DSAs through bilateral agreements. The
means by which these copies are maintained and managed is a fonction of the bilateral
agreement;

- copies of an entry may be acquired by storing locally and dynamically a copy of an
entry which results from a request.

-70-

The X.500 Directory Service The Distributed Directory

The originator of the request is infonned as to whether inf onnation returned in
response to a request is from a replicated entry or not. A Service Control is defined which
allows the user to prohibit the use of replicated entries.

7. 3. DSA interaction model

A basic characteristic of the Directory is that, given a distributed DIB, a user should
potentially be able to have any service request satisfied (subject to security and access
controls) regardless of the Access Point at which the request originates. In
accommodating this requirement, it is necessary that any DSA involved in satisfying a
particular service request have some knowledge of where the requested information is
located and either return this knowledge to the requestor, or attempt to have the request
satisfied on its behalf (the requestor may be either a DUA or another DSA).

Three modes of DSA interaction are defined to meet these requirements, namely
'chaining', 'rnulticasting' and 'referral'. 'Chaining' and 'multicasting' are defined to rneet
the latter of the above requirements whilst 'referral' addresses the former.

7.3.1. Chaining

This mode of communication may be used by one DSA to pass on a remote operation
to only one other DSA when the former has specific knowledge about naming contexts
held by the latter.

2 3 4

~◄ 7 ·~◄ 6 ·~◄ 5 ·~

Request
1 t + 8

Response

~
Figure 7 .3 : Chaining Mode.

7 .3.2. Multicasting

This mode of communication is used by one DSA to pass on an identical remote
operation in parallel or sequentially to one or more DSAs, when the former does not
know the complete naming contexts held by the other DSAs. Each of the DSAs is passed
on the identical remote operation.

- 71 -

The X.500 Directory Service

(§)E)E)
R~q~ 2 t rff,:~P
~ ',/ .t * Unable
~ to proceed.

Request
1 t + 4

Response

E)
Figure 7.4a : Multicasting

Parallel Mode.

7.3.3. Referral

The Distributed Directory

(§) E) E)
:.~

4 t is Resp.

e
Request

1 t + 6
Response

E)
Figure 7.4b: Multlcasting

Sequential Mode.

A referral is retumed by a DSA in its response to a remote operation which it has been
requested to perform, either by a DUA or another DSA. The referral contains a
knowledge reference to another DSA able to proceed or continue the operation.

The DSA or DUA receiving the referral may use the reference contained therein to
subsequently chain or multicast the original operation to other DSAs. Altematively, a
DSA receiving a referral, may in tum pass the referral back in its response.

(§?~~
R~q~ 4 t r,0:,p.
~

Request
1 t + 8

Response

~
Figure 7.5a : Referral Mode,

DSA with chained port.

7.3.4. Mode Determination

* Referral
toc
0 Referral
toD

Figure 7.5b: Referral Mode,
DSAs with no chained port.

If a DSA cannot itself fully resolve a request, it must chain or multicast the request (or
a request formed by decomposing the original one) to another DSA, unless chaining is
prohibited by the user via the 'service controls' (in which case the DSA must retum a
referral or a service error), or unless the DSA has administrative, operational or technical
reasons for preferring not to chain (in which case the DSA must retum a referral).

- 72 -

The X.500 Directory Service The Distributed Directory

7. 4. Knowledge

The DIB is potentially distributed across multiple DSAs with every DSA holding a DIB
fragment. It is a requirement that, for particular modes of interaction, the distribution of
the Directory be rendered transparent, thereby giving the effect that the whole of the DIB
appears to be within each and every DSA.

In order to support these operational requirements, it is necessary that each DSA
holding a fragment of the DIB be able to identify and optionally interact with other DSAs
holding other fragments of the DIB.

This section describes the knowledge as the basis for the mapping of a name to its
location within a fragment of the DIT.

Conceptually, DSAs hold two types of information:
- the Directory information, which is the collection of entries comprising the naming

context(s) for which the administrator of a particular DSA has administrative authority;
- the knowledge information, which denotes how the naming contexts held by a

particular DSA fit into the overall DIT hierarchy.

The knowledge possessed by a DSA is defined in terms of a set of one or more
knowledge references where each reference associates, either directly or indirectly, entries
of the DIB with DSAs which hold those entries.

The context prefix of a naming context is a sequence of RDNs leading from the root of
the DIT to the initial vertex of the naming context and corresponds to the distinguished
name of that vertex.

7 .4.1. Minimal Knowled~e

The Directory must insure that every entry can be accessed from every DUA, whatever
the Access Point the DUA uses to enter in communication with the Directory. Therefore a
reference path, which is a continuous sequence of references, must exist from each DSA
to all naming contexts within the Directory. The set of a1l these references and DSAs can
be modelled as a graph. To en sure a correct behavior of the Directory, a minimal set of
ref erences must exist. This set can be regarded as the skeleton of the graph. Additional
features should be added to the skeleton in order to guarantee an acceptable performance.

Accordingly, a DSA shall maintain:
- superior know ledge, i.e each DSA shall have a reference path to the root context;
- subordinate knowledge, i.e. each DSA shall have a reference to those DSAs (if there

are any) which hold naming contexts that are subordinate to a naming context for which it
bas administrative authority. From the root context exits a reference path to each other
naming context.

These two conditions guarantees that a reference path exists from every DSA to any
naming contexts held by other DSAs.

- 73 -

The X.500 Directory Service The Distributed Directory

Superior and suborclinate references are illustrated in figure 7 .6.

FL-DSAl

•

DS~ .:53 ~ D~5

y~ '
DSA3e

Figure 7.6: Subordinate and superior references.

In figure 7 .6, an arrow indicates a reference held by the DSA at the origin of the
arc. A'*' represents a subordinate reference, while a '0 ' represents a superior
reference. A'"'' represents a cross reference (see section 7.4.3). FL-DSAl is a First
Level DSA which holds the root context (i.e. a reference to every other First-Level
DSA, see section 7.4.2).

For DSA3, the reference path to the root context is made of the two superior
references F and B, while for DSA4, the reference path to the root context is made of
the single superior reference H. From every DSA exists a reference path to every
other DSAs, and thus to all the naming contexts of the Directory held by these DSAs.

7.4.2. Root Context
Because of the autonomy of the different countries, or global organiz:ations, there is no

'single' DSA which holds the root context. The functionality of a 'root-DSA' conceming
the name resolution process has to be provided by those DSAs which have administrative
authority for naming context that are immediately subordinate to the root. These DSAs are
called 'First-Level DSAs'. Each First-Level DSA must be able to simulate the
functionality of the 'root-DSA'. This requires full knowledge about the root naming
context. The root context is replicated onto each First-Level DSA and therefore has to be
administered commonly by the autonomous first level administrative authorities.
Administration procedures have to be determined by multilateral agreements.

Each First-Level DSA shall hold the root context, which implies a reference to each
other First-Level DSA.

Each non-First-Level DSA shall have a superior reference, which implies a reference
path to any arbitrary First-Level DSA.

If a new non-First Level DSA is introduced, it must have a minimal initial knowledge,
which is represented by a superior reference. Any further knowledge will be added by
subordinate references or cross references (see section 7.4.3).

If a new First-Level DSA is introduced, it must acquire the root context and advise all
other First Level DSAs.

- 74-

The X.500 Directory Service The Distributed Directory

7.4.3. Knowled~e References

To be able to fulfill the requirements to reach every DIB entry from any OSA, every
OSA is required to have knowledge about the entries which it itself holds, and about
subordinate and possible superior entries thereof (minimal knowledge). This gives rise to
the following types of knowledge references: 'internai references', 'subordinate
references', 'non-specific subordinate references' and 'superior references'. Additionally,
for optimization purposes, optional 'cross references' are defined.

Internai Ref erence

An 'internai reference' consists of:
- the distinguished name corresponding to a DIB entry held by the DSA;
- an internai pointer to where the entry is stored in the local DIB.

All entries for which a particular OSA has administrative authority are represented by
internai references in the knowledge information of the DSA.

Subordinate Reference
A 'subordinate reference' consists of:
- the distinguished name corresponding to an immediate subordinate DIB entry held by

another DSA;
- the distinguished name (Application Entity Title) of the DSA to which administrative

authority for that entry was delegated;
- that DSA's Presentation-Address.

All subordinate references held by a particular OSA (corresponding to those
subordinate entries for which this OSA has delegated administrative authority to another
DSA) must be represented by subordinate references or non-specific subordinate
references.

Non-Specific Subordinate Reference
A 'non-specific subordinate reference' consists of:
- the Distinguished Name (Application-Entity-Title) of a OSA which holds one or more

immediately subordinate Naming Contexts;
- that DSA's Presentation-Address.

This type of reference is optional, to allow for the case in which a OSA is known to
contain some subordinate entries of the DSA but the specific distinguished names of those
entries is not known.

For each naming context which it holds, a DSA may hold any number (including zero)
of non-specific subordinate reference, which will be evaluated if all specific internai and
subordinate references have been pursued.

Superior Reference
A 'superior reference' consists of:
- the distinguished name (Application-Entity-Title) of a DSA holding a superior entry

of the naming context;
- that DSA's Presentation-Address.

-75 -

The X.500 Directory Service The Distributed Directory

Bach non-First-Level DSA maintains precisely one superior reference, which is related
to the context prefix of a superior naming context (not necessarily the one of its First
Level DSA). The superior reference held by a DSA shall refer to a DSA which holds a
naming context with a context prefix with a fewer number of RDNs than the context
prefix of the closest to the root naming context held by the former OSA.

Cross Ref erence
A 'cross reference' consists of:
- a Context Prefix;
- the Distinguished Name (Application-Entity-Title) of a DSA which bas administrative

authority for the corresponding naming context;
- that DSA's Presentation-Address.

This type of reference is optional and serves to optimize Distributed Name Resolution
(see Annex B). A OSA may hold any number (including zero) of cross references.

In the event that the set of knowledge references associated with a particular OSA
contain only internai references, the OSA bas no knowledge of other DSAs and the DIB is
therefore centralized.

7.4.4. Knowledge Administration

To operate a widely distributed Directory with an acceptable degree of consistency and
performance, procedures are required to maintain and extend the knowledge held by each
DSA. The same procedures are appropriated for the creating initial knowledge of a DSA.

Knowledge can be maintained by:
- the DSA, or its administrative authority, propagating changes of knowledge to those

DSAs holding ail kinds of references to it, whenever changes at that DSA cause these
references to become invalid. This is the only way superior, subordinate and non-specific
subordinate references can be maintained. Procedures for propagating knowledge changes
must locally be established by bilateral agreements;

- the DSA requesting and obtaining cross references to improve the performance of the
service. The local set of cross knowledge references can be expanded using ordinary
Directory operations.

The Directory bas to support consistency checking mechanisms to guarantee a certain
degree of knowledge consistency. After a DSA has detected an invalid reference, it should
try to re-establish knowledge consistency. Depending on the role and the importance of
the reference, this can be done by simply deleting the invalid reference or by replacing it
with a correct one which can be obtained using the above mechanisms.

7. 5. The Distributed Directory Operations

7 .5.1. DSA-Bind and DSA-Unbind operations

DSA-Bind and DSA-Unbind operations are respectively used by a DSA at the
beginning and at the end of a period of accessing to another DSA.

A DSA-Bind operation is used by a DSA to bind its 'Distributed-Read', 'Distributed
Search' and 'Distributed-Modify' ports to those of another DSA.

-76-

The X.500 Directory Service The Distributed Directory

A OSA-Unbind operation is used to unbind the Distributed-Read', Distributed
Search' and Distributed-Modify' ports of a pair of OSAs.

The components of these operations are identical to their counterparts in respectively
the Oirectory-Bind and Oirectory-Unbind operations defined in the previous chapter.

7 .5.2. Other Oistributed Operations

A distributed operation is used to propagate between OSAs a request which (normally)
originated from a OUA invoking an operation at a OSA, that OSA having elected to chain
or multicast it

Corresponding to each of the ports of the Oirectory Service is a port of the OSA which
allows the service to be provided by cooperating OSAs.

The operations in the corresponding ports are also in one to one correspondence. The
names of the ports and operations have been chosen to reflect this correspondence, with
the port or operation name in the OSA distributed service being formed from that of the
Oirectory Service prefixed by the word 'distributed' (e.g. Oistributed-Read port,
Oistributed-Read operation, ...).

The arguments, results and errors of the distributed operations are, with one exception,
formed systematically from the arguments, results and errors of the corresponding
operations in the Oirectory Service (as described in section 6.5).

The one exception is the Distributed-Abandon operation, which is syntactically
equivalent to its Oirectory Service counterpart.

The arguments of the distributed operations may optionally be signed and, if so
requested, the perf orming OSA may sign the results.

DSA Distributed-X-Operation
Arg - Distributed Operation Arguments;

- Arguments of the Directory X-Operation;
Res : - Distributed Operation Results;

- Results of the Directory X Operation
(including error reports);

The 'Distributed Operation Arguments' contain the information needed in order for the
performing OSA to carry out the distributed operation. This information is described in
the following section.

The 'Arguments of the Oirectory X-Operation' contain the original OUA supplied
arguments, as described in section 6.4.

The Distributed Operation Results' contain the information which may be needed by
previous OSAs in a chain or a multicast. This information is described in section 7.5.4.

The 'Results of the Oirectory X-Operation' contain the results which are being returned
by the perf ormer of the operation , and which are intended to be passed back in the results
to the originating OUA.

- 77 -

The X.500 Directory Service The Distributed Directory

7.5.3. Distributed Operation Arguments

The Distributed Operation Arguments' are present in each distributed operation to
convey to a DSA the information needed to successfully perform its part of the overall
task.

The Distributed Operation Arguments comprises the following components:

Distributed Operation Arguments :
comprise : - originator;

- target object;
- operation progress;
- trace information;
- return cross-references;
- reference type;
- info;
- time limit;

The 'originator' component conveys the name of the originator of the request unless
already specified in the common arguments.

The 'target object' component conveys the name of the object entry to which the
operation is being routed to. The role of this object entry depends on the particular
operation concerned: it may be the object entry to which the operation is to be operated on
(e.g. in a Distributed-Read or a Oistributed-Modify operation), or which is the base object
for a request or sub-request involving multiple objects (i.e. in a Oistributed-List or a
Oistributed-Search operation).

The 'operation progress' component is used to inform the OSA of the progress of the
operation, and hence of the role it is expected to play in the overall performance. It
specifies if the 'Name Resolution' phase is not started, in process or completed and, if
relevant, the next RDN to be resolved (see Annex B).

The 'trace information' component is used to prevent looping among OSAs when
chaining is in operation. A DSA adds a new element to the 'trace information' prior to
chaining the operation to another OSA. On being requested to perf orm an operation, a
OSA checks, by examination of the trace information, that the operation bas not formed a
loop.

The 'alias dereferenced' component is a boolean value which is used to indicates
whether or not one or more alias entries have so far been encountered and dereferenced
during the course of the distributed name resolution.

The 'return cross-references' component is a boolean value which indicates whether or
not knowledge references used during the course of a distributed operation are requested
to be passed back to the initial OSA.

The 'reference type' component indicates to the OSA being asked to perform the
operation, what type of knowledge was used to route the request to it The OSA may
therefore be able to detect errors in the knowledge held by the invoker.

The 'info' component is used to convey OMD specific information among OSAs
which are invoked in the processing of a common request. This information may be of
any type.

- 78 -

The X.500 Directory Service The Distributed Directory

The 'time limit' component indicates the time by which the operation is to be
completed.

7.5.4. Distributed Operation Results

The 'Distributed Operation Results' are present in the results of each distributed
operation and provide feedback to the DSA which invoked the operation.

The Distributed Operation Results' comprise the following components:

Distributed Operation Results :
comprise : - info;

- cross references

The 'info' component is used to convey DMD specific information among DSAs
which are invoked in the processing of a common request. This information may be of
any type.

The 'cross reference' component is not present in the distributed operation results
unless the 'return cross-references' argument component of the corresponding request
held the value 'true'. This component consists of a sequence of cross references.

-79 -

Introduction to Directory Services Directory Issues

Part 3 Directory Issues

This third part discusses some Directory related issues.

Chapter 8 points out some of the difficulties which arose during the elaboration of the
X.500 standard. It first presents TR/32, the ECMA Directory, and ends with some
shortcomings of the X.500 Directory standard.

Chapter 9 considers the X.500 Directory as a database system and describes how a
classical database can be mapped onto the X.500 Directory structure. Chapter 10 presents
the RARE Directory, and chapter 11 describes five Directory Service irnplementations.

- 80-

Directory Issues X.500 : Difficulties and Shortcomings

8

The Directory Service standardization elaboration bas not been an easy process.
Difficulties have led to a rather limited service in comparison with what was first
expected. This chapter first presents TR/32, the pre-X.500 ECMA Directory Service
standard, and then relates the evolution of the directory standardization. The last part of
the chapter is devoted to the X.500 Directory Service difficulties and shortcomings.

8.1. TR/32.

The first strong requirements for a Directory standard was expressed in the 1984
CCIIT X.400 recommendation for Message Handling Systems. A group was formed in
CCIIT with the mandate to start work immediately in 1984. In parallel to CCIIT, work
was also started in ISO and ECMA [OSN-87].

ECMA which has the reputation to be quick on new subjects, took the lead
temporarily. In December 1985, ECMA issued its TR/32 Directory Service report.

X.500 has been deeply influenced by the ECMA Directory Service recommendation,
and most of concepts described in TR/32 are found in X.500. That's why this section
only points out the major difference between X.500 and TR/32: replication.

Similarities with X.500.
The ECMA Directory bas a hierarchical naming structure similar to X.500, with the

option to find the way to an entry also using an alias name. Wildcard characters may be
used in the last part of a name (i.e. last RDN) to allow only a partial specification of a
name. This partial name is taken as a pattern by the Directory Service which attempts to
find a name or a set of names in the information base that match it. Entries are structured
in a tree, as in X.500.

The ECMA Directory is, as X.500, modelled on the client-server paradigm. However,
the Directory System Protocol (i.e. the protocol which supports the performance of the
distributed operations) is achieved thanks to the Directory Access Protocol. Bach
Directory Service Agent is independent in the sense that there is no specified protocol to
communicate directly between DSAs. A DSA which accesses another DSA has to act as a
DUA, using the Directory Access Protocol and services. A DSA may use the DAP to
query other DSAs in order to satisfy the original DUA request, but will generally send
back some kind of referral (called 'hint').

One of the main ideas of ECMA is that there will not have only one worldwide
Directory tree, but many small trees, each of which held by one or more DSAs. When a
Directory System wants to use Directory Services provided by another Directory System,
the former will have to actas a DUA to interact with the latter. And, except if
implementation specific protocols are defined, the same is true when a DSA of a Directory
System distributed over several DSAs wants to access another DSA of the same Directory
System. Note that X.500 does not preclude the existence of several DITs.

The ECMA Directory Service does not explicitly support Directory schema, but off ers
more flexibility than X.500 to perform exploration of the DIT thanks to its larger set of
Directory operations.

- 81 -

Directory Issues X.500 : Difficulties and Shortcomings

ECMA provides for limited authentification mechanisms, but no access control nor
security features.

ECMA provides specific operations to manage alias entries (create alias/ delete alias),
and in particular, the interesting fonction which returns all alias names of a particular
entry. Other operations defined in ECMA roughly provide the same functionalities than
the ones defined in X.500. The ECMA Directory Service does not support a search-like
operation in a whole subtree of the DIT as in X.500, nor filtered search.

ECMA defines two kinds of attributes: 'item properties', similar to the attributes
defined in X.500, and 'group properties'. The value of an item property is not inspected
by the Directory System and may consist of any data the user wishes. On the other hand,
the value of a group property is understood by the Directory System to be a sequence of
names called members. The Directory System knows how to add, delete, enumerate and
search for members in a group property. Specific Directory operations are provided in
order to manage group properties. The same functionality is offered by X.500 thanks to
the multivalued attributes, but there are no specific operations to manage them.

Replication and Distribution.
In order to improve efficiency, replication of part or of ail of the Directory Information

Base may be desirable.

The ECMA Directory Service is designed to allow distribution and replication of its
DIB.

Distribution is opposed to centralization. If the local information base held by a DSA is
the entire DIB, there is no need for communications between DSAs. This situation is said
to be 'centralized'. Distribution of the information base is defined as the property that
there are multiple DSAs, each of which has a local information base which is a proper
subset of the DIB.

Replication is the property of some portions of the DIB of being held by multiple
DSAs. The DIB rnay be partially or totally replicated.

Replication allows reliability of the DIB (if a copy is damaged, others are still
available), availability of the DIB (despite server or communication failures) and
efficiency of access to the DIB (despite geographically remote DSAs).

Replication within the DIB implies the problem of propagating updates in the multiple
copies of the information. Therefore, a Directory System Protocol for DSA to DSA
communications has to be dèveloped. But this is out of the scope of the ECMA report,
and is thus subject to bilateral agreements. Replication also involves that the user has to
deal with temporary inconsistencies, as there may exist a appreciable delay before ail
copies are updated.

Distribution mainly provides the ability to handle a large DIB with modest means. But
database distribution implies the necessity of 'navigating' the database in order to find the
data When a DSA cannot satisfy an operation locally, it tells the DUA that it has
contacted the wrong DSA and gives the DUA a 'hint' about where to look next.

- 82-

Directory Issues X.500 : Difficulties and Shortcomings

8. 2. Evolution of the Directory Standardization.

As previously said, work on Directory standardization was started in parallel by the
three CCITI, ISO and ECMA working groups during 1984.

Around rnid-1985, ail three groups had converged onto the 'ECMA solution' described
here above.

During 1985, additional requirements surfaced, which led CCITI to a new more
advanced model for the Directory Inf onnation Tree, as well as features for distributed
reading and updating of the Directory information [OSN-87].

ISO was primarily happy with the earlier, simpler solutions, but had in the meantime
seen the great advantage of close cooperation with CCITI on the subject, and it was
formally decided to have joint documents and joint meetings.

The number of features increased and included the concept of shadowing which allows
a part of the total Directory information to be copied to another part of the Directory
Infonnation Tree, in order to save search time on frequent queries (replication). The
going-in position at the Egham meeting in September 1986 was to simplify and stabilize
the texts from the previous meetings in order to produce a complete and coherent set of
documents for publication as ISO Draft Proposais. Although a few simplifications were
achieved, a number of contributions, primarily from CCITT members, requested the
inclusion of a number of new features (e.g. that the different read and search operations
be combined into something intemally referred to as 'fat read', which allows a huge part
of the directory information to be read in single access protocol interaction).

This was the scenario set for the Munich meeting beginning 1987. In the meantime, the
national standards organizations (ANSI, BSI, OIN, AFNOR etc. which are the ISO
members), had scrutinized the Draft Proposais texts and their official ballot comments
were the most input of the meeting. The US, Canada, UK, Australia, France, Holland,
Sweden, and Fed. Rep. of Gennany had ail voted NO on ail parts of the Draft Proposais.
The only two major countries who had voted YES were the USSR and Japan, but the
Japanese also had a whole bunch of comments, which they requested to be taken into
account

Threatened by the possibility of not having a set of Directory recommendations at all
for 1988, CCITI proposed to eut out ail features which were not necessary from a
CCITI point of view, and concentrate on stabilizing a subset which was agreeable to
everybody. This would not preclude further developments of the standards in a second
step.

- 83 -

Directory Issues X.500 : Difficulties and Shortcomings

The most important f eatures of the proposed slimmed down version were:
- to limit the directory capabilities to 'read only'. The simple read and some more

advanced search capabilities would be kept, but all updating fonctions for the Directory
Information would be outside the scope of the first set of standards. Any fonctions
associated with 'shadowing' would also be dropped, as they were closely related to the
updating problems;

- the number of possible name types would be reduced (e.g. no provision for short
names). Only two types of names would be allowed, the 'distinguished' names, which
uniquely identify a Directory entry through its placement in the Directory Information Tree
and 'alias' names, which follow the same rules as the 'distinguished' names, but end with
a pointer rather than an entry;

- the earlier requirement that all entries must be, at least potentially, members of one
universal directory tree was dropped and it will be possible to claim conformance to the
Directory standard even with a separate tree. This however would not change the
objective within CCITT to have one universal tree for all the Directory entry information
relevant to public PIT services;

- the security features in the form of explicit standards for authentification and access
control were reduced to be a local implementation matter. However some 'hooks' will be
provided in the protocol to allow for private intermediate solutions.

The resulting structure of the new proposal of Directory consisted of two Application
Service Elements (ASEs), a Directory Read ASE (with the 'Read' and 'Compare'
operations) and a Directory Search ASE (with the 'Search' and 'List' operations).

Later on the third Directory Modify ASE bas been added, allowing simple updating
facilities for the DIB (with the 'Add-Entry', 'Remove-Entry', 'Modify-Entry' and
'Modify-RDN' operations). Moreover, provision for simple authentification bas been
reintroduced. This bas led to the X.500 Directory standard described in Part 2.

8. 3. X.500 Difficulties and Shortcomings.

Distribution

The current specifications of the 'Add-Entry' and 'Remove-Entry' operations do not
provide enough functionalities for a distributed environment. These operations are
restricted to the case that exactly one OSA is affected. Thus, the entry to be added or
deleted and its superior object entry must be held in the same DSA [COS-88].

In the context of a distributed Directory, the 'Add-Entry' and 'Remove-Entry'
operations may affect two DSAs: the OSA holding the superior entry of the entry to be
added or deleted and the OSA where the entry will be stored or removed. This means for
the following operations:

- 'Add-Entry': the OSA of the superior entry has to ensure the uniqueness of the
Relative Distinguished Name of the entry to be added and its knowledge references must
be extended by a subordinate reference. A new narning context must be inserted into the
knowledge information of the OSA where the entry will be stored.

- 'Remove-Entry': deleting an entry may affect knowledge information of two DSAs.
The DSA holding the superior entry of the entry to be removed has to remove the
associated subordinate reference. The DSA holding the entry has to remove its
corresponding naming context.

- 84 -

Directory Issues X.500 : Difficulties and Shortcomings

There is another problem: representation of knowledge information is not standardized.
Even if implemented, automatic modification and exchange of knowledge information
might not work when systems of different vendors are involved.

Thus the task of distributing the information base of the Directory will be within the
responsibility of the administrators of the aff ected DSAs.

Repli cation

The standard does not include provision for replication, the 'reliable' management of
copies.

Running a distributed Directory without replication may be possible if only human
users access the Directory. Getting the requested information is of more interest than the
response rime, which will be depending on the numbers of DSAs involved.

Response time within a distributed Directory may be inacceptable if the Directory is
used by applications (e.g. a user which runs FfAM with access to the Directory).

Caching (storing information that has been received from other DSAs and later
accessing this information) will not be the solution for this problem. Cached information
does not reveal access control restrictions. Thus, cached information should be retumed
only to the user which initially got the original information. Consequently, cached
information has to be stored on a 'per user' base.

Access Control

Access control will not be based on a standardized model, it is left to DSAs as a local
matter. This maybe of minor importance if all DSAs within a management domain are
supplied by the same manufacturer. But there could be problems if interworking of
different systems bas to be considered (e.g. incompatible access policies).

Schema

Sorne suggestions for narning practice and DIT structures are given in Annex B of
[X.521-88], but there are problems when DSAs with different DIT structures need to
interwork. The Directory schema of a particular DSA may not be communicated to other
DSAs, because there is no provision in the protocol for communicating the Directory
definitions to other DSAs. As a consequence, a DSA do not k:now the DIT structure of
other DSAs, and cannot help the user in querying the Directory in a more efficient way
when remote DSAs are involved.

Knowledge

The current version of the X.500 standard does not include global concepts for the
acquisition and management of knowledge information within a widely distributed
Directory. Operations which affect consistency of knowledge information across DSA
boundaries are permitted only by bilateral agreement.

Charging and Accounting

X.500 makes no provision for charging and accounting.

All services of the Directory should be accountable, because the Directory System
providers may want to receive payment for Directory use.

- 85 -

Directory Issues X.500 : Difficulties and Shortcomings

lfpayment is necessary, the user should be informed about the costs and the user
should be able to restrict the search for information to limit his costs.

- 86 -

Directory Issues The X.500 Directory as a Database System

Q The X.500 Directory as a Database System

Up to now, the Directory Service has been considered mainly as an application in the
context of communication systems architecture. This chapter takes a different view and
considers the Directory in the context of a database theory. Main ideas are picked up from
[Len-6.5/M].

The X.500 Directory Seivice manages information about both persons, groups,
organizations, etc and communication seivices. This information is distributed among
several DSAs, each of which is generally managed by an organization. In most of cases,
such information is already stored and maintained in databases within the organizations. It
can be assumed that the Directory Service implementation will not often be based on a
special purpose DataBase (DB) and DataBase Management System (DBMS) that are
created and maintained for exclusive use as part of the Directory. Rather, existing DB and
DBMSs will be made available for Directory Seivice use, in order to minimize data
maintenance costs. These systems will continue to be used for local non Directory specific
purposes as well.

X.500 mentions that the Directory Seivice is nota general purpose DBMS: transient
inconsistencies of the DB are acceptable, which simplifies the design and implementation
of such systems. On the other hand, the Directory Seivice exhibits properties that
classifies it as a database management system, e.g. it manages structured data and
manipulates data via predefined interfaces and protocols. As the Directory System is
composed of autonomous functional units (DSAs, each of which administrates a part of
the Directory Information Base), possibly managed with different DBMSs, one should
consider the Directory as a distributed and heterogeneous database system.

In X.500, entries in the Directory are described in a very general way, and are
embedded in a hierarchical structure. Such a description is suitable if we consider the
multitude of applications that may use the Directory Service. X.500 provides flexibility as
far as data structure of entries is concemed (e.g. it allows definitions of new object
classes, new attribute types, ...). This may lead to a rather confusing variety of data
instances which could make it difficult for users to know about ail information they can
get. Moreover, X.500 does not define any provision for access control on entries (who
has the right to read, modify, remove, add, etc ... entries).

The data contained in the Directory are here described on a conceptual level. An
abstract description of the database is obtained by restricting the generality permitted by
X.500.

- 87 -

Directory Issues The X.500 Directory as a Database System

9 .1. Database Modelisation of The Directory.

As the Directory can be regarded as a DB system, it can be described under this aspect.
This description of the Directory is based on the architecture proposed by the
ANSI/SPARC Study Group. The ANSI/SPARC architecture defines three schemata
(figure 9.1) which are briefly characterized below:

- the 'conceptual schema' is a logical description of the whole database. It involves
neither aspects of its physical organization nor external representation of data (e.g. : an
Entity/Relationship diagram (E/R diagram));

- the user's views of the database are defined by the 'external schema'. Bach external
schema defines a partial view of the database for a class of users. Several external
schemata may coexist which provides different data views for various user classes.
External schemata describe data visibility and structure, but not the user interface. It thus
helps to define access rights for users being granted to work on such external schemata;

- the 'internai schema' describes the physical data representation (e.g. tables in a
relational DBMS).

ffi1 ES : Extemal Schema

.--1--, CS : Conceptual Schema
~ IS : Internai Schema

Figure 9.1 : The ANSI/SPARC Architecture

The Directory, considered as a distributed and heterogeneous database system, can be
described in tenns of an ANSI/SP ARC architecture.

