
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Contribution to the design of an expert system interface

Noël, Françoise; Piette, Sophie

Award date:
1989

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/contribution-to-the-design-of-an-expert-system-interface(006fcf8e-e4c3-4702-b74f-e9a279225d8d).html

FACULTES

UNIVERSITAIRES

N.D. DE LA PAIX

INSTITUT D'INFORMATIQUE

CONTRIBUTION TO THE

DESIGN OF AN EXPERT

SYSTEM INTERFACE

Françoise Noël et Sophie Piette

Promoteur : Professeur François Bodart

Mémoire présenté en vue de l'obtention du titre de

Licencié et Maître en Informatique

Année académique 1988-1989

RUE GRANDGAGNAGE, 21, B - 5000 NAMUR (BELGIUM)

RESUME

Les dix dernières années ont vu le développement d'applications

informatiques s'adressant à des utilisateurs non-spécialistes en Informatique.

En particulier, de nombreuses recherches ont permis la définition de

systèmes d'aide à la décision dans des domaines variés. Ces systèmes, dont

certains sont appelés communément systèmes ·experts, sont de plus en plus

performants et s'adressent à un public de plus en plus large. De ce fait, ils ont

mis en évidence le besoin d'interfaces ergonomiques tant pour les personnes

chargées d'introduire des connaissances humaines dans des systèmes de ce

type (c'est à dire les analystes) que pour les personnes appelées à les

consulter.

Ce mémoire s'inscrit dans cette perspective en ce sens qu'il présente une

démarche de conception et de spécification d'une interface s'efforçant de

répondre le mieux possible aux besoins d'un analyste chargé de développer

des systèmes experts. Concrètement, la démarche évoquée est élaborée en

référence à un système expert particulier dénommé K-Expert. Pour ce faire,

ce travail se fonde sur divers éléments tant théoriques qu'empiriques. Ceux-ci

nous conduisent à la définition du profil et des tâches d'un analyste type ainsi
qu'à le sélection d'unités physiques de dialogue entre l'homme et la machine.
Ces unités respectent un minimun de critères ergonomiques. Enfin, une

architecture d'implémentation d'une application interactive telle que la
construction d'un système expert est également proposée.

ABSTRACT

The last ten years correspond to a widespread diffusion of computer

applications to the destination of users who are not specialists in computer

science. ln particular, a lot of researches have made possible the designing of

systems supporting the decisional process in various demains. These

systems, among which some are called expert systems, become more and

more powerful and concern an increasing part of the population. By this way,

they have highlighted the need of ergonomie interfaces for the people

responsible for the input of human expertise in such systems (e.g. the

analysts) but aise for their end-users.

This dissertation is directly related to that perspective in this sense that it

presents a conception and specification process for an interface which

supports the needs of an anlyst busy with the development of expert systems.

Concretely, the evoked process is built on the base of a particular expert

system called K-Expert. To reach these aims, this work takes into account

various theoretical but aise empirical elements. Ali of them contribute to the

definition of the profile and tasks of a typical analyst but aise to the selection of

physical units supporting the man-machine interaction. These units satisfy to a

minimum set of ergonomie concerns. Finally, an implementation architecture

is aise proposed for interactive applications such as the building of an expert

system.

ACKNOWLEDGEMENTS

We insist on thanking :

Mister François Bodart, professer at the "Institut d'Informatique" of the

University of Namur (Belgium) who has consented to guide this work and who

has accepted to give us many advices about its contents,

Mister Edzard de Buhr, responsible for the Artificial Intelligence Department of

the enterprise ADV/ORGA at Wilhelmshaven (West Germany), who has agreed
to co-ordinate the training period concluding our studies,

Mister Thomas Blümel, member of the Artificial Intelligence Department of

ADV/ORGA, for the interest He has shown in this work. We intend to thank him

particularly for all the "practical problems" He has helped us to solve during

our stays in Germany.

We would like to thank also all the people of the THESEUS team from

ADV/ORGA and the assistants of the Namur University for the support they

have brought to the realization of this work.

We also wish to express our gratefulness to ail the professors of the "Institut

d'Informatique" for the knowledges and the education we have received

during our cycle of studies.

1

TABLE OF CONTENTS

INTRODUCTION ... 1

CHAPTER 1 : BASIC PRINCIPLES FOR THE DESIGN OF
USER INTERFACES ... 4

1.1. HIGH LEVEL THEORIES OR MODELS 6

1.1.1. Norman's model of man-machine interaction 6

1.1.2. The syntactic / semantic model of user knowledge 20

1.1.3. The Multi-windowing ... 24

1.1.4. The human information processor model 27

1.2. MIDDLE LEVEL PRINCIP LES ... 2 9

1.2.1. The "User" intervening .. 29

1.2.2. The "task" intervening .. 30

1.2.3. The "interaction styles" intervening ... 31

1.3. PRACTICAL GUIDELINES .. 3 6

1.4. RECOMMENDED DESIGNING STEPS 3 8

1.4.1. Guidelines establishment.. ... 38

1.4.2. Participatory design ... 39

1.4.3. Pilot studies ... 39

1.4.4. Rapid prototype system .. 39

1.4.5. Acceptance tests .. 39

CHAPTER 2 : ANAL YST'S PROFILE AND TASK 41

2.1. DEFINITION OF THE USER PROFILE : THE
KNOWLEDGE ENGINEER ... 4 2

2.2. ANALYSIS OF THE TASK ... 43

2.2.1. The 6 phases of the analyst's task .. 43

2.2.2. Deduced features for an expert system shell

environment .. 45

CHAPTER 3 : OVERVIEW OF EXPERT SYSTEM

INTERFACES ... 4 7

3.1. K-EXPERT ... 49

3.1.1. General presentation49

3.1 .2. The existi ng analyst's interface ... 50

3.2. M.1 ... 52

3.2.1. Presentation .. 52

3.2.2. The Knowledge engineering interface 53

3.2.3. Summary of the main available functionalities 54

3.2.4. Basic interaction ways .. 58

3.2.5. Initiative and control .. 60

3.2.6. Flexibility .. 61

3.2.7. Feedback ... 62

3.2.8. Errors handling ... 63

3.2.9. On line help ... 63

3.2.1 O. Memory load ... 63

3.2.11. Dialogue interruption possibilities .. 63

3.2.12. Consistency .. 64

3.2.13. Sorne remarks about the inputs and the outputs 65

3.3. NEXPERT (VERSION 1.1) ... 6 5

3.3.1. Presentation .. 65

3.3.2. The knowledge engineering interface 67

3.3.3. Summary of the main available functionalities 67

3.3.4. Basic interaction ways .. 72

3.3.5. Initiative and contrai .. 75

3.3.6. Flexibility .. 77

3.3.7. Feedback ... 78

3.3.8. Errors handling ... 79

3.3.9. On line help ... 79

3.3.1 O. Memory load ... 80

3.3.11. Dialog interruption possibilities .. 80

3.3.12. Consistency .. 80

3.3.13. Sorne remarks about inputs and outputs 81

3.4. CONCLUSION .. 8 3

CHAPTER 4 : SPECIFICATION OF THE K-EXPERT
INTERFACE .. 8 4

4.1. SPECIFICATION PROCESS OF THE ANAL VST'S

INTERFACE OF THE K-EXPERT EXPERT SYSTEM
SHELL ... 85

4.2. STEP 1 : DETAILED STUDV OF THE ANAL VST'S

T ASK .. 9 0

4.3. STEP 2 : EXTRACTION OF THE TASK OBJECTS 9 0

4.4. STEP 3 : DEFINITION OF T ASK ACTIONS 1 0 3

4.5. STEP 4 : DEFINITION OF COMPUTER OBJECTS
AND ACTIONS ... 108

4.6. STEP 5 : DEFINITION OF FUNCTIONS

SUPPORTING TASK ACTIONS 109

4.7. STEP 6 : DEFINITION OF AUXILIARY FUNCTIONS 11 0

4.8. STEP 7 : EXTRACTION OF INTERACTIVE

M ESSAG ES .. 11 2

4.9. STEP 8 : CORRESPONDENCE BETWEEN

INTERACTIVE AND FUNCTIONAL MESSAGES 11 5

4.10. STEP 9 : BUILDING OF THE CONVERSATION

SCHEME , ... 116

4.11. STEP 10 : EXTRACTION OF CONTROL

INTERACTIVE MESSAGES ...•.................................... 11 7

4.12. STEP 11 : TAKING INTO ACCOUNT OF THE

ANALYST'S PROFILE ... 11 8

4.13. STEP 12 : EXTRACTION OF INTERACTIVE
OBJECTS .. 11 9

4.13.1. Ergonomie options .. 1 20

4.13.2. Description of used standard interactive objects 1 27

4.13.3. Specifications of the instantiations of the basic

standard interactive abjects ... 1 33

4.14. CRITICISM OF OUR INTERFACE PROPOSAL.• 21 2

CHAPTER 5 : ARCHITECTURE PROPOSAL FOR K-EXPERT 21 5

5.1. GENERAL ARCHITECTURE FOR AN INTERACTIVE

APPLICATION AND UNDERLYING CHOICES 21 7

5.2. MODELIZATION OF THE ARCHITECTURE OF AN
INTERACTIVE APPLICATION 2 2 2

5.2.1. The interactive abjects manager module 225

5.2.2. The conversation manager module ... 229

5.2.3. The interactive application manager module 235

5.2.4. The "application functions" module .. 240

5.2.5. Architecture illustration ... 242

5.2.6. Final remark about the presented architecture 245

5.3. VALIDATION OF THE PROPOSED
ARCHITECTURE ... 24 6

5.3.1 Compatibility between the interface design concepts

and the proposed architecture ... 24 7

5.3.2 Processing steps of a typical functionality of the K-

Expert interface•.. 258

5.4 CRITICISM OF THE PROPOSED ARCHITECTURE 2 6 4

CONCLUSION AND PROSPECTS .. 2 6 6

APPENDIX A : K-EXPERT ILLUSTRATION A.1

APPENDIX 8 : M.1 ILLUSTRATION .. 8.1

APPENDIX C NEXPERT ILLUSTRATION C .1

APPENDIX D : MAIN CHARACTERISTICS OF THE
THESEUS UIMS .. D .1

BIBLIOGRAPHICAL REFERENCES BIBLI0.1

WARNING

The first Chapter of this dissertation has been written by Françoise

Noël while the second Chapter has been realized by Sophie Piette.

The three others Chapters result from a common work.

INTRODUCTION

Since the apparition of the term "Artificial Intelligence" which has

been introduced by John Mc Carthy at the Summer Research Project held at

Darmouth Collage in 1956, many efforts have been consented in order to

mimic the functionality of the human mind. The artificial intelligence which is

now recognized as a computer Science discipline tries to make computers

capable of showing intelligent behaviours. By intelligent behaviours, one

means behaviours that would be considered as intelligent if they were

observed in humans.

According to [Hols 87],· "two cornerstones of intelligence are the

ability to understand natural language and the ability to reason. These, in turn,

represent two principal areas of research in the artificial intelligence field".

Researches about "the ability ro reason" have led scientists to

conceive so-called expert systems. According to a definition proposed in [Pars

88], "an expert system is a program that relies on a body of knowledge to
perform a somewhat difficult task usually performed only by a human expert.

The principal power of an expert system is derived from the knowledge the
system embodies rather than from search algorithms and specific reasoning
methods. An expert system successfully deals with problems for which clear
algorithmic solutions do not exist".

[Hols 87] has listed the adavantages of expert systems. According

to him, they may:

- Provide advice during a human expert's unavailability ;

- Be easily replicated ;

- Be used simultaneously in many sites ;

- Make knowledge distribution relatively inexpensive ;

- Provide an advisory service which was unavailable in the past ;

1

Introduction

- Free human expert's time in such a way that the latter may concentrate

himself on the hardest cases. lt should not be forgotten that human

experts constitute a scarce resource ;

- Provide consitent and uniform advice ;

- Rely on a formalization of the knowledge manipulated by an

organization and consequently, they can contribute to a better

understanding of this organization ;

- Be used to preserve a particular knowledge which can disappear with a

human expert ;

- Provide a basis for the training of new experts.

The development of expert systems requires not only users but also

another kind of persan able to capture the expert knowledge and to express it

as facts and rules. lndeed, "since many experts were not used to

programming computers and even if experts can program, they may not be

able to access ail the relevant knowledge that they have without external

assistance, the expert knowledge was usually captured and encoded by an

intermediary known as a knowledge engineer" [Pars 88]. This persan may

also be named an analyst.

Globally speaking, let's say that an expert system consists of an

user interface, an inference engine and stored expertise. As a result of this,

one must consider two typical man-machine interactions. The first one

appears when an end-user consults the knowledges stored in an expert

system shell. The second one, on its side, occurs whenever a so-called

knowledge engineer introduces formalized knowledges in the considered

expert system shell.

So, in order to make expert systems usable by this two kinds of

users, two man-machine interfaces should be conceived in order to satisfy the

end-user and knowledge engineer needs.

The term "man-machine interface" designates ail the aspects of the

computer applications having an influence on the user participation to

computerized tasks. Among constitutive elements of interfaces, one must

consider not only the physical environment by also the manners according to

2

Introduction

which informations are introduced and consulted into the interfaced system.

As a consequence of this, interface designers should try to conceive

ergonomie interaction physical tools but also ergonomie softwares.

ln this perspective, the aim assigned to our thesis consists of the

proposai of an analyst's interface for a particular expert system shell named K­

Expert. This one is developed by the German enterprise ADV/ORGA at

Wilhelmshaven where we had the opportunity to accomplish the training

period concluding our studies.

ln order to reach this goal, we have organized this work in the

following way. We begin with a presentation of some general theoritical and

practical elements that should be kept in mind while conceiving a man­

machine interface whatever the considered application may be.

Then, Chapter 2 presents a global analysis of the profile and of the

task of the persan for who we proposed an interface (e.g. the analyst).

Chapter 3 introduces main characteristics of the current version of

K-Expert as aise some already implemented interfaces for existing expert

system shells.

Chapter 4 proposes the necessary steps to follow in order to specify

the interface corresponding to an interactive application such as the building

and consultation of an expert system. This chapter concludes with the

presentation of the different screens we propose to implement.

Finally, in order to implement the interface proposai, Chapter 5

presents a general development architecture for interactive applications and

instantiates it to our particular case while taking into account the

implementation constraints that are linked to the development of the K-Expert

analyst's interface.

3

CHAPTER 1 :

BASIC PRINCIPLES FOR THE DESIGN OF USER

INTERFACES

Although the building of a "real interface design science" is in the

process of development, some theories and models about the man-machine

interaction are already available. Sorne of these theories are approximate

however, it is not a serious handicap because in their current state, they can

provide designers with valuable indications. Basides this theoretical

background, we also have access to a large amount of empirical observations

which were used to define design guidelines. Finally, taking into account the

experience acquired in software development up to now , a "step by step"

interface building method can be proposed.

Ali these elements must not be neglected because according to
Norman [Norm 86], the conception of appropriate user interfaces requires two
joint approaches. The first one is "to understand the fundamentai' principles

behind human action and performance that are relevant for the development
of engineering principles of design". The second one is "to device systems

that are pleasant to use - the goal is neither efficiency nor ease nor power,
although these are all te be desired, but rather systems that are pleasant, even
fun to produce what Laurel calls pleasurable engagement" [Norm 86].

As shown in [Sea 87], this theoretical thought is fundamental
because of two common beliefs (and at the same time errors) in the demain of

man-machine interfaces. The first one is te consider that the only

improvements for the user will arise from technological progress. And the

second one consists of thinking that a limited thought about ergonomie

questions is sufficient.

4

Chapter 1 Basic principles for the design of user interfaces

This chapter is structured in a way inspired by Shneiderman [Shnei

87] . lt summarizes various readings. Section 1.1. presents some significant

high level theories and models providing principles to take into account

carefully in order to organize the design of an efficient man-machine interface.

Section 1.2. offers a presentation of middle level principles which can be used

to choose between design alternatives. Section 1.3. summarizes practical

guidelines resulting from designers' practise As for the last Section 1.4., lists

briefly recommended designing steps.

5

Chapter 1 Basic principles for the design of user interfaces

1.1. HIGH LEVEL THEORIES OR MODELS

1.1.1. Norman's model of man-machine interaction

1.1.1.1. Introduction

Ali the references to Norman that appearing in this Section are

extracted from [Norm 86].

Generally speaking, the Norman's goal consists of the

determination of the way people perform their tasks when achieving them by

using a computer. To reach this goal, Norman establishes an "approximate

theory" distinguishing among different stages and levels of activities. The

stages of user's activities may be summarized by the following steps :

- Establishing the goal to be reached ;

- Forming an intention ;

- Specifying a corresponding action sequence ;

- Executing the action ;

- Perceiving the resulting system state ;

- lnterpreting this state ;

- Evaluating the system state with respect to the initial goals and

intentions.

Before giving more details about these stages and their chaining, it

is interesting to "visualize" them as Norman proposes to do it. This view is

shown on Figure 1 .1 on the next page.

6

Chapter 1 Basic principles for the design of user interfaces

MENTAL ACTIVITY

PHYSICAL ACTIVITY

Figure 1.1 : Stages of task performance.

Starting from this, we are now speaking about the scenario of a

human interaction with a computer. The way we present things is

chronological. However, we must not forget that in reality, some of the steps

considered can be skipped or repeated. Moreover, the chaining itself can be

disturbed. Besides, a person can be "reactive" to system events rather than at

the origin of these events by formulating an intention which is the situation

considered here. Finally, it should be mentioned that even intentions that

seem simple at a first sight (as the correction of a text via a text editor) can

require the execution of various subtasks. Consequently, Norman's view of

user's task is a simplification of the reality. However, his theory is particularly

interesting because it highlights some crucial elements that are always

present in a man-machine interaction.

1.1.1.2. Description of a typical task accomplishment

Normally, a person initiates a task by defining "goals" and

"intentions". According to Norman, a goal "is the state a person wants to

· achieve" while an intention "is the decision to act so as to achieve the goal".

7

Chapter 1 Basic principles for the design of user interfaces

These two elements constitute the so-called "psychological variables" of the
task and are directly related to a person's needs and concerns.

Since we think of the man-machine interaction problem, it seems

normal to introduce now the physical system which is used to perform the

work. This system can be characterized by "physical variables and

mechanisms" which determine its "physical state". So, the persan who wants

to achieve a particular goal on a given machine must evaluate the physical

state in this context. ln order to realize this evaluation, the persan has to

translate the physical state perceived into a form compatible with the goal

pursued.

The persan reacts to the differences appear between the goal and

the physical state by formulating an intention. To be effective, this one must be

transformed into an "action sequence" which is "the specification of what

physical acts will be performed upon the mechanisms of the system". The

physical mechanisms are physical devices controlling the physical variables.

At this point, a complex mapping from psychological goals and intentions to

action sequence is necessary. Another mapping is also required. lndeed,

after the realization of the action sequence the person must interpret the

resulting physical state "in terms of psychological variables of interest". The

last step consists of the evaluation of the system outcome by comparing the

system state perceived to the initial goals. Often, this step concludes itself with

the definition of new goals. These ones are treated in a manner similar to that

we have just presented.

ln his so-called "approximate theory", Norman emphasizes

especially on the mapping operations. According to his terminology, the

discrepancies at their origin can be named the " Gulf of Execution" and the

"Gulf of evaluation". These notions are really crucial ones because the

differences in form and contents between initial goals and physical system

states are not neglegible in practise.

8

Chapter 1 Basic principles for the design of user interfaces

The two considered gulfs can be represented as follows :

GULF
~---OF--­

EXECUTION GOALS

PHYSICAL
SYSTEM

GULF
"""""--OF--~­

-----------, EVALUATION

Figure 1.2 : The gulfs of execution and evaluation.

The question to ask now is related to the interest and to the

importance of these mapping problems for interface design. If Norman's view

of man-machine interaction is correct, it appears that the considered mappings

are unavoidable. That is why it is important, whenever an interface is

conceived, to try to implement it in such a way that it tends to reduce the gulfs

to bridge. We are now going to see how the two gulfs can be crossed by
staying at the theoretical point of view of Norman.

First of ail, it is important to notice that the gulfs can be bridged by

starting from the system-side or from the user-side. ln the first case, the persan

who has to accomplish the biggest effort is the designer while the second

case is more heavy for the user. lndeed,

- The designer can cross the two gulfs by bringing the system as close as

possible to the user. ln particular, to cross the gulf of execution, the

designer must play on the input characteristics of the system in order to

bring them nearer user needs. To cross the gulf of evaluation, He has

just to do the same operation on the output characteristics. The result of

the designer's intervention should be a system easier to use and to

interpret.

- The user can cross the gulfs by himself. Globally, we can say that what

He has to do is to bring the psychological elements nearer the physical

ones and conversely. This requires a great deal of training and

experience. ln particular, to cross the gulf of execution the user must

operate the translation from psychological elements to physical ones

during the following four steps approach :

9

Chapter 1 Basic principles for the design of user interfaces

- Intention formation ;

- Action sequence specification ;

- Action execution ;

- Contact with the input mechanisms of the interface.

To cross the gulf of evaluation, the user must operate the translation from

physical elements to psychological ones during the following four steps

approach :

- Starting with the output displays of the system ;

- Moving to the perceptual processing of those displays ;

- Moving to its interpretation ;

- Moving to the evaluation.

The following Figure 1.3, on the next page, illustrates what has just

been said in the previous pages of this exposure.

PHYSICAL
SYSTEM

EXECUTION
BRIDGE

EVALUATION
BRIDGE

GOALS

Figure 1.3 : Bridging of the evaluation and execution gulfs.

Starting from these elements, Norman gives then some practical

recommendations about the manner to use them in order to move systems

closer to the user. The interface supporting those systems is not obvious to

conceive because the users are different from each other and moreover, "for

even a single user the requirements for one stage of activity can conflict with

10

Chapter 1 Basic principles for the design of user interfaces

the requirements for another". For example, Menus can be helpful as

information during intention information and action specification but they very

often make the execution more difficult.

Sc, it seems possible to criticize interfaces according to the quality

of the way they support the different activity stages. ln this context,

- Reminding the user of ail the abilities available can support the

generation of intentions ;

- Visible items acting as a direct translation into possible actions can

support the action selection ;

- Painting devices can help considerably the management of an

execution ;

- Visual reminders of what has been done should support the evaluation

steps;

- ln some situations, visual structures such as graphs and pictures can be

superior to text in order to facilitate the interpretation.

For Norman, the best design option would be to give the designer

the responsibility to cross the gulfs in order to let the user concentrate himself

on the task. This means providing a good and design mode! and a consistent

and relevant system image. This concept of "system image" leads us to speak

about the so-called conceptual models. These models provide a "scaffolding
upon which to build the bridges across the gulfs". Briefly speaking, what can

be said about mentais models is that they "seem a very pervasive property of

humans". They are useful to help to understand an interaction , seeing that

they have predictive and explanatory powers. Moreover, they can evolve

through the interaction process and they can be affected by the nature of the

interaction. Their main role consists of guiding human behaviours.

As far as we are concerned, we distinguish three mental models

relevant for interface design. They are the Design Model, the User Mode! and

the System Image. They are articulated between them in the following way

shown on Figure 1.4 .

11

Chapter 1 Basic principles for the design of user interfaces

DESIGNER USER

\ DOCUMENTATION "'~

SYSTEM """' •

Figure 1.4 : Articulations between mental models.

They can be defined as follows :

- The Design Mode! is the "conceptualization of the system

held by the designer". lt is "the conceptual mode! of the

system to be built" ;

- The User Madel is "the conceptual model constructed by the

user". "lt results from the way the user interprets the system

image";

- The System Image is "the image resulting from the physical

structure that has been built (including the documentation

and instructions)".

Why speaking about these three models ? Simply because they

give us indications about the designer's work. lndeed, at the beginning of his

work, the designer builds a Design Madel. ln the best case, He will take into
account the user's task, requirements, abilities, background, experience,

information processing mechanisms such as short-term memory limits. The

User Madel, however, is constructed from the system image and not from the

Design Madel.

12

Chapter 1 Basic principles for the design of user interfaces

So, first of ail, the designer must focus himself on the elaboration of

an adequate System Image. This is really important because everything that

, is manipulated by the user helps him to build his mental model which in turn

helps him to understand what He has to do. With "everything", we mean

physical knobs, dials, keyboards, displays and documentation. So, as

Norman says it, "it is up to the designer to make the System Image explicit,

intelligent, consistent". Note still that a compatibility between the User Madel

and the Design Madel can only be reached through the System Image.

As example of a system in which ail these models are "fine", we just

have to cite the spreadsheets. ln this perspective, Norman considers that the

good interfaces should be perceived as tools revealing their underlying

conceptual model and He puts the emphasis on the comfort, ease and
pleasure to use it. Of course, this must not lead us to forget problems linked to

this perception of user interfaces as tools.

Among these problems, there is the so-called "level problem".

lndeed, a question to be raised is the quantity of intelligence that should be

present in the considered tool interfaces. Too simple tools can cause

problems because they require too much user's skills. On the other hand, too

intelligent tools may also be hard to use if they do not provide some hints

explaining how to use them and what they are doing at a given moment. lt can

be observed that tools whose components are as close as possible to the task

are preferred by many people because they reduce the mapping effort to

provide in order to accomplish this task. What is recommended by Norman is

to provide higher level tools crafted to the task and lower level tools to modify

the first ones. The retained principle is the following one : "the level of the tool

has to match the level of intention".

Now that we have presented the main Norman's ideas, we can

evoke some design problems related to the proposed concepts. Among these

problems, we find that in practise, the number of variables and potential

actions may be very extended (up to thousands 1). Moreover, as a result of the

numerous limitations of the current technology, the mappings discussed

before are often very arbitrary.

Ali these proposais can be completed by taking into account the so­

called feeling of "directness". We do the hypothesis that this feeling can be

13

Chapter 1 Basic principles for the design of user interfaces

expected whenever an interface is conceived in such a way that the user has
to engage few cognitive resources. The directness is a relative notion and

results from the interaction of many factors. Generally speaking what can be

said about it is that directness possesses two facets : "distance" and "direct

engagement".

By "distance", we mean the separation existing between the user's

thoughts and the physical description level of the considered system. This is,

as we are going to see a very important point to consider if one wants to bridge

the gulfs presented previously.

By "direct engagement", we mean a qualitative feeling : the feeling

to manipulate and contrai the tasks objects. This could also be named "a

feeling of first personness". We are now going to consider these two concepts

with more details.

1.1.1.3. The distance concept

This concept can be split into two points : the semantjc distance and

the artjculatory distance which are something like linguistic properties. These

two elements must be considered because each interaction with a physical

device implies the use of an "interface language" in order to give a description

of the actions a user intends to perform. Moreover, at the end of any

interaction, a feedback is given to the user under the form of an output also

expressed in an interface language. The input and output interface languages
may be different but it can be a dangerous option since it stretches the
explanation and evaluation gulfs.

A common point of human and computer languages is their
symbolic character. Consequently, an arbitrary relation exists between a
vocabulary item and its meaning. Therefore, this relation must be learned.
lndeed, in general, the meaning of such an item can not be deduced directly.
So, because of this separation between form and meaning, we can speak of

"distance" and in particular of "semantic" and "articulatory" distances.

The Semantic Distance "reflects the relationship between the user

intentions and the meaning of expressions in the interface language both for

input and output".

14

Chapter 1 Basic principles for the design of user interfaces

The Articulatory Distance "reflects the relationship between the
physical form of an expression and its meaning, again, bath for input and

output".

The interrelations between these two concepts may be resumed on

Figure 1.5 in the following way :

INTERFACE LANGUAGE

a 1 • ~ M••~ng ~
OI I 4Q---·I" E•prenlon

Semantic
D1111nce l

Form of
E1pr111lo11

.Artlculatory
Dislance

Figure 1.5 : Semantic and Articulatory Distances.

Now, we are first going to insist on the semantic distance. The

"semantic directness" is a property that each interface language should

possess ideally. lndeed, what is meant by "semantic directness" is the ability

for the user to express everything He wants with the available interface

language (e.g. : the interface language supports the user's conception of the

task demain) in a very concise way (e.g. : in a straightforward way). Seeing

that we have insisted in the first part of this theoretical exposure on the gulfs

between the user and the system, we are now looking at the semantic distance
this perspective.

1.1.1.3.1. Semantic distance and execution gulf

We have already seen that the more the considered tool level is low
(like in a Turing machine for example) the more the execution gulf is large and

the more the user must perform planning and translation activities. If the

designed interface is semantically direct then, there is a direct correspondance

between the user's way to think and the interface language description level.

ln this case, the volume of information processing structure that the user has to

provide in order to bridge the gulf is minimized. We can see the semantic

distance as an expression of "how much of the required structure is provided

by the system and how much by the user".

15

Chapter 1 Basic principles for the design of user interfaces

1.1.1.3.2. Semantic distance and evaluation gulf

This time, the semantic distance expresses how much information

processing structure the user has to provide in order to evaluate if the whished

goal is satisfied. The more the semantic distance is small, the more the

matching between output terms and user's terms is strong and the less the

evaluation gulf is large.

Concretely speaking, many proposais can be done to reduce the

semantic distance and, by the way, to reduce the "gulf crossing" effort.

1.1.1.3.3. From the system side

◊ Conception of higher-level input languages

These languages should be as near as possible to the user. They

should enable him to express directly "frequently encountered structures of

problem decomposition". The advantage is the easiness of tasks specification.

However, there is a non-neglegible disadvantage : the lost of the language

generality which makes the tasks difficult to decompose or even impossible to

specify.

The solution that can be given to this problem consists of the

conception of languages which are extensible according to everyone's needs

(like in LISP or in the UNIX operating system). The price to be paid for this

extensibility is an increase of the complexity and of the specialization. lndeed,

"Because of the incredible variety of human intentions, the lexicon of a

language that aspires to both generality of coverage and demain specific

functions can grow very large".

◊ Direct image of semantic concepts by the output.

This ability is illustrated by the evolution from line-oriented text

editors to screen-oriented text editors. Whatever interest this solution

possesses, it does not escape to the conflict between generality and power

introduced for input languages. lndeed, if the considered system is too

specialized, the output lacks generality. On the contrary, a user confronted

with a too rich system must face learning and using problems.

16

Chapter 1 Basic principles for the design of user interfaces

A possible solution, which is all right bath for input and output

languages, consists of developing special purpose systems dedicated to

particular tasks. By this way, the user planning effort to bridge the gulf is

reduced.

Of course, we find the price presented before again : this solution

goes hand in hand with a loss of generality making things unnatural or ever

impossible.

1 .1.1.3.4. From the user side

◊ The user can adapt himself to the system representation

ln this way to do, the user should change his perception of the tasks.

This is linked to th·e so called "linguistic determinism". As the vocabulary

seems to have an effect on our way to think things, it appears that "the

interface language should provide a powerful, productive way of thinking

about the domain". The problem encountered here is that if it is too much

special purpose oriented, a powerful way to think about the considered task

don:,ain is available but at the same time, the risk to reduce the user's flexibility

is not neglegible. lndeed, the user may be unable to think about his work by

following alternative ways.

If we want that the user modifies his thinking way, and if we let him

to support the gulfs bridging efforts, it seems that we must be attentive to the

establishment of an equilibrium between the cost associated to the learning of

a new thinking mode and the potential benefits of thinking in this way.

According to what has been said above, the bridging efforts should
ideally be supported by the designer. So, if we put the effort on user's

shoulders as it is done here, it should be required at least that the new model

(implied by the interface) "should be coherent and consistent over some
conception of the domain" in order to reduce the semantic distance as much

as possible.

We conclude these considerations about semantic distance by a

complementary remark. "Automated behavior does not reduce semantic

distance". lt does mean that even if often repeated tasks requiring cognitive

efforts (like planning an action sequence) become automated, and seem less

17

Chapter 1 Basic principles for the design of user interfaces

difficult and more direct, the two gulfs must always be bridged by the user.

lndeed, the only thing that actually happens in the replacement of the

planning activity by a memory retrieval operation.

The Articulatory Directness is our next point of interest. First of ail it

can be noticed that this type of directness may be seen as the property of a

language in which the physical form of vocabulary is very close to their

meaning. ln particular, this can be applied to interface languages. ln natural

language, the articulatory directness is illustrated by the onomatopoeias which

introduce a non-arbitrary relation between an acoustical structure and its

meaning. What should be done for interface design is to try to use

technological innovations in order to implement non-arbitrary relations

between physical form of inputs and outputs such as mouse movings, string of

characters and the associated meaning. For example, if the task to be

interfaced consists of diagrams management, it would be fine to draw them for
the input and to receive diagrams on the screen as a result.

As the semantic distance, the articulatory distance can aise be
looked at in the context of the two predefined gulfs.

1.1.1.3.5. The articulatory distance and the evaluation and
execution gulfs

The greater is the articulatory directness, the smaller is the user's
effort to bridge the gulfs. So, from the input side, it appears that the best to do
is to enable the user to specify an action by mimicking it (for example, moving

a cursor by using a mouse). The same idea is relevant for the output side. So,

a modification operated on a variable could be automatically reflected on a

corresponding graphie on the screen. The principle to keep in mind may be

formulated as follows : "Articulatory direct interaction can couple the

interaction between action and meaning so naturally that relationships

between intentions and actions and between actions and output seem

straightforward and obvious". However, an important tip to give to the

designer is to stay "awake", it means to get informations about the available

technology because it appears that this last has a major impact on the

articulatory directness.

For example, we can quote the mouse which is a so-called spatio­

mimetic device. As Norman says : "That means that it can provide

18

Chapter 1 Basic principles for the design of user interfaces

articulatorally direct input for tasks that can be represented spatially. The

mouse is useful for a large variety of of tasks not because of any property

inherent in itself; but because we map so many kinds of relationships (even

ones that are not intrinsically spatial) on to a spatial metaphor". What has

been said here is linked to the wish to bring the system nearer the user. If the

bridges are crossed in the other direction (e.g. : from the user), it seems

possible for a user to bridge the gulfs by making the interface vocabulary
items more articulatorally direct . How can He do this ? Just by changing,

adapting his mental model by a reconceptualization of the existing.

1.1.1.4. The direct engagement concept

We can speak of direct engagement whenever the interface and the

computer itself are transparent for the user. This last has then the feeling to

work directly with interesting abjects behaving as He expects. Up to now, not

many things have been said about requirements to take into account in order

to implement this type of engagement. What can be demanded at least is

summarized by Laurel [Norm 86]. "At minimum, to produce a feeling of direct

engagement the system needs :

- Execution and evaluation to be direct in the senses discussed in this

chapter ;

- Input and output languages of the interface to be inter-referential,

allowing an input expression to incorporate or make use of a previous

output expression. This is crucial for creating the illusion that one is

directly manipulating the abjects of concern ;

- The system to be responsive, with no delays between execution and the

results, except where those delays are appropriate for the knowledge

demain itself ;

- The interface to be unobtrusive, not interfering or intruding. If the

interface itself is noticed, then it stands in a third-person relationship to

the abjects of interest, and detracts from the directness of the

engagement."

19

Chapter 1 Basic principles for the design of user interfaces

Generally speaking, what is proposed to the user is an illusion that

the designer must imagine and implement as carefully and adequately as

possible.

Sorne factors may have an impact on the preservation of this

illusion. Among them, the accentuation can be placed on the form and the

speed of the feedback to user's actions on abjects of interest. Probably, a

rapid feedback and a continuai representation of the system state should be

recommended because they help to make the computer transparent, they

enable the user to watch actions and to monitor them like in the reality and
they contribute to the minimization of the user's cognitive effort.

1.1.2. The syntactic / semantic model of user knowledge

The theoretical way to see the man-machine interactions proposed
by Norman and others searchers can be completed by the syntactic/semantic
mode! of user knowledge suggested by Shneiderman [Shnei 87].

This model completes the previous one by giving more details about
the task perception at the computer side (i.e. the physical variable ... etc}.
lndeed, the Syntactic/Semantic model classifies the user knowledges into

three categories : the semantic knowledge which is composed of so-called

tasks concepts and computers concepts, and the syntactic knowledge.

By referring to the Norman's mode!, we can link the tasks concepts

to the psychological variables and the computers concepts as well as the

syntactic knowledge to the physical variables. We are now going to present

them briefly.

ln fact, the basic principle is that users "have syntactic knowledge

about device-dependent details and semantic knowledge about concepts"

[Shnei 87]. These two knowledges can be characterized in the following way.

The Syntactic knowledge is :

- varied ;

- device dependent ;

- acquired by rate memorization ; and

20

Chapter 1 Basic principles for the design of user interfaces

- easily forgotten.

The Semantic knowledge is :

- structu red ;

device independent ;

- acquired by meaningful learning ;

- stable in memory because of the logical structure and of the possibility

to link it to familiar concepts ; and

- hierarchically organized (from high level concepts to low level ones).

These two knowledges can be illustrated by the following Figure 1.6

ACTION 08JECT

TASK COMPUTER

SEMANTIC SYNTACTIC

Figure 1.6 : Syntactic and Semantic knowledges.

To be more precise, we can say that the syntactic knowledge

concerns the manner to follow in order to realize something with a given

computer. For example, the user must remember what is the action associated

with a set of function keys. There are many problems linked to this type of

knowledge which should be solved in order to offer quality interfaces :

21

Chapter 1 Basic principles for the design of user interfaces

- the syntactic details are not universal ; they change arbitrarily between

applications ;

- the learning process may often be associated to a struggle because of

the arbitrariness that characterizes the definition of physical elements

meaning (e.g. the articulatory distance of Norman). ln front of this

arbitrariness, the best way to acquire this syntactic knowledge is

rehearsals and frequent use ;

- there is also "the difficulty of providing a hierarchical structure or even a

modular structure to cope with the complexity" [Shnei 87];

- the syntactic knowledge being device dependent, a large variety can

be encountered while examining several keyboards, for example. What

could be recommended is a minimum overlapping of functionalities

syntax across devices.

On the other hand, the semantic knowledge which is split into

computer and task concepts, corresponds to the more frequent types of user's

expertise. lndeed, generally, an user is more or less expert in the task

realization itself and more or less expert in the "computer world".

The computer concepts consist of abjects related to the computer
world (such as files, directories) and of actions defined on these abjects (such

as saving of a file).

Generally, these concepts are conceived by highly trained computer

experts. The corresponding problem is that they are not always easily

accessible for novices because they can result from complex underlying

software, hardware and performance constraints. The development of the

people interest for computer science can perhaps contribute to the diffusion of

such concepts. lndeed, the assimilation of the meaning of the RETURN key,

for example, is now largely acquired.

The task concepts on the other hand are task abjects (such as the

notion of letter) and task actions (such as writing a letter). When one thinks

about a person accomplishing a task, it appears immediately that when the

treated problem is complex, the person decomposes it into smaller ones. As a

22

Chapter 1 Basic principles for the design of user interfaces

result, we can say that ail the task concepts can be decomposed into more

elementary ones.

With regard to the semantic knowledge, it appears from experience

that designers should conceive user interfaces so that they provide examples

of use, they offer general theory or pattern and they give the users the

opportunity to relate proposed concepts to previous by required knowledges

by analogy. The good interfaces should also describe a concrete or abstract

modal and indicate examples of incorrect use.

This Shneiderman's modal of the user's knowledges is particularly

interesting because it leads the designers to be conscious of the substantial

challenge that can r.epresent a complex interaction with a computer. lndeed, a

user having only task relevant knowledges may spend some time to learn a lot

of low level syntactic details before being able to realize a given task.

lt leads the designers to offer user interfaces that reduce the

learning efforts of computer concepts and especially of syntactic knowledge.

Seing aware of the existence of three knowledge kinds, the designers should

systematize their design efforts. Whenever it is possible, they should

concentrate themselves on the highlighting of the semantics of the task to be

interfaced and design interfaces independent of specific hardware

configurations. So, the user could concentrate himself on the task

accomplishment and on the learning of some inevitable computer concepts

(such as the "saving" concept).

Of course there exist also a lot of other high-level theories which are

in full development now. As illustration of this sentence, one just has to think

to the modelling of interactive system usage by transition diagrams which can

be particularly "helpful" during design for instruction, and as predictors of

learning time, performance time, and errors" [Shnei 87].

Another approach is the "GOMS" proposed by Card, Moran and
Newell [Card 83]. By "GOMS", they mean goals, operators, methods and

selection rules. The base of their theory is that users "formulate goals and

subgoals that are achieved by methods or procedures for accomplishing each

goal".

23

Chapter 1 Basic principles for the design of user interfaces

The operators are "elementary perceptual, motor, or cognitive acts,

whose execution is necessary to change any aspect of the user's mental state

or to affect the task environment" [Card 83]. Finally, we can define the

selection rule as the control structure which enables a user to choose among

ail the methods at his disposai when He executes a task. These authors have

also proposed a so-called "keystroke-level model" whose aim is "to predict

performance times for error-free expert performance of tasks by summing up

the time for keystroking, painting, homing, drawing, thinking, and waiting for

the system to respond" [Card 83].

We are now going to conclude the presentation of some high-level
theories by outlining thoughts about the typical working mode of a user that

should be taken into account (even reflected) in interfaces. lndeed, it must not
be forgotten that people very often do not accomplish a single task at a time
but many subtasks in parallel. Remarks at this subject will lead us to evoke the
multi-windowing technique.

Finally, in order to show that the theoretical studies about man­
machine interactions imply the participation of various disciplines, and of
psychology in particular, we intend to present some of the main ideas of the

model of the "human-information processor" established by Card, Maran and
Newell.

1.1.3. The Multi-windowing

The many parallel tracks of human's activities must be arranged into

a single linear sequence of actions to be performed. lt is what Cypher call

ljnearization [Norm 86]. But because of the limitations of human processing

resources, a lot of scheduling errors may occur during the scheduling of

multiple parallel activities. If the field of ergonomies attempts to design objects

that take into account the realities of the hum an body, the field of human­

computer interaction attempts to design interfaces that take into account the

realities of the human minci.

Thus, computer systems will be more comfortable for the user if they

are designed so that they actively support and facilitate multiple activities. For

example, computer systems should be able to provide re-orienting information

in the case of external interruptions resulting from events supervening in the
user's environment.

24

Chapter 1 Basic principles for the design of user interfaces

In the programs design, we believe that there will be a fairly good

matching between computer programs and user activities. But in practice,

there are many mismatches.

The first one is that a single activity can call upon more than one

program. A system which is oblivious ta the use of several programs for a

single activity places the whole burden of program management on the user.

