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ABSTRACT 

ENGLISH 

A great deal of research is currently carried on to introduce formal methods further in the 

software development process. But the use of formal specifications also involves the creation of 

automated tools to help managing them. Such tools require formal models to capture the 

semantics of their tasks. One of these tools deals with the gradual building of formal 

specifications from informal requirements. This is the field addressed by our work. It studies 

the processes underlying the gradual building of formal specifications, and sketches a model for 

representing such processes. Thus it provides a theoretical background for the formalization of 

the specification method that guides the specification process of a system. This has been done in 

two stages. The former consists in the study of a few formal languages based on an analysis of 

their expressive and deductive power. It makes up the PRODUCT LEVEL of this work. The 

latter is composed of a study of the specification method, followed in the solving of some case 

studies in some formal languages, and of an attempt at the modelling of this method. This 

makes up the PROCESS LEVEL of this work. 

FRANCAIS 

De nombreuses recherches sont actuellement menees afin d'introduire des methodes 

formelles dans le processus de developpement de logiciels. Mais l'emploi de specifications 

formelles implique aussi !'introduction d'outils automatises permettant de gerer ces methodes 

formelles. De tels outils necessitent des modeles formels afin de decrire la semantique de leurs 

taches. Parmi ceux-ci nous retrouvons les outils concemant la construction progressive de 

specifications formelles a partir de specifications informelles. C'est dans ce cadre que s'inscrit 

notre memoire. Nous etudierons done les processus sous-jacents a !'elaboration progressive de 

specifications formelles; apres quoi nous tracerons une esquisse d'un modele qui representent 

ces processus. Done, cela peut donner un referentiel theorique a la formalisation de methodes de 

specification qui guident le processus de specification d'un systeme. Pour mener cela a bien, 

deux etapes ont ete requises. La premiere a consiste a etudier quelques langages formels de 

specification, etude basee sur une evaluation de leurs puissances expressives et deductives; ceci 

formant le PRODUCT LEVEL de ce memoire. La seconde etape a consiste dans l'etude des 

methodes de specification que nous avons utilisees durant la resolution d'un cas representatif, et 

dans une tentative de modelisation de ces methodes, ce qui a constitue le PROCESS LEVEL de 

cememoire. 
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1. THE NIGHT BEFORE CRISIS 

"Twas the night before crisis, and all through the house, 
Not a program was working, not even a browse. 

The programmers were wrung out, too mindless to care, 
Knowing chances of cutover hadn't a prayer. 

The users were nestled all snug in their beds, 
While visions of inquiries danced in their heads. 

When out in the lobby there arose such a clatter, 
That I sprang from my tube to see what was the matter. 

And what to my wondering eyes should appear, 
But a Super Programmer, oblivious to fear. 

More rapid than eagles, his programs they came, 
And he whistled and shouted and called them by name. 

On Update! On Add! On Inquiry! On Delete! 
On Batch Jobs! On Closing! On Functions Complete! 

His eyes were glazed over, his fingers were lean, 
From weekends and nights in front of a screen. 

A wing of his eye, and a twist of his head, 
Soon gave me to know I had nothing to dread. 

He spoke not a word, but went straight to his work, 
Turning specs into code, then turned with a jerk, 

And laying his finger on the ENTER key, 
The system came up, and worked perfectly. 

The updates, updated; the deletes, they deleted; 
The inquires, inquired; and the closing completed. 

He tested each whistle, he tested each bell; 
With nary an abend, and all had gone well. 

The system was finished, the tests were concluded, 
The client's last change were even included! 

And the client exclaimed with a snarl and a taunt, 
"It's just what I asked for, but it's not what I want." 

(Anonymous) 
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2. INTRODUCTION 

It is becoming more and more obvious that formal specifications are bound to spread 

faster and faster in the early stages of the software development process, and therefore 

influence what will happen downstream of this process, namely the design, programming and 

maintenance phases. 

As a matter of fact, formal specifications improve a great deal of the qualities required 

in a good software engineering process. As discussed by B. Meyer in [DI-3], rigour and 

formalism in specification prevents most of the mistakes being usually found in informal 

requirements. Such mistakes, sometimes referred to as the 7 sins of the specifier, create 

numerous and costly backtrackings in the development process. The sooner a specification 

error is detected, the less expensive it is to correct. So the more rigourous and automation

oriented approach implied by the use of formal specifications is an actual need, even if not yet 

a reality everywhere ... 

A great deal of research is currently carried on to introduce formal methods further in 

the software development process, and derive benefit from their expressive and deductive 

power. This can simplify and automate some part of this process. However, the handling of 

formal notations and their gradual elaboration from informal requirements remains a heavy 

and complicated process, reserved to a handful of analysts that have been expensively and 

lengthily trained. Thus, the necessity of developing tools so as to help them in their arduous 

task has been emphasized recently, and has given rise to much research work. 

Such tools are of two kinds: "logistic" and "intelligent" ones. In the former category, we 

put graphical editors, report generators and syntactic analysers. In the latter, we find "expert" 

systems, which assist the specifier in the gradual building of formal specifications and the 

checking of completeness and consistency properties. These tools, with a greater process 

orientation, will be based on formal models of the method's steps and heuristics. 

A great deal of recent research in formalizing and automating software specification 

concerns a computer-based specification assistant. For example, Fickas [PA-1,4,8] proposes a 

knowledge-based system called KA TE which goes in that direction. This kind of tool requires 

models that involve a great deal of investigations in the following fields: 

- knowledge representation for the assistant, which is an expert-system 

- representation of requirements handled by the assistant, which cannot deal with 
informal requirements but needs formal specifications (and therefore formal 
languages) 
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- acquisition of specifications (through a dialogue with the analyst and/or user), 
and strategies or methods which are needed for guiding this process 

- the semi-automation of further stages in the software development processes, 
which occur after the specification step. For example, the automatic 
generation of prototypes, the design of the system architecture, etc ... 

In this dissertation, we shall not tackle the problems related to knowledge 

representation, nor propose a new language for formally representing requirements either. 

However, we shall be interested in the methods for turning informal requirements into formal 

specifications. 

So our work addresses the processes underlying the gradual building of formal 

specifications, but also the modelling of such processes. This thesis aims at sketching a 

theoretical background for the formalization of the specification method that guides the 

specification process of a system. 

To achieve this goal, it is necessary to study different empirical methods for building 

formal specifications in different languages. So we shall first study a few formal languages -

namely Z, RML and GIST - thereby acquiring some practice with them. And then a common 

case study will be treated in all these languages. 

So, the first step was to gather some practical experience among analysts who write , 

formal specifications from requirements every day. With this aim in view, we have been on a 

three-month training period at IBM U.K. Laboratories, where Z has been experimented as a 

specification language, to a certain extent, in the CICS design group (cfr [RS-1]). 

Over there, we have raised some important issues concerning Z with experienced 

analysts. This has been the major and most interesting insight to our work, because of close 

contacts with the persons who conceived and practice this language. This was not possible for 

both RML and GIST, which are the other two languages we have studied afterwards. 

This makes up the first part of this thesis, called the PRODUCT LEVEL. It also includes 

the study of these formal languages according to their expressive and deductive power. This 

evaluation, besides being very interesting in itself, will also help discovering some general 

features common to most formal languages. They will be used in our model later on. 

As we would like to outline some basic principles for modelling a specification method, 

several different languages have been chosen. This is necessary for detecting the aspects of a 

specification method that are inherent in a given language, and those that are independent of 

it. 
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Thus, our practical experience gained in formal specifications will provide insight into 

the specification methods we have followed. This is the subject of the second part of this 

thesis, called the PROCESS LEVEL. 

In a first time, we examine the empirical specification methods we have followed for the 

building of formal specifications in two languages. So, in both Zand GIST, we try to find out 

the processes and rationales that we have applied during the stepwise building of the 

specifications of the common case studies treated. This will be done most informally. 

Next, we take a higher-level point-of-view and attempt to sketch a model for describing 

a specification method. This model first distinguishes different levels in a specification 

method - for example, the process and rationale levels. And secondly, it also tells apart some 

aspects of a specification .method that depend on a given language and some that do not. 

Finally, we make some comments about the work achieved and some prospects for 

future research. 
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3. REQUIREMENTS SPECIFICATION: THE PRODUCT LEVEL 

3.1 INTRODUCTION 

This section studies three formal languages for writing specifications (Z, RML, GIST) 

through the solving of a common case study (the Library Problem). This will enable us to 

have both a theoretical and a practical approach to these three languages. We should also gain 

experience in the knowledge of the process of turning informal requirements into formal 

specifications. This will be of valuable help for the next section as we shall attempt to find out 

those processes and rationales that intervened in our specification. 

For each of these three languages the same stages will be followed: 

Presentation of an overview of the main features of the language. 

Treatment of the Library Problem, or at least of a part of it, in that language. 

Assessment of the expressive and deductive power of the language 

It is obvious that the quality of our dealing with these three points and the relevance of 

our conclusions depend to a great extent on the level of practice we have acquired in these 

formal languages. Our experience in some of them has been somewhat limited, due to both a 

limited amount of documents at hand and the relative scarcity of knowledge available about 

these languages in our environment. We have been able to interview people about important 

issues concerning Z and work with their invaluable help. This was not possible in the case of 

RML and GIST, for which the only references were papers published by their authors. 

Now, it is of some interest to give further details about the third point in our plan, viz. 

the expressive and deductive power of a formal language. What will be the criteria for the 

analysis that will be carried out on the three languages? 

3.1.1 EXPRESSIVE POWER 

The expressive power of a formal specification language is determined by the width of 

the field of what can be formalized within the limits of this language. But it is not only based 

upon the possibility of formalizing things within a given language, it also involves the 

easiness with which that can be done. That means that, if a language allows the description of 
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certain things, we must also examine more closely if this can be done without resorting to 

complex and somewhat cumbersome devices. 

Thus, for each language, we shall try to answer the following questions: what can or 

cannot be formalized? what is the price to pay? 

In short we shall examine the important issues of the scope of the language, its 

ability at modelling static and dynamic aspects of requirements, and the 

specialization area of the language in order to assess its expressive power. 

3.1.1.1 The scope of the language 

What types of requirements are addressed by the formal language? Requirements are 

divided into two general categories: 

(i) Functional requirements, which refer to the services the system is expected to provide 

[DI-7]. It encompasses both the functions to be automated and the objects of interest to 

the system. The functions are defined by their arguments, their conditions of 

applicability and the description of their effect on the system. The objects are defined by 

the applicable operations that can be associated with them and assertions which 

constrain them. 

(ii) Non-functional requirements, which restrict the types of solutions one might consider. 

As to informal requirements, one may distinguish [DI-1]: 

- interface constraints: define the ways the component and its environment 
interact. A program interacts with the operating system, database 
management systems and other packages, which provide services. So there 
is an interface language, with its syntax and constraints which is not taken 
into account by functional requirements. 

- performance constraints: are concerned with a broad range of issues 
dealing with time/space bounds: response time, workload, throughput and 
available storage space. Performances constraints are increasingly important 
in specifications, seeing the possibility of simulation and quick prototyping 
provided by new tools. 

- reliability constraints: are concerned with both the availability of physical 
components and the integrity of the information handled by the system. 
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- security constraints: deal with both physical and logical issues such as 
permissible information flows (e.g. for secure operating systems), and 
information inference (e.g. from statistical summaries about the database 
contents). 

- life-cycle constraints: first, those who favour the better development of a 
software. Thereby we mean qualities desired for a better system design, 
which would reduce life-cycle costs: maintainability, enhanceability, 
portability, flexibility, reusability of components, compatibility. Next the 
development process is always limited by available resources and time, 
which are non-functional constraints. 

- economic constraints: represent considerations relating to immediate and 
long term costs. 

- political constraints: deal with policy and legal issues. 

These are the non-functional constraints as classified by Roman. However most of 

them are not expected to be expressible in the formal languages we have practiced. They have 

been mentioned only for the sake of completeness, and do not play an important role (e.g. the 

economic and political constraints are too informal to be treated by Z, RML or GIST). 

Some techniques limit themselves to functional requirements, others are concerned 

only with particular non-functional requirements (e.g. reliability) while others cover 

functionality and a selected subset of non-functional requirements. 

3.1.1.2 Static vs. dynamic aspects 

The scope of a formal language can also be examined on the basis of another criterion: 

its ability to model static and dynamic aspects of a system, both its objects and its behaviour. 

The questions raised are: What kind of objects can be described in the language? What 

level of modularity does the language support? Are there powerful abstraction mechanisms 

such as generalization, aggregation, etc? 

Another important issue in the framework of this thesis is the modelling of the 

temporal behaviour of the system. Can it be done? We shall examine whether or not there 

exists a possibility of specifying realtime operations or an ordering of the execution of these 

operations. In other words, we would like to know whether or not it is possible to model time

related questions within the formal language. Not only the performance constraints mentioned 

above - regarding time performance bounds - but also the dynamic scheduling of operations 

and historical aspects. 
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3.1.1.3 Domain-specificity vs. domain-independence 

The expressive power also involves the determination of specialization areas, which 

are classes of problems for which the formalization in a given language is more appropriate. 

Current formal languages range from domain specific to domain sensitive and finally domain 

independent. 

3.1.2 DEDUCTIVE POWER 

The deductive power of a formal language is the ability to derive consequences from a 

set of axioms, which are phrases in a given language. 

So we shall first have a look at the language formal foundations. The deductive 

power of a language very much relies on the proof theory associated with it. 

Can the formal specifications be considered as a theory? Can theorems be deduced 

from it? Can one check whether a new phrase added to the existing specifications is a 

consequence of those already written, and so redundant? or in contradiction with them, and so 

creating inconsistencies? 

Another issue related to the deductive power of a language is the analyzability of the 

requirements by mechanical or other means. Are there tools which could be used to analyze 

the requirements? Does the language lend itself to such a mechanical analysis? This issue can 

be dealt with more precisely by taking three aspects into consideration: 

- the verifiability of a specification, i.e. the possibility of formally checking 
completeness and consistency. 

- the validation of a specification, i.e. the possibility of submitting the 
specification to the "customer" for analysis. This includes the executability 
of the requirements. Can simulations and prototypes be constructed in a 
systematic way from its requirement specifications, prior to starting the 
design or implementation? 

- the modifiability of a specification. 
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3.2 "Z": A FORMAL LANGUAGE AT THE PRODUCT LEVEL 

The first sub-section below will be dedicated to an overview of the main features that 

are usable in Z. In the second one, we shall present the complete handling of a case study. An 

evaluation of the Z deductive and expressive power will then be built up. 

3.2.1 AN OVERVIEW 

This section is mainly based on the reports whose references are [DI-3], [ML-1], [ML-3] 

and [ML-10]. The objectives of this section are not of course to give an exhaustive definition 

of the Z syntax. We only .want to concentrate on the concepts used in the following sections of 

this document 

3.2.1.1 Specification structure 

The structure of a typical Z document is organized as a sequence of informal text 

followed by some formal text (Z text). The informal text is the translation of the formal one in 

natural language. 

A Z text is composed of a sequence of Z phrases. These phrases refer to variables in 

order to define or constrain them. A Z phrase can also be a theorem. 

The formal texts describe both the data which model the system states and the 

operations on these states. 

The modelling of the system state creates the "data-space". It is generally divided into 

two parts: 

(i) the data which will be manipulated, 

(ii) the constraints made on those data. 

On the other hand, the modelling of the operations creates the "operation-schemas". 

We shall define what a Z schema is further (seep. 13). 

3.2.1.2 Definitions in Z 

The mathematical concepts used in Z are sets theory, functions, relations, sequences and 

first order predicate logic (quantifiers and propositions). 
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Each identifier used in a Z text has to be declared and typed. 

Example 1: if sq is the name of a variable,then 

{ sq : NI 5 < sq < 1 O • sq2 ). 

where "/" stands for "such that" and" •" stands for "for which", 
is a Z phrase which defines the following set: given sq, a natural number, 
such that sq is greater than 5 and lower than 10, the set formed of terms sq 
squared. We have thus defined the set: 

{36, 49, 64, 81) 

3.2.1.3 Types in Z 

All usable types in Z are defined in the Z Basic Library by given sets, datatype 

definitions, or schematype definitions. 

Given sets are sets which can be regarded as a parameter of a specification. 

Datatype definition introduces a new datatype which is a set and which can be used in 

declarations. 

A schematype is introduced by a schema(l) definition. 

Example 2: N, R, Z are standard sets, 

Example 3 .1: BOOK is a given set. 

Example 3.2: A given set definition can also be an identifier-list enclosed by square 
brackets: [and]. The identifiers enclosed in the brackets are the names of 
the given sets, i.e. [SUBJECT ,AUTHOR,BOOKJ 

Example 4: MESSAGE : : = 'ok' / 'false'/ 'true'/ 'fail' is a datatype definition. 

We can also build up a type using the powerset mechanism (P or F) or the cross product 

mechanism (X). 

Example 5: if BOOK is the given set which contains all the books issued until today, then P 
BOOK is the set of all the subsets of BOOK. We can then consider the set books 
P BOOK as the set of books which are in a particular library. 

We can use all the usual mathematical notations to handle sets, e.g. # for the cardinallity 

of a set, U for union of two sets, n for intersection of two sets, \ for difference of sets and 0 

for empty set. 

I ( 1) The notion of "schema" is defined in the sub-section 
"3.2.1.5 The schema notation". 
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3.2.1.4 The function notation 

Another useful Z mechanism is called "function". This one allows the specifier to 

establish an explicit relation between sets. 

When defining a function, we have to specify its name, its domain and its range. 

Example 6: 

talk_about: BOOK H SUBJECT 

In this example, "talk_about" is the name of our function, "BOOK" is its 
domain and "SUBJECT" is range. 

Using this tool, we· build sets of ordered pairs where the first element is selected from 

the function domain and the second from the function range. 

A. Kinds of functions 

In Z, a variety of notations can be used to accurately characterize the kind of relation 

existing between two sets. The following table summarizes these notations: 

Notation Meaning· 
AH B Relation 
A-+ B Total function 
A+B Partial function 
A>-+ B Total injection 

A *B Partial injection 
A>>-+ B Total surjection 

A >*B Partial surjection 

where A stands for the function domain and B for its range(l). These notations allow 

only the specification of binary relations. 

Beside these seven types of functions we have the sequence type at our disposal. This 

one is a particular kind of function whose domain is always defined as N (natural number). 

We can make use of four predefined sequence operators: head (to extract the first 

sequence element), last (to extract the last element of a sequence), front (to extract all but 

the last sequence elements) and tail (to extract all but the first sequence elements). 

(1) Those notions are defined in the next sub-section "Domains 
and ranges". 
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Example 7: ifwe consider tq : seq TANKER where TANKER is a given set then we can 
consider tq a partial function from N to TANKER and if we need to refer to 
the penultimate tanker of tq, we proceed like this: interesting_tanker = last ( 
front (tq)). 

B, Domains and ran2es 

Let us consider the following relation: R : A +-+ B 

Our work addresses not only the processes underlying the gradual building of formal 

specifications, but also the modelling of such processes, which should take into account 

aspects that are dependent and independent from a particular formal language. 

The domain of R consists of those elements of A that are the first members of the pairs 

in R. 

in R. 

The range of R consists of those elements of B that are the second members of the pairs 

We can also use the four following notations in order to construct our specification: 

(i)Domain restriction: A <I B 

The result is a relation or a function derived from B by keeping only those pairs whose 
first members are in set A. 

(ii) Domain subtraction: A -El B 

The result is a relation or a function derived from B by subtracting those pairs whose 
first members are in set A. 

(iii)Range restriction: A t> B 

The result is a relation or a function derived from A by keeping only those pairs whose 
second members are in set B. 

(iv) Range subtraction: A J:,,,, B 

The result is a relation or a function derived from A by subtracting those pairs whose 
second members are in set B. 

C, The overridin2 operator 

With this operator, the specifier will be able to replace a pair in a relation by another 

one: he can construct a new relation from an existing one. 
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Example 8: if the/unction/is currently defined by 

f = { 001 i---+ a, 002 i---+ b, 003 i---+ c } 
and 
g = { 002 i---+ c, 003 i---+ e, 007 i---+ Bond } 
then 
f E:B g = { 001 i---+ a, 002 i---+ c, 003 i---+ e, 007 i---+ Bond } 

The symbol" H" must be read as "maps to" and it is used to consider a special pair of a 

given relation. 

3.2.1.5 The schema notation 

When the specifier wants to specify the "data-space" or the "operation-schemas" in Z, 

he has to elaborate Z schemas(l). 

A schema can be displayed either in a vertical (see example 9a) or in a horizontal (see 

example 9b) format. 

Example 9a: 

Schema_! ______________ _ 

< declaration part > 
< predicate part > 

Example 9b: 

Schema_! 
6 

[ < declartion part > I < predicate part >] 

A Z schema normally consists of two separated parts: the declaration part and the 

predicate part, but one of these parts may be omitted. The meaning of these parts are different, 

depending on whether we read a Z schema defining the data-space or a Z schema defining an 

operation. 

Each schema also receives a name. 

I (1) Each of them defines a specification unit. 
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A. Schemas and data-spaces 

In the declaration part, we find the declaration of every set and function that is needed in 

our data-space. 

Example 10: 
PERSON ____________ _ 

firaLname: P NAME 
home_add : P ADDRESS 
id_num,ber : P NUMBER 
uaer_id: NAME +NUMBER 

In this example, NAME, ADDRESS and NUMBER are given sets. On 
the one hand, three subsets have been declared: first _name, home_ add 
and id_ number and on the other hand, we specify a total function from 
NAME to NUMBER: user id. 

On the other hand, the predicate part states all the constraints that we have to define to 

meet the customer's requirements. Those constraints have to be verified after the execution of 

every operation. They are the specification invariants of the system. 

Example 11: this example works toward the example 10 and constrains the domain and the 
range of the "user _id" function but also the size of the set "id_ number" to a 
predefined value "max size": 

#( id_number) $ max_aize 
dom user_id ~ firsLname 
ran user_id ~ id_number 

A data-space can be used as a schematype. Using this mechanism we can define new 

variables or sets having all the characteristics of our schematype. 

Example 12: ifwe consider the following schema: 

AdmiLvalue _____________ _ 

I x:N 
18 < X < 65 I 

then we can declare "age: ADMIT_VALUE". The value of"age" is 
defined as a natural number greater than 18 and lower than 65. 
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B. Schemas and operations 

The predicate part will be devoted to the specification of which data-space schemas, 

which input parameters and which output parameters are needed, in order to execute the 

operation. If we need local variables, we also declare them in this part. 

The second part can be divided into two new parts: 

(i) A list of all the preconditions of the current operation. If one of these 
preconditions is not verified, the operation will not be "executed". 

(ii) The predicates ensuring the accomplishment of the operation goals. 

Before giving an example, we need to take a few notational conventions: 

An undashe~ variable denotes the value of a variable before the operation 
execution. 

A dashed variable denotes the value of a variable after the execution of the 
operation. 

A variable followed by "?" denotes an input parameter of the operation. 

A variable followed by"!" denotes an output parameter of the operation. 

If the name of data-space schema is preceded by "L\" then the operation will 
modify the value of this data-space. 

If the name of data-space schema is preceded by "S" then the operation will not 
affect the value of this data-space. 

Example 13: 

Add_a_user ------------------------
~U ser_file 
new_user? : NAME 
mess!: MESSAGE 
number _of _user < M ax_U sers 
new_user? (/. file_user 
file_user' = file_user U {new_user?} 
mess! ="Ok_user_added" 
number _of _user' = number _of _u.,er + 1 

Here are some explanations: 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

- ( 1) USERFILE is a data-space and the current operation will modify its 
value if the operation is executed. 
- (2) new user? is the only input parameter of this operation. 
- (3) mess! is the only output parameter. 
- (4 ),(5) are the two preconditions. We can see that the number of user 
should be lower than Max Users and that the new user should not be in 
the set file_ user. This set has been defined in the schema USERFILE. 
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- (6) This predicate models the addition of the new user to the user set 
(file user). 
- (7fThis predicate models the way for assigning mess! a value 
- (8) This predicate models required modifications to the number of users. 

C. Schema operators 

Z provides schema operators to build new schemas from existing ones. We shall 

describe here four useful Z schema operators. 

a. Two binary schema operators: conjunction and disjunction 

(1) conjunction: 

The general notation of this operator: 

A 
schema_3 = schema_l A schema_2 

The effects of this mechanism are: 

(i) The definition of the schema named schema_3 

(ii) The declaration parts of schema_l and schema_2 are merged to create the 
declaration part of schema_3. Duplicated variables are merged. Their types 
must correspond. · 

(iii) The predicate parts of schema_l and schema_2 are joined by an "and" 
logical operator. 

(2) disjunction: 

The general notation of this operator: 

A 
schema_3 = schema_l V schema_2 

The effects of this mechanism are: 

(i) The definition of the schema named schema_3 

(ii) The declaration parts of schema_l and schema_2 are merged to create the 
declaration part of schema_3. Duplicated variables are merged. Their types 
must correspond. 

(iii) The predicate parts of schema_l and schema_2 are joined by an "or" logical 
operator. 
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b. The schema extension 

The general notations of this operator are: 

[ schema_ name I new _predicate ] ( 1) 

[ schema_ name ; new_ declaration ] (2) 

Using the notation (1), we can add a new predicate to the predicate part of a schema. 

The notation (2) allows a new declaration to be inserted in the declaration part of the 

schema. 

c. The schema inclusion 

When defining a schema, we can use existing ones. We only need to include their names 

in the declaration part of the new schema. So, if schema _l has been defined in a previous part 

of a specification, it is possible to define schema_ 2 as 

Schema_2 --------------------------
Schema_! 

If we include a schema, e.g. schema_l, in another one, e.g. schema_2, its declaration 

part and its predicate part are copied in the corresponding part of the new schema. 

As a matter of fact, schema_ 2 inherits each phrase of the declaration and predicate parts 

of schema 1. 

Moreover, thanks to this mechanism, more than one schema can be included in another 

one. It allows multiple inheritance. 
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3.2.2 A COMPLETE EXAMPLE 

In this part, we present the complete formulation in Z of the well known "Library 

problem" [EC-6]. 

After stating the problem, we shall begin our specification with the definition of the 

data-space. Then, we shall define all the operations that will be found in this case study. 

3.2.2.1 Informal specification of "The library Problem" 

Consider a small library database with the following transactions: 

I.Checkout a copy of a book/ Return a copy of a book; 

2.Add a copy of a book to the library / Remove a copy of a book from the 
library; 

3.Get the list of books by a particular author or in a particular subject area; 

4.Find out the list of books currently checked out by a particular borrower; 

5.Find out what borrower last checked out a particular copy of a book. 