DSA Level

LESu : Local External Schema of the Users

LES DSA : Local External Schema of the DSA

GES : Global External Schema

GCS : Global Conceptual Schema
LCS : Local Conceptual Schema

Directory Level LIS : Local Internai Schema

Figure 9.2 : ANSI/SPARC Architecture of a distributed Directory

Two levels of data are distinguished (figure 9.2): the global level, which defines the
schema that is related to the Directory as a whole, and the local level with a set of
schemata, each of which valid for a particular DSA composing the Directory.

- 88 -

Directory Issues The X.500 Directory as a Database System

The Global Conceptual Schema (GCS) directly corresponds to the global description
of the DIB, i.e. to the Directory Schema (note that the GCS of the Directory is itself
distributed, as a private or national Directory administrative authority can define its own
Directory definitions, and in particular its own DIT structure). As the DIB allows the
application of access control, a policy for defining access rights needs to be devised.
Defining a specific Global External Schema (GES) corresponds to defining such a policy.

X.500 does not regulate the schemata on the local level, since this is an implementation
dependent issue. Thus in a distributed Directory, man y schemata may coexist at this level.

9. 2. The Global Conceptual Schema.

Defining a Global Conceptual Schema for the Directory implies a description of the
DIB on a conceptual level. ln a first approach, entries and associations between entries in
the DIB is considered as a conceptual description. This results in the hierarchical
description which was introduced in the DIT. Figure 9.3 shows this structure as an
Entity/Relationship diagram (in addition to this diagram, it must be stated that the structure
bas exactly one root). Since this approach results in a poor description, it is not followed
any longer.

lnf./Sup.
Vertex

En tries

Figure 9.3: E/R Diagram for the structure of the DIT.

Another approach is to analyze the interna! structure of the entries and then to figure
out the characteristics within the data description. X.500 is not very restrictive: an entry
rnay have an arbitrary number of multi-valued attributes of different types and access
control may be applied on four different levels of information (entire subtree, entry,
attribute and attribute value). A first step towards a conceptual description of the DIB is
possible by restricting the set of valid data structure for the entries.

Actually, X.500 is going in that direction too, as it defines a number of standard object
classes (object class definitions). Bach object belongs to a given class and comprises a
minimal fixed number of mandatory named attributes. ln addition, the relative position in
the DIT is defined for each object belonging to a given class (DIT structure definitions). If
we concentrate on these object classes, we are able to present an Entity/Relationship
diagram of the GCS by:

- mapping object classes onto entity types and
- mapping hierarchical relations between superior and inferior vertices in the DIT onto

associations between the corresponding entities.

- 89 -

Directory Issues The X.500 Directory as a Database System

Figure 9.4 corresponds to the DIT structure definitions of figure 5.8. Names of
associations and roles have been omitted for clarity. The arrows in the associations
indicate the hierarchical relation among entities: an arrow points to one of the possible
superior object class.

0-N 1-1
Countries C >-----1

0-N

Figure 9.4 : E/R Diagram of the Global Conceptual Schema.

Residential
Persons

Groups
of Names

Each entity type covers the set of properties which are defined in X.500 as attribute
types of an object class. As an example, the entity type 'Organizational Person' contains
the properties 'Common Name', 'Locality', 'Telephone Number', 'Title', etc ... Because
there are only hierarchical associations among entity types, the mapping of the DIT onto
an Entity/Relationship diagram is straightforward. What has to be specified in this case is
only the following: every object must have one and only one superior entry, and objects
of the class 'Countries' are mapped onto direct subnodes of the root. The same may be
done with objects of the class 'Organizations' and 'Localities', whereas this mapping is
(in contrast to the mapping of 'Countries') not obligatory. As the diagram shows, objects
of the class 'Organizations' may also depend on objects of the class 'Countries' or
'Localities', and can therefore also be mapped onto according subnodes. Whilst objects of
the class 'Localities' can also be mapped onto subnodes representing objects of the
classes 'Localities', 'Organizational Units', 'Organizations' and 'Countries'.

9. 3. The Local Level Schemata.

It is assumed that DSAs access local data by means of local database systems which
are not exclusively used for the Directory Service. Here is an example: a company
manages information about its organizational structure, employees, etc ... In this case, the
Local Conceptual Schema (LCS) defines the conceptual schema of the local database of
the company. The Local External Schema of the OSA (LESosA) defines the data view
offered to the Directory Service, while the Local External Schemata of the Users (LESu)
represent local user views which are not dependent of the Directory, and used for local
purposes. This implies that data manipulation and maintenance could be done exclusively
via these later interfaces, and not by means of the Directory Service protocols. I.e. the
LESosA could prevent any update of the information held in the common database
(common to the Directory OSA and the organization) to be performed via the Directory
Service protocols.

- 90-

Directory Issues The X.500 Directory as a Database System

This thus allow the local part of the DIB held by the OSA to be a restricted view of the
existing database of the organization. There is a single database, used both for the
Directory Service and for the own purposes of the organization. Access to the database
information of the organization by the Directory Service is controlled by the LESosA.

No problems arise in the case where the LCS and the GCS are identical, i.e. when all
information specified in the Directory Schema is stored in the local database, and just this
information. In this case, the structure of the information managed by the OSA and the
local database system is identical to the GCS given in figure 9.4, and corresponds to the
Directory Schema. The LESosA is trivial: it can be reduced to the LCS (except if access
control has to be specified).

In a more complex situation, certain entity types or properties of entity types defined in
the GCS of the Directory may be missing in the LCS, i.e. the Directory defines
information which is not managed by the local DB. This applies in the example where the
local database holds no information about 'Residential Persons', or 'E-Mail Addresses',
and consequently, the OSA cannot provide these informations for such entities or
properties. When mandatory attribute types defined in the GCS of the Directory are
missing in the LCS, they can be simulated by the OSA by providing default values.
Entries are never mandatory.

On the other band, the LCS may be more detailed than the basic GCS (i.e. the one
defined by the X.500 standard Directory Service). It is the case if the local database of an
organization manages information about 'Buildings', or if the LCS contains associations
not present in the GCS of the Directory.

This can be managed by defining additional local Directory definitions (defining new
object classes, DIT structure definitions, ...), and extending thus the GCS locally. But it
could also be decided not to offer any access to these informations by the Directory
Service, this being performed and controlled by a LESosA restricting the view of the LCS
for the DSA to, for example, what is defined in the basic GCS of the Directory. A
solution being a compromise between these two approaches is obviously possible, i.e.
giving access to some information not defined in the basic GCS of the Directory Service,
and prohibiting access to some other information held in the LCS.

- 91 -

Directory Issues The X.500 Directory as a Database System

9.4. Mapping.

The question is how to map a Local Conceptual Schema onto data structures supported
by the X.500 Directory Service. It is proposed that entities are mapped onto object entries
of the DIB, and that associations between entities are represented by hierarchical
references between entries of the DIT. As an example, let's consider the conceptual
schema of a database system which holds information about members of an organization,
organizational units, buildings, etc ... as shown in figure 9.5.

Organizationa 1-N
Buildings

0-N

Buildings

Organizationa
Structure

0-N 0-1

Organizational 1-N Organizational ___ _.
Units Roles

1-N 1-1

Working
Org. Unit

Roles

0-N 1-1 1-N
,....,, """"'""""""""""'"
-~~• -

1
--
1
-- Persons ~--O--N~~,~

Figure 9.5 : Conceptual Schema of a DataBase.

If we do not care about the shaded associations, the mapping is trivial: we resolve the
recursive association of the entity type 'Organizational-Unit' and get a hierarchical
structure whose mapping onto the DIT is straightforward (under the assomption that all
entities are known as object classes in the Directory definitions).

The mapping of the shaded associations is somewhat more complex, but there is a
relatively elegant way to realize it: X.500 allows alias entries in the DIB, which do not
hold information about objects but point to other objects of the DIB.

- 92-

Directory Issues The X.500 Directory as a Database System

Assuming the figure 9.5 represents the conceptual schema of a database system, figure
9.6 shows a possible corresponcling part of the resulting DIT.

• Object Entry
8 Alias Entry

~toftheDIT

•""' + -.
~

Data DiviA • •
• Communication Systems Group

E-Mail Responsible t /•Maria Dimou t Building 31

Maria Dimou •______ Maria Dimou

Figure 9.6: Part of the DIT for the Schema of figure 11.5.

9. 5. Metalnformation.

Metalnformation is the information about the structure of a database and express the
'sernantic' of the information held in this structure. In the Directory Service database
system, Metalnformation consists of the Directory schema and its definitions.

Access to the Metalnformation of the Directory by users would allow them to know ail
about the information they can get and could help them to query the Directory in an
efficient way, thus often preventing them from starting costly Directory exploration
activities.

X.500 does not provide standardization for the management and exchange of
Metalnformation. Administration and distribution of this Metalnformation could be done
by a service independent of the Directory Service defined in the standards. However, it
would be more elegant and advantageous to handle Metalnformation like any other
information managed by the Directory Service.

-93 -

Directory Issues The RARE Directory

10. The RARE Directory

RARE (Réseaux Associés pour la Recherche Européenne) is the European association
for research in networking and telecommunications. RARE has defined its own position
concerning Directory needs in [Huit-88]. This chapter aims to present the main points
raised in this paper.

10 .1. The need for Directory Services.

Three OSI applications are envisaged for early use by RARE: terminal access through
X.28 P ADs, electronic mail via X.400 and file transfer using Ff AM. There is also a
critical need for distribution of a wide range of information about projects, facilities and
people. The need of a directory service to support the operations of these applications was
recognized very early, and RARE set up a working group (RARE-WG3) to provide a
solution in both of these areas. The RARE-WG3 now works at the definition of a
Directory Service which will be supported by the X.500 standard.

It has been realized that there are two aspects of Directory services, of a rather different
nature:

- the first form is generally described as a 'user information service', i.e. services
oriented towards interactive access by humans, which will progressively f ocus their
queries and eventually find the relevant information. Terminal access, as provided in
France by the MINITEL is adequate.

- the second approach is generally described by the term 'name server'. It aims at
providing information in real time to processes. A typical usage is that of a file transfer
program, which will use a name server to solve the external name provided by the user
and derive from this user friendly name, the address of the remote file store. The
important characteristic of this second form is the real time nature. This is usually coupled
with queries of a much simpler nature (i.e. direct lookups as opposed to browsing).

RARE-WG3 worked primarily on the first form of directory service, but the need of a
real time name server was soon recognized as urgent The analysis shows that at least two
problems have to be solve in order to provide such a service:

- a naming strategy has to be adopted. Names are the keys by which the data will be
accessed, and it is important to keep these keys uniform in all the networks unified by
RARE;

- a format has to be specified for the data that will be stored in the directory, so that the
data can be manipulated by various applications.

- 94-

Directory Issues The RARE Directory

As already mentioned, three main OSI applications are envisaged by RARE: tenninal
access through X.28 P ADs, electronic mail via X.400 and file transfer using Ff AM. A
number of objects are manipulated by these applications, and these are clearly important
things to name. These objects include:

- People, who have to be identified for E-Mail addressing, and for other information
(e.g. postal address);

- Organizations and components of Organizations;
- Hosts, which are the physical machines that support applications (e.g terminal

access);
- Filestores, the virtual file store of Ff AM (a logical entity composed of a real file

server and of presentation and access programs);
- Projects;
- Electronic Distribution Lists.

Other applications may be developed later, e.g. full screen terminal access or remote
job submission, which will have their own specific needs. It is hoped that these needs
will naturally fit into the proposed structure.

1 O. 2. Network Addresses.

One of the important requirements of a Directory is that it should hold the information
necessary to connect to remote hosts, in particular their network address.

The usage of the term 'network address' is hiding an important difference between the
networks that use the standard OSI network service, and those which only use X.25. The
OSI network addresses, or NSAP addresses, are independent from the X.121 addressing
scheme used in the X.25 Public Data Networks, although X.121 addresses may be used
as a subset of the global OSI addressing scheme (see Annex A).

The usage of subnetwork independent network addresses is particularly useful when a
machine or a local subnetwork is connected to several networks or with several
attachments to the same public network (see section 2.2):

- if the destination is connected to several networks, e.g. satellite and packet switched,
the gateway will choose the network onto a particular call should be relayed on the basis
of that call 'quality of service' parameters;

- if the regular attachment to the Public Data Network of the destination is out of order,
the gateway will be able to derive from the NSAP the X.121 address of a back-up
attachment, and can automatically retry the call.

It is thus very sensible to store in the Directory the network addresses (i.e. the NSAP
addresses) of the applications entities, and not only their X.121 addresses (plus possibly
an information to identify the particular destination entity on the local subnetwork, the
X.121 address(es) being the point(s) of attachment of the local subnetwork to which the
entity is attached to the PDN). If only the X.121 addresses were stored, the list of ail
public network attachments to a local subnetwork would have to be stored for every
application entity on this local subnetwork. On the contrary, if we register only one
NSAP address for each application entity, we only have to be able to associate this list of
X.121 addresses to the set of NSAPs allocated to this particular local subnetwork.

- 95 -

Directory Issues The RARE Directory

So the main concern addressed by RARE here is to be able to derive, from a NSAP
address, the X.121 (PDN) address by which this NSAP address can be reached. This
X.121 address may either be the destination address, if the entity we want to reach is
connected to a Public Data Network, or the address of a gateway relaying information
between PDNs and, for example, a Local Area Network. The way by which the gateway
interpret the NSAP address in order to get the next (non PDN) subnetwork to reach is not
addressed by RARE.

It is the feeling of the WG-3 that the RARE name server should be used for this
fonction, and that a table giving the list of X.121 addresses suitable for reaching a range
of NSAP addresses (e.g the range NSAP addresses allocated and used in a Local Area
Network) should be maintained and distributed. However, this choice poses two
problerns:

- few systems already used the NSAP addresses. A frequently encountered alternative
is to only use the X.121 address. An even worse alternative is to complete the X.121
address by some addressing information passed in the X.25 'Call User Data Field'
(CUDF); this very questionable practice will have to be accommodated, at least for an
interim period, by the RARE community;

- the syntax of the NSAP addresses is so compact that it is difficult to derive from an
NSAP a key to a X.500 Directory, as explained below.

In the case of the Data Country Code (DCC), we may well find a solution where the
IDI '208' (France) is administrated by AFNOR, which only allocates ranges of numbers
to group of users, but does not run a Directory Service. Within this hypothetical initial
demains:

- the DSP between '000 ... ' and '011...' could be administrated by the ministry of
defense;

- the DSP between '012 .. .' and '025 .. .' could be administrated by the ministry of
education and research;

- different governments agencies could share the DSP between '026 .. .' and '099 .. .';
- DSP from '100000 .. .' to '899999 .. .' could be allocated to commercial companies on

a first corne first served basis;
- DSP starting with a 9 could be reserved for future use.

Indeed, in this hypothetical initial demain each branch of the various ministries,
universities and private companies runs its own directory service, some of which being
interconnected, while some others are strictly secret. One can well imagine that even
finding the relevant directory for a particular NSAP in such an initial demain could require
an expert system, or would at least quite time consuming.

The problem should not be so severe when the IDP is a subnetwork address, e.g. a
X.121, ISDN or Telex address. The idea is that it is easier to derive a Directory key when
a subnetwork address is used in the IDP. As a subnetwork address is likely to be
particular to a local network, if not to a host, it should be possible then to use the IDP to
build up a single component directory name, under which is stored the list of X.121
addresses. For precisely that reason, the use of the X.121 form of IDP has already been
recommended in some European networks: if the list cannot be extracted from a directory,
the gateway can at least try to set up a call to this X.121 address.

- 96-

Directory Issues The RARE Directory

This analysis of the NSAP addresses leads RARE to a rather drastic conclusion: a
'standard' Directory Service is by no way the proper tool for providing the 'network level
directory service' that is required if it is intended to route on any type of NSAP (i.e. all
the types described in the table of section A.1 in Annex A). If this service is really
required, RARE will have to study another solution. In between, both the NSAP and an
X.121 address that will permit access from the European X.25 services to a point where
the NSAP can be understood have to be stored, or the hypothesis that NSAPs are in line
with the ECMA-117 recommendations has to be made.

10. 3. Application Entity Titles.

Another information that is available during the set up of associations, e.g. by Ff AM
or between MT As, is the Application Entity Title (AET). AETs are carried by the
Association Control protocol (ACSE). They are supported to uniquely identify both ends
of an association. Identifying a server or an entity may be somewhat redundant with
addressing it, except maybe in some configurations where a single process, listening on a
single access point, may actas different entities depending on the client request. On the
other hand, it is very useful for the servers to get a precise identification of their clients,
so that they can perform access control.

A particular problem with AETs is that their format is not specified in the ACSE draft
standard, although their semantic appears to be in line with that of Directory Names.

A proposition of the RARE-WG3 was to adopt, within RARE, the RARE Names
(which are Directory Names), as specified section 10.4, as value for AETs. Thus, it
would be extremely easy both for the caller to use the called AET as a key to the Directory
in order to get the value of the requested 'connection data', and for the called server to
verify that the actual calling presentation address corresponds to the value stored in the
Directory for the calling AET. However, it is not certain that this convention will be
adopted. Directory Names are designed for user-friendliness, but are regarded as bulky
by the designers of the ACSE protocol. As the first version of the session protocol only
allows 512 bytes of connection data, the y prefer to use a more compact 'object identifier'
syntax (the limitation of the connection data will only be removed in the next version of
the session protocol).

Object identifiers are another form of names, designed this time for machine
processing rather than user friendliness. They consist of a sequence of numeric strings,
each one identifying one level of naming authority. Their syntax is specified in the ISO
standard 8824, which also guarantees the uniqueness of object identifiers. The standard
also specifies a user friendly display format for these object identifiers.

E.g.: ISO Member-Body AFNOR(208)INRIA(1035)Sophia-Antipolis(3)Main
MT A(l 7), which means that the ISO member AFNOR numbered 208 has been
delegated a naming space. It has given a unique number to INRIA, which in turns
has given some of the addressing space to each of its branches. In each branch,
various kinds of objects can be registered in a catalog, like the main MT A of the
campus. This results in the compact encoding 202,1035,3,17.

- 97 -

D.inx:tory Issues The RARE Directory

RARE cannot predict now which of the solutions will be chosen. If, contrary to
RARE's wishes, the standard or the recommended profiles were to enforce the use of
object identifiers for AETs, it would imply two requirements for the RARE Directory
systems: one will have to be able to find the object identifier given a Directory Name, and
vice versa. Obviously, it will be easy to store the object identifier as attribute of the
application entity entries, together with the PSAP address. The reverse path can also be
achieved, e.g. by using the aliasing facility provided by X.500: each numeric string
could be the label of an aliasing arc. E.g., reading the child number '3' of 'INRIA' would
point to 'Sophia-Antipolis'. But the maintenance of this cross references will be
cumbersome, and could be summed up as a great waste of efforts.

10. 4. The Proposed Interim Name Structure.

The proposed RARE name structure is a subset of the name forms recommended by
X.500. The proposed form of names tries to reconcile two constraints:

- it should be in line with the X.500 standard;
- it should be possible to represent any RFC 822 names (the currently most used

names) in this structure.

The approach of RARE is to use the X.500 name structure. That is to consider that the
name of any object starts with a country name, continues with the name of an organization
and an indefinite number of organizational unit names, and finishes with the common
name of the object, when indeed that object is neither a country, nor an organization, nor
an organizational unit.

However, RARE recognizes three other forms of names that are commonly
encountered. Sorne of the RARE members, e.g CERN and ESA, qualified as international
organizations, should not include a final country component. Then, there is the problem
of non-RARE members who have their own naming strategy: it would not be reasonable
to rename them, and RARE has accepted the fact that in some cases the top of the
hierarchy will be a Well-Known Domain (WKD) like 'EDU' or 'CDN' instead of a two
letter country name. The last case is the one of network names which will still be used for
a limited period of time, although they should be considered as undergoing resorption:
'MCVAX.UUCP' should sooner or later be renamed 'V AX.CWI.NL'. This gives us a
fourth form of name, where the top domain is a Domain Under Resorption (DUR).

- 98 -

Directory Issues The RARE Directory

The RARE recommended name structure can be summarized in the following table.

Object Class RDN Root c. DUR WKD Or2. o.u.
Country CountrvName X

DUR DurName X

WKD WkdName X

Organization OrganizationN ame X X X X

Organizational Unit OnrnnizationalUnitN ame X X

Or11:anizational Person CommonName X X

Organizational Role CommonName X X

Group ofNames CornrnonN ame X X

Application Entitv CommonName X X

DSA CommonName X X

Device CommonName X X

Figure 10.1 : RARE recommended DIT Structure Definition.

RARE will use the 'Group of Names' object class for Distribution Lists, the
'Application Entity' object class for Filestores and MTAs, and the 'Organizational Unit'
object class for Organizational Units, but also for Hosts and Projects.

10. 5. Sorne Restrictions to the general X.500 name Structure.

The name structure described above makes some restrictions to that recommended in
X.500: the geographical name forms are absent, and the syntax of some of the naming
attributes is more constrained than in the X.500 specifications. These restrictions are
motivated by the desire of homogeneity in the academic networks' naming strategies,
which should result in more user friendliness. However, it should be very clear that other
X.500 systems, e.g. those provided by the PTfs, will not apply any such restrictions.
Hence, the X.500 user interfaces provided to the academic communities shall indeed have
the capability to enter any regular form of X.500 names.

The geographical name forms are intended for use by a public service, where a private
user could be named by common name, city of residence and country. It can also be used
for local companies, named by an organization name, a city and a country. The inclusion
of a city component is not a common practice among the RARE members. It is not
applicable for the large organizations like INRIA or GMD, which have branches in
several cities, and it may lead to confusion when organizations are located in unexpected
or not so well known places

In addition to these restrictions, RARE defines a text format for names of entries
(applying only to the distinguished values of attributes involved in RDNs) in order to
facilitate the parsing of names, and to improve their readability in an international
environment. Among other things, RARE limits the set of characters which may be used
for the names.

In order to support its particular needs, RARE has defined its own set of object
classes. In particular, it defines the WKD and DUR new object classes. For other object
classes, it completes the X.500 definitions by adding attribute types (e.g. an 0/R Name to
an organizational person). It also lists the attribute types defined in the used object classes
and defines some new attribute syntaxes.

- 99 -

Directory Issues The RARE Directory

The Presentation-Address syntax is defined within X.500, but that definition has to be
changed to accommodate the needs of RARE mentioned above. The Presentation-Address
is defined in X.500 as a sequence of Presentation-Selector, Session-Selector, Transport
Selector and a Network-Address, where ail selectors are optional octet strings, whilst the
Network-Address is a sequence of octet strings. The only point that has to be changed is
the definition of the Network-Address, replacing the sequence of octet strings by a choice
between a sequence of octet strings (the NSAP-Add) and a sequence of a numeric string
(the X.121 address) and two optional octet strings: the Call User Data Field, and the
NSAP-Add.

X.500 PSAP-Add attribute syntax definition:
PSAP-Add = { P-Selector: opt:ional octet string;

S-Selector : opt:ional octet string ;
T-Selector : opt:ional octet string ;
N-Add: sequence of octet string;

RARE PSAP-Add attribute syntax definition:
PSAP-Add = { P-Selector: optional octet string;

S-Selector : optional octet string ;
T-Selector: optional octet string;
N-Add = { NSAP: sequence of octet string}

or { X.121 : sequence of numeric string;
CUDF : optional octet string ;
NSAP : optional octet string }

- 100-

Directory Issues Directory Service Implementations

11. Directory Service Implementations

This chapter aims to present some Directory Service implementations. The two first of
them are oriented toward X.500, and are in fact two large scale pilot exercises in order to
test the X.500 standard. These are QUIPU and THORN . The three next ones are non
X.500 Directory Service systems, but are actually operational. These are the Janet Name
Registration Scheme (NRS), the ARPA Domain Name Service and the EARN NetServ.

11.1. QUIPU.

The X.500 standard has a much more complex functionality than existing directory
services. Whilst there have been directory services which have tackled some of the
problems of scale and distribution, these have used much simpler name structures, and
have not provided the powerful searching facilities of the X.500 Directory. At the other
end of the spectrum, many existing database systems deal with the searching problems,
but this is usually done in a very centralized manner. Thus despite the massive
requirement for the OSI Directory, the specification has been made without real practical
experience of the problem being tackled. It is therefore important to experiment with the
OSI Directory prior to the provision of a large scale service. QUIPU and THORN have
been developed to facilitate such experimentation [QUI-88a].

The QUIPU Directory Service was developed under the INCA (Integrated Network
Col11IIlunication Architecture) project, which was an ESPRIT research project, and has
subsequently been released in the public domain. It is intended to be a lightweight
prototype, which will provide an environment for early experimentation with standardized
Directory Services.

The ISODE system has been developed as an openly available implementation of the
upper layers of OSI. ISODE was used by the QUIPU system from the start to provide the
OSI services required by the OSI Directory. QUIPU is now being issued as a part of
ISODE, and ISODE applications will be adapted to use QUIPU for their Directory
requirements.

To understand the etymology of QUIPU, it must be remembered that QUIPU was
originally developed as part of the INCA project The Inca of Peru did not have writing.
Instead, they stored information on strings, carefully knotted in a specific manner, with
colored thread, and attached to a larger rope. These devices were known as 'Quipus'. The
Quipu was a key component of the Inca society, as it contained information about
property and locations throughout the extoosive Inca empire.

Design Principles

The design of QUIPU is simple and flexible. These two characteristics facilitate
implementation and allow experimentation with a variety of problems associated with the
provision of Directory services, and in particular, with replication.

QUIPU is implemented in the 'C' programming language, to run initially under the
UNIX operating system.

- 101 -

Directory Issues Directory Service Implementations

An application, which might be a user interface or a process, accesses the Directory
through a DUA. In QUIPU, the DUA is provided as a 'C' procedural interface, which is
structured in a manner aligned to the X.500 Directory Service (i.e. one routine per
Directory operation). This interface gives the application access to the full Directory
Service.

The DSA database is directly mapped onto central memory, using 'C' structures which
correspond to the form of the DIT. The master data files are read from disk and loaded
into memory at machine start time, and updated back to the disk when modify operations
occur.

This approach is straightforward to implement and gives high performance for small
volumes of data.

The use of a virtual memory and paging algorithms should allow extensions on the
volume of data a DSA can hold.

DSA database

The master database for each DSA is held on disk. As the data are only accessed by the
DSA at startup, the format of data has been chosen to be convenient from a management
standpoint, and are only converted into 'C' structures at load time. A text format has been
elected because it can easily be created and inspected without the use of special tools. A
text editor is quite suitable.

The DIT hierarchical structure is mapped onto the UNIX file structure (directories in a
tree structure). Every Unix directory represents a non-leaf entry. AU children entries of an
entry are stored in a single file located in this Unix directory. To every non-leaf entry
stored in this file, corresponds a Unix sub-directory whose name is the RDN of the entry.

This structure has proved easy to generate and manipulate. It also allows replication of
parts of the DIT to be accomplished in a straightforward manner.

Access Control

QUIPU provides for user access control to the information held in the database. The
QUIPU Directory handles this by specifying an Access Control List for each entry, and
which is stored as an attribute of the entry. The Directory knows about this attribute, and
so can make choice based on it. It is defined in a manner which also allows specification
of rights to update the Access Control List itself.

Six level of access categories are defined, which are related either to a particular
attribute, the entry itself, or the children of an entry. QUIPU allows four possibilities for
specifying who is being controlled (identified by a Directory Name) on access to a
particular piece of information: the entry itself, a whole subtree, a list of names or public
access.

This approach of storing access control information within an entry provides a correct
solution for caching (see section 8.3, replication). When caching information, a DSA
always choose to read the 'Access Control List' information, in such a way that access
control can also be performed on cached information.

- 102-

Directory Issues Directory Service Implementations

Schema

There is a need to understand attribute syntaxes in order to perform correct matching.
The QUIPU DSA 'knows' about a limited number of attribute syntaxes. Any other
structures are mapped to one of the known syntaxes.

QUIPU understands object classes. An entry may belong to one or more object
classes. All object classes must be known to the QUIPU DSA. The definitions of the
object classes allow a DSA to derive a list of mandatory and optional attributes for a given
entry. La ter versions of QUIPU will access this information from the Directory (instead
from a local table at the moment).

A mechanism for controlling and obtaining information about the structure of the tree
has been set up. QUIPU defines a 'Tree Structure List' attribute which specifies the
potential type of child entries for a particular entry. The object classes of entries below a
particular node entry must be listed in the 'Tree Structure List' attribute of that entry, and
the Directory which knows about this attribute, ensures consistency. This mechanism
allows the Directory manager to control the shape of the tree, and the user to determine the
potential shape of the tree by reading this attribute.

Distributed operations

QUIPU provides for Directory Access Protocol interworking with other X.500
systems. There is not any Directory System Protocol interworking with other DSAs at the
moment (i.e. a DSA acts as a DUA to access another DSA). It is intended that in the next
versions of QUIPU, the DSP between QUIPU DSAs, and as far as practical,
interworking with other Directory systems will be achieved.

Note that in QUIPU, chaining is performed using the DAP, and that DU As do not
support the referral mechanism.

Other characteristics

QUIPU provides for a large set of searching and matching facilities. Among other
things, phonetic searching is implemented.

QUIPU is not intended for very large scale systems nor high performances. No data
back-up technique is provided, nor security features as digital signature or strong
authentification.

11.2. THORN.

The THORN project (THe Obviously Required Nameserver) is an ESPRIT project to
develop a Directory Service aligned onto the emerging standards.

The aim is to develop a pre-competitive implementation of a Directory Service, with the
intent that this work shall contribute to the development of commercial products. It should
also offer feedback of the experience gained to the international standard definition activity
thanks to a real usage of Directory services.

The first phase of the project has produced an implementation according to the ECMA
TR/32 Directory specification, with simple replication facilities.

- 103 -

Directory Issues Directory Service Implementations

The second phase has two components:
- The Large Scale Pilot exercice (LSPX). This utilizes the system produced in the first

phase of the project, and aims to gain real experience with usage of Directory Services;
- The implementation of a new system conforming to X.500.

Future versions of THORN should include the full implementation of X.500.

Design issues
THORN is being implemented in the 'C' programming language, under the UNIX

operating system.

THORN has developed a OUA and a OSA.

A OUA library is available which off ers to upper layer applications the access to the
Directory Service. The OSA supports both the DAP and the DSP.

THORN includes a proprietary special purpose database. The database is based on a
hashed access method which virtually guarantees two disk accesses per record only. This
database puts no constraints on the size and number of the attributes of a Directory object.

The THORN design has been driven towards obtaining a high performance Directory.
OSA processes are not spawned when an incoming call arrives, but are configured in a
static way. A spawn-on-request configuration can however easily be obtained if the use of
the Directory Service is very limited and no requirements exist on response time.

Due to lack of documentation about THORN, design and implementation issues are not
further discussed here.

THORN features

THORN supports the concept of a Directory schema which defines allowed object
classes, attribute types and name structures.

THORN also supports access control and knowledge representation. Partial replication
of the global Directory Information Base is an extension to X.500.

Although the project is not primarily considering user interfaces, a number of
interfaces have been developed to explore the problems of accessing the Directory
Service.

In particular, THORN contains an end-user interface that allows to have a friendly
interactive access to the Directory system. This interface includes facilities for local
caching of information and nicknames. It allows to browse, list and search the Directory
base, and makes an intelligent use of the Directory schema for presenting data in a
friendly way, and for requiring minimal information from the user to perform a query.

