
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Dynamic Sub-Systems Management in a Closely Coupled Architecture

Vanderperre, Pascal

Award date:
1991

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/dynamic-subsystems-management-in-a-closely-coupled-architecture(d21ad9d7-8c18-42c8-98eb-e8702c94b5b7).html

Facultés Universitaires Notre-Dame de la Paix

NAMUR
Institut d'Informatique

The thesis
Dynamic
Coupled

Sub-Systems
Architecture

By Vanderperre Pascal

Management

Promoter
Jean Ramaekers

.
ID a Closely

Thesis presented in order to obtain the title

of Licencié et Maître en Informatique.

Academic year 1990 - 1991

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wriJten by Vanderperre Pascal

Abstract

Since the arrivai of the distributed operating systems such as MACH and CHORUS with the Loosely

Coupled or Closely Coupled multiprocessor systems, a new concept appeared: the server. In the common

literature, the designers explain how to access a server service through the existing mechanism of ports and

messages. However from the performance point ofview, the state-of-the-art relates only few words about the

strategies taken into account when (un)loading a server and when (un)binding a server.

In addition, there already was a concept of sub-systems among several operating systems. The first step

of the present thesis bas been to integrate the server as a kind of sub-system into a sub-systems architecture and

into a sub-systems topology.

The scope of this thesis is to elaborate a management of Sub-Systems which permits to exploit the

parallelism provided by the servers as efficiently as possible. My management strategies have been designed

during a training period at Siemens-Nixdorf on the evolution of the BS2000 operating system to a distributed

operating system in a close! y-coupled multiprocessor system.

Depuis l'apparition des systèmes d'exploitation distribués tels que MACH et CHORUS pour des

systèmes multiprocesseurs "loosely-coupled" ou "closely-coupled", un nouveau concept apparut : le

serveur. Dans la littérature courante, les concepteurs expliquent la manière d'accéder à un service d'un

serveur avec le mécanisme existant de portes et de messages. Mais d'un point de vue de performance, l'état

de l'art ne révèle pas les stratégies considérées lors des (dé)connexions aux serveurs et lors des

(dé)chargements de serveurs.

De plus, il existait déjà un concept de sous-systèmes parmi plusieurs systèmes d'exploitation. Une

première étape du présent mémoire a été d'intégrer le serveur comme étant un cas particulier de sous-système à

travers une architecture et une topologie de sous-systèmes.

Le but de ce mémoire est d '.élaborer une gestion de sous-systèmes qui permet d'exploiter le plus

efficacement possible le parallélisme offert par les serveurs. Mes stratégies de gestion ont été conçues lors

d'un stage chez Siemens-Nixdorf pour l'évolution du système d'exploitation BS2000 en un système

d'exploitation distribué à travers un système multiprocesseurs "closely-coupled".

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal,

Acknowledgements

First of all, I wish to express my thanks for his helpful and advice to Mr. Jean

Ramaekers, computer science professor of the Facultés Universitaires Notre-Dame de la

Paix à Namur (Belgium) and the promoter of this thesis.

I would like to thank the following members of the SIEMENS-NIXDORF company for

giving me the right environment for my studies and for their helpful suggestions : Mr. Nicos

Piperakis, Mr. Benoit Hucq, Mr. Bruno Bodart, Mr. Willy Messing and the members of their

teams.

I thank also the SIEMENS-NIXDORF company and COMETI II program for giving

me the financial possibilities to lead the project.

I dedicate this study to France, my sister.

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderpen-e Pascal,

Table of contents

Part 1

A hardware introduction

Part 2

Services and Sub-Systems in a Distributed Operating System

Part 3

1- Sorne goals and principles of the Distributed Operating System

2- How to achieve services in a Distributed Operating System

3- Clients/Sub-Systems Architecture

4- Sub-Systems topologies

5- Client/Server model

6- Remote Procedure Call

7- Concurrency of services

Dynamic Sub-Systems Management in a Closely Coupled Architecture

1- Binding management

2- Loading management

Part 4

Conclusions

List of ref erences

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

PART 1

A hardware introduction

1

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Varvlerperre Pascal,

1- Parallelism and performance

The parallelism of different entities (e.g. programs, instructions, etc ...) brings about more

performance with a multiprocessor system. But the concurrence of shared resources and the

coherence of the replicated entities have to be secured ...

1.1- The multiprocessor systems

A tightly-coupled multiprocessor system is a hardware system with several processors, a

shared memory and other common input-ouput devices such as the tape disks, the bard

disks, etc ...

Shared Memory

1/0

Proeessors

Figure 1 The tightly-coupled multiprocessor system

A loosely-coupled multiprocessor system is a hardware system with several nodes

interacting through a communication network. A node, also called a computer, may be a

uniprocessor system (i.e. IBM PC 80386) or a tightly-coupled multiprocessor system (i.e.

Univac 1100/8, BS2000/Zll, IBM 370, CRAY X-MP). A node is always managed by a

kernel (V AX-VMS, MS-DOS). It is possible for nodes to have different kernels but there

always is a distributed system (i.e. UNIX BSD 4.2, MACH, CHORUS, V-system,

AMOEBA) for all nodes. Let's examine the kind of the networks (i.e. ETHERNET,

XEROX internet, TOKEN RING) which will allow interaction between the nodes.

2

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderpen-e Pascal

®®

LocalN~ork

Figure 2 A loosely-coupled multiprocessor system

Loosely-coupled systems are characterized by physical separation of processors, low­

bandwidth message-oriented interprocessor communication, and independent operating

systems. Tightly-coupled systems are characterized by close physical proximity of

processors, high-bandwidth communication through shared memory, and a single copy of

the operating system. The intermediate approach is the closely-coupled structure also called

cluster (i.e. V AX-Cluster [KRON]) : a cluster has separate processors and memories

connected by a message-oriented interconnect, running separate copies of the same

distributed operating system, a close physical proximity of all resources, a single security

domain (physical and logical), shared physical access to disk storage, and a high speed

memory-to-memory block transfer between nodes.

1.2- The level of parallelism

In the centralized operating system there are several levels of parallelism. The intra­

instruction level results from the capabilities of the modern pipeline computer which are able

to treat several instructions at the same titne by using scalar and vector pipelines. The inter­

instruction level allows the parallelism of instructions of a program which is written in a high

level language. The multitasking level makes it possible to execute several programs (e.g. the

user programs and the local sub-systems) at the same time.

In the distributed system there are two new levels of parallelism : the multithreading level

which can perform several procedures of a program at the same time, and the nodes level

which allows the parallelism of programs interacting through a communication network (e.g.

the user programs and the servers).

3

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderpen-e Pascal

2- Performance and cost

2.1- The failure of Grosch's law

Grosch's law stipulates that the performance is proportional to the square of the cost

[COUL]. For example, a system of 2 million$ is two times more efficient than two 1 million$

systems and a network. Thus a tightly-coupled multiprocessor system is better than a

loosely-coupled multiprocessor system for the same price. But this law doesn't apply to the

new high speed networks, the cheaper memory and the cheaper processors. At present

some designers put forward the following hypothesis : the performance is nearly

proportional to the logarithm of the cost. In addition, users need more and more complex

applications. The advantage of the loosely-coupled multiprocessor system is that it is able to

offer a lot of heterogenous nodes, each node being specialized in a certain kind of

application (e.g. a workstation for the interactive or graphical applications which are not

made for an oriented batch node).

I GROSCH
PERFORMANCE

I
I

NOWADAYS
I

I
.,,, ~/

_,, --
COST

Figure 3 The performance according to the cost

4

Dyoamic Sub--Systems Management in a Closely Coupled Architecture

wrilten by Vanderpen-e Pascal

3- Management of servers in a Closely Coupled Architecture

To obtain the optimal response time of the services of servers, the (un)loading and the

(un)binding strategies have to be found. Part 3 of this thesis attempts to answer two

fondamental questions regarding the Closely Coupled Architecture : Which is the node

where a server may be loaded at a given time ? What is the copy of the server to be chosen

during a binding ? It is advisable before tackling part 3 to read explanations about the

Remote Procedure Call, the local and global services, the local or global call mechanisms,

the Client/Server model, the Client/Sub-Systems Architecture, the topologies of Sub­

Systems, some principles about the distributed operating systems .. . Th ose concepts will be

explained in detail in part 2 of this thesis.

5

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrillen by Vanderperre Pascal

PART 2

Services and Sub-Systems in a Di,stributed OperaJing System

6

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

Chapter 1 : Sorne goals and principles of the DOS

This chapter gives the main goals, principles and properties of a particular case of

Distributed Systems : the Distributed Operating Systems in a Closely Coupled Architecture.

1- Definition of a Distributed System

A distributed system is a multiplicity of general purpose resource components which have a

physical distribution interacting through a communication network [SEIF]. The Distributed

System is the manager of the software as well as the hardware resource components.

2- Kinds of operatina: systems in distributed systems

From a functional point of view, the operating system is split into a kernel and a set of sub- ·

systems. The kernel comprises a lot of basic services such as the processor allocation and

the memory management. The sub-system is another kind of set of services such as the file

backup management. The server is a special kind of sub-system (the server services may be

used whatever the localization of the user may be).

2.1- The Network Operatine Systems

Each node has its own kernel and there is a common software package to be added to each

host in order to communicate.

2.2- The Distributed Operatine Systems

Each node has its own kernel. The Distributed Operating System is able to manage the

resources through the network by using the servers. In fact, it is this kind of operating system

this thesis will examine, but in the context of a closely-coupled multiprocessor system.

2,3- The decentralized operatine systems

They are the same as the distributed operating systems but here the fonctions of the kernel

are themselves distributed. In other words the services of the kernel are split among all

nodes.

7

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal,

3- Goals of the DOS

Obviously, the main goal of the Distributed Operating Systems is to share a lot of resources

(i.e. the files, the printers, ...) whatever the node they are associated with, but it has to be

carried out by providing the transparancy of the service utilization (the single image

machine) and by insuring the effectiveness of those services.

The sinele imaee machine principle of DOS

The users should have a view of the system as a whole, they should not normally need to be

aware of the location of hardware and software components from which the system is

constructed.

4- Properties of the DOS

4.1- The transparancy

A user uses a distributed service, and thus a server, without knowing its location, its possible

replication, its possible migrations on other node, its possible failures and recoverabilities,

its possible existing activities and without knowing the configuration of the physical

components and its possible extensions.

4.2- The performance

The DOS has to optimize the weight of each node with the minimum network traffic rate

because that implies a greater performance for the response time per service. It also has to

furnish some transport communication services which are to be more efficient because they

are more lightweight.

4.3- The reliability

Because DOS is very dependent on the network it has to recover the network failure and has

to make the whole system reliable.

8

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

4.4- The fault tolerance and the recoverability

DOS has an inbuilt automatic recovery system for hardware or software failures. For

example, anode may crash yet that doesn't hamper the users of other nodes.

4.5- The security and the extensibility

There are no interruptions of the user activities if new hardware or software components are

added. This property is very interesting when we speak about the open system. But it also

increases the risk of getting undesirables components such as spies or something lik:e that.

Therefore DOS has to protect the whole system against accidentai or intentional violation of

access control and privacy constraints.

4.6- The coherence

There are often several copies of a logical entity (i.e. a server, a file, ...) and so DOS has to

secure the coherence of this entity.

4. 7- The concurrency

As one of the primitive goals of Distributed Systems is to share the resources (i.e. a server, a

file, a printer ...) among several users, DOS has to manage this concurrency.

9

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal,

Chapter 2 : How to achieve services in DOS

In a Distributed Operating System there are several ways to carry out a service for a client :

there are those of the traditional operating system and in addition the new ways required by

Distributed Systems. Generally speaking the sub-system concept is a set of services and the

client concept is an entity which has need for a service. The aim of this chapter is to provide

the basic elements of the Distributed Operating System in order to explain how to achieve the

service.

1- The representation of the client or of the sub-system

In the distributed operating systems a client or a sub-system is represented by a particular

kind of process [l]: the task.

The task

The tasks represent virtual central processors competing for the possession of the central

processor. The tasks are submitted to the task scheduling according to priorities, even

though two or more tasks may be executed simultaneously when two or more central

processors are available. The program components, an address space and additional

resources are assigned to the task. The task is the support of a set of perf orming units. The

task is privileged or not depending on whether the current perf orming units are privileged or

not. A task may be a user task or a system task. A system task is a task for the operating

system and in particular for the sub-systems. The user task is a task for the user programs.

The tasks management (the (des)activation, the initiation, the creation, the terminaison, the

preemption and the scheduling of the task) belongs to the kemel.

[1] In the BS2000 operating system there are several kinds of processes sucb as the special process, the task and

the activity. "Processes represent virtual central processor and thus compete independently of one another for

possession of the central processor" [SIMl]. Only the tasks are the support for the clients and the sub-systems,

therefore the clients and the sub-systems are submitted to the multitasking. The only kind of process in UNIX

BSD 4.3 is the task with only one tbread. The subject of process types is very specific and depends on the

operating system and so we do not here introduce it here because this cbapter wants to stay as general as

possible. More over we speek bere about the inter-task communication instead of the inter-process

communication tbroughout the thesis for referring to the theorical concept, MACH or BS2000 naming.

10

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

2- The representation of service

There are several kinds of services used by a client : the kemel, the local and the global

services. In the distributed operating systems those services are represented by different

kinds of program-runs. The program runs are the execution units for a program within a task.

Their context is a subset of the task context. There may be several program runs within the

same task. A program run is privileged if its code contains at least privileged instructions.

The program run management belongs to the kemel.

2.1- The kinds of services

2,1.1- The kernel services

The Kemel services are the generic or basic services. The kemel services are the services

provided by the traditional operating system and they also exist in the distributed operating

system. They are included within the kemel. In addition the kemel has some new services

for securing the distribution such as the services of the transport management, the

management of distributed files, etc .. . Thus a kemel service may be called with the

SuperVisor Call by the clients which are on the same node of the corresponding kemel.