When one engages in an activity, one builds up a context. But a momentary

interruption will cause this context ta collapse. Computer systems can provide

support for interruptions by saving the complete state of a program and by

assisting the user white resuming an interrupted activity. Sa, it can be

resumed precisely where it was left off. Most window systems give the ability

to trigger off multiple interactive processes for a single user. Windows are a

particularly good representation for the user. They divide one screen into

multiple virtual screens, each behaving like a complete screen. One of their

considerable advantages is that the saved image can be presented on the

screen while the user is engaged in an interrupting activity. Windows are often

used ta make the multiple programs of a single activity available

simultaneously. Like Reichman explains it in [Norm 86], one of the most

interesting aspects of windows is that they provide us with a visual display of

contextualization.

The other mismatch between activities and programs occurs when

more than one activity call upon a single program. lndeed, in this case, each

activity wants ta establish its own contents. The possibility of a context clash

may be taken into account because each program has its own set of context

variables.

Windows provide one way ta remind users of interrupted activities.

This works properly until the activities become tao numerous on the screen.

But also until there is one visible unit on the screen uniquely associated with

each particular activity in order to remind it to the users.

Now we conclude this section by underlying some more details

about windows and context management.

According ta Reich man [Norm 86], it seems that most of the current

window systems do not support implicit context navigation and tracking that

are used by people in their everyday work. lt is particularly annoying seeing

25

Chapter 1 Basic principles for the design of user interfaces

that because the contextualization supported by windows , people are inclined

to assume that their daily, natural contextualization conventions are also

supported by such systems. The assumption of independence between

windows is an heavy one because it reduces the power and utility of window

systems.

The real problem is that from one side, people see and know the

interrelations linking their various subactivities while the computers do not and

consequently, the latters do not possess markers to indicate such relations.

So no current systems provide users with ways to indicate to the computer why

they are leaving a context (e.g. a current window) and for how long they

abandon it.

What window systems supporting various contexts should be able to

perform is to distinguish things that must be interpreted together and things

that have to be interpreted separately (e.g. for example, it leads the window

system to link the windows that must be closed whenever a particular one is

closed). This kind of phenomenon can be explained by the fact that some

windows are functionally dependent.

Generally speaking, we can recommend the implementation and

management of a so-called "controlling status" associated to each window.

lndeed, as a result of what we have evoked in this Section, it appears that

windows may not only be opened or closed. By reference to Reichman [Norm

86], we can say that one should consider at least the four following categories

of status:

- Active;

- Controlling ;

- Generating ;

- Closed.

Special treatments may be associated to each of them. For

example, windows with a closed status should disappear from current display

while it should be indicated that "controlling" windows are waiting for a return.

26

Chapter 1 Basic principles for the design of user interfaces

By the way of conclusion to this Section, let's say that what can be

awaited in the near future from window systems is an accentuation of the

visualization of the context interrelations. A "taxonomy of context relations"

[Norm 86] (for example named arcs linking the windows and ability for the

users to click on these names to return to a linked window) could be proposed.

ln order to not overload the user's memory, one can envisage to make visible

only the windows linked to the current work on the active window. lt could also

be useful to reflect users the dependencies that can exist between the abjects

displayed within windows. Let's finish by signaling that colors, for example,

may be used to show context dependencies.

1.1.4. The human information processor model

According to Card, Maran and Newell [Card 83], the human mind

can be seen as an information processing system which can be described by

using the same terms as for a computer. lndeed, speaking about mind we can

consider processors, memories, their parameters and their interconnections.

The human processor consists of three interacting subsystems called the

perceptual system, the motor system and the cognitive system.

Each of them possesses its own memories and processors which

are described by some parameters, as storage capacity, delay time and main

code type of the information. We do not intend to go deep into the details of

this model but we think it is important to underline some of its basic principles

because they highlight some physical limitations of human mind that

designers should not forget while conceiving an interface.

The perceptual system "carries sensations of the physical world

detected by the body's sensory systems into internai representations of the

mind by means of integrated sensory systems" [Card 83]. This system relies

on two memories, a visual one and an acoustic one. The information is coded

physically in these memories (e.g. as "an unidentified, non symbolic analogue

to the external stimulus"). Shortly after the information is transmitted to a

working memory where it is stored in a recognized, symbolic, acoustically or

visually coded representation.

The decay of the Visual Image Store is around 200 (from 90 to

1000) msec. After this time, 50% of the information stored disappears. The

decay time of the Auditory Image Store is slower. The perceptual processor

27

Chapter 1 Basic principles for the design of user interfaces

can respond after around 100 (from 50 ta 200) msec. That corresponds ta the

response time of the visual system to a brief pulse of light.

lt appears that if perceptual events occurring within a single cycle

are sufficiently similar, they are combined into a single percept. What can be

taken out of this for the interface design is that there is a limit to the number of

acoustical and visual signais that can be presented at a time. For example,

experiences have shown that 10 clicks per second can be heard where 15

clicks per second can not because of the combination of clicks that is

preformed between them.

The Motor System. At the end, the thoughts are transformed into

actions by activating patterns of voluntary muscles. Any movement can be

decomposed into discrete micromovements whose length is around 70 (from

30 to 100) msec. The designer should especially be attentive to the arm-hand­

finger and head-eye system in order to avoid to overload them.

The Cognjtjve System contains two types of memory, a working

memory ("to hold the information under current consideration") and a long term

memory ("to store knowledge for future use") [Card 83). The short-term

memory contains activated elements of the long term memory coded as

acoustic or visual codes. The long-term memory consists of symbols called

chunks. The notion of chunk is particularly interesting for interface design

because it appears that the working memory can perceive 3 (from 2.5 to 4.1)

chunks at a time. This amount can reach 7 (from 5 to 9) if the long-term

memory is also used. As a result, it is the maximum number of unidimensional

stimuli a man can recognize at a time. A designer should avoid to override this

limit.

When a person perceives a chunk, He can associate it with another

one. Consequently, when one waits that a given command name provokes a

special action, it is really difficult ta change this last one. This point should be

kept in mind while choosing term appearing in an interface (for example when

defining menu items).

As it is not relevant for our work to know much more about the

different parameters and the interconnections between the three systems, we

do not give an exhaustive account of our explanation. The interested reader

28

Chapter 1 Basic principles for the design of user interfaces

can consult the book written about this subject by Gard, Maran and Norman

[Card 83].

1.2. MIDDLE LEVEL PRINCIPLES

A striking establishment when one thinks about man-machine

interface design is that designers must take into account three kinds of

"intervenings". There are the people, the tasks to interface and the techniques

that can be used to implement an interface.

As it is clearly underlined by Shneiderman [Shnei 87], a

fundamental but universal principle could be sentenced in the following

manner : "Recognize the diversity". lndeed, in order to conceive adequate

interfaces, we should be aware that a particular interface can be used by

various users classes, that it must give access to a well defined set of

functionalities and that in this perspective, it can recourse to multiple computer
techniques (such as menus, command language) which possess their own
advantages but also disadvantages.

ln fact, generally speaking, it could be said that interface design
relies on the ability to realize the best tradeoffs it is possible in order to
conciliate the three intervenings. For example, many tradeoffs must be set in

order to make the designed interface as useful and attractive for ail the users
classes.

So now, we are going to emphasize on soma characteristics of the

three evoked intervenings and on the design principles which follow from

them.

1.2.1. The "User" intervening

Anyone looking at people working with computers may discover

rapidly that there are three big classes among them. First, there are the

"novjces". By reference to the syntactic/semantic model, [Section 1.1.2] it can

be said that these people possess no syntactic knowledge about using the

considered system and moreover, they often have only a slight semantic

knowledge of computer demain. Sometimes, their task knowledge is itself not

very extended and they can feel anxious about computers.

29

Chapter 1 Basic principles for the design of user interfaces

Then, we find the "Knowledgeable intermittent users". Normally,

these ones master the semantic knowledge of the task and computer concepts

but as a consequence of interrupted computer utilization, they face problems

with regard to the memorization of the syntactic knowledge.

The "freguent users" constitute the last users group. These users

master perfectly the syntactic and semantic aspects of the system. What they

are looking for while using a computer interface is an efficient and rapid

accomplishment of their work.

The "design prjnciple" which follows from this is that a man-machine
interface must be able to fulfil the needs of these three users classes. ln other

words, a first step of interface design consists of knowing the aimed users.
Consequently, one can wait evolutionary interfaces because novices using

frequently an interface become experts. Concretely, one can recommend a

level-structured approach ta learning (e.g. interfaces in which the users can

progress step by step through the learning process of the syntax and of the

semantic). According ta Shneiderman [Shnei 87], the learning plan should be

governed by the progress through the task semantics. Moreover, it can be

interesting that a particular interface supports various feed-back levels (e.g.

the interface returns more information to novices than to experts).

1.2.2. The "task" intervening

Knowing the users classes which are concerned by the interface

design is not sufficient. lndeed, it is also necessary to know the task that must

be realized by them thanks to a computer interface. A classical problem is that

the task analysis is very often realized through an informai and implicit

process. The main risk attached to this way to do is that the design can dictate

the offered functionalities rather than the contrary (e.g. the task determines the

interface).

There are two traps which threaten the designers and which are

linked to an insufficient knowledge of the task [Sea 87]. There are the

underfunctionality and the overfunctionality. Ali these two defaults may lead to

the throwing out of a proposed interface. ln this perspective, it seems better ta

offer a restricted kernel of essential functionalities than all the functionalities

that can be imagined. By this way, one can hope to avoid the non-use of

interfaces or a partial use of the provided functionalities or a modification of the

30

Chapter 1 Basic principles for the design of user interfaces

task itself accompanied by a strong feeling of frustration. Moreover, the task
analysis is not easy to perform.

So the design principle that could be proposed from a general point

of view is to know the task. From a particular point of view, as the

determination of the most adequate set of atomic actions is not an obvious

choice, we can propose to perform a study of the relative frequency of use

before the design decisions. By this way, it should be possible to distinguish

the unavoidable functionalities and to provide the easiest access to them

through the future interface.

1.2.3. The "interaction styles" intervening

At the time being many interaction techniques (e.g. interaction

styles) may be used in order to implement a man-machine interface. These

may be classified as follows [Shnei 87]. We find :

- Menu-selection ;

- Form fill-in ;

- Command language ;

- Natural language ;

- Direct manipulation.

As we have already said it ail these techniques have advantages

and disadvantages. To be more precise, we should say that these two facets

of each interaction style are relative to the particular users groups that can be

considered. So, now, we intend to list some of the qualities and defaults of

these different interaction styles.

1.2.3.1. Menu-selection

Definition :

A menu is a list of items which represent functionalities supported by the

interface. The user can select one of them (with a mouse, a key­

abbreviation, ... etc.) in order to trigger off the associated action.

31

Chapter 1 Basic principles for the design of user interfaces

RecQmmend~d fQr:

Novices and intermittent users. lndeed, if the items terminology is significant

users can easily perform their task by selecting the useful items which are

meaningful. Seeing that meaningful character, no heavy learning and

retention efforts may be provided. Moreover, well-conceived menus chaining

may help users to structurate their decisions in a step by step process which

guides them through the task accomplishment. This one can also support the

learning of the performance of a task with a computer. Finally, it can likewise

be remarked that they reduce the key strokes and by the same time, they

minimize the typing errors.

Defaults:

Bad organized menus chaining may loose users. Moreover, frequent users do

not always like them very much. lndeed, they require the user leaves the

keyboard to move a mouse. However, this disadvantage should be alleviated

by the implementation of abbreviations which provide a direct access to an

item functionality. Finally, from a technical point of view, let's note that they

consume an important screen space and that they require computer systems

offering a rapid display rate.

Remarks:

There exist various kinds of menus (such as single menu,pop-ups ... etc).

However, we do not want to detail them in this work. The interested reader

may have a look on [Shnei 87 Chapter3].

1.2.3.2. Form fill-in

Definition :

A form fill-in is a set of related text fields displayed on the screen at a time to
enable an user to enter semantically linked data. For example, this can be

useful when one needs to introduce ail the data related to a book in a library

management computer system.

Recommended for:

32

Chapter 1 Basic principles for the design of user interfaces

Advanced intermittent users and experts. lndeed, these forms simplify the data

entry but they require a minimum training. lt is necessary to be able to

manipulate the keyboard, to switch between fields, to know their meaning and

their syntax ... etc. Consequently, an on-li ne help system should be

implemented to support the filling of a form.

,Defaull~:

The most obvious default is that the display of a form on a screen may

necessitate a lot of space on it.

1.2.3.3. Command language

Definitio.o :

A command language is a language that is understandable by a computer

system. lt has got its own syntax and semantic. lt admits a well-defined

vocabulary that must be learned by users.

Recommended fg.r:

Frequent users. lndeed, this kind of interaction style seems to go hand in hand

with control and initiative abilities. Without being distracted by screen prompts

(such as menu display) and without having to leave the keyboard, users may

initiate system actions. By this way, users are not confined into a predefined

process (like in menu chaining), they are free and command the system. This

characteristic may grow their satisfaction of use. Moreover, a command

language may be particularly efficient seeing that users can define so-called

"macro-commands" by which they can initiate a complex actions sequence in

response to a single command line.

Default§:

They are only envisageable for expert users because they can be forgotten

easily. They are coupled with a learning and memorization problem. As their

syntax may be arbitrary, it appears that they put the gulf bridging effort, evoked

in previous pages, on the user's shoulders. Moreover, as they rely on the

keyboard use, they can be linked to a high rate of typing errors.

33

Chapter 1 Basic principles for the design of user interfaces

1.2.3.4. Natural language

Definition :

Natural language is the everyday language of people. Let's note immediately

that this interaction style is submitted to many researches at the time being but

that up to now, it is not the most efficient one nor the most successful.

F,lecommended for:

Users knowledgeable about a task domain which is very limited or intermittent

users who are unable to memorize a complex command language. The

biggest advantage is that there should be no syntax learning effort to provide.

Defaylt§:

Up to now, the researches and limited implementations like in the GURU

expert system shell have not led to really convincing results. Moreover, the

typing effort may be non negligible (e.g. one may have to realize more

keystrokes than while using another interaction style). There is also the

problem of unpredictability and of the impossibility to ~how the context for

issuing the next command.

1.2.3.5. Direct manipulation

Definition:

Direct manipulation is a term introduced by Shneiderman to qualify interfaces
possessing the following properties [Shnei 87] :

- Continuous representation of the abjects of interest ;

- Physical actions or labeled button presses instead of complex syntax ;

- Rapid incremental reversible operations whose impact on the abjects of

interest is immediately visible.

So, concretely, direct manipulation may be seen as the putting into practise of

the "what you see is what you get" principle. The direct manipulation

interaction style is notably illustrated by the spreadsheets, the display editors

and the video games. As it is underlined by Norman [Norm 86], the promise of

34

Chapter 1 Basic principles for the design of user interfaces

Direct Manipulation is that instead of an abstract computational medium, all

the programming is done graphically, in a form that matches the way one

thinks about the problem.The desired operations are done simply by moving

the appropriate icons onto the screen and connecting them together.

Recommended for:

The three kinds of users. lndeed, novices can be helped because there is no

heavy learning effort (e.g. often a demonstration of use is sufficient) and

moreover the exploration of the system abilities is encouraged. There is an

immediate visual reaction to each of their actions so they are not lest.
Moreover, the errer level may be reduced to a minimum level and

consequently error messages are rarely needed. The users' anxiety should

be reduced because "the system is comprehensible and because actions are

so easily reversible" [Shnei 87]. ln this case, the gulf bridging efforts are

supported by the designers, the knowledges about semantic and syntactic

computer concepts are reduced to a minimum in such a way that the users

may concentrate on the task-related knowledges.

Intermittent users are interested because the efforts of retention over time are

reduced. They can keep in mind the fundamental operational concepts.

Experts should have the opportunity to accomplish their task very quickly.

However, this is criticized by Norman [Norm 86]. For him, the speed at

execution is not a relevant factor because it seems that the use of an

interaction style such as command language could be more efficient.

Generally speaking, it could be said that for the three users categories, a high

satisfaction level can be awaited and also the development of interfaces

supporting a so-called "direct engagement" feeling.

Defgults:

As a counterpart to the important qualities of well-designed direct manipulation

oriented interfaces, many problems emerge :

- Such interfaces may be difficult to implement. lndeed, the direct

manipulation requires that one finds good representations of the task

objects. Moreover, this kind of interaction style does not fit to each

application kind ;

35

Chapter 1 Basic principles for the design of user interfaces

- They rely on graphies display and on the use of painting devices ;

- Another problem may be found in the fact that direct manipulation tries

to support directly the way users think about a task domain. The

consequence of this is that such an interaction style may inhibit the

providing of new ways to think of and to interact with a task demain.

Consequently, this can black users in the existing and prevent

designers to exploit what Norman calls the most exciting potential of

new technology [Norm 86] ;

- Direct manipulation is not a solution to an insufficient understanding of
the task demain ;

- Finally, there is the problem of errer occurrence.' lndeed, Shneiderman

assumes that no errer message is necessary because every action is
immediately reflected on the screen. However, there is a linked

problem in this sense that errors have to be made visually obvious.

Such an option may require many design efforts.

1.3. PRACTICAL GUIDELINES

High level theories and analyses of the user of the tasks to interface

and of the most suitable interaction styles are the first steps of interface design.

However, for more general aspects of interface design, it is possible to

distinguish some basic ergonomie principles that should be considered while

conceiving well-designed interfaces.

These ergonomie guidelines may be formulated by different ways.

They can be sentenced as "golden rules" as it is done by Shneiderman [Shnei

87]. But many books and papers are written about the subject. They give

advices about the way to organize screen displays (input and output) and also

the dialogue (e.g. the communication between man and machine). Among

many others, we can consult [Sea 87], [Shnei 87],.[Fau 82],.[Cout 87],.[Norm

86],.[Brown 88].

Globally speaking, we can classify ergonomie concerns in the

following categories inspired by [Sea 87] :

36

Chapter 1 Basic principles for the design of user interfaces

- Compatibility :

Compatibility of the screen contents, users's vocabulary and way to

perceive tasks-related concepts ;

- Consjstency :
lt means that the same commands sequences are used to reach the

same results, that the same functionalities are designated by the same

terminology through the whole interface. This principle seems to be

"the most frequently violated one, and yet the easiest one to repair and

avoid" [Shnei 87] ;

- Concision :
The human information processor model (presented in Section 1.4.)
has underlined the existence of limits in the human short-term memory.

So, ergonomie interfaces should alleviate it by not imposing

memorization of complex commands sequences to users. According to

[Sea 87], the computer must be considered as an external memory. ln

the same context, let's remark that it can be interesting to minimize the

number of actions to perform in order to accomplish a given subtask as

also the computer response time ;

- Flexibility :

Two kinds of flexibility may be considered. Internai flexibility and

external flexibility. Indeed, it can be required that best designed

interfaces be able to cape with the three various users classes (e.g.

offering shortcuts to experts). This corresponds to the internai flexibility.

The external flexibility on its side, implies the ability for a given interface

to run on various computer environments;

- feed-back and guidi ng :

Feed-back to actions performed by users, seems particularly useful

because it appears that the knowledge of the action result may have an

impact on the performance quality. Consequently, one can recommend

a feed-back as immediate and explicit as possible. This point justifies

the interest of the direct manipulation interaction style ;

- Exp!icit contrai :
Best interfaces appear to be driven by users (rather than the contrary).

As a result, it is recommended that at any time, the user has the ability to

37

Chapter 1 Basic principles for the design of user interfaces

know which processing state has been reached. Surprising systems

should be avoided as much as possible. This principle may be

perceived as an effort to avoid the acausality. Moreover, it is important

that actions sequences possess clearly defined beginning, middle and

end. So that their completion goes hand in hand with a feeling of

accomplishment and that the user can prepare the next actions

sequence ;

- Error handHng :

The basic idea is to prevent error occurrence (for example by using

particular interaction styles rather than as other one). Errors should be

reduced to non-serious ones and every potential destructive action

should be confirmed explicitly by the user. If despite this prevention

effort, some errors occur, they must be detected immediately by the

system. This one has to signal them to the user and to assist him

explicitly during the errer recovery step. ln particular, it can be noted

that good interfaces should not oblige users to type again completely an

erroneous text field. There should be the ability to correct directly the

errer from the already filled field.

As a result of the various ideas evoked here, we are now concluding

this first chapter by a rapid list of steps that seem to be "unavoidable" ones for

interface designers.

1.4. RECOMMENDED DESIGNING STEPS

As a consequence to ail the things we have said, it appears that the

designing process is a dynamic one. Moreover, it can require a wide time

period and it can necessitate the intervention of a lot of people (such as

ergonoms, programmers, task analysts and of course end-users). Briefly

speaking, it can be said that at least the following enumerated stages are

necessary.

1.4.1. Guidelines establishment

This step corresponds to a collect of current performances starting

from already existing similar system, from the needs of ail the implied parties

38

Chapter 1 Basic principles for the design of user interfaces

(e.g. managers and end-users). Sorne working guidelines should be gathered

about subjects like the used character set, the accepted response times ... etc.

1.4.2. Participatory design

We have insisted about the importance of the user and task

knowledge for interface design. Offering users the opportunity to express their

point of view may be really interesting in order to know exactly what they need,

to determine their computer knowledges and capacities but also to reinforce a

sort of feeling of ego involvement. However, one should not forget that this

way to proceed is costly, time-consuming and can be at the origin of conflicts
between the users who are involved and the other ones.

1.4.3. Pilot studies

Pilot studies intend to collect users actions to first screen proposais

as soon as possible. They present the advantage of being inexpensive as

they can be realized even by using type-written versions of envisaged

screens. Moreover, they are rapid and can be very productive in order to give

an adequate orientation to the conceived interface from the early beginning.

They give also the opportunity to test alternatives.

1.4.4. Rapid prototype system

As it often happens with software, when a product is completely

implemented its maintenance and adaptation to real users needs may be

particularly costly. So, it is recommended to implement significant prototypes

to offer users a realistic impression about the final look of the considered

interface. Moreover, looking at the manner users work with a prototype,

designers can be led to modify their way to organize the functionalities

supported by the interface.

1.4.5. Acceptance tests

When the final interface is totally implemented at the conclusion of

the other steps, one has still to contrai its quality by reference to measurable

criteria such as :

39

Chapter 1 Basic principles for the design of user interfaces

- The time to learn specific functions ;

- The speed of task performance ;

- The rate of errors ;

- The user subjective satisfaction ;

- The human retention of commands over time. [Shnei 87]

These tests should be realized on significant users classes and their extent

may be relative to the interface size.

The global aim attached to the recourse to these stages is to avoid

time and money wasting by adapting the designed interface as soon as

possible.

40

CHAPTER 2 :

ANAL YST'S PROFILE AND TASK

ln order to conceive a "good" interface for an environment

supporting the building of an expert system, the profile of its future user should

be defined as precisely as possible to fulfil the "know the user" principle

presented by Shneiderman [Shnei 87]. Moreover, it is necessary to be

conscious of the nature of the tasks the analyst performs while instantiating an

expert system shell. This is a response to the Shneiderman's "know the task"

principle. So, Section 2.1. defines the user profile general characteristics

while Section 2.2. presents an analysis of the different subtasks to take into

account. The aim of this chapter is thus to highlight the moments when a tool

can be helpful for an analyst and the type of functionalities that such a tool

should support.

41

Chapter 2 Analyst's profile and task

2.1. DEFINITION OF THE USER PROFILE THE KNOWLEDGE

ENGINEER

First of all, we need to precise the meaning of the words

"Knowledge Engineer". This persan who can also be called the "analyst" or

the "developer", is in fact responsible for the instantiation of an expert system

shell with particular expert's knowledges. He must also take into account the

profile of the end-user of the system in order to realize a parametrization of the

developed instantiation which is relevant to the needs and abilities of this

persan.

From a technical point-of-view, the analyst should master the basic

mechanisms of expert systems functioning. He should foresee the effects of

the use of the different authorized chaining modes and be competent to

represent knowledges in the formalism offered by the considered expert
system shell (rules, frames ... etc}.

Nevertheless, his computer knowledges have not to be very

extensive, He is not necessary a specialist in computer science.

So, we can say that the analyst's intervention is located between

experts who are specialists in a particular demain and users having recourse

to his implementation of the extracted knowledges. Seeing the intermediary

character of this position, the analyst must be able to interact with these two

categories of people.

Concretely speaking, He has to be sufficiently qualified for

interviewing the experts in order to extract their knowledges and for

formalizing these knowledges according to an format adequate for the shell.

So, it does not seem exaggerated to require communication and abstraction

abilities from the analyst.

Moreover, the analyst should also have a good understanding of ail

the users classes and of the tasks that these ones will have to realize with the

given expert system. He must help the users to define exactly what the

artificial expert should do in order to replace an absent human expert

efficiently. ln other words, He has to think about the kind of problem a user

submits generally to a human expert in the considered context.

42

Chapter 2 Analyst's profile and task

Moreover, the analyst has to test his work with the experts in order to

control the correctness of his formalization of their knowledges and then with

each users class to verify that what He has implemented is really relevant and

adequate for them. The analyst should be able to accept and take into

account numerous criticisms.

Finally, He may also be in contact with a third persan. lndeed, the

developed expert system must very often be integrated into an other

application or have access to external procedures in order to perform

consultations. We have said that the analyst is not always competent in

computer science, so, in order to reach the best integration it is possible, He

can also have to work with programmers.

2.2. ANAL YSIS OF THE TASK

The basic task of a knowledge engineer consists of the building of

an expert system. First, we are going to propose a process in 6 steps that

might be followed by an analyst when He decides to build a particular expert

system [Mou 89]. Facing this method, we shall be able to determine some of

the features that an efficient expert system shell environment should offer
ideally.

2.2.1. The 6 phases of the analyst' s task

◊ Phase 1 : Selection of the appropriate problem

During this phase, the analyst defines the demain and the task that

the planned knowledge system is waited to perform competently. By the

analysis of the features of the project, He will decide if the expert system

technology is suitable for the considered problem. lndeed, the considered

task must be appropriate and within the reasoning scope of an expert system.

He must also estimate if the. needed expertise is available.

If the expert system is foreseen to be only part of another software

application, this phase is also very important to determine exactly which part of

the application will be taken into account by the expert system and how to

proceed to allow an easy integration with other software components in the

future.

43

Chapter 2 Analyst's profile and task

◊ Phase 2 : Development of a prototype system

A prototype is a significant part of the application. lt is a subset of

significant knowledges needed to realize some of the expert's activities.

This prototype must be realized for a small cost and in a short time.

However, it plays a prominent role in the development of a knowledge system.

During this phase, the engineer learns the vocabulary and the

notions related to the domain of the application. On the other side, the expert

learns to formalize his knowledges and to explain his reasoning strategies.

The implementation of a prototype is a crucial step because it helps

the analyst to estimate the required investment, the most appropriate

structuration of the knowledges, the availability of the experts and the power of

the tool used to implement the prototype.

After completing a knowledge system prototype, the analyst has to

test it with care and to observe the strengths and weaknesses of its

performance. lt is possible to review basic design decisions because a

prototype is small and can be changed radically or even discarded for only a

small cost.

At the end of this point, the analyst is able to choose an expert

system shell which will fit the best the chosen representation of the

knowledges and strategy contrais.

◊ Phase 3 : Development of the complete system

First, the "kernel" of the expert system has to be implemented. Then,

the analyst will test it with the experts and, step by step, after studying new

cases, He will add new knowledges. New cases will also help to test the

robustness of the expert system reasoning.

The "kernel" could be the prototype (if the design decisions must not
be changed), but the engineer can also start without any formalized

knowledges. He can build a completely new "kernel" in respect with the

choices made by reference to the prototype.

44

Chapter 2 Analyst's profile and task

The process of acquiring knowledge, encoding it, and reviewing the

knowledge system performances continues until retained predefined

performance criteria have been satisfied.

During this phase, the analyst must also develop the end-user

interfaces and test them with the different corresponding classes of users.

◊ Phase 4 : Evaluation of the system

The engineer must determine whether the system provides good

performances. The best way to test it consists of putting in competition the

system and human experts for the solution of a set of typical cases. Then, the

results should be compared. The system is expected to be able to salve a

majority of cases.

◊ Phase 5 : lntegration of the system

During this phase, the system is interfaced with Data Bases and

other applications which have been developed concurrently in parallel by

using a classical analysis method.

◊ Phase 6 : Maintenance

Like all other software applications, an expert system can be

modified in the future. One waits that the chosen tool offers help abilities to

change the knowledges easily while preserving the consistency of the whole

knowledge base.

2.2.2. Deduced features for an expert system shell environment

By reference to the previous section, it appears that the considered

analyst's environment consists of a set of tools that should be helpful during

the development of a prototype system, the development of the complete

system, the evolution and the maintenance of the instantiated expert system.

The integration phase is not really dependent on the environment tools but

rather on the power of the expert system shell itself. Consequently, the latter

has to offer integration opportunities.

45

Chapter 2 Analyst's profile and task

Facing these considerations, we can deduce that the building

environment must be a tool helping the analyst to develop a prototype easily,

quickly and at a low cost. So in order to fulfill these requirements, the tool

should be available on P.C.'s or on workstations. However, the tool must also

be powerful enough to support the whole expert system implementation. As

the development of a knowledge system is a process relying on a step by step

construction of the knowledge base, the tool should offer basic features such

as:

- Features linked to the building and the updating of an instantiated

expert system such as an editor to create and update the knowledge

base, a module listing ail or only some parts of the knowledges, and a

module helping to preserve the consistency of the knowledge base ;

- Features related to the testing of an instantiated expert system (an

inference engine offering different contrai strategies, a module

supporting the debugging of the knowledge base during execution) ;

- Features making possible the adaptation of an instantiated expert

system to particulars users classes.

What should be kept in minci at the end of this chapter is that a good

interface expert system shell should offer at least these general functionalities

and present them in a manner which is compatible with the main

characteristics of the analyst's profile.

46

CHAPTER 3 :

OVERVIEW OF EXPERT SYSTEM INTERFACES

The theoretical part of our work has insisted on the definition of an

adequate set of functionalities enabling an analyst to accomplish efficiently

and easily a given task. Thus, we dispose of the critical bases for the building

of K-Expert interfaces.

However, we think that it can be time-sparing and source of

imagination to outline a brief "state-of-the art" of some existing expert system

shell interfaces under the light of our theoretical considerations. We hope by

this way to extract interesting and efficient functionalities and also man­

machine interaction methods.

Thus, the main underlying aim of this chapter is to present and to

criticize some already existing expert system shells in order to have in minci

the characteristics of their analyst's and user's interfaces and the

functionalities that can be accessed through these interfaces.

The steps that lead our criticism consider separately the knowledge

engineering and the user (or run time) interfaces. We focus ourselves

especially on the analyst's interface. So, we first summarize set of

functionalities enabling an analyst to accomplish efficiently and easily a given

task. Then, we present the basic interaction "techniques". After this, we

formulate some remarks about the initiative and contrai feelings, the internai
and external flexibility, the feedback, the short and long term memory load.

We also think about the errors handling, the on-line help, the dialogue

interruption abilities (such as canceling, deleting, starting again, finishing) and

finally about the interface consistency.

ldeally, we should have met many analysts and users to summarize

their reactions to different Expert System shells. For practical reasons, we

have not had the opportunity to do that, so we have limited ourselves to an

analysis net based on theoretical elements. At any time, we have tried to set

our opinions by "playing" ourselves with the criticized shells.

47

Chapter 3 Overview of Expert System interfaces

Thinking to the nature and characteristics of K-Expert, we have

decided to focus ourselves on comparable shells (e.g. same levels shells).

These shells present many features of what Harmon calls "the Mid-sized"

expert systems tools. This author characterizes them by the following

elements [Har 86] :

- They allow a serious programmer to develop and field a Mid-sized expert

system on a PC ;

- They are able to draw data from external Data Bases ;

- They are able to rely on external programs ;

- They can include procedural code within a program ;

- They allow the user to partition the rule base ;

- They take advantage of multiple instantiation and simple inheritance ;

- They implement confidence factors or Baysian probabilities or make it

possible for the analyst to easily encode them ;

- They make easy to create any desired user interface display ;

- They make easy the use of graphie displays ;

- They are supported by documentation ;

- The companies which trade them offer training programs to teach their use.

Among these Mid-sized tools, we have selected M1 (Section 3.2.)

and Nexpert (Section 3.3.).

We conclude this chapter by highlighting interaction methods and

functionalities that we think interesting to retrieve for the building of K-Expert

interfaces(Section 3.4). Our criterion for "interest" is the joint presence of a

theoretical justification and of the possibility of a practical implementation. The

highlighting of functionalities should provide K-Expert developers with more

ideas for the future evolution of the software.

But first, let's give a general presentation of K-Expert (Section 3.1.).

48

Chapter 3 Overview of Expert System interfaces

3.1. K-EXPERT

3.1.1. General presentation

K-Expert is a rule-based expert system shell, implemented in C

language and designed to run on various IBM Pc and compatibles.

The aim of this tool consists of developing expert systems that can

be integrated easily in conventional software applications. So, it can be said

that K-Expert tends to be as "opened" as possible.

ln this tool, the facts are represented as simple attribute-value pairs

and the relationships between them are embodied by "IF-THEN" production

rules. The conditions of the "IF" part of a rule (Antecedent) are connected with

the boolean operators "AND", "OR" and "NOT". At the time being, no certainty

factors are usable. Moreover, the knowledges being stored in external Data

Bases, their size can nearly be as great as desired. The supported contrai

strategies are the backward chaining, the forward chaining and a combination

of the two previous modes. Breadth-first and depth-first are also considered.

ln the future, other rule formalisms should likewise be envisageable

such as frames, nets and graphs and in a further future, it could also be

possible that "hyper media" (e.g. : nets of tools) be proposed.

The designers of K-Expert want an expert-system shell really easy

to use so that the analysts (and obviously the end-users) must not be experts

in programming and computer science. Moreover, they concentrate their

efforts in order to make K-Expert portable as much as possible. This portability

relies especially on the fact that K-Expert is implemented in C language. This

is particularly interesting seeing that many other languages have interfaces to

C and that the contrary is also right. So it should be possible to link programs

written in different languages with K-Expert.

These two concerns are illustrated by the two development
directions pursued at the time being :

49

Chapter 3 Overview of Expert System interfaces

- On one side, the designers put the accentuation on the "analyst's

interface" of the K-Expert; they wish that an analyst can use K-Expert as a

simple tool which will perhaps be extended so that it will be possible to

access spreadsheets or other expert systems from a given one.

- On the other side, the designers intend to touch the professional

programmers by giving them the ability to use K-Expert as a library of

functions. ln this perspective, the comfort of use is not so important than in the

previously evoked objective but what is especially necessary is the availability

a set of functionalities which should be as large as possible ..

3.1.2. The existing analyst's interface

At the time beeing, to build the knowledge base, the analyst can use

either an external text editor or the so-called "Knowledge Engineering

Interface".

The first one is a classical ASCII text editor. lt gives the analyst the

advantage of working with a familiar and powerful editing environment for

writing rules. We think however that it is not a really suitable manner for

testing a knowledge base. lndeed, each time the analyst wants to change

something inside it, He has to leave the K-Expert environment in order to enter

the used editor. Another problem is that before being able to work on the

created rules set with the K-Expert inference engine, the analyst must

previously run a specialized program named "Rules Parser". This application

verifies rules and variables syntax and adapt them to formats compatible with

K-Expert.

The second ability consists of the use of the "Knowledge

Engineering Interface". This one is developed with the so-called "Knowledge­

Man" software. This is not an ideal way to proceed because the analyst must

have the whole K-Man environment at his disposai in order to run the K-Expert

interface itself. This one off ers a basic ru les editor, a variables editor and a

run-time environment illustrated in Appendix A. The rules editor considers

only the "AND" operator in the rules antecedent while the consequent may

consists of only one action. The variables editor, on its side, allows the analyst

to associate questions to variables. These questions will be displayed during

a consultation if the inference engine needs some more informations to

instantiate a particular variable.

50

Chapter 3 Overview of Expert System interfaces

When the analyst wishes to test the quality of an instantiated expert

system, He has to enter the run-time environment. If needed, He can introduce

some facts and has to choose the contrai strategy before starting the

consultation. ln the current system, this run-time environment is the same for

the analyst and for the end-user. Like the two previously evoked editors, this

tool is an elementary one from an ergonomie point of view.

During a consultation, one has access to a particular window splited

into three parts. This window is illustrated by the Figure A.1 of Appendix A.

The first one displays the dialogue itself. That is in this area that the inference

engine questions the user to obtain informations. As feedback, it displays also

the user's answers. Moreover, each time a question appears on the screen, a

list of ail the possible answers generated by the system is displayed in the

second part of the window.So, the user has the ability to answer system

questions either by typing on the keyboard or by performing a mouse selection

in the list. To be complete, let's say that there is also another run-time

opportunity which consists of asking "WHY" a question is generated by the

inference engine. ln this case, the system displays the current tried rule in the

third window area. This space is also used to show the user which

conclusions have been reached up to now by the inference engine. To have

access to more details about K-Expert, the interested reader may consult [K­

EXPERT 1]

If these building and use "interfaces" may be sufficient in a first step

of the development process of an expert system shell such as K-Expert, it

appears quickly that they are really insufficient to satisfy the first aim of the

designers (e.g. : K-Expert be considered as an enjoyable and useful tool for

various users classes). lndeed, the question we retain can be formulated as

follows : How people getting accustomed to the use of systems relying on

direct manipulation principles could accept to use with pleasure such

elementary interfaces ?

So in the next chapters, we try to adapt the current K-Expert

analyst's interface in order to make it compatible with the goal pursued.

51

Chapter 3 Overview of Expert System interfaces

3.2. M.1

3.2.1. Presentation

M.1 is a knowledge system building tool available on IBM PC, XT,

AT or fully compatible PC. M.1 is produced by Technoledge,lnc. Originally

written in Prelog, it is now implemented in the C programming language.

Conceptually, M.1 is an interesting cross between Emycin and

Prelog. lt can be interfaced to existing softwares such as data base

management systems, communication networks, computer-aided design

systems.

According to the M.1 reference, manual [M1 87a], M.1 can be used

quickly and effectively by non-specialist èomputer programmers with no prior

experience in knowledge system technology. A single programmer can

typically builds a first useful system using M.1 within two to three months. But

M.1 is also targeted at programmers who wish to develop expert systems that

can be easily integrated into conventional computer environments.

Knowledge systems built with M.1 are designed around a

knowledge base relating to a particular task or application and an inference

engine that performs the reasoning process to salve specific problems in that

application area. The knowledge base can contain up to 2,500 rules, facts

and meta-facts. The facts are represented as attribute-value pairs and can be

followed by certainty factor (measure of likelihood between 100 (true) and -
100 (false)).

The relationships between facts are defined by IF-THEN rules. The

conditions of the IF part of a rule are connected with the boolean operators

AND, OR, NOT . They are either of the form "EXPRESSION = VALUE

(optional) cf CF (optional)"or they are mata-propositions (for example, an

instruction to test whether some expression is known). The conclusion of the

THEN part of a rule consists of facts connected by the boolean operator AND.

Certainty factors can be associated to the rules. M.1 also accepts variable

rules. They allow rules with a repetitive pattern to be collapsed into a single

rule. The sets of values that could be substituted into these rules are included

in a "lookup table" in the knowledge base.

52

Chapter 3 Overview of Expert System interfaces

Meta-facts provide informations useful in determining an expression

value as the "question (expression = "what is the value of expression") "

instruction. This meta-facts do not tell M.1 the value of an expression but tell it

how to ask the value .

During a consultation each rule can be used by the system one time

except for the variable rules. The contrai strategy of M.1 is the backward

chaining mode. lt works with input data and rules in the knowledge base to

deduce facts or conclusions. The deduced facts are stored into the cache.

Limited forward chaining can be accomplished. lndeed, when conclusions

match a specified pattern, a special set of high-priority goals can be activated.

For example, by using the WHENFOUND instruction in a rule, the analyst has

the ability to write a kind of single condition rule which will trigger off an action

such as pursuing a new goal anytime it becomes true. Having done this, M.1

would then resume the backchaining where it had left it off.

To conclude this general presentation, we can add some remarks

about the interface. The screen is always divided into three major area : an

action bar and pull down menus, a panel body and a function keys area.

The action bar appears at the top of the screen, is permanent and

contains a list of choices. When users select one of the choices, a pull down is
displayed that lists available actions.

The panel body is located below the action bar and it can be divided

into several panel body areas if the application needs ta show users more

than one group of information at a time.

The function keys area appears at the bottom of the panel. lt

contains a list of function keys assignments. The interaction with the screen

are performed only with the keyboard.

3.2.2. The Knowledge engineering interface

M.1 provides two interaction environments : one for the knowledge

engineer who is developing an expert system (e.g.: the development

environment) and one for an "end-user" who consults an instantiated expert

system in order to gain expert advice(e.g.: the delivery environment).

53

Chapter 3 Overview of Expert System interfaces

When M.1 is launched , the delivery environment is displayed on

the screen. The design of this screen is presented in Figure B.1 (Appendix B).

By pressing <F9>, the analyst is allowed to switch back and forth

between M.1 delivery and development environments. The interested reader

may find a figure illustrating the development environment in the Figure B.2

(Appendix B).

The user may issue M1 commands via the pull-down menus which

contain the whole available functionalities.

3.2.3. Summary of the main available functionalities.

Let's remark that this list is not exhaustive.

3.2.3.1. Functionalities related to the building of the knowledge
base.

Any text editor that can generate ASCII text can be used to build the

knowledge base. This gives the analyst the advantage of using a familiar and

powerful environment to describe the attributes and to write the rules.

But the Knowledge base can also be modified within M.1

development environment. By this way, a new entry (it means either a fact or a

rule or a meta-fact) can be added at the beginning or at the end of the loaded

knowledge base. Likewise, an entry can be removed or modified.

Other actions can be performed on the current knowledge base

such as either to clear it and reload another one or to load a knowledge base

at the beginning or at the end of the current existing one.

At the end of all these modifications, the analyst can ask to save the

current knowledge base into a file. This one is in text format, so it may be

inspected and edited using any standard text editor.

But another opportunity is provided to the analyst. This last can ask

to save only the new or the modified entries. This option enables him to

reintegrate these entries into the master knowledge base at a desired place by

usi ng a text editor.