THORN has also been experimented with access by processes.

Interactive management utilities are available to perform basic Directory data
management fonctions such as creating, modifying and removing entries, and
administering passwords and access control. Other utilities off er tools to manage the
schema and the knowledge information.

- 104-

Directory Issues Directory Service lmplementations

Due again to lack of documentation about THORN, for which the second phase (full
X.500 implementation) is currently under way, it is not possible to give further details on
the characteristics of THORN.

11. 3. The Janet NRS.

This section starts the description of non-X.500 Directory Services.

The Joint Academic NETwork (JANET - UK) uses a centralized Directory System,
known as the Name Registration Scheme (NRS).

The NRS is a database of mappings. The mappings relate 'user-friendly' names to
addressing information to be used to access the service named. Mappings go from name
to addressing information and vice-versa [NRS-88].

Names

Names follow a hierarchical structure. Domains are managed by 'institutions'. A name
is constructed from a succession of fields separated by the character ".". There are usually
two forms of names: the required standard form, and the optional abbreviated form.

1
E.g.: Standard form : UK.AC.OXFORD.PHYSICS.VAXl

Abbreviated form : UK.AC.OX.PH.Vl

Information update and distribution

There is a single central database. The database is held in a set of files by institution.
Each institution has the responsibility of keeping the information in its corresponding files
correct and up to date. The files located on the central NRS service machine can be
accessed by the institutions for update by remote login on this machine or using a file
transfer protocol to pull information for the institution back to a local machine, to carry
out updates there, and to transfer the modified data back to the central machine again.
Institutions must thus supply the information needed to translate a name of a
communication entity by which it is known for computer access on the network into its
address or addresses.

Every night, a derived database file is produced from the files held in the central
machine. This file is made available for transfer to other sites. Remote sites access the
central machine to get a copy of the file and format it in a suitable format for local use. lt
is this formatted copy of the master file, held locally, which is used to provide the
Directory Service. The file transfer can be done automatically on a periodic basis. If so
requested, such transfers may be issued by the central NRS machine.

A NRS Lookup Protocol (NLP) permits small machines which have not enough space
capacity to hold the whole file to keep a local cache of commonly used names, and when
asked for one information not in cache, to make a call to a suitable NLP responder which
holds the whole file.

Mappings

There are many different kinds of mappings between names and addressing
information held in the NRS database. One major grouping of these mappings is
according to their direction.

- 105 -

Directory Issues Directory Service Implementations

The 'forward' mappings take a name as argument and return the addressing
information. It is used by a caller wishing to make a network connection to a called
service. Note that several possible sets of addressing information can be returned if the
target service has more than one connection to a network, or is connected to more than
one network.

The 'reverse' mappings are used by a called service to derive, from the addressing
information of the caller provided by the underlying network service, the caller's NRS
name (if it is registered in the NRS database).

It is possible to check if a name is registered in the database but without requiring the
associated addressing information, or to obtain a description of the service associated with
a name in a form suitable for human consumption.

The addresses are used by the network users to access services for different types of
networking activities. Sorne examples are File Transfer, Job Transfer and Manipulation,
Electronic Mail and Terminal Access.

Characteristics

The characteristics of the NRS are:
- centralized and widely replicated Directory System;
- hierarchical domain scheme;
- no access control facilities (all information is public).

The usage of the NRS is free of charge. The NRS provides software for both local and
remote access to the directories (although a particular institution may implement its own
method of interrogating information).

11. 4. The ARP A Domain Name Service.

A dedicated name service has been specified for the ARP A Internet: the ARP A Domain
Name Service. It runs on a widely heterogeneous collection of machines running a variety
of operating systems.

The Domain Name Service is intended to help users (Clients) to locate servers for
common directory service, and to locate objects managed by such servers.

Names

The demains are hierarchically structured and typically reflect an administrative or
geographical grouping. An administrative authority controls which names are introduced
within a domain.

Names follow a hierarchical structure. A name is constructed from a succession of
fields separated by the character ". ".

Information distribution and update

The name service fonctions are divided between two classes of servers: 'resolvers'
(similar to DU As), and 'name server' (similar to DSAs).

Clients make requests to resolvers, which in tum make requests to the name servers.

- 106-

Directory Issues Directory Service Implementations

Typically, a name server will not query another name server in order to resolve a
name. Instead, it will instruct the resolver which name server, if any, to query next.

Every domain or subdomain has the responsibility for maintaining up to date one or
more 'master files', which are the basis for name resolution. Every master file should
have at least one copy held by a name server. Several name servers may acquire copies of
the same master file. A name server has the responsibility for acquiring parts or all of the
master files on which its service is based.

Modifications in the master files are not echoed in copies. A name server periodically
checks to make sure that its data are up to date, and if not, obtains a new copy of updated
data from master files stored locally or in another name server.

A second kind of datais cached data which is acquired by a local resolver. This data
may be incomplete but improves the performance of the retrieval process when non-local
datais repeatedly accessed. Cached datais eventually discarded by a time-out mechanism.

Fonctions

There are three fonctions offered by a name server:
- name to resource information mapping;
- resource information to name mapping (note that this mapping does not guarantee

uniqueness or completeness);
- name completion, which allows to ask a name server to complete a partial domain

name and retums a set of names which are 'close' to the partial input.

Characteristics

The characteristics of the Domain Name Service are:
- distributed directory system with replication facilities;
- hierarchical domain scheme;
- no access control f acilities.

[RFC-883] is the reference paper which discusses the Domain Name Service. It
specifies the format of transactions between resolvers and name servers, and suggests
some implementation issues.

11. 5. The EARN NetServ.

NetServ is a network server for the academic networks EARN, BITNET and
NETNORTH [NETS-88].

In NetServ, a distributed server concept has been realized, which provides for
balanced load of the network, faster response time to user requests and better availability
of the server. This is achieved by the installation of many servers in the network so that
each user finds one nearby (usually only a few number of hops via intermediate nodes).
All servers communicate with each other to distribute updated information and make it
available in each installation.

In general, one NetServ is installed in each country. But for some countries, it was
necessary to install more than one server due to the size of the network inside the country.
And for a few countries, it was not feasible to have their own server. People of these
countries use the services of a NetServ in a nearby country.

- 107 -

Directory Issues Directory Service Implementations

There are three classes of services: File Server, Node Management and User Directory
Service.

File Server
The File Server service provides a repository of files (information files and programs).

One can obtain the list of the available files, retrieve a file (transfer a copy of a file on your
own machine), and store a file in a NetServ. A facility exists which allows you to be
informed when a particular file is updated in a NetServ. Another fonction sends
automatically updated files when they are changed.

Typically, the way NetServs communicate with each other to distribute updated
information is performed thanks to this last fonction.

Except if your NetServ maintains lists of files available in other NetServs, there is no
way to know which files can be obtained on another NetServ, nor easy way to locate the
particular NetServ where a given file is located.

Node Management
Nocle management is the administration of an individual node with regard to the

network, as well as the administration of information and the coordination of changes for
all nodes in a network.

NetServ provides support for both aspects of node management by:
- providing data files and programs for node administration and network coordination

(available thanks to the File Server service of NetServ);
- supporting registration of new nodes and changes in the network.

User Directory Service
A User Directory Service is available by which network users can create and update

their own entry in a directory, containing their name, user identifier, node identifier,
mailing address, phone, profession, etc ... This Directory can then be searched by all
users to find communication partners.

The User Directory information is not replicated. NetServ provide no 'hints' to locate a
particular user's entry. You have to query the proper NetServ in order to get your
information.

Access to NetServ
NetServs may be accessed in two ways:
- by sending an 'interactive' message to a NetServ in which the message text is a

NetServ command (e.g.: Tell NetServ AT NetServNode CommandLine);
- by sending a fùe whose first record contains the NetServ command, the next records

optionally containing data.

Characteristics
The characteristics of NetServ are:
- distributed Directory system with replication facilities;
- simple domain scheme;
- no access control f acilities.

- 108 -

Directory Issues Directory Service Implementations

It has to be noted that the NetServ service is not suitable for a real tirne usage, and does
not provide for address resolution mechanisms to be compared with the previous
described Directory Services. Therefore, if should not be categorized with the X.500,
NRS or the ARP A Domain Scheme Service Directory systems.

- 109 -

Introduction to Directory Services Directory Services at CERN

Part 4 Directory Se_rvices at CERN

Cern has begun to develop its own set of directory services on computer systems far
before the X.500 standard was published.

Although directory services are offered or being developed in other fields at Cern (as
the electronic phonebook, or the X.29 directory), these last chapters will be devoted to the
Cern Electronic-Mail directory services.

There are currently two major services available at Cern.

The first (EmNodes) is about nodes, and allows to retrieve information about E-Mail
nodes and hosts.

The second (EmDir) is about E-Mail users in the High Energy Physics community
(HEP community) and essentially allows to retrieve information about users' E-Mail
addresses.

These two services have been recently upgraded, and a new one (Automatic Router)
has been set up, based on EmDir, which allows to use more user-friendly addresses.

- 110-

Directory Services at CERN EMNODES

12. EMNODES

12 .1. The data base and the provided service.

The EmNodes project is based on the NetNodes DataBase (DB). NetNodes is an
Oracle DB currently installed on CERNVM (IBM/XA).

This DB is composed of a single table containing the following information about E
Mail nodes of the EARN, BITNET, NETNOR1H, JANET, UUCP and DECNET
networks: node name, network name, site, address, country, contact person, operating
system, network software. These fields are not ail fulfilled for each node. But the node
name, network name, site, address and country information is at least present for all
nodes.

The DB contains at the moment information for about 5000 nodes. It is not an
exhaustive list. The following nodes are described in the DB:

- all EARN, BITNET and NETNORTH nodes;
- European UUCP nodes only;
- JANET nodes accessible from Cern only;
- Cern DECNET nodes only;
- all Cern nodes.

The DB information for EARN, BITNET, NETNORTH and JANET nodes is picked
up from routing tables in backbone MT As or Cern gateways, and updated on a periodic
basis. Information about Cern DECNET nodes and other Cern nodes is derived from a
file manually updated by the Cern gateway managers.

The DB content is updated by DB loaders, i.e. programs reading routing table files and
updating the DB.

The DB was accessible in two ways:
- the usual SQL language interface (select node, network from netnodes where site like

'%Namur%'), rather designed for expert users or DB management;
- an SQL-Forms program called NetNodes. SQL-Forms is an Oracle DB interface

manager which is powerful but not easy to use properly by novice users.

The DB was mainly used for the gateway management, in order to have information
about nodes, to look whether a given institute has an E-Mail node or not, to derive E-Mail
addresses, and so on ...

It was also used by the User Consultancy Office (UCO: the Cern computer center user
service) to solve E-Mail addresses problems. But quite often, they were so reluctant to
use the NetNodes program that they preferred to phone to the E-Mail responsibles to get
the needed information.

12. 2. Definition of the new service.

The objective was to create a more user-friendly interface for this database, which
could easily be used by a large set of users, and to offer facilities to query the DB on
selection items as the town or the institute where the node is located (these informations
being scattered in the site and address fields).

- 111 -

Directory Services at CERN EMNODES

Moreover, the program should compute an E-Mail address proposition for the selected
nodes from the information contained in the database, as it does not explicitly contain this
information.

The program, which will firstly have to run on the IBM, should easily be ported onto
other machines (PCs, VAXes, WorkStations, ...), because this service could be made
available to the large community of Cern E-Mail users.

The prograrn has to allow to save results on file and to send them by mail. The latter
facility is mainly designed for UCO people, who have to be able to send query results
rather than transmit them orally by phone.

12. 3. Technical analysis and adopted solution.

Programming Language

The first considered solution was to improve the current SQL-Forms interface, in
better using its capabilities. But SQL-Forms proved not to be flexible enough, and we
could not have obtained a really user-friendly interface.

This is an important point, because this application will be used occasionally by users.
So, the interface has to be extremely simple, close from what they already know, in order
not to impose them a specific learning for a rarely used tool.

Besides, the address computing would have imposed 'U ser's Exits' (routine calls
written in a traditional language), as SQL-Forms is nota programming language. But on
one hand, these 'User's Exits' do not allow to receive results from the called user exits,
and on the other hand, the only accepted languages for these 'User's Exits' were C,
Cobol and Fortran.

Cobol and Fortran were rejected because a change in the routines would have involved
problems as very few people at Cern are using those languages. C was excluded because
Oracle is written in C but compiled with an Oracle specific compiler for IBM machines.
The linkage conventions of this compiler are incompatible with the C compilers used at
Cern on the same machine. And the program had to run in priority on the IBM machine.

The advantage of SQL-Forms was that it is portable on most of the Cern systems.

The second solution was to write a program in a traditional language, while using the
SQL data manipulation language to access the DB. The program has to be precompiled in
order to translate the SQL-Statements in source code. C, Fortran and Cobol were
excluded for the reasons mentioned here above, and there were no SQL precompiler
available at Cern for other languages (as Pascal).

The third type of solution was to write the program in a traditional language, while
calling directly the source database manipulation routines. Again these routines were only
available in C and Fortran, and this solution had to be given up.

The fourth and adopted solution has been to write a Pascal prograrn, with a compiler
allowing to perform calls to routines defined in Fortran, in such a way that we can use the
Fortran database manipulation routines. But we had to take care of the way to call these
routines, because Pascal and Fortran types are not directly compatible. The interface
realized for this purpose is very simple, as the application only manipulates strings.
Pascal is also a relatively portable language.

- 112 -

Directory Services at CERN EMNODES

Level of Service

The next problem to solve was to define which level of service we wanted to offer, and
the resources Cern was ready to allocate in order to provide this service. The human
resource is very critical in the group responsible for the project.

The main problem was due to the DB content. We wanted to permit a selection on the
node, network, country, town and institute names.

There were no problem for the node and network selection items, as this information is
explicitly contained in the DB.

For the country, the DB is only containing the two letter ISO country code. We have
chosen to accept only this two letter country code, and not the full country names, in
English or in French. This would have imposed a conversion table, which would had to
be fulfilled and updated manually. Moreover, these two letter codes are more and more
used, and an exhaustive list of the codes with the corresponding country names in
English, will be available from the program.

For the town and institute names, the problem was a little bit more complex. These
informations are contained somewhere in the site and/or address fields of the DB, and
quite often in the local language ('Brussels' has been found in English, Dutch and French
!). For institutes, names are sometimes complete, incomplete, abbreviated or just the
official initial letters.

To create a new specific DB containing appropriate clean data for this project, in which
we would have tables for ail possible synonyms for the town and the institute names
would have been too heavy a burden. Such a DB would have had to be fùled manually
from the information currently contained in NetNodes, and a permanent maintenance
would have been necessary. This could have been reduced thanks to update programs,
but they should have been written. Anyway, the initial burden was too heavy. This
solution had then to be rejected.

We have decided to do simple pattern matching in the site and address fields to find the
node and institute names given as selection items. The help file gives some hints for more
efficiency. We have thus given up to offer a reliable and efficient service. But the program
will be relatively simple, and the project will not involve further maintenance resources
than the one required at the moment for the maintenance of the NetNodes DB.

E-Mail Address

An other problem was to know if we were going to add an E-Mail address field in the
DB, or if the address had to be computed thanks to the information retrieved from the DB
after the query.

Adding a new field in the DB was not very difficult: loader programs had just to be
changed. But the NetNodes DB and loaders are not under the responsibility of the group
involved in the EmNodes project, and political reasons prevent us to intervene in other
groups' activities.

- 113 -

Directory Services at CERN EMNODES

This solution had the advantage of being more efficient if the address computing had to
be changed due to changes in the routing table files formats. Maintenance would only to
be done for loader prograrns, and not also for the ErnNodes program which, in the
adopted solution, computes the address. Besides, it could have been interesting for other
applications using the NetNodes DB to have the node address in it.

The imposed solution was to compute the address after the query. But this involves to
modify the address computing routine, recompile and reinstall the prograrn every tune a
modification in the address computing is needed.

Note that the address provided by the prograrn is an address valid when sending mail
messages from Cern, and not from everywhere in the world. This dependency is due to
the fact that some systems require that routing information to be explicitly indicated in the
address, which makes addresses dependent from the originator location (e.g.: in Uucp,
Hostl !Host2!Host3!Userld like addresses). Most of addresses used at Cern are free from
routing information, except when messages send from the DecNet mail system have to
pass through a gateway, i.e. send to another non-DecNet host.

User Interface

A last problem was the full-screen terminal mode on IBM machines. Tenninals are
running the block-mode, i.e the screen is rnanaged by the terminal, and its content is only
send to the central machine when the 'return' or 'pf keys are pressed. The appropriate
action are then taken according to the content of the screen, or to the modifications with
the last screen sent.

Besides, with a normal prograrn on this kind of machine, only one line on the screen
can be used to enter data, which is, after having pressed 'return', displayed on the current
line on the screen. It is also only possible to display data on the screen line per line, and
not wherever you want on the screen. And there is no automatic scrolling: the user has to
press on a key to see the next screen. These constraints were not aiding to design a
pleasant user-interface.

On the other hand, the prograrn has to be portable. It has thus been decided to entirely
pull apart the user interface and the DB access modules, in such a way that a specific
interface for each kind of machine can be designed, being close from the usual user
interface philosophy of the machine, taking advantage of their own possibilities, and
dealing with their specific problems. On the other side, a rough user interface will be
written in Pascal to be able to easily install the prograrn on other machines. So the DB
access module can be separately tested on a machine before developing a specific user
interface for this machine.

The DB access module just receives the search criteria entered by the user from the
user interface. It does some checking and processing on these criteria before accessing the
DB in order to improve efficiency and reliability of the retrieval. After having accessed the
DB, it computes the E-Mail addresses of the retrieved nodes, and paginate the results. A
file is given back to the user interface.

The user interface is responsible for receiving search criteria from the user and for
displaying of the resulting file.

- 114-

Directory Services at CERN EMNODES

lmplementation

As previously stated, the access module to the database has been written in Pascal. To
be portable, it will only be necessary to redefine some predefined routines specific to the
compiler. Moreover, it will maybe be necessary to change the database manipulation
routines if the compiler do not accept Fortran routines, or if these routines are not
available in the Oracle library of this machine.

A first program has been written in Pascal (DB access module and user interface). It is
running properly, but the interface is not quite pleasant.

A special interface for the IBM machine bas thus been written. This program is written
in REXX, the IBM system language. It uses lOS3270, a screen manager utility, which
allows to have a very pleasant user interface. To display the results of queries, the usual
XEDIT editor specially profiled for this application is used. This program uses the DB
access module written in Pascal.

IBM User Interface Pascal User Interface

,t ,t
DB Access Module

Figure 12.1 : The EmNodes Architecture

It is worth noting that the access module is not completely independent from the
interface, and this for performance reasons:

- The DB access module for the IBM specific interface had to be implemented as a
separate program. So the database opening and closure are executed at each call of this
module, e.g. at each query. These operations are really rime consuming. For the program
completely written in Pascal, the DB access module is implemented as a procedure and the
database opening is done at the beginning and the closure at the end of the program.
Successive queries are thus quite faster.

- For the Pascal program, the DB access module is implemented as a procedure, and
the selection items could be shared and accessed in global variables. Whilst for the DB
access program on the IBM, the selections items had to be passed via a communication
file, what is far less efficient.

But apart this, the code is common for the two access modules. And the specific parts
to an application are isolated in a file.

Ail the specific features linked to the compiler are explained and gathered in a file.

A maintenance documentation and program have been written. The maintenance
program is a REXX program which, from the source files, builds libraries, compiles,
loads and generates executable modules.

- 115 -

Directory Services at CERN EMNODES

12. 4. The future of EmNodes.

After a two mon th testing period, the program has underwent minor changes, mainly
to ensure a more efficient pattern matching, and to control and manage DB access errors.
Sorne changes due to operating system upgrade had also later to be performed in the user
interface (IOS3270 was not further fully compatible).

Pive months after the definition phase, the program was installed on public disks, and
has been made available to all IBM users. The feedback has been very positive, and it has
been asked to install the program on other machines, for people not having access to the
IBM machines. But lack of human resources prevents us to further develop the project.

Another service which could be provided, is a 'remote DB consultation' possibility for
every E-Mail user in the world. The principle is the following: a user wishing to query the
DB sends an E-Mail message to a Cern mailbox. The message describes a request in a
special purpose syntax. Messages are received by a program, analyzed, the query is
performed and the results are sent back to the source address.

If the service is expected to be largely extended to other machines, it could proved
more efficient to have a solution close to the EmDir implementation. In EmDir, the DB
access module is only located on one machine and is accessed from all other machines
through Remote Procedure Calls (RPCs). As there is at the moment no RPC system on
the IBM machine, this kind of solution for EmNodes could be implemented in three ways:

- to install a RPC system on IBM and using it normally;
- to move the DB from the IBM to the VAX which supports a RPC system;
- to use the VAX RPC system, and the routines on the VAX access the DB on IBM

thanks to SQLNet.

The first two solutions are probably very expensive and long to develop. In particular,
the second solution requires the loader programs to be adapted. The third solution is a
compromise, but SQLNet has to be reliable.

- 116 -

Directory Services at CERN The EMDIR NameServer

13. The EMDIR NameSeiver

13 .1. The data base and the provided service.

The E-Mail EmDir NarneServer is based on the EmDir database. EmDir is an Oracle
DB currently installed on VXCERN (V AX/VMS).

This DB is an E-Mail addresses directory for and about CERN users and the HEP
community. It is composed of a single table containing the following fields: narne,
firstname, division, experiment, internal CERN phone number, institute, institute phone
number, E-Mail address and comment.

Additional hidden fields are a password (for update control), and other identifiers used
for DB management.

The DB contains information about more or less 7000 people. Most of entries are
incomplete or mention unreliable information because information relative to a person is
freely fulfilled and updated by this person. But few people know this service or use it.
So, the interest for maintaining a reliable information in the directory is limited.

The database, is accessible in two ways:
- by using the EmDir prograrn, which allows users to query the DB and to update their

own entry.
- for Bitnet users, by using the tell command (query mode only; e.g.: tell EmDir at

Cern VM query Dimou Maria).

People who whish to have their entry updated but having no access to the EmDir
program can send a message to a special purpose mailbox regularly opened to manually
satisfy entry update requests.

The DB is mainly used by E-Mail users to find the (preferred) E-Mail address of
somebody, if any. Most of the time, E-Mail users have several mailboxes, either on the
same account (e.g.: UUCP mail and EAN on a Unix machine), either on different
accounts. Even if they set an auto-forward in every non-used mailbox toward the
preferred mail box, it is more efficient to send directly the message to this mailbox.

The EmDir program is a C program running on CERNVM (IBM/XA), VXCERN
(V AXNMS), CERNY AX (VAX/UNIX) and several kinds of workstations. Exactly the
same code runs on the different machines, the source code being tailored by compiler
directives when the code bas to vary according to the machine. Remote DB access on
VXCERN is done thanks to Remote Procedure Calls (RPCs).

13. 2. Definition of thè new service.

The NarneServer project is an extension to the EmDir service. The new service has to
allow any E-Mail user to query the DB by mean ofE-Mail messages. So the service could
potentially be used by every E-Mail user in the world.

A message with a special purpose syntax describing a query to the DB is sent to the
NameServer mailbox. The NameServer is a process which receives a message, analyzes it
to detect the queries, accesses the DB to satisfy the request and sends back the results to
the 'from' address of the incoming message.

- 117 -

Directory Services at CERN The EMDIR NameServer

The service should be flexible enough to accept several queries in the same message,
and to detect queries which do not exactly correspond to the syntax which is defined in
the help file. Moreover, two syntaxes have to be accepted: one in the EmDir style (query
Dimou Maria ...), and the one defined by the 'M&D MHS Service' (Find Dimou:CERN).

The service should easily be extended to other syntaxes (e.g. close to Directory Names
or X.400 0/R addresses). The service should not fail. The service has to detect help
requests and to provide a Help service by sending back the Help file.

The service has to trace its activity, i.e. a log file has to be appended with the received
messages, the originator of these messages and the performed requests.

13. 3. Technical analysis and adopted solution.

Remote Procedure Calls

The NameServer has to run on CERNV AX, a Unix machine. As at Cern Oracle is not
yet available under Unix, the only way to access the DB is to use RPCs.

An application using RPCs can roughly be divided in two parts:
- the client program, using RPCs, and
- the client/server which execute RPCs.

The client is the interface between the client program and the remote routines installed
in the server. The client communicates with the server through the network. The server is
the process which runs on the remote machine, listening to the requests of the client, and
executing RPCs.

A problem to consider was whether a new set of RPCs had to be written, i.e. a special
purpose client/server for the NameServer application, or if the existing one for the EmDir
program would be used.

The existing set was able to satisfy the needs of the NameServer, although in an
inefficient way (explained below). As the DB was not reliable, as the DB structure could
change in a near future because of a Cern reorganization, and as the RPC system was not
yet in a stable state (upgrades were foreseen), it has been decided not to invest in the
design and implementation of a new RPC set.

In a first step, the service will be offered as a prototype. If the NameServer is used
enough to justify an optimization of the program, more efficient access methcxls to the DB
will be studied.

Message Syntax

The accepted syntaxes for the incoming messages (which specify therein a request to
the NameServer) had to be chosen. Two syntaxes have been considered: the one defined
by the 'M&D MHS Service' (find <name>:<organization>, where < .. > indicate
parameters) and a syntax close to the one used for the EmDir program (query <name>
[<firstname> [<division> [<experiment> [<institute> [<E-Mail address>]]]]] , where
[...] indicate optional parameters). These syntaxes have been extended in order to be more
flexible. In particular, in our 'M&D MHS service' syntax, <name> may denote a name or
a firstname, and <organization> a division, an experiment or an institute. They allow
more than one query per message, and requests may be in the subject field of the
message, the body, or both.

- 118 -

Directory Services at CERN 1be EMDIR NameServer

Implementation

To analyze the incoming messages, the LEX lexical analyzer is used. A file describes
patterns to detect and actions to take when these patterns are detected. The file is
precompiled, and a C program is generated: the message analyzer.

The message analyzer analyzes a message and produces a diagnostic file. This
diagnostic file contains the syntax used, the parameters of the request or the help request,
the address where the results or help file have to be sent back, or if it must be refused to
answer to this message (messages sent by daemons, retumed mails, ...).

A C program using RPCs performs a request, and produces a resulting file in a defined
syntax. Another LEX program consumes this file to paginate the results.

A Unix Shell script (the NameServer) uses ail these programs. It first runs the message
analyzer, analyses the produced diagnostic file to decide the appropriate actions.

It sends the help file if the help service bas been asked or if no valid query was
detected. It performs requests and pagination while managing error messages if valid
requests have been detected. It sends then back the resulting file, and appends a log file. It
does nothing special if it must be refused to answer to the message, except appending the
log file.

Figure 13.1 shows the architecture of the NameServer.

SendMail

♦

ô EmDirDB

Exchange of messages

• NameServer

+ +
DB Transactions Routine Calls .,

' RPC Server ◄..--- RPC Protoco}---41►• Client RPC ,..._ ______ ,... ..,,__ ____ ___.

LAN

Figure 13.1 : The NameServer Architecture.

- 119 -

Directory Services at CERN The EMDIR NameServer

Evaluation

The solution is not quite efficient, but bas the advantage of being simple and modular.

In particular, the set of RPCs allows only to query the DB on an 'and' composition of
selection criteria, while the NameServer application requires queries on an 'and/or'
composition of selection criteria (when the 'M&D MHS service' syntax is used). In order
to offer proper functionalities, the NameServer performs 6 RPCs per 'Find' query
detected in the message, among which three or four are almost always useless. And it is
impossible to determine beforehand which ones will fail. The program thus uses a lot of
DB and network resources.

Another problem was to detect the availability of the remote RPC server. The
permanent process which runs the server must be killed during the Oracle back-up (3-4
hours a night), and must be restarted automatically when Oracle is available again. The
client must also face network f ailure.

When the NameServer was first developed, the RPC system was managing such
situations by aborting the client program. To detect such problems, the NameServer was
calling the querying program with a dummy request. If at the end of the execution, no
result file was prcx:luced, it was concluded that the server was not reachable at the
moment. The NameServer then sends an error retum code to 'SendMail' (the MTA
process which calls the NameServer) on termination. This error code is such that
'SendMail' will submit the message again to the NameServer a few time later.

But this dummy request also consumed needlessly resources. The problem bas been
submitted to the RPC system manager, and the system bas been changed in such a way
that the RPC system sends back an error code rather than aborting when the client is not
reachable.

The NameServer was then integrated to 'SendMail' on a WorkStation to be tested. It
has later been installed on Cemvax, the VAX/Unix machine which runs one of the Cern
E-Mail gateways.

A short documentation and a 'makefile' have been written for maintenance purposes.

13.4. The future of the NameServer.

After a short testing pericx:l, the ccx:le of the NameServer has deeply been changed to
improve efficiency, ccx:le clarity and modularity.

This program was a prototype aiming to show the feasibility of such a NameServer.
Future developments could be done in order to improve ccx:le efficiency, and in particular,
to study other ways to access the DB (new RPC set, SQLNet, ...).

Another service related to the NameServer would be to offer remote update facilities
using the same principle, i.e. by sending an E-Mail message to the NameServer
specifying an update request.

It could also be desirable to accept query syntaxes which look like X.500 Directory
Names or X.400 O/R addresses (e.g.: Search <FN=Maria; OU=DD; C=CH>).

- 120 -

Directory Services at CERN AutoRouter

14. Auto Router

14 .1. Definition of the new service.

This project is related to E-Mail addressing for people registered in the EmDir DB.

The usual Cern E-Mail address syntax is 'user@host.domain', where the host part
denotes the name of a Cern E-Mail host, the user part is the user identifier on this
machine, and the domain partis an E-Mail network name (e.g. Uucp or Bitnet) or the
string 'cern.ch'.

Such addresses are not quite user-friendly, mainly because one cannot easily remember
or guess them (how do you guess the machine on which somebody has an account, and
his or her user identifier on this machine). The aim of the AutoRouter is to provide an
addressing scheme close to the Cern internal organization, and allowing to use the real
person's name and firstname in the user part. The scheme is based on the RFC 987
address format.

The defined address syntax is:
E-Mail-Address ::=
User
Domain

Where:

.. -.. _ .. -

- [...] denotes an optional string;

U ser'@'Domain
[Firstname'. '][Initial'. ']S[Name]
[Experimen t' .'][Division'. ']['cern .ch']
[Division'. '][Experiment'. '] ['cern.ch ']

- Firstname is a string of at least two characters denoting a firstname;
- Initial is a single character denoting an initial (5 initials maximum);
- Name denotes a name;
- Division denotes a Cern organizational division;
- Experiment denotes a Cern organizational experiment;

When addressing somebody at Cern, one may use its personal knowledge of the
addressee, rather than some machine dependent information.

14. 2. Technical analysis and adopted solution.

Principle of the Solution

The principle of the solution is to have a program (the AutoRouter) which receives ail
messages addressed with such addresses, queries the EmDir DB to get the preferred E
Mail address of the addressee, and forwards the message to this address.

From non-Cern MT As, routing is decided upon the upper part of the domain part of
the address (i.e. 'cern.ch'). When the message arrives in a Cern MTA, the address is
further analyzed and routed to the AutoRouter when a division or experiment name is
detected as first Cern subdomain.

