
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

A contribution to the analysis of the transport protocols

Schaeck, Sébastien

Award date:
1990

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/a-contribution-to-the-analysis-of-the-transport-protocols(2ed6fcc0-85e0-4b23-9ea2-d40da19d9391).html

Facultés Universitaires
Notre-Dame de la Paix

NAMUR

Institut d'Informatique

;~ ~ftlt}' ibutk4,
!ti~• '/tll:ei u:J).J•I-Jt

({}'.f t..be•
't~~~t ·fl:"O'i;~"•ÔtitJ,,.,

Promoteur:
Philippe van Bastelaer.

Mémoire présenté en vue
de l'obtension du titre

de Licencié et Maitre
en Informatique.

Année académique 1989-1990.

Abstract.

Most transport protocols that are currently used have been
designed when the networking technology was still very poor.
Their only requirement was to stream data between two computing
equipments connected to a network of slow links.

Since that period, the networking technology has radically
evolved, mainly at the speed point of view. But the achievable
end-to-end throughputs are often an order of magnitude lower
than the bandwidth these networks provide: the popular transport
protocols can be blamed for a severe lack of performance.

The scope of this thesis is to analyze the transport
protocols at the performance point of view. The first step will
consist of the explanation of this lack of end-to-end
throughput. And the second one will be the presentation of the
actually proposed solutions, with an analysis of their merits.

La plupart des protocoles de transport qui sont utilisés
aujourd'hui ont été créés lorsque la technologie des réseaux
informatiques était encore fort primitive. La seule fonction
qui leur était attribuée était de transférer un flux de données
entre deux équipements informatiques connectés à un réseau de
lignes à basse vitesse.

Depuis ce temps, la technologie des réseaux informatiques a
beaucoup évolué, surtout au niveau des vitesses de transmission.
Mais les vitesses de transmission de bout en bout restent bien
inférieures à la bande passante de ces réseaux: un important
manque de performances peut être reproché aux protocoles de
transport couramment utilisés.

Le propos de ce mémoire est d'analyser les protocoles de
transport, du point de vue de leurs performances. Une première
étape va consister à donner une explication à ce manque de
vitesse de transmission de bout en bout. La seconde sera la
présentation des solutions actuellement proposées, et l'analyse
de leurs qualités respectives.

Acknowledqements.

First of all, I wish to express sincere thanks to a few
people who had a non negligible impact on the realization of
this thesis:

- Patrick Geurts, from BIM s.a./n.v., for his helpful
guidance about my study of the transport protocols,

- Philippe van Bastelaer, professorat the university
of Namur, Belgium, the promoter of this work, for
the complete freedom of action he gave me, as well
as for his beneficial comments about a preceding
draft of this document,

- Bernard Detrembleur, his main assistant, for the
attention he paid to the last draft of this thesis,
and his advices to improve it.

ii

Table of content.

Abstract.
Acknowledgements.

Table of content.

Introduction.
Background.

The objective of this document

The methodology of the presentation

Chapter I: An analysis of the minimal network layer.
I.1. The minimal network layer.

I.2. Examples of minimal network services

I.3. Implementation of the minimal network layer.

I.4. Datagrams are sometimes lost.

I.5. Datagrams are sometimes corrupted.

I.6. Datagrams are sometimes duplicated.

I.7. Datagrams are sometimes re-ordered

I.8. Conclusion.

iii

i

ii

iii

1

1

2

4

5

5

6

6

8

10

11

12

13

Chapter II: A Trivial Solution. • • • • • • • • • • Q • • • • • • • • • • • • • • • •

II.1. Aims of this solution.
15

15

II.2. Principles of this solution. 15
Dealing with multiplexing. 15
Dealing with the maximal length of the datagrams. 16
Dealing with datagrams re-ordering. 17
Dealing with datagram loss.•............... 18
Dealing with duplicated datagrams. 21
Dealing with datagram corruption. 21

II.3. Example of the trivial solution.

II.4. Analysis of the trivial solution.

II.5. Conclusion.

Chapter III: The classical solution. • • • • • • • • • • • • • • 9 • • • • • •

III.1. Aims of this solution.

23

25

26

27

27

III.2. Principles of the solution. 27
General principle.•.............•....... 27
The problem of acknowledgements. 29
cumulative acknowledgements.•....... 30
Retransmission on timeout. 30
The SOS region concept. 33
The transmission window. 35
Transmission authorizations.•............ 36
Recapi tulation. 3 7

III.3. Examples of the classical solution.

III.4. Results of the classical solution.

III.5. Analysis of the classical solution.

III.6. Conclusion. • 0 • • • • • • •

38

38

38

40

Chapter IV: An improved design. .••••••••••..••••.••••.••• 42

IV.1. Aims of the improved design. 42

IV.2. Principles of the improved design.•...... 43
The selective acknowledgement mechanism. .•..... 43
The inadequacy of the retransmission

on timeout scheme. 43
The periodic resynchronization scheme. 44
The retransmission on demand scheme.•.... 46
The flow control between transport agents. 51
The rate-based flow-control.•.......... 53

iv

IV.3. Examples of the improved design. 55
NETBLT and the improved design. 55
VMTP and the improved design. 56
XTP and the improved design. 58

IV.4. Results of the improved design.

IV.5. Analysis of the improved design.

...............
..............

IV.6. Conclusion.

Chapter V: The lightweight transport protocols concept. ..
v.1. Aims of this solution.

58

59

60

61

61

V.2. First case study: VMTP. •....................... 61
The early versions of VMTP. ••.................. 62
The lightweight versions of VMTP. 64

V.3. A second case study: XTP. 68

V.4. Results of the solution. 69
The resul ts of VMTP. 6 9
The resul ts of XTP. • 6 9

V.5. Analysis of the lightweight protocols concept. 70

V.6. Conclusion.

Chapter VI: Optimized implementations.
VI,1. Aims of the solution.

70

71

71

VI.2. Sorne optimization principles. ...•............. 72
The template header caching principle. 72
The 'fast TCB look-up' principle.•.... 76
The 'header prediction' principle.•...•.... 78

VI.3. Examples of the improved implementation.

VI.4. Results of the improved implementations.

VI.5. Analysis of the improved

81

82

implementation principle. 82

VI.6. Conclusion. 83

V

Chapter VII: The smart network adaptera. ..•••••••.•••..•. 85

VII.1. Aims of the solution. 85

VII.2. Principles of the solution. 85
The sources of computing overhead. 85
The smart network adapters principle. 89

VII.3. A first case study: the NAB
for the VMTP protocol. 90

VII.4. A second case study: the Protocol Engine
of XTP. 93

VII.5. The results of the smart network adapters. 95

VII.6. Analysis of the smart network adapter concept. 95

VII.7. Conclusion.

conclusion.

Appendix I: References.

Appendix II: Index.

vi

97

98

A-1

A-3

Introduction.

Background.

Most transport protocols that are nowadays used have been
designed a very long time ago. TCP, for example, which is the
standard transport protocol of the Department of Defense, was
defined in 1975, already fifteen years ago. It is no surprise
these protocols were defined according to the paradigms, the
available means and the needs of that moment.

The general model of computer systems consisted of a central
mainframe interacting with its users via text terminals
connected to a wide area network (WAN). This mainframe was very
independent from its peers, only interacting with them through
this WAN for sporadic file transfers.

The purpose of these wide area networks is to connecta
large amount of computing equipments distributed over a large
geographical region. The technology they involved at that time
was in fact very poor. The links they used were characterized
by:

- a relatively low reliability,
- a very low capacity, with a bandwidth of 9600 bits

per second, in general, but never exceeding 64
kilobits per second.

So the needs in the matter of transport protocols were not
very constraining. Their only requirement was to allow a
reliable transmission of a stream of bytes between two
equipments. This functionality was sufficient to connect text
terminals to central hosts, and to ensure background file
transfers.

But since that period, the technology has evolved.
evolution conducted to the formulation of new paradigms
computer science. And these new paradigms induced new
requirements for the transport protocols.

This
for the

Introduction

The main evolution of the technology is the conception of
the local area networks (LANs). The purpose of these LANs is to
connecta median amount of computer equipments, which are
geographically close one to the others. Their main
characteristic is the bandwidth they offer: up to ten megabits
per second. The technology ~f the WANs has also evolved, with
the use of fast links, with a capacity reaching two megabits per
second. Finally, massive developments are realized on optic
fibres: these are expected to allow a hundred megabits per
second networking capacity in a near future, and later a gigabit
per second.

This strong evolution of the networking capacity had an
impact on the paradigms of the computer science. First, not
only text terminals can be connected to a host, but also bitmaps
ones. These terminals need to exchange a really more important
amount of information with their host. Second, distributed
computer systems can be designed. With this model, the hosts
does no more sporadically interact: they do all the time, for
the purpose of exchanging massive quantities of information,
with real-time constraints.

This new paradigm of computing equipments exchanging massive
quantities of information with real-time constraints lead to a
new requirement for the transport protocol. Beside the need for
a reliable transmission of data, there is also a demand for a
high throughput in this transmission.

And the problem the computer scientists have to face today
is: the transport protocols, which were designed for slow
networks, do not actually achieve their high throughput
requirement when they control a data transmission on a fast
network. Or, expressed in other words, the improvements of the
links bandwidth do not naturally lead to similar improvements at
the transport level.

The objective of this document.

The objective of this document is to provide a comprehensive
analysis of the capacity of the transport protocols to achieve
high throughput. The only class of transport protocols of
interest to this discussion is the one implemented over a
network layer similar to IP. This kind of network layer only
provides a minimal functionality of datagrams routing, on a
best-effort basis.

The first step, in the present analysis, is the presentation
of this minimal network layer. It will highlight all the
annoying characteristics the transport layer will have to face.

2

Trivial

Solution
Classical
Solution

Introduction

lmproved
Design

- Figure 1 -
The progression of the solutions.

Lightweight
Transport
Protocols

lmproved
lmplemen

tations

Smart
Network
Adapters

A second step will introduce the description of a very
simple transport protocol providing the functionality of
reliable transmission of a stream of bytes. The purpose of this
step is to present the basic aspects of a transport protocol.

The next discussion will deal with the classical solution
used by the current transport protocols. A first attempt will
be made to explain their lack of throughput by an irrational
utilization of the network bandwidth.

An improved design for the transport protocols, which uses
more efficiently the network layer, will then be described and
analyzed. The conclusion of this analysis will be: the
transport protocols can not achieve high throughput because they
require too much computing resources.

A first effort on correcting this situation will then be
examined. It is known as the lightweight transport protocols
concept, and consists of defining brand new protocols which are
supposed to naturally lead to less computing overhead. The
failure of this approach will be demonstrated.

A solution allowing a real improvement of the throughput at
the transport level will then be introduced. This solution
consists of focussing on the implementation of the transport
layer instead of its definition. Some of these implementation
improvements will be discussed. It will be shown that this
solution is not sufficient by itself, but indicates the right
way for the subsequent investigations.

Finally, the currently best conceived solution will be
presented: the smart network adapters concept. It consists of
moving a part of the transport protocol handling outside the
host. This allows a hardware support that helps reaching very
high end-to-end throughput.

3

Introduction

This progression inside the world of transport protocols
solutions is depicted on figure 1.

The methodoloqy of the presentation.

Some kind of a methodology will be used to present each
analyzed solution:

- First, a concise presentation of the aims of the
solution will delimit its scope.
Second, the principles of this solution will be
examined in depth, theoretically and/or using
revealing case studies.
Third, examples of the use of this solution will be
introduced.
Fourth, the results of the solution application will
be mentioned, when they help the further discussion.
Fifth, an analysis of this solution will be
presented, to highlight its problems, failures, or
merits.

4

1.1. The minimal network layer.

Chapter I:

An analysis of the minimal

network layer.

The minimal network layer ensures the connection of a set of
computers which have to communicate. These computers will be
referred to by the word 'hosts'. Each host is identified in the
network by its 'network address 1 1.

The minimal network layer connecting all the hosts only
provides a minimal functionality: it routes short messages from
an originating host to a destinating host, on a best-effort
basis. These short messages, which have a maximal length, are
generally referred to by the word 'datagrams'.

The 'best-effort basis' is the main characteristic of the
design of the minimal network layer. Its principle is that the
basic functionality of datagram routing leads to a quality of
service far from being perfect, but no effort of any kind is
made to enhance this basic quality of service. Two important
facts come from this principle:

- The basic routing leads to some casual malfunctions
that will be discussed in paragraphs I.4 to I.72.
The network layer will not try to recover from these
problems and will not warn the involved users of
them, as it will even not try to detect them.

- There will be no multiplexing done by the network
layer. Each network agent will only serve one user.
For now, there will be no more difference made
between a host, its network agent, and the unique
user of this network agent.

1• The reader is pleased not to misread: the 'network address• is not any address of the network, but the
~ddress of a host inside a network •

• A short description of these malfunctions may be found in [NETBLT].

5

An analysis of the minimal network layer

So here is the specification of the only service the network
layer provides, that is to say N-DATA. It is a three phases
service, with a REQUEST, an INDICATION and a CONFIRMATION
primitives3 • Figure I.1 shows the usual chaining diagram of
these service primitives:

- A user of the network layer calls N-DATA.REQUEST to
ask its network agent to transmit some data to
another user of the network layer. The main
parameters of a N-DATA.REQUEST call are the network
address of the destinating host, and the data to be
transmitted.

- A network agent calls N-DATA.CONFIRMATION to tell a
user which has issued a N-DATA.REQUEST the status of
the datait wanted to be transmitted. The main
parameter of a N-DATA.CONFIRMATION call is this
status. It may only have one of the following
meanings: 'data has been transmitted', or 'it is
impossible to transmit data'.

- A network agent calls N-DATA.INDICATION to tell its
user that it has received some data from another
user of the network layer. The main parameters of a
N-DATA.INDICATION call are the network address of
the originating host, and the data that have been
received.

1.2. Examples of minimal network services.

Several examples of network layers providing a service close
to the minimal one exist. The most popular one is undisputably
the Internet Protocol (IP) 4 , in the Department of Defense (DOD)
world. Nowadays, almost all computers are sold with an
implementation of IP. The Open Systems Interconnection (OSI)
model also defines such a network service: the Connection-Less
Network Service (CLNS)s.

I.3. Implementation of the minimal network layer.

The more general implementation of the minimal network
service described in paragraph I.1 can be provided by a mesh
network of store-and-forward routers. These routers exchange
datagrams, which are mainly composed of:

- the network address of the host which originated the
datagram,

3, Here, only OS! notations and OS! terminology are used. But this is not the expression of the OS!
?olution of the minimal network layer •

• A complete description of IP can be found in [RFC-791].
s. A complete description of CLNS can be found in [ISO-8473].

6

An analysis of the minimal network layer

User on Host A Network Layer User on Host B

N-DATA.REQUEST(B,Data)

N-DATA.CONFIRt.4ATION(Ok)

N-DATA.INDICATION(A,Data)

· Figure I. 1 ·
The usuel chaining diagram of the N·DATA service.

- the network address of the host the datagram is
destinated to,

- the data to be delivered.

The set of routers is organized as a mesh network. This
means that each router is directly connected to an arbitrary set
of other routers, without any more topological constraint than
the basic one: connectivity. The connectivity constraint
ensures that at least one route can be found between any two
hosts. With the same idea of generality, there is no constraint
defined for the characteristics of the links connecting
neighbouring routers.

This name of 'store-and-forward router' comes from the way
they are designed. Each router manages a buffer space, using
the First-In-First-Out (FIFO) model. Two processes have an
access to this data structure:

- The first process treats all the datagrams coming
from the links the router is connected to. It just
stores them in the buffer.

- The second process treats each datagram stored in
the buffer. It extracts the destination address of
a datagram from its header, and from this address it
computes which router it has to forward the datagram
to. When a router is selected, the process
transmits the datagram on the appropriate link, as
soon as this last is ready to send.

The network agent of each host is also a router, but with a
slightly different routing algorithm than the one used in the
normal routers. It must also detect the datagrams which are

7

An analysis of the minimal network layer

destinated toits local user. These datagrams are not to be
forwarded to another router, but to be delivered to the local
user.

To offer a good routing service, the routers may exchange
informations about the components of the network. The routing
algorithm may take into account these parameters in its routing
decision. So routing has a dynamic dimension: two consecutive
datagrams, originated by a single host and destinated to another
single one, may use different routes.

For the purpose of analysing the inherent malfunctions in
the minimal network service, it is interesting to modelize a
router as a stochastic waiting-queue, as shown in the figure
I.2. The clients will be the datagrams which corne from the
links numbered 1 to N. On arrival, these clients enter a FIFO
waiting-queue where they wait until they are serviced. This
service is the routing decision and the forwarding to one of the
outgoing links.

In the same way, the route a datagram uses for going from an
originating host to a destinating one can be modelized as a
network of waiting-queues, as shown in figure I.3. A datagram
travels from router to router, which can be modelized as
waiting-queues, as it has just been shown.

I.4. Datagrams are sometimes lost.

In the preceding paragraph, a router has been modelized as a
stochastic waiting-queue. The two main parameters of such a
queue are its client's interarrival time distribution, and its
service time distribution. From these two distributions, the
stochastic theory allows to compute the distribution of another

- Figure 1.2 -
The stochastic model of a router.

Link 1 Link 1

Link 2 Link 2
Sto ng

.

Link N Link N

8

From User
On Host A

Network Agent
Of Host A

i
0

""

An analysis of the minimal network layer

i
0

""

Router

i f! - . 0 -s
O 0
,- ""

- Figure 1.3 -
The stochastic model of a route.

Network Agent
Of Host B

To User
0n Host e

random variable: the number of clients present in the waiting
queue. From this distribution, it is fair to compute the
probability of having more than a given number of clients
present in the waiting-queue. The fact is: for any x, the
probability of having more than x clients present in the
waiting-queue is non-null.

To illustrate this result, the following possible scenario
can be imagined. A router is connected to a high-bandwidth
link, as well as to a low-bandwidth one. For some period of
time, datagrams are coming, using all the capacity of the fast
link, and all of them are to be forwarded to the slow link. The
longer this period of time is, the higher the number of stored
datagrams is.

The problem is that a router only handles a finite amount of
buffer space, and thus can only store a finite number of
datagrams. But it has just been shown the possibility that, at
some moment, the router needs to store more than this amount of
datagrams. The question is then: what must do the router when
it receives a datagram and there is no available buffer space to
store it? According to the best-effort basis concept, the
router can solve this problem by straightforwardly discarding
the datagram6.

The consequence of this problem is described by the figure
I.4. It represents another possible chaining diagram for the N
DATA service. A user issued a N-DATA.REQUEST toits network
agent. It was responded a N-DATA.CONFIRMATION. But the
expected receiving user never received the associated N
DATA.INDICATION. This is the problem of lost datagrams.

6• Another solution is to drop one of the buffered datagrams, and add the incoming one to the end of the
queue. But, any way, a datagram is Lost.

9

An analysis of the minimal network layer

User on Host A Network Layer User on Host B

N-DATA.REQUEST{B,Doto}

N-DATA.CONFIRMATION{ Ok)

·· ... ______ j

- Figure 1.4 -
The network layer sometimes drops datagrams.

1.s. Datagrams are sometimes corrupted.

As stated in the paragraph I.2, there is no constraint for
the links connecting the routers. Sorne of them may implement an
error recovery mechanism, and some of them may not. However, a
link will always be characterized by its error-rate. This rate
will be the residual error-rate of the recovery mechanism if the
link implements such a mechanism, and the basic transmission
error-rate of the physical layer in the opposite case.

When a datagram cornes to a router, it is received by some
device. The router has then to move the datagram from the
receiving device toits main memory. When the routing decision
has been taken, the datagram is moved from the main memory of
the router to one of its sending devices. All these copy
operations can also lead to errors, and so the routers will also
be characterized by an error-rate.

From all these error-rates, it is possible to compute an
error-rate for the network layer. And it is likely that this
rate will be non negligible.

According to the best-effort principle, the network layer
will not deal with this problem. The consequences of that fact
is shown on figure I.5. It also represents another possible
chaining diagram for the N-DATA service. A user issued a N
DATA.REQUEST toits network agent with a given value for the
data, and this user was responded a N-DATA.CONFIRMATION. But
the receiving user received the corresponding N-DATA.INDICATION
with another value for the data. This is the problem of
corrupted datagrams.

10

An analysis of the minimal network layer

User on Host A

N-DATA.REQUEST(B,Data}

N-DATA.CONFlRMATION(Ok)

Network Layer

·•... "' ····· ... ,

- Figure I • 5 -

User on Host B

N-DATA.INDICATION(A,Data'}

The network layer sometimes corrupts datagrams.

I.6. Dataqrams are sometimes duplicated.

As stated in the preceding paragraph, some of the links
connecting two routers may implement some error-recovery scheme.
Such a link ensures its users that any message it is given is
correctly delivered toits destinator.

The problem is that the design of these error-recovery
schemes7 sometimes leads the destinator to get two or more
copies of the same message. And so, in the network, when a
router forwards a datagram to another router, it is not
impossible that the latter receives this datagram more than
once.

According to the best-effort principle, the network layer
will not deal with this problem. The consequences of that fact
is shown on figure I.6, where another possible chaining diagram
for the N-DATA service is represented. A user issued a N
DATA.REQUEST toits network agent, and was responded a N
DATA.CONFIRMATION. But the destinating user received more than
once the corresponding N-DATA.INDICATION. This is the problem
of duplicated datagrams.