54

Chapter 3 Overview of Expert System interfaces

Of course, in order to facilitate the analyst's task, M.1 provides a set

of lists such as :

- the list of ail the entries of the knowledge base,

- the list of ail the entries that can be used to find a value for a specified

expression,

- the list of ail the entries that can be used to conclude a specified value

for a specified expression,

- the list of ail the rules in which the value of a specified expression is

used in the premise to find the value of some other expressions.

3.2.3.2. Functionalities related to the consultation of a knowledge
base.

The analyst may start the inference engine in three different ways.

lndeed, He can ask to start a consultation after having cleared the

cache. This last is the repository of ail the conclusions made in a previous

con su ltatio n.

Another opportunity is to start the consultation without affecting the

contents of the cache. This is useful to restart a consultation that has been

aborted or to start up an end-user system that requires a pre-loaded cache file.

The last option is to clear the cache of ail the entries concerning a

specified expression and to start the inference engine to find the value of the

given expression.

Obviously, the user can abort a consultation at any time without

affecting the knowledge base and the cache. He can also exit the consultation

and return immediately to the Dos system prompt.

Moreover, during a consultation, the analyst can receive an

explanation about the expression which is being sought and a list of the legal

values which can be given to this expression.

55

Chapter 3 Overview of Expert System interfaces

3.2.3.3. Functionalities related to the debugging and the trace

During a consultation, M.1 has an inference tracer. When the option

"trace" is on, M.1 produces and displays a text "trace" which is a report

detailing the inference engine process and the events of the consultation.

This information includes the tried rules ,the rules that have succeeded or

failed and the conclusions that have been noted in the cache.

The user can also ask to activate the trace only when M.1 finds a

specified value for an expression. Obviously, the analyst can desactivate this

trace or ail the tracing whenever He wants. Punctually, He can always ask M.1

to show which expressions are currently being traced.

The trace can be saved in a specified file and then, it permits to save

the behavior of the knowledge system. But it can also be read by external

programs and it provides a mechanism to integrate M.1 with other softwares.
Moreover, the trace can be printed.

To support the debugging of a knowledge base, there are other

options. The user can ask (by setting the panel option on) to display five areas

which show the activity of the system. Those areas display the events as they

take place during a consultation, the conclusions that are noted in the cache,

the knowledge base entries as they are noted in the cache, the knowledge

base entries as they are tried during a consultation, the acceptable responses

to questions that are generated and the dialogue.

Moreover, the user has the ability to regulate the speed of the

displaying of the informations in the described window. This one is illustrated

by Figure B.3 (Appendix 8).

3.2.3.4. Functionalities related to the cache.

We have already defined the cache as the repository of all the

conclusions made in a consultation.

The analyst has always the ability to move the contents of this cache

into a specified file or conversely, to load the contents of the cache from a

given file. But, He can also alter the contents of the cache. lndeed, He has the

ability to add or to clear any conclusion which corresponds to a specified

56

Chapter 3 Overview of Expert System interfaces

expression (and a specified value and a specified certainty factor). The

analyst can also clear ail the entries recorded in the cache.

But other opportunities are offered to him, such as the ability to show

the contents of the cache or to display the values, if there are any, of a

specified expression.

3.2.3.5. Functionalities related to analyst information features.

The analyst can ask M.1 to display how many facts and rules are in

the cache and in the knowledge base and how much memory is free.

A help function is available to the designer. lndeed, M.1 can display

a list of available commands or a brief explanation of a specified command.

3.2.3.6. Functionalities related to the creation of a user interface.

Facilities exist for tailoring both the Knowledge base and the

interface to suit a particular application and user. The knowledge base may

contain enhanced or customized explanations by using the already mentioned

meta-facts (e.g. the "question" instruction which enables the analyst to display

an appropriate question). ln addition, with meta-facts, it is also possible to

disable M.1 commands in the delivery environment to protect the integrity of

the knowledge base. lt is also possible to create a configuration file. This is

done by running the "configuration manager" which is a stand alone program.

This one allows the knowledge engineer to create own menus, to add, to

remove or to rename commands, to modify prompt in order to make the system

more friendly to particular users.

Moreover, as M.1 allows knowledge systems to be readily

integrated with existing systems, M.1 can invoke subroutines written in

assembly language or in higher-level languages such as C so, a programmer

can try to design a more friendly interface. For example, in order to display

graphie, an external procedure has to be written in C to create the display and

also to remove it before continuing with the consultation.

57

Chapter 3 Overview of Expert System interfaces

3.2.3.7. Functionalities related to adaptation of the development
interface to the needs of a particular analyst.

The analyst can tailor his environment by using the already

mentioned "configuration manager".

3.2.4. Basic interaction ways

To interact with M.1 means to work with a single window which

covers the whole screen. The standard form of this window has already been

presented (an action bar and pull down menus, a panel body and a function

key area). The right side of the function keys area is dedicated to the display of

the status of M.1 (ready,loading ,consultation ...). Du ring the consultation of an

expert system, the knowledge engineer will meet three different screens :

- the delivery environment or end-user interface. (Figure 8.1 in Appendix

8.)

- the development environment in panels mode. This means that the

panel body is divided into five area in order to display the dynamic trace

during a consultation. This window has already been described in the

debugging features. (Figure 8.3 in Appendix 8.)

- the development environment in standard mode. ln this case the panel

body is not splited. (Figure 8.2 in Appendix 8.)

But the contents of the action bar, of the associated menus and of

the function keys area are the same for each of these three screens.

There are two available interaction styles in the M.1 environment :

the menu selection and the command language.

Menu selection.

The pull-down menus which are permanently available provide an

easy accessible listing of ail the M.1 functionalities. They are organized to

offer groups of functionalities semantically related. The menu items are in

alphabetic order. Maybe, it would be better to display them in the order of the

most used functionalities.

58

Chapter 3 Overview of Expert System interfaces

The keyboard is the only way to interact with the menu. The

designer has three ways to trigger off a function. First , He has to press on the

<F10> function key to be in the menu mode. Then by using the cursor keys,

He can move back and forth among the menu. When a menu item is

highlighted, He can "select" it by pressing on <return>.

Another way of moving around within menu is to use the fist letter of

the desired menu entry. When there is more than one entry starting with the

same letter, typing that letter again will move the cursor to the next entry with

that same first letter.

However M.1 provides also accelerator keys that enable the user to

quickly perform some of M.1 frequently used commands.

Ali the items of the menus lead to an action but for some of them,

M.1 needs to obtain additional informations. ln this case, a temporary pop-up

box appears on the screen to accept the user's input. The bottom of the box

contains a function keys area.

M.1 disposes of four forms of pop-up boxes :

- File box which lists the files in the current directory. A highlighted bar

appears over the first entry and the use of cursor keys or the typing of

the first letter of a file positions the bar on the desired file name. The

analyst can also decide to load a file in another directory. ln this case,

He has just to type the Dos path.

- Confirmation box. This one appears in order to ask the analyst to

confirm a command He has just issued. The analyst answers by typing

an "Y" or an "N".

- Prompt box which appears if M.1 needs additional informations in order

to complete a command.

- Edit box, This box allows a user to add a new knowledge base entry or

to edit an existing one. The user can type multiple lines of text inside it.

59

Chapter 3 Overview of Expert System interfaces

Command language.

This one is only available in the development environment. lt

enables the analyst to issue a command by typing it directly in front of the

prompt. These commands trigger off the same functionalities as the menu

items. The general syntax of the command is the following one. The verb

cornes first and the abject of interest follows. The verbs of the commands are

the same than the verbs displayed in the menu items.

3.2.5. Initiative and control

The analyst is the initiator of the actions rather than the respondent.

lndeed the analyst usualy has the feeling that He is in charge of the system

and that the system responds to his actions. When M.1 is started, the analyst

can undertake one of the commands displayed in the menu items and He

organize his Session as He wants. The system does not impose any pre­

defined sequences of actions. The analyst has to answer system questions

only if a pop-up box is displayed. But this one appears if some additional

informations are needed to perform an action initiated by the analyst himself.

However, we do not think that an analyst has a full contrai on his

work. lndeed, the user cannot do everything He wishes and cannot visualize

his task. The biggest problem is that the functionalities offered in order to help

an analyst to alter the knowledge base are not adequate. An analyst can only

either add a new entry at the beginning or at the end of knowledge base or

replace an existing one. So, in the M.1 environment He is not able to choose

the place of his new entry. If He wants to do so, He must save all the new

entries in a text file and quit the M.1 environment. Then, with a performant text

editor, He can integrate the new entries where He wants into the knowledge

base file.

Another example illustrating the fact that the analyst has not a full

contrai on the system is the following one. ln the M.1 environment, the analyst
can list the contents of the knowledge base. ln this case, the whole contents is
displayed in a scrolling way at the screen but the user is not able to stop it

whenever He wants. He has to wait that the end of the file display be reached.

Then, if He sets the system in scrolling mode, He can try to use the arrow keys

to return to a particular entry. But, the available part of the file which is

accessible depends on the scroll buffer size. The user can change the size of

60

Chapter 3 Overview of Expert System interfaces

such a buffer to enable the system to scroll the contents of the whole

knowledge base but once again, the analyst has to quit the M.1 environment

and to start the already mentioned configuration manager. We can add that

the user is not allowed to modify the knowledge base in the displayed list.

As the M.1 environment disposes of only one window, the analyst is

not able to interact at the same time with the listing of the knowledge base and

the edit box (which allows him to add or to modify a knowledge base entry).

So if an analyst wants to create a knowledge base or if He has fundamental

changes to do on it, it is better for him to leave the M.1 environment and to

work with an external editor. This is not a very attractive solution because

each time He wants to test his knowledge base, the analyst has to enter the

M.1 environment again.

A lack of contrai is also due to a lack of additional functionalities.
lndeed an analyst has the opportunity to create some file (for example when

He is running a consultation, the trace can be written in a file) but He can

never delete it inside the M.1 environment. Sometimes, as for the previously

given example, He is notable to read it again in the environment.

3.2.6. Flexibility

3.2.6.1. Internai flexibility

By internai flexibility, we mean the opportunity to access the same

functionality by more than one way. ln our particular case, all the available

actions are accessible through menu items and are on the same level. There

is only one way to undertake them and this one has already been explained

in the interaction style paragraph. This internai flexibility seems to be

sufficient.

3.2.6.2. User flexibility

ln this section, we determine if M.1 is appropriate to the novice,

intermittent and frequent users.

M.1 offers a menu selection interaction style. This one is

appropriate for the novice and intermittent users but can be appealing for the

frequent users. lndeed the action bar and pull down menus provide the

advantage that all the actions available to users are visible and can be

61

Chapter 3 Overview of Expert System interfaces

requested by simple interaction techniques. lt helps users to find the desired

action without having to remember the name of the action.

For the frequent users, M.1 provides accelerator keys and also a

command language.

So M.1 seems to be appropriate for the three classes of users.

Moreover the environment enables an analyst to progress by using it. lndeed,

the accelerator key are displayed in front of the corresponding functionality in

the menu-item and the command language try to be the more closer to the

menu-item syntax.

But we think that this tool could be more appropriate to the novices if

masks were displayed to the analyst whenever the latter wants to add or to

modify an entry. lndeed, M.1 offers only a free text editor which does not give

informations about the needed syntax of an entry.

3.2.7. Feedback.

For every analyst action, there should be the same system of

feedback. M.1 does not respect this rule for every action. For example, when

an analyst wants to log the trace to a file, a message tells him that the system

is creating a file. But when the analyst decides to log the trace to a printer, no

message is displayed.

If the analyst wants to trace an expression, the feedback will only

occur during a consultation when the system meets the given expression. As

for the "trace on" and "trace off" commands, out of a consultation, there is no

feedback and it is impossible to determine if the trace is set or not. The user

must start a consultation to know the trace state. A "bistable" menu item

should salve such a problem.

However when an action needs a quite long time to be performed

by the system, a message such as "loading" or "reseting" is displayed in the

area which displays the current status of M.1 (right side of the function keys

area).

62

Chapter 3 Overview of Expert System interfaces

3.2.8. Errors handling.

When an errer occurs, a message is displayed on the screen in front

of the prompt. This one explains what is the errer but it also displays a

message number which has no meaning for the user. lndeed there is no table

with the corresponding error message number in the M.1 reference manual.

For example, we have received the following message : " ERROR 105.

Possible M.1 internai error. Please report to Framentec product support (155)

". ln such a case, the only thing the analyst can do is to restart M.1. This fail of

readability can frustrate the analyst.

Moreover, the performed errers are often syntactical ones which

occur when a user types a command. But when an error occurs the system

does not display the previously introduced command. So,for the correction,

the analyst has to type it again.

3.2.9. On line help

M.1 provides an on line help but only to list all the available

commands and to provide access to a brief explanation of them. However, no

help is provided to the analyst about the syntax of the entries in the knowledge

base.

3.2.1 O. Memory load.

ln order to initiate a command, the memory is not overloaded

because all the available functionalities are displayed in the menu items as

well as their corresponding accelerator keys. Moreover, the command

language is not far from the menu items syntax and an help is available to list

ail the commands. But the memory is overloaded when an analyst wants to

add or to modify an entry of the knowledge base. lndeed, no mask is

displayed and no list is available to display the possible values of the different

elements of the knowledge base entries. Moreover, as the user can initiate

only one action at a time, it is not possible to edit a rule and at the same time to

list the already existing rules. So the analyst has to keep in minci the contents

of his knowledge base.

3.2.11. Dialogue interruption possibilities.

At any time the analyst can cancel the action He is performing.

63

Chapter 3 Overview of Expert System interfaces

3.2.12. Consistency.

First of all, we can mention that the whole interface tries to follow the

principle of the Common User Access of IBM [IBM 82] lndeed the three parts

of the window (menu, panel and function key) are those proposed by this

standard. This interface is consistent with all the tools which obey to this one

Nonetheless, some consistency problems are present:

- The use of the same function key to perform different

functionalities. For example, the function key <F10> has two different

meanings in the proposed interface. indeed, when a pop-up is displayed, this

key is used to accept it. ln another case, this one is typed to switch to the

menu mode.

- The Common User Access recommends to put " ... " after a menu

item which does not trigger off directly the associated command but needs a

dialogue box in order to type some more informations. This rule is not

respected in the interface.

- Ali the actions which could be disastrous should be preceded by a

confirmation box. However, for such functionalities (like the "reset knowledge

base" which clears the whole contents of the knowledge base, for example),

the M.1 environment displays no confirmation box.

- The syntax of the commands or menu items is not always the

same. ln general, the first unit is a verb such as in "log printer". Nonetheless,

it can sometimes be a substantive such as in "panel on" or "options".

Nevertheless, the syntax of the menu item is consistent with the command

language.

- The same functionality "quit" is accessible by two commands

named "quit" and "exit". However, only "exit to dos" is present in the menu

items. This is nota problem except that the chosen accelerator key is Alt-Q (as

"quit").

64

Chapter 3 Overview of Expert System interfaces

3.2.13. Some remarks about the inputs and the outputs.

3.2.13.1. Input.

The use of default values is not implemented. For example, in a

confirmation box, the user must type either 'y' or 'n'.

The inputs follow the user's rhythm (net the computer one).

During a consultation, when a question is asked to the analyst and

ail the legal values for the answer are known, the analyst has the opportunity

to type only the first letter of the desired value instead of ail of them.

The input procedure is always the same : either to type a command,

to select a menu item, to answer a dialogue box or to respond a question

during a consultation. As no mask is displayed, the analyst can never choose

to fill a field before another one.

3.2.13.2. Output.

The response time seems to be acceptable but we have tried to use

M.1 only on a small knowledge base.

The display rate is sometimes too quick to enable the analyst to

read. lndeed, when a not interruptible scrolling is displayed at the screen, the

speed is too fast.

If the screen of the computer accepts to display colors applications,

M.1 can also use colors. But the chosen colors are not the best ones to make

the reading easier.

3.3. NEXPERT (VERSION 1.1)

3.3.1. Presentation

Nexpert, a rule-based tool proposed by Neuron Data, is primarily

targeted at the research community and offers a highly graphie development

interface making full-use of multi-windrowing advantages. This tool is defined

as a hybrid system in this sense that it supports both a reasoning system and a

powerful object-oriented representation.

65

Chapter 3 Overview of Expert System interfaces

This software is available on 512K Macintosh and IBM PC AT. lt has

been developed originally in Lisp but has been converted into a mixture of C,

Pascal and assembly language later.

The inference strategy of Nexpert is really powerful ; it allows the

analyst to write rules without specifying forward or backward chaining. The

rule format is the following one :

IF (condition1 AND ... AND conditionK)

THEN (hypothesis or goal which becomes true when conditions are met)

AND DO (action1 AND ... AND actionL)

ln particular, these actions can concern the change of the value of

one or several data ; the creation and deletion of objects and links ; the

reading and writing in Data Bases ; the display of graphies and text ; the

affectation of the inference engine ; the reset of values ; the execution of

external programs and the loading of new rules.

The expert systems developed with Nexpert can be consulted in 3

ways which are forward consultation, backward consultation and mixed

consultation.

The abjects are elementary units of description composed by

properties and grouped in classes of abjects sharing properties. This notion

introduces the concept of hierarchical representation of abjects with

inheritance opportunities in Nexpert.

Nexpert provides a formalism to express rules and abjects which

are saved in files called knowledge bases. We want to note that facts which

characterize the actual case being processed by an application are saved in

external files or Data Bases.

So, Nexpert offers Data Base links in order to allow an application to

retrieve external data or to write reasoning results outside. This is interesting

for many reasons. The first one is that the size of knowledge bases stays

reasonable. The second one is that facts data bases may be very large. The

third chief reason is that facts can be accessed or produced by other

applications.

66

Chapter 3 Overview of Expert System interfaces

The Nexpert architecture is event-driven ; it does mean that it can

integrate messages from the outside world or external programs, which

themselves might have been triggered off by Nexpert rules or abjects.

According to the reference manual of Nexpert about the interface

philosophy, we want to emphasize that "information provided to the analyst by

the intelligent system must be displayed in the most expressive way possible,

making full use of human visual and perceptual capabilities" [NEXPERT 87].

This interface allows a rapid incremental development with direct

access to the reasoning mechanism. Moreover, "it establishes an essential

cognitive continuum between the tool with its representation, and the analyst

with his or her mental model of the task" [NEXPERT 87]. Finally, we can say

that Nexpert revealing at any time the different facets of the application in

process, these windows are designed in order to enable users and analysts to

input values in the system and to provide various levels of information.

3.3.2. The knowledge engineering interface

When one starts to work with Nexpert, the first screen which appears

is that presented on Figure C.1 in Appendix C.

The so-called Nexpert window stays constantly on the screen, is

permanently accessible and enables the analyst to access basic classes of

functionalities. lndeed, whenever He clicks on one of the six icons a

corresponding menu of options is displayed and the analyst can select a

desired option by using the mouse.

3.3.3. Summary of the main available functionalities

This Section presents a not exhaustive list of the primary

functionalities of Nexpert. We do not go deep into details for what concerns

the objects manipulation because it would bring us too far from K-Expert.

3.3.3.1. Functionalities related to the building of knowledges
bases

First, it is naturally possible to load a knowledge base from a list of

the available ones and to save a knowledge base under a specified name.

For these two options, a directory path can be specified.

67

Chapter 3 Overview of Expert System interfaces

Of course, an analyst can also select the current knowledge base

among the loaded ones, clear the specified knowledge base from system's

memory and change the knowledge base an abject belongs to.

A Rule Editer (illustrated by Figure C.2 of Appendix C) enables the

analyst to create, modify and delete rule from a mask. He can also copy

hypothesis, data, class, abject, property and function selected in a

corresponding list to the edited rule component . However, the copy of a

whole Rule is not implemented.The analyst is always able to cancel the

modifications he has performed on an edited rule. A syntactical contrai of the

edited rule is realized when it is saved or any time the analyst wants it.

To facilitate the qreation and the modification of an edited rule, each

field of the mask provides a-n access to a List of possible values ..

There are also other editors offering the same functionalities

adapted to particular concepts such as context editor, object editor, class

editor, property editor and meta-slot editor.

Two sets of functions supply a complete set of Notebooks listing the

different structures present in the current knowledge base. The first set

concerns the elements directly involved in the inference plane like Rules,

Hypothesis and Data. The second set of functionalities concerns the elements

involved in the representation plane like Objects, Classes and Properties. lt's

interesting to note that each list gives a direct access to the corresponding

edito r fu nctio nality.

The possibilities to print to a selected printer and to write to disk files

notebooks editors and networks (ail or only the current page) are also

available.

3.3.3.2. Functionalities related to the consultation of a knowledge
base

Before starting the inference engine, the analyst may choose

forward (respectively backward) consultation modes and must provide the

necessary informations such as initial data (respectively the hypothesis to test)

and reset all the elements concerned by a consultation to the "unknown" state,

68

Chapter 3 Overview of Expert System interfaces

if necessary. At any time, a consultation can be interrupted and obviously

resumed.

A default setting of the inference engine and inheritance

mechanisms parameters is also included in Nexpert system.

Whenever the inference engine asks informations to a user, this one

may access to a graphical or textual documentation about the item for which

He must input a value.

During a consultation, the analyst may access to a "why" function. lt

displays a window providing a basic explanatory mechanism including text file

which may be defined while editing the current rule. lt furnishes also the

ability to see which is the current rule and to browse along the hypothesis

links by using so called "why" and "how" buttons.

Moreover, a Rule Network can be accessed, at any moment of a

consultation. ln particular, this Network can focus on the rule currently under

evaluation. Two functionalities concern the Rule Network facility. The first one

opens the rule network window and gives access to the following listed

abilities :

- deductive navigation in the network (the hypotheses evoked by a

datum);

evocative navigation in the network (the rules which lead to an

hypothesis) ;

- erase elements of the network and their links to others ;

- focus on the current network on a particular structure (new group of

rules) ;

- display graphie and/or text files associated with a particular item ;

- obtain a limited development of the network ;

- clear the network ;

- undo the last modification performed on the network ;

69

Chapter 3 Overview of Expert System interfaces

- view a line of the network.

The second functionality is called Overview Rule Network. lt opens

the Rule Network Overview mechanism allowing the analyst to browse rapidly

through the current display of the network.

Finally, two functions similar to those related to the Object Network

are also proposed. They are respectively called "Browse Object Network" and

"Overview Object Network".

3.3.3.3. Functionalities related to the debugging and trace
operations

The Browse and the Overview functionalities of the two considered

networks are obviously accessible during performing a debugging session.

Moreover, it is also possible to place breakpoints graphically in the network

and to add icons to each item of a network. This last possibility makes

possible the display of the network elements status to the analyst at any

moment of an execution.

An Access to the different lists and editors appearing on the network

is allowed at this level. This function makes possible a direct correction of the

analyst's work.

Many visualization possibilities are also available. We want to note

the ability to display :

- a trace of the execution ;

- the hypothesis currently under evaluation ;

- ail the conclusions the system has reached up to that point in the

inference ;

- the rule currently under evaluation ;

- the list of known attributes and suggested or generated hypotheses ;

- the list of known hypotheses along with the confirming conditions or the

counter arguments ;

70

Chapter 3 Overview of Expert System interfaces

A complementary Journal function implements two different

functionalities : the recording and replaying of a session and the saving and

restoring of a whole current state

3.3.3.4. Functionalities related to analyst information features

An "Apropos" function displays graphie and/or text files associated

with a particular item. For example, one can associate a significant text to an

abject in such a way that when this one intervenes, the analyst or user can

consult explanations about its raie, meaning

3.3.3.5. Functionalities related to external elements

lt's possible to read a file from a Data Base using dynamic queries ,,

and to write a file into a Data Base An execution of external programs is alsà

permitted by the Nexpert system. Among the external files, we find

spreadsheets, relational Data Bases and Data Base files.

3.3.3.6. Functionalities related to the creation of a User interface

Before a consultation begins, a Set up functionality makes possible

the indication of ail the windows that will be accessible for a particular user.

An almost obvious remark is that the user interface is really an

elementary one. ln fact, it is similar to the consultation of a knowledge base by

an analyst. The principle is the following one : what is accessible to a user of a

particular expert system is the "Session Contrai window" (see Figure C.3 of

Appendix C for a visualization of it), the related functionalities (such as

suggest, volunteer, use a journal, why option ...) and some other information

windows if the analyst has selected them by an environment setup.

•,

When a session starts, the user has just to answer system questions

displayed in the upper part of the Session Contrai window by selecting a value

proposed in an interaction window appearing in the lower part of this window.

He can always type directly a value instead of selecting one. What can be

said is that this interface corresponds to the minimal implementation to provide

to people having to consult an expert system. lt is not difficult but aise not very

attractive to use. lt can not be offered less but of course, it could be offered

more.

71

Chapter 3 Overview of Expert System interfaces

The Run-time interface as it appears now can not be adapted to

various users classes. Of course a "made-to-measure" user interface can be

implemented by an analyst . But, to do that, this persan must be a competent

C programmer ! Moreover, this programming task can be very time­

consuming. Only with these programming efforts it can be possible to provide

the user with the ability to work visually and by the same occasion to build a

direct manipulation user interface. By working visually, we mean to input

values (in order to answer system questions) by graphical manipulations on

meaningful visual task abjects representations.

3.3.3.7. Functionalities related to the adaptation of the
development interface to the needs of a particular analyst

ln order to adapt his interface, an analyst can choose the settings of

the Nexpert environment for a session (example : colors, size of network

elements ... etc). He can also indicate which printer is going to be used. ln

order to obtain the same environment any time the system is accessed, it is

possible to save the current configuration of the system.

3.3.4. Basic interaction ways

As it has been said in the presentation of Nexpert, it appears that

this software interface is highly graphie and relies mainly on windows. There

are overlapping possibilities, but only one window is active at a time. ln this

Section, we intend to present the primary techniques on which relies every

interaction sequence.

3.3.4.1. The standard windows

The standard window is the general structure in which more precise

functions are implemented.

lt is useful to give some words about scrolling mechanisms which

allow to visualize the hidden contents of a standard window. The classical

scroll bar mechanisms (elevator and arrows) permit the user to navigate inside

the contents. Sorne standard windows in Nexpert have also a page flipping

mechanism to facilitate browsing. This mechanism is located at the left corner

of the windows presenting information in a page by page fashion. Moreover,

lateral alphabetic indexes are included in some windows. They make

72

Chapter 3 Overview of Expert System interfaces

possible a direct access to the first item corresponding to the chosen letter.

Finally, the zooming mechanisms called overviews are used to rapidly move

inside a very large graphie display like a network. A dotted rectangle indicates

the current area covered by the window in the current mode. This dotted

rectangle and consequently the current area of the window can be moved by

using a mouse.

The standard windows can also contain "contrais" implemented to

provide basic commands graphically. ln fact, these "contrais" are buttons

which correspond to a function and initiate this one immediately when they are

clicked. These buttons are located into a sort of command line under the title

or are independent and thus can be located anywhere in the window.

When the standard windows are used to input information in the

system, special areas are designed in order to show the user information and

to allow him to edit it. These particular areas are called "check items". They

consist of the check boxes which display a choice among alternatives and

graphie checks which are similar to the previous ones but whose shape is

strongly related to or indicative of the function they represent.

3.3.4.2. The Dialog Windows

These windows are used to provide the Nexpert system with

information. This is performed by means of settings buttons, selections of one

or several items in list boxes and setting of numerical parameters

They require an user's reply (like a click on an OK or CANCEL

button) and while they are opened, it is impossible to access to other windows.

Among the Dialog Windows, we can distinguish between the

Message Dialog Windows and the Item-List Dialog Windows.

The Message Dialog Windows contain a message or a warning

concerning a potential result of the user's current action or a request for

specific information.

The Item-List Dialog Windows display a list of items to be chosen by

the user for further processing.

73

Chapter 3 Overview of Expert System interfaces

3.3.4.3. The pop-up menus

The last type of windows in Nexpert is the "classical" pop-ups. They

appear temporarily on the screen, inside a window and provide a choice of

immediate actions. They are characterized by their adaptability. They bring

up choices dependent upon the current state of either the whole environment

or of a particular item displayed in the window. Another important

characteristic is their "hysteresis" : when the mouse is moved too far away from

them, they disappear.

Among pop-up items, there are "bistable" ones. Their value change

when they are clicked on. For example, when one clicks on "show transcript",

the transcript window is displayed and the item becomes "hide transcript".

3.3.4.4. lcons and graphie visualization

These graphie elements are used to fulfil 3 goals. The first one is ta

give an easily understandable representation of functionalities (instead of

buttons)

Example:

The eraser pictured beside the network enables the analyst to erase a node in this
network.

The second is to provide a graphie documentation for some items ;

Example:

Little significant icons can be associated to any link of a network in order to reflect its status
at a step of a consultation. So, a check mark means "True" while a question mark means
"Unknown" (an item which has not yet been investigated).

3.3.4.5. The mouse

The use of mouse in Nexpert is fundamental. lt seems impossible to

work without using it "a minimum". This necessary mouse is composed of 3

buttons, each one has a particular function :

- The LEFT button is used to select an item ;

- The MIDDLE button brings up a pop-up called "windows". This is

an important ability as we are going to see it in Section 3.3.5.

74

Chapter 3 Overview of Expert System interfaces

- The RIGHT button brings up a pop-up corresponding to a

particular item when the mouse pointer is located on it and to a particular

window when the pointer is not on a particular area of a window.

3.3.5. Initiative and control

Generally speaking, we can say that the analyst is free to undertake

everything He wants by using Nexpert. Of course, this freedom is restricted to

the offered functionalities but nonetheless, these ones are presented in such a

way that He can organize his work as He wishes. lndeed, at any time the

analyst can have access to the six big classes of functionalities of Nexpert from

anywhere just by activating the Nexpert window and clicking on the adequate

icon, by activating an already opened window or by using the middle button of

the mouse. There is no interdiction. Except the display of the so-called

"Nexpert window" at the beginning of each work session, there is no

predefined using scenario.

ln a word, we can say that the analyst initiates actions much more

than He replies to computer system questions. This opinion is enhanced by

the idea that Nexpert tends to direct manipulation. ln effect, there are many

examples of recourse to visual representations of task or computer concepts

thorough Nexpert interface.For example, thanks to the masks, the analyst,

using a mouse, can think that He acts directly on the different components

(and subcomponents) of a rule.

From the manipulation experience we have had the opportunity to

acquire by "playing" with Nexpert, it appears that the learning process can be

quick because we work on and with visual significant elements and because

we can perceive immediately the effect of any action. For example, a rule

modified via the mask editor is immediately updated as well as the related

already activated windows like the rule network.

This learning is also made easier because the icons in the network

are similar ta those appearing in well-known programs like MacDraw. Besides

this, seeing that each potentially destructive action is preceded by a warning

containing a concealing ability, the analyst "feels at ease" and sa He is not

afraid ta explore Nexpert more and more.

75

Chapter 3 Overview of Expert System interfaces

Nexpert has given us a convincing example of one of the many

advantages of direct manipulation. This software enables us to work directly at

a high level without any syntactical learning and only with a small mental

decomposition effort. This leads us to suppose that the retention of Nexpert in

time should be satisfactory.

From analyst's experience, it appears that the implementation of a

multi-windows system is particularly pertinent in this sense that it reflects his

mental proceeding. This way of doing seems to offer all the advantages

underlined in Section 1.3 ..

From practise, it is clear that the windows management is not

always easy. The analyst has to resize and to move windows in order to have

simultaneously access to the information which is contained in each one.

There is the inevitable overlapping problem. However, this last one is partially

solved thanks to the ability to see and to access to all the activated windows at

any time and from anywhere by using the windows pop-up.

lt seems that a real contrai feeling can emerge when an analyst

works with Nexpert. We are just going to illustrate this point by some striking

elements:

- At any time, the windows pop-up is accessible just by clicking on the

middle button of the mouse. By looking at the contents of this pop-up,

the analyst can directly see all the windows already opened, He can

activate them or access to functionalities of the permanent "Nexpert

window".

- As this "Nexpert window" is permanent, it is impossible to close it

inadvertently and so to loose every contrai on the developing process

led with Nexpert.

- The feedback procedures being not neglected as it is shown in Section

3.3.9., the analyst is not confronted to anguishing questions concerning

what is happening ?

- There are no static limits imposed to the analyst. lndeed, in the rule

editor, for example, there are no limits to the number of actions that can

be input for a single rule. Obviously, there is a limited number of actions

76

Chapter 3 Overview of Expert System interfaces

displayed at a time. The same is true for the contents of each field of the

mask. ln the mask, only a limited part of the field value can be

visualized, but one can always access the whole value by making the

desired field contents appear in the edit line which is located in front of

the mask.

- Pop-ups are organized in such a way that they offer groups of

functionalities semantically related. So, the analyst never gets lost and

He has not to look for an option in many places. Moreover, pop-ups

propose such options that the analyst can access directly to a function

interesting for the accomplishment of his current task without having to

switch to the general Nexpert window.

We conclude this point by some thoughts about the transparence of

the computer. ln fact, if we think to what has been explained in the theoritical

part of our dissertation, it seems that the best interfaces should go hand in

hand with the perception of the computer as a tool, which disappears under

the actions performed on task concepts.

Here in Nexpert we are not sure that this transparence is completely

reached because some purely technical concepts must be manipulated by the

user such as the writing of print commands for the printer, the switching

between directories and subdirectories.

Now, the remaining question is the following one : Should these

elements disappear ? The answer is not obvious because it appears that

these two technical elements offer powerful abilities to the analyst and

moreover, with the diffusion of the computer science in many areas, more and

more people learns to manage efficiently notions such as the concept of

directories !

3.3.6. Flexibility

3.3.6.1. Internai flexibility

As it has just been said, there are many ways to access the same

functionality and the same functionality can be reached from many places. As

this ability has already been evoked previously in Section 3.3.5., we do not

detail it again.

77

Chapter 3 Overview of Expert System interfaces

3.3.6.2. User flexibility

ls Nexpert adaptable to many users classes ? ls it possible to make

it evolve according to the learning process of the users ? These questions

seem more delicate to answer.

lndeed, according to our readings, it appears that seeing the

existence of three typical users groups (e.g. novice, expert and intermittent

users), a good interface should offer many using mode such as command

languages, abbreviations ... etc.

When we look at Nexpert software and manual, and when we speak

with analysts working with this expert system shell, we are confronted to an

absence of these things. Apparently, there are some abbreviations but they

are not easy ta find and not clearly explained in the manual. Among the

abbreviations, we find the classical but useful ones such as the ability ta

replace a click on an default OK button by a press on the Return key.

Moreover, there is no command language.

Of course, direct manipulation characteristic makes Nexpert

interesting for all users profiles but sometimes Nexpert is heavy to manipulate.

The novice makes mistakes in the mouse manipulation. Luckily, these wrong

manipulations are not grave at all but they are annoying. Moreover, the

existence of multiple paths can be disturbing. The expert is sometimes fed up

because He must always use a mouse instead of typing directly a rules file

name in a normal text editor for example. However, practice shows that these

remarks do not constitute a real handicap.

We are going to conclude this point by signaling that each analyst is

able to adapt Nexpert to his particular needs by "playing" with the settings

functionalities as it has been shown in Section 3.3.3. 7.

3.3.7. Feedback

The necessity of a feedback is a real concern for the designers of

Nexpert. We take this affirmation from the fact that actions are not initiated by

users and followed by a silence. By silence, we mean that the computer works

but does not signal anything to the analyst. ln fact, any period during which

78

Chapter 3 OveNiew of Expert System interfaces

the computer is working, is signaled to the analyst by the display of a message

box containing an icon representing a thinking head and a warning message.

We find aise feedback in this sense that when one clicks on a page

corner to turn the page, one sees that one turning. Moreover, whenever a user

executes a functionality affecting the contents of a not activated window, this

one is updated automatically. The same principle is applied to bistable pop­

up items whose value is updated when an event which affects them occurs.

The function buttons follow also the same philosophy. A button is

dimmed up to the moment it can be used. As an example,one has just to think

to the OK button of the rule editor. This one is only accessible when the rule is

completed.

We can also mention the fact that when the user selects a particular

option in the network for example, the cursor changes its shape according to

the chosen option.

Finally, let's remark that there is a problem when one tries to resize

windows. lndeed, if there is a rank of buttons under the title, some can be

hidden at the completion of the resizing. What is problematic is that nothing

mentions their presence. Moreover, it is no more possible to click on them.

3.3.8. Errors handling

From what we could observe, an errors handling system is

implemented. This one is particularly interesting in this sense that in case of

problems, clear and directly understandable sentences are displayed. They

explain the situation and suggest a solution. There are no esoteric references

to errors numbers. From experience, it appears that the ability to use a mouse

to select appropriate values in a list (displayed in response to a click on the

right button of the mouse when the pointer is set on the considered area)

reduces the amount of mistakes (typing errors ... etc).

3.3.9. On line help

An online help ability is not furnished. This can be a serious lack for

novices or intermittent users. ln case of problem, when the user is not

completely sure about how to do something or about the use of a function, He

must look into reference manual or start a trials-errors process. This last one

79

Chapter 3 Overview of Expert System interfaces

can be used because of the protection from dangerous functions by warning

messages but of course, it is not the most efficient method.

3.3.10. Memory load

The long term memory is not overloaded in the sense that because

of its direct manipulation foundations of Nexpert, the analyst can visualize his

work.. The icons, the buttons and the pop-ups are helpful in order to reduce

the memorization effort to a minimum.

The short term memory is also not overloaded notably because of

the lists, the networks and overviews, the clear presentation of input and

output values in meaningful windows. As the analyst can access to everything

from anywhere, He has not to try to keep in mind many informations. Because

of this, He can concentrate himself on the task accomplishment.

3.3.11. Dialog interruption possibilities

- Canceling : is implemented for each modification operation ;

- Deleting : is implemented for each element of an expert system (from

the knowledge base itself to the rules, objects ... etc) ;

- Start again : it is possible to restart a consultation ;

- Finishing : at any time, it is possible to leave Nexpert and to return to

the Dos (by clicking on the "Quit" option of the "system icon" in the

Nexpert window and by answering to a warning message).

3.3.12. Consistency

Except of small points, we can consider that the consistency of the

interface of Nexpert exists. Among these problems ,we note :

- The use of the same term to give access to different functionalities.

Example:

The function "Cancel" in the editors has an effect similar to this of the "Undo" function in
the networks.

80

Chapter 3 Overview of Expert System interfaces

- The same functionality is designated by different terms.

Example:

The function "Quit" in the system icon brings back the user to the Dos but the function
"Quit" in the editors closes the corresponding window and brings back the user to the last
activated one.

- The rules list displays a rule per page but in the other lists, the

pages contain all the items beginning by the same letter.

- The little square which may appear besides the items of a list has

not a uniform meaning. lndeed, a square besides a file name in a list indicates

the file that is going to be saved. While a square appearing beside a property

in the properties editor gives access to the corresponding meta-slot via the

meta-slot editor.

- The three points following some items in pop-ups are not

apparently used uniformly. lndeed, at a first look, we could say that they are

used in order to signal that the item gives access to something that looks like a

formulary while items without three points have a direct effect. But, if that is the

meaning assigned to the three points, why do not we find them after items

such as "Set up environment" which opens a dialogue box when it is clicked ?

- The action syntax is aise not uniform everywhere. ln some

windows, one has to select first an abject by clicking on it and then one can

accomplish a related action. For example, to clear a knowledge base, one

must select one in a list and after this, one has to click on the "Clear" button. ln

other windows, like the Rule Editer, one selects an action first ("Modify" ,for

example) and then one can designate the field to modify by clicking on it.

3.3.13. Sorne remarks about inputs and outputs

. 3.3.13.1. Input

- The use of default values is implemented. For example, the

printing command has just to be typed when the "Print" option is selected for

the first time. After this initial typing, the command is saved and restored

automatically when needed.

- The inputs follow the analyst's rhythm (not the computer one).

81

Chapter 3 Overview of Expert System interfaces

- ln the mask editor, there is an edit line, this is interesting because

it permits not to modify directly a field in the mask and to type fields values

longer than the size of the displayed mask fields.

- The used terminology seems adequate in this sense that the task

terms are coherent with the analyst's world. There are not tao many computer

terms ; anyway, those which are used are classic (seeing the computer

science development in everyday life). The terminology problems are

mentioned in the consistency point which evokes the consistency.

- The input procedures are not constraining : the analyst can fill the

input field according to the desired order. There is a default order (e.g. when

the analyst types on the Return key, the cursor moves automatically to the next

field). Nonetheless, this order can be changed just by using the mouse to click

on the desired field.

3.3.13.2. Output

- ln the examples to which we have had access, the response time

was acceptable. For example, the rule network was nearly instantaneously

built. Nevertheless, we do not know if this is always the case with bigger

expert systems.

- Among the codes used to display outputs, we find notably

alphanumerical characters, symbols and "colors". The characters are

uniformed, easy to read, not too tiring. The symbols (for example, the icons

expressing the status of each network node) are significant, easy to

understand, to read and to keep in mind. The colors are not implemented on

the version of Nexpert we have consulted except the highlighting abilities.
These last ones are used in a familiar and adequate way.

82

Chapter 3 Overview of Expert System interfaces

3.4. CONCLUSION.

Having studied M1 and Nexpert interfaces, we can emphasize on

new functionalities that could be useful for K-Expert. A detailed presentation of

the retained functionalities is presented in the following chapter.

We also retain some interesting man-machine interaction methods.

lndeed, we think particularly to Nexpert because thanks to its direct

manipulation concept, this software provides users with a set of attractive

methods such as a flipping mechanism, index and overview abilities.

ln the same perspective, we have decided to have recourse to a

multi-window interface. lndeed, from our persona! experience, it appears that

such an environment makes the difference between the use of M1 and of

Nexpert.

The chosen interaction methods inspired by this chapter are

specified in the fourth chapter.

83

CHAPTER 4 :

SPECIFICATION OF THE K-EXPERT INTERFACE

Starting from the literature we have consulted about interfaces

(Chapter 1), from the general study of the analyst's profile and task (Chapter 2)

and also from interesting characteristics of existing expert system shells

interfaces (Chapter 3), we are now going to specify our application (e.g. The
building environment of K-Expert).

As this one corresponds to an interactive application and as our aim
is to design an ergonomie interface, we have adopted an original method.
lndeed, during the whole specification process, we have kept in mind and
integrated an ergonomie dimension. The suggested process refers to some
models linked to functiona_l analysis of classical applications. ln particular, we

consider the mode! of the structuration of data and the model of the static of
processes [Bod 89]. Moreover, we adapt freely a method of specification of

interactive applications which is the subject of researches at the "Institut

d'Informatique" at Namur. The interested reader can consult informations

about this method in [War 88b].

ln a first Section 4.1, we give a general presentation of our process

of specification of a particular interactive application which corresponds to the

building and to the consultation of an expert system. The following Sections

4.2. to 4.13. consist of a detailed description of each of the specification steps

applied directly to our particular application. Finally, we propose a criticism of

our proposai in section 4.14 ..