- 121 -

Directory Services at CERN AutoRouter

The AutoRouter is a program running on the Vax/Unix Cemvax MT A. It receives the
messages from 'SendMail' (the MTA process) on its standard input, and the recipient and
originator addresses on its command line. When receiving a message, it analyses the
address and performs a request to the EmDir DB using the RPC system described in the
previous chapter. If one and only one entry matches the request and if a valid E-Mail
address is specified in the E-Mail address field of this entry, the message is forwarded to
this address using SendMail. If no entry or more than one entry match, or if no valid E
Mail address is specified in the matching entry, the message is sent back to the originator
with appropriate comments and error messages.

The AutoRouter traces its activity and appends a log file. When a message is
successfully forwarded, a line is added to the message header to indicate that it has been
routed according to the content of the EmDir DB.

lmplementation
The AutoRouter is a short C program. A solution similar to the one adopted for the

NameServer has been used to detect and manage unreachability of the RPC server.

Figure 14.1 shows the architecture of the AutoRouter, very close to the one of the
NameServer.

SendMail

♦

ô EmDirDB

Exchange of messages

• AutoRouter

+ DB Transactions
~

Routine Calls

+ ' RPC Server <1111◄1t---- RPC Protocol ---t1►~ Client RPC

LAN

Figure 14.1 : The AutoRouter Architecture.

The AutoRouter has been integrated to SendMail and successfully tested.

This program is a prototype aiming to show the feasibility of such a router. The service
is at the moment limited to a reduced set of recipients.

- 122 -

Directory Services at CERN AutoRouter

14.3. EmDir issues.

lt is felt that EmDir could take a more and more important role in the future for some E
Mail functions as Directory Services or routing. And to offer reliable NameServer and
AutoRouter services, it is absolutely necessary to have reliable and complete information
in theEmDirDB.

Therefore, an important effort has been decided in order to define new requirements
for the DB, and for the ways to query it.

Sorne Decisions

Decisions were made in the following fields:
- Definition a new RPC set allowing a large but restricted set of SQL queries to the DB;
- Provision of information about the origin of the information contained in an EmDir

entry, and an information allowing to determine whether the person described in an entry
has an account on one of the Cern machines;

- Reliability of the information, achieved by regularly cross-checking the EmDir
content with the 'Personnel' and 'Centre de Calcul' DBs, and by a validity control on
update of information by users;

- Common file list of Cern divisions and experiments for validity control and routing.

These decisions have impacts on both the NameServer and AutoRouter applications.
For the NameServer, the first decision should allow more efficiency of the program
(although this is not an important requirement as it is not an on-line service). But mainly,
it will have an impact on the consumption of DB and network resources. Reliability of
datais an important requirement for a NameServer service.

For the AutoRouter, the new RPC set should allow more flexibility on the selection of
DB entries, and requests closer to the address syntax and content. Information about the
origin is essential: it will allow to work up a routing policy. Cern wants to be able to
select people who will benefit this service (e.g.: people having an account on one of the
Cern machines, or people who belong to the HEP community) in order to avoid abuses of
the Cern E-Mail facilities. Reliability should allow to successfully route messages in most
of the cases, and toward valid addresses. The use of a common file list for divisions and
experiments will avoid differences between information stored in EmDir (valid division
and experiment names) and information used to route messages toward the AutoRouter.

Security and Reliability

The use of data stored in EmDir for automatic routing requires a high level of security
and reliability for the information stored in the DB. The security aspect is particularly
important here. A person wishing to misappropriate messages addressed to somebody
else can do it by replacing the aimed person 's address by its own address in the
corresponding EmDir entry. EmDir update protection based on a password is not
considered as being secure enough for some very sensitive Cern people.

As far as the reliability of the information in EmDir is concerned, a first step is done by
regularly updating en tries according to the contents of the 'Personnel' and 'Centre de
Calcul' DBs. For E-Mail addresses, a verification routine has been written.

- 123 -

Directory Services at CERN AutoRoutcr

This routine aiins three objectives:
- to transform an address in an Uucp (hostl !...!hostn!user), Decnet (host::user),

'user@host', 'user AT host' (and so on ...) syntax in a 'user@host.domain' syntax,
while accepting Janet addresses (even inversed) and more hierarchical addresses. X.400
addresses are not yet accepted. This airns to have a single address syntax in EmDir.
Address having invalid syntaxes are rejected;

- if the user does not specify any domain, to try to find it by a lookup in the NetNodes
DB, and if no valid domain has been derived either from the address syntax, either from
the query to NetNodes, to reject the address;

- to check if the specified address is not an address which would route the message
toward the AutoRouter again, which would induce message looping. This control is
performed by checking if a Cern subdomain is specified (if not, the address is rejected)
and if this subdomain is listed in the füe of divisions and experiments (in which case the
address is also rejected).

In this way, all possible local check is done, and a certain number of invalid addresses
are detected, mainly due to syntactical errors.

This routine will be used when an update of an E-Mail address in EmDir is perf ormed.
But as there is invalid E-Mail addresses in EmDir at the moment, the AutoRouter also
uses this routine to check whether an address is valid or not before forwarding the
message, or sending it back with an error message to the originator.

Matching Emdir entries and E-Mail Addresses

An important issue for automatic routing is to perform the mapping between the
defined addressing scheme and the content of the EmDir entries to find the corresponding
recipient's E-Mail address, if any. Problems arise when people have composed names or
firstnames (with or without dashes, as Jean-Luc or John Peter), when the preferred well
known firstname is not the first listed in the official forenames, when initials are used in
the DB firstname field (real initials or initials of complementary forenames), when the
words 'de', 'd", 'van', 'van den', 'von', 'di', ... are used before a name and the fact that
E-Mail addresses do not accept blanks in it (as a consequence, names are quite often
concatenated, or blanks are replaced by dashes or underscores), for married women
known by their husband's name and/or by their own native name, ...

A flexible syntax had thus to be defined. This syntax has not to be too much
constraining for the format and order of data stored in EmDir. It attempts to harmonize the
new addressing scheme and the content of the name and firstname fields of the DB in
order to achieve an efficient matching algorithm. As the address verification routine, this
syntax should guide the EmDir managers in such a way that the content of the DB will
conform to our matching rules, and is thus a guide to design the EmDir user interface.

14.4. The future of the AutoRouter.

As previously stated, this program is only a prototype. In order to be fully operational,
the program and the protection of EmDir should be further improved and tested. Mainly
for security and efficiency reasons ..

- 124-

Directory Services at CERN AutoRouter

In particular, the existing mapping algorithm performs simple exact pattern matching
between the different elements of the address and the name, firstname, division and
experiment fields of the DB. A more intelligent matching algorithm should be designed in
order to deal with the difficulties quoted here above.

Before allowing a large usage of the new addressing scheme, it should be proceeded to
a burden testing. All messages using this new addressing scheme will converge toward
the AutoRouter and its associated MT A. The AutoRouter also consumes DB and LAN
resources on very loaded machines and media. Tests should be performed in order to
determine how the global system will react, in particular during peaks of machine and
network load.

Another useful improvement of the AutoRouter service would be the possibility of
sending E-Mail messages to any Cern people, even those having no E-Mail account. As
the name, firstname, and division are the required informations for the Cern internal
'Paper-Mail' system to send a document to a person working at Cern, as this information
is registered in the EmDir DB, and as every people working at Cern is registered in the
EmDir DB, it is easy to imagine the AutoRouter working in the following way: when
receiving a message, the AutoRouter analyses the address and queries EmDir. If only one
entry is retrieved and an E-Mail address is specified in it, the message is forwarded to this
E-Mail address. If no address is specified, it is checked whether the person corresponding
to the entry is working at Cern thanks to the indication about the origin of the information
stored in the entry. If it is the case, the message is printed on paper with a header page
indicating the name, firstname and division of the person to whom the message has to be
delivered to, and is introduced in the Cern internal 'Paper-Mail' system. In every other
case, an error message is sent back to the originator.

- 125 -

Introduction to Directory Services Conclusions

Conclusions

Directory needs arise mainly for four reasons:
- user-friendly naming facilities of objects for human users;
- facilities for searching and browsing a large and distributed data base of information

about people, services and facilities, and in particular to provide a mean to get the
necessary information to communicate with these people, facilities and service providers.
This way of using the Directory is rather designed for human use;

- name to address mapping fonctions. This need arises from the wish to isolate users
(either human users or processes) from changes in the location of objects;

- routing fonctions. Requirements for routing fonctions arise both in the higher level
communication systems as the Mail Handling System, and in the lower level of the OSI
network layer.

The X.500 Directory Service system allows for an access to information based on a
user-friendly, hierarchically structured key (Directory Names). It is designed to support a
large and distributed database. In addition to key access, facilities are provided to browse,
search and update information in the Directory Information Base. These characteristics of
the X.500 Directory make it meet the two above quoted requirements.

To provide a name to address mapping fonction thanks to the X.500 Directory Service
is straightforward if Directory Names are used as names: the address or addresses
associated to a name are stored in the entry representing the named object.

However, the use of the 'bulky' Directory Names (rather designed for human use) as
names may not be suitable for efficient machine processing or for use in some
applications or communication protocols.

If there is no need of user-friendly naming facilities, and that hierarchical naming is
appropriate, then the use of some form ofDirectory Names (and hence of the X.500
Directory Service) may be acceptable to implement a compact form of names (as Object
Identifiers described in 10.3).

Otherwise, if a fiat naming scheme is adopted, or if one wishes to have both a user
friendly naming scheme and a naming scheme suitable for machine processing, then the
X.500 Directory Name structure is not convenient.

In fact, a major drawback of the X.500 Directory Service is its lack of an efficient
mechanism to manage multiple key access, and the absence of mechanism for the use of
non-hierarchical key to access information.

The alias mechanism provides a mean to build a simple multiple key access mechanism
based on hierarchical keys. It is thus possible to use several naming schemes (e.g. one
user-friendly, and a more compact one rather designed for machine processing), although
there is no facilities in the Directory Service to help to manage cross-references in the
Directory Information Base.

There is no facilities in X.500 for a key access based on non-hierarchical keys. This
makes the address to name mapping fonctions (to know to what corresponds a particular
address) impracticable in a number of cases (e.g. if Ethernet addresses are considered), or
for some form of NSAP to SNPA address mapping fonctions (as discussed in 10.2).

- 126-

Introduction to Directory Services Conclusions

The Directory may be unsuitable to provide a global and direct support for a majority
of routing fonctions. On the one side, the routing decision is dependent on both the
current location and the destination of the information being routed. This makes a routing
fonction specific to a switching point in a network. But the retrieval of information held in
the Directory is not dependent on the location nor the identity of the inquirer.

On the other side, the routing decisions are quite often based on the address where the
information has to be forwarded, this address being used as argument of the routing
fonction. The use of a fiat addressing scheme leads to a compact but non-hierarchical
access key for a routing table, which is held in some kind of directory. These
considerations makes the Directory inapt to provide a global and direct support for some
kind of routing fonctions.

If a hierarchical addressing scheme is used (as in the X.400 Mail Handling System),
then the hierarchical structure of addresses may be used to build a routing fonction based
on the Directory. A sub-structure of the Directory Information Tree may be mapped on the
hierarchical structure of addresses (i.e. to every top-domain corresponds a first-level
entry, and to every subdomain corresponds a directly subordinate entry). Every entry
represents a domain or a subdomain and is associated with a number of switching points
representing entry points in this domain or subdomain, which are reachable from outside
the domain or subdomain and have to be used to enter the domain. When having to take a
routing decision, a switching point derives from the address a key to the Directory which
corresponds to a domain or subdomain name. With this name as key, it then accesses the
Directory to get the addresses of the entry points to this domain or subdomain, and sends
the information to one of these entry points. Access control in the Directory may be used
to restrict the use of entry points to a subdomain by foreign switching points ('by hiding
entry points'), thus obliging them to access this subdomain via entry points of a superior
domain or subdomain. Such kind of routing mechanism requires a rather good
connectivity between switching points and entry points.

Otherwise, the Directory may be used as support to build routing tables. E.g. maps of
the network topology may be stored and distributed thanks to the Directory. Local
switching points could access these maps to derive the locally needed routing information
in order to build routing tables.

The X.500 Directory as a database system has to prove its performance, i.e. its
capacity to provide fast responses to queries. It is felt that the performance of the
Directory will be an important requirement if it is intended to be used by processes. One
can doubt of acceptable response times by the Directory in its actual definition, as a
Directory User Agent has first to set up a connection with a Directory Service Agent, and
the Directory Service Agent has then to search in a database. The situation is even worst
when Directory Service Agents start chaining, possibly establishing connections between
each other to process a request.

It should maybe desirable to provide, in addition to the current service, a faster,
transaction oriented querying mechanism Gust a query and a response, opposed to the
current session oriented service).

On the other side, taking into account the performance issue and the existence of the
current databases and database management systems, it should be discussed whether
special purpose databases and database management systems for the Directory have to be
designed, or if tools should be developed to interface the Directory with these existing
databases and database management systems.

- 127 -

Introduction to Directory Services Conclusions

X.500 itself has shortcomings which should be removed in the next standard release:
provision for a standardized way to exchange the Directory Schema (i.e. mainly the
Directory Information Tree structure definitions and the object classes definitions) and the
knowledge information should be considered. Decisions should also be made to facilitate
the management of the Directory distribution and replication, and to harmonize the access
control mechanisms.

- 128 -

Introduction to Directory Services Annexes

Annexes

- 129 -

Introduction to Directory Services Annex A : The Network Address Fonnat

AnnexA The Network Address Fonnat

This annex summarizes the main points developed in [ECMA-117].

A .1. ISO 8348/DAD 2.

This clause presents the major points contained in ISO 8348/DAD 2 which defines the
nature and form of NSAP addresses.

The standard assigns several properties to NSAP addresses amongst which are [WG3-
88]:

- it must be globally unique;
- it can not be used for routing by the network service user;
- it should be used by the network service provider in particular for routing through

interconnected subnetworks;
- it should be constructed to facilitate use by network service provider.

Network addresses are defined to be hierarchical. An authority may either assigna
complete address, or else may identify a subdomain of its own addressing domain within
which addresses may be further assigned by an identified authority for the subdomain.
This is done in such a way that all addresses are unique. When an authority identifies a
subdomain, this creates in effect a prefix which applies to all addresses assigned within
the subdomain.

Certain methods of assigning authority are recognized within the body of ISO
8348/DAD 2. These take account of existing addressing standards such as CCITT Rec.
X.121. The abstract structure of a NSAP address is shown here above:

Authority & Format Initial Domain Domain Specific
Identifier (AFI) Identifier (IDI) Part (DSP)

An NSAP address is represented as a string of either decimal or binary digits,
composed of three fields. Together, the AFI and the IDI form the Initial Domain Part
(IDP). The content of the IDP is entirely standardized. The AFI indicates both the type of
the IDI, and the format (decimal or binary) of the DSP. It also identifies the authority
responsible for allocating IDI values. The IDI identifies the subdomain from which DSP
values are allocated, and the authority responsible for allocating these values [Huit-88].

The total length of the NSAP address is at most 40 digits, i.e. up to 20 octets. As the
AFI is represented in two digits, the maximum length of the DSP will vary with the type
of the IDI.

-Al -

Introduction to Directory Services Annex A : The Network Address Format

IDI formats specified in ISO 8348/DAD 2 include a number of authorities for IDI
allocation. The following table gives a list of possible IDis, their length, the value of the
API, and the corresponding syntax and maximum length of the DSP [Huit-88].

IDI type IDI length API value DSP length

Data Network Address (X.121). 14 36 24 digits
(Public Data Network Numbering) 37 9 octets

Data Country Code (ISO-DCC) 3 38 35 digits
(Geographic Address Assignment) 39 14 octets

International Organizations (ISO-ICD) 4 46 34 digits
(Non-Geographic Address Assignment) 47 13 octets

Telex Address (F.69) 8 40 30 digits
(Telex Numbering) 41 12 octets

Telephone Number (E.163) 12 42 26 digits
(Telephone Numbering) 43 10 octets

ISDN address (E.164) 15 44 23 digits
(ISDN Numbering) 45 9 octets

Local 0 48 38 digits
(The IDI is null and the entire 49 15 octets
address is contained in the DSP) 50 19 characters

The structure of the DSP is not specified in ISO 8348/DAD 2. It is normally only
known within the domain identified by the IDP, except for the format (binary or decimal)
indicated by the API.

A. 2. Topological example.

As an example, the IDI and DSP may be illustrated in term of an addressing
topography comprising a central domain, representing a global public network,
surrounded by many satellite domains (e.g.: Local Area Networks).

The API identifies the global network to which the IDI is relevant. The IDI identifies
the point of attachment of the satellite network to the global network, i.e. a relay. The
DSP identifies a particular host within the satellite network.

The following example shows an NSAP address composed of an X.121 address for
the global network (X.25 Public Data Network), and a Ethernet address for the satellite
network. This address could correspond to the topology shown in figure A. l, when Host
1 wants to address Host 2.

AFI IDI DSP

37 (X.121 address) (Ethernet address) 1

-A2-

Introduction to Directory Services

1

□

Network-Relay, or Gateway.

Host.

Annex A : The Network Address Fonnat

- SubNetwork.

e SubNetwork Point of Attachment.

Figure A 1 : Topological Example.

If the destination and originating hosts are both connected to the global network, the
DSP is null. If the originating host on a particular satellite network has to address another
host on the sarne satellite network, the IDI is null, and the AFI has the 'local' value
corresponding to the DSP syntax.

The private satellite domain may itself be complex. It is not restricted, for exarnple, to a
single LAN. It may consist of several LANs interconnected, or even comprise an entire
global private network. The complexity is only limited by the addressing capability
restricted by the maximum DSP length in ISO 8348/DAD 2.

It should be noted that although an IDP may correspond to a particular point of
attachment to a public network, it is not constrained to do so. A private domain may have
several points of attachment to the public network. The IDP could thus be a logical point
of attachment which corresponds to a set of physical SubNetwork Points of Attachment
(SNP As), and which has to be mapped into a SNP A address before proceeding to the
connection.

Equally, private domains may exist which are not attached to public networks at all.

A.3. ECMA-117.

The exarnple and the following considerations are the base of the ECMA-117 standard.

The DSP should satisfy the following requirements [ECMA-117]:
- lt must enable multiple NSAPs to be separately identified in a single computer system

which is directly attached to a public network;
- It must enable multiple computer systems attached to the private domain to be

identified;
- It must enable multiple NSAPs to be separately identified in a computer system which

is attached to a private domain.

ECMA-117 further normalize the NSAP address format by defining a DSP structure
with three components:

1) Subnetwork identifier.

The intemal structure of a private domain may be complex. It may include, for
exarnple, several interconnected LANs. To facilitate operation of the interna! gateways, it
may be necessary for addresses to identify a particular subnetwork within the domain.

-A3-

Introduction to Directory Services Annex A : The Network Address Format

The subnetwork identified by the subnetwork identifier may, but is not constrained to,
coïncide with a physical subnetwork.

The subnetwork identifier may be null, if the topology of the private network is such
that routing can be done using only the subnetwork address.

2) Subnetwork address.

The subnetwork address provides the way in which a particular point of attachment to
the subnetwork may be addressed. To allow for efficient and easily managed use of local
area networks, it must be possible for this to be the real address used by the subnetwork.

Altematively, the subnetwork address component may not, in fact, contain a real
subnetwork address. Synonyms may be used to represent subnetwork points of
attachment in some cases, including:

- several SNP As exist and any one may be used;
- no suitable SNPA exists;
- for some other reasons, a mapping of a logical representation of the subnetwork

address to a real subnetwork address is required.

The means by which synonyms are interpreted to find an actual subnetwork address
are outside the scope of ECMA-117.

The subnetwork address may be absent in the case of an end-system the subnetwork
point of attachment is completely identified by the IDP. In this case, the subnetwork
identifier would have the null value.

3) NSAP selector.

This identifies a particular NSAP which can be accessed through the particular
subnetwork point of attachment.

The standard permits the DSP to be expressed in either binary or decimal syntax. The
particular syntax being used is identified by the API value.

The permitted maximum length of the DSP for the various address syntaxes permitted
in ISO 8348/DAD 2 are varying according to the API. The highest permissible length,
common to all formats, are nine octets for binary syntax, and 23 digits for decimal
syntax. Therefore, these are the maximum lengths the use of which is described by the
standard.

The DSP formats in ECMA-117 are :

Syntax Subnet. ID. Subnet. Add. NSAP-selector

Binary 2 octets 0- 6 octets 1 octet
Decimal 5 digits 0 - 15 digits 3 digits

It is important to note that routing information can potentially directly be derived from
the NSAP-address content.

A. 4. The X.121 Addressing Scheme.

The addressing of the network entities on public X.25 networks is the object of the
CCITT recommendation X.121. An international numbering scheme provides an
intemetwork addressing.

-A4-

Introduction to Directory Services Annex A : The Network Address Fonnat

Every Public Data Network (PDN) received a Data Network Identifier Code (DNIC),
which is a number of 4 digits. The 3 first ones identify a particular country, and the fourth
identifies a PDN in this country.

An intemetwork address is composed of a DNIC, followed by a Network Terminal
Number (NTN) which specifies the address of a Data Terminal Equipment (DTE) in the
PDN. The NTN is a number of 1 to 10 digits.

ISO 8348/DAD 2 permits IDis being X.121 addresses. The X.121 address space
allows PDNs to be viewed as a single global network.

A. S. The 1S0-DCC Addressing Scheme.

In the ISO Data Country Code (DCC), the country code is a three digits number
identifying a country and an authority allocating further numbers to users or group of
users.

ISO 8348/DAD 2 permits IDis to be DCCs, further number are part of the DSP. This
scheme considers a country as being a global logical network to which every user is
directly connected. DCC-addresses are independent from the particular physical
subnetwork to which users are attached, and its particular physical address. When using
the DCC, a mapping has to take place in order to get the subnetwork to which the user is
attached and the physical subnetwork address of the user's point of attachment (SNP A)
on this subnetwork. Such a scheme is said to be subnetwork independent.

-AS-

Introduction to Directory Services Annex B : Distributed Operation Procedures

AnnexB Distributed Operation Procedures

This annex roughly outlines the way distributed operations can be performed as
described in [X.518-88]. A detailed description of the procedures is exposed in [X.518-
88]. It should be noted that this description is included for expositional purposes only and
is not intended to constrain or govem the implementation of an actual DSA.

B . 1. DSA Behavior.

Each DSA is equipped with procedures capable of completely fulfilling all Directory
operations. ln the case that a DSA contains the entire DIB, ail operations are in fact
completely carried out within that DSA. In the case that the DIB is distributed across
multiple DSAs, the completion of a typical operation is fragmented, with just a portion of
that operation carried out in each of potentially many cooperating DSAs.

In the distributed environment, the typical DSA sees each operation as a transitory
event: the operation is invoked by a DUA or some other DSA. The DSA carries out
processing on the object and then directs it toward another DSA for further processing.

An altemate view considers the total processing experienced by an operation during its
fulfillment by multiple, cooperating DSAs. This perspective reveals the common
processing phases that apply to all operations.

Every Directory operation may be thought of as comprising three phases:
- the 'Name Resolution' phase, in which the name of the object on whose entry a

particular operation is to be performed is used to locate the DSA which holds the entry;
- the 'Evaluation' phase, in which the operation specified by a particular Directory

request (e.g. Read) is actually performed;
- the 'Results Merging' phase, in which the results of a specified operation are retumed

to the requesting DUA. If a chaining mode of interaction was chosen, the Result Merging
phase may involve several DSAs, each of which chained the original request or sub
request to another DSA during either or both of the preceding phases.

The Name Resolution is the process of sequentially matching each RDN in a name to a
vertex of the DIT, beginning logically at the root, and progressing downwards in the DIT.
However, because the DIT is distributed between arbitrarily many DSAs, each DSA may
only be able to perform a fraction of the Name Resolution process. A given DSA
performs its part of the Name Resolution process by traversing its local knowledge.
When a DSA reaches the border of its narning context, it will know from the knowledge
information contained therein, whether the resolution can be continued by another DSA,
or whether the name is erroneous.

In the case of the operations Read, Compare, List, Search and Modify-Entry, name
resolution takes place on the object name provided in the argument of the operation. In the
case of Add-Entry, Remove-Entry and Modify-RDN, name resolution takes place on the
name of the immediately superior object (derived by removing the final RDN from the
name provided in the operation argument).

When the Name Resolution phase is completed, the actual operation required (e.g.,
Read or Search) is performed. It is the Evaluation phase.

- Bl -

Introduction to Directory Services Annex B : Distributed Operation Procedures

Operations that involve a single entry (Read, Compare, Add-Entry, Remove-Entry,
Modify-RDN and Modify-Entry) can be carried out entirely within the DSA in which that
entry bas been located.

Operations that involve multiple entries (List and Search) need to locate subordinates of
the target, which may or may npt reside in the same DSA. If they do not all reside in the
same DSA, operations need to be directed to the DSAs specified in the subordinate
references to complete the evaluation process.

The Result Merging phase is entered once some of the results of the evaluation phase
are available.

In those cases where the operation affected only a single entry, the result of the
operation can simply be returned to the requesting DUA. In those cases where the
operation bas affected multiple DSAs, results returned by the other DSAs need to be
combined with those generated locally to form a consolidated set of results.

The permissible responses returned to a requestor after result merging include:
- a complete result of the operation;
- a result which is not complete because some parts of the DIT remain unexplored

(applies to List and Search only). Such a partial result may include continuation references
for those parts of the DIT not explored;

- an error (a referral being a special case).

An operation on a particular entry may initially be directed at any DSA in the Directory.
That DSA uses its knowledge, possibly in conjunction with other DSAs to process the
operation through the three phases.

Each individual DSA performs one or more of the three phases. The collective action
of all DSAs produces the full set of services provided to users by the Directory.

B. 2. Managing Distributed Operations.

Information is included in the arguments of each operation a DSA is asked to perform
indicating the progress of the operation as it traverses a DSA. This makes possible for
each DSA to perform the appropriate aspect of the processing required, and to record the
completion of that aspect before directing the operation outward further DSAs.

A DSA that receives a request can check the progress of that request using the
Operation Progress parameter. This will determine whether the operation is still in the
name resolution phase or bas reached the evaluation phase, and what portion of the
operation the DSA should attempt to satisfy. If the DSA cannot fully satisfy the request it
must either pass the operation on to one or more DSAs which can help to fulfill the
request (by chaining or multicasting), or return a referral to another DSA, or terminate the
request with an error.

Additional procedures are included in the DSA to physically distribute the operations
and support other needs arising from their distribution.

- B2-

Introduction to Directory Services Annex B : Distributed Operation Procedures

Request Decomposition is a process performed internally by a DSA prior to
communication with one or more other DSAs. A request is decomposed into several sub
requests in such a way that each of the latter accomplishes a part of the original task.
Request decomposition can be used, for example, in the Search operation, after that the
base object has been found. After decomposition, each of the sub-requests may then be
chained or multicasted to other DSAs to continue the task.

Bach DSA that has initiated an operation or propagated an operation to one or more
DSAs must keep track of that operation's existence until each of the other DSAs has
returned a result or an error, or the operation's maximum time limit has expired. This
requirement applies to ail operations, propagation modes and processing phases. It
ensures the orderly closing down of distributed operations that have been propagated out
into the Directory.

B. 3. DSA Procedures.

The behavior of the distributed Directory as a whole is the sum of the behavior of its
cooperating DSAs. Each of these DSAs can be viewed as a process, supported internally
by a set of procedures.

Figure B.1 illustrates the internai view of the DSA behavior.

Name
Resolution Evaluation

Figure B. l : DSA Procedures

The Operation Dispatcher

Results
Merging

Upon initially receiving an operation, the Operation Dispatcher takes it in charge. It
validates it, checking for loops (if it is a distributed operation) thanks to the trace
information, time limit or authentification errors. If none is found, it calls Name
Resolution, which either returns a Found, a Reference or an error indication. References
are handled by a referral or by a chain or multicast action. A found indication is handled
by calling the Evaluation procedure, which actually perf orms the intended operation. Once
returned, interna! or external results are collated by Results Merging, and, in the absence
of errors, returned to the calling DUA or DSA.

- B3 -

Introduction to Directory Services Annex B : Distributed Operation Procedures

Name Resolution

Name Resolution calls Find Naming Context If the retumed context is local, then
Local Name Resolution is called, otheiwise Name Resolution retums a reference and
tenninates. If Local Name Resolution encounters an alias, it is dereferenced and Name
Resolution repeats the analysis from the beginning. Otheiwise, Local Name Resolution
retums a Found or a reference, which is passed back to the Operation Dispatcher.

Find Naming Context attempts to match the name on which name resolution takes
place against context prefixes of naming contexts held locally. If a context prefix of a
naming context held locally matches, an indication that a suitable naming context was
found locally is retumed. If none matches, then Find Naming Context attempts to identify
a cross reference. If a context prefix is matched, Find naming context retums the
corresponding cross reference. In the case neither a suitable naming context is found
locally, nor a cross reference identified, the superior reference is retumed.

The Local Name Resolution procedure attempts to match RDNs in the name on which
name resolution takes place against intemal references until it can retum a Found
indication. If unable to match all RDNs intemally, it attempts to identify first specific,
then non-specific subordinate references, and retum these to name resolution. If an alias
is encountered, and dereferencing is allowed by the selVÎce controls, a dereferenced alias
indication is retumed. Otheiwise a Found indication is retumed if and only if all RDNs
had matched at the time the alias was encountered.

Evaluation

The Evaluation procedure actually executes the requested Directory operation against
the target object. Depending on the type of the operation, Single Object Evaluation or
Multiple Object Evaluation is invoked.

Single Object Evaluation is invoked for Read, Compare, Add-Entry, Remove-Entry,
Modify-Entry and Modify-RDN operations. It is in this procedure that attributes are
actually retrieved, checked or changed.

Multiple Object Evaluation is invoked for the Search and List operations to check
filters, retrieve results, and if necessary, dispatch sub-requests.

Results Merging

The Results Merging procedure collates results or errors received from other DSAs in
the case of a multicast or a request decomposition. Locally retrieved results are collated in
the collation.

B. 4. Specific Operations.

The operations fall in three categories (in each case an operation and its distributed
counterpart are both in the same category):

- Single-Object operations: Read, Compare, Modify-Entry, Add-Entry, Remove-
Entry, Modify-RDN; .

- Multiple-Object operations : List and Search;
- Abandon operation : Abandon.

- B4-

Introduction to Directory Services Annex B : Distributed Operation Procedures

The handling of these categories are described in the following sections. Since there is
considerable similarity between the way that a DSA behaves in performing an operation of
a service port and in performing its counterpart operation of a distributed service-port,
there is a single description applying to both, with exceptions to this rule being noted.

Single-Object Operations

Single-Object operations are those which affect a single entry, and which therefore can
be carried out entirely within the DSA which contains the entry on which the operation is
to be performed. Such operations can be commonly described by the following sequence
of operations:

1- Activate the Operation Dispatcher;

2- Perform Name Resolution to locate the object whose name was specified as the
argument of the operation;

3- Perform Single-Object operation Evaluation procedure;

4- Service controls, such as time limit, should be checked during the course of the
operation to enforce the constraints specified by the user;

5- Return the results to the DUA or DSA which forwarded the request.