7• In fact, it is often a link level retransmission on timeout scheme, which is also used at the transport
level. Such a scheme will be discussed in the next chapter.

11

An analysis of the minimal network layer

User on Host A Network Layer User on Host B

N-DATA.REQUEST(B,Doto}

N-DATA.CONFIRMATION(Ok)
······ j

·.•, ·. ·· ...

N-DATA.INDICATION(A,Doto)

N-DATA.INDICATION(A,Doto)

- Figure I.6 -
The network layer sometimes duplicates datagrams.

I.7. Datagrams are sometimes re-ordered.

Another malfunction of the minimal network layer can be
highlighted by analysing its latency characteristics. The
latency of the network is the elapsed time between the moment a
user issues a N-DATA.REQUEST and the moment the receiving user
gets the corresponding N-DATA.INDICATION.

In paragraph I.3, a route has been modelized as a network of
stochastic waiting-queues. From the clients' interarrival time
distributions, and the service time distributions of all these
stochastic waiting-queues, the stochastic theory allows to
compute the distribution of another random variable: the time a
client spends in the stochastic network.

Also in this paragraph I.3, it has been stated that the
routing may have a dynamic dimension: the route a datagram uses
to get from one user of the network layer to another one may
change from time to time. And so the network of stochastic
waiting-queues modelizing the route between two users of the
network layer may also change from time to time. The
consequence is that the distribution of the random variable
describing the time a client spends in the stochastic network
varies along time.

The transposition in the minimal network layer of the 'time
a client spends in the stochastic network' is nothing else than
the 'network latency'. The network latency is thus modelized by

12

An analysis of the minimal network layer

a random variable. The conclusion is then: the network latency
varies along time.

This fact has a very annoying consequence, as shown in
figure I.7: a user issued two consecutive N-DATA.REQUESTs toits
network agent, and was responded two N-DATA.CONFIRMATIONs. But
the receiving user has got the N-DATA.INDICATION corresponding
to the second N-DATA.REQUEST before it has got the one
corresponding to the first N-DATA.REQUEST. This is the problem
of datagrams re-ordering.

I.e. conclusion.

The minimal network layer only provides a single service to
its users: the delivery, on a best-effort basis, of a datagram
to another user. This best-effort basis leads to some problems
which are: datagrams re-ordering, duplication, corruption, and
loss.

- Figure I. 7 -
The network layer sometimes re-orders datagrams.

User on Host A Network Layer User on Host B

N-DATA.REQUEST(B,Oata 1)

N-OATA.CONFIRtAATION(Ok)

N-DATA.REQUEST(B,Data2)

N-OATA.CONFIRtAATION(Ok)
'•'

'":; ...

N-OATA.INDICATION(A,Oata2)

N-OATA.INOICATION(A,Oata1)

13

An analysis of the minimal network layer

so, for designing a transport layer with the functionality
of point-to-point reliable transfer of a stream of data, there
is a need to find some mechanisms which will detect these
problems and which will recover from them.

14

Chapter II:

A Trivial Solution.

II.1. Aims of this solution.

The aim of the trivial solution1 is to build a simple
transport protocol providing the functionality of 'reliable end
to-end user-data transmission', in spite of the problems of the
minimal network layer that have been discussed in chapter I.

II.2. Principles of this solution. 2

• Dealing with multiplexing.
'

There will be a need to allow more than a single user of the
transport layer in each host. The problem is that the network
layer only allows a unique user in each host3 •

The unique user of the network layer will in fact be the
transport agent of the host. The latter will serve multiple
users, that will be referred to by the word 'entities'. There
will be a need to distinguish all the entities a transport agent
serves. The easiest way to do this is to allocate to each
entity an identifier local to the transport agent. This
identifier is often referred to by the word 'port', and has
often a numeric value.

The service of the transport layer will thus be, for
example, to transfer user-data from the entity on port 'ps' of
host 'hs' to the entity on port 'pd' of host 'hd'. In this
example:

- 'hs' is the address of the host running the sending
entity,

1, The author does not want to use the word 'trivial' in its pejorative sense. He chose this word because
of the name of the protocol il!l>lementing the trivial solution: the Trivial File Transfer Protocol, or
~FTP. lnstead, in this context, 'trivial' means 'basic', or 'straightforward' •

• A description of the trivial solution can be read in [NETBLT].
3, This has been discussed in paragraph 1.1.

15

A trivial solution

- 'ps' is the port number of the sending entity,
- 'hd' is the address of the hast running the

destinating entity,
- 'pd' is the port number of the destinating entity.

To implement the service provided by the transport layer,
the transport agents will have to exchange informations using
datagrams. These datagrams are referred to by the expression
'Transport Protocol Data Units', or TPDUs.

At one moment, a transport agent will be involved in several
user-data transfers. The problem is that when it sends a TPDU
to another transport agent, or when it receives a TPDU from
another one, the interaction with the network layer only
involves this TPDU and the address of the peer transport agent.
But this is not sufficient to identifies which transfer this
TPDU concerns. So, each TPDU will include at least two fields:

- the Source port field, which value is the port
allocated to the sending entity,

- the Destination port field, which value is the port
allocated the destinating entity.

• Dealing with the maximal length of the datagrams.

Avery interesting functionality to provide to the entities
is the transfer of data without any constraint on the data
length. But the problem is that the transport agents will have
to exchange TPDUs using datagrams, which have a fixed maximal
length4 •

The solution is the transport agent to split the user-data
in several parts that fit the maximal datagram length. This is
called the packetization of the user-data. So the transport
agent of the sending entity sends a sequence of TPDUs, each
containing a part of the user-data. These TPDUs will be
referred to by the expression 'DATA-TPDUs'. They will be
composed of the four following fields:

- the Source port field, which value is the port
allocated to the sending entity,

- the Destination port field, which value is the port
allocated to the destinating entity,

- the Data field, which value is a part of the
transferred user-data,

- the Flags field5 , which each bit marks a particular
boolean condition, as 'end-of-message 16 •

The transport agent of the destinating entity rebuilds the user
data from the parts it receives in the DATA-TPDU before
delivering it to this destinating entity.

4. This has been discussed in paragraph 1.1.
5• For clarity reasons, this field will never be shown on the figures.
6• This bit would only be set in the last DATA-TPDU of a user message.

16

A trivial solution

• Dealing with datagrams re-ordering.

An important problem of the minimal network layer is that it
does not keep the sequence of datagrams7 • But, to rebuild the
user-data from the parts it receives, the transport agent of the
receiving entity needs to get the DATA-TPDUs in the same order
the transport agent of the sènding entity delivered them to the
network layer.

Avery simple solution is this one: the transport agent of
the sending entity only sends a DATA-TPDU containing a part of
the user-data when it is sure that the transport agent of the
destinating entity actually got the DATA-TPDU containing the
preceding part of their user-data.

But this solution leads to another problem: as the transport
agent of the sending entity and the one of the destinating
entity are not located in the same host, they do not share the
same memory. So a transport agent can only get an information
about another one if this last sends a TPDU containing the
appropriate information to the former.

Here is a scheme to make the described solution work. When
the transport agent of the destinating entity receives a DATA
TPDU, it sends a TPDU back to the transport agent of the sending
entity, to allow the latter to transmit the next DATA-TPDU.
This scheme is called the 'acknowledgement principle'. The TPDU
the transport agent of the destinating entity sends back to the
transport agent of sending one is referred to by the expression
'ACK-TPDU'. An ACK-TPDU will be composed of the two following
fields:

- the Source port field, which value is the port
allocated to the sending entity,

- the Destination port field, which value is the port
allocated to the destinating entity.

The usual transfer of user-data by the transport layer is
shown on figure II.1. The sending entity delivers some data to
its transport agent and wants this data to be delivered to
another entity. This data has to be packetized in three parts,
that is to say Datal, Data2 and Data3. The transport agent of
the sending entity transmits a first DATA-TPDU containing Datal
to the transport agent of the destinating entity. The latter
sends back a ACK-TPDU to the transport agent of the sending
entity. When the transport agent of the sending entity has
received this ACK-TPDU, the scenario described for Datal is
repeated for Data2 and then for Data3. When the transport agent
of the destinating entity has received the DATA-TPDU containing
Data3, it is able tore-assemble the data the sending entity
delivered toits transport agent, and sois able to deliver this
data to the destinating entity.

7• This has been discussed in paragraph 1.7.

17

Entlty on
on Port 'PS'
of Host 'HS'

Reque■ta
the tran1ml11lon
of 'Data'
to the entlty
on port 'PD'
of hoat 'HD'.

Tran■port
At,Jent of
Ho■t 'HS'

A trivial solution

Network Layer

DATA-TPDU

PS PD Data1

ACK-TPDU

PS PD

DATA-TPDU

PS PD Data2

ACK-TPDU

PS PD

DATA-TPDU

PS PD DataJ

ACK-TPDU

PS PD

- Figure I I. 1 -
Dealing with datagrams re-ordering.

* Dealing with datagram loss.

Tran■port
At,Jent of
Ho■t 'HD'

Entlty on
on Port 'PD'
of Ho■t 'HD'

lndlcate■
that the entlty

on port 'PS'
of ho1t 'HS'

ha1 tran1mltted
Data.

The minimal network layer sometimes drops a datagram8 ,

without warning the sender or the expected receiver of that
fact. So when a transport agent sends a TPDU to another one, it
only knows that this TPDU was transmitted, but it does not know
if it was actually received or not. On the other hand, when a
transport agent is the expected receiver of a TPDU and when this
TPDU is lost by the network layer, it does not even know that
another transport agent tried to send it a TPDU.

8• This has been discussed in the paragraph 1.4.

18

A trivial solution

The only available information for a transport agent about
this problem is the following one. When it receives a TPDU
concerning the transfer of some user-data between two entities,
it knows that the last TPDU it issued for that transfer was
correctly received. All other information is only based on
speculation.

But there is an interesting speculation a transport agent
can make: when it sends toits peer a TPDU concerning a transfer
of user-data, it will receive a TPDU from the latter in a near
future. When it sends a ACK-TPDU, the transport agent of a
destinating entity cannot really speculate about the delay
before it will get the next DATA-TPDU. As a matter of fact, the
transport agent of the sending entity will only send this DATA
TPDU when it has got the ACK-TPDU and it has data to send. But
no transport agent can speculate about the delay before this
last condition is fulfilled: it depends on the behaviour of the
sending entity. on the other hand, the transport agent of the
sending entity knows that its peer has no reason to delay the
sending of a ACK-TPDU: it will transmit this TPDU as soon as it
receives the corresponding DATA-TPDU.

The detection of lost datagrams will thus be left to the
transport agent of the sending entity. If, some reasonable time
after it has delivered a DATA-TPDU to the network layer, it does
not receive the corresponding ACK-TPDU, it can speculate that
this DATA-TPDU or this ACK-TPDU has been lost by the network
layer. And in this case, it has nothing else to do than
retransmitting the lost DATA-TPDU. This scheme is referred to
by the expression 'retransmission on timeout'.

The most important question is now: what is a reasonable
value for the timeout delay? For that matter, the story of a
DATA-TPDU and its corresponding ACK-TPDU must be analysed:

- The DATA-TPDU is routed from the transport agent of
the sending entity to the transport agent of the
destinating entity. This costs a network latency.

- The DATA-TPDU is received by the transport agent of
the destinating entity, an ACK-TPDU is built and
delivered to the network layer. This costs a
negligible amount of time.

- The ACK-TPDU is routed from the transport agent of
the destinating entity to the transport agent of the
sending entity. This costs a network latency.

- The ACK-TPDU is received by the transport agent of
the sending entity. This also costs only a
negligible amount of time.

So the reasonable timeout delay will be the result of the sum of
these four components. This sum is often referred to by the
expression 'Round Trip Delay' or RTD. This name comes from the
fact that it is nearly equal to the time a datagram would spend
to go from a sending host to a rece1v1ng one and then another
datagram to go back from the receiver to the sender.

19

A trivial solution

The main problem is that the RTD is mainly composed of
network delays, which have variable and unpredictable values9.
The transport agent of the sending entity will have to use an
estimation of this RTD as the timeout delay. A fair way to
compute an estimation of the RTD is to take into account the
measured values of RTD for a few past TPDU exchanges, and to
assume that the RTD will only vary smoothly.

An example of exchange between transport agents illustrating
the retransmission on timeout is shown on figure II.2. The
transport agent of the sending entity has just received the ACK
TPDU corresponding to the latest DATA-TPDU it has transmitted.
Soit sends the DATA-TPDU containing the next part of the user
data. But this TPDU is lost by the network layer. When the
timeout delay expires, the transport agent retransmits the lost
DATA-TPDU.

Transport
Agsnt of
Host 'HS'

+'
:::,
0
Q)

E
~

>-
0
Q)

0

• Figure 11.2 •
The retransmission on timeout principle.

Network Layer

PS PD Data

PS PD Data

PS PD

9• This has been discussed in paragraph 1.7.

20

Transport
Agsnt of
Host 'HD'

A trivial solution

The annoying consequence of using a 'retransmission on
timeout scheme' is that the transport agent of the sending
entity sometimes transmits twice the same DATA-TPDU, even if
there is no reason to doit. This happens in two cases:

- when the estimation of RTD leads the timeout delay
to be shorter than the actual RTD,

- when a ACK-TPDU is lost.

• Dealing with duplicated datagrams.

When a transport agent delivers a TPDU to the network layer,
it is not impossible that the destinating transport agent gets
more than once the copy of this TPDU10 • Furthermore, as it has
just been shown, the mechanism to recover from lost TPDUs
sometimes leads the transport agent of the destinating entity to
get several copies of the same DATA-TPDU.

A simple solution to cope with this problem is to add a
field to each exchanged TPDU, which value identifies the TPDU.
A transport agent would then only treat the TPDUs with the
expected identifier, and discard the other ones.

A good identifier for a DATA-TPDU is the sequence number of
the datait contains, relative to the user-data that is being
transferred. A good identifier for a ACK-TPDU is the same
identifier as the corresponding DATA-TPDU.

Figure II.3 shows an exchange between two transport agents.
The transport agent of the sending entity has just received a
ACK-TPDU corresponding to the fourth part of the user-data. So
it transmits a DATA-TPDU containing the fifth part of the user
data. The transport agent of the destinating entity gets a
first copy of this DATA-TPDU and sends back the corresponding
ACK-TPDU. Then this transport agent gets another copy of the
DATA-TPDU containing the fifth part of the user-data. But as it
is expecting the sixth part, it discards this DATA-TPDU as a
duplicate.

• Dealing with datagram corruption.

When a transport agent delivers a TPDU to the network layer,
it is not impossible that the destinating transport agent gets a
corrupted copy of this TPDU11 • In other words: when a transport
agent gets a TPDU, it is not really sure that the value of each
field of this TPDU is actually the one the sending transport
agent expected to be received.

10. This has been discussed in paragraph 1.6.
11. This has been discussed in paragraph 1.5.

21

Transport
Agent of
Host 'HS'

A trivial solution

Network Layer

PS PD 5 Datas

PS PD 5

PS PD 5 Datas

- Figure II.3 -
Dealing with duplicated TPDUs.

Transport
Agent of
Host 'HD'

There will be only scarce problems if a control field is
corrupted, as there will be a very little chance that the
transport agent accepts such a corrupted TPDU. This transport
agent can find:

- that the mentioned destinating entity is not
involved in any transfer at the moment,

- that the mentioned destinating entity is currently
involved in a transfer, but net with the mentioned
sending entity,

- that the identifier mentioned in the TPDU is not the
expected one for the transfer between the mentioned
sending and receiving entities.

But if such a corrupted TPDU is accepted and treated as a
correct one, the consequence is very annoying: the
synchronization may be lost between the transport agents
involved with this transfer of user-data. This can lead to
discard correct TPDUs, to send TPDUs at a wrong time, or not to
retransmit a lost TPDU.

The problem of corrupted TPDUs is more clear when only the
Data field of a DATA-TPDU is corrupted. There is no chance to
discover this corruption with the existing mechanisms. So all
these DATA-TPDUs with a corrupted Data field are accepted and
treated. When this happens, the user-data which is re-assembled

22

A trivial solution

and delivered to the destinating entity is not the one the
sending entity delivered toits transport agent. But the
transport layer has to offer a reliable user-data transfer!

The solution to this problem is to add another field to each
TPDU. The value of this field would be redundant with the
content of the other fields of the TPDU. The receiving
transport agent would then re-compute this redundant information
from the value of the fields in the received TPDU. It would then
check this re-computed redundant information against the one
found in the received TPDU. If the specification of the
redundant information is well chosen, there is a very little
chance that there is a match when the received TPDU is
corrupted.

When a transport agent receives a corrupted TPDU, it may
straightforwardly drop it. The lost TPDU recovery mechanism
ensures that a correct version of this TPDU will be soon
retransmitted.

Avery popular redundant information is the sum of all the
words the TPDU is composed of. This kind of redundant
information is often referred to by the word 'checksum'. It
gives rather good results, it is very easy to implement, and all
other redundant informations which are function of the entire
TPDU content need at least as much computing resource. For now,
the redundant information will always be referred to using the
word 'checksum' 12.

Figure II.4 illustrates the checksum mechanism. The
transport agent of the sending entity has just received the
expected ACK-TPDU. Soit transmits the next DATA-TPDU. But the
Data field of this TPDU is corrupted by the network layer. When
the transport agent of the destinating entity receives this
TPDU, the verification of the checksum fails, and the TPDU is
discarded. When the timeout delay expires, the transport agent
of the sending entity retransmits the DATA-TPDU.

II.3. Example of the trivial solution.

The Trivial File Transfer Protocol (TFTP) 13 , is not really a
transport protocol, but an application layer protocol. This
protocol is specified to rely on the transport protocol called
User Datagram Protocol (UDP) 14 • UDP itself relies on IP, and
only deals with multiplexing: its only service is similar to the
minimal service of the network layer; but this service is

12. ln fact, the checks1.111 is a so popular redundant information that all redundant informations used to
check the integrity of datais also referred to as a 'checks1.111', even if its mechanism does not involve
fgY s1.111mation •

• A c~lete description of TFTP can be found in [RFC-783].
14• A c~lete description of UOP can be found in [RFC-768].

23

Tran■port
Agent of
Ho■t 'HS'

A trivial solution

Network Layer

PS PD

PS PD 3 Dataj Crc3

PS PD 3 Data3 Crc 3

PS PD 3 Crcj

- Figure 11.4 -
Dealing with corrupted TPDUs.

Tran■port
Agent of
Ho■t 'HD'

provided between transport entities and not between hosts. So,
in fact, TFTP has to deal with exactly the same problems as a
transport protocol which relies on IP, except for the
multiplexing point of view. And, just as it can be half seen
from its name, it uses the trivial solution that as just been
described.

Diskless workstations and X-terminals often use TFTP to load
the kernel of their operating system, at boot time: the driver
of TFTP, as well as the driver of IP are simple enough to be
firmware coded.

24

A trivial solution

II.4. Analysis of the trivial solution.

The aim of the trivial solution was to provide a given
service, without any further consideration15. Soin this
chapter, there has never been any attention paid to throughput
considerations. And, as it can be easily imagined, the main
problem of the trivial solution is its lack of throughput.

To calculate the maximal theoretical throughput of the
trivial solution, a particular case will be considered:

- The two communicating entities are the only ones
that exchange data. So all the available bandwidth
of the network is dedicated to this user-data
transfer.
The topology of the network allows to find a route
for this communication, which can afford a maximal
bandwidth of BW before a datagram is lost, as a
result to a router congestion.
The maximal allowed length for the datagrams makes
the DATA-TPDUs all have a length equal to DL.

The sending transport agent sends a DATA-TPDU and then waits
a RTD time to get an ACK-TPDU. To send the DATA-TPDU, it takes
an amount of time equal to:

Time to send a DATA-TPDU =
DL

BW

so the sending transport agent transmits an amount of data equal
to DL, during a time equal to (DL/BW)+RTD. So the throughput of
the trivial solution is:

DL
Throughput = -------

DL/ BW + RTD

By using some elementary calculus, this formulais found to be
equivalent to the following one:

DL
Throughput = * BW.

DL+ RTD * BW

15, This has been discussed in paragraph 111.1.

25

A trivial solution

This last formula shows that, with the trivial solution,
only a part of the available bandwidth is used. And the longer
the RTD is, or the faster the network works, the shorter this
partis.

An extremely bad case would be a satellite network, where:
- The maximal length of a datagram (DL) would be a few

kilobytes.
- The available bandwidth (BW) would be in the order

of a hundred megabits per second.
- the RTD would be in the range of the second.

In this case, the trivial solution would only use about one ten
thousandth of the available bandwidth.

On the same idea, the trivial solution only uses the
computing resource to receive ACK-TPDU, to react to timeouts,
and to prepare DATA-TPDUs. And most of the time, it merely
waits, i.e. it does not use CPU time. So the trivial solution
only uses a very short part of the available CPU time.

For short, the two main resources for communicating:
- the network bandwidth for transmitting informations,
- the computing resource for driving the protocol,

are wasted when using the trivial solution.

II.5. conclusion.

