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Résumé 
 

Dans son dernier rapport sur le cancer, l’institut américain de la santé (NIH) indique que 38,5 

% de la population développera un cancer durant sa vie et que près de 64 % des patients y survivront. 

Cependant, ce dernier chiffre cache de grosses disparités en fonction du type de cancer considéré. En 

effet, bien que le taux de survie général augmente d’environ 1 % chaque année, la mortalité associée 

à certains cancers, notamment ceux du système nerveux et du pancréas, augmente. Cette 

augmentation est due entre autres à l’inefficacité des traitements. Ainsi, la recherche portant sur 

l’amélioration des traitements actuels s’amplifie à travers le monde poussé par le besoin criant de 

nouvelles stratégies thérapeutiques pour ces cancers. Parmi l’arsenal thérapeutique disponible, cette 

thèse se focalise sur la radiothérapie. Cette technique consiste à délivrer une dose létale de radiations 

ionisantes, classiquement des rayons X, au sein de la tumeur. Malheureusement, la radiothérapie 

moderne est encore limitée par les dommages collatéraux occasionnés aux tissus sains entourant la 

tumeur. Ainsi, l’un des défis actuels consiste à optimiser la fenêtre thérapeutique, c’est-à-dire 

maximiser la différence entre la dose de radiation délivrée au sein de la tumeur et celle touchant les 

tissus sains environnants. L’utilisation de protons à la place des rayons X cadre avec cette démarche 

car les particules chargées permettent d’assurer un meilleur ciblage tumoral. En parallèle, le 

développement grandissant de la nano-médecine offre la possibilité de tirer profit de matériaux 

nanométriques pour diverses applications allant du diagnostic à la thérapie.  

 

Dans le cadre de cette thèse, nous avons étudié l’impact de traitements radiothérapeutiques 

combinant l’utilisation de particules chargées, des protons en l’occurrence, et de nanoparticules d’or 

(GNPs) sur diverses lignées cellulaires. Des expériences réalisées à l’UNamur ont permis de démontrer 

que la présence de GNPs au sein de cellules de carcinome pulmonaire lors de l’irradiation augmente 

la mortalité cellulaire. Cet effet est rapporté dans la littérature comme l’effet « enhancer ». Ainsi, pour 

une dose de 2 Gy, une augmentation de 25 % de la mortalité cellulaire a été observée lorsque les GNPs 

sont présentes au sein des cellules, à la fois pour des irradiations rayons X et protons. Néanmoins, 

nous avons montré que l’amplitude de cet effet varie avec divers paramètres physico-chimiques dont 

la taille des GNPs et le transfert linéique d’énergie des particules incidentes ainsi qu’en fonction du 

type cellulaire considéré.   

 

Dans une volonté de maximiser la mortalité des cellules cancéreuses, nous avons cherché à 

mieux comprendre le mécanisme à l’origine de l’effet enhancer. Ce problème fut abordé selon deux 

approches différentes. D’une part, une hypothèse physico-chimique a été émise : l’interaction entre 

le faisceau de particules chargées et une nanoparticule métallique mène à l’émission d’électrons 

capables de produire des espèces réactives de l’oxygène (ROS). Celles-ci peuvent alors endommager 

diverses cibles biologiques importantes. Ces résultats montrent une augmentation significative de la 

production de peroxyde d’hydrogène et de radicaux hydroxyles dans des solutions colloïdales 

irradiées par rapport à des solutions ne contenant pas de GNPs. De plus, l’ajout de molécules 

« scavenger » de radicaux lors de l’irradiation permet de diminuer drastiquement l’effet enhancer, 

démontrant le rôle important joué par les ROS dans celui-ci. Malgré ces résultats, des simulations 

attestent que, dans une configuration réaliste, la probabilité de rencontre entre le faisceau de 

particules chargées et les GNPs est de l’ordre de 1 %. Cette faible valeur indique que l’hypothèse 

formulée ne permet pas d’expliquer, à elle seul, l’effet enhancer observé. Ainsi, une seconde 
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hypothèse a été formulée : les GNPs perturberaient l’homéostasie cellulaire, prédisposant ainsi la 

cellule à mourir lorsque celle-ci est irradiée. Pour valider cette hypothèse, l’effet des GNPs sur diverses 

voies de signalisation au sein de cellules de carcinome pulmonaire a été étudié. Nous avons montré 

que l’incubation des GNPs induit une dépolarisation rapide des mitochondries, ce qui fut confirmé par 

l’observation d’une diminution du contenu d’ATP, un stress oxydatif et une diminution de la vitesse 

de prolifération. Ces dysfonctionnements biologiques peuvent être expliqués par une inhibition de la 

thioredoxine réductase (TrxR), une enzyme cytoplasmique impliquée dans la détoxification dans la 

réponse au stress oxydatif. Des mesures d’activité de la TrxR dans des cellules pré-incubées avec ou 

sans GNPs, ont montré une diminution de l’activité enzymatique lorsque les GNPs sont présentes au 

sein des cellules. De plus, nous avons observé que l’amplitude de cette inhibition varie en fonction du 

type cellulaire considéré et est corrélée à la quantité de NPs internalisées par les cellules. 

L’identification de cette cible a permis de proposer un nouveau mécanisme global responsable de 

l’effet radiosensibilisant des GNPs.  

 

 Dans une volonté de compléter ces recherches in vitro avec des études in vivo, nous avons 

modifié la surface des nanoparticules en y greffant des anticorps dirigés contre l’EGFR, un récepteur 

surexprimé par certaines cellules cancéreuses. Les études réalisées avec ce nano-object ont permis de 

montrer une accumulation plus importante des GNPs au sein de cellules exprimant l’antigène d’intérêt 

par rapport à des cellules ne l’exprimant pas. Ceci s’est traduit par un effet radiosensibilisant dans les 

cellules positives pour l’EGFR mais pas dans les cellules négatives pour l’EGFR. 

 

 Enfin, la dernière partie de cette thèse est consacrée à l’étude de dommages à l’ADN et de 

leur réparation dans des fibroblastes murins exposés à des rayons X ou à des particules chargées de 

LET élevé. Nos résultats montrent que le nombre foyers de réparations par Gy de radiation dépend de 

la souche murine étudiée et du LET de la particule incidente, laissant présager une influence de la 

génétique dans le phénotype de réparation des dommages à l’ADN. Ainsi, l’association de ces données 

phénotypiques avec les informations génétiques en notre possession nous a permis d’identifier des 

loci génétiques associés à des différences significatives en terme de sensibilité aux radiations. Ces 

recherches permettent de progresser dans la compréhension fondamentale des conséquences 

biologiques associées à des expositions aux particules chargées et d’en mieux comprendre les 

fondements génétiques. 

 

Ensemble, ces recherches permettent d’améliorer les connaissances des interactions 

complexes entre les nanomatériaux, les cellules et les radiations ionisantes. Le nouveau mécanisme 

responsable de l’effet enhancer que nous avons proposé ouvre de nouvelles pistes de recherche pour 

maximiser cet effet d’amplification, augmentant ainsi les chances de curabilité et la qualité de vie des 

patients. De plus, ces résultats ouvrent la voie à une utilisation seule ou combinée de particules 

chargés et d’agents radiosensibilisants dans un contexte de médecine personnalisée qui devrait 

prendre son essor dans la future décennie.   
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Abstract 
 

In its last cancer report, the National Institute for Health (NIH) indicated that 38.5 % of the 

population will develop a cancer during their lifetime. For 2017, it was estimated that about 1.7 million 

new cases would be diagnosed and more than 600,000 people will die in USA, corresponding to 64 % 

of survival. While this overall survival rate slowly increases over time, it masks significant disparities 

between the different cancer types. In fact, the death rates of several cancer types, including cancers 

from nervous system and pancreas, increase each year due to the inefficiency of treatment modalities 

for these cancers. Therefore, there is a real need for the discovery of new treatment modalities and/or 

for current treatment improvement. Amongst all the treatment modalities available, this thesis 

focuses on radiotherapy, which aims at delivering a lethal dose of ionizing radiation into the tumor. 

However, modern radiotherapy is still limited by the side effects caused to healthy tissues surrounding 

the tumor. One of the current challenges is to maximize the differential radiation dose deposited in 

the tumor and in normal healthy tissues (the so-called “therapeutic ratio”).  For this purpose, the use 

of charged particles instead of classical X-ray photons is growing worldwide, ensuring a more effective 

tumor targeting. In the meantime, the development of nanomedicine offers the possibilities to take 

advantage of nanoscale materials in a range of diagnosis and therapeutic applications. 

 

In the framework of this thesis, we have investigated the effects induced by a combination of 

proton irradiation and gold nanoparticles (GNPs) on various carcinoma cells. Our results demonstrate 

the ability of GNPs to enhance cell death upon irradiation. Thereby, a 25 % increase in cell death was 

observed when lung carcinoma A549 cells pre-incubated with GNPs were exposed to 225 kV X-rays 

and 25 keV/µm protons. Moreover, we evidenced that this radiosensitization effect vary with different 

physico-chemical parameters including GNP size or particle LET as well as according to the cell line of 

interest.  

 

In order to maximize the cancer cell death, we investigated the mechanism(s) responsible for 

this enhancement effect. In this context, two different approaches were investigated. On one hand, a 

physico-chemical hypothesis was suggested: the interaction between ionizing radiations and GNPs 

leads to the emission of low-energy electrons from the GNP. These electrons interact with the 

surrounding medium, producing reactive oxygen species (ROS), which can damage critical biological 

targets. Our results showed a significant increase in the hydrogen peroxide and hydroxyl radical 

production in colloidal solutions upon irradiation compared to solutions that did not contain GNPs. 

Moreover, the use of a radical scavenger during the irradiation enabled to decrease the 

radiosensitization effect evidencing the key role played by ROS in the mechanism(s) responsible for it. 

However, simulation works highlighted that the encounter probability between charged particles and 

GNPs is too low to explain, on its own, the origin of this enhancement effect. Thereby, a second 

hypothesis was suggested: GNPs disrupt cell homeostasis predisposing it to death after irradiation. To 

validate this hypothesis, we investigated the effect of GNP incubation on different biological 

pathways.  We reported that GNP incubation with lung carcinoma cells led to a time-dependent 

mitochondria membrane depolarization, to a decrease in ATP content and to oxidative stress. 

Moreover, a marked inhibition of thioredoxin reductase (TrxR) activity was observed in cells incubated 

with GNPs, suggesting that this enzyme is a potential GNP target. Furthermore, we reported that this 

TrxR activity reduction is cell type-dependent and leads to differences in cell response to X-ray 
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irradiation. Correlation analyses demonstrated that GNP uptake and TrxR activity inhibition are 

associated to GNP radiosensitization effect. With all these results, we suggested a new mechanism 

explaining the radiosensitization effect of GNPs. 

 

Although we demonstrated the potential of GNPs as in vitro radiosensitizers, their use for in 

vivo biomedical applications remains challenging due to biodistribution issues. Thereby, we developed 

targeted NPs, which can recognize the cancer cells. To achieving it, we grafted an antibody against 

EGFR, an overexpressed receptor in many types of cancers, at the GNP surface. Results obtained with 

this targeted GNP highlight a higher gold content in EGFR positive cells compared to EGFR negative 

ones. Consequently, we observed a significant enhanced effect of proton irradiation in EGFR positive 

cells but not in EGFR negative cells. 

 

Finally, the last part of this thesis focused on the DNA damage and their repair in mice 

fibroblasts exposed to X-rays or to high-LET particles. We evidenced that the number of radiation-

induced foci per Gy of radiation is LET- and mice strain-dependent, suggesting that this phenotype is 

driven by genetics. By associating phenotype and genetic data, we identified genetic loci associated 

to significant difference in radiosensitivity phenotype. These researches enable a better 

understanding of biological consequences associated to charged particle exposition and their genetic 

basis.  

 

 Altogether, these researches enable the improvement of our knowledge of the interaction 

between nanomaterials, cells and ionizing radiations. The new mechanism responsible for the 

enhancer effect that we proposed opens new research ways to maximize this amplification effect, 

thus increasing the chances of curability and the quality of life of patients. In addition, these results 

pave the way for the use of charged particles and radiosensitizing agents in a personalized medicine 

framework, which is expected to take off in the next decade. 
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1. Cancer 
 

1.1. Generalities  
 

Cancer are diseases in which normal cells are transformed into tumor cells from an 

accumulation of genetic and epigenetic alterations leading to an uncontrollable growth and spread of 

these abnormal cells. In 2000, Hanahan & Weinberg [1] suggested that these changes observed in 

neoplastic cells allow them to acquire new features, known as the “hallmarks of cancer” (Figure 1):  

 

 Sustaining proliferative signaling:  

While normal cells can only proliferate after mitogenic growth signal reception, cancer cells 

are much less dependent on external signals. It was reported in several cancer types that 

neoplastic cells are able to synthesize stimulatory growth factors on their own [1, 2]. 

 

 Evading growth suppressors: 

In a normal tissue, cell growth is regulated by different signals enabling to keep them in a 

quiescent state (through anti-proliferative signals) or to initiate cell proliferation when 

required. Most anti-proliferative signals are transmitted through the retinoblastoma protein 

(pRb) pathway, which is frequently mutated in cancer cells. Disruption of this pathway triggers 

cell proliferation even in the presence of anti-proliferative signals. 

 

 Activating invasion and metastasis: 

Some cancer cells have the ability to undergo the epithelial to mesenchymal (EMT) transition, 

a migration and invasive program that enables cancer cells to invade the adjacent tissue as 

well as the blood and lymphatic vessels. These vessels serve thereafter as pipelines for 

dissemination to other anatomical sites where the metastases can grow.   

 

 Enabling replicative immortality: 

In normal tissues, cells have the ability to divide for a given number of times. When this 

number is reached, they enter into senescence where they stop dividing. In contrast, cancer 

cells can circumvent the entry into senescence leading to an unlimited replicative potential 

[3]. 

 

 Inducing angiogenesis: 

In order to ensure a sufficient oxygen and nutrients supply, new blood vessels formation is a 

mandatory step for solid tumors. Although cells initially have no ability to trigger angiogenesis, 

extensive evidences show that tumors acquire this capacity to ensure the growth of new blood 

vessels [4, 5]. 

 

 Resisting cell death: 

Following alterations of cell death mechanisms, cancer cells can become unresponsive to cell 

death signals. For example, several groups have reported that p53, an key mediator in the 

regulation of apoptosis, is frequently mutated in cancer cells [6].  
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In 2011, Hanahan & Weinberg [7] suggested that the acquisition of the aforementioned 

hallmarks is facilitated by two characteristics: the genome instability and the inflammation. Moreover, 

they proposed to add two emerging hallmarks that promote the tumorigenesis: the deregulation of 

cellular energy metabolism and the ability to evade immune system destruction. 

 
Figure 1. Acquired capabilities of a cancer cell, known as “Hallmarks of cancer”. Adapted from [7] 

 

1.2. Epidemiology 

 
According to the World Health Organization, cancer is responsible for the death of 8.2 million 

people each year worldwide, constituting the second leading cause of death in developed countries. 

The most recent report available for cancer statistics was published in 2017 and discussed the 

incidence and mortality data from 1930 to 2014 1 in USA [8]. It highlights that the lifetime probability 

of being diagnosed with invasive cancer is slightly higher for men (40.8 %) than for women (37.5 %). 

For 2017, it was estimated that about 1.7 million new cases would be diagnosed and more than 

600,000 people will die in USA, corresponding to 64 % of survival. While this overall survival rate slowly 

increases over the time, it masks significant disparities between the different cancer types. As shown 

in Table 1, breast, lung, prostate and colon cancers still remain the most common cancer types but 

are mainly associated to relatively high survival rates (around 90 % for breast cancer for example). 

However, the diagnosis of pancreatic, hepatic, lung and esophageal tumors are associated to the worst 

patient overall survival with 5-year survival rates below 20 % (Table 1).  

 

                                                           
1 The lags of 3 years is due to the time required for data collection, compilation, quality control and 
dissemination. 
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Tumor type 
Proportion of all new 

cancer cases [%]  

Proportion of all  

cancer deaths [%]  

5-year relative 

survival rates [%]  

Patients for whom 

external radiotherapy 

is recommended [%]  

Patients for whom 

chemo-radiotherapy 

is recommended [%]  

Proportion of cancers 

for which radiotherapy 

is recommended [%] 

Proportion of cancers for 

which chemo-radiotherapy 

is recommended [%] 

Breast 15.0 6.8 89.7 87 N.I. 13.1 0 

Lung 13.2 25.9 18.1 77 26 10.2 3.4 

Prostate 9.6 4.4 98.6 58 N.I. 5.6 0 

Colon 5.7 8.4 64.9 4 N.I. 0.2 0 

Melanoma 5.2 1.6 91.7 21 N.I. 1.1 0 

Bladder 4.7 2.8 77.3 47 9 2.2 0.4 

NH Lymphoma 4.3 3.4 71.0 71 N.I. 3.1 0 

Kidney 3.8 2.4 74.1 15 N.I. 0.6 0 

Oral cavity & Larynx 3.7 2.2 64.5 74 26 2.7 1.0 

Uterine 3.6 1.8 81.3 39 N.I. 1.4 0 

Thyroid 3.4 0.3 98.2 4 N.R. 0.1 0 

Pancreas 3.2 7.2 8.2 49 35 1.6 1.1 

Rectum & anus 2.9 0.2 66.9 60 55 1.7 1.6 

Liver 2.4 4.8 17.6 N.I. N.I. 0.0 0 

Myeloma 1.8 2.1 49.6 45 N.I. 0.8 0 

Stomach 1.7 1.8 30.6 27 20 0.5 0.3 

Brain 1.4 2.8 33.6 80 53 1.1 0.7 

AM Leukemia 1.3 1.8 26.9 4 N.I. 0.05 0 

Ovarian 1.3 2.3 46.5 3.6 N.R. 0.05 0 

Esophageal 1.0 2.6 18.8 71 33 0.7 0.3 

Cervix 0.8 0.7 67.1 71 51 0.6 0.4 

Gall bladder 0.7 0.6 - 17 17 0.1 0.1 

Hodgkin Lymphoma 0.5 0.2 86.4 90 N.I. 0.5 0 

Testis 0.5 0.1 95.1 7 N.I. 0.04 0 

AL Leukemia 0.4 0.2 68.2 25 N.I. 0.1 0 

Vulvar 0.4 0.2 72.1 39 15 0.2 0.1 

Vagina 0.3 0.2 - 94 78 0.3 0.2 

Other 7.2 12.2 - 19.0 5 1.4 0.4 

        
Total 100.0 100.0 - - - 49.8 10.1 

 

Table 1. Epidemiology of cancer. Incidence, death rate and 5 years survival rate were reported by the SEER program in their last report on cancer epidemiology [8]. Optimal 
recommended radiotherapy and chemo-radiotherapy data are based on updated CCORE report published in 2013 [9]. Data about the proportion of cancer patients for whom 
(chemo-) radiotherapy is recommended were calculated by combining data from the aforementioned reports. N.I. = No indication identified; N.R. = Not recommended; NH 
= Non-Hodgkin; AM = Acute Myeloid; AL = Acute Lymphoblastic.
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Nevertheless, the Surveillance, Epidemiology and End Results (SEER) program has reported a 

decrease in overall cancer death rates by an average of 1.8 % per year for men and 1.4 % per year for 

women between 2011 and 2015 (Figure 2). Researchers attributed this decrease to various factors 

including an early diagnosis (breast cancer), the improvement of treatment quality and the reduced 

tobacco use (lung cancer). In contrast, the death rates of several cancer types (cancer from nervous 

system, liver, uterus, oral cavity, pancreas, soft tissue including heart and non-melanoma skin cancer) 

increase each year. Scientists believe that rising obesity has contributed to the increasing death rates 

for endometrial, pancreatic and liver cancers, while the increased rate for oral cavity cancer is 

attributed to human papillomavirus infection. Moreover, for some of them, there is no efficient 

treatment modalities up to now. Therefore, there is a real need for the discovery of new treatment 

modalities and/or for current treatment improvement.  