Conceming the kemel, services or their interfaces are the only things which will be examined

in more detail in this thesis. More over, the kemel services have to be submitted to a deeper

analysis when the distributed system is decentralized ...

2.1.2- The local services

The local services are the services provided by the traditional operating system and they_ also

exist in the distributed operating system. They are included within the local sub-systems.

Therefore, a local service may be used by the clients which have to be on the same node of the

corresponding local sub-system. The local sub-systems may be loaded or unloaded

depending on the utilization of their services.

2.1.3- The &lobai or distributed services

The global services are included within the distributed sub-systems (the servers).

Therefore, a global service may be used by all of the clients wherever they are. The servers

may be loaded and unloaded according to the utilization of their services.

11

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vandoperre Pascal,

2.2- The types of proiram-runs

2.2.1- The Proiram Control Bloc runs

The PCB runs are used for synchronous processing within a task. The PCB run has no

address space .of its own and it also shares all of the other important resources with all of the

_other pro gram runs · of its task. Two or more PCB runs of the same task may be executed

altemately only and two or more PCB runs of different tasks may be executed simultaneously

when the tasks are executed simultarieously.

2.2.2- The threads

The threads are used for asynchronous processing within a task. The thread has no address

space of its own and it also shares all of the other important resources with all of the other

program runs of its task; Two or more threads of the same task may be executed

simultaneously. The parallelism of threads wittiin . a task is also called the multithreading.

For the purpose of bounding this_ thesis we shall put forward the following hypothesis : the

process manager of the kemel is able to treat the threads and the procedures but not the PCB

runs because we don't know beforehand whether it is possible to manage those two different

kinds together, or in other words whether the threads and the PCB runs are compatible.

2.2.3- The procedures

The procedure is a code which is still performed in the context of the caller (the client). This

is possible because the distributed operating system defines a shared code in system

address space for all of the tasks, and also defines a common memory pool between all of the

tasks. The common memory pool and the shared code are available only in the context of the

node. In that case the procedure may only represent a local service. The common memory

pool is almost the same things as the shared code but there is still an "undirection" of address

when a client makes a branching to this common memory pool. Indeed, the common memory

pool permits the opening of a window for the caller address space in the callee address

space. In other words the code is loaded in another address space but the caller has the

impression that the code is in its own address space. The management of the address

"undirection" belongs to the kemel. There never is an "undirection" of address when a

client makes a branching to the shared code in a system address space.

12

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderpen-e Pascal

2.3- Context of execution

When a client requests a service from a sub-system and if the corresponding program run is

a procedure then that program-run is performed within the task corresponding to the client.

When a client requests a service from a sub-system and if the corresponding program run is

a thread then the program-run is performed within the task corresponding to the sub-system.

3- The service call mechanisms

3.1- The local call mechanisms

The local call mechanisms are used to carry out a local service or a kemel service between a

caller and a callee on the same node. The principal notions of those mechanisms are the

address and the registers.

3.1.1- The SuperVisor Cali

The supervisor call is used for calling a kemel service wich may be a service of the thread

management, of the transport of message management, etc ... (e.g. a thread calls by using the

SVC of another thread within the same task). The kemel service is responsible for saving

and for restoring the registers which represent the current environment of the caller. The

registers are the ties of communication between the caller and the callee. The caller and the

callee may exchange the address of the arguments and of the results of the service. The

kemel service is identified by a SVC number. The kemel service may be performed in the

context of the caller or of the kemel.

3.1.2- The direct branchine

The direct branching (BALR) is used for calling up a procedure according to its address.

The caller routine or the callee routine are responsible for saving and for restoring the

registers which represent the current environment of the caller. The registers are the ties of

communication between the caller and the callee. The caller and the callee may exchange the

address of the arguments and of the results of the service. In addition, one of the registers has

to contain the retum address.

13

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

3.1.3- The bourses and commissions

The bourses and commissions mechanism [SIMl] is a mechanism of local Inter-Task

Communication. The bourses help to cope with situations where two or more tasks access a

shared resource or are in a Client/Server relationship with each other on the same node. The

bourses and commissions are used for exchanging a little message between to tasks of the

same node. The bourses are shared resources with mutual exclusion for accesses. - There

also is a queue which is associated with the bourse for receiving the reqùests or the

responses. The clients and the sub-systems may exchange commissions. A commission is a

very small message of almost eight words which increases the transaction speed. The using

of bourses and commissions is somewhat complex but it offers great results.

3.2- The elobal or distributed call mechanisms

The global call mechanisms are used to carry out a global service between a caller and a

callee whatever their location may be. The principal notions of those mechanisms are ports

and messages.

3.2.1- Ports and messaees

The port and message mechanism is a mechanism of Inter-Task Communication. It is used

for exchanging messages between two tasks (the client and the server) wherever they are. If

those tasks are on the same node then the common memory pool or the shared code will be

used as a communication support by the transport manager. The port of a server is a queue

for receiving messages while being associated to a task corresponding to the server. The

server is responsible for the creation and the deletion of its port. The message is the smallest

communication entity between tasks. The message is a set of typed data. The transport

manager (responsible for the message transport throughout the network) is included in the

kemel. The presentation of the message may be a convention between the client and the

service.

4- Cali Modes

From a dynamical point of view there are mainly three modes for calling a service : the

Normal Mode, the Interactive Mode and the SVC Mode.

14

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderpen-e Pascal

4.1- The Normal Mode

It is the executable program of the client which directly uses the local or global call

mechanism to obtain the service of a Sub-System. To do this it has to know the port or the

address of the corresponding service.

4.2- The Interactive Mode

If a user wants to use the execution of a service in an interactive mode then he has to use the

exec command : IEXEC command,parameters List

In this case it is the program run corresponding to the command which uses the local or

global call mechanism. This program run belongs to the user or client task.

4.3- The SVC Mode

The client may still use the service of a sub-system by using the supervisor call mechanism,

with the SVC number to replace the service name and by using the registers to give the

address and the length of the parameters. Here it is the Supervisor routine which uses the

local or global call mechanism to obtain the service of the server. The supervisor routine is

perf ormed in the context of the client task.

15

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wriJJen by Vanderperre Pascal

Chapter 3 : Clients/Sub-Systems Architecture

It is important to define an architecture in which the Sub-Systems may be performed and to

know the reasons of their existence. This architecture is not specific of a particular operating

system.

Historical approach

At the end of the sixties the operating system designers had decided to construct the new

operating systems using the abstract levels because they needed more structure for easier

design the maintenance. Those levels define a hierarchy starting with the "use" relationship,

each level containing a great number of modules. The modules are called sub-systems with

kemel [1] at the first abstract level. The reciprocal actions between the modules are defined

by a common protocol. This protocol involves the interface definition, the possible sequence

of interface calls, etc ... In addition, this kind of construction gives a dynamical configuration

of sub-systems thus allowing the operating system to evolve. The distributed system

amplifies these necessities because the trend for the single image machine is to avoid the

concept of the shutdown. It is possible to consider the server as the only kind of sub-system

but it is not ·very realistic because an operating system architecture is often constructed in the

incremental way .. .

Introduction

There are two kinds of sub-systems : the local sub-systems and the global sub-systems also

called servers or distributed sub-systems. A client has access to local sub-systems through a

local call mechanism such as the direct branching with the shared code but never with the

global call mechanism of ports and messages. This implies that the local sub-system has to be

on the same node as the client. The client has access to the servers through the global call

mechanism of ports and messages.

[1) An other name for the kemel is the nucleus.

16

1

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

User Tasks Holder tasks

1

1 .
.

1 .
. - -

Holder tasks
as workers

1

•
.

Nucleus Interface

0 . -
1

PORTS/MSG.

BCAMI CMF

Pft'foming tmtm

Pro~smnm

!BRS.JCOMMIS-!

Nucleus

Server Tasks

1

•
.

~ -

Figure 4 The Clients/Sub-Systems Architecture

1- Definition of the architecture components

1.1- The user task

It is a task allocated to the user program. The user program may be dynamically split into

several threads. Actually the threads which represent the services provided by the local

sub-systems may be executed in the context of the user task by using a local call mechanisms

such as the direct branching with the common memory pool or with the shared code.

17

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderpen-e Pascal

1.2- The holder task

This task may include several local sub-systems, their threads (services) are executed in the

context of the user tasks. These local sub-systems have no need of a personal context or

personal resources for their executions. lt is the reason they are stocked within a same task.

1.3- The holder task as worker

This task includes a single local sub-system, their threads (services) are executed in the

context of their own task. This local sub-system needs a personal context or personal

resources for its execution. lt is never called by the direct branching or by a supervisor call

but it is always loops by manipulating the bourses and by treating the commissions. This

kind of sub-system is called an autonomous sub-system.

1.4- The server task

This task includes only one server and has its own port , its own resources and its own

context for the execution of threads which represent the services of the server. The server is

always loops by manipulating the ports and by treating the messages. The server also is an

autonomous sub-system.

1.5- The Kernel

There is one kemel per node because it contains all low level functionalities that are required

for performing and managing all devices and all basic resources. The generic services are for

example the virtual memory management; the thread scheduling and (dis)allocation; the

processor allocation; the inter-task communication; the event handling (svc; interrupt;

exception); ... This part of the hierarchy is very dependent on the hardware. The Ports and

Messages module is the transport manager or the support for the ports and messages

mechanism between the clients and the servers. The Ports and Messages module is based

on two other tools : Basic Communication Access Method (BCAM) is a tool of

communication between the nodes and Cross Memory Facility (CMF) is a tool for sharing a

certain address space between tasks of the same node. The Bourses and Commisions

module is the support for the bourses and commissions mechanism between clients and

local sub-systems which are autonomous.

18

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

1.6- The memory space

The memory is often split into 2 main parts : the user space and the system space. Often there

also is a subdivision into classes, each of them has its own meaning. The system space is a

memory space reserved to the kemel services or to the services of sub-systems. That does

not exclude these services may be perf ormed in the context of the user task. The user space

is available for the user programs or for the services of sub-systems.

2- Local sub-systems or servers ?

The choice between a local sub-system and a server depends on the synchronization

aspects of the execution of their services. The services of a non autonomous local sub­

system may be rivais within the same context of the client task (multithreading) and different

clients may use the same service of the same local sub-system at the same time. If the client

has to wait synchronously for the terminaison of service of sub-system then it is better to

perf orm this service in the client context because it is more efficient as regards the

multitasking aspects (execution in the same micro time slice with a replication of the service

for each client). If the client doesn't have to wait synchronously for the terminaison of the

service, then the service may be perf ormed in parrallel with the execution of the client task.

Thus, the service is included within a autonoumous sub-system. It is performed in the sub­

system context because it is more efficient as regards the multitasking aspects (parallelism of

tasks which allows the client to go on with its activity). The service may be shared by several

clients. It may also be replicated several times but never in the context of the clients. It is

better to choose a server instead of an autonomous local sub-system because the server

takes advantage of the parallelism of nodes. The autonomous local sub-system takes

advantage of the localization knowledge of the client (on the same node) but the failing

benefit of the nodes parallelism may not be recovered. In general a service may be

asynchronous if it needs to share resources (data, printer, disk, ...) with other services of the

same sub-system. In that case it has to be perf ormed in the context of the sub-system which is

obviously autonomous.

Examples of local sub-systems

- Editor (non autonomous local sub-system) : The services provided by an editor are used in

an interactive mode with the user and they may not be performed in parallel. They have no

need of a sub-system context.

19

1

1

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten b-j Vanderpen-e Pascal

- Creator : The services of the (un)loading of the local sub-systems may be performed in

parallel with the client but they have to know the localization of the calier. The management

of the local sub-systems requires its own context to allow the sharing of the local sub-systems.

Examples of servers

- Spool server : The printing of files may be performed in parallel. The management of the

printer requires its own context in order to share the printer with a lot of clients.

- Archive server : The archiving of files may be performed in parallel. The management of the

archiving requires its own context in order to share the tape disk.

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

Chapter 4 : Sub-System topologies

The aim of this chapter is to define the logical and physical configurations based on the

functional dependencies between the sub-systems.

1- The logical configuration

A sub-system may require the presence of

other sub-systems but that does not

inevitably involve their calling [1]. Itis in fact

the functional "use" relationship that

constructs the hiearchy also called the

logical configuration of sub-system or the

logical topology. The nucleus may be

considered as the module of the first abstract

level. Here each sub-system is represented

by a point and their relationships by arrows,

the constructed graph represents the logical

configuration.

1.1- The Ioop extension

In this graph there cannot be any circuits

because the logical configuration is defined

as a hiearchy. This avoids the recurrence of

calls. It would have been possible to tolerate

it but it would bring about a lot of new

problems.

[1] The conditional "if' structure according to the

received arguments may influence it.

D ➔

Figure 5 The logical topology

21

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wriJlen bj Vanderpen-e Pascal

For example, if a service i of a server j always calls asynchonously a service k of a server 1

which always calls asynchronously a service of the caller and those services are replicated

within a task then a deadlock would appear after the space occupied by the replicated

services has filled the task space up wherever their execution contexts are.

1.2- Examples of the "use" relationship

- The servers require the presence of the binder and the loader because they manage the

(dis)connections and the (un)loading between the clients and the servers.

- A sub-system i insures the portability to the sub-system j for the different operating system

versions. Consequently the sub-system i will have to be present each time the sub-system j is

in that configuration.

- There is no practical example for the absence requirement ...

2- The physical confl2uration

Several copies or instances of the same sub-system can exist on different nodes but for

efficacy and complexity reasons there always is at most one instance of the same sub-system

on the same node. But the principle of the single image machine implies tha{ the client has to

see only one entity regardless of the instance situation and its possible replication. If the

instances of the same server need to use a local sub-system, then it has to be located on the

same nodes as those instances. The physical configuration or topology is the same as the

logical configuration but it takes into account the instances on each node. Thus, for a given

logical configuration there may be a lot of different physical configurations.

2.1- The coherence of the physical confieµration

If a sub-system i of the physical configuration requires the presence of the server j, then the

server j must also be in the physical configuration.