Multiple-Object Operations

Multiple-Object operations are those which affect several entries which may or may not
be co-located in the same DSA. Such operations may thus entail a cooperative effort by
several DSAs to locate and operate on all the entries affected by the requested operation.
The common behavior of such operations can be summarized as follow:

1- Activate the Operation Dispatcher;

2- Perform the Name Resolution procedure to locate the object whose name was
specified as the argument of the operation;

3- Once the target object of the operation has been located, perform the Multiple-Object
evaluation procedures;

4- If request decomposition has taken place in one of the Multiple-Object evaluation
procedures and sub-requests have been chained or multicasted, the Operation Dispatcher
maintains the current local results, waits for distributed operations responses, and
activates result merger.

5- Service controls, such as time limit, size limit should be checked during the course
of the operation to enforce the constraints specified in the common arguments;

6- Return the results or errors to the DUA or DSA which forwarded the request.

Abandon Operation

On receipt of an abandon operation, a DSA determines whether it can abandon the
specified operation, and, if so, abandons it and returns a result (the operation that was
abandoned returns an 'Abandoned' error). If it cannot abandon the specified operation, it
retums an 'Abandoned-Failed' error.

- B5-

Introduction to Directory Services Annex B : Distributed Operation Procedures

The following specifies the procedure specific to the Abandon operation:

1- Locate the operation whose invoke identifier i~ specified as the argument of the
Abandoned operation;

2- Optionally compose request(s) with the proper invoke identifiers to abandon any
outstanding chained or multicasted operations to other DSAs.

3- If 2 succeeds, the abandon operation is perf ormed:

4- Return result or error to the DUA or DSA which forwarded the request.

- B6-

Introduction to Directory Services Annex C : EmNodes

Annexe EmNodes

Annex C is the Help file of the EmNodes Service described in chapter 12.

The last page is the screen of the user interface, plus the corresponding retrieved
results.

- Cl -

FILE: EMNODES HELPCMS Al VM/XA CERN CMS 5.5 v.8

.cm CAT:

.cm NAM:

.cm EXP:

.cm DAT:

.cm A/R:

.cm KEY:

.cm ABS:

.cm ABS:

. cm ABS:

.cm ABS:

.cm END:

CMS
EMNODES
Search for mail node addresses.
88.12.12
B.Heuse/M.Dimou
MAIL ADDRESS NODE HOST DOMAIN E-MAIL EMDIR

EmNodes is an electronic mail directory service, allowing
mail node addresses to be search for and retrieved .

EmNodes is an electronic mail directory service, allowing mail node addresses
to be searched for and retrieved.

Use the EMNODES command to query the directory. The syntax is:
+---------+---+
1 1 1
1 EMNODES 1 [nodel* [instl* [townl* [country!* [networkl*]]]]][(fn ft fm] 1
1 1 1
+---------+---+
Typing EMNODES without any parameters will start an interactive display.

If parameters are given, the DataBase will be accessed to retrieve any
corresponding entries. An asterisk (*) may be used to replace any missing
parameter, or as a wild card at either end of, or within, any of the
parameters. An asterisk (*) replaces zero, one or more characters, whilst
question mark(?) replaces one and only one character.

node is the name of the node (hast) generally forming part of the full
node address (e.g. CERNVM, VXCERN, ...).

institute is the Research institute (or University) to which the node is
located.

town is the town/city where the node is located (see usage note 2).

country is the 2 letter country code where the node is located (see usage
note 1).

network is the network which this node is on (e.g. EARN, BITNET, NETNORTH,
UUCP, JANET, DECNET, CERN. See usage note 4).

fn ft frn are filename, filetype and filemode of a file for storing the
result of the query (if required).

The result of the query is a file on which is written the selection criteria
and a nurnber of records. A record contains the following information:

- Country of the node,
- Node name,
- Network name,
- Site and Address,

FILE: EMNODES HELPCMS Al VM/XA CERN CMS 5.5 v.8

- Example of an Electronic Mail Address.

Usage Notes :

1. Country: Enter ISO two letter Country Codes only. A table is available by
pressing PF4 (ISO CC).

2. Town: Sorne town names are stored in English others are in local language.
Several trials in different languages may be necessary to obtain an
exhaustive list of what you wish to retrieve. Example: for nodes in
Brussels, town may be either 'Bruxelles' (French), 'Brussel' (Dutch) or
'Brussels' (English). For town or city names composed of several parts
as 'Ann Arbor', just give the longest part as search criterion, or use
'*' as part separator.

3. Institute: If using abbreviations, use '*' between each letter in place
of '. '.

4. Network: This selection criteria should only be used if you are sure about
your network information. Note that BITNET = EARN = NETNORTH and that
UUCP = EUNET. The only networks known are EARN, BITNET, NETNORTH, JANET,
UUCP and DECNET. Specifying one of the BITNET, EARN or NETNORTH network
will trigger a search in these three network, as they are very similar,
and as a novice user could not know the name used in each part of the
world. The CERN network is the collection of the Cern E-Mail nodes.

5. E-Mail Address : The provided E-Mail Address is a suggestion and is not 100%
reliable.

6. Mailing results : Note the possibility, in interactive mode only, to send
the result of a query to a remote correspondent, provided that you know
his E-Mail address.

7. Printing results : To print the resulting file, just issue 'XPRINT (PRINTER
printername' from the command line of the display.

8. DataBase content: The DataBase contains JANET entries only for nodes with
which Cern users can exchange mail. The DataBase contains DECNET entries
only for Cern's nodes, and UUCP entries for European nodes only.

9. Selection criterion: Entering minimal information is often sufficient
(e.g. only name of institute or town) and searching the resulting file
with an editor may give best results. Restricting the search too narrowly
can sometimes hide the address you are really looking for.

10. Going faster: Specifying the country will accelerate the retrieval.
Specifying the network will have the same effect, however, this should
only be used if you are certain that your network information is correct.

11. Oracle Errors : When database access fails, an Error Report should be
made in the resulting file, specifying the Oracle Error. In such a case,
no search is done in the database.

Examples
- To get the address of the node named SLACVM, issue 'EMNODES SLACVM'. In

interactive mode, fill the node field with the value SLACVM and press on PF5
(search). This will retreive the results :

EmNodes - Results For Request
Node SLACVM
Institute : *
Town : *

FILE: EMNODES HELPCMS Al VM/XA CERN CMS 5.5 v.8

Country : *
Network(s) : *

Country: US Node: SLACVM Network: BITNET
Site: Stanford Linear Accelerator Center - SLAC Computer Center
Stanford University;Stanford, CA 94305 US
-> E-Mail : User@SLACVM.BITNET

1 node(s) found.

- To obtain the list of the nodes located at CERN, issue the command
'EMNODES * CERN' or, in interactive mode, fill the field institute with the
value CERN and press on the PF5 (search).

EmNodes is only available on Cern's IBM/VM-CMS.

Report problems to M. Dimou (Dimou@priam.cern.ch).

Introduction to Directory Services Annex C : EmNodes

Screen of the EmNodes user Interface.

EmNodes : E-Mail Nodes Addresses

Enter search criteria with '*'or/and'?'. Each criterion is optional.

Node

Institute

Town

Country

Network

Options

LEON
ES

Save results on File (fn ft fm) >
Mail results (E-Mail Address) >

If using abbreviations, enter '*' instead of

Enter in English or in local language.

Enter ISO two letter Country Code only.

1 ' Institute

Town

Country

Network Bitnet, Earn, Netnorth, Decnet, Uucp, Janet or Cern.

PFl=Help

PF7=Mail PF8=Save

PF3=QUIT

PF9=Clear

Result of the query

EmNodes - Results For Request

Node

Institute

Town

Country

Network(s)

Country: ES

*
: *

LEON

ES

: *

Nede : ELEULEll

Site : Univesidad de Leon, Spain

PF4=ISO CC PFS=Search

Network : BITNET

Univesidad de Leon;Centro de Proceso de Datos;Campus de Vegazana

-> E-Mail : User@ELEULEll.BITNET

1 node(s) found.

- C2-

Introduction to Directory Services Annex D : Code of the NameServer

AnnexD Code of the NameServer

Annex D is the code of the NameServer described in Chapter 13.

The following files are given:
- the Makefile
- MED.help is the Help file;
- med.server is the NameServer itself;
- med.c accesses the EmDir database and outputs results in a special format;
- getadd.c perfonns the Remote Procedure Call after having processed the arguments

of the query;
- MED.msganalyser.Iex analyses the incoming E-mail messages in order to extract

the requests and the originator's address;
- MED.mep.Iex paginates the results produced by med.c.

Emdir.h (included in getadd.c) is not joined for space reasons. It consists of all of the
precompiled RPC system type and routine definitions.

The last page displays an example of message sent to the NameServer and the
corresponding response.

-Dl -

Makefile Wed Jan 18 11:00:15 1989 1

PRG med
RPC emdir

/usera/heuse/emdirtmp
-0 -I$(CRBASE)/h -I.

CRBASE
CFLAGS
USEROBJS
LIBS
INCS
COURIERCC
GETADD

$(PRG) .o $(RPC) client.o
$(CRBASE)/lib/libcr.a $(CRBASE)/lib/libnet.a
$ (RPC) .h
$(CRBASE)/compiler/courier
getadd

MSGMEPLEX
MSGMEP
MSGANALLEX
MSGANAL
SERVER

MED.mep.lex
MED.mep
MED.msganalyser.lex
MED.msganalyser
med.server

all: $ (SERVER)

$(SERVER): $(MSGANAL) $(PRG) $(MSGMEP)

$(MSGMEP): $(MSGMEPLEX)
lex -t $(MSGMEPLEX) > mep.c
cc -o $(MSGMEP) mep.c -11

$(MSGANAL): $(MSGANALLEX)
lex -t $(MSGANALLEX) > anal.c
cc -o $(MSGANAL) anal.c -11

$(GETADD) .c : $(RPC) .h

$(PRG): $(USEROBJS) $(PRG) .c $(GETADD) .c
cc -o $(PRG) $(USEROBJS) $(LIES)

$ (USEROBJS) : $ (LIBS) $ (INCS)

$(RPC) .h: $(GETADD) .cr

clean:

receive:

rm -f $ (RPC) .h
$(COURIERCC) $(GETADD) .cr

rm -f *.o mep.c anal.c * emdir *.c emdir.h *.old

mv $(GETADD) .cr $(GETADD) .cr.old
cp " .. /libc/$(GETADD) .cr" .
mv $(GETADD) .c $(GETADD) .c.old
cp " .. /libc/$ (GETADD). c" .

MED.help Sun Jan 15 19:35:04 1989 1

CERN Name Server - Help file

The CERN Name Server is a service provided by the Cern Institute.

It allows to access to a database containing all Cern's users, and
to obtain their E-Mail addresses. Sorne other users are also registered
in this DB. As the DB is freely filled and updated by the people
registered in the DB, the information is not always reliable.

To use this service, you have to send a mail in a specific format.
This mail has to be send to (E-Mail address):

nameserver@cernvax.cern.ch

The subject field or the body must be filled in one of the following
syntaxes (angle brackets <> indicate request parameters, square brackets
[) indicate optional parameters):

1) EAN find syntax :

find [<namel*>]: [<organizationl*>]

where <name> is the name or the firstname of the person you wish to
obtain the E-Mail address, and <organization> the institute, division
or experiment where this person is working.

Wild card characters '*' and'?' may be used in order to replace
respectively O, 1 or more characters and one and only one character
(blanks have to be replaced by '?').

Missing parameters will be considered as'*' wild card.
Note the a 'find *:*' will be rejected, as such a request is not

allowed in the DB.
The 'find' keyword may be alone in the subject field, and the other

part of the request in the body, according to the real EAN syntax.
Several requests (Maximum 2) may be put in the same message. In this

case, the find must be seperated by" ;". The 'find' keyword has not to
be repeated for each new find. So "find smith; *:delphi" is a valid
request.

2) EmDir query syntax :

query <namel*> [<firstnamel*> [<division!*> [<experimentl*>
[<institutel*> [<E-Mail Addressl*>])]])

where the parameters are respectively the name and firstname of the
person who above you wish to obtain information, the division, experiment,
and institute where she is working, and her E-Mail address.

Wild card characters '*' and'?' may be used in order to replace
respectively 0, 1 or more characters and one and only one character
(blanks have to be replaced by '?').

Missing parameters will be considered as'*' wild card.
Note the a 'query * * * * * *' will be rejected, as such a request

is not allowed in the DB.
Several queries (Maximum 6) may be asked in the same message. In this

case, the queries must be seperated by" ;" and the 'query' keyword
repeated for each new query. So "query smith ;query * john" is a valid
request.

The queries may be distributed in the subject field and the body. In
this case, the end of the subject field is supposed to be a query
separator.

In each case, a limited number of entries will be retrieved.

MED.help Sun Jan 15 19:35:04 1989 2

A syntax error will send this file.

The help file may also be obtained by filling the subject field with
the 'help' or 'info' keywords.

The syntax of the reply message is the following

<Request>

[<Error messages>]

<Name> <FirstName>
Div: <Division> Exp: <Experiment> Cern phone (ext): <CERN phone number>
Home Institue: <Institute> Phone: <Institute phone number>
E-Mail Address: <E-Mail Address>
Comment: <Comment>

Usual error messages are:
ERR 03 - No match for your query.
ERR 06 - Query returns too many entries.
ERR 11 - No valid query detected.

Comments may be sent to <bothner@priam.cern.ch>.

med.server Sun Jan 15 19:38:42 1989 1

#!/bin/sh

VERSION 2

CERN Name Server ###

Input (stdin) Message send to 'nameserver@vscstb.cern', ###
written according to EAN syntax or ###
syntax described in the $HELPFILE. This ###
message constitutes a query to the CERN ###
Name Server. The message is received on ###
the standard input file. ###
Result (mail message) : Message sent back to the sender. ###
This message is the answer of the server ###
to the query of the sender. ###

This shell uses an EMDIR modified program, written by ###
F. Hemmer, modified by myself and a specific message ###
analyser. The message analyser produces a file containing ###
the address of the sender, a diagnostic and a set of ###
queries in accordance to the EMDIR syntax. This ###
file is analysed by the shell to build the reply ###
message and appended to the log file. ###

More information in the MED.doc file. ###

Written by Bernard Heuse, CERN technical student, DD/CS/EN, SEPT 88 ###

DIR="/usera/heuse/nameserver"
cd $DIR

Adding paths and exporting them to child processes
PATH=".:$PATH:/bin:/usr/ucb:/usr/local/unix"
export PATH

Message Analyser, RPC caller, Display prg
ANALYSE=MED.msganalyser
RPCC=med
MEPPRG=MED.mep

Log and Help files
LOGFILE=MED.log
HELPFILE=MED.help

Temporary files : reply and message analyse results
REMSG=/tmp/MED.rep.$$
TEMP=/tmp/MED.mar.$$
TMPF=/tmp/MED.tmp.$$
ERRF=/tmp/MED.err.$$
MEPF=/tmp/MED.mep.$$
ERRFB=/tmp/MED.errb.$$
CHECK=/tmp/MED.check.$$
MAIL=/tmp/MED.mail.$$
ALLFILES=/tmp/MED.*.$$

msg sender (from) and errors-to
ADDFROM="CERN EmDir Name Server <nameserver@cernvax.cern.ch>"
ERRTO="<bothner@priam.cern.ch>"
NAMESERVER="<nameserver@cernvax.cern.ch>"

#Line of

med.server Sun Jan 15 19:38:42 1989 2

DASHES-"--"
BLANKS=""

#Exit codes
RETRY=75
ALLOK=00

#Server Ok
SEROK=00

Taking date
DATE='date "+%a, %d %h %y %T MET (GVA)'

Analysing message
$ANALYSE> $TEMP

If Reject => exit (pattern TR- means 'type : reject')
if grep -s ""TR-" $TEMP
then

cat $TEMP >> $LOGFILE
echo" Message rejected." >> $LOGFILE
echo" $DATE">> $LOGFILE
echo" ">> $LOGFILE
rm -f $ALLFILES
exit $ALLOK

fi

If Help file must be sent (pattern TH- means 'type : Help')
if grep -s ""TH-" $TEMP
then

fi

Building the reply message
SUBJECT="EmDir Help File."
#--- Syntax Error-----------------------
if (grep -s -i ""TH- [0-9)* *.*syntax" $TEMP)
then

fi

echo $BLANKS >> $REMSG
echo "ERR 11 - No valid request detected." >> $REMSG
echo $BLANKS >> $REMSG
echo $DASHES >> $REMSG

cat $HELPFILE >> $REMSG
LOGMSG="Help File sent."

Queries detected (pattern TQ- means 'type : query')
if grep -s ""TQ-" $TEMP
then

Building the reply message
SUBJECT="Query: EmDir Request Answer."
cat - << +++EOF+++ >> $REMSG

Query Syntax :
Query <Namel*> [<FirstNamel*> [<Division!*> [<Experimentl*>

[<Institutel*> [<E-Mail Addressl*>lllll

+++EOF+++
Extraction of the number of queries (Number following 'TQ- ')
NB='grep ""TQ-" $TEMP I sed -e "s/TQ- //" -e "s/ .*//"'
II=0

med.server Sun Jan 15 19:38:42 1989 3

fi

for each request
while (test "$NB" != "$II")

do
II='expr $II+ l'
HEAD="Q" $II"- "
Parameter extraction
PAR='grep ""$HEAD" $TEMP I sed "s/"$HEAD//"'
PART='grep ""$HEAD" $TEMP I sed "s/"$HEAD//" I tr \% * 1 tr \ \?'
echo "Query $PART">> $REMSG
echo $BLANKS >> $REMSG
EmDir call
$RPCC $PAR> $TMPF
if (test$? -ne 0) then SEROK=l fi
fgrep ERR< $TMPF > $ERRF
$MEPPRG < $TMPF > $MEPF
if grep -s ".*" $ERRF
then

cat $ERRF >> $REMSG
echo $BLANKS >> $REMSG

fi
cat $MEPF >> $REMSG
echo $DASHES >> $REMSG

done
LOGMSG="Query: Reply Message sent."

Find detected (pattern TF- means 'type : find')
if grep -s ""TF-" $TEMP
then

Building the reply message
SUBJECT="Find: EmDir Request Answer."
cat - << +++EOF+++ >> $REMSG

Find Syntax:
Find [<stringll*>]: [<string21*>]

where <stringl> is a name or a firstname,
<string2> is an expriment, a division or an institute.

+++EOF+++
Extraction of the number of find (Number following 'TF-')
NF='grep ""TF- " $TEMP I sed "s/TF- \ ([0-9) *\) . */\1/'"
IF=0
for each find
while (test "$NF" ! = "$IF")

do
IF='expr $IF+ l'
#Extraction of the nber the find request
HEADF="F$IF-"
Pl='grep ""$HEADF"
P2='grep ""$HEADF"
Q1="$Pl % $P2"
Q4="% $Pl% $P2";
NO="%%"

$TEMP 1 sed -e "s/"$HEADF["] * * / /" -e "s/:. *$//"
$TEMP 1 sed -e " s / A$ HEAD F [A :] * : / / "
Q2="$Pl % % $P2" Q3="$Pl % %
Q5="% $Pl % % $P2" ; Q6="% $Pl %

if (test "$Pl"="%") then Q4=$NO
if (test "$P2" = "%") then Q2=$NO
for each query du find

Q5=$NO
Q3=$NO

Q4=$NO
Q5=$NO

rm -f $ERRF
rm -f $MEPF
for PAR in "$Ql" "$Q2" "$Q3" "$Q4" "$Q5" "$Q6"

do
if (test "$PAR" ! = "$NO") then

EmDir call
$RPCC $PAR> $TMPF

%
%

-e "s/ *$//" '
$P2"
% $P2"

fi
Q6=$NO ;fi

'

med.server

fi
done

Sun Jan 15 19:38:42 1989

if (test$? -ne 0) then SEROK=l fi
fgrep ERR< $TMPF >> $ERRF
$MEPPRG < $TMPF >> $MEPF

4

FREQ='grep ""$HEADF" $TEMP I sed -e "s/"$HEADF //" 1 tr \% * 1 tr \ \?'
echo "Find $FREQ" >> $REMSG

fi

echo $BLANKS >> $REMSG
Extraction of the "No Match" ERR msg and only 1 ERR 06 msg if any
fgrep -v "ERR 03" < $ERRF I fgrep -v "ERR 06" > $ERRFB
fgrep "ERR 06" < $ERRF I sed -e "2,10 d" >> $ERRFB
if grep -s ".*" $ERRFB
then

cat $ERRFB >> $REMSG
echo $BLANKS >> $REMSG

fi
Si MEPF vide=> No Match
if grep -s ".*" $MEPF
then

cat $MEPF >> $REMSG
echo $DASHES >> $REMSG

else

fi
done

echo "ERR 03 - No match for your query" >> $REMSG
echo $BLANKS >> $REMSG
echo $DASHES >> $REMSG

LOGMSG="Find: Reply Message sent."

if (test $SEROK -ne 0)
then

cat $TEMP >> $LOGFILE
echo" Server not available. Will retry later." >> $LOGFILE
echo" $DATE">> $LOGFILE
echo" ">> $LOGFILE
rm -f $ALLFILES
exit $RETRY

else

To:

Taking the address.
ADD='grep ""AD-" $TEMP I sed -e "s/"AD- //" -e "s/"[\t]*//"'
Building the message
cat - << +++EOF+++ $REMSG > $MAIL

$ADD
From: $ADDFROM

$ERRTO
$SUBJECT
$DATE

Errors-to:
Subject:
Date:

$DASHES
Send a mail to $NAMESERVER with the keyword 'Help' as subject

to receive more information about this service and the syntax of the
EmDir Request Answer.

+++EOF+++
Sending the message
/usr/lib/sendmail -t -f "$ERRTO" < $MAIL

cat $MAIL
Completing log file
cat $TEMP >> $LOGFILE
echo" $LOGMSG" >> $LOGFILE
echo" $DATE ">> $LOGFILE

med.server Sun Jan 15 19:38:42 1989 5

echo" ">> $LOGFILE
Deleting temporary files
rm -f $ALLFILES
exit $ALLOK

fi

END OF FILE

med.c Sun Jan 15 18:50:31 1989 1

/* **
Produce a file with the following syntax :
('A' indicates the beginning of a ligne et <var> indique la valeur

de la variable var)

First line : A##<nb> where nb is the number of entries retrieved.
- For i = 1 to nb

A$#<i>
ANM- <name>
AFN- <firstname>
ACD- <cern division>
ACP- <cern phone>
ACE- <cern experiment>
AHI- <home institute>
AIP- <intitute phone>
AMA- <mail address>
ACT- <comment>

Return Code : 75 si serveur distant non-disponible, 0 sinon.

** */

#include <stdio.h>

#include <getadd.c>

/* RPC Authorization
#define USAGE
#define BIND FAILED

/* RPC Access */

an return codes*/
-9

1

/* Emdir errors definition */
#define EMDIR_BAD_QID 50000 /* Bad query id - should not happen
#define EMDIR NO MEM 50001 /* Host unable to malloc
#define EMDIR TOO MANY ROWS 50002 /* too many rows retrieved
#define EMDIR UKN RPC 50003 /* UNKOWN RPC - SHOULD NOT HAPPEN
#define EMDIR BAD PSW 50004 /* Bad password given for update
#define EMDIR BAD VER 50005 /* Emdir server and client have

/* Maximum 10000 rows will be returned */
#define MAX_QUERY_LIMIT 10000

#define ROW addresses.return rows.sequence

extern Addresses
char

addresses;
*name,*fname,*div,*exp,*inst,*maddr;

/* **
*** MAIN ***
**

*/
main(argc,argv)
int argc;
char *argv[];
{

int garc,arnu;

arnu=getarg(argc,argv);
if (arnu > 0)
{ garc=GetAddresses(name,fname,div,exp,inst,maddr,USAGE);

if (garc<=0) d rows();
else switch(garc) {

*/
*!
*/
*/
*/
*/

case 1 : fprintf(stdout,"ERR 20 - Cern Network Failure try again later ! \n");

med.c Sun Jan 15 18:50:31 1989 2

break
case 2 fprintf(stdout,"ERR 01 - No valid query was issued\n");

break;

else fprintf(stdout,"ERR 00 - No arguments given in command line\n");
if (garc==BIND_FAILED) exit(75);
exit (0);

/* Receive the arguments of the command line, set the query bits*/
getarg(argc,argv)
int argc;
char *argv[J;
{ static char nullstring[J={"\0"};

char *arg;
int rc,i;

name = fname = div exp= inst = maddr = nullstring;
rc = argc-1; /* rc > 0 if some arg given */
while (--argc > 0)
{ arg = argv[argc]

switch (argc) {
case 1: name = arg;

break;
case

case

case

case

case

d row(n)
int n;

2:

3:

4:

5:

6:

fname = arg;
break;
div = arg;
break;
exp = arg;
break;
inst = arg;
break;
maddr = arg;
break;

fprintf(stdout,"\n");
fprintf(stdout,"$#%d\n",n+l);
fprintf(stdout,"NM- %s\n",ROW[n] .name);
fprintf(stdout,"FN- %s\n",ROW[n] .first name);
fprintf(stdout,"CD- %s\n",ROW[n] .cern div);
fprintf(stdout,"CP- %s\n",ROW[n] .cern-tel);
fprintf(stdout,"CE- %s\n",ROW[n] .exp);
fprintf(stdout,"HI- %s\n",ROW[n] .inst mnemo);
fprintf(stdout,"IP- %s\n",ROW[n] .inst-tel);
fprintf(stdout,"MA- %s\n",ROW[n] .mint=addr);
fprintf(stdout,"CT- %s\n",ROW[n] .comments);

d_rows ()
{ inti;

Cardinal count;

if (addresses.status) d_error(addresses.status);
if ((addresses. status==0) 11

(addresses. status==l) 1 1
(addresses.status== EMDIR_TOO_MANY_ROWS)) /* status ok */

med.c Sun Jan 15 18:50:31 1989 3

{ if (addresses.status == EMDIR TOO MANY_ROWS)
count = MAX_QUERY_LIMIT; /* request too long*/

else count = addresses.return rows.length;
if (count > 0) { fprintf(stdout,"##%d entries-retrieved.\n",count);

for(i=0;i<=count-l;i++) d_row(i);

else fprintf(stdout, "ERR 03 - No match for your query.\n");

d error(e no)
int e_no;-
{

switch (e_no)
case 0:

return; /*OK*/
case 1:

return; /*OK*/
case EMDIR_BAD_QID:

fprintf(stdout,"ERR 04 - Incorrect query_id, contact system manager\n");
break;

case EMDIR NO MEM:
fprintf(stdout,"ERR 05 - Insufficient memory on host side, contact system mana,
break;

case EMDIR TOO MANY ROWS:
fprintf(stdout,"ERR 06 - Query returns too many entries. Issue a more restrict
break;

case EMDIR UKN RPC:
fprintf(stdout,"ERR 07 - Unknown remote procedure, contact system manager\n");
break;

case EMDIR BAD PSW:
fprintf(stdout,"ERR 08 - Incorrect password\n");
break;

case EMDIR BAD VER:
fprintf(stdout,"ERR 09 - Obsolete Emdir version, contact system manager\n");

default:
if (e_no < 0) fprintf (stdout, "ERR 10 - Oracle error %d on host, contact system ma:
else fprintf(stdout,"ERR 11 - Unknown error %d, contact system manager\n",e_no);

getadd.c Mon Jan 16 14:30:37 1989 1

include <stdio.h>
include <ctype.h>
include <time.h>
include

include

<pwd.h>

"emdir.h"

/* To get unix username */

/* Courier typedefs */

/* Connection Parameters */
#define MACHINE
#define TCP PORT
#define BIND FAILURE

"vxcrna"
2152

-1

/* Authorization Parameters */
/* Defined usage*/
#define USAGE NAMESERVER 9
#define USAGE-AUTOROUTE 8
/* current version, release and fix */
#define VERSION 1
#define RELEASE 1
#define FIX LEVEL 2
#define RPC SYSTEM 3
#define AUTH ID 0

/* Return Codes*/
#define QUERY NOUSER -1
#define QUERY-OK 0
#define BIND FAIL 1
#define QUERY_FULL 2

/* Oracle Specific */
#define ORAWCHAR '%'

static Addresses addresses;

/* Usage specifies the origin of the query for the Authorization
/* Full queries are rejected

GetAddresses(name,fname,div,exp,inst,add,usage)
char *name,*fname,*div,*exp,*inst,*add;
int usage;
(int qid,rc;

Query row qrow;
Authorization auth;
rc=GA_CptQid(name,fname,div,exp,inst,add,&qrow,&qid);
if (((usage<0) 11 (rc==QUERY_OK)) && (rc!=QUERY_FULL))

(GA_FillAuth(&auth,usage);
if ((BindemdirToMachine(MACHINE,TCP_PORT)) != BIND_FAILURE)

(addresses = get address(auth,qid,qrow);
Unbindemdir () ; -

else rc BIND FAIL

return(rc);

char *GA_toora(st)
/* '*'=>'%' and '?'=>' ' */
/* strip redundant wildchar */
char *st;
(char *i,*cc,*sw;

for(i=st;*i;i++) if (*i=='*') *i='%';
for(i=st;*i;i++) if (*i=='?') *i=' ';
for(i=cc=sw=st;*i;)

if ((*i!='%')&&(*i!=' ')) *cc++= *i++

*/
*/

getadd.c Mon Jan 16 14:30:37 1989 2

else if (*i=='%') *cc++= *i++;
for(;((*i=='%')11(*i==' '));i++);

else { sw =cc; *cc++= *i++;
for (; *i==' '; *cc++ = *i++);
if (*i=='%') cc=sw;

*cc='\0';
return(st);

char *GA toup(st)
/* to lo;er string*/
char *st;
{ char *i;

for(i=st;*i;i++) *i
return (st);

toupper(*i);

GA_CptQid(name,firstname,div,exp,inst,maddr,qrow,qid)
char *name,*firstname,*div,*exp,*inst,*maddr;
Query row *qrow;
int *qid;
/*

*/

Compute the query id and set qrow

rc = if ((name = '*') and (fname = '*'}) QUERY_NOUSER
else if ((name = '*') and (fname = '*') and (div='*")

and (exp='*') and (inst = '*') and (maddr = '*'))
QUERY_FULL

else if "Invalid Usage" AUTH DENIED
else QUERY_OK

static struct {

unsigned name : 1;
unsigned first name : 1;
unsigned cern div : 1;
unsigned exp : 1;
unsigned inst mnemo : 1;
unsigned mint -
qbit = { o, 0,

int len,rc;

*qid = 0;
qrow->name
qrow->first name
qrow->cern_div
qrow->exp
qrow->inst mnemo
qrow->mint-addr

addr : 1;
0, 0, 0, 0 } ;

name;
firstname;
div;
exp;
inst;
maddr;

/* set appropriate bits*/
GA_toora(GA_toup(qrow->name));
if ({len = strlen{qrow->name)) > 0)
if {len > 1) qbit.name = 1;

}

else if (*qrow->name == ORAWCHAR) qbit.name O;
else qbit.name = 1;

GA toora{GA toup{qrow->first name));
if-((len = strlen(qrow->first_name)) > 0)

getadd.c Mon Jan 16 14:30:37 1989 3

if (len > 1) qbit.first_name = 1;
else if (*qrow->first_name == ORAWCHAR) qbit.first_name 0;
else qbit.first_name = 1;

)

GA toora(GA toup(qrow->cern div));
if-((len = strlen(qrow->cern_div)) > 0) {
if (len > 1) qbit.cern_div = 1;
else if (*qrow->cern_div == ORAWCHAR) qbit.cern_div 0;
else qbit.cern_div = 1;

)

GA_toora(GA_toup(qrow->exp));
if ((len = strlen(qrow->exp)) > 0) {
if (len > 1) qbit.exp = 1;

)

else if (*qrow->exp == ORAWCHAR) qbit.exp 0;
else qbit.exp = 1;

GA toora(GA toup(qrow->inst mnemo));
if-((len = strlen(qrow->inst mnemo)) > 0) {
if (len > 1) qbit.inst_mnemo = 1;
else if (*qrow->inst_mnemo == ORAWCHAR) qbit.inst_mnemo 0;
else qbit.inst_mnemo = 1;

)

GA toora(qrow->mint addr);
if-((len = strlen(qrow->mint_addr)) > 0) {
if (len > 1) qbit.mint_addr = 1;
else if (*qrow->mint_addr == ORAWCHAR) qbit.mint addr 0;
else qbit.mint_addr = 1;

)

if ((qbit.name==0) && (qbit.first_name==0)) rc
else rc = QUERY_OK

*qid (qbit.mint_addr +
(qbit.inst_mnemo << 1) +
(qbit.exp << 2) +
(qbit.cern div<< 3) +
(qbit.first_name << 4) +
(qbit. name << 5)
& 0x0000003F;

if (*qid==0) rc = QUERY_FULL;

QUERY_NOUSER

if (*qid==0) { *qid = 32 ; strcpy(qrow->name, "%%");

return (rc);

GA FillAuth(auth,usage)
Authorization *auth;
int usage;
{

struct passwd *getpwuid();
struct passwd *pd;
struct tm *timestr;
char loc_userid[256];
char loc_station[l00];
char loc_date[l0];
char loc time[l0];
int btime;
static char *months[12] {"Jan", "Feb", "Mar",

"Apr", "May", "Jun",
"Jul", "Aug", "Sep",
"Oct", "Nov", "Dec"};

getadd.c Mon Jan 16 14:30:37 1989

strcpy(loc_userid,"");
pd = getpwuid(getuid());

4

sprintf(loc userid,"%s",pd->pw name);
if (strlen(loc_userid)==O) sprintf(loc_userid,"%s","Unkown");

time (&btime);
timestr = localtime(&btime);
sprintf(loc_date,"%d-%s-%d",timestr->tm_mday,

months[timestr->tm_mon),
timestr->tm year);

sprintf(loc time,"%d:%d:%d",timestr->tm-hour,
- timestr->trrCmin,

timestr->tm_sec);

gethostname(loc_station,100);

auth->emdir version
auth->emdir release
auth->emdir fix level
auth->rpc_system
auth->auth id
auth->date
auth->time
auth->userid
auth->station
auth->operation

VERSION;
RELEASE;
FIX_LEVEL;
RPC_SYSTEM;
AUTH_ID;
loc date;
loc=time;
loc_userid;
loc_station;
abs(usage);

MED.msganalyser.lex Sun Jan 15 19:09:45 1989 1

% {
/* Written by Bernard Heuse, CERN technical student, DD/CS/EN, SEPT 88 */

/* This LEX program is designed to analyse a E-Mail message (written
following the RFC 822 standard) received by the CERN Name Server.
It extracts the E-Mail address of the sender, and the request
according to the syntax described in the MED.help file. It
produces a file with the following informations (one per line):
- Address of the sender (1 line);

Syntax: 'AD- <address>'.
- address is the address of the sender.