 

Figure 2. Average annual change in cancer death rate, expressed in percentages for different cancer types [8]. 

 

1.3. Treatment modalities  
 

Nowadays, the therapeutic arsenal can be divided in two groups of treatments: systemic and 

local treatments. The treatment choice depends on a set of factors including cancer type and stage as 

well as the age of the patient. 

 

Systemic treatments use molecules that travel through the bloodstream, affecting tumor cells 

wherever they are in the body. In this class of treatments, we find, amongst others, chemotherapy 

and immunotherapy. Chemotherapy uses drugs that have the ability to disrupt the cancer cell growth. 

In fact, cancer cells tend to grow and divide faster than normal cells enabling a relative affinity of drugs 
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for cancer cells, limiting normal tissue side-effects. However, some normal cells (such as digestive 

system or hair follicles) grow and divide quicker than other cells in the body, making them vulnerable 

to drug action. This explains the usual hair loss and diarrhea reported in patients undergoing 

chemotherapy. Although this systemic effect is associated to huge side-effects, it is the most efficient 

treatment modalities that are available to treat patients with metastases throughout the body. 

Modern chemotherapy uses a set of drugs with different mechanisms of action: cisplatin, an alkylating 

agent used in testis cancer, crosslinks purine bases of DNA interfering with DNA replication and repair 

[10] while paclitaxel, a drug used in ovarian cancer, disturbs cancer cell proliferation by targeting 

tubulin and influencing the micro-environment [11]. In the 2000’s, a new type of systemic treatment 

has appeared with the aim of helping the patient immune system to fight cancer: the immunotherapy. 

The development of PD-1/PD-L1 system inhibitor is a well-known example of immunotherapy. In fact, 

cancer cells can evade the immune system regulation via the association of PD-L1 protein (at cancer 

cell surface) with its receptor, PD-1 (located at T-cell surface), reducing the T-cell ability to signal the 

presence of the cancer cell. Thereby, PD-L1 and PD-1 inhibitors were developed to block this PD-1/PD-

L1 interaction preventing the cancer cells to escape from the immune system. Although this new 

therapeutic strategy is accepted for the treatment of some cancers, including melanoma and 

Hodgkin’s lymphoma, more clinical data are needed to fully understand the potential of this promising 

approach [12, 13]. 

 

Compared to systemic treatments, local treatments affect targeted cells and the cells in the 

area near it. Surgery is one of these therapeutic approaches, when tumors are small, localized and 

non-metastatic. Radiotherapy, which consists of delivering lethal doses2 of radiation into the tumor, 

is a widely used technique to treat a large majority of cancer types as shown in Table 1. It is a reference 

treatment in breast, brain and lung tumors for which 87 %, 80 % and 77 % of patients receive radiation 

therapy respectively. Based on updated guidelines for an optimized use of radiotherapy [9] and the 

last SEER report on cancer epidemiology [8], it was estimated that 49.8 % of all cancer patients receive 

radiotherapy, alone or in combination with other techniques, during their treatment (cf. Table 1). 

Although, all these therapeutic strategies were presented as separate entities, modern oncology 

generally uses combination of treatments to fight cancers. In fact, surgery is the first-line of treatment 

for glioblastoma when tumor is accessible and is followed by daily radiotherapy sessions coupled to 

temozolomide, a chemotherapy drug. The use of radiotherapy-chemotherapy combination is growing 

worldwide with an estimated recommendation for 10 % of all cancer patients (Table 1).  

 

These statistics highlight the major role played by radiotherapy in the fight against cancers 

and justify the need of improved radiotherapeutic treatment which would benefit to a large number 

of patients. In this context, this thesis will focus on radiotherapy. Its physical, chemical and biological 

concepts will be discussed in the introduction.  

 

 

 

                                                           
2 Dose is the energy deposited per mass unit by an ionizing radiation, expressed in Gy. 
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2. Radiotherapy: from physical interaction to biological damages 
 

As mentioned before, external beam radiotherapy is aimed at delivering a lethal dose of ionizing 

radiation into the tumor. Since the first use of X-rays for therapeutic applications in the early 20th 

century, radiotherapy has evolved, driven by a better understanding of radiation characteristics and 

their interaction with matter. However, it quickly became clear that the dose received by healthy 

tissues surrounding the tumor is the main limitation of this technique. Indeed, some cases of radiation-

induced leukemia, lost fingers or malignant skin changes were already evidenced in 1900 [14]. 

Thereby, one of the first advances was the fractionation of radiotherapy, which divides the total dose 

delivered to the patient in fractions of smaller doses, enabling healthy tissues to recover between 

each irradiation session (1927, cf. section 2.6). Nowadays, this principle is still used and its efficiency 

was coupled to the improvement of imaging techniques which enable a better tumor size and location 

determination. Over the years, conventional radiotherapy was gradually replaced by conformal 

radiotherapy (CFRT) in which the radiation beam is geometrically adjusted to fit the tumor shape while 

sparing the surrounding organ(s) at risk. Further, the Intensity Modulated Radiation Therapy (IMRT) 

has firmly established itself as one of the gold standards in radiotherapy treatment. It enables an 

adjusted irradiation field shape, such as CFRT but its intensity is also modulated within the irradiated 

area [15]. Nowadays, this technique is coupled to image guided radiotherapy enabling to take into 

account tumor and organ motions as well as variations of the tumor volume sessions after sessions.  

It must be noted that a new irradiation modality which uses charged particles instead of photons, 

is growing worldwide. This technique, called hadrontherapy, has a major advantage which is its depth-

dose profile characterized by a significant increase in the dose deposited at the end of the particle 

track. This typical profile, explained later (see. Section 2.7), demonstrates that the dose can be 

deposited in a chosen volume with a high accuracy. Nowadays, research in radiotherapy continues to 

focus on improved techniques that would allow a maximization of the differential response between 

cancer cells and healthy tissues as well as a minimization of the total dose delivered to the patient. 

These researches require the understanding of how ionizing radiations interact with matter.  

  

2.1. Interaction of photons with matter  

X-rays used in conventional radiotherapy are photons. These photons are considered as 

indirect ionizing radiation because they deposit energy in matter through a 2-step process. Energy is 

first transferred to a “secondary particle” before to be deposited in matter by this particle. There are 

three main processes leading to the photon loss of energy. A photon can transfer its energy to one 

electron of the target leading to an electron ejection from the atom, it is the photoelectric effect. 

Photons can also interact with electrons through an inelastic collision resulting in an incoherent 

scattering of the photon and the emission of the electron, it is the Compton effect. Finally, highly 

energetic photons produce an electron-positron pair, it is the pair production. Thereby, a photon 

creates a shower of lower energy photons, electrons (and positrons in some cases) as it goes through 

matter. These low energy “secondary” particles will also lose their energy as they travel impacting the 

global absorption process. To better understand when these different processes occur, their 

absorption cross-sections3 have to be defined. 

                                                           
3 The likelihood of a given process can be expressed with a physical quantity called cross-section.  
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2.1.1. Photoelectric effect 

 When the energy of incident photon (hν) is higher than the binding energy of orbital electron 

(EI), the electron is ejected from the atom (Figure 3A) with a kinetic energy in order to satisfy the 

energy conservation law: 

 

𝐸 = ℎ𝜈 =  𝐸𝐼 +
1

2
𝑚𝑣² (1) 

 

If we consider an electron in a hydrogen-like atom4 of atomic number Z, the photoabsorption cross-

section (σ) can be expressed as:  
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Where e, c and me represent the elementary charge, the speed of light and the electron mass 

respectively. Equation 2 highlights the fast increase in cross-section with the atomic number of the 

target (Z5) and the decrease with photon energy. Thereby, photoelectric effect dominates when low 

energy photons traverse high Z materials.  

 

 

 
 

Figure 3. Three main processes leading to photon energy loss. (A) Photoelectric effect. (B) Compton scattering. 
(C) Pair production and annihilation reaction. Adapted from [16]. 

 

                                                           
4 Atom which possesses a single electron 
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2.1.2. Compton effect 

The interaction between an incident photon and an electron can result in a partial energy 

transfer. This leads to the electron emission, if enough energy is transferred, and the photon scattering 

in a different direction from the original (angle θ) in order to conserve the overall momentum of the 

system (Figure 3B). The scattered photon has a higher wavelength and the difference in energy 

between the two photons is transferred to the electron. If we consider an incident photon which 

interacts with an electron of mass me, the energy relationship between the incident photon (hν0) and 

the scattered one (hνsc) can be expressed as: 

 

ℎ𝜈𝑠𝑐 =
ℎ𝜈0

1 +
ℎ𝜈0

𝑚𝑒 . 𝑐²
[1 − cos 𝜃]

 
(3) 

 

The Compton scattering efficiency only depends on the incident photon energy and not on the atomic 

number of the material they travel through. However, for high energy photons, the cross section is 

inversely proportional to the incident photon energy.  

 

 

2.1.3. Pair production 

The high density electric field close to an atomic nucleus enables the transformation of a 

photon in an electron – positron pair (Figure 3C). Each particle created has an associated energy which 

corresponds to its mass (= me c²). Thereby, the pair production process has an energy threshold of 2 

me c² (= 1.02 MeV), e.g. if a photon has an energy above 2 me c², the production of an electron and its 

antiparticle can be observed. This positron slows down in matter and collides with an electron 

(annihilation reaction) leading to the creation of 2 gamma rays of 0.511 MeV. Photons are emitted in 

opposite directions in order to conserve the momentum of the electron-positron system (equal to 

zero). The cross-section of this phenomenon is proportional to the atomic number of the material (Z²). 

 

 

2.1.4. Relative importance of these three effects 

As shown in the previous section, the photon attenuation in matter is due to three different 

processes. Thereby, the total absorption cross-section is the sum of photoelectric, Compton scattering 

and pair production cross-sections. In view of their individual changes with photon energy and atomic 

number of the material, each phenomenon differently contributes to the total photon attenuation. At 

low energy (below 100 keV), the photoelectric effect dominates. As shown in Figure 4, the area in 

which photoelectric effect dominates extends towards higher energy when the atomic number of the 

traversed element increases. For energies between 0.1 and 10 MeV, the Compton effect becomes 

dominant whatever the material traversed. Finally, for high energies (above 10 MeV), the pair 

production process appears. Thereby, the Compton effect is the dominant effect when the photon 

passes through cells (assimilated to water) at energies used in clinic (usually between 0.3 and 20 MeV). 



Penninckx Sébastien   Introduction 

 

25 
 

 

Figure 4. Domains over which the different processes triggered when a photon interacts with mater are 
dominant as a function of the atomic number of the traversed element(s) and the photon energy. Adapted 

from [17]. 

 

To quantify the decrease of a set of photons passing through matter (a beam of a given 

intensity), the concept of attenuation was introduced.  Due to the three aforementioned processes, 

the intensity of a photon gamma which passes through matter, is attenuated according to the familiar 

exponential law of Beer-Lambert. This means that a radiation beam of given energy having intensity 

I0, passing through an absorber of thickness x will have a final intensity (I) given by:  

 

𝐼 = 𝐼0.  𝑒−µ𝑥 (4) 

 

µ is the attenuation coefficient, a value characterizing the loss of beam intensity per unit path 

length when the beam passes through the medium. Due to its dependence in the different loss of 

energy processes, the attenuation coefficient varies with the photon energy and the atomic number 

of the traversed element(s).   

 

 

2.2. Charged particle interaction with matter  
 

When a charged particle travels through matter, it experiences Coulomb interactions with the 

nucleus and orbital electrons of all atoms encountered along its path. As a result, each interaction 

gives rise to a minor loss of incoming particle energy until the particle is at rest.  These interactions 

between a charged particle and matter can be divided into three categories depending on the distance 

between the charged particle trajectory and the nucleus of the atom atomic with which it interacts 

(Figure 5). This distance is usually called “impact factor” (referred as b) while the nucleus radius is 

referred as a. 
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Figure 5. Three different types of collision of a charged particle with an atom, depending on the relative value 
of the impact parameter b and atomic radius a. Soft collision for b >> a ; Hard collision for b ≈ a ; radiation 
collision for b << a. Adapted from [18]. 

 

2.2.1. Soft collisions 

When the impact parameter is larger than the radius of the atom, the Coulomb field of the 

incident particle interacts with the atom as a whole due to the large distance between the 2 elements. 

Following these interactions, different effects can take place (distortion of the atom, excitation to a 

higher energy level or ejection of a valence electron). Despite the low energy transferred during each 

individual interaction (only few eV), the total number of these soft collisions represents approximately 

50 % of the energy lost by a charged particle due to higher likelihood to satisfy the b >> a condition.  

 

2.2.2. Hard collisions 

When the impact parameter is of the order of the atomic radius (b ≈ a), a charged particle may 

interact with an electron leading to its ejection from the atom with a high kinetic energy. These 

electrons, called δ-rays, dissipate their energy along a separate track (cf. section 2.3). The maximal 

energy (Emax) transferred by a charged particle of kinetic energy EC and mass mZ after collision with an 

electron of mass me is given by:  

𝐸𝑚𝑎𝑥 =
4 𝐸𝐶  𝑚𝑍 𝑚𝑒

(𝑚𝑍 +  𝑚𝑒)²
 (5) 

 

   Although the likelihood of hard collisions is lower than the soft collisions probability, the 

energy transferred to the ejected electron is considerable and represents about half the incident 

particle energy loss.  
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2.2.3. Radiation collisions 

Finally, when the impact parameter of a charged particle is smaller than the atomic radius, 

Coulomb interaction will take place between the incident particle and the nucleus undergoing either 

elastic or inelastic scattering. The large majority of these interactions (~ 98 %) are elastic scattering so 

that the particle is scattered by the nucleus but loses only insignificant amount of its kinetic energy to 

satisfy the momentum conservation. This will not be taken into account for total energy transfer 

calculation. In around 2 % of radiation collisions, an inelastic scattering occurs leading to significant 

energy loss accompanied by an X-ray photon emission (a process referred as bremsstrahlung 

phenomenon). At a given particle energy, the cross section of this effect is dependent on the square 

of atomic number of the material and on the inverse square of the mass of the projectile. 

Consequently, the generation of bremsstrahlung is insignificant for heavier particles than electrons in 

biological medium (low Z material). 

 

2.2.4. Stopping power 

 The energy loss of a charged particle which passes through a medium depends on the density 

of interaction along the particle track. To quantify this, the stopping power has been introduced. It 

corresponds to the energy loss by an incident particle per unit of path length. It is generally expressed 

in MeV/cm. Due to the link between the density of interaction caused by the incident particle and the 

material it travels through, the stopping power is usually normalized by the material density resulting 

in the introduction of a mass stopping power, expressed in MeV.cm²/g. With respect to interactions 

discussed before, the mass stopping power can be expressed as a sum of three contributions: a 

radiation stopping power, a soft collision stopping power and a hard collision stopping power: 

 

(
𝑑𝐸

𝜌 𝑑𝑥
)

𝑡𝑜𝑡

=  (
𝑑𝐸

𝜌 𝑑𝑥
)

𝑟𝑎𝑑

+  (
𝑑𝐸

𝜌 𝑑𝑥
)

𝑠𝑜𝑓𝑡

+  (
𝑑𝐸

𝜌 𝑑𝑥
)

ℎ𝑎𝑟𝑑

 (6) 

 

 As mentioned before the radiation yield of heavy charged particles used in clinic is insignificant 

and can be ignored. The contribution of soft collision term can be written as:  

 

(
𝑑𝐸

𝜌 𝑑𝑥
)

𝑠𝑜𝑓𝑡

=  
2 𝐶 𝑚𝑒 𝑐2𝑧²

𝛽²
[ln (

2 𝑚𝑒 𝑐2𝛽2 𝑇

𝐼2 ( 1 − 𝛽2)
) − 𝛽²]  (7) 

 

𝐶 =  𝜋 𝑟0
2  (

𝑁𝐴 𝑍

𝐴
) 

 

Where me c² is the rest mass energy of electron; z and Z are atomic number of incident particle 

and absorbing element respectively; I is the mean excitation potential of atom (proportional to Z); β 

is velocity normalized by speed of light; T is the energy boundary between soft and hard collision; NA 

is the Avogadro number; A is the mass number of absorbing element and r0 is the electron radius.  
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The hard collision term can be defined as:  

(
𝑑𝐸

𝜌 𝑑𝑥
)

ℎ𝑎𝑟𝑑

=  
2 𝐶 𝑚𝑒 𝑐2𝑧²

𝛽²
[ln (

2 𝑚𝑒 𝑐2𝛽2

( 1 − 𝛽2)
) − 𝛽²]  (8) 

 

Finally, by combining equations (7) & (8), the total mass stopping power can be expressed as:  

(
𝑑𝐸

𝜌 𝑑𝑥
)

𝑡𝑜𝑡

=  
2 𝜋 𝑟0

2 𝑁𝐴 𝑍 𝑚𝑒 𝑐2𝑧²

𝐴 𝛽²
[ln (

4 𝑚𝑒
2 𝑐4𝛽4

𝐼2 ( 1 − 𝛽2)²
) − 2𝛽²]  (9) 

 

 Equation (9) highlights the dependence of the mass stopping power on three main 

parameters. The first one is the atomic number of the absorbing element. The mass stopping power 

decreases for increasing Z, due mainly to the excitation potential term I in the equation. The second 

one is the β parameter, i.e., the mass stopping power increases when the incident particle velocity 

decreases. This characteristic explains the known “Bragg peak” observed near the end of a particle 

track. Lastly, the equation reveals a dependence in square atomic number of the charged particle, 

meaning that the mass stopping power is 36 times higher for carbon ions (C6+) than protons (H+) 

traveled through the same absorbing medium at the same velocity. 

