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Abstract 

Since the arrivai of the distributed operating systems such as MACH and CHORUS with the Loosely 

Coupled or Closely Coupled multiprocessor systems, a new concept appeared: the server. In the common 

literature, the designers explain how to access a server service through the existing mechanism of ports and 

messages. However from the performance point ofview, the state-of-the-art relates only few words about the 

strategies taken into account when (un)loading a server and when (un)binding a server. 

In addition, there already was a concept of sub-systems among several operating systems. The first step 

of the present thesis bas been to integrate the server as a kind of sub-system into a sub-systems architecture and 

into a sub-systems topology. 

The scope of this thesis is to elaborate a management of Sub-Systems which permits to exploit the 

parallelism provided by the servers as efficiently as possible. My management strategies have been designed 

during a training period at Siemens-Nixdorf on the evolution of the BS2000 operating system to a distributed 

operating system in a close! y-coupled multiprocessor system. 

Depuis l'apparition des systèmes d'exploitation distribués tels que MACH et CHORUS pour des 

systèmes multiprocesseurs "loosely-coupled" ou "closely-coupled", un nouveau concept apparut : le 

serveur. Dans la littérature courante, les concepteurs expliquent la manière d'accéder à un service d'un 

serveur avec le mécanisme existant de portes et de messages. Mais d'un point de vue de performance, l'état 

de l'art ne révèle pas les stratégies considérées lors des ( dé)connexions aux serveurs et lors des 

( dé)chargements de serveurs. 

De plus, il existait déjà un concept de sous-systèmes parmi plusieurs systèmes d'exploitation. Une 

première étape du présent mémoire a été d'intégrer le serveur comme étant un cas particulier de sous-système à 

travers une architecture et une topologie de sous-systèmes. 

Le but de ce mémoire est d '.élaborer une gestion de sous-systèmes qui permet d'exploiter le plus 

efficacement possible le parallélisme offert par les serveurs. Mes stratégies de gestion ont été conçues lors 

d'un stage chez Siemens-Nixdorf pour l'évolution du système d'exploitation BS2000 en un système 

d'exploitation distribué à travers un système multiprocesseurs "closely-coupled". 
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PART 1 

A hardware introduction 
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1- Parallelism and performance 

The parallelism of different entities (e.g. programs, instructions, etc ... ) brings about more 

performance with a multiprocessor system. But the concurrence of shared resources and the 

coherence of the replicated entities have to be secured ... 

1.1- The multiprocessor systems 

A tightly-coupled multiprocessor system is a hardware system with several processors, a 

shared memory and other common input-ouput devices such as the tape disks, the bard 

disks, etc ... 

Shared Memory 

1/0 

Proeessors 

Figure 1 The tightly-coupled multiprocessor system 

A loosely-coupled multiprocessor system is a hardware system with several nodes 

interacting through a communication network. A node, also called a computer, may be a 

uniprocessor system (i.e. IBM PC 80386) or a tightly-coupled multiprocessor system (i.e. 

Univac 1100/8, BS2000/Zll, IBM 370, CRAY X-MP). A node is always managed by a 

kernel (V AX-VMS, MS-DOS). It is possible for nodes to have different kernels but there 

always is a distributed system (i.e. UNIX BSD 4.2, MACH, CHORUS, V-system, 

AMOEBA) for all nodes. Let's examine the kind of the networks (i.e. ETHERNET, 

XEROX internet, TOKEN RING) which will allow interaction between the nodes. 

2 
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®® 

LocalN~ork 

Figure 2 A loosely-coupled multiprocessor system 

Loosely-coupled systems are characterized by physical separation of processors, low­

bandwidth message-oriented interprocessor communication, and independent operating 

systems. Tightly-coupled systems are characterized by close physical proximity of 

processors, high-bandwidth communication through shared memory, and a single copy of 

the operating system. The intermediate approach is the closely-coupled structure also called 

cluster (i.e. V AX-Cluster [KRON]) : a cluster has separate processors and memories 

connected by a message-oriented interconnect, running separate copies of the same 

distributed operating system, a close physical proximity of all resources, a single security 

domain (physical and logical), shared physical access to disk storage, and a high speed 

memory-to-memory block transfer between nodes. 

1.2- The level of parallelism 

In the centralized operating system there are several levels of parallelism. The intra­

instruction level results from the capabilities of the modern pipeline computer which are able 

to treat several instructions at the same titne by using scalar and vector pipelines. The inter­

instruction level allows the parallelism of instructions of a program which is written in a high 

level language. The multitasking level makes it possible to execute several programs (e.g. the 

user programs and the local sub-systems) at the same time. 

In the distributed system there are two new levels of parallelism : the multithreading level 

which can perform several procedures of a program at the same time, and the nodes level 

which allows the parallelism of programs interacting through a communication network (e.g. 

the user programs and the servers). 

3 
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2- Performance and cost 

2.1- The failure of Grosch's law 

Grosch's law stipulates that the performance is proportional to the square of the cost 

[COUL]. For example, a system of 2 million$ is two times more efficient than two 1 million$ 

systems and a network. Thus a tightly-coupled multiprocessor system is better than a 

loosely-coupled multiprocessor system for the same price. But this law doesn't apply to the 

new high speed networks, the cheaper memory and the cheaper processors. At present 

some designers put forward the following hypothesis : the performance is nearly 

proportional to the logarithm of the cost. In addition, users need more and more complex 

applications. The advantage of the loosely-coupled multiprocessor system is that it is able to 

offer a lot of heterogenous nodes, each node being specialized in a certain kind of 

application (e.g. a workstation for the interactive or graphical applications which are not 

made for an oriented batch node). 

I GROSCH 
PERFORMANCE 

I 
I 

NOWADAYS 
I 

I 
.,,, ~/ 

_,, --
COST 

Figure 3 The performance according to the cost 
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3- Management of servers in a Closely Coupled Architecture 

To obtain the optimal response time of the services of servers, the (un)loading and the 

(un)binding strategies have to be found. Part 3 of this thesis attempts to answer two 

fondamental questions regarding the Closely Coupled Architecture : Which is the node 

where a server may be loaded at a given time ? What is the copy of the server to be chosen 

during a binding ? It is advisable before tackling part 3 to read explanations about the 

Remote Procedure Call, the local and global services, the local or global call mechanisms, 

the Client/Server model, the Client/Sub-Systems Architecture, the topologies of Sub­

Systems, some principles about the distributed operating systems .. . Th ose concepts will be 

explained in detail in part 2 of this thesis. 

5 
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PART 2 

Services and Sub-Systems in a Di,stributed OperaJing System 

6 
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Chapter 1 : Sorne goals and principles of the DOS 

This chapter gives the main goals, principles and properties of a particular case of 

Distributed Systems : the Distributed Operating Systems in a Closely Coupled Architecture. 

1- Definition of a Distributed System 

A distributed system is a multiplicity of general purpose resource components which have a 

physical distribution interacting through a communication network [SEIF]. The Distributed 

System is the manager of the software as well as the hardware resource components. 

2- Kinds of operatina: systems in distributed systems 

From a functional point of view, the operating system is split into a kernel and a set of sub- · 

systems. The kernel comprises a lot of basic services such as the processor allocation and 

the memory management. The sub-system is another kind of set of services such as the file 

backup management. The server is a special kind of sub-system (the server services may be 

used whatever the localization of the user may be). 

2.1- The Network Operatine Systems 

Each node has its own kernel and there is a common software package to be added to each 

host in order to communicate. 

2.2- The Distributed Operatine Systems 

Each node has its own kernel. The Distributed Operating System is able to manage the 

resources through the network by using the servers. In fact, it is this kind of operating system 

this thesis will examine, but in the context of a closely-coupled multiprocessor system. 

2,3- The decentralized operatine systems 

They are the same as the distributed operating systems but here the fonctions of the kernel 

are themselves distributed. In other words the services of the kernel are split among all 

nodes. 

7 
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3- Goals of the DOS 

Obviously, the main goal of the Distributed Operating Systems is to share a lot of resources 

(i.e. the files, the printers, ... ) whatever the node they are associated with, but it has to be 

carried out by providing the transparancy of the service utilization (the single image 

machine) and by insuring the effectiveness of those services. 

The sinele imaee machine principle of DOS 

The users should have a view of the system as a whole, they should not normally need to be 

aware of the location of hardware and software components from which the system is 

constructed. 

4- Properties of the DOS 

4.1- The transparancy 

A user uses a distributed service, and thus a server, without knowing its location, its possible 

replication, its possible migrations on other node, its possible failures and recoverabilities, 

its possible existing activities and without knowing the configuration of the physical 

components and its possible extensions. 

4.2- The performance 

The DOS has to optimize the weight of each node with the minimum network traffic rate 

because that implies a greater performance for the response time per service. It also has to 

furnish some transport communication services which are to be more efficient because they 

are more lightweight. 

4.3- The reliability 

Because DOS is very dependent on the network it has to recover the network failure and has 

to make the whole system reliable. 

8 
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4.4- The fault tolerance and the recoverability 

DOS has an inbuilt automatic recovery system for hardware or software failures. For 

example, anode may crash yet that doesn't hamper the users of other nodes. 

4.5- The security and the extensibility 

There are no interruptions of the user activities if new hardware or software components are 

added. This property is very interesting when we speak about the open system. But it also 

increases the risk of getting undesirables components such as spies or something lik:e that. 

Therefore DOS has to protect the whole system against accidentai or intentional violation of 

access control and privacy constraints. 

4.6- The coherence 

There are often several copies of a logical entity (i.e. a server, a file, ... ) and so DOS has to 

secure the coherence of this entity. 

4. 7- The concurrency 

As one of the primitive goals of Distributed Systems is to share the resources (i.e. a server, a 

file, a printer ... ) among several users, DOS has to manage this concurrency. 

9 
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Chapter 2 : How to achieve services in DOS 

In a Distributed Operating System there are several ways to carry out a service for a client : 

there are those of the traditional operating system and in addition the new ways required by 

Distributed Systems. Generally speaking the sub-system concept is a set of services and the 

client concept is an entity which has need for a service. The aim of this chapter is to provide 

the basic elements of the Distributed Operating System in order to explain how to achieve the 

service. 

1- The representation of the client or of the sub-system 

In the distributed operating systems a client or a sub-system is represented by a particular 

kind of process [l]: the task. 

The task 

The tasks represent virtual central processors competing for the possession of the central 

processor. The tasks are submitted to the task scheduling according to priorities, even 

though two or more tasks may be executed simultaneously when two or more central 

processors are available. The program components, an address space and additional 

resources are assigned to the task. The task is the support of a set of perf orming units. The 

task is privileged or not depending on whether the current perf orming units are privileged or 

not. A task may be a user task or a system task. A system task is a task for the operating 

system and in particular for the sub-systems. The user task is a task for the user programs. 

The tasks management (the (des)activation, the initiation, the creation, the terminaison, the 

preemption and the scheduling of the task) belongs to the kemel. 

[1] In the BS2000 operating system there are several kinds of processes sucb as the special process, the task and 

the activity. "Processes represent virtual central processor and thus compete independently of one another for 

possession of the central processor" [SIMl]. Only the tasks are the support for the clients and the sub-systems, 

therefore the clients and the sub-systems are submitted to the multitasking. The only kind of process in UNIX 

BSD 4.3 is the task with only one tbread. The subject of process types is very specific and depends on the 

operating system and so we do not here introduce it here because this cbapter wants to stay as general as 

possible. More over we speek bere about the inter-task communication instead of the inter-process 

communication tbroughout the thesis for referring to the theorical concept, MACH or BS2000 naming. 

10 
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2- The representation of service 

There are several kinds of services used by a client : the kemel, the local and the global 

services. In the distributed operating systems those services are represented by different 

kinds of program-runs. The program runs are the execution units for a program within a task. 

Their context is a subset of the task context. There may be several program runs within the 

same task. A program run is privileged if its code contains at least privileged instructions. 

The program run management belongs to the kemel. 

2.1- The kinds of services 

2,1.1- The kernel services 

The Kemel services are the generic or basic services. The kemel services are the services 

provided by the traditional operating system and they also exist in the distributed operating 

system. They are included within the kemel. In addition the kemel has some new services 

for securing the distribution such as the services of the transport management, the 

management of distributed files, etc .. . Thus a kemel service may be called with the 

SuperVisor Call by the clients which are on the same node of the corresponding kemel. 

Conceming the kemel, services or their interfaces are the only things which will be examined 

in more detail in this thesis. More over, the kemel services have to be submitted to a deeper 

analysis when the distributed system is decentralized ... 

2.1.2- The local services 

The local services are the services provided by the traditional operating system and they_ also 

exist in the distributed operating system. They are included within the local sub-systems. 

Therefore, a local service may be used by the clients which have to be on the same node of the 

corresponding local sub-system. The local sub-systems may be loaded or unloaded 

depending on the utilization of their services. 

2.1.3- The &lobai or distributed services 

The global services are included within the distributed sub-systems (the servers). 

Therefore, a global service may be used by all of the clients wherever they are. The servers 

may be loaded and unloaded according to the utilization of their services. 