There are two types of us'ers: staff users and ordinary borrowers. Transactions 1, 2, 4, 

and 5 are restricted to staff users, except that ordinary borrowers can perform transaction 4 to 

find out the list of books currently borrowed by themselves. The database must also satisfy the 

following constraints: 

I.All copies in the library must be available for checkout or be checked out. 

2.No copy of the book may be both available and checked out at the same time. 

3.A borrower may not have more than a predefined number of books checked 
out at one time. 

4.A borrower may not have more than one copy of the same book checked out at 
one time. 
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3.2.2.2 The State-space 

A. Predefined elements 

Here are given sets of objects that are to be dealt with by the new library system. 

[SUBJECT, BOOK, AUTHOR, COPY, PERSON] 

Note: The PERSON given set is a generalization of the STAFF and BORROWER sets 
that had first been spotted in the requirements. 

B. The Users 

In order to make a clear distinction of who can use what as far as the operations are 

concerned, two separate sets of persons are created for the purpose of recognizing what type 

of user is allowed to carry out an operation on the system. 

USERS 

staff· I? PERSON 
borrowers: I? PERSON 

staff n borrowers = 0 

The invariant part of this schema states that a staff member will not be allowed to use 

the library services. This separation is merely arbitrary, but it makes our task easier. 

c. The main data-space schema 

a. Sets, relations and functions 

We need to informally define the sets, relations and functions which are required to 

understand our data-space schema: 

copies: this set contains every copy of a book that belongs to the library we want 
to model. Such a copy can be either borrowed or not. 

books: in this set we find the books which can have one or many copies in our 
library. 

authors: in order to be able to issue queries about books, a set containing 
information about the author has been introduced. 

subjects: we have introduced a set containing information about the subjects. 
This will be useful if we look for all the books corresponding to a subject. 
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talk about: this relation will enable us to know which book(s) is related to which 
-subject(s) and conversely. 

written_by: this relation will enable to know which book(s) has been written by 
which author and conversely. 

is_a_copy_of: this function maps each copy of a book to the corresponding book 
in the books set. 

on _loan _to: this function maps a copy to its current borrower, if any. 

on_last_loan_to: this function is used to map the copy of a book to the last 
person who has read it before the current borrower. We have to introduce 
this function since Z do not off er any tools for managing the time and the 
old states of the system. Otherwise, we could have used the function 
"on loan to". 

SUBJECTS 

AUTHORS 

BOOKS 

p 
E 
R 
s 
0 
N 

Jls_o_copy_of! 

Figure Z.1. The Library Problem and its sets 

COPIES 
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b. The schema 

LIBRARY 
USERS 
copies: IJl> COPY 
books: IJl> BOOK 
authors: IJl> AUTHOR 
subjects: IJl> SUBJECT 
talk_about: BOOK~ SUBJECT 
written_by: BOOK ~ AUTHOR 
is_a_copy_of' COPY -H BOOK 
on_loan_to: COPY -H PERSON 
on_last_loan_to: COPY -H PERSON 

dom talk about = books 
ran talk_ about = subjects 
dom written_by = books 
ran written_by = authors 
dom is_a_copy_of = copies 
ran is_a_copy_of c books 
dom on_loan_to c copies 
ran on loan to ~ borrowers - -
dom on_last_loan_to c copies 
ran on _last _loan _to c borrowers 
V x: borrowers•# (on_loan_to [> {x}J < nbr_max 
V x: borrowers, Va,b: dom (on_loan_to [> {x}) • 

is_a_copy _of( a) #- is_a_copy _of(b) 

c. Assumptions and constraints 

By lack of proper information, many assumptions have been made: 

1. There is a relation called talk_ about between the books set and the subjects set. 
It implicitly states that a book can refer to many subjects and, reciprocally, 
that a subject can be discussed in many books. We went further on in 
constraining each book to be at least related to one subject and vice versa 
(schema constraints 1 and 2). It implies that a subject and a book cannot 
exist on their own without having at least one relation with a member of the 
other set. So no operation can ever create or delete a book without caring 
about its subjects and vice versa. 
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2.There is a relation called written_by between the books set and the authors set. 
It implicitly states that a book is written by many authors and, reciprocally, 
that an author can have written many books. We went further on in 
constraining each book to be written by at least one author and vice versa 
(schema constraints 3 and 4). It implies that an author and a book cannot 
exist on their own without being related to at least one member of the other 
set. So no operation can ever create or delete a book without caring about its 
authors and vice versa. 

3.There is a function called is_a_copy_of mapping the copies set to the books 
set. It states that a copy refers to one and only one book ( schema constraint 
5). How many copies can a book have? No range having been given, our 
library allows a book to have as many copies as the librarian could ever 
dream of, including the fact that there could be none (schema constraint 6). 

4.There is a function called on_loan_to mapping the copies set to the borrowers 
set. That is a partial function. It asserts that a copy can either be borrowed by 
one borrower or be available in the library ( schema constraint 7 and 8). 

5.We interpreted the terms borrower and last borrower 

A borrower is a person different from a staff member. 

The last borrower of a copy is the latest person having borrowed it before 
the current borrower, if this copy is currently borrowed. If not then it's really 
the last borrower. And if it has never been borrowed, then the copy does not 
belong to the domain of the function on _last_loan _to. This function shares 
common features with the on_loan_to function (constraints 9 and 10) 

The library problem constraints are dealt with as follows (in order of their appearance, 

cfr supra): 

1. Whether a copy is available for checkout or not, can be traced back by means 
of looking at whether this copy belongs to the domain of the function 
on _loan _to or not. Thus, it doesn't require any extra schema constraint. That 
also means that a copy is available for checkout as soon as it belongs to the 
copies set, which is when it is added to the library database. There is thus no 
intermediary state where a copy could be present in the library but not yet 
available for checkout. 

2.A copy of a book cannot either belong to the domain of on_loan_to or not ! 
Then, once again, no additional schema constraints are needed. 

3.Borrowing limitations for a borrower (schema constraint 11). Thus, we need a 
predefined integer variable if we want to cope with the third constraint of the 
requirements: "A borrower may not have more than a predefined number of 
books checked out at one time". nbr max: N 

4.Borrowing limitations for one book by one borrower (schema constraint 12) 
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3.2.2.3 Operations Schemas 

A. Introduction of the Userid notion 

These schemas are intended to introduce the notion of 'User' to the system which will 

perform some operations only for certain users categories. They will be used as preconditions 

to subsequent operations that are to be carried out by either staff members or ordinary 

borrowers, or possibly both. 

a. Staff identification 

The STAFF _MEMBER operation just checks whether the userid parameter passed to 

the operation (id?) is the one of a staff member; it fails otherwise. 

STAFF MEMBER 

EUSERS 
id?: PERSON 

id? e staff 

The STAFF _FAILURE operation just checks whether the userid parameter passed to the 

procedure (id?) is not the one of a staff member, it fails otherwise. 

STAFF FAILURE 

EUSERS 
id?: PERSON 
mess! : MESSAGE 

id? ef= staff 
mess! = this id_isn't_a_staff_id 

In case of failure, a message must be sent to the user. We thus need to introduce a 

datatype: "MESSAGE". It will be defined progressively. Its complete definition is given at the 

end of the specification. 
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b. Borrower identification 

The BORROWER_MEMBER operation just checks whether the userid parameter 
passed to the procedure (id?) is the one of a borrower. 

And it fails otherwise. 

BORROWER_MEMBER 

E.USERS 
id?: PERSON 

id? e borrowers 

Note: No need arose for a BORROWER_FAILURE operation since it was not useful to 
later operations. 
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B. A useful schema 

This schema resulted from the repetition of some predicates in some operations 

schemas. So they were taken away from them and replaced by including the following 

schema: 

NOT MODIFIED 

talk about' = talk about - -
written_by' = written_by 
books' = books 
authors' = authors 
subjects' = subjects 
borrowers' = borrowers 
staff = staff 

c. Check out a copy 

CHECK_OUT ~ CHECK_OUT_A_COPY_IF_NO_PROBLEM v 
CHECK OUT A COPY IF PROBLEM V STAFF FAILURE - -

The checkout operation makes use of suboperations described in other schemas and 

joined through a disjunction operator. When everything is all right regarding input parameters 

(existing copy, and so on ... ) then there is only one way to carry out the operation. Otherwise 

another operation handles the exceptions and a third one deals with non staff members 

attempts to carry out this operation. 
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a. Check out no problem 

CHECK_OUT _A_ COPY _IF_NO _PROBLEM 

~LIBRARY 
STAFF MEMBER 
NOT MODIFIED 
copy?: COPY 
bor? : BORROWER 
mess! : MESSAGE 

copy? e copies 
copy? ~ dom on_loan_to 
bor? e bor.rowers 
# ( on loan to I> {bor?}) < nbr max - - -
V c : dom ( on loan to I> {bor?}) • - -

is_a_copy_of( c) -::/= is_a_copy _of( copy?) 
on_loan_to' = on_loan_to U { copy? H bor? } 
on last loan to' = on last loan to - - - - - -
copies' = copies 
mess! = ok check out - -

The preconditions of this procedure are that: 

l.The checkout operation has been triggered off by a staff member. 

2.The copy already exists in the database 

3.This copy is not currently borrowed 

4.The borrower is also in the database 

5.He hasn't yet got either a copy of the book or too many copies at home ( < 
nbr_max) 

One effect upon the system is: to extend the domain of the function on_loan_to. 
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b. Check out with problem 

CHECK_OUT_A_COPY_IF_PROBLEM 

'E.Library 
STAFF MEMBER 
copy?: COPY 
Bor? : BORROWER 
mess! : MESSAGE 

( copy? (j: copies " 
mess! = bad_copy _identification ) 
V 

( copy? e dom on_loan_to " 
mess! = this_ copy _is_ already_ on _loan ) 
V 

( bor? ef= borrowers " 
mess! = unknown_borrower ) 
V 

( #(on_loan_to I> {bor?}) = nbr_max " 
mess! = too _much_books_checked_out_by _this_borrower ) 
V 

( 3 c : dom ( on_loan_to I> {bor?}) I 
is_a_copy _of( c) = is_a_copy _of( copy?) 

mess/ = the_borrower _has_already_a_copy_of_this_book) 

The preconditions of this procedure are that: 

l.The checkout operation has been triggered off by a staff member. 

2.0ne of the preconditions 2,3,4,5 of the CHECK OUT IF NO PROBLEM 
procedure is not met. - - - -

Note: precondition 1 failure will be looked after by the STAFF _FAILURE procedure. 

The output of this procedure is a message explaining the sort of problem faced. 
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D. Return a copy 

RETURN_COPY ~ RETURN_A_COPY_OF_A_BOOK_NO_PROBLEM v 
RETURN _A_ COPY _OF_A_BOOK_WITH_A_PROBLEM v STAFF_FAILURE 

When everything is alright regarding input parameters (existing copy, and so on ... ) then 

there is only one way to carry out the operation. Otherwise another operation handles with the 

exception treatments (in case of errors) and a third one deals with non staff members attempts 

to carry out this operation. 

a. Return a copy: no problem 

RETURN A COPY OF A BOOK NO PROBLEM 

t:. LIBRARY 
STAFF MEMBER 
NOT MODIFIED 
copy?: COPY 
bor? : BORROWER 
mess! : MESSAGE 

copy? E copies 
bor? e borrowers 
copy? e dom on_loan_to 
on_loan_to(copy?) = bor? 
on_loan_to' = { copy? } -<El on_loan_to 

on_last_loan_to' = on_last_loan_to EB{ copy? H bor?} 
is_a_copy_of = is_a_copy_of 
copies' = copies 
mess! = return ok 

The preconditions of this procedure are that 

1.The return operation has been triggered off by a staff member. 

2.The copy already exists in the database 

3.The borrower is also in the database 

4.This copy has been borrowed 

5. This copy has been borrowed by this borrower 
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The effect upon the system is: to restrain the domain of the function on_loan_to and 

redefine the function on_last_loan_to for the copy returned. 

b. Return a copy with problems 

RETURN _A_ COPY_ OF_A_ COPY_ WITH_A_PROBLEM 

'E.LIBRARY 
STAFF MEMBER 
copy?: COPY 
bor? : BORROWER 
mess!: MESSAGE 

( copy? q:·copies I\ 

mess! = this_copy _doesn't_exist ) 
V 

( bor? <I= borrowers A 

mess! = unknown_borrower ) 
V 

( copy? <I= dom on_loan_to A 

mess! = this_copy _is_not_currently _borrowed) 
V 

( on_loan_to( copy?) # bor? A 

mes.sf = this_copy _hasn't_been_borrowed_by _this_borrower ) 

The preconditions of this procedure are that: 

1. The return operation has been triggered off by a staff member. 

2.0ne of the preconditions 2,3,4,5 of the RETURN_IF_NO_PROBLEM 
procedure is not met. 

Note: precondition 1 failure will be looked after by the STAFF_FAILURE procedure. 

The output of this procedure is a message explaining the sort of problem faced. 
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E. Add a copy of a book 

ADD_COPY &. ADD_COPY_IF_BOOK_EXISTS V 

ADD COPY IF BOOK NOT EXISTS V ADD COPY WITH PROBLEM V - -- - - - - -
STAFF FAILURE 

When everything is alright regarding input parameters (existing copy, and so on ... ) then 

there are two ways to carry out the operation. The first one occurs when the book already 

exists in the library and the second one when it is a new book. In the latter case, we need to 

introduce all necessary information regarding this book (authors, subjects). 

Otherwise another operation handles the exceptions treatment (in case of errors) and a 

fourth one deals with non- staff members attempts to carry out this operation. 

a. Add a copy of an existing book 

ADD COPY IF BOOK EXISTS - - - -
A LIBRARY 
STAFF MEMBER 
NOT MODIFIED 
copy?: COPY 
book?: BOOK 
mess! : MESSAGE 

book? e books 
copy? ~ copies 
copies' = copies U { copy? } 
is_a_copy_of = is_a_copy_of U { copy? H book?} 
on loan to' = on loan to - - - -
on last loan to' = on last loan to - - - - - -
mess! = ok_copy_added 

The preconditions of this procedure are that: 

1. The add_ copy operation has been triggered off by a staff member. 

2.The copy does not already exist in the database 

3.The book belongs to the database. Therefore all the information concerning 

this book (authors, subjects) do not have to be introduced in our database 

since it has been done previously. 
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The effect upon the system is to add a copy in the corresponding set and define the 

corresponding instance of the function is_ a_ copy_ of. 

b. Add copy of a non-existing book 

ADD COPY IF BOOK NOT EXISTS - - - - -
/).LIBRARY 
STAFF MEMBER 
copy?: COPY 
book?: BOOK 
mess! : MESSAGE 
subjects?: IJJ> SUBJECT 
authors?: JFD AUTHOR 

book? ef= books 
copy? ef= copies 
authors? -:f 0 
subjects? -:f 0 
books' = books U { book? } 
copies' = copies U { copy? } 
is_a_copy _of = is_a_copy _of U { copy? H book?} 
authors' = authors U authors? 
written_by' = written_by U 

{ V a : authors? • book? written_by a } 
subjects' = subjects U subjects? 
talk about' = talk about U - -

{ V s : subjects?• book? talk_about s } 
on loan to' = on loan to - - - -
on last loan to' = on last loan to - - - - - -
staff = staff 
borrowers' = borrowers 
mess! = ok_added_new _book_andJirst_copy 

The preconditions of this procedure are that: 

1.The add_copy operation has been triggered off by a staff member, 

2.The copy does not already exist in the database, 

3.The book does not belong to the database either, 

4.This book must at least have one author and one subject, 
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The effect upon the system is to add a copy, a book, its author(s) and its subject(s) in 

their corresponding sets and define the functions is_a_copy_of, written_by, talk_about for 

them. 

c. Problems with the add copy operation 

ADD_COPY_WITH_PROBLEM 

ELIBRARY 
STAFF MEMBER 
copy?: COPY 
book?: BOOK 
authors?: [FI> AUTHOR 
subjects?: 1? SUBJECT 
mess! : MESSAGE 

( copy? e copies " 
mess! = this_copy _is_already _is_the_library) 

V 

(book ~ books I\ copy?~ copies I\ authors? = 0 I\ 

mess! = this_book_has_no _author) 
V 

( book ~ books I\ copy? 1 copies " subjects? = 0 I\ 

mess! = this_book_has_no_subject) 

The preconditions of this procedure are that: 

1. The add_ copy operation has been triggered off by a staff member. 

2.One of the preconditions of the ADD_ COPY _IF _BOOK _EXISTS or 
ADD COPY IF BOOK NOT EXISTS is not met - - -

Note: precondition 1 failure will be looked after by the STAFF _FAILURE procedure. 

The output of this procedure is a message explaining the sort of problem faced. 
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F. Remove a copy of a book 

REMOVE COPY ~ REMOVE COPY NO PROBLEM v - - - -
REMOVE_COPY_IF_PROBLEM V STAFF_FAILURE 

When everything is alright regarding input parameters (existing copy, and so on ... ) then 

there is only one way to carry out the operation. It does not matter whether the copy is the last 

one of a book or not. Because we assumed that a book can survive in the library database even 

if no copy refers to it. 

Otherwise another procedure handles the exception treatments (in case of errors) and a 

third one deals with non staff members attempts to carry out this operation. 

a. Remove a copy: no problem 

REMOVE_COPY_NO_PROBLEM 

ALIBRARY 
STAFF_MEMBER 
NOT MODIFIED 
copy?: COPY 
mess! : MESSAGE 

copy? E copies 
copy? ff dom on_loan_to 
is_a_copy_of = { copy?} ~ is_a_copy_of 
on_last_loan_to' = { copy? } ~ on_last_loan_to 
copies' = copies \ { copy? } 
on_loan_to' = on_loan_to 
mess! = ok removed 

The preconditions of this procedure are that: 

1. The remove_ copy operation has been triggered off by a staff member. 

2. The copy already exists in the database 

3.This copy is not on loan for the time being 

The effect upon the system is to remove a copy from the copies set 
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b. Trying to remove a non-existing copy 

REMOVE_COPY_IF_PROBLEM 

'ELibrary 
STAFF MEMBER 
copy?: COPY 
mess! : MESSAGE 

( copy? i copies " 
mess! = bad_copy _identification) 

V 

(copy? e dom on_loan_to " 
mess/ = this_copy_is_on_loan_and_cannot_be_removed) 

The preconditions of this procedure are that: 

l.The remove_copy operation has been triggered off by a staff member. 

2.0ne of the preconditions 2,3 of the REMOVE_ COPY _NO _PROBLEM is not 
met. 

Note: precondition 1 failure will be looked after by the STAFF_FAILURE procedure. 

The output of this procedure is a message explaining the sort of problem faced. 
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G. Get the list of books written by some mveo author 

GET_LIST_A.UTHOR .t. GET_L/ST_AUTHOR_NO_PROBLEM V 

GET LIST AUTHOR IF PROBLEM V STAFF_FAILURE - - - -
When everything is alright regarding input parameters (existing author, and so on ... ) 

then there is only one way to carry out the operation. Otherwise another operation handles the 
exception treatments (in case of errors) and a third one deals with non staff members attempts 

to carry out this operation. 

a. Get the list of an author's book 

GET _LIST _A UTHOR_NO _PRO BLEM 

ELIBRARY 
author?: AUTHOR 
books/: ? BOOK 
mess! : MESSAGE 

author? e authors 
books/ = dom ( written_by t> {Author?} ) 
mess! = enquiry_ ok 

The precondition of this procedure is that the author is in the system database 

The output of the procedure is an unordered list of books. 
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b. Problem: The author is unknown 

GET_LIST_A UTHOR_IF_PROBLEM 
ELIBRARY 
author?: AUTHOR 
mess! : MESSAGE 

author? (/ authors 
mess! = unknown author 

The preconditions of this procedure are that: 

1.The get_list_author operation has been triggered off by a staff member or by a 
borrower. 

2.The author is unknown to the system 

The output of this procedure is a message explaining the sort of problem faced. 
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H, Get the list of books tatkin& about a mven subiect 

GET LIST SUBJECT A GET_LIST_SUBJECT_NO_PROBLEM V 

- GET LIST SUBJECT IF PROBLEM V STAFF_FAILURE - - - -
When everything is alright regarding input parameters (existing subject, and so on ... ) 

then there is only one way to carry out the operation. Otherwise another operation handles 

exceptions treatment (in case of errors) and a third one deals with non staff members attempts 

to carry out this operation. 

a. Get the list of books: no problem 

GET LIST SUBJECT NO PROBLEM - - - -
ELIBRARY 
subject?: SUBJECT 
books!: I? BOOK 
mess! : MESSAGE 

subject? e subjects 
books! = dom (talk_about t> {subject?} ) 
mess! = enquiry subject_ ok 

The precondition of this procedure is that the subject is in the system database 

The output of the procedure is an unordered list of books. 
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b. Problem: The subject is unknown 

GET_LIST_SUBJECT_PROBLEM 
ELIBRARY 
subject?: SUBJECT 
mess!: MESSAGE 

subject? i subjects 
mess/ = unknown subject 

The preconditions of this procedure is that the subject is unknown to the system 

The output of this procedure is a message explaining the sort of problem faced. 
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I. Find out the list of book copies currently checked out by a borrower 

FIND_OUT &:. FIND_OUT_BY_STAFF V FIND_OUT_PROBLEM 

V FIND OUT BY BORROWER - - -

When everything is alright regarding input parameters (existing borrower, and so on ... ) 

then we must consider the userid of the person who is currently carrying out this operation. If 

he is a staff member then he has got access to any list of books borrowed by any borrower. If 

he is a borrower then he may just have a look at his own checkout list. 

Otherwise a third procedure handles the exceptions treatment (in case of errors) when it 

is used by a staff member. The operation always succeeds when carried out by a borrower 

because we take his userid, thanks to which he is issuing this query, and then we make sure he 

does not try to look into the library database beyond his privileges, by giving him his checkout 

list without asking for another id. 

Note: It would seem more natural to understand the requirements for this operation as 
producing a list of copies borrowed by a person, because we decided to make a 
difference between the concepts of copy and that of book. 

But we made up our minds to stick to the requirements and deliver a list of books. Since 

a borrower cannot have more than one copy of a book, it yields a similar result anyway. 

a. The list of books by a staff member 

FIND OUT BU STAFF - - -
ELIBRARY 
STAFF MEMBER 
borrower?: BORROWER 
books!: lfD BOOK 
mess! : MESSAGE 

borrower? e borrowers 
books! = ran ( dom ( on_loan_to t> {borrower?} ) 

<l is_a_copy_of) 
mess! = enquiry_book_borrower _ok 

The preconditions of this procedure are that: 

l.The find_ out operation has been triggered off by a staff member. 
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2. The borrower is in the system database 

The output of the procedure is an unordered list of books, the borrower of which is 
given in the inputs 

b. The list of books by a borrower 

FIND _OUT_BY_BORROWER 

'E.LIBRARY 
BORROWER_MEMBER 
books!: IP' BOOK 
mess! : MESSAGE 

books! = ran ( dom (on_loan_to t> {id?}) 
<l is_a_copy_of) 

mess! = enquiry _book_borrower _ok 

The precondition of this procedure is that the find_ out operation has been triggered off 
by a borrower 

The output of the procedure is an unordered list of books borrowed by the person who 
issued this query 

c. Problem: The borrower is unknown 

FIND_OUT_PROBLEM 

'E.LIBRARY 
STAFF_MEMBER 
borrower?: BORROWER 
mess! : MESSAGE 

borrower? ~ borrowers 
mess! = unknown borrower 

The precondition of this procedure is that: 

1. The find_ out operation has been triggered off by a staff member. 

2. The borrower is unknown 

The output of this procedure is a message explaining the sort of problem faced. 
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.1, Find out the last borrower of a a=iven book copy 

FIND OUT LAST BORROWER ~ FIND OUT LAST NO PROBLEM V - - - - - - -
FIND OUT LAST IF PROBLEM V STAFF FAILURE - - - - -

When everything is alright regarding input parameters (existing copy, and so on ... ) then 

there is only one way to carry out the operation. Otherwise another operation handles the 

exceptions treatment (in case of errors) and a third one deals with a non staff member attempt 

to carry out the operation. 

a. Find out the last borrower if he (or she) exists 

FIND OUT LAST NO PROBLEM - - - -
ELIBRARY 
STAFF MEMBER 
copy?: COPY 
borrower!: BORROWER 
mess! : MESSAGE 

copy? e copies 
copy? e dom on_last_loan_to 
borrower! = on_last_loan_to(Copy?) 
mess! = enquiry _last_ borrower_ ok 

The preconditions of this procedure are that: 

l.The find_out_last operation has been triggered off by a staff member. 

2.The copy is in the system database 

3.This copy has already been borrowed at least once in its life 

The output of the procedure is: an unordered list of books. 
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b. Find out last borrower if something is going wrong 

FIND OUT LAST IF PROBLEM - - - -
ELIBRARY 
STAFF_MEMBER 
copy?: COPY 
mess! : MESSAGE 

( copy? ~ copies A 

mess! = unknown_copy) 
V 

( copy? ~ dom on_last_loan_to " 
mess! = this copy has _never_ been _borrowed) 

The preconditions of this procedure are that: 

1.The find_ out_last operation has been triggered off by a staff member. 

2. The precondition 2 or 3 of the FIND_ OUT_ LAST_ NO _PROBLEM procedure 
is not met. 

Note: precondition 1 failure will be looked after by the STAFF _FAILURE procedure. 

The output of this procedure is: a message explaining the sort of problem faced. 

42 



K. The MESSAGE data-type 

We are now able to define the MESSAGE data-type: 

MESSAGE::= "this_id_is_not_a_staff_id" I 
"ok check out" I "bad copy identification" I - - - -
"this_copy _is_already _on_loan" I "unknown_borrower" I 
"too _much_ books_ checked_ out_ by_ this_ borrower I 
"the_borrower _has_already _a_copy _of_this_book" I 
"return_ok" I "this_copy_does_not_exist" I 
"this_copy _has_not_been_borrowed_by _this_borrower" I 
"ok_copy _added" I "ok_addedJirst_copy" I 
"this copy is already in the library" I - - - - - -
"ok_removed" I "this_back_has_no_autlwr" I 
"this_book_has_no_subject" I "bad_copy_id" I 
"enquiry _ok" I "unknown_subject" I 
"enquiry _book_borrower _ok" I "unknown_copy" I 
"this copy has never been borrowed" - - - - -
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3.2.3 EVALUATING Z 

In this section, we propose an evaluation of the Z language based on its expressive and 

deductive powers. 