 As mentioned before the mass stopping power expresses the average quantity of energy lost 

per unit path length from the projectile point of view. However, this amount of energy loss could be 

different from the local energy deposited per unit length in the medium surrounding the particle track 

due to the emission of δ rays. Indeed, high energy δ rays can lose their energy far away from their 

initial ionization event. To cope with this issue, the Linear Energy Transfer (LET) was defined in order 

to take into account only the energy deposited locally. 

 

2.3. Interaction of electrons with matter  

The energy deposited through the interaction of photons or charged particles with matter 

leads to ionization, thus, emission of electrons. These “secondary” electrons will in turn interact with 

the matter via different processes:   

 Elastic scattering. An electron which penetrates into the electron cloud of an atom is 

attracted by the nucleus leading to a trajectory deflection without energy loss. The closer 

the electron comes to the nucleus, the higher the scattering angle. Backscattered 

electrons can even be observed. The likelihood increases with Z and decreases with the 

electron energy. These elastic collisions can also happen with orbital electrons.  

 

 Orbital electron inelastic collision. Part of the incident electron energy is transferred to 

the electron cloud of the atom leading to the scattering of the incident electron scattering. 

Depending on the energy transferred to the orbital electrons, emission of a secondary 

electron can be observed. The hole created in the inner-shell can be filled up by an 

electron from outer shell giving away part of its energy which causes emission of X-ray 

photons or Auger electrons. The likelihood of these processes is proportional to the 

atomic number of the material and inversely proportional to the square of the incident 

electron energy.  
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 Nuclear inelastic collision or Bremsstrahlung emission. As mentioned before, when an 

electron passes near the nucleus of an atom, coulombic attraction can slow down the 

electron and scatter it. The energy is lost through an X-ray photon emission (a process 

referred as bremsstrahlung phenomenon). The cross section of this effect is dependent 

on the square of the atomic number of material and proportional to the incident electron 

energy.  

 

 Dissociative electron attachment. Low energy (up to 25 eV) electrons have an energy of 

same magnitude as an electron in the cloud around the nucleus, making them 

indistinguishable. Due to this indistinguishability, electrons can react with one molecule 

(M) to give an excited anion (M-°) which dissociates to give different molecular fragments 

such as ions or radicals. 

 

2.4. Water radiolysis 
 

In a radiobiological context, the absorbing medium is a cell which can be considered, in a first 

approximation, as water. As explained in the previous sections, photon and charged particle 

interactions with matter produce a set of secondary species (electrons, photons) depending on the 

interaction mechanism considered. These generated species can also interact with the matter leading 

to a cascade of events triggered from a single photon. At the end of this stage, usually referred as 

“physical stage”, energy is deposited in the matter and fast relaxation processes lead to the formation 

of various ionized water molecules (through ionization processes) or excited water molecules (through 

the dissociative electron attachment process). Thereafter, numerous processes occur including ion-

molecule reaction (10), dissociative relaxation (11) and ion dissociation (12). 
 

 
(10) 

 
(11) 

 
(12) 

 

This step, called “physico-chemical stage”, leads to the production of radicals, which are highly 

instable chemical species due to the presence of an unpaired electron in their outermost valence shell.  

Water radicals are usually called Reactive Oxygen Species (ROS) and can be stabilized via oxidation-

reduction reactions with other molecules in the medium. During this “chemical stage”, the ROS are 

generated along the particle tracks and some of them can diffuse in the surrounding solution and 

subsequently initiate other chemical reactions. Although the details of all reactions occurring during 

water radiolysis are not well understood, Figure 6 shows that various species are identified including 

hydrogen peroxide (H2O2), hydroxyl radical (OH•) or dihydrogen (H2). In a more realistic view, cells 

have to be considered as water which contains molecules (RH). These molecules can be a target for 

ROS leading to the transformation of starting molecules:  

 
(13) 

 
(14) 
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Figure 6. Main reactions occurring during the three stages of water radiolysis [19]. 

 

If we consider two distinct molecular radicals, R1
• and R2

•, recombination between them can 

lead to the creation of a new stable compound by crosslinking:  

 
(15) 

 

The impact of these reactions on biomolecules will be discussed in the next section. However, 

to compare the effects of these reactions, we have to introduce a parameter which describes the 

number of ROS produced per 100 eV of energy delivered to a medium: the G-value. This G-value 

depends on various factors such as ROS of interest and LET of incident particle (Table 2). Indeed, 

higher-LET particles will generate more radicals per particle track than lower-LET ones [20]. While this 

means that per particle track their impact is more important, the radicals are in closer proximity to 

one another at higher LET. This increases the probability that they interact together and disappear 

[21]. Consequently, the yield of different radicals per unit dose exhibits different behaviors as a 

function of LET. As shown in Figure 7, hydroxyl radicals yield decreases with increasing LET, while for 

molecular radicals (such as hydrogen peroxide or dihydrogen), it increases.  

 

Radiation OH• H• H2O2 H2 

γ-rays 

(0.2-0.3 keV/µm) 
0.301 0.378 0.081 0.041 

5.3 MeV He2+ 

(140 keV/µm) 
0.052 0.062 0.15 0.163 

 

Table 2. G-value [µmol/J] for the most common reactive oxygen species obtained upon water 

radiolysis. Adapted from [19]. 
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Figure 7. Experimental G-values for H2 (in red) and HO• (in black) measured by different groups (■ Anderson et 

al. [22]; ● Burns et al. [23]; ▲Schuler et al. [24];  ★ Crumière et al. [25]) as a function of LET . 

 

 

2.5. ROS and cell death 

For the successful functioning of cellular processes (respiration chain, enzymatic activities …), 

aerobic organisms require oxygen. As a consequence, cells generate partially reduced forms of O2, 

leading to an endogenous production of ROS. In physiological conditions, ROS play an effector role in 

signaling pathways that regulate several cellular processes including gene expression and cell growth 

[26]. To keep these ROS at a low cellular concentration, cells maintain an endogenous antioxidant 

capacity, which acts as a detoxification system, that transform ROS into unreactive molecules by 

metabolic conversion [27]. This system contains lipid-soluble antioxidant compounds (such as alpha-

tocopherol), water soluble molecules (such as reduced thiol glutathione (GSH)), and enzymes (such as 

catalase that catalyzes the transformation of H2O2 in O2) [26]. Moreover, other enzymes reduce 

cellular oxidized GSH and thioredoxin enabling the regeneration of the antioxidant pool [27]: 

 

 Thioredoxin Reductase (TrxR): The thioredoxin system comprises thioredoxin (Trx), NADPH 

and TrxR. This latter is a NADPH-dependent homodimer oxidoreductase with that reduces 

oxidized Trx but also a wide spectrum of other compounds including the protein disulfide 

isomerase (PDI), α-lipoic acid and 5,5’-dithio-bis-2-nitrobenzoic acid (DTNB) [28].  By providing 

the electrons to small molecules which can react with H2O2 directly, mammalian TrxR can 

function as an antioxidant [29]. In addition, Trx system can also be of major importance for 

the supply of DNA precursors through its support of ribonucleotide reductase activity [28]. 

From a structural point of view, TrxR exists in 3 isoforms in mammalian cells: TrxR1 in 

cytoplasm (gene: TXNRD1), TrxR2 in mitochondria (gene TXNRD2) and TGR, a testis-specific 
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thioredoxin-glutathione reductase. All isoforms contains selenium in the form of 

selenocysteine, the naturally occurring selenium analogue of cysteine. This residue is located 

at the protein C-terminus, within a tetrapeptide motif (-Gly-Cys-Sec-Gly-) conserved between 

species [30]. 

 

 Glutathione Reductase (GR): GR is a NADPH-dependent oxidoreductase that recycles oxidized 

glutathione back to the reduced form. This enzyme is highly conserved across nature with high 

degree of similarity between its three-dimensional structures from E. coli and human [31]. 

The sequence analysis indicates the presence of FAD and NADPH binding domains such as in 

TrxR sequence. Furthermore, a great similarity was observed in the N-terminal FAD domain 

sequences of GR and TrxR [32]. 

 

  ROS overproduction can lead to a cellular state, called oxidative stress, where detoxification 

systems cannot counteract this huge production. In these non-physiological circumstances, ROS can 

modify and/or degrade cellular metabolites, including DNA, lipids and proteins. Therefore, ROS 

overproduction can lead to loss of cell function or cell death and is implicated in carcinogenesis [33], 

aging [34] and in pathology progression, such as cardiovascular diseases [26, 35]. When cells are 

exposed to ionizing radiations, the aforementioned physical and chemical processes occur leading to 

critical damages created by either a direct effect (ionization of biomolecules) or indirect effect 

(biomolecule damages caused by interaction with the ROS produced along the track).  

 

In radiobiology, DNA is considered as the critical target. Contrary to proteins and lipids, which 

can also be damaged by ionizing radiation, genomic DNA molecules are present in the cell nucleus in 

only two copies. Because DNA contains all the genetic information, any damage to this molecule could 

be harmful and potentially lethal for the cell. Consequently, we will only consider damages to DNA in 

the next section. However, reader can refer to “Radiation damage to cellular targets: an overview”, a 

review on biomolecule damages caused by ROS to which the author of this thesis contributed. 

 

 

2.5.1. DNA damage and cellular response 

DNA is a macromolecule composed of two helix strands linked one to each other by hydrogen 

bonds. Its strand backbone is made from alternating phosphate and sugar (2-deoxyribose) residues 

linked to a nitrogen base (adenine, thymine, cytosine or guanine). These bases are complementary 

one to another: adenine with thymine and cytosine with guanine. Once ionizing radiations pass 

through the cell nucleus, DNA can be damaged by direct or indirect way leading to a set of different 

damage types including:   

 Base damages: radiation can generate lesions to the bases mostly through the indirect 

way. Addition of hydroxyl radicals produced by water radiolysis on unsaturated chemical 

bonds present in bases first leads to the generation of a radical intermediate which then 

forms modified base compound after subsequent reactions. Due to the need of ROS to 

generate base damages, the number of these lesions decreases with LET reflecting the 

importance of the indirect effect in low-LET irradiation (Figure 8). 
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 Single Strand Breaks (SSB): these lesions occur when the phosphate or deoxyribose 

backbone is broken on one side of the DNA double helix. They can be produced through 

direct interaction with ionizing radiations or via oxidation by ROS. Using ROS scavengers, 

the direct SSB yield was calculated for a mammalian cell exposed to X-rays to be 

337/cell/Gy [36]. Considering that the total SSB yield was found to be 1000/cell/Gy, 

approximately 65 % of the SSB might be caused by ROS [37]. This unequal distribution 

between direct and indirect effects in SSB formation explains the decrease in SSB number 

reported with increasing LET (Figure 8). 

 

 Double Strand Breaks (DSB): these lesions involve the breakage of the two opposite sides 

of DNA double helix within a distance of 10 base pairs. While SSB are easy to handle due 

to the availability of the second strand as template for repair, DSB are more harmful 

giving them a major role in cell death post-irradiation. Indeed, Banath et al. [38] showed 

an inverse correlation between non-repaired DSB amount and cell survival. Compared to 

SSB, DSB are mainly produced through a direct ionization of DNA by the incident particle 

[39]. Thereby the higher is the LET parameter, the higher is the amount of created DSB, 

and consequently the lower is the survival fraction [40], as illustrated in Figure 8. 

 

When DNA damages are detected, a variety of DNA repair mechanisms are activated, leading 

to the removal of the vast majority of damages from the genome. The DNA repair mechanism at play 

depends on the lesions of interest [41]. In this section, we will only focus on DSB repair mechanisms 

since their high complexity make them the deadliest ones upon irradiation. This characteristic comes 

from the cell inability to simply copy the information from the undamaged strand. 

 

 

 

Figure 8. DNA damages/cell/Gy of radiation induced by (A) X-rays (≈ 1KeV/µm [36]), (B) protons (25 KeV/µm 
[42]), alpha particles (100 KeV/µm [42]) and carbon ions (282 KeV/µm [42]).  
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To cope with this issue, cells have two main repair mechanisms: the homologous 

recombination (HR) and the non-homologous end-joining (NHEJ) processes. These mechanisms differ 

one from each other in terms of involved proteins, speed and repair accuracy. HR repairs DSB by using 

the undamaged sister chromatid as template enabling an error-free restoration. In contrast, NHEJ 

directly ligates the DNA break ends, without the need for any template. This process is an error-prone 

repair process because loss or changes of few nucleotides may occur. However, the main part of DNA 

is non-coding, thereby limiting the risk of mistakes on critical DNA sequences. It must be noted that, 

despite its low accuracy in repair, NHEJ enables a faster DSB repair compared to HR. The division of 

tasks between these two mechanisms is mainly determined by the phase of the cell cycle. As HR 

requires a homologous sister chromatid as template, it exclusively acts in S- and G2-phases. In contrast, 

post-mitotic cells and cycling cells in G1 phase seal DSB by NHEJ. 

Without detailing all the processes of DNA Damage Response (DDR), DNA repair starts by the 

lesion recognition by protein sensors. These proteins then transmit a signal to downstream effectors 

through a transduction cascade undertaken by ataxia telangiectasia mutated (ATM) protein kinase. 

Phosphorylation of effectors enable the loading of other subsequent repair factors. Amongst all these 

effectors, it has been demonstrated that 53BP1 plays a key role in the mechanism choice by promoting 

NHEJ process [43, 44].  

In HR process, the recognition of DNA ends is followed by their resection by MRN complex 

and CtBP-interacting protein (CtIP). Subsequently, BRCA2 mediates the coating of DNA extremity by 

RAD51, forming a nucleoprotein filament which is able to search the homologous sequence on the 

sister chromatid. Then, a DNA polymerase fills the breaks in the strand using the sister chromatid as 

template leading to an accurate repair of the DNA lesion [45]. The general mechanism of HR pathway 

is illustrated in Figure 9 (right panel) 

 

Figure 9. Homologous recombination (HR) and Non-Homologous End Joining (NHEJ) repair pathway mechanism. 
DSB = Double Strand Break; MRN = protein complex consisting of Mre11, Rad50 and Nbs1. Adapted from [45]. 
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In NHEJ, Ku70/Ku80 heterodimer binds the DNA ends and recruits the catalytic subunit of the 

DNA-dependent protein kinase (DNA-PKcs). In some cases, DSB cannot directly be connected and must 

be processed before the ligation process. This optional step involves a set of proteins including Artemis 

in 10-15 % of the X-ray-induced DSB [36]. Finally, a ligation complex, consisting of DNA ligase IV, XRCC4 

and XLF ligates the DNA ends leading to the DNA repair [45]. The general mechanism of NHEJ pathway 

is illustrated in Figure 9 (left panel). 

 

2.5.2. Cell death 

 Consequences of DNA damage depend on cell type and lesion severity. While mild DNA 

damage can be repaired as discussed above, more severe DNA injury can lead to a shift towards cell 

death induction programs. In radiobiology, cells are considered as dead when they lose their 

proliferative capacity meaning they can no longer divide and/or spread through the organism. 

Thereby, cells can be considered as “clonogenically” dead but still possess a metabolic activity. In this 

respect, five main cell death mechanisms are possible:  

 

 Apoptosis. Apoptosis is a programmed cell death mechanism, often called ‘‘cell-suicide’’ 

program. In mammalian cells, it is mediated by a group of proteases known as the caspases 

that keep the apoptotic program under control. Initially expressed as inactive procaspase 

precursors, these mediators can be activated by oligomerization and cleavage of the precursor 

form to produce the active effector. These active caspases in turn cleave specific cellular 

substrates leading to biochemical changes in the cell [36]. Cytochrome c5 is released from the 

mitochondria, triggering the apoptosome formation. Subsequently, all cellular components 

are packaged into membrane-enclosed apoptotic bodies. The apoptotic bodies are eventually 

phagocytosed by neighboring cells, hence without releasing harmful substances into 

extracellular environment. This characteristic justifies its title of “clean death” process. It must 

be noted that apoptosis can be triggered by extrinsic signals (binding of extracellular ligands 

to a death receptor located on the cell membrane) as well as by intrinsic signals (caspase 

activation in response to severe cellular damages) [36, 46]. 

 

 Necrosis. Necrosis is an form of cell death usually initiated following ion imbalance, energy 

loss or extreme pH change. These stresses cause cell swelling and membrane distortion 

leading to the spread of cellular content into the extracellular environment. Thereby, necrosis 

is associated to strong side-effects for the surrounding cells and so, to infection, inflammation, 

or ischemia induction [36].  

 

 Autophagy. Autophagy is a cellular process where proteins and organelles are enclosed into a 

double-membrane vesicle which then fuses with a lysosome, thus provoking the digestion of 

its content. This digestion enables the cell survival by generating small biomolecule fragments 

and energy that can be used to maintain the cell metabolic activity [47]. Although this kind of 

protective mechanism was reported in response to different stresses such as nutrient 

deprivation or growth factor removal, comprehensive cell component digestion leading to cell 

death was observed when cells are exposed to chemotherapy agents [36]. 