11 
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2.2- The types of proiram-runs 

2.2.1- The Proiram Control Bloc runs 

The PCB runs are used for synchronous processing within a task. The PCB run has no 

address space .of its own and it also shares all of the other important resources with all of the 

_other pro gram runs · of its task. Two or more PCB runs of the same task may be executed 

altemately only and two or more PCB runs of different tasks may be executed simultaneously 

when the tasks are executed simultarieously. 

2.2.2- The threads 

The threads are used for asynchronous processing within a task. The thread has no address 

space of its own and it also shares all of the other important resources with all of the other 

program runs of its task; Two or more threads of the same task may be executed 

simultaneously. The parallelism of threads wittiin . a task is also called the multithreading. 

For the purpose of bounding this_ thesis we shall put forward the following hypothesis : the 

process manager of the kemel is able to treat the threads and the procedures but not the PCB 

runs because we don't know beforehand whether it is possible to manage those two different 

kinds together, or in other words whether the threads and the PCB runs are compatible. 

2.2.3- The procedures 

The procedure is a code which is still performed in the context of the caller (the client). This 

is possible because the distributed operating system defines a shared code in system 

address space for all of the tasks, and also defines a common memory pool between all of the 

tasks. The common memory pool and the shared code are available only in the context of the 

node. In that case the procedure may only represent a local service. The common memory 

pool is almost the same things as the shared code but there is still an "undirection" of address 

when a client makes a branching to this common memory pool. Indeed, the common memory 

pool permits the opening of a window for the caller address space in the callee address 

space. In other words the code is loaded in another address space but the caller has the 

impression that the code is in its own address space. The management of the address 

"undirection" belongs to the kemel. There never is an "undirection" of address when a 

client makes a branching to the shared code in a system address space. 

12 
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2.3- Context of execution 

When a client requests a service from a sub-system and if the corresponding program run is 

a procedure then that program-run is performed within the task corresponding to the client. 

When a client requests a service from a sub-system and if the corresponding program run is 

a thread then the program-run is performed within the task corresponding to the sub-system. 

3- The service call mechanisms 

3.1- The local call mechanisms 

The local call mechanisms are used to carry out a local service or a kemel service between a 

caller and a callee on the same node. The principal notions of those mechanisms are the 

address and the registers. 

3.1.1- The SuperVisor Cali 

The supervisor call is used for calling a kemel service wich may be a service of the thread 

management, of the transport of message management, etc ... (e.g. a thread calls by using the 

SVC of another thread within the same task). The kemel service is responsible for saving 

and for restoring the registers which represent the current environment of the caller. The 

registers are the ties of communication between the caller and the callee. The caller and the 

callee may exchange the address of the arguments and of the results of the service. The 

kemel service is identified by a SVC number. The kemel service may be performed in the 

context of the caller or of the kemel. 

3.1.2- The direct branchine 

The direct branching (BALR) is used for calling up a procedure according to its address. 

The caller routine or the callee routine are responsible for saving and for restoring the 

registers which represent the current environment of the caller. The registers are the ties of 

communication between the caller and the callee. The caller and the callee may exchange the 

address of the arguments and of the results of the service. In addition, one of the registers has 

to contain the retum address. 

13 
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3.1.3- The bourses and commissions 

The bourses and commissions mechanism [SIMl] is a mechanism of local Inter-Task 

Communication. The bourses help to cope with situations where two or more tasks access a 

shared resource or are in a Client/Server relationship with each other on the same node. The 

bourses and commissions are used for exchanging a little message between to tasks of the 

same node. The bourses are shared resources with mutual exclusion for accesses. - There 

also is a queue which is associated with the bourse for receiving the reqùests or the 

responses. The clients and the sub-systems may exchange commissions. A commission is a 

very small message of almost eight words which increases the transaction speed. The using 

of bourses and commissions is somewhat complex but it offers great results. 

3.2- The elobal or distributed call mechanisms 

The global call mechanisms are used to carry out a global service between a caller and a 

callee whatever their location may be. The principal notions of those mechanisms are ports 

and messages. 

3.2.1- Ports and messaees 

The port and message mechanism is a mechanism of Inter-Task Communication. It is used 

for exchanging messages between two tasks (the client and the server) wherever they are. If 

those tasks are on the same node then the common memory pool or the shared code will be 

used as a communication support by the transport manager. The port of a server is a queue 

for receiving messages while being associated to a task corresponding to the server. The 

server is responsible for the creation and the deletion of its port. The message is the smallest 

communication entity between tasks. The message is a set of typed data. The transport 

manager (responsible for the message transport throughout the network) is included in the 

kemel. The presentation of the message may be a convention between the client and the 

service. 

4- Cali Modes 

From a dynamical point of view there are mainly three modes for calling a service : the 

Normal Mode, the Interactive Mode and the SVC Mode. 

14 
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4.1- The Normal Mode 

It is the executable program of the client which directly uses the local or global call 

mechanism to obtain the service of a Sub-System. To do this it has to know the port or the 

address of the corresponding service. 

4.2- The Interactive Mode 

If a user wants to use the execution of a service in an interactive mode then he has to use the 

exec command : IEXEC command,parameters List 

In this case it is the program run corresponding to the command which uses the local or 

global call mechanism. This program run belongs to the user or client task. 

4.3- The SVC Mode 

The client may still use the service of a sub-system by using the supervisor call mechanism, 

with the SVC number to replace the service name and by using the registers to give the 

address and the length of the parameters. Here it is the Supervisor routine which uses the 

local or global call mechanism to obtain the service of the server. The supervisor routine is 

perf ormed in the context of the client task. 

15 
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Chapter 3 : Clients/Sub-Systems Architecture 

It is important to define an architecture in which the Sub-Systems may be performed and to 

know the reasons of their existence. This architecture is not specific of a particular operating 

system. 

Historical approach 

At the end of the sixties the operating system designers had decided to construct the new 

operating systems using the abstract levels because they needed more structure for easier 

design the maintenance. Those levels define a hierarchy starting with the "use" relationship, 

each level containing a great number of modules. The modules are called sub-systems with 

kemel [1] at the first abstract level. The reciprocal actions between the modules are defined 

by a common protocol. This protocol involves the interface definition, the possible sequence 

of interface calls, etc ... In addition, this kind of construction gives a dynamical configuration 

of sub-systems thus allowing the operating system to evolve. The distributed system 

amplifies these necessities because the trend for the single image machine is to avoid the 

concept of the shutdown. It is possible to consider the server as the only kind of sub-system 

but it is not ·very realistic because an operating system architecture is often constructed in the 

incremental way .. . 

Introduction 

There are two kinds of sub-systems : the local sub-systems and the global sub-systems also 

called servers or distributed sub-systems. A client has access to local sub-systems through a 

local call mechanism such as the direct branching with the shared code but never with the 

global call mechanism of ports and messages. This implies that the local sub-system has to be 

on the same node as the client. The client has access to the servers through the global call 

mechanism of ports and messages. 

[1) An other name for the kemel is the nucleus. 

16 
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Figure 4 The Clients/Sub-Systems Architecture 

1- Definition of the architecture components 

1.1- The user task 

It is a task allocated to the user program. The user program may be dynamically split into 

several threads. Actually the threads which represent the services provided by the local 

sub-systems may be executed in the context of the user task by using a local call mechanisms 

such as the direct branching with the common memory pool or with the shared code. 
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1.2- The holder task 

This task may include several local sub-systems, their threads (services) are executed in the 

context of the user tasks. These local sub-systems have no need of a personal context or 

personal resources for their executions. lt is the reason they are stocked within a same task. 

1.3- The holder task as worker 

This task includes a single local sub-system, their threads (services) are executed in the 

context of their own task. This local sub-system needs a personal context or personal 

resources for its execution. lt is never called by the direct branching or by a supervisor call 

but it is always loops by manipulating the bourses and by treating the commissions. This 

kind of sub-system is called an autonomous sub-system. 

1.4- The server task 

This task includes only one server and has its own port , its own resources and its own 

context for the execution of threads which represent the services of the server. The server is 

always loops by manipulating the ports and by treating the messages. The server also is an 

autonomous sub-system. 

1.5- The Kernel 

There is one kemel per node because it contains all low level functionalities that are required 

for performing and managing all devices and all basic resources. The generic services are for 

example the virtual memory management; the thread scheduling and (dis)allocation; the 

processor allocation; the inter-task communication; the event handling (svc; interrupt; 

exception); ... This part of the hierarchy is very dependent on the hardware. The Ports and 

Messages module is the transport manager or the support for the ports and messages 

mechanism between the clients and the servers. The Ports and Messages module is based 

on two other tools : Basic Communication Access Method (BCAM) is a tool of 

communication between the nodes and Cross Memory Facility (CMF) is a tool for sharing a 

certain address space between tasks of the same node. The Bourses and Commisions 

module is the support for the bourses and commissions mechanism between clients and 

local sub-systems which are autonomous. 
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1.6- The memory space 

The memory is often split into 2 main parts : the user space and the system space. Often there 

also is a subdivision into classes, each of them has its own meaning. The system space is a 

memory space reserved to the kemel services or to the services of sub-systems. That does 

not exclude these services may be perf ormed in the context of the user task. The user space 

is available for the user programs or for the services of sub-systems. 

2- Local sub-systems or servers ? 

The choice between a local sub-system and a server depends on the synchronization 

aspects of the execution of their services. The services of a non autonomous local sub­

system may be rivais within the same context of the client task (multithreading) and different 

clients may use the same service of the same local sub-system at the same time. If the client 

has to wait synchronously for the terminaison of service of sub-system then it is better to 

perf orm this service in the client context because it is more efficient as regards the 

multitasking aspects (execution in the same micro time slice with a replication of the service 

for each client). If the client doesn't have to wait synchronously for the terminaison of the 

service, then the service may be perf ormed in parrallel with the execution of the client task. 

Thus, the service is included within a autonoumous sub-system. It is performed in the sub­

system context because it is more efficient as regards the multitasking aspects (parallelism of 

tasks which allows the client to go on with its activity). The service may be shared by several 

clients. It may also be replicated several times but never in the context of the clients. It is 

better to choose a server instead of an autonomous local sub-system because the server 

takes advantage of the parallelism of nodes. The autonomous local sub-system takes 

advantage of the localization knowledge of the client (on the same node) but the failing 

benefit of the nodes parallelism may not be recovered. In general a service may be 

asynchronous if it needs to share resources (data, printer, disk, ... ) with other services of the 

same sub-system. In that case it has to be perf ormed in the context of the sub-system which is 

obviously autonomous. 

Examples of local sub-systems 

- Editor (non autonomous local sub-system) : The services provided by an editor are used in 

an interactive mode with the user and they may not be performed in parallel. They have no 

need of a sub-system context. 
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- Creator : The services of the (un)loading of the local sub-systems may be performed in 

parallel with the client but they have to know the localization of the calier. The management 

of the local sub-systems requires its own context to allow the sharing of the local sub-systems. 

Examples of servers 

- Spool server : The printing of files may be performed in parallel. The management of the 

printer requires its own context in order to share the printer with a lot of clients. 

- Archive server : The archiving of files may be performed in parallel. The management of the 

archiving requires its own context in order to share the tape disk. 
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Chapter 4 : Sub-System topologies 

The aim of this chapter is to define the logical and physical configurations based on the 

functional dependencies between the sub-systems. 

1- The logical configuration 

A sub-system may require the presence of 

other sub-systems but that does not 

inevitably involve their calling [1]. Itis in fact 

the functional "use" relationship that 

constructs the hiearchy also called the 

logical configuration of sub-system or the 

logical topology. The nucleus may be 

considered as the module of the first abstract 

level. Here each sub-system is represented 

by a point and their relationships by arrows, 

the constructed graph represents the logical 

configuration. 

1.1- The Ioop extension 

In this graph there cannot be any circuits 

because the logical configuration is defined 

as a hiearchy. This avoids the recurrence of 

calls. It would have been possible to tolerate 

it but it would bring about a lot of new 

problems. 

[1] The conditional "if' structure according to the 

received arguments may influence it. 

D ➔ 

Figure 5 The logical topology 
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For example, if a service i of a server j always calls asynchonously a service k of a server 1 

which always calls asynchronously a service of the caller and those services are replicated 

within a task then a deadlock would appear after the space occupied by the replicated 

services has filled the task space up wherever their execution contexts are. 

1.2- Examples of the "use" relationship 

- The servers require the presence of the binder and the loader because they manage the 

(dis)connections and the (un)loading between the clients and the servers. 

- A sub-system i insures the portability to the sub-system j for the different operating system 

versions. Consequently the sub-system i will have to be present each time the sub-system j is 

in that configuration. 

- There is no practical example for the absence requirement ... 

2- The physical confl2uration 

Several copies or instances of the same sub-system can exist on different nodes but for 

efficacy and complexity reasons there always is at most one instance of the same sub-system 

on the same node. But the principle of the single image machine implies tha{ the client has to 

see only one entity regardless of the instance situation and its possible replication. If the 

instances of the same server need to use a local sub-system, then it has to be located on the 

same nodes as those instances. The physical configuration or topology is the same as the 

logical configuration but it takes into account the instances on each node. Thus, for a given 

logical configuration there may be a lot of different physical configurations. 