3.2.3.1 Expressive Power of Z 

A. Scope of the language 

Z can only be used by a specifier to model the functional aspects of the requirements. 

So, if the analyst has to specify non-functional aspects of a problem, he can only 

express them in natural language and insert them into the formal specification. 

This is especially true for the non-functional constraints dealing with the environment of 

the future system (Interface, performance, reliability, security, life-cycle, economics and 

political constraints). 

B. Static and dynamic aspects 

a. Dynamic modeling in Z 

There is no standard Z feature for specifying a dynamic behaviour of the system. It is, 

for example, impossible to model explicitly that an operation A has to be executed before (or 

after, or in parallel with) another operation B. 

Nevertheless, the specifier can use an artificial trick which consists in introducing a 

token (tok!). This token is assigned a special value (vl) in the operation A and the 

precondition of the operation B includes a test over the token value (tok? = vl). Thus, if the 

value of the token is not equal to vl, the operation B will not start. 

Hence the two following schemas patterns: 

A __________ _ 
B -----------

tok!: TOKEN tok?: TOKEN 

tok? = vl 

tok! = vl 
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Nonetheless, two weak points remain: 

(i) when one needs to specify that the operation B cannot start before the operation 

A has been triggered for 10 minutes. This is closely related to the poor 

ability of Z to specify real-time problems. (see "Real time or historical 

aspects") 

(ii) it is also very difficult to specify that an operation must ( or can) be triggered 

every time an event or a special state transition occurs. This is closely 

related to the non-existence of modal operators in Z. 

b. Static modeling in Z 

It is possible to define all real world objects using the Z typing feature. 

The basic types we have at our disposal are the given sets. They are sets whose values 

are to be determined at a later stage of the specification. Thus, they can be considered as 

parameters of the specification. 

In the "Library problem", we have five such types: SUBJECT, BOOK, AUTHOR, 

COPY, PERSON. Beside given sets, we also have N, Z, R, and the data-types. 

An example of data-type has been given in the "Library problem" when we have defined 

the MESSAGE type. 

But usually, one needs to create more complex objects by using the schematype 

mechanism. If one creates a new schematype in Z, its internal semantics will be richer than 

the semantics of an Entity type in the Entity-Relationship Model because: 

(i) its attribute types can be not only sets, sequences, relations, function but also 
other schematypes. 

(ii) we are able to add constraints (expressed in formal language) into the 
schematype itself. 

(iii) we can use mechanisms like aggregation and decomposition, specialisation 
and generalisation, classification. (see second part of this thesis) 

In the "Library Problem", we have an important example of such features: the schema 

named "Library". 

Thanks to the inclusion or conjunction of schema names, a schema can also inherit of 

sets, sequences, relations, functions and predicates which are defined in the schematype 

included. 
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c. The association concept 

We also have a mechanism in Z which gives us the ability to establish an association 

between two Entity Types easily. We use a mathematical relation for that purpose. 

The domain and range constraints of a relation define the connectivity of the relation. 

d. Real time or historical aspects 

In Z, there is no standard feature which provides the analyst with the possibility of 

handling time and histories in a natural way. 

For real time problems, the analyst must create a new object which receives the CLOCK 

role, e.g., 

CLOCK ____________ _ 

I time: N 

An operation to initialize the clock and another one to update the time value have to be 

modelled. We have, for instance, 

INJT_CLOCK _________ _ 

I ~:~c~ 
and, 

TICK_TOCK -----------
1 aCLOCK 

time' = time + 1 

Then the following Z phrases have to be included in each operation which uses real-time 

references: 

:SCLOCK 

On the other hand, for the specification of histories, the analyst must define a "complex" 

schematype like: 

Hist_data _______________ _ 

I 
usefuLdata: P DAT A 

. time: N 
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where time will record when the useful data set has been recorded in the database. With 

this schematype we can create a new sequence: 

recorded_data : seq H isLdata 

The analyst has to define all the operations for manipulating this sequence, because time 

management primitives are not available in Z. 

C. Specialization areas 

Z could be classified as a domain-independent formal languages. 

However, because of its poor ability to express time related operations, the use of Z for 

specifying problems whose requirements do not involve time, events, parallelism, ... should be 

limited. 

Moreover, as Z is based on first order predicate logic, we can find other difficulties: 

(i) it is impossible to define parameterized operations, 

(ii) modalities, likes "possibility", "obligation", "interdiction", ... can only be 

translated heavily. 

D. New obiects or relations 

In this sub-section, we shall discuss the problem of introducing new objects into the 

formal specification, which did not appear in the informal one. 

As a matter of fact, using the Z specification language, the specifier may have to 

introduce new objects or relations that did not appear in the informal specification. 

As seen before, whenever the specifier has to specify a problem that needs a time 

counter, an object 'CLOCK' must be defined. We also need to define an object 'TOKEN' when 

we want the execution of an operation A to occur before the execution of an operation B. 

But other types of things in Z could also be added: 

(i) relation: in the "Library Problem", a function named "on_last_loan_to" has been 

added, although the function "on_loan_to" could have been more adequate. But 

since Z specifies only a snapshot of the system life, the introduction of this new 

function, whose purpose is to find a trace of the system past state, is needed. 
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(ii) schema: in the "Library Problem", the schema "NOT_MODIFIED" was introduced 

to simplify the other operation-schemas: the "visible" part of a schema being reduced 

to its most important components. 

3.2.3.2 Deductive Power of Z 

A. Type of deduction 

The syntax used in Z is mainly based on predicate logic with sets and relations. This allows 

the specifier to deduce a great deal of information about the informal requirements from the formal 

specifications. 

A Z formal specification can be considered as a theory where each Z schema is an axiom 

and has to respect every constraint defined in the data-space. Let us take an example from the 

"Library Problem": 

We can prove that no constraints of the data-space are violated after the execution of the 

procedure "ADD_ COPY_ IF _BOOK_ EXITS": 

(i) constraints (1) to (4) and (7) to (12): OK! 

(see "NOT_MODIFIED", "on_loan_to' = on_loan_to" and "on_last_loan_to' = 
on _last_loan _ to"); 

(ii) constraints (5): 

we must prove that dom is_a_copy_of = copies'. 

We have: 

dom is_a_copy_of = dom[is_a_copy_of U {copy? .... book?}] 
dom is_a_copy_of = dom[is_a_copy_of] U {copy?} 
dom is_ a_ copy_ of = copies U { copy?} 
dom is_a_copy_of = copies'. QED 

(iii) constraints (6): 

we must prove that ran is_a_copy_of books'. 

We have: 

ran is_a_copy_of = ran [is_a_copy_of U {copy? 1-+ book?}] 
ran is _a_ copy_ of = ran[is _a_ copy_ of] U {book?} 
ran is _a_ copy_ of~ books U {book?} 
ran is_ a_ copy_ of s;; books 
ran is_ a_ copy_ of S. books'. Which was to be proved. 
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Theorems can thus be inferred deductively in the classical framework of first order logic 

with equality. Let us take an example: 

For all c in copies, 
exists b: BOOK I b = is_a_copy_of (c) 

can be inferred from 

dom is_ a_ copy_ of = copies. 

Moreover, the reader can understand the meaning the specifier has given to a part of the 

informal specification only by looking, for example, at a relation and at the definition of its 

domain and range in the data-space definition. 

Let us examine the relation "is_ a_ copy_ of' of the "Library Problem". 

It is a partial function from COPY to BOOK. So, we consider only the copies of a 

particular library and certainly not the copies of all the libraries in the world! 

It can also be deduced that each copy is related to one and only one book (see 

constraints on the function domain). On the other hand, a given book can be linked to zero, 

one or more copies (see constraint on the function range). 

This last establishment could give rise to the specification of a new operation: 

ADD A NEWLY PUBLISHED BOOK. - - -

Its effect is the insertion of some information about a book which has been recently 

published, even if there is no copy of it on the shelves of the library. 

As seen for the incompleteness problem, the specifier can also deduce the preconditions 

of an error handler for a function from the preconditions of this operation. 

49 



B. Analizability of the formal specifications 

a. Verifiability of a specification 

Since a formal specification in Z can be viewed as a theory, it offers a background for 

the formal solving of both the inconsistency and incompleteness problems. 

There are several kinds of tools one could think of. The first of them could be an 

automated tool for syntax checking. For example, it should be able to verify that each variable 

has been defined and typed according to the Z syntax. 

A second level of consistency verification can be achieved. As seen before, the 

mathematical concepts used in Z are sets, relations and first order predicate logic. Thus, a 

computerized tool could also be used to verify that every Z schema is consistent and does not 

bring contradictions with regard to the rest of the specifications. One could, for example, 

check that the postconditions of a given schema do not violate a constraint of the data-space. 

A tool checking completeness can also be considered. Among other examples, it should 

be capable of spotting missing postconditions. 

b. Validation of a specification 

To validate a Z specification, the specifier can use two methods: 

(i) "Customer" analysis 

Every canonical Z specification is made up with formal and informal text. The 

latter helps the "customer" to understand the specifications. Nevertheless, the specifier's 

presence remains necessary, because we are not convinced that Z specifications can be 

easily read by unaccustomed people. 

(ii) Executability 

Up to now, an automatic processor, which could compile a Z document in order 

to produce a prototype of the future information system, does not exist. 

Nevertheless, a method for deriving procedures in Dijkstra's guarded command 

language from a Z specification exists. These procedures can obviously be easily 

translated in a Pascal-like language and be used as a prototype of the future system. (see 

[ML-4]) 
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c. Modifiability of a specification 

If the customer modifies his informal requirements (during or after the formalisation 

process), the specifier will be able to find out the modifications he has to do. 

The complexity of these modification(s) is highly model-dependent: the specifier may 

have to start it all over again, or just proceed to some little alterations locally. 

The specifier will have to scrutinize the set(s), the relation(s) and the operation(s) 

affected by the new customer needs. A good modularization of Z schemas can help the 

specifier in this task, because modifications may be located in some sub-schemas only. 

Thanks to the inheritance mechanism(l), these localized schema modifications will have 

consequential effects upon the entire specification. 

Let us suppose that the customer of the "Library Problem" is not pleased with a system 

which memorizes only the last book checked out by a particular borrower. He may want a 

more powerful system that would record all the books which have been checked out by a 

particular borrower. The fifth transaction of the "Library Problem" could then be changed 

into: 

"Give the list of borrowers who have already checked out a given copy of a book." 

First the data-state must be modified because the partial function "on_last_loan_to" is 

not adequate any more: it needs to be redefined as a relation: 

on_lasLloan_to: COPY+-+ PERSON 

If one takes a look at the invariant, one will be able to see that nothing must be changed. 

The domain and the range of "on_last_loan_to" are already correctly specified. 

Then, the operations affected by the data-space modification have to be reviewed. The 

first operation that uses this new relation is 

"RETURN_ A_ COPY_ OF_ A_ BOOK_ NO _PROBLEM": only the following Z sentence is 

replaced: 

on_lasLloan_to' = on_lasLloan_to EB { copy? 1-+ bor?} 

by the sentence: 

onJastJoan_to' = onJastJoan_to U (copy?, bor?) 

I (1) Due to schemas inclusion, conjunction or disjunction. 
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The second operation that uses this new relation is 

"FIND_ OUT _LAST _NO _PROBLEM". The result to produce is a list of borrowers, so in the 

declaration part, one will find: 

borrower!: P BORROWER 

instead of 

borrower!: BORROWER 

According to the definition of "on_last_loan_to" one does not need to modify the 

predicate part of this schema. Nevertheless, to be consistent with the requirement of our 

customer, we should have to modify the name of our operation in 

"FIND OUT ALL NO PROBLEM". - - - -
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3.3 A SHORTER ANALYSIS OF Two OTHER SPECIFICATION LANGUAGES 

After this detailed analysis of the Z language, we shall now approach two other formal 

languages for specifying requirements: RML and GIST. This analysis will only be based on the 

documents we have had at our disposal. 

3.3.1 THE RML LANGUAGE 

3.3.1.1 Introduction 

This section is based on two papers by Greenspan [ML-6] and [ML-13]. It should be 

noted that the syntax and semantics of RML is somewhat different in the two papers. The 

second of these [ML-6] presents a revised but shorter version of the language in which some 

important features have disappeared. And some very interesting new possibilities are not 

explained enough for us to build a practical example of a RML specification as satisfactorily as 

well-trained RML specifiers. 

Due to incomplete semantics and syntax we have been obliged to interpret some RML 

features our own way. So we cannot guarantee the correctness of these specifications, nor 

check it against a formal theoretical background of the language (like in Z for example). But it 

nonetheless remains a valuable exercise in elaborating formal specifications. Even though our 

way of approaching the language may be different from its designers, it is still representative of 

a formal language. We have tried to be consistent in our interpretations of the language, so that 

the analysis of specification building processes can still be carried out 

Just like in Z, we shall present an overview of the language features first, but with an 

application to the Library Problem at the same time. This mixed approach has been chosen on 

both efficiency and space grounds. Finally, we shall discuss the issues of expressive and 

deductive power of RML. 

3.3.1.2 An overview 

According to the authors, the most important thing regarding requirements is that they 

must capture our understanding of the environment within which the proposed system will 

function. They believe that this information is most appropriately presented in the form of a 

model of the real world, or more precisely our knowledge of the world. 

Consequently, the constructs of the language have their intellectual roots in Artificial 

Intelligence research on the representation of knowledge, specifically on ideas used by 
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semantic networks and frame-based representation languages as well as object-centred 

languages such as Simula and Smalltalk. 

The actual features of the RML language have been inspired by a number of basic yet 

powerful principles: 

- a good modelling language must allow the representation of data to be 
manipulated by the system, the representation of operations that tum input 
data into output data, and the representation of various constraints on both 
operations and data. That has led to the modelling of specifications thanks to 
three main concepts: entity, activity and assertion. 

- uniformity is an important characteristic of a language which is easy to learn 
and use. For this reason, RML adopts an object-centered view, where all 
information is recorded in terms of objects, inter-related by properties and 
grouped into classes; 

- in order to structure large, complex descriptions, RML supports a structured 
organization based on widely used abstraction principles: aggregation, 
classification and generalization. Again, it applies to all three kinds of 
information; 

- a fourth principle is to make it easier to state frequently occurring expressions 
and constraints. 

A fundamental principle of RML is that everything that is to be described is an object, 

so that a world model consists of a collection of object descriptions. RML distinguishes entity, 

activity and assertion objects in order to help modelling different kinds of things in the world. 

Such objects have relations between them. The latter can be: 

(i) functional relations: binary functions mapping an object to another one are expressed 

through the notion of property or attribute. This means that the object belonging to the 

range of the function will be stated as a property of the object belonging to the domain of the 

function. An example can be found in Figure RML.01 where there exists a function from 

"BOOKS~ NAMES" which is expressed by a property "name: NAMES" of BOOKS. 

Other non binary functions will be expressed through assertions, which are predicates 

binding variables that are objects. 
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(ii) abstract relations: these are relations arising from abstraction mechanisms. We mean 

that there is a relation between a class of objects and a "specialisation" of it, etc ... There are 

three abstract relations in RML: generalization, classification, aggregation. 

IS_ A enables the organisation of classes of objects into a hierarchy of subclasses and 

superclasses, with inheritance of properties down the hierarchy. 

IN indicates that an object or a class of objects is a member of a class or meta-class of 

objects. This amounts to Instance _of relationship. 

CLASS is a classification mechanism, it allows one to group objects that share 

common properties into a class and to talk about the class without mentioning any 

actual instance of it. It amounts to a typing mechanism. 

Aggregation allows one to view an object as a collection of the objects to which it 

is related by properties. 

In addition to being able to relate objects , we also need the ability to express constraints 

on the possible relationships between objects if we are to provide accurate models of the real 

world, distinguishing it from other possible worlds. Assertions will of course be suitable for 

this task, but we shall present a number of other ways of expressing special kinds of 

constraint. Their goal is to make it easier to state commonly occurring situations, and to make 

descriptions shorter and intelligible. 

A. Entity Modelin2 

Information about entities, and about all other kinds of objects, is presented through 

class definitions expressing facts about their instances. This looks in many ways like semantic 

data modelling, but in requirements modelling there are concepts that are described even 

though they will never be actually implemented ( ex: definition of "human", "time"). 

Let us illustrate entity modelling with a little example: we would like to model the fact 

that every book has one name, one author and may have one subject. This is accomplished by 

defining a class of objects, BOOKS, each instance of which has properties with suitable 

identifiers and restricted ranges of values. 
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entity class BOOKS with 
necessary part 

name:NAMES 
author: AUTHORS 

association 
subject: SUBJECTS 

Figure RML.01 A class definition 

In addition to giving the name or identifier of each property (name, author, subject), the 

specification of a property in a class definition introduces one or more constraints on the 

values of this property. First, they define a range for them. Second, a property can also be 

specified to belong to one or more property categories, which appear in bold face as prefixes 

to lists of properties. Each property category acts as a qualifier describing in more details 

some aspects of the functionality or the property. 

In the above example, the range of name is specified to be the class NAMES and the 

property category necessary states that every object in the class must have a value for the 

property. The convention is that if a property does not have a value, it will be said to have the 

special value null. 

Property categories provide a concise way of stating certain constraints which form part 

of the semantics of the relationship expressed by a property. 

Here is a list of predefined property categories available in RML for all objects (entity, 

activity, assertion) 

- part: property value is a component of the object and does not change with 
time 

- necessary: property value cannot be null 

- initially: property value cannot be null at the 1birth' of the instance in the 
class 

- finally: property value cannot be null at the 'death' of the instance in the class 

- association: property value is an entity object 

It could be interesting to show, thanks to a table, what type of objects can be related to 

what other types of objects. In other words, what objects can be properties of what other 

objects. To achieve this goal, we shall put property categories in columns and objects in rows, 

so that we can tell at a glance what can be related to what and through which category. A 
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hyphen means that the semantics of the language is not so definite as to tell whether or not this 

property category is possible or makes sense for a certain object(l). 

part necessary initially finally associa. 

Entity Ent Ent/Ass Ent/Ass Ent/Ass Ent 

Activity Act - Ass Ass -

Assertion Ass Ass -· - -

Of course each object has also its own property categories which do not appear in this 

table. But, as they will be explained in detail later, it was not necessary to introduce them at 

this stage. 

Here is a list of predefined property categories available in RML for entities: 

- producer: property value is an activity that creates an object, new 
instance of the class 

- consumer: property value is an activity that destroys an instance of 
the class 

- modifier: property value is an activity that affects the relationship 
in which the instance participates but not its membership in the class 

The Library problem provides a great deal of examples to illustrate these concepts. So 

we shall start to model entity classes right now. This will enable us to illustrate most of the 

features presented above. 

entity class PERSON with 
necessary part 

name:NAME 
categ_person: 

{'Staff,'Borrower, 'Author} 

Figure RML.02 A RML "necessary part" illustration 

The entity class PERSON has two properties of the same category, the name which 

consists of two predefined category names (necessary and part). That means that the values 

for these properties can neither change, nor be null. So a person must have one name and 

nobody can change it. Second, a person must be an author or a staff member or a borrower, 

I (1) "Ass" stands for "assertion" and not "association". 
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not two or more of these. It is interesting to notice that a property is a function, and therefore 

maps an object to one and only one other object. In order to express non-binary relationships 

between entities, we should have had to resort to using assertions instead of properties. 

The next three classes are specialization of the PERSON entity class, through the use of 

the well-known "IS _A" mechanism, available in RML too. Inheritance of properties down the 

hierarchy is supported. 

entity class AUTHOR is a PERSON 

entity class STAFF MEMBER is a PERSON with 
necessary unique part -

staff id: STAFF ID - -

Figure RML.03 The "is a" RML mechanism 

This shows how classes can be related to each other by the IS_A relation. 'Subclasses' 

may have additional constraints on properties of the 'superclass', and may have other 

properties (or attributes) applicable to them. For example, an identifier has been added to 

STAFF _MEMBER. But no further information about AUTHOR has been considered useful 

here, in the context of the requirements stated above (in the chapter about Z). 

entity class BORROWER is a PERSON with 
necessary unique part 

borrower id: BORROWER ID 
necessary assocfation -

nbr_copies: NUMBER 
initially finally 

no_copies_borrowed?: (nbr_copies = 0) 
modifier 

increment: CHECK OUT COPIES 
(copy_borrower = this) 

decrement: RETURN COPIES 
(copy _J,orrower = this) 

Figure RML.04 The is a RML mechanism 

In order to satisfy the Library Problem constraint on the maximum number of copies 

that can be checked out by one borrower, a counter for check-outs has been added to each 

entity of the BORROWER class. The value of this counter will be updated by two activities, 

CHECK_ OUT_ COPY and RETURN_ COPY, which will increment and decrement it. These 

activities are those properties of the entity class BORROWER which appear in the modifier 

category. 

58 



An entity can also be related to assertions, which are objects too in RML. Two 

assertions have been added, the first one in order to ensure that the counter is initialized at the 

creation of an entity. and the other one to make sure that BORROWER's cannot be deleted 

from the system if they still have copies checked-out. As the predicates of these assertions are 

the same, only one of them has been left. It belongs to both categories initially and finally. 

The reader will find more complete information about assertions in section 3 of this chapter. 

entity class SUBJECT with 
necessary unique part 

keyword: KEYWORD 

entity class BOOK with 
necessary unique part 

book id: BOOK ID 
necessary part -

title: TITLE 
authors: class of AUTHOR 
subjects: class_ of SUBJECT 

producer 
addition: ADD _BOOK (book= this) 

Figure RML.05 Subject and book declaration 

A BOOK is related to a TITLE, a class of AUTHOR and a class of SUBJECT. 

entity class COPY with 
necessary unique part 

copy _id: COPY_ ID 
necessary part association 

of book: BOOK 
association 

borrowed_ by: BORROWER 
last_borrowed_by: BORROWER 

initially 
unborrowed?: (borrowed_by = null) and 

(last_borrowed_by = null) 
producer 

addition: ADD_ COPY (copy = this) 
consumer 

deletion: REMOVE_COPY (copy= this) 
modifier 

return: RETURN_COPY (copy= this) 
checking_ out: 

CHECK_OUT_COPY (copy= this) 

Figure RML.06 The copy declaration 

A COPY has an identifier COPY _ID, it is related to one and only one book (of_book). It 

can be related to one borrower (borrowed_by). So if the value of this property is null, then it 
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simply means that the copy is not borrowed at the moment. There is also another relation, 

named /ast_borrowed_by, the purpose of which is to indicate the latest person that borrowed 

the copy before the current borrower. 

At the creation of an instance in the class, an assertion must be verified (the one in the 

category initially). The latter asserts that at the instant a copy exists in the library, it is 

available for check-out. This was not explicitly stated in the informal requirements, but 

assumptions have to be made when silences arise from these ones (This is one of the reason 

for which formality helps building more accurate and sturdy specifications than the informal 

method) 

An interesting feature is presented in this example: the activities creating, deleting or 

modifying an entity of the class are mentioned explicitly in properties of the entity. Several 

categories are available. First the producer category allows the specifier to explicitly state 

those activities that create a new entity. Likewise, the consumer category is for those 

activities that delete a new entity. And finally, the modifier category lists those activities that 

modify one or more relationships (property values) of the entity, without creating or deleting 

it. 

This example also introduces another technique for stating constraints, namely property 

binding, which looks a little like parameter binding for procedures in programming languages. 

It is used to further specify the relationship of an object and its properties, by restricting some 

of the attributes or property values. To illustrate this, let us take the property return of the 

entity class COPY. Its value is an activity of the class RETURN_ COPY, whose property copy 

will be the instance of the entity class COPY modified by this activity(l ). Thus, this is a 

proper way of specifying which properties of an activity are "bound" (constrained) when that 

activity is related to some other object. 

(1) This refers to prototypical instances of the class being 
defined, and will be viewed as a variable ranging over this 
class. 
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B. Activity Modellim: 

One can find in [ML-13] a definition of what an activity is in RML. An activity is used 

to represent something that happens in the world, something which has a start and end times. 

It captures information about events in the world and usually has as instances at any moment 

of time events which are taking place then. 

Events are related by properties to other events (e.g. component activities which must 

occur as parts of this occurrence of an activity). Events are also related to entities participating 

in them, and to assertions constraining them. 

Here is a list of additional property categories available in RML, specifically for 

activities: 

- input: property value is an entity that participates in the activity being 
defined and is of interest at the start time of the activity; it is removed by 
this activity from its property value class 

- output: property value is an entity that participates in the activity being 
defined and is of interest at the end time of the activity; it is added by this 
activity into its property value class 

- control:property value is an entity that affects the activity being defined 
but whose properties and relationships are not altered by this activity 

- actcond:property value is an assertion which becomes true at a point in 
time if and only if an instance of the activity being defined begins at that 
point in time 

- stopcond:property value is an assertion which becomes true at a point in 
time if and only if an instance of the activity being defined ends at that point 
in time 

Let us see how this all works on examples from the Library Problem. 

activity class CHECK_ OUT_ COPY with 
input output 

copy: COPY 
copy_ borrower: BORROWER 

control 
user: PERSON 

initially 
authorized?: 

(categ_pers of user= 'Staff) 
not_ borrowed _yet?: 

(borrowed_by of copy= null) 
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not same book and borrower?: 
- - - -(not exists x in COPY) 

finally 

part 

such that 
(borrowed_ by of x = copy_ borrower) 

and (of _book of x = of_book of copy) 
under maximum?: 

- (nbr _ copies of copy_ borrower 
< NBR _MAXIMUM_ COPIES _BY _BORROWER) 

checked out?: 
(borrowed_ by of copy = copy_ borrower) 

pl: ASSIGN_BORROWER ( c = copy, 
b = copy_ borrower) 

p2: INCREMENT (counter= nbr_copies of 
copy_ borrower) 

Figure RML.07 CHECK_ OUT_ COPY in RML 

The first activity modelled is the CHECK_ OUT operation. The attribute copy has been 

classified in both the input and output categories, because a copy exists before and after this 

activity has been carried out, but one of the attributes of this entity is modified by the activity 

(thus it could not be in the control category). This is the same for the entity copy _borrower. 

So these two entities are removed and re-added in their classes, after a modification of one or 

more of their property values. 

The property user is an entity which is intended to represent the person that performs ( or 

rather make the computer perform) the activity. This comes from a constraint stated in the 

Library Problem, which restricts the access to certain operations for certain categories of 

users. This one, for instance, is restricted to staff members. 