It is possible to find simple mechanisms to correct the
malfunctions of the minimal network layer, in a way to provide a
transport service allowing a 'reliable end-to-end user-data
transmission'. But these simple mechanisms do not allow to have
a data transfer with a good throughput, mainly because a lot of
resources are wasted when the transport agent of the sending
entity waits the acknowledgement for a DATA-TPDU it has just
transmitted.

Nevertheless, it is interesting to carefully study this
solution, as it introduces almost all basic mechanisms used by a
transport layer relying on a minimal network layer.

But there is a need to find better solutions, allowing a
better throughput. And these solutions will have to focus on
avoiding the sending transport agent to spend some time at doing
nothing else than waiting for an event.

26

Chapter III:

The classical solution.

III.1. Aims of this solution.

The aim of the classical solution1 is to be a quite simple
solution for a transport layer to lead to a better throughput
than the trivial solution. It will meet its throughput
requirement by allowing the transport agent of the sending
entity to continuously transmit DATA-TPDUs. And it will meet
its simplicity prerequisite by having its design very close to
the one of the trivial solution.

III.2. Principles of the solution. 2

• General principle.

In the trivial solution, the reason why the transport agent
of the sending entity spends time waiting for an ACK-TPDU is the
need to deal with the network problem of datagrams re-ordering3 •
In this trivial solution again, the network problem of datagrams
duplication is solved by adding a sequence number to each TPDU4 •

An interesting observation is the fact that this sequence
number can also solve the network problem of datagrams re
ordering. When the network layer delivers a DATA-TPDU to the
transport agent of the receiving entity, the latter knows from
the sequence number of this DATA-TPDU which part of the initial
message it contains. So this initial message can be rebuilt,
even if the DATA-TPDUs do not come to the transport agent of the
receiving entity in the appropriate order. The conclusion is

1. The author uses the expression 'classical solution' in reference to the fact that this solution is
~urrently the most spread one, with the transport protocols TCP and TP-4 •

• A description of the classical solution can be read in [NETBLT].
3• This has been discussed in paragraph 11.2, under the title "Dealing with datagrams re-ordering".
4• This has been discussed in paragraph 11.2, under the title "Dealing with duplicated datagrams11 •

27

The classical solution

that there is no real need for the transport agent of the
sending entity to wait for the acknowledgement of the previous
DATA-TPDU before sending the next one.

This statement is the basis of the classical solution. As
soon as it has some data ready to be transmitted, the transport
agent of the sending entity would continuously transmit the
corresponding DATA-TPDUs. On the other hand, the transport
agent of the receiving entity would rebuild this data by looking
at the sequence numbers of the incoming DATA-TPDUs.

Figure III.1 illustrates this solution. Entity A requests
its transport agent to deliver the message Data to entity B.
This message Data has to be split into three parts, say Datal,
Data2 and Data3. These three parts are enclosed in DATA-TPDUs
with appropriate sequence numbers, and these DATA-TPDUs are
transmitted to the transport agent of B, using the network
layer. For some obscure reason, the DATA-TPDU with sequence
number 1 is delayed by the network layer, but the two remaining
DATA-TPDUs are quickly delivered to their destinator5 • The
transport agent of entity B can still completely rebuild the
message Data, and deliver the latter to entity B.

Transport
Agent of
Host 'HS'

- Figure 111 . 1 •
Dealing with datagrams re-ordering.

Network Layer

PS PD 2 Data 2 Crc 2

PS PD 1 Data, Crc1

PS PD 3 Data 3 Crc 3

s. The possibility of such a phenomenon was discussed in paragraph 1.7.

28

Transport
Agent of
Host 'HD'

Content of Buffer
1 1 1 1

h>•,I

'°"""•' -.1

1 Doia1 1 °"""• 1 -· 1

The classical solution

But this solution can not be applied "as-is":
- The acknowledgement scheme has to be reconsidered,

for implementation and performance reasons.
- There is a need to keep the transport agent of the

sending entity from transmitting too much DATA-TPDUs
in a too short period of time.

* The problem of acknowledgements.

For the acknowledgement and retransmission on timeout
mechanisms, the closest extension of the trivial solution to the
new one would be this one:

- For each transmitted DATA-TPDU, an ACK-TPDU with the
same sequence number is expected.

- As soon as this ACK-TPDU is received, the DATA-TPDU
is acknowledged.

- If this ACK-TPDU is not received within some period
of time, the DATA-TPDU is retransmitted and the
corresponding ACK-TPDU is once again expected6.

There is a problem of resource consumption. First, for each
transmitted DATA-TPDU, a separate ACK-TPDU must travel on the
network. This consumes a non-negligible part of the network
bandwidth. But one can easily imagine a scheme where a single
ACK-TPDU would acknowledge several DATA-TPDUs. This would lead
to less network traffic. Second, for each transmitted DATA
TPDU, the transport agent of the sending entity must set up a
timer which would start the retransmission procedure after the
timeout period. In many operating systems, the number of such
timers is a constraint.

There is also a problem of performance. It comes from
timers handling by the operating system. Three basic operations
are related to timers:

- a process sets up a timer,
- a timer expires and starts a process which executes

a procedure,
- a process cancels a timer;

and in most operating systems, the fact is that the two first
operations are quickly performed, but the last one consumes
quite a lot processing time. And each time a DATA-TPDU is
acknowledged, its associated timer must be cancelled! Thus
expecting a separate acknowledgement for each transmitted DATA
TPDU consumes a non-negligible part of the CPU time, which could
have been used to prepare the next DATA-TPDUs to be transmitted.

6• If this retransmission occurs too many times for the same DATA-TPDU, the transport agent may infer that
there is a problem with the network layer, and thus can take some exceptional measures.

29

The classical solution

• cumulative acknowledgements.

It is clear that each separate DATA-TPDU has to be actually
acknowledged, even if no separate ACK-TPDU is generated by the
transport agent of the receiving entity. So the semantic of the
information included in an ACK-TPDU must change. In the trivial
solution, the identifier of the ACK-TPDU was the sequence number
of the DATA-TPDU it acknowledges7 • In the classical solution,
the identifier of the ACK-TPDU is a threshold sequence number;
and all DATA-TPDUs with a sequence number less or equal to this
threshold are acknowledged by this ACK-TPDU. This scheme is
often referred to as the 'cumulative acknowledgement'.

It must be noted that, at a semantic point of view, the
cumulative acknowledgement scheme is insensitive to the network
layer problems discussed at paragraphs I.4 to I.7:

- When an ACK-TPDU is lost, the next one acknowledges
at least the same DATA-TPDUs.
When an ACK-TPDU is corrupted, it is discarded by
the transport agent of the sending entity, and the
next one acknowledges at least the same DATA-TPDUs.
When an ACK-TPDU is duplicated, the extra copy
acknowledges exactly the same DATA-TPDUs as the
original one.
When two consecutive ACK-TPDUs are swapped by the
network layer, the second received ACK-TPDU
acknowledges DATA-TPDUs that where already
acknowledged by the first received one.

Many schemes can be imagined to choose the proper time for
the transport agent of the receiving entity to issue an ACK
TPDU. Here comes some examples:

- every time a given number of DATA-TPDUs have been
received since the latest ACK-TPDU was issued,

- when a given amount of time has elapsed since the
latest DATA-TPDU was received8 ,

- periodically,
- a composite of previous schemes.

• Retransmission on timeout.

Even when using the cumulative acknowledgement scheme, the
retransmission on timeout mechanism could be used "as-is" in the
classical solution. The only difference is that, on reception
of an ACK-TPDU, several timers would sometimes have to be
cancelled. But this scheme would lead to use a timer for each
DATA-TPDU, a situation which must be avoided, as shown earlier.

7. This has been discussed in paragraph 11.2, under the title 11Dealing with duplicated datagrams 11 •
8• This allows the transport agent of the receiving entity not to transmit ACK·TPDUs while receiving a
burst of DATA·TPDUs.

30

The classical solution

An analysis of what would happen with this undesirable
scheme when a DATA-TPDU is lost can help find a better solution.
When this situation occurs, the timer associated with this DATA
TPDU expires, and the retransmission procedure starts. At this
moment, none of the subsequent DATA-TPDUs are acknowledged,
otherwise the lost DATA-TPDU would also be acknowledged. A
problem cornes from the conjunction of two facts:

- The acknowledgement for the retransmitted DATA-TPDU
and the subsequent ones will corne at least one RTD9
later.

- Several DATA-TPDUs were also transmitted within the
RTD following the first transmission of the lost
DATA-TPDU.

The consequence is that the timers associated with these DATA
TPDUs are very likely to expire, without any regard to their
state at the transport agent of the receiving entity point of
view.

Figure III.2 illustrates this analysis with a possible
scenario for a transfer of data from entity A to entity B. The
transport agent of A transmits the DATA-TPDUs with sequence
numbers 1 to 5. The DATA-TPDU with sequence number 1 is
correctly received by the transport agent of B, which responds a
ACK-TPDU numbered 1. The DATA-TPDU with sequence number 2 is
lost by the network layer and the DATA-TPDUs with sequence
numbers 3 to 5 are well delivered to the transport agent of B.
From this moment, no ACK-TPDU with a number higher than 1 can be
transmitted, as the DATA-TPDU with sequence number 2 has not
been delivered. After some period of time, the timer associated
to the DATA-TPDU with a sequence number 2 expires, and this
DATA-TPDU is retransmitted. This latest DATA-TPDU is finally
delivered to the transport agent of B, which can then respond a
ACK-TPDU numbered 5. But before this ACK-TPDU is delivered to
the transport agent of A, the timers associated to DATA-TPDUs
with sequence numbers 3 and 4 have also expired, and these DATA
TPDUs have been retransmitted.

There is an easy solution to get a similar behaviour with a
single timer at the transport agent of the sending entity end.
This single timer is to be associated to the non-acknowledged
DATA-TPDU with the lowest sequence number. The transport agent
of the sending entity reacts to timer expiration and to incoming
ACK-TPDUs as described in figure III.3. The most interesting
rule is the first one: when the timer expires, the transmission
of DATA-TPDUs restarts from the first non-acknowledged one, for
retransmitting it as well as all subsequent DATA-TPDUs. It is
from this fact that this retransmission on timeout scheme is
sometimes referred to by the expression 'go-back-N scheme'.

9. This has been discussed in paragraph 11.2, under the title "Dealing with datagram loss11 •

31

>,
0

"ii
-0

...
:J
0
Il
E
i=

Tran■port
Agant of
Hoat 'HS'

>,
0
'i
"O

>, ...
0 ::,
"ii 0
"O G)

... E
:J I=
0
Il
E
i=

The classical solution

Network Layer

Data1 Crc1

Data 2

1

Data 3

Data"

Data 5

Data 2

Data 3

5

Data" Crc"

- Figure 111. 2 -
The retransmission on timeout scheme

with a timer associated to each DATA-TPDU.

Tranaport
Agent of
Hoat 'HD'

Contant of Buffer
1 1 1 1 1

l 0111, 1 o.ta, 1DalGa10a1111 l 11o1aa l

Figure III.4 illustrates this go-back-N scheme with the same
initial scenario as in figure III.2. The transport agent of A
transmits the DATA-TPDUs with sequence numbers 1 to 5. The
DATA-TPDU with sequence number 1 is correctly received by the
transport agent of B, which responds a ACK-TPDU numbered 1. The
DATA-TPDU with sequence number 2 is lost by the network layer
and the DATA-TPDUs with sequence numbers 3 to 5 are well
delivered to the transport agent of B. From this moment, no
ACK-TPDU with a number higher than 1 can be transmitted, as the
DATA-TPDU with sequence number 2 has not been received. After
some period of time, the timer expires, and so the transport

32

The classical solution

Event Action to perform

Timer expires Next <- Ack .
' Reset timer .
'

ACK-TPDU with number Num is Nothing to perform .
' received and Num <= Ack

ACK-TPDU with number Num is Ack <- Num .
' received and Ack < Num <= Next Reset timer .
'

ACK-TPDU with number Num is Ack <- Num .
' received and Next < Num Next <- Num .
' Reset timer .
'

- Ack is the highest sequence nllli:>er of the acknowledged DATA-TPDUs.
- Next is the sequence nllli:>er of the next DATA-TPDU to be transmitted.

- Figure 111.3 -
Rules of the go-back·N scheme.

agent of A retransmits DATA-TPDUs with sequence numbers 2 and
higher. When the DATA-TPDU with sequence number 2 is delivered
to the transport agent of B, an ACK-TPDU numbered 5 is
transmitted. When the transport agent of A receives this ACK
TPDU, it stops its transmission as the next DATA-TPDU to be
transmitted, the one with sequence number 6, is not yet ready.
It is clear that the traffic of TPDUs is very similar to the one
in the figure III.2.

An important question is the choice of the timeout delay to
use for the timer. It is harder to compute than in the trivial
solution case. Not only the RTD must be taken into account, but
also the strategy the transport agent of the receiving entity
uses for choosing when to transmit ACK-TPDUs. The difficulty is
even worse when applying the third rule of figure III.3. In
this case, there is a need to set up a timer associated to a
DATA-TPDU that has been transmitted "some time ago".

* The SOS region concept.

Between the moment the transport agent of the sending entity
transmits a DATA-TPDU and the moment it receives the
corresponding acknowledgement, this DATA-TPDU is said to have
its state 'out-of-synchronization'. This expression only means
that during this period of time, the transport agent of the
sending entity does not know the status of this DATA-TPDU at the
destinating transport agent point of view.

33

Tran1port
Agent of
Ho■t 'HS'

>.
0
i
"O

+'
:::,
0
G)

E
i::

The classical solution

Network Layer

Data,

Data 2

1

Data 3

Data4

Data 5

Data 2

Data 3

5

Data4

- Figure 111.4 -
The go-back-N scheme.

Crc 1

Crc4

Tran1port
Ag1nt of
Ho■t 'HO'

Content of Buffer
1 1 1 1 1

The set of all DATA-TPDUs which state is 'out-of
synchronization' is often referred to as the 'state out-of
synchronization region', abbreviated as the 'SOS region'.

In the trivial solution, we could have said that the SOS
region was the unique DATA-TPDU which has been transmitted but
has not yet been acknowledged. In the classical solution, this
SOS region is far much larger: it consists of the sequence of
all DATA-TPDUs which have been transmitted by the transport
agent of the sending entity, and for which an acknowledgement is
waited for. So this sos·region is identified by two numbers:

34

The classical solution

- the sequence number of the first transmitted-but
not-yet-acknowledged DATA-TPDU,

- the sequence number of the last transmitted-but-not
yet-acknowledged DATA-TPDU10 •

The SOS region length must be large enough to allow
continuous transmission of DATA-TPDUs: this is the aim of the
classical solution.

* The transmission window.

The length of the SOS region must be bound, as each DATA
TPDU in the SOS region consumes the memory resource of the
transport agents of both sending and receiving entities:

- The data the transport agent of the sending entity
includes in a DATA-TPDU must be remembered as long
as this DATA-TPDU remains in the SOS region, as this
data has to be included in all the retransmissions
of this DATA-TPDU.

- The data a DATA-TPDU includes must be copied into
the buffer space of the transport agent of the
receiving entity until this entity 'consumes' this
data.

There is no real memory problem at the transport agent of
the sending entity point of view. Each data the sending entity
delivers toits transport agent is stored in the memory, and
this memory can be locked until the datait contains leaves the
SOS region.

On the other hand, the available buffer space for the
transport agent of the receiving entity to store incoming data
is a real constraint. If the transport layer were allowing a
DATA-TPDU to come to the transport agent of the receiving entity
when there is no more space to store its data part, this data
would have to be dropped and the DATA-TPDU retransmitted later.

Such a situation is depicted in figure III.5. The transport
agent of A transmits the DATA-TPDUs with sequence numbers from 1
to 4. But the transport agent of B has only got available
buffer space for three DATA-TPDUs. Soit can only store the
data from DATA-TPDUs with sequence numbers from 1 to 3, and then
it has to drop the DATA-TPDU with sequence number 4.

So there is a need to bind the length of the SOS region.
This can be done by defining a 'transmission window' inside
which the SOS region will be allowed to grow. This transmission
window will be identified by two numbers: the sequence numbers
of the first and the last DATA-TPDUs it contains11.

10 • Another equivalent solution is to identify the SOS region using the sequence nurber of its first DATA·
ÎPDU and its length.
1• Another equivalent scheme to identify the transmission window is to use the sequence of its first

DATA·TPDU and its length.

35

The classical solution

Transport Transport
Agent of Network Layer Agent of
Host 'HS' Host 'HD'

Content of Buffer
1 1 1 1

PS PD' 1 Data 1 Crc 1

PS PD 2 Data 2 Crc 2 1 Data, 1

PS PD 3 Data 3 Crc 3 1 Data, h>am,!

PS PD 4 Data 4 Crc 4 1 °""'• 1 llobl, 1 °""'• 1

- Figure II I. 5 -
The loss of a DATA-TPDU due to a lack

of buffering space.

• Transmission authorizations.

1 °""'' 1 llobl, l 11a1a, 1

The major problem is that the available buffer space at the
transport agent of the receiving entity end is an information
the transport agent of the sending entity can not guess. So the
former will have to feed back the latter with one more
information: the highest DATA-TPDU sequence number it can
accept. An interesting way to send this number is to include it
in a new field of the ACK-TPDU.

As this number authorizes the transport agent of the sending
entity to transmit DATA-TPDUs until a given sequence number, it
is referred to by the expression 'transmission authorization'.

As this new ACK-TPDU carries more information than a bare
acknowledgement, it will be referred to by the expression
' CONTROL-TPDU' .

Figure III.6 illustrates the transmission authorization
scheme. First the transport agent of B warns the transport
agent of A that:

- the DATA-TPDUs with sequence numbers lower or equal
to O have been well received,

- there is an available buffer space for the DATA
TPDUs with sequence numbers lower or equal to 3.

36

Tranaport
Agent of
Hoat 'HS'

The classical solution

Network Layer

PS PD O 3 Crc ----

PD 1 Data, Crc,

Data 2

Data 3

Data 4

PS PD Data 5

- Figure II I. 6 -

The transmission authorization principle.

Tranaport
Agent of
Hoat 'HD'

Content of Buffer
1 1 1 1

On reception of this CONTROL-TPDU, the transport agent of A
starts transmitting DATA-TPDUs with sequence numbers form 1 to
3. After a period of time, the transport agent of B has got
some more free buffering space for two DATA-TPDUs, and soit
transmits a CONTROL-TPDU with a transmission authorization of 5.
As at this moment, DATA-TPDUs with sequence numbers 1 and 2 were
received, the acknowledgement value of this CONTROL-TPDU is 2.
on reception of this TPDU, the transport agent of A starts
transmitting DATA-TPDUs with sequence numbers form 4 to 5.

• Recapitulation.

There are problems of resource consumption and performance
with a direct extension of the trivial solution with the
transport agent of the sending entity continuously transmitting
DATA-TPDUs. These have been solved by introducing the
cumulative acknowledgements and go-back-N schemes.

37

The classical solution

There is no need to transmit DATA-TPDUs when the transport
agent of the receiving entity has got no buffer space to store
their data part. The transmission of such DATA-TPDUs is avoided
by using the mechanisms of the transmission window and the
window authorization.

III.3. Examples of the classical solution.

This classical solution is used by the standard transport
protocol of the DOD world: the Transmission Control Protocol
(TCP) 12 . This transport protocol is implemented on top of IP.
Nowadays, almost all computers are sold with a version of
TCP/IP.

The principles of this solution are also used by the
Transport Protocol, class 4 (TP-4) of the connection-oriented
OSI stack13.

III.4. Results of the classical solution.

Many tests of implementations of TP4/CLNS and TCP/IP have
been carried out on various equipments, ranging from personal
computers to workstations and mainframes, connected to LANs14.
The results of the throughput measurements of these examples of
the classical solution are the basis on which the merits of the
solutions described in the subsequent chapters will be
discussed.

For the TP4/CLNS case, the measured throughput generally
ranges from seven hundred kilobits per second to one megabit per
second, over a ten megabits per second Ethernet or token bus
local area network.

For the TCP/IP implementations, the results roughly vary
from one to three megabits per second, over a ten megabits per
second Ethernet local area network.

III.5. Analysis of the classical solution.

There are some problems with the classical solution, in case
of TPDU loss. When a TPDU is lost, the retransmission timer

12. A COlll)lete description of TCP can be found in [RFC-793].
13. A cOlll)lete description of TP-4 can be found in [IS0-8073].
14• The detailed results of these tests.may be read in [PERFORMANCES].

38

The classical solution

expires after the timeout delay. At this moment, the
transmission restarts from the first non-acknowledged DATA-TPDU.
The next CONTROL-TPDU cornes at least one RTD later. And, within
this RTD time, DATA-TPDUs are retransmitted whether there were
already correctly received or not. So for a single lost TPDU,
there can be several unneeded DATA-TPDUs retransmission, leading
to poor effectiveness.

This problem of effectiveness is also shown on figure III.4.
height DATA-TPDUs have been transmitted by the transport agent
of A. But in fact only six of them were really required for an
effective transfer:

- the first transmission of the DATA-TPDUs with
sequence numbers from 1 to 5,

- the retransmission of the DATA-TPDU with sequence
number 2.

A numerical value of the effectiveness of this transfer can be
computed as the ratio of the amount of required DATA-TPDUs by
the amount of actually transmitted DATA-TPDUs. In this case,
this effectiveness measurement would be 6/8, or 75%.