If a sub-system i of the physical configuration requires the presence of the local sub-system j,

then the local sub-system j also is in the physical configuration and they are on the same

nodes.

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderpen-e Pascal

Local Network

LHmd

D Instant, of snvn

~~
~~

0 Instanc, of local
Sllb-systnn

Figure 6 The physical configuration

3- The startup confi1:uration

After each startup phase [1] there always is the same logical configuration and so it is

statically predefined. The corresponding physical configuration may evolve with time, using

the (un)loading of sub-systems. The loader has to maintain the coherence of the physical

configuration. Thus, the functional dependence has a direct impact on the (un)loading

validation.

[1] The installation of tbis initial configuration involves a "temporal" serialization of loading and some

different states of the pbysical configuration (e.g. system ready; system not ready; before DSSM loaded; after

DSSM loaded; ...) [SIM2]. But it is not the objective of this thesis to bring that out.

23

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

4- The states of instances

Not present

The instance is not present in the physical

configuration (not loaded).

Not ready or present

The instance is present in the physical

configuration. There are no connections

established with it.

Ready

The instance is present in the physical

configuration. There are connections

established with it. Perhaps a service of the

instance is being perf ormed.

5- The states of sub-systems

Not present

Figure 7 The instance state

The sub-system is not present if all of its instances are in a "not present state".

Present

The sub-system is present if at least one of its instances is "in present state" or in "ready

state".

24

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written b-j Vandoperre Pascal,

Chapter 5 : Client/Server model

The aim of this chapter is to explain the Client/Server model because it is the conceptual or

theorical background of communication in a Distributed Computer Environment. The

scope of the model itself is from a functional point of view to explain the communication

between two entities which are being performed in parallel, the first entity having need for a

service which is perf ormed by the second entity wherever they are.

1- The Client

It is the entity that asks another entity, which is called the server, to perform a service. The

client carries it out by sending the arguments of the service in a message to the port of the

server and by receiving the results of the service that are in another message. The sent

message has to include the name of the service for the purpose of identif ying the required

service. The port of the server is a server queue where the messages are accumulated. The

client has to make a connection corresponding to the service name to know the port of the

server and to increase the nurnber of connections of the server. To decrease the nurnber of

connections of the server the client has to make a disconnection.

2- The Server

It is the entity which perf orms the services required by the clients. The server carries it out by

treating the messages which are accumulated in its port and by replying the results in a

message to the corresponding client. The server has only one port. A server may be the

client of another server. The server includes a set of different kinds of service. The functional

designing of a server is a rnethodological problem that requires the know-how of a software

engineer.

The functional equivalence between server and service

The server S is a set of services fl, f2, f3 and fc, the fonction fc is the dispatcher for the

coordination of fl, f2, f3. The servers Sl, S2, S3 respectively have the services fl , f2, f3, each

server has its own dispatcher. We shall call this set of servers (Sl, S2 and S3) : O.

Now we have : 0 <==> S from a functional point of view

25

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal,

2.1- The dispatcher of the server

Each server has a special fonction called the dispatcher which dispatches the services

according to the service name. In fact, it is the dispatcher which receives the message,

unmarschalles (or "splits") it into a service name and arguments, calls the service with the

arguments, marschalles (or "encapsulates") another message from the results of the service

and replies this message.

2.2- The functional server confieµration

A server may be the client of another server, so there are relationships between servers.

Those relationships define a servers configuration which may be representated by points

and arrows, the points being the servers and the arrows the relationships.

3- The message

The structure of the sent message includes :

- the service name

- the arguments of the service

The structure of the replied message includes :

- the results of the service

4- The managers

4,1- The service name manaa=er

It is an entity which is responsible for the connection between a client and a server. It

manages the relationships between the port and the service names so as to permit the

dynamic reconfiguration of instances. In addition, it also updates the number of connections

of the server. It provides the clients with two interfaces : the connection (Connect) and the

disconnection (Disconnect). Sometimes the words (un)binding are used instead of

(dis)connection.

2.6

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrillen by Vanderperre Pascal

4.2- The presentation manaeer

It is an entity which is responsible for the representation of the arguments or of the results

within a message. The parameters are given by value and never by reference. It provides

two interfaces to the clients or to the servers : the message marschalling (Marschalling) and

the message unmarschalling (Unmarschalling).

4.3- The transport manaeer

It is an entity which is responsible for the transport of the message between a client and a

server. The transport manager carries it out by identifying the client and by recording the all

of the necessary information such as the identification of the client, the port of the server and

the identifier of the transport connection. It is possible that for a given transport connection

the connection identifier given to the client and the connection identifier given to the server

are not the same. Nevertheless, the transport manager has to record this data couple. In this

case we have two identifiers for the transport connection. It provides two interfaces to the

clients : the message sending (Sendmsg) and the message waiting (Waitmsg). And it

provides two interfaces to the servers : the message receiving (Receivemsg) and the message

replying (Replymsg).

5- The interfaces

5.1- For the client

Connect(servicename:port)

Input parameters :

servicename : the name of the service

Output parameters :

port : the port of the server corresponding to the service

Marshalling(servicename;servicearguments;msg)

Input parameters :

servicename : the name of the service

servicearguments : the arguments for the service

Output parameters :

msg : the message

r,

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrillen by Vanderperre Pascal

Sendmsg(port:msg:connectid)

Input parameters :

port : the port of the server corresponding to the service

msg : the message

Output parameters :

connectid : the identifier of the transport connection

Waitms g(connectid:ms g)

Input parameters :

connectid : the identifier of the transport connection

Output parameters :

msg : the message

Unmarshalling(msg:serviceresults)

Input parameters :

msg : the message

Output parameters :

serviceresults : the results from the service

Disconnect(vort)

Input parameters :

port : the port of the server corresponding to the service

5.2- For the server

Receivemsg(connectid:msg)

Input parameters :

connectid : the identifier of the transport connection

Output parameters :

msg : the message

Marshalling(serviceresults:msg)

Input parameters :

serviceresults : the results from the service

Output parameters :

msg : the message

28

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

Unmarshalling(msg:servicename,·servicearguments)

Input parameters :

msg : the message

Output parameters :

servicename : the name of the service

servicearguments : the arguments for the service

Replymsg(connectid:msg)

Input parameters:

connectid : the identifier of the transport connection

msg : the message

Remark

Obviously for each interface there is a retum code which informs about the validity of the

output parameters.

6- The asynchronous aspects between client and server

Clients and servers are perf ormed in parallel and when a client needs a service of a server

then the client doesn't inevitably have to wait for synchronous response of the service. The

client receives the response when it wants.

7- The parallelism of server services

The server may treat two or more messages at the same time. In addition, the treatment of a

message can be finished before the treatment of another message which has been received

earlier from the port even if those services are of the same kind.

8- The inter-client communication as a particular case of service

If two clients want to communicate then they have to use the special communication services

which are included in a special communication server. In particular when two clients do not

have not their own port. The aim of this kind of communication is not the performing of

services but the exchange of a lot of data. For example, we could define a connectionless

protocol by using two communication services such as the data sending (Senddata) and the

data receiving (Receivedata). In this example the sender and the receiver are free to choose

29

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

their own symbolic name and they are free to communicate or not with one another but there

are no special services which are able to indicate if the data has been received or not by the

receiver.

A simple example of communication interfaces

Senddata(Symbolicnamesender;Symbolicnamereceiver;data)

Input parameters :

Symbolicnamesender : the symbolic name of the client (the sender)

Symbolicnamereceiver : the symbolic name of the client (the receiver)

data : the information given from the sender

Receivedata(Symbolicnamesender:Symbolicnamereceiver:data)

Input parameters :

Symbolicnamereceiver : the symbolic name of the client (the receiver)

Output parameters :

Remark

Symbolicnameemitter : the symbolic name of the client (the sender)

data : the information given /rom the sender

Obviously for each interface there is a retum code which informs about the validity of the

output parameters.

9- The stochastic paradigm

The stochastic model may be associated with the configuration of servers in order to evaluate

or to approximate a great number of statistical values such as the response time for each

service, the average number of messages in each port, the troughput of each server, etc ...

But each arrow has to be weighted against a probability of call and the service rate of the

services or of the servers has to be defined. Thus, the server configuration permits to

describe a stochastic model.

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderpen-e Pascal

Chapter 6 : Remote Procedure Cali (RPC)

The aim of this chapter is to explain the Remote Procedure Call which is well know by

designers of the distributed operating systems. The Remote Procedure Call is a mechanism

which allows the programs to use global services. The programs have access to the global

services by using the remote procedure call instead of the port and message mechanism.

Please note that the meaning of the procedure in this chapter is very different from the

meaning of the procedure when it is a kind of program run.

1- Procedures and pro2rams

Before explaning the remote procedure call we would like to recall the concepts of

procedures and programs. Performing the procedures and the programs requires different

phases of construction.

1.1- The edition phase

The edition phase is the writing of sources. The sources are the texts which specify

procedures and programs. A procedure is composed of a body and a head. The body of a

procedure is an algorithm, which is in fact a set of instructions. The head of a procedure is

composed of the definition of the local variables and of its interface. The interface of a

procedure is composed of the name of the procedure and the definition of the input and

output parameters. A program is made up of a body and a head. The body of a program is an

algorithm or a set of instructions such as the procedure call, the loop instruction, the

conditional instruction, etc .. . The head of a program is made up of the input and output

parameters, the definition of the global variables, the name of the program, the internai

procedures, and the interface of the external procedures.

1.2- The compilation phase

The compilation phasis is the compilation of the sources for getting the machine codes. The

procedure code of internai procedure is included in the program code. The procedure code

of external procedure is not included in the program code but its interface has to be specified

in the program. The library is a set of procedures codes which are specified in the user

programs as being external.

31

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written b-j Vanderperre Pascal

1.3- The statical Iinkin2 phase

The statical linking phase is the linking of the program code to the extemal procedures to

build an executable program. All of the extemal procedures are merged with the program

code.

1.4- The Ioadin2 phase

The loading phase is the loading of an executable program which becomes program runs in

a task. A procedure may become a program run. In the performing phase several threads

may represent a same procedure within the same task.

2- The relationship between the services and the procedures

The difference between a procedure and a service resides in their different call mechanisms,

also the services are never statically linked to the program code of the client. The

management of sub-systems carries out this dynamical linking (or binding) of the services

and the loading of sub-systems. The purpose of this thesis is not to explain in detail the use of

the local services because it has already been analysed for the traditional operating systems.

Services perf ormed within the client context

Those services are locals and they are included in local sub-systems. They are never

perf ormed in parrallel with the client task. A client may access them with a direct branching

or by using the replacing macros.

Services performed within the sub-system context

Those services may be locals or globals. They are still performed in parrallel with the client

task. Thus the sub-systems which contain those services are designed as programs. For the

local services they are included within local sub-systems. A client may access them with the

bourses and commissions mechanism or by using the replacing macros. For the global

services they are included within a server. A client may access them with the ports and

messages mechanism or by using the replacing macros. Indeed, the procedures which

correspond to the global services are called the remote procedures.

32

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

3- The Remote Procedure Cali

The client program calls the client-stub procedure instead of directly using the mechanism of

ports and messages to call the remote procedure. Likewise, the server program calls the

server-stub procedure instead of calling directly the remote procedure because the remote

procedure does not use the ports and messages mechanism. The body of the server program

is called the dispatcher [COUL].

3.1- The client-stub procedure

The client-stub procedure is an extemal procedure for the client program. Thus, for each

service there is a corresponding remote procedure and a corresponding client-stub

procedure. The library which contains the client-stub procedure is called user package. The

client-stub procedure has to establish the communication between the client and the server

for the client program.

Example of an al2orithm of the client-stub procedure

The name of the service is Pascal with arg 1 and arg2 as input parameters and arg3 as output

parameter. The name of the corresponding client-stub procedure is Nestorl.

BOOL Nestorl(argl .arg2.arg3)

struct ARGl1YPE • argl;

struct ARG21YPE • arg2;

struct ARG31YPE • arg3;

{

struct PORTIYPE port;

struct MSG msg;

struct CONNECITD connectid;

if (ConnecWPascal#,port) = = 0)

I* the service is accessible *I

{

Marshalling(#Pascal#, • argl, • arg2,msg);

Sendmsg(port,msg,connectid);

Waitmsg(connectid,msg);

Unmarshalling(msg, • arg3);

33

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal,

}

Disconnect(port);

retum(OJ;

}

else

{

retum(-1);

}

3.2- The dispatcher

The dispatcher is the body of the server program. It bas to manage the port (the receipt of the

message by using a strategy like FIFO, the deletion and creation of the port itself, etc ...). By

managing the procedures parallelism, it can dispatch the message to the corresponding

server-stub procedure according to the service name.

Example of an ala:orithm of the dispatcher

The name of the server is Servera. One of the service name is Pascal. The name of the

corresponding server-stub procedure is Nestor2.

main Servera

{

struct POR1TYPE port;

struct MSG msg,msg2;

struct CONNECITD connectid;

char • endofserver;

extem void nestor2(struct CONNECITD;struct MSG);

.. ./ ... /* other definitions of extemal server-stub procedures */

.. .! ... /* creation of port*/

endofeerver = "no";

while (endofeerver = = "no") do

{

Receivemsg(connectid,msg);

Unmarshalling(msg,servicename ,msg2);

34

}

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wri1ten b-j Vanderperre Pascal

switch (servicename)

{

case "Pascal" : nestor2(connectid,msg2) &:; /* in parallel */

case "end": .. . /. .. /* terminaison of the server */

endofserver = "yes ";

.. ./ ... /* other server-stuh procedures calls */

}

}

.. ./ ... /* deletion of port*/

3.3- The server-stub procedure

The server-stub procedure is an extemal procedure for the server program. Thus, for each

service there is a corresponding remote procedure, a corresponding server-stub procedure

and a corresponding client-stub procedure. The server-stub procedure has to unmarschall

the message into the input parameters, to call the remote procedure, to marschall the

message from the output parameters and to reply the message. The library which contains

the server-stub procedures is called the server package. The dispatcher and the server-stub

procedure have to establish the communication between the client and the server for the

server pro gram.