The property category initially is very useful for activities. We know that an activity, 

like any other object in RML, has properties. These can be entities, other activities and 

assertions. So an activity can be related to assertions. If the assertion belongs to the property 

category initially, its value cannot be null at the start time of the activity. Since a non-null 

value for an assertion means that it is true, this true assertion corresponds to a condition that 

must be met before the execution of the activity, which is the definition of a precondition in 

fact Therefore this is the place where we shall state the preconditions of the activity.~: in 

the less recent version of the language syntax, this property category was called precond for 

operations, so the meaning was very accurate already). 

In our example, the first precondition is that the activity can be triggered by staff 

members only. So we have stated a property authorized? which is a predicate that has the 

value true if the attribute categ_yers of user has the value 'Staff. Another precondition is that 

the copy must not be currently borrowed. The last two preconditions arise from two of the 
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Library Problem constraints, which give a maximum amount of copies available for a 

borrower to check out and prevent their borrowing several copies of the same book. 

The property category finally is very similar to the property category initially, as far 

as their meanings are concerned. It consists of a set of assertions that must be true at the end of 

the activity, which means that they amount to postconditions. We only have one example at 

hand in this case, the property checked_out?. This one states that the attribute borrowed_by of 

copy has the value of the property copy _borrower. These two entities are therefore linked 

from now on. 

Finally, the property category part allows the specifier to refine the description of the 

activity being specified, by defining subactivities which make it up. Note that these ones are 

not ordered in any way, it is up to the designer to state any constraints on their temporal 

ordering as explicit assertions. Here the activity is made up of two parts, one for "linking" a 

copy to its borrower, and another one to increment the counter for those copies already 

checked out by that person. 

activity class RETURN COPY with 
input output -

copy: COPY 
copy_ borrower: BORROWER 

control 
user: PERSON 

initially 

finally 

part 

authorized?: (categ_pers of user= 'Staff) 
borrowed?: 

(borrowed_ by of copy = copy_ borrower) 

checked_ out?: (borrowed_ by of copy = null) 
update _last_ borrower?: 
(last_ borrowed_ by of copy = copy_ borrower) 

pl: DEASSIGN_BORROWER (c = copy) 
p2: MEMORIZE _LAST_ BORROWER 

(c = copy, b = copy_borrower) 
p3: DECREMENT (counter= nbr_copies of 

copy_ borrower) 

Figure RML.08 RETURN_ COPY in RML 
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This activity is very like the previous one and so does not require any additional 

comments. 

activity class ADD COPY with 
output -

copy:COPY 
control 

copy _identification: COPY_ ID 
book: BOOK 
user: PERSON 

initially 

finally 

part 

authorized?: (category of user= 'Staff) 
correct id?: (not exists x in COPY 

- such that 
copy _id of x = 
copy _identification) 

add_copy?: 
(copy _id of copy= copy _identification) 
and (of_ book of copy = book) and 
(borrowed_ by of copy = null) and 
(last_borrowed_by of copy= null) 

pl: GET_BOOK (b = book) 
p2: FIND_ IDENTIFIER 

(id = copy _identification) 
p3: CREATE_COPY (c = copy, b = book, 

id= copy _identification) 

Figure RML.09 ADD_ COPY in RML 

The activity ADD_ COPY has copy as output property, because one of its main action is 

the creation of that entity. Two assertions have proved necessary, one asserting that this 

operation must be executed by staff members only, and another one asserting that the 

copy _identification - found by the subactivity FIND_ IDENTIFIER - must be different from 

all the identifiers of other existing copies (this assertion is the correct_id? property). 

Note that the activity ADD_ COPY will work properly if the corresponding book has 

been recorded before. Thus, if this is not the case, the activity ADD BOOK - whose purpose 

is to register a book in the system memory - will have to be triggered off before ADD_ COPY. 

activity class ADD_ BOOK with 
output 

book:BOOKS 
control 

book identification: BOOK ID 
book-title: TITLE -
book=subjects: class_of SUBJECT 
book authors: class of AUTHOR 
user: PERSON -
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initially 

finally 

part 

authorized?: (category of user= 'Staff) 
correct id?: (not exists x in BOOK 

- such that 
book id of x = 
bool(identification) 

add book?: 
(book id of book = book identification) 
and (title of book = book title) 
and (authors of book= book authors) 
and (subjects of book= book_subjects) 

pl: GET BOOK TITLE (t = book title) 
p2: GET=BOOK=SUBJECTS (s = book_subjects) 
p3: GET_BOOK_AUTHORS (a= book_authors) 
p4: FIND _IDENTIFIER 

(id= book identification) 
p5: CREA TE BOOK (b ;;;; book, t = book title, 

- b auth = book authors, 
b=subj = book)ubjects, 
id = book identification) 

Figure RML.10 ADD_ BOOK in RML 

The activity ADD_ BOOK is very similar to ADD_ COPY. Thus no additional comments 

are needed. 

As to the REMOVE_ COPY activity it is fairly simple too. 

activity class REMOVE COPY with 
input -

copy: COPY 
control 

user: PERSON 
initially 

part 

authorized?: (category of user= 'Staff) 
unchecked out?: 

- (borrowed_by of copy= null) 

pl: DELETE_COPY (c = copy) 

Figure RML.11 REMOVE COPY in RML 

Now we shall deal with the query activities stated in the library problem. Thus we shall 

have to work out lists of books, given a certain filter: the books written by a given author, 

those dealing with a given subject and those borrowed by a given person. These operations are 

very much alike in RML. They all have a list of BOOK as output. The only important 

difference lies in the postconditions, which are assertions put into the finally property 

category. A predicate thus describes for each activity the condition for a book to be in the 

output list. 
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activity class GET_BOOKS_BY_AUTHOR with 
output 

list: class of BOOK 
control -

author: AUTHOR 
finally 

list found?: forall x in BOOK 
- author in authors of x 

=> x in list 

Figure RML.12 GET_BOOKS_BY_AUTHOR in RML 

activity class GET BOOKS BY SUBJECT with 
output - - -

list: class of BOOK 
control -

subject: SUBJECT 
finally 

list found?: forall x in BOOK 
- subject in subjects of x 

=> x in list 

Figure RML.13 GET_BOOKS_BY_SUBJECT in RML 

There are no preconditions to these two activities for they can be executed by anybody, 

either staff member or reader. The next one is different, because the query can be executed by 

a staff member or a borrower, but the latter may only have a look at their own check-out list. 

This is stated explicitly in the initially part of its specification by a combination (conjunction 

or disjunction) of simple conditions. 

activity class GET BOOKS BY BORROWER with 
output - - -

list: class of BOOK 
control -

borrower: BORROWER 
user: PERSON 

initially 

finally 

authorized?: (category of user= 'Staff) 
or ((category of user= 'Borrower) 
and (name of user=name of borrower)) 

list found?: forall x in COPY 
- borrowed_ by of x = borrower 

=> (of_ book of x) in list 

Figure RML.14 GET_BOOKS_BY_AUTHOR in RML 

The last operation required for the new system is the one which finds out the last 

borrower of a copy. Interpretation of the requirements is necessary here too. What does "last 
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borrower" mean? This question shows once again a problem typical of informal requirements: 

ambiguities. To solve it we have decided that the last borrower is the current one if the copy is 

currently borrowed, otherwise it is the latest person that borrowed it. 

activity class GET_ BORROWER_ OF_ COPY with 
control 

last borrower: BORROWER 
copy: COPY 
user: PERSON 

initially 
authorized?: (category of user= 'Staff) 

finally 

part 

last borrower found?: 
- (borrowed_ by of copy = null) 

and (last borrower = 
last_borrowed_by of copy) 

or (borrowed_by of copy<> null) 
and (last borrower = 

borrowed_ by of copy) 

pl: GET COPY (c = copy) 
p2: GET=LAST_BORROWER (c = copy, 

1 = last_ borrower) 

Figure RML.15 GET BORROWER OF COPY in RML - - -
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c. Assertion Modelline 

An assertion class is a closed formula with free variables, whose values are entities from 

given entity classes. An assertion token, member of the class, is a closed formula derived from 

an assertion class by binding each of its free variables. Every assertion token has an argument 

referring to the time when the assertion is supposed to hold. So a token represents a specific 

fact that is true at a specific time. 

Some commonly used constraints of a restricted form have been built into the RML 

notation and principles through such facilities as ranges for properties, property categories, 

binding assertions and rules about the IsA relation. 

To deal with more general constraints, RML also provides a First Order Logic language 

with logical connectives and quantifiers such as forall, exists, such that, not, and, or, 

implies, etc ... 

Predicates can deal with time in RML: assertions may involve the following functions 

and predicates involving time: 

- time comparators =, < and <= 

- functions start and stop, specifying the start and end time of an activity 
token 

- predicate in(x,y ,t) indicating whether x is an instance of y at time t. This 
can also be written (x in y at t) 

- function pv(x,y,t) returning the value of property y of object x at time t. 
This can also be written as (y of x at t) 

In addition, RML assertions subsume the usual notations for the logic of arithmetic and 

strings, and may involve the special symbols null and this. 

In order to represent more general relationships than functions we need assertions which 

play the role of predicates. Since uniformity is one of the guiding principles in designing 

RML, the language designers have chosen to also model assertions as objects organized into 

classes. In this case, an assertion class is to be interpreted as a predicate declaration. By 

analogy with entity and activity classes, instances of an assertion class will have zero or more 

attributes, which in this case include the free variables (arguments) of the predicate; these 

variables will be typed by the usual method of property definitions. If, for example, P is an 

assertion class with argument properties xl and x2 say, then at time teach instance of P is 

assumed to hold for constants which make the formula P(xl,x2,t) true. Thus, instances of 

assertion classes represent propositions which are true at that moment, in the same way as 
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instances of entity classes represent existing entities, and instances of activity classes 

correspond to occurring activities. Therefore in RML, in order to require that some condition 

be true, one must state that the property relating this condition to some object has a non-null 

value. In other words, truth of conditions is replaced by the presence of objects in assertion 

classes, where logical formulas written by designers are assumed to implicitly define distinct 

assertion classes. 

The understanding of an example will be made easier if we list property categories 

specific to assertions: 

- argument: the property represents a free variable of the predicate 
corresponding to the class; hence, for each token of this 
class, the values of the arguments represent one particular 
set of variable bindings 

- asserter: activity which makes this assertion true 

- denier: activity which makes this assertion false 

There were numerous examples of assertions in the properties of both activities and 

entities that have been modelled so far. The reader must certainly have noticed them. If not, 

here is a reminder of one of them, from the GET_BOOKS_BY_BORROWER operation 

(Figure RML.14): 

finally 
list found?: forall x in COPY 

- borrowed_ by of x = borrower 
=> (of book of x) in list 

Figure RML.16 An assertion in RML 

This illustrates how to express an assertion as a property of either an activity or an 

entity. But, for more complex and cumbersome assertions, and in cases where it is more 

suitable to treat assertions as objects (with classes and generalizations, and so on ... ), this could 

be expressed by an assertion on its own: 

assertion class LIST OF BOOKS with 
arguments - -

1: class of BOOK 
b:BORROWER 

necessary 
list found?: forall x in COPY 

- borrowed by of x = b 
=> (of_bookofx) in 1 

Figure RML.17 An assertion as a property 
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and be introduced in the operation (summarized here) in this fashion(l): 

activity class GET_BOOKS_BY_BORROWER with 
output 

list: class of BOOK 
control -

borrower: BORROWER 
finally 

list found?: LIST OF BOOKS (1 = list, 
- - b = borrower) 

Figure RML.18 How to use a property? 

As list Jound? is a property whose value must be true at the end of the activity, it means 

here that the assertion LIST_ OF_ BOOKS may not have the value null. Thus, the predicate 

must be true. And so the variables 1 and b must be instantiated with values that will make this 

predicate true. As a result of property binding, b is assigned the value of borrower and so 

becomes bound, whereas 1 remains free and will be instantiated and therefore supply a value 

for list, which is an output of the activity. 

I ( 1) Actually, this is a kind of procedural abstraction 
considering assertions as operations with a boolean range. 
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3.3.1.3 Evaluating RML 

A, Expressive power 

a, Scope of the Iammm:e 

RML mainly deals with functional requirements. It seems that non-functional 

requirements are not addressed by RML. At least not explicitly, without resorting to complex 

devices, which we do not know about for lack of sufficient practice in RML. 

b, Static and Dynamic aspects 

RML allows the specification of entities and relations (binary through properties and 

n_ary through assertions), which has the power of an entity-relationship model. RML also has 

abstraction mechanisms current in data modelling languages: classification, aggregation, 

generalization. So these powerful features allow the building of objects in a stepwise fashion, 

which is of paramount importance for the specification of large systems. Here is an example, 

inspired by the Library Problem: 

entity CHILD_ BORROWER in PERSON_ CLASS 
isa BORROWER with 

association 
teacher: TEACHERS 
school: SCHOOLS 

This is the description of an instance of the class CHILD _BORROWER (classification), 

which is itself a member of the meta-class PERSON_ CLASS (classification). Each member of 

the class CHILD_ BORROWER is also a member of the class BORROWER, which means 

that they inherit the properties of the instances of the class BORROWER (specialization). 

Finally, an entity of the class CHILD_ BORROWER is made up with properties, both specific 

and inherited (aggregation). 

Moreover, these abstraction mechanisms are also available for operations and assertions. 

Thus there can also be hierarchies of operations, assertions and so on ... The most interesting 

use of such hierarchies is when a hierarchy of operations or assertions is associated with a 

hierarchy of entities. And so, when the specifier gradually builds the specification of the 

system objects, he can refine the operations working upon them at the same time. 
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For example, if the specifier considers the rough entity class BORROWER, in a first 

time he/she will define the activity class ADMIT_BORROWER accordingly. But later, after 

refining BORROWER into CHILD_BORROWER and GROWN-UP_BORROWER, he will 

need to refine ADMIT BORROWER into ADMIT CHILD BORROWER and - - -
ADMIT_ GROWN-UP_ BORROWER. The resulting piece of specification will be: 

activity class ADMIT BORROWER with 
output-

< ... > 
part 

b: BORROWER 

pl: FIND_ CODE_ NUMBER 
< ... > 

activity class ADMIT_ CHILD _BORROWER 
isa ADMIT BORROWER with 

output 

< ... > 
part 

b: CHILD BORROWER 

p0: RECORD_ TEACHER_ AND_ SCHOOL 
pl: FIND_CODE_NUMBER_CHILD 
< ... > 

This activity is a specialization of the ADMIT_BORROWER activity. It should be 

mentioned that properties are inherited by default, but can be redefined. In this example, the 

output property b is redefined otherwise in the specialized activity class 

ADMIT_ CHILD_ BORROWER. As to the property p0, it is specific to a child borrower and 

so must be added, whereas the property pl just needs to be adapted to fit in the refined activity 

class. 

To our knowledge, there is no inhibition mechanism in RML that would allow to drop 

some undesired properties. They can only be redefined. 

Dynamic aspects of the system can be defined through assertions. As activity 

preconditions depend to a great extent on assertions, it is possible to define a sort of behaviour 

of the system. These activities modify in tum assertions, namely make them true or false, and 

so some other activity preconditions can become true. 

Now what about the temporal behaviour of the system? 

It is possible to define a standard calendar time in RML, which is very useful for many 

applications and which would allow the modelling of the dynamic scheduling of operations 

for example. 
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The solution proposed in [ML-6] is to overlay on top of the linear time a temporal 

scheme based on intervals associated with activity occurrences: the beginning and end of an 

activity token demarcate an interval. 

The triggering of activities will depend on assertions that will constrain them. These 

assertions make use of time predicates including time comparators and functions start and 

stop. They make up a tree-structure, the root of which is the less constraining assertion 

between two events, i.e. that they are just temporally related. 

assertion class Temporally _Related with 
arguments 

first: AnyEvent 
second: AnyEvent 

This assertion is the basis of the temporal system that we intend to build. Its predicate is 

always true, since there is none, and the argument can therefore be instantiated with any 

activity in the system. So it actually creates a relationship between the two activities of the 

system. 

Now, we can start from this basic assertion and build up more meaningful and 

constraining assertions that will constrain activities. This will give a structure of assertions, 

organized in an isa hierarchy, an example of which could be: 

Temporally Related ~isa-Overlaps ~sa- Occurs_ during 
~isa- .... 

~sa-Non _ overlapping ~isa- Earlier 
~isa-Later 

assertion class Overlaps isa TemporallyRelated with 
necessary 

atOneEnd: (x = first of this at ft) 
and (y = second of this at st) 
and (x <> null) and (y <> null) 

=> ( stop(x) > start(y) or 
stop(y) > start(x) ) 

This assertion constrains two temporally-related activities further, and will be added as a 

necessary property in both activities involved, in the following: 
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activity class ADMIT BORROWER 
output -

b: CHILD BORROWER 
necessary 

overlapping: (first= this, 
second= CHECK _BORROWER_ AGE) 

< ... > 

We have thus stated that the beginning of the activity CHECK_BORROWER_AGE 

must begin before the end of ADMIT_ BORROWER. (Of course this is just for the sake of the 

example and does not have any actual meaning in any actual library) 

This is a convenient way for scheduling activities, but it is not suited for definite time 

intervals and start times. If one wants to model the fact that an activity starts at 5 p.m. or 10 

minutes after another one, one needs a clock. The modelling of such a clock in RML can be 

found in [ML-6]. 

For example, having defined ClockHour, to specify that the admission of borrowers can 

only begin at nine o'clock in the morning, we could attach the assertion: 

initially 
when: (exists h) (h in ClockHours) 

and (clockReading of h = 9) 

However, even though time plays an important role in RML, we do not think historical 

aspects can be dealt with easily. The only way to take into account an historical view for 

entities seems to add a property for the memorization of the date of creation, given a clock 

previously defined. 

c. Specialization areas of the Jan1rna1:e 

RML is rather domain-independent; no particular application domain is addressed. But 

this is restricted to sequential systems, as there are no facilities for specifying parallel systems. 
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B, Deductive power 

The semantics of RML is described by presenting a method for translating an arbitrary 

RML specification into a set of assertions in predicate calculus. Assertions were already 

expressed in a first order logic language; the rest of RML phrases is translated into a similar 

form. 

a. Verifiability of a specification 

This 1st order logic background provides ready-made answers for consistency-checking 

of specifications and deductions from them, because the proof-theory of first-order logic can 

be used, and the considerable work in the field of automatic deduction can be incorporated 

into computer tools that will assist users in developing requirements. 

There are tools currently in the process of development. These include consistency 

checkers and database facilities for storing/retrieving RML models. So the analyzability of 

requirements is supported. 

b. Validation of a specification 

Unlike Z, RML does not explicitly allow the introduction of informal comments within 

a specification. So this makes specifications less legible for the final user, although the 

notations used are less mathematical than in Z. 

Executability is not straightforward either. A RML model cannot be translated into a 

prototype directly. In fact RML is not preoccupied with the design phase. Programs describing 

(at a high level) an information system are written in a language called TAXIS. There must be 

a manual translation from RML specifications into TAXIS programs. Only the latter can be 

executed to produce prototypes. Up to now there has been no computer-aided support for the 

design of TAXIS programs from RML models, so we cannot really assert that RML 

specifications lend themselves to executable products. 

c. Modifiability of a specification 

The abstraction mechanism of specialization, with inheritance of properties down the 

hierarchy, makes it easier to locate changes. But interesting modularity features, such as the 

possibility of including ready-made pieces of specifications (like in Z), is missing. 
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3.3.2 THE GIST LANGUAGE 

We will first present an overview of the major aspects of GIST formal specification 

language. This part is mainly based on [ML-2], [ML-7], [ML-11], [ML-12]. Each new 

theoretical notion will be illustrated using examples coming from the Library Problem. 

A tentative evaluation of GIST will then be proposed, based on its expressive and 

deductive power. 

3.3.2.1 An overview 

The objective of a GIST specification consists in the definition of a class of behaviours 

for the system being considered. Each behaviour can be considered as a sequence of situations 

and represents, by definition, one possible behaviour of the specified system. 

A GIST specification is executable; it can be used as a prototype to access the specified 

system behaviour. But, because of the intolerably slow evaluation of the GIST specification, it 

is not possible to use the GIST prototype directly as a system implementable. 

A GIST canonical prototype should always be divided into the three following parts: 

(i) Structural declarations, which define a space of potential states of the system, 

(ii) Operations, which define situations which initiate activity and the range of 
behaviours ensuing from those situations, 

(iii)Constraints, which prune the space of possible behaviours by the elements of 
the two previous parts. This "pruned" space of behaviours will constitute the 
system defined by a GIST specification. 

We shall now study those three parts in a more accurate way. 
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A. Structural declarations 

a. Relational model of information 

When introducing a new object in a GIST specification, we have to give it a type. 

The Library Problem domain, for example, involves objects of type BOOK, AUTHOR, 

SUBJECT, COPY, BORROWER, and STAFF _MEMBER. Taking the GIST syntax, we have: 

type BOOK; type AUTHOR; type SUBJECT, and so on. 

Figure GIST.QI GIST types 

Type hierarchies are also possible in GIST thanks to the supertype mechanism. We 

can, for example, consider that the borrowers and the staff members are more generally the 

users of our system. Thus, we have: 

type USERS() supertype _ of <BORROWER;ST AFF _ MEMBER> 

Figure GIST.02 GIST supertypes 

Next to this mechanism, GIST provides also other type constructors, like set of, and 

built-in relations among sets such as is_a_member_of or cardinality. 

We also need to set up relations among each of those objects typed to model information 

about the system to specify. 

In the Library Problem, we must specify, for example, that a copy of a book can be 

checked out by a borrower: 

relation on_loan_to (COPY, BORROWER). 

For the sake of completeness, we introduce the four following relations, whose 

semantics has been defined in the Z specification (see pages 19 and 20): 

relation on last loan to (COPY, BORROWER); 
relation is_a_copy _of(COPY, BOOK); 
relation written_by (BOOK, AUTHORS); 
relation talk_about (BOOK, SUBJECT); 

Figure GIST.03 GIST relations 
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Binary relations such as the previous ones, are a frequently used form of n-ary relations. 

Thus, GIST has provided a syntactic shorthand to declare and access binary relations more 

easily. This shorthand takes the form of "attributes" associated with types. 

If we consider, for example, the relation written_by which is a binary relation between 

types BOOK and AUTHOR, it becomes an attribute of type BOOK and of type AUTHOR. 

The simultaneous declaration of types and attributes becomes: 

type BOOK (is_ a_ copy ofl COPY, 
written_ byf AUTHOR:any::any, 
talk about! SUBJECT:any::any ); (1) 

Figure GIST.04 GIST types and attributes 

The same mechanism can be applied to each "subtype" which makes up the supertype 

USER: 

type USER() supertype of< BORROWER (on loan tolCOPY, 
- - on -last loan tolCOPY); 

STAFF_ MEMBER()- - -
> 

Figure GIST.OS GIST supertypes and attributes 

This relational model of information allows the specifier to use a descriptive reference to 

an object. So the specifier does not need to care about data access paths since objects are 

defined via their relationships with other objects. Thus the access problem has been solved, 

because any of the relationships in which an object participates ( or any combination of them) 

can be used to access that object: the relationships are fully associative. 

I ( 1) The cardinality constraints are explained in the sub
section "Constraints and non-determinism". 
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b. Predicates and expressions 

Using predicates and expressions, the specifier can draw out information from the 

current state. Those predicates and expressions will only refer to objects of the current state. 

The three main types of expressions are provided in GIST: 

(i) A book in the library domain: 1l book 

In GIST, a variable name that is also the name of the type can be used instead of the 
form <var name> I <type>. In the previous example, ".a. book" is a shorthand for 
"book I BOOK". We can declare, using the same mechanism: .a. copy, .a. user, .a. 
subject, .a author. 

One can already observe that we are able to define an undeterminate book. We just 
need an object satisfying an accurate description. In such a case, we say that the 
expression is non-deterministic. 

(ii) The copies of a book b: b: is_a_copy_of 

This GIST sentence denotes the objects related by "is_a_copy_of' to "b", in this case, 
its copies. 

(iii) A book written by the author "E.A. Poe": 

1l book II (book: written_by = "E.A. Poe") 

The construct used here takes the form .a <type name> II <predic> and denotes an 
object of that type satisfying the predicate. 

Here also, we have a non-deterministic expression. 

It is also possible to express predicates in GIST: "Is every book related to a copy?" will 

be translated in GIST as: 

for all book II ( 
exist copy II (copy:is_a_copy _of= book)) 

Figure GIST.06 GIST predicates and expressions 

It can only be either true or false at a given time of the system life. 

As can be seen, we can use in GIST existential and universal quantification over objects 

of a given type. 
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B. Operations 

a. Change in the domain and procedures 

As introduced before, a GIST specification is a collection of "behaviours" which are 

sequences of states connected by transitions. 

These transitions are modelled in the domain not only by objects creation and deletion, 

but also by the insertions and the deletions of relations between different objects. Each such 

primitive change primitive causes a transition to a new state. 

These primitives can be composed using forms familiar from programming languages 

like sequencing, conditional execution, iteration, ... 

We can, for example, 

(i) Create a new author: 

create author; 

(ii) Assign the author "Eleanor Rigby" as the writer of the book "Paul 
McCartney, musical genius of our century": 

insert "Paul McCartney, musical genius of our century": written_by = 
"Eleanor Rigby" 

Figure GIST.07 How to change the domain value 

To include within a single transition several such primitive changes, we have to put 

them together inside a GIST atomic construct. Let us consider the following example: 

"Change the last borrower of a book!' 

atomic 
delete copy: on_loan_to = borrower; 
insert copy: on _Iast_loan _to = borrower; 

end atomic 

Figure GIST.08 The atomic feature 
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One or more GIST actions can be defined within a GIST procedure construct. A 

procedure is parameterized and can be called from everywhere in the specifications. Each 

such a call instantiates the procedure formal parameters with the actual ones and executes the 

defined action. 

We can illustrate this by the following procedure which adds a copy of an existing book 

into our library system: 

procedure ADD_A_COPY (book,copy) 
insert book: is_ copy_ of = copy 
where always required exists book and 

not exist copy 

Figure GIST.09 The ADD_A_COPYprocedure 

b. Temporal reference 

We can see a "behaviour" as a sequence of states connected by transitions leading "to" 

and "from" the current state. 

GIST gives the specifier the ability to extract information from any state in the 

behaviour thanks to the temporal reference mechanisms. These mechanisms enable the 

specifier to describe what information is needed from earlier and later states. If the specifier 

does not add such expressions, the request will be processed on the current state of the system. 

(i) asof everbefore 

Thanks to this feature, the specifier can refer to the previous states of the specified 

system. 

The following GIST predicate gives an example of such a temporal reference. Has a 

borrower already borrowed a given copy of a book? 