Two different kinds of effectiveness can be analysed:
- the local effectiveness, concerning the DATA-TPDUs

inside the SOS region at the moment the TPDU is
lest,

- the global effectiveness, concerning the transfer of
the entire data.

The local effectiveness is mainly function of the rate of DATA
TPDUs emission and the RTD value. The minimum amount of
retransmitted DATA-TPDUs is in fact the product of these two
values. The global effectiveness will be mainly function of the
rate of TPDU losses and the local effectivenesses when these
TPDUs are lost.

It is interesting to analyse the origins of TPDUs loss, and
the impact of the different classes of loss on the global
effectiveness of the transfer. Two reasons for loosing TPDUs
were already encountered in the trivial solution: first, the
network layer sometimes drops a TPDU15 , when one of its routers
in congested; second, a transport agent discards a TPDU when the
latter fails the integrity checking16 • But in the classical
solution, a third reason for loosing TPDUs appears, as the
result of three facts:

A transport agent may continuously receive TPDUs.
- Each TPDU requires some processing time to be

treated.
- Processing time is a finite resource,

These lead to a threshold on the rate of TPDU treatment. And
when a transport agent receives TPDUs faster than it can treat
them, it has nothing else to do than dropping some of them. An

15. This has been discussed in the paragraph 1.4.
16 • This has been discussed in paragraph 11.2, under the title 11Dealing with datagram corruption".

39

The classical solution

example of such a situation would be materialised by an entity
running on a very fast host and transferring data to an entity
running on a very slow host.

When the loss of TPDUs comes from the discarding of a
corrupted TPDU, there is no real problem, as this can be
considered as an unusual event. It leads to a momentary poor
effectiveness, but on the long term, it has no impact on the
global effectiveness of the data transfer.

The true problem cornes when TPDUs are lost due to congestion
of one router of the network layer, or to the congestion of the
transport agent of the receiving entity. In this case, the
transport layer reacts to the congestion by restarting the data
transmission from the failing DATA-TPDU. But this does not
solve the congestion problem in any way, and it is very likely
that another TPDU will soon be lost due to congestion, and so
on, and so on: this is an endless loop. And thus all along the
time, the global effectiveness of the transfer will stay low.

Dr. Van Jacobsen has imagined a solution to this problem.
In his scheme, the transport agent of the sending entity does
not retransmit the entire transmission window after a timeout,
but instead it only retransmits the first failing DATA-TPDU.
When this DATA-TPDU gets acknowledged, the two next
unacknowledged DATA-TPDUs are retransmitted, then a group of
four DATA-TPDUs, and so on until the entire transmission window
can be transmitted at once. This scheme is known as the 'slow
start algorithm' 17. The name of this scheme cornes from the fact
that it is also interesting to use it for the very first DATA
TPDUs of the data transfer.

The conclusion of this analysis is that there is no way to
achieve an optimal end-to-end throughput with the classical
solution. If there is no congestion resolution scheme present,
all the network bandwidth can be used, but sometimes with poor
efficiency. On the other hand, all simple congestion avoidance
schemes will be similar to Dr. Jacobsen's one, in the sense that
they will keep the transmission window small, thus preventing
the transport agent of the sending entity from continuously
transmitting DATA-TPDUs. Thus a simple congestion avoidance
scheme will lead to a waste some part of the network bandwidth.

III.6. Conclusion.

The classical solution meets its requirements, in the sense
that it is a simple solution to improve the throughput of the
trivial solution. Except for the transmission window one, all
concepts are only evolutions of those used in the trivial

17• The interested reader may refer to [TCP-2] for a COff1:)lete description of the slow-start algorithm.

40

The classical solution

solution. These two characteristics of simplicity and good
throughput have lead this solution to be the currently most used
one, with TCP and TP-4.

The further problem is that this classical solution only
offers a good throughput, but not an optimal throughput. With a
congestion resolution scheme, some resources are wasted because
they are not used; and without such a scheme, some resources are
also wasted because they are mis-used.

so there is a need to find another solution for the
transport layer design, which use all the available resources,
but in a more effective way.

41

Chapter IV:

An improved design.

1v.1. Aims of the improved design.

The aim of this improved design is to enhance the classical
solution, in a way to allow a better end-to-end1 throughput.
This will be achieved by meeting both following goals:

- to have a high transmission rate between the
transport agents of the sending and the receiving
entities,

- to have a high global effectiveness in this
transmission.

As shown in its analysis, the classical solution can only meet
one of these goals at a time. It is very uncommon for it to
meet both of them, especially when the network latency is long,
when the network is heavy loaded, or when this network
frequently corrupts datagrams2 •

The high transmission rate between both transport agents
will be achieved by:

- never stopping the transport agent of the sending
entity transmitting DATA-TPDUs before it has reached
the end of its transmission window,

- making the transmission authorizations reflecting
only buffering capacities of the transport agent of
the receiving entity.

From the analysis of the classical solution, it is rather
manifest that the high global effectiveness requirement will be
achieved by:

upgrading the local effectivity when a DATA-TPDU is
lost,

- keeping low the rate of DATA-TPDU losses.

1. In other words: entity·to·entity.
2. See paragraph 111.5.

42

An i""roved design

IV.2. Prinoiples of the improved design.3

* The seleotive aoknowledgement meohanism.

In the go-back-N scheme, the problem of poor local
effectiveness when a DATA-TPDU is lost is due to the unneeded
retransmission of several DATA-TPDUs. This comes from the fact
that, with a cumulative acknowledgement, the transport agent of
the receiving entity does not send any information toits peer
about the state at its end of the DATA-TPDUs inside the "non
acknowledged part" of the transmission window.

On the very opposite, one could imagine a scheme where each
CONTROL-TPDU the transport agent of the receiving entity
transmits toits peer carries a list of all DATA-TPDUs it has
received so far. This acknowledgement mechanism is referred to
as the 'selective acknowledgement' mechanism.

One problem with the selective acknowledgement scheme is the
choice of the implementation of this list of received DATA
TPDUs. This implementation must lead to:

- a concise representation of the list, for an
effective use of the available network bandwidth,

- an easy handling of this list by both transport
agents, for an effective use of the available
computing resource.

Two good compromises for such an implementation are:
- the list of all ranges of the sequence numbers of

received DATA-TPDUs,
- the sequence number of the first missing DATA-TPDU,

the sequence number of the last received DATA-TPDU,
and a bitmap describing the state of all DATA-TPDUs
within the range defined by this pair of sequence
numbers.

But there are other more annoying problems with this scheme.
The first one is the choice, for the transport agent of the
receiving entity, of the right moment to transmit the CONTROL
TPDU carrying the selective acknowledgement. And the second one
is the choice, for the transport agent of the sending entity, of
the right moment to retransmit a non-acknowledged DATA-TPDU.

* The inadequaoy of the retransmission on timeout soheme.

With a separate timer associated to each transmitted DATA
TPDU, at the transport agent of the sending entity end, a
retransmission on timeout scheme may be handled with ease. The
timeout delay would be chosen in respect to the current
estimation of the RTD, as well as to the scheme used for the
CONTROL-TPDUs transmission decision. But this solution is

3• A c°""lete description of the i""roved design may be read in [NETBLT].

43

An i~roved design

totally inadequate, as handling a separate timer for each
transmitted DATA-TPDU would consume too much processing time on
the host running the transport agent of the sending entity4 •

It is possible to imagine an extension of the go-back-N
scheme which would use selective acknowledgements. A timer
would be associated to the first non-acknowledged DATA-TPDU, and
all the rules described in figure III.4 would be used5 , with the
only difference that the process responsible for the
transmission of the DATA-TPDUs would skip all acknowledged ones.
But this scheme mainly leads to two annoying problems.

- First, the transport agent of the receiving entity
regularly transmits CONTROL-TPDUs, which have a
respectable size. This can consume a non negligible
part of the network bandwidth.

- Second, when applying the third rule of figure
III.4, it is very hard to compute an appropriate new
timeout delay, as it depends on the moment a
previous DATA-TPDU was transmitted.

So, for using a selective acknowledgement scheme, there is a
need for other retransmission mechanisms than the classic
retransmission on timeout one.

• The periodic resynchronization scheme.

An interesting substitute solution is to alternate periods
of DATA-TPDU transmission and periods of state
resynchronization. When using this scheme, it is up to the
transport agent of the sending entity to take all decisions
involving this state resynchronization.

First, the transport agent of the sending entity chooses
some point in the data stream to be transmitted. Such a point
is called a 'resynchronization point'. Then DATA-TPDUs are
transmitted until this point is reached. But during this
period, no acknowledgement at all is generated, and sono DATA
TPDU retransmission is carried out.

When the resynchronization point is reached, the DATA-TPDU
transmission stops and the resynchronization procedure is
performed. The latter consists of the transport agent of the
sending entity to:

- ask the transport agent of the receiving entity for
an acknowledgement,

- to retransmit all the non-acknowledged DATA-TPDUs,
- to repeat the two preceding steps until all DATA-

TPDUs before the resynchronization point are
acknowledged.

4• Such a problem was already encountered in paragraph 111.2.
5• With NlJII C0rr4)Uted from the content of the CONTROL-TPDU.

44

An iqiroved design

When both transport agents are resynchronized, the transport
agent of the sending entity chooses the next resynchronization
point, and the next DATA-TPDU transmission period starts.

Figure IV.1 illustrates this mechanism. The transport agent
of entity on port 'ps' of host 'hs' transmits a message to the
transport agent of entity on port 'pd' of host 'hd'. This
message has to be split into four DATA-TPDUs, which have
sequence numbers from 6 to 9. DATA-TPDUs with sequence numbers
6 and 9 are correctly transmitted, but DATA-TPDUs with sequence
numbers 7 and 8 are lost by the network layer. A request for
resynchronization is associated to the DATA-TPDU with sequence
number 9. So, on reception of this DATA-TPDU, the transport
agent on hast 'hd' transmits a CONTROL-TPDU mentioning, among
other things, the list of all DATA-TPDUs to be retransmitted
(that is to say, those with sequence numbers 7 and 8). So the
transport agent of host 'hs' retransmits both missing DATA
TPDUs, with an other request for retransmission associated to

Tran■port
Agent of
Ho■t 'HS'

- Figure IV.1 -
The periodic resynchronization scheme.

Network Layer

PS Crcs

PS Crc 7

PS Crc 8

PS Crc 9

PS Crc

PS Crc 7

PS Cree

PS PD 0 Crc

45

Tran■port
Agent of
Ho■t 'HD'

An improved design

the DATA-TPDU with sequence number 8. Then a CONTROL-TPDU
stating that all DATA-TPDUs have been correctly received is
transmitted by the transport agent of host 'hd'.

The step where the transport agent of the sending entity
asks its peer an acknowledgement is worth a detailed analysis.
The fact that the transport àgent of the sending entity requests
an acknowledgement is an information that must be transferred,
in a TPDU, to the transport agent of the receiving entity6. The
problem is that this TPDU is subject to all network problems
described in paragraphs I.4 to I.7, and so the principles of the
trivial solution7 must be applied. In fact the TPDU carrying
the request for an acknowledgement will have to be retransmitted
on timeout until the acknowledgement itself is receiveda.

An important issue is the choice of the synchronization
point. As a matter of fact, when the transport agent of the
sending entity reaches such a point in the strict application of
the above scheme, there is no more new DATA-TPDUs transmitted
before all preceding DATA-TPDUs are acknowledged. Soit can be
interesting to choose as a synchronization point a 'natural'
one: that is to say a point where the transport agent of the
sending entity would have stopped transmitting DATA-TPDUs.
There are two such natural points:

- the end of the transmission window,
- the end of a user message9 •

But in fact, there is no real reason to stop the DATA-TPDU
transmission while a resynchronization takes place. And so when
a resynchronization point is reached, the transport agent of the
sending entity may perform two simultaneous tasks:

- to resynchronize all DATA-TPDU preceding the
resynchronization point,

- to transmit DATA-TPDUs until the next
resynchronization point.

And with this new evolution of the solution, some more arbitrary
resynchronization points may also be chosen.

• The retransmission on demand scheme.

Another interesting substitute solution is often referred to
as the 'retransmission on demand' scheme. Here are its
principles.

The transmitted sequence of DATA-TPDUs is no more considered
by both transport agents as a simple sequence of DATA-TPDUs, but

6. This could be done by raising a flag, say <RESYNC>, in the Flags fields of the lest transmitted DATA·
tPDU; or by issuing some king of special purpose packet, say RESYNC·TPDU •

• They have been discussed in paragraph 11.2.
8• After a given nuii>er of unsuccessful retransmissions, the transport agent of the sending entity may
aecide that there is a problem with the network layer and may start an exceptional procedure •

• Assuming that there is often a significant delay between the deliveries of two successive user messages
to the transport layer, for a single data stream.

46

An i"1)roved design

as a sequence of blocks of DATA-TPDUs. This is implemented with
a new identifying scheme for the DATA-TPDUs, where each DATA
TPDU is identified by the two following numbers:

- the sequence number of the block the DATA-TPDU
belongs to,

- the sequence number of the DATA-TPDU, relative to
the block it belongs to.

So, in each transmitted DATA-TPDU, the former sequence number
field is replaced by two new fields which respective values are
those just described. Furthermore, for the transport agent of
the receiving entity to exactly know the content of each
transmitted block, all DATA-TPDUs also indicate in one of their
fields the number of DATA-TPDUs their block is composed of.

In its segmentation of the transmitted data stream into
blocks, the transport agent of the sending entity always ensures
that it will be able to transmit all the DATA-TPDUs of any block
in a single burst. A good policy which conforms to this
constraint is to separate each user messages from the others.
So a single user message could be eut into a sequence of fixed
length blocks and a last block for the remaining part of the
message.

Figure IV.2 shows an example of this kind of packetization.
Entity A delivered its transport agent a message which is
destinated to entity B. This message is to be packetized into
seven DATA-TPDUs, and the protocol specifies the maximal block
size to be four DATA-TPDUs. So the message to be transmitted is
divided into two blocks: the first block contains the first four
DATA-TPDUs, and the second block the three remaining ones. on
this diagram, the fields of the DATA-TPDUs are expressed in the
following order:

- the source and destination port fields,
- the block sequence number field,
- the block size field,
- the DATA-TPDU sequence number field, relative to the

block,
- the data field,
- the checksum field.

The detection of lost DATA-TPDUs can then be performed by
the transport agent of the receiving entity. The latter can be
aware of the fact that no DATA-TPDU within a block is lost when
it receives the last missing DATA-TPDU that belongs to this
block. On the other hand, it is also able to detect that a
DATA-TPDU is lost within a block when the two next conditions
meet:

- it has no yet received that DATA-TPDU,
- it has not received any DATA-TPDU of that block for

'a long time'.
This comes from the fact that the transport agent of the sending
entity transmits all DATA-TPDUs of a block in a single burst: so
all these DATA-TPDUs are due to be received by the transport
agent of the receiving entity in a 'short' period of time. In

47

Tran■port
Agent of
Ho■t 'HS'

An improved design

Network Layer

PS PD 1 4 3 Data,.3 Crc1.3

PS PD 1 4 4 Data1.4 Crc1.

- Figure IV.2 -
The packetization of a user message

into blocks of DATA-TPDUs.

Tran■port
Agent of
Ho■t 'HO'

fact, an adequate value for the 'long time' mentioned above can
be estimated in regard to the following statement: the preceding
received DATA-TPDU of that block may have been transmitted by
the network layer with a short latency, and the expected one may
have been transmitted with a long latency. So this 'long time'
has only to take into account the estimation of the variations
in the network latency. And, as it had to be done in the RTD
case, this estimation is to be based on measures of preceding
values of these variations.

When all DATA-TPDUs of a block are received, or when the
timer associated to this block expires, the transport agent of
the receiving entity transmits a selective acknowledgement for
that block (not for the entire stream). At the transport agent
of the sending entity end, when a selective acknowledgement for
a block is received, all DATA-TPDUs marked as missing in that
block are retransmitted, in a single blast. The same algorithm

48

S . ç C1-J f\- ~ é-,-1(.

_,,A'°)~ -~<) .

Erra. t u.rn. _

The last modification of the pagination of this text has
lead to an error on page 49. The printed figure is not figure
IV.3 but another copy of figure IV.2. Here is the correct one.

Tran111port
A;ent cf
Hoat 'HS'

- Figure IV.3 -
The retransmission on demand scheme.

Network Layer

PS PD 1 4 1 Data1., Crc1.,

PS PD 1 4 2 Data1.2

PS PD 1 4 3 Data1.:s

PS PD 1 4 4 Data1.4

PS PD 1 1001 Crc

PS PD 1 4 2 Da_ta,.2

PS PD 1 4 3 Data,.3

PS PD 1 1 1 1 1 Crc

Tran111port
A;ent cf
Hoiat 'HD'

An i~roved design

may be repetitively used to detect DATA-TPDUs which get lost
during a retransmission and to request once again their
retransmission, until all DATA-TPDUs of that block are correctly
received.

The fact that the transport agent of the sending entity
immediately retransmits missing DATA-TPDUs on reception of a
selective acknowledgement can be viewed as the response to a
request for the retransmission of these DATA-TPDUs. This is the
reason why this scheme is referred to as the 'retransmission on
demand' principle.

This retransmission on demand principle is illustrated by
figure IV.3. For the communication between entity on port 'ps'
of hast 'hs' and the entity on port 'pd' of host 'hd', the
transport agent of host 'hs' has just received a transmission
authorization for the black with sequence number one. This
block consists of four DATA-TPDUs, with relative sequence

Tran■port
Agent of
Ho■t 'HS'

PS

PS

PS

PS

- Figure IV.3 -

The rè ransmission on demand scheme.

Net ork Layer/

49

f /
/

Tran■port
Agent of
Ho■t 'HD'

An illl)roved design

numbers from one to four. On the first transmission of the
entire block, only DATA-TPDUs with relative sequence number one
and four are received, and the two other DATA-TPDUs are lost by
the network layer. After some delay, the timer associated to
this block at the receiving end expires, and so the transport
agent of host 'hd' transmits a CONTROL-TPDU carrying a request
for the retransmission of DATA-TPDUs two and three from the
block with sequence number one. On reception of this TPDU, the
transport agent of 'hs' immediately retransmit these two DATA
TPDUs, which this time are correctly delivered to the transport
agent of host 'hd'. As soon as the latter has received these
DATA-TPDUs, it transmits a CONTROL-TPDU carrying the
acknowledgement for the entire block with sequence number one.
For the CONTROL-TPDUs of this figure, only their acknowledging
partis explicitly represented: a first field indicates which
block the CONTROL-TPDU acknowledges, and a second one is a
bitmap reflecting which DATA-TPDUs of that block were actually
received.

This scheme works very well when at least one DATA-TPDU of
every block is received by the transport agent of the receiving
entity. But there is a problem if no DATA-TPDU of a given block
is received. In this case, the transport agent of the receiving
entity does not even know that the DATA-TPDUs of that block were
transmitted, and soit is notable to transmit any demand for
the retransmission of the entire block. This problem is solved
by using the retransmission on timeout scheme at the block
level: if, some time after the last DATA-TPDU of a block is
transmitted, no acknowledgement for that block is received, the
transport agent of the sending entity retransmits the entire
block.

But there is an other problem coming with the above
solution, as one of the following statements is true when the
timer for the retransmission on timeout of the entire block
expires:

- No DATA-TPDU of that block was received during the
preceding transmission of the block.

- The selective acknowledgement the transport agent of
the receiving entity delivered to the network layer
got lost.

It is rather evident that the probability of the loss of the
single TPDU carrying the acknowledgement is far much higher than
the probability of the loss of all DATA-TPDUs used to transmit
the block10. The worse case arises from the loss of an
acknowledgement requesting no retransmission at all: the entire
block has been correctly received, but it is entirely
retransmitted. The conclusion is that the retransmission on
demand scheme is very sensitive to the loss of CONTROL-TPDUs.

10, Ass1.111ing that a block consists of several DATA·TPDUs.

50

An i~roved design

so, to meet the requirements of the improved design11, there
is a need for implementing supplementary mechanisms alongside
the retransmission on demand scheme:

- to enhance the chance of delivery of CONTROL-TPDUs,
- to moderate the unneeded retransmissions in case of

CONTROL-TPDU loss.

* The flow control between transport agents.

The above mechanisms dealt with upgrading the local
effectiveness of the TPDUs exchange in case of DATA-TPDU loss.
The second objective is to lower the rate of TPDUs loss.

It has been shown that a high rate of TPDUs loss is caused
by some congestion12:

- of the route between both transport agents,
- of a transport agent itself.

This congestion occurs when a transport agent transmits TPDUs
faster than a threshold rate, which can be referred to as the
'congestion rate'. This congestion rate can be defined as the
maximal rate at which the network and the peer transport agent
can treat DATA-TPDUs. In fact, the problem of lowering the rate
of TPDUs loss is a problem of congestion avoidance, and this
problem of congestion avoidance is a problem of flow control
between transport agents: the transport agent of the sending
entity must be required not to transmit DATA-TPDUs with a higher
rate than the congestion one.