Example of an al2orithm of the server-stub procedure

The name of the server-stub procedure is Nestor2. The name of the corresponding extemal

remote procedure is Nestor with argl and arg2 as input parameters and arg3 as output

parameter.

void Nestor2(connectid,msg)

struct MSG msg;

struct CONNECITD connectid;

struct ARGJTYPE * argl;

struct ARG21YPE * arg2;

struct ARG31YPE * arg3;

extem void Nestor(struct ARG11YPE *;struct ARG21YPE *;struct ARG31YPE *);

Unmarschalling(msg, * argl, * arg2);

Nestor(argl ,arg2,arg3);

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wriJten by Vanderperre Pascal

}

Marschalling(* arg3,msg);

Reply(connectid,msg);

3.4- The Interface Specification Lan2Ya2e and compiler

The client-stub procedures, the dispatcher and the server-stub procedures are developped

by a specialist of sub-system management. In this way the service names and the mechanism

of ports and messages are hidden from the application programmers. By specifying only the

name of the service name, the parameter kindd and the name of the client-stub procedure to

be generated the client-stub procedures may be easily generated automatically. The

dispatcher and the server-stub procedures may be automatically generated by specifying the

name of the server, the service names, the parameter types, the name of the remote

procedure and the name of the server-stub procedure to be generated. Those specifications

may be written in an interface specification language and compiled by an interface

specification compiler. The compiler would check the equivalence of the parameter types

between the remote procedure, the client-stub procedure and the server-stub procedure.

The statical linking of the dispatcher, the server-stub procedures and the remote procedures

brings about the executable server program. The statical linking of the client program code

and the client-stub procedures brings about the executable client program.

3.5- RPC semantics

Sorne problems may occur when using the Remote Procedure Cali. For example, the

request message may get lost, the reply message may get lost or the server may crash.

At-least-once call semantics

The client can be sure the procedure has been performed at-least-once when it receives the

reply. The client has to wait for the reply and if after a certain timeout there is no reply then it

sends the message once again. It repeats it until it receives a reply. Therefore, it is possible

the procedure is performed more than once.

At-most-once call semantics

The client may be sure the procedure has been performed at-most-once when it receives the

reply. The client has to wait for the reply and if after a certain timeout there is no reply then it

36

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilJen by Vanderperre Pascal,

sends the message once again. It does so until it receives a reply and it is not possible for the

procedure to be perf ormed more than once.

The maybe call semantics

There is no reply for the client request. The client does not know whether the procedure has

been performed ...

3.6- Kinds of RPC protocol

There are several kinds of Remote Procedure Call protocol according to the RPC semantics.

The "R II protocol : the reguest protocol

The client does not wait for the reply to its request. Here we have the "maybe" call semantics.

The "RR" protocol : the reguest/reply protocol

The client waits for the reply to its request. Here we may get either the "at least once call

semantics" or the "at most once call semantics". For securing the "at most once call

semantics" the server performs the service only once. But it has to keep the messages.

The "RRA" protocol : The reguest/reply acknowled~e-reply protocol

The client waits for the reply to its request. When it receives the reply it sends a reply

acknowledgement to the server. Here we have the "at most once call semantics". To secure

the "at most once call semantics" the server performs the service only once. Here the server

doesn't have to keep the messages but it has to wait for a reply acknowledgement.

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wriJten by Vanderperre Pascal

Chapter 7 : Concurrency of services

The concurrence of services cornes from the parallelism of the performing units. But several

services may not be performed at the same time. The aim of this chapter is to provide some

management mechanisms for the concurrency of services.

1- Multithreading

The threads are perf ormed in parallel within the same task, they share ail resources of the

task. Thus, several services may be perf ormed in parallel in a client or an autonomous sub­

system task (i.e. the loading and the unloading of the same instance may not be perf ormed at

the same time, two loadings of the same sub-system on the same node, ...). A common

variable permits the mutual exclusion of rival services (i.e. the state of the instance prevents

the unloading and loading of the same instance at the same time). A monitor also permits the

mutual exclusion of rival services (i.e. the dispatcher may serialize the requests of the same

service : if two loadings of the same sub-system on the same node occur at the same time at

least one loading fails).

2- Multitasking

The tasks are performed in parallel on the same node or on different nodes. Thus, several

services may be perf ormed in parallel in several clients or several autonomous sub-system

tasks. There is a concurrency of services because there is a replication of instances or when

several sub-systems share the same resource (i.e. the loading and the unloading of the same

instance may not be performed at the same time by different instances of the loader, the

connection and the unloading of the same instance may not happen at the same time, two

loadings of the same sub-system on the same node by different instances of the loader, ...).

The mutual exclusion of those services is carried out by using the inter-task communication

or by using a shared file.

38

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wriJten by Vande,perre Pascal

2.1- Mechanisms for manaeine the concurrency

2.1.1- The inter-task communication

When there is a change of information for one instance then it has to communicate this

change to the others. This may be done by a kernel service or by the port and message

mechanism. The main problem arises when there are two attemps of changing the same

information in two instances at the same time. To salve this problem a master/slave protocol

with the polling adressing may be implemented. For example, the master may be the first

instance loaded. The disadvantage of this is the implementation of this protocol and its

negative effect on the efficiency.

2.1.2- The shared and distributed file

Another solution is the use of the shared and distributed file containing the common

information with the exclusive accesses for writing or updating the data. It is an easier

solution because it does not imply a particular implementation, also, the absence of the inter­

task communication with a protocol is a good way for increasing the efficiency. The

distributed file manager also insures the transparancy of access to this kind of file.

2.1.2.1- The cataloe file

The catalog file is a set of sub-system declarations. The declaration of a sub-system is made

up of all of the permanent information about a sub-system. The permanent information of a

sub-system is the information which stays unchanged during the changes of the sub-system

state. The management (creation or modification) of the sub-system declarations is insured

by a sub-system called the generator.

2.1.2.2- The confieµration file

For example, to avoid the operations (the binding and the unloading) made by the loader

and the binder on the same instance occuring at the same time. A common information helps

to salve this problem. The state of this instance has to be included in a shared and distributed

file. This file is called the configuration file. The configuration file is a set of sub-system

information which may be modified when the sub-systems are in present state.

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

PART 3

Dynamic Sub-Systems Management in a Closely Coupled Architecture

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written b-j Vanderpen-e Pascal

Chapter 1 : Binding management

In the traditional operating system there already is a module called the linker which manages

the (dis)connections between the clients and the local sub-systems [SIM2]. The distributed

operating system needs another similar module or an extension of the linker. This extension

or this additional module is called the binder. The binder is a sub-system which establishes

the (dis)connections between the clients and the server instances. This chapter only

examines the (dis)connection between the clients and the servers because the management

of the local Sub-Systems already exists in the traditional operating systems.

1- The (dis)connection or (un)binding phases

1.1- The oriented service connection

To avoid the client having to know about the relationship between the server and their

services, the binder furnishes the concept of the connection to a service. A client wants to

make a connection with a service (i) of a server. It calls the service of connection provided by

the binder to get the port of an instance of the server which includes the service (i). The

service of connection of the binder has to treat the request. This service of connection has to

know the physical configuration and the relationship between the servers and their services.

If there isn't an instance of this server in the physical configuration (the "Not Present state"

for each instance of this server) then the binder calls the loading service furnished by the

loader to obtain an instance in the physical topology and to receive its port. The server has to

be specified with the auto-load attribute = «YES». The connection request to a "not present"

server may only be made by a client which is a user task (not another sub-system task)

because the physical configuration always has to be coherent. If there are several instances

of this server in the physical configuration (the "Present" or "Ready" state for several

instances) then the binder has to select only one instance. After the selection it has to reply

the port of the server instance which includes the service (i). Also, the binder increases by

one the connection number of the server instance. Please note, that zero as a connection

number value indicates whether the instance is in a "not ready" or "not present" state. The

binder has to change the state of the instance if it was in "not ready" state previously. In short,

the service of connection has three phases : the validation, the auto-loading and the

selection. The client calls the service (i) then it makes a disconnection with the

corresponding instance. Thus, there is always one (dis)connection for each service calls . .
The Client/Server model and the RPC have adopted the oriented service connection.

41

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

1.2- The oriented server connection

A client wants to make a connection with a server. lt calls the service of connection provided

by the binder to get the port of an instance of this server. The service of connection of the

binder has to treat the request. The scheme is nearly the same than that of the oriented

service connection but the binder doesn't have to establish the relationship with the server

and their services. When the client receives the corresponding port it is free to call several

services of this instance during the same connection, but it has to know the relationship

between the server and its services . .. lt is also free to make a disconnection when it wants to.

1.3- The disconnection between a client and an instance

A client wants to make a disconnection with an instance. lt calls the service of disconnection

provided by the binder. The service of disconnection of the binder has to treat the request.

This service of disconnection has to know the physical configuration. Also the binder

decreases by one the connection number of the server instance. Please note that zero as a

connection number value indicates whether the instance is in "not ready" or "not present"

state. The binder has to modify the state of the instance when the value zero has been

reached.

1.4- The coherency of the service names of the server

S(i) as server.

s(ij) as service.

s(ij) belongs to S(i) for each j.

S(i) not = S(k) if i not = k.

If the service name of s(ij) is not = the service name of s(kl) when i not = k or j not = 1,

then the service names of ail servers are coherent.

This coherency is checked by the generator which installs the declarations (specifications) of

the server in the catalog file. In this case, the catalog is a set of server declarations and the

server declaration is a set of values corresponding to the attributes of a server.

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal,

1.5- The explicit connection

The explicit connection would be a connection between the client and the server of a given

node. But that does not correspond with the principle of the single image machine because

the explicit connection is not a transparant mechanism. Therefore, the clients cannot be

given this option.

1.6- The problem of the connection to the binder

The client cannot connect to the service of (dis)connection of the binder to receive its address

or its corresponding port because, to obtain this, the client has to know the address or port of

this service. Thus, the client directly calls the service of (dis)connection by using the

SuperVisor Call (SVC Mode of Call) because the nucleus knows the reference of the binder

and the SuperVisor routine may call the service of (dis)connection of the binder. From a

dynamical point of view the supervisor routine is executed in the context of the client task.

The call of the supervisor may be hidden by using the commands or the macros ($connect

and $disconnect).

ft• C'liftl tnlr.

-1-

-1-

Figure 8 The dynamical components

Dynamic Sub-Systems Management in a Closely Coupled Architecture

writlen by Vanderperre Pascal

2- The dynamical components

The call of the (dis)connection services to the binder is performed in the context of the client

task. When the client task is composed of client-stubs then it is the client-stub which calls the

(dis)connection services. The services of the (dis)connection are performed in the context of

the binder task and they may be threads.

3- The interfaces of the binder

There are three basic services provided by the binder : the binding to a server, the binding to

a service and the unbinding to an instance.

ConnectServe r(se rver-name ,se rver-version,port, ret-code)

Input parameters :

server-name : the server name.

server-version : the server version.

Output parameters :

port : the port of an instance of the server if the retum code equals ok.

ret-code : the retum code of the operation (ok or fail).

ConnectService(service-name,port,ret-code) < = = > Connect(servicename,port,ret-code)

Input parameters :

service-name : the service name.

Output parameters :

port : the port of the instance of the server wich includes the service if the retum

code equa/s ok.

ret-code : the retum code of the ope ration (ok or fail).

Disconnectlnstance(port,ret-code) < = = > Disconnect(port,ret-code)

Input parameters :

port : the port of the instance to unbind.

Output parameters :

ret-code : the retum code of the operation (ok or fail).

44

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

4- The choice of the system-server instance

When the binder replies a port of a server to the client it is in fact a port of an instance of this

server. In the case where there are several instances of the same server the binder may

choose the connection at random but the response time of the service may suffer from this

approach. The problem for the connection is to choose the instance that offers the best

response time for the client. There are a lot of different criteria such as the number of task per

node, the CPU occupied rate per node, the response time of the network, the physical

configuration, the probability of a connection between sub-systems, the probability to call a

connected instance, the existing connections between instances, the number of connections

per instance, the weight of the instance port, the localization and the replication of the binder,

the service rate of the instances, etc ...

4.1- The number of tasks and the CPU occupied rate

A principle of the Distributed System is that each node has for efficiency reasons the same

number of tasks and the same CPU occupied rate. Otherwise there are in terms of

performance «bad» nodes which would be suppressed. These balanced nodes have to be

insured by the task loader and the loader of sub-systems. We consider this principle of

balanced nodes as an axiom during the (un)binding phases. The periods between two

successive time slices of any instance have to be the same from a task scheduling point of

view.

4.2- The considerations about the network and the physical confiwration

The time requested by the network [l] activities may be included in the response time of the

service, thus the binder has to minimize the response time by avoiding the connections that

imply more exchanges on the network. Several sequences of services of other sub-system

instances may be used for carrying out a service and each of them may send a certain number

of messages through the network. Therefore, the physical configuration has to be taken into

account.

[1) The network considered here bas a fully interconnected architecture [DASS) that implies there is no time

difference when a node i sends a message to a node j rather than the node k. In addition the messages have the

same length.

45

.....

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wriJten by Vanderperre Pascal

Couu~ctioa
.,,.. pH11a11ilily

; ., 0.6
I ~

1

1.

CP11 o~c-upicll ·ntc

lh.m11C!I' of tnlr.s

~
10

~
31

~
67

S I
A

SI
E

S(j

?

~ s tJ
A

20

~ S Il
E

32
1

~ Il
Sc

123

~G]
200

Local

lfclwo'l'lr. occ-upi~ll utc: 34 %

sUJ
A

s w,
A

~ s111
E

27

s/5
WC!i1'11.t of PHl: 3 0

Figure 9 The choice of the best instance during a connection ?

When a "use" relationship between two sub-systems is specified it doesn't necessary mean

that they will establish a connection. This is the concept of connection probability [1]. There

also is a statistical distribution of the number of called services per connection of an instance.