                                                           
5 An essential component of the mitochondrial electron transfer chain. 
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 Senescence. After each cell replication, telomeres of chromosomes become shorter. 

Following multiple cell divisions, these telomeres become too short and cells become unable 

to replicate without an important genetic material loss. They enter into a form of permanent 

cell-cycle arrest stage, known as replicative senescence. Although cell proliferation stops, 

senescent cells still remain metabolically active, showing a greatly altered pattern of gene 

expression. It was reported that cellular senescence can be triggered by severe or irreparable 

DNA damages, in that case, the term used is stress-induced senescence [48]. 

 

 Mitotic catastrophe. In normal cells, G2 checkpoint of the cell cycle enables to block mitosis 

when a cell has undergone DNA damage. Nevertheless, when the G2 checkpoint is defective, 

the cell can enter mitosis prior a complete DNA replication and/or DNA damage repair. This 

results in giant multinucleated cells that may be able to divide for a few cell cycles until the 

genetic material in daughter cells is so chaotic that replication is no longer possible [36, 46].  

 

2.6. Factors influencing the success of radiotherapy 

As previously discussed, successive physical, chemical and biological processes occur when ionizing 

radiations interact with matter leading to the tumor cell death. Over the years, it has become clear 

that a number of factors influences this tumor death and so the success of radiotherapy. Withers [49] 

summarized these factors as the “four Rs”. By evidencing the time-dependence of them, radiotherapy 

has move towards the modern fractionation radiotherapy:   

 Repair: As discussed previously, cells have complex mechanisms enabling the repair of DNA 

damage induced by radiation. Although DNA damage produced in tumor cells are easily 

repaired at low radiation dose, their accumulation at high radiation dose contributes to cell 

death. However, this goes hand in hand with an increased toxicity to normal tissues as well. 

According to Corner et al. [50], normal tissues repair DNA damage at a faster rate than cancer 

cells. Thereby, fractionated treatment can take advantage of this difference. All cells can be 

damaged, but normal cells will repair faster the radiation-induced DNA damage leading to a 

better survival compared to cancer cells. Due to differences in organ sensitivity to radiation, 

the same fraction schedule cannot be used in all cancers. Thus, some dose-fractionation 

guidelines provide fractionation schemes for different organs based on tissue repair rates [46, 

50].  

 

 Reoxygenation: Oxygen plays a key role in radiation therapy through the ROS production 

during the chemical step as well as for the DNA free radicals fixation. During the uncontrolled 

proliferation of cancer cells, the tumor quickly exhausts the oxygen supply from the normal 

vasculature resulting in the generation of hypoxic areas. Cox et al. [51] estimated that the 

proportion of hypoxic cells in a tumor usually ranges from 10 to 15 %. When a tumor is 

irradiated, the oxygenated cells are killed more easily than hypoxic ones due to the higher 

oxygen pressure within them. After irradiation, the proportion of hypoxic cells in the tumor is 

thus higher than prior the irradiation. Nevertheless, the situation is not static. In fact, 

irradiation also triggers the nitric oxide synthase activation enabling an arterial vasodilatation 

which increases the tumor tissue perfusion [52]. This phenomenon allows a tissue 

reoxygenation during a given time period (12 h – 120 h) after the irradiation. If the interval 

between radiation doses is long enough to allow reoxygenation to take place, then originally 
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hypoxic cells can become oxygenated and be more easily killed by the next dose. Thereby, the 

presence of hypoxic cells has a lower effect on the treatment success if the total dose is 

divided into fractions enabling a sufficient duration for cell reoxygenation in between these 

fractions [46] (Figure 10).  

 

 Redistribution: It has been demonstrated that cell radiosensitivity considerably varies with the 

phases of the cell cycle. Cells in the S phase are the most resistant while cells in late G2 and M 

phases are the most sensitive [53]. The reason for the resistance in S phase is thought to be 

an increased homologous recombination capacity due to a greater availability of the 

undamaged sister template through the S phase. Moreover, it was postulated that 

conformational changes in DNA during replication facilitate an easier access for the repair 

complexes [46]. In contrast, the greater sensitivity in late G2 and M phases is due to the fact 

that those cells enter in mitosis with DNA damages, leading to quicker cell death. Thereby, the 

fractionation therapy which takes place over multiple sessions is more effective because it 

enables the cells in the G1 and S phases of the cell cycle to move towards more radiosensitive 

phases (Figure 10). 

 

 Repopulation: Repopulation of cancer cells has been considered to be the main cause of 

radiotherapy failure. It refers to the observed increase in cell division in both normal and 

cancer cells after irradiation. Thus, if the overall treatment time is too long, the effectiveness 

of last dose fractions will be ineffective due to the triggering of rapid tumor repopulation [54] 

(Figure 10).  

 

In 1989, Steel et al. [55] suggested to add “intrinsic radiosensitivity” as a fifth critical parameter 

influencing the radiotherapy success. In fact, it has been evidenced that patient-related factors 

account for as much as 80 to 90 % of the variation observed in patient response to radiation [56]. 

Nowadays, the origin of this variability remains poorly understood but it is generally accepted that it 

is due to genomic variations. 

 

Figure 10. Dependence of radiotherapy efficiency to kill cell according to the time between fractions. The 
influence of 4 Rs parameters is illustrated. Adapted from [46]. 
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2.7. Comparison between conventional radiotherapy and charged particle therapy 

The goal of this section is to compare conventional radiotherapy which uses X-rays and 

charged particle therapy, based on the physical, chemical and biological insights introduced here 

above.  

 

2.7.1. Spatial dose distribution  

 The most famous advantage of particle therapy over conventional one is the spatial dose 

distribution. Like all photons, X-ray transfers its energy to the body along its path. The energy 

deposition profile shows an initial increase within a few centimeters. Subsequently, beam intensity is 

decreased according to Beer-Lambert exponential law (equation 4), irradiating tumor as well as 

normal tissues upstream and downstream the tumor (Figure 11). This energy deposition in healthy 

tissues can be dramatic in case of organs at risk. To cope with this limitation, the use of charged 

particles is growing, driven by their ballistic properties. As discussed before, a charged particle slows 

down when it travels through the matter due to multiple interactions. Equation 9 shows that when 

the charged particle velocity decreases, stopping power increases resulting in a particular depth-dose 

profile with a low entrance dose and a maximal dose deposition at a selective depth, called the Bragg 

peak, where the particle stops. Since the Bragg peak localization depends on the incident particle 

energy, a combination of particle beams of different energies enables to obtain a plateau in the dose 

profile (known as Spread-out Bragg Peak; SOBP) that covers the entire tumor volume (Figure 11). 

Although normal tissues upstream the tumor still receive part of the radiation dose, healthy tissues 

downstream the tumor will be completely saved. As shown in Figure 12, proton irradiation of a non-

small cell lung carcinoma markedly limits the radiation dose received by the healthy lung and the 

spinal cord.  

 

2.7.2. Relative biological effectiveness   

 To compare different radiation types in terms of biological effects, the relative biological 

effectiveness (RBE) has been proposed. RBE is a ratio of doses required to obtain a same biological 

endpoint (generally a cell survival) between a reference radiation (usually a 250 kVp X-rays) and the 

radiation type of interest. RBE of protons in clinic was evaluated to 1.1, meaning protons enable to 

reach the same cancer cell killing than photons with a 10 % reduced dose of radiation delivered to the 

patient [57]. For carbon ions, a RBE between 2 and 3 was reported [46]. The RBE indicator depends 

on several factors including the LET 6, meaning that RBE of charged particles varies along the track; 

e.g. significantly higher near the Bragg peak. This reflects the need of enough energy deposition in the 

DNA to produce a sufficient amount of DSB and so, to promote cell killing. Sparsely ionizing radiations, 

such as X-rays, have a relatively low efficiency because more than one particle may have to pass 

through the cell to produce enough DSB. On the contrary, densely ionizing radiations (high-LET 

charged particles) produce more DSB due to the spatial proximity from one DNA damage to one other, 

resulting in complex and clustered DNA lesions that are difficult to repair.  

                                                           
6 RBE increases with LET until a maximum around 100 keV/µm regardless the nature of the particle of interest. 
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Figure 11. Depth-dose profile for a typical 15 MV photon beam (green curve) and mono-energetic proton beam 
(red curve). The maximum dose point of the red curve is termed the Bragg peak. Scanning thin mono-energetic 
proton beams are used for intensity-modulated protontherapy leading to the blue curve and a plateau in the 
depth-dose profile, called the spread-out Bragg peak (SOBP). Adapted from [58]. 

 

 

Figure 12. Example of treatment planning for the irradiation of non-small cell lung carcinoma. Compared to X-
rays, protons enable a more precise tumor targeting while limiting irradiation of healthy tissues (the opposite 
lung and spinal cord). Adapted from [59]. 
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2.7.3. Oxygen enhancement ratio   

 The presence of oxygen in cells is important for ROS production through the indirect effect. 

Therefore, a more efficient cell killing was reported in oxygenated area compared to hypoxic areas 

upon X-ray irradiation [36, 46]. However, by increasing LET of radiation, the proportion of direct to 

indirect effect increases leading to a lower dependence of high-LET particle irradiation on oxygen 

concentration. Consequently, the oxygen enhancement ratio 7 (OER) decreases with increasing LET. 

The ratio decreases from 2.7 for 250 kVp X-rays to around 1 for 100 keV/µm α-particles (Figure 13), 

meaning than this last radiation beam kill hypoxic cells with the same efficiency than normoxic cells.  

 

2.7.4. Clinical indications   

As mentioned before, hadrontherapy has become one of the most attractive approaches in 

the cancer management driven by its ability to deal with two key aspects of modern radiation 

oncology: First, ballistic features that enable a dose optimization into tumor volume, sparing 

surrounding healthy tissues. Secondly, biological features that allow a greater RBE related with a high 

LET along their path. The most recent report of PTCOG (Proton Therapy Co-Operative Group) indicates 

that 174,512 patients have undergone hadrontherapy worldwide [60]. The large majority of these 

patients (around 86 %) were treated using protons which have shown clear advantages compared to 

X-rays, in two main settings [61]:  

 

 Treatment of radioresistant tumor, located close to a radiosensitive organ. Protontherapy is 

the reference treatment for ocular malignancies, especially uveal melanomas because it 

allows to preserve radiosensitive optical nerve downstream the tumor. Remarkable results, 

95 % local control and 80 % overall survival have been reported by most groups [61]. A second 

indication is the irradiation of chordomas and chondrosarcomas at the skull base for which 

protontherapy still remain essential to achieve a permanent local control.  

 

 Treatment for which the normal tissue sparing is a priority. For pediatric cancer, the extreme 

sensitivity of organs under development confers a great advantage on protons by reducing 

long term sequelae [62]. Moreover, pieces of evidence of a decreased risk in radiation-induced 

secondary malignancies are growing [63]. Protons have also shown beneficial in adults with 

reduced rates of gastrointestinal, urinary incontinence or other complications following 

prostate irradiation [64]. 

 

Despite their clear theoretical advantages compared to conventional radiotherapy, the use of charged 

particle therapies has been slowed by technical factors, such as treatment cost. Indeed, the cost of a 

protontherapy treatment still remains 2 to 4 times higher than the cost of the conventional photon-

therapy [65]. Moreover, no randomized phase III clinical trial results are available to objectively 

compare X-ray and proton radiotherapies. This indicates that there is no evidence that protontherapy 

is more effective than IMRT up to date [46]. All reported proton results come from prospective studies 

and non-randomized clinical trials. While randomized studies are a mandatory step towards 

protontherapy development, some commercial insurance medical policies (especially in USA) do not 

                                                           
7 OER: Ratio of doses necessary to achieve a same biological endpoint (usually a cell survival) with or without 
oxygen.  
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cover this treatment, making it difficult for patients to participate in these investigations.  In the 2019 

report of KCE, only three ongoing randomized clinical trials were identified comparing proton 

treatment with photon radiotherapy and results are not expected before 2027. As a result, the lack of 

evidence for a better outcome with protontherapy is not likely to change within the next 10 years. 

 

 

Figure 13. Decrease in OER with increasing LET. Closed circles refer to monoenergetic α-particles and the 
triangle to 250 kVp X-rays. Adapted from [46]. 
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3. Nanoparticles as radiosensitizers: emergence of a new field in 

nanomedicine 
 

3.1. Modifing the cellular response to radiation. Motivation and available solutions 
 

As discussed in the previous section, the most important challenge of radiotherapy is to favor the 

energy deposition into the tumor while sparing surrounding healthy tissues. The likelihood for a tumor 

being controlled is called the tumor control probability (TCP), while the one for the healthy tissue side-

effect is called normal tissue complication probability (NTCP). These probabilities are represented by 

a sigmoid function according to the dose. From these definitions, it follows that the probability of cure 

without complication (PCWC) is given by equation 16 and is illustrated in Figure 14:  
 

𝑃𝐶𝑊𝐶 = 𝑇𝐶𝑃 . (1 − 𝑁𝑇𝐶𝑃) (16) 
 

In Figure 14, it appears that dose associated with tumor eradication is not very different from the 

dose associated with normal tissue complication development. By using a molecule, localized into the 

tumor and which has the ability to increase cell killing, one can move the TCP curve towards the left. 

Consequently, a significant increase in PCWC maximum and in its distribution width occurs providing 

a larger margin for the therapeutic window. These kinds of molecules are called “radiosensitizers” and 

enable to reach a given tumor cell killing using a reduced total dose delivered to the patient. Besides 

this radiosensitizing agent, PCWC improvement can also be obtained by using radiation protector 

molecules that have to be specific for normal cells.  

 

 

Figure 14. Schematic representation showing the TCP (solid line) and NTCP (dashed line) as a function of the 
radiation dose. The TCP is illustrated for two scenarios, one with a TCD50% = 55 Gy and a second with a TCD50% = 
45 Gy, to illustrate the action of a radiosensitizer specifically targeted to the tumor. In each case, the PCWC is 
shown by the dotted line. Adapted from [17]. 
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Since the pioneering works of G.E. Adams [67], various radiosensitizer classes have been 

characterized. The main categories are: 

 Molecules that exacerbate DNA damage. In this category, are molecules such as cisplatin or 

5-fluorouracyl (5-FU) which are able to increase the DNA damage amount after irradiation. 

Indeed, when incorporated into DNA, 5-FU causes no additional damage in the absence of 

radiation but enhances radiation-induced DNA damage through the production of reactive 

uracilyl radicals and halide ions [68]. Cisplatin binds DNA and can act synergistically with 

ionizing radiation to convert radiation-induced SSBs to DSBs during the DNA repair process. 

 

 Inhibitors of post-irradiation cellular repair processes. Some chemotherapy agents have been 

shown to inhibit DNA damage repair via a set of mechanism. For example, gemcitabine, a 

nucleoside analogue, interferes with nucleotide metabolism leading to DNA repair inhibition. 

Other molecules directly inhibit DDR proteins, such as Olaparib, an inhibitor of poly(ADP-

ribose) polymerase (PARP), a protein mainly involved in SSB repair [68].  

 

 Cell cycle disturber. This category gathers molecules such as taxol, an anti-microtubule agent. 

The binding of taxol to β-subunit of microtubulin leads to a G2/M cell cycle arrest. As a 

consequence of this, cells are synchronized in this radiosensitive phase of the cell cycle 

enabling a radiosensitization effect [68].   

 

 Inhibitors of endogenous radioprotective substances. Ionizing radiation exerts biological 

effects partly through the production of ROS. To counteract ROS overproduction, cells possess 

a set of antioxidants and detoxification enzymes. Molecules such as l-buthionine-SR-

sulfoximine, a cysteine analogue, have the ability to interfere with the antioxidant 

biosynthesis, reducing the cell capacity to counteract the oxidative stress [68].  

 

 Oxygen-mimetic sensitizer. Many reports have reported an enhanced radiosensitivity of cells 

in the presence of oxygen (cf. section 2.6). Molecules, as nitroimidazole, also have this 

electron affinity property and can mimic the important role played by oxygen in cell killing. 

This class of sensitizer is interesting for distant hypoxic cells because it was postulated that 

such agents are not rapidly metabolized by tumor cells enabling a diffusion up to hypoxic cells, 

which are often far away from blood vessels [69]. 

 

 Small interfering RNA (siRNA). SiRNA are RNA molecules which have the ability to interfere 

with the expression of a set of specific genes by complementary binding and degrading their 

mRNA after transcription. By silencing gene expression related to radioresistance, siRNA can 

be used as radiosensitizers. This relatively new class of radiosensitizers is currently under 

clinical investigation. A recent work evidenced an increase in head and neck squamous-cell 

carcinoma radiosensitivity using a siRNA technology against survivin, a protein which inhibits 

caspase activation, hence leading to an increased apoptosis [70]. 

  

Since the last decade, development of nanotechnology has expanded the horizon of the 

radiosensitizer field by creating a new class: the nanostructured radiosensitizer on which we will focus 

in this thesis.  
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3.2. Nanotechnology from chemical applications to nanomedicine  
 

Nanotechnology is the science that deals with materials or structures in nanometer scale (1 

billionth of a meter, e.g. 10-9 m), typically ranging from sub nanometers to several hundred 

nanometers. These materials have attracted enormous attention because the properties of 

nanostructures are different from the same bulk materials due to the high surface/volume ratio and 

possible appearance of quantum effects at the nanoscale. All these new properties have allowed the 

emergence of numerous applications in various fields including catalysis and sensors. 

 

The high surface/volume ratio of nanoparticles (NPs) enables catalytic promotion of reactions 

via their ability to adsorb and transform chemical compounds. Indeed, large NP surface increases the 

ability to adsorb or bind chemical compounds, while quantum phenomena at NP interface allow an 

increased chemical reactivity [71]. The panel of new potential reactions goes from compound 

decomposition to selective alkene hydrogenation [72].  