In the classical solution, the only mechanism limiting the
transmission of TPDUs is the transmission window13 one. But it
is not sufficient: a transmission window only binds the amount
of DATA-TPDUs to be transmitted, and not the rate at which they
can be transmitted. It can be objected that the transmission
authorizations are received by the transport agent of the
sending entity with a given rate, and so that this rate of
window authorization reception indirectly limits the
transmission rate. This deduction is quite approximate, and to
be more accurate, the transmission authorizations bind the
average rate of DATA-TPDUs transmission, but not any instant
rate. And nothing prevents from pitches in the transmission
rate, with instant transmissions rates far higher than the
congestion one.

An illustration of this problem is depicted on figure IV.4.
A transport agent receives, every five seconds, a transmission
authorization for thirty DATA-TPDUs. But nothing prevents it
from transmitting these thirty DATA-TPDUs within a single second
and than waiting for four seconds. The left graph shows the
progression of the amount of transmitted DATA-TPDUs, in function

11. These requirements have been discussed in paragraph IV.1.
~~- This has been discussed in paragraph 111.5 •

• This has been described in paragraph 111.2.

51

~150
Cl

[!:120
"tJ
~ 90
-~ 60
C

~ 30

An i~roved design

----- Expected Behaviour Possible Annoying Behaviour.

.; 30 -0
Il:: 24
C
0

18 .ii ..
............... ,-----,,.-- 'ë 12 ..

0

. .,, . .,,
:-'

,----:,,-

..

5 10 15 20
Elapsed time (in seconds).

C
f 6 1-

0
25

- Figure IV.4 -

.
~ ~ -- : :---: : -- : : ---r-~ -- :
.
··--·--·--·--·--

0 5 10 15 20 25
Elapsed time (in seconds).

The transmission rate control using window authorizations.

of the elapsed time. The right graph shows the instant
transmission rate, in function of the elapsed time. In both
graph, dashed lines represent what could have been expected, and
solid lines represent what can really happen.

A primitive aspirant as a solution to the above problem is
based on the following consideration: an instant transmission
rate is nothing else than an average transmission rate
calculated for an infinitesimal period of time14 • So, a
solution, for the transport agent of the receiving entity to
control the flow of DATA-TPDUs its peer transmits, would be to
send shorter transmission authorizations at a higher rate.

But this solution is not satisfying for two reasons. First,
it would boost the traffic of CONTROL-TPDUs. This interferes
with all the efforts made to lower this traffic, which consumes
a considerable part of the available network bandwidth for a
non-effective purpose. Second, it would only control the flow
between transport agents for the first transmission of the DATA
TPDUs, and would not help during the retransmission of missing
ones. As a matter of fact, the transmission authorizations only
deal with the DATA-TPDUs to be transmitted for the first time,
and all the ones to be retransmitted corne as a supplement. This
is sometimes referred to as an 'out-of-band retransmission'.

14 • The instant transmission rate can be viewed as the derivative of the amount of transmitted DATA·TPDUs,
function of the elapsed time.

52

An i~roved design

• The rate-based flow-control.

The primitive solution described above indicates at least
one requirement for a good flow control between transport
agents: the transport agent of the sending entity must
explicitly use a rate control mechanism when transmitting DATA
TPDUs. Furthermore, it must transmit all DATA-TPDUs using the
chosen rate, whether these DATA-TPDUs are transmitted for the
first time or not. This is sometimes referred to as the 'in
band retransmission' mechanism.

Now, as the transport agent of the sending entity explicitly
controls its transmission rate, the transport agent of the
receiving entity can have an easy control on this transmission
rate. It can do so by only telling its peer the rate at which
it wants the DATA-TPDUs to be transmitted. This information can
be carried in a new field of the CONTROL-TPDUs the transport
agent of the receiving entity transmits toits peer15. At the
other end, the transport agent of the sending entity would
choose as its transmission rate the one mentioned in the last
CONTROL-TPDU it received.

The next question for the transport agent of the receiving
entity is then: what is the appropriate transmission rate to
expect? The theoretical response is: a rate which is lower than
the congestion rate, but very close toit. But the problem is
that the transport agent of the receiving entity does not know
the value of this congestion rate. A good practical response to
the question is to dynamically adjust the transmission rate
using the two following rules:

- when DATA-TPDUs are regularly lost, decrease the
transmission rate,

- if no DATA-TPDU has been lost for a while, increase
the transmission rate.

The justification of the first rule is: DATA-TPDUs are regularly
lost when the transmission rate is higher than the congestion
one, so the expected transmission rate has to be decreased. The
reason of the second rule is: no DATA-TPDU is lost when the
transmission rate is lower than the congestion one, and so
increasing the expected transmission rate makes it closer to the
congestion one. The application of these two rules makes the
transmission rate vary just below the congestion rate, as shown
on figure IV.5.

The set of all these elements, that is to say:
- using an explicit transmission rate for transmitting

DATA-TPDUs,
- performing in-band retransmission of lost DATA

TPDUs,

15 • This information cen be expressed as the transmission rate itself (an amount of packets per period of
time), or as the 'inter·TPDU gap' (en amount of time).

53

Q) ...,
0

a::
C
0

ëii
(/)

E
(/)

C
0

1-

An ill1)roved design

Elapsed time.

- Figure IV.5 -
The progression of the expected transmission rate.

Congestion
Rate.

Requested
Rate.

- making the transmission rate lower than the
congestion rate, but close toit,

is often referred to as the 'rate-based flow control' mechanism.

There is a major problem when implementing this transmission
rate. The transport agent of the sending entity will have to
wait for a little period of time between each DATA-TPDU
transmission operation. It will have to do so by using a timer
of the operating system. And the problem is that the required
delays are often smaller than the granularity of those operating
system driven timers.

To circumvent this annoying problem, most transport
protocols implementing rate-based flow-control do not control
the transmission rate of isolated DATA-TPDUs, but the
transmission rate of short bursts of DATA-TPDUs. So, the
information to control the transmission rate, which is included
in each CONTROL-TPDU the transport agent of the receiving entity
transmits toits peer, is composed of two values:

- the burst size, expressed as a quantity of DATA
TPDUs,

- the burst transmission rate, expressed as the
quantity of bursts to be transmitted each period of
time, or expressed as a delay between each burst
transmission.

For example, here is a situation where a transport agent has
found that:

- it can treat a thousand DATA-TPDUs every second;

54

An i~roved design

- it has buffering capacity for ten DATA-TPDUs16;
- bursts of ten DATA-TPDUs can be transmitted by the

network layer, without leading to any congestion
situation.

Instead of instructing its peer to transmit a thousand DATA
TPDUs every second, it can instruct the latter to transmit a
hundred of bursts of ten DATA-TPDUs every second. The advantage
is that the transport agent of the sending entity will be
allowed to use timers with a granularity in the range of a
hundredth of a second instead of a thousandth of a second.

IV.3. Examples of the improved design.

The three main examples of transport protocols using this
improved solution are NETBLT, VMTP and XTP. They all corne from
the DOD world.

• NETBLT and the improved design.

Historically, the NETwork BLock Transfer protocol (NETBLT) 17
was the first transport protocol for which the improved design
was implemented. In fact, NETBLT was the first transport
protocol explicitly designed for bulk data transfer, using
network routes with very long latencies and/or heavy loaded
networks.

NETBLT uses the selective retransmission on demand scheme.
It views the data stream to be transmitted as a sequence of
blocks of DATA-TPDUs. Each block of DATA-TPDUs is known as a
'buffer' in the articles about this transport protocol. The
receiving NETBLT transport agent transmits its transmission
authorizations on the buffer basis: when there is buffering
space for a new buffer, a special purpose CONTROL-TPDU known as
'GO(NJ 1 1s, is transmitted to the peer NETBLT transport agent.
The positive acknowledgement for all the DATA-TPDUs of a single
buffer is known as a 'OK(NJ', and the demand for the
retransmission of some DATA-TPDUs of a buffer is known as a
'RESEND[NJ'.

NETBLT uses the rate-based flow control mechanism, at the
burst level. In each CONTROL-TPDU is included a 'burst size'
and a 'burst rate' values.

16. A buffer for storing received DATA-TPDUs between the moment they are received and the moment they can
be treated, not the buffer for storing data between the moment a DATA-TPDU is treated and the moment its
y,ta part is delivered to the destinating entity •

• A description of NETBLT design may be read in [NETBLT], and the specification of this protocol may be
i8und in [RFC-998] •

• N is the sequence nurber of this buffer.

55

An iq>roved design

NETBLT uses a very ingenious scheme to deal with the high
sensitivity to CONTROL-TPDUs loss. It could be described as a
cumulative acknowledgement scheme with high redundancy in
transmission. All CONTROL-TPDUs (Gos, OKs and RESENDs mixed up)
have got increasing sequence numbers. Each DATA-TPDU contains a
field reflecting the higher sequence number of the received
CONTROL-TPDUs. And each time a new CONTROL-TPDU is to be
transmitted, all non-acknowledged ones are retransmitted, all
packed into a single large CONTROL-TPDU.

• VMTP and the improved design.

The Versatile Message Transaction Protocol (VMTP} 19 is a
transaction-oriented transport protocol, especially designed for
the implementation of the client/server model.

In VMTP, the communication between two entities is
asymmetric, with a client entity having a sequence of
transactions with a server entity. This transaction model is
depicted in figure IV.6. Each transaction is composed of a
'request' message generated by the client entity and destinated
to the server one, and a 'response' message transmitted back to
the client entity20 • One of the requirements of VMTP is that
these messages must be transmitted with a high throughput. This

- Figure IV.6 -

The transaction IIIOdel of VMTP.

1

1 Request 1
1

Client Server

.,.._-----1l Response 1
1

19• The specification of VMTP may be read in [RFC-1045].
20 • This is the basic IIIOdel of a transaction in VMTP. Other IIIOdels exist, such a transaction with a
request but no response, or the server a group of entities instead of a single one, etc.

56

An i"1)roved design

last point of view motivated its creators to use the improved
design described in this chapter.

Each message may be up to four megabytes large, and is
viewed by VMTP as a sequence of 'packets groups'. Each packets
group is sixteen kilobytes long, except the last one, which may
be shorter. Each such packets group may be transmitted as
several DATA-TPDUs, simply called 'packets'.

The acknowledging scheme is quite a bit elaborate, with many
implicit acknowledgements, cumulative acknowledgements and
retransmission on demand. The simplest case occurs when no
packet at all is lost: in this case there is no CONTROL-TPDU
transmitted for acknowledgement purpose. Instead, the
acknowledgement is implicit, in the sense that the next
message21 acknowledges the entire current one. On the other
hand, when some packets of a packets group are missing, the
receiving VMTP transport agent requests their retransmission,
just as it has been described in the preceding paragraph. The
only difference is that a request for the retransmission of some
packets of a packets group also acknowledges all the preceding
packets groups. And so this request is interpreted by the
sending VMTP transport agent as some kind of 'selective-go-back
N': the requested packets are retransmitted, as well as all
subsequent packets groups.

The justification of such an acknowledging scheme is that in
the context of the transaction model, most of the messages are
expected to be shorter than sixteen kilobytes. In this
particular case, every message is transmitted as a single
packets group, and so the acknowledging scheme virtually becomes
a bare retransmission on demand one.

VMTP also uses the rate-based flow control scheme. But it
uses the basic approach of that strategy: the transmission deals
with the packets, and not with bursts of packets. Each request
packet mentions the expected inter-packet gap for the
corresponding response message, and each response packet
mentions the expected inter-packet gap for the next request
message.

Also, VMTP makes no effort to insure the delivery of
requests for retransmission. Instead, it minimizes the traffic
overhead in case of loss of such a request. When the
retransmission timer of the sending VMTP transport agent
expires, only one packet of the first non-acknowledged packets
group is retransmitted, with a particular bit set in the Flags
fields. The bit is referred to as the 'APG bit' 22 • On reception
of this packet, the receiving VMTP transport agent immediately
transmits back the adequate retransmission

21, The response corresponding to a request, or the next request following a response.
22 • For Acknowledge Packet Group bit.

57

An iqiroved design

request23 • on reception of this request only, the sending VMTP
transport agent actually starts a possible retransmission.

* XTP and the improved design.

The express Transfer Protocol (XTP) 24 is a brand new
general-purpose transport protocol for the DOD world. The goal
of its creators is to make this protocol the successor of TCP.
For that reason, XTP addresses all the questions raised by the
use of TCP. And soit implements many new functionalities and
its design has the aim of high throughput for data transfer. It
is no surprise that XTP includes the improved design.

XTP uses the rate-based flow control. It does so just as
NETBLT: the receiving XTP transport agent computes an expected
transmission rate for short bursts of DATA-TPDUs. And each
CONTROL-TPDU it transmits toits peer includes a burst size and
a burst rate values.

XTP also uses the periodic resynchronization scheme, with
selective acknowledgements and retransmissions. When it has a
user message ready to be transmitted, and some transmission
authorization to transmit it, it starts the transmission of all
DATA-TPDUs of that message. In the last DATA-TPDU of the
message, a special bit is set25 . on reception of this DATA
TPDU, the resynchronization takes place as described in this
chapter.

IV.4. Results of the improved design.

The creators of NETBLT have already implemented and tested
an implementation of their transport protocol. The main problem
is that this implementation uses as underlying hardware:

- not extremely fast computers: PC-ATs,
- a very poor Ethernet adapter, with only a single

transmission register, used for both emission and
reception.

The consequence of the use of such an Ethernet adapter is that
many datagrams get lost, as it becomes deaf to the network while
it has a datagram ready to be transmitted.

Nevertheless, the results of NETBLT sound very good, with a
measured throughput varying in the range 1.1 to 1.8 megabits per
second26. That is quite satisfying, in comparison to the

23 • A positive acknowledgement is then generated as a 'retransmit no packet from the packets group nl.llber
~'• where N is the sequence nl.lrber of the last received packets group.
4• A coq>rehensive specification of XTP may be read in [XTP-1].

25. ln the XTP articles, this bit is referred to as the <SREQ> bit, for Synchronize REQuest. 26 . The interested reader may find in [PERFORMANCE] the commented results of these throughput
measurements.

58

An illl)roved design

results of TCP, one to three megabits per second, for
implementations running in far better hardware environments.

NETBLT has also been tested in a large range of difficult
network conditions27 • An example of such a difficult condition
is:

- the sending and the receiving NETBLT transport
agents are located on two separate LANs,

- these two LANs are connected by IP routers
communicating via a satellite channel.

This environment leads to a very long RTD. The results of these
tests show that NETBLT behaves very well on these extreme
conditions: there is no drastic drop for the measured end-to-end
throughput.

The results of VMTP are of no interest to the current
chapter, as this transport protocol also uses the solution
described in the next chapter: VMTP is in fact a lightweight
transport protocol.

Just the same comment can be made about XTP: it is also a
lightweight transport protocol. Furthermore, this protocol has
been so recently defined that there is not yet any working
implementation of it. And so, there is not yet any throughput
measurements carried out for XTP.

So the following analysis of the improved design is only
based on NETBLT results.

IV.5. Analysis of the improved design.

From its principles, the improved solution does not restrain
itself in the use of the available network bandwidth.
Nevertheless, the end-to-end throughput is measured far below
the network bandwidth.

It has already been stated earlier in this document that the
throughput of the transport layer is dependant of the most
constraining resource from two limited ones:

- the bandwidth of the network connecting the
communicating hosts,

- the processing capacity of the communicating hosts.
And the available network bandwidth is nota constraint.

The conclusion of all these observations is: the available
computing resource of communicating hosts is the real constraint
for the transport layer to achieve high throughput.

27• The COIJlllete description of these tests, and their results can be read in [RFC-1030].

59

An iq>roved design

IV.6. Conclusion.

The improved design really helps the throughput not to
drastically decline in the case of very long network latency and
in the case of near congested networks. On the other hand, it
leads to almost no improvement in the favourable cases. The
reason is: the throughput of the transport layer is in fact only
limited by the computing capacity of the communicating hosts.

so, in a way to improve the throughput of the transport
layer, there is a real need to find solutions that rationalize
the use of the available processing resource.

60

v.1. Aims of this solution.

Chapter v:

The liqhtweiqht transport

protocols concept.

The aim of the lightweight transport protocols concept is to
provide new protocol designs, which can 'naturally' lead to
implementations requiring less computing resources for each
transmitted TPDU. As it has been shown in the preceding
chapter, only such implementations allow high end-to-end
throughputs.

The lightweight transport protocols try to meet their aim by
being much simpler than the classical ones. This protocol
simplification can come from:

- the simplification of the associated state
machinery,

- the restriction on the number of different TPDUs
types,

- the use of a common format for each TPDUs types.

An interesting analogy can be made with the RISC1 processors
technology. These processors only offer a simple instructions
set to the program designers. But the creators of this kind of
processors expect that this simplicity can allow very fast
implementations. This situation is also true for the
lightweight transport protocols: their creators believe their
simplicity to vouch for very fast implementations.

v.2. First case study: VMTP.

A first case, which study is very interesting in the scope
of the lightweight transport protocol concept, is the design of

1. Reduced Instruction Set C~ter.

61

The lightweight transport protocols concept

VMTP2 • It is a very innovative one, that rejects all
traditional layering principles with a massive use of recursion.
And it is this recursion technique that leads to a minimum
number of TPDU types, and to a simple state machinery.

VMTP uses two basic TPDU types when handling the normal
condition for a transaction between a client entity and a server
entity. The first TPDU type is the 'request packet', used for
the transmission of a request from the VMTP transport agent of
the client entity to the one of the server entity. The second
TPDU type is the 'response packet', used for the transmission of
a response from the VMTP transport agent of the server entity to
the one of the client entity.

* The early versions of VMTP.

In the early versions of VMTP, six more TPDU types where
used, for handling all exceptional situations. And the only
existence of these numerous TPDU types was leading to a pretty
complex state machinery.

A first example of such a TPDU type was the one used for
requesting the selective retransmission of some TPDUs from a
request or a response. In the VMTP terminology, it was known as
the 'retransmission-request packet'. An error recovery is quite
a natural aspect of any transport protocol. So the existence of
this 'retransmission-request packet' had no real impact on the
complexity of the state machinery of VMTP. Nevertheless, this
TPDU type existed, and so the VMTP transport agents had to
implement a function identifying and processing such particular
TPDUs.

The second example of these extra TPDUs types has an
annoying impact on the complexity of the protocol state
machinery. These TPDUs types are linked to the addressing
scheme used by VMTP. The latter is quite uncommon, due to the
fact that VMTP addresses are totally independent of network (IP)
addresses3.

When using such addresses, there is a need for an address
resolution scheme. It must allow any VMTP transport agent to
bind any VMTP address to the IP address of the corresponding
VMTP transport agent.

For this purpose, there were two special TPDUs types in the
early versions of VMTP: the 'entity-information-request packet'
and the 'entity-information-response packet'. When a client
entity delivers a request toits VMTP transport agent, and when

2• VMTP has been briefly described in paragraph IV.3, under the title 'VMTP and the iq>roved design'. lts
~aq>lete specification may be read in [RFC-1045] •

• ln VMTP, the transport address is no more c~sed of a network address and a local discriminant. lt
is an iq>rovement
of those fixing TCP's lack of functionality.

62

The lightweight transport protocols concept

this request is destinated to a server entity this transport
agent does not know the corresponding network address of4, the
following procedure was executed: an 'entity-information
request' was multicasted to the group of all VMTP transport
agents5 , until an 'entity-information-response' was received.
The originating network address of this response was in fact the
searched network address, as only the VMTP transport agent of
the server entity could have transmitted this response.

The use of this address resolution scheme, and so the use of
these two special purpose TPDU types, leaded to a more complex
state machinery for the transport agent of a client entity.
This complexity is depicted by figure V.1: the first state of a
transaction is 'sending request' or 'sending entity-information
request', according to the fact that the transport agent knows
or does not know the IP address of the server entity. There is
a first little state machinery associated to the need for a
retransmission on timeout of the entity-information-request

- Figure V.1 •
The c~lexity of the early VMTP state machinery.

The transaction is
Associated te a
Server with an
Unknown address.

Sending
Entity-lnformation 14----

Request
C:
0

C:
:;;

0 0
'+- 'iii

..., E
0 :::, 1...

.!!.! 0 0
"C E Q) '+-

E C:
C: fi)

Lù C: i= 1
e ~

1- :;;
C

Lù

Waiting
Entity-lnformation -

Response

"C
Q)
> ·a;
()
Q)

c:::
Q)
en
C
0
a.
Q)

c:::

The transacti on is
a Associated to

Server with a
Known Addre SS.

Sending
Request

1-4-

C:
0

'+- 'iii ...,
0 :::,

.!!.! 0
"C E Q)

E C fi) w C: i= e
1-

Waiting -
Response

Response + Received

4• On the other hand, a VMTP transport agent always knows which network address to transmit a response to,
~s this network address cornes with the associated request •

• VMTP is built over the 111.1lticast extension of IP. This network protocol is similar to IP, except for
the fact that a destinating network address can be a 'hosts group address'. ln this case, the network
layer tries, also on a best-effort basis, to deliver a copy of this datagram to each host which is a
member of the destinating group. Multicast·IP is specified in [RFC-1030].

63

The lightweight transport protocols concept

packet until the corresponding entity-information-response is
received, and then the basic state machinery associated to the
handling of the basic VMTP transaction.

* The lightweight versions of VMTP.