Those probabilities have to be weighted according to the level of the sub-system in the

logical topology.

[1] Indeed. tbere is a probability of using a service of a given sub-system ratber tban another. The connection

probability is calculated from those service probabilities.

46

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

The localization and the redundancy of the binder instance have an influence on the

response time of the service because the time requested by the connection may not be

negligible. The problem of the choice of an instance in a given configuration could be

mathematically defined and solved but there is some dynamical information the binder

doesn't know (i.e. the number of messages of each connection, the utilization of the existing

connections by a server rather than the creation of new connections). Moreover the time

requested by the calculation has to be taken into consideration ...

4.3- The number of connections per instance

Another solution to the problem is more stochastic, as we will see. The dispatching of

connections permits the best performance of the response time for each service.

4.3.1- Hypothesis

The hypothesis is that ail utilizations of a server by clients have a behaviour of a Poisson

distribution with the same arrival rate (LAMBDA). In other words, each connection

(oriented server connection) to instances of a given server implies that its average number of

requested services (LAMBDA) is the same. Other kinds of statistical distributions could be

imagined . .. The evaluation of the Poisson distribution rate may be specified in the

declaration of the server. The designer has to evaluate this Poisson rate per connection. To

calculate the port size it has to evaluate the maximum number of connections per instance. It

may be useful to modify this rate to use some statistical measures given by the kemel about

the port of the instances. The arrival rate of requested services per instance equals the sum

of the Poisson rate of each connection per instance or equals the Poisson rate of one

connection multiplied by the number of connections of the instance.

This means:

UMBDA(i) = UMBDA * N(i)

such N(i) is the numher of connections of the instance i.

The service rate (MU(i)) of the instance i must be greater than the rate of message arrivals per

instance so as to not saturate the instance and must have an exponential distribution.

This means:

MU> UMBDA(i).

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

4.3.2- The strate2y : the dispatchin2 of connections

For example if you have two instances of the same server and the first has four more

connections than the other then the next connection for a client which is on the same node as

the first instance, has perhaps to be made with the second instance because its response time

doesn't include the additional time brought about by the four additional connections.

The additional time of an instance i is the number of messages in the port divided by the

service rate of the instance i (MU(i)). It is necessary to evaluate this additional time because

the binder does not know the nurnber of messages in the port.

The stochastic formulas (MIMI]) [SAUEJ for the instance (i) are fol/owing ...

The utilization rate of the instance i = TETA(i) = UMBDA(i)

MU(i)

The average number of message in the port = P(i) = TETA(i) * TETA(i)

1 - TETA(i)

The average waiting time in the port = T(i) = P(i)

LAMBDA(i)

The response rime of the instance i = R(i) = T(i) + 1/MU(i) = ___ 1~-----=-

MU(i) - UMBDA(i)

The additional time is evaluated by T(i). The additional time is nil if there is not an existing

connection for an instance (and in fact we have T(i) = 0 / 0). This doesn't happen often

because if there is a replication of the server then it is because this server has a great [1]

demand. The parameters of the response time of an instance are the number of connections

and the service rate of the instance. But the response time of the service also depends on the

localization of the client which requests a connection.

If the client is not on the same node as the instances in "present" or "ready" state, then the

connection is made with the instance of the server which provides the minimal response tirne.

[l] The redundancy of server increases the number of ports and thus the global capacity of the server.

48

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wriJJen by Vanderperre Pascal

The response time of the service equals the response time of the instance plus the additional

time required by the local network to exchange the messages. But the binder doesn't have to

calculate this additional network time because the network has a fully interconnected

architecture.

This means:

Client on node(k)

Instance(k) is in •not present• state

There exists at most an instance(i) which is in present or ready state such i not = k

If R(j) = Min{R(i) : for each i such the instance(i) is in present state}

1hen the connection is made between the client and the instance(k) on the node(k)

If the instance(i) in "present" or "ready" state is on the same node(i) as the client and this

instance has the minimal response time R(i) compared to the response time of the other

instances of the same server, then the connection has to be made with this instance and the

client.

This means:

1he instance(i) and the client are on the same node(i)

If R(i) = Min{R(j) : for each j such the instance(j) is in •present• or •ready • state}

1hen the connection is made between the client and the instance(i)

If the instance(i) in "present" or "ready" state is on the same node(i) as the client and another

instance(k) of the same server in the "present" or "ready" state has the minimal response

time R(k), and, if the time requested by the message exchange through the network TN plus

this minimal response time R(k) is greater than the response time of the instance(i), then the

connection has to be made with this instance(i) and the client otherwise the connection has to

be made with the client and the instance(k).

This means:

The instance(i) and the client are on the same node(i)

TN is the time requested by the messages exchange through the network

R(k) = Min{R(j) :for eachj such the instance(j) is in •present• or •reaJ.y• state) and k not = i

Dynamic Sub-Systems Management in a Closely Coupled Architecture

writlen by Vanderpen-e Pascal

IJR(k) + TN = > R(i)

Then the connection has to be made between the client and the instance(i)

Else the connection has to be made between the client and the instance(k)

4.3.3- Localization of the client

Two methods are available to know the localization of the client : the first is that the binder is

an autonomous local sub-system which is always on the same node as the requester of the

connection (the client), and the second is that the supervisor routine of the connection

request mechanism establishes a protocol with the binder for indicating the position of the

client. In this thesis the first solution is chosen, therefore there are instances of the binder on

each node where the clients are.

4.3.4- The tune reguested by the calculation

The whole information for calculating the response time of an instance has to be known by

the binder. The response time of an instance is calculated by the binder which is on the same

node .

The calculation of the response time of an instance is always made after the modification of its

number of connections. The response time of an instance(i) in "not ready" state equals 1/

MU(i). The variables are : the number of connections (N(i)), the time required by the

message exchange (TN) and the service rate of the instance (MU(i)). Obviously, the

designer may also change the evaluation of the Poisson rate of the arrivais per connection

(LAMBDA) in the declaration of the server. The time requested for the evaluation of MU(i)

and of the evaluation of TN may be quite long thus these evaluations may be made sometimes

but not each time we have a connection to an instance.

4,3.5- The service rate of the instance

A sub-system may contain several services which have different service rates but thanks to

the stochastic approximation [SAUE] we replace these service rates by the service rate

MU(i) of the instance(i). Nevertheless, a programming methology may improve the

situation. For example each service must have its own queue if there is only one thread per

service, because two requests for the same service may block the dispatcher. Another

solution is to create a new thread for each request.

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

Thus, the multithreading or the programming methodology improves the service rate of the

instance; the real response time is better than the predicted response time.

The method for the evaluation of MU(i)

The binder sends a message to the server which contains a wrong service name. At the same

time it takes the time Tl. When it receives the reply it takes the time T2. The difference

between the two is in fact the response time of the instance. With this response time the

binder can calculate the service rate of the instance.

This means:

The calculated response time : DELTA(i) = n - Tl

The service rate: MU(i) = -~1 __ + UMBDA(i)

DELTA(i)

When an instance becomes "present" state after having been in "not present" state, the

evaluation of MU(i) equals 1/DELTA(i). But the only executed thread of the instance is the

dispatcher for treating the wrong service name. Thus, the evaluation of MU(i) is better when

there is a great number of connections because different kinds of services within the instance

are in execution. The first calculation is made with zero as the number of connection. The

indicator limit of the instance is switched to zero. Each time the number of connections

exceeds the indicator limit then the binder calculates the DELTA(i) again, so as to evaluate a

better MU(i). The indicator limit is switched to the value of the number of connections. Thus,

the MU(i) is calculated according to the maximum number of connections the instance bas

got.

The variable service rate according to the number of connections

The response time R(i) of an instance(i) increases if MU(i) decreases or LAMBDA(i)

increases. Indeed, if LAMBDA(i) increases it is possible that MU(i) decreases because the

used sub-systems have a greater response time. This means that the service rate of the

instance is variable according to the number of connections. In this case we have new

formula.

51

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

The stochastic formulas with a variable service rate are following ...

N(i)

TETA(i,N(i)) = UMBDA

MU(i,l)*MU(i,2)* .. . *MU(i,N(i))

with MU(iJ) the service rate of the instance(i) which has j connections

R(i,N(i)) = TETA (i,N(i))*TETA (i,N(i))

N(i)

(1-TETA(i,N(i)))*LAMBDA

Conceming this hypothesis the binder has to remember all MUs(i,j) for each i and for each j.

Each time a change of state of an instance appears in the physical configuration, the binder

evaluates MU(i,j) and R(i,j) for all different number of connections (j).

4.3.6- The time reguested by the messaee exchanee throueh the network

The binder has to evaluate TN regularly because the traffic rate of the network can change

often. About the additional time of the network brought by the exchange of messages equals

two times the time necessary for exchanging a message of a fixed length between two nodes.

This time depends on the traffic rate of the network. Certain performance tools of the kemel

have to be available for providing this time.

4.3. 7- Different Poisson distribution rates of the connection

In this case, the average number of the service arrivals per instance for all connections

equals the sum of the Poisson rate of each connection and not the Poisson rate multiplied by

the number of connections. If an instance has connections with a low rate of arrivals and

another which has connections with a big rate of arrivals then the first instance is not fully

used with the strategy of the dispatching of connections. For example, an instance with

thousands of messages per second and another instance of the same server with ten

messages per hour. The problem here is that the binder does not know the rates of the client

connections. The designer can make an approximation of a common Poisson rate per

connection if he considers the loss of time is negligible.

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderpen-e Pascal,

4.4- The wei2ht of the instance port

4.4.1- Introduction

Either there are different Poisson rates of the request arrivais per connection with a not

important loss of time or it is not possible to evaluate the distribution rate of the arrivais or it is

not possible to settle the distribution of the arrivais. In these cases, a new strategy has to be

found ...

4.4.2- The cooperation protocol

The instance of the server knows the message number of its queue. To know the message

number in the port of ail instances of the same server it is necessary to establish a cooperation

protocol [NEH2] between them. Obviously, the instances of the same server will have the

same protocol. This protocol informs about the message number in the port and about other

parameters such as the response time of each instance. It also permits the redirection of

messages from an instance to another. With this protocol we have in fact the principle of the

dispatching of ports of instance. The negociation of the message treatment is dynamical

whatever the established connections may be. In fact, the binder establishes the connection

between the client and an instance which are on the same node. Or it selects the instance

which has the minimum number of connections.

4.4.3- The strate2)' : the dispatchin2 of ports

For example, if you have two instances of the same server and the first has seven more

messages than the other then the next message received by the first instance, will perhaps

have to be treated by the second instance because its response time does not include the

additional time brought about by the seven additional messages.

The additional time of an instance (i) is its number of messages in its port (N(i)) divided by the

service rate MU(i).

This means:

The additional time of the instance(i) = T(i) = M(i} .

MU (i)

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

such M(i) is the number of messages in the port of the instance(i)

The response time of the instance(i) = R(i) = T(i) + 1 . = M(i)+ 1

MU(i) MU(i)

Here, each instance may calculate the additional time and thus there is no need for an

evaluation to calculate it. The localization of the client is not important because an instance

has actually received the message. The redirection of a message is necessary when the

response time brought about by the instance is greater than the minimum response time of

another instance added to the additional time brought about by the message exchange

through the network.

This means:

1ïme required by the message exchanges on the network = TN

R(i) is the response time of the instance(!) which has the message

R(k)=Min{R(j) :for eachj when the instancej is in •present• or •ready• state} and. k not = i

If R(i) > R(k) + TN

Then the instance(!) makes a redirection of the message to the instance(k)

Else the instance(i) itself treats the message

4,4.4- The tirne reguested by the calculation

The whole information about the response time of the instances is known by all instances.

Each instance has to calculate its own response time and all of the instances have to

communicate their response time to one another. The calculation of the response time of an

instance is always made after the execution of a service of the instance. The response time of

an instance(i) in "not ready" state equals zero. The variables are : the number of messages in

the port (M(i)), the time required by the message exchange (TN) during the redirection and

the service rate of the instance (MU(i)). The time requested for the evaluation of MU(i) is

short. But the time of the evaluation of TN may be long, therefore this last evaluation may

only be made sometimes and not each time we have a treated message of the instance.

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

4,4.5- The service rate of the instance

A sub-system may contain several services which have different service rates but thanks to

the stochastic approximation we can replace those service rates by the service rate MU(i) of

the instance(i). But here, it is the designer of the instance which chooses the distribution of

this service rate (e.g. Erlang, Exponential, Cox, ...) and bas to implement its evaluation in the

server program. Nevertheless, it could approximate the service rate with the average time of

the executed services as explained below.

The method for the evaluation of MU(i)

The dispatcher takes the time Tl before the execution of the service and the time T2 after the

execution of the service. The difference DELTA(i) between those times is added to the sum

of differences which is also the time TS(i) necessary to perform all services. TS(i) receives

zero as initial value when the instance becomes "present" state after having been in "not

present" state. The instance also increases the total number of requested services TM(i).

TM(i) has zero as initial value when the instance is in "present" state after having been in

"not present" state. The performing time TS(i) is divided by the total number of requested

services TM(i) in order to obtain the service rate with the instance MU(i). With this service

rate the instance can calculate the response time.

This means:

The pe,forming time of the service = DELTA(i) = T2-Tl

The pe,forming time of ail services = TS(i) = TS(i) + DELTA(i)

The total number of requested services = TM(i) = TM(i) + 1

The service rate = MU(i) = lMiL..:_

TM(i)

4,4.6- The implementation of the cooperation protocol

The designer of the server bas to implement the coordination of all instances of the same

server. An automatic generator of cooperation protocol may be helpful with the evaluation

of MU(i) which has just examined. The protocol bas to inform about the response time of all

instances and each instance bas to know the port of all of the other instances.

SS

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrillen by Vanderperre Pascal

The protocol may use the mechanism of ports and messages with a master/slave relationship.

A _ better solution would be for each instance_ to update and read a shared distributed file

which contains those response times and those ports.