2.1- The coherence of the physical confieµration 

If a sub-system i of the physical configuration requires the presence of the server j, then the 

server j must also be in the physical configuration. 

If a sub-system i of the physical configuration requires the presence of the local sub-system j, 

then the local sub-system j also is in the physical configuration and they are on the same 

nodes. 
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Figure 6 The physical configuration 

3- The startup confi1:uration 

After each startup phase [1] there always is the same logical configuration and so it is 

statically predefined. The corresponding physical configuration may evolve with time, using 

the (un)loading of sub-systems. The loader has to maintain the coherence of the physical 

configuration. Thus, the functional dependence has a direct impact on the (un)loading 

validation. 

[1] The installation of tbis initial configuration involves a "temporal" serialization of loading and some 

different states of the pbysical configuration (e.g. system ready; system not ready; before DSSM loaded; after 

DSSM loaded; ... ) [SIM2]. But it is not the objective of this thesis to bring that out. 
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4- The states of instances 

Not present 

The instance is not present in the physical 

configuration (not loaded). 

Not ready or present 

The instance is present in the physical 

configuration. There are no connections 

established with it. 

Ready 

The instance is present in the physical 

configuration. There are connections 

established with it. Perhaps a service of the 

instance is being perf ormed. 

5- The states of sub-systems 

Not present 

Figure 7 The instance state 

The sub-system is not present if all of its instances are in a "not present state". 

Present 

The sub-system is present if at least one of its instances is "in present state" or in "ready 

state". 
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Chapter 5 : Client/Server model 

The aim of this chapter is to explain the Client/Server model because it is the conceptual or 

theorical background of communication in a Distributed Computer Environment. The 

scope of the model itself is from a functional point of view to explain the communication 

between two entities which are being performed in parallel, the first entity having need for a 

service which is perf ormed by the second entity wherever they are. 

1- The Client 

It is the entity that asks another entity, which is called the server, to perform a service. The 

client carries it out by sending the arguments of the service in a message to the port of the 

server and by receiving the results of the service that are in another message. The sent 

message has to include the name of the service for the purpose of identif ying the required 

service. The port of the server is a server queue where the messages are accumulated. The 

client has to make a connection corresponding to the service name to know the port of the 

server and to increase the nurnber of connections of the server. To decrease the nurnber of 

connections of the server the client has to make a disconnection. 

2- The Server 

It is the entity which perf orms the services required by the clients. The server carries it out by 

treating the messages which are accumulated in its port and by replying the results in a 

message to the corresponding client. The server has only one port. A server may be the 

client of another server. The server includes a set of different kinds of service. The functional 

designing of a server is a rnethodological problem that requires the know-how of a software 

engineer. 

The functional equivalence between server and service 

The server S is a set of services fl, f2, f3 and fc, the fonction fc is the dispatcher for the 

coordination of fl, f2, f3. The servers Sl, S2, S3 respectively have the services fl , f2, f3, each 

server has its own dispatcher. We shall call this set of servers (Sl, S2 and S3) : O. 

Now we have : 0 <==> S from a functional point of view 
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2.1- The dispatcher of the server 

Each server has a special fonction called the dispatcher which dispatches the services 

according to the service name. In fact, it is the dispatcher which receives the message, 

unmarschalles (or "splits") it into a service name and arguments, calls the service with the 

arguments, marschalles (or "encapsulates") another message from the results of the service 

and replies this message. 

2.2- The functional server confieµration 

A server may be the client of another server, so there are relationships between servers. 

Those relationships define a servers configuration which may be representated by points 

and arrows, the points being the servers and the arrows the relationships. 

3- The message 

The structure of the sent message includes : 

- the service name 

- the arguments of the service 

The structure of the replied message includes : 

- the results of the service 

4- The managers 

4,1- The service name manaa=er 

It is an entity which is responsible for the connection between a client and a server. It 

manages the relationships between the port and the service names so as to permit the 

dynamic reconfiguration of instances. In addition, it also updates the number of connections 

of the server. It provides the clients with two interfaces : the connection (Connect) and the 

disconnection (Disconnect). Sometimes the words (un)binding are used instead of 

( dis)connection. 

2.6 
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4.2- The presentation manaeer 

It is an entity which is responsible for the representation of the arguments or of the results 

within a message. The parameters are given by value and never by reference. It provides 

two interfaces to the clients or to the servers : the message marschalling (Marschalling) and 

the message unmarschalling (Unmarschalling). 

4.3- The transport manaeer 

It is an entity which is responsible for the transport of the message between a client and a 

server. The transport manager carries it out by identifying the client and by recording the all 

of the necessary information such as the identification of the client, the port of the server and 

the identifier of the transport connection. It is possible that for a given transport connection 

the connection identifier given to the client and the connection identifier given to the server 

are not the same. Nevertheless, the transport manager has to record this data couple. In this 

case we have two identifiers for the transport connection. It provides two interfaces to the 

clients : the message sending (Sendmsg) and the message waiting (Waitmsg). And it 

provides two interfaces to the servers : the message receiving (Receivemsg) and the message 

replying (Replymsg). 

5- The interfaces 

5.1- For the client 

Connect(servicename:port) 

Input parameters : 

servicename : the name of the service 

Output parameters : 

port : the port of the server corresponding to the service 

Marshalling(servicename;servicearguments;msg) 

Input parameters : 

servicename : the name of the service 

servicearguments : the arguments for the service 

Output parameters : 

msg : the message 

r, 
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Sendmsg(port:msg:connectid) 

Input parameters : 

port : the port of the server corresponding to the service 

msg : the message 

Output parameters : 

connectid : the identifier of the transport connection 

Waitms g(connectid:ms g) 

Input parameters : 

connectid : the identifier of the transport connection 

Output parameters : 

msg : the message 

Unmarshalling(msg:serviceresults) 

Input parameters : 

msg : the message 

Output parameters : 

serviceresults : the results from the service 

Disconnect(vort) 

Input parameters : 

port : the port of the server corresponding to the service 

5.2- For the server 

Receivemsg(connectid:msg) 

Input parameters : 

connectid : the identifier of the transport connection 

Output parameters : 

msg : the message 

Marshalling(serviceresults:msg) 

Input parameters : 

serviceresults : the results from the service 

Output parameters : 

msg : the message 
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Unmarshalling(msg:servicename,·servicearguments) 

Input parameters : 

msg : the message 

Output parameters : 

servicename : the name of the service 

servicearguments : the arguments for the service 

Replymsg(connectid:msg) 

Input parameters: 

connectid : the identifier of the transport connection 

msg : the message 

Remark 

Obviously for each interface there is a retum code which informs about the validity of the 

output parameters. 

6- The asynchronous aspects between client and server 

Clients and servers are perf ormed in parallel and when a client needs a service of a server 

then the client doesn't inevitably have to wait for synchronous response of the service. The 

client receives the response when it wants. 

7- The parallelism of server services 

The server may treat two or more messages at the same time. In addition, the treatment of a 

message can be finished before the treatment of another message which has been received 

earlier from the port even if those services are of the same kind. 

8- The inter-client communication as a particular case of service 

If two clients want to communicate then they have to use the special communication services 

which are included in a special communication server. In particular when two clients do not 

have not their own port. The aim of this kind of communication is not the performing of 

services but the exchange of a lot of data. For example, we could define a connectionless 

protocol by using two communication services such as the data sending (Senddata) and the 

data receiving (Receivedata). In this example the sender and the receiver are free to choose 
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their own symbolic name and they are free to communicate or not with one another but there 

are no special services which are able to indicate if the data has been received or not by the 

receiver. 

A simple example of communication interfaces 

Senddata(Symbolicnamesender;Symbolicnamereceiver;data) 

Input parameters : 

Symbolicnamesender : the symbolic name of the client (the sender) 

Symbolicnamereceiver : the symbolic name of the client (the receiver) 

data : the information given from the sender 

Receivedata(Symbolicnamesender:Symbolicnamereceiver:data) 

Input parameters : 

Symbolicnamereceiver : the symbolic name of the client (the receiver) 

Output parameters : 

Remark 

Symbolicnameemitter : the symbolic name of the client (the sender) 

data : the information given /rom the sender 

Obviously for each interface there is a retum code which informs about the validity of the 

output parameters. 

9- The stochastic paradigm 

The stochastic model may be associated with the configuration of servers in order to evaluate 

or to approximate a great number of statistical values such as the response time for each 

service, the average number of messages in each port, the troughput of each server, etc ... 

But each arrow has to be weighted against a probability of call and the service rate of the 

services or of the servers has to be defined. Thus, the server configuration permits to 

describe a stochastic model. 
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Chapter 6 : Remote Procedure Cali (RPC) 

The aim of this chapter is to explain the Remote Procedure Call which is well know by 

designers of the distributed operating systems. The Remote Procedure Call is a mechanism 

which allows the programs to use global services. The programs have access to the global 

services by using the remote procedure call instead of the port and message mechanism. 

Please note that the meaning of the procedure in this chapter is very different from the 

meaning of the procedure when it is a kind of program run. 

1- Procedures and pro2rams 

Before explaning the remote procedure call we would like to recall the concepts of 

procedures and programs. Performing the procedures and the programs requires different 

phases of construction. 

1.1- The edition phase 

The edition phase is the writing of sources. The sources are the texts which specify 

procedures and programs. A procedure is composed of a body and a head. The body of a 

procedure is an algorithm, which is in fact a set of instructions. The head of a procedure is 

composed of the definition of the local variables and of its interface. The interface of a 

procedure is composed of the name of the procedure and the definition of the input and 

output parameters. A program is made up of a body and a head. The body of a program is an 

algorithm or a set of instructions such as the procedure call, the loop instruction, the 

conditional instruction, etc .. . The head of a program is made up of the input and output 

parameters, the definition of the global variables, the name of the program, the internai 

procedures, and the interface of the external procedures. 

1.2- The compilation phase 

The compilation phasis is the compilation of the sources for getting the machine codes. The 

procedure code of internai procedure is included in the program code. The procedure code 

of external procedure is not included in the program code but its interface has to be specified 

in the program. The library is a set of procedures codes which are specified in the user 

programs as being external. 
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1.3- The statical Iinkin2 phase 

The statical linking phase is the linking of the program code to the extemal procedures to 

build an executable program. All of the extemal procedures are merged with the program 

code. 

1.4- The Ioadin2 phase 

The loading phase is the loading of an executable program which becomes program runs in 

a task. A procedure may become a program run. In the performing phase several threads 

may represent a same procedure within the same task. 

2- The relationship between the services and the procedures 

The difference between a procedure and a service resides in their different call mechanisms, 

also the services are never statically linked to the program code of the client. The 

management of sub-systems carries out this dynamical linking (or binding) of the services 

and the loading of sub-systems. The purpose of this thesis is not to explain in detail the use of 

the local services because it has already been analysed for the traditional operating systems. 

Services perf ormed within the client context 

Those services are locals and they are included in local sub-systems. They are never 

perf ormed in parrallel with the client task. A client may access them with a direct branching 

or by using the replacing macros. 

Services performed within the sub-system context 

Those services may be locals or globals. They are still performed in parrallel with the client 

task. Thus the sub-systems which contain those services are designed as programs. For the 

local services they are included within local sub-systems. A client may access them with the 

bourses and commissions mechanism or by using the replacing macros. For the global 

services they are included within a server. A client may access them with the ports and 

messages mechanism or by using the replacing macros. Indeed, the procedures which 

correspond to the global services are called the remote procedures. 
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3- The Remote Procedure Cali 

The client program calls the client-stub procedure instead of directly using the mechanism of 

ports and messages to call the remote procedure. Likewise, the server program calls the 

server-stub procedure instead of calling directly the remote procedure because the remote 

procedure does not use the ports and messages mechanism. The body of the server program 

is called the dispatcher [COUL]. 

3.1- The client-stub procedure 

The client-stub procedure is an extemal procedure for the client program. Thus, for each 

service there is a corresponding remote procedure and a corresponding client-stub 

procedure. The library which contains the client-stub procedure is called user package. The 

client-stub procedure has to establish the communication between the client and the server 

for the client program. 

Example of an al2orithm of the client-stub procedure 

The name of the service is Pascal with arg 1 and arg2 as input parameters and arg3 as output 

parameter. The name of the corresponding client-stub procedure is Nestorl. 

BOOL Nestorl(argl .arg2.arg3) 

struct ARGl1YPE • argl; 

struct ARG21YPE • arg2; 

struct ARG31YPE • arg3; 

{ 

struct PORTIYPE port; 

struct MSG msg; 

struct CONNECITD connectid; 

if (ConnecWPascal#,port) = = 0) 

I* the service is accessible *I 

{ 

Marshalling(#Pascal#, • argl, • arg2,msg); 

Sendmsg(port,msg,connectid); 

Waitmsg(connectid,msg); 

Unmarshalling(msg, • arg3); 
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} 

Disconnect(port ); 

retum(OJ; 

} 

else 

{ 

retum(-1); 

} 

3.2- The dispatcher 

The dispatcher is the body of the server program. It bas to manage the port (the receipt of the 

message by using a strategy like FIFO, the deletion and creation of the port itself, etc ... ). By 

managing the procedures parallelism, it can dispatch the message to the corresponding 

server-stub procedure according to the service name. 