((copy: on_loan_to = borrower) asof everbefore) 

Figure GIST.l0a GIST asof everbefore 
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(ii) ordered temporally 

Thanks to this feature, the specifier has the ability to produce an ordered sequence of 

objects. 

The following GIST procedure produces the list of books currently checked out by a 

given borrower. This list of the books is ordered in their borrowing order. 

procedure FIND_ OUT (borrower) 
for all (book II book is_a_copy_of c and 

c on loan to borrower) 
- - order temporally 

where always required exists borrower 

Figure GIST.l0b GIST order temporally 

(iii) asof evermore 

Using this feature, a piece of specification can make references to the future states of 

the system. 

It is important to notice that the specifier does not need to worry about the details of 

how this temporal information might be made available: GIST assumes the responsibility for 

remembering all previous states so that each temporal request can be satisfied. 

c. Daemons 

Daemons are a GIST mechanism for providing data-driven invocation of processes. A 

"daemon's trigger" is a predicate which triggers the "daemon's response" whenever a state 

change induces a change in the value of the trigger predicate from false to true. 

procedure ADD_A_COPY (copy,book,author,subject) 
insert book: is_ a_ copy_ of = copy 

daemon D _ADD_ A_ COPY (copy ,book,author,subject) 
trigger not exists copy and 

exists book and 
exists author and 
exists subject and 
RANDOM() 

response ADD_ A_ COPY ( copy ,book,author,subject) 

Figure GIST.11 The daemon mechanism 
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As one can see, daemons are a convenient specification construct for use in situations in 

which we wish to trigger an activity upon some particular change of state in the environment 

modelled. The RANDOM() condition states that an event coming from the environment of 

the system will trigger the daemon which triggers the procedure II ADD_ A_ COPY". The event 

is, in this example, an update of the system by a user using his terminal. 

Daemons also save us from the need to identify the individual portions of the 

specification where actions might cause a change and the need to insert into such places the 

additional code necessary to invoke the response accordingly. 

C. Constraints and non-determinism 

A specification denotes ~ behaviours which do not violate the constraints specified, 

and only those. Before adding the constraints, the specification defines an infinite space of 

possible situations and behaviours ensuing from them. 

Thus, we have to use constraints in order to model the integrity conditions that must 

remain satisfied throughout the life of the specified system. One of the most interesting 

features of these constraints is that we are able to constrain either the past or the future state of 

the system(I). 

They will be used in order to describe both the limitations of the domain and the 

behaviour restrictions. 

Let us consider two examples. The former restricts the changes that may occur to the 

system state and the latter restricts the number of objects related to other objects in a 

relationship. 

The 4th constraint of the Library Problem, which states that a borrower may not have 

more than one copy of the same book checked out at one time, will be translated in GIST as 

follows: 

I ( 1) 

always prohibited for all book, borrower, copy.I, copy.2, 

II 
(copy.I: on_loan_to = borrower) and 
(copy.2: on_loan_to = borrower) and 
(book: is_a_copy_of = copy.I) and 
(book: is_a_copy_of = copy.2) 

Figure GIST.I2 A GIST constraint 

In z or in RML, they constrain the entire life of the 
system. 
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Special notations are provided for cardinality constraints. E.g., we can specify that every 

copy is linked to one and only one book: 

type COPY(is_a_copy_ofl BOOK:unique::any, ... ) 

Figure GIST.13 A GIST cardinality constraints 

In this declaration, we have also specified that a book in our library system can be 

related to zero, one or more copies. 

Syntax: the keyword following ":" constrains how many objects of the attribute type 

(BOOK) can be attributed to the type being defined (COPY). On the other hand, the keyword 

following ": :" constrains how many objects of the defined type (COPY) can have as attribute 

an object of the attribute type (BOOK). We have the choice between the four following 

keywords: 
any for 0,1,N; 

unique for 1 and only 1; 

multiple for greater or equal to 1; 

and optional for 0, 1. 
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3.3.2.2 Evaluating GIST 

We are now able to propose an evaluation of the GIST expressive and deductive power. 

We shall analyze them by referring to the analysis grid we proposed in the introducing section 

of this part. 

A. Expressive power 

a. Scope of the language 

GIST addresses not only functional requirements but also some of the non-functional 

ones(l). 

Complete examples of GIST specifications are given in [ML-2], where one can find a 

GIST environment description, and in [EC-5]. 

Non-functional requirements are modelled thanks to special GIST features like : 

environment, agent(2), event and RANDOM(). 

b. Dynamic modeling in GIST 

The dynamics of a system specified in GIST can be managed using temporal 

referencings. 

If we consider that "<predicate> asof ever before" is a constraint upon an operation, 

then this operation will only be executed when the <predicate> is true. But in this expression, 

the specifier has to handle himself the objects which must be taken into account for the 

evaluation of the <predicate>. 

However, one might regret that such underlying principles cannot be expressed in a 

more explicit way. 

c. Static modelling in GIST 

The three GIST keywords type, supertype and set_of allow the specifier to define 

the objects of the system he has to specify. 

(1) Concerning the environment of the system. 
(2) See further the sub-section "Language extensions". 
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Thanks to the supertype and set_of features, it is feasible to handle type hierarchies. 

Thus specialization or generalization is supported. 

The specifier will also be able to manage the inheritance of relations and operations 

which define each subtype: when one references a supertype, the selection of the relevant 

subtype is automatically managed by the context in which the supertype is used. 

Examples are given in Figures GIST.01 to GIST.OS. 

d. The association concept 

GIST enables the specifier to create associations among any types declared thanks to 

either relation declarations or the type shorthand. 

As seen before, it is also possible to specify the cardinality of these relations using the 

keywords any, unique, multiple or optional. But, these keywords do not allow the 

specifier to express more precise cardinality constraints directly. See, for an example, Figure 

GIST.13. 

Nevertheless, one of the most important advantages of these associations is that they are 

fully reversible. Thus, the specifier must not worry about the definition of access paths: this 

problem is to be solved only during the implementation phase. 

e. Real time and historical aspects 

We have seen that GIST supports historical referencing thanks to keywords like asof 

everbefore, ordered temporally and asof evermore. (see Figures GIST.lOa and 

GIST.lOb) In fact, GIST assumes the responsibility for remembering all previous states so that 

each historical information request could be satisfied. 

Thus, using such predefined keywords, the specifier can define predicates, operations, 

daemons and constraints which refer to the entire history (past and future) of the specified 

system without knowing "HOW" it would satisfy this functionality. 

GIST provides also the RANDOM() facilities to express, in an unnatural way, realtime 

events creation. ([RS-9], p. 21) 

On another hand, GIST provides the specifier with no primitives dealing with realtime 

considerations. Thus, the specifier has to introduce a new object 'CLOCK' and some 

operations to manage it, e.g., 
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type CLOCK with 
relation WHAT_ TIME(integer) 
daemon TICK TOCK[] 

triggers always true 
response WHAT_ TIME(?) :=WHAT_ TIME(?)+ 1 

Figure GIST.14 A GIST clock specification 

Having defined such a type, realtime-oriented primitives should have a precondition 

like: 

when (WHAT_ TIME = <time>) and ( <Other preconditions>) 

f. Language extensions 

The GIST syntax has been recently upgraded by the Agent feature and the 

responsibility concept. They are used to model components. Agents partition the generative 

portion of a GIST specification. Thus every primitive procedure is within the scope of some 

agent. Each autonomous process in the domain being specified will typically be a separate 

component. ([ML-12] and [RS-9]) 

Thereby, we could specify that a borrower can only make a request to the database when 

he wants to know which book he has borrowed. 

agent borrower { 

g. Specialization areas 

procedure FIND OUT BY BORROWER ( borrower) 
II write copy: on--=_last_foanJo(borrower) 

} 

Figure GIST.15 A GIST agent specification 

GIST seems to be a good example of a domain-independent formal specification 

language. 

As seen before, using GIST, it seems to us that the specifier can specify any type of 

requirements want he has got not only tools for managing complex data types and relations, 

but he can also easily manage time related problems (real-time or historical ones). Another 

GIST interest consists of its ability for specifying both functional and non-functional 

requirements. 
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B. Deductive power 

a. Verifiability of a specification 

Unlike Zand RML, the theoretical background of GIST is the relational model which 

has been upgraded with useful statements like create, destruct, insert and delete, to model state 

transitions. 

A computerized tool for verifying whether a specification respects the GIST syntax 

could be used by a specifier. 

Another tool to verify if every GIST procedure is used by a daemon, could be also used, 

because a GIST "independent" procedure will never be used. 

b.Validation of a specification 

Like Z, GIST explicitly allows the introduction of informal comments within a 

specification, thanks to the GIST keywords: 

Spee comment ..... end comment 

This could make specifications more legible for the final user. But, we remain 

convinced that the level of abstraction and the existence of "unusual" features, like a daemon, 

leave the specifications hardly understandable for people that are not familiar with such 

abstractions. 

c.Executability of a GIST specification 

Up to now, no GIST compiler seems available. Nevertheless, GIST designers describe 

GIST as being "symbolically executable". Thus, feedback can be used to show incomplete or 

ambiguous portions of the requirements. [ML-11] 

But the major difficulty is that the evaluation of a GIST specification would be 

intolerably slow. 

d.Modifiability of a specification 

The level of modularity that can be reached in GIST should offer the specifier a good 

support when he has to modify a piece of formal specifications. 
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3.4 COMPARISON: Z, RML, GIST 

This section proposes a comparison of the three formal specification languages 

studied. First of all, we shall build up a summary table for the conclusions regarding 

the expressive and deductive powers of the formal languages. Then, for each one of 

them, we shall make some comments. 

3.4.1 EXPRESSIVE POWER 

z RML GIST 

Scope Functional Functional Functional 
Non-functional 

Objects DataSpace schema Entity Type/Supertype. 

Relations 2-ary (relation) 2-ary (property) relation 
n-ary (schema) n-ary (assertion) 

Operations Operation schema Activity Procedure 

Constraints Predicates Assertion Constraints 

Modularity Schemas ( cfr abstraction mechanisms) 
inclusion 

Abstraction mechanisms 

- classif. Sch.Type(obj,op) class(obj,op,as) type (obj) 
given set proced. (op) 

set_of (obj) 
- aggreg. Sch.Type(obj,op) in (obj,op,ass) daemon (op) 

relation ( obj) 
- gener. Sch. Type( obj ,op) isa (obj,op,ass) supertype (obj) 

Dynamical Nostandard time relation, temporal 
aspects clock, calendar referencing 

Historical Not explicitly Not explicitly Not powerful 

All three languages focus on functional requirements, and non-functional 

requirements such as performances, reliability, etc ... do not really fit in those models 

very well. Nevertheless, GIST allows the specification of the environment. 
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As to the modelling of objects, RML remains very close to classical 

entity/relationship models, cardinality constraints are mainly expressed through the 

notion of property category (g: necessary= one and only one value for a property). 

GIST would rather stick to the well-known relational model, whereas the representation 

of objects in Z is based upon mathematical notions such as sets and functions. 

The three languages support the description of operations, plus some constraints 

upon them. 

Constraints are expressed through 1st order predicates in RML, GIST and Z, 

which is a powerful feature as it will be explained below. In Z, they are directly attached 

to objects and operations, whereas in RML they can be expressed separately and be 

treated as objects too, with hierarchies and so on. Finally in GIST, they can be expressed 

separately (see figure GIST.12). In this case, they constrain all the system being 

specified. But, they can also be attached to a type, a relation, a daemon or a procedure 

and then have a limited scope. 

Abstraction mechanisms do not exist explicitly in Z, but they can be found behind 

mechanisms such as schema inclusion, union, etc ... The typing mechanism is common 

to all of the three languages. The most interesting features related to abstraction 

mechanisms is to be found in RML, which gives them a prominent part. This is not 

surprising, as the roots of RML lie in knowledge representation ·work. GIST appears to 

be the poorest language among the three studied, with regards to abstraction and 

structuring mechanisms. Perhaps this is due to some extent to the relational model used 

as a theoretical foundation; this model being not considered as the richest one. 

Thus RML treats entities, operations and constraints as objects into classes which 

can be organized in hierarchies and in meta-classes. GIST only allows the 

decomposition of procedures thanks to daemons, the generalization of objects thanks to 

supertypes, the classification of objects tanks to the type and set_of feature, and the 

aggregation thanks to relations. Z has an intermediate approach because objects and 

operations are treated the same way. Therefore, if an object can be aggregated, so can an 

operation. However, this cannot be done explicitly. 

In short, RML provides a unified approach to abstractions, whereas Z and GIST 

(especially the latter) are more uneven. But Z provides a unified approach with regards 

to the language used, everything being expressed mathematically, whereas RML uses an 

eclectic approach based on both a 1st order logic and other notations. 
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Aggregation/Decomposition and Generalization/Specialization facilities greatly 

favour modularity in a specification written in a given language. They enable the 

refinement of both objects and operations, which is fundamental for conveniently 

specifying large systems. So the more present these abstraction mechanisms are, the 

better it is. 

But modularity also concerns the possibility of arbitrary splitting specifications 

into pieces, in order to either reuse them or make specifications less bulky. For this 

purpose Z offers the most interesting features, thanks to the schema inclusion 

mechanism. It enables the specifier to put a set of Z phrases(!) in a sub-schema that can 

be reused in any other schema(2). Neither RML, nor GIST easily provide the same 

facilities. 
Dynamics modelling is one of the main weaknesses of Z. Nothing regarding the 

dynamic behaviour of a system can be easily described within this formal language. 

RML is more suited for that, thanks to its time predicates and assertions. In GIST, the 

system dynamics could be modelled in an unnatural(3) way thanks to temporal 

references. 

As to the historical aspects of an information system, none of the three formal 

language designers have devoted a great deal of their attention to this problem. So there 

is no ready made approach for this issue and the specifiers must craft their own 

solutions. Nevertheless, if the historical requirements are not too complex, GIST 

provides some appropriate built-in tools (see Figures GIST.lOa and GIST.lOb). 

The discussion above may sound a bit like a tribute to RML against Z and GIST. 

We would like to say, however, that even if RML seems to offer more powerful means 

for expressing things, this does not necessarily mean that the other two languages are 

lacking in expressive power. Z certainly seems the best language to mathematicians, 

who are used to mathematical notations and do not share the preoccupations of 

computer scientists. And it is also important to notice for RML that what is gained in 

expressive power is lost in deductive power .. .(4) and conversely for Zand GIST. It 

appears that RML is more of a language very convenient for representing knowledge, 

whereas Z is more of a language for rigourous inferencing. 

(1) either declarations or predicates, or both. 
(2) Examples have been given infra (cfr "A useful schema" 

in the Library Problem). 
(3) this means that this is not conceptually clean and 

easily understandable. 
(4) cfr. infra, in the next section titled deductive power 
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An important restriction to the three languages is that their use of 1st order logic 

makes it impossible to parametrize specifications with predicates. This means, for 

example, that an operation filtering data cannot have a predicate defining its filter as 

input. 
Another restriction is inherent in their inability to deal with modal logic 

constraints (and other sorts of logics as well). This means, for example, that the 

difference in meaning between "an operation must occur" and "an operation can occur" 

cannot be expressed. 
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3.4.2 DEDUCTIVE POWER 

z RML GIST 

Deduction 1st 0. Predic. 1st 0. Predic. Relational 
logic logic notations 

Consistent Yes Yes Yes 

Completeness Yes Yes Yes 

Executability No No Yes 
But, systemati- But, manually But, inefficient 
cally derivable derivable into 
in guarded Taxis programs 
commands 

Z's formal background is 1st order predicate logic which is a major advantage 

because it can benefit from all the framework provided by predicate calculus: proof

theory, etc ... 

RML, after some translation stage, can also derive benefit from 1st order logic. 

Thus, the difference is that RML is more distant from axioms and these sorts of things, 

and so loses a little of its deductive power. RML offers predefined syntactic phrases (for 

example, categories of properties, etc ... ) and restrict the specifier's initiative, unlike in Z 

where the specifier can write any predicate. Besides, it offers more basic bricks to build 

specifications and, in a way, gives more power to the specifier. 

As seen before, GIST's theoretical background is the relational model theory. 

All three languages allow consistency and completeness checking, as well as 

checking whether a phrase is a consequence of other phrases written in the same 

language (these issues are discussed in each evaluation section of Z, GIST and RML). 

As to the executability of formal specifications, GIST has an edge over its 

competitors. It is the only one which can be considered as yielding prototypes, even 

though it is not directly executable as such. RML specs can be translated into Taxis 

program, which are executable, and Z specs can be translated into prolog programs(!). 

But there is a great deal of work left to do for all of these languages, because this 

translation is far from being trivial and straightforward. And the problem of 

(1) the particularity of being translatable in prolog is a 
feature shared with most formal specification languages 
using 1st order logic and relations. 
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automatically translating predicates into prolog phrases is a complex one, because there 

is no efficient way to do it: the programs resulting from the translation, if large, may 

tum out to be incredibly slow, or may even never finish in reasonable time. 

3.4.3 OTHER COMMENTS 

Another interesting issue raised in the context of this chapter is the place of these 

formal languages in the software life cycle. 

Z stretches beyond the specification phase, because it can be used for design as 

well, up to the latest stage in this process, namely the writing of symbolic algorithms in 

the guarded command language of Dijkstra ( 1 ) . In a stepwise refinement manner, Z 

specifications can get closer and closer to design modules. So Z can be applied at later 

stages in the software building process. Therefore, it offers an integrated approach. 

But, on the other hand, this tends to show that Z is more of a design specification 

language than a pure requirement specification language. 

RML situates itself between SADT schemas and Taxis Programs, but no 

integration and computer-aided translation from one stage to the other has been 

implemented yet. So there are three languages in one software development process. 

As to GIST, if its non-determinism is lifted a Data Manipulation Language can be 

obtained, in which one can program. So it could be used at later stages in the software 

development process as well. 

I (1) for example, cfr [ML-3]. 
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4. REQUIREMENTS SPECIFICATION: THE PROCESS LEVEL 

4.1 INTRODUCTION 

Whereas the PRODUCT LEVEL chapter dealt with a description and evaluation of some 

typical formal specification languages, this chapter addresses the processes underlying the 

construction of formal specifications from informal requirements. It is organized as follows: 

First, we shall try to suggest typical processes that the specifier, unconsciously or not, 

applies when constructing formal specifications. We shall do this for both Zand GIST, but 

informally. Thus, the main questions will be: what can be done and what are the rules for 

deciding what to do? 

The reasons for this choice are quite simple. First, as the scope of this thesis is limited, we 

cannot study in details more than two languages. Otherwise we would run out of time and never 

do anything worthwhile as a result. Second, we have chosen Z and GIST because Z is the 

language in which we have gained the most experience, and because Zand GIST appear to be 

representative of two distinct specification techniques. 

Thus the more different the techniques are from each other, the better it is for telling apart 

the characteristics of the specification process that are independent or not from the language. This 

is also one of the reasons why the two studies have been carried out independently. For example, 

one can find rules from the rationale level that have been discovered in Zand which are not 

mentioned for GIST, and conversely. This has been done voluntarily, so as to be more beneficial 

for the development of a model for specification methods. 

Finally, we shall study the specification processes suggested for both Z and GIST more 

formally. This study will consist of a comparison of the methods and ways of specifying in each 

language and, afterwards, we shall try to tell apart those aspects that are language-dependent and 

those that are not. Thus, the main question will be: what depends or not on the language? 
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4.2 INFORMAL STUDY OF SPECIFICATION PROCESSES 

4.2.1 INTRODUCTION AND CONCEPTS 

The task of specifying a system within the framework of a formal language can be 

achieved with the help of models. At this level there are plenty of models available for 

describing objects, operations, constraints, the dynamics of the system and so on ... These 

models allow the specifier to define the structure and the behaviour of the future I.S. within the 

limits of the language expressive power, as discussed above for three of them (Z, RML and 

GIST). 

But what about the specification process itself? Can the activity of specifying lend itself to 

a formalization too? Many scientists have expressed their belief in the existence of models for the 

software specification activity (among whom [RS-2], [RS-3], [RS-4], [RS-5]). Also, we are 

convinced that at least some part of the specification process is mechanical, and so can be 

formalized in one way or another. Now we have to explore this path leading to a further 

formalization of the specification process. 

Before formally defining models to deal with the various levels of the specification 

process, which will be done in the second and third parts of this section, we shall resort to more 

simple concepts. They will help us to approach the specification process in a given language. 

A distinction is made between the notions of process and rationale. These concepts will 

allow us to make a clear distinction between what the specifier does and why he/she does it. This 

will be a basis for the definition of levels and models in the specification process more formally 

later, in the next part of this section. 

In our analysis of specification processes in Z and GIST, we shall thus introduce the two 

following levels: 

(i) The processus level: this level refers to what the specifier does, what he can 
do with the fragments of the specification already built, what kind of 
refinements he can do. This encompasses all the operations the specifier can 
apply to specifications: extensions, reuse, changes, verification, validation, 
etc ... 

(ii) The rationale level: this level refers to goals, tactics and strategies underlying 
the application of operation at the process level. In some cases, rationales may 
be expressed as rules telling which operations of the process level should be 
used in which cases. 

These two levels will be studied for both Z and GIST. 
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4.2.2 SPECIFICATION PROCESSES IN Z 

4.2.2.1 The Z process level 

First we will identify typical primitives needed to manipulate Z specifications; these enable 

the handling of Z objects such as types, schemas, predicates, etc ... 

All such primitives will be characterized by a name, a list of parameters, an informal 

definition of their effect and one or more conditions of applicability (when required). Basic 

primitives add or modify something basic in the whole specification. But there will also be macro

primitives using basic ones. This will be mentioned explicitly whenever this is the case. 

A, Primitive for set handling 

CREA TE_ GNEN _ SET (name,given _set) 

applicability: the name of the given _set is not used anywhere else in the specification 
for any other given_set 

~: produces the definition of a given set: 

[name] 

B. Primitive for variables handling 

CREA TE_ VARIABLE (name, type, variable) 

applicability: name is not used anywhere else in the specification for any other 
variable, etc ... 

~: produces the definition of a variable: 

name: type 

C. Primitives for datatypes handling 

CREATE_DATA_TYPE (data_type_name, list of alternatives, 
datatype) 

applicability: name of the data_ type is not yet used in the specification 

~: produces the definition of a datatype: 

datatype ::= alt-1 I alt-21 alt-3 I , .. 1 alt-n 

where alt-i are the constants that define the type in extenso 
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ADD ALT to DATA TYPE (datatype, alt') - - - -
applicability: alt' is different from alt-1, ... , alt-n 

~: adds an alternative to the definition of a datatype: 

datatype ::= alt-11 alt-21 .. ,lalt-nl alt' 

D. Primitives for schematypes handlini: 

CREATE_SCHEMA (name, declarations(l), predicates, schematype) 

applicability: name is not used anywhere else in the specification for any other 
schematype 

~: produces the definition of a schematype, which can be written in two ways: 

name~[declarations I predicates] 

or, using the Z schema notation: 

name ____________ _ 

I declarations 
predicates 

MODIFY_ DECLARATION_ SCHEMA (schema, old_ decl, new_ decl) 

applicability: new declarations are consistent with one another; all the variables 
defined in old declarations and used in the predicate part of the schema 
must be redefined in new declarations. 

~: modifies a set of declarations in a schematype: 

schema _____________________ _ 

declarations + { new_declarations} \ { old_declarations} 
predicates 

MODIFY _PREDICATE_ SCHEMA (schema, old _pred, new _pred) 

applicability: new predicates are consistent with one another; all the new predicates 
must use variables defined in the declaration part of the schema. 

~: modifies a set of predicates in a schematype: 

schema ________________ _ 

declarations 
predicates + { new_predicates} \ { old_predicates} 

I (l) declarations are variables + their types 
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The following primitives are not basic ones. They are typical compositions of some basic 

primitives previously defined. 

EXTEND_ SCHEMA (schema, new_ declarations, new _predicates) 

applicability: includes the conditions of applicability of the primitives used by this 
macro-primitive. 

~: adds a list of new declarations and new predicates to a schematype (with the 
possibility of one of these two lists being empty): 

schema ______________ _ 

declarations + { new _declarations} 
predicates+ {new_predicates} 

macro--primitive: EXTEND_ SCHEMA is equivalent to 

MODIFY_DECLARATION_SCHEMA (schema,{},new_decl) 

MODIFY_PREDICATE_SCHEMA (schema,{},new_pred) 

RESTRICT_ SCHEMA(schema,old _ declar,old _predic) 

applicability: includes the conditions of applicability of the primitives used by this 
macro-primitive . 

.eff.e£.t: subtracts a list of declarations and predicates from a schematype (with the 
possibility of one of these two lists being empty): 

schema ______________ _ 

declarations \ { old_declarations} 
predicates \ { old_predicates} 

macro-primitive: RESTRICT_ SCHEMA is equivalent to 

MODIFY_ DECLARATION_ SCHEMA (schema,old _ decl,{}) 

MODIFY _PREDICATE_ SCHEMA (schema,old _pred,{}) 

AND _MERGE_ OF_ SCHEMAS (schema 1, schema2, name, newschema) 

applicability: the declaration parts of schema! and schema2 do not contain 
contradictory declarations of the same variable; the conjunctive 
composition of the predicates of schema! and schema2 do not produce 
predicates whose values are always "false". 
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~: creates a new schema, whose name is given, as the conjunctiive composition 
of two other schematypes(l) : 

new_schema _______________ _ 

declaration of schemal 
declaration of schema2 
predicates of schemal 
AND 
predicates of schema2 

macro-primitive: AND_ MERGE_ OF_ SCI-IEMAS is equivalent to 

CREA TE SCHEMA (name, 
declarations = { declarations of schema 1} U 

{ declarations of schema2} 
predicates= (predicates of schema!) AND 

(predicates of schema2) 
newschema) 

OR_MERGE_OF_SCI-IEMAS (schemal, schema2, name, newschema) 

applicability: the declaration parts of schemal and schema2 do not contain 
contradictory declarations of the same variable; the disjunctive 
composition of the predicates of schema! and schema2 do not produce a 
predicate whose value is always false. 

~: creates a new schema, whose name is given, as the disjunctive composition of 
two other schematypes: 

new_schema _____________ _ 

declaration of schemal 
declaration of schema2 
predicates of schemal 
OR 
predicates of schema2 

macro-primitive: OR_ MERGE_ OF_ SCHEMAS is equivalent to 

CREA TE SCHEMA (name, 
declarations = { declarations of schema 1} U 

{ declarations of schema2} 
predicates = (predicates of schema!) OR 

(predicates of schema2) 
newschema) 

I ( 
1) the primitives AND _MERGE, OR_ MERGE and following could easily be adapted for n 

schemas, without too much trouble 
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INCLUDE_SCHEMA (schema, sub_schema) 

applicability: the declaration part of schema and the subschema do not contain 
contradictory declarations of the same variable; the conjunctive 
composition of the predicates of the schema and the subschema do not 
produce a predicate whose value is always false. 