A significant simplification of VMTP cornes from a single
remark: each exceptional situation is solved by having some kind
of a transaction with the VMTP transport agent of the peer
entity, or with the group of all VMTP transport agents.

Soit is very helpful to consider that there is a special
VMTP entity associated to each VMTP transport agent. This
entity, in the VMTP terminology, is referred to as the 'VMTP
manager'. Its characteristic is that it is the only entity
which have an access to the data structures of its local VMTP
transport agent.

The transport service of VMTP is then provided in the
following fashion. The VMTP transport agents insure the
handling of normal transactions, only using the 'request packet'
and the 'response packet'. They handle all unusual situations
by simply calling their local VMTP manager. The VMTP managers
perform the handling of these exceptions, by:

- having transactions ones with the others,
- by manipulating the data structures of their local

VMTP transport agent.

This situation is quite strange, as it totally violates all
the basic layering concepts, as shown on figure V.2. The
transport layer provides its service:

by having its transport agents communicating using a
transport layer protocol,

- by using the network layer service,
- by using the transport layer service through a

customized RPC presentation (this is the recurrent
aspect of VMTP).

Furthermore, a VMTP manager is a user of this transport layer;
but it does not consider the latter as a black-box: it even
manipulates its internal data structures.

The substitution of the former 'retransmission-request
packet' is performed as follows. When a VMTP transport agent
finds its the proper time to ask for the retransmission of some
packets of this message, it simply calls its VMTP manager. The
latter then has a transaction with the VMTP manager local to the
sending VMTP transport agent. This transaction simply asks this
VMTP manager to make its local VMTP transport agent retransmit

~

"USEs"
Logical

Relationship.

The lightweight transport protocols concept

Applications

RPC/VMTP

VMTP

IP

LLC

MAC

- Figure V.2 -
The use of recursion by the VMTP protocol.

the missing packets6 • It does so by updating the state
information for that message, and by sending a signal to the
VMTP transport agent. The retransmission is then performed.

This is represented in figure V.3:
(1) The client entity 'C', running on host 'HC', requests its
VMTP transport agent to have a transaction with the server
entity 'S', and delivers the appropriate request message.
(2) The VMTP transport agent of host 'HC' transmits this request
message to the VMTP transport agent of host 'HS', where the
entity 'S' runs.
(3) The VMTP manager of host 'HS' requests the VMTP manager of
host 'HC' to make its local VMTP transport agent retransmits the
missing parts of the last request message from entity 'C' to
entity 'S'.
(4) The VMTP transport agent of host 'HC' retransmits these
missing parts of the request message to the VMTP transport agent
of host 'HS'.
(5) The VMTP transport agent of host 'HS' delivers the request
message to entity 'S'.
(6) The entity 'S' delivers the corresponding response message
toits local VMTP transport agent.
(7) The VMTP transport agent of host 'HS' transmits this
response message to the VMTP transport agent of host 'HC'.
(8) The VMTP transport agent of host 'HC' delivers the response
message to entity 'C'.

6• This transaction uses one of the optional models of VMTP transactions: the datagram one, where a
request is transmitted once and then never retransmitted, and where there is no expected response.

65

The lightweight transport protocols concept

Client
Entity 'C'

CD
~
....................

\ @ ...

VMTP
Manager

VMTP
Transport

Agent

Network

Host 'HC'

- Figure V.3 -
The retransmission requests in VMTP.

VMTP
Transport

Agent

Server
Entity 'S'

®
~

..
. ... ®

VMTP
Manager

Host 'HS'

The substitution of the former address resolution protocol
occurs as follows. When a VMTP transport agent has to transmit
a request to a server entity it does not know the IP address of,
it simply asks it toits local VMTP manager. To provide this
information, the latter has a transaction7 with the entire group
of VMTP managers, requesting all the information concerning the
searched server entity. The unique response comes from the VMTP
manager local to the VMTP transport agent servicing this entity.
And the originating IP address of this response is in fact the
IP address of the above server entity.

This is represented in figure V.4:
(1) The client entity 'C', running on host 'HC', requests its
VMTP transport agent to have a transaction with the server
entity 'S', and delivers the appropriate request message.
(2) The VMTP manager of host 'HC' requests the group of all VMTP
managers for the informations about entity 'S'. This is done
using a VMTP request message.
(3) The VMTP manager of host 'HS' responds these informations,
using a VMTP response message.

7. This transaction uses one of the optional models of VMTP transactions: the rrulticast with only one
response expected one, where the request is rrulticasted to a group of server entities and then
retransmitted on timeout, until a response cornes from one of these server entities.

66

Client
Entity 'C'

q)
!
'· ··

\··················®··

VMTP
Manager 1

The lightweight transport protocols concept

VMTP
Transport

Agent

Network

VMTP
Transport

Agent

Server
Entity 'S'

®
l
1

.....................

•···®·················/

VMTP
Manager

....................... 1 ----H-i >---E-------+-+----···················· _
1

_ l······ .. ········ .. ··---1-+------+----{

Host 'HC' Host 'HS'

• Figure V.4 ·
The acldress resolution scheme of VMTP.

(4) The VMTP transport agent of host 'HC' transmits this request
message to the VMTP transport agent of host 'HS' (as host 'HS'
runs 'S').
(5) The VMTP transport agent of host 'HS' delivers the request
message to entity 'S'.
(6) The entity 'S' delivers the corresponding response message
toits local VMTP transport agent.
(7) The VMTP transport agent of host 'HS' transmits this
response message to the VMTP transport agent of host 'HC'.
(8) The VMTP transport agent of host 'HC' delivers the response
message to entity 'C'.

From the description of these two examples, the essential
characteristics of the lightweight design of VMTP can be pointed
out. The VMTP managers exchange messages with exactly the same
semantic as the one of the messages the VMTP transport agents
exchanged in the earlier versions of the protocol. But the
underlying objects to transport these messages have moved from
special purpose packets to the basic request and response ones.
In fact, in the new design of VMTP, all protocol handling is
realized with these two basic TPDU types. Furthermore, these
two TPDU types have exactly the same format, with the same
fields, which have the same semantic. They can only be
distinguished thanks to the value of a single bit in the header,

67

The lightweight transport protocols concept

indicating the packet type. Soit can be considered that there
is a single TPDU type, with two variants:

- the first variant, which is transmitted from the
VMTP transport agent of a client entity to the one
of a server entity, is the request packet,

- the second variant, which is transmitted in the
opposite direction, is the response packet.

A consequence of this reduction of the quantity of TPDU
types is a radical simplification of the VMTP state machinery.
As a matter of fact, some special purpose TPDU types incurred
some new states and state transitions8 • In the lightweight
version of VMTP, these special purpose TPDU types have been
replaced by embedded transactions. And so their associated
parts in the VMTP state machinery have vanished: they are in
fact handled by other occurrences of this simplified VMTP state
machinery.

V.3. A second case study: XTP.

An other interesting transport protocol, in the scope of the
lightweight transport protocols study, is the case of XTP9. The
service this protocol provides is far more traditional than the
one VMTP offers: it transports user messages on a full-duplex
connection established between two entities. Even if this
situation does not lead to quite obvious simplifications, the
creators of XTP claim this transport protocol is a lightweight
one.

First of all, all XTP-PDUs types have the same layout
composed of three parts:

- the common header, which is twenty-four bytes long,
- the segment, which is a multiple of height bytes

long,
- the common trailer, which is sixteen bytes long.

As they names indicate, the common header and the common trailer
have exactly the same format for all XTP-PDUs types. A single
field in the common header, called the CMD field, has got a
value identifying the type of a XTP-PDU. Only the content of
the remaining part of this XTP-PDU is function of its type: the
segment.

Second, an important aspect of XTP is the length of all
parts of a XTP-PDU. They are alla multiple of height bytes.
This is very interesting for the implementation purpose. All
three XTP-PDU parts are aligned at height bytes boundaries1°.

8• An exllff1)le, depicted by figure V.1, has been described earlier in this paragraph.
9• XTP was briefly described in paragraph IV.3, under the title "XTP and the new design". An overview of
f3is protocol can be read in [XTP-2], and its COl1l)lete specification can be found in [XTP-3] •

• So the segment part may sometimes be ended with some padding bytes to reach the next eight bytes
boundary.

68

The lightweight transport protocols concept

So they are handled by efficient softwares, even when the host
uses a processor with general-purpose registers up to sixty
four bits.

A counter-example will illustrate the importance of this
aspect of XTP. If the parts of the XTP-PDU were aligned on two
bytes boundaries, for example, there would be some problems with
the implementation destinated to some processors. As a matter
of fact, some thirty-two bits processors11 can only read or
write:

- four bytes long words which are aligned on four
bytes boundaries,

- two bytes long words which are aligned on two bytes
boundaries,

- one byte long words which are aligned on one byte
boundaries.

For processing the TPDUs with this processor, only sixteen bits
long registers can be used, as the parts of the TPDUs are
aligned on two bytes boundaries. Such an implementation misses
the chance of using the thirty-two bits long registers, which
would allow faster computing, as they would incur about half as
much interactions with the memory.

V.4. Results of the solution.

* The results of VMTP.

Sorne throughput measurements have been carried out for VMTP.
Their results are very interesting for the analysis that will be
done in the next paragraph.

The tested implementation of VMTP uses a ten megabits per
second Ethernet LAN, and may be executed on a large range of
computers, from workstations to mainframes. The results of the
throughput measurements roughly vary between two and four and a
half megabits per second12.

* The results of XTP.

There are no available throughput measurements for the
protocol XTP so far. The reason of that fact is quite simple:
at the current time, no implementation of this protocol is
operative.

11 . Sorne RISC (Reduced Instruction Set C~ter) processors for instance). 12 . The coq,lete results of these measurements can be read in [PERFORMANCE].

69

The lightweight transport protocols concept

v.s. Analysis of the lightweight protocols concept.

The results that have been announced in the preceding
paragraph lead to some comments.

There is an undisputable throughput improvement, from TCP to
VMTP. In general, TCP implementations allow throughputs ranging
from one to three megabits per second, and VMTP ones allow
throughputs ranging from two to four and a half megabits per
second. Furthermore, it must be pointed out that VMTP
implementations are still very young in comparison to those of
Tcp13. So the throughput breakthrough between these transport
protocols is likely to become more and more radical.

On the other hand, it must also be noticed that, at this
point, VMTP uses two solutions that TCP does not:

- VMTP uses the improved design,
- VMTP is a lightweight transport protocol.

And, in the throughput improvement from TCP to VMTP, it is very
difficult, if not impossible, to evaluate the benefit introduced
by the sole lightweight protocol concept.

But, eventually, a concluding observation is that even for a
lightweight transport protocol, all the available network
bandwidth is not yet used to transfer user messages. so, in
other words, such protocols also lead to implementations
consuming too much computing resources.

V.6. conclusion.

The lightweight transport protocol concept meets its aims,
as it helps reducing the processing overhead. Nevertheless,
this reduction is really notas important as it could be
expected: the end-to-end throughput remains far beyond the
underlying network bandwidth. The only explanation of this half
failure is: the computation overhead does not corne from the
protocol processing itself, but from the processing of functions
which are peripheral to the protocol processing.

So, to design a really fast implementation of a transport
agent, there is a need to focus with more care on these
peripheral functions than in the transport protocol definition.

13. TCP is now about fifteen years old, but the latest versions of VMTP specifications are quite recent.

70

Chapter VI:

Optimized implementations.

VI.1. Aims of the solution.

The aim of the optimized implementations is to reach higher
throughputs with a transport protocol without changing its
design. As the key constraint is the available processing time
for handling exchanged TPDUs, the solution is to focus on the
implementation of the transport agents, for the purpose of
optimizing it.

Two general tendencies exist in optimization: the macro
optimization and the micro-optimization.

The aim of micro-optimization is to look for the best
implementation of an algorithm, once the algorithm has been
chosen. The procedure to realize it is to search for the best
data structure to handle, and the best program to compute the
algorithm. The most important aspect of this process is that
every detail must be reviewed, even the deepest one.

A characteristic of micro-optimization is that it must take
into account all the interesting distinctive features of the
underlying computing system. Because of this property of
'subordination to the actual machine', the micro-optimization
aspect will not be discussed in this document.

The aim of macro-optimization is to look for the most
appropriate algorithm to realize a given task. At this level,
the decisions are not based on 'machine-dependant' issues, but
often on conclusions read in the theory of the algorithmic
complexity. This is the tendency of implementation optimization
that is discussed in this chapter.

71

Optimized implementations

VI.2. Some optimization principles.

Here cames an analysis of some of the most representative
macro-optimization principles. The aim is not to be exhaustive,
but to show that there is a great difference between a
traditional implementation of the specification of a transport
protocol and an optimized one.

In fact, only three such optimization principles are
analyzed here. They are the 'template header caching', the
'fast TCB look-up' and the 'packet prediction'.

• The template header caching principle.

This first analyzed macro-optimization principle concerns
the emission of DATA-TPDUs, and has as aim to avoid redundant
computing. Furthermore, it does not only involve the
implementation of the transport agent, but the one of the
network agent as well, or to be more exact it influences the
cooperation between these two pieces of software1 •

The general algorithm used to emit a part of a user message
into a DATA-TPDU is the following one:

- prepare a DATA-TPDU, by filling in all its fields
with the appropriate values,

- deliver this DATA-TPDU to the network layer.
Avery dumb implementation of the transport agent would use this
algorithm right to the letter. It would build the new DATA-TPDU
in some free memory space, by computing in sequence the value of
each of its fields and storing the results at the appropriate
memory locations. It would then deliver this newly built DATA
TPDU toits network agent, mentioning the memory location of
that DATA-TPDU as well as the network address of the destinating
transport agent.

For a slightly better implementation, one could notice that
a non-negligible part of the TPDU header is common to all
emitted DATA-TPDUs. For example, the Source Port and
Destination Port fields2 are the same for all DATA-TPDUs of a
given connection3. The value of the Flags field is also common
to almost all DATA-TPDUs: it only changes in some of them to
reflect some exceptional conditions such as 'this is the end of
the message' or 'an acknowledgement is requested'. In most
transport protocols there is also a field mentioning the version
number of the protocol, and another one indicating the TPDU

1• A comprehensive description of this principle may be read in [TCP-11, in its eighth section, named
110Utput processing: an implementation trick".
2• They are sometimes transport addresses instead of port nuibers in newer transport protocols such as
rTP. This has been discussed in the preceding chapter •

• For the remaining part of this docunent, the word 'Connection' will be used in its general sense. lt
can be an explicitly established comection in the case of connection-oriented transport protocols, or an
implicit connection for two entities regularly exchanging messages using a connection-less transport
protocol.

72

Optimized implementations

type. The value of these fields are obviously constant for all
emitted DATA-TPDUs. In fact, only two fields vary from DATA
TPDU to DATA-TPDU: the sequence number and the checksum ones,
and all the other ones are either constant or only vary in some
exceptional conditions.

So a rational implementation of the specification of the
transport protocol must take this aspect into account. For each
connection, a template header could be computed and then stored
in the data structures of the transport agent. In this
template, all the constant fields could be initialized with
their appropriate value, and all the fields that only vary from
timè to time could be initialized with their default value. The
DATA-TPDU preparation step would then be replaced by the
following ones:

- Block-copy the template header into the new DATA
TPDU.

- Complete the new DATA-TPDU by filling the non
initialized fields, and by overriding those which
value must be different from the default one.

It is rather clear that the second algorithm is faster than
the first one. Initializing a field with a constant value can
be viewed as moving that value from one memory location to the
other. So initializing in sequence all fields with a constant
value can be viewed as moving in sequence several parts of the
memory. But all these parts have very little lengths: eight or
sixteen bits in most cases, very sporadically thirty-two bits.
If the processor of the machine uses general-purpose registers
of sixteen, thirty-two or even sixty-four bits, a single copy
instruction of the block-copy operation can thus move several
field values at once: this is faster than separately moving
them.

This optimization only becomes really interesting if its
underlying reasoning is also applied more deeply, namely: to the
network layer. As a matter of fact, the work of the network
layer is:

- to prepare a datagram, which consists of adding a
header to the TPDU,

- to take a routing decision, which consists of
choosing one of the local link layer agents and a
destinating address on that link,

- to deliver the destinating address and the datagram
to the chosen link layer agent.

For a given connection between two entities, the minimal
aspect of the network layer ensures that most of the fields of
the added header have the same values for all transmitted TPDUs.
Some of these fields only vary from time to time, according to
the routing decision, for example. These routing decisions
themselves are also due to give the same results for long
sequences of TPDUs. So using the traditional model of the
transport agent delivering a sequence of TPDUs to the network

Optimized iq>lementations

agent, each one independent from the others, leads to some
processing overhead. It would be interesting to cache, for each
connection the transport agent handles, the information the
network agent computes, for the purpose of not recomputing it
for each transmitted TPDU of that connection. But the problem
is that the minimal network ~ayer does not know this concept of
connection.

The solution to circumvent this problem is to redefine the
physical interface between the transport agent and the network
agent. The logical interface between these two modules is
composed of the N-DATA.REQUEST and N-DATA.CONFIRMATION
services4 • In traditional implementations of the network agent,
both services are mapped to a single function, say NetSend.
Here is what the specification of this function looks like:

Function header:
- NetSend{NAdr,Data,Status).

Input parameters:
- NAdr, a network address,
- Data, an array of bytes.

Output parameters:
- Status, an integer.

Specification:
- Netsend tries to send the content of Data to the

host with the network address NAdr. If it manages
to send the appropriate datagram, Status is set to
TRANSMITTED; in the opposite case, Status is set to
FAILED.

A more interesting implementation of the network agent would
offer two separate functions, say NetTemplate and NetFastsend.
Here is what their specifications could look like:

Function header:
- NetTemplate(NAdr,Template).

Input parameters:
- NAdr, a network address,

output parameters:
- Template, a compound data structure.

Specification:
- NetTemplate saves in Template the template network

header and the routing decision for all datagrams
that would have to be transmitted to the host with
the network address NAdr, as well as a timestamp.

Function header:
NetFastsend(NAdr,Template,Data,Status).

Input parameters:
- NAdr, a network address,
- Template, a compound data structure,
- Data, an array of bytes.

4• This has been discussed in paragraph 1.1.

74

Optimized implementations

output parameters:
- Template, a compound data structure,
- Status, an integer.

Specification:
- NetFastSend first verifies if the information

contained in Template is still valid5 • If it is not
the case, Template is recomputed. NetFastSend then
tries to send the content of Data into a datagram
built using the template header saved in Template,
and using the routing decision also saved in
Template. If it manages to send the appropriate
datagram, Status is set to TRANSMITTED; in the
opposite case, Status is set to FAILED.

From these specifications, it is clear that a call to the
function Netsend, or a call to the function NetTemplate followed
by a call to the function NetFastsend have just the same result.
And it is also clear that the algorithm:

NetSend(hd,tpdul);
NetSend(hd,tpdu2);
Netsend(hd,tpdu3);

and the algorithm:

NetTemplate(hd,template);
NetFastSend(template,tpdul);
NetFastSend(template,tpdu2);
NetFastsend(template,tpdu3);

are also equivalent for their results, but with the second one
faster than the first. so, a very good optimization of the
transport agent is to implement it over a network agent
providing functions equivalent to NetTemplate and NetFastSend.
For each transport connection, the appropriate template could be
stored in the data structures of the transport agent, and this
template used for each TPDU transmission.

But there is a problem with the solution of storing the
template transport header and the network template for each
connection a transport agent handles. This can consume a large
amount of memory. Soit would be more judicious to cache all
this information only for the most active connections. A good
cache management policy is the classical one, where only the
information for the few most recently used connections is
stored.

This scheme of 'template header caching' has a very
interesting property. It drastically reduces the consumption of
the computing resource for the TPDUs emission. But in fact, it

5• This can be done by COl11)8ring the timestamp of Template to the one associated to the lest modification
of the routing informations.

Optimized i~lementations

is generally admitted that the main source of computing overhead
is the TPDUs reception. This aspect is the concern of the two
other schemes presented in this paragraph.

• The 'fast TCB look-up' principle.

For each active connection it handles, a transport agent
must memorize some amount of information depicting the current
state of this connection. This information relative to a
connection is sometimes referred to as the 'transmission control
block' , or TCB6.

When a transport agent is delivered a new TPDU which
successfully passes the checksum verification, it has to process
this TPDU in regard to the current state of the corresponding
connection. To do so, the transport agent first needs to locate
the correct TCB in its data structures. It is clear that this
TCB location has to be very fast. The 'fast TCB look-up'
principle deals with the general organization of the TCBs table,
with the purpose of meeting the preceding requirement7.

Logically, each entry in the TCB table is identified by the
active connection it describes; and a connection is identified
by two communicating entities, a local one and a remote one.
Thus in practice, each entry in the TCB table is identified by
the transport addresses of this pair of entities8 • The TCB
look-up consists, for a transport agent which has just been
delivered a TPDU, to extract from the latter the transport
addresses of the involved entities, and to retrieve the
corresponding TCB in the TCBs table.

It is manifest that the general organization of this TCBs
table has an important effect on the amount of computing
resources the location of a TCB requires. As this TCB look-up
is a mandatory operation for each received TPDU, reducing its
computing resource consumption also helps restricting the
computing time associated to each received TPDU, and thus it
helps increasing the rate at which a transport agent is able to
treat TPDUs.