84

Chapter 4 Specification of the K-Expert interface

4.1. SPECIFICATION PROCESS OF THE ANAL YST'S INTERFACE

OF THE K-EXPERT EXPERT SYSTEM SHELL

ln our particular case, a classic specification does not fit correctly

our needs. lndeed, we would like to define our application as an appropriate

toolbox of functionalities enabling the analyst to perform his job.

For this purpose, we need to take into account ergonomie principles

as well as to define the required functionalities and to precise the way to

present them to the analyst. Classic specification processes do not integrate

this aspect. Moreover, they are not appropriate to our case. As a matter of

fact, we do not have to take care of the model of the dynamic of processes

because our'. interactive application does not possess a global dynamic.

lndeed the offered functionalities are not linked by chaining conditions seeing

that all of them are considered as being at the same level.

So, let's start with a modelization of our own specification method.

This one is illustrated on Figure 4.0. presented on the next page.

85

Chapter 4 Specification of the K-Expert interface

1 Detailed study of the analyst's task

Extraction of task abjects

Definition of task actions

4 Definition of related computer
abjects and actions

Functionalities
definition

f 5 Definition of functions supporting
1 task actions

Extraction of interactive messages

Application functions
specification

t 6 Definition of auxiliary functions

9 Building of the conversation scheme

Interface
specitication

8 Putting into correspondance
interactive messages and
functional messages

Figure 4.0 : Modelization of the specification process
for an interactive application.

86

10

11

Extraction of contrai interactive

Taking into account of
the anal s 's rofile

Extraction of interactive abjects

Chapter 4 Specification of the K-Expert interface

ln a first time, as a detailed presentation of each component of the

scheme is given in the following sections, we introduce only a general

presentation of the envisaged method.

The global aims of our specification process are the following ones :

- Definition of the functionalities of the interactive application.

- Specification of the application functions.

- Specification of the interface

Let's say more about these 3 complementary aims.

Definition of the functiona!itjes of the interactive application :

First, we want to define ail the functionalities that an interactive

application and consequently its interface, have to offer. We have already

underlined that the application must be seen as a toolbox of services provided

to an analyst. Consequently, this first step tries to cope with the ergonomie

problem of the overfunctionality and underfunctionality of an application

[Shnei 87].

As a result, in order to realize the evoked purpose, the first step of

our method consists of the study of the analyst's task. From this analysis,

during a second step, we extract ail the objects manipulated by an analyst

when He is performing his task. We call these objects task objects by
reference to the Syntactic/Semantic model [Shnei 87]. When ail the task

abjects to take into account have been described, the third stage we envisage

enables us to define ail the possible and necessary actions that can be
accomplished on them. This step provides us with the functionalities (e.g. :
actions) related to the task which have to be supported by the application and

by its interface.

Nevertheless, in order to define all the necessary functionalities, we

must also take into account the environment in which they are performed.

lndeed, the analyst has to work with a computer. Consequently, some

additional functionalities related to computer objects must also be

highlighted.[Shnei 87, Syntactic/Semantic model].

87

Chapter 4 Specification of the K-Expert interface

After the extraction of the task actions related to the task and of

those related to the environment, the two other aims of our specification

process may be considered.

Let's remark that these two aims have no chronological links. They

are parallel processes. lndeed, in our visualization of an interactive

application, the application itself has to be separated from its interface. By this

way, the specification of the application and of the interface can be supported

by different kinds of people. lndeed, by difference to the application

specification, the interface specification requires also to take into account

some typically ergonomie concepts.

So now, in a first time,in this description of the propos~d method, we

explain the "specification of application functions" aim and then, the

"specification of the interface" aim.

Specification of application functions :

Starting from the highlighted task actions, the 5th step identified

consists of the derivation of all the application functions required to support the

actions. At the same time, all the input and output required by these functions

must be defined. These input-output are named functional messages.

The next step corresponds to the deduction of auxHiary functions
and of their own functional messages. Indeed, the application may request

some functions which are not directly linked to the task actions. A detailed

explanation of this point is given in Section 4.6.

Specification of the interface :

During the 7th step of our process, we start from the task actions and

abjects to derive the dialogue units that must be presented to an analyst in

order to enable him to perform these actions. These dialogue units are the

interactive messages. They have to be linked together and their chaining has

to be explained in order to express the whole dialogue. This is realized by the

building of the conversation scheme which is the 9th step of our process.

This chaining constraints must also be translated into particular

interactive messages which are the contrai interactive messages. These ones

88

Chapter 4 Specification of the K-Expert interface

are dialogue units enabling an analyst to decide of the direction that has to be
imposed on the dialogue.

At the end of the extraction of ail the interactive messages, one of
the most important steps to consider in order to achieve the evoked aim
concerns their visualization at the screen. This step is based on a lot of
ergonomie choices deduced from the analyst's profile. This profile and the
justification of the interface choices are exposed during the 11th step.

Then, in the 12th step, the interactive messages are translated into

interactive abjects which are in fact their visualization on the screen.

Up to now, we have omitted to present the 8th step. This one

establishes a link between the specification of the interface and of the

application. lndeed, as the functional messages (related to task actions) and

the interactive messages are based on the same actions and abjects they can

be put into correspondance. This step is useful to verify if the contents of ail

the interactive messages proposed by the interface to an analyst has a

correspondent in functional messages of both the application functions and

auxiliary functions and conversely. ln order to facilitate our process, we

assume that there exists a biunivocal correspondance between the functional

and interactive messages. However, let's remark that the contrai interactive

messages have no correspondent in the application functions .

Up to now, we have presented a particular way to chain the different

steps of the specification process. Nonetheless, it can be underlined that

another chaining of these stages may also be envisaged. lndeed, as the

interactive messages and the functional messages have the same contents,

one could first derive ail the functional messages associated to the application

functions and to the auxilary functions and then, we will define the interactive

messages directly from the highlighted functional messages. ln this case, the

accumulation point corresponding to the Step 8 is no more useful.

Let's now begin the detailed presentation of our specification

process.

89

Chapter 4 Specification of the K-Expert interface

4.2. STEP 1: DETAILED STUDY OF THE ANAL YST'S TASK.

As shown in Section 1.2.2, a fine determination of the analyst's task

is a fundamental and basic step for the design of the corresponding interface.

lndeed, it appears that many problems may occur because of an

overfunctionality or underfunctionality [Shnei 87]. Of course, if the

functionalities supported by the interface do not meet the analyst's goals, this

one will probably feel frustrated and as a result, this persan will reject the

proposed interface. On the other hand, if the implemented functionalities

overdrive the needs then, problems linked to the coupled growing complexity

can be awaited such as an increase of the learning time.

Consequently, du ring this step, in order to try to draw the

functionalities to implement as carefully as possible, we study the task

performed by a knowledge engineer. The general characteristics of this task

have already been underlined in Section 2.2. So, we do not insist much more

about them.

4.3. STEP 2: EXTRACTION OF THE TASK OBJECTS.

As, at this point of the process, the analyst's task is well known, all
the abjects He manipulates while instantiating an expert system shell can be

extracted. Such abjects are called task abjects by reference to the
Syntactic/Semantic model presented in Section 1.1.2.

Concretely, we propose a modelization of the task abjects via the
Entity/Relationship formalism.

lt can also be remarked that this scheme modelizes the current state

of K-Expert. lndeed, for the moment, we just have to take into account the rule

formalism in order to represent extracted knowledges. ln the future, other

formalisms such as frames will be implemented. lt should be easy to integrate

them in the Entity-Relationship model .

The next pages present our modelization according to the E/R

formalism of the task abjects manipulated by the analysts when they

instantiate an expert system shell .

90

Chapter 4 Specification of the K-Expert interface

AN AL Y ST --------is-developed
1-------develops---DEUELOPMENT- ,by .

Name O,N CU: '-- 1,1

"----------_____/

91

-

-

0,N
is-tested-by

EHPERT
SYSTEM

Name
Description

disposes-of
0,N

tests
1,1 -------

is-compos ed-of
O,N -

1 is-at-the-g s p os 9--~';~'_al_-o_f ___ _

Chapter 4 Specification of the K-Expert interface

CONSUL TATI ON SCENAR 10
Name

---------------l Description
Chaining mode
Goal to be proved
End-user Consultation options

reasons-on
l,N

O,N
supports-the-reasoning-of

KNOWLEDGE

-0MPOSITIYT;'f'_es_~ Nam~ODULE

- - Description

FACTS
BASE

Name
Description

1

92

0,N
contains

contains
0,N

--

CONTENT
RULE

CONTENT
UARIABLE

Chapter 4 Specification of the K-Expert interface

~ ~ initializes
is-initializedo~~ ~ I TI AL 12 ATI O ~ o, N ----------. ----------

-__________ _;pe1roduces

- O,l --c:RODUCTIO~-Ô'.':-uc_e_d_-b_y ____ _

RULE

is-contained- Nfilm.
in Description
-1,N _____ _,. Antecedent

is-contained-
m

Consequent
Priority
Cost
Certainty factor

UARIABLE
Name
Analyst's description

l,N _____ ___, Find

is-contained­
m

User's description
Type
Range

FACT
- 1,N ---------1 Operator

Value
Certainty factor

uses
1,N

~ULEUS9

O,N
is-used-by

is-used-by
0,N

~RCTUS9
1,1

uses

Figure 4.1 : Entity/Relationship model of task abjects.

Chapter 4 Specification of the K-Expert interface

Let's now describe the stored data structures (Entity-Relationship model). We

want to remark that only the significant concepts for our work are the abject of

this description.

◊ Structuration of the memorized information ANAL YST

An ANALYST entity

represents every person developing an expert system ,

is characterized by :

a name

plays the raie of Ana/yst (develops) in none or many expert

system,

is identified by its name ,

Remark :

This entity is only useful if K-Expert shell is instantiated by analysts working on

a main frame or with a network. ln this case, it represents all the knowledge

engineers who may communicate together in order to exchange expert system

components they have already developed.

This option may be interesting if the instantiation of the expert system shell is

led by more than one analyst.

Explanation of the connectivities :

ln order to explain the none connectivity of the evoked role, we can say that

we consider that an analyst can be mentioned in the data structures even if He

has not developed an expert system with the considered expert system shell

up to now.

The fact that we enable an analyst to develop many expert systems may be

criticized. lndeed, it can seem unrealistic to develop more than one expert

system instantiation at a time. However, our choice is justified by the fact that

our environment is not dedicated to a specific expert system instantiation. ln

94

Chapter 4 Specification of the K-Expert interface

our perspective, the analyst works on only one instantiation at a time. This

instantiation can be a new one but it can also be selected among the already

existing ones if the analyst whishes to perform its maintenance without leaving

the environment. Moreover, our way to do gives the analyst the ability to

display parts of already instantiated expert systems to obtain informations

about them.

◊ Structuration of the memorized information EXPERT SYSTEM

An EXPERT SYSTEM entity

represents the set of expert systems instantiations realized with the

available she/1;

is characterized by :

a name

a description
an explanation about the domain of the expert system and its goal,

plays the role of expert system (is-tested-by) in none or many

Consultation scenario ,

of expert system (is-composed-of) in none or many

Knowledge module ,

of expert system (disposes-of) in none or many

Facts base and

of expert system (is-developed-by) in one and only

one Analyst ;

is identified by its name .

Explanation of the connectivities :

The none connectivity of the three first raies is explained by the fact that

during its creation an expert system requires only a name and a description.

95

Chapter 4 Specification of the K-Expert interface

By the many connectivity of the first role, we express the fact that an expert

system may be tested on several chaining modes, trace levels, facts bases,

knowledges modules and so on, according to the considered application and

end-user class.

By the many connectivity of the second role, we mean that an expert system

can be composed of many knowledge modules. Thanks to the concept of

knowledge module, we give the analyst the opportunity to structurate the

whole expertise He must input into the shell around several main demains.

lndeed, each module contains ail the knowledges related to one main demain.

So, like it happens in the Mycin expert system, a consultation may be closer to

the behaviour of a particular human expert seeing that ail the questions
related to a subject can be asked at the same time. Consequently, the

modularization helps to modelize the expert's way to process and makes a

consultation more understandable for an end-user. As a result, if the analyst

wishes to structurate the introduced knowledges into several demains, the

corresponding expert system will be composed of many knowledge modules.

Moreover, as we offer the analyst the opportunity to keep several modules, we

aise enable him to conserve several versions of a same module.

Nonetheless, the versions management is not automatic, it may be completely

supported by the analyst himself . Consequently, t is up to him to give the

appropriate modules names.

We consider that a facts base contains all the data which are useful to start a

consultation of an expert system. So, by the many connectivity associated to

the third role, we enable the analyst to test the behaviour of the instantiated

expert system on various pre-defined sets of tests. lndeed, a facts base may

correspond to a particular test illustrating a typical case which could be treated

by the expert system. By this way, the analyst has the ability to consult an

expert system from a pre-defined facts base rather than having to type ail the

facts it requires during a consultation.

By the fourth role, we want to express the fact that an instantiation of an expert

system is developed by only one analyst. If the expert system has to be built

by a team of analysts, each of them works on his own instantiation. ln this

perspective, the team must be careful to coordinate the work performed by ail

its members in order to preserve the general consistency.

96

Chapter 4 Specification of the K-Expert interface

◊ Structuration of the memorized information

SCENARIO

CONSULTATION

A CONSULTATION SCENARIO entity

represents a set of parameters having to be set before starting a

consultation of a particular expert system;

is characterized by :

a name

a description
an explanation indicating to which users class the consultation

defined is going to be proposed,

a chaining mode

a goal to be proved
in the case of a backward chaining,

an End-user consultation options
a set of options which enable the analyst to customize the end-user

consultation interface according to the particular needs of a given

class of them ,

plays the raie of Consultation scenario (reasons-on) in one or

many Knowledge module ,

of Consultation scenario (is-initialized-by) in none

or one Facts base ,

of Consultation scenario (produces) in none or one

Facts base and

of Consultation scenario (tests) in one and only

one Expert system

is identified by its name .

97

Chapter 4 Specification of the K-Expert interface

Explanation of the connectivities :

By the one connectivity of the first raie, we mean that as the aim of a scenario

consists of testing at least one knowledge module, the name of one of the

existing modules must be given.

Seeing that we enable an analyst to structurate his knowledge base into

demains, the many connectivity is needed in order to give him the ability to

test more than one domain of the knowledge base or even the whole base at a

time. Nonetheless, this way to do could be avoided. lndeed, the best solution

should be to load first a principal module in which some rules would trigger off

the loading and the consultation of other modules. As K-Expert does not offer

such a feature, we propose to constitute a single knowledge base by loading

ail the relevant knowledge modules at the beginning of a consultation. So, we

conciliate the advantages related to the work with modules and the existent.

By the second role, we enable an analyst to start a consultation with a

predefined set of data stored in a facts base. However, it is not mandatory to

specify such an initial facts base. ln this case, ail the data useful for a

consultation must be introduced directly by the analyst at the request of the

inference engine. This explains the none connectivity linked to this role.

The third role explains the fact that at the end of a consultation, ail the data

known by the inference engine can be stored in a specified tacts base, if

necessary. This option could be useful in order to restart a consultation on this

one. As it is not mandatory to specify such a facts base, we retain a none

connectivity.

The one and on/y one connectivity of the fourth raie is justified by the tact that

a scenario contains ail the attributes required to consult a particular expert

system. Consequently, it is specific to a well-defined consultation.

98

Chapter 4 Specification of the K-Expert interface

◊ Structuration of the memorized information

MODULE

KNOWLEDGE

A KNOWLEDGE MODULE entity

represents a human expertise modelization related to a well defined

know/edge domain ;

is characterized by :

a name

a description

the explanation of the knowledge module goal ,

plays the raie of Knowledge module (supports-the-reasoning-of)
in none or many Consultation scenario ,

of Knowledge module (contains) in none or many

Rule and

of Knowledge module (contains) in none or many

Variable ,

of Know/edge module (composes) in one and only

one Expert system ;

is identified by its name.

Explanation of the connectivities :

The none connectivity of the three first raies is deduced from the fact that

during its creation, a knowledge module requires only a name and a

description.

The many connectivity of the first raie indicates that a knowledge module may

be tested by many scenarios. This ability enables an analyst to choose which

chaining mode is the most appropriate for this module, for example.

The many connectivity of the second and third raies indicates that this entity

consists of an aggregate of the entities RULE and VARIABLE.

99

Chapter 4 Specification of the K-Expert interface

The one and on/y one connectivity is explained by the fact that a module is a
component of an expert system. Consequently, it must always be linked to

one of them. Moreover, as this module contains a part of a given expert

system, it can only belong to the expert system related to the same subject

than that it treats.

◊ Structuration of the memorized information RULE

A RULE entity

represents a modelization of a part of the considered human expertise.;

is characterized by :

a name

a description

the explanation of the rule goal ,

a priority

during a consultation, when more than one rule can be fired, it can

be useful to report to such a factor in order to choose the most

important among them ,

a certainty factor
a coefficient which affects a weight to the tacts deduced from this
rule,

a cost
during a consultation, when more than one rule can be fired, it can

be useful to choose the one which possesses the cheapest action ,

an antecedent

the condition of a rule activation (this one is defined later in this

Section),

a consequent

the conclusion of a rule (this one is defined later in this Section) ,

100

Chapter 4 Specification of the K-Expert interface

plays the raie of Rule (is-contained-in) in one or many

Knowledge module and

of Rule (uses) in one or many Variable ,

is identified by its name.

Explanation of the connectivities :

As a rule is a part of a knowledge module, the one connectivity of the first role
is justified by the fact that a rule must always belong to one knowledge

module.

~eeing that we give the analyst the opportunity to keep more than one version

of a knowledge module, the same rule can be present in more than one

module. This justifies the many connectivity of the first role.

The one connectivity of the second role is linked to the fact that a rule

modelizes a part of a human knowledge which relates to abjects represented

by variables. Consequently, at least one of them must appear in a rule.

◊ Structuration of the memorized information : VARIABLE

A VARIABLE entity

represents an instantiation of an objects class of the real world ;

is characterized by :

a name

a description

the meaning of the variable ,

a question
a text which is displayed during a consultation when the expert

system needs more informations about this variable in order to

continue its reasoning process ,

101

Chapter 4 Specification of the K-Expert interface

plays the role of Variable (is-contained-in) in one or many

Knowledge module ,

of Variable (is-used-by) in none or many Rule and

of Variable (is-used-by) in none or many Fact ;

is identified by its name.

Explanation of the connectivities :

As a variable is a part of a knowledge module, the one connectivity of the first

role is justified by the fact that a variable must always belong to one

knowledge module.

The many connectivity, on its side, may be explained by the fact that

variables are used to communicate informations between modules in which

they appear.

The none connectivity of the second and third raies enables an analyst to

define a variable before using it in a rule or in a fact.,

On the other side, the many connectivity of the second raie enables a variable

to appear in many rules.

As for the many connectivity of the third raie, we can say that more than one

fact may use the same variable as we give the analyst the opportunity to affect

various values to the same variable

◊ Structuration of the memorized information FACTS BASE

A FACTS BASE entity

represents a set of tacts; Let' s note that the fact notion is defined later in

this section.

102

Chapter 4 Specification of the K-Expert interface

is characterized by :

a name

a description

the meaning of the facts base ,

plays the role of Facts base (initializes) in none or many

Consultation scenario and

of Facts base (is-produced-by) in none or many

Consultation scenario and

of Facts base (contains) in none or many Fact

and

of Facts base (is-at-the-disposal-of) in one and

only one expert system

is identified by its name.

Explanation of the connectivities :

The none connectivity of the two first raies is explained by the fact that a tacts

base can be present in the data structures without initializing any consultation

scenario or without being the production of a consultation.

By the many connectivity of the first raie, it is possible to indicate the tacts

base providing the initial facts for a consultation of a given expert system. The

same tacts base may initialize several scenarios and so, it enables the analyst

to compare them in order to determine which one is the best.

By the second raie, it is aise possible to indicate the facts base that a particular

expert system praduces during its reasoning (from initial, deduced and input

tacts). So, the many connectivity of this raie is justified by the fact that the

same name of a produced tacts base can be used by more than one scenario.

The none connectivity of the third role follows fram the fact that during its

creation, a tacts base requires only a name and a description.

103

Chapter 4 Specification of the K-Expert interface

The many connectivity of this raie indicates that the entity Facts base

consists of an aggregate of the entity Fact.

The one and on/y one connectivity of the fourth raie may be deduced from the

fact that a facts base contains data useful for the consultation of an expert

system. So, these data are related to the subject of this one and can not be

used by another one.

◊ Structuration of the memorized information FACT

A F ACT entity

represents an information unit used to feed ·the inference engine during

its reasoning process ,

is characterized by :

an affectation operator

the syntax of this one is defined later in this Section ,

a constant
the syntax of this one is defined later in this Section ,

a certainty factor
a number reflecting the confidence attached to this fact ,

plays the raie of Fact (uses) in one and only one Variable and

of Fact (is-contained-in) one or more Facts base

is identified by its affectation operator, its constant and the raie uses .

Explanation of the connectivities :

As a fact represents an information unit whereas a variable modelizes an

abject of the considered knowledge, a fact can use one and on/y one variable.

104

Chapter 4 Specification of the K-Expert interface

Seeing that a fact is a part of a facts base, the one connectivity of the second

raie is justified by the fact that a fact must always belong to one knowledge

module.

As we enable the analyst to test an expert system with more than one facts

base, a same fact may be contained in more than one of them. This justifies

the many connectivity of the second raie.

◊ Syntax of the rules and of the facts

◊ .EaQ1

<fact> ::=<variable>'=' <constant>

◊ Action (conseguent)

<action>::= <action> 'AND' <action>

<action> ::= <call procedure>

<action> ::= <variable> <affectation operator> <expression>

<expression> ::= <expression> <arithmetical operator> <expression>

<expression> ::= <variable>

<expression> ::= <constant>

<expression> ::= <call function>

<affectation operator> ::= '='

<arithmetical operator> ::= '+' 1 '-' 1 '*' 1 '/'

A function and a procedure may consist of :

- an access to a spreadsheet, updating ... etc ;

- an access to another expert system, updating ... etc ;

105

Chapter 4 Specification of the K-Expert interface

- an access to a Data base, updating ... etc;

- the determination of a value as a result of a more or less complex

algorithm ;

- and so on ...

Let's note that a function always returns a result value by difference to a

procedure.

◊ Boolean expression (antecedent)

<Boolean expression> ::= <Boolean expression><logical operator><Boolean

expression>

<Boolean expression> ::= NOT (<Boolean expression>)

<Boolean expression> ::= (<Boolean expression>)

<Boolean expression> ::= <expression><comparison operator>< expression>

<logical operator> ::= 'AND' I 'OR' I 'XOR'

<comparison operator> ::= '<' 1 '>' 1 '<.5:' 1 •~• 1 '=' 1 '><' 1 'EQUAL' 1

'UNEQUAL'

4.4. STEP 3: DEFINITION OF TASK ACTIONS.

For each of the entities highlighted thanks to the construction of the

Entity-Relationship model, we are now going to define related actions.

These actions correspond to the relevant functionalities that should

be offered to an analyst in order to help him to perform his job. So, during this

step, we keep in mind the general features that a tool should possess in order

to assist an analyst efficiently. These characteristics have been underlined in

Section 2.2.2.

106

Chapter 4 Specification of the K-Expert interface

The expected functionalities are actions directly related to the

demain of the task.

Now, let's give the list of all the actions related to the abjects

highlighted in the previous section.

◊ Actions related to an analyst :

1. COPY an expert system developed by an analyst with all its

components to another one.

2. COPY a knowledge module of an expert system developed by an

analyst to another one.

3. COPY a scenario of an expert system developed by an analyst to

another one.

4. COPY a fact base of an expert system developed by an analyst to

another one.

◊ Actions related to an expert system

1. CREATE an expert system identified by a name and give its

description.

2. UPDATE an expert system description and/or its name.

3. CONSUL T an expert system description.

4. LIST ail the existing expert system names.

5. SELECT an expert system and work on it.

6. DELETE an expert system (and ail its components which are

highlighted in the E-R model).

7. PRINT the name and the description of one or ail the existing expert

system.

107

Chapter 4 Specification of the K-Expert interface

◊ Actions related to a knowledge module (KM):

1. CREATE a KM identified by its name and give its description.

2 UPDATE a KM description and/or its name.

3 DUPLICATE a KM in order to create a new version of a module without

any copying effort (name, description and all its components which are

highlighted by the E/R model).

4. LIST all the existing KM.

5. SELECT a KM to work with it.

6. DELETE a KM and all its components (rules and variables).

7. PRINT the name and the description of one or all the existing KM.

8. CONTROL the consistency of a KM. By consistency, we mean the

contrai that can be provided on the various components of a KM and on

the relations between them. Among these actions, we think particularly

to:

- contrai the existence of a definition for each variable used in

one or more rules and/or in facts ;

- contrai if there are variables defined but never used.

This is only a first step. lndeed, the contrai of consistency inside a KM is

currently a subject of research.

◊ Actions related to rules :

1. CREATE a rule and set its attributes.

2. UPDATE the attributes of a rule.

3. DELETE a rule.

4. COPY a rule or a part of it - this task is useful when the analyst intends

to create a rule which is nearly the same as an existing one.

108

Chapter 4 Specification of the K-Expert interface

5. CONSUL T a rule. The consultation opportunities are the following

ones:

- consult a rule with a given name ;

- consult a rule containing a given variable ;

consult a rule whose antecedent contains a given variable ;

consult a rule whose consequent contains a given variable.

6. BROWSE the rules.

7. PRINT all the rules which are selected according to the consultation

opportunities.

◊ Actions related to variables

1. CREATE a variable and set its attributes.

2. UPDATE the attributes of a variable.

3: DELETE a variable.

4. COPY a variable.

5. CONSUL Ta variable of a given name.

6. BROWSE the variables.

7. PRINT ail the variables.

◊ Actions related to tacts bases (FB)

1. CREATE a FB and give its description.

2. LIST ail the existing FB.

3. SELECT a FB.

4. COPYa FB.

5. DELETE a FB.

109

Chapter 4 Specification of the K-Expert interface

6. UPDATE a facts base description and/or its name.

7. CONSULT a facts base description

8. PRINT the name and the description of one or of all the existing FB.

◊ Actions related to facts

1. CREATE a fact.

2. UPDATE the attributes of a fact.

3. DELETE a fact.

4. CONSUL T a fact.

5. BROWSE the facts.

6. PRINT all the facts or only the facts containing a given variable.

◊ Actions related to the consultation scenarios

1. CREATE a scenario and set its attributes.

2. UPDATE the attributes of a scenario.

3. LIST all the existing scenarios.

4. SELECT a scenario.

5. CONSUL T the expert system with a selected scenario.

6. DEBUG the consultation of an expert system with a given scenario.

7. DELETE a scenario.

8. COPY a scenario.

9. PRINT one or all the existing scenarios.

110

Chapter 4 Specification of the K-Expert interface

4.5. STEP 4: DEFINITION OF COMPUTER OBJECTS AND
ACTIONS.

The functionalities highlighted by the Entity-Relationship model of

the analyst's tasks has only provided task actjons [Shnei 87]. However, it

seems that it could useful to join them other possibilities in order to support the

analyst while He is performing task actions. lndeed, as the analyst has to

interact with a computer, we must aise take into account objects related to the

computer world (e.g. the computer abjects [Shnei 87] which have been evoked

in Section 1.1.2) and specify the actions that apply to these objects (e.g. the

computer actions). We can aise identify this computer actions as task actions.

Among the computer abjects, we retain :

- The "Session concept". lndeed as the analyst will develop an expert
system instantiation with a computer which is in fact a volatile

environment, it is useful to give him the opportunity to leave his work

whenever He wants and to retrieve it in the same state later. ln this

perspective, we call "Session" the storage of the whole interaction

between the analyst and the computer from the starting of his work up to

the moment He stops working. The actions associated to this concept

are:

1. SAVE the current session state under a given name. lt

means the screen configuration (e.g. opened windows, their

size, contents and position), the set parameters ... etc.

2. LIST ail the existing sessions.

3. RESTORE a given session.

4. DELETE a session.

- The "environment parameters" concept. The analyst has particular

needs and particular computer abilities. So, it is interesting to give him

the ability to customize the used computer environment according to

them. Consequently, it is necessary to feature the environment by many

parameters such as the used printer, default values that must be

considered if the analyst does net type any other value ... etc. The action

that can be applied to this computer abject is:

1. SET the parameters to the desired values.

1 1 1

Chapter 4

4.6. STEP 5
ACTIONS.

Specification of the K-Expert interface

DEFINITION OF FUNCTIONS SUPPORTING TASK

The aim of this step is to extract a set of functjons which should be
implemented in order to support all the task actions deduced in the two

previous sections.

Ali these functions are described by the mean of the model of the

static of processes.

This model is particularly useful for us because relying on it, it is

possible to determine all the input and output informations tied up to each

considered function. This gives us the ability to introduce the notion of

message and to be more precise of functional message.

This type of message plays a fundamental raie in the specification of

an interactive application because input functional messages describe the

informations that should be introduced by the analyst to perform a function

whereas the output functional messages indicate the information that should

be returned to the analyst at the conclusion of the realization of a function. So,

we have to link a function to each task action (e.g. functionality). Moreover, it

can be remarked that the contents of a functional message can be deduced

from the attributes linked to the abject associated to the considered action.

These attributes are those described in the Entity/Relationship model.

Let's illustrate the use of the model for the functionality "create a rule
and set its attributes". The corresponding function is named "create-rule".

112

Chapter 4 Specification of the K-Expert interface

Example : Model of the static of processes.

Function: CREATE-RULE

Objeçtive : To record a new rule in a selected knowledge module of an expert system.

lnQut functjpnal me§§agê,:

create-rule-input : this message presents the attributes associated to a rule in
the Entity-Relationship model :

- rule-name ;

- rule-description ;

- rule-antecedent ;

- rule-consequent ;

- rule-priority ;

- rule-cost ;

- rule-certainty.

Pre-conditions :

OutQut functional message :

The given rule-name does not correspond to an existing one.

The given rule-antecedent and consequent are syntactically
correct.

The given priority, cost and certainty vary between two pre­
defined constant values.

An expert system and a knowledge base module have already
been selected. (This condition is useful in order to respect the
objective of the function).

create-rule-ok : This message indicates that the given rule has been added
to the wished module ;

create-rule-nok : This message indicates that the given rule has not been
added to the desired module.

4.7. STEP 6 : DEFINITION OF AUXILIARY FUNCTIONS.

The use of the model of static of processes during the previous step

of the specification process enables us to deduce new functions which are not

directly linked to the task of the analyst but which must be offered by the

interface in order to realize the considered functionalities. lndeed, by

113

Chapter 4 Specification of the K-Expert interface

emphasizing on the input messages of the function corresponding to a

functionality, some pre-conditions that the input information elements have to

respect in order to enable the function to perform its work correctly may be

highlighted. So, some additional functions should be added in such a way

that these pre-conditions can be established before executing the function

corresponding to the functionality itself.

As a result, in order to satisfy the conditions which have been linked

to the "create-rule" function, the following functions have to be implemented :

- verify-rule-name-exist ;

- verify-antecedent-syntax ;

- verify-consequent-syntax ;

- verify-priority ;

- verify-cost ;

- verify-certainty.

The "select-expert system" and "select-knowledge-module"

functions correspond to two functionalities highlighted in Section 4.4 ..

These auxiliary functions are also described by the modal of the

static of processes.

Let's now present the static of the "verify-rule-name-exist " function.

F1:1nc!ion : VERIFY-RULE-NAME-EXIST

Ogj~gtive : To consult the already recorded rules of a related knowledge module of an expert
system in order to find if the given rule-name already exists .

. 1.r.i,gut funcHon~I m~ssag~ .. :

verify-rule-name-exist: This message presents

- rule-name;

-expert-system-name ;

-knowledge-module.

Pre-conditions :

The given expert-system-name exists.

The given knowledge-module-name exists for the given expert
system.

114

Chapter 4 Specification of the K-Expert interface

verify-rule-name-exist-ok : The contents of this message indicates that the
rule name already exists ;

verify-rule-name-exist-nok : The contents of this message indicates that the
rule name does not already exist.

4.8. STEP 7 : EXTRACTION OF INTERACTIVE MESSAGES.

Up to now, we have defined the data structures, all the necessary

functionalities and also the functions that must be supported by the application

in order to provide these functionalities. The next step consists of defining the

dialogue. The aim of this dialogue is to support the interaction between the

analyst and the interactive application in order to realize the pre-defined

fu nctio naliti es.

First of ail, let's introduce a new concept that will play a fundamental

role in the remaining of this exposure. The considered concept is that of

interactjye message. Each interactive message embodies all input or output
datawhich are meaningful for the user. Consequently, all the constitutive
informations of such a message have to be semantically linked and moreover,
the retained regrouping must be significant for the user from an ergonomie
point of view.

As these functionalities are actions related to task objects, the
contents of an interactive message consists generally of ail the attributes
linked to the same object.

Before presenting concretely some of the interactive messages of

our application, it seems necessary to describe interactive messages in a

rather systematic way. So, we propose to do it by defining the following

elements for each of them. This description is inspired by [War 88c], [War 88b].

Interactive message description :

- Name ;

- Definition explaining its object ;

- Type (input, output, control, error or help) ;

- Data it concerns and the related integrity constraints ;

115

Chapter 4 Specification of the K-Expert interface

- Justification : lt means an exploration of the reasons for which this

message can be perceived as a dialogue unit for the

user;

- Operations that analysts will be able to perform on the message.

According to the message type, various standard operations may be defined.

Seeing their standard character, these operations will be omitted during the

message description.

lndeed, input interactive messages and control messages may always be

submitted to the following operations:

- Create an occurrence ;

- Suppress an occurrence ;

- Put away an occurrence (for example by iconizing it);

- Select a put away occurrence ;

- Conclude an occurrence. lt means to validate its contents and to trigger

off the actions associated to its conclusion.

Moreover, each field of such a message may be submitted to :

- Affectation of a value ;

- Suppression of a value ;

- Updating of a value.

From another side, output interactive messages are concerned by the

following operations :

- Put away an occurrence ;

- Select a put away occurrence ;

- Conclude an occurrence. lt means to erase the corresponding

message from the screen and to switch

to the next interactive message.

Asto the help messages, it is only possible to perform the following actions on

them:

- Create an occurrence ;

- Conclude an occurrence.

We are now going to propose an example of this process for some

significant functionalities we have illustrated in Section 4.5 ..

116

Chapter 4 Specification of the K-Expert interface

~: CREATE-RULE-INPUT

QefinitiQn: Set of the attributes composing a new rule. lt corresponds to the functional message

CREATE-RULE-INPUT presented in Section 4.6 . .

~ : Input interactive message.

Data : rule-name ;

rule-description ;

rule-antecedent ;

rule-consequent ;

rule-priority ;

rule-cost;

rule-certainty factor.

The syntax of these fields will have to be defined when physical implementation of this message

will be considered.

~.Y.§tifi9.~iQ1J. : The contents of this message corresponds to ail the values necessary to input a

new rule.

Qger~tiQn~ : Ali the standard operations associated to input messages. Moreover, there are

syntactic controls on characters introduced in each field and semantic control if

needed.

Ngme: SELECT-EXPERT-SYSTEM-INPUT

Definition : Input of the name of an expert system to select. lt corresponds to the functional

message of the same name.

TuJ2§,: Input interactive message.

~: expert-system-name

Jy1;1fifiça!iQn : This message is useful to input the information necessary for the identification of a

particular expert system.

117

Chapter 4 Specification of the K-Expert interface

Og~ra!iOn§ : Ali the standard operations associated to input messages. Moreover, there is a

syntactic control on characters introduced in the expert system name field and a

semantic control to verify if the expert system-name exists.

N~m~ : UPDATE-RULE-INPUT

D~finition: This message makes possible the modification of a rule which has been stored in the

knowledge module. lt corresponds to the UPDATE-RULE-INPUT functional

message.

~ : Input interactive message.

Data: Same data as those described in the CREATE-RULE-INPUT interactive message.

JystificatiQn : The contents of this message corresponds to all the values necessary to record

the modified rule in the knowledge module.

Q,geratiQns : The operations are the same as those performed on the CREATE-RULE-INPUT

interactive message.

4.9. STEP 8 : CORRESPONDENCE BETWEEN INTERACTIVE AND
FUNCTIONAL MESSAGES.

As the interactive messages and the already evoked functional

messages are derived from the same functionalities and are linked to the

same abjects, we can mention that their contents have to be identical. Let's

recall the already mentionned hypothesis concerning the biunivocal

correspondence between these two kinds of messages.

Moreover, the interactive application needs some other interactive

messages which may not correspond to functional messages (such as help,

errer and contrai messages). lndeed, while designing the interactive

messages, one may realize that some informations necessary for the user

have no counterpart in functional messages. This follows from the tact that

interactive messages are defined by reference to the user's needs in

information while functional messages are dragged from the functionalities

that should be implemented.

118

Chapter 4 . Specification of the K-Expert interface

During this step, the functional messages are put into

correspondance with interactive messages. This is useful to verify if no

message has been forgotten.

ln our particular case, this step is already realized. Let's note that if

an interactive message corresponds to a described functional message, they
have the same name. This option avoids increasing the number of names to

handle.

4.10. STEP 9 : BUILDING OF THE CONVERSATION SCHEME.

This step has been inspired from the conversation scheme defined
by [War 88b].

The interactive messages are also submitted to chaining rules.
lndeed in order to have a consistent dialogue, the input and the output of

interactive messages may not occur at any time, they must respect chaining

rules describing the actions authorized at any time during a man-machine

interaction. So a conversation scheme must be specified to modelize the

dial?gue evolution.

The formalism of this scheme is close to this of the dynamic model.

However, it considers only interactive messages, so it does not make appear

treatments. lndeed, conversely to what happens in the dynamic of treatments,

the functions that are performed on interactive messages are standard

operations (as input, output, and so on).

Starting from the extracted interactive input-output messages, we

can now define a conversation scheme corresponding to the chaining

constraints that may be applied on them. We can visualize the conversation

corresponding to our application on the following Figure 4.2.

119

Chapter 4

Select-exper -
system-Input

Specification of the K-Expert interface

Create-rule
-Input

Update-rule
-Input

Figure 4.2 : Conversation scheme.

The scheme we propose starts with a conditional structure. This one is

represented by a lozenge. lndeed, in our case, the analyst is completely free
to undertake every action He wants. So, He can either add a new rule with its
corresponding interactive message (create-rule-input) or modify an existing
rule (modify-rule-input) or perform one of the previously described
functionalities as soon as He has launched K-Expert. This follows from the fact
that we have decided to consider our interactive application as a toolbox of

actions.

4.11. STEP 10

MESSAGES

EXTRACTION OF CONTROL INTERACTIVE

From the study of the conversation scheme, one can deduce so­

called control messages.

The "contrai messages" are particular interactive messages which

are used to orientate the dialogue in process. They enable the user to perform

choices among alternatives during a man-machine interaction session. ln a

word, they correspond to decision points.

ln our conversation scheme, we can see an "or" structure. This

structure gives the analyst the ability to choose one of the functionalities of the

application. A control message has to correspond to this structure in order to

enable the analyst to perform his choice. We can specify it in the following

way.

120

Chapter 4 Specification of the K-Expert interface

Nam~ : CHOOSE-FUNCTIONALITY

D~finitiQO : This message enables the analyst to choose the desired functionality among those

offered by the application.

Turul: Input interactive message, control message.

Data: A field which takes a value corresponding to the chosen functionality.

Jy§tifiQê!ioQ : The contents of this message corresponds to the only data needed to indicate the

wished choice.

QQetaliQl1§ : Ali the standard operations that are associated to input messages.

At this point of the work, we have completed the specification of ail

the concepts related to the task to interface. We must now take into account

the analyst's profile in order to justify our ergonomie options. This point is

treated in the next Section.

4.12. STEP 11 : TAKING INTO ACCOUNT OF THE ANALVST'S
PROFILE

Starting from the analysis of the profile of a typical analyst that has
been realized during Chapter 2, we must now draw general ergonomie
options. The latters consist of the definition of guidelines that should be kept in
mind during the next step in order to build an interface that is satisfactory from
an ergonomie point of view.

ln this perspective, we try to put the effort of crossing the evaluation

and execution gulfs [Norm 86] on the interface designer rather than on the

end-user.

121

Chapter 4 Specification of the K-Expert interface

Concretely speaking, what can be deduced from Chapter 2 is that :

- Analysts of expert system perform an intellectual and creative job with a high

level of motivation. This level is as high as their requirements about the

interface [Shnei 87]. As a result, the proposed interface can not be an

elementary one.

- They are often experts in the so-called task-domain but their knowledge of

the computer-concepts [Shnei 87] is not necessarily very wide.

Consequently, the proposed interface should give them the illusion to work

directly with relevant task-objects. ln the same way, this option would

en able them to concentrate themselves on the task-itself.

- Finally as the considered analysts' spectrum stretches from noyices to

experts, it could be fine that the interface be evolutionary.

Concretely, we try to stay as sensitive as possible to the notion of

"user friendliness". This fundamental concept is not an abstract one but is
defined concretely by Shneiderman [Shnei 87] by five criteria which are the

learning time, the retention over time, the rate of .use errors, the level of
subjective satisfaction and the speed of performance. We intend to try to
optimize all these elements while designing the interface.

Moreover, we think it is particularly necessary for the interface to
provide the analyst a feeling of contrai on his job and also to encourage him
to explore its abilities.

4.13. STEP 12 : EXTRACTION OF INTERACTIVE OBJECTS.

The aim of this section corresponds to the visualization of the

analyst's interface.

The proposai of concrete interactive abjects supporting the

implementation of the functionalities we have extracted will be the last point of

our interface design. The interactive abjects are the physical representations

of one or more interactive messages.

To define interactive abjects, we have accomplished a semantical

grouping of interactive messages. lndeed, we put into a single interactive

abject all the interactive messages related to a same information structure (for

122

Chapter 4 Specification of the K-Expert interface

example, ail the fields corresponding to a rule are presented through a single

mask) and also ail the actions (functionalities) an analyst may perform on such

an information structure (for example, all the operations an analyst is

authorized to perform on a rule such as create it, modify it, delete it ... are

accessible from the same interactive object).