~: includes a schema into another one, which means that it will inherit both its 
declarations and its predicates: 

schema _______________ _ 

declarations 
sub_schema 
predicates 

E. Primitives for modifyin2 variables in schemas 

RENAMING_ V AR_IN_SCHEMA (schema,oldname,newname) 

applicability: newname is not yet used in any other declaration of the schema. 

effect: renames a variable in a schema, i.e. changes its name in both the declaration 
and the predicate parts: 

schema [oldname / newname] 

IIlDING V AR IN SCHEMA (schema, variable,newschema) - - -
~: hides a variable appearing in the declaration part of the schema, i.e. yields an 
equivalent schema where the declaration and the predicates concerning the given 
variable do not appear 

newschema ~ schema \ variable 

DASH V AR IN SCHEMA (schema) - - -
~: decorates a schema, i.e. adds a dash to each of its variable appearing in it. This 
dashed variables denote the states of the variables after an operation. 

schema--------------------
1 declarations' 

predicates' 
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4.2.2.2 The Z rationale level 

This section is based upon our practice in Z specifications building. We shall try to put 

down in words the process that we followed when we treated the problems of the Library 

Problem (cfr chapter I) and the Oil Terminal (cfr Annex I). This "knowledge" about the process 

of building formal specifications from scratch will be expressed through both informal algorithms 

and rules. Thus, our approach will be both procedural and declarative, which seems to strengthen 

the idea of an expert system for assisting in the elaboration of formal specifications. 

We chose this approach because, obviously, a pure procedural approach was felt far too 

rigid. We have chosen to separate the process into dataspace and operations modelling, but this 

does not necessarily mean that these modellings are independent. They are not, of course. This is 

just to classify matters. 

The rules that will be stated will consist of 3 parts: 

- a name: a short description of the rule purpose 

- a premise: an informal text explaining the conditions for the rule to be triggered 

-a consequence: a (set of) primitive(s) from the process level which will be applied 
if the rule is selected with its premise being satisfied, or some other 
consequences expressed informally. 

First of all, we shall discuss dataspace modelling, and next operations modelling. 

A. Modellini: the data space 

We have chosen to model the data space first, because it seems to us of the utmost 

importance as it lays the foundation for all what follows. We are convinced that it remains the 

keystone of our system. A good data model seems to lead to simpler and clearer operation 

structures, whereas an unsuitable may complicate them uselessly. 

We first attempt to find meaningful objects; by this, we mean those that are significant to the 

future system. We carefully read the requirements and spot some relevant objects. Having done 

this, we select those which are useful and drop the useless ones, according to whether or not they 

are playing a part in the operations or not <1>. 

I (l) this tends to show that no process is ever purely operation or object oriented ... 
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The informal rule followed is thus: 

rule n°l: selection of relevant objects 

IF object is referred to in an operation 
THEN object is relevant for specifications 

Now that we have objects, what are we going to do with them? There exist several ways of 

modelling them: they can be unique, or there may be a set of them. They can express twice the 

same thing. They can be a part of another more general object. All these possibilities define 

different ways of modelling. 

Here are some rules to help deciding what is the most convenient way for specifying them. 

These rules make use of primitives from the process level. 

rule n°2: associating a given set with an object identified 

IF object is basic and cannot be decomposed 
any further, and there are several 
instances of it 

THEN CREA TE_ GIVEN_ SET (object_ name) 

example: BOOK, SUBJECT, AUTHOR, BORROWER were irresolvable objects in 
the Library Problem, unlike LIBRARY. 

rule n°3: associating a datatype with an object identified 

IF there exists a predefined finite amount of values for a unique object 
(alternatives) 
THEN CREA TE _DATA_ TYPE ( obj_name,altematives) 

example: MESSAGE::= "enquiry_ok" ... 

rule n°4: associating a variable with an object identified 

IF object has one instance among a class of possible instances 
THEN CREATE_ VARIABLE (obj_name,type) 

example: nbr _ max : N 

These rules create basic things in Z. This is not sufficient however to create more complex 

objects, such as schematypes, and, above all, the constraints attached to them. Whenever there is 

a variable or schematype creation, conditions on them often have to be made precise. 
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So let us consider the building of more complex objects, namely schematypes .. The first 

step is to spot a non basic object in the requirements: 

rule n°5: associatin& a schematype with an object identified 

IF object has not the same meaning as another object already defined 
AND other objects seem to depend on it for their existence 
THEN CREATE_SCHEMA_TYPE (obj-name,{},{}) 

(empty lists of declarations and predicates) 

example: LIBRARY, OIL_TERMINAL are complex objects 

Library _________________ _ 

? 
? 

Next, one checks if this object does not include any other existing object: 

rule n°6: introducin& inclusion relationships between schemas 

IF object appears to include all the characteristics of another object 
THEN INCLUDE_SCHEMA (object, subobject) 

example: LIBRARY~ [LIBRARY; USERS]. The library object includes the users. 

If rule 5 or 6 has passed, we shall apply a macro-operator to include all the additional 

variables required in the schematype, among which are sets and relations. 

foreach · 
do 

od 

variable 
determine type; 
declaration:= <Variable: type>; 
EXTEND SCHEMA ( object,declaration, {}) 
determine and add predicates; 

a. Determining the type of a variable? 

Here are some rules for that purpose 

rule n°7: 
IF the value of the variable is an instance of an object 
THEN type is the type of the object 
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example: nbr _ rnax : N 

rule n°8: 

(N is a predefined type in Z which refers to integer objects) 

IF the value of the variable is a set of instances of an object 
THEN type is the powerset of the type of this object 

example: copies: P COPY 

rule n°9: 

IF the value of the variable is a n-tuple of instances of n objects 
THEN type is the cross product of the types of these objects 

example: birthdate: DAY *MONTH* YEAR 

rule n°lQ: 

IF the value of the variable is one or more pairs of instances of two objects 
THEN type is the type of a binary relation between these objects 

example: R : A +--+ B 

Of course, these rules can be applied recursively for the building of more complex types. 

For example: 

marriage_ celebration: MAN * WOMAN * (P GUESTS) 

This means that the celebration of a marriage requires a man, a woman, and a set of guests. 

This has been obtained after applying rule n°9 (cross product) and rule n°8 (powerset). And 

we could apply once again the rule n°8 to get: 

mariage_in_Liverpool: P mariage_celebration 

Whenever such rules are applied, and types are thereby defined, questions should arise in 

our minds. These should help detecting constraints upon variables, and thus finding relevant 

predicates to add to the schematype. So this answers a great part of the following question: 

b. Attaching predicates? 

rule n°ll: 
IF type of variable is a Powerset 
AND IF there is a lower or upper limit, say 1 or L, to the size of the set 
THEN EXTEND_ SCHEMA (object,{}, 

predicate = { 1 < card( var) < L } 
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example: 

object _______________ _ 

copies: P COPY 

10 < #copies < 1000 

This was the question arising from a powerset type. Now here are the questions arising 

from the definition of a relation, they enable us to zero in on the nature of a relationship. 

In Z, as soon as a relation is found, its domain and its range types must be defined 

accurately. And afterwards define the sets that will be related to each other this way: 

seLA 
seLB 
R:A+-+ B 
dom R c seLA 
ran R C seLB 

What more could we learn about this relation? We are going to try and define it in such a 

way that no ambiguities whatsoever will remain regarding its nature. 

The first five rules will permit to refine the rough statement made in the declaration part of 

our Z schema: 

R:A+-+ B 
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Their right hand side will thus include a primitive to modify the statement of the relation in 

the declaration part of the schematype: 

MODIFY_DECL_SCHEMA (object, old_decl={ R: A~ B}, new_decl={ R: A ? B}) 

(? stands for the definite relation) 

rule 0°12: 

rule 0°13: 

rule 0°14: 

rule n°15: 

rule n°l6: 

IF any occurrence of type A can be related to more than one occurrence 
of type B 

THEN R is a relation and nothing must be modified 
ELSE R is a function 

MODIFY DECL SCHEMA - -
(object, old_decl={R:A~B}, new_decl = { R: A➔ B}) 

IF any occurrence of type A must be related to at least one occurrence of type B 
AND IF R is a function 
THEN R is a total function 

MODIFY DECL SCHEMA - -
(object, old_decl = { R: A~B}, new_decl = { R: A➔B}) 

ELSE R is a partial function 
MODIFY DECL SCHEMA - -

(object, old_decl = { R: A~B}, new_decl = { R: A#B}) 

IF any occurrence of type B must be related to at least one occurrence of type A 
AND IF R is a function 
THEN R is a surjection 

MODIFY DECL SCHEMA - -
(object, old_decl = { R: A~B}, new_decl = { R: A>>+B}) 

IF any occurrence of type B must be related to at most one occurrence of type A 
AND IF R is a function 
THEN R is an injection 

MODIFY DECL SCHEMA - -
(object, old_decl = { R: A~B}, new_decl = { R: A>+B}) 

IF R is an injection and a surjection 
THEN R is a bijection 

MODIFY DECL SCHEMA - -
(object, old_decl = { R: A~B}, new_decl = { R: A~B}) 
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The next four rules will permit to find out relevant cardinality constraints upon relations. 

We shall thus refine the predicate part of the schematype in their right hand side, using a 

primitive to extend it: 

rule n°17: 

rule 0°18: 

IF a member of set a cannot be related to more than N members of set b - -
(N finite) 

THEN EXTEND_ SCHEMA (object,{}, new _predicate is 
(forall a: set_a * card ({a} <S R) <= N) 

IF a member of set a must be related to at least N members of set b (N finite) - -

rule n°19: 

rule n°20: 

THEN EXTEND_ SCHEMA (object,{}, new _predicate is 
(forall a: set_a * card ( {a} <l R) >= N) and (dom R = set_a) 

IF a member of set b cannot be related to more than N members of set a - -
(N finite) 

THEN EXTEND_ SCHEMA (object,{}, new _predicate is 
(forall b: set_b * card (R 1> {b}) <= N)) 

IF a member of set_ b must be related to at least N members of set_ a (N finite) 
THEN EXTEND_ SCHEMA (object,{}, new _predicate is 

(forall b: set_b * card (R I> {b}) >= N) and (ran R = set_b) 

An example from the Library. 

Several relations were spotted and we shall pick an example: the written_by relation. We 

had decided that a book had at least one author and, conversely, that an author had written at least 

one book, so the inputs to the "specification processor" are: 

R = written_ by 
A=BOOK 
B=AUTHOR 
set a= books 
seCb = authors 

And the following deductions could have been made, thanks to applicable rules: 

rule n°12 ==> written by is a relation 
rule n°18 ==> dom written_by = books 
rule n°20 ==> ran written_ by = authors 

This would have yielded the following schematype: 
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books : P BOOK 
authors: P AUTHOR 
written_by: BOOK H AUTHOR 
dom written_by = books 
ran written_by = authors 

After having defined variables and constraints associated with them, one should now have a 

look at the variables sharing the same types within a same schematype. The constraints we have 

defined so far only bear upon a variable itself, overlooking its environment within the declaration 

part of the schema. There should be constraints implied by interferences between variables who 

share the same types. This will be made clearer by an example from the Library: 

users------,-------------

1 

sta.f f: PP ERSON 
borrower: P PERSON 

This states that the object USERS is made up with two other objects, a set of staff and a set 

of borrowers, who are both defined upon the same type PERSON. So a comparison is possible 

between them. Then the following question should arise: can a member of the staff set be a 

member of the borrowers set as well? If the answer is no, then there should be an additional 

constraint to the schema: 

staff r. borrower = 0 

The general rule for managing these interferences between variables will be: 

rule 0°21: 
IF two or more variables, whose types are sets, have the same type 
AND IF the intersection or union of some of them must be an empty or a 
particular set 
THEN EXTEND_ SCHEMA (object,{},new _predicates) 

The new predicates should be refined correspondingly through more precise rules, which 

we shall not explain further here. 
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B. Modellioa: the operations 

If we want to satisfy the customer's needs, the first thing to do is to read the requirements 

in order to construct the list of all the operations required. 

Example from the Oil Terminal Control System(l): 

We saw the system functioning through the controller eyes and identified the events that 

trigger the main operations. Apparently, four major things set the system in motion and define its 

main operations: 

1. The controller turns the computer on, causing its initialization. 

2. He switches on the "arrival button" to signal an approaching tanker to the system 
and waits for instructions from it. 

3. He depresses the "departure button" 

4. He wants information about tankers and berths 

Example from the Librazy Problem: 

In this case, our search for operations was much easier since the requirements were shaped 

accordingly. We just have to take operations straight away from the text: check-out-copy, return

copy, etc ... So it all depends on the way requirements are presented. Some presentation are more 

suited for spotting objects and some others for spotting operations. 

Next we must build each operation, step by step. 

CREA TE_ SCHEMA (operation,{},{}) 

We can decompose an operation using two different strategies: the former consists in a 

study of the precondition of the current operation, and the latter is based on a study of the 

objectives of the operation. 

1(1) Annex 1. 
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The following procedure is a rough description of the process we have followed in Z in 

order to build operation schematypes. It mainly applies a forward top-down strateg/1>. This 

procedure is recursive as it sometimes leads to a decomposition of operations which will have to 

be defined in turn. 

f oreach operation 
do 

determine dataspace 
EXTEND_ SCHEMA (operation,dataspace,{}) 
determine inputs 
determine preconditions(= predicates on the data-space and on Inputs) 
if different preconditions (cfr infra) 

then decompose suboperation 
else determine outputs 

determine postconditions(= pred. on 1/0) 
od 

a. How to determine the dataspace? 

What is the part of the dataspace useful to the operation? The specifier will chose the 

schematype which encompasses all the data necessary to the operation. 

What will be the status of the schematype in this operation? 

rule 0°22: 
IF the operation modifies the dataspace 
THEN EXTEND_ SCHEMA ( operation, new_ decl = { /l dataspace}, {}) 
ELSE EXTEND_ SCHEMA ( operation, new_ decl = { E dataspace}, {}) 

b. How to determine the inputs? 

Reading the requirements regarding the operation enables to find out the input parameters. 

Each one of these is declared as a variable with an interrogation mark behind: 

example: EXTEND_SCHEMA (operation, {copy?: COPY},{}) 

(l) forward means that the way in which operations are defined progressively depends only on 
properties of arguments (results for a backward strategy); top-down means that the operation 
is progressively specified thanks to decompositions (aggregations for bottom-up). 
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c. How to determine the preconditions? 

Knowing all the input parameters and which parts of the data state we need, we concentrate 

on the possible values of our input parameters and on the properties of the data space. 

With those possible values, we can define the preconditions of our schema. But, 

beforehand, we need to construct an "analysis table" to find out the exhaustive list of possible 

preconditions (PREi). 

Let us consider a simple example where <Varl> and <Var2> are both input parameters of an 

operation. <varl> can satisfy or not a condition, say <vl>. Likewise, <Var2> can also be 

constrained or not by a predicate, say <V2>. 

The following possibilities thus can arise: 

PRE1 = (vl) and (v2), 

PRE2 = (vl) and not (v2), 

PRE3 = not (vl) and (v2), 

PRE4 = not (vl) and not (v2). 

Finally, the precondition PRE of this operation is then defined by taking the disjunctive 

composition of all the PREr 

Nevertheless, it remains possible to regroup some of those preconditions by taking their 

disjunctive composition, in case a common unique schema is to be associated with them. Thanks 

to this regrouping, we can, for example, determine the preconditions of an error handling 

operation. 

d. How to decompose an operation? 

Now, we can define a new operation (OPi) corresponding to each PREi we have expressed: 

od 

if operationi does not exist 
then CREA TE_ SCHEMA 

. (operationi,{dataspace, inputparam},{ <PREi> }) 
end1f 
OR_ MERGE_ OF_ SCHEMA ( operation, operationi, operation) 
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Note that an operationi could have been modelled during the specification of a previous 

operation<1>; thus, we need to verify if the sub-operationi has not been modelled yet 

Example: Using this rationale, the operation "RETURN_ COPY" of the "Library Problem" was 

built. This operation is the result of the disjunctive composition of three other 

operations: 

(i) "RETURN_ A_ COPY _NO_ PROBLEM'' corresponds to a possibility PREi' 

(ii) "RETURN_A_COPY_ WITH_A_PROBLEM" corresponds to the logical 
conjunction of all the other PRE. without taking into account the userid condition, 
and 1 

(iii) "STAFF _FAILURE" corresponds to the violation of the userid condition. But, we 
didn't need to specify it: it was already done for the procedure "CHECK_ OUT". 

If we had followed a backward strategy, the decomposition of the operation would have 

been driven by the structure of the results. 

Knowing the objective of the operation, we try to break it up in a series of sub-operations 

(SUBi) which could be defined separately and which together could achieve the objective. The 

operation will be defined as the conjunctive composition of each Z sub-operation. Thus, we have: 

foreach <sub-operationi> 
do 

if sub-operationi does not exist 
then CREATE_SCHEMA(sub-operationi,{},{}); 

endif 
AND_ MERGE_ OF_ SCHEMAS ( operation, sub-operationi,operation) 

od 

A sub-operationi could have been modelled during the specification of a previous 

operation<2>. Thus, we need to verify if the sub-operationi has not been modelled yet. 

Exam p I e : Using this rationale, we built the operation 

"CHECK_OUT_A_COPY_IF_NO_PROBLEM" of the "Library Problem". We 

specified first the operation "CHECK_ OUT_ A_ COPY _IF_ NO _PROBLEM'' without 

taking into account the userid condition. Then, we included the schema 

"STAFF_ MEMBER" which looks whether the user of the operation is a staff member 

or not. 

( 1) see for example, the operation STAFF_ FAIL URE which is used in a lot of operations of the 
"Library Problem". 

(Z) see for example, the operation STAFF_ MEMBER which is used in a lot of operation of the 
"Library Problem". 
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e. How to determine the outputs? 

Reading the requirements regarding the operation enables to find out the output parameters. 

Each one of these is declared as a variable with an exclamation mark behind. But, we also need to 

express those Z predicates that will fix the value of all the output parameters. 

These two rationales operations define the following procedure: 

foreach <Outpar> 
do 

od 

determine type of <Outpar>: <0Uttype> 
EXTEND_ SCHEMA ( operation, { <outpar> !:<outtype> }, {}) 
determine Z predicate which can fix the <outpar>! value: <Predic> 
EXTEND_ SCHEMA (operation,{} ,<PrediC>) 

Exam p I e: The execution of this procedure gives for the operation 

"GET_ LIST_ AUTHOR_ NO _PROBLEM'' of the "Library Problem": 

EXTEND _SCHEMA (operation,{books!:P BOOK},{}); 
EXTEND_SCHEMA (operation,{}, {books!= dom (written_by {author?})}); 
EXTEND_ SCHEMA ( operation, { mess !:MESSAGE},{}); 
EXTEND_SCHEMA (operation,{},{mess!:enquiry_ok}); 

f. How to determine the postconditions? 

Reading the requirements regarding the operation enables to find out the postconditions. 

Each one of these will translated using a Z predicate. For the sake of completeness, we need to 

study each set and relation defined in the clataspace part used: 

f oreach <set> in clataspace 
do 

od 

determine effect of the operation on <Set> 
translate effect into a Z predicate: <Predic> 
EXTEND SCHEMA {operation, {},<Predic>) 

and in the same way for the relations, 

f oreach <relation> in dataspace 
do 

od 

determine effect of the operation on <relation> 
translate effect into a Z predicate: <Predic> 
EXTEND SCHEMA (operation, {},<Predic>) 
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g. Conclusions 

We have followed processes that seem to be applicable to any problem, but this is not 

always the case. These worked for the problems we dealt with, but they may not suit any 

problem. Our limited experience in the art of specifying cannot yield any definite conclusions at 

this stage. 

One could have expected the strategies suggested for the decomposition of operations to be 

based upon the structure of the input or output types. But our study relies heavily on the practical 

examples we have treated in Z and, as they are not the same size as large-scale problems, most of 

these types were simple. Thus, no interesting ~rationale has been discovered at this stage. But, this 

question will be tackled later, when a model for the methods of specification is considered more 

formally. The same remark applies to the lack of strategies concerning specialization and 

generalization of objects. This will also be considered later on. 
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4.2.3 SPECIFICATION PROCESSES IN GIST 

We shall begin our analysis of the GIST specification process by looking for the GIST 

basic primitives belonging to the process leve1<1>. 

Only the more important operators are proposed since we do not have a complete definition 

of the language at our disposal. Moreover we should also add that our command of GIST has not 

reached as high a level as the one we have reached in Z. After this operator identification step, we 

shall try to define those rationales which help the specifier formalizing requirements. 

4.2.3.1 The GIST process level 

We propose a list of primitives which will be necessary for us to be able to build a GIST 

rationale level. 

For each primitive, we shall give its name and both its input and output parameter(s). Then 

we shall informally define the goal of the primitive and its effect on the specification. If our 

primitive is constrained by a precondition, we shall also state it informally. 

Some of these primitives can be "run" automatically and some other ones require the 

specifier's assistance when a decision has to be taken. 

A. Add comments stext> -
This operator enables the specifier to create an occurrence of the following GIST phrase: 

Spee comment 
<text> 

end comment ; 

where <text> is an input parameter of the operator. 

This occurrence will be inserted after the last element specified. 

I (l) "primitives" of the process level can also be referred to as "operators". 
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B. Exist type name <type name> 
wr = = 

This operator inspects the current GIST specification to know whether a given type name 
is already used or not 

if <type _name> already defined, 
then Exist_ type_ name:= true 

else Exist_type_name:= false; 

If it does not currently exist, "Exist_ type_ name" takes the value "false", otherwise it will 
take the value "true". 

c. Create type <type name> - = 

This operator creates a new instance of the following GIST phrase: 

type <type_ name> ; 

where <type_ name> is an input parameter of the operator. 

Precondition: Exist_type_name<type_name> must have false as value. Otherwise, it will 

introduce inconsistencies. 

D. Delete type <type name> - -
This operator deletes the instance of the following GIST phrase from the specification: 

type <type_ name> ; 

where <type _name> is an input parameter of the operator. 

Precondition: Exist_type_name<type_name> must be equal to false. 

E. Create supertype <list or type name, supertype name> 
- - ~ «.:a 

Using this operator, the specifier can create a new instance of the following GIST phrase: 

<supertype _ name>() supertype _ of <list_ of type_ name> ; 

where <list_ of type_ name> and <type_ name> are both input parameters. 

To respect the GIST syntax, each member of the "list_of type_name" must be separated 

from the following one by a comma. 
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HExist_type_name<supertype_name> is equal to false, we create the whole GIST phrase. 
Otherwise, we only add the <list_ of type_ name> to the existing one. 

Precondition: For each member of <list_of type_name>, Exist_type_name<type_name> 
must be true. 

F. Create set · or <type name t. type name 2> = - - = - -
Using this operator, the specifier can create a new instance of the following GIST phrase: 

type <type_name_2> = set_of <type_name_l>; 

where <type_ name_ 1 > and <type_ name _2> are both input parameters. 

Precondition: Exist_type_name<type_name_2> must be equal to false and 

Exist_type_name<type_name_l> must be equal to true. Otherwise, it will also 

introduce inconsistencies. 

G. Exist relation name <relation name> - ~ -
This operator inspects the current GIST specification to know whether a given relation 

name <relation _name> is already used or not. 

if <relation _name> already defined, 
then Exist relation name:= true - -
else Exist_ relation_ name:= false; 

Hit does not presently exist, "Exist_ relation _name" takes the value "false", otherwise it will 

take the value "true". 

H. Create Relation <list of type name, relation name> - - - -
Using this operator, the specifier can create a new instance of the following GIST phrase: 

relation <relation_name> (<list_of type_name>); 

where both <list_ of type _name> and <relation_ name> are input parameters. 

To respect the GIST syntax, each member of the "list_ of type_ name" has to be separated 

from the following one by a comma. 
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If Exist_relation_ narne<relation _ name> has false as value then the GIST relation is created. 

Otherwise, it <list_of type_name> is only added to the existing one. 

I. Specify cardinality <type t, reJ name, type 2. cardt. card2> 
cur = = = 

Using this operator, the specifier can modify the connectivity constraint defined upon the 

relation <rel_narne> linking <type_l> to <type_2>. The other relations using <type_l> or 

<type _2> are left unchanged. 

Thus, we have the following GIST phrase: 

if <cardl> or <card2> are equal to a GIST predefined value 
then 

type <type_l> (<rel_narne>l<type_2>:<cardl>::<card2>); 

where <type_l>, <rel_narne>, <type_2>, <cardl> and <card2> are all input parameters. 

But, if both <cardl> and <card2> are not equal to a GIST predefined value, the specifier 

will insert GIST constraints such as, e.g., the following ones: 

and, 

always required for all tl: typel 
cardinality rel narne(tl,*) <= <cardl> 
and 
cardinality rel narne(tl,*) >= <card2> 

always required for all t2: type2 
cardinality rel_narne(*,t2) <= <cardl> 
and 
cardinality rel_narne(*,t2) >= <Card2> 

where w,x,y,z have to be determined by the specifier reading <relation text> 

corresponding to <rel_narne>. 

Preconditions: 

(i): The value of <cardl> or <card2> must be either any, unique, multiple or optional 

or undefined. 

(ii): The three following functions must return the value "true": Exist_type_narne<type_l>, 

Exist_ type_ name <type_ 2> and, Exist_ relation_ narne<rel _ name>. 
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.1. Exist procedure name <procedure name> = cur = 

This operator inspects the current GIST specification to check whether a given procedure 

name is used or not: 

if <J)rocedure _name> already defined, 
then Exist_procedure_name:= true 
else Exist_procedure_name:= false; 

If it does not presently exist, "Exist_procedure _ name" takes the value "false", otherwise it 

will take the value "true". 

K, Init a procedure <proc name> - = -

Thanks to this operator, the specifier will be able to create an instance of the following 

framework of a GIST procedure: 

procedure <proc _ name> 
atomic 

<?> 
end_atomic; 

where <PfOC _ name> is an input parameters. 

Precondition: Exist_procedure_name <J)roc_name> must have false as value. Otherwise, it 

will introduce inconsistencies. 