 

Metallic nanoparticles also have new optical properties which have permitted the 

development of sensor technologies in various chemical and biomedical fields [72]. These new 

properties are due to a collective oscillation of free electrons in the metal, when a photon goes 

through a NP solution. Indeed, when the electric field from free electron vibration resonates with the 

electric field of the electromagnetic wave, a light absorption phenomenon called surface plasmon 

resonance happens. Gustav Mie was the first to model this phenomenon and to give an exact analytic 

solutions of Maxwell's equations for a sphere immersed in a homogenous medium and irradiated by 

an electromagnetic wave [73]. He defined the absorption cross-section σ of an electromagnetic wave 

of wavelength λ as: 
  

𝜎𝑒𝑥𝑡 =  
2

𝑥²
 ∑(2𝑛 + 1) 

∞

𝑛=1

. (𝑎𝑛 + 𝑏𝑛) 

 

(17) 

𝑥 =  
2𝜋 𝑟

𝜆
 (18) 

 

Where r is the NP radius, an et bn coefficients can be defined using the Riccati-Bessel functions of order 

n, referred as ψn and ζn, as well as their derivatives, ψ’n and ζ’n :  
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(19) 

 

Where y is a variable proportional to x and m is the ratio between the NP complex refractive index 

and the medium complex refractive index. This analytical development evidences that light absorption 

depends on NP size (x) as well as on NP and solvent nature (m). Thereby, surface plasmon band 

spectroscopy can be used to determine the particle size due to the dependence of maximal absorption 

wavelength in this parameter, as illustrated in Figure 15. 
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Figure 15. Variation of the theoretical maximal absorption wavelength with the gold nanoparticle size. 

 

 Moreover, UV-visible spectra of NP solutions enable to extract the heterodispersity index, a 

frequently used indicator of colloidal stability, defined as a ratio of absorbance: 

 

ℎ𝑒𝑡𝑒𝑟𝑜𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =
𝐴 𝜆 𝑚𝑎𝑥

𝐴 650 𝑛𝑚
 (20) 

 

When NPs aggregate, their size increases leading to a shift towards higher wavelength, as 

illustrated in Figure 15A. This bathochromic shift is translated to a decrease in the heterodispersity 

index. By following the evolution of this indicator according to the time, we can assess the colloidal 

stability through the time. 

 

 In addition to these chemical applications, a set of potential nanotechnology-based 

applications emerges for disease diagnosis and treatment, including cancer. This emerging biomedical 

field, called nanomedicine, finds its origin in a fact: NPs below 100 nm match the length scales of the 

pores in the tumor vessel endothelium. In solid tumors, angiogenesis leads to high vascular density of 

newly formed tumor vessels that are usually abnormal in form and architecture. It consists of poorly 

aligned defective endothelial cells with large gaps between them. Moreover, tumor tissue lack 

effective lymphatic drainage [74]. The combination of these two aspects can lead to a selective 

extravasation of nanoscopic drugs as well as their poor clearance leading to a potential accumulation 

in tumor tissue. This phenomenon is called enhanced permeation and retention (EPR) effect. It was 

reported that many nanomaterials (including liposomes, polymer carriers, metallic and inorganic NPs) 

successfully enter into tumor tissue through this EPR effect [75-77]. The first suggested 

nanotechnology-based applications for cancer was to use NPs as vehicles for drug delivery. Although 

a set of chemotherapeutic drugs have proven their ability to kill cells, their use in vivo is limited by 

their low water solubility, their relative stability, their biodistribution and their ability to selectively 

target tumor cells. To cope with this wild range of limitations, polymeric NPs were suggested as 

nanocarriers by enveloping the drugs. While a low water solubility will limit the compound 

bioavailability, the use of nanocarrier increases the delivery of these poorly soluble drugs. For 

example, wortmannin was suggested as potential radiosensitizer drug due to its ability to inhibit the 

DNA damage response (inhibitor of ATM protein) [68]. However, its development was stopped due to 

a poor water solubility (4 mg/L) and chemical instability. Using polymeric nanocarriers, the 

wortmannin solubility was increased up to 20 g/L [75, 78] and a powerful increase in chemical stability 

was reported in vivo [78]. The increase in stability was explained by the nanocarrier protective action 
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which prevents drug biodegradation until its entry into tumor. Indeed, protein-based drugs can be 

cleaved by pepsin or trypsin present in the stomach (in case of per os administration). Finally, 

nanocarrier can improve the biodistribution by accumulating drug in tumor via the EPR effect.  

 

 Since the first nanocarrier generation, significant advances were made enabling the 

development of more sophisticated stimuli-responsive nanocarrier systems. These vehicles act in 

response to physical, chemical, or biological signals triggering drug release. The advantage of this kind 

of system is a more accurate drug release in tumor cells, minimizing the usual systemic exposure to 

the chemotherapeutic agent [75]. Triggers are usually divided into internal and external stimuli. 

Internal stimuli are based on biochemical characteristics of neoplastic tissue such as pH or redox. In 

solid tumors, the extracellular pH is more acidic than physiological pH allowing the use of pH-

responsive nanocarriers [79]. Another example is the disulphide-containing liposomes. Hypoxic 

tumors are an environment rich in reductive compounds as glutathione due to the low oxygen 

pressure. These agents cleave disulphide bonds generating a change in conformation which triggers 

the drug release in the tumor [80]. On the other hand, external stimuli are based on the use of physical 

stimuli such as hyperthermia [81], ultrasound [82] or light [83].  

 

Currently, around thirty nanocarrier systems are under investigation in different clinical 

phases for cancer treatment [77] and several have already been approved for clinical uses (Table 3). 

The first NP-based drug approved for therapeutic application was Doxil, a liposome containing 

doxorubicin. Despite good results in terms of biodistribution, no real benefit on overall survival was 

reported in comparison to doxorubicin treatment alone. However, a better treatment tolerance was 

evidenced [84]. 

 

Product 

name 

Vehicle  

type 

Encapsulated 

drug 

Clinical  

indication 

Approved by 

(in year) 
Ref. 

Abraxane Albumin NPs Paclitaxel 
Advanced NSCLC, metastatic 

breast and pancreatic cancer 
EMA (2008) [85] 

DepoCyt Liposome Cytarabine Neoplastic meningitis FDA (1999) [86] 

Doxil  PEG-liposome Doxorubicin 

Ovarian and metastatic 

breast cancer, multiple 

myeloma 

FDA (1995) [87] 

MEPACT Liposome Mifamurtide Osteosarcoma EMA (2009) [88] 

Oncaspar 
PEG conjugated 

to protein 
L-Asparaginase Leukemia FDA (2006) [89] 

Onivyde PEG-liposome Irinotecan 
Metastatic pancreatic cancer 

(2nd line) 
FDA (2015) [90] 

Zinostatin 

stimalamer 

Protein-

conjugated 

polymer 

SMANCS Renal cancer Japan (1994) [91] 

 

Table 3. Non-exhaustive list of drug delivery nanocarriers approved in clinic. NSCLC: non-small cell lung 
carcinoma 

 



Penninckx Sébastien   Introduction 

 

47 
 

As for Doxil, most of first-generation nanocarriers (PEG-liposome) were reported to change 

the drug toxicological profile and to bypass drug solubility issues but no significant improvement in 

therapeutic efficacy compared to the parent drug was demonstrated [92]. More recently, the second 

nanocarrier generation has demonstrated interesting results. For example, Abraxane, an albumin NP 

containing paclitaxel, evidenced significantly higher response rates compared to paclitaxel alone in 

metastatic breast cancer patients [93]. In the same way, a third nanocarrier generation seems to 

emerge based on the use of metallic NPs as drug delivery platforms. For example, silver NPs have 

demonstrated their ability to effectively deliver doxorubicin and alendronate to cervical HeLa cancer 

cells resulting in a greater therapeutic effect than doxorubicin or alendronate alone [94]. Recently, in 

vivo results were obtained by evidencing the ability of hollow mesoporous silica NPs containing 

doxorubicin to enhance the tumor growth inhibition compared to doxorubicin alone [95]. 

Despite tremendous successful preclinical results, most nanomaterials have failed to 

reproduce an improved efficacy in clinic study [96]. One possible explanation could be the EPR model 

relevance in humans. Although this EPR effect was extensively demonstrated in rodents, there is a lack 

of evidences in humans. Murine tumor models usually used in preclinical studies, drastically differ 

from human cancers in terms of development rate and size relative to host. Due to a fast tumor growth 

in rodents, blood vessels in mouse tumor do not develop properly leading to leakier endothelial cells. 

In humans, the tumor growth is slower than in rodents and not all tumor vessels are leaky, causing a 

heterogeneity in pore size distribution and thus in nanomaterial delivery [97, 98]. Moreover, the large 

tumor-to-weight ratio in mice compared to humans significantly alter the pharmacokinetics of the 

nanomaterials. In murine models, tumor can be as much as 10 % of the mouse’s body weight 

representing the size of basketball for an equivalent tumor in a 70 kg human patient [98].  

 

3.3. High Z nanoparticle as radiosensitizer: basic principles   
 

Originally, the rationale for using high Z NPs as radiosensitizers was based on their ability to 

increase the dose deposited in the target volume due to differences in their mass energy absorption 

coefficient by comparison with water. As mentioned before, in water, the most probable mechanism 

by which clinical X-rays lose their energy is the Compton effect that leads to the photon scattering and 

an electron ejection from the atom. The consecutively generated photons, which have a reduced 

energy, can interact through other processes, such as the photoelectric effect where the X-ray is 

wholly absorbed by a bound electron leading to its ejection from the atom. Figure 16A shows the 

contribution of these processes to the total absorption cross-section across the range of energies 

relevant for radiotherapy (taking account primary beam (typically ranging from 0.3 to 20 MeV) and 

secondary produced particles (up to 10 MeV)). When the photon interacts with a high Z materials, 

such as gold (Z = 79), the total absorption cross-section is larger due to the higher number of electrons 

per atom (Figure 16B). Indeed, the two main photon absorption processes result from interactions 

with electrons, so, higher Z materials correspond to higher numbers of electrons per atom. Moreover, 

this higher number of electrons implies atomic orbitals with higher binding energies. For each of these 

binding energies, there is an energy threshold below which no electron can be ejected from the atom. 

When the photon energy is equal to or higher than this energy threshold, there is a discontinuity in 

the photoelectric cross-section. These discontinuities are called absorption edges and are 

characteristic of the atomic species.  
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Figure 16. Absorption cross section of photons in water (A) or in gold (B) as a function of photon energy. (C) 
Comparison of photon total absorption cross section for gold (blue curve) and water (red curve) as well as ratio 
of gold absorption cross section on water absorption cross section (dashed line) depending on photon energy. 
Data were derived from the NIST X-ray attenuation database. 

 

 As showed on Figure 16B, gold has three absorption edges: M-edge around 3 keV, L-edge 

around 14 keV and K-edge around 80 keV. The photoelectric effect plays a bigger role in the total 

absorption cross-section over a wider energy range when material atomic number increases, as 

already suggested by Figure 4. Taking into account all of these effects, the increased photoelectric 

cross-section means that high-Z materials absorb substantially more energy per unit mass than water 

does when X-rays pass through them. By dividing the gold total cross section by the one of water, we 

observe that gold can be 100 times more effective at absorbing photons energy than water. This effect 

is translated into a significant increase in local dose when even a small amount of this metal is present 

in the medium (Figure 16C). 

 

 Similarly, when a charged particle passes through water, it interacts by collisions with electron 

and nuclei of oxygen and hydrogen atoms constituting water. Figure 17 shows the contribution of 

these two processes to the proton total stopping power across incident proton beam energy in water 

(A) and in gold (B). As shown on Figure 17C, interaction between protons and a high Z material leads 

to higher stopping power than with water, translating into a higher energy deposition per unit length 

than in water. By comparing the stopping power for the two media, we observed that this differential 

stopping power is proportional with the proton energy and can reach a 10-fold increase in the energy 

transfer to gold compared to water for a 100 MeV proton beam. This highlights also a potential 

significant increase in dose when high Z materials are present (Figure 17C). 
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Figure 17. Total stopping power of proton in water (A) or in gold (B) as a function of proton energy. (C) 
Comparison of total stopping power for gold (blue line) and water (red line) as well as gold to water ratio of total 
stopping power (dashed lines) depending on photon energy. Data were derived from the pstar database of NIST. 
 

As a consequence of the aforementioned processes, energy deposition is higher in gold than in 

water. This increase in local dose deposition enables electron emission from NPs which subsequently 

deposit their energy in the surrounding medium leading to extra H2O ionization and ROS 

overproduction. As described before, an increase in ROS can lead to an increase in DNA damage and 

subsequently to cell death. This suggested cascade of events highlights that high-Z nanoparticle can 

play the role of radiosensitizer through a physical enhancement mechanism. However, physical 

enhancement is difficult to verify due to technical issues. Indeed, the most straightforward way to 

measure this potential physical enhancement should be a measurement of electron emission from 

NPs in the medium of interest. 

Although possible, these experiments involve the use of complex indirect measurement using 

chemical or biological reactions. Nevertheless, theoretical calculation programs can calculate electron 

emission and the subsequent physical enhancement. Due to the complexity of the global process, 

calculation programs divide it into different parts [99]. First, interaction of the beam with water and 

the NPs occurs. After the photon absorption, electrons are emitted from the NPs and water. The 

energy deposition events caused by these electrons are tracked and determined. Secondary X-ray 

fluorescence and scattered Compton photons generated from nanomaterials are generally not 

included in the calculations due to their negligible contributions. Finally, energy deposition of 

electrons emitted from NPs is compared to energy of electrons generated in water alone in order to 

create a dose enhancement value (DE): 

𝐷𝐺𝑁𝑃 =  𝐷𝑤𝑎𝑡𝑒𝑟 +  𝐷𝑤𝑎𝑡𝑒𝑟 ∗  𝐷𝐸 
 

𝐷𝐸 =  
𝐷𝐺𝑁𝑃

𝐷𝑤𝑎𝑡𝑒𝑟
− 1 

(21) 
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This dose enhancement value is expressed in arbitrary units called dose enhancement units 

(DEU). An enhancement of 1 DEU means that dose delivered double when GNPs are present in the 

medium. Due to a great dependence of this enhancement ratio with NPs amount in the simulation, 

theoretical enhancement values are generally reported as DEU per gold weight percent (DEU.WP-1). 

Cho et al. [100] were the first to report theoretical simulation study of the physical enhancement. 

Their findings were that enhancement from GNPs was significant around hundred keV X-rays but was 

minimal under MeV X-rays beam. These results were confirmed by Mesbahi et al. [101] who also 

observed a strong energy dependency. They showed a decrease in enhancement from 1.4 DEU.WP-1 

at 90 keV to 0.03 DEU.WP-1 at 660 keV. The highest enhancement value was observed by Lechtman et 

al. [102] who found that dose double (1.0 DEU) when 5 mg of gold/g of medium was irradiated with 

20 keV X-rays, corresponding to a 2 DEU.WP-1. Results obtained from different groups are summarized 

in Table 4. In the light of this results, it appears that the addition of 1 % of gold by mass (1 WP) to the 

tumor would result in approximately a doubling of the amount of energy deposited by a kV X-ray 

source (= 1 DEU). This ability to increase the energy absorption of an ionizing radiation offers the 

possibility to use high Z NPs as X-ray radiosensitizers. However, similar studies performed using 

protons showed a negligible macroscopic physical enhancement around [103-106]. Martinez-Rovira 

et al. [106] performed simulations to evaluate the dose enhancement when protons pass through a 

GNP solution. For a realistic configuration of the model, they reported a non-significant energy 

deposition increase. In another study, Heuskin et al. [104] reported an energy-dependent emission of 

electron from GNP surface. For a 5 nm GNP, they reported an 8 and 20 % increase in amount of 

electrons ejected per incident proton after interaction with a 1.3 and 4 MeV protons respectively. 

However, they highlight their relatively low energy (below 1.5 keV) and the high trapped proportion 

(around 50 %), meaning that half of these electrons cannot reach the NP surface. Moreover, authors 

did not report a signature of GNPs in the macroscopic dose delivered. Similar results obtained by Cho 

et al. [105], showed electron emission from the NP surface. Nevertheless, the average dose 

enhancement over the entire solution volume was negligible also in this case. 

 

Beam energy 

[keV] 

Theoretical package used 

in the study 

Enhancement values 

[DEU.WP-1] 
References 

    
20 MCNP5 + PENELOPE 2.0 Lechtman et al. [102] 

35 MCNP-4C 1.38 Zabihzadeh et al. [107] 

50 MCNPX 1.14 Mesbahi et al. [101] 

60 MCNPX 1.00 Mesbahi et al. [101] 

73 Geant4 0.9 Byrne et al. [108] 

75 MCNP-4C 0.87 Zabihzadeh et al. [107] 

95 MCNP-4C 0.96 Zabihzadeh et al. [107] 

100 Geant4 1.0 Sharmah et al. [109] 

100 EGSnrc 1.06 Kakade et al. [110] 

150 EGSnrc 0.89 Kakade et al. [110] 

380 Geant4 0.06 Zhang et al. [111] 

660 MCNPX 0.03 Mesbahi et al. [101] 

6,000 EGS4 0.01 Cho et al. [100] 

15,000 EGSnrc 0.005 Kakade et al. [110] 
 

Table 4. Non-exhaustive list of theoretical works predicting physical enhancement of GNPs under photon 
irradiation.  
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Finally, Sotiropoulos et al. used a cell model where realistic GNP distribution was implemented 

to study the DNA damage under proton irradiation. They showed that independently of the proton 

energy, the GNP size, the GNP concentration and GNP distribution the physical enhancement is 

negligible. Thereby, the low reported ability of GNPs to increase the macroscopic dose deposition of 

a charged particle prevents their potential use as radiosensitizer for charged particles. 

 

3.4. High Z nanoparticle as radiosensitizer: state-of-art   
 

In this section, we will focus on in vitro studies which have investigated the NP radiosensitization effect 

(section 3.4.1) prior to discuss in vivo and preclinical works (section 3.4.2).  