This last step relies on the previous sections of this chapter. lndeed,
we try to conceive interactive abjects in such a way that they represent ail the
available task actions (e.g. : they correspond to the highlighted interactive
messages). We also take into account the constraints that may have been

discovered and the ergonomie considerations that have been underlined in
Section 4.12.

But first of ail, before introducing a description of the basic standard
interactive abjects we instantiate to give a physical form to the interactive

abjects constitutive of the interface, let's evoke a concretization of the

ergonomie guidelines deduced in Section 4.12. This one is reflected in all the

instantiations of generic interactive abjects that we provide in Section 4.13.3 ..

4.13.1 Ergonomie options

The presentation of the ergonomie options we have retained are

structurated into various sections corresponding to the criteria we have

selected in order to criticize existing expert systems shells in Chapter 3. To be

complete in this section on which our proposed interactive objects rely deeply,

we have added some additional criteria which are those defining the user

friendliness [Shnei 87]. This concept introduced by Shneiderman has been

presented in Section 4.12 ..

Let's start the exposure of each of these sections.

4.13.1.1. Control feeling and initiative

At the end of reading texts as those written by Norman [Norm 86],

we think that a transparent interface (e.g. an interface in which an analyst may

think He is directly accomplishing the task) based on a world metaphor rather

than on a "conversation metaphor" is the most appropriate one. So, we intend

to give the analyst the contrai of the interaction as much as possible. To

satisfy this objective, we propose to define an initial window displayed at the

123

Chapter 4 Specification of the K-Expert interface

beginning of the analyst's work and enabling him to access to all the basic

development functionalities. This initial window can not be closed so that the

analyst does not risk to be lost. Moreover, many paths are usable to reach the

same action. This option is also interesting here because except for the first

window, the analyst may initiate everything He wants in the desired order.

Moreover, we base our analyst's interface on a multi-windowing

system. This seems particularly interesting because it corresponds to human
thinking way as it has been showed in Section 1.1.3.

Each window contains a semantical unit, it means a set of
semantically related informations such as a mask for rules editing and the
associated actions. So, the analyst has the opportunity to work on one
window and to consult other ones in order to fetch complementary helpful
informations. The analyst is free to resize, to move, to close, to activate
windows as He wants. Basides, when the analyst is required to fill many
fields, we let him free to switch between them by using arrow keys or mouse­
clicks.

A rational limit to his control on the system is the fact that He must

answer to displayed dialogue boxes before being able to perform something

else. Another rational limit is that the analyst is only allowed to open one and

only one instantiation of each of the proposed windows at a time.

We reinforce the control of feeling by enabling the analyst to access

to a pop-up containing the list of all the already activated windows. This is

illustrated in Section 4.13.2. 7. This is particularly interesting seeing that

nothing prevents windows overlapping in a multi-windows system.

According to us, another important point is to give the analyst the

ability to adapt the interface to his needs as much as possible. This can be

done by the setting of a set of parameters relative to the default options

applicable when the developing environment interface is started such as the

selection of a printer.

Finally, let's say that we give the analyst the opportunity to leave the

standard K-Expert interface in order to switch to a command language

window. Seeing the advantages of this approach that have been underlined

in Section 1.2.3.3., we intend to make our interface attractive for novices but

124

Chapter 4 Specification of the K-Expert interface

also for experts. Let's remark that the definition of such a language is beyond

the scope of this work.

4.13.1.2. Memory load and internai flexibility

Let's remark that this point corresponds to the criteria "Learning

process" and "Retention over time" of the previously evoked principle of user

friendliness.

The theoretical section of our work has led us to consider that the
less an interface user has to provide an effort to cross the gulfs separating his

view of the task and the system representation, the quickest his understanding
and assimilation of-a system interface is. Our point of view is to assign the

designer the "gulf bridging" effort [Norm 86]. Concretely, we try to design the
analyst's interface in such a way that it reflects directly tasks objects on which
the analyst may perform significant task actions. lt is why we have made a so­
called task analysis to extract significant objects and associated functionalities.

This study has been presented in Section 4.1.

By reference to the syntactic-semantic model [Shnei 87], we isolate

task concepts (such as the notion of a rule) and task actions (such as the

creation of a rule). We try to hide as muchas possible syntactic elements and

also computer concepts and actions. So, for example, the analyst must never

ask to save (e.g. a computer action) a rule, He just accepts it. This way to do

should reduce the learning time and effort and also the required computer

qualification of the analyst. To go deeper into this direction, we are also

careful of the presentation of these task objects and actions to the analyst.

Whenever it is possible, we provide a graphie representation of

objects and actions. For example, a rule is represented through a mask and

actions associated to the rule network are symbolized by significant pictures.

When a graphie presentation is not appropriate, we choose a significant word

to designate the corresponding action such as the word NEW to indicate that a

new rule is going to be created.

By this way, we hope to reduce the learning effort because every

element is directly significant. At the same time, we intend to facilitate the

retention of the interface manipulation over time.

125

Chapter 4 Specification of the K-Expert interface

Retention over time is aise improved by the fact that we regroup

semantically related abjects and actions. This orientation is reflected notably

by the fact that all the actions linked to a general functionality of the K-Expert

development environment are put together. lt is why at the starting of K­

Expert, we decide to display eight icons which give access to a set of related

actions. For example, the so-called editor icon enables the analyst to access

to all the editors usable to introduce knowledges in the expert system shell.

To manipulate the retained abjects and actions, the analyst has just
to use the mouse. This mouse approach is significant for the novice and

intermittent analysts. However, it can be annoying and time wasting for the
experts. So we have decided to take into account the possibility to integrate a
command language. The advantages (and limitations) of this interaction style
have already been explained in Section 1.2.3.3. The possibility to use such a
language should support the switching between a novice and an expert state.

To facilitate this progression, we implement also many ways to
reach the same effect. lndeed, conservations that we have led with some

expert analysts have shown that even if this internai flexibility may be slightly
confusing at the beginning, it becomes soon very useful.

We think that the graphie and semantic presentation of abjects and

actions and also the mouse manipulation should contribute to alleviate the

analyst' s memory load. According to the model of the hum an processor

presented in Section 1.1.2, this is a non negligible advantage.

Another remark to do is that the learning process is encouraged by

the fact that we intend to display a confirmation dialogue box before executing

potentially disastrous actions such as the deletion of a knowledge module. ln

the same way, each action accomplished on the contents of a window may be

UNDOne. So, normally, the analyst should not be stressed to initiate actions.

4.13.1.3. Feedback

We propose to conceive our interface in such a way that the result of

each initiated action is immediately reflected on the screen contents or on the

cursor shape. lndeed, we consider that immediate feedback is an important

quality requirement. For example, when the analysts provides the name and

description of a new expert system, this one is automatically added to the

126

Chapter 4 Specification of the K-Expert interface

displayed list of existing expert system. Whenever an action may affect the

contents of an opened window, this one is directly updated even if it is not

activated.

4.13.1.4. Errors handling

Our basic principle may be stated as follows : Setter to prevent

errors than to correct them. So we have decided to design a mouse-use

oriented interface.

Of course, as it has been highlighted in Section 1.2.3.1. this way to
do may be constraining in the sense that it forces the analyst to leave the
keyboard. However, there is a non negligible advantage linked to the mouse.

lt prevents analysts from typing errors like it can happen for the use of a
command language. ln fact, it reduces the use of the keyboard to fill text fields
because the analyst has the ability to select an appropriate value in a list by
using a mouse.

However, we let the analyst free to type directly value in fields with

the keyboard if He wishes it. ln this case, whenever a syntactic or semantic

error occurs a message is displayed in a dialogue box. The message texts are

worded in such a way that they provide a diagnostic and also indications

about the way to solve the detected problem. They do not present error

numbers which would send back the analyst to a reference book.

To be precise, we can say that by semantic error we mean errors

such as an attempt to load a non existing knowledge module.

To be consistent with what we have learned through literature, we

propose to implement the semantic and syntactic contrais on analyst's inputs

as early as possible.

So, in the case of an input mask composed of several fields, for

example, syntactic contrais are not started after the filling of all the fields but

after each field filling. By this way, the analyst may react instantaneously by

correcting the bad field from the input value which remains displayed.

127

Chapter 4 Specification of the K-Expert interface

Moreover, as we have seen for the control feeling, we offer an
UNDO function. This one enables the analyst to avoid errors which could be

linked to awkwardness.

4.13.1.5. On-line help

To assist the analyst during his learning period or using time, we

propose semantic and syntactic help functions. At any time, a semantic

information may be accessed to explain the contents of a window and of any

clickable element. For any field to fill, a syntactic help message is foreseen

and if there exists a list of possible values for it , this list is displayed to the

analyst who can select one of them with the mouse. The concretization of this

on-line help is presented in Section 4.13.3.8 ..

Theoretical readings having attracted our attention on the

importance of this type of support, we think the contents of these messages

should be carefully designed in order to be self-sufficient (e.g. they must no

send back the analyst to a reference book).

4.13.1.6. Interruption

The analyst has always the opportunity to access to the Dos system

during a working session with the interface without having to leave it.

Moreover, we propose to take into account the ability to save and
restore a current work session state so that the analyst is not system­
dependent but can leave it at any time.

4.13.1. 7. Consistency

An important hint retained to facilitate the learning process is the
respect of consistency thorough the whole interface. The notion of
consistency, presented in Section 1.3., permits the analyst to build an uniform
view of the whole interaction. Let's remark that it should alleviate the learning
process. To implement it , we propose to build all the elements of the interface

such as windows, dialogue boxes and buttons by instantiation of standard

ones defined in Section 4.3.1. By this way, the constitutive elements of a

window, for example, will always appear at the same position. Moreover, the

same basic actions (such as the moving of a window, the starting of an action

128

Chapter 4 Specification of the K-Expert interface

by clicking on a button ... etc) are always attached to instantiations of a standard

object. So this improves the analyst's feeling of security. He should never be

surprised by the result of an action.

For the manipulation syntax, it emerges from literature that the best

sequence is often object selection/action selection. So, we try to respect this

principle as much as possible. For example to modify a rule in a rule mask,

the first thing to do is to access to the desired rule (e.g. object selection) and

then to click on the action MODIFY in order to access to the mask contents.

To conclude these remarks about consistency, we can also say that

we always try to set the access to actions at the same place and under the

same formalism. So actions giving the opportunity to modify a window

contents by oneself or giving access to action menus are always set above the

window and have the form of rectangle buttons. From another point of view,

actions which open a dialogue box or a window are always located at the
bottom of the considered window where they appear as icons.

4.13.1.8. Performance speed

Naturally, we intend to reduce the time required to perform a
particular task by using the designed interface. ln this perspective, we take
options such as the saving of fields contents, in order to restore them when the
window presenting them is reopened. Moreover, the analyst may move

between mask fields or buttons using the keyboard arrows instead of the

mouse. So, He must not leave the keyboard. We also define default action
buttons. By this way, the analyst can replace a click on a button by a single

press on the Return key. The already evoked ability to select a value in a list

instead of typing it may accelerate the input rate. Finally, we arrange the

proposed menus and buttons in such a way that the more frequent actions are

put in front of them.

4.13.1.9 Satisfaction level

This factor seems to be one of the most important in order to design

an interface that will be really used. According to Laurel [Norm 86], we must

conceive an "enjoyable" system. So by reference to readings and to our

persona! experience of existing expert systems shells interfaces, we have

129

Chapter 4 Specification of the K-Expert interface

extracted the elements which are the most enjoyable for us. These elements

are graphical supports such as the use of significant icons.

Basides, we think that all the factors detailed previously contribute to

the growing of the satisfaction. Moreover, we try to be especially attentive to

the aesthetic aspect of the screens presented to the analyst in order to not

overload them.

To say more about the satisfaction linked to the use of an interface,

we should of course implement a prototype of it and present it to various

classes of analysts. This step is particularly important as it has been

underlined in Section 1.4 but it oversteps the scope of our thesis.

Keeping in mind these ergonomie options, we can now define the
standard interactive abjects we consider. Then, we propose instantiations of
them in order to visualize our analyst's proposai.

4.13.2 Description of used standard interactive objects.

The implementation of the considered interface relies on a User

Interface Management System (UIMS) which offers the interface programmer

basic standard interactive objects. These interactive abjects are generic (or

standard) dialogue units such as windows, pop-up, icons which enable an

user to interact with the application. They must be instantiated in order to

present the analyst a visualization of his task. The presentation envisaged

here is useful to define the standard interactive abjects which should be

supported by the chosen UIMS for the implementation of the interface.

Seeing that the standard actions linked to their manipulation (like

the closing, the scrolling or the resizing of a window) become well-known by

an increasing number of potential users, we do not intend to present them

here. Let's note that the standard abjects on which our interface relies are the

window, the dialogue box, the pop-up, the text entry field, the check box, the

radio button, the list box, the button and the icon. To have access to more

details about them, the interested reader may have a look on books or

documents such as [War 88c].

130

Chapter 4 Specification of the K-Expert interface

ln this Section, we focus only on objects and actions which are not
provided directly by the UIMS. After this, we add some general principles

about the use of the mouse.

4.13.2.1 The help and undo boxes

We describe only two objects that can be found in the standard
window of our interface because they are not usual. There are the help box

and the undo box which are presented on the following Figure 4.3.

close box ml

help box ? .
undo box ~

TITLE

Il
Figure 4.3: Standard window.

title bar

♦ scrolling arrow

■ escalator

scroll bar

♦
size box

The UNDO box : cancels the last operation performed on the contents of the
associated window.

The HELP box : displays informations about the currently activated window
and its contents in order to assist the analyst while He is
performing a given task.

4.13.2.2. The list icon

To input a value into a text field, the analyst has to type the desired

value and to press on the Return key or to click on another object. However,

131

Chapter 4 Specification of the K-Expert interface

there is another way to input a value. When a field can take a value belonging

to a specified set of values, the analyst can directly select the desired one in a

list. ln this case, the input field is followed by an icon called "list icon". By

clicking on it, a pop-up is displayed in which the analyst can make a selection

with the mouse. The selected value of this list is reflected in the corresponding
entry field. The list icon is shown on the following Figure 4.4.

T ext entry field List icon

Figure 4.4 : The list icon

4.13.3.3. The flipping mechanism

When a window may present several instances of a given abject,

but can only display one at a time, this mechanism enables the analyst to

select one of them by browsing them page by page. This may be visualized

on Figure 4.5.

WINDOW CONTENTS

-+-~Previous page

Next page

Figure 4.5 : Flipping mechanism.

lndeed, the window appears like a page whose the left corner is

folded. To turn the pages, a simple click on the adequate corner is necessary.

Let's note that the considered instancies form a ring sorted

alphabetically on the instancies names. When the last instance is reached,

the next one corresponds to the first one.

132

Chapter 4 Specification of the K-Expert interface

4.13.2.4. The index mechanism

This mechanism is useful in the same context as the flipping

mechanism, but it enables a quicker selection. lt is illustrated by Figure 4.6.

ab
cd
et
gn
i j INDEX ...
UV

wx
YZ

Figure 4.6 : The index mechanism.

lndeed, an index is displayed on the right side of the window. By

clicking on a letter, the analyst selects the first instance starting with this letter

in the alphabetical order. If there is more than one instance for the chosen

latter, He can access to the desired one by using the flipping mechanism.

4.13.2.5 The buttons

Buttons are little objects offering an access to a functionality as a

result of a mouse click .. ln our proposai, we consider two kinds of buttons

which depend on the type of interactive object to which they belong.

ln dialogue boxes , buttons are rectangles with round corners
displayed at the bottom.

(<ACTION>)

Figure 4.7 : Butten in a dialogue box.

133

Chapter 4 Specification of the K-Expert interface

ln wjndows. buttons are rectangles displayed at the top.

INIIEW MOID~fV IDIEllE1ïE

Figure 4.8 : Button in a window.

Those buttons enable the analyst to interact directly on the window

contents or to access to a pop-up if more information is needed. Let's remark

that default buttons are admitted. The background of such buttons is set into a

darker color to distinguish them from the other ones.

4.13.2.6 The icons

lcons are graphical representations of a function displayed at the

bottom of a window. When the analyst clicks on an icon, the represented

action is performed on a selected abject. The icons considered are the

following ones :

[]] ADD a new object

rn MODIFY an object

œ DELETE an object

□ SELECT an object

~ FOCUS on an object

~ PRINT an object

IF91 ENTER corresponding editor

Figure 4.9. : lcons visualization.

134

Chapter 4 Specification of the K-Expert interface

When selected, each of these icons opens a dialogue box to enable

the user to complete his command or a window if needed. There are other

icons which are used only in the rule network. Their description will be given

when the rule network window will be explained in Section 4.13.3.4.12. .

Moreover, the main window of the K-Expert analyst's interface

contains eight icons which are always accessible to initiate a sequence of

actions. They will also be described when the K-Expert window will be

explained in Section 4.13.3.1.

4.13.2.7. Mouse use

The considered mouse offers two buttons which will be designated

by fill (for "Right Butten") and .Le. (for "Left Butten") in the remaining of this

exposure. The functionalities linked to these buttons are permanent.

- The functjon of the La corresponds to the classic one. lndeed by

clicking one time on it, it is possible :

. to select an abject (which becomes highlighted as a result)

on the screen ;

to start an action (selection of a menu item for example) ;

to move an abject from one place to another one.

- The function of the .B.B..consists of :

. the display of an on-line help. If the analyst clicks on the RB

when the cursor is positioned on an screen element, a help
box containing syntactic informations about the

corresponding element is displayed (if some help is

available) ;

. the display of a pop-up containing a list of all the opened

windows. To make it appear, the analyst has just to click

anywhere on the screen, the result of this click is the display

of a pop-up like the following one which disappears as soon

as He releases the .Ba:

135

Activated window

< window 1 >
< window 2 >

< window 3 >

••••••
< window n >

Figure 4.10 : Activated windows pop-up.

Justification of the existence of this pop-up.

- To give the analyst the ability t9 have a global view of his
work at the time being. So we think that He would have the

feeling to dominate the system (and not the contrary)
because even hidden windows will appear in the list.

- To enable the analyst to reactivate directly an already

opened window from anywhere. lndeed, the analyst only

needs to click on the desired <Window name> item with the

LB to activate it automatically.

4.13.3. Specifications of the instantiations of the basic standard
interactive objects.

ln order to preserve the understandability and the consistency of this

specification, each interactive object is defined according to the following

pattern :

- name (of the considered interactive objet)

- definition

- list of the functionalities realized thanks to the implementation of

this object.

- justification of the contents of this object.

- presentation : graphical presentation _of the considered object.

136

Chapter 4 Specification of the K-expert interface

- the actjons that can be performed through the interactive object

and their effects on the application chaining. As the standard

manipulation of the instantiated interactive objects has already

been described in Section 4.13.2., we do not mention again

actions like re-sizing or moving a window.

Let's start with the main window of our interface (e. g. : the window

that is displayed whenever an analyst will begin to work with K_Expert). This

window remains displayed up to this person asks to leave the K_Expert

interface. Moreover, it should be underlined that all the functionalities

proposed to the analyst are accessible through this window.

4.13.3.1. Presentation of the main window of our interface.

Name: K-Expert-window.

Definition: Main window of the K-Expert interface giving access to all the
implemented functionalities. This window presents the analyst the control
interactive message "choose-functionality".

Functionalities: K-Expert window does not implement any particular

functionality but it gives access to each of them.

Justification: As this screen corresponds to a single interactive message, we

do not have to justify a grouping of messages. However, we can justify its

particular organization (e.g. : eight icons meaningful for the analyst and

under which ones all the accessible functionalities are implemented).

Generally speaking,the eight icons correspond to :

◊ the CATALOGUE icon enables the analyst to access to the lists

(=catalogues) of the different constitutive etements of an expert system

in order to :

- consult a list.

- update a list.

- print a list.

-select an element of a list.

137

Chapter 4 Specification of the K-expert interface

The access to each of the lists is done by selecting one of the following

items of the corresponding pop-up :

- EXPERT SYSTEM CATALOGUE.

- KNOWLEDGE BASES CATALOGUE.

- FACTS BASES CATALOGUE.

- SCENARIOS CATALOGUE.

For us these items are particularly relevant because we consider that

they correspond to all the components of an expert system. lndeed,

the analyst develops an expert system. This expert system

formalizes an expert knowledge in one or more Knowledge modules.

The expert system will work on one or more Facts bases . To be

consulted the expert system needs to be linked to a scenario saying

what must be done at a time with the stored knowledge and adapting

it to the needs of particular user classes.

◊ the EDITOR icon gives access to a pop-up. There, the analyst can

choose an appropriate editor in order to update the following expert

system elements :

*fora selected expert system and a selected knowledge module :

- rules.

- variables.

*fora selected expert system and a selected facts base :

- facts.

◊ the REPORT icon gives the opportunity to consult different informations

on:

- the knowledge and data the analyst has introduced in a

selected expert system.

- the progress of a consultation of a selected expert system.

Let's now present the details about the pop-up items implemented

behind this icon :

138

Chapter 4 Specification of the K-expert interface

* List of ru/es :

-> ALL : opportunity to access to all the rules defined in a

knowledge module of an expert system (rule names and

contents).

-> USING A VARIABLE : to access to a list of rules containing a

given variable.

-> USING A VARIABLE IN "IF" CLAUSE : to access to a list of

rules containing a given variable in the antecedent part.

-> USING A VARIABLE IN "THEN" CLAUSE : to access to a list of

rules containing a given variable in the consequent part.

-> USING UNDEFINED VARIABLES : to access to a list of rules

containing variables that have not been defined. This is an

important functionality to contrai the coherence of a knowledge

module.

* List of variables :

-> ALL : gives the opportunity to access to all the variables

defined in a knowledge module of an expert system (variable

names and contents).

-> NOT USED : to access to a list of all the variables defined but

not used in rules variables. This is an important functionality to

contrai the consistency of a knowledge module.

-> UNDEFINED : to access to a list of all the variables that are

used in rules but have never been defined. This is also a

functionality useful to contrai the consistency of a knowledge

module.

* list of tacts:

-> ALL : to access to a list of all the facts of the selected facts

base.

139

Chapter 4 Specification of the K-expert interface

-> USING A VARIABLE : to access to a subset of the facts of the

selected facts base which contain a given variable.

-> USING UNDEFINED VARIABLES : to access to a subset of the

facts of the selected facts base which contain variables which

have not been defined.

* ru/es network :

Visualization of a part of the existing rules of the knowledge module

of a given expert system through a network.

* fast trace :

To access to a trace of everything that has happened during the last

consultation of the considered expert system.

* fast consultation tree:

To access to the tree corresponding to the course in the rules

network which was performed by the inference engine during the

last consultation of the considered expert system.

◊ the EXIT jcon gives access to a dialogue box enabling the analyst to

conclude his work with K_EXPERT and to return to the DOS system

after saving (or not) his session.

◊ the CONSULTATION jcon enables the analyst to launch a consultation

of a selected expert system from two points of views. lndeed, the

corresponding pop-up gives access to :

* user perspective :

By selecting this item, the analyst can consult the expert system as if

He was a particular user. So during this consultation, He will just

have access to the parameters He has affected a user in a given

"user presentation".

140

Chapter 4 Specification of the K-expert interface

* analyst perspective :

By selecting this item, the analyst can consult the expert system from

a test point of view. lndeed, during a consultation of the expert

system according to a selected scenario, the analyst can access to

different "tools" (e.g. : the contents of the report icon) which enable

him to analyze the progress of the consultation in order to improve

the expert system quality and efficency.

◊ the CONFIGURATION jean gives access to abilities linked to the fact that
the analyst, who works with a computer, must be able to adapt it to his

particular needs. The underlying pop-up supports access to the session

management (save, restart, delete a session), to the starting of a command

language and to the setting of computer parameters such as the choice of a

printer and so on.

◊ the COMMUNICATION jean gives access to the ability to copy to another
analyst, or from another analyst, some components (expert system,

knowledge module, facts base and scenario). This icon is only accessible
when an analyst works on a PC connected to a network.

◊ the "ACCES$ DOS" jean gives access to the Dos without leaving the K­
expert interface.

141

Chapter 4 Specification of the K-expert interface

Presentation:

K_EHPERT
1

1 1 1 J-/ @ 1 ID BYE !!!
/ 1 1

CATALOGUE ED ITOR REPORT EHIT

► 1
1 >

? - ◄ >
■

>
CONSULTATION :ONFIGURATION ..,OMMUN I CATI ON ACCES DOS

Figure 4.11 : K-Expert window.

The associated pop-ups or dialogue boxes are the following ones :

"Catalogue" pop-up

CRTRLOGUE
Expert Systems

Knowledge Modules
Facts bases
Scenarios

Figure 4.12: Catalogue pop-up.

142

Chapter 4 Specification of the K-expert interface

"Editor" pop-up

ED ITOR
Rules editor
Variables editor

Facts editor

Figure 4.13: Editer pop-up.

"Report" pop-up

REPORT
List of ru les . .

Ali
Using a variable
Using a variable in IF clause
Using a variable in THEN clause
Using undefined variables

List of variables :
Ali
not used
undefined

List of tacts . .
Ali
Using a variable
Using undefined variables

Rules network

Last trace
Last consultation tree

Figure 4.14: Report pop-up.

"Exit" dialogue box

According to the current situation, one of the following dialogue­

boxes is displayed.

143

Chapter 4 Specification of the K-expert interface

- if the analyst has not already saved his session.

A. Vou have not saved your session ?

Do you really want ta exit K-Expert environment ?

AVE AND
EXIT (EXIT)

Figure 4.15: Save and exit dialogue box.

- if the analyst has already saved his session.

Do you really want ta exit K-Expert environment ?

(EXIT) -
Figure 4.16: Exit dialogue box.

"Consultation" pop-up

CONSULTRTI ON

Analyst

End-user

Figure 4.17: Consultation pop-up.

144

Chapter 4 Specification of the K-expert interface

"Configuration" pop-up

CONFIGURRTION

Save session
Restart session

Delete a session
Command language

Change parameters

Figure 4.18: Configuration pop-up.

Communication" pop-up

COMMUN I CRTI ON
Copy expert system
Copy knowledge module

Copy f acts base

Copy scenario

Figure 4.19: Communication pop-up.

"Access dos" window

□

?
~

ACCESS DOS

> <Dos command>

Figure 4.20: Access Dos window.

145

,

Chapter 4 Specification of the K-expert interface

Actions:

- Window creation: The window is created when the analyst types

"K_EXPERT" from the DOS.

- Window closure: mouse-click on the exit icon and mouse-click on the

"save and exit" button or on the "exit" button of one of the two possible

dialogue boxes of the "exit" icon.

- Affectation of a value to an operation which has to be performed:

mouse-click on one of the eight icons. This action triggers off the

display of the pop-up corresponding to the category of treatments

selected by the analyst. A mouse-click on the desired functionality of

the pop-up triggers off the display of the corresponding interactive

abject.

To be more precise, we can say that the previously evoked pop-up

menus are themselves interactive abjects to which some actions are

linked. As the way to use and to implement them is really classic, we

do not intend to specify each of them in particular.

What can be done is a general specification of a generic pop-up menu

interactive abject. Then, it is easy to instantiate it to the particular case

of each pop-up.

Name: <name>-pop-up.

Definition: menu enabling the analyst to trigger off a particular

functionality linked semantically to the others presented in the

menu.

146

Chapter 4

Presentati on:

< Title >

< item 1 >
...

< item i >
...

< item m >
...

< item w >

~

Specification of the K-expert interface

Group of items
semantically linked

Figure 4.21: Pop-up menu.

Actions:

Menu creation: mouse-click on the corresponding icon.

Menu deletion : mouse release outside one of the menu items.

Affectation of a value to an operation which has to be

performed and window closure : mouse-click on the menu

item corresponding to the desired functionality. As a result,

the pop-up disappears and the interactive abject

corresponding to the selected functionality is displayed.

ln the next pages, a similar description is given for each typical
interactive abject. For example, we describe only one of the

interactive abjects corresponding to the "catalogue" or "editor" pop­

ups because the functioning principles are similar for each of them.

The differences may be found in the abjects manipulated (expert

systems, knowledge modules ...).

147

Chapter 4 Specification of the K-expert interface

4.13.3.2. Interactive objects accessible from the "Catalogue" icon

4.13.3.2.1. Detailed presentation of the "Expert System
Catalogue".

Name: Expert-System-Catalogue.

Definition: Window containing all the expert systems already created by the

analyst and enabling him to add new ones, to modify or to delete existing

experts systems. Moreover, this window is responsible for the display of the

current selected expert system by the analyst.

Functionalities: Access to the following functionalities:

- Add an expert system.

- Modify an expert system.

- Delete an expert system.

- Select a current expert system.

- Focus on an expert system.

- Print the name and the description of one or more expert(s)
system(s).

Justification: Seeing that ail the interactive messages related to the

management of expert systems are semantically related, they can be

presented through a single interactive object that gives an access to each of

them. This should reduce the mental load of the analyst memory and also

the number of manipulations required.

148

Chapter 4 Specification of the K-expert interface

Presentation:

□ EHPERT SYSTEMS CRTRLOGUE
?

_____ ____..

t
Figure 4.22: Expert systems catalogue.

Actions:

- Window creation: Mouse-click on the corresponding item of the

"catalogue" pop-up.

- Window closure: Mouse-click on the close box of the window.

- Affectation of a value to the operation to perform on the expert system

displayed : Mouse-selection of an expert system (if necessary) and

then, mouse-click on the desired icon of the window to access to the

symbolized functionality .

We can now detail the functionalities linked to these ones:

AQliQns QO l}J: Mause-click on il to access to the dialogue box

enabling the analyst to create a new expert system. This one

is an interactive object that may be specified as follows:

149

Chapter 4

[I]

Specification of the K-expert interface

Name : Add-expert-system-dialogue-box.

Defin iti on: Dialogue box capturing all the elements

necessary ta add a new expert system in the list (catalogue)

of the existing ones.

Functions: Add an expert system.

Presentation:

Rno RN EHPERT SYSTEM

Expert system

Description

Figure 4.23: Add-an-expert-system-dialogue-box.

Actions:

• ----

- Dialogue box creation: mouse-click on the [I]icon in
the "Expert-systems-catalogue" window.

- Dialogue box deletion: mouse-click on the "CANCEL"

button. As a result, the analyst is sent back ta the "Expert­

system-catalogue". The dialogue box disappears from

the screen.

- Affectation of a value ta a field: Filling of the field with the

keyboard.

150

Chapter 4 Specification of the K-expert interface

- Suppression of a field value: Deletion of the field contents

with the keyboard.

- Correction of a field value: Overwriting of the selected field

with a new value.

- Activation of a syntactic contrai (and if necessary of a

semantic one) on a field: Typing on the Return key or

switching on the other field by clicking on it with an arrow

key after the filling of the field.

ln case of error, an errer message (contained in a

dialogue box) is displayed to the analyst. This can

notably happen if the analyst gives an expert system

name that corresponds to an existing one. ln this case, a

dialogue box (confirmation dialogue box) should be

displayed to ask him what He wants to do (overwrite,

cancel, ...).

- Dialogue box closure: mouse-click on the "AOD" button or

typing on the Return key after a correct filling of the two

fields.

Side-effects: After the closure of the "add-expert-system­

dialogue-box", the given expert system is created and is

added automatically in the catalogue. Moreover, this new

catalogue item is highlighted in the catalogue list. The

"current-selected-expert-system" field of the "expert-system­

catalogue" window is unchanged.

Actions on 1 'f t t Mause-click on an expert system displayed in the

list of the "expert-system-catalogue" window. Then mouse­

click on this icon to access to a dialogue box enabling the

analyst to modify the name and description of an existing

expert system. As this one may be specified in a very similar

way of that used in the case of the dialogue box associated to

151

Chapter 4 Specification of the K-expert interface

the adding of an expert system, we do not go into details. We

evoke only its name, its presentation and its side-effects.

Name: Modify-expert-system-dialogue-box.

Presentation:

I .L ... 1 MOD I FY RN EH PERT SYSTEM
T T r.:E::-x-pe_r_t -s-ys-te-m---:::========::;----t

Description • -

-(CANCEL)
Figure 4.24: Modify-an-expert-system-dialogue-box.

Side-effects: After the closure of the "modify-expert-system­

dialogue-box", the given modifications are saved

automatically. The highlighted item of the catalogue

list is unchanged.

Remark: If the analyst changes the expert system name

in such a way that its corresponds to an existing

one, an adequate dialogue box containing an errer

message is displayed to ask the analyst what to do

(to overwrite the already existing expert system or to

cancel the operation).

Actions on W.: Mouse-click on an expert system displayed in the

list of the "expert-system-catalogue" window. Then mouse­

click on this icon to access to a dialogue box enabling the

analyst to delete the selected expert system and ail its

152

Chapter 4

[I]

Specification of the K-expert interface

components. Finally, mouse-click on one of the dialogue box

buttons to confirm the deletion or to cancel it. The dialogue

box may be briefly presented as follow.

Name: Delete-expert-system-dialogue-box.

Presentation:

,8 Do you really want to delete the < >
expert system ?
Be carefu I be cause
also be deleted !

ail its subcomfl)nents will

(DELETE) ~:llllllill~

Figure 4.25: Delete-an-expert-syste~-dialogue-box.

Side-effects: After the closure of the "delete-expert-system­

dialogue-box", the given expert system and ail its

component are automatically deleted from the Data Base.

The deleted expert system name is suppressed from the

catalogue list. Moreover, the highlighted item of the

catalogue list is the one which is just before the deleted

expert system or just after it if there is no other expert system

name before it in the list. Moreover, if the "current-selected­

Expert-System" field of the expert system catalogue

window corresponds to the deleted expert system, this field

is refreshed.

Actions o□ 1 ~ 1 : Mause-click on an expert system displayed in the

list of the "expert-system-catalogue" window. Then mouse­

click on this icon to access to a dialogue box enabling the

analyst to select the expert system which has been clicked

(after a look at its description. About this dialogue box, the

following things can be said.

153

Chapter 4 Specification of the K-expert interface

Name: Choose-expert-system-dialogue-box.

Presentation:

CHOOSE RN EHPERT SYSTEM

Preuiously selected eHpert system < >

Description < >
Newly selected eHpert system < >
Description < >

-(CANCEL)
Figure 4.26: Choose-an-expert-system-dialogue-box.

Side-effects: The "current selected expert system" field of

the expert systems catalogue window is updated. Ali the .
operations related to an expert system that the analyst will

perform after this selection are directly linked to the chosen

one. The highlighted item of the catalogue list remains

unchanged.

Actions on I j) t Meuse-click on an expert system displayed in the

list of the "expert-system-catalogue" window. Then mouse­

click on this icon to visualize the description of the selected

expert system in a dialogue box characterized by the following

elements.

Name: Focus-expert-system-dialogue-box.

154

Chapter 4 Specification of the K-expert interface

Presentation:

□ FOCUS ON EHPERT SYSTEM

< TEXT >

~
Q]

Figure 4.27: Focus-on-expert-system-dialogue-box.

Side-effects: The highlighted item of the expert system

catalogue list is unchanged.

0A~ctl.l.io!.!ln.i2..s J:J.OLJJi-__ .,_ : Mo use-click on an expert system displayed in the

list of the "expert-system-catalogue" window. Then mouse­

click on this icon to access to a dialogue box enabling the

analyst to print the selected expert system name and its

description, or ail the expert systems names and their

descriptions. The characteristic elements of this dialogue box

are:

Name: Print-expert-system-dialogue-box.

155

Chapter 4 Specification of the K-expert interface

Presentation:

PRINT RN EHPERT SYSTEM
0 Selected expert system name

and its description

O Ali the expert systems names

0 Ali the expert systems names
and their descriptions

-· (CANCEL)

Figure 4.28: Print-an-expert-system-dialogue-box.

Side-effects: If no printer has been selected previously, an

error message is displayed in a dialogue box. After

acceptation of its contents, the analyst must select a printer

(by using the functionalities of the configuration icon)

Now, we evoke briefly the other items of the "Catalogue" pop-up by

presenting the interactive abjects corresponding to them and by adding some

remarks.

This way to do is justified by the fact that the functioning principles of

these abjects are similar to those applied to the "expert system catalogue"

window.

156

Chapter 4 Specification of the K-expert interface

4.13.3.2.2. Knowledge modules catalogue .

Presentation:

Remarks:

□

?
KNOWLEDGE MODULES CATALOGUE OF
THE EHPERT SYSTEM : < >

t

-----------------1::]CJ

Current selected knowledge module
for editing : < >

t ♦ ,t
Figure 4.29: Knowledge module catalogue window.

- Before being able to access to this window, the analyst must have

chosen a current expert system in the expert system catalogue. If He activates

the "Knowledge-modules-catalogue" item without having selected a current

expert system first, then a dialogue box containing an errer message should

be displayed.

- As the icon 1. t I has not been evoked in the previous catalogue, we must

define it here.

157

Chapter 4 Specification of the K-expert interface

Action~ on [Ill; Mause-click on a knowledge module displayed in

the list of the "Knowledge modules catalogue" window that

must be copied. Then mouse-click on this icon, to access to a

dialogue box enabling the analyst to copy the contents of a

given knowledge module in order to reuse the interesting

elements in another one. This dialogue box is characterized

by the following elements :

Name: Copy-knowledge-module-dialogue-box.

Presentation:

COPY KNOWLEDGE MODULE

FROM: Module 1 :::· ========------------....
Description! _______ _.

TO: Module I ______ __.
Description 1 ____ I

-(CANCEL)

Figure 4.30: Copy-knowledge-module-dialogue-box.

Side-effects: If the targeted knowledge module does

already exist, a dialogue box containing an adequate

message box is displayed to ask the analyst what must be

done (overwrite,merge,cancel). When the new knowledge

module is created, its name is automatically added in the

catalogue list. The highlighted item of the catalogue list

remains unchanged.

158

Chapter 4 Specification of the K-expert interface

4.13.3.2.3. Facts bases catalogue.

Presentation:

□

?
FRCTS BRSES CRTRLOGUE OF THE
EHPERT SYSTEM : < >

♦

1-------------------f,;::r

Current selected facts base
for editing : <

.:.:.:.:.:.:.:.:.:.: •.... :.:.:

>

Figure 4.31: Facts bases catalogue window.

Remark: Like in the knowledge modules catalogue an expert system must

have been previously chosen. ln the other case, a dialogue box containing an

error message should be displayed.

159

Chapter 4 Specification of the K-expert interface

4.13.3.2.4. Scenario catalogue.

Presentation:

□

?
SCENARIO CATALOGUE OF THE
EHPERT SYSTEM : < >

♦

1-------------------1;;

Current selected scenario
for editing : < >

Figure 4.32: Scenario catalogue window.

Remarks: - Like in the two last evoked catalogues , an expert system must

have been previously chosen. Otherwise, a dialogue box containing an

error message should be displayed.

- Moreover, as the scenarios are directly accessible because they

are single elements and are not composed of many sub-elements (like it

happens for the knowledge modules and tacts bases}, a mouse-click on

one of the icons contained in the window presented here triggers off directly

the display of one of the following dialogue boxes which offer a direct

access to access to a scenario contents ..

160

Chapter 4 Specification of the K-expert interface

* Add a scenario.

AOD A SCENARIO

Scenario name

Description

Goal ~
Chaining =============== El

mode=============================•
Initial facts ~

Output facts ~

Knowledge ~
modules l!j

End-user consultation options

D Why □ Ouit

0 No trace (!) Short trace

-
D Silent mode

0 Detailed trace

(CANCEL)

Figure 4.33: Add-a-scenario-dialogue-box.

To be more complete, let's present shortly the contents of the

various constitutive fields of such a mask.

Meaning of the fields.

- "Scenario name": identifier of the considered scenario.

- "Description" : explanation of the characteristics of the scenario
such as the user class which is concerned.

- "Goal" : goal that must be proved when starting a consultation with

this scenario (if there is one).

161

Chapter 4 Specification of the K-expert interface

- "Chaining mode" : chaining mode that must be applied during a

consultation with this scenario.

- "Initial facts" : name of the facts base that is furnished to the

inference engine when it starts its work with the scenario (if

one initial facts base is needed).

- "Output facts" : name of the facts base that the inference engine

produces when it obeys to the scenario (if one facts base

needs to be produced).

- "Knowledge modules" : name of the modules containing the
knowledge on which the inference engine will rely during a

consultation based on the scenario.

- "End user consultation options" :

* "Why" : if selected, during a consultation based on the scenario,

the end user will be able to ask the inference engine why it

asks him something.

* "Quit" : if selected, the end-'user will be able to quit a

consultation at any time.

* "Silent mode" : if selected, the consultation on the scenario will

happen without displaying anything on the screen.

* "Trace" : Selection of one trace level for a consultation on the

scenario.

Similarly to the "Add" scenario, we find also the following options :

162

Chapter 4 Specification of the K-expert interface

Modify a scenario :

MODIFY A SCENARIO

Scenario name

Description

Goal !I
Chaining ============== •

mode :::==========================: El
Initial tacts !1
Output tacts E
Knowledge ~

modules tII
End-user consultation options :

D Why D Quit

0 No trace @Short trace

·-
D Silent mode

0 Detailed trace

(CANCEL)

Figure 4.34: Modify-a-scenario-dialogue-box.

163

Chapter 4 Specification of the K-expert interface

Copy a scenario :

COPY A SCENARIO

Scenario name

Description

Goal ~
Chaining ==============:::::: E!I

mode ::===========================::: a
Initial facts ~

Output facts El
Knowledge ~

modules l!I
End-user consultation options

D Why D Quit

0 No trace @) Short trace

--
D Silent mode

0 Detailed trace

(CANCEL)

Figure 4.35: Copy-a-scenario-dialogue-box.

Remark: After moving a selected scenario in the catalogue list and

after having clicked on the lt t I icon, the analyst receives

this dialogue box. lts contents corresponds to that of the selected

scenario except that the scenario name field is empty. The

analyst may type a new scenario name and modify the contents

of all the others fields. Let's note that each analyst's action is

protected by dialogue boxes that can appear to signal problems.

164

Chapter 4 Specification of the K-expert interface

4.13.3.3 Interactive objects accessible from the "Editor" icon.

4.13.3.3.1 Detailed presentation of the "Ru les Editor".

Name: Rules Editer

Definition: Window presenting a rule mask to the analyst and enabling him

to perform ail the editing and browsing functions that can be envisaged on

such elements.

Functionalities:

- add a rule.