L, Exist daemon name <daemon name> - - -
This operator inspects the current GIST specification to know whether a given daemon 

name is already used or not. 

if <daemon_ name> already defined, 
then Exist daemon name:= true - -
else Exist_daemon_name:= false; 

If it does not presently exist, "Exist_ daemon _name" takes the value "false", otherwise it 

will take the value "true". 
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M, Init a daemon <dem name> -- -
Thanks to this operator, the specifier will be able to create an instance of the following 

framework of a GIST daemon: 

daemon <daem name> 
trigger <?> 
response <?> ; 

where <daem _name> is an input parameter. 

Precondition: Exist_daemon_name <daem_name> must be have false as value. Otherwise, 

it will also cause consistency problems. 

N, Exist aa:ent name <aa:ent name> - = -
This operator inspects the current GIST specification to know if a given agent name is 

used or not. 

if <agent_ name> already defined, 
then Exist_agent_name:= true 
else Exist_agent_name:= false; 

If it does not currently exist, "Exist_ agent_ name" takes the value "false", otherwise it will 

take the value "true". 

o, Add an aa:eot saa:eot name, list of proc, list of dem> 
WWW & ~ ~- U WWW 

Thanks to this macro-operator, the specifier will be able to create an instance of the 

following framework of a GIST agent: 

agent <agent_name> 
{ 

<list_ of _proc> 
<list of dem> 

} ; 

where <agent_name>, <list_of proc> and <list_of dem> are all input parameters of the 

operator. 

If Exist_agent_name<agent_name> is equal to false then the GIST framework agent is 

created. Otherwise, both the <list_ of proc> and <list_ of dem> are added to the existing one. 
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Then, for each procedure of <list_of_proc>, we have to apply the operator 

"!nit_ a _procedure <proc _name>" before specifying the contents of the GIST procedure. 

And finally, for each daemon of <list_of_daem>, we apply the operator "Init_a_daemon 

<dem _ name>" and specify both what triggers the daemon and what its effect on the system is. 

One can define this macro-operator more formally as the sequential composition of the 

following operators: 

if not Exist_agent_ name<agent_ name> 
then Create the agent framework; 

for each procedure in list_of_proc 
do 

od 

!nit_ a _procedure <proc _ name> 
specify procedure 

for each daemon in list of daem 
do 

!nit a daemon «iaem name> - - -
specify what triggers the daemon 
specify the daemon's response 

od 

P. Add predicate <object name, constraints> - = 
This operator adds a constraint on a GIST object whose name is <object_ name>. 

Precondition: This constraint must have one of the following form: 

Or, 

Always required <object_name> 
<Constraints> 

Always prohibited <object_name> 
<constraints> 

o, Set Assumption <{type or rel or oper or envir}, text> = 

This operator records the informal text of the assumption <text> made by the specifier 

about a specification component: <type>, <rel>, <oper> or <envir>. 
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R. Remove Assumption <Ctype or rel or oper or envir}, text> .. 
This operator erases the informal text of the assumption <text>, made by the specifier about 

a specification component: <type>, <rel>, <oper>, or <envir> out the specifier memory. 

s, Consult Assumption «type or rel or oper or envir}, text> .. 
Thanks to this operator, the specifier will be able to select an assumption he has made on a 

specification component. 

If an assumption has been recorded, it will be placed into <text> otherwise, <text> receives 

the value "no assumption". 
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4.2.3.2 The GIST rationale level 

Using the previous (macro-)operators, we should be able to propose a study of the GIST 

rationale level. We shall analyze what the rationales are behind the modelling of not only the data 

and relations but also the operations and the environment 

However, our GIST experience and readings (see [ML-12], [EC-5]) also give us the feeling 

that the assumptions, which we can do during the entire specification process, play a detenninant 

role in the quality of the specifications. By removing them, the specifier gradually elaborates the 

final specifications. Therefore we shall take into account another view point: "Model: Set/Remove 

Assumptions" 

Formalization Process 

Model: 
Data & Relations 

Model: Model: 
Operations Environment 

Figure GIST.16 The GIST rationales 

Model: 
Set/Remove 
Assumptions 

These four view points will be presented sequentially, but the GIST specifier will actually 

use them always concurrently. 

A. Model Data & Relations 

To model an object spotted in the informal requirements, the GIST specifier must choose 

between three operators defined at the GIST process level. An object will only be selected if it 

plays a part in the specification of the GIST procedures or daemons. 

Thus, a type related to the given <object_text> will be created or modified. The specifier 

has to find out a good <type_name>: it must be meaningful to improve the readability of the 

specifications. 
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rule 0°1: 

if object is related to a procedure or a daemon 
then object is selected and named. 

According to the current state of the data specifications, the specifier must decide what the 

most convenient way for modelling the selected object is. At the GIST process level, we have 

defined three operators to model objects: 

(i) Create_type <type_name>, 

This one is used when, on looking all the existing data-type, the specifier cannot 

found any other type which can be semantically related to the new type. 

(ii) Create_supertype <list_of typename, type_name>, 

If the specifier is able to establish a semantic link between the existing types and the 

new one, this operator can be called. 

The specifier will create the aggregation of a list of types. 

(iii) Create_set_of <type_name_l, type_name_2>. 

If the specifier is able to establish a semantic link between the existing types and the 

new one, this operator could also be called. 

Using this operator, he will be able to create a new type by taking the 

classification of a simple one. 

Thus, we have the three following rules: 

rule 0°2: 

if <type_ name> cannot be linked to any other one 
then begin 

rule 0°3: 

Create_ type <type_ name>; 
Add_ comments <object_ text> 
end 

if <type_ name> can be aggregated to another one 
then begin 

Create_supertype <list_of typename, type_name>, 
Add_ comments <object_text> 
end 
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rule 0°4: 

if <type_ name> is a set of objects which are already defined by <type_ name_ 1> 
then begin 

<type_name_2> := <type_narne>, 
Create_set_of <type_name_l, type_name_2>, 
Add_ comments <object_ text> 
end 

During the specification process, the GIST specifier will also create or modify relations 

between existing object types. If it is a new relation, the specifier will have to find out a good 

<relation_ name>: it must also be meaningful.· 

rule 0°5: 

if a relevant relation is found 
then Create_ Relation <list_ of_ type_ name,relation _ name> 

Thus, once this <relation_name> is chosen, the specifier uses the operator "Create_Relation 

<list_of_type_name, relation_name>". In order to do this, he has also to translate the <list of 

objects> into <list_ of typename>. 

If no assumption has been done on the cardinality of the relation, the specifier will also 

study it. To know if assumptions have been done, the operator "Consult_Assumption 

<relation_text, text>" must be used. 

Thus, we define the following rules: 

rule 0°6: 

if one and only one object of <type2> can be related to <typel> being defined, 
then Specify_cardinality <type_l, rel_name, type_2, unique,?> 

rule 0°7: 

if <type2> must be related to <typel> at least once, 
then Specify_cardinality <type_l, rel_name, type_2, multiple,?> 

rule 0°8: 

if <type2> is attributed either to O or 1 <typel>, 
then Specify_cardinality <type_l, rel_name, type_2, optional,?> 

rule 0°9: 

if <type2> is attributed to an undefined number of <typel>, 
then Specify_ cardinality <type_ 1, rel _ name, type _2, any, ?> 

126 



rule 0°JQ: 

if <typel> can have as attribute one and only one object of <type2>, 
then Specify_cardinality <type_l, rel_name, type_2, ?, unique> 

rule 0°11: 

if <typel> can have as attribute at least one object of <type2> 
then Specify_cardinality <type_l, rel_name, type_2, ?, multiple> 

rule 0°12: 

if <typel > can have as attribute either O or 1 object of <type2> 
then Specify_ cardinality <type_ 1, rel _ name, type_ 2, ? , optional> 

rule 0°13: 

if <typel> can have as attribute an undefined number of object of <type2> 
then Specify_ cardinality <type_ 1, rel _ name, type_ 2, ? , any> 

Nevertheless, the specifier could be unable to determine either <cardl> or <card2> after 

following the "algorithm", i.e. if <cardl> should be greater than 3 and smaller than 7. 

In such cases, the next two rules are necessary: 

rule 0°14: 

if <Card 1 > is more complex than the predefined values 
then 

begin 
find both lower and upper limits 
Specify_cardinality <type_l, rel_name, *, lower, upper> 

end 

rule 0°15: 

if <card2> is more complex than the predefined values 
then 

begin 
find both lower and upper limits 
Specify_cardinality <*, rel_name, type_2, lower, upper> 

end 
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B. Model Operations 

The first thing to do is to read the requirements in order to construct an exhaustive list of the 

operations which must be modelled to satisfy the customer's needs. 

rule 0°16: 

if there remains a non-selected operation 
then add this operation to the list of accurate operations. 

Then for each operation of the list, we have to specify a GIST procedure. But, at this stage, 

we only need to specify the post-conditions of this one. 

macro-operator 0°1: 

for each operation in the list 
do 

choose a name for this operation--> <procedure_name> 
if not Exist_procedure_name <procedure_name> 

then Init_a_procedure <procedure_name> 
endif 
specify the post-conditions 
Add_ comments <operation_ text> 

od 

But, these GIST procedures should be used as a daemon's response, if we want to be able 

to "execute" them. The first thing we define as triggering the daemon is RANDOM(). It is a 

very crude approximation of the pre-conditions of the operation. Thus, we define the following 

rule: 

macro-operator 0°2: 

for each operation in the list 
do 

od 

select a <procedure _name> 
if not Exist_ daemon_ name <11D _"+procedure_ name> 

then Init_a _ daemon <11D _"+procedure_ name> 
endif 
init the trigger part of the daemon with RANDOM() 
daemon's response:= <procedure_name> 
Add comments <daemon text> - -
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As a matter of fact, thanks to this last rule, the following GIST pattern has been defined: 

Daemon D _ ,q,rocedure _ name> 
Trigger RANDOM() 
Response ,q,rocedure _ name>; 

c. Model Environment 

Now, the specifier must focus his attention on the environment features which are described 

in the informal requirements. If environment features are found then they should be modelled 

using a GIST agent In [EC-5], such features have been imagined and modelled. 

Thus, the following rationale level rule has to be introduced: 

rule 0°17: 

if an environment feature is described 
then 

begin 
look for a name --+ <agent_name> 
Add_an_agent <agent_name, {}, {}> 

end 

But, we must add to the new agent the procedures and daemons required by its modelling: 

rule 0°18; 

if procedures are under the responsibility of the agent 
then 

begin 
look for procedures ~ <list_ of _proc> 
f oreach d in list of daemon 

do d = "D _" + <corresponding_proc> od 
Add_an_agent <agent_name, {list_of_proc}, {list_of_daemon}> 

end 

Thanks to the application of the macro-operator n° 1 and n°2, we can also specify the 

contents of the procedures in the list and the list of daemons. 
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D. Model Set/Remove Assumptions 

During the GIST specification process, assumptions must be made in order to concentrate 

all the specifier's efforts on an idealized and simplified version of the future system. Thus, we 

need to define the following rules to set these assumptions: 

rule 0°19: 

if we define a type _name 
then Set_ assumption (<type_ name>, "No relation with other existing type") 

We assume that the variables of this type do not have an influence on other variables, 
e.g., constraining the existence of another one. 

rule 0°20: 

if we define a type_ name which is a set_ of <another_ type_ name> 
then 

Set_ assumption (<type_ name>, 
"Nothing constrains the size of the variables of this new type.") 

rule 0°21: 

if we define a type_ name which is a supertype _ of <other_ type_ names> 
then 

Set_assumption (<type_name>, "Nothing news constrains the new_type.") 

rule 0°22: 

if we define a relation 
then 

Set_ assumption ( <relation_ name>, The cardinality is not yet determined.") 

rule 0°23: 

if we define a procedure 
then 

Set_assumption (<procedure_name>, "The pre-conditions are met") 

The previous list of rules is probably not exhaustive, but it sketches the kind of rules that 

are required to set the assumptions during the specification process. 
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But, all these assumptions have to be removed to adjust the specification and finally specify 
the real customer's needs. Therefore, the following macro-operator is required to select which 
assumption we want to remove: 

macro-operator 0°3: 

begin 
select one "things defined in GIST" 
Consult_assumption ('things defined in GIST', <text>) 
if <text> no equal to "no assumption" 

then select this text~ <assumption> 
end 

The selection of the "things defined in GIST' is subrp.itted to a specifier heuristic like: 

choose first a "type", 

if no assumption on "type" then choose a "relation", 

if no assumption on "relation" then choose a "procedure", 

if no assumption on "procedure" then choose a "daemon". 

Once an assumption has been selected, the following macro-operator must be applied to 

refine the specification and remove the assumption: 

macro-operator n°4: 

begin 
Remove_assumption ('things defined in GIST', <assumption>) 
study the <assumption> to determine what it changes 
update the specification 

end 

The updating of the specification could consist of the application of either the rationale level 

rules n°6 to 15 or the following ones: 

rule 0°24: 

if (we want to remove an assumption on a <Gistset> which is a set_of) 
and 
( <assumption> = "Nothing constrains the size of the variables of this new type.") 
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then 
begin 

end 

rule n°25: 

study the cardinality of <Gistset> ~ lower and upper values 
Add_predicate (<Gistset>,"lower < cardinality_of <Gistset>") 
Add _predicate ( <Gistset>,"cardinality _ of <Gistset> < upper") 

if (we want to remove an assumption on a procedure) 
and 
( <assumption> = "The preconditions are met.") 

then 
begin 

find the corresponding daemon--;. <daemon> 
determine the preconditions--;. <pre-conditions> 
"trigger part" of <daemon> = 

"trigger part" of <daemon>+ "AND" + <pre-conditions>. 
end 

The application of this last rationale level rule was necessary to build the GIST procedure 

"ADD A COPY" of the figure GIST. I I (p. 82). We should also profit by the application of this 

rule to create another daemon triggered by the violation of one of the preconditions. 

The previous list of rules is not exhaustive either. But it sketches the kind of rules which are 

required to remove the assumptions. 
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4.3 Tow ARDS A MORE GENERAL APPROACH TO 
SPECIFICATION PROCESS MODELLING 

This section attempts to model the gradual building of formal specifications. Thanks to our 

little yet interesting exercises in both Zand GIST, we have gathered some hints and ideas about 

the modelling process. 

We shall base our work mainly on the model proposed by Dubois-Van Lamsweerde in [RS-

2], adapting it slightly. We shall therefore recall the principles of it and next, explain the 

adaptation. Actually we have extended it so far as to be applicable to Z and GIST too, and so 

become more general. 

4.3.1 THE DUBOIS-VAN LAMSWEERDE MODELO) 

The authors make a clear distinction between the three following levels: 

(i) the specification product level, at which the various operations and object types of 
the system are defined, 

(ii) the process level, at which the various operations of the specifier are defined. 
These are the meta-operations applied successively by the specifier when he/she 
incrementally constructs specification fragments from the level below. 

(iii) the method or rationale level, at which the reasons underlying the choice and the 
application of each specifier's operation from the level below are defined. 

Two models are proposed based on that distinction: 

(i) a process model for capturing the description of the application of the 
specifier's operations; 

(ii) a method or rationale level for capturing the description of the control of 
these operation applications. 

I ( 1) title by default ! 
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4.3.2 THE PROCESS MODEL REVISITED 

We propose to split the process model into two sub-models, one which is language-specific 

and the other which is language-dependent We have found this more suitable so as to take into 

account those aspects of this process that depend on the specific language being used and those 

that do not. 

4.3.2.1 The language-specific process sub-model 

This model consists of a set of those operators handling the structures and concepts of a 

formal language which depend on the syntax of the language; thus all of the language-dependent 

features are found here. 

In the same way as in a logical architecture, built according to the principles of methodical 

software development, these primitives will be "used" (as defined in [DI-8]) by the operators of 

the language-independent level above. 

These primitives are the ones identified informally for the process level in the previous 

sections(l). Now this should be done more rigourously (in the event of an actual application of 

this model). This means that the parameters of the primitives should be defined more accurately, 

as well as the syntax and semantics of these primitives. Also it could be worth defining other non

basic primitives or macros, derived from basic primitives. This is due to their recurring use in 

algorithms of the above level primitives. 

Here are some examples of such primitives: 

A. Primitives dealini: with Z structures 

CREATE_GIVEN_SET (name, given_set) 

CREA TE_ VARIABLE (name, type, variable) 

CREATE_DATA_TYPE (data_type_name, list_of _alternatives, datatype) 

CREA TE SCHEMA (name, declaration, predicates, schema type) 

EXTEND_ SCHEMA (schema, new_ declarations, new _predicates) 

RESTRICT_ SCHEMA (schema, old_ declar, old _predic) 

MODIFY_DECLARATION_SCHEMA (schema, old_decl, new_decl) 

MODIFY _PREDICATE_ SCHEMA (schema, old _pred, new _pred) 

I ( 1) "The Z process level" and "The GIST process level". 
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AND_ MERGE_ OF_ SCHEMAS (schemal, schema2, name, newschema) 

OR_MERGE_OF_SCHEMAS (schemal, schema2, name, newschema) 

INCLUDE_ SCHEMA (schema, subschema) 

RENAMING_ VAR_SCHEMA (schema, oldname, newname) 

IBDING_ V AR_SCHEMA (schema, variable) 

B. Primitives dealin2 with GIST structures 

ADD_ COMMENT (text) 

EXIST_ TYPE _NAME (type_ name) 

CREA TE_ TYPE (type_ name) 

CREA TE_ SUPER_ TYPE (list_ of_ type_ names, type_ name) 

CREA TE_ SET_ OF (type_ name_ 1, type_ name_ 2) 

EXIST_ RELATION _NAME (relation_ name) 

DELETE_ RELATION (relation_ name) 

CREA TE_ RELATION (list_ of_ type_ names, relation_ name) 

SPECIFY_CONNECTIVITY (typel, rel_name, type2, conl, con2) 

ADD_PREDICATE (object_name, constraints) 

EXIST _PROCEDURE_ NAME (procedure_ name) 

INIT_PROCEDURE (procedure_name) 

EXIST_ DAEMON _NAME (daemon_ name) 

INIT_DAEMON (daemon_name) 

EXIST_AGENT_NAME (agent_name) 

ADD_AN_AGENT (agent_name, list_of_proc, list_of_dem) 

SET_ASSUMPTION ({type orrel or operorenvir}, text) 

REMOVE_ ASSUMPTION ( { type or rel or oper or envir}, text) 

CONSULT _ASSUMPTION ( { type or rel or oper or envir}, text) 

4.3.2.2 The language-independent process sub-model 

At this level one can find general primitives used by the rationale level, e.g., general 

abstraction mechanisms that allow the stepwise elaboration of formal specifications for large 

systems. 

As a matter of fact, all the formal languages that we have studied so far permit the use of 

well-known mechanisms such as decomposition, generalization, classification, etc ... But most of 

the time, not explicitly. For some of them this is quite straightforward and natural, but for some 

others these ideas of abstraction lurk beneath the surface of the language structures. 
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This is the reason why we have chosen to introduce this conceptual "layer" between the 

rationale level and the language specific process level. This bridges the gap existing between 

languages in which abstraction plays an important part, and those who are further from it. For 

example, Z does not provide a direct generalization mechanism whereas GIST does. But the 

language-independent process sub-model will "emulate" this mechanism in Z. It will utilize 

primitives of the language-dependent process sub-model, which will implement it thanks to 

schema inclusion. 

Thus we have a set of primitives that provides a stable background for the rationale level 

and hides the particularities of a language as much as possible. 

Of course, this will not make the rationale level totally independent of the language. This is 

mainly due to the fact that, even though we shall try to have abstraction mechanisms at our 

disposal for every language, it is nevertheless clear that the result of the application of an 

abstraction mechanism may not always give interesting results in that language. We may not 

obtain specifications that have interesting virtues such as readability or easy understanding. 

Now we shall try and define the primitives and their contents. Afterwards, we shall 

illustrate how they "use" the language-specific process level primitives written for both Z and 

GIST. Some of them will be fairly simple, in view of their availability in the target formal 

language. 

For each primitive we will present: 

1. ITS NAME 

2. THE INPUTS AND PRECONDITIONS 

3. THE OUTPUTS AND POSTCONDITIONS 

4. AN "ALGORITIIM" written in terms of Z specification-level primitives 

5. AN "ALGORITIIM" written in terms of GIST specification-level primitives 
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A. The primitives 

First, we shall state those primitives that deal with object types, namely creation, 

specialization, etc ... 

a. CREATE_OBJECT_TYPE 

Input: name, values= {known a priori, indefinite}, 
list_ of_ values (if known a priori) 

Precondition: name is not the name of any other existing object 

Output: initial specification of object_type 

Postcondition: the new resulting specification state contains an initial definition of 
the object type. 

algorithm in Z: 

begin 

end 

if values = known a priori 

then CREA TE DATA TYPE - -
(data_type_name = name, 
list_ of_ alt = list_ of_ values, 
datatype = object_type) 

else CREA TE GIVEN SET - -
(name= name, given_set = object_type) 

algorithm in GIST: 

begin 
CREATE_ TYPE (type= name) 

end 

At this level we shall also have a table of correspondences between object types and their 

actual representations in a target formal language. This is necessary for these primitives to work 

properly on object types of the level above. They must know how object types are represented, 

because they can be modelled in many different ways. 
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An example of such a table could be: 

Object Types Representation in Z Representation in GIST 

BOOK [BOOK] type BOOK 
or BOOK::= .1 ... 

class rs:BOOKS BOOKS = set of BOOK 
of BOOK ~et book:P BOOK 

... . .. . .. 

b. AGGREGATE_OBJECT_TYPES 

Input: list_ of_ object_ type, name_ new_ object_ type 

Precondition: the name of the new object is not the name of any other existing 
object; all the object types in the list have been defined previously. 

Output: new_object_type 

Postcondition: the new resulting specification state contains a new object type 
which is the aggregation of several other object_ types given as inputs 

algorithm in Z: creation of a new schema with the list of object types in its 
declaration part, with the following syntax: { variable = name of object type in small 
print, type= name of object type in capital print} 

begin 

end 

CREATE SCHEMA 
(name= name_new_object_type,{},{}, 
schematype = new_ object_ type) 

foreach object_ type in list_ of_ object_ types 
do EXTEND SCHEMA 

(schema= new_object_type, 
new_decl = { object_type: OBJECT_TYPE},{}) 

od 
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algorithm in GIST: 

begin 
CREATE RELATION 

(list_of_type_names = list_of_object_types, 
relation_ name = name _new_ object_ type) 

end 

c. DECOMPOSE_OBJECT_TYPE 

Input: object_type, list_of_new_names, 
list_ of_ values = {known a priori, indefinite} 

Precondition: all the names from the list_ of_ new_ names are not the name of any 
other existing object 

Output: list_of_new_object_types 

Postcondition: the new resulting specification state contains a list of new object 
types which result from the decomposition of object_type 

algorithm in Z: if the object type is not a schema<1>, then creation of a new schema 
with the list of object types in its declaration part, with the following syntax: { 
variable = name of object type in small print, type = name of object type in capital 
print} 

begin 
if object_ type <> schema 
then CREA TE SCHEMA 

(name= name of object_type, {},{},schema= object_type) 
endif 
foreach n in list of new names - - -

do CREATE_OBJECT (name= n, ... ) 
EXTEND SCHEMA 

(schema= object_type, new_decl = { n: N}, {}) 
od 

end 

algorithm in GIST: 

begin 
if object corresponds to a existing type 

then DELETE_TYPE (type_narne = object_type) 
endif 

end 

CREATE RELATION 
(list_ of _type_ names = list_ of_ new_ names, 
relation_name = object_type) 

I ( 1) this can be easily checked thanks to the table described above. 
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d. SPECIALIZE_OBJECT_TYPE 

Input: object_ type, new_ name 

Precondition: new_name is not the name of any other existing object; object_type 
already exists in the specification 

Output: new_object_type 

Postcondition: the new resulting specification state contains a new object type 
which results from the specialization of object_ type 

algorithm in Z: 

begin 
CREA TE_ SCHEMA (name =new_ name, {},{}, 

schema= new_object_type) 
if object_ type = given_ set 
then DELETE GIVEN SET 

endif 

- -
(name= name of object_type) 

CREATE SCHEMA 
(name = name of object type, 
declarations= {obj:OBJ},{}, 
schema= object_type) 

INCLUDE_ SCHEMA (new_ object_ type, object_ type) 
end 

algorithm in GIST: if the object is a type, then we must delete it before creating the 
supertype. 

begin 
if object_ type = "type" 

then DELETE_TYPE (type_name = name of object_type) 
endif 

end 

CREA TE SUPER TYPE - -
(list_of_type_names = new_name, 
type_name = name of object_type) 

e. GENERALIZE_OBJECT_TYPE 

Input: object_type, new_name 

Precondition: new_name is not the name of any other existing object; object_type 
already exists in the specification 

Output: new_ object_ type 

Postcondition: the new resulting specification state contains a new object type 
which results from the generalization of object_type 
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algorithm in Z: same as specialization, there is no difference a priori between the 
schematype of a generalized object and this of a specialized object, as long as no 
further declarations or predicates are added. 

algorithm in GIST: 

begin 
CREATE SUPER TYPE 

end 

f. CLASSIFY_OBJECT_TYPE 

Input: object_ type(l) 

- -
(list_ of_ type_ names = name of object_ type, 
type_ name = new_ name) 

Precondition: object already exists in the specification 

Output: new_ object= assignment of object to class_ of_ object 

Postcondition: the new resulting specification state contains a definition of an 
object which is a class of objects whose type is given as input by object_type. 

algorithm in Z: this primitive amounts to the creation of a new schema with a 
declaration of a powerset of the object to be specified. 

begin 
CREATE SCHEMA 

end 

algorithm in GIST: 

begin 

(name= "class_of_" + name of object_type, 
declarations= {"set_of'+ 

{object_type}: P OBJECT_TYPE}, 
predicates = {}, 
schema = new_ object) 

CREA TE SET OF 

end 

- -
(type_name_l = "class_of _"+ name of object_type, 
type_ name_ 2 = new_ object) 

I ( 
1) the operator CLASSIFY_ OBJECT, which is a typing mechanism, is implied by the operator 

CREATE OBJECT TYPE - -
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Those were the primitives dealing with the gradual building of object types. Now we also 

need the ability to express constraints on such object types. The right time to state these 

constraints seems to be whenever one of the primitives above is used. For example, when one 

classifies an object type, constraints on the cardinality of the class should be expressed and 

attached to the new object type "class_of_object". Thus every application of an abstraction 

mechanism involves questions that can generate constraints, depending upon the answers being 

provided. When to use this primitive depends on rationales of the level above. 