 

3.4.1. In vitro evidences 

The high-Z nanoparticle mediated enhanced radiation sensitivity has been achieved by several 

groups and each of them reported the observed effect with a different indicator. In order to provide 

a comprehensive understanding of the response to radiation resulting from the presence of 

radiosensitizing NPs, it is necessary to speak the same language. As recommended by several experts 

in the field [46], we determined the GNP effect on radiation response in terms of a “sensitization 

enhancement ratio” (SER) defined as :  

 

𝑆𝐸𝑅𝑥 =
𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑠𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐺𝑁𝑃𝑠 𝑡𝑜 𝑎𝑐ℎ𝑖𝑒𝑣𝑒 𝑥

𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑠𝑒 𝑤𝑖𝑡ℎ 𝐺𝑁𝑃𝑠 𝑡𝑜 𝑎𝑐ℎ𝑖𝑒𝑣𝑒 𝑥
 (22) 

 

The SER is calculated for a given biological effect, usually a 10 % survival fraction and has the 

advantage to take into account the entire dose-response curve. Values above 1 mean that the 

drug/NPs of interest enhance the cell death in comparison to the treatment without the drug/NPs. 

 

The ability of high-Z NPs to enhance cell death was mainly studied using gold NPs (GNPs). GNPs 

have been the most extensively studied NPs as radiosensitizer due to their high absorption coefficient, 

good biocompatibility and their ability to improve the performance of magnetic resonance imaging 

diagnosis [112]. We summarized the main in vitro works regarding GNP radiosensitization effects in 

literature into the Table 5. The experimental conditions used in these studies were different in terms 

of GNP size, GNP surface functionalization, cell model and radiation quality. Chithrani et al. [113] 

reported a radiosensitization effect of HeLa cells using a combination of GNPs and 220 kVp X-rays. 

They investigated the impact of GNP size on enhancement effect and demonstrated that a greater SER 

was obtained using 50 nm than with 14 and 74 nm. The authors explained this observation by a higher 

cell uptake of 50 nm compared to smaller and bigger GNPs. The same group evidenced that the SER 

decreases from 1.66 to 1.17 by increasing the energy beam from 105 kVp to 6 MV X-rays respectively 

[113]. The importance of surface functionalization was shown by Kong et al. [114] which exposed 10 

nm GNPs coated with glucose or with cysteamine to 200 kVp X-rays. Although a significant 

radiosensitization effect was reported for the two NPs, glucose-coated GNPs exhibited the highest SER 

(1.6 compared to 1.3 for cysteamine one). Further experiments demonstrated that the same 1.9 nm 

GNP following 225 kVp radiation exposure radiosensitized a large variety of cells from T98G 

glioblastoma cells (SER = 1.85) to MDA-MB-231 breast cancer cells (SER = 1.22) [115].  
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Cancer 

cell type 
Cell line 

GNP size 

[nm] 

Coating 

agent 
Radiation type 

NP uptake 

[#/cell] 
SER 10% Reference 

        

Bladder RT 112 50 TAT peptide 250 kVp X-rays - 1.23* Jeynes et al. [103] 

Brain 

T98G 
1.9  Thiol 160 kVp X-rays - 1.04 * Butterworth et al. [116] 

1.9  Thiol 225 kVp X-rays - 1.85 * Taggart et al. [115] 

F98 
1.9 

15 
Thiol 50 keV X-rays - 

1.92 

1.40 
Bobyk et al. [117] 

U87 28 BSA 160 kVp X-rays - 1.37 Chen et al. [118] 

U251 12 PEG 150 kVp X-rays - 1.30 Joh et al. [119] 

Breast 

MCF-7 

1.9  thiol 160 kVp X-rays - 1.04 * Butterworth et al. [116] 

10.8  
Cysteamine 

Glucose 
200 kVp X-rays 

- 

- 

1.3 

1.6 
Kong et al. [114] 

MDA-MB-231 

 

1.9  Thiol 160 kVp X-rays - 1.12 * Butterworth et al. [116] 

1.9  Thiol 
6 MV photons 

15 MV photons 
- 

1.29 

1.16 
Jain et al. [120] 

1.9  Thiol 225 kVp X-rays - 1.22 * Taggart et al. [115] 

2.7  Tiopronin 225 kVp X-rays 4.0 108 1.31 Cui et al. [121] 

16  

49  
Glucose 6 MV photons 

5.3 104 

9.4 104 

1.49 

1.86 
Wang et al. [122] 

Cervix Hela 

50  Citrate 

105 kVp X-rays 

220 kVp X-rays 

660 keV γ-rays 

6 MV photons 

6.2 103 

1.66 

1.43 

1.18 

1.17 

Chithrani et al. [113] 

4.8  

12.1  

27.3 

46.6  

PEG 662 keV γ-rays 

- 

- 

- 

- 

1.41 

1.65 

1.58 

1.42 

Zhang et al. [123] 

7 Glucose 
γ-rays  

290 keV/µm Carbon  
- 

1.52 

1.39 
Kaur et al. [124] 

45 folate 180 kVp X-rays - 1.25 Khoshgard et al. [125] 
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Table 5. Non-exhaustive list of in vitro studies of cell death enhancement by GNPs. The results are alphabetically listed for the cancer type. * = SER calculated enhancement 
from reported experimental data available in the corresponding publication.  

 

 

Cancer 

cell type 
Cell line 

GNP size  

[nm] 

Coating 

agent 
Radiation type 

NP uptake 

[#/cell] 
SER 10% Reference 

        

Colorectal 
HT-29 50  - 9 MV X-rays 6 105 1.37 Saberi et al. [126] 

CT26 4.7  PEG 6 MV photons 5 105 1.33 Liu et al. [127] 

Liver HepG2 

16  Tirapazamine 50 kVp X-rays 6.5 102 1.25 Liu et al. [128] 

14 

30 
PEG 660 keV X-rays 

- 

- 

1.20 

1.30 
Guo et al. [129] 

Lung 

L132 1.9  Thiol 160 kVp X-rays - 0.98 * Butterworth et al. [116] 

A549 

13  Glucose 6 MV photons 1.4 105 1.49 Wang et al. [130] 

10 PEG 
225 kV photons 

25 keV/µm protons 
1.9 105 

1.22 

1.14 
Penninckx et al. [131] 

Ovarian SK-OV-3 14  Glucose 
90 kVp X-rays 

6 MV photons 
1.5 105 1.44 

1.30 
Geng et al. [132] 

Prostate 

PC-3 
1.9  Thiol 160 kVp X-rays - 1.02 * Butterworth et al. [116] 

- PEG 6 MV X-rays - 1.09 Wolfe et al. [133] 

DU-145 

1.9  Thiol 160 kVp X-rays - 1.03 * Butterworth et al. [116] 

1.9  Thiol 225 kVp X-rays - 1.08 * Taggart et al. [115] 

10.8  Glucose 662 keV γ-rays 6.3 104 1.30 * Roa et al. [134] 

44 - 160 MeV proton - 1.15 Polf et al. [135] 

Vulvar A431 
5 

10 
PEG 25 keV/µm protons 

2.4 105 

7.7 104 

1.08 

1.14 
Li et al. [136] 
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However, it was reported that some cell lines, such as human prostate DU145, are not sensitized 

by this 1.9 nm GNPs even if significant gold uptake was observed (SER = 1.03 [116] or 1.08 [115]). 

Comparison of in vitro data from Table 5 enables to find some inconsistencies. For example, Chithrani 

et al. [113] reported a 1.18 SER when HeLa cells pre-incubated with 50 nm GNPs are exposed to 660 

keV γ-rays, Zhang et al. [123] observed a huge 1.42 SER when the same cells pre-incubated with 47 

nm GNPs are exposed to the same radiation. While some groups evidenced an increase in SER when 

cells are exposed to increasing energetic beam [115, 116], others reported the inverse behavior [113, 

120, 124] without hypothesizing the origin of this inconsistency. Unfortunately, the differences in SER 

reported in Table 5 cannot be rationalized due to the diversity of parameters and conditions tested in 

literature as well as to a lack of data regarding key parameters. Indeed, the cellular gold content upon 

irradiation was pointed as a key parameter of GNP radiosensitization effect but this information is 

missing in the majority of studies (Table 5).  

Although gold was the most studied material as metallic radiosensitizer, other metals were also 

investigated:  

 Platinum NPs: A limited number of studies have investigated the radiosensitization effect of 

platinum NPs for ionizing radiations. Le Sech et al. [137] found that platinum NPs bound to 

DNA could increase the DSB amount in DNA under dry conditions exposed to X-rays with 

energies near the L edge of platinum.  Moreover, Kobayashi et al. [138] demonstrated that X-

ray irradiation of chloroterpyridine platinum NPs bound to plasmid DNA enhance the number 

of DNA damages in aqueous solutions. In another study, Porcel et al. evidenced an increase in 

DSB number within cells pre-incubated with platinum NPs and exposed to helium [139] and 

carbon ions [140].   

 

 Silver NPs: Although AgNPs were extensively studied for their antimicrobial activity, some 

works investigated their potential anticancer therapeutic activity. Xu et al. [141] showed that 

20 nm and 50 nm AgNPs can sensitize gliomas cells to X-ray irradiation. This observation was 

also reported by Lu et al. [142] in human breast adenocarcinoma MDA-MB-231 cells and by 

Huang et al. [143] in gastric MGC803 cells. 

 

 Gadolinium NPs: Gadolinium is commonly used as a magnetic resonance imaging contrast 

agent but was also identified as a potential sensitizer. Mowat et al. [144] demonstrated the 

ability of Gd2O3 NPs to enhance U87 and SQ20B cell death after γ-ray exposition. Furthermore, 

Detappe et al. [145] showed that sub-5 nm polysiloxane shell coupled to gadolinium (called 

AGuIX) sensitized pancreatic cancer cell lines to X-ray clinical beam. 

 

 Iron NPs: Despite its relatively low atomic number (Z = 26), FeNPs have shown the ability to 

sensitize cells to X-rays [146, 147]. Moreover, Kim et al. [148] demonstrated the added value 

of FeNPs as radiosensitizers for protontherapy treatment.  

 

It must be noted that a huge number of other nano-objects were demonstrated as potential 

radiosensitizers including bismuth, titanium, cerium, germanium, hafnium and tantalum based NPs. 
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3.4.2. In vivo evidences, preclinical studies and clinical trials 

 In addition to in vitro studies, a limited number of in vivo works have demonstrated the 

potential use of GNPs as radiosensitizer to treat animals. These works are listed in Table 6. The first 

proof-of-concept was provided by Hainfeld et al. [149] in 2004. In this study, Balb/C mice bearing EMT-

6 murine breast cancer tumors were exposed to a single dose of 30 Gy 250 kVp radiation alone or in 

combination with GNPs (1.35 g of Au/kg) injected intravenously 5 min prior to irradiation. The authors 

reported that the irradiation alone induced tumor growth delay while irradiation + GNPs led to a 

significant decrease in tumor growth when assessed 1 month after treatment [149]. Further 

experiments using the same experimental setup but with a higher gold concentration at injection site 

(1.3 g/kg to 2 g/kg) enabled to observe an increase in median survival time of mice bearing SCCVII 

cells, a highly radioresistant murine squamous cell carcinoma [150]. Using 68 keV photons, significant 

tumor growth delay and long-term tumor control were observed when GNPs were combined with 42 

Gy radiation compared with radiation alone. Interestingly, this effect was not observed when 30 Gy of 

radiation was used. Similarly, using 157 keV photons, a higher effect was observed when a 

combination of GNPs and 50.6 Gy was used instead of 44 Gy. Unfortunately, no analysis of GNP tumor 

uptake or distribution was reported in this study. In another study, Zhang et al. [151] investigated the 

potential benefit of ultrasmall GNPs on radiotherapeutic treatment. After injection of 10 mg GNPs/kg 

in BALB/C mice, 10 µg GNPs/g of tumor was measured and a clear decrease in tumor volume 28 days 

was observed after X-ray irradiation. This in vivo evidence was confirmed by Kim et al. for 

protontherapy treatment by showing tumor regression and an increase in long-term survival in mice 

bearing CT26 cancer cells. To achieve this effect, 1.9 nm and 14 nm GNPs were used in combination 

with huge doses of a 40 MeV proton beam (100 Gy and 41 Gy respectively) [148, 152]. 

 

 

Figure 18. Average tumor volume assessed during 1 month after treatment: no treatment (▲, n = 12); gold only 
(◆, n = 4); irradiation only with 30 Gy of 250 kVp X-rays (●, n = 11); intravenous GNP injection followed by 
irradiation (◼, n = 10). Balb/C mice bearing subcutaneous EMT-6 mammary carcinomas was used in this study. 
Adapted from [149]. 
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Table 6.  In vivo studies of radiosensitization effect of GNPs.  

 

 

Cell line 
GNP size  

[nm] 

Coating 

agent 

Radiation type / 

total dose delivered 

NP concentration 

and injection route 
Observed effect Reference 

       

Tu-2449 1.9 Thiol 
100 kVp  

30 Gy 

4 g Au/kg  

intravenous 

Increase in long-term tumor free 

survival 
Hainfeld et al. [153] 

U251 12 PEG 
175 kVp 

20 Gy 

1.25 g Au/kg 

intravenous 

Increase in median survival   

(14 vs 28 days) 
Joh et al. [119] 

U87 18 BSA 
160 kVp 

5 Gy 

325 µg 

intravenous 
Tumor regression Chen et al. [118] 

EMT-6 1.9 Thiol 
250 kVp 

30 Gy 

1.35 g Au/kg  

intravenous 
Increase in long-term survival Hainfeld et al. [149] 

HeLa 

4.8 

12.1 

27.3 

46.6 

PEG 
662 keV 

5 Gy 

4 mg Au/kg 

intravenous 

Tumor growth inhibition 

Most effect = 12.1 nm  

Lowest effect = 46.6 nm 

Zhang et al. [123] 

U14 < 2  
BSA  

GSH 

662 keV 

5 Gy 

10 mg Au / kg 

Intraperitoneal 

Decrease in tumor volume 

(38 % for BSA and 55 % for GSH) 
Zhang et al. [151, 154] 

CT26 

1.9 Thiol 
40 MeV proton 

100 Gy 

300 mg Au/kg 

intravenous 
Tumor regression  Kim et al. [148] 

14 citrate 
40 MeV proton 

41 Gy 

300 mg Au/kg 

intravenous 
Increase in long-term survival Kim et al. [152] 

SCCVII 

1.9 Thiol 
68 keV 

42 Gy 

1.9 g Au/kg  

intravenous 

Increase in median survival   

(53 vs 76 days) 
Hainfeld et al. [150] 

1.9 Thiol 
157 keV 

50.6 Gy 

1.9 g Au/kg  

intravenous 

Increase in median survival   

(31 vs 49 days) 
Hainfeld et al. [150] 
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Although research on high-Z NP application as radiosensitizer is a relatively immature scientific field, 

some products are subjected to preclinical studies and clinical trials: 

 Nanobiotix Inc. is a French company that has been developing NBTXR3, a 50 nm HfO2 NPs 

designed for direct intratumoral injection and subsequent radiosensitization. In vivo proof-of-

efficiency was performed on A673 Ewing cells engrafted in nude mice as a sarcoma model. 

One intratumoral NBTXR3 injection performed 24 hours prior to irradiation increased the 

treatment efficiency when compared with radiotherapy alone. An approximately two-fold 

increase in tumor doubling time was demonstrated and a significant 82 % tumor growth 

inhibition was reported for NBTXR3 activated by 15 Gy X-rays compared to 72 % for 15 Gy X-

rays alone [155]. The phase I trial of this nano-object started in 2011 and was completed in 

2015. The report concluded that “human injection (22 sarcoma patients in France) was well 

tolerated until 10 % of tumor volume with preoperative external beam radiotherapy and did 

not result in leakage of these nanoparticles into the adjoining healthy tissues” [156]. Since this 

positive first phase, several phase 2 clinical trials are ongoing, recruiting participants for the 

treatment of head and neck, rectal, liver and prostate cancers. Moreover, the company has 

been conducting a prospective randomized phase III clinical trial (NCT02379845) for adult soft 

tissue sarcoma since March 2015. The latest news available on the company’s website (June 

21st 2018) indicate that twice as many patients (16.1 % for NBTXR3 vs 7.9 % for radiation alone) 

achieved less than 5 %  of residual viable cancer cells in the tumor post-treatment. (p=0.045).  

 

 NH TherAGuIX is a French company that has been developing AGuIX, a 5 nm polysiloxane 

matrix with gadolinium cyclic chelates covalently grafted on the inorganic matrix for the 

treatment of brain metastases. In vivo proof-of-concept was performed using orthotopic 9L 

gliosarcoma cancer cells into rat. One intravenous injection of 40 mg AGuIX/g of rat performed 

20 min before irradiation increased the median survival time by a factor of 4.5 and 2 compared 

with untreated animals and irradiated animals respectively. Since then, AGuIX is associated to 

two phase I clinical trials: NanoRAD (NCT02820454, started in June 2016) for the treatment of 

brain metastases by whole brain radiation therapy and NanoCOL (NCT03308604, started in 

May 2018) for the treatment of locally advanced cervical cancer [157]. First results of 

NanoRAD clinical trial showed a good tolerance of AGuIX and its ability to pass through the 

blood brain barrier selectively in brain metastases, paving the way to NanoRAD phase II trial 

which will start end of 2018 [157].  

 

 

3.5. Confrontation between theoretical physical predictions and experimental 

evidences   
 

In this last section, we will confront theory (theoretical physical predictions) with experimental 

observations (dose enhancement reported in vitro). To do that, we focus only on studies for which 

data about gold content at irradiation time is available. Observed in vitro radiosensitization effect was 

plotted according to the predicted physical dose enhancement on Figure 19. This figure highlights 

three main deviations from the dose enhancement physical predictions:  
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 First, several studies reported significant radiosensitization effects when GNPs were used at 

concentrations lower than the 0.1 to 1 WP that is typically associated with theoretical 

predictions of significant dose increases. For example, Liu et al. [128] investigated the effect 

of 16 nm tirapazamine conjugated GNPs on HepG2 liver cancer cell under X-ray irradiation. 

Authors reported a gold content of 6.5 102 GNPs/cell corresponding to 0.003 WP and a 

significant surviving fraction reduction (0.25 DEU) in these conditions. This observed 

radiosensitization effect is 83-fold higher than the predicted one (= 0.003 DEU). 