The worst organization for a TCBs table is in fact no
organization at all: a raw array of TCBs. In this case, the TCB
look-up is sequential: the searched identifier is compared to
the one of the first entry in the table, then to the one of the
following entry in the table, and so on until a match is found.
On average, half the entries of the TCBs table must be accessed

6• At least in the TCP terminology.
7• A COff1:>rehensive description of this principle may be read in [TCP-1], in its tenth section, named
"Checksuns and TCBs: the missing steps".
8• When a transport address is c~sed of a network address and a port nl.llber, the TCB identifier is
reduced to the network address of the remote entity, its port nl.llber, and the port nl.llber of the local
entity.

76

Optimized implementations

for each TCB look-up. This is a disaster for transport agents
handling a large amount of connections.

The first improvement cornes from the phenomenon of locality,
which can be explained by this fact: the activity of a
connection is far from being constant. This activity is in fact
concentrated on periods following the transmission of a window
authorization. And as a good transmission window policy
requires the generation of a window authorization only when a
substantial amount of buffering space is free at the transport
agent of the receiving entity end9 , these periods of activity
are few but intensive. For short, a connection is characterized
by successions of periods with very low activity followed by
short periods of very high activity. And for a transport agent
handling a reasonably low number of connections, the periods of
high activity of all connections corne in sequence.

So there is a great chance that relatively long bursts of
incorning TPDUs concerna single connection. Thus it is very
interesting to have a TCBs table with the rnost recently used TCB
sorted first. The look-up is once again sequential, but with
the property that the first entry in the table is often the
searched one. On the other hand, when the first TCB of the TCBs
table does not match, half the table must be accessed, on
average.

This solution is only valuable for transport agents handling
a reasonably low number of connections. The higher the nurnber
of handled connections, the higher the probability that periods
of high activity frorn different connections collide. In this
case, the preceding solution becomes as slow as the
unsophisticated sequential look-up. So there is a need to have
a solution which allows a fast look-up for several arnongst the
most active connections.

The ideal solution for a fast TCB look-up is then to
organize the TCBs table as a hashed table. This solution
consists of splitting the content of the TCBs table in a set of
subtables. Each TCB belongs to one of the subtables, according
to the result of a 'hashing' function applied toits identifier.
And each TCBs subtable is organized with its most recently used
TCB sorted first. The TCBs look-up consists then to apply the
same hashing function to the identifier of the searched TCB.
The result of the previous computation identifies the subtable
the searched TCB belongs to. This TCBs subtable is then
sequentially looked-up.

This solution is very fast for many reasons. First, if the
hashing function is well chosen, there is a great chance that
all the very active connections have their TCBs in separate
subtables. In this case, the price to locate a TCB is the one
paid for:

9. J. Postel describes such a good transmission window policy for TCP, in [RFC-793].

n

Optimized implementations

- the application of the hashing function,
- the access to the first TCB of the corresponding

TCBs subtable.
Second, if the searched TCB is not one of the most recently
used, the price to locate a TCB is the one paid for:

- the application of the hashing function,
- the access to half the entries of the corresponding

TCBs subtable, on average.

The conclusion is: a TCBs table organized as a hashed table,
using a well chosen hashing function and composed of a
reasonable number of subtables, is suited for a very fast look
up. This is particularly true for transport agents handling a
very large number of connections.

* The 'header prediction' principle.

The most interesting and promising improvement for the
implementation of a transport agent is also connected to the
TPDUs reception, and is often referred to as the 'header
prediction' principle10.

In a traditional implementation of the transport agent, a
received TPDU is processed independently from the other ones,
using the algorithm which is represented on figure VI.1, and
which is composed of four main steps:

- a verification of the checksum of the TPDU,
- a look-up for the TCB associated to the TPDU,
- a validation of the header of the TPDU, in regard to

the content of the corresponding TCB11 ,
- the real processing of the TPDU, in regard to the

content of the corresponding TCB.
This last step may be more refined, by isolating the two
fundamental logical steps it contains:

- the choice of the action to undertake with the TPDU,
that is to say, the choice of a subroutine,

- the real undertaking of the chosen action, that is
to say, the call to the chosen subroutine.

In physical implementation of the above algorithm, all steps are
not so clearly separated. For example, the validation of the
TPDU header and the choice of the action to undertake with the
TPDU are bath mixed up in a unique big 'decision tree', and the
undertaking of the chosen action is not always implemented as a
subroutine call. Nevertheless, this expression of the algorithm
used to process received TPDUs is suitable for the following
discussion.

10. A talk on header prediction has been given by Dr. Kanakia in [SLIDES], referring to unpublished work
ÎÎ Dr. Jacobsen •

• lt is generally aânitted that a transport protocol implementation IIKJSt be •conservative•. This means
that a transport agent is supposed to only transmit val id TPDUs, but is forbidden to suppose that the
TPDUs it is delivered are all val id ones.

78

Optimized i~lementations

Reveive TPDU

Volidote checksum

Perform action

- Figure VI.1 -
GNS of the traditional algorithm

for the processing of received TPDUs.

The problem with this kind of implementation is that it
misses some opportunities of anticipation. The definition of a
protocol leads to some 'highly probable' chainings of TPDUs.
So, when a transport agent sends or receives a TPDU, it can
sometimes predict what the next TPDU to be received for that
same connection will look like, at least for its header part.

Here is a non exhaustive list of such possible predictions:
- When a transport agent has received a DATA-TPDU

which is not the last one of the transmission
window, it can assume that the next TPDU to be
received will be the DATA-TPDU with the next
sequence number.

- When a transport agent has transmitted a CONTROL
TPDU with a new transmission authorization, it can
assume that it will soon receive the first DATA-TPDU
of the new transmission window.

- In the Go-Back-N scheme, when a transport agent has
transmitted the last DATA-TPDU of its transmission
window, it can assume that the next TPDU to be
received will be the CONTROL-TPDU acknowledging all
transmitted DATA-TPDUs.

- In the retransmission on demand scheme, when a
transport agent has transmitted the last DATA-TPDU
of a block, it can assume that it will soon receive
a positive acknowledgement for that block.

- In the retransmission on demand scheme again, when a
transport agent has transmitted a request for
retransmission, it can assume that the next TPDU to
be received is the first requested DATA-TPDU.

79

Optimized iq:,lementations

- In the periodic resynchronization scheme, when a
transport agent has transmitted the request for
resynchronization, it can assume that it will soon
receive a positive acknowledgement for all DATA
TPDUs that have been transmitted since the preceding
resynchronization point.

A more clever implementation of the transport agent can take
all these predictions opportunities into account. Whenever it
can assume that it will soon be delivered a given TPDU, a
transport agent can actually compute what will be the header of
that TPDU. It can also easily compute the location of the TCB
associated to that predicted TPDU, as it is currently using it.
Furthermore, the prediction itself also includes the action to
undertake with the predicted TPDU. These three informations,
that is to say the predicted header, its associated TCB and its
associated action, can be stored in the data structures of the
transport agent.

The new algorithm for the processing of received TPDUs is
shown on figure VI.2, where a new step is inserted between the
checksum validation and the TCBs table look-up. The latter
consists of scanning all TPDUs predictions. If the header of
the received TPDU matches one of the predictions, the

- Figure VI .2 -
GNS of the predicted algorithm

for the treatment of received TPDUs.

Reveive TPDU

Validate checksum

Perfonn action

80

Perfonn

predicted

action

Optimized Îlll)lementations

corresponding saved action is undertaken, using the saved TCB
location. On the other hand, if the header of the received TPDU
does not match any prediction, the traditional algorithm is
used.

This header prediction algorithm is very valuable at the
computing resource consumption point of view. This cornes from
the following fact. When a received TPDU was predicted, the
TCBs table look-up, the header validation and the action choice
steps are no more executed, at the cost of a look-up in the
header prediction table. And this look-up cost may be kept
minimal by choosing a proper organization for this header
prediction table. A hashed table, similar to the one of the
TCBs table, is such a proper organization. By keeping this
table reasonably short, the look-up is very fast.

The problem with the header prediction principle is to purge
all out-of-date predictions from the header prediction table.
This purge operations are necessary, as a prediction can
sometimes be erroneous and thus never be used, and as the header
prediction table must be kept short. A good solution is to
cache the predictions in a header prediction table with a fixed
number of entries. When a new prediction has to be inserted in
the table, a free entry is used, and when there is no more free
entry in the table, the new prediction replaces the oldest one.
So the erroneous predictions eventually get erased from the
header prediction table, which only contains the freshest ones.

Sorne experimentations of this header prediction principle
have been carried out. They show that memorising one or two
predictions for each connection leads to a quite good matching
ratio12 •

VI.3. Examples of the improved implementation.

About all important transport protocols have now a version
of their implementation which can be considered as an improved
one. But these versions are still of experimental interest:
none of them is yet commercially distributed.

As this idea of improved implementation is in fact in
competition with the lightweight design tendency, it is no
surprise that it started with the improvement of the classical
transport protocols implementations. The main one is the TCP
implementation of Dr. Van Jacobsen. It must also be noticed
that efforts were also made in the case of TP-4.

12. This has been stated in [SLIDES], by Dr. Kanakia.

81

Optimized i~lementations

But, as the results were concluding for these classical
solutions, these principles have also been extended to some
implementations of VMTP, which also uses the lightweight
transport protocol concept13.

VI.4. Results of the improved implementations.

In the case of TP-4, an improved implementation has been
built and tested. The results show a non-negligible
breakthrough in the measured throughput:

- the normal implementations allowed end-te-end
transmission rates in the range of seven hundred
kilobits per second to one megabit per second,

- the improved implementation allows end-to-end
transmission rates in the range of one point eight
to two point eight megabits per second.

But the most interesting result cornes from the optimized TCP
implementation of Dr. Van Jacobsen. It runs on Sun 3/60
workstations connected by a ten megabit per second Ethernet LAN.
The traditional implementation of TCP which is distributed with
this machine is already considered as a very performing one, and
allows an end-to-end throughput of three megabits per second.
But the one of Dr. Jacobsen allows an end-te-end transfer rate
of eight megabits per second, just in the same conditions.

VI.5. Analysis of the improved implementation principle.

The comparison of the results of the lightweight transport
protocols with those of these improved implementations lead to
the following observation: most improvements of the
implementations of the transport agents that lead to a real
throughput enhancement concern functions that can not be
considered as part of the actual protocol computing.

But this consideration does not mean that the lightweight
transport protocol is totally useless. It is only insufficient.
An illustration of that fact is the TCB look-up in the case of
XTP. The association of the XTP-PDUs to their corresponding
connection is not realized using any Source and Destination port
fields, but using a unique field called the Key field. The only
semantic of this field is: it must allow to identify which
connection the XTP-PDU belongs to. And this identifying value
could be the location of the corresponding TCB. Thus in XTP,
there is no need for a fast TCB look-up, and there is no such a
TCB look-up. This situation is depicted in figure VI.3.

13. This has been discussed in the preceding chapter.

82

Entity 'A'

XTP
Transport

Agent

TCIII table.

EB 4

l

Optimized implementations

Network

37

14

- Figure VI. 3 -

The Key field of XTP.

Entity 'B'

XTP
Transport

Agent

TC8I tllbla.

EB 7

.

Entities A and B have a connection. The transport agent of A
has stored the TCB of this connection in the entry number 14 of
its TCBs table. The transport agent of Buses the entry number
37 for the same purpose. So all XTP-PDUs the transport agent of
A transmits to the transport agent of B have their key field set
to 37, and all XTP-PDUs the transport agent of B transmits to
the transport agent of A have their key field set to 14.

But the interest of the improved implementations is that
they show the limited responsibility of the protocol itself on
the processing overhead. There are peripheral protocol
independent functions that must also be optimized.

VI.6. Conclusion.

The improved implementations principle shows a real
improvement in the end-to-end throughput. But it must also be
noted that even these implementations do not use all the
available network bandwidth.

83

Optimized implementations

The conclusion is: they are a first step towards really fast
transport protocol implementations. The computing overhead must
be more closely analyzed, in a way to find its real causes. New
implementations must then be designed, with the aim to eliminate
all the discovered sources of computing overhead.

Chapter VII:

The smart network adaptera.

VII.1. Aims of the solution.

The aims of the solution described in this chapter is to
find implementation principles, for the transport agents of a
transport protocol, which allow real high throughput. For this
purpose, there will be no limitation at all on the nature of the
proposed solutions: even hardware support will be studied.

The two preceding chapters highlighted an important aspect
of the ideal solution: it has to optimize the computing of the
peripheral functions or to avoid the use of such functions when
they can not be optimized. An audit of the computing overhead
all these functions generate must be taken into account, in a
way to choose the most important aspects to focus on.

VII.2. Principles of the solution.

* The sources of computing overhead.

Figure VII.1 reports the audit of the TPDU processing time
in the cases of two transport protocols: TCP and VMTP. These
results lead to some comments that highlight the real sources of
computing overhead.

The first observation is: the processing time closely
associated to the protocol driving accounts for only sixteen
percents of the total TPDU processing time in the TCP/IP case,
and for only eight percents in the VMTP case. All other entries
reflect protocol-independent processing times. First, the
measured reduction of the use of the processing resource for
driving the protocol itself illustrates that VMTP is really a
lightweight transport protocol. But these measurements also
explains the failing of the lightweight transport protocol

85

TCP/IP

Component

User-kernel move
Checksum
Device DMA
TCP/IP
Others
Unaccounted

The smart network adapters

VMTP

Processing Component
Time

13% Data movement
12% Kernel
20% Ethernet
16% Driver
30% VMTP

8% Checksum

• Figure VII.1 •
The audit of the TPOU processing time,

for TCP/IP and VMTP.

Processing
Time

40%
25%

15%
8%

10%

concept to achieve really high throughput: changing the protocol
definition only issues less than twenty percents of the
computing overhead.

The existence of the 'checksum' entry is inherent to the
sequential aspect of the processing. On TPDU emission, the
entire TPDU must be build, then its checksum must be computed,
then it must be moved to the network layer. On TPDU reception,
the entire TPDU has to be moved from the network layer, then its
checksum must be verified, then it can be processed. With a
possibility of parallelism, this entry can be suppressed, with
the checksum being computed while the transfer to or from the
network layer takes place.

In fact, the two main reasons of computing resource
consumption are:

- the data movements, for thirty-five to forty
percents of the total consumption,

- the operating system calls, for twenty-five to
thirty percents of the total consumption.

In a very primitive implementation, the all user data has to
be copied seven times to get from the source entity memory space
to the destinating entity memory space. This is depicted in
figure VII.2. The first copy occurs when the transport agent of
the sending entity builds the DATA-TPDUs it has to transmit: the
entire user message is progressively copied in the Data field of
these DATA-TPDUs. The second copy occurs when the network agent
of the sending host builds the datagrams it has to route: the
DATA-TPDUs are copied into the body of these datagram. The
third copy is caused by the network adapter, which implements on
hardware the lower layers of the communication stack: the
network agent of the sending host has to move all the datagrams
it has to transmit into this network adapter. The fourth copy

The smart network adapters

Sending host Receiving hast

Sending
Entity

Receiving
Entity

Transport
Agent

Transport
Agent

Network
Agent

• Figure VII.2 •
The seven copies of the user data

in a dlrli> iq,lementation of the transport agents.

Network
Agent

is the transmission of the frames including the datagrams from
the network adapter of the sending host to the one of the
destinating host. The fifth copy is the one of all datagrams
received by the network adapter of the destinating host to the
memory space of the network agent of that same host. The sixth
copy is the one of the TPDUs extracted from the received
datagrams, from the network agent to the transport agent of the
destinating host. The seventh and last copy is the one of the
Data field of these TPDUs to the memory space of the destinating
entity.

Better implementations of this communication stack allow
only five copies to transfer the user messages from the
originating entity memory space to the destinating entity memory
space. They avoid all unneeded copies of data inside the host
memory using the 'chained buffers' techniques. But five copies
are a minimum when working with network adapters only
implementing the physical and link layers:

- First, the datagrams to transmit over the network
medium must be entirely built before transferring
them to the network adapter: this incurs at least a
copy of the user data inside the sending host
memory.

- Second, these datagrams must be transferred from the
sending host memory to the sending host network

87

The smart network adapters

adapter, using some DMA1 facility, or block transfer
bus protocol.

- Third, these datagrams must be transferred in
frames, from the network adapter of the sending host
to the one of the destinating host.

- Fourth, these datagrams must be transferred from the
receiving network adapter to the destinating host
memory.

- Fifth, the user data part of the DATA-TPDU contained
in these datagrams must be copied to the destinating
entity memory space: this leads to at least one copy
of the user data inside the destinating host memory.

The important overhead incurred by the operating system
functions can easily be explained. Sorne such functions are
executed due to explicit calls from the software implementing
the communication stack, for the use of timers for example. The
problem is: the operating system is general-purpose. And so
these functions are undoubtedly not optimized for their
utilization by a communication stack·. But this not justifies
such a computing overhead.

The computing overhead due to the operating system mainly
cornes from its implicit use. Several functionalities of the
communicating stack must be implemented using processes that
sleep until a given event occurs. Here are some examples:

- a process responsible for the processing of incoming
datagrams must sleep until the network adapter
awakes it for the delivery of a new datagram,

- a process responsible for the retransmission on
timeout of a TPDU must sleep until its associated
timer expires,

- a process responsible for a rate controlled
transmission of TPDUs must sleep between burst
transmissions, waiting its associated timer to
expire.

The computing overhead problem cornes from the fact that another
process is running at the time a process is awakened. Thus the
operating system must execute a 'task-switching' to allow the
process to react to the event that awakened it. The problem is:
a task-switching operation is very time consuming2 • It is fair
that the cost of most of these task-switchings is distributed
over several TPDUs. But unfortunately, at least one context
switching is necessary for each transmitted TPDU: the one
awakening the process responsible of the processing of received
TPDUs on the host of the receiving entity.

1• Direct Memory Access, which allows a device connected to the host bus (a network adapter, for exafl1)le)
~o access the host memory concurrently with the host central processor •

• At Leest in regard to the time needed to realize the protocol·related processing of a TPDU.

The smart network adapters

• The smart network adaptera principle3.

To summarize the preceding analysis of the TPDU processing
time audit, the main overhead associated to a TPDU transmission
cornes from:

- a data copy inside the host memory of the sending
entity,

- a task-switching inside the host of the receiving
entity,

- a data copy inside the host memory of the receiving
entity.

These three overhead components are in fact all related to a
single functionality of the transport protocols: the
packetization of user messages into several TPDUs. And their
existence cornes from the fact that a host communicates with its
network adapter on the TPDU basis or, for the purpose to be more
accurate, on the datagram basis. If a host were communicating
with its network adapter on the transport user message basis,
all these overheads would immediately vanquish.

But such a network adapter would have to be far more
intelligent than the normal ones. If it realizes the
packetization of the user messages, it has also to realize all
the computing that cornes beyond this packetization:

- It has to build the actual TPDUs, including their
header and their checksum.

- It has to encapsulate these TPDUs into correctly
presented datagrams.

- It has also to deliver these datagrams to the link
layer part of the network adapter, with the correct
destinating link level address.

Furthermore, a transport agent is also designed to handle
several simultaneous connections, soit may sometimes have to
transmit several user messages from several different
connections at the same moment. It would be totally unthinkable
to enforce a sequential transmission of all these user messages.
And thus it would be required for a network adapter realizing
the user messages packetization to allow the simultaneous
transmission of several user messages. The conclusion is: such
a network adapter would also have to ensure the scheduling of
datagram transmissions. This scheduling can be very complex for
transport protocols using rate-based flow-control.

This kind of network adapters, which:
- packetize themselves the user messages,
- realize some additional computing relative to the

transport and network protocols,
- realize some additional computing relative to the

scheduling of the datagrams transmission,
are referred to as the 'smart network adapters'.

3• The justification of the need of these smart network adapters may be read in [NAB].

89

The smart network adapters

Beyond the suppression of the computing overhead associated
to the user message packetization by the host, the use of smart
network adapters lead to many other enhancements.

First, the additional functionalities these smart network
adapters must ensure are no more provided by the host itself:
some parallelization is incorporated to the protocol computing.
This can clearly offer some performance improvements.

Second, the adapter itself is totally dedicated toits task.
Thus its design can be optimized in that direction. For
example, it is up to this adapter to compute the checksum
protecting the integrity of each transmitted TPDU. It has
already been observed that this operation can be parallelized
with the operation of delivering the datagram encapsulating such
a TPDU to the link layer part of the adapter.

Third, for a transport protocol defining some rate-based
flow control, a smart network adapter can implement hardware
driven timers with the appropriate resolution. This solution
thus allows a transmission rate control at the TPDU level,
instead of at the burst of TPDUs level, as it had to be done in
the software implementations of the transport agents.

This solution of using smart network adapters is a brand new
one. And so there is not yet any stable solution in that
matter. Two entirely dissimilar approaches are currently being
studied, with VMTP and XTP. There are presented as case studies
in the two next paragraphs.

VII.3. A first case study: the NAB for the VMTP protocol.

The first interesting smart network adapter to study is the
Network Adapter Board {NAB). It has been designed to implement
the VMTP protocol for the VMP computer, a multiprocessor to be
operated using the V system4 •

The strategical decisions for the design of this smart
network adapter are the following ones:

- the NAB has only to ensure the packetization and the
transmission of the packets groups defined by the
VMTP protocol5 • The remaining aspects of VMTP are
to be implemented in the host itself.