Just like for objects, there will be "high-level" constraints between objects which capture 

concepts that can be found in most formal languages, and "low-level" constraints, inherent in a 

given target language. The aim of this level is therefore to provide a translation from high-level 

constraints of the method level into, for example, predicates available in Z and GIST at the 

specification level. So there will also be tables of correspondences, in order to supply equivalents 

between high and low level constraints. 

We shall only develop one general procedure, overlooking the process of translating high

level constraints into predicates. 

g. ATTACH_CONSTRAINT_OBJECT_TYPE 

Input: constraint, object_type 

Precondition: object_ type already exists in the specification 

Output: none 

Postcondition: the new resulting specification state contains a new constraint, 
attached to the object type given as input. So this operator receives a general 
constraint, expresses it in the target formal language and attaches it to the object type it 
refers to. 

algorithm in Z: 

begin 
translate constraint~ predicate( s) 
EXTEND _SCHEMA (schema= object_type, {}, 

new _predicates = predicate( s )) 
end 
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algorithm in GIST: 

begin 

end 

translate constraint~ predicate( s) 
if constraint concerns an operation to be 
triggered 
then ADD_DAEMON ( ... ) 
else ADD _PREDICATE (name= object_type, 

constraint= predicate(s)) 

end.if 

But, in a similar fashion as for objects, there could be abstraction mechanisms for 

constraints as well. Our modelling practice in RML hints at considering some hierarchies of 

constraints. 

In short, the rationales of the method level will help to spot constraints in the specifications. 

But they will have to know about the expressive power of the target language, so as to know 

whether or not a given kind of constraints can be written in it. All languages do not allow all the 

constraints a specifier could think of, or, at least, they cannot be written in a direct way. 

Now, we shall have a look at operations, whose abstraction mechanisms are quite similar to 

those concerning the objects. This is the reason why we shall not make an exhaustive study of 

them. 

h. CREATE OPERATION 

Input: name, list_of_inputs, list_of_outputs 

Precondition: name is not the name of any other existing operation 

Output: operation 

Postcondition: the new resulting specification state contains an initial definition of 
an operation, which has all the objects and their types that it requires to be defined 
properly as inputs, and all the inputs modified as output. The preconditions and 
postconditions will be attached as constraints to this operation by: 
ATTACH CONSTRAINT OPERATION - -

algorithm in Z: 

begin 

end 

CREA TE_ SCHEMA (name = name, 
declarations= {list_of_inputs+"?"}+ {list_of_outputs+"!"}, 
predicates = {}, 
schematype = operation) 
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In order to express preconditions and postconditions, which are always constraints upon 

inputs and outputs, the following primitive will be useful: 

i. ATTACH_ CONSTRAINT_ OPERATION 

Input: constraint, operation 

Precondition: operation already exists in the specification 

Output: none 

Postcondition: the new resulting specification state contains a new constraint, 
attached to the operation given as input. So this operator receives a general constraint, 
expresses it in the target formal language and attaches it to the operation it refers to. 

algorithm in Z: 

begin 

end 

translate constraint~ predicate( s) 

EXTEND_ SCHEMA (schema = operation, {}, 
new_predicates = predicate(s)) 

Like constraints attached to objects, those attached to operations will be different at the 

specification level and the rationale level. Thus, likewise, the translation will be done at this level, 

which keeps a sort of a "secret". 

The process of an operation refinement is in fact the building of a tree of conjunctive and 

disjunctive compositions of suboperations. Thus, an operation is completely defined by the 

composition of its final suboperations, i.e. the leaves of the tree. The input/output declarations 

will be shared by all the suboperations. These will also have predicates attached to them, a 

predicate being shared by the operations belonging to the sub-tree starting from this sub

operation. 

This explains how the following decomposition primitives will work: 

j. AND_DECOMPOSE_OPERATION 

Input: operation, list_of_new_names 

Precondition: all the names from the list of new names are not the names of any 
other existing operation - - -

Output: list_ of_ new_ operations 
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Postcondition: the new resulting specification state contains a list of new operations 
which result from the decomposition of the operation given as input. So, an operation 
is decomposed into several suboperations, whose names are given as inputs. The 
original operation is a conjunctive composition of these suboperations. ~: this is a 
structural decomposition. 

algorithm in Z: for each suboperation, a schematype will be created and all the 
input/output declarations will be transferred to each one of them. 

begin 

end 

foreach n in list of names 
do CREA TE_ SCHEMA (name= n, 

declarations = declaration part of operation, 
predicates = {}, 
schematype = new_ operation) 

list_ of_ new_ operations := 
list_ of_ new_ operations + new_ operation 

od 
AND MERGE OF MULTIPLE SCHEMAS - - -

(list_ of_ new_ operations, operation) 

The operator AND_ MERGE_ OF_ MULTIPLE_ SCHEMAS, which creates an operation as 

the conjunctive composition of several sub-operations is a recursive application of the operator 

AND_MERGE_OF_SCHEMAS, which only works for the conjunctive composition of two 

schemas. 

k. OR DECOMPOSE OPERATION - -
Input: operation, list_of_new_names 

Precondition: all the names from the list_ of_ new_ names are not the name of any 
other existing operation 

Output: list_ of_ new_ operations 

Postcondition: the new resulting specification state contains a list of new operations 
which result from the decomposition of the operation given as input. So, an operation 
is decomposed into several suboperations, whose names are given as inputs. The 
original operation is a disjunctive composition of these suboperations. 
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algorithm in Z: for each suboperation, a schematype will be created and all the 
input/output declarations will be transferred to each one of them. 

begin 
foreach n in list of names 

do CREA TE_ SCIIBMA (name = n, 
declarations = declaration part of operation, 
predicates = {}, 
schematype = new_ operation) 

list_ of_ new_ operations := 
list_ of_ new_ operations + new_ operation 

od 
OR MERGE OF MULTIPLE SCIIBMAS - - - -

(list_ of_ new_ operations, operation) 
end 

The operator OR_ MERGE_ OF_ MULTIPLE_ SCHEMAS, which creates an operation as 

the disjunctive composition of several sub-operations is a recursive application of the operator 

OR_ MERGE_ OF_ SCHEMAS, which only works for the disjunctive composition of two 

schemas. 

The AND_ AGGREGATION and OR_ AGGREGATION primitives for operations are very 

simple and so will not be explained here. As to the classification primitive, although it is 

conceptually interesting for operations, it is not of prime necessity. Therefore, we shall not tackle 

the question of its formalization in this context 
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B, Conclusions 

We are aware that our approach is not very much refined, since it reduces a great deal of the 

aspects of formal languages. Its simplicity leaves in the shade many interesting features of some 

languages. Actually, it would be necessary to take a higher-level point-of-view, after an 

exhaustive study of the characteristics of most formal languages. What we would need is a meta

model describing the formal language models, so that we could design more elaborate process 

primitives working on it. 

Then again, the results we obtain after application of our process primitives provide Z 

schemas that do not give as good a modelling of the problem as the ones written by a craftsman 

specifier. For example, in Z, our primitives model relations as aggregations of objects into a 

schematype. This is mainly due to reasons of simplicity and conceptual cleanliness of our 

procedures. However, this turns out to be far less clear than the good old Z relations ... and, 

therefore, it endangers the readability and other qualities of good Z specifications. 

Here is a practical example in Z. The first schema is the result of the application of our 

primitives, whereas the second Z declaration is the "natural" way of modelling a relation in Z. 

~talk about 
book: BOOK 
subject: SUBJECT 

talk about: BOOK ~ SUBJECT 

It is clear that the latter modelling of the relation talk_ about is much easier to handle than the 

former. For example, writing a predicate that "describes a set of books dealing with a given 

subject" is more straightforward in the latter case (it is just the relation with a range restriction). 

By systematizing the specification process in this way, the wealth of Z and GIST 

formalisms is somehow lost. And we may end up with poor schemas, which would use only a 

subset of the possibilities offered by such languages. So there is a need for a tool that would read 

through the requirements produced by our protocols and restate some objects and constraints in a 

less artificial way. 

But of course, the main effort remains to be done on those primitives such as the ones we 

stated, so as to improve and enrich them while remaining at a very general level. 

Finally, we would like to point out that other primitives can be considered as well, such as, 

for instance, those dealing with the environment or "agents" in GIST. 
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4.3.2.3 The rationale model 

The specification process can be seen as a sequence of transitions between specification 

states: by starting with the informal requirements, the specifier will progressively reach the formal 

specification thanks to the application of those operators such as those defined in section "4.3.2.2 

The language-independent process sub-model". 

The selection of a process-level operator is determined by "control strategies". In [RS-2], 

Dubois and Van Lamsweerde have made a clear distinction between local strategies and global 

ones: 

"Local control strategies determine the direction in which a next specification 

state is reached from the current one, e.g., up, down, backward,forward'. 

On the other hand, "global control strategies determine the direction in which a 

whole sequence of next specification states are reached from the current one". 

Thus, in this section, we shall try to explain when and why we use a strategy rather than 

another one. This should help us defining some parts of our specification meta-algorithm. 

Therefore, we shall try to find out some meta-rules (local strategies) and a way to arrange them 

into global strategies. 

A. Local strate2ies 

As we are interested in the process of turning informal requirements into formal 

specifications, we must start from the informal expression of the specifications, and extract 

objects and operations from in there. We shall therefore read through the requirements and spot 

relevant objects and operations. 

Then, we shall state rules that determine if the application of an abstraction mechanism can 

prove useful in a given situation. At this level we can only propose a set of rules, whose order of 

examination will be fixed in global strategies. 

Here is a sample of such rules. 

IF object is of some use to the specification, i.e. if it is an entity and has an existence of its 
own 

THEN CREA TE OBJECT TYPE (name = name given in the requirements, 
values={ indefinite}) -
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IF object is composed of two or more other existing objects 

THEN AGGREGATE_ OBJECT_ TYPE (list_ of_ objects, new_ name, 
new_ object) 

IF object has all the properties of some other object, plus some others of its own 

THEN SPECIALIZE_OBJECT_TYPE (object, new_name, new_object) 

IF object has properties that are of some use to an operation, these properties being not 
known yet 

THEN DECOMPOSE_OBJECT_TYPE (object, list_of_names, 
list_ of_ new_ object) 

IF there is more than one occurrence of an object 

THEN CLASSIFY_ OBJECT_ TYPE ( object, class_ of_ object) 

As explained above, the constraints upon object types will be expressed whenever we apply 

a process-level primitive to manipulate these object types. So there will be meta-rules that help 

finding out constraints on object types, according to the primitive used. 

IF CLASSIFY OBJECT TYPE has been used - -

THEN check whether there exists a lower or an upper bound (or both) to the cardinality of 
the objects class 

IF (lower bound> 0) and (upper bound finite) 

THEN ATTACH CONSTRAINT OBJECT (object, 
constramt = { cardinality[l:L] } ) 
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IF AGGREGATE OBJECT TYPE has been used - -
THEN examine the tree decomposition structure of the new object type, and find out 

identical types in different subtrees (if any) 

FOREACH pair of such same object types 

DO ATTACH_CONSTRAINT_OBJECT _TYPE (object_type, 

constraint is { instance_ of( objectl _type) ? instance_ of( object2 _type) } ) 

where the? stands for a logical operator (:;t,=, included, ... ). 

An example will facilitate the understanding of the latter rule. Here is an object type 

aggregated from three other object types. We have thus a tree, which is an aggregation of three 

subtrees (two of them being only "leaves"): 

I t 
1 NAME I I_B_IR_THD __ A_TE-"'11 

!PERSON I 
I 

.... _ ,____ l 

- - - - - - ... r--1 N---'AME'----;I 

!CONJOINT! 

:amrnbATEI 

Owing to this aggregation, NAME can be found at two different places in the tree of the 

object type PERSON. This enables comparisons. Thus, the question is: is there any constraint 

upon the objects (NAME of PERSON) and (NAME of CONJOINT of PERSON)? Of course, the 

answer is yes, the names must be the same! 

This suggests how a constraint, which will be specified naturally by the specifier, can also 

be discovered by an systematic process questioning its user. 

Many other rules like these ones can be found for the other abstraction principles applied to 

objects. Therefore, we shall not go any further in this direction, because we would rather 

concentrate on rules regarding operations now. 

There exist local strategies for operations. For example, one can determine the abstraction 

mechanism to apply in order to refine an operation by just looking at the input and output objects 

and their structure. Of course, this also depends on which strategy is followed - i.e. down, up, 

backward, forward. A more precise definition of these strategies can be found in [RS-2]. 
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We often have favoured a down backward strategy, because starting from the results is an 

approach advised in many "problem solving methods". This choice induces rules, some of which 

are: 

IF output object of an operation is aggregation of subobjects 

THEN AND_ DECOMPOSE_ OPERATION ( operation, 
list_ of_ new_ names, list_ of_ new_ operations) 

IF output object of an operation is specialization of a more general object for which a 
corresponding operator has been specified 

THEN OR_ DECOMPOSE_ OPERATION (operation, new_ name, new_ operation) 

The contents of the operation will be expressed through the use of constraints attached to 

the basic suboperations at the bottom of the tree (i.e. the leaves). Thus, the total specification of 

an operation will be an expression containing conjunctions and disjunctions of basic 

suboperations. 

After applying one of the previous rules to decompose operations till we obtain basic output 

objects for each suboperation, other rules will be looked at. These determine the constraint tying 

an input to an output. A simple example might be the following: 

IF output and input have the same structure and there is a simple rule of transformation 
between them (i.e a predefined basic function on these objects) 

THEN ATTACH_ CONSTRAINT_ OPERATION (suboperation, 
constraint = { output = function(input) } ) 

To conclude with, there will also be rules that reflect some knowledge about the expressive 

power of the formal language, i.e. which abstraction mechanisms should be used preferably or 

not in which language. This is due to the fact that all languages do not support abstraction 

mechanisms in the same way, and some are more suited for some local strategies, whereas they 

may not be convenient for some other ones. This will also be true at the global level. 
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B. Global strate2ies 

We reckon it is of some use to state the most widespread global strategies existing to date. 

These are: 

- operation- or object-oriented 

- depth-first or breadth-first 

Our experience in using Z, RML and GIST has led us to favour an object-oriented and 

depth-first global strategy. Therefore, the meta-algorithms we use are very much alike. This 

means that we have always begun with the specification of objects, as long as there was 

something to model, and that, only afterwards, we start modelling the operations. We have also 

favoured a depth-first approach because it is more natural to "human beings". One usually likes to 

complete a task before starting a new one, and the same applies to specification processes. It 

seems far more natural to refine an object/operation completely before specifying anything else. 

We would like to make some further comments. 

First, we have noticed that there was some backtracking in our specification process, 

because operations forced us to specify new objects that we had not realized were important 

before. Thus, a mixed approach seems far more realistic. 

Second, the size of the problem we dealt with was not like the one of real-world systems. 

Thus, it was not really difficult to have a global view of the system to specify. 

Finally, as it was noticed by Dubois-Van Lamsweerde in [RS-2], which strategy to follow 

seems to depend heavily on the type of problem considered and on the way the specifier sees the 

problem. 

The meta-algorithm of the object-oriented strategy we have followed is made up with two 

"coroutines" applied concurrently: one for the refinement of objects and one for operations. 

Coroutine n°l: 

SPOT Objects {i.e. scan the requirements and spot objects} 

FORBACH Object 

DO 

OD 

REFINE Objects {i.e. aggregate, decompose, specialize, ... them 

recursively, according to rules which are language-dependent or 

independent)} 
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Coroutine n°2: 

SPOT Operations { i.e. scan the requirements and spot operations} 

FORBACH Operation 

00 

OD 

DEFINE Inputs, Outputs 

IF there are new objects in inputs/outputs 

THEN DEFINE (or REFINE) new objects 

REFINE Operation { i.e. according to inputs or outputs structure, and this 

must be done recursively, until we have a structure of basic operations} 

Other meta-algorithms can be written in the same fashion. However, our experience is still 

too limited for us to formulate rules that could help the specifier chosing a relevant global strategy 

as a function of the proble~ considered, its size, the target formal language chosen, etc. 
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5. CONCLUSION 

In the PRODUCT LEVEL part of this work, we have presented three languages (Z, RML 

and GIST), which we consider as being representative of what a formal specification language is 

all about. An assessment of their pros and cons has been undertaken, and led to bring the 

strengths and weaknesses of each one of them to light. 

It could be interesting to extend such a comparison further to other languages. As formal 

languages can be classifiei1
), one member, representative of each class, could be chosen. And, 

as some problems require certain expressive qualities from a formal language, this could help 

specifiers chosing one of them accordingly. Likewise, if automatic consistency checks must be 

made absolutely, it would be wiser to chose a language that supplies such facilities easily. 

In the PROCESS LEVEL part of this work, we have investigated the underlying processes 

making up the process of turning informal requirements into formal specifications. We started 

with the informal description of specification processes in both Zand GIST, and, next, attempted 

to generalize it as much as possible. Of course, this attempt has been biased to a certain extent 

because it is based on just two particular kinds of specification processes in two particular formal 

languages. 

Thus, here also, the investigation of such processes in more than two languages would be 

required. Only then would we be able to talk about a real "specification process model". We have 

also emphasized the need for a model describing formal languages. This aims at a better 

understanding of those aspects of the specification process that depend on a given formal 

language and those that do not 

Also, this work requires a great deal of practical experience in the use of formal languages, 

which students typically do not have. So it is better to entrust research workers with this task. 

This specification process model also relies heavily on rules that express the knowledge of 

the analyst, i.e. the strategies he/she follows. Thus, an empirical approach should be considered 

in the future, with on-the-ground interviews and collaborations. 

September 1989 

I (l) for example algebraic, knowledge-oriented languages,etc ... 
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ANNEX 1: 
A CASE STUDY "THE OIL TERMINAL CONTROL SYSTEM" 



General description 

The following description has been copied from a document published by IBM United 
Kingdom Laboratories Ltd. 

An oil terminal has a number of berths at which tankers can discharge their cargoes. 

When an approaching tanker asks for permission to dock, the controller will ask the 
system to allocate a berth for it to use. If no berth is free, the system will tell the con
troller so, and the tanker will be queued in the approach to the terminal. The system 
assumes that there will be enough room for any number of waiting tankers. 

On docking, a tanker occupies the allocated berth, unloads its cargo, and so on. When it 
is ready to leave, the controller will notify the system so the berth is available for reuse 
and the tanker is deleted from the system. A tanker's leaving a berth might mean that a 
queing tanker can come and occupy it. The system will identify the tanker at the head of 
the queue to the controller, and allocate that berth to the tanker. 

The system has enquiry facilities so that the controller can get information about which 
tankers are queuing, which berths are occupied and by which tankers, and which berths 
are free. 



The Oil Terminal: state-space 

Needed sets 

The following schemas describe the declarations and the constraints we need in order to 
formalize the Oil Terminal specifications. 

The given sets are : TANKER and BERTHS where TANKER is the set of tankers and 
BERTHS of berths. So, we have: 

[TAN KER,BERTHS] 

We need a Berths subset which contains all the berths that are available in our Oil Ter
minal. Thus we declare: 

berths: lfl> BERTHS 

State data: the schema 

OIL TERMINAL 

t q: seq TANKER 
t un: lfl> TANKER 
t s: lfl> TANKER 
using: TANKER )4-+ BERTHS 

TANKER = ( ran t_q U t_un U t_s) 
ran t_q n t_un = 0 
ran t _ q n t _ s = 0 
t_un n t_s = 0 
\:J i J : dom t _ q I i =:/= j • t _ q ( i) =:/= t _ q (j) 
ran using c berths ⇒ t q = 0 
dom using = t un 
ran using c berths 

Some comments 

We have chosen to model the Oil Terminal using two entities i.e. TANKER and 
BERTHS. Thus we have overlooked certain features described in the informal text like: 
"cargo", as it played no significant role here. 
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Figure 1. Oil Terminal Control System: the sets. 
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We have then created a partition of the TANKER set assuming a real world situation 
which seemed natural to our minds but which nonetheless needs to be discussed with the 
customer. This partition relies on three states: a tanker can be queuing (t_q), unloading 
(t_ un) or sailing (t_s). This leaves sufficient room for further refinements. Moreover the 
"queuing state" has been modeled as a sequence assuming order is important and the 
system picks up a tanker according to a "first in, first out" strategy. 

Because of the specifications words "allocated berths," we were led to think of a function 
from TANKER to BERTHS. This function is injective because a berth cannot 
accomodate more than one tanker and partial because only some tankers are unloading 
at the same time. 

Our constraints describe the following facts: 

1. The first four contraints relate to the TANKER partition. 

2. While the next one refers to the assumed unicity of sequence members in the queue. 

3. The following one ensures that no tanker could be queued if a berth is free. 

4. And the last two restrain the "using" function domains. 

The questions that arose in our minds were the followings: 



1. Are all tankers known to the system beforehand? Or are they created or deleted as 
soon as they arrive or leave the harbour? If so, there could not possibly be any 
"sailing tanker" set and checks carried out on the tankers would be different. 

2. Must we keep a record of all the comings and goings of tankers or drop information 
about actions once they have been completed? 

3. We have used a lot of our own knowledge about the concepts of "TANKER" and 
"BERTHS" and actions related to them. Thus we have implicity answered questions 
that might have been settled otherwise. It's not beyond our grasp to fancy a tanker 
unloading while queuing, thanks to a floating and moving berth. Why not? We have 
to make sure that the partition we've adopted is a real partition with non overlapping 
classes. It's up to the customer to decide, and we have to find out what he fancies. 



Initialization of the Oil Terminal 

INITIALIZATION 

OIL TERMINAL 

t q' = (J 

t un' = (J 

t s' = TANKER 
using' = (J 

When we initialize the system, the queue is emptied. There is no tanker at any berth. 
That's why all tankers are sailing. 



Arrival of a tanker 

When a tanker asks for permission to dock, three situations can occur: either a berth is 
free or there's none or the tanker's identification is unknown. So, we have 

ARRIVAL ~ ARRIVAL IF ROOM V ARRIVAL IF NO ROOM - - - - -
v /S NOT SAILING - -

As one can see, we have chosen to develop a robust Oil Terminal Control System. Does 
the customer agree with this solution? 

First case: A berth is free 

We can allocate this free berth to the approaching tanker. The system gives the controller 
informations about the new allocated berth. 

The tanker is transfered from t s to t un. 

ARRIVAL IF ROOM 

tiOIL TERMINAL 
tanker?: TANKER 
mes! : MESSAGE 
xberth! : BERTHS 

- -

ran using c berths " tanker? e t_s 
t_un' = t_un U { tanker? } 
xberth! e berths \ ran using 

using' = using E:B { tanker? 1--+ xberth! } 
mes! = okJor _dock_and_unload 
t_q' = t_q 
t s' = t_s \ { tanker? } 

Second case: no berth is free 

All berths being occupied and the tanker being sailing, it is added to the queue. A 
message is sent to the controller warning him about the situation. 



ARRIVAL IF NO ROOM 

AOIL TERMINAL 
tanker? : TAN KER 
mes! : MESSAGE 

ran using = berths " tanker? e t _s 
t_s' = t_s \ { tanker? } 

t q' = t q " < tanker? ) - -
t un' = t un - -
mes! = sorry_queue_up 
using' = using 

Third case: a wrong tanker identification 

The given identification doesn't correspond to a sailing tanker. The controller is issued 
with a warning. 

IS NOT SAILING - -
EOIL TERMINAL 
tanker? : TAN KER 
mes!: MESSAGE 

tanker?~ t_s 
mes! = sorry_this_thanker_is_not_sailing 



Departure of a tanker 

When a tanker is unloaded, it leaves its berth. As for the ARRIV ALs, we have three 
different cases. There may be a queue when the tanker is leaving or there may be none. 
It could also be possible for the controller to give a wrong tanker id~ntification to the 
system. : 

DEPARTURE~ DEPART_IF_QUEUE V DEPART_IF_NO_QUEUE 

V UNKNOWN TANKER 

Does the customer agree with this robust formalization of the departure of a tanker? 

First case: there is no queue 

In this case we only have to transfer the tanker from t_un to t_s because the tanker is 
now sailing. The system generates a message here too. This one informs the controller of 
the tanker departure. 

DEPART_JF_NO _QUEUE 

A.OIL TERMINAL 
tanker? : TAN KER 
mes! : MESSAGE 

tanker? e t un 
t_q = 0 
t_un' = t_un \ { tanker? } 
t_s' = t_s U { tanker? } 
t q' = t q - -
using' = { tanker? } <:;I using 
msg! = ok_sail_off 



Second case: there is queue 

In this case the unloaded tanker is tranfered from t_un to t_s and the first queuing 
tanker can use the freed berth. The system generates a message which contains info
rmations about the freed berth and the unqueued tanker (.newtankerl),. 

DEPART_IF_QVEVE 

I).OIL TERMINAL 
tanker? : TAN KER 
msg!: MESSAGE 
newtanker! : TANKER 
berth!: BERTHS 

tanker? e t un 
t_q -=I= 0 
berth! = using (tanker!) 
newtanker! = head (t_q) 
t_un' = (t_un \ { tanker?} J U {newtanker!} 
t_q' = tail (t_q) 
t_s' = t_s U { tanker? } 

using' = ( { tanker?} ~ using) EB 
{newtanker! 1-+ berth!} 
msgl = ok_askJor_a_new_tanker 

Third case: Invalid informations 

The controller is trying to transfer a tanker which is not docked. 

UNKNOWN TANKER AT DOCKS - - -
'EOIL TERMINAL 
tanker?: TANKER 
msgl : MESSAGE 

tanker? ~ t_un 
msgl = sorry_Unknown_Tanker 



Enquiries 

There are three possible query operations. First we can question the system about which 
tankers are in the queue. It could also be interesting to have a request at our disposal 
which would give us infomations about the free berths. Another request could be: "Give 
me all the occupied berths and for each one its tanker!." 

ENQUIRY:! ENQUIRY_QUEUE v ENQUIRY_BERTHS_FREE 

V ENQUIRY_BERTHS_AND_TANKER 

First request 

This request returns the tankers which are in the queue. 

ENQUIRY_QUEUE 

BOIL TERMINAL 
list_tanker_queuing!: lfD TANKER 

list_tanker _queuing! = ran t_q 

It could be interesting to know if the customer agrees with this representation of the 
result, i. e. a set, or if he prefers a sequence as result. 

Second request 

With this request the controller will be able to know which berths are free. 

ENQUIRY _BERTHS _FREE 

BOIL TERMINAL 
listJree_berths! : lfD BERTHS 

listJree_berths! = berths \ ran using 



Third request 

This request enables the controller to have informations about the occupied berths. 

ENQUIRY_BERTHS_AND_TANKERS 

BOIL TERMINAL 
list berths tanker!: TANKER )4--+ BERTHS - -
list berths tanker! = using 