4.4. 7- The concept of ports eroup

The ports group (one port accessible by all instances of the same group) [ARMA] would

seem a good implementation for the distribution of messages to the instances because the

first instance which asks the message could be the instance with the least activity. Thus, it

surely off ers a better response time than the other instances. In fact, there is no loss of time in

the information communication.

4.5- The Virtual Dispatchine of Ports strateey

lt is a particular and very attractive case of the two previous strategies but only if the

connections are orierited $ervice connections. The client inakes a connection to a service

rather than to a server, it receives the port of an iristance from the binder, it calls its service

directly and when it receives the reply of the service, it makes a disconnection to the instance.

The dispatching of ports and the dispatching of connections is the same when you always

have only one servicé per connection. What we have here is a merged strategy which uses

only the advantages of the two above _· mentioned strategiés leaving aside their

inconvenienèes. For example, there are no protocols between instances, no redirection of

messages and there is no evaluation of the additional time spent in the port of an instance.

Instead of the instances the binder makes the dispatching of ports according to the number of

connections. But the binder has to evaluate the response time of all instances requested for

a connection and wherever they are. The binder has to use a better solution for evaluating

the response time of the instance than the sending of messages which contain a wrong

· service name. It can do it because · here the disconnection request is an additional

information in this context.

The method for the evaluation of R(i)

When the binder makes a connection it takes also the time TC(i,C(i)) of the instance(i). After

that it increases by one the number of requested connections C(i). When it makes the

disconnection it takes the time TD(i,D(i)). After that it increases by one the number of

requested disconnection D(i). Let's note that it never decreases the C(i) and D(i) values.

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderpen-e Pascal,

When an instance is in "present" state after having been in "not present" state, these values

also equal zero. The binder calculates the difference DELTA(i,C(i)) between TD(i,D(i))

and TC(i,C(i)) when C(i)=D(i). The binder calculates the response titne R(i,C(i)) of all

connections of all instances wherever they are. If the instance(i) is not on the same node as

the client (or as the binder) the response tirne R(i,C(i))equals the titne difference

DELTA(i,C(i)) minus the tirne brought about by the message exchanges through the

network TN(C(i)). Otherwise the response tirne R(i,C(i))equals DELTA(i,C(i)). Also we

have be aware of the different network tirne according to the evaluation of R(i,C(i)). Indeed,

if A and B are inferior to C(i) then it is possible that TN(i,A) doesn't equal TN(i,B).

This means:

The difference of time : DELTA (i, C(i)) = 1D(D(i)) - TC(C(i)) such D(i) = C(i)

If the clienl and the instance i are on the same node(i)

1hen R(i,C(i)) = DELTA(i,C(i))

Else R(i,C(i)) = DELTA(i,C(i)) - TN(C(i))

For example, the connection of a service A of the instance(i) on the same node as the binder

and the disconnection of the instance(i) after the performing of service A may give the

following measures : TC(i,3) and TD(i,4). Indeed the binder has received a new connection

request to the instance(i) which provides a new TC(i,4) and it also received a disconnection

request which provides TD(i,3). This indicates a faster execution of a service B of the

instance(i). This example demonstrates that the response titne of an instance R(i) may not be

only based on R(i,3) or R(i,4). In this example, the binder could approxirnate an average

response titne by :

(JD(i.4):TC(i,3))+(ID(i,3):TC(i.4)) < = = > (JD(i,3):TC{i,3))+(JD(i,4):TC{i,4))

2 2

Thus, the response time formulas are :

If the instance(i) is on the same node than the clienl

Then the response time of the instance i = R(i) = SUM(for each ; (rom 1 to C(i) : Rfi.j))

C(i)

Else the response time of the instance i = R(i) = SUM(for each; from 1 to C(i): Rfi.j):TN(i))

C(i)

ST

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

A common response time of an instance for ail instances of the binder

For a given instance(i) several binder instances may calculate different response times.

Each binder instance keeps its calculated response time and works with it. Thus, an

instance(i) may have a great response time for a binder instance but a nil response time for

another binder instance which has never received a connection request for this instance(i).

A common response time would seem the solution of this problem . .-.

The common response time of an instance is the sum of the response times calculated by each

binder instance divided by the number of binder instances. Each time a new common

response time is calculated, the previous common resp9nse time has to be added to it. When

the server is in "present" state the common response time · has the value zero.

This means:

The response time calculated of an instance(i) by a binder instcµu:e(b) : R/i)

NBBINDER is the number of binder instances

The common- response time : CR(i) = SUM(for each b from O to NBBINDER : R/W, +CR/IJ

NBBINDER
l

Once a binder instance has calculated the common response time, all of the individual

response times of each binder instance have fo be nil again because the next calculation of

the corrimon respon_se time has to b_e correct The binder has to use its protocol or its common

shared file to make the _ connection. This protocol informs about the state, the number of

connections, and in addition about the individual response times and about the common

response time-for all instances.

The choice of the instance for the connection

The binder chooses the instance(k) which has_ the minimum common response time if there is

no instance(i) in "present" or "ready" state on the same node.

This means:

There is no instance(i) in "present" or "ready" state on the same node as the binder

If RC(k) =MIN{RCû) : for each j when the instance j is in "present" or "ready • state) and k not = i
Then the connection is made with the instance(k)

58

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

The binder chooses the instance(i) on the same node if this instance is in "present" or

"ready" state and if it provides a common response time CR(i) which is not greater than the

minimum common response time provided by another present or ready instance(k) plus the

additional time for the messages exchange through the network.

This means:

TN is the additional network time

RC(i) is the response time of the instance(i) in •present• or •ready• state on the same node as the binder

RC(k)=MIN{RC(j) : for each j when the instance j is in •present• or •ready• state}

If i not = k and RC(i) > RC(k) + LN

1hen the connection is made with the instance(k)

Else the connection is made with the instance(i)

5- The saturation of a port

When the number of messages in the port M(i) reaches the limit of the port (the port size) and

perhaps also the ports of the other instances according to the dispatching strategies, then the

binder instance or the instance(i) of the server may ask the loader to load a new instance to

allow a better response time and a bigger capacity for treating messages. But the auto­

replication indicator has to be specified with "on overflow of port" as value. The number of

messages in the port is known by the instance. Depending on the used connection strategy

it is the binder or the instance(i) of the server which asks to load a new instance. In the

dispatching of ports strategy it is the instance which is the responsible for the loading request

because it has to receive the port of the new loaded instance for the correct management of

the cooperation protocol. In the virtual dispatching of port strategy the maximum number of

messages (or of connections) in the port may be the port size plus one. In the dispatching of

connections strategy it is the binder which is the responsible of the loading request. But it

does not know the number of messages in the port of the instance(i) thus it has to evaluate it

with the average number of messages in the port. Indeed, for this strategy there is a

replication of an instance when the arrival rate of messages LAMBDA(i) to the instance(i) is

greater than the service rate MU(i) of the instance. The port saturation may be defined with

a maximum number of connections to the instance(i).

The formul.a of the maximal number of connections of the instance(i) :

Maximal number of connection of the instance(i) = MAX(i)

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrillen by Vanderperre Pascal.

such MAX (i)* LAMBDA < MU(i)

and (MAX(i) + 1) * LAMBDA = > MU(i)

6- The inactivity of a port

When the number of messages in the port M(i) reaches the value z.ero and perhaps also the

the number of messages in the ports of the other instances according to the dispatching

strategies then the binder instance or the instance(i) of the server may ask to unload an

existing instance to the loader for allowing a better weight on a node. The number of

messages in the port is known by the instance. Depending on the used connection strategy

it is the binder or the instance(i) of the server which asks to unload an existing instance. In the

dispatching of ports strategy it is the instance itself which is responsible for the unloading

request. In the virtual dispatching of ports or in the dispatching of connections strategies the

empty port of an instance is known by the binder because it has no connection with it. Thus,

the binder is responsible for the unloading request. But the unloading request may fail

because the instance to be suppressed is the only instance of the server in the physical

configuration and is required by another instance of another server in the physical

configuration. Indeed, the physical topology has to remain coherent.

7- The distribution and integration of the binder

There is a local call mechanism to the binder. This call mechanism is the mechanism of

bourses and commissions which lets the binder know that the localization of the caller is on

the same node. Thus the binder is an autonomous and local sub-system because it is used by

all of the clients which are on the same node. In addition the replication of the binder may

imply a better speed performance at the time of the (dis)connection request and increases the

capacity of the binder for treating the (dis)connection services. But all instances of the binder

have to secure coherent information about the server instances. Instead of adding a new

local sub-system (the binder) the linker is extended with the new fonctions for (un)binding

between clients and servers. This linker has to establish the (dis)connections between the

clients and the sub-systems whatever their kind may be. The linker has some informations

conceming all of the sub-systems to manage the (dis)connections.

8- The requested information

In summary this item gives the whole information necessary to the binder for its management

with the VDP strategy.

•

•

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

For each server (present in the logical topology)

-The name

- The list of service names

- The auto-load indicator

- The replication indicator (onoverflowofports, onlyone, onallnodes, Ntimes)

- The port size

- The critical number of messages or of the connections (VDP strategy)

- The state

For each instance of each server "present" in the l02ical confi2Jiration

- The node number where it is located

- The state

- The number of connections

- The Port

- The response time calculated by the binder ~(i)

- The common response time RC(i)

For each connection request of each "ready" or "present" instance

- The number of connection request C(i)

- The corresponding time TC(C(i))

For each disconnection request of each "ready" or "present" instance

- The number of disconnection request D(i)

- The corresponding time TD(D(i))

For each node

- The number of the node

- The current state of the node (Crashed, Available)

For the network

- The network time TN(C(i))

61

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrillen by Vanderperre Pascal

Chapter 2 : Loading management

In the traditional operating system there already is a module called the creator which

manages the (un)loads of the local sub-systems [SIM2]. The distributed operating system

needs an extension of the creator or of another similar module. This extension or this

additional module is called the loader. The loader is a set of services which establishes the

(un)loads of the instances of the servers.

1- The entities requesting the (un)load [1]

1.1- An instance of a server

Each time its message number reaches the port limit, an instance may ask the loader for a new

one. It does so with the help of the dispatching of ports strategy. But the value of the

replication attribute of the server declaration would have to be "overflow of port". If an

instance has an empty port then it may also ask the loader for an instance unload.

1,2- The binder

With the dispatching of connections or the virtual dispatching of ports strategies the binder

may ask to the loader for a new instance of a server when the connection number of any

instance of the same server reaches the port size plus one or reaches the maximum

connection number which may be calculated from the formulas. The binder also requires the

load of the first server instance when a client (a user task) wants to make a connection with

this server in "not present" state. The value of the auto-load attribute has to be "YES".

1.3- The conflarnration mana&er

It is a special program which knows the physical configuration and which asks the loader to

(un)load instances on a given node for efficiency reasons or for anticipation reasons. This

program is only accessible by the master operators or by the system administrators. Its main

goal is to establish a stable and efficient physical topology. This program is an option module

of the sub-systems management.

[l] Those entities may also called the caliers.

62

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

The main difference between the loader and the configuration manager is that the loader

makes the (un)loading of an instance according to needs (overflow of port or auto-loading)

or because of a lack of activity of the instance in the physical configuration (underflow of

port), whereas the configuration manager uses other criteria such as the future evolution of

the configuration. The configuration manager uses the loader.

1.4- The anchor

The anchor is a special service of the kemel that asks for the loading of the startup

configuration.

2- The problem of the functional dependencies

2.1- The functional mieration of the creator

When the creator has to load a local sub-system, it is possible that it requires the presence of

other (local or global) sub-systems which may also be in "not present" state. Thus, the

creator has to know the physical configuration of ail sub-systems to be able to maintain

coherency. The knowledge of the creator has to be extended with the information about the

global sub-systems. Here we extend the creator with the fonctions of the (un)loading of the

global sub-systems. This creator or loader makes the loading of instances of sub-systems

and the unloading of those instances. The loader is a local and autonomous sub-system.

This procedure may also be called the functional integration of the loader.

2.2- In the loadine phase

2.2.1- The loadine of the first instance of a sub-system

The loader has to load the first instance of a (local or global) sub-system (i) but it is possible

that this sub-system requires the presence of other sub-systems which may also be in "not

present" state. The loader may refuse this operation and retum an error code. This is not a

transparant procedure because the caller will have to ask the load of a certain logical sub­

configuration before asking the load of the sub-system (i). A goal among others is to hide the

structure of sub-systems from the clients (this also amplifies the oriented service connection

rather than the oriented sub-system connection). Thus, the loader may not refuse the

operation for this reason. The sub-configuration is called the loading sub-configuration.

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal,

The root of this loading sub-configuration is the initial requested sub-system (i) for the

loading. This loading sub-configuration is constructed with the "use" relationship and the

sub-systems which are in "not present" state. There is always a sub-system G) of the loading

sub-configuration which doesn't use another sub-system of the same sub-configuration.

First of all the loader has to load this sub-system G) which is then in "present" state and so it

doesn't belong to the loading sub-configuration anymore. The loader repeats its work until

there are no more sub-systems in the loading sub-configuration.

•• •• 'Jo' •••••• ')'\'
• • • • •.:t 411\iCff '"'

Loadiu.9 sub-tou.fi9Ul':lti0U.

···· ·· ······ ·················· ···

•us,• l'tl:alio11.sb.ip

Tb.e lo9ieal eo11.fi9untio11.
(Sub·Svstems i11. p1eseu.t orreaclv state)

Figure 10 The loading sub-configuration

2.2.2- The loadina= of other instances of the same sub-system

The loading of an additional instance of the same sub-system doesn't create additional

functional problems. But the loader has to guarantee the coherence of the physical

configuration (See the chapter about the topologies of sub-systems). As we mentioned

earlier, the redundancy of instances increases the capacity of the server and decreases the

response time of the instances.