Example of an ala:orithm of the dispatcher 

The name of the server is Servera. One of the service name is Pascal. The name of the 

corresponding server-stub procedure is Nestor2. 

main Servera 

{ 

struct POR1TYPE port; 

struct MSG msg,msg2; 

struct CONNECITD connectid; 

char • endofserver; 

extem void nestor2(struct CONNECITD;struct MSG); 

.. ./ ... /* other definitions of extemal server-stub procedures */ 

.. .! ... /* creation of port*/ 

endofeerver = "no"; 

while (endofeerver = = "no") do 

{ 

Receivemsg(connectid,msg); 

Unmarshalling(msg,servicename ,msg2); 
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switch (servicename) 

{ 

case "Pascal" : nestor2(connectid,msg2) &:; /* in parallel */ 

case "end": .. . /. .. /* terminaison of the server */ 

endofserver = "yes "; 

.. ./ ... /* other server-stuh procedures calls */ 

} 

} 

.. ./ ... /* deletion of port*/ 

3.3- The server-stub procedure 

The server-stub procedure is an extemal procedure for the server program. Thus, for each 

service there is a corresponding remote procedure, a corresponding server-stub procedure 

and a corresponding client-stub procedure. The server-stub procedure has to unmarschall 

the message into the input parameters, to call the remote procedure, to marschall the 

message from the output parameters and to reply the message. The library which contains 

the server-stub procedures is called the server package. The dispatcher and the server-stub 

procedure have to establish the communication between the client and the server for the 

server pro gram. 

Example of an al2orithm of the server-stub procedure 

The name of the server-stub procedure is Nestor2. The name of the corresponding extemal 

remote procedure is Nestor with argl and arg2 as input parameters and arg3 as output 

parameter. 

void Nestor2(connectid,msg) 

struct MSG msg; 

struct CONNECITD connectid; 

struct ARGJTYPE * argl; 

struct ARG21YPE * arg2; 

struct ARG31YPE * arg3; 

extem void Nestor(struct ARG11YPE *;struct ARG21YPE *;struct ARG31YPE *); 

Unmarschalling(msg, * argl, * arg2); 

Nestor(argl ,arg2,arg3); 



Dynamic Sub-Systems Management in a Closely Coupled Architecture 

wriJten by Vanderperre Pascal 

} 

Marschalling(* arg3,msg); 

Reply(connectid,msg); 

3.4- The Interface Specification Lan2Ya2e and compiler 

The client-stub procedures, the dispatcher and the server-stub procedures are developped 

by a specialist of sub-system management. In this way the service names and the mechanism 

of ports and messages are hidden from the application programmers. By specifying only the 

name of the service name, the parameter kindd and the name of the client-stub procedure to 

be generated the client-stub procedures may be easily generated automatically. The 

dispatcher and the server-stub procedures may be automatically generated by specifying the 

name of the server, the service names, the parameter types, the name of the remote 

procedure and the name of the server-stub procedure to be generated. Those specifications 

may be written in an interface specification language and compiled by an interface 

specification compiler. The compiler would check the equivalence of the parameter types 

between the remote procedure, the client-stub procedure and the server-stub procedure. 

The statical linking of the dispatcher, the server-stub procedures and the remote procedures 

brings about the executable server program. The statical linking of the client program code 

and the client-stub procedures brings about the executable client program. 

3.5- RPC semantics 

Sorne problems may occur when using the Remote Procedure Cali. For example, the 

request message may get lost, the reply message may get lost or the server may crash. 

At-least-once call semantics 

The client can be sure the procedure has been performed at-least-once when it receives the 

reply. The client has to wait for the reply and if after a certain timeout there is no reply then it 

sends the message once again. It repeats it until it receives a reply. Therefore, it is possible 

the procedure is performed more than once. 

At-most-once call semantics 

The client may be sure the procedure has been performed at-most-once when it receives the 

reply. The client has to wait for the reply and if after a certain timeout there is no reply then it 
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sends the message once again. It does so until it receives a reply and it is not possible for the 

procedure to be perf ormed more than once. 

The maybe call semantics 

There is no reply for the client request. The client does not know whether the procedure has 

been performed ... 

3.6- Kinds of RPC protocol 

There are several kinds of Remote Procedure Call protocol according to the RPC semantics. 

The "R II protocol : the reguest protocol 

The client does not wait for the reply to its request. Here we have the "maybe" call semantics. 

The "RR" protocol : the reguest/reply protocol 

The client waits for the reply to its request. Here we may get either the "at least once call 

semantics" or the "at most once call semantics". For securing the "at most once call 

semantics" the server performs the service only once. But it has to keep the messages. 

The "RRA" protocol : The reguest/reply acknowled~e-reply protocol 

The client waits for the reply to its request. When it receives the reply it sends a reply 

acknowledgement to the server. Here we have the "at most once call semantics". To secure 

the "at most once call semantics" the server performs the service only once. Here the server 

doesn't have to keep the messages but it has to wait for a reply acknowledgement. 
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Chapter 7 : Concurrency of services 

The concurrence of services cornes from the parallelism of the performing units. But several 

services may not be performed at the same time. The aim of this chapter is to provide some 

management mechanisms for the concurrency of services. 

1- Multithreading 

The threads are perf ormed in parallel within the same task, they share ail resources of the 

task. Thus, several services may be perf ormed in parallel in a client or an autonomous sub­

system task (i.e. the loading and the unloading of the same instance may not be perf ormed at 

the same time, two loadings of the same sub-system on the same node, ... ). A common 

variable permits the mutual exclusion of rival services (i.e. the state of the instance prevents 

the unloading and loading of the same instance at the same time). A monitor also permits the 

mutual exclusion of rival services (i.e. the dispatcher may serialize the requests of the same 

service : if two loadings of the same sub-system on the same node occur at the same time at 

least one loading fails). 

2- Multitasking 

The tasks are performed in parallel on the same node or on different nodes. Thus, several 

services may be perf ormed in parallel in several clients or several autonomous sub-system 

tasks. There is a concurrency of services because there is a replication of instances or when 

several sub-systems share the same resource (i.e. the loading and the unloading of the same 

instance may not be performed at the same time by different instances of the loader, the 

connection and the unloading of the same instance may not happen at the same time, two 

loadings of the same sub-system on the same node by different instances of the loader, ... ). 

The mutual exclusion of those services is carried out by using the inter-task communication 

or by using a shared file. 
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2.1- Mechanisms for manaeine the concurrency 

2.1.1- The inter-task communication 

When there is a change of information for one instance then it has to communicate this 

change to the others. This may be done by a kernel service or by the port and message 

mechanism. The main problem arises when there are two attemps of changing the same 

information in two instances at the same time. To salve this problem a master/slave protocol 

with the polling adressing may be implemented. For example, the master may be the first 

instance loaded. The disadvantage of this is the implementation of this protocol and its 

negative effect on the efficiency. 

2.1.2- The shared and distributed file 

Another solution is the use of the shared and distributed file containing the common 

information with the exclusive accesses for writing or updating the data. It is an easier 

solution because it does not imply a particular implementation, also, the absence of the inter­

task communication with a protocol is a good way for increasing the efficiency. The 

distributed file manager also insures the transparancy of access to this kind of file. 

2.1.2.1- The cataloe file 

The catalog file is a set of sub-system declarations. The declaration of a sub-system is made 

up of all of the permanent information about a sub-system. The permanent information of a 

sub-system is the information which stays unchanged during the changes of the sub-system 

state. The management (creation or modification) of the sub-system declarations is insured 

by a sub-system called the generator. 

2.1.2.2- The confieµration file 

For example, to avoid the operations (the binding and the unloading) made by the loader 

and the binder on the same instance occuring at the same time. A common information helps 

to salve this problem. The state of this instance has to be included in a shared and distributed 

file. This file is called the configuration file. The configuration file is a set of sub-system 

information which may be modified when the sub-systems are in present state. 
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Chapter 1 : Binding management 

In the traditional operating system there already is a module called the linker which manages 

the (dis)connections between the clients and the local sub-systems [SIM2]. The distributed 

operating system needs another similar module or an extension of the linker. This extension 

or this additional module is called the binder. The binder is a sub-system which establishes 

the (dis)connections between the clients and the server instances. This chapter only 

examines the (dis)connection between the clients and the servers because the management 

of the local Sub-Systems already exists in the traditional operating systems. 

1- The (dis)connection or (un)binding phases 

1.1- The oriented service connection 

To avoid the client having to know about the relationship between the server and their 

services, the binder furnishes the concept of the connection to a service. A client wants to 

make a connection with a service (i) of a server. It calls the service of connection provided by 

the binder to get the port of an instance of the server which includes the service (i). The 

service of connection of the binder has to treat the request. This service of connection has to 

know the physical configuration and the relationship between the servers and their services. 

If there isn't an instance of this server in the physical configuration (the "Not Present state" 

for each instance of this server) then the binder calls the loading service furnished by the 

loader to obtain an instance in the physical topology and to receive its port. The server has to 

be specified with the auto-load attribute = «YES». The connection request to a "not present" 

server may only be made by a client which is a user task (not another sub-system task) 

because the physical configuration always has to be coherent. If there are several instances 

of this server in the physical configuration (the "Present" or "Ready" state for several 

instances) then the binder has to select only one instance. After the selection it has to reply 

the port of the server instance which includes the service (i). Also, the binder increases by 

one the connection number of the server instance. Please note, that zero as a connection 

number value indicates whether the instance is in a "not ready" or "not present" state. The 

binder has to change the state of the instance if it was in "not ready" state previously. In short, 

the service of connection has three phases : the validation, the auto-loading and the 

selection. The client calls the service (i) then it makes a disconnection with the 

corresponding instance. Thus, there is always one (dis)connection for each service calls . . 
The Client/Server model and the RPC have adopted the oriented service connection. 
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1.2- The oriented server connection 

A client wants to make a connection with a server. lt calls the service of connection provided 

by the binder to get the port of an instance of this server. The service of connection of the 

binder has to treat the request. The scheme is nearly the same than that of the oriented 

service connection but the binder doesn't have to establish the relationship with the server 

and their services. When the client receives the corresponding port it is free to call several 

services of this instance during the same connection, but it has to know the relationship 

between the server and its services . .. lt is also free to make a disconnection when it wants to. 

1.3- The disconnection between a client and an instance 

A client wants to make a disconnection with an instance. lt calls the service of disconnection 

provided by the binder. The service of disconnection of the binder has to treat the request. 

This service of disconnection has to know the physical configuration. Also the binder 

decreases by one the connection number of the server instance. Please note that zero as a 

connection number value indicates whether the instance is in "not ready" or "not present" 

state. The binder has to modify the state of the instance when the value zero has been 

reached. 

1.4- The coherency of the service names of the server 

S(i) as server. 

s(ij) as service. 

s(ij) belongs to S(i) for each j. 

S(i) not = S(k) if i not = k. 

If the service name of s(ij) is not = the service name of s(kl) when i not = k or j not = 1, 

then the service names of ail servers are coherent. 

This coherency is checked by the generator which installs the declarations (specifications) of 

the server in the catalog file. In this case, the catalog is a set of server declarations and the 

server declaration is a set of values corresponding to the attributes of a server. 
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1.5- The explicit connection 

The explicit connection would be a connection between the client and the server of a given 

node. But that does not correspond with the principle of the single image machine because 

the explicit connection is not a transparant mechanism. Therefore, the clients cannot be 

given this option. 

1.6- The problem of the connection to the binder 

The client cannot connect to the service of (dis)connection of the binder to receive its address 

or its corresponding port because, to obtain this, the client has to know the address or port of 

this service. Thus, the client directly calls the service of (dis)connection by using the 

SuperVisor Call (SVC Mode of Call) because the nucleus knows the reference of the binder 

and the SuperVisor routine may call the service of (dis)connection of the binder. From a 

dynamical point of view the supervisor routine is executed in the context of the client task. 

The call of the supervisor may be hidden by using the commands or the macros ($connect 

and $disconnect). 

ft• C'liftl tnlr. 

-1-

-1-

Figure 8 The dynamical components 
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2- The dynamical components 

The call of the (dis)connection services to the binder is performed in the context of the client 

task. When the client task is composed of client-stubs then it is the client-stub which calls the 

(dis)connection services. The services of the (dis)connection are performed in the context of 

the binder task and they may be threads. 

3- The interfaces of the binder 

There are three basic services provided by the binder : the binding to a server, the binding to 

a service and the unbinding to an instance. 

ConnectServe r(se rver-name ,se rver-version,port, ret-code) 

Input parameters : 

server-name : the server name. 

server-version : the server version. 

Output parameters : 

port : the port of an instance of the server if the retum code equals ok. 

ret-code : the retum code of the operation (ok or fail). 

ConnectService(service-name,port,ret-code) < = = > Connect(servicename,port,ret-code) 

Input parameters : 

service-name : the service name. 