- Request type or reject diagnostic (1 line);
Syntax : 'T<c>- <n> <diag>'

- c = 'Q' for query request => n = number of queries
diag = 'Query'

- c = 'F' for find request => n = number of finds
diag = 'Find'

- C = 'H' => n = 0
diag = 'Syntax Error' if syntax error; 'Help' if help file asked.

- C = 'R' => n = 0
diag = 'rejected on address' if addresses on 'the black list'

are detected, if no address field is detected, or if no
address is specified, or 'rejected on subject' if returned mail
or rejected mail are detected in the subject field.

- Valid Find Requests Detected (n lines if c = 'F', 0 else).
Syntax : 'F<j>- <param1>:<param2>'

- j = 1 ton where f = number of find accepted.
- paraml and param2 are the parameters of the find detected.

- Valid Query Requests Detected (n lines if c = 'Q', 0 else).
Syntax : 'Q<i>- <param>'

- i = 1 ton where n = number of queries accepted.
- param is the parameter string for Emdir.

* It reads the message on the standard input file, and write the file on
the standard output file.

*/
% }

%START BEG HDR BODY
%START ADDR ADDRNEXT SUBJ
%START HEMDIR HEANl HEAN2 HEAN3
%START BEMDIR BEANl BEAN2 BEAN3

% {

define bool int
define TRUE 1
define FALSE 0

define MaxReq 9 /* Max Nber
define MaxFind 2 /* Max Nber

of query requests accepted */
of find requests accepted */

define MaxPar 6 /* Max number of param for a query request

define AdrLen 200 /* Max Lgth of an E-Mail address */
define ReqLen 500 /* Max Lgth of a request */

de fine WCHAR "%" /* Oracle Wild Card */
define WJOKER Il Il /* Oracle Wild Card */

/* Addr Field Priorities (highest is winner ; <= 0 is rejected)
#define p SENDER 10
#define PRESENT SENDER 9
#define P FROM 8
#define p RESENT FROM 7

*/

*/

MED.msganalyser.lex Sun Jan 15 19:09:45 1989 2

#define P REPLY TO 6
#define PRESENT REPLY TO 5

/* NB: - Unput('\n') is used to reject the CR/LF and allow next
pattern matching to detect field header beginning always
at a new line, possibly with blanks and tabs before
- If a Help or Info request is detected, no query are accepted.
- Priority is given among the possible resent field.
- Several subject fields may occur.
- Only one syntax per message is accepted (either EAN, either EMDIR)
- Syntax EmDir :
In the body or the subject, a (new) query is detected when the
KeyWord "query" with blanks or tabs or NL before and after
are matched. The following words are considered as being
parameters until a EOF or a" ;" or a new header mail field is
detected. The parameters exceeding the MaxPar first ones and the words
following a" ;"are ignored, except if a new query is detected.
Several queries may occur in a file, in the header, in the body
or both. The strings preceeding a 'query' are ignored.
Queries without any parameters or with only wild card are
rejected.
Syntax: query <parl> [<par2 .. 6>] ; query <parl> [<par2 .. 6>]
- Syntax EAN :
In the body or the subject, a Find is detected when the
KeyWord "find" with blanks or tabs or NL before and after
are matched. Several queries may be seperated by a" ;".
The strings preceeding a 'find' are ignored. Only the
last string before the':' and the first string after the'·'
are considered. The others are ignored. Only one 'find'
per message is necessary. Several queries may occur in a file,
in the header, in the body or both. All string are optional,
missing strings are considered as being wild card.
Queries with only wild card are rejected.
Syntax: "find" [<strl>J":"[<str2>] ; [[<strl>J":"[<str2>JJ

*/
% }

int reqtype;

int syntype;
char addresse[AdrLen];
char strl [ReqLen];
char str2 [ReqLen] ;
int nfind;
int nreq;
char * req [MaxReq+ 1] ;
char *find[MaxFind+l];
int state;
bool helpreq;
bool reject;

%%
int prior;
int fieldprior;
int percentq;
int parent;
int i;
char *ireq;
extern int nfind;
extern int nreq;
extern char *req[];
extern char addresse[J;
extern int reqtype;
extern int syntype;

/* 0=SynError, l=Help, 2=Query, (request type)
3=Find, 5=Reject on addr, 6=Rej on subj */

/* 0=?, l=EmDir, 2=Ean (syntax type) */
/* E-Mail Address */
/* Strl syntax Find EAN */
/* Str2 syntax Find EAN */
/* Nber of find */
/* Nber of queries */
/* Query Request storage Array */
/* Find Request storage Array */
/* l=BEANl or BEAN2, 3=BEAN, 0=? */
/* True help request */
/*True= message rejected */

/* Current Address Priority */
/* Field Address Priority */
/* All WCHAR in query => 0 */
/* Parameter Counter */

MED.msganalyser.lex Sun Jan 15 19:09:45 1989

extern char strl [];
extern char str2 [];
extern int state;
extern bool helpreq;
extern bool reject;

nfind=nreq=fieldprior=prior=state=reqtype=syntype=0;
addresse[0]=strl[0]=str2[0]='\0';
helpreq=reject=FALSE;

BEGIN BEG;

% {

3

/* **
*** BEG beginning of message ***
**

*/
%}
% {
/* Skipping first white lines, rejecting first character detected

on the first non-white line and a CR/LF.
Beginning the header message analyse.

*/
% }
<BEG>"[\t]*\n
<BEG>.

% {

unput(yytext[0]);
unput (' \n') ;
BEGIN HDR;

/* **
*** HDR header analysis ***
**

*/
% }
% {
/* Detecting Address fields to send back the message.

*/
% }

Assigning a priority (the higest is preferred).
Beginning address data field reading.

<HDR>"[\t]*[fF] [rR] [oO] [mM]":" fieldprior=P_FROM;
BEGIN ADDR;

)

<HDR>" [\t] * [SS] [eE] [nN] [dD] [eE] [rR]":" {
fieldprior=P_SENDER;
BEGIN ADDR;

}

<HDR>" [\t] * [rR] [eE] [sS] [eE] [nN] [tT] "-" [sSJ [eE] [nE] [dD] [eE] [rR]":"
fieldprior=P_RESENT_SENDER;
BEGIN ADDR;

)

<HDR>" [\t] * [rR] [eE] [pP] [lL] [yY] "-" [tT] [oO] ": Il

fieldprior=P_REPLY_TO;
BEGIN ADDR;

)

<HDR>" [\t] * [rR] [eEJ [sS] [eE] [nN] [tT] "-" [fF] [rR] [oO] [mM] ":"
fieldprior=P_RESENT_FROM;
BEGIN ADDR;

)

<HDR>" [\t] * [rR] [eE] [sS] [eE] [nN] [tT] "-" [rR] [eE] [pP] [lL] [yY] "-" [tT] [oO]":"
fieldprior=P_RESENT_REPLY_TO;
BEGIN ADDR;

MED.msganalyser.lex Sun Jan 15 19:09:45 1989

% {
/* Detecting Subject field where a request could be.

Starting analyse of the data part of the field.
*/
% }
<HDR>" [\t] * [sS] [uU] [bB] [jJJ [eE] [cC] [tT]":" {

BEGIN SUBJ;

% {
/* Detecting End of Header (A blank line after the header)

4

If a 'Find' as been detected, syntype=2, and we must
immediately begin the EAN syntax analyse, because the find
may be the only word in the subject, and the request being
in the body. For the Emdir syntax, the end of the subject
field is considered as a separator just like the' ;' and
the 'query' keyword (mandatory for each new Emdir request)
will be detected during the body parsing.

*/
% }
<HDR>\n[\t]*\n

% {

unput('\n');
if (syntype==2) BEGIN BEANl;

else BEGIN BODY;

/* Skipping other characters and CR/LF.
*/
% }
<HDR>.
<HDR>\n

% {
/* **

*** ADDR ADDRNEXT address field analysis ***
**

*/
%}
% {
/* If the address field priority is higher than the current one,

copying the first line of the address in the 'addresse' variable.
Beginning the next lines address data field reading.

*/
% }
<ADDR>.*

<ADDR>\n

% {

{ if (fieldprior>prior)
strcpy(addresse,yytext);
prior=fieldprior;
fieldprior=0;
BEGIN ADDRNEXT;

else BEGIN HDR;

if (fieldprior>prior)
strcpy (addresse, "");
prior=fieldprior;
fieldprior=0;
BEGIN ADDRNEXT;

else BEGIN HDR;
unput (' \n');

/* Adding the next lines of the address field to the 'addresse' variable.
*/

MED.msganalyser.lex

% }
<ADDRNEXT>.*

% {

Sun Jan 15 19:09:45 1989

strcat(addresse,yytext);

/* Detecting Non Address field end. Skipping.
*/
% }
<ADDRNEXT>\n[" "\t] unput (' ') ;

% {
/* Else
*/

Address field end. Returning to header analysis.

% }
<ADDRNEXT>\n

%{

unput (' \n');
BEGIN HDR;

5

/* **
*** SUBJ subject field analysis ***
**

*/
% }

% {
/* Skipping 'tell' and 'erndir' patterns.
*/
% }
<SUBJ> [\t] * [tT] [eE] [lL] [lL] [\t\n]
<SUBJ>[\t]*[eE] [rnM] [dD) [iI] [rR] [\t\n]

% {

if (yytext[yyleng-1)=='\n')
unput (' \n') ;

/* Detecting 'query' pattern. If the EAN syntax has not been first detected,
and if we can accept any more requests, initilization of the reading
of the pararneters. Request type is query. Starting Erndir request
analyse.

*/
% }
<SUBJ>[\t]*[qQ] [uU] [eE] [rR] [yY] [\t\n]

% {

if (syntype!=2) {
syntype=l;
if (nreq<MaxReq)

ireq=(char*)rnalloc(ReqLen);
reqtype=2;
parcnt=0;
percentq=0;
if (ireq!=NULL)

} } }

nreq++;
req[nreq]=ireq;
strcpy(req[nreq],'\0');
BEGIN HEMDIR;
unput(yytext[yyleng-1));

/* Detecting 'help' or 'info' patterns. Setting the help flag.
*/
%}
<SUBJ> [\t] * [hH] [eE] [lL] [pP) [\t \n]
<SUBJ> [\t] * [iIJ [nN] [fF] [oO] [\t \n] helpreq=TRUE;

%{
/* Detecting 'find' pattern. If the ErnDir syntax has not been first detected,

initilization of the reading of the pararneters. Request type is find.
Starting the EAN syntax analyse.

MED.msganalyser.lex Sun Jan 15 19:09:45 1989

*!
%}
<SUBJ>[\t]*[fF] [iI] [nN] [d.D] [\t\n] if (syntype ! =1)

syntype=2;
reqtype=3;

6

strcpy(strl, "");
strcpy(str2, "");
unput(yytext[yyleng-1]);
BEGIN HEANl;

%{
/* If 'returned mail' or 'rejected mail' is detected, rejecting the request.

Setting the reject flag.
*/
% }
<SUBJ> [rR] [eE] [a-zA-Z] * [eE] (d.D] [\t"\n '"'\n\t"] * [mM] [aA] [iI] [lL]

reject = TRUE;

% {
/* Skipping other characters.
*/
%}
<SUBJ>.
% {
/* Detecting Non Address field end. Skipping.
*/
% }
<SUBJ>\n[" "\t] unput (' ');

%{
/* Else
*/
% }
<SUBJ>\n

% (

Address field end. Returning to header analysis.

unput (' \n');
BEGIN HDR;

/* **
*** HEMDIR Emdir syntax analysis ***
**

*/
% }

%{
/* Skipping blanks.
*/
% }
<HEMDIR>[\t]*
% {
/* Detecting strings, adding them to the parameter string, after

conversion of the wild card char, going back to 'subject' if more
than 'MaxPar' are parameters detected. Rejecting request with all
wild card char.

*/
% }

As the keyword 'query' is mandatory to start an Emdir request,
it will be detected in 'subject' and 'subject will initiate the
next parameter analysis.

<HEMDIR>(A \t\n]* WCDEANTOORA(yytext);
strcat(req[nreq],yytext);
strcat (req[nreq]," ");
parent++;

MED.msganalyser.lex Sun Jan 15 19:09:45 1989 7

if (strcmp(WCHAR,yytext) !=0) percentq++;
if (strcmp("*",yytext) !=0) percentq++;
if (parcnt>=MaxPar) { if (percentq==0)

{ free(req[nreq]);
nreq--;

BEGIN SUBJ;

% {
/* Detecting end of query request. Rejecting request with only

wild card char or with no parameter.
As the keyword 'query' is mandatory to start an Emdir request,
it will be detected in 'subject' and 'subject will initiate the
next parameter analysis.

*/
% }
<HEMDIR>[\t]*[;] { if ((parcnt==0) 1 1 (percentq==0))

{ free(req[nreq]);
nreq--;

BEGIN SUBJ;

% {
/* Detecting Non Subject field end. Skipping.
*/
% }
<HEMDIR>\n[\t] unput (' ');

% {
/* Else Subject field end. Returning to header analysis.
*/
%}
<HEMDIR>\n if ((parcnt==0) 11 (percentq==0)) nreq-

unput (' \n') ;
BEGIN HDR;

% {
/* **

*** HEANl 2 3 EAN syntax analysis
*** 1 picks the first string
*** 2 the second one
*** 3 detects end of request

**
*/
% }
%{
/* Skipping blanks.
*/
%}
<HEANl>[\t]*
% {
/* Detecting string 1, only the last one before the':' is considered.

*/
% }

The others are skipped. Conversion of the wild card.

<HEANl>[A \t\n:]* strcpy(strl,yytext);
WCDEANTOORA(strl);

% {
/* '·' detected, scanning string 2.
*/
%}

MED.msganalyser.lex

<HEANl> [:]

%{

Sun Jan 15 19:09:45 1989

BEGIN HEAN2;

/* Detecting end of find request. No string 2 => WCHAR.

*/
%}

Building the request if string 1 non-empty.
Back to detection of string 1

<HEANl>[\t]*[;] strcpy(str2,WCHAR);

8

if (strcmp(strl,"") !=0) BuildReq();
BEGIN HEANl;

% {
/* End of subject field detected => end of find request.

No string 2 => WCHAR.
Building the request if string 1 non-empty.
Back to Header analysis.

*/
%}
<HEANl>\n

% {

strcpy(str2,WCHAR);
if (strcmp(strl, '"') !=0) BuildReq();
unput (' \n');
BEGIN HDR;

/* Non end of subject field detected
*/

skipping.

% }
<HEANl>\n[\t]

%{
/* Skipping blanks.
*/
% }
<HEAN2>[\t]*
% {

unput (' ');

/* Detecting string 2, only the first one after the':' is considered.

*/
%}

The others are skipped. Conversion of the wild card.
If no string 1 => string 1 = Wchar. Building the request.
Beginning HEAN3 to skip until end of request detected.

<HEAN2>(A \t\n:]* strcpy(str2,yytext);
WCDEANTOORA(str2);

%{

if (strcmp(strl,"")==0) strcpy(strl,WCHAR);
BuildReq () ;
BEGIN HEAN3;

/* Detecting end of find request. No string 2 => WCHAR.

*/
%}

Building the request if string 1 non-empty.
Back to detection of string 1

<HEAN2>[\t]*(;] strcpy(str2,WCHAR);

%{

if (strcmp(strl, '"') !=0) BuildReq();
BEGIN HEANl;

/* End of subject field detected => end of find request.
No string 2 => WCHAR.
Building the request if string 1 non-empty.
Back to Header analysis.

MED.msganalyser.lex

*/
%)
<HEAN2>\n

Sun Jan 15 19:09:45 1989 9

strcpy(str2,WCHAR);
if (strcmp(strl,"")!=0) BuildReq();
unput (' \n');
BEGIN HDR;

%{
/* Non end of subject field detected
*/

skipping.

%}
<HEAN2>\n[\t]

% {
/* Skipping other caracters.
*/
%)
<HEAN3>.
%{

unput (' ') ;

/* End of request detected, back to detection of string 1.
*/
%)
<HEAN3>[\t]*[;] BEGIN HEANl;

% {
/* End of subject field detected
*/

back to header analysis.

%)
<HEAN3>\n

% {

unput('\n');
BEGIN HDR;

/* Non end of subject field detected
*/

skipping.

%)
<HEAN3>\n[\t] unput (' ');

% {
/* **

*** The following is the body analysis, similar to the ***
*** subject analysis except that BEGIN intructions are ***
*** directed elsewhere, and that no end of fields has to ***
*** be detected. ***
**

*/
%)
% {
/* **

*** BODY body analysis ***
**

*/
%)
<BODY>.
<BODY>\n
<BODY>[\t]*[tT] [eE] [lL] [lL] [\t\n]
<BODY>[\t] * [eE] [mM] [dD) [iI] [rR] [\t\n]
<BODY>[\t]*[qQ] [uU] [eE] [rR] [yY] [\t\n] if (syntype!=2)

syntype=l;
if (nreq<MaxReq)

ireq=(char*)malloc(ReqLen);
reqtype=2;
parcnt=0;

MED.msganalyser.lex Sun Jan 15 19:09:45 1989 10

percentq=0;
if (ireq!=NULL)

} } }

nreq++;
req[nreq]=ireq;
strcpy(req[nreq],'\0');
BEGIN BEMDIR;
unput(yytext[yyleng-1));

<BODY>[\t]*[iI] [nN] [fF] [oO] [\t\n]
<BODY>[\t]*[hH] [eE] [lL] [pP] [\t\n] helpreq=TRUE;

<BODY>[\t]*[fF] [iI] [nN] [dD) [\t\n] if (syntype ! =l)

% {

syntype=2;
reqtype=3;
strcpy(strl, "");
strcpy (str2, "");
unput(yytext[yyleng-1));
BEGIN BEANl;

/* **
*** BEMDIR emdir syntax analysis ***
**

*/
%}
<BEMDIR>\n
<BEMDIR>[\t]*
<BEMDIR>[\t)*[;)

<BEMDIR>(A \t\n]*

%{

if ((parcnt==0) 11 (percentq==0))
{ free(req[nreq]);

nreq--;

BEGIN BODY;

WCDEANTOORA(yytext);
strcat(req[nreq],yytext);
strcat(req[nreq]," ");
parent++;
if (strcmp(WCHAR,yytext) !=0) percentq++;
if (parcnt>=MaxPar) { if (percentq==0)

{ free(req[nreq]);
nreq--;

BEGIN BODY;

/* **
*** BEANl 2 3 EAN syntax analysis
*** 1 picks the first string
*** 2 the second one
*** 3 detects end of request
*** state is the last state when an EOF was detected

**
*/
% }
<BEANl>\n

<BEANl> [\t] *

<BEANl>[A \t\n:]*

state=l;

state=l;

state=l;

MED.msganalyser.lex

<BEANl> [:]

<BEANl>[\t\n]*[;]

<BEAN2>\n

<BEAN2> [\t] *

<BEAN2>[A \t\n:]*

<BEAN2>[\t\n]*[;]

<BEAN3>.

<BEAN3>[\t\n]*[;]

<BEAN3>\n

%%

yywrap ()
{extern int nfind;
extern int nreq;
extern char *req [];
extern char addresse[];
extern int reqtype;
extern int state;
extern char strl [] ;
extern char str2[];
int i;
char ad [AdrLen];

Sun Jan 15 19:09:45 1989

strcpy(strl,yytext);
WCDEANTOORA(strl);

state=l;
BEGIN BEAN2;

state=l;
strcpy(str2,WCHAR);

11

if (strcmp(strl,"")==0) strcpy(strl,WCHAR);
BuildReq();
BEGIN BEANl;

state=l;

state=l;

strcpy(str2,yytext);
WCDEANTOORA(str2);
if (strcmp (strl, '"') ==0) strcpy (strl, WCHAR);
BuildReq();
BEGIN BEAN3;
state=3;

strcpy(str2,WCHAR);
if (strcmp(strl,"")==0) strcpy(strl,WCHAR);
BuildReq () ;
BEGIN BEANl;
state=l;

state=3;

BEGIN BEANl;
state=l;

state=3;

/* If we left in state 1, this means that no end of request has been
detected before EOF in find, so the request has not been build and this
has to be done. No string 2 detected.

*/
if (state==l) {

strcpy(str2,WCHAR);
if (strcmp (strl, "") !=0) BuildReq();
}

if (helpreq) reqtype=l;

MED.msganalyser.lex

/* Address to reject */
strcpy(ad,addresse);
STRTOLOCASE(ad);

Sun Jan 15 19:09:45 1989

if (STRMATCH(ad,"daemon")) reqtype=S ;
if (STRMATCH(ad,"uucp@")) reqtype=S;
if (STRMATCH(ad,"mailer")) reqtype=S ;
if (STRMATCH(ad,"listserv")) reqtype=S
if (STRMATCH(ad,"kermsrv")) reqtype=S
if (strcmp(ad,'"')==0) reqtype=S;

if (reject) reqtype=6;

/* Writing the address */
printf("AD- %s\n",addresse);

/* Writing the request type or error diagnostic*/

12

if ((reqtype==2) && (nreq!=0)) printf("TQ- %d Query \n",nreq);

)

else if ((reqtype==3) && (nfind!=0)) printf("TF- %d Find \n",nfind);
else if (reqtype==S) { nreq=0; printf("TR- %d Rejected on address \n",nreq);)
else if (reqtype==6) { nreq=0; printf("TR- %d Rejected on subject \n",nreq) ;}
else if (reqtype==l) { nreq=0; printf ("TH- %d Help \n", nreq) ;)
else { nreq=0; printf("TH- %d Syntax Error \n",nreq) ;);

/* Writing the find requests */
for (i=l;i<=nfind;i++) printf("F%d- %s\n",i,find(i]);

/* Writing the query requests */
for (i=l;i<=nreq;i++) printf("Q%d- %s\n",i,req[i]);

/* LEX return code*/
return(l);

WCDEANTOORA(st)
/* '*'=>'%' and '?'=>' ' */
/* strip redundant wildchar */
char *st;
{ char *i,*cc,*sw;

for(i=st;*i;i++) if (*i=='*') *i='%';
for(i=st;*i;i++) if (*i=='?') *i=' ';
for(i=cc=sw=st;*i;)

if ((*i!='%')&&(*i!=' ')) *cc++= *i++
else if (*i==' %') { *cc++ = *i++ ;

for (; ((* i == ' % ') 1 1 (* i ==' ')) ; i + +) ;

else { sw =cc; *cc++= *i++;
for(;*i==' ';*cc++= *i++);
if (*i=='%') cc=sw;

*cc='\0';

STRMATCH(ls,ss)
/* Check if string 'ss' is a part of 'ls' */

char ls(];
char ss(];
{ int i,j;

int itel,ite2;
int ok;

itel=strlen(ls)-strlen(ss);
ite2=strlen(ss)-1;
for (i=0;i<=itel;i++)

MED.msganalyser.lex Sun Jan 15 19:09:45 1989 13

ok=TRUE;
for (j=0; j<=ite2; j++) if (1s [i+j] !=ss [j]) {ok=FALSE;break;}
if (ok==TRUE) return(TRUE);

return(FALSE);

STRTOLOCASE(s)
/* Convert a string to lowercase */

chars(];
{ inti;

for (i=0;i<=strlen(s)-l;i++) s[i)=tolower(s[i]);

BuildReq()
{extern int nfind;
extern char strl(];
extern char str2[];
char *ireq;

}

if (nfind>=MaxFind) return;
if ((strcmp(strl,WCHAR)==0) && (strcmp(str2,WCHAR)==0)) return;
ireq=(char*)malloc(ReqLen);
nfind++;
if (ireq!=NULL) find[nfind]=sprintf(ireq,"%s:%s",strl,str2);
strcpy (strl, '"'); strcpy (str2, "");

MED.mep.lex Tue Jan 17 15:47:49 1989 1

%START BEG NBER NO NAME FNAME DIV PHONE EXP INST INSTPH MAIL CMT END

%{
/* **

Met en page les donnees contenues dans le fichier produit par MED.emdir.
**

*/
% }

%{
define MAXENTRIES
define MAXSTR
%}

int nber;
int nent;
int no

char name[MAXSTR];

20 /* Max Number of Entries Mise En Page*/
100 /* Max Lgth of a string*/

/* Nber of records*/
/* Number of Entries Mise En Page*/
/* Current record number */

char firstname[MAXSTR];
char cdiv[MAXSTR];
char cphone[MAXSTR);
char cexp[MAXSTRJ;
char inst[MAXSTR];
char iphone[MAXSTR];
char mail[MAXSTR];
char comment[MAXSTRJ;

%%

extern int nber;
extern int no

extern char name [MAXSTR] ;
extern char firstname[MAXSTR];
extern char cdiv [MAXSTR];
extern char cphone [MAXSTR] ;
extern char cexp [MAXSTR];
extern char inst[MAXSTR];
extern char iphone[MAXSTR);
extern char mail [MAXSTR] ;
extern char comment[MAXSTR];

nber=no=nent=0;
name[0J=firstname[0J=cdiv[0J=cphone[0J=cexp[0J='\0';
inst[0J=iphone[0J=mail[0J=comment[0J='\0';

BEGIN BEG;

""ERR".*

<BEG>.
<BEG>\n
<BEG>##

<NBER>[0123456789]
<NBER>.
<NBER>\n
<NBER>$#

<NO>[0123456789]
<NO>.
<NO>\n
<NO>"NM-"

BEGIN NBER; }

nber=nber*l0+(yytext(0]-'0');}

BEGIN NO; }

no=no*l0+(yytext[0J-'0');}

BEGIN NAME; }

MED.mep.lex

<NAME>.
<NAME>\n
<NAME>"FN-"

<FNAME>.
<FNAME>\n
<FNAME>"CD-"

<DIV>.
<DIV>\n
<DIV>"CP-"

<PHONE>.
<PHONE>\n
<PHONE>"CE-"

<EXP>.
<EXP>\n
<EXP>"HI-"

<INST>.
<INST>\n
<INST>"IP-"

<INSTPH>.
<INSTPH>\n
<INSTPH>"MA-"

<MAIL>.
<MAIL>\n
<MAIL>"CT-"

<CMT>.
<CMT>\n
<CMT>$#

Tue Jan 17 15:47:49 1989

strcat(name,yytext);)

BEGIN FNAME;)

strcat(firstname,yytext);

BEGIN DIV;)

strcat(cdiv,yytext);

BEGIN PHONE;)

strcat(cphone,yytext);

BEGIN EXP;)

strcat(cexp,yytext);

BEGIN INST;)

strcat(inst,yytext);

BEGIN INSTPH;)

strcat(iphone,yytext);

BEGIN MAIL;)

strcat(mail,yytext);

BEGIN CMT;)

strcat(comment,yytext);

mep ();

2

if (nent < MAXENTRIES) BEGIN NO;
else BEGIN END;

<END>.
<END>\n

%%

yywrap ()
{ if (no!=0) mep();

if (nber>0) printf("%d out of %d matching entries.\n",nent,nber);
return(l);

) ;

mep()
{

extern int nber;
extern int nent;
extern int no

extern char name [MAXSTR] ;
extern char firstname[MAXSTR];
extern char cdi v [MAXSTR] ;
extern char cphone [MAXSTR];
extern char cexp [MAXSTR] ;
extern char inst [MAXSTR] ;
extern char iphone[MAXSTR];

MED.mep.lex Tue Jan 17 15:47:49 1989

extern char mail[MAXSTR];
extern char comment[MAXSTR];

if (strcmp (name, "") ==0) strcpy (name, "\ \") ;

3

if (strcmp (firstname, "") ==0) strcpy (firstname, "\ \ ");
if (strcmp (cdiv, "") ==0) strcpy (cdiv, "\ \") ;
if (strcmp (cexp, '"') ==0) strcpy (cexp, "\ \ ");
if (strcmp(cphone,"")==0) strcpy(cphone,"\\");
if (strcmp(inst,"")==0) strcpy(inst,"\\");
if (strcmp(iphone,"")==0) strcpy(iphone,"\\");
if (strcmp(mail,"")==0) strcpy(mail,"\\");
if (strcmp(comment,"")==0) strcpy(comment,"\\");

printf("%s %s\n",name,firstname);
printf(" Div: %s Exp: %s Cern phone (ext): %s\n",cdiv,cexp,cphone);
printf(" Home Institute: %s Phone: %s\n",inst,iphone);
printf(" E-Mail Address: %s\n",mail);
printf(" Comment: %s\n",comment);
printf ("\n");

no=0;nent++;
name[0]=firstname[0)=cdiv[0]=cphone[0]=cexp[0]='\0';
inst[0]=iphone[0]=mail[0]=comment[0]='\0';

Introduction to Directory Services Annex D : Code of the NameServer

Example of message request sent to the NameServer

inbox:4 - Sent Message
From:
To:
Subject:

Bernard Heuse <S=heuse;OU=ts;O=info;P=fundp;A=rtt;C=be>
Nameserver <S=nameserver;O=cernvax;P=cern;A=arcom;C=ch>
Find heuse

find dimou:dd

NameServer reply message

Message inbox:5 - Read
From CERN EmDir Name Server

To:
Subject:

<S=cernvax!nameserver;O=prlb2;P=uucp;A=rtt;C=be>
Bernard Heuse <S=heuse;OU=ts;O=info;P=fundp;A=rtt;C=be>
Find: EmDir Request Answer.