1

1

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal,

2.2.3- The explicit Joad of an instance on a eiven node

The explicit load would like to perform a loading of a server instance on a given node. But

this does not correspond with the principle of the single image because the explicit loading is

nota transparant mechanism. Thus, we can't left this possibility to the caliers. Nevertheless,

the loader has to provide this service to the configuration manager, the system administrators

or the master operators.

2.2.4- The non recurrent loader

Because the loader is an autonomous sub-system, the algorithm of the loading phase could

be recursive. Each time a sub-sytem (i) has to be loaded and if it requires the presence of a

"not present" sub-system(j), the loader could call itself to perform the loading of the sub­

system (j). But this doesn't correspond with the principle of a hiearchy "use" of sub-systems.

2.2.5- The initialization of an instance

The loader has to initialize the sub-system instance by calling the initial service of this

instance. The name of this initial service is specified in the sub-system declaration. After that

the loader changes the state of the sub-system instance in "present" state. Thus, this initial

service is made without a connection establishment.

2.3- In the unloadine phase

2.3.1- The unloadine of the last instance of a sub-system

The loader receives an unloading request of the last instance of a sub-system in the physical

configuration. If this sub-system is required by others or if this instance is in "not present" or

"ready" state then the loader refuses the operation and retums an error code. Else, the

loader may accept the operation. But if the instance is required again after a short period then

the unloading is useless. The loader accepts the unloading of an instance if after a long

period of time the instance state has not been changed in "ready" state. The unloading

service has a great response time. In the dispatching of ports strategy there are two solutions

for unloading the last instance : either it is the binder which requests the unloading or it is the

last instance which requests the unloading from itself. In the second case the instance has to

make the disconnection to the unloading service in its ending service. More over, the loader

will receive an error code for its reply because the last instance will no longer exist.

Dynwnic Sub-Systems Management in a Closely Coupled Architecture

wrillen by Vanderperre Pascal

2.3.2- Termination

The loader changes the state of the sub-system instance into "not present" state. After that

the loader has to terminate the instance by calling the termination service of this instance.

The name of this terminal service is specified in the server declaration. Thus, this ending

service is made without a connection establishment.

2.3.3- The unloadine sub-confi20ration

We could imagine a construction of an unloading sub-configuration based on the "used by"

relationship and by creating new states for the instances such as the Suspended state which

prevents the new connection with an instance. It would always have an instance which

would not be used by another. But it may be used by a client which is a user task ... That may

bring about a lot of loading and unloading of the same instances in a short period of time and

therefore for efficiency reasons we cannot allow it. Therefore, this fonction is made by the

configuration manager.

2.3.4- The unloadine of another instance of the same sub-system

To unload another instance of the same sub-system which has to be in "present" state the

loader makes the operation without waiting a long time.

2.4- Possible extentions : the confi20ration manaeer

In this paragraph a few possible fonctions are given as examples of extension. The

configuration manager may collaborate with the linker and the loader if a new state is taken

into account : the suspended state which prevents the new connections to an instance.

2,4,1- The puree

As one goal among others for the loader is to increase the performance per node and also to

decrease the number of tasks per node then the configuration manager eliminates the

instances which are not used by another and which are in "present" state.

1

•
1

•

•

•

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wriJten by Vandoperre Pascal

2.4.2- The clear unloadini: of instances of a sub-system

The configuration manager may reduce the number of instances of the same sub-system

even if they are connected. That may be designed by adding the Suspended state to the

instances. For example, it may do so according to the number of connections per instance

which is too low.

2.4.3- The clear unloadini: of instances of ail sub-system

It is the same as the previous fonction but for all sub-systems.

2.4.4- The optimization of the physical confi~ration

The configuration manager optimizes the configuration either according to the node weight

(suppression of replicated instances) or according to the network weight (replication of

instances).

2.4.5- The stable confi~ration

This fonction is designed to prevent the (un)loading of instances. The configuration

manager has to anticipate the future (un)loading. An expert system may do it if it has

knowledge about the transitions of the configuration. A configuration is stable if there is little

(un)loading. The goal also is to prevent the auto-loading when a connection appears.

3- The problem of the coherency of the physical confi1:uration

Indeed, an instance of a sub-system(s) to be loaded can use instances of local sub-system .

Sorne of them may be in "not present" state on the node(i). Tuen the loader has to load first

those local sub-system instances on the same node. In addition, it is possible for those local

sub-system instances do use other local sub-systems. This defines a set of local sub-system

· instances which is called the local sub-configuration of the sub-system(s). First the loader

has to load on the node(i) a local sub-system of the local sub-configuration which is in "not

present" state and which does not use another local sub-system which is in "not present"

state. It repeats this until ail of the instances of the local sub-configuration are in "present" or

"ready" state on the node(i). Before unloading an instance of a local sub-system on a given

node(i) this instance may not belong to any local sub-configuration of instances on the

node(i).

67

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

L0l':11 Sub-Coufi9.
of Smn (i)

, , .. 'r .. ,, ~~,· ,
, ' .. -~ffiff t 1-1 ,

·.r.::::a:::::::::.o· '
X ,

~ . :~,~~~: ~~~1Y.~ ~~::::
X .. ,

X

Load:i1lt s:u'b-H1lfi.fa.HtiOII.

Tb.t' lo 9it'al t'oufi 9ura tiou
(Sub-Systt'ms: iu P!l'Sl'Ut ont':acly st:ate)

-Figure 11 The local sub-configuration of a sub-system

4- The connection to the loader services

Many connection modes may be imagined but they are used only by the linker, the

administrators, the operators and the configuration manager.

5- The dynamical components

Each loader service may be a thread and it is performed in the context of the loader. The

mechanism for calling the loader may be hidden by using macros or commands

($load,$unload).

•

•

•

•

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

6- The interfaces of the loader

There are already two existing interfaces provided by the loader : the local sub-system

loading and the local sub-system unloading. There are two new basic services provided by

the loader : the instance loading and the instance unloading. This means that the caller has

to know the kind of sub-system to be (un)loaded.

ServerLoad(server-name .port. ret-code)

Input parameters :

server-name : the server name.

Output parameters :

port : the port of an instance of the server if ret-code = • ok •

ret-code : the retum code of the operation (ok or fail).

InstanceUnLoad(port.ret-code)

Input parameters :

port : the port of the instance to unload.

Output parameters :

ret-code : the retum code of the operation (ok or fail).

6.1- The extended interfaces

The loader has to provide mainly two other services to the configuration manager, operators

and administrators. They are : the loading of an instance on a given node and the clear

deletion of an instance. These services are f aster and are able to manage the suspended state

with a collaboration between the configuration manager and the loader. This thesis does not

explain how the loader manages this state and those services .

FastlnstanceLoad(server-name.node.port.ret-code)

Input parameters :

server-name : the server name.

node : the node where the instance has to be

Output parameters :

port: the port of an instance of the server if ret-code = •o1c•

ret-code : the retum code of the operation (ok or fail) .

fi)

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

Fastlnstance Unload (port. ret-code)

Input parameters :

port : the port of the instance to unload.

Output parameters :

ret-code : the retum code of the operation (ok or fail).

7- The problem of the localization for loadin1: an instance

The main problem to be solved is the best installation of a sub-system instance in the physical

configuration. The loader has to construct a physical topology allowing for better response

time in the future connections between clients and sub-systems.

7.1- Network considerations

Sorne physical configurations may bring about more traffic through the network. The

problem to be solved is the minimization of the "use" relationships between the sub-systems

instances of different nodes. A lot of constraints may appear (i.e. the loading sub­

configuration, the local sub-configurations, the localization of the caller, the replication

indicator, ...). The problem and those constraints may be formulated by an equation system.

The SIMPLEX algorithm [DANT] may solve this equation system with a minimization of the

network exchanges.

The formulation of the problem and its constraints with the network viewpoint :

The variables :

r,s ,t ,b: integer ranged from 1 to NBSS such NBSS is the number of dijferent sub-systems which belong to

the logical configuration and to the loading sub-configuration

ij,k,a(b) : integer ranged from 1 to NBNODE such NBNODE is the node number

GAMA(r,i), sign(r), egal(ij) : boolean

NS(r) : integer

C(a(l),a(2), ... ,a(NBSS)): integer

Z: integer

The facts:

Dynamic Sub-Systems Management . in a Closely Coupled Architecture

wriJten by Vanderperre Pascal

The •use• relationship between sub-systems

R(s,t) : boolean

R(s,t) = 1 if it exist a •use• relationship between the sub-system(s) and the sub-system(t)

= 0else

The average number of calls to a sub-system(t) from a sub-system(s) for realizing a service of the sub-system(s)

NC(s,t) : integer

NC(s,t) = 0ifR(s,t) = 0

=>le/se

The physical configuration before the loading request

ALPHA(r,i) : boolean

ALPHA(r,i) = 1 ifthere is an instance of sub-system(r) in •present• or •ready• state on the node(i)

= 0else

The local sub-systems

L(r) : boolean

L(r) = 1 if the sub-system(r) is a local sub-system

= 0else

The replication of a sub-system

Linf(r), Lsup(r) : integers ranged from 1 to NBNODE

Linf(r) = nif the sub-system(r) is replicated at least n times

Lsup(r) = m if the sub-system(r) is replicated at most m times

The information coming Jrom the loading request

s0 : an instance of the sub-system(s0) has to be loaded or replicated

lO : the node of the caller (and also of the loader)

71

•

•

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilren by Vanderperre Pascal

The rules

The physical configuration after the loading request includes ail instances of the physical configuration be/ore

the loading request

GAMA(r,i) = > ALPHA(r,i) for each r,Jor each i

If the requested sub-system is a local sub-system then it has to be found on the same node of the calier

(if this local sub-system exits already on the node(lO) then the request faiLr)

GAMA(sO,lO) = > L(sO)

If the requested sub-system is a server and if there is at least one instance of this server in the physical

configuration then it is a replication request which implies only one more instance

(the request has to be checked previously by considering the number of nodes, the replication indicator and its

existing number of instances)

SUM(for each i: ALPHA(sO,i)) * sign(sO) = 0

SUM(foreach i: ALPHA(sO,i)) + sign(sO) < > 0

SUM(for each i: GAMA(sO,i))*(J-sign(sO)) =
SUM(for each i : ALPHA(sO,i))*(l-sign(sO))+(l-sign(sO))

The coherency of the physical configuration

1-SUM(foreachi:GAMA(r,i)) => lforeachr

2- GAMA(s,i) = > GAMA(t,i)*R(s,t)*L(t)for each s.for each t.for each i

The replication of instances

SUM(for each i: GAMA(r,i)) = > Lin/ (r)for each r

SUM(for each i: GAMA(r,i)) < = Lsup(r)for each r

The number of calLr to the sub-system(t) by other sub-systems for one call to the sub-system(sO)

NS(sO) = 1

NS(r) = > Oforeach r

NS(t) = SUM(for each s: NC(s,t)*NS(s))for each t

72

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

The number of network exchanges between ail instances brought about by one call to the sub-system(s0)

C(a(l),a(2), ... ,a(NBSS)) = SUM(for each s ;· SUM(for each t: NS(s)*NC(s,t)*egal(a(s),a(t)))) *
PROD(for each s: GAMA(s,a(s)))for each a(l),for each a(2), ... ,for each a(NBSS)

suchNC(s,s) = 0foreachs

such (1-egal(IJ))*(i-j)=0and (l..egal(iJ))+(l-j)< >0

Example given: C(l,1,2,2) = 5 indicates there are instance of sub-system 1 on node 1, an instance of sub­

system 2 on node 1, an instance of sub-system 3 and of sub-system 4 on node 2, and there

are 5 network exchanges brought about by their •use• relationships and the average

number of calfs between them

The minimization (economical {Unction)

Z = SUM(/or eacha(l): SUM(for each a(2): (... (SUM(for each a(NBSERVER):

C(a(l),a(2), ... ,a(NBSERVER))) ...)))

MIN(Z)

This system of equations implies as little replication as possible because the replication of a

single instance brings about a new GAMA(...) _>0 and thus new possible C(...) > O. This

system gives all possible network exchanges between the instances. Another solution could

-be the replication of each instance on each node. But a lot of network exchanges are still

possible with the dispatching strategies ... In addition, the weight of each node is bigger and

the response time of the loading service increases strongly.

7,2- Task scheduline considerations

The chapter about the binder has taken the foHowing hypothesis into account : the number of

tasks is nearly the same on each nodes and also the CPU occupied rate has to be nearly the

same on each nodes. In this way each task in the distributed system has the same scheduling

environment. The global perf orrnance of the single image machine would have to be at a

maximum. The task balancing and the CPU occupied rate balancing are insured by the

loader and the job manager. The loader puts the instance on a certain node according to the

number of tasks per node and the CPU occupied rate per node.

73

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrillen by Vanduperre Pascal

The properties of a sub-system could be taken into account [l]. The knowledge of those

parameters is furnished by certain services of the kernel.

The formulation of the problem and its constraints with the task scheduling viewpoint :

The additional variables :

W(i) : integer

Y: integer

The additional facts :

The number of tasks of the node before the loading request

V(i) : integer

The additional rules

The number of tasks after the number request

W(i) = V(i) + SUM(for each r : (GAMA(r,i)-ALPHA(r,i)))

The new minimization

The goal is to minimize the number of tasks per node and to minimize the difference in the number of tasks

between the nodes.

Y = SUM(for each i : W(i)) + SUM(for each j : SUM(for each k : W(i)-W(k)))

Min Y

Please note that the formulation does not take into account of the autonomous sub-system,

the cpu occupied rate and so on ...

[l] This criterion may have a lot of influences on the CPU occupied rate and also on some scheduling priorities

(e.g. interactive kind, i/o oriented, ...). lt is mainly in a loosely coupled architecture this criterian bas a great roll

because the loader makes an association between the properties of the node (workstation, arithmetical

pocessor, ...) and the properties of the sub-system (oriented processing, oriented i/o, interactive, ...).