- the NAB has to operate a traditional processor to
realize most its operations: there must only be
minimal hardware developments for the realization of
this board.

4• A c°""rehensive description of the NAB can be read in [NAB].
5• The concept of packets group used by VMTP has been defined in paragraph IV.3, under the title 11VMTP and
the iq,roved design". lts definition can also be read in [RFC-1045].

90

The smart network adapters

The motivation of the first decision is that the NAB device is
to be shared by several processors. If toc many functionalities
were defined for that board, there would be a risk that it
becomes the bottle-neck of the system. The result of the second
decision is a fast and easy development of the board, as well as
an important aspect of adaptability: a NAB for an other
transport protocol, or a NAB using an other LAN type, may be
quickly developed, based on an existing NAB.

To minimize the work performed by the NAB, the template
header principle is used6 • The part of the VMTP transport agent
which is performed in the host computes the template header to
use when transmitting the packets group, as well as the link
level destinating address. All these informations are
transferred to the NAB with the data part of the packets group
to transmit. The NAB packetizes this packets group into the
appropriate VMTP packets, using the header template it was
delivered. The only information the NAB has to add to this
template header is the position of the Data field of the VMTP
packet relative to the current packets group, and the
appropriate checksum value. When a VMTP packet is ready, it is
delivered to the link layer part of the NAB as well as the link
level destinating address the NAB was given.

All the logic associated to the handling of the state
machinery of a VMTP transaction is coded in software performed
by the host itself. The situation is also identical for the
VMTP managers: they are also implemented in the host itself. In
fact, the NAB can be logically viewed as a module defining two
functions of the implementation of VMTP: 'SendPacketGroup()' and
'ReceivePacketGroup()'. The physical operating of this NAB is
realized using the Universal Network Device Interface Protocol
(UNDIP)7.

With UNDIP, the logical use of the function
'SendpacketGroup()' is implemented by the transmission of a
structured message to the NAB. This message is referred to as a
Transmission Authorization Record or TAR. Its main fields are:

- the template packet header to be used,
- a description of the data to transmit in this packet

group, roughly: a pointer to this data,
- an interrupt mask.

The semantic of two first mentioned fields is straightforward,
from the description of the functionality of the NAB. The
interrupt mask commands the NAB when to interrupt the host when
sending the packet group. By requesting an interruption at the
end of the packets group transmission, the transport agent can
set up its timer for the retransmission on timeout of the entire
packet group, for example.

6• This concept has been discussed in paragraph Vl.2, under the title 11 tef1'4)late header caching".
7• A c~rehensive description of this interface protocol can be read in [UNDIP].

91

The smart network adapters

With UNDIP, the logical use of the function
'ReceivepacketGroup()' is also implemented by the transmission
of a structured message to the NAB. This message is referred to
as a Reception Authorization Record or RAR. Its main fields
are:

- the template packet header of the TPDUs that belong
to this packets group,

- a description of the buffer where to store the data
part of this packet group, roughly: a pointer to
this buffer,

- an interrupt mask.
The semantic of the first two fields is quite clear: they
describe which TPDUs to receive and where to store their data
part. The interrupt mask commands the NAB when to interrupt the
host during the reception of the described packets group. For
example, a VMTP transport agent can expect an interruption on
reception of the first TPDU of the described packets group and
another one on reception of the last TPDU of this same packets
group. The first interruption allows the VMTP transport agent
to set up a timer expiring when there is no more chance that
subsequent TPDUs of this packets group will be received. The
second one allows the VMTP transport agent to cancel the
preceding timer, and to process the now entirely received
packets group. If this timer expires before the second
interruption, the VMTP transport agent can cancel this RAR and
start the retransmission on demand procedure for that packets
group.

The use of these RARs and other UNDIP structured messages
provides a supplementary functionality to the NAB: it can play
the role of a firewall between the network and its hast. In
fact, the NAB only delivers its host the packets groups it was
authorized to. The garbage TPDUs are dropped by the NAB, and so
are also the TPDUs originating from unauthorized entities. In a
traditional software implementation of a transport agent, the
host must process all these TPDUs for taking the decision to
drop them. And if the rate of reception of these unwelcome
TPDUs were becoming too high, the transport agent would use all
the available computing resource to reject these TPDUs: the
normal activity of the hast would then be totally frozen.

The architecture of the resulting board is depicted in
figure VII.38. Its five main components are:

- the adapter bus,
- the central processor,
- the buffer memory,
- the host interface with its hast block copier,
- the packet pipeline.

The packet pipeline generates and checks the VMTP-level
checksum. It also performs encryption and decryption9 of the

8• This figure and its explanation corne from CNAB].
9• The reader is pleased to refer to CRFC-1045] to read the explanation of the existence of this
functionality at the transport Level.

92

t
V

Host Interface

Host block copier

l
Controller - --

-1
Buffer

Memory

The smart network adapters

Host Bus

N.A.B.
Packet Pipeline

Checkaum Encryption Network
Access

Logic Logic Controller

1
Bus

Processor

• F i gure VI I. 3 •

The architecture of the NAB.

-- --
Network

Link.

VMTP packets. These two operations are realized 'on-the-fly',
while transferring the VMTP packets to or from the network. The
hast interface ensures the communication between the hast memory
and the buffer memory of the NAB. The communication between the
hast memory and the hast interface is realized by the hast black
copier, using a burst-transfer bus protocol when such a protocol
exists for the hast bus. The buffer memory uses Video-RAM
chips, which allow fast random access (60 ns), and to very fast
sequential access (40 ns). This sequential access is used to
exchange blacks of data with the hast interface and the packet
pipeline10 • Finally, the on-board processor manages all the
above devices and processes some functions associated to the
protocol.

VII.4. A second case study: the Protocol Engine of XTP.

The second smart network adapter to be presented in this
chapter is the Protocol Engine (PE) for the protocol XTP. This
smart network adapter is to be built by a society named Silicon
Graphies, Incorporated. In fact, this society is also the
proprietary of the transport protocol XTP11 •

10 • So, the nunber of copies of the user data was already lowered by the use of a smart network adapter,
fnd furthermore the NAB ensures that the remaining copies are realized using the fastest existing means.
1• An overview of the XTP/PE project can be read in [XTP-3].

93

The smart network adapters

The strategic decisions for the realization of XTP/PE are
totally different from the ones that lead to the design of the
NAB:

- First, the XTP/PE must implement all functional
aspects of XTP, in a way to entirely free the
communicating hosts of transport protocol handling
considerations. ·

- Second, The XTP/PE is not to be architectured as a
special-purpose computer, but as a VLSI12 chip set.

The justification of these two decisions is the requirement to
allow the streaming of data at the raw network media rate. This
requirement can only be met if the processing of a received
packet can be achieved within the arrival time of the latter.
The creators of the XTP/PE think this is only possible with the
protocol entirely hard-coded in a VLSI chip set.

The initial performance goal of this smart network adapter
is in fact a throughput of a hundred megabits per second, which
corresponds to the bandwidth of the FDDI optic fibre network.
But the architecture of the XTP/PE has been chosen specifically
for the ability to scale up to the one gigabit per second level.

The general architecture of the XTP/PE smart network adapter
is depicted in figure VII.4 13 . The MAC IF circuit develops an
interface between the protocol engine subsystem and a MAC
implementation. The BUS IF circuit is an interface between the
protocol engine subsystem and the bus of its host. The BUF CNTL

- Figure Vll.4 -
The architecture of the XTP/PE.

1

to MA C logic

MAC
~ -IF

PE BUF
DRAM

CNTL CNTL

t BUS
'---- -DRAM IF

1 to Bus - Logic

12 • Very Large Scale of lntegration.
13• This figure and the corresponding explanation corne from [XTP-31.

94

The smart network adapters

circuit manages the data buffers, residing on DRAMs. To realize
the processing of the packet within its arrival time, this
circuit will have to access the DRAMs with a bandwidth three or
four times that of the MAC IF circuit. The last circuit, PE
CNTL, controls all the other ones, and contains the actual
implementation of XTP.

VII.S. The results of the smart network adaptera.

There is not yet any operational implementation of any smart
network adapters, as the idea is a very recent one.
Nevertheless, very detailed simulations were realized for the
NAB14 •

A first interesting simulation of the NAB concerns the use
of a MC68020 as the on-board processor. This is a widespread
processor, providing a computing capacity of two mips15. The
results show that an end-to-end throughput of about forty-five
megabits per second can be expected. They also indicate that
the rate of exchange of packets between two such NABs can reach
ninety megabits per second.

A second simulation supposed the NAB uses a AMD29000 as the
on-board processor. The latter is less commonly used than the
MC68020, but is far much faster, providing seventy mips as
computing capacity. The results show that two NABs can then
exchange packets with a rate of four hundreds and eight megabits
per second.

VII.6. Analysis of the smart network adapter concept.

The results of the simulation of the NAB smart network
adapter show that a very important improvement in the end-to-end
throughput. As a matter of fact, a software implementation of
VMTP allows a throughput ranging from two to four and a half
megabits per second16 . And the NAB implementing VMTP with a
widespread processor could offer a throughput that reaches
forty-five megabits per second. This is an improvement by a
factor of ten.

So the smart network adapters seem to be the ideal solution
to provide high throughputs for the transport protocol
implementations. And the next question is: do all transport
protocol fit an implementation using a smart network adapter

14 • The results of these sinulations were presented in [SLIOE], by Or. Kanakia.
15, Million of Instructions Per Second.
16, This has been discussed in the paragraph V.4, under the title "the results of VMTP".

95

The smart network adapters

such as the NAB? Or, to be more accurate: cana NAB be designed
for the classical transport protocol TCP? The response seems to
be negative, mainly for two reasons.

The first reason comes from the checksum computing. A non
negligible ~ource of performance improvement, in the NAB, comes
from some parallelization computing, expressed by the use of the
packet pipeline. The latter generates and checks the checksum
while it is transferring the packet to or from the network. But
this pipeline can only be used for a protocol with a trailing
checksum, and TCP has its checksum stored in the header.

The second reason is a more definitive one. TCP is not
specified to transmit a stream of user messages from an entity
to another one, but a simple stream of bytes. Nevertheless, the
entities using TCP logically exchange a stream of messages. In
a software implementation of TCP, there is no problem with this
situation:

- TCP collects in a buffer the data to be transmitted
for a given connection,

- when a sufficient amount of datais present in this
buffer, it is actually transmitted17,

- TCP also offers a service toits users, enforcing
the transmission of all the data present in the
above buffer18.

So, for a user to transmit its logical stream of messages, it
delivers this stream of messages to TCP, but enforce each
message transmission just after its delivery to the transport
agent. It must be observed that the mechanism described above
only exists for implementation purpose: the TCP carrying the
last part of the data that have been 'pushed' has no identifying
mark.

But a smart network adapter has to interact with its host
using data aggregates longer than the datagram, and smaller than
the entire stream exchanged in a TCP connection. There is no
problem on the sending end, as the above principle can also be
used. But the real problem comes with the smart network adapter
of the host of the destinating entity. It has no base to
justify a decision to transmit toits host the datait has
received so far for a given connection. For instance, after
receiving a TCP packet, a smart network adapter must face the
following dilemma:

- it has to wait for the reception of the next TCP
packet, in a way to have more data to transmit to
its host in a single interaction,

- it has to immediately transmit the received data to
its host, as the reception of the next TCP packet

17. If this datais inside the transmission window, of course. This has been discussed in paragraph
~àl.2, under the title 11 the transmission window 11 •

• This service is sometimes referred to as the 'push()' function.

96

The smart network adapters

may depend on the processing of the data contained
in the current one 19.

And in fact, from the second consideration, the smart network
adapter has to transmit the datait has received after each TCP
packet reception. It is therefore of no use at all.

To benefit from an implementation using a smart network
adapter, the first and only requirement for a transport protocol
is that it must define data aggregates which are bigger than the
network datagram, but shorter than the entire connection
content. This can be achieved by using the notion of user
message, as in the XTP case, or the notion of packets group, as
in the VMTP case. For the implementation of this smart network
adaptor to be very performing, the layout of the exchanged TPDUs
must be chosen with a great care. For example, the checksum
must be the trailing information of each TPDU.

VII.7. Conclusion.

It is possible to design really fast implementations of a
transport protocol. The solution is simply to move the
packetization functionality onto a smart network adapter.

The requirements for a transport protocol to allow such an
implementation are very few, and really not constraining. But
the situation is that the currently most used transport
protocol, that is to say TCP, does not meet these basic
requirements.

19• This is the case when the currently received TCP packet contains the last part of a user message,
which nust be responded by the destinating entity before the delivery of next user message, so before the
next TCP packet can be received.

97

Conclusion.

The first requirement of a transport protocol is to allow a
reliable transmission of data. As this transport protocol is
implemented over a network layer only providing a minimal
functionality, it has to include mechanisms detecting and
correcting the inherent annoying problems of such a network
layer.

Even when these mechanisms are chosen in a way to use the
network layer with a satisfying efficiency, the end-to-end
throughput allowed by the transport layer stays far away from
the one of the network layer. This lead to the conclusion: the
transport protocols are slow because they consume too much
computing resource.

Based on this observations, two solutions were proposed,
both expecting a radical slash down of the TPDU time processing.

The first solution dealt with redefining the transport
protocols themselves. It is the lightweight transport protocol
concept, which consists of specifying a transport protocol for
it to 'naturally' lead to a fast implementation. The
implementations of these protocols showed an improvement at the
throughput point of view, but not so radical as expected.

The second solution dealt with focussing on the
implementation of the transport protocols without changing their
definition. It consisted on finding the most appropriate
strategy to implement each functionality the transport agents
perform. These optimized implementations resulted to better
improvements than the lightweight transport protocols concept.

The comparison of the two preceding solutions indicated that
two classes of functionalities can be separated in the transport
agents computing: protocol-specific operations and protocol
independent operations. And the better results of the second
solution prove that it is more interesting to improve the
computing of this second class of functionalities.

98

Conclusion

An audit of the TPDU processing time allowed the discovery
of these very time consuming protocol-independent operations.
The importance of the data movements and the operating system
use were highlighted. The responsibility of these computing
overheads was associated to the interaction of the host with its
network adapter on the datag~am basis. These considerations
lead to the expression of the real solution of the end-to-end
throughput: the smart networks adapters.

This solution consisted of moving a non-negligible part of
the functionalities of the protocol handling outside the host,
on the network adapter. This fact of moving these
functionalities onto a special-purpose board authorized the
design of very fast hardware-assisted implementations.

Then the question of the influence of these solutions on the
transport protocols specification was answered: there are very
little requirements to allow an implementation using a smart
network adapter. The only ones are in fact:

- the need to transmit a stream of user messages,
- the need to have a trailing checksum field in the

transmitted TPDUs.
At this point, it was also demonstrated that the currently most
widespread transport protocol, TCP, can not benefit from an
implementation using a smart network adapter, as it controls the
transmission of a raw stream of bytes.

A last interesting question to raise about this analysis of
the performance of the transport protocols concerns the possible
future trends.

It is clear that a project such as the XTP/PE totally
answers the end-to-end throughput question: it ensures the
streaming of data at the raw network bandwidth. Likewise, the
simulations of the NAB show that its performance is in direct
relation with its computing capacity. So, the processor to use
on a NAB can be chosen in respect to the expected end-to-end
throughput.

Soit is now time to wait for the response of the computer
scientists to the availability of these very high end-to-end
throughputs. Their new wishes will show the right direction for
the subsequent researches in that matter.

One of the most plausible evolution is a growing use of the
new paradigm of the computer science: the widely distributed
systems and the client/server model. If this happens, the
concept of 'performance of a transport protocol' will also
evolve. Beside the need of high throughput for the transfer of
large user messages, there will be the requirement to allow the
transfer of short user messages with a very low latency.

Conclusion

The problem is the contradiction between these two aspects.
So the transport protocols are worth another analysis with this
new idea in mind ...

100

Appendix I:

References.

(ISO-8073] "Connection oriented Transport Protocol
Specification", International Organization for Standardization,
ISO 8073.

(ISO-8473] "Connection-less-mode Network Service Protocol
Specification", International Organization for Standardization,
ISO 8473.

[NAB] "The VMP Network Adapter Board (NAB): High-Performance
Network Communication for Multiprocessors" by H. KANAKIA and
D.R. CHERITON, proc. SIGCOMM'88 Symposium on Communications
architectures and Protocols, 175-187.

[NETBLT] "NETBLT: A High Throughput Transport Protocol" by D.D.
CLARK, M.L. LAMBERT and L. ZHANG, ACM SIGCOMM'87 Workshop on
Frontiers in Computer Communications technology, 353-359.

[PERFORMANCE] "Measured Performance of Transport Service in
LANs" by L. SVOBODOVA, Computer Networks and ISDN systems n°18,
31-45.

[TCP-1] "An Analysis Of TCP Processing overhead" by D.D. CLARK,
J. ROMKEY and H. SALWEN, proceedings of the 13th conference on
local area networks, 284-291.

[TCP-2] "Congestion Avoidance and Control" by V. JACOBSON, Proc.
ACM SIGCOMM'88 Symposium on Communications architectures and
Protocols, 314-329.

(RFC-768] "The User Datagram Protocol" by J. POSTEL, Network
Information Center, RFC-768.

[RFC-783] "The TFTP Protocol" by K. SOLLINS, Network Information
Center, RFC-783.

[RFC-791] "Internet Protocol" by J.B. POSTEL, Network
Information Center, RFC-791.

A-1

References

[RFC-793] "Transmission Control Protocol" by J.B. POSTEL,
Network Information Center, RFC-793.

[RFC-998] "NETBLT: A Bulk Data Transfer Protocol" by D.D. CLARK,
M.L. LAMBERT and L. ZHANG, Network Information Center, RFC-998.

[RFC-1030] "On Testing the NETBLT Protocol over Divers Networks"
by M.L. LAMBERT, Network Information Center, RFC-1030.

[RFC-1045] "VMTP: Versatile Message Transaction Protocol,
Protocol Specification" by D. CHERITON, Network Information
Center, RFC-1045.

[RPC] "Exploiting Recursion To Simplify RPC Communication
Architectures" by D. CHERITON, Proc. ACM SIGCOMM'88 Symposium on
communications architectures and Protocols, 76-87.

[SLIDES] Slides of the conference "New Protocols and High Speed
Networks" by H. KANAKIA, held from 16 to 18 of January 1990 at
the "Univertsité libre de Bruxelles" and organized by the
"Chaire IBM 1989-1990".

[UNDIP] "Universal Network Device Interface Protocol (UNDIP)" by
H. KANAKIA and D. CHERITON, proceedings of the 13th conference
on local area networks, 301-309.

[XTP-1] "Express Transfer Protocol Definition, Rev.3.2." by G.
CHESSON, Protocol Engine Incorporated, June 1988.

[XTP-2] "A Lightweight Transfert Protocol For The u.s. Navy
Safenet Local Area Network Standard" by M. COHN, proceedings of
the 13th conference on local area networks, 151-156.

[XTP-3] "XTP/PE overview" by G. CHESSON, proceedings of the 13th
conference on local area networks, 292-296.

A-2

ACK-TPDU
Acknowledgement principle
Best-effort basis
Blocks of DATA-TPDUs
Checksum
Classical solution
CLNS
Congestion avoidance
Congestion rate
Connectivity
CONTROL-TPDU
Corrupted datagrams
Cumulative acknowledgement
Data field
DATA-TPDU
Datagrams
Datagrams re-ordering
Destination port field
Duplicated datagrams
Entities
Fast TCB look-up
Flags field
Flow control
Go-back-N scheme
Header prediction
Improved design
In-band retransmission
IP
Latency
Lightweight transport protocol
Lost datagrams
Mesh network
Minimal network layer
Multiplexing
N-DATA
NAB

A-3

Appendix II:

Index.

17
17, 29
5
47
23
27
6
51
51
7
36
10
30, 43
16
16
5
13
16
11
15
76
16
51
31, 43
78
42
53
6
12
61, 82
9
7
5
5, 23
6
90, 95

NETBLT
Network Adapter Board
Network address
Network agent
Optimized implementations
out-of-band retransmission
out-of-synchronization
Packetization
Periodic resynchronization
Port
Protocol Engine
Rate-based flow-control
Resynchronization point
Retransmission on demand
Retransmission on timeout
Round Trip Delay
RTD
Selective acknowledgement
Selective retransmission
Slow-start algorithm
Smart network adapters
SOS region
Source port field

Index

State out-of-synchronization region
Store-and-forward router
Synchronization point
TCB
TCP
Template header caching
TFTP
Timeout delay
TP-4
TPDU
TPDU processing time
Transmission authorization
Transmission control block
Transmission rate
Transmission window
Transport agent
Transport Protocol Data Unit
Trivial solution
UNDIP
VMTP
VMTP manager
XTP

A-4

55
90
5
5
71
52
33
16, 89
44
15
93
53
44
46, 49
19, 29, 30, 43, 50
19
19
43, 48
62
40
85
34
16
34
7
46
76
38, 81, 96
72
23
19, 33
38, 81
16
85
36
76
53, 54
35, 43, 51
15
16
15, 46
91
56, 69, 82, 90, 95
64
58, 69, 93