Output parameters : 

port : the port of the instance of the server wich includes the service if the retum 

code equa/s ok. 

ret-code : the retum code of the ope ration (ok or fail). 

Disconnectlnstance(port,ret-code) < = = > Disconnect(port,ret-code) 

Input parameters : 

port : the port of the instance to unbind. 

Output parameters : 

ret-code : the retum code of the operation (ok or fail). 
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4- The choice of the system-server instance 

When the binder replies a port of a server to the client it is in fact a port of an instance of this 

server. In the case where there are several instances of the same server the binder may 

choose the connection at random but the response time of the service may suffer from this 

approach. The problem for the connection is to choose the instance that offers the best 

response time for the client. There are a lot of different criteria such as the number of task per 

node, the CPU occupied rate per node, the response time of the network, the physical 

configuration, the probability of a connection between sub-systems, the probability to call a 

connected instance, the existing connections between instances, the number of connections 

per instance, the weight of the instance port, the localization and the replication of the binder, 

the service rate of the instances, etc ... 

4.1- The number of tasks and the CPU occupied rate 

A principle of the Distributed System is that each node has for efficiency reasons the same 

number of tasks and the same CPU occupied rate. Otherwise there are in terms of 

performance «bad» nodes which would be suppressed. These balanced nodes have to be 

insured by the task loader and the loader of sub-systems. We consider this principle of 

balanced nodes as an axiom during the (un)binding phases. The periods between two 

successive time slices of any instance have to be the same from a task scheduling point of 

view. 

4.2- The considerations about the network and the physical confiwration 

The time requested by the network [l] activities may be included in the response time of the 

service, thus the binder has to minimize the response time by avoiding the connections that 

imply more exchanges on the network. Several sequences of services of other sub-system 

instances may be used for carrying out a service and each of them may send a certain number 

of messages through the network. Therefore, the physical configuration has to be taken into 

account. 

[1) The network considered here bas a fully interconnected architecture [DASS) that implies there is no time 

difference when a node i sends a message to a node j rather than the node k. In addition the messages have the 

same length. 
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Figure 9 The choice of the best instance during a connection ? 

When a "use" relationship between two sub-systems is specified it doesn't necessary mean 

that they will establish a connection. This is the concept of connection probability [1]. There 

also is a statistical distribution of the number of called services per connection of an instance. 

Those probabilities have to be weighted according to the level of the sub-system in the 

logical topology. 

[1] Indeed. tbere is a probability of using a service of a given sub-system ratber tban another. The connection 

probability is calculated from those service probabilities. 
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The localization and the redundancy of the binder instance have an influence on the 

response time of the service because the time requested by the connection may not be 

negligible. The problem of the choice of an instance in a given configuration could be 

mathematically defined and solved but there is some dynamical information the binder 

doesn't know (i.e. the number of messages of each connection, the utilization of the existing 

connections by a server rather than the creation of new connections). Moreover the time 

requested by the calculation has to be taken into consideration ... 

4.3- The number of connections per instance 

Another solution to the problem is more stochastic, as we will see. The dispatching of 

connections permits the best performance of the response time for each service. 

4.3.1- Hypothesis 

The hypothesis is that ail utilizations of a server by clients have a behaviour of a Poisson 

distribution with the same arrival rate (LAMBDA). In other words, each connection 

(oriented server connection) to instances of a given server implies that its average number of 

requested services (LAMBDA) is the same. Other kinds of statistical distributions could be 

imagined . .. The evaluation of the Poisson distribution rate may be specified in the 

declaration of the server. The designer has to evaluate this Poisson rate per connection. To 

calculate the port size it has to evaluate the maximum number of connections per instance. It 

may be useful to modify this rate to use some statistical measures given by the kemel about 

the port of the instances. The arrival rate of requested services per instance equals the sum 

of the Poisson rate of each connection per instance or equals the Poisson rate of one 

connection multiplied by the number of connections of the instance. 

This means: 

UMBDA(i) = UMBDA * N(i) 

such N(i) is the numher of connections of the instance i. 

The service rate (MU(i)) of the instance i must be greater than the rate of message arrivals per 

instance so as to not saturate the instance and must have an exponential distribution. 

This means: 

MU> UMBDA(i). 



Dynamic Sub-Systems Management in a Closely Coupled Architecture 

wrilten by Vanderperre Pascal 

4.3.2- The strate2y : the dispatchin2 of connections 

For example if you have two instances of the same server and the first has four more 

connections than the other then the next connection for a client which is on the same node as 

the first instance, has perhaps to be made with the second instance because its response time 

doesn't include the additional time brought about by the four additional connections. 

The additional time of an instance i is the number of messages in the port divided by the 

service rate of the instance i (MU(i)). It is necessary to evaluate this additional time because 

the binder does not know the nurnber of messages in the port. 

The stochastic formulas (MIMI]) [SAUEJ for the instance (i) are fol/owing ... 

The utilization rate of the instance i = TETA(i) = UMBDA(i) 

MU(i) 

The average number of message in the port = P(i) = TETA(i) * TETA(i) 

1 - TETA(i) 

The average waiting time in the port = T(i) = P(i) 

LAMBDA(i) 

The response rime of the instance i = R(i) = T(i) + 1/MU(i) = ___ ..... 1~-----=-

MU(i) - UMBDA(i) 

The additional time is evaluated by T(i). The additional time is nil if there is not an existing 

connection for an instance (and in fact we have T(i) = 0 / 0). This doesn't happen often 

because if there is a replication of the server then it is because this server has a great [1] 

demand. The parameters of the response time of an instance are the number of connections 

and the service rate of the instance. But the response time of the service also depends on the 

localization of the client which requests a connection. 

If the client is not on the same node as the instances in "present" or "ready" state, then the 

connection is made with the instance of the server which provides the minimal response tirne. 

[l] The redundancy of server increases the number of ports and thus the global capacity of the server. 
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The response time of the service equals the response time of the instance plus the additional 

time required by the local network to exchange the messages. But the binder doesn't have to 

calculate this additional network time because the network has a fully interconnected 

architecture. 

This means: 

Client on node(k) 

Instance(k) is in •not present• state 

There exists at most an instance(i) which is in present or ready state such i not = k 

If R(j) = Min{R(i) : for each i such the instance(i) is in present state} 

1hen the connection is made between the client and the instance(k) on the node(k) 

If the instance(i) in "present" or "ready" state is on the same node(i) as the client and this 

instance has the minimal response time R(i) compared to the response time of the other 

instances of the same server, then the connection has to be made with this instance and the 

client. 

This means: 

1he instance(i) and the client are on the same node(i) 

If R(i) = Min{R(j) : for each j such the instance(j) is in •present• or •ready • state} 

1hen the connection is made between the client and the instance(i) 

If the instance(i) in "present" or "ready" state is on the same node(i) as the client and another 

instance(k) of the same server in the "present" or "ready" state has the minimal response 

time R(k), and, if the time requested by the message exchange through the network TN plus 

this minimal response time R(k) is greater than the response time of the instance(i), then the 

connection has to be made with this instance(i) and the client otherwise the connection has to 

be made with the client and the instance(k). 

This means: 

The instance(i) and the client are on the same node(i) 

TN is the time requested by the messages exchange through the network 

R(k) = Min{R(j) :for eachj such the instance(j) is in •present• or •reaJ.y• state) and k not = i 
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IJR(k) + TN = > R(i) 

Then the connection has to be made between the client and the instance(i) 

Else the connection has to be made between the client and the instance(k) 

4.3.3- Localization of the client 

Two methods are available to know the localization of the client : the first is that the binder is 

an autonomous local sub-system which is always on the same node as the requester of the 

connection (the client), and the second is that the supervisor routine of the connection 

request mechanism establishes a protocol with the binder for indicating the position of the 

client. In this thesis the first solution is chosen, therefore there are instances of the binder on 

each node where the clients are. 

4.3.4- The tune reguested by the calculation 

The whole information for calculating the response time of an instance has to be known by 

the binder. The response time of an instance is calculated by the binder which is on the same 

node . 

The calculation of the response time of an instance is always made after the modification of its 

number of connections. The response time of an instance(i) in "not ready" state equals 1/ 

MU(i). The variables are : the number of connections (N(i)), the time required by the 

message exchange (TN) and the service rate of the instance (MU(i)). Obviously, the 

designer may also change the evaluation of the Poisson rate of the arrivais per connection 

(LAMBDA) in the declaration of the server. The time requested for the evaluation of MU(i) 

and of the evaluation of TN may be quite long thus these evaluations may be made sometimes 

but not each time we have a connection to an instance. 

4,3.5- The service rate of the instance 

A sub-system may contain several services which have different service rates but thanks to 

the stochastic approximation [SAUE] we replace these service rates by the service rate 

MU(i) of the instance(i). Nevertheless, a programming methology may improve the 

situation. For example each service must have its own queue if there is only one thread per 

service, because two requests for the same service may block the dispatcher. Another 

solution is to create a new thread for each request. 
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Thus, the multithreading or the programming methodology improves the service rate of the 

instance; the real response time is better than the predicted response time. 

The method for the evaluation of MU(i) 

The binder sends a message to the server which contains a wrong service name. At the same 

time it takes the time Tl. When it receives the reply it takes the time T2. The difference 

between the two is in fact the response time of the instance. With this response time the 

binder can calculate the service rate of the instance. 

This means: 

The calculated response time : DELTA(i) = n - Tl 

The service rate: MU(i) = -~1 __ + UMBDA(i) 

DELTA(i) 

When an instance becomes "present" state after having been in "not present" state, the 

evaluation of MU(i) equals 1/DELTA(i). But the only executed thread of the instance is the 

dispatcher for treating the wrong service name. Thus, the evaluation of MU(i) is better when 

there is a great number of connections because different kinds of services within the instance 

are in execution. The first calculation is made with zero as the number of connection. The 

indicator limit of the instance is switched to zero. Each time the number of connections 

exceeds the indicator limit then the binder calculates the DELTA(i) again, so as to evaluate a 

better MU(i). The indicator limit is switched to the value of the number of connections. Thus, 

the MU(i) is calculated according to the maximum number of connections the instance bas 

got. 

The variable service rate according to the number of connections 

The response time R(i) of an instance(i) increases if MU(i) decreases or LAMBDA(i) 

increases. Indeed, if LAMBDA(i) increases it is possible that MU(i) decreases because the 

used sub-systems have a greater response time. This means that the service rate of the 

instance is variable according to the number of connections. In this case we have new 

formula. 
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The stochastic formulas with a variable service rate are following ... 

N(i) 

TETA(i,N(i)) = UMBDA 

MU(i,l)*MU(i,2)* .. . *MU(i,N(i)) 

with MU(iJ) the service rate of the instance(i) which has j connections 

R(i,N(i)) = TETA (i,N(i))*TETA (i,N(i)) 

N(i) 

(1-TETA(i,N(i)))*LAMBDA 

Conceming this hypothesis the binder has to remember all MUs(i,j) for each i and for each j. 

Each time a change of state of an instance appears in the physical configuration, the binder 

evaluates MU(i,j) and R(i,j) for all different number of connections (j). 

4.3.6- The time reguested by the messaee exchanee throueh the network 

The binder has to evaluate TN regularly because the traffic rate of the network can change 

often. About the additional time of the network brought by the exchange of messages equals 

two times the time necessary for exchanging a message of a fixed length between two nodes. 

This time depends on the traffic rate of the network. Certain performance tools of the kemel 

have to be available for providing this time. 

4.3. 7- Different Poisson distribution rates of the connection 

In this case, the average number of the service arrivals per instance for all connections 

equals the sum of the Poisson rate of each connection and not the Poisson rate multiplied by 

the number of connections. If an instance has connections with a low rate of arrivals and 

another which has connections with a big rate of arrivals then the first instance is not fully 

used with the strategy of the dispatching of connections. For example, an instance with 

thousands of messages per second and another instance of the same server with ten 

messages per hour. The problem here is that the binder does not know the rates of the client 

connections. The designer can make an approximation of a common Poisson rate per 

connection if he considers the loss of time is negligible. 
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4.4- The wei2ht of the instance port 

4.4.1- Introduction 

Either there are different Poisson rates of the request arrivais per connection with a not 

important loss of time or it is not possible to evaluate the distribution rate of the arrivais or it is 

not possible to settle the distribution of the arrivais. In these cases, a new strategy has to be 

found ... 

4.4.2- The cooperation protocol 

The instance of the server knows the message number of its queue. To know the message 

number in the port of ail instances of the same server it is necessary to establish a cooperation 

protocol [NEH2] between them. Obviously, the instances of the same server will have the 

same protocol. This protocol informs about the message number in the port and about other 

parameters such as the response time of each instance. It also permits the redirection of 

messages from an instance to another. With this protocol we have in fact the principle of the 

dispatching of ports of instance. The negociation of the message treatment is dynamical 

whatever the established connections may be. In fact, the binder establishes the connection 

between the client and an instance which are on the same node. Or it selects the instance 

which has the minimum number of connections. 

4.4.3- The strate2)' : the dispatchin2 of ports 

For example, if you have two instances of the same server and the first has seven more 

messages than the other then the next message received by the first instance, will perhaps 

have to be treated by the second instance because its response time does not include the 

additional time brought about by the seven additional messages. 