>Errors-To: <cernvax!priam.CERN!bothner@prlb2.UUCP>

Send a mail to <namesever@cernvax.cern.ch> with the keyword 'Help'
as subject to receive more information about this service and the
syntax of the EmDir Request Answer.

Find Syntax:
Find [<stringll*>]: [<string21*>]

where <stringl> is a name or a firstname,
<string2> is an experiment, a division or an institute.

Find HEUSE

HEUSE Bernard
Div: DD Exp: - Cern phone (ext): -
Home Institute: Namur Univ. Phone: -
E-Mail Address: heuse@ts.info.fundp.rtt.be
Comment: -

1 out of 1 matching entrie(s).

Find DIMOU:DD

DIMOU Maria
Div: DD Exp: - Cern phone (ext): 3356
Home Institute: CERN Phone: -
E-Mail Address: dimou@priam.cern.ch
Comment: Communication Systems Group - External Networking Section

1 out of 1 matching entrie(s).

-D2-

Introduction to Directory Services Annex E : Code of the AutoRouter

AnnexE Code of the AutoRouter

Annex E is the code of the AutoRouter described in Chapter 14.

The following files are given:
- the Makefile;
- ar.h and ar.c are the AutoRouter program;
- addcheck.c is the address checker routine;
- emnodes.c accesses the NetNodes database to determine the E-Mail address

domain;
- ora.h manages Oracle errors.

The file getadd.c is given in Annex D.

Emdir.pol describes the syntax defined to facilitate matching between E-Mail
addresses and Emdir entries.

The last page shows an example of message rejected by the AutoRouter, and an
example of message routed by the AutoRouter.

- El -

Makefile Wed Jan 18 10:47:43 1989 1

PRG ar
emdir
/usera/heuse/emdirtmp
-0 -I$(CRBASE)/h -I.

RPC
CRBASE
CFLAGS
USEROBJS
LIBS
INCS
COURIERCC
GETADD
ADDCHECK
AC

$(PRG) .o $(RPC) client.o
$(CRBASE)/lib/libcr.a $(CRBASE)/lib/libnet.a
$ (PRG) .h $ (RPC) .h
$(CRBASE)/compiler/courier
getadd
addcheck
ac

all: $ (PRG)

$(USEROBJS): $(LIBS) $(INCS)

$(RPC) .h: $(GETADD) .cr
rm -f $ (RPC) .h
$(COURIERCC) $(GETADD) .cr

$(PRG): $(USEROBJS) $(GETADD) .c $(ADDCHECK) .c
cc -o $(PRG) $(USEROBJS) $(LIBS)

clean:
-rm -f *.o ,* emdir_*.c emdir.h *.old

ac: $(AC) .c $(ADDCHECK) .c
cc -o $(AC) $(AC) .c

receive:
mv $(GETADD) .cr $(GETADD) .cr.old
cp " .. /libc/$(GETADD) .cr" .
mv $(ADDCHECK) .c $(ADDCHECK) .c.old
dcp "vxcern/heuse/·••I:: [heuse.addcheck]$(ADDCHECK) .c" $(ADDCHECK) .c
mv $(GETADD) .c $(GETADD) .c.old
cp " .. /libc/$(GETADD) .c" .
mv strings.c strings.c.old
dcp "vxcern/heuse/•••■ =: [heuse.addcheck]strings.c" strings.c
mv $(AC) .c $(AC) .c.old
dcp "vxcern/heuse/••-■ ::[heuse.addcheck]$(AC) .c" $(AC) .c

ar.h Mon Jan 16 14:21:16 1989 1

/* Configuration File */

/* Status Codes */
define STNULL 0
define STERRDIVERS 1
define STNOADDR 2
define STONEADDR 3
define STNOTOKADDR 4
define STMOREADDR 5
define STNOUSER 6
define STTRYLATER 75

/* SendMail Return codes */
#define SMOK 0
#define SMUSAGE 64
#define SMNOUSER 67
#define SMSOFTERR 70
#define SMRETRY 75

/* Emdir errors definition */
#define EMDIR_BAD_QID 50000 /* Bad query id - should not happen
#define EMDIR NO MEM 50001 /* Host unable to malloc
#define EMDIR TOO MANY ROWS 50002 /* too many rows retrieved
#define EMDIR UKN RPC 50003 /* UNKOWN RPC - SHOULD NOT HAPPEN
#define EMDIR BAD PSW
#define EMDIR BAD VER

/* Error codes */
#define ERRNULL
#define ERRIVDREQ
#define ERRNOADDR
#define ERRNOOKADDR
#define ERRMOREADDR
#define ERRNOSERVER

/* Boolean */
#define bln int
#define NO 0
#define YES 1

50004
50005

00000
10001
10002
10003
10004
10005

/* Bad password given for update
/* Emdir server and client have

/* No error */
/* Invalid request */
/* No address */
/* No in list */
/* More than 1 address */
/* No server available*/

/* Oracle wild card */
#define ORAWC '%' /* Oracle's wild card character */

/* variables lengths */
define MaxAddr 150 /* Max length of an address
define MaxCtry 3 /* Max length of a country name
define Maxinst 10 /* Max length of an institute name
define MaxDiv 5 /* Max length of a division name
define MaxExp 10 /* Max length of an experiment name
define MaxName 30 /* Max length of a name
define MaxFN 40 /* Max length of a firstname
define Maxinit 5 /* Max nber of accepted initials

/* Directory for execution */
define DIRECTORY "/usera/heuse/autoroute"

*/
*/
*/
*/
*/
*/
*/
*/

define LDIV "divisions" /* File containing the division list */
define LEXP "experiments" /* File containing the experiment list */
define LOGFILE "ar.log" /* Log file */

define INST "CERN"
define CTRY "CH"

/* Accepted Institute
/* Accepted Country

/* Maximum 20 rows will be given in case of ambiguous name */

*/
*/

*/
*/
*/
*/
*/
*/

ar.h Mon Jan 16 14:21:16 1989 2

#define MAX ADDR BACK 20

/* Name Server address */
#define NSADDR "<nameserver@cernvax.cern>"

#define NO MAIL ADDRESS DEFINED YET "(No Mail address)"

ar.c Mon Jan 16 15:54:52 1989 1

include <stdio.h>
include <time.h>

include "addcheck.c" /* Address test */

include "getadd.c" /* RPC Access */

include "ar.h" /* Configuration File

static char *months[l2] {"Jan", "Feb", "Mar",
"Apr", "May", "Jun",
"Jul", "Aug", "Sep",
"Oct", "Nov", "Dec"};

/* RPC DECLARATION*/
extern Addresses addresses;

/* Maximum 10000 rows will be returned by RPC */
#define MAX QUERY LIMIT 10000

/* RPC Codes : Actions definitions */
#define USAGE 8
#define BIND FAILED -1
#define ROW addresses.return_rows.sequence

/* Global Variables*/
char *address;
char *from;
char routedto
char initials
char firstname
char
char
char
char
char
char
char
char
char
char
char

name
experiment
division
institute
country
*qname;
*qfirstname;
*qcern_div;
*qexp;
*qinst mnemo;
*qmint=addr;

int exitc 0

[MaxAddr];
[Maxinit];
[MaxFN];
[MaxName];
[MaxExp];
[MaxDiv];
[Maxinst];
[MaxCtry];

/* exit code
int status STNULL /* no value
int error ERRNULL /* no value

*/
*/
*/

bln qok YES /* valid query */
bln serok YES /* server available */
int gare /* getaddress ret code */

bln smex NO /* Sendmail not executed */
int smrc

int count
bln tmrow

GetAddr ()
/*

0

0
NO

/* sendmail return

/* Nber of queries
/* too many rows */

Realise le RPC et remplit 'addresses'
*/
{

code */

retrieved

*/

*/

ar.c Mon Jan 16 15:54:52 1989 2

garc=GetAddresses(qname,qfirstname,qcern div,qexp,
qinst_mnemo,qmint_addr~USAGE);

if (garc==BIND_FAIL) serok = NO;
serok = YES;

if ((garc==QUERY_NOUSER) 1 I (garc==QUERY_FULL)) qok = NO;

Dispatch ()
/*

else qok = YES;

Fait ce qu'il faut faire en fonction du 'addresses.status' en retour,
de la disponibilite du serveur et du qid.

*/
{

strcpy(routedto,"(Not Forwarded)");
if (qok == NO) processnouser()

else if (serok == NO) processnoserver();
else if ((addresses. status==0) 11

(addresses. status==l) 1 1
(addresses.status==EMDIR_TOO MANY ROWS)) /* Status OK*/
if (addresses.status==EMDIR_TOO_MANY_ROWS)

{ count MAX_QUERY_LIMIT;
error
tmrow

addresses.status;
YES;

else
if (count

count addresses.return_rows.length;
0 processnoaddr();

if (count 1 processoneaddr();
if (count > 1 processmoreaddr();

else switch(addresses.status)
{ case 0: break; /*OK*/

case 1: break; /*OK*/
case EMDIR NO MEM:

status = STTRYLATER ; /* Insufficient memory on host side */
error = addresses.status
strcpy(routedto,"(Not Yet Routed)");
break;

default:
error = addresses.status
strcpy(routedto,"(Not Forwarded)");
if (addresses.status < 0)

status STERRDIVERS /* Oracle error on host */
else

status

processnoserver()
I*

STERRDIVERS

Pas de serveur=> Try Later
*/
{ status = STTRYLATER;

/* Unknown error */

error = ERRNOSERVER;
strcpy(routedto,"(Not Yet Routed)");

processnouser ()
/*

Qid <= 0 ou pas de nom et prenom => No recipient
*/
{ status = STNOUSER

errer = ERRIVDREQ ;
strcpy(routedto,"(Not Forwarded)");

ar.c Mon Jan 16 15:54:52 1989 3

perr_header("No recipient specified");
perr_footer();

processnoaddr ()
/*

Pas d'entree trouvee => Renvoi un msg d'erreur
*/
{ status = STNOADDR;

error = ERRNOADDR;
strcpy(routedto,"(Not Forwarded)");
perr_header("Unknown recipient");
perr_footer();

processoneaddr()
/*

*/

Une d'entree trouvee => Si l'E-Mail address est valide=> Forward
Sinon, msg d'erreur.

{ int rnber = 0 ;
char str[1024];
char adok[512];

/* Checking if the recipient has a valid address */
{ int result,syn,net;

result=addcheck(ROW[rnber] .mint_addr,adok,&syn,&net);
if ((result != 0) && (result != 4 /* No Domain */)) {

perr_header("recipient has no valid address in the Emdir DB");
fprintf(stdout,"\n Here follow the information retrieved about the recipient:");
perr_rec(rnber);
perr_footer () ;
status = STNOTOKADDR
error = ERRNOOKADDR
strcpy{routedto,"(Not Forwarded)");
return;

status = STONEADDR;
strcpy(routedto,adok);
sprintf(str," echo \"X-Rerouted-To: %s by CERN Automatic Router (Emdir DB).\">/-
sprintf(str,"%s cat >> /tmp/ar$$ \n",str);
sprintf(str,"%s /usr/lib/sendrnail -f %s %s < /tmp/ar$$ \n",str,from,routedto);
sprintf(str,"%s EXT=$? \n rm /tmp/ar$$ \n exit $EXT \n", str);

/*printf("%s",str); */
smrc system(str);
smex = YES;

processmoreaddr()
I*

Plus d'une entree trouvee => Msg d'erreur.
*/
{ int rnber;

perr_header("arnbiguous recipient");
fprintf(stdout,"\n Here follow the information retrieved about the matching recipients
if ((tmrow == YES) 11 (count > MAX_ADDR_BACK))

fprintf(stdout,"\n (the list is not exhaustive)");
for (rnber=0;rnber< ((count>MAX_ADDR_BACK)?MAX_ADDR_BACK:count) ;rnber++)

perr_rec(rnber);
fprintf (stdout, "\n");

ar.c Mon Jan 16 15:54:52 1989 4

fprintf(stdout,"\n %d out of %d matching entries.",rnber,count);
perr_footer () ;

strcpy(routedto,"(Not Forwarded)");
status STMOREADDR;
error = ERRMOREADDR;

perr_header(errmsg)
char *errmsg;
{

fprintf(stdout,"\n CERN Emdir Automatic Router (Emdir DB). 11 ,address);
fprintf(stdout,"\n Automatic router failed. \"%s\" : %s. 11 ,address,errmsg);
}

perr footer ()
{

fprintf(stdout,"\n");
fprintf(stdout,"\n Use the nameserver to retrieve a CERN user's E-Mail address.");
fprintf(stdout,"\n Send a mail to %s with the keyword ",NSADDR);
fprintf(stdout,"\n 'Help' as subject to receive more information about this service.'');
fprintf(stdout,"\n\n");
}

perr_rec (rnber)
int rnber;
{

if (strcmp(ROW[rnber] .name,"")==0) strcpy(ROW[rnber] .name,"\\");
if (strcmp(ROW[rnber] .exp,"")==0) strcpy(ROW[rnber] .exp, 11

\\
11
);

if (strcmp (ROW [rnber] . cern_div, '"') ==0) strcpy (ROW [rnber] . cern_div, "\ \") ;
if (strcmp(ROW[rnber] .cern tel,"")==0) strcpy(ROW[rnber] .cern tel,"\\");
if (strcmp(ROW[rnber] .inst-mnemo,"")==0) strcpy(ROW[rnber] .inst mnemo, 11

\\
11
);

if (strcmp(ROW[rnber] .inst=tel,"")==0) strcpy(ROW[rnber] .inst_tel, 11
\\

11
);

if (strcmp(ROW[rnber] .comments,"")==0) strcpy(ROW[rnber] .comments,"\\");

fprintf(stdout,"\n");
fprintf(stdout,"\n
fprintf(stdout,"\n
fprintf(stdout,"\n
fprintf(stdout,"\n
fprintf(stdout,"\n

%s %s",ROW[rnber] .name,ROW[rnber] .first name);

}

CptExitCode ()
/*

Div: %s Exp: %s Cern phone (ext): %s",ROW[rnber] .cern div,ROW[r
Home Institute: %s Phone: %s",ROW[rnber] .inst mnemo,ROW[rnber] .i
E-Mail Address: %s",ROW[rnber] .mint_addr); -
Comment: %s",ROW[rnber] .comments);

Calcul du code de retour (destine a SendMail).
*/
{ char str[1024];

switch (status)
{ case STONEADDR

exitc = smrc / 256
break;

case STTRYLATER:
exitc = SMRETRY;
break;

case STNOUSER:
exitc = SMUSAGE;
break;

case STNOTOKADDR:
exitc = SMUSAGE;
break;

case STMOREADDR:
exitc = SMUSAGE;

ar.c Mon Jan 16 15:54:52 1989 5

break;
case STNOADDR

exitc = SMNOUSER;
break;

default :
exitc = SMSOFTERR;
break;

AnalyseAddress()
{

/* Analyse the address 'address' and put results into 'country',
'institute', 'division', 'experiment', 'name', 'initials' and
'firstname' .

*/

/* **
Syntax accepted for the address :
addressfield = address 1 [string]'<'address'>' [string]
address = name['@'organization]
organization = [string'.'] [experiment' .'][division'.'] ['CERN.'] ['CH']

[string'.'] [division'.'] [experiment' .'] ['CERN.'] ['CH']
where experiment in LEXP

and division in LDIV
name = [firstname' .']Maxinit*[initial' .'] [surname]

where firstname does not contain full stop' ' and is
at least two characters long.

initial contains only one letter.
if surname contains full stop, then it may not be in the

first two characters, and either initials or given
name or both are present.

string are ignored.
** */

int i,j;
char *b,*e,*c,*an,*ao;
char add[MaxAddr];
char tmp[MaxAddr];
char a_name[MaxAddr];
char a_orga[MaxAddr];
FILE *f;
bln okdom;

tmp[0]=initials[0]=firstname[0]=name[0]='\0';
experiment[0]=division[0]=institute[0]=country[0]='\0';
strcpy(add,address);

/* taking the address out of the address field (into <> if any) */
if (((b=rindex(add,'<'))!=0) && ((e=index(add,'>'))!=0) && (b<e))

{ strncpy(add,b+l,e-b-1);
add[e-b-1]='\0';

/* to uppercase and suppressing leading and trailing blanks */
for (b=add;*b==' ';b++);
for (i=strlen(b)-l;((i>=0) && (b[i]==' '));b[i--J='\0');
for (i=0;i<strlen(b);b[i++]=toupper(b[i]));
strcpy(add,b);

/* separating Name and Organization in Name@Organisation */
if ((b=index(add,'@'))==0) strcpy(a name,add);

a_orga[OJ='\0';

ar.c Mon Jan 16 15:54:52 1989 6

else { *b='\0';
strcpy (a_naroe,add);
strcpy (a_orga,b+l);

/* backward scanning of the organization */
/* Only CH as country is searched */
if (strlen(a orga) !=0) {

}

if (a_orga[strlen(a_orga)-1]==' .') a_orga[strlen(a orga)-1]='\0';
if ((c = rindex(a_orga,' .'))==0) c=a_orga; else c++;
if (strcrop(c,CTRY)==0) { strcpy(country,c); *c='\0';}

/* Only CERN as institute is searched */
if (strlen(a orga) !=0) {

if (a_orga[strlen(a_orga)-1]==' .') a_orga[strlen(a orga)-1]='\0';
if ((c = rindex(a orga,' .'))==0) c=a orga; else c++;
if (strcrop (c, INST) ==0) { strcpy (institute, c); *c=' \0'; }

}
/* Scanning Division and Experiment */

/* First String*/
if (strlen(a_orga) !=0) {

if (a_orga[strlen(a_orga)-1]==' .') a_orga[strlen(a_orga)-1]='\0';
if ((c = rindex(a_orga,' .'))==0) c=a_orga; else c++;

f=fopen(LDIV,"r");okdoro=NO;
if (f==NULL) perror("Cannot open DIVISION file");
while ((fgets(trop,100,f)) !=NULL)

{ tmp[strlen(trop)-1]='\0';
rroltmbl (trop);
if(strcmp(tmp,c)==0) okdoro=YES;

}

fclose (f);

if (okdom==YES) { strcpy (division, c); *c=' \0'; }
else { f=fopen(LEXP,"r");okdoro=NO;

if (f==NULL) perror("Cannot open EXPERIMENT file");
while ((fgets(tmp,100,f)) !=NULL)
{ trop[strlen(tmp)-1]='\0';

rroltmb 1 (tmp) ;
if(strcrop(trop,c)==0) okdoro=YES;

}

fclose (f);
if (okdoro) { strcpy (experiroent, c); *c=' \0'; }

/* Second string*/
if (strlen(a orga) !=0)

if (a_orga[strlen(a_orga)-1]==' .') a_orga[strlen(a_orga)-1]='\0';
if ((c = rindex(a_orga,' .'))==0) c=a_orga; else c++;

f=fopen(LDIV,"r");okdom=NO;
if (f==NULL) perror("Cannot open DIVISION file");
while ((fgets(trop,100,f)) !=NULL)

{ tmp[strlen(tmp)-1]='\0';
rroltmbl (trop);
if(strcrop(trop,c)==0) okdoro=YES;

fclose(f);

if (okdoro==YES) { strcpy (division, c); *c=' \0'; }
else { f=fopen(LEXP,"r");okdoro=NO;

if (f==NULL) perror("Cannot open EXPERIMENT file");
while ((fgets(trop,100,f)) !=NULL)
{ trop[strlen(trop)-1]='\0';

ar.c Mon Jan 16 15:54:52 1989 7

rmltmbl (tmp);
if(strcmp(tmp,c)==0) okdom=YES;

fclose (f);
if (okdom) { strcpy(experiment,c); *c='\0';

/* forward scanning of the name */
an= a name;
/* first string*/
if (strlen (an) ! =0)

{

c = index(an,' .');
if (c==0) { strcpy (name, an); *an = '\0'
else if (c-an>l) { *c = '\0';

else if (c-an==l)

strcpy(firstname,an);
an c+l;

*c '\0';
strcat(initials,an);
an= c+l;

else { strcpy(name,an); *an= '\0'

/* initials */
if (strlen(an) !=0)

{

c = index (an, ' . ') ;
if (c==0) { strcpy(name,an); *an= '\0'
else while (c-an==l) { *c = '\0';

if (strlen(initials)<Maxinit) strcat(initials,an);
an= c+l;
c = index(an,'.');
if (c==0) { strcpy(name,an); *an

/* name */
if (strlen(an) !=0) { strcpy(name,an); *an '\0'

BuildRequest()
{

, \ 0,

/* Build the request for the RPC call, initialization of 'query_row'
according to the rules described hereafter and the content of
the variables 'country', 'institute', 'division', 'experiment',
'name', 'initials' and 'firstname'.
Also converts wildchar and compute qid.

*/

break

/* **
qname = if (name<>'') then name

else ''
qfirstname = if (firstname<>'') then firstname

qcern_div

else if (initials<>'') then initials[0]%
else ''

if (((qname='') and (qfirstname='')) or (division=''))
then ''
else division

qexp if (((qname='') and (qfirstname='')) or (experiment=''))
then ''
else experiment

qinst_memo , ,

ar.c Mon Jan 16 15:54:52 1989 8

qmint addr = ''

** */

static char nullstring[]={"\0");

if (strlen(name) !=0) qname
else qname

if (strlen (firstname) !=0)
else if (strlen (initials) ! =0)

else

name;
nullstring;

qfirstname
qfirstname
qfirstname

firstname;
sprintf(malloc(MaxFN),"%c%c",initials[0J,ORAW
nullstring;

if (((strlen (qname) ==0) && (strlen (qfirstname) ==0)) 11 (strlen (division) ==0))
qcern div nullstring;

else qcern=div = division;

if (((strlen(qname)==0) && (strlen(qfirstname)==0)) 11 (strlen(experiment)==0))
qexp nullstring;

else qexp = experiment;

qinst_mnemo = nullstring;

qmint_addr = nullstring;

LogFile ()
{

char query[MaxAddr];
char parsing[MaxAddr];
char errmsg[l00J;
char smst[l00J;
char rpcst[l00J;
char vdate[l0J;
char vtime[l0J;
int btime;
struct tm *tstr;
FILE* logFile NULL;

time (&btime);
tstr = localtime(&btime);
sprintf(vdate,"%d-%s-%d",tstr->tm_mday,

months[tstr->tm_mon],
tstr->tm_year) ;

sprintf (vtime, "%d: %d: %d", tstr->tm hour,
tstr->tm_min,
tstr->tm_sec) ;

sprintf(parsing,"- %s - %s - %s -@- %s - %s - %s - %s -",
firstname,initials,name,
experiment,division,institute,country);

sprintf(query,"- %s - %s - %s - %s - %s - %s -",
qname,qfirstname,

switch(status)
{ case STNULL

qcern div,qexp,
qinst=mnemo,qmint_addr);

strcpy(errmsg,"Null Error");
break;

case STERRDIVERS :
strcpy(errmsg,"Error
break;

msg not forward");

ar.c Mon Jan 16 15:54:52 1989 9

case STNOADDR

case STNOUSER

strcpy(errmsg,"No address found");
break;

strcpy(errmsg,"No recipient specified");
break;

case STONEADDR:
strcpy(errmsg,"Msg forward");
break;

case STNOTOKADDR:
strcpy(errmsg,"No valid address in Emdir");
break;

case STMOREADDR:
strcpy(errmsg,"More than one address found");
break;

case STTRYLATER:

default

strcpy(errmsg,"Server machine not available, will retry");
strcpy(routedto,"Not Yet Routed");
break;

strcpy(errmsg,"Unknown status number");
break;

logFile = fopen (LOGFILE, "a+");
if (logFile==NULL) perror("Cannot open log file");

if ((garc==QUERY_NOUSER) 11 (garc==QUERY_FULL)) strcpy(rpcst," (Invalid Query) ");
else if (garc==BIND_FAIL) strcpy(rpcst,"(Server unavailable)");
else strcpy(rpcst,"");

if (smex == NO) strcpy(smst,"(Not Executed)");
else strcpy (smst, "");

fprintf(logFile,"- %s; %s : F=%s T=%s FT=%s \n
vdate,vtime,
from,address,routedto,
parsing,query,count,
status,errmsg,error,
smrc,smst,exitc,garc,rpcst);

close (logFile);
}

GetArg(argc,argv)
int argc;
char *argv[];
{

address
from
}

argv [2];
argv[l];

main(argc,argv)
int argc;
char *argv[];
{

if (chdir(DIRECTORY)) perror("Cannot change dir");
GetArg(argc,argv);
AnalyseAddress();
BuildRequest();
GetAddr();
Dispatch();
CptExitCode () ;
LogFile ();

P=%s Q=%s C=%d\n S=%d(%s) E=%d

ar.c

exit (exitc);
}

Mon Jan 16 15:54:52 1989 10

Thu Jan 19 13:44:30 1989

From heuse@vxcern.decnet Thu Jan 19 13:44:25 1989
Date: Thu, 19 Jan 89 13:44:25 +0100
Message-Id: <8901191244.AA17265@cernvax.uucp>
From: heuse@vxcern.decnet
To: printer@priam.decnet
Subject:

/* Compiler Directives*/

#define DB-ACCESS
/* #define DEBUG

/* Local Definitions */

0
0 */

/* File of Divisions and experiments */
#define CDFILE "cern.dom"

/* String size */
#define MAXSIZE 256

/* Illegal char set in addresses */
#define ILLCHARSET ", $~ '; { }="*<>"

/* Diagnostic bits*/
#define DG CHANGEDUUCP
#define DG CHANGEDDEC
#define DG ANGLEUNSYM
#define DG CHANGEDAT
#define DG INVJANET
#define DG ADOM
#define DG ORA ERROR
#define DG ILLCHAR

/* Network codes*/
#define IS NOT DET
#define IS UNKNOWN
#define IS NETNORTH
#define IS EARN
#define IS DECNET
#define IS CERN
#define IS JANET
#define IS BITNET
#define IS UUCP
#define IS ADDED DB - -
#define IS ADDED SY
#define IS INADD

/* Return codes and
#define RC OK

diagnostic

#define RC ILLEGALCHAR
#define RC NOHOST
#define RC NOUSER
#define RC NODOM
#define RC NOADD
#define RC ILLCD

/* DB acces routines*/
#ifdef DB-ACCESS
#include "emnodes.c"
#endif DB-ACCESS
/* String routines*/
#include "strings.c"

2
4
8

16
32
64

128
256

000
100
200
300
400
500
600
700
800

1
2
0

*/
0
1
2
3
4
5
6

1

Thu Jan 19 13:44:30 1989

#include <stdio.h>

printdiag(addin,outstring,result,net,rc)
char addin[],outstring[];int *result,*net,*rc;
{ int diag;

printf ("\nAddress Test Diagnostic :\n");

2

printf (" IN : '%s'\n OUT: '%s' \n",addin,outstring);
printf (" Add=%d - Net=%d - Err=%d \n ",*result,*net,*rc);

if (*result
if (*result
if (*result
if (*result
if (*result
if (*result
if (*result
if (*result
if (*result

==
&

&

&

&

&

&

&

&

0)

DG_CHANGEDDEC)
DG_CHANGEDUUCP)
DG_ANGLEUNSYM)
DG INVJANET)
DG_ADOM)
DG_CHANGEDAT)
DG_ORA_ERROR)
DG ILLCHAR)

printf ("\n ");

printf ("Add Syntax OK");
printf ("Ch_Decnet ") ;
printf ("Ch_Uucp ") ;
printf ("<>_Unsyrn ") ;

printf ("Inv_Janet ") ;
printf ("Add_Domain ") ;
printf ("Ch_AT_ @ ") ;
printf ("Ora Error ") ;
printf ("Ill_Char ") ;

if (*result & DG ORA_ERROR) printf ("Oracle Error %d",*net);
else {
diag = *net
if (*net
if (*net
if (*net
if (*net -
if (*net
if (*net
if (*net
if (*net
if (*net
if (diag
if (diag
if (diag
}

% 100 i *net
IS NOT DET
IS UNKNOWN
IS EARN
IS BITNET
IS NETNORTH
IS UUCP
IS DECNET
IS JANET
IS CERN
IS INADD
IS ADDED SY
IS ADDED DB

printf ("\n");

printf("> ") ;
if (*rc RC OK

)

)

)

)

)
)

)

)

)
)

)
)

)

if (*rc RC ILLEGALCHAR)
if (*rc RC NODOM)

if (*rc RC NOHOST)

if (*rc RC NOUSER)

if (*rc RC NOADD)

if (*rc RC ILLCD)

printf ("\n");

(*net
printf
printf
printf
printf
printf
printf
printf
printf
printf

printf
printf
printf

printf
printf
printf
printf
printf
printf
printf

I 100) * 100;
("Network not determined ") ;

("Network UNKNOWN ") ;

("Network EARN ") ;
("Network BITNET ");

("Network NETNORTH");
("Network UUCP ") ;
("Network DECNET ") ;

("Network JANET ") ;

("Network CERN ");

("(In address) ") ;
("(Derived from syntax) ");

("(Found in Netnodes) n) ;

("Address OK");
("Rejected: Illegal char %s",ILLCHARSET);
("Rejected: No Domain specified");
("Rejected: No Host specified");
("Rejected: No User specified");
("Rejected: No Address specified");
("Rejected: Illegal Cern Sub-Domain");

addcheck (instring,outstring,add_diag,net_diag)
char *instring,*outstring;
int *add_diag,*net_diag;
{

int i;
char *b,*e,

*start;
char add

user
node
domain

[MAXSIZE],
[MAXSIZE],
[MAXSIZE], adnode [MAXSIZE],
[MAXSIZE], addomain [MAXSIZE], cerndom[MAXSIZE];

int net,adnet,oraerr,rc;

rc = RC OK

Thu Jan 19 13:44:30 1989

*add diag = *net diag = adnet oraerr = 0;
strcpy(add,instring);
node[0]=user[0]=domain[0]='\0';