- modify a rule.

- delete a rule.

- print one or more rules.

- copy a rule.

- consult the existing ru les (browsing via the flippi ng
mechanism).

- access to a rule of a given name (via the index).

Justification: This interactive abject regroups interactive messages related

to the management of rules so they are semantical linked and it is not

disturbing to present them together to the analyst.

165

Chapter 4 Specification of the K-expert interiace

Presentation:

0 RULES EDITOR OF THE < > KNOWLEDGE MODUL

Rule name .._ _____ _.

.. --------------~- cd:fh

Description III

If ~ ~jl

=============== mn

~ :~ Then

============
Displa1 ~ :~

User

Certainty0Cost D PriorityD

Figure 4.36 : Rules editor window.

Meaning of the fields:

* Rule name : Identifier of a rule.

* Description : Area which enables the analyst to type some comments

about the rule.

* If : Antecedent of the rule.

* Then : Consequent of the rule.

* User Display : Information (such as a presentation of the rule in the

natural language) that will be displayed in the trace of a

consultation to an end-user.

166

Chapter 4 Specification of the K-expert interface

* Certainty : Certainty factor linked to the rule.

* Cost : Cost associated to the rule.

* Priority : degree of priority attached to the rule.

Actions:

Window creation : Meuse-click on the "Rules Editer" pop-up or on the

"mask editor" icon of one of the rules list windows presented in

Section 4.13.3.4 ..

lt should be noticed that if the analyst tries to open this window

without having selected a knowledge module (and consequently an

expert system) first, an error dialogue box should be displayed to

signal him this problem. After the acceptation of its contents

(mouse-click on the "OK" button of the box), He has to use the

catalogue to select one module.

Window closure : Mouse-click on the "close box" of the window

Affectation of a value to a field : Filling of the field with the keyboard.

De!etjon of a fjeld value : Deletion of the field contents with the

keyboard.

Correction of a fjeld value : Overwriting of the contents of the field with

the keyboard.

Activation of a syntactic contrai (and if needed of a semantic one) :
After the filling of a field either typing on the Return key or an arrow

key (to move to another field) or click with the mouse on another

field. If invalid characters have been introduced, an error message

is displayed in a dialogue box.

Affectation of a value to an operation which has to be performed on the

displayed rule : Mause selection of a rule if the desired operation

corresponds to another button than NEW. This selection is realized

by using the index or the flipping mechanism. Then, mouse-click on

the desired button to access the represented functionality. We can

now detail the actions linked to these buttons.

167

Chapter 4 Specjfjcatjon of the K-expert interface

* ~: Meuse-click on it to display an empty rule mask and to

set the cursor into the "Rule name" field in such a way that the

analyst is able to fill it directly. During the filling of the mask, this

button remains highlighted.

lm@©1 u~
* ----- : Mouse-selection of the desired rule then, mouse-

click on this button. After this, the cursor is set in the first field of

the rule mask and the analyst is able to perform modifications on

the contents of all the fields. During the modification of the

displayed rule, this button remains highlighted.

1©1®~®~®,
* ---- : Mouse-selection of the desired rule then, mouse-

click on this button to access to a dialogue box asking if the

analyst really wants to delete the displayed rule.

P©©®~~1
* ----- : Meuse-click on this button to ACCEPT a new rule or

the modifications performed on a displayed rule. lt means to save

them in the Data Base. This button is only accessible after the

performing of a mouse-click on the NEW or MODIFY buttons. ln

the other case, it appears in grey rather than in dark. When it is

clicked on, the previously selected button (NEW or MODIFY) is no

more highlighted.

1~wijn~ 1
* ._ ___ _.: Mouse-selection of the rule ta print (if the analyst

does not want a global printing) then, mouse-click on this button

to access a pop-up enabling the analyst ta select what He intents

to print.

168

Chapter 4 Specification of the K-expert interface

PRINT

Displayed rule

Ali rules

Figure 4.37: Print pop-up.

* ~: Mouse-selection of the rule to copy or of the rule where

the copied part must be put. Then mouse-click on this button to

set the cursor in the first field of the displayed mask and to display

a permanent pop-up enablirig the analyst :

- to copy the whole displayed rule into an album from where it

must be retrieved later.

- to copy one field (completely or partially) of the displayed rule in

the album.

Remark : Before clicking on this item, the analyst has to

highlight the field to copy by using the mouse in the mask.

The highlighting principle is the following one:

Move the mouse in the desired field by keeping the left

mouse button pressed. If the analyst continues to perform

such an operation while switching to another field, the first

selected one is no more highlighted because it is only

possible to copy one field at a time.

- to paste the contents of the album into the displayed rule.

If the album contents corresponds to a complete rule and if the

displayed target rule is not an empty one, a previous

configuration dialogue box should be displayed.

169

Chapter4 Specification of the K-expert interface

If the contents of the album is only a field, before clicking on

the "paste item", the analyst must locate the cursor at the

desired position of the desired field.

- to cancel the displaying of the pop-up because the analyst does

not want to perform a copy option.

Remark : after clicking on one of the items of the pop up, this one

disappears automatically from the screen.

COPY
' Copy Ali

Cut

Copy

Paste

Cancel

Figure 4.38: Copy pop-up.

We can now present shortly the other editors. Their manipulation principles

being similar to those described above, no complementary details are

required.

170

Chapter4 Specification of the K-expert interface

4.13.3.3.2 Variables editor.

Presentation:

□ VARIABLES EDITOR OF THE < > KNOWLEDGE MODULE

?

Variable name

1 ~
cxj

Description ef

gh

1 ~
i j

Find kl

mn

Type
op

valuesl ~
Legal St

UV

.. ~i)ftt.:\\Î::

Figure 4.39: Variables editor window.

Fields description :

* "Variable name" : identifier of the variable.

* "Description" : text explaining the meaning and the use of the variable.

* "Find" : Way to find the value of the variable when it is unknown during a

consultation. (example : question to the user, triggering off a

program ...).

* "Type" : Variable type (string, integer ...).

171

Chapter4 Specification of the K-expert interface

* "Legal values" : List of the values that can be attributed to the variable.

(For example, a limited range of values for integer type

or some pre-defined strings for the string type.)

Remark:

Like in the rules editor, a knowledge module (and consequently an

expert system) must have been previously selected via the catalogue. If

none is selected, a dialogue box should be displayed to signal that

problem to the analyst.

4.13.3.3.3 Facts editor.

Presentation:

□ FACTS EDITOR OF THE < > FACTS BASE

?

Variable name 1 1~
Operatorl 1~

Value 1 1~
Certaintyl 1r;

Figure 4.40: Facts editor.

Fields description :

* "Variable name" : Variable identifier.

* "Operator" : Operator linking a variable to a value.

* "Value" : Value concerning the variable.

172

Chapter4 Specification of the K-expert interface

* "Certainty" : reflection of certainty factor attached by the analyst to the

fact.

Remark:

Before being able to access this window, the analyst must have selected

a facts base in the catalogue. Else a dialogue box should be displayed

to signal that problem.

4.13.3.4 Interactive objects accessible from the "Report" icon.

4.13.3.4.1 Detailed presentation of the "List of rules" window.

Name : List-rules-window.

Definition : window containing a list of ail the existing rules belonging to a

particular knowledge module of a given expert system. lt gives access to

the ability to change of expert system and of knowledge module in order to

have informations about the rules belonging to various modules. Moreover,

it enables the analyst to focus on the contents of one or more rules, to print

one or more rules, ta access to the rules editor.

Functionalities:- Consulta list of ail the rules.

- Print one or more rules.

- Edit rule(s).

Justification: This interactive object regroups interactive messages related

to the management of a rules list. So they are semantical linked and it is

not disturbing to present them together to the analyst.

173

Chapter4 Specificatioo of the K-expert interface

Presentation:

□
?

~ -

Actions:

LI ST OF

EHpert system

Knowledge Module

Rules

RLL RULES

1
-----1 a 1..
____ l~ 1

• :
------==

1 1
c::JCJ
1 1

figure 4.41 : List of all rules window.

-.

Window creation : Mouse-click on the (list of rules) "Ali" item of the

"Report" menu.

Message closure : Mouse-click on the "close box" of the window.

Affectation of a value to a field : Filling of the field with the keyboard of

by a mouse-click on the "list" icon.

Deletion of a field value : Deletion of the field with the keyboard.

Correction of a field value : Deletion of the field with the keyboard and

then new filling of the field.

Activation of a syntactic contrai (and if necessary of a semantic one) :

Typing on the Return key or on an arrow key (to move to another

174

Chapter4 Specificatjon of the K-expert interface

field) after the filling of a field. If invalid characters have been

introduced or if the given expert system name or knowledge

module name are unknown by the system, an error message is

displayed in a dialogue box.

Affectation of a value to the operation that must be performed on a

displayed rule : Mause selection of a rule for the desired operation.

Then, mouse-click on the chosen icon to access the symbolized

functionality.

Now, let's detail the actions attached to these icons :

. I p 1 : Mause-click on the desired rule. Then, mouse-click on

this icon to display a window which is similar to the interactive

abject presented by Figure 4.27 and which make possible the

display of the selected rule.

: Mause-click on the desired rule (if the analyst wants to

print only a particular rule). Then, mouse-click on this icon to

access a dialogue box menu like that presented by Figure 4.28.
Of course, this one must be sentenced according to the case of
rules.

~
*~ : Mause-click on the desired rule. Then mouse-click on

this icon to access the "rule editor" window. lt opens this window

or reactivates it if it has already been opened and updates its

contents with the selected rule. Moreover, it should be noted that

this icon is only accessible if the analyst has not changed the

"expert system" and the "Knowledge module" fields. Otherwise,

this icon is set in grey. This option should preserve the

consistency of the analyst's work by preventing him to switch

from one context to another one.

Let' s remark also that if this option is activated when a not already

accepted rule is displayed in the "rules editor" window which has

175

Chapter 4 Specification of the K-expert interface

been previously opened, a dialogue box should signal this

problem to the analyst and ask him how to react. (To accept the

already edited rule and to update the editor window, to overwrite

the edited rule without accepting the previous one or to cancel

the operation.)

Side-effects: Any time, the analyst changes the contents of the "expert

system" field the contents of the "list icon" corresponding to

the"Knowledge module" field is updated. ln the same way, if the analyst

changes the contents of the "Knowledge module" field, the "rules list" is

refreshed. Moreover, the "editor icon" is "disabled".

ln the next pages, we just evoke the presentation of the windows

corresponding to the list items of the "Report" pop-up.

176

Chapter4 Specification of the K-expert interface

4.13.3.4.2 "List of rules using a variable" window

Presentation:

c::J LIST OF RULES US ING R URRIRBLE
?
ii EHpert System 1 l ~

Knowledge Module 1 l ~

U ariable 1 l ~

Rules •
[!]

T

tP 1 6 ~ ~ .. 1 IHtlHJHJ

Figure 4.42: List of rules using a variable window.

Remark:

• ----

=

• 1-. L.,..17

Same principles as those presented for the previous one but this time, a

"Variable" field is added. This field enables the analyst to determine which

variable may be considered. Let's underline that this variable must

correspond to an existing one in the considered knowledge module. Else,

an adequate error dialogue box should be displayed.

177

Chapter 4 Specification of the K-expert interface

4.13.3.4.3 "List of rules using a variable in If clause" window.

Presentation:

c:::J LIST OF RULES USING R URRIRBLE IN '1 F' CLAUSE
? Ll ~

~ ~ EHpert System 1 1

Knowledge Module 1 1 § = Uariable 1 1 a

Rules •
□

.1,,

,,p f=. , 9ë -1 --- t 1 1,1_titit((I ·~ 1........-

Figure 4.43: List of rules using variable in 'if' clause window.

178

Chapter4 Specification of the K-expert interface

4.13.3.4.4 "List of rules using a variable in THEN clause" window

Presentation:

□ LIST OF RULES USING URRIRBLE IN 1THEN 1 CLRUSE
? • ~ EHpert System 1 1 ~ -

Knowledge Module 1 1 ~ = Uariab le 1 1 9

Rules •
□

y

p 1 ~ ~ 1 19 • 4- 1 F'f'::""":':'::\l 1 ~ c::::::J-

Figure 4.44 : List of rules using variable in 'then' clause window.

179

Cha.pter 4 Specifica.tion of the K-expert interface

4.13.3.4.5 "List of rules using undefined variables" window.

Presentation:

EHpert System

Knowledge Module

Rules .,___ __ ,_!_

i-------i■

1 1
c::::lc::::I
1 1

Figure 4.45: List of rules using undefined variables.

180

Chapter4 Specification of the K-expert interface

4.13.3.4.6 "List of all variables" window.

Presentation:

EHpert system

knowledge Module

Uariables ____ Lt_

i-----·■

•

Figure 4.46: List of ail variable window.

181

Chapter4 Specification of the K-expert interface

4.13.3.4.7 "List of not used variables" window.

Presentation:

EHpert System

Knowledge Module

_____ g

Uariables ______ ,.!_

---■

t

p ,f (P9

§

Figure 4.47: List of not used variables window.

182

Chapter 4 Specification of the K-expert interface

4.13.3.4.8 "List of undefined variables" window.

Presentation:

□
?

EHpert System

Knowledge Module

Uariables ------•_!_

1---~□

.6 (: Gë3
···············

Figure 4.48: List of undefined variables window.

183

Chapter4 Specification of the K-expert interface

4.13.3.4.9 "List of ail facts" window.

Presentation:

□
?

EHpert System

Knowledge Module

Facts +------i
t-------,zm =

•
t=-(Gd

1 -

Figure 4.49 : List of all facts window.

184

Chapter 4 Specification of the K-expert interface

4.13.3.4.1 O "List of tacts using a variable" window.

Presentation:

D

?
LIST OF FRCTS USING R URRIRBLE

EHpert System

Knowledge Module

Uariable

Facts +-----_t_

1--------•~

♦

.6 G bd
1 1

,•.•·::::··········::•...-,•,:::·

Figure 4.50: List of facts using a variable window.

185

Chapter4 Specification of the K-expert interface

4.13.3.4.11 "List of facts using undefined variables" window.

Presentation:

□
?

«1 EHpert system

Knowledge Module

Facts i------1_!_

1-------1:::.

t

,t=-(Gd

Figure 4.51: List of facts using undefined variables window.

4.13.3.4.12 Detailed presentation of the "Rules network" window.

Name: Rules-network-window.

Definition: Window displaying a part of the whole rules network. This should

be a debugging tool. lt is only a visualization tool, it does not provide the

ability to build graphically a knowledge module. Moreover, in the current

state of this work, no graphical formalism for the displaying of rules has

been defined.

Functionalities: ln fact, the underlying functionality has not been

highlighted by the analyst's task analysis. lt corresponds to an additional

186

Chapter4 Specification of the K-expert interface

functionality that can be helpful to support the realization of the retained

basic functionalities.

Presentation:

□ RULES NETWORK
?

Figure 4.52: Rules network window.

Actions:

Window creatjon : Mouse-click on the Rules network item of the "Report"

icon.

Window closure : Mouse-click on the "Close-box" of the window.

Affectation of a value to the operation to perform on the visualized part of

the network : Mouse-click on the desired icon. We are going to

describe the actions attached to each icon.

• B Mause-click on it ta access a pop-up enabling the analyst

to start the display of the network from a chosen variable or

from a chosen rule or to display the whole network.

187

Chapter 4 Specification of the K-expert interface

INIT
Focus on rule ...

Focus on variable ...

DISPLAY Ali (backward
extension)

Figure 4.53: lnit pop-up

Let's remark also that a mouse-click on one of the two first

items of this pop-up triggers off the display of one of the two

following dialogue boxes. By typing a value or selecting

one for the rule or variable field, the analyst has the ability

precise from where He wants to display the network.

Focus-on-rule dialogue box :

Rule:

FOCUS ON RULE

___ I~

■-(CANCEL)
Figure 4.54: Focus-on-rule-dialogue-box.

Focus-on-variable dialogue box :

Variable

FOCUS ON URRIRBLE

.___ _ ____.I ~

•t(cANCEL)
Figure 4.55: Focus-on-variable-dialogue-box.

188

Chapter 4 Specificatioo of the K-expert interface

• ~ Mause-click on this icon. Then, mouse-click on:

- item of an "If" clause of a rule in the network in order to

display a left extension containing ail the rules in which the

item appears in the "Then" clause.

- an item of the "Then" clause of a rule in the network to

display a right extension containing all the rules in which the

item appear in the "If" clause.

- the left side of the focused variable to display a left

extension containing all the ru les in which' the variable

appears in the "Then" clause.

- the right side of the focused variable to display a right

extension containing all the rules in which the variable

appears in the "If" clause.

•~ Mause-click on this icon. Then mouse-click on one of the

four elements presented for the previous icon. However,

this time, the extension (left or right) is built as far as

possible by recursivity and not limited to one step. If one

element has already been developed in another part of the
tree, this one is not extended again.

• ~Same principles as those attached to the previous icon but

this time, all the elements, without any exception, are

developed.

189

Chapter 4 Specificatioo of the K-expert interface

. if.@ 1 Mo use-click on this icon. Then, mou se-click on an

element of the network that must be deleted. This provokes

also the deletion of dependent elements which are no

longer related to other parts of the network .

. 11:>--IMouse-click on this icon to open a window containing an

overview of the whole network and enabling the analyst to

move the network area visualized through the "Rules

network" window. This could be implemented by a way

similar to that used in the Nexpert Network Overview which

has been evoked in section 3.3.

• ~ Mouse-click on this icon to access a dialogue box similar ta

that presented by figure 4.2.3 and linked to the same side­

effects.

Side effects: Whenever one of the "development" icon or the "eraser" icon is

clicked on, this one becomes highlighted up to the analyst

decides to click on another one or to access to another window.

By this way, the analyst may perform the same action on different

elements of the network consecutively without having to click on

an icon several times.

4.13.3.4.13 "Last trace" window.

Name: Last-trace-window.

Definition: Window containing the text of the trace which has been built in

parallel to the last consultation of an expert system selected in the

catalogue.

Functionalities: ln fact, the underlying functionality has not been highlighted

by the analyst's task analysis. lt corresponds to a debugging functionality

190

Cha.pter 4 Specification of the K-expert interface

that can be helpful for the analyst. ln fact, out of a consultation, the analyst

has the ability to display the trace of the last consultation He has performed.

Presentation:

□ TRACE
?
· option prin

Figure 4.56: Last trace window.

Actions:

Window creation : Mause-click on the "last trace" item of the "Report" pop­

up.

Window closure : Mause-click on the "Close box" of the window.

Affectation of a value to the operation to perform on the trace : Click on

the desired button.

• B : Mause-click on the "print" button to access to a dialogue box

asking if the analyst really wants to print the trace. If no

printer has been selected a dialogue box containing an

errer message should be displayed.

c:J
* c.:.::J: Mause-click on this button to access a pop-up enabling the

analyst to choose the trace level.

191

Chapter 4 Specification of the K-expert interface

OPTION
No trace

Short trace

u Detailed trace

Figure 4.57: Option pop-up

4.13.3.4.14 "Last consultation tree" window.

Name: Last-consultation-tree-window.

Definition: Window containing the picture of the rules tree built during the

last consultation on the expert system selected in the catalogue.

Functionalities: ln fact, the underlying functionality has not been highlighted

by the analyst's task analysis. lt corresponds to a debugging functionality

that can be helpful for the analyst. ln fact, out of a consultation, the analyst

has the ability to display a tree showing the reasoning performed during the

last consultation.

Presentation:

□ TREE OF CONSULTATION
?

pri nt

Figure 4.58 : Last consultation tree window.

192

Chapter 4 Specification of the K-Expert interface

Actions:

Wjndow creation : Mouse-click on the last consultation tree of the "Report"

pop-up.

Wjndow deletion : Mause-click on the "Close box" of the window.

Affectation of a value to the operation to perform on the tree : Mause-click

on the "print" button to access to a dialogue box asking if the analyst

really wants to print the tree. If no printer has been selected, a

dialogue box containing an errer message should be displayed.

4.13.3.5 Interactive objects accessible from the "Consultation"
icon.

4.13.3.5.1 Detailed presentation of the "Analyst-consultation"
window.

Name: Analyst-co nsu ltation-wi ndow.

Definition: Window containing the questions to be answered during a

consultation and giving access to consultation debugging options. At the

end of a consultation, the question field is replaced by a text providing the

result of the consultation.

Functionalities: Consult an expert system (from an analyst's point of view).

Justification: This interactive abjects regroups interactive messages related

to the consultation of an expert system in order to debug it.

193

Chapter 4 Specification of the K-Expert interface

Presentation:

D RNRLYST CONSULTRTI ON
?
~ start interrupt continue option

< question >

Figure 4.53: Analyst consultation window.

Actions:

Window-creation: Mause-click on the (consultation) "analyst" item of the

"consultation" pop-up. If no scenario has been selected previously in

the catal.ogue, a dialogue box containing an errer message should be

displayed to signal the problem to the analyst .

Window closure: Mause-click on the "close-box" of the window.

Affectation of a value to the question field: Filling of the field with the

keyboard or by a mouse-click on the "list" icon.

Deletion of the question field value : Deletion of the field contents with the

keyboard.

Correction of the question field value: Filling of the field with a new value

(with the keyboard of by a mouse-click on the "list" icon).

Activation of a syntactic contrai and semantic contrai on the question field
: Typing on the "return" key after the filling of the field. ln case of errer,

an errer message (contained in a dialogue box) is displayed to the

analyst.

194

Chapter 4 Specification of the K-Expert interface

Affectation of a value to the operation to perform at a certain step of the

consultation : Mause-click on the desired button. Let's detail the

actions attached to each button.

• EJ : Meuse-click on this button to start a consultation of the

selected expert system on the selected scenario.

Side effeçt : When this button is clicked, it is highlighted. lt

stays in this state up to a next mouse-click or up to the end of

the consultation.

interrupt
* ---- : Mouse-click on this button to interrupt a consultation of

the selected expert system on the selected scenario.

Side effect : When this button is clicked, it is highlighted. lt stays in

this state up to the analyst clicks on the "continue" button. We

can also note that this button is enabled (e.g. : in grey color)

only if the analyst has started a consultation.

r::=:J
* C::J: Mause-click on this button to continue an interrupted

consultation.

Side-effect : When this button is clicked on, it is highlighted.

When the consultation is started again, the "interrupt" button is

no more highlighted. This button is enabled only if an analyst

has interrupted a consultation.

• a: Mo use-click on this button to have access to a pop-up
enabling the analyst to activate various debugging options that

are summarized now.

195

Chapter 4 Specification of the K-Expert interface

OPTION

Trace
Tree of consultation
Why

Rule break point editor

Variable break point editor

Figure 4.60 Option pop-up.

◊ Trace: Mause-click on it to open the "last-trace" window
which has been presented by figure 4.56.

◊ Tree of consultation: Mause-click on it to open the "last­

consultation-tree" window which has been presented

by figure 4.58.

◊ Why: Mause-click on it to open the "why" window. This

window which possesses the presentation showed by
Figure 4.61., contains explanation about the reasons
for which the inference angine asks particular

questions to the analyst.

196

Chapter 4

C]

?

□
?

Specification of the K-Expert interface

WHY

... :,.,:,:::::',:,:,:.::

Figure 4.61: Why window.

◊ Rule breakpoints editor:

presentatjon:

RULES BREAK POINT EDITOR

Rules

e

.t: ... ,,, . .\ . .:~

Figure 4.62: Rules breakpoint editor.

Remark: This window activated from the "options" pop-up,

enables the analyst to set breakpoints on particular rules.

Consequently, the consultation will stop whenever a rule,

indicated as a breakpoint, is fired. This situation has an

effect on the buttons. lndeed, this stopping provokes the

197

Chapter 4

□
?

Specification of the K-Expert interface

highlighting of the "interrupt" button and the desactivation

of the "start" button.

The functioning principle is the following one:

A list of ail the rules is presented to the analyst. He

must click on each rule on which He wants to set a

breakpoint. This action is reflected by the drawing of

a "stop" icon beside the clicked rule. When the

analyst has finished to set breakpoints, He just has

to click on the "close box" of the window.

The removing of breakpoints consists of a second

click on marked rules.

◊ Variables breakpoints editor:

Presentation:

UARIABLES BREAK POINT EDITOR

Variables

0

Figure 4.63: Variable breakpoints editor.

Remark: Same principles as for the previous editor, but

applied to the variables.

198

Chapter 4 Specification of the K-Expert interface

4.13.3.5.2 "End-user-consultation" window.

D
?

END USER CONSULTATION

<Question>

- Input an answer

List of possible
answers i--------11

i--------1■ C 'M-N) C QUIT)----
t

Figure.4.64: End-user consultation window

..... :

.. ffff. .

•

4.13.3.6 Interactive objects accessible from the "Configuration"
icon.

4.13.3.6.1 Detailed presentation of the "Save-session" dialogue­

box.

Name: Save session-dialogue-box.

Definition: Dialogue box enabling the analyst to save the current session

under a given name.

Functionalities: The corresponding functionality is "Save-the-current­

session".

199

Chapter 4

Presentation:

Session :

Specification of the K-Expert interface

SRUE SESSION

___ I§)

-(CANCEL)
Figure 4.65: Save-session-dialogue-box.

Actions:

Window-creation: Mause-click on the "save-session" item of the

"configuration" pop-up.

Window-deletion: Mause-click on the "cancel" button.

Window closure: Mause-click on the "save" button or on the "return" key

after the filling of the session field. Before the saving, syntactic and

semantic contrais are performed on the "session" field to verify its

correctness. ln case of problem, a dialogue box containing an errer

message should be displayed to the analyst asking him what to do.

Affectation of a value to the session field: Filling of the field with the

keyboard of by a "list" icon.

Deletion of the session field value : Deletion of the field contents with the

keyboard.

Correction of the session field value: Filling of the field with the keyboard

followed by a new filling (overwriting).

200

Chapter 4 Specification of the K-Expert interface

4.13.3.6.2 "Restart-session" dialogue box

Presentati on:

RESTRRT SESSION

Session :

Figure 4.66: Restart-session-dialogue-box.

Remark':

Same principle as the previous dialogue box.

4.13.3.6.3 "Delete-session" dialogue box.

Presentati on:

DEL ETE SESSION

Session : ---'~
-(CANCEL)

Figure 4.67: Delete-session-dialogue-box.

Remark:

Same principle as the "save-session" dialogue box.

201

Chapter 4 Specification of the K-Expert interface

4.13.3.6.4 "Command-language"window.

Presentation:

□
?

•
Remark:

COMMRND LRNGURGE

> < command >
> < command >

>

Figure 4.68: Command language window.

The only effect of a mouse-click on the "command language" item of the

configuration item is to open this window in which the analyst can type

directly commands.

202

Chapter 4 Specification of the K-Expert interface

4.13.3.6.5 "Change parameters" dialogue box.

Presentation:

CHANGE PRRRMETERS

o Printer Name

o Default Options :

Consultation D open Trace

D open Tree
D open Why
D open Rules Breakpoints Editer
D open Variables Breakpoints Editer

Trace O no
® short
O detailed

-(cANcEL)
Figure 4.69: Change-parameters-dialogue-box.

Fields description:

- Printer name : enables the analyst to select or to type a printer name.

- Default options : enables the analyst to set various default options that will

be taken into account when the analyst will launch a consultation and

when He will access to the trace window.

203

Chapter 4 Specification of the K-Expert interface

4.13.3.7 Interactive objects accessible from the "Communication"
icon.

4.13.3.7.1 Detailed presentation of the "Copy-expert-system"
dialogue box.

Name: "Copy-expert-system" dialogue box.

Definition: Dialogue box enabling the analyst to copy an already developed

expert system and all its components to another analyst or from another

one.

Functionalities: Copy an expert system.

Presentation:

Actions:

COPY EHPERT SYSTEM

FRQ\,1:

TO:

Analyst

Expert System

Analyst

New Expert System

,____ __ __,, ~
,____ __ __,, ~

-------' ~ _____ I§

- (cANCEL)

Figure 4.70: Copy-an-expert-system-dialogue-box.

- Window creation : Mause-click on the "copy expert system" item of the

"communication" pop-up.

204

Chapter 4 Specification of the K-Expert interface

- Window deletion : Mause-click on the "cancel" button.

- Window closure : Mause-click on the "copy" button after a correct filling

of the four fields.

- Affectation of a value ta the fields : Filling of the field with the keyboard

or by using the "list" icon.

- Deletion of the value of a field : Deletion of the field contents with the

keyboard followed by a new filling (overwriting).

- Correction of the value of a field : Filling of the field with the keyboard

followed by a new filling (overwriting).

Side-effects : the list icons corresponding to the expert system fields are

updated automatically whenever an analyst name is put inside the linked

field. Moreover it is required that the analyst introduces once its own name,

but once and only once. So, when the analyst has introduced his name in

one of the two analyst fields, this one is taken off out the list icon of the other

fields to prevent errors. Moreover, as the analyst has always the ability to

type directly in the two fields, if a problem occurs (e.g. if He has not given

his name once or have done it twice), an adequate dialogue box containing

an errer message is displayed.

205

Chapter 4 Specification of the K-Expert interface

4.13.3.7.2 "Copy knowledge-module" dialogue box.

Presentation:

COPY KNOWLEDGE MODULE

FRav1:
Analyst

Expert System

Knowledge Module

TO:
Analyst

New Expert System

New Knowledge Module

...__ __ __,! ~
____ lêl
...__ __ __,! ~

____ 1~

....__ __ ____.I ~

______ 1 êl

-(CANCEL)
Figure 4.71: Copy-knowledge-module-dialogue-box.

Remark:

Same principles as for the previous dialogue box.

206

Chapter 4 Specification of the K-Expert interface

4.13.3.7.3 "Copy facts-base" dialogue box.

Presentati on:

Remark:

COPY FRCTS BRSE

FROM:
Analyst

Expert System

Facts Base

TO:
Analyst

New Expert System

New Facts Base

____ I~
____ 1~
.___ __ ___.I ~

...__ __ __.I ~
_____ I~

...__ __ __.I ~

- (cANCEL)

Figure 4. 72 Copy-facts-base-dialogue-box.

Same principles as for the previous dialogue box.

207

Chapter 4 Specification of the K-Expert interface

4.13.3.7.4 "Copy scenario" dialogue box.

Presentation:

Remark:

COPY SCENARIO

FRCM:

TO:

Analyst

Expert System

Scenario

Analyst

New Expert System

New Scenario

...____ __ ____.! ~

...____ __ ____.! ~

____ !§

_____ ___,I ~

____ ___,I ~

_____ ___,I ê§

-(CANCEL)
Figure 4. 73 Copy-scenario-dialogue-box.

Same principles as for the previous dialogue box.

4.13.3.8 Interactive objects linked to the on-line help function.

The last point of the specification of the interactive abjects consists

of the description of some typical interactive abjects enabling the analyst to

access to on-line help. We have said previously that the analyst may access

to this kind of support at any time by clicking on the "help box" of an opened

window (global help) or by clicking on an item presented in an interactive

abject with the right button of the mouse (particular help). This is valid through

208

Chapter 4 Specification of the K-Expert interface

the whole interface. Consequently, we intend to give now the specification of

a global help interactive abject and of a particular help interactive abject

associated to a particular window which is the "expert system catalogue" one.

Before it, let's underline that the global help is always displayed into

a scrollable text window that the analyst can close when He has finished to

read it. The particular help, on its side, is a dialogue box that is closed by

clicking on an "ok" button.

4.13.3.8.1 Detailed presentation of the "Expert-systems-catalogue­
global-help" window.

Name: "Expert-systems-catalogue-global-help" window.

Definition: window containing a general help text explaining the analyst the

global use of the "Expert-system-catalogue" window.

Presentation:

□ HELP

Figure 4.74: Help window.

The textual contents of the message is the following one :

" This window presents :

- the list of ail the expert system names that are available and the

actions that can be performed on them.

- the name of the current chosen expert system. This one corresponds

to the expert system which is going to be developed.

209

Chapter 4 Specification of the K-Expert interface

The way to use this window is the following one :

- to select an expert system name by clicking on it with the left button of

the mouse.

- then, to click on the icon symbolizing the action to perform on it.

Let's note that more information is available about each of the icons. This

one may be accessed by clicking on the desired icon with the right

button of the mouse. 1111

Actions:

Window creation ; Mouse-click on the "help box" of the "Expert-system­

catalogue" window.

Window closure : Mouse-click on the "close-box" of the "expert-systems­

catalogue" window.

4.1 ·3.3.8.1.1 Detailed presentation of an "Expert-system-
catalogue-particular-help" dialogue box.

Name: " Add-expert-system-help" dialogue-box.

Definition: Dialogue box containing an explanation of the meaning and of

the way te use the icon [D of the "Expert-system-catalogue" window.

210

Chapter 4 Specification of the K-Expert interface

Presentation:

□ HELP ON [I] 1 CON

< text >

Figure 4. 75: Help-dialogue-box.

The contents of the <text> is the following one :

"A click on the ITJ icon with the left button of the mouse displays a

dialogue box in which it is possible to introduce the name and the

description of an expert system. The new introduced expert system is

add to the existing ones".

Actions:

Message çreation : Mouse-click on the ITJ icon of the "Expert­
systems-catalogue" window with the right button of the mouse.

Message closure : Mause-click on the "ok" button.

211

Chapter 4 Specification of the K-Expert interface

4.14. CRITICISM OF OUR INTERFACE PROPOSAL

The specification of the analyst's interface we have proposed in this

chapter possesses the advantage of relying on well-established and generally

admitted theoretical elements among which we have kept in mind some of the

most significant ones. By this way, we think it has more chances to correspond

to real characteristics and abilities of a human mind involved in an interaction

with a computer.

Moreover, we were particularly careful to define the considered

persans and also their tasks as well as possible. Consequently, as we have

started from the human intervening, we assume that the proposed interface

should be really relevant from a human point of view.

The examination and use of already implemented expert system

shells interfaces have attracted our attention on some interesting or, on the

contrary, disturbing features of these ones. We have tried to keep these

features in mind while specifying our own interface.

We have also strived to satisfy the constraints imposed by the

designers of K-Expert. Among these constraints, there were notably the

necessity to respect the Common User Access standard of IBM [CUA 87] as

much as possible and the taking into account of a given physical environment

(e.g. the interface must run on PC such as AT, XT, PS/2 and IBM compatibles

equipped with a two buttons mouse).

Generally speaking, let's say that we have set the accentuation on

aspects such as the analyst's freedom and contrai over the interface, as the

visualization of the tasks abjects, as the immediate and significant feedback

and as the minimization of the learning and retention efforts.

This specification process has led us to experiment concretely that,

as it often appears across the literature, interface design is a question of

tradeoffs above all. lndeed, this remark can be illustrated by signaling that in

order to preserve the interface consistency, we had to put confirmation

dialogue boxes which are not really necessary under some icons (e.g. for the

selection of an expert system in the corresponding catalogue). By this way, a

mouse click on one of the icons of windows such as the expert systems

catalogue window has always the same effect (e.g. opening a dialogue box).

212

Chapter 4 Specification of the K-Expert interface

Moreover, our step by step specification has emphasized the tact

that the interfacing of an interactive application must be a punctilious,

systematic, exacting and time-consuming operation.

The points we have just enumerated must not hide some lacks of

our specification process. lndeed, the last step of this chapter concerns the

specification of the interactive abjects to implement in order to give a physical

form to our interface proposai. The problem is that we have not reached a

sufficient level of details for a future programmer. ln other words, we think that

a reading of this chapter is not totally sufficient to be able to implement the

chaining of the specified interactive abjects, for example. Always about

interactive abjects, let's underline that we have only used traditional ones.

Nonetheless, it could be possible and perhaps more efficient to have recourse

to graphie tools in the future.

We must also underline that except for the mouse configuration, we

have stayed at a level relatively independent of implementation concerns. As

a result, we have not precised the contents of the rules network nor the syntax

and vocabulary of the recommended command language. As for the Common

User Access, we have sometimes adapted it freely ~ecause it says nothing

about the icons and other graphical features.

We are aware that our proposai is only a first idea of solution. As it

has been shown in Section 1.4., this one should prototyped and tested on a

significant panel of people in order to improve its adequation to the human

reality. ln this perspective, one should think especially about the quality of our

analysis of the analyst's task.

Moreover, we can set the problem of the generality of the

specification process we have followed in order to specify the analyst's

interface for K-expert. lndeed, one may question oneselves about its validity

for other expert systems and other kinds of interactive applications.

From our point of view, the retained process seems applicable to all

interactive applications. However, this assertion should be submitted to a

deep experimentation. Nevertheless, this is beyond the scope of our

dissertation.

213

Chapter 4 Specification of the K-Expert interface

Finally, in order to support our specification process, a software

environment should be conceived. For example, we can imagine tools able to

generate automatically a prototype of the interactive messages.

214

CHAPTER 5 :

ARCHITECTURE PROPOSAL FOR K-EXPERT

ln the previous chapters, we have concentrated ourselves on the

future user of the interface we try to design. lndeed, we have presented

theoretical models related to his communication process with a computer as

well as guidelines to keep in mind while designing an efficient user interface.

After a functional analysis of the interactive application and the determination

of the profile and needs of a typical analyst, we have proposed a visualization

of an analyst's interface for K-Expert.

However, this part of the work concerns only an aspect of the user

interface design. lndeed, it tackles only the difficulties an analyst may

encounter while interacting with a computer and it tries to bring a response to

them. Nonetheless, we must not forget that the proposed interface is

conceived to be implemented. So, now, abandoning the analyst's

perspective, we think about the implementor's problems.

According to J. Coutaz [Cout 87], these problems belong to two

categories, the architectural issues and the environmental diversity.

Architectural issues are related to the necessity for the implementor
to have recourse to inputs and outputs in order to communicate information.

lndeed, it appears that the need for 1/0 is ubiquitous and that consequently

"the code which is in charge of the communication is intermixed with the code

which implements the functions of the system" [Cout 87]. As a result, an

interactive refinement of the user interface may be particularly intricate.

As for the environmental diversity, we can remark that the nature of

the considered application imposes different requirements on the user

interface. Moreover, seeing its intermediary role, the user interface may cope

various users classes and also a large variety of terminais. Consequently it

appears that "the construction of a user interface is a risky enterprise"[Cout 87].

To face the two evoked problems, we retain the golden rule :

"Struggle for modularity"[Cout 87].

215

Chapter 5 Architecture proposai for K-Expert

So, the aim of this chapter is to propose an architecture for the

implementation of the analyst's interface which relies notably on this principle .

Thanks to this architecture, the implementor should dispose of a tool to

structurate his work.

ln this perspective, Section 5.1. intends to summarize basic

characteristics we think necessary to assign to the architecture. lt also justifies

our choices and recalls the elements from which we start to conceive an

architecture for our particular interactive application.

Section 5.2. modelizes an architecture for an interactive application

in which the dialogue contrai is mixed.

Then, Section 5.3 introduces a validation of our architecture by two

ways. First, we underline its compatibility with the concepts highlighted in the

functional analysis of K-Expert interface and with the retained UIMS (e.g.

THESEUS which is presented in Appendix D.). Then, we show its efficiency

by describing some typical scripts related to the processing of main

functionalities of our interface.

Finally,in a concluding Section 5.4, we give a criticism of our

architecture proposai.

216

Chapter 5 Architecture proposai for K-Expert

5.1. GENERAL ARCHITECTURE FOR AN INTERACTIVE
APPLICATION AND UNDERL YING CHOICES

Before considering the instantiation and the consultation of an

expert system which are particular interactive applications, we think it can be

helpful to define a general architecture that can be applied to every interactive

application.

Generally speaking, we can distinguish three components in the

architecture of such an application. This approach is inspired by [War 88c]. ln

this perspective, the retained components are the "Dialogue", the "Exchange"

and the "Application functions". Their interrelations may be illustrated on the

Figure 5.1.

DIALOGUE EXCHANGE APPLICATION FUNCTIONS

◄ ► IE) '"""' 0 ◄ ► , E2---~Î.::. -
- DB

"""'1 E.,...n--,---.1 ~

Figure 5.1 : Interactions between the architecture components.

The Dialogue component is responsible for the input (the output) of all the

necessary informations from (to) the user of the application.

The Application functions component realizes the different treatments

associated to the application.

As for the Exchange component, it supports the management of the

communication of informations between the two previously defined

components.

An important question to ask concerns the definition of the limit that

can be established between the dialogue and the functions. lt seems obvious

that the input and the output of informations must be supported by the dialogue

while the Data Base consultations are under the contrai of functions.

217

Chapter 5 Architecture proposai for K-Expert

However, if it seems reasonable to affect syntactic contrai

operations to the dialogue, it is no so direct with semantic contrais because

they can require accesses to the Data Base. This problem could be solved in

the following way. The semantic contrai is performed at the level of the

dialogue but this one requires the services of an application function in order

to accomplish the necessary accesses to the Data Base.

ln the following part of this chapter, we intend to refine this general

architecture in order to adapt it to the K-Expert analyst's interface. However,

there is something we can underline immediately. lndeed, this general

architecture introduces the notion of independence between the application

and the associated dialogue during the conception, the execution and the

maintenance steps. This notion seems to us particularly critical. So, we would

like to reflect it in the architecture proposai.

The importance of the independence principle relies on the

following reasons.

- The conception and the implementation of the application functions and

the dialogue may be attributed to different persons which are specialists

in the particular associated domains (ergonomy for the dialogue,

computer science for the application functions).

- The modification of one component may not affect the other one.

lndeed, each component hides implementation secrets and is seen by

the others as a black box. Consequently, we can imagine to modify the

nature of the interactive objects used by the dialogue (for example,

replace a menu-oriented interface by an object-oriented one) without

having to change anything in the application functions. The converse is

also envisageable : it is possible to update the contents of a function

without having to reflect it in the dialogue component if the function

specification remains unchanged. However, it is obvious that the

independence does not imply that a fundamental modification of a

component (for example, the addition of a completely new application

function or feature) does not have to be reflected in the other one.

- lt is possible that the dialogue takes place on a site which is different

from that on which the application functions are executed. For example,

one can imagine that the functions are running on a Vax configuration

218

Chapter 5 Architecture proposai for K-Expert

while the dialogue is implemented on a Macintosh. ln this case, it is the

Exchange component that is responsible for the communication

between the two other components.