The additional time of an instance (i) is its number of messages in its port (N(i)) divided by the 

service rate MU(i). 

This means: 

The additional time of the instance(i) = T(i) = M(i} . 

MU (i) 
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such M(i) is the number of messages in the port of the instance(i) 

The response time of the instance(i) = R(i) = T(i) + 1 . = M(i)+ 1 

MU(i) MU(i) 

Here, each instance may calculate the additional time and thus there is no need for an 

evaluation to calculate it. The localization of the client is not important because an instance 

has actually received the message. The redirection of a message is necessary when the 

response time brought about by the instance is greater than the minimum response time of 

another instance added to the additional time brought about by the message exchange 

through the network. 

This means: 

1ïme required by the message exchanges on the network = TN 

R(i) is the response time of the instance(!) which has the message 

R(k)=Min{R(j) :for eachj when the instancej is in •present• or •ready• state} and. k not = i 

If R(i) > R(k) + TN 

Then the instance(!) makes a redirection of the message to the instance(k) 

Else the instance(i) itself treats the message 

4,4.4- The tirne reguested by the calculation 

The whole information about the response time of the instances is known by all instances. 

Each instance has to calculate its own response time and all of the instances have to 

communicate their response time to one another. The calculation of the response time of an 

instance is always made after the execution of a service of the instance. The response time of 

an instance(i) in "not ready" state equals zero. The variables are : the number of messages in 

the port (M(i)), the time required by the message exchange (TN) during the redirection and 

the service rate of the instance (MU(i)). The time requested for the evaluation of MU(i) is 

short. But the time of the evaluation of TN may be long, therefore this last evaluation may 

only be made sometimes and not each time we have a treated message of the instance. 
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4,4.5- The service rate of the instance 

A sub-system may contain several services which have different service rates but thanks to 

the stochastic approximation we can replace those service rates by the service rate MU(i) of 

the instance(i). But here, it is the designer of the instance which chooses the distribution of 

this service rate (e.g. Erlang, Exponential, Cox, ... ) and bas to implement its evaluation in the 

server program. Nevertheless, it could approximate the service rate with the average time of 

the executed services as explained below. 

The method for the evaluation of MU(i) 

The dispatcher takes the time Tl before the execution of the service and the time T2 after the 

execution of the service. The difference DELTA(i) between those times is added to the sum 

of differences which is also the time TS(i) necessary to perform all services. TS(i) receives 

zero as initial value when the instance becomes "present" state after having been in "not 

present" state. The instance also increases the total number of requested services TM(i). 

TM(i) has zero as initial value when the instance is in "present" state after having been in 

"not present" state. The performing time TS(i) is divided by the total number of requested 

services TM(i) in order to obtain the service rate with the instance MU(i). With this service 

rate the instance can calculate the response time. 

This means: 

The pe,forming time of the service = DELTA(i) = T2-Tl 

The pe,forming time of ail services = TS(i) = TS(i) + DELTA(i) 

The total number of requested services = TM(i) = TM(i) + 1 

The service rate = MU(i) = lMiL..:_ 

TM(i) 

4,4.6- The implementation of the cooperation protocol 

The designer of the server bas to implement the coordination of all instances of the same 

server. An automatic generator of cooperation protocol may be helpful with the evaluation 

of MU(i) which has just examined. The protocol bas to inform about the response time of all 

instances and each instance bas to know the port of all of the other instances. 
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The protocol may use the mechanism of ports and messages with a master/slave relationship. 

A _ better solution would be for each instance_ to update and read a shared distributed file 

which contains those response times and those ports. 

4.4. 7- The concept of ports eroup 

The ports group (one port accessible by all instances of the same group) [ARMA] would 

seem a good implementation for the distribution of messages to the instances because the 

first instance which asks the message could be the instance with the least activity. Thus, it 

surely off ers a better response time than the other instances. In fact, there is no loss of time in 

the information communication. 

4.5- The Virtual Dispatchine of Ports strateey 

lt is a particular and very attractive case of the two previous strategies but only if the 

connections are orierited $ervice connections. The client inakes a connection to a service 

rather than to a server, it receives the port of an iristance from the binder, it calls its service 

directly and when it receives the reply of the service, it makes a disconnection to the instance. 

The dispatching of ports and the dispatching of connections is the same when you always 

have only one servicé per connection. What we have here is a merged strategy which uses 

only the advantages of the two above _· mentioned strategiés leaving aside their 

inconvenienèes. For example, there are no protocols between instances, no redirection of 

messages and there is no evaluation of the additional time spent in the port of an instance. 

Instead of the instances the binder makes the dispatching of ports according to the number of 

connections. But the binder has to evaluate the response time of all instances requested for 

a connection and wherever they are. The binder has to use a better solution for evaluating 

the response time of the instance than the sending of messages which contain a wrong 

· service name. It can do it because · here the disconnection request is an additional 

information in this context. 

The method for the evaluation of R(i) 

When the binder makes a connection it takes also the time TC(i,C(i)) of the instance(i). After 

that it increases by one the number of requested connections C(i). When it makes the 

disconnection it takes the time TD(i,D(i)). After that it increases by one the number of 

requested disconnection D(i). Let's note that it never decreases the C(i) and D(i) values. 
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When an instance is in "present" state after having been in "not present" state, these values 

also equal zero. The binder calculates the difference DELTA(i,C(i)) between TD(i,D(i)) 

and TC(i,C(i)) when C(i)=D(i). The binder calculates the response titne R(i,C(i)) of all 

connections of all instances wherever they are. If the instance(i) is not on the same node as 

the client (or as the binder) the response tirne R(i,C(i))equals the titne difference 

DELTA(i,C(i)) minus the tirne brought about by the message exchanges through the 

network TN(C(i)). Otherwise the response tirne R(i,C(i))equals DELTA(i,C(i)). Also we 

have be aware of the different network tirne according to the evaluation of R(i,C(i)). Indeed, 

if A and B are inferior to C(i) then it is possible that TN(i,A) doesn't equal TN(i,B). 

This means: 

The difference of time : DELTA (i, C(i)) = 1D(D(i)) - TC(C(i)) such D(i) = C(i) 

If the clienl and the instance i are on the same node(i) 

1hen R(i,C(i)) = DELTA(i,C(i)) 

Else R(i,C(i)) = DELTA(i,C(i)) - TN(C(i)) 

For example, the connection of a service A of the instance(i) on the same node as the binder 

and the disconnection of the instance(i) after the performing of service A may give the 

following measures : TC(i,3) and TD(i,4). Indeed the binder has received a new connection 

request to the instance(i) which provides a new TC(i,4) and it also received a disconnection 

request which provides TD(i,3). This indicates a faster execution of a service B of the 

instance(i). This example demonstrates that the response titne of an instance R(i) may not be 

only based on R(i,3) or R(i,4). In this example, the binder could approxirnate an average 

response titne by : 

(JD(i.4):TC(i,3))+(ID(i,3):TC(i.4)) < = = > (JD(i,3):TC{i,3))+(JD(i,4):TC{i,4)) 

2 2 

Thus, the response time formulas are : 

If the instance(i) is on the same node than the clienl 

Then the response time of the instance i = R(i) = SUM(for each ; (rom 1 to C(i) : Rfi.j)) 

C(i) 

Else the response time of the instance i = R(i) = SUM(for each; from 1 to C(i): Rfi.j):TN(i)) 

C(i) 

ST 
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A common response time of an instance for ail instances of the binder 

For a given instance(i) several binder instances may calculate different response times. 

Each binder instance keeps its calculated response time and works with it. Thus, an 

instance(i) may have a great response time for a binder instance but a nil response time for 

another binder instance which has never received a connection request for this instance(i). 

A common response time would seem the solution of this problem . .-. 

The common response time of an instance is the sum of the response times calculated by each 

binder instance divided by the number of binder instances. Each time a new common 

response time is calculated, the previous common resp9nse time has to be added to it. When 

the server is in "present" state the common response time · has the value zero. 

This means: 

The response time calculated of an instance(i) by a binder instcµu:e(b) : R/i) 

NBBINDER is the number of binder instances 

The common- response time : CR(i) = SUM(for each b from O to NBBINDER : R/W, +CR/IJ 

NBBINDER 
l 

Once a binder instance has calculated the common response time, all of the individual 

response times of each binder instance have fo be nil again because the next calculation of 

the corrimon respon_se time has to b_e correct The binder has to use its protocol or its common 

shared file to make the _ connection. This protocol informs about the state, the number of 

connections, and in addition about the individual response times and about the common 

response time-for all instances. 

The choice of the instance for the connection 

The binder chooses the instance(k) which has_ the minimum common response time if there is 

no instance(i) in "present" or "ready" state on the same node. 

This means: 

There is no instance(i) in "present" or "ready" state on the same node as the binder 

If RC(k) =MIN{RCû) : for each j when the instance j is in "present" or "ready • state) and k not = i 
Then the connection is made with the instance(k) 
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The binder chooses the instance(i) on the same node if this instance is in "present" or 

"ready" state and if it provides a common response time CR(i) which is not greater than the 

minimum common response time provided by another present or ready instance(k) plus the 

additional time for the messages exchange through the network. 

This means: 

TN is the additional network time 

RC(i) is the response time of the instance(i) in •present• or •ready• state on the same node as the binder 

RC(k)=MIN{RC(j) : for each j when the instance j is in •present• or •ready• state} 

If i not = k and RC(i) > RC(k) + LN 

1hen the connection is made with the instance(k) 

Else the connection is made with the instance(i) 

5- The saturation of a port 

When the number of messages in the port M(i) reaches the limit of the port (the port size) and 

perhaps also the ports of the other instances according to the dispatching strategies, then the 

binder instance or the instance(i) of the server may ask the loader to load a new instance to 

allow a better response time and a bigger capacity for treating messages. But the auto­

replication indicator has to be specified with "on overflow of port" as value. The number of 

messages in the port is known by the instance. Depending on the used connection strategy 

it is the binder or the instance(i) of the server which asks to load a new instance. In the 

dispatching of ports strategy it is the instance which is the responsible for the loading request 

because it has to receive the port of the new loaded instance for the correct management of 

the cooperation protocol. In the virtual dispatching of port strategy the maximum number of 

messages (or of connections) in the port may be the port size plus one. In the dispatching of 

connections strategy it is the binder which is the responsible of the loading request. But it 

does not know the number of messages in the port of the instance(i) thus it has to evaluate it 

with the average number of messages in the port. Indeed, for this strategy there is a 

replication of an instance when the arrival rate of messages LAMBDA(i) to the instance(i) is 

greater than the service rate MU(i) of the instance. The port saturation may be defined with 

a maximum number of connections to the instance(i). 

The formul.a of the maximal number of connections of the instance(i) : 

Maximal number of connection of the instance(i) = MAX(i) 
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such MAX (i)* LAMBDA < MU(i) 

and (MAX(i) + 1) * LAMBDA = > MU(i) 

6- The inactivity of a port 

When the number of messages in the port M(i) reaches the value z.ero and perhaps also the 

the number of messages in the ports of the other instances according to the dispatching 

strategies then the binder instance or the instance(i) of the server may ask to unload an 

existing instance to the loader for allowing a better weight on a node. The number of 

messages in the port is known by the instance. Depending on the used connection strategy 

it is the binder or the instance(i) of the server which asks to unload an existing instance. In the 

dispatching of ports strategy it is the instance itself which is responsible for the unloading 

request. In the virtual dispatching of ports or in the dispatching of connections strategies the 

empty port of an instance is known by the binder because it has no connection with it. Thus, 

the binder is responsible for the unloading request. But the unloading request may fail 

because the instance to be suppressed is the only instance of the server in the physical 

configuration and is required by another instance of another server in the physical 

configuration. Indeed, the physical topology has to remain coherent. 

7- The distribution and integration of the binder 

There is a local call mechanism to the binder. This call mechanism is the mechanism of 

bourses and commissions which lets the binder know that the localization of the caller is on 

the same node. Thus the binder is an autonomous and local sub-system because it is used by 

all of the clients which are on the same node. In addition the replication of the binder may 

imply a better speed performance at the time of the (dis)connection request and increases the 

capacity of the binder for treating the (dis)connection services. But all instances of the binder 

have to secure coherent information about the server instances. Instead of adding a new 

local sub-system (the binder) the linker is extended with the new fonctions for (un)binding 

between clients and servers. This linker has to establish the (dis)connections between the 

clients and the sub-systems whatever their kind may be. The linker has some informations 

conceming all of the sub-systems to manage the (dis)connections. 