 

 Second, although enhancements have widely been observed with kilovoltage X-rays, as 

predicted, various studies have reported significant radiosensitization effect with 

megavoltage X-rays [120, 122, 126, 127, 130] where little or no increase in overall dose 

deposition would be expected according to the theory. 

 

 Finally, the observed enhancement values are generally higher than the predicted ones. 

Butterworth et al. [116] evidenced this inconsistency by comparing the responses of 9 

different cell lines. Assuming that irradiation using 160 kVp X-rays leads to a 1 DEU.WP-1 and 

that all GNPs added to the medium are internalized by the cell, a maximal 0.01 DEU should be 

observed. However, they observed a cell-dependent radiosensitization effect ranging from 0.4 

to 0.97 DEU. This inconsistency is also illustrated in Figure 19. For almost all experimental 

results, the observed enhancement is higher than the physical predicted dose increase 

(plotted as a dashed line). Moreover, the correlation between the predicted dose 

enhancement and observed radiosensitization is very weak (Pearson’s r = 0.08). It is 

interesting to note that radiosensitization effects were reported using proton beam while 

physical enhancement calculation predicted only negligible dose enhancement [136]. 

 
 

 

Figure 19. Comparison of observed in vitro experimental dose enhancement with predicted dose enhancement 
values for GNPs studies (kilovoltage and megavoltage radiation sources). Dashed line shows the trend which 
would be followed if the observed enhancement racked with predicted increases in physical dose. This trend 
was calculated on a 1 DEU.WP-1 basis. Adapted from [158]. 
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Furthermore, comparison between predicted physical enhancement and in vivo studies leads to 

the same conclusions. Indeed, Zhang et al. [154] demonstrated using gold clusters containing only 29–

43 gold atoms covered with reduced glutathione ligands that a significant enhancement effect can be 

obtained even though the gold content was extremely low. In fact, the gold content in the tumor was 

a few micrograms per gram of tissue (≈ 10-3 WP). Physical enhancement for such a small loading of 

gold would only be negligible. However, the authors observed almost no increase in tumor volume 

after 28 days with GNPs, whereas tumors in mice without GNPs and radiation grew five-fold over 28 

days. Another example is the study of Hainfeld et al. [149], where a tumor gold content of 0.23 WP 

was reported. For the 250 kVp X-rays used in this study, the predicted physical enhancement using 

this tumor gold content was approximatively 0.2 DEU. Moreover, we can calculate the observed dose 

enhancement effect based on data presented in Figure 18. According to Guo et al. [99], if there is no 

toxicity from the nanomaterials and if the tumor growth follows an exponential function, the 

magnitude of the dose enhancement (DE) can be calculated using the following equation: 

 

𝐷𝐸 =
ln( 𝑡𝑢𝑚𝑜𝑟 𝑠𝑖𝑧𝑒 𝑤𝑖𝑡ℎ 𝑛𝑜 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) − ln ( 𝑡𝑢𝑚𝑜𝑟 𝑠𝑖𝑧𝑒 𝑤𝑖𝑡ℎ 𝐼𝑅 + 𝐺𝑁𝑃𝑠)

ln( 𝑡𝑢𝑚𝑜𝑟 𝑠𝑖𝑧𝑒 𝑓𝑜𝑟 𝑛𝑜 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) − ln ( 𝑡𝑢𝑚𝑜𝑟 𝑠𝑖𝑧𝑒 𝑤𝑖𝑡ℎ 𝐼𝑅 𝑎𝑙𝑜𝑛𝑒)
− 1 (23) 

 

In the study of Hainfeld et al. [149], the calculated dose enhancement is 0.58 DEU which is higher than 

the predicted one.  

 

All these findings raised questions concerning the mechanism(s) responsible for the 

radiosensitization effect of GNPs. Indeed, although many works reported the GNPs ability to enhance 

cell death upon irradiation, their sensitizing properties cannot be solely due to dose enhancement. 

Thereby, other mechanisms playing significant role in the observed radiosensitization need to be 

elucidated to fully understand the process. 
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4. Objectives 
 

Radiotherapy remains the main treatment modality to fight cancer, as half of all patients 

receive ionizing radiation during their treatment. Although the overall cancer death rate decreased 

year after year by an average of 1.5 %, it is not the case for all cancer types. Indeed, death rate for 

several cancers including nervous system and pancreas ones still increases due to inefficient treatment 

modalities for these ones up to now. Therefore, there is a real need of new treatment modalities 

discovery and/or current treatment improvement. The “Holy Grail” in radiotherapy is to find a 

technique, which enables to maximize the differential between the dose delivered to the tumor and 

to the healthy tissues surrounding it while enabling a reduction of the total dose delivered to the 

patient.  

Since decades, tumor targeting in radiotherapy is constantly improving thanks to new 

modalities, including new imagery technologies or the use of charged particle therapy. Particle 

therapy offers the possibility to target tumors more precisely due to a spatial dose distribution that 

spare normal tissues as well as to increase treatment efficiency via its higher relative biological 

effectiveness. Although an increasing number of studies evidenced its efficiency in vitro and in vivo, 

additional works are still required to understand the fundamental effects caused by these radiations 

in cell. 

In the meantime, development of nanomedicine offers the possibility to take advantage of 

nanoscale materials for therapeutic applications as radiosensitizer in oncology. Indeed, these 

materials have the ability to reach a given cancer cell killing using a reduced total dose delivered to 

the patient. Despite an increasing amount of data regarding high-Z NP – induced radiosensitization, it 

is still difficult to draw conclusions regarding this effect due to the diversity of parameters and 

conditions used in literature. This leads to important open questions such as the mechanism(s) 

responsible for the cell death enhancement, which remains a mandatory step towards the clinical use 

of metallic radiosensitizers. 

 

Therefore, this thesis aims at improving radiotherapy treatment as the ultimate goal. The first 

part of this work consisted in the evaluation of a combination of charged particle therapy and GNPs in 

different cancer cell types. The aim was double: firstly, we characterized the response of this system 

by varying different parameters (physics ones such as LET, chemical ones such as GNP size and 

biological ones such as cell types) in order to better understand the impact of these parameters on 

the cell death enhancement effect. Secondly, we investigated the mechanism(s) responsible for the 

GNPs-induced radiosensitization effect. In the second part, we studied the DNA damage formation 

and repair responses after low and high-LET radiation exposition in a large ex vivo cohort of primary 

mouse fibroblasts. The goal was to progress in the fundamental understanding of biological 

consequences of charged particle irradiation as well as to probe if individual radiosensitivity is 

mediated by genetics.  

 

Altogether, the results obtained during this thesis enabled to highlight the importance of 

personalized medicine approach for further cancer patient treatment taking into account the genetic 

background of the tumor for treatment using GNPs as well as the individual radiosensitivity of an 

organism to radiation.
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5. Gold nanoparticle synthesis and characterization 
 

5.1. Synthesis 
 

Since the classic citrate reduction of aurate salt to prepare citrate-stabilized GNPs reported by 

Turkevich and Frens [159, 160], there has been a sustained effort aimed at developing new chemical 

routes to prepare stable GNPs that are easily dispersible in water. Based on [161], we developed a 

simple one-phase (aqueous) growth and passivation method to prepare a series of hydrophilic GNPs. 

The synthesis procedure is a three-step reaction consisting of (1) precursor formation by reacting an 

organic ligand with tetrachloroauric(III) acid (HAuCl4), (2) growth of the GNP cores triggered by 

addition of a powerful reducing agent (NaBH4) and (3) further passivation and functionalization of the 

cores by adding extra functional ligands.  
 

 
Figure 20. Schematic representation of the GNP synthesis method. 

 

The ligands chosen for this synthesis are bifunctional polyethylene glycol (PEG) polymers with 

a thioctic acid (TA, which has a terminal disulphide) at one end and a given reactive group at another 

end. Since these NPs are stabilized with disulfide anchoring groups, they exhibit remarkable stability 

in the presence of excess counterions as evidenced by different groups [162, 163]. During the 

synthesis, HAuCl4 and the ligands TA-PEG550-OCH3 were first mixed in water to promote the formation 

of a precursor underlined by a color change of the original yellow solution to colorless. Secondly, the 

addition of NaBH4 initiated the gold ion reduction and the growth of the gold nanocrystals. Once the 

growth step was complete, TA-PEG400-NH2 ligands were further added to the solution (to a final 

Au/ligand molar ratio of 1:1). This last step provided an additional passivation (covering unoccupied 

site at the NP surface) and functionalization of GNPs with a positively charged reactive group. After 3 

hours of stirring, the colloidal suspension was purified with a membrane filtration device. It must be 

noted that the two PEG ligands used in this study do not have the same role. While the second one 
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(B) 

enables the functionalization of the coating, the first one enables to obtain a given GNP size. In fact, 

we are able to tune the GNP size by changing the molar ratio between gold and TA-PEG550-OCH3 ligand. 

 

5.2. Characterization  

 

5.2.1. Optical properties 

UV-visible absorption spectra obtained from a set of GNP solutions prepared using increasing 

Au/PEG molar ratio are presented in Figure 21A. As shown, low Au-to-ligand molar ratios are 

associated to a weak surface plasmon band around 520 nm (not discernable for 1/1 Au/PEG ratio). For 

higher ratios, a well-defined plasmon band appears 525 nm indicating the presence of a narrow size 

distribution of GNPs. Moreover, this increase in Au/PEG ratio was associated to a color change from 

yellow to red, evidencing different GNP size (Figure 21B).  

 
  

Figure 21. (A) Normalized UV-vis absorption spectra for several Au/PEG molar ratios. (B) Image collected from a 

series of GNP dispersions in deionized water. Changes in solution color from yellow (Au/PEG: 1/1) to red 

(Au/PEG: 1,000/1) reflect an increase in the nano-object size. 

 

5.2.2. Size distribution and morphology  

In order to investigate the size and the morphology of GNPs, transmission electron microscopy 

(TEM) images were taken. As shown in Figure 22, images evidenced that GNP size increased with 

Au/PEG ratio, as anticipated from the absorption spectra (Figure 21A). An average diameter was 

extracted from these images using Image J software. Results are listed in Figure 22. It is interesting to 

note that spherical shapes dominate the NP dispersion, even if slight inhomogeneities in shape were 

observed for the larger sizes (Au/PEG : 2,000/1 and 10,000/1).  

A plot summarizing the progression of particle size (extracted from TEM) as a function of the 

Au/PEG ratio for the full set of solutions prepared is shown in Figure 23. This highlights a rapid increase 

in size at low ratios while this dependence becomes weak for large size (little changes in diameter 

from 2,000/1 to 10,000/1 ratios). This relation between size and Au-to-ligand ratio reflects the change 

in NP surface/volume ratios: After the nucleation step, two events occur simultaneously in the batch. 

On one hand, accumulation of gold atoms on the surface enables the growth of the NPs.  
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Figure 22. TEM images for several Au/PEG molar ratios ranging from 1/1 (A) to 10,000/1 (F). Average diameter 

and associated fit error are reported in each condition after analyzing at least 500 particles per condition using 

the ImageJ software. 

 

 

 
 

Figure 23. Relationship between Au/ TA-PEG550-OCH3 ratio and GNP size measured by TEM. The surface to 

volume ratio for each NP size (█) was plotted based on theoretical calculations. 
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On the other hand, disulphide terminal group of TA-PEG550-OCH3 links to GNP in formation. When 

the amount of ligand in solution is sufficient for covering the main part of the NP surface, the growth 

process is slowed down, stabilizing a given GNP size. The rapid size change measured at low Au/PEG 

ratios reflects the large decrease in surface-to-volume ratio when small size NPs grow (1 to 6 nm). As 

the surface-to-volume ratio decreases slower for larger particle (8 to 10 nm), the effect of ligand 

concentration becomes less dominant, which is translated into a weaker change in GNP size at higher 

Au-to-ligand ratios. 

 

5.2.3. Colloidal stability 

In order to assess the stability of the 10 nm GNPs produced by this synthesis, we performed 

zeta potential analyses. GNPs exhibited a zeta potential value of – 19.3 ± 2.6 mV and -0.8 ± 2.5 mV 

when they are suspended in deionized water and culture medium respectively. This decrease in 

potential when GNPs were placed in culture medium is not surprising. In fact, proteins from the cell 

culture medium tend to adsorb at the NP surface through electrostatic interactions with positively 

charged amino groups from the coating. Usually, we consider that absolute zeta potential values 

above 30 mV provide a good colloidal stability, while values between + 5 mV and -5 mV indicate fast 

aggregation. However, these rules consider only a pure electric stabilization of colloids, which is not 

the case here due to the presence of a PEG coating which adds a steric stabilization. In the light of this, 

zeta potential values highlighted a relatively short-term stability in culture medium. To assess the 

kinetics of a potential aggregation process in solution, we performed UV-visible absorption 

measurements through time. GNPs were placed in Hank's Balanced Salt Solution (HBSS) medium 

supplemented with 10 % fetal bovine serum (FBS) and incubated at 37°C in order to mimic the usual 

incubation conditions of GNPs for cell experiments.  By following the gold plasmon band across the 

time, we did not evidence any change in spectra until 7h of incubation (Figure 24A). From the 24h time 

point, a significant reduction in the absorption at 525 nm was observed as shown by the dashed line 

on Figure 24A. After a 48h and 72h incubation, an increase in the absorption at higher wavelength was 

observed, indicating an increase in particle size.  

 

 
Figure 24. GNP stability in HBSS medium supplemented with 10 % FBS and incubated during 72h at 37°C. (A) UV-

visible spectra at 1h (red curve), 3h (blue curve), 5 h (green curve), 7h (purple curve), 24h (yellow curve), 48h 

(cyan curve) and 72h (brown curve). Dashed line indicated the position of the maximal absorption wavelength 

(λmax = 525 nm). (B) Heterodispersity index calculated from the spectrum for each time point ± 1 SD of three 

independent experiments. 
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This growth process is evidenced by a decrease in the heterodispersity index in Figure 24B. 

All together, these results suggest that GNPs are stable in culture medium during several hours prior 

to sediment (24h) and start an aggregation process (48h). 

 

5.3. Scale-up 

 

In order to probe the potential industrialization of the synthesis process, we performed two scale – 

up experiments, e.g. an extrapolation of the synthesis by multiplying all the reagent quantities by a 

same factor (2 and 5 in our case). As shown in Figure 25, scale-up did not alter the spherical 

morphology of GNPs. However, size distribution revealed a slight decrease in the average diameter 

with the scaling up, while full width at half-maximum remained unchanged. Lastly, a significant 

increase in the reaction yield was observed with scaling up due mainly to the decrease in GNP 

proportion lost on the membrane during the purification process. 

 

 

Figure 25. Scale-up of 10 nm GNPs synthesis (Au/PEG: 2000/1). (A) TEM images for each batch. (B) Size 
distribution analyzed using Image J software. Average diameter (x), full width at half-maximum (FWHM) and 
associated fit error are reported in each condition. (C) Average reaction yield obtained from at least 3 
independent syntheses. 
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6. Gold nanoparticles as radiosensitizer for protontherapy: in vitro 

proof-of concept and key parameters 
 

6.1. Context and goal of this study 

When we started this study in 2015, the development of high-Z radiosensitizers was a hot 

topic leading to a plethora of new metallic nano-objects. Although many studies have shown their 

ability, when injected into the tumor, to amplify the X-ray radiation treatment efficiency, a very limited 

number of works have investigated this radiosensitization effect with charged particles. However, 

these studies led to contradictory results (cf. introduction). Jeynes et al. showed no significant 

enhancement effect when RT112 cells containing 50 nm GNPs were irradiated using a 3 MeV proton 

beam [103]. On the other hand, by exposing DU145 cells pre-incubated with 40 nm GNPs to a clinical 

160 MeV proton beam, Polf et al. observed a 15 % enhancement in the relative biological effectiveness 

[135]. Unfortunately, comparison between studies did not improve the understanding of this GNP-

induced radiosensitization due to the huge number of different experimental conditions used within 

studies that prevents to draw general conclusions.  

To cope with these issues, we wanted to investigate the influence of physico-chemical 

parameters on this radiosensitization effect. Furthermore, we focused on proton irradiation due to 

the lack of data regarding GNP enhancing charged particle efficiency. In the meantime, the impact of 

the nano-object size was assessed using 5 and 10 nm GNPs. These nano-objects had the same spherical 

shape and PEG coating agent, two parameters reported in literature to influence the radiosensitization 

effect. Finally, the influence of these physico-chemical parameters was investigated using the same 

biological model, the epidermoid carcinoma A431 cell line.  

 In the first part of the article, we studied the interaction between cells and the GNPs. We 

determined a non-cytotoxic concentration of GNPs that enables an efficient cell internalization. Sub-

cellular localization and cellular gold content were assessed in order to determine whether the GNP 

size influences the cell uptake process. In a second part, we irradiated cells pre-incubated or not with 

GNPs to study their ability to enhance the cell death after proton irradiation. The LET impact on the 

radiosensitization effect was highlighted and possible hypotheses were proposed to explain the 

observations. 

 

6.2. First manuscript: “LET-dependent radiosensitization effects of gold 

nanoparticles for proton irradiation” – Nanotechnology (2016). 
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7. Mechanistic investigations  
 

As shown in the previous study, the GNPs produced at UNamur enhance the effectiveness of 

proton irradiation paving the way for a potential use as radiosensitizers in oncology. Although the 

influence of several parameters on this radiosensitization effect was investigated, the mechanism(s) 

responsible for it still remains unclear.  

 

7.1. Physico-chemical insights 

As claimed in the introduction section, the majority of published works attributed the origin 

of the measured enhancement to an increased absorption of ionizing radiations by nanomaterials. 

The difference in energy absorption between gold and the surrounding soft tissues enables a dose 

enhancement in cells containing GNPs. The interaction between the ionizing particles and high Z atoms 

leads to the emission of low-energy electrons from the nanoparticle. These electrons interact with the 

surrounding medium, producing ROS. Many groups have theoretically modelled this dose 

enhancement by dividing the process in three steps: X-ray absorption by the nanomaterial, the 

electron release, and the electron interaction with atoms in both nanomaterials and the surrounding 

medium. However, the number of experimental studies with an objective to demonstrate this remains 

extremely low in comparison to the number of theoretical studies. To cope with this, a chemical 

detection of ROS produced was used as an indirect measure of physical enhancement.  