However, we do not wish to limit ourselves to the independence

principle as it has just been presented here. lndeed, we think it is necessary to

put some constraints on the own architecture of the dialogue and application

functions components.

lt seems that in fact convenient architectures for these two

components could be hierarchies of modules. By module we mean a set of

functions which are characterized by a strong ability to hide information, by a

strong procedural and informational cohesion and by a small coupling degree

with other modules. ln other words, modules regroup a set of functionalities of

the same kind, they achieve a specific aim and respond to well defined

specifications. Moreover, we propose a hierarchy of modules. So, retained

modules should be organized in such a way that they are related in a known

and ponctually way [Van 87].

Each module should be defined in such a way that when a

modification has to be brought to one of its elements it is easier to throw away

the module and to write it again than to modify its contents.

What is said here confirms the golden rule "struggle for modularity"

[Cout 87] which has been formulated in the introduction of this chapter. As a

result of what has been said about the advantages of modularity, it appears

that it can be the basis for adaptation of an application or its associated

dialogue. The building of a modular hierarchy for the application functions is a

subject in itself. So, we do not want to insist more on it. We assume simply

that a good application architecture has been designed for the whole

application so that the application software possesses the following qualities :

fiability, maintenability, reusability, portability, efficiency and conviviality.ln the

case of the dialogue and as a result of what has just been said, the general

golden rule may be refined in the following manner to respond to the

environmental problem.

- "Use modularity to separate functions from presentation policies" [Cout

87]. This point is acquired seeing the retained independence principle

and modular hierarchies ;

219

Chapter 5 Architecture proposai for K-Expert

- "Use modularity to define abstractions that hide the diversity" [Cout 87].

This point is also acquired if the implementation of the interactive

application relies on a UIMS (as Ms-Window, for example). Thanks to

such an UIMS, it is possible to build interfaces supporting the

application dialogue in such a way that low level physical

characteristics are hidden inside one layer. By this way, the

implementation of a particular interface may be portable to various run­

time enviranments without any change seeing that all the input/output

can be expressed at a high level of abstraction.

Up to now, we have highlighted the necessity of independence and

of modular hierarchies. This can be completed by a thought on the contrai of

the dialogue. The question to be asked can be sentenced in the following

manner : Who or what will be the dialogue contrai driver ?.

This prablem of contrai seems to us characteristic of interactive

applications. Moreover, the retained architecture for such applications should

be adapted to the type of contrai that is chosen. Consequently, we can not let

this point under silence.

At the time being, there are a lot of controversial discussions about

this subject. Let's now refer to the three main streams of ideas like they are

presented in [THESEUS 1] and [THESEUS 2]. The dialogue may be

controlled externally, internally or in a mixed way.

The contrai is external when it is maintained by the UIMS itself while

applications are divided into small packages, each processing one dialogue

unit. lt is internai if it lies under the application responsibility. ln this case, the

user interface may be seen as a collection of 1/0 services activated by the

application. Finally, the contrai can also be considered as mixed when it is

alternatively handled by the application and by the UIMS.

At present, the mixed contrai seems to assert itself. lndeed, internai

contrai can be coupled with serious difficulties because "it may lead to

situations where an application traps the user in a kind of local mode by

forcing him to reply right away to a question without allowing a new request

that would help in the choice of the correct alternative " [Cout 87]. Moreover,

seeing that the dialogue is embedded in the application code itself there is no

220

Chapter 5 Architecture proposai for K-Expert

"clean separation between mechanisms and policies" so that modifications

during interactive user interface design imply changes within the application.

The external control offers a clean separation between semantics
and syntax because it is the dialogue which invokes the application functions

to react to particular user actions. ln this case, the door is opened for the

design of modular pragrams as the application itself may be seen as "a

collection of procedures which implement the semantic actions of the

dialogue" [Cout 87]. The advantage of this particular approach resides in the

fact that it imposes fewer arbitrary constraints on the user than the previous

one. As Coutaz summarizes it : "At the opposite of the internai contrai, external

contrai quotes in accordance with a user-driven style".

By another way, the main interest of a mixed control appraach lies in

the flexibility it supports. lndeed, such a flexibility, which gives the

implementor the ability to switch freely between internai and external controls,

is particularly relevant for our case. As a matter of fact, the flexibility is very

suitable for applications which dynamically require that the user inputs some

more informations in order to pursue their processing as it happens during the

consultation of an expert system. Another advantage linked to mixed control is

the fact that it may make easier the reusability of applications. The biggest

disadvantage or risk is that flexibility may go hand in hand with the introduction

of dirty hacks which may pravoke classic software maintenance problems.

Logically, an external control with hooks for mixed control seems to be a

reasonable choice. ln the next of this exposure, we intend to try to take this

recommendation into account.

Up to now, we have underlined a set of main principles and

characteristics but it is obvious that they must be submitted to refinements in

order to apply to particular cases. At the time being, studies about the

research of architectural elements for an interactive application under

DecWindows are in course at the "Institut d'Informatique" at Namur. The

reader who wants to know more about the current state of these researches

may refer to [Sac 89a], [Sac 89b], [War 88a], [War 88c].

ln our case, we have used freely these studies as a base for the

elaboration of our own proposai for the specification of an architecture that can

be applied to a specific interactive application as the building and consultation

221

Chapter 5 Architecture proposai for K-Expert

of an expert system. lt is necessary to adapt the Namur proposais because

they concern different kinds of interactive applications relative to the

management while our application belongs to the domain of expert systems.

The differences between these two categories of applications appear notably

in the nature of the dialogue contrai.

For our application, we retain an external contrai with hooks for

mixed contrai. We mean that the contrai is always under the responsibility of

the UIMS except when the latter invokes an application which takes the contrai

in order to receive additional informations from the user. Our choice relies on

the fact that we have decided to see our application as a tool box of functions

triggered off at the analyst's request. So, in this perspective, the envisaged

contrai should be external. Nonetheless, hooks to internai contrai must also

be provided in the special situation when the analyst decides to run a

consultation. The applications envisaged at Namur, however, present another

kind of mixed contrai. We can consider it as an internai contrai with hooks for

mixed contrai. lndeed, the considered interactive applications possess a

dynamic defining the chaining of the application functions. The contrai is

transmitted to the UIMS only if one of them needs some external information to

fulfil its specification. ln this case, the UIMS is triggered off and keeps the

contrai until ail the needed informations have been gathered.

Moreover, these proposais are related to the UIMS DecWindows
when the UIMS we must consider is THESEUS. Consequently, in the next

pages, we think about the adaptation of Namur architectural elements.

So, now in a first time we are going to define a general architecture

that may be applied to an interactive application led by a mixed dialogue

contrai. Then, we intend to precise the nature of THESEUS UIMS to provide

an empirical validation of our proposition.

5.2. MODELIZATION OF THE ARCHITECTURE OF AN

INTERACTIVE APPLICATION

Let's now present an architecture which relies on modularity in

order to respect the general golden rules already presented. As constitutive

222

Chapter 5 Architecture proposai for K-Expert

interface modules, we retain the interactive objects manager and the

conversation manager.

As constitutive application modules, we propose the application

functions module and the Data Base Management module. The application
functions module may itself be an architecture of several modules but this is

beyond the scope of this work. So, we consider the whole application

functions module as a black box.

Finally, to preserve the independency between the interface and

the application, our architecture introduces an interactive application manager.

Ali these modules will be linked together by two kinds of relations, the so­

called "UTILIZE" and "CALL" relations.

So before giving a specification of each component module, let's

define these two relations. A UT!UZE relation between two modules A and B

means that the correct working of the module A depends on the availability of

a correct version of the module B. A CALL relation between two modules A

and B means that the execution of a treatment belonging to the module A

triggers off the execution of a treatment belonging to the module B. The

difference from the utilize relation is that, in a call relation, the module A may

work correctly even without disposing of a correct version of the module B [Van

87].

The architecture we present here is a general one. lt can be applied

to each interactive application but we often emphasize on our particular case :

the instantiation of K-Expert shell and its consultation. To specify this

architecture, we give the definition and objective of each module, the required

inputs, the outputs it provides and also the relations UTILIZE and CALL linking

it to each of the other specified modules.

First of all, let's present a visualization of our interactive application

architecture proposai by the following Figure 5.2.

223

Chapter 5 Architecture proposai for K-Expert

UTILIZE CALL
-------- Interactive

Conversation F► application ~► Application
manager functions

.________ CALL__m_a_n_a_ge_r __ __. UTILIZ ------

î Dialogue units are Dialogue units are
functional messages application messages

UTILIZE ALL

i
Interactive
objects
manager

Dialogue units are
interactive messages

-
1◄~------~►~1◄~--------~►~ ◄ ►

DIALOGUE EXCHANGE APPLICATION FUNCTIONS

Figure 5.2 : Architecture proposai.

The modules presented in dotted boxes are not detailed in this

work. They are just mentionned in order to localize them with regard to the

other ones.

224

Chapter 5 Architecture proposai for K-Expert

5.2.1. The interactive objects manager module

◊ Definition :

This module is a high-level input-output mechanism.

o Objective of the module :

This module makes possible the hiding of the device specific input-output

functions to the other modules. Moreover, it enables them to perceive

input and output from a higher level of abstraction.

Thanks to this modules, it is possible to express input-output by recourse

to the abstractions provided by interactive objects. We have already

defi ned the concepts of interactive objects as instantiations or

compositions of instantiations of generic objects. These generic objects

are graphical ready-to-use objects possessing properties which can be

inherited by their instantiations. By this mechanism, the other modules

can request the display of a whole dialogue unit meaningful for an user in

once time. This unit is described in an interactive message. So, when a

low level input arrives from the system to this module, the latter expresses

it for the other modules as an action on an interactive object. On the

other side, when an interactive object must be displayed, the considered

module translates this high level output into a low level output

understandable by the underlying window manager or by the operating

system if there is no intermediary layer. Concretely, this module

corresponds to the currently available UIMS. As for the input/output

abstraction level, it depends on the power of the considered UIMS.

ln the following of this Section, we are going to describe the function of the

interactive objects manager which consists of the translation of high-level

outputs into low level outputs. Then, we explain the other function which

consists of the translation of low level inputs into high level inputs.

225

Chapter 5 Architecture proposai for K-Expert

◊ Output translation function :

An input interactive message with the following contents :

- A description of the interactive abjects composing the

dialogue unit ta display ;

- For each abject, a description of all the possible actions that

can be performed by an user on it ;

- For each action associated ta an abject, the name of a

function that must be called if the user performs this action.

However, it is not always mandatory ta designate an

associated function ;

- If the interactive abject is an input field, a description of the

syntactic constraint on the pattern contents that is legal for

this field. By "pattern contents", we mean the specification of

the authorized characters such as numeric, alphanumeric

ones. This syntactic constraint is optional. A text can also be

associated in order ta be displayed in case of an user

mistake.

Precondi!ion§:

- The described interactive abjects are instantiations of generic abjects

known by the module ;

- The given actions are instantiations of generic actions that can be

accomplished on the specified interactive abjects ;

- The associated function names correspond ta functions available in

the conversation manager module. This module is explained more

in details in this section ;

- The associated pattern is one of the patterns known by the module.

226

Chapter 5 Architecture proposai for K-Expert

- Displaying on the screen of a dialogue unit corresponding to the

given interactive message.

Pq§tçonçfüign :

Ali the described actions on the interactives abjects are available for

the user.

◊ Input translation function :

lngyt da!ê:

- An occurrence of an event signaling that an user has performed an

action on a displayed abject.

PrecQndition :

There is no precondition on this input because this module must take

into account all the inputs coming from the user.

- Updating of the screen ;

- Display of an error message ;

- Production of an interactive message with the following contents :

. the name of a function of the conversation manager module

which has to be triggered off ;

parameters indicating the actions performed, the abject

concerned, and other ones that are needed by the triggered

off function. For example, if the action is the filling of an input

field, a parameter must contain the input value.

PQstconditions.:

- If the performed action is an action on a property of a generic abject

which is related to "local dialogue" (e.g. action affecting only the

227

Chapter 5 Architecture proposai for K-Expert

presentation of the interface such as resize a window, move a

window, move a scroll box ... etc) then this module treats the event by
itself and updates the screen ;

- If the performed action corresponds to the filling of an input field, this

module verifies if the input contents is consistent with the related

syntactic constraint, if there is one. If the field is not syntactically

correct, an error message is displayed. If the error message has

been specified, this one is displayed otherwise, a default one is

shown off;

- If the performed action is related to the semantic of the application

(e.g. if the event is relevant for the application or for the management

of the dialogue), needs particular treatment and is syntactically

correct (in the case of an input field) then, this module produces an

output interactive message. ln this message :

. the given function name corresponds to one function of the

conversation manager which is defined in the next section;

. the other parameters correspond to objects and actions

known by the conversation manager ;

. in the case of an input field, the value is syntactically correct.

o Relations with other modules :

The interactive abject manager CALLS the conversation manager module.

lndeed, the interactive object manager calls the conversation manager

whenever it has performed ail the treatments it could realize by itself. So, the

bad functioning of the conversation manager can not affect the work of the

interactive object manager.

228

Chapter 5 Architecture proposai for K-Expert

5.2.2. The conversation manager module

◊ Definition :

This module contrais the dialogue between the user and the interactive

application.

o Objective of the module :

This module is responsible for the dynamic of the dialogue of the

application. lt contains all the necessary dialogue functions for the

interactive application. lt hides the other modules the way according to

which the dialogue is managed. The choice concerning the interaction

style with the user (such as menu interaction and direct manipulation) is a

secret of this module. lt decides the behaviour to adopt in order to ensure

the continuation of the dialogue with the user. lt knows which interactive

message (e.g. user dialogue unit) must be displayed or which service

must be required from the application. ln this case, this module is able to

build the contents of the message that must be given to a function. So,

we can say that this module manages the so-called "macro

conversation". By this, we mean the chaining of the interactive messages

between them.

As an interactive message may be represented by one or more
interactives objects, this module knows which are these objects and the

so-called "micro conversation" associated to them. By "micro

conversation", we mean the chaining of the interactive abjects to display

in order to embody an interactive message. This module is also able to

determine if an user's input is syntactically (high-level control) and

semantically correct. ln case of problem, it knows also which interactive

error message has to be displayed.

As we have made the hypothesis that the control of interactive
applications is a mixed one, the contrai can be led by the actions

accomplished by end-users on the interface or by the application itself.

So, the considered module can be called by two other modules. lndeed,

when the contrai is external (e.g. depending on user actions on

interactives abjects) this module is called by the interactive abjects

manager. On the other hand, when the contrai is internai (e.g. handled

229

Chapter 5 Architecture proposai for K-Expert

by a function of the application) this module is called by the

corresponding function via the interactive application manager (this

module is defined later).

Let's now define the inputs and outputs of this module for the two kinds of

contrai.

◊ External contrai :

An output interactive message with the following contents :

- The name of the function of this module which must be

executed;

- The input parameters necessary to be able to trigger off the

execution of the function. Among them, there are the action

performed by the user, the abjects on which it has been

realized, the value typed into an input field, the state of an

object...etc.

Precondi!ion :

The given function name is known by the considered module. The

other parameters such as the given action and the given abject are

also known by the module. Moreover, if one parameter gives the value

of an input field, the format of the given information is correct.

Output data :

An input interactive message with the following contents :

- A description of the several interactive abjects which must be

added, updated or deleted on the screen ;

- For each action associated to an interactive abject, a name

of function to call if the user performs this action. This

function reference is optional ;

230

Chapter 5 Architecture proposai for K-Expert

- If the interactive object is an input field, a description of a

syntactic constraint on the format of the contents that can be

typed by the user. By "format", we mean the specification that

the contents must be numeric, alphanumeric ... etc.

Postconditions:

- If the module is called because the user has filled an input field, this

module will verify if the typed information is syntactically and

semantically correct. lndeed, the given information is already

conform to the desired format but other syntactic controls have to be

performed. They are :

. value contrai (the value of a field ranges between two

constants);

. type control (the value respects a special syntax defined for

this type of value. For example, the syntax of an antecedent

and of a consequent of a rule are well-defined and must be

respected) ;

existence contrai (the input field must have a value) ;

other controls can be performed : the semantjc ones. For

example, it is possible to verify if the given value is really an

identifier.When the typed input is not syntactically or

semantically correct, the module produces an input

interactive message. This message describes the interactive

object and the text to display in order to signal the errer to the

user. The advantage of putting a control at this level is that it

is helpful to detect errors at the field level and it provides the

user the ability to realize immediately corrections.

- If, in order to continue the dialogue, the module needs either to add

or to modify or to delete interactive abjects on the screen. So, it

produces an output interactive message. But in order to produce this

interactive message and to make possible the continuation of the

dialogue, this module may need the result of the execution of

services provided by the application. For example, it is useful to

231

Chapter 5 Architecture proposai for K-Expert

perform semantic control or intricate syntactic control, to display

information recorded in the Data Base, to execute some application

function asked by the user .. etc. ln this case, the module will produce

an input functional message with the following contents :

User Input

- -----

-

. the name of a service of the application which has to be

provided ;

. all the input parameters necessary for the execution of the

service;

. all the output parameters which have to be produced by the

execution of the application service ;

This message is intended for the interactive application

manager module which is described later. The given name is

known by this module and the parameters correspond to

necessary input and output of this service.

The external control evoked here can be modelized by the

following Figure 5.3 :

Display

Interactive abject manager
,----- ,,_

◄ Interactive message
Conversation manager

-7 r-- -
1 1 ◄ Functional message

Interactive application manager

Figure 5.3 : External contrai in the conversation manager.

232

Chapter 5 Architecture proposai for K-Expert

◊ Internai contrai :

An output functional message with the following contents :

- The name of the function of this module with has to be

executed ;

Ali the necessary input parameters for this function ;

- Ali the output parameters which have to be produced by the

function.

Precondi!ion :

The given name of the function is known by the module. The given

parameters are correct relating to the precondition corresponding to

the function.

Filling of ail the output parameters of the output functional message

and production of a signal to the application indicating the functional

message is correctly filled.

Po§tconditions:

Ali the filled parameters are syntactically and semantically correct. ln

order to fill these parameters, the conversation manager needs to

drive a dialogue with the user. lt has to display dialogue units to the

user and to enable him to perform actions on them. This dialogue is a

temporary one and exists until the output functional message is

correctly filled. However, during this dialogue, the interactive

application is led by the user action performed on the displayed

abjects. So, we can say that a temporary external contrai is started.

During this temporary external contrai, the conversation manager will

have the same behaviour as that already described in the paragraph

about the external control. The internai contrai can be modelized by

the following Figure 5.4 :

233

Chapter 5 Architecture proposai for K-Expert

Interactive application manager

1
Conversation manager --- ___ .. ----

-- - -- - --f-~~ 0

Interactive abjects manager

USERINPUT USERINPUT

Internai contrai : ---­

External contrai : ----

USER INPUT

◄ Interactive message

◄ Functional message

Figure 5.4 : Internai contrai in the conversation manager.

◊ Remark:

Seeing that the interactive application manager module has not yet been

described, we signal that this module is responsible for the production of

output functional messages.

◊ Relations with other modules :

The conversation manager UTILIZES the interactive abject manager.

lndeed, if the interactive abjects manager does not work properly when

either it displays interactive abjects or triggers off other functions of the

conversation module for a particular event, the conversation module

will be unable to manage the dialogue of the interactive application.

ln the same way, the conversation manager UTILIZES the interactive

application manager module. lndeed, this module enables the

conversation manager to receive the result of the execution of

234

Chapter 5 Architecture proposai for K-Expert

application functions. If the desired results are not correct, the

dialogue of the interactive application can not be managed.

5.2.3. The interactive application manager module

o Definition :

This module is the manager of the interactive application. lt decides the

contrai which must be the leader at the beginning of the execution of the

interactive application and implements the transparence between the

requests of the application modules and the services offered by the

interface and conversely.

lt holds the mapping between the abstract world of the application

functions and the concrete world of the interface. Moreover, this module

is also an entry point for ail other applications wishing to use some of the

functionalities praposed by the interactive application. If necessary, it can

aise be on exit point for the request of functionalities available in other

applications.

o Objective of the module :

This module decides of the contrai of the interactive application. lndeed,

in the interactive application, the contrai is always a mixed one but it can

be of two different kinds :

- An external contrai with hooks to internai contrai. ln this

case, at the beginning of the interactive application the

module gives the contrai to the conversation manager

module;

- An internai contrai with hooks to external contrai. ln this

case, at the beginning of the interactive application the

module gives the contrai to the application functions module

(which is described later) ;

Another aim of this module is to implement the transparence between the

interface and the application. lndeed, during an external contrai, when

235

Chapter 5 Architecture proposai for K-Expert

the conversation manager, in order to pursue the dialogue, needs the

result of a service provided by the application, it gives to this module an

input functional message. The contents of this one precises the name of

the desired application service. The given name is not necessarily the

real name of the desired application function which has to be triggered off

and moreover, the asked service may require the execution of more than

one function. ln this case, the interactive application module makes the

translation and triggers off all the necessary functions in order to produce

the asked informations.

By another way, during an internai contrai, when an application function

needs some user input in order to reach the aim corresponding to its

specification, this function asks the interactive application manager to

start a dialogue with the user. This module translates this request into an

output functional message understandable by the interface and more

particularly by the conversation manager module which has to perform

the desired dialogue.

So, it appears that the interactive application manager gives to one

module the list and the specifications of the available functionalities

realizable thanks to the execution of functions of the other module. And it

enables this module to consider the other module as a black box.

Moreover, this module is an entry point for all the other applications.

lndeed, an other application can need to execute one of the

functionalities of the application functions module. ln this case, the

calling application will have the same behaviour as the conversation

manager, it produces an input functional message and calls the

conversation manager module.

On the other hand, another application can need to use functionalities of

the interface. ln this case, its behaviour will be the same as that followed

by the application to start a dialogue with a user. We can also imagine

that the interactive application module enables the interface modules
and the application modules to request services of some external
functions.

As the presented module takes in charge the mapping between the

interface and the application, we present first the translation function

236

Chapter 5 Architecture proposai for K-Expert

"interface-application" which occurs during an external contrai and then,

the translation function "application-interface" which occurs during an

internai control.

o External contrai ("interface-application" translation functjon) :

An input interactive message with the following contents :

- The name of a service of the application which has to be

provided ;

- Ali the input parameters necessary for the execution of this

service;

- Ali the output parameters which have to be produced by the

execution of the application service.

Precondition:

- The given name is known by the interactive application manager ;

- The given parameters correspond to the necessary ones for the

execution of the service.

OUtQUt da!a :

Filling of all the necessary output parameters of the input functional

message and production of a signal to the calling module (the

conversation manager) indicating that the input functional message is

correctly filled.

Po§toonditions.:

- Ali the parameters are correctly filled in order to satisfy the

conversation manager request, the interactive application manager

calls one or more functions of the application module. lt provides

them input application message (the content of this messages and

the description of this module are described later). The external

237

Chapter 5 Architecture proposai for K-Expert

control during the considered translation function may be illustrated

by Figure 5.5 ..

Conversation manager

Interactive application manager

Application functions

◄

◄

Functional message

Application message

Figure 5.5 : External contrai in interface-application translation.

o I nternal contrai ("application-interface" translation functjon) :

An output application message with the following contents :

- The name of a service of the interface which must be

executed;

- Ali the input parameters necessary for the execution of the

service;

- Ali the output parameters which have to be produced by the

execution of the interface service.

Precondition :

The given name is known by the interactive application manager

module. The given parameters correspond to the necessary ones for

the execution of the service.

238

Chapter 5 Architecture proposai for K-Expert

Qutgu! data :

Filling of all the necessary output parameters of the output application

message and production of a signal to the calling module (the

application function module) indicating that the output application

message is correctly filled.

Pgstcgngitiqn§:

Ali the output parameters are correctly filled. ln order to satisfy the

application function request, the interactive application manager calls

the conversation manager module and provides it with an output

functional message (the contents of this message has already been

described in the input of the conversation manager module).The

internai contrai during the considered translation function may be

illustrated by Figure 5.6 ..

Application functions

Interactive application manager

Conversation manager

Figure 5.6 : Internai contrai in interface-application translation.

◊ Relations with other modules :

The interactive application manager CALLS the application functions

module. lndeed, if the application functions module does not work

correctly, as the considered module does not really perform treatment on

the manipulated informations but only fills a functional message starting

for an application message, it can always accomplish its job.

The interactive application manager CALLS the conversation manager

module. This can be explained in the same way as for the previous

239

Chapter 5 Architecture proposai for K-Expert

evoked relation because this time, the module fills application messages

starting from a functional message. So, the returned values of the

conversation manager have no meaning for it.

5.2.4. The "application functions" module

◊ Definition :

This module contains ail the functions of the application. Generally, these

functions are related to the structure of the Data Base but some of them

can aise be calculation ones.

o Objective of the module :

This module contains a set of functions which are able to implement all

the functionalities necessary by the interactive application. This module

can be organized as an architecture of modules in which each module

hides a particular secret.

1 nQu! data :

An input application message with the following contents :

- The name of the application function which must be

executed ;

- Ali the input parameters necessary for this execution ;

- Ali the output parameters which must be produced by this

function.

Pr~conditions:

- The given name is knows by the module ;

- The given parameters correspond to the necessary ones and are

syntactically and semantically correct. They must verify all the

preconditions of the desired function.

240

Chapter 5 Architecture proposai for K-Expert

Qutgut data :

Filling of all the necessary output parameters of the input application

message and signaling to the calling module that the functional

message is correctly filled.

The output parameters are correctly filled. To fill it, this module may

use the Data Base management module. But the functions are built in

such a way that they preserve the consistency of the data structures.

Sorne of the functions need interactions with the user in order to reach

their specification. ln such a case, the module utilizes the interactive

application manager to obtain the necessary informations. ln this

case, the application function produces an output application message

which has already been defined in the input part of the interactive

application manager. The external contrai in the considered module

may be illustrated by Figure 5.7.

Interactive application manager
,-.-------

i.-------- -------- -------
Application functions

Database management system

Figure 5.7 : External contrai in the application functions manager.

◊ Relations with other modules :

The application functions module UTILIZES the Data Base management

system because the application functions are only able to carry on in

conformity with their specification if the modifications performed on the

Data Base are well done.

241

Chapter 5 Architecture proposai for K-Expert

The application functions module UTILIZES the interactive application

manager. lndeed, this module enables the application manager to lead a

dialogue with an user and to receive user informations. If the dialogue
can not be performed correctly, the application function is not able to

reach its specification.

5.2.5. Architecture illustration

To conclude, we can give an example of an execution of an

interactive application through our proposed architecture.

HyQothe§is : The considered interactive application is led by external

control with hooks to internai control. lts process may be

visualized on the following Figure 5.8 ..

START
(1)

USER INPUT USER INPUT

,, ~~nteractive abjects manager

(4) (11) (1 2)
1(17)-

(3) (5) Conversation manager

(2)
1

-
(6)

- .---

(7) (9)
- -

-
(8)

Internai contrai :---­

External control. - ---

- - _:3>---:f si (1 0)

Interactive application manager

(1 4) 1 1 (1 5)
Application functions

Database management system

Figure 5.8 : Architecture illustration.

242

Chapter 5 Architecture proposai for K-Expert

(1) The contrai is started in the interactive application manager. This module
decides if the application contrai is an internai one or an external one.

Following our hypothesis, this contrai is external.

So, (2) the module calls the conversation manager and provides it with an

output functional message.

As the conversation manager needs to display some interactive abjects

on the screen, it calls the interactive abjects manager and provides it an

input interactive message (3).

The interactive abjects manager displays the necessary interactive
abjects. The user performs an action on one of the displayed

abjects (4).

The interactive abjects manager calls the conversation manager

and provides it with an output interactive message (5) containing the

name of a dialogue function to execute.

(6) This dialogue function of the conversation manager may
require some Data Base informations in order to display new

interactive abjects on the screen (such as a list of possible

values). So, it produces the corresponding input functional

message and calls the interactive application manager. From

this point, a temporary internai contrai is started.

lndeed, the interactive application manager module

decides to give the contrai to an application function of

the application (7). lt provides an input application

message and calls the application functions manager.

(8) The application function has to fetch information

from the Data Base. If the application needs also

some more information from the user, it must ask to

start a dialogue with the user. So, it provides an

output application message and calls the interactive

application manager (9).

243

Chapter 5 Architecture proposai for K-Expert

(1 o) The interactive application manager
produces the corresponding output functional

message and calls the conversation manager.

At this point, once again, the contrai changes

and becomes a temporary external contrai.

(11) ln order to fill the output parameters

of this message, the conversation
manager asks by interactive messages to

display some interactive abjects. lt

triggers off the interactive abjects

manager.

(12) The user performs an action.

The conversation manager is once

again triggered off and it receives

an output interactive message.

(13} The conversation manager is now
able to fill all the output parameters of the

functional message it has previously

received. Then, it calls back the

interactive application manager.

The temporary external contrai is ended at this

point. (14) ln his turn, the interactive

application manager is able to fill the output

parameters of the output application message

it has received previously also and it gives

back the contrai to the application function

manager.

(15) This application function is now provided with
all the informations it needs to performs its task.

Then, it can also fill the output parameters of the

input application message it has received and it

gives the contrai back to the interactive application

manager.

244

Chapter 5 Architecture proposai for K-Expert

(16) This time, the interactive application manager is able
to conclude the input application message and ta give it

back to the conversation manager. The temporary

internai contrai is concluded at this point.

(17) The conversation manager is now able ta display some

new interactive abjects. lt produces an input interactive

message that is given to the interactive abjects manager.

5.2.6. Final remark about the presented architecture

ln our architecture, the UNDO function has never been mentioned.

However, this one should be taken into account. The advantages of providing

this function ta a user have already been defined in Chapter 1.

The common definition of the UNDO is ta provide the ability ta

recover from unwanted or incorrect actions. An UNDO function, which

reverses the effect of the last action performed can be used to provide such an

ability. However, the problem is that the need for reversible actions applies at

many levels and should be taken into account by differents modules of our

proposed architecture.

lndeed, the last action of a user can be the dragging of an abject or

the resizing of a window. The management of this action is only performed by

the interactive abjects manager and is transparent ta the other modules. Sa, if

we enable the user ta make an UNDO on this kind of actions, the function must

be supported by the interactive abjects manager.

Another level of UNDO concerns the chaining of the interactive

messages. If a user clicks on an item of a pop-up menu and if the result is ta

open a new window, then the UNDO of such an action would be ta delete the

window of the screen and ta bring back the user ta the previous pop-up menu.

This UNDO should be taken in charge by the conversation manager because

it is the only module ta be busy with the macro conversation.

This module must also take care of the UNDO function for the micro

conversation. lndeed, if the filling of a field triggers off in the same window the

245

Chapter 5 Architecture proposai for K-Expert

updating of a list, the UNDO of this action has not only to give back the

previous value of the field but also all the previous values of the updated list.

There is still a higher level of UNDO. If the last action performed by

the user has triggered off modifications of the Data Base, an UNDO of this

action should be able to restore the previous state of the Data Base. This time,

the conversation manager should be able to trigger off functions of the

application restoring the Data Base contents.

To conclude, we can say that the UNDO must be taken in charge by

two modules. The interactive abjects manager and the conversation manager.
Moreover, in the application functions module, for each functionality which can

be called by the conversation manager in order to perform modification on the

Data Base, other functionalities have to be provided in order to enable the

conversation manager to restore the state like it was before the last action.

5.3 VALIDATION OF THE PROPOSED ARCHITECTURE

ln absence of the implementation of the K-Expert interface proposed

in Chapter 4, it is· not possible to validate concretely the retained architecture.

So, what can be envisaged is a more empirical validation. lndeed,

we are now going to show that this architecture fits the functions extracted from

the functional analysis of the analyst's interface, the dialogue units which have

been associated to these functions and also the functioning principles of the

THESEUS UIMS whose main characteristics are presented in Appendix D.

ln a second step, we complete our empirical validation by

explaining the processing steps of some typical operations related to the K­

Expert interface (such as those linked to the creation of a rule). During this

stage, we are going to evoke the functioning of each architectural module

concretely.

246

Chapter 5 Architecture proposai for K-Expert

5.3.1 Compatibility between the interface design concepts and the
proposed architecture

Now, each of the architecture modules is recapitulated and we say

precisely what we put inside it by reference to our particular case.

5.3.1.1 The interactive objects manager

This module corresponds in fact to the THESEUS UIMS. lndeed,

the objective assigned previously to this module is satisfied. As a matter of

fact, the hiding of device specific Input/Output functions is supported by

THESEUS seeing that like it is underlined in Appendix D.this UIMS supports a

high-level of abstraction. Consequently, the application itself is not concerned

by the dialogue description.

Generic interactives abjects and associated generic actions are

defined by THESEUS. Among them we find :

- Windows (text or graphie oriented) ;

- lcons;

- Buttons;

- Menu titles and menu items ;

- Graphie abjects (basic ones presented in Appendix D and complex

ones) ;

- Text abjects (input and output fields) ;

- Dialogue boxes (not yet implemented but planned in the near future) ;

- Scrollable lists (not yet implemented but planned in the near future) ;

- Cursor (not yet implemented but planned in the near future).

The associated generic actions that may be performed by a user on

these abjects are presented in Section D.4. of Appendix D.

247

Chapter 5 Architecture proposai for K-Expert

Now, we are going to show how the proceeding way of THESEUS

is similar to the functioning of the interactive abjects manager. ln fact,

THESEUS is informed of the occurrence of low-level user inputs (such as

clicks on interactive abjects) and then it interprets them with the help of an

"event-handler" in a way that is going to be described in this part of the work.

On the other hand, when THESEUS has to display information to

the user, it has to convert it from a high-level output to a lower one in such a

way that it can be manipulated by an underlying window manager.

Let's see in more details the treatments operated by THESEUS on

input data and then on output data. We follow the same pattern as for the

architecture proposition.

◊ Taking into account of the input :

lngwt gata : An physical user input.

Erecondition :

Outgut gata :

None because THESEUS is able to accept each user input

even one that does not belong to the interactive abjects

presented on the screen. However, the user input abilities

may be precised by saying that the possible input are :

pressing on a mouse button ;

releasing a mouse button ;

moving the mouse while pressing on one of its buttons ;

keyboard input (single keystroke).

- Updating of the screen ;

- Display of an error message ;

- Production of a sound (beep) ;

248

Chapter 5 Architecture proposai for K-Expert

- Triggering off a function designated by a name and

associated to a list of parameters. Generally, this one

contains:

. the identifier of the window concerned ;

the identifier of the input set concerned ;

the identifier of the input element concerned ;

These identifiers are defined by THESEUS when the

corresponding components are created.

Note that the "interactive message" evoked when the

architecture has been described is replaced here by a function

call. Moreover, it must be underlined that the parameters

transmitted by THESEUS to the upper level module (e.g. the

conversation manager) do no fit exactly those described in th

presentation of the architecture. ln fact, the are restricted to a
predefined list imposed by THESEUS. So, if a called function

needs more information than that transmitted th_rough the

authorized parameters, this function itself will have to inquire

the necessary information from THESEUS.

Postconditions:

Before precising postconditions, we think it can be useful to

give some informations about the functioning principles that

THESEUS applies in order to transform input events into

associated functions. Generally speaking, we can say that the

translation relies on a step by step process which can be

visualized in the following way :

249

Chapter 5

Physical
Input

Input
Glass

Input
Set

Input
Element

Predefined
Theseus
Function

Application
Function

Architecture proposai for K-Expert

Managed by THESEUS

t Managed by the application

Figure 5.1 O : Steps in processing user input.

lndeed, whenever an user input occurs, it is captured by the

so-called "event-hand!er", this one tests then the authorization

to accomplish the user performed action, executes treatments

supported by THESEUS itself and triggers off application

functions if some are defined. To be complete, it can be useful

to detail each step.

"Physical input" :

Detection of a physical event performed by the user (external

contrai).

250

Chapter 5 Architecture proposai for K-Expert

"Input class" :

The avent handler binds the physical avent to an allowed input

class. The authorized ones are :

menu selection (selection of one menu item in a

restricted number of alternatives) ;

icon selection ;

abject identification (picking of an abject visible at the

screen within a window) ;

position area (entry of a position in world coordinates

within predefined areas.) ;

keyboard input (pressing on a key) ;

abject dragging (mowing of an abject within a window) ;

icon dragging (moving of an icon around the screen) ;

window related input (size, move, scroll, close, help or

undo function).

"Input set" :

After the identification of the input class, the avent handler

determines which corresponding input set is concerned. lt can

be underlined that each input class is divided into several

input sets. The correspondances are the following one :

Input class <-------> Input sets

-Menus - Menus selection

- lcon selection

- Object identification

251

-lcons sets

- A set of abjects consisting of all

existing modes and another

set consisting of all existing

edges

Chapter 5

- Position Area

- Keyboard Input

- Object dragging

"Input element" :

Architecture proposai for K-Expert

-Sets defining various input areas

(example : one set may be

defined

for each window)

- Sets of various keys (example :

the set oflower case characters)

- Sets of all the abjects that can be

moved

Knowing the input set, the event handler can then go into more

details by identifying the concerned element of the retained

input set. For example, the elements of a "menu" input set are

menu items. For each of them, the following informations are

accessible to the event-handler :

name of the item ;

number of the item in the set ;

item state (enabled or disabled} ;

special item label (e.g. check mark) ;

name of the application to call when the item is selected

(if there is any).

"Predefined THESEUS function" :

At this step of the process, THESEUS should have identified

precisely the concerned element. So, if some treatment may

be performed by itself without involving the application, it

performs it before passing the deal to an application function if

one is associated to the concerned element. Actions that

THESEUS may perform independently of the application have

already been enumerated at the beginning of this Section. As

an example, we can think to the following case : the action of

252

Chapter 5 Architecture proposai for K-Expert

the user consists of a click on the close box of a window.

When this event is detected, the event handler performs all the

necessary treatments to identify the corresponding input

element. When this is done, THESEUS "closes" the window.

lt means that it erases it from the screen and reactivates the

last activated one. Then, if there is an application function

associated to it, it triggers it off. Similarly, when THESEUS

detects a keyboard input, it verifies the permissibility of this

event and calls an application function, if necessary,

afterwards.

"Application function" :

Generally, THESEUS calls such a function by passing a

parameters list which has been defined in the output clause of

this point. This corresponds to the sending of an interactive

message to the conversation manager.

Now, let's corne back to the expression of postcondition.

- The module produces a sound if the event perceived can not

be identified as an existing input class ;

- The module produces an error message if a function

accomplished by THESEUS itself (such as a syntactical

contrai related to a pattern of characters associated to an

input text field) highlights a problem that the user has to

manage;

- The module updates the screen if the event leads to the

accomplishment of a function managed by THESEUS

autonomously and that affects the external shape of some

abjects (such as the dragging of an icon, the resizing or

closing of a window) ;

- The module triggers off an upper-level function on the

provided list of parameters (see "output") if the identified

"input element" has been linked to a particular function that

has to be performed in response to the event. However, the

253

Chapter 5 Architecture proposai for K-Expert

execution of this function is beyond the THESEUS scope, it

is under the responsibility of our "conversation manager" as

it will be shown in the next section.

◊ Taking into account of the output :

lngut gata : Triggering off a THESEUS function by giving the following

elements to this module :

The function name ;

- The parameters corresponding to this function.

ln fact, this corresponds to a part of the interactive message considered in the

architecture proposai. The conversation manager may give the lead to

THESEUS by calling function.

What corresponds exactly to the interactive message defined previously in the

input clause of the "output translation function" is in fact a sequence of

THESEUS functions triggered off each in its turn. For example, to display a

complex interactive abject, a function of the "conversation manager" must

create each of the components of this abject by calling several THESEUS

function.

PreconditiQ.Q:

The given function name corresponds to an existing

THESEUS function. The given parameters are the right ones

and they contain an authorized value. To be more precise, we

can say that the general classes of THESEUS functions are

the following ones :

. creation (of instantiations of a generic interactive abject);

. updating (of instantiations of interactive abjects by

changing their attributes that can be modified

dynamically -see Section 5.3.) ;

deletion (of an instantiation of such an abject) ;

254

Chapter 5 Architecture proposai for K-Expert

inquiring of information about an instantiation (for

example the list of the sons of a complex abject) ;

moving (of an instantiation of an abject) ;

starting and stopping the event-handler (e.g. triggering

off or concluding the THESEUS work) ;

display of a dialogue box (containing a particular

message appearing as a parameter of this function).

The reader who would like to know precisely the function

names and their associated parameters may consult

[THESEUS 4].

Oytr;2yt gata : The triggered off function is performed.

Pos!cQnditions :

The result of the function execution is in conformity with its

particular postcondition. Generally speaking, it can be said

that the effect of an execution may have a direct effect on the

screen contents or may return information to the calling

upper-level function via parameters settings.

5.3.1.2 The conversation manager

ln our concrete case, this module corresponds to the main program

of the interface for K-Expert. lt is in fact a source code program written in C.

lndeed, at the time being, the way to use THESEUS to implement a man­

machine interaction may be described in the following manner :

- Generally speaking, a so-called "interface program" must signal to

THESEUS in which way it has to react to which actions. lt means that

this main program must create and initialize the data structures that

must be displayed as interactive abjects on the screen. For example, it

has to define windows by specifying the desired components (such as

the "close box", the "size box", the "title", ...) and the functions to

associate to these components if a special treatment is required. The

255

Chapter 5 Architecture proposai for K-Expert

source code corresponding ta the associated functions has also ta be

written in this program. This code may rely on functions managed by

THESEUS and which belong ta the categories defined in the taking into

account the output in Section 5.3.1.1. ln order ta trigger off the

THESEUS event-handler sa that it can perceive user physical inputs,

the main interface program is also responsible for the starting and the

stopping of the event-handler. This is for the present. ln the near future,

this programming could be replaced, up ta a certain extent, by a

dialogue generator which is evoked in Appendix D Then the necessary

C-code (contents of the conversation manager) could be automatically

produced. What should also be kept in mind is that it is the main

program, we are speaking about, which implements the dynamic of the

dialogue through the definition of the functions that it associates ta

each possible event. The contents of this module is built on the basis of

the informations presented in Section 4.13.3

From a general point of view, it can be said that this module fits well into

the characteristics proposed in its abstract description.

From a particular point of view, we can say that this module

- triggers off THESEUS functions in order ta perform its own

functions.

- triggers off proper application functions in the same aim. The

specification of these application functions may be found in

Section 4.6 ..

- receives complementary informations (through a parameters

setting) from THESEUS (by executing an "inquire THESEUS

function") or from an application function it triggers off.

- is activated by THESEUS or by application functions which

want ta trigger off some of the functions it possesses.