8- The requested information 

In summary this item gives the whole information necessary to the binder for its management 

with the VDP strategy. 
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For each server (present in the logical topology) 

-The name 

- The list of service names 

- The auto-load indicator 

- The replication indicator (onoverflowofports, onlyone, onallnodes, Ntimes) 

- The port size 

- The critical number of messages or of the connections (VDP strategy) 

- The state 

For each instance of each server "present" in the l02ical confi2Jiration 

- The node number where it is located 

- The state 

- The number of connections 

- The Port 

- The response time calculated by the binder ~(i) 

- The common response time RC(i) 

For each connection request of each "ready" or "present" instance 

- The number of connection request C(i) 

- The corresponding time TC(C(i)) 

For each disconnection request of each "ready" or "present" instance 

- The number of disconnection request D(i) 

- The corresponding time TD(D(i)) 

For each node 

- The number of the node 

- The current state of the node (Crashed, Available) 

For the network 

- The network time TN(C(i)) 
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Chapter 2 : Loading management 

In the traditional operating system there already is a module called the creator which 

manages the (un)loads of the local sub-systems [SIM2]. The distributed operating system 

needs an extension of the creator or of another similar module. This extension or this 

additional module is called the loader. The loader is a set of services which establishes the 

(un)loads of the instances of the servers. 

1- The entities requesting the (un)load [1] 

1.1- An instance of a server 

Each time its message number reaches the port limit, an instance may ask the loader for a new 

one. It does so with the help of the dispatching of ports strategy. But the value of the 

replication attribute of the server declaration would have to be "overflow of port". If an 

instance has an empty port then it may also ask the loader for an instance unload. 

1,2- The binder 

With the dispatching of connections or the virtual dispatching of ports strategies the binder 

may ask to the loader for a new instance of a server when the connection number of any 

instance of the same server reaches the port size plus one or reaches the maximum 

connection number which may be calculated from the formulas. The binder also requires the 

load of the first server instance when a client (a user task) wants to make a connection with 

this server in "not present" state. The value of the auto-load attribute has to be "YES". 

1.3- The conflarnration mana&er 

It is a special program which knows the physical configuration and which asks the loader to 

(un)load instances on a given node for efficiency reasons or for anticipation reasons. This 

program is only accessible by the master operators or by the system administrators. Its main 

goal is to establish a stable and efficient physical topology. This program is an option module 

of the sub-systems management. 

[l] Those entities may also called the caliers. 
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The main difference between the loader and the configuration manager is that the loader 

makes the (un)loading of an instance according to needs (overflow of port or auto-loading) 

or because of a lack of activity of the instance in the physical configuration (underflow of 

port), whereas the configuration manager uses other criteria such as the future evolution of 

the configuration. The configuration manager uses the loader. 

1.4- The anchor 

The anchor is a special service of the kemel that asks for the loading of the startup 

configuration. 

2- The problem of the functional dependencies 

2.1- The functional mieration of the creator 

When the creator has to load a local sub-system, it is possible that it requires the presence of 

other (local or global) sub-systems which may also be in "not present" state. Thus, the 

creator has to know the physical configuration of ail sub-systems to be able to maintain 

coherency. The knowledge of the creator has to be extended with the information about the 

global sub-systems. Here we extend the creator with the fonctions of the (un)loading of the 

global sub-systems. This creator or loader makes the loading of instances of sub-systems 

and the unloading of those instances. The loader is a local and autonomous sub-system. 

This procedure may also be called the functional integration of the loader. 

2.2- In the loadine phase 

2.2.1- The loadine of the first instance of a sub-system 

The loader has to load the first instance of a (local or global) sub-system (i) but it is possible 

that this sub-system requires the presence of other sub-systems which may also be in "not 

present" state. The loader may refuse this operation and retum an error code. This is not a 

transparant procedure because the caller will have to ask the load of a certain logical sub­

configuration before asking the load of the sub-system (i). A goal among others is to hide the 

structure of sub-systems from the clients (this also amplifies the oriented service connection 

rather than the oriented sub-system connection). Thus, the loader may not refuse the 

operation for this reason. The sub-configuration is called the loading sub-configuration. 
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The root of this loading sub-configuration is the initial requested sub-system (i) for the 

loading. This loading sub-configuration is constructed with the "use" relationship and the 

sub-systems which are in "not present" state. There is always a sub-system G) of the loading 

sub-configuration which doesn't use another sub-system of the same sub-configuration. 

First of all the loader has to load this sub-system G) which is then in "present" state and so it 

doesn't belong to the loading sub-configuration anymore. The loader repeats its work until 

there are no more sub-systems in the loading sub-configuration. 

•• •• 'Jo' •••••• ')'\' ............. . . 
• • • • •.:t 411\iCff '"' .............. . 

Loadiu.9 sub-tou.fi9Ul':lti0U. 

···· ·· ······ ·················· ··· 

•us,• l'tl:alio11.sb.ip 

Tb.e lo9ieal eo11.fi9untio11. 
(Sub·Svstems i11. p1eseu.t orreaclv state) 

Figure 10 The loading sub-configuration 

2.2.2- The loadina= of other instances of the same sub-system 

The loading of an additional instance of the same sub-system doesn't create additional 

functional problems. But the loader has to guarantee the coherence of the physical 

configuration (See the chapter about the topologies of sub-systems). As we mentioned 

earlier, the redundancy of instances increases the capacity of the server and decreases the 

response time of the instances. 
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2.2.3- The explicit Joad of an instance on a eiven node 

The explicit load would like to perform a loading of a server instance on a given node. But 

this does not correspond with the principle of the single image because the explicit loading is 

nota transparant mechanism. Thus, we can't left this possibility to the caliers. Nevertheless, 

the loader has to provide this service to the configuration manager, the system administrators 

or the master operators. 

2.2.4- The non recurrent loader 

Because the loader is an autonomous sub-system, the algorithm of the loading phase could 

be recursive. Each time a sub-sytem (i) has to be loaded and if it requires the presence of a 

"not present" sub-system(j), the loader could call itself to perform the loading of the sub­

system (j). But this doesn't correspond with the principle of a hiearchy "use" of sub-systems. 

2.2.5- The initialization of an instance 

The loader has to initialize the sub-system instance by calling the initial service of this 

instance. The name of this initial service is specified in the sub-system declaration. After that 

the loader changes the state of the sub-system instance in "present" state. Thus, this initial 

service is made without a connection establishment. 

2.3- In the unloadine phase 

2.3.1- The unloadine of the last instance of a sub-system 

The loader receives an unloading request of the last instance of a sub-system in the physical 

configuration. If this sub-system is required by others or if this instance is in "not present" or 

"ready" state then the loader refuses the operation and retums an error code. Else, the 

loader may accept the operation. But if the instance is required again after a short period then 

the unloading is useless. The loader accepts the unloading of an instance if after a long 

period of time the instance state has not been changed in "ready" state. The unloading 

service has a great response time. In the dispatching of ports strategy there are two solutions 

for unloading the last instance : either it is the binder which requests the unloading or it is the 

last instance which requests the unloading from itself. In the second case the instance has to 

make the disconnection to the unloading service in its ending service. More over, the loader 

will receive an error code for its reply because the last instance will no longer exist. 
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2.3.2- Termination 

The loader changes the state of the sub-system instance into "not present" state. After that 

the loader has to terminate the instance by calling the termination service of this instance. 

The name of this terminal service is specified in the server declaration. Thus, this ending 

service is made without a connection establishment. 

2.3.3- The unloadine sub-confi20ration 

We could imagine a construction of an unloading sub-configuration based on the "used by" 

relationship and by creating new states for the instances such as the Suspended state which 

prevents the new connection with an instance. It would always have an instance which 

would not be used by another. But it may be used by a client which is a user task ... That may 

bring about a lot of loading and unloading of the same instances in a short period of time and 

therefore for efficiency reasons we cannot allow it. Therefore, this fonction is made by the 

configuration manager. 

2.3.4- The unloadine of another instance of the same sub-system 

To unload another instance of the same sub-system which has to be in "present" state the 

loader makes the operation without waiting a long time. 

2.4- Possible extentions : the confi20ration manaeer 

In this paragraph a few possible fonctions are given as examples of extension. The 

configuration manager may collaborate with the linker and the loader if a new state is taken 

into account : the suspended state which prevents the new connections to an instance. 

2,4,1- The puree 

As one goal among others for the loader is to increase the performance per node and also to 

decrease the number of tasks per node then the configuration manager eliminates the 

instances which are not used by another and which are in "present" state. 
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2.4.2- The clear unloadini: of instances of a sub-system 

The configuration manager may reduce the number of instances of the same sub-system 

even if they are connected. That may be designed by adding the Suspended state to the 

instances. For example, it may do so according to the number of connections per instance 

which is too low. 

2.4.3- The clear unloadini: of instances of ail sub-system 

It is the same as the previous fonction but for all sub-systems. 

2.4.4- The optimization of the physical confi~ration 

The configuration manager optimizes the configuration either according to the node weight 

(suppression of replicated instances) or according to the network weight (replication of 

instances). 

2.4.5- The stable confi~ration 

This fonction is designed to prevent the (un)loading of instances. The configuration 

manager has to anticipate the future (un)loading. An expert system may do it if it has 

knowledge about the transitions of the configuration. A configuration is stable if there is little 

(un)loading. The goal also is to prevent the auto-loading when a connection appears. 

3- The problem of the coherency of the physical confi1:uration 

Indeed, an instance of a sub-system(s) to be loaded can use instances of local sub-system . 

Sorne of them may be in "not present" state on the node(i). Tuen the loader has to load first 

those local sub-system instances on the same node. In addition, it is possible for those local 

sub-system instances do use other local sub-systems. This defines a set of local sub-system 

· instances which is called the local sub-configuration of the sub-system(s). First the loader 

has to load on the node(i) a local sub-system of the local sub-configuration which is in "not 

present" state and which does not use another local sub-system which is in "not present" 

state. It repeats this until ail of the instances of the local sub-configuration are in "present" or 

"ready" state on the node(i). Before unloading an instance of a local sub-system on a given 

node(i) this instance may not belong to any local sub-configuration of instances on the 

node(i). 
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-Figure 11 The local sub-configuration of a sub-system 

4- The connection to the loader services 

Many connection modes may be imagined but they are used only by the linker, the 

administrators, the operators and the configuration manager. 

5- The dynamical components 

Each loader service may be a thread and it is performed in the context of the loader. The 

mechanism for calling the loader may be hidden by using macros or commands 

($load,$unload). 
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6- The interfaces of the loader 

There are already two existing interfaces provided by the loader : the local sub-system 

loading and the local sub-system unloading. There are two new basic services provided by 

the loader : the instance loading and the instance unloading. This means that the caller has 

to know the kind of sub-system to be (un)loaded. 

ServerLoad(server-name .port. ret-code) 

Input parameters : 

server-name : the server name. 

Output parameters : 

port : the port of an instance of the server if ret-code = • ok • 

ret-code : the retum code of the operation (ok or fail). 

InstanceUnLoad(port.ret-code) 

Input parameters : 

port : the port of the instance to unload. 

Output parameters : 

ret-code : the retum code of the operation (ok or fail). 

6.1- The extended interfaces 

The loader has to provide mainly two other services to the configuration manager, operators 

and administrators. They are : the loading of an instance on a given node and the clear 

deletion of an instance. These services are f aster and are able to manage the suspended state 

with a collaboration between the configuration manager and the loader. This thesis does not 

explain how the loader manages this state and those services . 

FastlnstanceLoad(server-name.node.port.ret-code) 

Input parameters : 

server-name : the server name. 

node : the node where the instance has to be 

Output parameters : 

port: the port of an instance of the server if ret-code = •o1c• 

ret-code : the retum code of the operation (ok or fail) . 

fi) 
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Fastlnstance Unload (port. ret-code) 

Input parameters : 

port : the port of the instance to unload. 

Output parameters : 

ret-code : the retum code of the operation (ok or fail). 

7- The problem of the localization for loadin1: an instance 

The main problem to be solved is the best installation of a sub-system instance in the physical 

configuration. The loader has to construct a physical topology allowing for better response 

time in the future connections between clients and sub-systems. 

7.1- Network considerations 

Sorne physical configurations may bring about more traffic through the network. The 

problem to be solved is the minimization of the "use" relationships between the sub-systems 

instances of different nodes. A lot of constraints may appear (i.e. the loading sub­

configuration, the local sub-configurations, the localization of the caller, the replication 

indicator, ... ). The problem and those constraints may be formulated by an equation system. 

The SIMPLEX algorithm [DANT] may solve this equation system with a minimization of the 

network exchanges. 