#ifdef DEBUG
printf("IN
#endif DEBUG

%s\n",add);

3

/* taking the address
b=rindex(add,'<');
e=index(add,'>');

out of the address field (into <> if any) */

if ((b!=0) && (e!=0) && (b<e)) strncpy(add,b+l,e-b-1);
add[e-b-1]='\0';

else if ((b!=0) II (e!=0)) *add_diag += DG_ANGLEUNSYM;

#ifdef DEBUG
printf("<>
#endif DEBUG

%s\n", add);

/* suppressing useless blanks */
rmltmbl (add);

#ifdef DEBUG
printf ("BL
#endif DEBUG

#%s#\n", add);

/* from "user AT host" or "user@ host" to "user@host" */
if (((e=strmatch(add," AT")) !=0)

11 ((e=strmatch (add," At ")) !=0)
Il ((e=strmatch(add," at "))!=0)
1 1 ((e=strmatch (add," aT ")) ! =0)
11 ((e=strmatch (add," @ ")) !=0))
{ *e='\0';strcpy(user,add);strcpy (node,rmltmbl(e+3));

*add diag += DG CHANGEDAT;
sprintf (add,"%s@%s",user,node);

#ifdef DEBUG
printf("AT@
#endif DEBUG

%s\n", add);

/* detecting illegal characters */
if (strpbrk (add,ILLCHARSET)) { rc = RC_ILLEGALCHAR;

*add_diag += DG_ILLCHAR;

#ifdef DEBUG
printf("ICS
#endif DEBUG

%s\n", add);

/* UUCP : from host!user to user@host.uucp */
if ((e=index (add,' ! ')) ! =0)

{ *e = '\0'; strcpy(node,add); strcpy(user,e+l);
sprintf (add, "%s@%s.uucp" ,user,node);
*add_diag += DG_CHANGEDUUCP;
adnet = IS_ADDED_SY;

#ifdef DEBUG
printf("UUCP
#endif DEBUG

/* Decnet

%s\n", add);

from host::user to user@host.decnet.cern.ch */

Thu Jan 19 13:44:30 1989 4

if ((e=strmatch (add, ": : ")) ! =0)
{ *e = '\0'; strcpy(node,add); strcpy(user,e+2);

sprintf (add, "%s@%s.decnet.cern.ch" ,user,node);
*add_diag += DG_CHANGEDDEC;
adnet = IS_ADDED_SY;

#ifdef DEBUG
printf("DEC
#endif DEBUG

%s\n", add);

/* No Address */
if (strlen(add)==0) rc = RC_NOADD;

/* Seperating user@host.domain */
start = &add[0] ;
if ((e=index(start,'@')) !=0)

(*e = '\ 0' ;
strcpy(user,start);
start = e+l;

else strcpy(user,start);
* s ta rt = ' \ 0 ' ;

if ((e=index(start,' .')) !=0)
{ *e = '\ 0' ;

strcpy(domain,e+l);
strcpy(node,start);

else strcpy(node,start);

#ifdef DEBUG
printf("SEP
#endif DEBUG

U=%s H=%s D=%s \n",user,node,domain);

strcpy(addomain,domain);
strcpy(adnode,node);

tolo (domain) ;
tolo(node);

/* Checking JANET*/
if ((strcmp (node, "uk") ==0)

&& ((strmatch(domain,"ac.")==&domain[0])
1 1 (strmatch (domain, "co. ") ==&domain [0])))
{ char tmp[MAXSIZE],t[MAXSIZE];

*add diag += DG INVJANET;
/*Inversion*/
sprintf(tmp,"%s.%s",node,domain);
if ((e=rindex(tmp,'.')) !=0)

{ *e='\0'; strcpy(node,e+l); strcpy(adnode,e+l);
domain[0]='\0';
while ((e=rindex(tmp,'.')) !=0)

{ *e='\0'; sprintf(t,"%s.%s",domain,e+l); strcpy(domain,t);
sprintf(t,"%s.%s",domain,tmp); strcpy(domain,&t[l]);

#ifdef DEBUG
printf("Jan
#endif DEBUG

U=%s H=%s D=%s \n",user,node,domain);

/* Network determination */
net= IS_UNKNOWN;
if (strmatch(domain,"co.uk")==&domain[0]) net IS JANET

Thu Jan 19 13:44:30 1989

if (strmatch(domain,"ac.uk"
if (strmatch(domain,"cern"
if (strmatch(domain,"decnet"

)==&domain[0])
) ==&domain [0])
)==&domain[0])

if (strcmp(domain,"uucp")==0)
if (strcmp(domain,"bitnet")==0)
if (strcmp(domain,"netnorth")==0)
if (strcmp(domain,"earn")==0)

/* Domain: decnet => decnet.cern.ch */
if (strrnatch(domain,"decnet")==&domain[0])

strcpy(domain,"decnet.cern.ch");

/* Checking Cern domain sub-domains */
if (strmatch(domain,"cern")==&domain[0])

{ *add diag += DG ADOM;
strcpy (domain,-"cern.ch");

}

if (net==IS_CERN)
{ char tmp[MAXSIZE];

FILE *cd;
sprintf(tmp,"%s.%s",node,domain);
if ((e=strmatch (trop," .cern")) !=0) *e = '\0';
if ((e=strmatch (trop, "cern. ")) !=0) *e = '\0';
if ((b=rindex(tmp,' .'))==0) b = &tmp[0] - 1;
strcpy(cerndom,b+l);
if (strlen(cerndom)==0) rc = RC_ILLCD;
cd=fopen(CDFILE,"r");
while ((fgets(tmp,100,cd)) !=NULL)

{ tmp[strlen(tmp)-1]='\0';
rmltmbl(tolo(tmp));
if (strcmp(tmp,cerndom)==0) rc

fclose(cd);

RC_ILLCD;

5

net IS JANET
net IS CERN
net IS DECNET
net IS UUCP
net IS BITNET
net IS NETNORTH
net IS EARN

#ifdef DEBUG
printf ("Cern
#endif DEBUG

U=%s H=%s D=%s CD=%s \n",user,node,domain,cerndom);

#ifdef DB-ACCESS
/* Getting the absent domain */
if ((strlen (demain) == 0) && (strlen(node) !=0) && (net==IS UNKNOWN))

{ if ((oraerr = (EMNODES(node,domain))) ==0)
{ if (strcmp(domain,"cern.ch")==0)

if (strcmp(domain,"uucp")==0)
if (strcmp(domain,"bitnet")==0)
if (strcmp(domain,"netnorth")==0)
if (strcmp(domain,"earn")==0)

net
net
net
net
net

if (strcmp(domain,"decnet.cern.ch")==0) net
adnet = IS_ADDED_DB;
else *add_diag += DG_ORA_ERROR;

#endif DB-ACCESS

#ifdef DEBUG
{ int err,ec;char msg[300],st[300];
if (sqlreport(st,&msg,&err))

printf("Oracle Error %don %s \n%s\n",err,st,msg);
else printf("Oracle Access succeed or Not done\n");

}

#endif DEBUG

IS CERN
IS UUCP
IS_BITNET;
IS NETNORTH
IS_EARN ;
IS DECNET

Thu Jan 19 13:44:30 1989

strcpy(node,adnode);

/* Ending stuff */
if (! (rc))
{ if (strlen (domain)

if (strlen (user)
if (strlen (node)

}

0) rc
0) rc
0) rc

RC_NODOM;
RC_NOUSER;
RC_NOHOST;

6

if (! (rc)) sprintf (outstring, "%s@%s.%s" ,user,node,domain);
else if (rc==RC_NODOM) sprintf (outstring, "%s@%s" ,user,node);
else strcpy(outstring,"");
if (oraerr!=0) *net_diag = oraerr; else *net_diag =net+ adnet

#ifdef DEBUG
printf("OUT
#endif DEBUG

%s \n-Add=%d-Net=%d-Err=%d\n",outstring,*add_diag,*net_diag,rc);

return (rc);

Thu Jan 19 13:45:57 1989

From heuse@vxcern.decnet Thu Jan 19 13:45:53 1989
Date: Thu, 19 Jan 89 13:45:53 +0100
Message-Id: <8901191245.AA17380@cernvax.uucp>
From: heuse@vxcern.decnet
To: printer@priam.decnet
Subject:

/* Compiler directive*/
/* #define EMNODES DEBUG O */

/* Domain Priority (higher
#define p CERN 10
#define P DECNET 9
#define p BITNET 8
#de fine p EARN 7
#define P NETNORTH 6
#define P UUCP 5
#define p JANET 4

/* BD Control routines*/
#include "ora.h"

static short nlda[32];
static short ncursor[32];
static short nhda[l28];
static int ndbopen = 0 ;

is

#define EMNODES DBUSERandPW"
#define LGNETW 08

EMNODES_DBOPEN ()
{

winner)

#ifdef EMNODES DEBUG
printf("DBOpen-EMNODES
#endif EMNODES_DEBUG

Orlon\n");

orainit () ;

*/

1

if (oraok()) orlon(nlda,nhda,EMNODES_DBUSERandPW,strlen(EMNODES_DBUSERandPW),
(char *)-1,-1,0);

if (! (sqlok(nlda))) oraerror("DBopen-Orlon",nlda);

#ifdef EMNODES DEBUG
printf("DBOpen-EMNODES
#endif EMNODES DEBUG

if (oraok ())

Oopen\n");

oopen(ncursor,nlda,

if (! (sqlok(ncursor)))
ndbopen = 1 ;

(char *) -1, -1, -1, (char *) -1, -1);
oraerror("BDopen-Oopen",ncursor);

#ifdef EMNODES_DEBUG
printf("DBOpen-EMNODES
#endif EMNODES DEBUG

EMNODES_DBCLOSE()
{

#ifdef EMNODES DEBUG
printf("DBClose-EMNODES
#endif EMNODES DEBUG

Done\n");

Oclose \n") ;

Thu Jan 19 13:45:57 1989 2

oclose(ncursor);
if (! (sqlok (ncursor))) oraerror("DBclose-Oclose",ncursor);

#ifdef EMNODES DEBUG
printf("DBClose-EMNODES
#endif EMNODES DEBUG

ologof(nlda);

Ologof\n");

if (! (sqlok(nlda))) oraerror("DBclose-Ologof",nlda);

#ifdef EMNODES DEBUG
printf("DBClose-EMNODES
#endif EMNODES DEBUG

EMNODES(node,domain)
char *node,*domain;
{ char req[S00];

Done\n");

char host[500],dom[500],st[500],msg[500],*b,*e;
int i,p,priority,err,errc;

#ifdef EMNODES DEBUG
printf("EMNODES : Begin\n");
#endif EMNODES DEBUG

p = priority = 0 ;
if (ndbopen == 0)

#ifdef EMNODES DEBUG
printf("EMNODES : Opening DB\n");
#endif EMNODES DEBUG

EMNODES_DBOPEN(); ndbopen 2
strcpy(host,node);
for(b=host;*b;b++) *b=toupper(*b);
sprintf(req,"SELECT UPPNET FROM NETNODES WHERE UPPNODE

#ifdef EMNODES DEBUG
printf("EMNODES : Osql3\n%s\n",req);
#endif EMNODES DEBUG

if (oraok()) osql3(ncursor,req,strlen(req));

'%s'",host);

if (! (sqlok (ncursor))) oraerror ("EMnodes-Osql3", ncursor);

#ifdef EMNODES DEBUG
printf("EMNODES : Odefin\n");
#endif EMNODES DEBUG

if (oraok()) odefin(ncursor,1,dom,499,5,-1,
(short *) -1, (char*) -1, -1, -1, (short *) -1, (short *) -1);

if (! (sqlok(ncursor))) oraerror("EMnodes-Odefin",ncursor);

#ifdef EMNODES DEBUG
printf("EMNODES: Oexec\n");
#endif EMNODES DEBUG

if (oraok()) oexec(ncursor);
if (! (sqlok (ncursor))) oraerror ("EMnodes-Oexec", ncursor) ;

#ifdef EMNODES DEBUG
printf("EMNODES : Ofetch\n");
#endif EMNODES DEBUG

if (oraok ())

#ifdef EMNODES DEBUG

Thu Jan 19 13:45:57 1989

{ printf("EMNODES : Avt Ofetch\n");
#endif EMNODES DEBUG

ofetch(ncursor);

#ifdef EMNODES DEBUG
printf ("EMNODES : Apr Ofetch\n"); }
#endif EMNODES DEBUG

while (! (eofetch(ncursor)))

3

{ if (! (sqlok (ncursor))) oraerror ("EMnodes-Ofetch", ncursor) ;
for (b=dom; *b==' '; b++);
for (i=strlen(b)-l;((i>=0) && (b[i]==' '));b[i--]='\0');
if ((strcmp(b,"CERN")==0)) p P CERN
if ((strcmp(b,"UUCP")==0)) p
if ((strcmp (b, "EARN") ==0)) p
if ((strcmp(b,"DECNET")==0)) p
if ((strcmp(b,"NETNORTH")==0)) p
if ((strcmp (b, "BITNET") ==0)) p

p if ((strcmp (b, "JANET") ==0))
if (p > priority)

P_UUCP;
P_EARN;
P DECNET
P NETNORTH
P BITNET;
P JANET

{ strcpy(domain,b); priority = p;
if (strcmp(domain,"CERN")==0) strcpy(domain,"CERN.CH");
if (strcmp(domain,"DECNET")==0) strcpy(domain,"DECNET.CERN.CH");

#ifdef EMNODES DEBUG
printf("EMNODES : Ofetch bcle\n");
#endif EMNODES DEBUG

if (oraok ())
}

if (ndbopen == 2)

ofetch(ncursor);

#ifdef EMNODES DEBUG
printf("EMNODES : Closing DB\n");
#endif EMNODES DEBUG

EMNODES_DBCLOSE(); ndbopen 0

#ifdef EMNODES DEBUG
printf("EMNODES : Close done\n");
#endif EMNODES DEBUG

if (! (oraok())) strcpy(domain,"");
for(b=domain;*b;b++) *b=tolower(*b);
sqlreport(st,msg,&err);

#ifdef EMNODES DEBUG
printf("EMNODES: End=> %d (Oracle Error)\n",err);
#endif EMNODES DEBUG

return(err);

Thu Jan 19 13:46:34 1989

From heuse@vxcern.decnet Thu Jan 19 13:46:31 1989
Date: Thu, 19 Jan 89 13:46:31 +0100
Message-Id: <8901191246.AA17440@cernvax.uucp>
From: heuse@vxcern.decnet
To: printer@priam.decnet
Subject:

/* Compiler directives
/* #define ORA_DEBUG */

define SQLSTR 005
define SQLSTRL 300
define SQLBUFL 500
define SQLSTATL 700

static int SQLERROR;
static short SQLERRNU;
static short SQLERRCO;

*/

static char *SQLERRST[SQLSTRL];

eofetch(area)
short *area;
(

#ifdef ORA DEBUG

l

if ((((abs(*area))==4) 11 (SQLERROR))) printf("End Of Fetch\n");
#endif ORA DEBUG

return((((abs(*area))==4) Il (SQLERROR))); }

sqlok(area)
short *area;
(

#ifdef ORA DEBUG
printf("Ret Err Code %d\n",*area);
#endif ORA DEBUG

return((*area==0));)

oraok ()
{

#ifdef ORA DEBUG
if (SQLERROR) printf("N- ");

else printf("Y- ");
#endif ORA DEBUG

return(! (SQLERROR));)

orainit ()
{ SQLERRNU=SQLERRCO=SQLERROR=0;

SQLERRST[0]='\0';

sqlreport(st,erst,err)
char *st,*erst;
int *err;
{ oermsg(SQLERRNU,erst);

strcpy(st,SQLERRST);
*err = SQLERRNU;
return(SQLERROR);

o~ft-H. Thu Jan 19 13:46:34 1989

oraerror(st,area)
char *st;
short *area;
{ if (! (SQLERROR))

{ SQLERROR = SQLERRNU abs(SQLERRCO
strcpy(SQLERRST,st);

*area) ;

2

Introduction to Directory Services Annex E : Code of the AutoRouter

Emdir.pol

Proposed Politic For Names and Forenames In the EmDir DB and Automatic Routing.

Bernard Heu se, 04/01/89.

The problem is how to deal with names and forenames in the routing of electronic mail
based on the EmDir database with addresses in the syntax:

[firstname '.'] [initial '.']5 [name] @ ...

The main difficulties corne from :
- for forenames :

- composed firstnames with or without dashes as 'Jean-Luc' or 'John Peter';
- the preferred firstname is not the first one listed in the official forenames;
- initials which can be registered as real initials or which can be the initials of the

complementary forenames;
- dots which are used in the DB firstname field as 'J.-L.', 'H. Angeles',
'David R.', 'C. J.', 'M.J.', 'N.';
- undescores which are used in the DB firstname field as 'Bemard_Andre'.

- for names:
- names with particles ('de', 'd' ', 'van', 'von', 'van den', 'di', ...) and the fact

that E-Mail addresses usually do not accept blanks inside;
- composed names with or without dashes as 'Ruhet Froissard' or

'Durand-Dupond';
- for married women, they are known by their husband's name and/or by their

own native name.

Let's define 'separator' (sep) a sequence of one or more of the following characters :
dash (-), underscore (_), blank (),dot(.) and kot(').

Let's define 'illegal address separator (ias) a sequence of one or more of the following
characters : dash (-), underscore (_), blank () and kot (').

An 'initial' (I) is a single character allowed as first character of a name or a firstname,
excluding sep.

A 'string' (St) is 0, 1 or more characters allowed to compose parts of names or
firstnames, excluding sep, each part being separated by sep.

-E2-

Introduction to Directory Services Annex E : Code of the AutoRouter

So

sepc
sep
iasc
ias
I

St

part
Ename
Efname
Aname
Afname

··-..
··-..
.. -
.. -
-..

··-.. -

··-..
··-.. -
.. -.. _ ..
.. -

1 1 1 1_1 1 1_1 1 1 .' 1 Ill

sepc I sep sepc
f I 1 1

-
1 1 1

_
1 1 1

.' 1 Ill

iasc I ias iasc
"a single letter allowed as first character of a name or a firstname, at

the exclusion of the characters of sepc"
"O, 1 or more characters allowed to compose parts of names or

firstnames, at the exclusion of the characters of sepc, each
part being separated by a character a sep"

III St
part I Ename sep part
part I Efname sep part
part I Aname ias part
part I Afname ias part

where Ename and Efname could be the syntax of respectively the name and the
firstname contained in the EmDir DB,

and Aname and Afname are the syntax of respectively the name and the firstname
plus initials when replacing dots by blanks in an E-Mail address.

Moreover, parts of the name and forenames should be ordered by preference of usage.

With such a syntax, an E-Mail address can be defined as:

[[I St ias]* I St '.'][I •.•J5[[I St ias]* I St]@ ...
!<--- firstname ---->II< I ->I !<---- name ---->I
!<--------- Afname --------->II<---- Aname --->I
!<--------- Efname --------->!!<----Ename --->I

The main drawback of this syntax is that it do not provide a mean to distinguish
whether two or more parts of a name or a firstname form in fact a single name or
firstname (e.g. "Jean-Luc" as firstname is equivalent to "Jean Luc" where "Jean" is the
firstname, and "Luc" and complementary forename). An other consequence of this is that
particles should not be concatenated in the E-Mail address if they are not in the name and
firstname fields of the EmDir DB. In this case, a ias should be used in the E-Mail address
(as underscore) to allow successful matching.

Such a common syntax should not be a big constraint for the content of the EmDir DB.
And a matching rule between E-Mail addresses and the fields NAME and FIRSTNAME
of the EmDir DB can be easily defined and implemented, by defining matching rules
between Afname and Efname, and Aname and Ename. This matching algorithm can be
from very simple (exact matching) to very complex and refined (based on the defined
syntax, with order unimportant, ...), but this is relevant to the EN section. The concern of
this document is to provide a base for the EmDir managers in such a way that the content
of the DB will conform to our matching rules, and is thus a guide to design the EmDir
user interface.

-E3-

Introduction to Directory Services Annex E : Code of the AutoRouter

Example of message rejected by the AutoRouter

Message
From:
To:
Subject:

inbox:6 - Read
<S=cernvax!MAILER-DEAMON;0=prlb2;P=uucp;A=rtt;C=be>
<S=heuse;OU=ts;O=info;P=fundp;A=rtt;C=be>
Returned mail: User unknown

----- Transcript of session foilows

CERN Emdir Automatic Router (Emdir DB).
Automatic Router failed. "dummy@dd.cern.ch" : Unknown recipient.

Use the nameserver to retrieve a CERN user's E-Mail address.
Send a mail to <nameserver@cernvax.cern.ch> with the keyword
'Help' as subject to receive more information about this service.

550 dummy@dd.cern.ch ... User unknown

Unsent message follows

Date
From
To
Message-Id
Subject

26 Apr 89 20:05
Bernard Heuse <heuse@ts.info.fundp.rtt.be>
<dd!dummy>
: <120*heuse@ts.info.fundp.rtt.be>
Test of DUMMY@DD.CERN.CH

Body is here. This is a test message.

Example of message routed by the AutoRouter

Message inbox:7 - Read
From : Bernard Heuse

<S=info.fundp.rtt.be!heuse;G=cernvax!ts;0=prlb2;P=uucp;A=rtt;C=be>
To B. Heuse <S=heuse;I=b;O=dd;P=uucp;A=rtt;C=be>
Subject : Test of B.HEUSE@DD.CERN.CH

>X-Rerouted-To : heuse@ts.info.fundp.rtt.be by CERN Automatic Router
(Emdir DB) .

Body is here. This is a test message.

- E4-

Introduction to Directory Services Annex F : List of Abbreviations

AnnexF

ACSE
ADMD
AEf
AFI
AFNOR
AMF
ANSI
ARPA
ARPANET
ASE
ASNl
AVA
BITNET
BSI
CCITT
CERN
CUDF
CS
DAP
DB
DBMS
DCC
DECNET
DF
DIB
OIN
DIT
DL
DNIC
DMD
os
OSA
DSP
DSP
DIB
OUA
DUR
EAN
BARN
ECMA
E-Mail
ES
ESA
ESPRIT

FJR
FfAM

List of Abbreviations

Association Control Service Element
ADministration Management Domain
Application Entity Title
Authority and Format Identifier
Association Francaise de NORmalisation
Address Mapping Function
American National Standards lnstitute
Advanced Research Project Agency
Advanced Research Project Agency NETwork
Application Service Element
Abstract Syntax Notation 1
Attribute Value Assertion
Because It' s Time NETwork
British Standards Institution
Comité Consultatif International des Télégraphes et Téléphones
Comité Européen pour la Recherche Nucléaire
Call User Data Field
Conceptual Schema
Directory Access Protocol
DataBase
DataBase Management System
Data Country Code
Digital Equipment Corporation Network
Directory Function
Directory Information Base
Deutshe Industrie Normen
Directory Information Tree
Distribution List
Data Network Identifier Code
Directory Management Domain
Directory Service
Directory Service Agent
Domain Specific Part
Directory Service Protocol
Data Terminal Equipment
Directory User Agent
Domain Under Resorption
Electronic Access Network
European Academic Research Network
European Computer Manufacturers Association
Electronic Mail
External Schema
European Space Agency
European Stategic Program for Research and devlopment in

Information Technologies
Entity / Relationship
File Transfer and Access Management

- Fl -

Introduction to Directory Services Annex F : List of Abbreviations

FTP
FTS
GCS
GES
GMD
GT
HEP
IBM
IDI
IDP
INCA
INRIA
IP
IPMS
IS
ISDN
ISO
ISODE
JANET
JTAM
LAN
LCS
LESDSA
LESu
LIS
LSPX
LT
MHS
MfA
MTS
(N)Add
NetNorth
NetServ
NLP
(N)SAP
(N)SPA
NTN
NRS
0/R
OSI
PAD
PC
PDN
PTDN
PIT
PRMD
PSAP
RARE
RDN
RFC

File Transfer Protocol
File Transfer Service
Global Conceptual Schema
Global External Schema
Gessellschaft fur Mathmatik and Datenverarbeitung
Global Title
High Energy Physics
International Business Machines
Initial Domain Identifier
Initial Domain Part
Integrated Network Communication Architecture
Institut National de Recherche en Informatique et en Automatique
Internetwork Protocol
lnterPersonal Messaging Service
Interna! Schema
Integrated Service Data Network
International Standardization Organization
ISO Devlopment Environment
Joint Academic NETwork
Job Transfer and Access Management
Local Area Network
Local Conceptual Schema
Local External Schema of the DSA
Local External Schema of the U sers
Local Interna! Schema
Large Scale Pilot eXercice
Local Title
Mail Handling System
Mail Transfer Agent
Mail Transfer System
(N-Entity) Service Access Point Address
North American Network
Network Server
NRS Lookup Protocol
(N-Entity) Service Access Point
(N-Entity) Service Access Point Address
Network Terminal Number
Network Registration Scheme
Originator / Recipient
Open System Interconnection
Packet Assembler Disassembler
Persona! Computer
Public Data Network
Primary Title Domain Name
Post Telegraph Telephone
PRivate Management Domain
Presentation-SAP
Réseaux Associés pour la Recherche Européenne
Relative Distinguished Name
Request For Comments

- F2-

Introduction to Directory Services Annex F : List of Abbreviations

ROSE
RPC
SNPA
SQL
TCP/IP
THORN
TR/32
UA
uco
UK
us
USSR
UUCP
VFS
VT
WKD

Remote Operation Service Element
Remote Procedure Cali
SubNetwork Point of Attachment
Simple Query Language
Transmission Control Protocol / Internet Protocol
THe Obviously Required Nameserver
(ECMA) Technical Report 32
User Agent
User Consultancy Office
United Kingdom
United States
Union of Soviet Socialist Republics
Unix to Unix CoPy
Virtual FileStore
Virtual Terminal
Weil Known Domain

- F3 -

Introduction to Directory Services Bibliography

[Ben-6.5/CM]

[Ben-6.5/M]

[COS-88]

[Der-88]

[Dimou-88]

[ECMA-117]

[FTAM-DS]

[HandBook]

[Huit-6.5/M]

[Huit-88]

[IS0-7498]

[IES-19/1]

[IES-19/2]

[Kille-6.5/CM]

Bibliography

Steve Benford, "Navigation and knowledge management within a
distributed directory system", IFIP WG 6.5 conference papers:
MHS and distributed Applications, Costa Mera, October 1988.

Steve Benford, Julian Onions, "Pilot Distribution Lists, Agents
and Directories", IFIP WG 6. 5 conf erence papers : Message
Handling Systems, Munich, October 1988.

Albert Biber, Johann Forster, "Cosine Specification Phase, Study
on Directories" (draft version), Soflab Gmbh, Munich, April
1988.

Eric Derruine, "Electronic Mail Gateways", FNDP Namur, June
1988.

Maria Dimou, "Naming Structures for Directory Services",
CERN/DO, July 1988.

ECMA, STANDARD ECMA-117: "Domain Specific
Part of Network Layer Addresses", June 1986.

E. Loevdal, W. Black, F. Fluckiger, K. Truoel, "Directory
Requirements for the Rare Cosine FFf AM service" (draft
version), CERN/DO, November 1986.

Keith Bartlett, "Handbook", Department of Trade and Industry,
USA, 1988.

Christian Huitema, Juan Antonio Saras, "The use of distribution
lists in MHS", IFIP WG 6.5 conference papers: Message
Handling Systems, Munich, October 1988.

Christian Huitema, "A proposai for a naming, data structure, and
name data distribution in RARE",
May 1988.

ISO/DIS 7498, "Information Processing Systems - Open System
Interconnection - Basis reference model".

Steve E. Kille, "Experience with the use of THORN", IESNEWS
No 19, December 1988.

Franco Sirovich, Massino Antonellini, "The THORN X.500
distributed Directory Environment", IESNEWS No 19, December
1988.

Steve E. Kille, "The Quipu Directory Service", IFIP WG 6.5
conference papers : MHS and distributed Applications, Costa
Mera, October 1988.

- Biblio I -

Introduction to Directory Services Bibliography

[Kille-6.5/M]

[Kille-88]

[Len-6.5/M]

[NETS-88]

[NRS-88]

[OSN-87]

[QUI-88a]

[QUI-88b]

[RFC-883]

[Shock-78]

[Sim-88]

[Sol-6.5/M]

[Stal-88]

[Tan-81]

[TR/32]

[WG3-88]

[X.400-88]

Steve E. Kille, "MHS use of Directory Services for routing ",
IFIP WG 6.5 conference papers : Message Handling Systems,
Munich, October 1988.

Steve E. Kille, "An Overview ofDirectory Services", University
College London, March 1988.

Thomas Lenggenhoger, Bernhard Plattner, Rolf Stadler, "The
ISO/CCITT Directory as a distributed database: data models",
IFIP WG 6.5 conference papers : Message Handling Systems,
Munich, October 1988.

B. Pasch, "NetServ", NetServ Help File, February 1988.

W. Black, "The Janet Name Registration Scheme", February
1987.

"Directory Standardization rethink results in a more limited
service", The Open Systems Newsletter, Vol 1 Issue 2, April
1987.

Steve E. Kille, "The Design of Quipu", Department of Computer
Sciences, University College London, July 1988.

Steve E. Kille, "The Quipu Directory", Department of Computer
Sciences, University College London, August 1988.

P. Mockapetris, "Domain Name Implementation and
Specifications", RFC-883, Nov. 1983.

John F. Shock, "Inter-Network Naming, Addressing and
routing", Xerox-PARC 1978.

Serge Simonet, "Le service de directory", FNDP Namur, 1988.

Karen R. Sollins, David D. Clark, "Distributed Name
Management", IFIP WG 6.5 conference papers : Message
Handling Systems, Munich, October 1988.

William Stallings, "Data and Computer Communications", Collier
MacMillan Publishers, London 1988.

Andrew S. Tanenbaum, "Computer Networks", Prentice/Hall
International Editions, 1981.

ECMA, ECMA Technical Report 32 : 'Directory Access Service
and Protocol", December 1985.

RARE-WG3: Directory services, Distribution List
'RARE-WG3', 1988.

CCITT X.400/ISO 10021-1, "MOTIS: System and Service
Overview", Version 5.6, April 1988.

- Biblio Il-

Introduction to Directory Services Bibliography

[X.402-88]

[X.500-88]

[X.501-88]

[X.509-88]

[X.511-88]

[X.518-88]

[X.519-88]

[X.520-88]

[X.521-88]

CCITT X.402/ISO 10021-2, "MOTIS: Overall Architecture",
Version 6.5, April 1988.

CCITT X.500/ISO 9594-1, "The Directory - Part 1: Overview of
Concepts, Models and Services", 1988.

CCITT X.501/ISO 9594-2, "The Directory - Part 2: Models",
1988.

CCITT X.509/ISO 9594-8, "The Directory - Part 8:
Authentification Framework", 1988.

CCITT X.511/ISO 9594-3, "The Directory - Part 3: Abstract
Service Definition", 1988.

CCITT X.518/ISO 9594-4, "The Directory - Part 4: Procedures
for Distributed Operations", 1988.

CCITT X.519/ISO 9594-5, "The Directory - Part 5: Protocol
Specifications", 1988.

CCITT X.520/ISO 9594-6, "The Directory - Part 6: Selected
Attribute Types", 1988.

CCITT X.521/ISO 9594-7, "The Directory - Part 7: Selected
Object Classes", 1988.

- Biblio ID-