256

Chapter 5 Architecture proposai for K-Expert

5.3.1.3 The interactive application manager

ln our concrete case, this module is a program written in C which

plays the raie of correspondance table between the application functions

necessary by the conversation manager module and those offered by the

application functions module and conversely. Moreover, this module enables

external programs to have access to functionalities of the interactive

application. So, this module is an interface providing access to the library of

functions of the application functions module and the library of functions of

conversation manager module. The available application functions are

described in Sections 4.6. and 4.7 ..

As for the conversation manager functions, they can be deduced

from Section 4.8. and 4.11. . So, the contents of this module has to be written

by the interface developer on one side and by the application functions

developer on the other side in order to implement the transparence between

the interface and the application.

This module decides which contrai must be the leader. So, in our

case, the module disposes of a procedure written in C which calls the main

function of the conversation manager module (e.g. the function starting the

event-handler of THESEUS).

5.3.1.4 The application functions

ln our particular case, this library of functions is a black-box. This

module is under the responsibility of the developers of the application

functions module. Thus, it is not relevant for the study of the interfacing of an

interactive application. The contents of this module can be built starting from

the functions specified in the Section 4.6 ..

Let's now conclude our empirical architecture validation by the

presentation of processing steps associated to a basic functionality of the

proposed interface.

257

Chapter 5 Architecture proposai for K-Expert

5.3.2 Processing steps of a typical functionality of the K-Expert
interface

The aim of this section is to show that all the steps occurring during

a using session of the interface that has been proposed for K-Expert may be

created by well-defined modules of the architecture we have conceived.

To fulfil this global objective, let's refer to a typical use of the

interface. Among typical and most frequent operations performed thanks to

the interface, there is the creation of a rule.

ln order to be complete, we start from the launching of the K-Expert

interface but we consider that all the necessary preliminary actions have been

performed. These actions are the selection of an expert system and of a

knowledge module.

To preserve the understandability of this example, we assume that

no wrong manipulation is performed and consequently, no error-treatment has

to be envisaged. However, we consider some typical actions that can be

performed at any time, whenever one has loaded the interface, such as resize

a window.

Notice that the actions performed by the analyst are put into signs

like these: < >. Let's now begin the example.

< Type "K-Expert" to launch the interface >

Interactive application manager :

- Activates the conversation manager by triggering off the program

corresponding to the K-Expert interface.

Conversation manager :

- Begins the execution of the code instructions. lt calls a THESEUS

function in order to initialize the whole THESEUS work.

258

Chapter 5

Interactive abjects manager :

- lnitializes its work.

Conversation manager :

Architecture proposai for K-Expert

- Continues to execute its instructions. Concretely, it transmits

parameters to the interactive objects manager in order to create the K­

Expert window.

Interactive abjects manager :

- Updates its internai structures (input sets, input elements ...) according

to the received parameters.

Conversation manager :

- Starts the event-handler.

Interactive objects manager :

- Displays the K-Expert window.

(... etc.)

< Click on the "Editor" icon of the K-Expert window >

Interactive abjects manager:

- Perceives the event, identifies it and finds the corresponding function

name by applying the method explained in the Section 5.3.1.1. called

"Taking into account of the input" ;

- Triggers off the corresponding function of the conversation manager.

Conversation manager :

- Gives parameters to the interactive objects manager in order to create

and display the "Editor" pop-up menu.

259

Chapter 5 Architecture proposai for K-Expert

Interactive abjects manager :

- Updates its internai data structures ;

- Displays the "Editor" pop-up menu.

< Click on the "Rules Editor" item in the "Editor" pop-up >

Interactive abjects manager:

- Perceives, identifies the avent and finds the corresponding function

name;

- Triggers off the corresponding function of the conversation manager.

Conversation manager : (1)

- Requests the interactive application manager to obtain the first rule of

the considered knowledge base.

Interactive application manager : (2)

- Triggers off the chosen function of the application functions in order to

provide the result awaited by the conversation manager.

Application functions : (3)

- Fetches the first rule from the knowledge module ;

- Returns it to the interactive application manager.

Interactive application manager : (4)

- Transmits the received rule to the conversation manager.

Conversation manager : (5)

- Gives parameters to the interactive abjects manager in order to create

and to display the "Rules Editor" window with the received first rule as

contents.

260

Chapter 5

Interactive abjects manager : (6)

- Updates its internai structures ;

- Displays the "Rules Editor" window.

(... etc.)

< Click on the "next page" icon >

Interactive abjects manager:

Architecture proposai for K-Expert

- Perceives, identifies the event and finds the corresponding function

name;

- Triggers off the corresponding function of the conversation manager.

Conversation manager :

- Requests the second rule of the knowledge base via a process similar

to that described in order to obtain the first one. This process is not

described again here. So, we assume here the realization of the step

(1) to (4) ;

- Gives parameters to the interactive abjects manager in order it updates

the Rule Editor window with the received second rule.

Interactive abjects manager :

- Updates its internai structures ;

- Displays the "refreshed" Rule Editor window.

< Click on the size box of the Rule Editor window >

Interactive abjects manager:

- Perceives, identifies the event. As there is no explicit function name

associated to this event, it treats it by itself. As a result, the window is

resized after an updating of the corresponding internai structures.

261

Chapter 5 Architecture proposai for K-Expert

< Click on the "New" button of the Rule Editer window >

Interactive abjects manager :

- Perceives, identifies the event and finds the corresponding function

name;

- Triggers off the corresponding function of the conversation manager.

Conversation manager :

- Create an "add new rule" functional message ;

- Requests the interactive abjects manager to display an empty mask in

the Rule Editer window by giving it the necessary parameters.

Interactive abjects manager :

- Updates its internai structures ;

- Displays an empty mask.

< Entry of a rule name in the corresponding field of the Rule Editer
window >

Interactive abjects manager :

- Perceives, identifies the event and finds the associated function name ;

- During the identification process as THESEUS discovers that a pattern

of authorized values for each character has been attached to this field, it

performs a syntactical contrai ;

- If there is a problem, it produces of its own an error message box to

draw the analyst's attention. Then, it waits for a new event from the

analyst (in fact a click on the "OK" button of this box) ;

- If there is no problem, THESEUS triggers off the corresponding function

of the conversation manager.

262

Chapter 5 Architecture proposai for K-Expert

Conversation manager :

- Requests the interactive application manager ta verify if the typed rule

name already exists in the considered knowledge module.

Interactive application manager:

- Triggers off one of the functions of the Application Functions in order ta

provide the result awaited by the conversation manager.

Application Functions :

- Consults the database ta obtain the desired answer ;

- Returns the answer to the interactive application manager.

Interactive application manager :

- Transmits the received answer ta the conversation manager.

Conversation manager ;

- If the rule name already exists, it gives parameters ta the interactive

abjects manager in order ta display an adequate errer message ;

- Else (e.g. the rule is a new one), it adds the rule ta the "add-new-rule"

functional message.

< Filling of the other fields composing the Rule Editor mask >

The treatment of these fields is similar to this that has just been

presented.

< Click on the "Accept" button of the Rule Editor window >

Interactive obiects manager:

- Perceives, identifies the event and finds the associated function name ;

- Triggers off the corresponding function of the conversation manager.

263

Chapter 5 Architecture proposai for K-Expert

Conversation manaoer :

- Verifies if all the necessary information have been put into the

functional message "Add-new-rule" ;

- If the functional message contents is not satisfying, the conversation

manager gives parameters to the interactive objects manager in order

to display an adequate error message ;

- Else (e.g. the message contents is all right), the conversation manager

requests the interactive application manager in order to add the new

rule for which the information has been seized from the analyst in the

database. lt gives the built functional message to this module as a
parameter.

The same type of treatments occurs up to the moment when THESEUS

detects a "quit" event. Then, the event handler is stopped and the dialogue is

ended.

5.4 CRITICISM OF THE PROPOSED ARCHITECTURE

ln this chapter, we have proposed an architecture that is flexible

enough to be applied to every kind of interactive application. lndeed, it can be

instantiated with interactive applications that have an internai control with

hooks to mixed control but also with interactive applications in which the

control is external and offers hooks to mixed contrai.

Moreover, the proposed architecture strives for the modularity

principle. lndeed, we have regrouped concepts of the same nature in each

module. The objective of each of them is well-defined and the interrelations

between them are well-known and punctual.

The principle of independence between the application and the

corresponding dialogue is respected. lt makes possible to perform a separate

work on these two parts as well during the conception or execution steps as

during the maintenance stage. By this way, the dialogue conception can be

realized by persons who are specialists in the demain of ergonomy while the

application functions may be specified by experts in computer science.

264

Chapter 5 Architecture proposai for K-Expert

During the implementation, the correspondance between the two

independent constitutive parts is defined thanks to the specification of the

interactive application manager.

During the execution stage, the interactive application manager

manages also all the communications which are necessary if the interface

runs on another computer than that used for the performing of the application.

The principle of independence is also respected during the

maintenance step. lndeed, the implementor can change some of the dialogue

features without having to modify the application part. Of course, this

constatation is only valid while the implementor does not change the

specification of the function He modifies.

The proposed architecture is also complementary to the elements

described during the specification of the considered interactive application

(See Chapter 4.). As a matter of fact, all the functions derived from the

retained basic functionalities may be regrouped into the application functions

module. ln other respects, all the interactive objects and their chaining can be

put into the conversation manager module.

To conclude, let's note that we have validated this architecture by

instantiating it to the THESEUS UIMS and to a typical script of use of our

particular interactive application. Nonetheless, in order to validate our

architecture completely, a complementary step is necessary. lt consists of the

implementation of the interfaced interactive application but this point is beyond

the scope of this work.

265

CONCLUSION AND PROSPECTS

As conclusion, we describe the aspects which have been tackled in

this study. Then, we place our contribution to the carried out work. Finally, we

present some future prospects and also the new topics of development and

research that can be considered.

1. T ACKLED ASPECTS

We have presented theoretical principles and more empirical ones

that should always inspire man-machine interface designers whatever

interactive application they consider. Then, keeping in mind these general

pre-requisites, we have gone deeply into our thought in order to adapt it to a

particular interactive application such as the building and consultation of an

instantiation of an expert system shell.

ln this perspective, we have taken into account two particular points

of view. First, the person for who we had to propose an interface (e.g. an

expert system analyst) and afterwards, the persan who is responsible for the

implementation of the suggested interface.

To be more precise, let's say that in a first time we have determined

basic features of the interface to design by thinking about the profile and also

about the task of the considered analyst. Then, to facilitate our design

process, we have looked at already existing expert system shells interfaces.

We have had a practical approach of them (e.g. persona! experience) and we

have criticized them at the light of the previously evoked theoretical principles.

The next step consisted of the functional analysis and of the

specification of our interactive application. At this stage of the work, we were

able to propose a visualization of the conceived analyst's interface

independently of implementation concerns.

266

Conclusion and prospects

Then, we have tackled the problems linked to a possible

implementation of our analyst's interface. ln order to salve them, we have

proposed to retain a modular architecture in which the dialogue is separated

form the application functions.

Finally, we have introduced a so-called empirical validation of the

architecture we have built in order to cape with our impossibility to realize the

implementation of the interface.

2. CONTRIBUTIONS TO THE WORK

The theoretical principles follow form studies led by various kinds of

people (computer scientists, psychologists, ergonomists ... etc). lndeed, we

have been careful to reflect the fact that the interface designing must be

submitted to a pluridisciplinary approach in order to face the diversity of the

human intervenings. The general approach of the analyst's task and profile is

aise inspired by already carried out researches.

The empirical study of existing interfaces and of the expert system

shell to interface (e.g. K-Expert), on their side, result from our practical

experience with them. This experience has been acquired notably during our

training period in Germany.

As for the specification of the considered interactive application and

the proposai of an implementation architecture, we have been inspired mainly

by researches led at the "Institut d'Informatique" at Namur. lndeed, we have

adapted current results of these researches freely in order to fit the case in

which we took interest.

267

Conclusion and prospects

3. TOPICS OF DEVELOPMENT AND RESEARCH

Generally speaking, it can be underlined that many parts of the work

presented here may be submitted ta further researches. For example, as it

often appears through the literature, the domain of theories concerning the

man-machine communication is in full development at the time being.

Pluridisciplinary studies in this domain should be pursued in such a

way that it would be possible ta modelize the way humans interact with

computers and ta visualize their task as accurately as possible. ln this

perspective, it appears also that one should concentrate efforts on the

determination of human mind abilities and limitations in order to adapt

computers and also programs ta them (and not the contrary).

ln a word, let's say that after the building of solid foundations for the

designing of ergonomie physical tools (such as keyboards, mouses and sa

on), one must be aware that such an effort must also be consented in order to

design what becomes known as ergonomie softwares.

As for our persona! contribution, it seems clear ta us that it consists

of the first steps of an interface designing process. As a result, our work

should be submitted to various refinements sa that ta an implementation. ln

particular, let's underline that the specification process we have proposed and

illustrated by the study of some functionalities should be realized in a

systematic way for all the retained functionalities.

The analyst's interface proposai, on its side, results from our

readings and persona! experience with existing expert system shells

interfaces. Of course, we have tried ta approach the analyst's task and profile

in order ta design our interface on solid bases.However, we are not analysts

and we have a certain computer science background at our disposai.

Consequently, it should be more than necessary ta take our proposai as a

preliminary study which has ta be submitted ta a prototyping step in order ta

adapt it ta real analyst's needs and abilities. For example, we should not

forget that analysts do not always dispose of extended computer knowledges.

Another domain of research concerns the implementation of

software environments able ta support the designing process.

268

Conclusion and prospects

The architecture we have proposed should be valid for every

interactive application. We have validated it by showing that it could be

possible to affect a consistent contents to all its modules if we decide to

implement our interface proposai with the THESEUS UIMS.

Obviously, the best validation for such an architecture would consist

of an implementation by programmers. During this process, it should be

possible to determine if it is really possible and suitable to consider the

modules we have retained and to inter-link them as we have done it.

As a general conc:uding remark, let's say that what follows from our

work and what should be kept in mind while interfacing man-machine

interactions is that the process of designing interfaces relies on many

tradeoffs. Consequently, interface design should be seen as an Art requiring

the intervention of numerous kinds of people rather than as a systematic and

predefined process which could be defined once and for ail.

269

APPENDIX A :

K-EXPERT ILLUSTRATION

◊ Figure A.1 Initial Run-time environment.

K-EXPERT Cc) r()IJ/ORGA lr Rt:oe 1 n auin,n-ten Il KPS: pc-k.:iuf

Mas lfOllen Sle "8dlen ?

Këgl i che r.itworten . ZielorientieM aus11erten .
Datenorientiert auswerten
F' aktffl uerwal ten
ucriges Hmu

◊ Figure A.2 Run-time environment during a consultation.

1 K-EXPERT (c) ADV/ORGA Il Rückwllrts / T ief e Il XPS: fl ugzeuo
Va wolll'n S.le ..achen 7 Zh-lorimt.iut auswerun
Bit u AuswertlA'losuerhhren aunlihll'n : Rückwartsuerkl!'t tono / T bf'e zuerst
Wd che ~rhbll' soll bestbu,t werden 7 n uozei~v
Welchll'r Vm-i:ablmwert soll überprlih werden 7 I.JIBEKAHHT

Anz:ahl der Triebwerke7 2
Vo befindm 1ich die Triebwerke7 Tr:::iofllc~n
Vo befindet 1ich der Hittelpunkt der Triebwerke7

fitj;l iche Antwortm : uor den Tr;aon tchen
lA'IUr den T r:::iofl lchen
WERT□HGABE
FAKT DIBEST AHD
~BEKAtl4T

Rückwlirts H1,1:1ot~se : nua:œuatyp " Airbus

A.1

Appendix A K-Expert illustration

◊ Figure A.3 Initial knowledge engineering environment.

1 k'.-Exprrt Cc) ADIJ/ORGA Il H a u p t " r n U Il XPS: f1 UQUUQ

[xpttunsysu" aunihl rn

Rr13rl n brm-bd trn

Rr13rl n ausorben

Variablrn be-schrdbrn

Re-orln ausvttun

Ende

Ausoabr auf BUdschJ.MI Druckdatri Druckrr

◊ Figure A.4 Rules Editor.

K-Expert (c) ADIJ/ORGA Il Rtoeln bearbri un Il XPS: f1 uozruo

Rr13rl: R 001

Es oilt nuo:œuotyp ,: Airbus

wem Trirbwrrlad tu = uar œn Traoflachtn
und Trirbwrrkfor,. = rund
und ~trirb ,. 2 Traoflë.chtntrirbwrri<r
und
und
und
und
und
und
und

Uorwirts RiJckwartl Suchm Elnorben Andtm Ltischm Haupti,rnU

A.2

Appendix A K-Expert illustration

◊ Figure A.5 Variable Editor.

K-Expl't't (c) ADIJ/ORGA Il Variablrn beschrdben Il XPS: fl uo~uo

Variable: Anzlllhl Fronttllren

Fr:aoe: Vieulel e Tunn bef indrn lich uor œn Tr:aoflac~n1

Vorwarts Rücknrts Suchen EinQrben Andem L~chrn Hauptr,erii

A.3

APPENDIX B :

M.1 ILLUSTRATION

◊ Figure 8.1 : M.1 delivery environment.

Execution Knowledge Base Cache Tracing
- APPLICATION DISPLAY

'

..-QUESTION -ANSWER CF -

F2 Scroll F9 Mode F 1 O Menus M.1 FRAMENTEC S.A READY

B.1

Appendix B M.1 illustration

◊ Figure 8.2 : M.1 development environment.

Execution
M.1>

Knowledge Base

F2 Scroll F9 Mode F1 O Menus

Cache Tracing

M.1 FRAMENTEC S.A READY

◊ Figure 8.3 : M.1 development environment with the panel option
"on".

Execution Knowledge Base Cache Tracing
.------ EVENTS ----.---- CONCLUSIONS -----.

--- REASONING --------.---- OPTIONS --

- F2 Scroll Window
M.1>

F2 Scroll F9 Mode F1 O Menus

8.2

M.1 FRAMENTEC S.A READY

APPENDIX C :

NEXPERT ILLUSTRATION

◊ Figure C.1 Initial window.

Knowœss

ReStart Session

Volunteer ...

Suggest... rffli
____ si_ra_te_g_y._ .. ____ cJ

Load Knowledge Base

Save Knowledge Base

Set Knowledge Base

Clear Knowledge Base

C.1

Il

Appendix C Nexpert illustration

◊ Figure C.2 Rules Editor window.

Current Edlting Mode

Left-Hand Side

Value
Column

C.2

Edit Une

Right-Hand Side

Appendix C Nexpert illustration

◊ Figure C.3 Session control window.

C.3

APPENDIX D :

MAIN CHARACTERISTICS OF THE THESEUS UIMS

D.1. INTRODUCTION

From a general point of view, THESEUS can be defined as a User

Interface Management System (UIMS) allowing to design and contrai

graphical user interfaces in a multi-window environment. lt supports state-of­

the-art interaction techniques such as :

- Multi-windowing for parallel work in various contexts ;

- Use of graphies (instead of exclusive use of text) for condensed and

visual display of informations ;

- Comfortable mechanisms like menus, icons (and so on) for user input ;

- Object oriented output adapted to the user level. Among the abject

oriented concepts, there are fixed basic abjects classes :

. "palyline abjects", graphies primitives consisting of a straight

line which may or may not have a direction such as a circle

arc;

"area abjects bound by edges" like boxes, triangles ... etc ;

"graphies texts abjects" containing alphanumeric strings ;

"master abjects" consisting of arrays of pixels with fixed

physical size ;

lt is also possible to define complex abjects by recourse to structuring

mechanisms applied to basic abjects. These graphies abjects are

controlled via graphies attributes such as geometrical attributes, size

and dynamical attributes (as edges type, edges visibility, display of a

graphies text...etc). Moreover, an inheritance mechanism is used in

order to bind complex abject attributes to son abjects.

D.1

Appendix D Main characteristics of the THESEUS UIMS

- Event-driven input processing to implement user-controlled dialogue

techniques. lt means that the description of a dialogue is based on an

event-model in which user interactions with physical devices are put

into correspondence with a predefined set of events which are handled

by a so-called "event handler".

The main application areas for THESEUS are software

development tools and software engineering environments. ln a word, these

environments may be characterized by the fact that their underlying

philosophy of the user interface is based upon a dialogue possessing a type

and a contents determined by the user and not by some fixed sequences built

into the application itself.

This UIMS, whose name means "THE Software Engineering USer

interface management system" is developed by the "Zentrum für Graphische

Datenverarbeitung" in Darmstadt. lt is now in full revision in order to fit more

and more to its predefined aims. These ones may be summarized in the

following way :

- THESEUS must ensure the separation between tasks dealing with

man-machine communication and the application itself by putting them

into an independent component supporting flexible communication

mechanisms. This separation is particularly significant for open

systems such as software engineering environments because these

ones have to integrate a lot of software development tools.

- lt supports a high level of abstraction. ln this way, application functions

are released of all tasks dealing with the dialogue interface program

and, moreover the programmer must not think about the realization of

specific interaction techniques like menu and icon selection, dragging

or abject selection.

- As far as possible dialogues are executed locally without involving the

application program. This is perhaps one of the most interesting

characteristics of THESEUS for an interface programmer. For example,

all window operations such as resize and close are handled by

THESEUS itself autonomously when most of the existing window

managers involve the intervention of application functions in charge of

the treatment of such operations. ln other words, the window

D.2

Appendix 0 Main characteristics of the THESEUS UIMS

management in THESEUS hides all the problems normally related to

multi-windowing from the application program. Another example of this

independence of the application is that a large output butter of variable

length is connected to every alphanumeric window independently of the

actual size of the screen which is also handled by THESEUS

automatically. Only a part of this buffer is visible in a window at a time

but a scrolling ability supports the shifting of the visible area without

requiring any intervention of the application. Moreover, it can also be

mentioned that the dragging of graphies abjects is also entirely under

the THESEUS responsibility. This feature is envisageable because

THESEUS is at an upper level than a classic window manager. lndeed,

we can visualize the THESEUS situation as follows :

Application

UIMS THESEUS

GEM Motif

MS-DOS OS/2 UNIX

Figure 0.1. : THESEUS development directions.

- With regard to the contrai, it can be said that the flexibility already

evoked in the communication interface <---> application is reinforced by

the fact that the contrai implemented is an alternating one. lndeed, an

application function requiring information from the user or having to

0.3

Appendix D Main characteristics of the THESEUS UIMS

display it calls THESEUS, so we can speak of internai contrai. On the

other hand, the application pragram is called by THESEUS in order to

support input events by providing corresponding functions. This may be

related to external contrai. This fits dynamic dialogues particularly well

because there, the flow of the contrai has to be changeable at the run­

time. We have already said that THESEUS is event-driven. So,

according to this feature, its contrai mode! may be represented in the

following way.

Application calls
caused by

input events

Calls for
presentation or

dialogue control

Figure D.2. : THESEUS Contrai Madel.

THESEUS:
Dialogue

• Manager

THESEUS:
Presentation
Manager and
Dialogue
Control

A final remark about contrai is that THESEUS implements the

philosophy of dialogue dominance. lt means that all the changes

visible on the screen are triggered off by the user only ; indeed,

functions like size or scrall a window are only offered to the user and not

to the application program. We can also remark that, at the time being,

it is not possible to implement interactive application in which, during

the dialogue course, an application function requires information. ln a

word, it can be said that it is now impossible to start a dialogue inside a

dialogue previously begun. This is annoying for us because it means

that the starting of an expert system consultation from the dialogue

implemented through the analyst's interface is not envisageable.

D.4

Appendix D Main characteristics of the THESEUS UIMS

However, this is only a temporary limitation. lndeed, in the near future, it

should be possible to implement a so-called "temporary event-handler"

which will only be active during the seizure of the necessary

informations.

- Moreover, THESEUS provides a consistent user interface for all the

software tools of an integrated system. So, there is a uniform model

which combines all the different techniques of dialogue programming,

graphies programming and window management. The consistency is

reinforced by the fact that THESEUS respects the Common User

Access principles [IBM 87]. So, an application interfaced with

THESEUS should be consistent with other ones which embody the

rules highlighted by the Common User Access.

- Finally, thanks to THESEUS, it must be possible to develop user

interfaces by an incremental dialogue specification. lndeed, an

interactive procedure can be followed during interface design. So, one

can start from a prototype of the end-product to implement. During

every dialogue step, the only thing to do is to describe the difference

from the preceding steps. By this way, the complexity of dialogue

description is alleviated and the ability of dynamic modifications

increases the flexibility of the dialogue specification. lndeed, at any

time, it is possible to add or suppress events kept in mind by THESEUS.

D.2. THE THESEUS LAYER MODEL

Now, more details may be furnished about the architecture of

THESEUS. We present here a logical view onto the THESEUS system as it is

seen by the system developer. ln fact, the task of transforming device-specific

functionality to application-oriented semantic and conversely is realized by

three layers. This model may be visualized thanks to Figure D.3.

D.5

Appendix D Main characteristics of the THESEUS UIMS

Application Program

'

·~ " r r _.., r

1 Hm 11 Icon I B
Gr1phics Alpha- llindo11 Dialogue

c' ~ ~ ~,J- e>
nuœric

Control output output Control
ld~n- r;xr tion
tJf. Area

./ '- ./

.Dialogue Presentation
Manager Hanager

Ir

r 'I

llindow Jl.anager

'-

,.
r

1 Basic Input/Output Systui

\.

'

THESEUS

Figure D.3 : THESEUS System Architecture.

The Basic 1/0 system, the first level, maps device capabilities to a

device independent level.

The Window manager, the second level, repairs overlapping

screen areas, maps user input to input classes recognized by THESEUS and

provides output primitives (such as polyline) into visible or hidden windows

including transformations from window to screen coordinates.

The third and last one is composed of the following components :

- The Presentation manager which is busy with the display

of all the informations on the screen. This functionality is

D.6

Appendix D Main characteristics of the THESEUS UIMS

used by the application program in order to open graphies or

text windows and to draw and manipulate abjects within the

window. The data structures of windows and their

components are stored as logical information. Consequently,

it is possible to perform screen repairing and updating

without the intervention of the application.

- The Dialogue manager maps user input to logical

application oriented input sets. This module works in two

directions. lndeed, if the input corresponds to an application

function, the application program is informed by the dialogue

manager. On the other hand, using features of the

presentation manager, this manager performs feedback to

user inputs.

- The Dialogue control provides abilities to specify dialogue

units and sequences by creating input sets and their

elements which, for example, represent menus ... etc. The

information contained in this module is used by the dialogue

manager to prompt, echo or reject user input.

At this level, we do not go deeper into details about the functioning

process of THESEUS, it is done in the Section 5.3.

D.3. CONCLUDING REMARKS ABOUT THESEUS

Now, from a practical point of view, it can be said that the three main

tasks assigned to THESEUS are :

- To ensure the availability and the management of a so-called virtual

device surface (e.g. a world coordinates system for graphies windows or

a coordinates system of rows and columns for text windows). lt could be

underlined that the information which is actually displayed may be only

a part of this surface ;

- To realize local interactions (e.g. to perform actions associated to the

contents of a window) ;

D.7

Appendix D Main characteristics of the THESEUS UIMS

- To map input events corresponding to user actions with window

contents and if necessary, to transmit these events to an application

function which has been linked to this window.

This general presentation of THESEUS may be concluded by some

remarks about the way to implement application user interfaces by using this

UIMS.

At the time being, the interface programmer, refering himself to

generic interactive abjects and their properties which are offered by

THESEUS, has to write an interface program. This one contains the

instantiation of necessary generic interactive abjects, associates functions to

each possible event and starts (and stops) the event-handler.

However, this is a really tedious task. So, in the near future,

interface programmers should have access to a so-called dialogue generator.

This generator should enable them to instantiate interactively generic abjects

interactively. For example, it would be possible to instantiate a window by

clicking on icons representing ail its components in order to affect the desired

ones to the instantiation.

Moreover, there would be the ability to write a function in

correspondence to an event.This can be illustrated in the following manner.

After selecting a button interactive abject, and after having positioned it at the

right place, the programmer could click on it in order to open a dialogue box in

which to type the text of a function to be launched when the button will be

clicked on during the run-time.

However, in a first time, the ability to directly write functions in

correspondence with events will be restricted to low-level functionalities (such

as the display of a check mark in front of a selected menu-item). lndeed, for

functions which imply the intervention of the application, only the function

name will be given. The contents of the desired function written in C language

will have to appear in another place. At the end of the use of the generator, an

ASCII resource file should be created. This one should be integrated with the

C functions written in a common editor in order to create a single file

understandable by THESEUS.

D.8

Appendix D Main characteristics of the THESEUS UIMS

0.4. GENERIC ACTIONS ON GENERIC INTERACTIVE OBJECTS

◊ Actions on a window :

Managed by THESEUS autonomously:

Click on a size box (to resize the window) ;

- Click on a move box (to move the window) ;

- Click on a scroll bar (to scroll the window contents) ;

- Click on a already opened window (to activate it and to give it the status

of a so-called "listener window") ;

- Click on a iconization box (to iconize the window) ;

- Click on a growing box (to extend the window to a screen size) ;

- Click on a zoom box (to change the size of the abjects contained in the

window);

The three last options will be implemented in the near future.

Manageg ID! QaJjiçylgr f!.!nctiQn§ :

For all the actions of this kind, THESEUS performs default treatments (if

there is one) and then calls the attached function (if there is one too).

- Click on a help box (to obtain help information) ;

- Click on a undo box (to undo the last transaction performed on the

considered window) ;

- Click on a close box (to close a window and perform associated

treatments if necessary).

◊ Actions on an icon :

Managed bx THESEUS autonomously:

- Click on an icon and while pressing continuously on the mouse button,

move the mouse (to move the icon).

D.9

Appendix D Main characteristics of the THESEUS UIMS

Manag~d QY garticular functions:

- Click once or twice on it (to activate the functionality attached to this

icon) ;

This is valid for the version of THESEUS running on the GEM window

manager. lndeed, if the considered window manager is the "Presentation

Manager" of IBM the role of the icon is to embody in-course processes. ln

this case, the possible actions on the icon are : move the icon, select the

icon and open the window corresponding to this icon by a double click on

it.

◊ Actions on a button :

Managed by THESEUS autonomously:

None.

Managed gy garticular functions:

- Click on a button (to activate the functionality attached to it).

◊ Actions on a menu title :

Managed QY THESEUS autonomously:

- Click on a menu title (to display the corresponding menu item).

Managed by garticul~V functions:

None.

◊ Action on a menu item :

Managed ~ THESEUS a!,Jtonomoysly:

- Click on a set of displayed menu items and while pressing continuously

on the mouse button, move the mouse (to make the menu and to make

the menu contents constant somewhere on the screen).

Managed by gartiçulêr fwngtion :

- Click on a menu item (to activate the functionality attached to it).

D.10

Appendix D Main characteristics of the THESEUS UIMS

◊ Actions on a graphie abject :

Managed Q~ THESEUS autonomousl~:

- Click on a graphie abject by pressing continuously on the mouse button

and move the mouse to a desired area (to display the abject in the

desired area).

M§nageg gy gartiçular fynçtiQn§:

- Click once or twice on a graphie abject (to activate the functionality

attached to it).

◊ Actions on an input text abject :

Manag~g Q!l THESEUS autonQmOlJSl!l:

- Click somewhere on the text abject (to position the cursor) ;

- Input a value in the text abject. After this, the value is seized by

THESEUS which performs a syntactic contrai (by reference to a

pattern). ln the future, it should also be possible to perform such a

contrai character by character. If there is a detected problem,

THESEUS displays an errer message autonomously;

- Move the cursor in the text abject by using key arraws (to move the

cursor and to scroll the visible area when the cursor reaches one of the

edges of the field and informations are hidden in that directions).

Managed b~ garticular functions:

- Input a value in the text (to activate the function attached to it) ;

The functionality attached to this action could for example performs more

complex syntactic contrais that these performed automatically by

THESEUS.

◊ Actions on an output text abject :

Managed b!l THESEUS autonomously:

None.

D.11

Appendix D Main characteristics of the THESEUS UIMS

Managed by garticular function§:

- Click on it (to activate the functionality attached to it).

As the three other generic interactive objects are currently under examination,

it is only possible to evoke actions that will probably be implemented in the

future. Consequently, the actions proposed here may be submitted to a

fundamental revision.

◊ Action on a dialogue box :

THESEUS should support the moving of a dialogue box but baside this, it

should only be possible to action the constitutive objects of this box. Among

the envisageable actions, there should be the filling of a text object, the

clicking on a button and so on.

◊ Actions on an scrollable list :

Managed by THE~EUS autonomously:

- Click. on a scroll bar (to scroll the visible area).

Managed by particular functions:

- Click on one or more values of the displayed list (to activate the

functionality attached to them).

◊ Actions on the cursor:

Managed by THESE!JS autonomously:

- Move the cursor by using the mouse ;

ln the future revision of THESEUS, it should also be possible to reshape

the cursor. But this would be done after a request from one of the

functionalities attached to actions performed on an object.

Managed by garticular function :

None.

D.12

Appendix D Main characteristics of the THESEUS UIMS

To conclude the enumeration of generic actions, it can also be

remarked that when a user clicks outside an instantiation of a generic

interactive abject, THESEUS treats autonomously this action. ln tact, it

produces a sound in order to indicate that an illegal action has been

performed. The tact that user can click anywhere and receives a

corresponding THESEUS answer satisfies the lack of precondition associated

to the input of the so-called "input translation function" of the Section 5.2.1.

0.13

[Apper 83]

[Bass 85]

[Bad 89]

[Brown 88]

[Gard 83]

[Chan 88]

[Cout 87]

BIBLIOGRAPHICAL REFERENCES

M. Apperley and R. Spence

The Role of a User's System Mode/ and its Relevance

to User Interface Management

in User Interface Management System, Proceedings of

the Workshop on UIMS, Springer Verlag, 1983.

L.J. Bass

A Generalized User Interface for Applications

Programs (Il)

in Communication of the ACM, Vol 28, n°6, June 1985.

F. Bodart et Y. Pigneur

Conception assistée des Systèmes d'information

Méthode- Modèles- Outils

Masson, Paris, 1989.

C. Marlin "Lin" Brown

Human-Computer Interface Desing Guidelines

Ablex Publishing Corporation 1988.

S. Gard, T. Maran and A. Newell

The psychology of Human-Computer Interaction

Lawrence Erlbaum, Milsdale 1983.

M. Chandelon

lmplementation du modèle APEX

FNDP, 1988.

J. Coutaz

The Construction of User Interfaces

First European Software Engineering Conference,

Strasbourg, France, September 1987.

Biblio.1

[Fau 82]

[Fisch 89]

[Guru 87a]

[Guru 87b]

[Har 86a]

[Har 86b]

[Har 86c]

[Har 86d]

[Hart 89]

Bibliographical References

B. Faulle

L'informatique conversationnelle, méthodologie

d'analyse et de programmation

Les éditions d'organisation, Paris, 1982.

G. Fischer

Human-Computer Interaction Software : Lesson

Learned, Challenges Ahead

in IEEE Transactions on Software Engineering,

January 1989.

Guide de programmation avec GURU

ISE-CEGOS, Les Edtions du Logiciel, Mars 1987.

Guide d'apprentissage de GURU

Version 1.0, ISE-CEGOS, Les Editions du Logiciel,

avril 1987.

P. Harmon and B. Sawyer

What is a mid-sized tool ?

in Expert Systems Strategies, Vol.2,n° 4, April 1986.

P. Harmon

An overview of Knowledge representation

in Expert System Strategies, Vol 2, n°7, July 1986.

P. Harmon

Objects and inheritance

in Expert System Strategies, Vol 2, n°7, July 1986.

P. Harmon

Large hybrid too/s : ART, KEE and KNOWLEDGE

CRAFT

in Expert System Strategies, Vol 2, n°7, July 1986.

R. Hartson

User-Interface Management Contrai and

Communication

in IEEE Transactions on Software Engineering,

January 1989.

Biblio.2

[Hix 89]

[Hals 87]

[Hurl 89]

[IBM 87]

[K-EXPERT 1]

[Kar 83]

[KEE 1]

[Law 88]

[M1 87a]

[M1 87b)

Bibliographical References

D. Hix and H.R. Hartson

Human-Computer Interface Development : Concepts

and Systems for its Management

in ACM Computing Surveys, Vol 21, n° 1, March 1989.

C.W. Holsapple and A.B. Whinston

Business expert systems

Irwin, USA, 1987

W.D. Hurley and J.L. Sibert

Modeling User Interface-Application Interactions

in IEEE Transactions on Software Engineering,

January 1989.

Common User Access, Panel Design and User

Interaction

IBM, December 1987.

K-Expert Ookumentation

ADV/ORGA, Wilhelmshaven, mai 1988.

G. Karnas et P. Salengros

L'ergonomie : adapter ?

in La Revue Nouvelle, n°3, 1983.

KEE 3.1. User's Guide and Technical Manual

lntelliCorps, Inc, Publication Number K3.1-IG-SUN-1,

Vol 1 & 2, March 1983.

J. Lowgren

History, state and future of user interface management

systems

SIGCHI Bulletin, Vol 20, n°1, July 1988.

M1 Reference Manual for Software

Version 2.1., Framentec S.A., 1987.

Mt Sample Knowledge System Notebook

Framentec S.A., 1987.

Biblio.3

[Mac 83a]

[Mac 83b]

[Mou 89]

[Myers 89]

[NEXPERT 87]

[Norm 86]

[Olsen 83]

[Pars 88]

Bibliographical References

M. Mac an Airchinnigh

Report on the User's Conceptual Mode/

in User Interface Management System, Proceedings of

the Workshop on UIMS, Springer Verlag, 1983.

M. Mac an Airchinnigh

A mode/ of a User's conceptual Mode/ of ...

in User Interface Management System, Proceedings of

the Workshop on UIMS, Springer Verlag, 1983.

B. Mou:in

lngeniérie des connaissances et informatique

cognitive des organisations.

Note de cours, FNDP Institut d'informatique, Namur,

1989.

B.A. Myers

User-Interface Tools : Introduction and Survey

in IEEE Transactions on Software Engineering,

January 1989.

NEXPERT Object Fundamentals

Neuron Data Inc, Version 1.1, USA, 1987.

D.A. Norman and S.W. Draper

User Centered System Design Nex Perspetives on

Human-Computer Interaction

Lawrence Erlbaum Associates Publishers, London

1986.

D.R. Olsen

Presentational, Syntactic and Semantic Components

of Interactive Dialogue Specifications

in User Interface Management System, Proceedings of

the Workshop on UIMS, Springer Verlag, 1983.

K. Parsage and M. Chignell

Expert systems for experts

John Wiley and Sons Inc, 1988

Biblio.4

[Rasm 86]

[Sac 88]

[Sac 89a]

[Sac 89b]

[Sea 87]

[Shnei 87]

[Stru 83]

[THESEUS 1]

Bibliographical References

J. Rasmussen

Information processing and human-machine

interaction- an approach to cognitive engineering

Elsevier 1986.

B. Sacré

Programmation sous Windows

FNDP, avril 1988.

B. Sacré

Eléments d'architecture d'une application interactive

sous DecWindows

FNDP, février 1989.

B. Sacré

Eléments de spécification d'une application interactive

FNDP, 1989.

D.L. Scapin

Guide ergonomique de conception des interfaces

homme-ordinateur

Rapport INRIA, France, octobre 1988.

B. Shneiderman

Designing the User Interface : Strategies for Effective

Human Computer Interaction

Addison Wesley Publishing Company, 1987.

H.J. Strubbe

Components of Interactive Applications

in User Interface Management System, Proceedings of

the Workshop on UIMS, Springer Verlag, 1983.

D. Eckardt, W. Hübner, G. Lux-Mülders and M. Muth

THESEUS, the software Engineering User Interface

ZGDV, Darmstadt, Federal Republic of Germany.

Biblio.5

[THESEUS 2]

[THESEUS 3]

[THESEUS 4]

[THESEUS 5]

[THESEUS 6]

[THESEUS 7]

[THESEUS 8]

Bibliographical References

W. Hübner, G. Lux-Mülders and M. Muth

Designing a System to provide Graphical User

interfaces : the THESEUS approach

ZGDV, Darmstadt, Federal Republic of Germany.

M. Muth and T. Neumann

Das U/MS THESEUS

ZGDV, Darmstadt, Federal Republic of Germany ;

ADV/ORGA, Wiesbaden, Federal Republic of Germany.

W. Hübner, G. Lux-Mülders and M. Muth

THESEUS , die Benutzungsoberflache der UNIBASE­

Softwar entwicklungsumgebung

Springer Verlag, Berlin, 1987.

H. Dümcke

Konzepte Anbindurng an die Anwendung Protoko/1

ADV/ORGA, Wiesbaden, Federal Republic of

Germany, May 1989.

THESEUS-Pmr Review der Anfurderungen an

THESEUS-Ergebnisprotoko/1

ADV/ORGA, Wiesbaden, Federal Republic of

Germany, July 1989.

R. Prem

THESEUS Konzepte Objektverwaltung in THESEUS

ADV/ORGA, Wiesbaden, Federal Republic of

Germany, May 1989.

C.P. Brück and M. Wigger

Werkzeuge für Dialog-und Formularentwurf mit

THESEUS ais User Interface Management System

ADV/ORGA, Wiesbaden, Federal Republic of

Germany, (slides).

Biblio.6

[THESEUS 9]

[Van 87]

[War 88a]

[War 88b]

[War 88c]

[Woo]

[Youn 88]

Bibliographical References

D. Eckardt, W. Hübner, G. Lux-Mülders and M. Muth

THESEUS : The Software Engineering User Interface

Management System

ZGDV, Darmstadt, Federal Republic of Germany.

A. van Lamsweerde

Méthodologie de développement de logiciel

Note de cours, FNDP Institut d'informatique, Namur,

1987.

G. Warnant

Methodologie de développement d'une application

interactive

Rapport de synthèse, FNDP, septembre 1988.

G. Warnant

Methodologie de développement du dialogue d'une

application interactive

FNDP, 1988.

G. Warnant

Elements de modélisation du dialogue d'une

application interactive

Note de cours, FNDP Institut d'informatique, Namur,

mai 1988.

D.D. Woods

Cognitive Technologies : the Design of Joint Human­

Machine Cognitive Systems

in the A. I. Magazine.

M. Young, R.N. Taylor and D.B. Troup

Software Environment Architectures and User

Interface Facilities

in IEEE Transactions on Software Engineering, Vol.

14, n° 6, June 1988.

Biblio.7