The formulation of the problem and its constraints with the network viewpoint : 

The variables : 

r,s ,t ,b: integer ranged from 1 to NBSS such NBSS is the number of dijferent sub-systems which belong to 

the logical configuration and to the loading sub-configuration 

ij,k,a(b) : integer ranged from 1 to NBNODE such NBNODE is the node number 

GAMA(r,i), sign(r), egal(ij) : boolean 

NS(r) : integer 

C(a(l),a(2), ... ,a(NBSS)): integer 

Z: integer 
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The •use• relationship between sub-systems 

R(s,t) : boolean 

R(s,t) = 1 if it exist a •use• relationship between the sub-system(s) and the sub-system(t) 

= 0else 

The average number of calls to a sub-system(t) from a sub-system(s) for realizing a service of the sub-system(s) 

NC(s,t) : integer 

NC(s,t) = 0ifR(s,t) = 0 

=>le/se 

The physical configuration before the loading request 

ALPHA(r,i) : boolean 

ALPHA(r,i) = 1 ifthere is an instance of sub-system(r) in •present• or •ready• state on the node(i) 

= 0else 

The local sub-systems 

L(r) : boolean 

L(r) = 1 if the sub-system(r) is a local sub-system 

= 0else 

The replication of a sub-system 

Linf(r), Lsup(r) : integers ranged from 1 to NBNODE 

Linf(r) = nif the sub-system(r) is replicated at least n times 

Lsup(r) = m if the sub-system(r) is replicated at most m times 

The information coming Jrom the loading request 

s0 : an instance of the sub-system(s0) has to be loaded or replicated 

lO : the node of the caller (and also of the loader) 
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The rules 

The physical configuration after the loading request includes ail instances of the physical configuration be/ore 

the loading request 

GAMA(r,i) = > ALPHA(r,i) for each r,Jor each i 

If the requested sub-system is a local sub-system then it has to be found on the same node of the calier 

(if this local sub-system exits already on the node(lO) then the request faiLr) 

GAMA(sO,lO) = > L(sO) 

If the requested sub-system is a server and if there is at least one instance of this server in the physical 

configuration then it is a replication request which implies only one more instance 

(the request has to be checked previously by considering the number of nodes, the replication indicator and its 

existing number of instances) 

SUM(for each i: ALPHA(sO,i)) * sign(sO) = 0 

SUM(foreach i: ALPHA(sO,i)) + sign(sO) < > 0 

SUM(for each i: GAMA(sO,i))*(J-sign(sO)) = 
SUM(for each i : ALPHA(sO,i))*(l-sign(sO))+(l-sign(sO)) 

The coherency of the physical configuration 

1-SUM(foreachi:GAMA(r,i)) => lforeachr 

2- GAMA(s,i) = > GAMA(t,i)*R(s,t)*L(t)for each s.for each t.for each i 

The replication of instances 

SUM(for each i: GAMA(r,i)) = > Lin/ (r)for each r 

SUM(for each i: GAMA(r,i)) < = Lsup(r)for each r 

The number of calLr to the sub-system(t) by other sub-systems for one call to the sub-system(sO) 

NS(sO) = 1 

NS(r) = > Oforeach r 

NS(t) = SUM(for each s: NC(s,t)*NS(s))for each t 
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The number of network exchanges between ail instances brought about by one call to the sub-system(s0) 

C(a(l),a(2), ... ,a(NBSS)) = SUM(for each s ;· SUM(for each t: NS(s)*NC(s,t)*egal(a(s),a(t)))) * 
PROD(for each s: GAMA(s,a(s)))for each a(l),for each a(2), ... ,for each a(NBSS) 

suchNC(s,s) = 0foreachs 

such (1-egal(IJ))*(i-j)=0and (l..egal(iJ))+(l-j)< >0 

Example given: C(l,1,2,2) = 5 indicates there are instance of sub-system 1 on node 1, an instance of sub­

system 2 on node 1, an instance of sub-system 3 and of sub-system 4 on node 2, and there 

are 5 network exchanges brought about by their •use• relationships and the average 

number of calfs between them 

The minimization (economical {Unction) 

Z = SUM(/or eacha(l): SUM(for each a(2): ( ... (SUM(for each a(NBSERVER): 

C(a(l),a(2), ... ,a(NBSERVER))) ... ))) 

MIN(Z) 

This system of equations implies as little replication as possible because the replication of a 

single instance brings about a new GAMA( ... ) _>0 and thus new possible C( ... ) > O. This 

system gives all possible network exchanges between the instances. Another solution could 

-be the replication of each instance on each node. But a lot of network exchanges are still 

possible with the dispatching strategies ... In addition, the weight of each node is bigger and 

the response time of the loading service increases strongly. 

7,2- Task scheduline considerations 

The chapter about the binder has taken the foHowing hypothesis into account : the number of 

tasks is nearly the same on each nodes and also the CPU occupied rate has to be nearly the 

same on each nodes. In this way each task in the distributed system has the same scheduling 

environment. The global perf orrnance of the single image machine would have to be at a 

maximum. The task balancing and the CPU occupied rate balancing are insured by the 

loader and the job manager. The loader puts the instance on a certain node according to the 

number of tasks per node and the CPU occupied rate per node. 
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The properties of a sub-system could be taken into account [l]. The knowledge of those 

parameters is furnished by certain services of the kernel. 

The formulation of the problem and its constraints with the task scheduling viewpoint : 

The additional variables : 

W(i) : integer 

Y: integer 

The additional facts : 

The number of tasks of the node before the loading request 

V(i) : integer 

The additional rules 

The number of tasks after the number request 

W(i) = V(i) + SUM(for each r : (GAMA(r,i)-ALPHA(r,i))) 

The new minimization 

The goal is to minimize the number of tasks per node and to minimize the difference in the number of tasks 

between the nodes. 

Y = SUM(for each i : W(i)) + SUM(for each j : SUM(for each k : W(i)-W(k))) 

Min Y 

Please note that the formulation does not take into account of the autonomous sub-system, 

the cpu occupied rate and so on ... 

[l] This criterion may have a lot of influences on the CPU occupied rate and also on some scheduling priorities 

(e.g. interactive kind, i/o oriented, ... ). lt is mainly in a loosely coupled architecture this criterian bas a great roll 

because the loader makes an association between the properties of the node (workstation, arithmetical 

pocessor, ... ) and the properties of the sub-system (oriented processing, oriented i/o, interactive, ... ). 
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7,3- Multicriterians analyse 

The balancing of the node weight brings about more network exchanges. When Z 

decreases then Y increases. When Y decreases then Z increases. But if the goal of Y is to 

minimize only the number of tasks of node then Z and Y may have a positive or nil 

correlation. The balancing of tasks may be made either during the loading of tasks if those 

tasks do not use other or during the loading of a new instance (replication). 

7 .4- Time requested by the calculation 

The time required by the resolution of the equation system seems quite long. It is the reason 

for giving stability to the physical configuration. 

7,5- Reoptimization and anticipation 

Normally the given strategies for the loading and the binding offer the best response time for 

all of the services at any given time. In the traditional operating system there aren't any 

unloads because a startup and a shutdown occurs every day. But in the distributed system 

those concepts tend to disappear therefore loads and unloads are more frequent. In the 

future the physical topology might not be the best because there are a lot of replications and 

a lot of deletions of instances. The configuration manager may evaluate regularly the 

localization of the instances of the physical configuration and make some operations to tend 

towards the ideal physical topology for a given logical topology. That is the concept of 

optimization of the physical configuration. But if the configuration is stable it is not necessary 

to reoptimize. The stability of the physical configuration may also be reached by the 

configuration manager. To avoid the unloading and loading of the same instance within a 

short period of time, the loader may anticipate by using an expert system. The expert 

designer has to deliver knowledge about certain physical topologies and their assumed 

transitions (e.g. of a knowledge : in this given physical configuration it is interesting to load 

this instance of this sub-system on this node). The knowledge may be based on the loading 

and the unloading frequency of the instances. The utilization of an expert system is not the 

most efficient but it also has a limited importance. 
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8- The distribution and inte~ration of the loader 

8.1- The functional analysis for the distribution 

Perhaps it is interesting to split the loader into 2 sub-systems : a high level loader sub-system 

and a low level loader sub-system because there are two different concepts : the single image 

machine and the node. Thus the designer bas to define the reciprocal actions between them. 

There are two kinds of reciprocal actions : the "use" relationship for the utilization of services 

and the coherency of the common information about the sub-systems and instances. 

The hi2h level loader 

It has to (un)load a sub-system on the single image machine. It mak:es some validations (the 

(un)load phase) and some calculations with the SIMPLEX algorithm (the localization of an 

instance). It calls the low level loader to mak:e the (un)loading of an instance in or from a task 

on a given node and to gather some information about the node. It is not necessary to 

replicate the high level loader on each node because there is no need for a high speed 

performance and the loader is not often requested. The time cost of (un)loading has no 

influence on the call time and on the (dis)connection time between sub-systems. Excepted 

for the connection to a sub-system for which there isn't yet a single loaded instance (the auto­

loading phase). Then the time loss for this first connection kind may be called an investment 

time cost. 

The low level loader 

It manages the (un)loading of an instance of a sub-system in a task or in a holder task on its 

node without other considerations and it provides some node inforrmation to the high level 

loader. The low level loader directly uses the Nucleus services. The low level loader has to 

be replicated on each node because the (un)loading implies the utilization of a particular 

kemel interface. This interface is the (dis)allocation of task on the node where the requester 

(the low level loader) is situated. The principle of the single image machine leads us to 

assume there are requesters on each node. 

8,2- The or2anic analysis 

The high level loader provides the interfaces we have seen before but it bas to know the 

localization of the caller. 
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Either it is accessed with the local call mechanism or it is accessed by a global call mechanism 

with the establishment of a protocol with the calier. This solution brings about a lot of 

problems : the performance decreases and the implementation complexity increases 

strongly (the interfaces have to be changed by adding the localization of the calier to the 

services arguments). Thus, it is not interesting to split the loader into two sub-systems. The 

loader has to establish the (un)loading on a node of the sub-systems whatever their kind may 

be. For managing the (un)loading this loader has some informations conceming all of the 

sub-system kinds. 

9- The requested information 

In summary this item gives the whole information necessary to the loader for its management 

activity. 

For each sub-system ("present" in the logical configuration) 

-The name 

- The list of the service names 

- The replication indicator ( on overflow of ports , only one, on ail nodes, N limes) 

- The port size 

- The state 

- The scope (local or global) 

- The property (interactive, batch, ... ) 

- The name of the library wich contains the server code 

- The code size 

- The call mecanism kind (FITC, BALR, .. . ) 

- The temporal dependency (BeForeSystemReady, .. .. ) 

- The list of the functional used sub-systems 

- The averaged number of calling of the functional used sub-systems 

- The name of the initial service 

- The name of the terminal service 

For each instance of each sub-system "present" in the Ioeical confieuration 

- The node number where it is located 

- The state 

77 



• 

• 

Dynamic Sub-Systems Management in a Closely Coupled Architecture 

wrilten by Vanderpen-e Pascal 

For the server : 

- The Port 

For the local sub-system : 

- The corresponding holder task identificator 

- The off set in the holder task 

- The list of the entries and their address 

For each holder task 

- The holder task identificator 

- The node number 

- The free size space 

- The number of included instance 

For each node 

- The number 

- The state 
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For the same cost a closely multiprocessor system seems be as efficient as a tightly 

multiprocessor system. But with certain properties (e.g. the reliability, the performance, the 

transparancy, ... ) the distributed operating system has to manage X nodes to give the 

impression of a single image machine to the user .... 

Services and Sub-systems 

From a conceptual or functional point of view there are only three concepts : the client 

concept, the service concept and the sub-system concept. The functional sub-system 

topology indicates the relationships existing between them. The Client/Server model is the 

communication model which is always available whatever the distributed operating system. 

From a physical point of view the generic aspect, the context of performing, the call 

mechanism the synchronization aspects and the possible level of parallelism allow the 

definition of several kinds of services and sub-systems. The sub-system architecture gives 

an overview of those elements. 

From the distribution point of view there is a concept of instance instead of sub-system. The 

physical sub-system topology indicates the relationships between instances and their 

localizations on the nodes. 

From an application programmer point of view the Remote Procedure is the concept which 

replaces the global service. The remote procedure call hides the concept of service, the 

structure of sub-systems, the port and message mechanism, .. . Sorne new languages (i.e. 

Concurrent C++ and Parallel Fortran of IBM) allows to use the thread parallelism. 

From the concurrence point of view the monitors, the common variables, the shared and 

distributed files and the inter-task communication with a protocol are the support of the 

service concurrency. 

The fault- tolerance of sub-systems and the security of message transfer between a client and 

a sub-system may be guaranted by the kernel. 
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The sub-systems manaa:ement 

The management of sub-systems is insured by fives modules : the generator, the linker, the 

creator, the configuration manager and the anchor, and it requires two files : the catalog füe 

and the configuration file. The scope of my thesis was to establish strategies for the binding to 

a sub-system and the loading of a sub-system in such a way that their services provide a 

response time as rapidly as possible. My thesis will be used by engineers of Siemens­

Nixdorf as a start point for researches about dynamic sub-systems management in the future 

BS2000 distributed operating system. 
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The vertical limits of tbis thesis 

This thesis could be extended by giving a deeper analysis of some items such as the 

configuration manager and its fonctions (the development of an expert system and of the 

knowledge base about the transitions of the physical configuration), the startup phase and 

the anchor, the generator and the declaration of sub-systems, the estimation of LAMBDA, 

the statistical validation of the evaluation of the response time (e.g. bias in the estimation, 

correlation between taken actions, ... ), the simulation of the binding and the loading given 

strategies, the automatic generation of client and server stubs, the binding strategies if there 

are connections oriented service and oriented server, the multicriteria formulation for the 

loading management (relation between the weight of node and the network traffic), ... 

The horizontal limits of this thesis 

This thesis could also be extended by analysing some new areas such as the "loop" 

relationship between sub-systems, the port group mechanism, the environment provided by 

a loosely coupled multiprocessor system, the environment provided by a decentralized 

operating system, ... 
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