74

•

•

f

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

7,3- Multicriterians analyse

The balancing of the node weight brings about more network exchanges. When Z

decreases then Y increases. When Y decreases then Z increases. But if the goal of Y is to

minimize only the number of tasks of node then Z and Y may have a positive or nil

correlation. The balancing of tasks may be made either during the loading of tasks if those

tasks do not use other or during the loading of a new instance (replication).

7 .4- Time requested by the calculation

The time required by the resolution of the equation system seems quite long. It is the reason

for giving stability to the physical configuration.

7,5- Reoptimization and anticipation

Normally the given strategies for the loading and the binding offer the best response time for

all of the services at any given time. In the traditional operating system there aren't any

unloads because a startup and a shutdown occurs every day. But in the distributed system

those concepts tend to disappear therefore loads and unloads are more frequent. In the

future the physical topology might not be the best because there are a lot of replications and

a lot of deletions of instances. The configuration manager may evaluate regularly the

localization of the instances of the physical configuration and make some operations to tend

towards the ideal physical topology for a given logical topology. That is the concept of

optimization of the physical configuration. But if the configuration is stable it is not necessary

to reoptimize. The stability of the physical configuration may also be reached by the

configuration manager. To avoid the unloading and loading of the same instance within a

short period of time, the loader may anticipate by using an expert system. The expert

designer has to deliver knowledge about certain physical topologies and their assumed

transitions (e.g. of a knowledge : in this given physical configuration it is interesting to load

this instance of this sub-system on this node). The knowledge may be based on the loading

and the unloading frequency of the instances. The utilization of an expert system is not the

most efficient but it also has a limited importance.

75

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

8- The distribution and inte~ration of the loader

8.1- The functional analysis for the distribution

Perhaps it is interesting to split the loader into 2 sub-systems : a high level loader sub-system

and a low level loader sub-system because there are two different concepts : the single image

machine and the node. Thus the designer bas to define the reciprocal actions between them.

There are two kinds of reciprocal actions : the "use" relationship for the utilization of services

and the coherency of the common information about the sub-systems and instances.

The hi2h level loader

It has to (un)load a sub-system on the single image machine. It mak:es some validations (the

(un)load phase) and some calculations with the SIMPLEX algorithm (the localization of an

instance). It calls the low level loader to mak:e the (un)loading of an instance in or from a task

on a given node and to gather some information about the node. It is not necessary to

replicate the high level loader on each node because there is no need for a high speed

performance and the loader is not often requested. The time cost of (un)loading has no

influence on the call time and on the (dis)connection time between sub-systems. Excepted

for the connection to a sub-system for which there isn't yet a single loaded instance (the auto­

loading phase). Then the time loss for this first connection kind may be called an investment

time cost.

The low level loader

It manages the (un)loading of an instance of a sub-system in a task or in a holder task on its

node without other considerations and it provides some node inforrmation to the high level

loader. The low level loader directly uses the Nucleus services. The low level loader has to

be replicated on each node because the (un)loading implies the utilization of a particular

kemel interface. This interface is the (dis)allocation of task on the node where the requester

(the low level loader) is situated. The principle of the single image machine leads us to

assume there are requesters on each node.

8,2- The or2anic analysis

The high level loader provides the interfaces we have seen before but it bas to know the

localization of the caller.

76

•
Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

Either it is accessed with the local call mechanism or it is accessed by a global call mechanism

with the establishment of a protocol with the calier. This solution brings about a lot of

problems : the performance decreases and the implementation complexity increases

strongly (the interfaces have to be changed by adding the localization of the calier to the

services arguments). Thus, it is not interesting to split the loader into two sub-systems. The

loader has to establish the (un)loading on a node of the sub-systems whatever their kind may

be. For managing the (un)loading this loader has some informations conceming all of the

sub-system kinds.

9- The requested information

In summary this item gives the whole information necessary to the loader for its management

activity.

For each sub-system ("present" in the logical configuration)

-The name

- The list of the service names

- The replication indicator (on overflow of ports , only one, on ail nodes, N limes)

- The port size

- The state

- The scope (local or global)

- The property (interactive, batch, ...)

- The name of the library wich contains the server code

- The code size

- The call mecanism kind (FITC, BALR, .. .)

- The temporal dependency (BeForeSystemReady,)

- The list of the functional used sub-systems

- The averaged number of calling of the functional used sub-systems

- The name of the initial service

- The name of the terminal service

For each instance of each sub-system "present" in the Ioeical confieuration

- The node number where it is located

- The state

77

•

•

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderpen-e Pascal

For the server :

- The Port

For the local sub-system :

- The corresponding holder task identificator

- The off set in the holder task

- The list of the entries and their address

For each holder task

- The holder task identificator

- The node number

- The free size space

- The number of included instance

For each node

- The number

- The state

78

'

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrirten by Vanderperre Pascal

PART 4

Conclusion

•

•

•
The idea

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal,

For the same cost a closely multiprocessor system seems be as efficient as a tightly

multiprocessor system. But with certain properties (e.g. the reliability, the performance, the

transparancy, ...) the distributed operating system has to manage X nodes to give the

impression of a single image machine to the user

Services and Sub-systems

From a conceptual or functional point of view there are only three concepts : the client

concept, the service concept and the sub-system concept. The functional sub-system

topology indicates the relationships existing between them. The Client/Server model is the

communication model which is always available whatever the distributed operating system.

From a physical point of view the generic aspect, the context of performing, the call

mechanism the synchronization aspects and the possible level of parallelism allow the

definition of several kinds of services and sub-systems. The sub-system architecture gives

an overview of those elements.

From the distribution point of view there is a concept of instance instead of sub-system. The

physical sub-system topology indicates the relationships between instances and their

localizations on the nodes.

From an application programmer point of view the Remote Procedure is the concept which

replaces the global service. The remote procedure call hides the concept of service, the

structure of sub-systems, the port and message mechanism, .. . Sorne new languages (i.e.

Concurrent C++ and Parallel Fortran of IBM) allows to use the thread parallelism.

From the concurrence point of view the monitors, the common variables, the shared and

distributed files and the inter-task communication with a protocol are the support of the

service concurrency.

The fault- tolerance of sub-systems and the security of message transfer between a client and

a sub-system may be guaranted by the kernel.

•

•

•

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrillen by Vanderperre Pascal,

The sub-systems manaa:ement

The management of sub-systems is insured by fives modules : the generator, the linker, the

creator, the configuration manager and the anchor, and it requires two files : the catalog füe

and the configuration file. The scope of my thesis was to establish strategies for the binding to

a sub-system and the loading of a sub-system in such a way that their services provide a

response time as rapidly as possible. My thesis will be used by engineers of Siemens­

Nixdorf as a start point for researches about dynamic sub-systems management in the future

BS2000 distributed operating system.

Smm
G
E
N
E

~
T
0
R

NUCLEUS

NUCIEUS

C
R
E
A
T
0
R

L
I
N
K
E
R

LmlS1Hystm

Distributed Files

CM
OA •• FA
1 G
G.I

1

C L
R I
E N
A K
T E
0 R
R

C L R I E N A K T E 0 R R

(The ce.t!loi e.nd contt,untion file)

Figure 12 The Sub-Systems in a Cluster

8l

•
Dynamic Sub-Systems Management in a Closely Coupled Architecture

written l7y Vanderperre Pascal,

The vertical limits of tbis thesis

This thesis could be extended by giving a deeper analysis of some items such as the

configuration manager and its fonctions (the development of an expert system and of the

knowledge base about the transitions of the physical configuration), the startup phase and

the anchor, the generator and the declaration of sub-systems, the estimation of LAMBDA,

the statistical validation of the evaluation of the response time (e.g. bias in the estimation,

correlation between taken actions, ...), the simulation of the binding and the loading given

strategies, the automatic generation of client and server stubs, the binding strategies if there

are connections oriented service and oriented server, the multicriteria formulation for the

loading management (relation between the weight of node and the network traffic), ...

The horizontal limits of this thesis

This thesis could also be extended by analysing some new areas such as the "loop"

relationship between sub-systems, the port group mechanism, the environment provided by

a loosely coupled multiprocessor system, the environment provided by a decentralized

operating system, ...

Dynamic Sub-Systems Management in a Closely Coupled Architecture

wrilten by Vanderperre Pascal

List of ref erences

83

•

•

•

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

Multiprocessor systems

[COMT] COMTRE CORPORATION, "Multiprocessors and Parallel Processing", John

Wiley & Sons Interscience Publication

[DUCE] Duce D.A., Jones G.P., "Distributed Computing", Academic Press, 1984

[HW AN] Hwang K. (University of Southern California), Briggs F. A. (Rice University),

"Computing Architecture and Parallel Processing" , McGraw-Hill Book Company

[KRON] Kronenberg N. P., Levy H. M., Strecker W. D., "VAXclusters : A Closely­

Coupled Distributed System" , Digital Equipment Corporation

[TOOM] Toomey L. J., Plachy E. C., Scarborough R. G., Sahulka R. J., Shaw J. F.,

Shannon A. W., "IBM parallel FORTRAN", IBM system journal vol 27/no 4, 1988

Distributed systems and Distributed Operatine Systems

[ARMA] Armand F., Gien M., Herrmann F., Rozier M., "Chorus : Revolution 89 or

Distributing UNIX brings it back to its original virtues ", Chorus systèmes, août 89

[BABA] Babaoglu O., "Fault-Tolerant Computing based on MACH", ACM Operating

System Review, january 1990

[CORN] CORNAFION, "Informatiques répartis

Informatique, 1981

concepts et techniques ", Dunod

[COUL] Coulouris G. F. (Queen Mary College. University of London), Dollimore J. (Q.

M. C. University of London), "Distributed Systems : Concepts and Design" , Addison­

Wesley Publishing Company, 1988

[DRA V] Draves R. (School of Computer Science Carnegie Mellon University), Slides of

the conference given by R. Draves about MACH, München 1/10/90

[OSFl] Open Software Foundation Cambridge, "OSF Distributed Computing

Environment Rationale ", 14 mai 1990

•

•

•
1

•
1

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written by Vanderperre Pascal

[OSF2] Open Software Foundation, "Distributed Computing Environment : Overview"

[PUBL] Public/draft, "Chorus Kemel v3.2 Specification ", jan. 90

[RASl] Rashid R. F., "Threads of a new System", Unix review, aug. 86

[RAS2] Rashid R. F. (Computer Science Department of Camegie-Mellon University),

"From RIG to Accent to Mach : the Evolution of a Network Operating System", may 86

[RUSS] Russel C. H., Waterman P. J., "Variations on Unix for Parallel Processing

Computers", Communications of ACM vol. 30/number 12, dec. 87

[SAMS] Samsom R. D., Julin D. P., Rashid R. F., "Extending a Capability Based System

into a Network Environment", april 86

[SEIF] Seifert M., "What is a Distributed Operating System ?", IBM european networking

center

[TEVA] Tevanion A. J., Smith B., "Mach: the Mode/for future Unix", BYTE, nov. 89

[W AIM] Waimer L. R., Thompson M. R. (Camegie-Mellon University), "A MACH

Tutorial", aug. 87

Service Modeline

[NEHl] Nehmer J. (Kaiserslautern universitat), "AG SystemSoftware ", FB informatik von

universitat Kaiserslautern

[NEH2] Nehmer J.,Mattern F., (Kaiserslautern universitat), "Service Modeling in

Distributed Operating Systems", 2 nd workshop on future trends of Distributed Computing

Systems in Cairo, 30/09/90

Remote Procedure Cali and Transport protocols

[BERS] Bershad B. N., Anderson T. E., Lazowska E. D., Levy H. M., (University of

Washington), "Lightweight remote procedure call", ACM Transactions on Computer

Systems Vol. 8/no 1, feb. 90

•
1

•

Dynamic Sub-Systems Management in a Closely Coupled Architecture

written Ùj Vanderperre Pascal.

[ECMA] ECMA, "Basic Remote Procedure Call protocol using OSI Remote Operations ",

1987

[SCHA] Schaeck S., "A contribution to the analysis ot the transpon protocols", promoteur

du mémoire : van Bastelaer P., Facultés Universitaires Notre-Dame de la Paix à Namur,

1989/1990

[SCHR] Schroeder M. D., Burrows M., (Digital Equipment Corporation), "Perfonn.ance of

Firefly RPC", ACM Transactions on Computer Systems Vol. 8/nol, feb. 90

[TANE] Tanenbaum A. S., van Renesse R., (Departrnent of Mathematics and Computer

Science, Vrij universiteit van Amsterdam), "A critique of the Remote Procedure Call

Paradigm"

[TAY] Tay B. H., Ananda A. L., (Departement of Information Systems and Computer

Science, National University of Singapore), "A Survey of Remote Procedure Calls ", ACM

Operating Review vol 24/n 3, July 90

Siemens-Nixdorf publications

[SThfl] Siemens-Nixdorf, "Nucleus BS2()(X) : technical description"

[SIM2] Siemens-Nixdorf, "External Interfaces Specification of the Management of Local

Sub-Systems ", EIS vol 104/BS2000 nucleus 3/chapter 52/section 2, distribution restricted by

Siemens-Nixdorf

[SThf3] Siemens-Nixdorf, , "External Interfaces Specification of the Fast Inter-Tasks

Communication", EIS vol 12/BS2000 nucleus 1/chapter 52/section 35.6, distribution

restricted by Siemens-Nixdorf.

Simulation and Performance

[DASS] Dass P. K., Baghi K. K., Bhaumik B. B., "Validated Analytical Technique for

Multiple Microprocessor Architectures", Computer Performance vol 5/no 3, September

1984

Dynamic Sub-Systems Management in a Closely Coupled Architecture

writlen l,y Vanderperre Pascal

[PA WL] Pawlikowski K., "Stea.dy-State Simulation of Queueing Processes : a Survey of

Problems and Solutions", ACM Computing Surveys vol 22/no 2, June 1990

[SAUE] Sauer C. H. (IBM research center), Chandy K. M. (University of Texas at Austin),

"Computer Systems Performance Modeling ", Prentice-Hall

Systems of eguations

[DANT] Dantzig G. D., "Linear Programming and &tensions", Princeton-University

Press, 1966