 

7.1.1. Investigation of ROS production upon irradiation using a radical scavenger  

To assess the involvement of ROS in the radiosensitization effect, cells were pre-incubated 

with or without GNPs and irradiated in a medium containing 1M DMSO, a well-known hydroxyl radical 

scavenger. It must be noted that this high DMSO concentration does not affect the cell capacity to 

divide (plating efficiencies of A549 cells were 0.576 and 0.572 respectively in absence and in presence 

of DMSO). Results are presented in Figure 26 for lung carcinoma A549 and epidermoid carcinoma 

A431 cells. As already discussed in the previous manuscript, results showed the role of water radicals 

(indirect effect) in cell death evidenced by the increase in cell survival when DMSO was present 

(samples without GNPs). More interestingly, the death enhancement decreased in both cell types 

when DMSO was added during the irradiation (from 0.57 DEU to 0.24 DEU and from 0.69 DEU to 0.20 

DEU for A549 and A431 cells respectively). This result shows that GNP enhancing effect is associated 

to the presence of ROS. To take this forward, we developed experimental protocols to determine 

which type(s) of ROS is/are produced during irradiation. 

 

7.1.2. Determination of ROS produced during irradiation 

The research in the ROS field is a challenging scientific area due to some characteristics of 

radicals that make them difficult to detect: their short lifetime (around µs) and the variety of 

antioxidants existing in vivo, able to scavenge these reactive species [164]. Consequently, a method 

for a direct ROS detection was not easy to develop, forcing us to consider an indirect detection method 

based on fluorescence measurements. The fluorescence methodology choice was motivated by its 

high sensitivity and simplicity in data collections compared to other potential techniques.  
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Figure 26. Survival fractions of A549 and A431 cells irradiated with 25 keV.μm−1 proton beam at 3 Gy. Cells were 
pre-incubated during 24 hours with or without 10 nm GNPs at 50 µg.ml−1. Cells were then irradiated in the 
presence or absence of 1M DMSO that was added just before irradiation. Survival was assessed by conventional 
clonogenic assay. Results were presented as mean ± S.D. of three independent replicates. Results were 
statistically analyzed using a one-way ANOVA (Tukey test, *p < 0.05, **p < 0.01, *** p < 0.001). 

 

 

Figure 27. Validation of ThermoFisher’s kit “Amplex Red Hydrogen Peroxide/Peroxidase Assay” according to 
manufacturer instructions (10 mM Amplex red and 10 U/mL of HRP). (A) Reaction between Amplex Red and 
hydrogen peroxide to form resorufin, a fluorescent molecule. (B) Fluorescence spectra obtained with 250 nM of 
hydrogen peroxide at different incubation times. (C) Kinetic measurement of fluorescence at 585 nm obtained 
with 250 nM of H2O2. (D) Calibration curve of fluorescence at 585 nm over the hydrogen peroxide concentration 
after 30 min of incubation. 
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We used a non-fluorescent molecule (refered as “probe”) which has the ability to react 

specifically (or with a high selectivity) with a ROS of interest to form a stable, long-lived fluorescent 

product. Moreover, the detection was performed in a simple colloidal system instead of in biological 

environment to overcome constraints such as competition in ROS detection due to the presence of 

antioxidants or ROS generation via Fenton-type reactions. In practical terms, homemade irradiation 

chambers were filled with phosphate buffer pH 7 containing just the probe specific of the ROS of 

interest (control sample) or buffer containing this probe and GNPs (GNPs sample). After proton 

irradiation, fluorescence was assessed using a spectrophotometer. The influence of different physico-

chemical parameters (such as dose8 and dose rate) on radical production was investigated. In the 

frame of this thesis, we evidenced the production of two different ROS during irradiation: hydrogen 

peroxide (H2O2) and hydroxyl radical (°OH).  

 

Detection of hydrogen peroxide  

N-Acetyl-3,7-dihydroxyphenoxazine (Amplex Red) is a non-fluorescent molecule that, when 

oxidized by hydrogen peroxide in the presence of horseradish peroxidase (HRP), produces resorufin, 

a fluorescent product (Figure 27A). Resorufin has excitation and emission maxima at 571 nm and 585 

nm respectively, and a high extinction coefficient: 58,000 ± 5,000 cm–1M–1. In order to detect hydrogen 

peroxide produced during the irradiation, we used the Amplex Red Hydrogen Peroxide/Peroxidase 

Assay kit from ThermoFisher Scientific. By following the protocol of the manufacturer, we determined 

the optimal conditions for the detection of H2O2 in colloidal system (GNPs suspension in buffer). In 

order to do that, the working reagent was mixed with 250 nM of standard H2O2 and a fluorescence 

spectra was registered every minute. As shown in Figure 27B, a bathochromic shift of the maximal 

emission to 585 nm was observed due to the increasing detection of H2O2. The kinetic of this detection 

system shows a linear behavior prior to reach a plateau after 30 minutes of incubation (Figure 27C). 

For the further irradiation experiments, we decided to fix the incubation time between Amplex Red 

dye and hydrogen peroxide at 30 minutes. This time lapse enables to perform multiple sample 

irradiations in a single run as well as to ensure reproducible measures since this timing corresponds 

to a plateau in the detection kinetic. Moreover, fluorescence spectra were also determined for 

increasing amounts of hydrogen peroxide, evidencing a linear behavior between fluorescence at 585 

nm and hydrogen peroxide concentration in solution (Figure 27D). The method could detect 

concentration as little as 12 nM. Finally, the high selectivity of the method was demonstrated by the 

addition of sodium pyruvate 25 µM, a H2O2 scavenger, which completely prevented the increase in 

absorption at 525 nm when H202 at 250 nM was added (data not shown). 

To determine whether hydrogen peroxide is produced during proton irradiation, we mixed a 

NP colloidal suspension with the reagent (50:50 v/v) and placed this solution in homemade irradiation 

chambers. As shown in Figure 28A-B, an increase in the fluorescence intensity at 585 nm (F585 nm), 

fingerprint of a H2O2 production, was observed after irradiation in control buffer and colloidal samples. 

These results demonstrated that proton-matter interaction led to water radiolysis and so to the 

production of hydrogen peroxide.  

 

                                                           
8 In these experiences, the dose reported is a “cell equivalent dose” in order to enable a comparison between 
these results and the ones obtained with cells. 
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Figure 28. H2O2 production after 25 keV/µm proton irradiation (3Gy/min). Fluorescence spectra of (A) buffer 
control sample and (B) GNP sample 30 minutes post-irradiation. Dashed and solid lines represent respectively 
non-irradiated control and irradiated samples. Dot lines indicate the 585 nm wavelength. (C) Fluorescence 
intensity depending on the radiation dose for 100 µg/mL GNPs (▲), 50 µg/mL GNPs (●) and buffer control 
samples (■). Fluorescence intensity of unirradiated samples was subtracted from fluorescence of irradiated 
ones. 

As shown in Figure 28C, the H2O2 production was dose- and concentration-dependent. These 

dependences could be explained by the increasing probability of the encounter between protons and 

nanoparticles when the GNP concentration and the number of projectiles increase. From these curves, 

we calculated a 0.94 and 1.38 DEU in the H2O2 production when 50 µg/mL and 100 µg/mL 10 nm GNPs 

are irradiated respectively. These results suggest that the hydrogen peroxide production was doubled 

during colloidal suspension irradiation in comparison to the same solution without GNPs.  

 

Detection of hydroxyl radical  

 In the case of °OH, no commercial detection kit was available. This forced us to develop our 

own method. It is well known that hydroxylation of aromatic rings produced phenolic moieties that 

possess fluorescent properties. A wide variety of aromatic compounds have been reported to react 

with °OH including terephthalate, benzoic acid, p-chlorobenzoic acid and benzene [165]. Among all 

these potential aromatic probes, we chose the coumarin backbone. Reaction of coumarin with °OH 

forms a set of hydroxylated products for which the fluorescence yield strongly depends on the site of 

hydroxylation on the aromatic ring. The major fluorescent product of hydroxylation of coumarin is the 

7-hydroxycoumarin (umbelliferone), characterized by a high quantum yield [166]. To improve our 

chance to detect °OH, we derivated coumarin by using the coumarin-3-carboxylic acid (3-CCA) as the 

probe. This substitution of hydrogen by a carboxylic group offers a double advantage. First, it avoids 

hydroxylation in position 3 and so the formation of a non-fluorescent product. Secondly, it increases 

the fluorescence of 7-hydroxylated coumarin derivative by two fold compared to umbelliferone [167]. 
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The 7-hydroxy-3-CCA has excitation and emission maxima at 390 nm and 450 nm, respectively. In 

order to validate the detection method, a chemically induction of °OH was performed using a mixture 

of ascorbic acid (ASC) and Cu2+ ions as described in [168]. Without detailing all reactions, a mixture of 

ASC and Cu2+ can produce significant amount of °OH and H2O2, after 9 successive chemical reactions. 

Fluorescence spectra were registered over the time, evidencing the apparition of a peak at 445 nm 

which corresponds to the fluorescence of hydroxylated coumarin products (Figure 29B). By evaluating 

this increase through the time, we observed a linear behavior prior to reach a plateau, as illustrated 

in Figure 29C. We observed that the time to reach it depends on the amount of radicals produced as 

suggested by the set of ASC concentrations tested. For the further irradiation experiments, we decided 

to fix the incubation time at 30 minutes. Finally, we evidenced that fluorescence intensity after a 30 

min incubation was proportional to the °OH concentration in solution (Figure 29D). Selectivity of the 

detection method for hydroxyl radical was demonstrated by absence of signal when DMSO, a °OH 

scavenger, was present. Moreover, no significant increase in fluorescence was observed when the 

probe was oxidized by H2O2 instead of °OH (Figure 29D). To determine whether °OH is produced during 

proton irradiation, we mixed a NP colloidal suspension with 3-CCA (50:50 v: v) and placed this solution 

in homemade irradiation chambers. As shown in Figure 30A, an increase in the fluorescence intensity 

at 445 nm (F445 nm), fingerprint of a hydroxyl radical production, was observed after irradiation in 

control buffer and colloidal samples. 

 

 

Figure 29. Validation of hydroxyl radical detection test. (A) Hydroxylation of 3-CCA leading to 7-hydroxy-3-CCA, 
one of the fluorescent products detected in the test. (B) Fluorescence spectra obtained by reaction of 0.1 mM 
3-CCA with °OH inducer solution (0.3 mM ASC and 0.1 mM CuSO4) at different incubation times. (C) Kinetic 
measurement of fluorescence intensity at 445 nm obtained with a set of ascorbic acid concentrations. (D) 
Fluorescence intensity at 445 nm in different experimental conditions after a 30 min incubation. 
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As reported for H2O2 measurement, we observed a linear relationship between the radical 

production and the radiation dose deposited in the solution. Moreover, we also observed that the 

presence of GNPs increased the water radiolysis compared to buffer sample (a 1.44 DEU in the °OH 

production was reported). The influence of dose rate on the radical production was also investigated, 

evidencing a decrease with dose rates over the range studied as illustrated in Figure 30C. However, 

this decrease was only significant (p < 0.05) for GNP samples irradiated at 3 and 6 Gy/min. Although 

this decrease in radical production when dose rate increased was previously reported by several 

groups working on X-ray irradiation [166, 169], we cannot exclude the possibility that it could result 

in an artefact caused by the experimental setup. When dose rate increases, the dose is delivered in 

short irradiation time. In an irradiation setup like the one used here, the proton energy is fixed which 

means that an increase in dose rate corresponds to a direct increase in the fluence. This induces an 

increase in the number of ROS formation area leading to a higher encounter probability between two 

ROS. This enables reactions between ROS to form other ones, which are not detected by the probe. It 

is the case for hydroxyl radicals that can react together to form hydrogen peroxide, which is not 

detected by this method. Thereby, the decrease in fluorescence that we observed when dose rate 

increased can be caused by a competitive reaction of °OH with the probe and with other radicals. 

 

 

Figure 30. °OH production after 25 keV/µm proton irradiation. (A) Fluorescence spectra of buffer control samples 
(green lines) and GNP samples (red lines) 30 minutes after irradiation. Dashed and solid lines represent 
respectively unirradiated controls and irradiated samples. (B) Fluorescence intensity depending on the radiation 
dose delivered at 3Gy/min in solution containing 50 µg/mL GNPs (●) or just buffer (■). Fluorescence intensity of 
unirradiated samples was subtracted from fluorescence of irradiated one. (C) Fluorescence intensity obtained 
in colloidal solution and buffer solution exposed to 30 Gy at different dose rates. Fluorescence intensity of 
unirradiated samples was subtracted from fluorescence of irradiated one. Results were analyzed via a one-way 
ANOVA (Tukey test, * p < 0.05, *** p < 0.001, N.S. not significant). 
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7.2. Biological insights 
 

7.2.1. Context and goal of this study 

When we started this study in 2016, mechanistic studies on radiosensitization effects focused 

on physico-chemical insights. This subject was approached from different angles by both experimental 

works (mainly via radical production [169, 170] and electron emission [171] measurements) and 

simulation studies (encounter probability estimation [104], microdosimetry calculation [172], …). 

However, there are plenty of studies where an agreement was not reached between theoretically 

predicted and experimentally measured enhancement values, as discussed in the introduction. For 

example, Roa et al. [173] investigated the radiosensitization effect of GNPs  in prostate cancer cells. 

Based on their uptake data, they predict a physical enhancement less than 0.07 DEU after irradiation 

with a 2 MeV X-rays. However, they reported an experimental enhancement between 0.5 and 1.0 

DEU. This study is one of the various works which evidence that physical enhancement theory does 

not seem to be solely responsible for the measured enhancement. To cope with this issue, we wanted 

to investigate other ways to explain the GNP-induced radiosensitization process. A decision was made 

to focus on a potential biological response by studying the nanoparticle–cell interactions without any 

radiations. The aim of this work was to understand whether GNPs can disrupt the cell functioning 

making them more vulnerable to death. To do so, we only used the 10 nm GNPs due to their higher 

response to radiation (reported in the first manuscript) and the human lung carcinoma A549 cell line. 

 In the manuscript entitled “The role of thioredoxin reductase in radiosensitization effect of 

gold nanoparticles”, we demonstrated that experimental incubation conditions enable an efficient 

GNP internalization in this cell model as well as an enhancement of cell death using both X-ray and 

proton irradiation. In a second part, the impact of the GNP cell uptake on some biological pathways 

was assessed leading to the identification of a potential GNP target: the thioredoxin reductase (TrxR). 

The ability of GNPs to disrupt this enzyme activity was studied as well as the link between TrxR activity 

and response to radiation. All these results highlight a new biological mechanism responsible for the 

radiosensitization effect of GNPs 

 In the third manuscript entitled “Thioredoxin reductase activity predicts gold nanoparticle 

radiosensitization effect”, we checked whether the suggested mechanism has a “universal” character 

or not by studying it in a set of other cell lines. In practical terms, we assessed the gold content, the 

TrxR activity level and the radiosensitization effect in four other cell types. All these results 

demonstrated correlations between NP uptake, TrxR inhibition and radiosensitization effects.  

 

7.2.2. Second manuscript: “The role of thioredoxin reductase in radiosensitization effect of 

gold nanoparticles” – Nanomedicine (2018) 
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7.2.3. Third manuscript: “Thioredoxin reductase activity predicts gold nanoparticle 

radiosensitization effect” – Nanomaterials (submitted in January 2019) 
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Figure 2.  TrxR activity in cells incubated with or without 50 µg Au.mL-1 GNPs during 24h. The activity was measured by the absorption at 412 nm over time in cell lysate of 

(A) A431, (B) PANC-1, (C) MDA-MB-231 and (D) T98G. Data are plotted as mean values of absorbance normalized by the total protein content ± S.D. of 3 independent 

experiments. Slopes of these TrxR activity curves were used to calculate the TrxR activity rate in (E) A431, (F) PANC-1, (G) MDA-MB-231 and (H) T98G cell lines. Data are 

plotted as mean values ± S.D. of 3 independent experiments. All results were statistically analyzed using a one-way ANOVA (Tukey test, *p< 0.05, ***p< 0.001, N.S. = not 

significant).
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8. Towards a clinical use of GNPs as radiosensitizers 
 

8.1. Context and goal of the study 

Although we demonstrated the potential of GNPs as in vitro radiosensitizers, their use for in vivo 

biomedical applications still remains challenging. In fact, blood circulation times of GNPs as well as 

their biodistribution were found to be dependent on several factors including the NP size and the 

surface coating. Many groups reported that plasma proteins in blood can adsorb onto the surface of 

bare NPs leading to the formation of large aggregates that may alter their pharmacokinetics. To 

overcome this, PEG coating was found to minimize non-specific adsorption of proteins onto particles 

leading to a more stable formulation across time [174]. Several works highlighted an unequal 

distribution of GNPs depending on their size [175]. After intravenous injection into rats, De Jong et al. 

[176] demonstrated, using GNPs ranging from 10 to 250 nm, that GNPs have been taken up primarily 

by the liver and spleen but 10 nm GNPs was more broadly distributed in various organs compare to 

bigger ones. Moreover, they reported a higher amount of 10 nm GNPs in tumor. This NP ability to 

passively leak into a tumor is known as EPR phenomenon. As discussed in introduction section, due to 

their relatively smaller size compared to the typical cutoff size of tumor vasculature pores (up to 400 

nm), NPs can leak into the tumor interstitium from blood vessels and enter into the tumor [177]. 

For an efficient treatment, NPs would have the ability to accumulate in the desired 

cell/tissue/organ in order to avoid side-effects to the healthy tissue. Thereby, the development of 

targeted NPs was growing e.g. NPs capable of overcoming the successive physiological barriers they 

will encounter and which can recognize the target cancer cells. To achieve it, many strategies were 

imagined including the conjugation of different moieties to NPs. These moieties can be low-molecular 

weight ligands (such as folic acid [178]), peptides [179], …), polysaccharides (such as chitosan [180]) 

and so forth.  

In this manuscript, the active targeting moiety used was the cetuximab, a monoclonal antibody 

that has a high affinity for epithelial growth factor receptor (EGFR, an overexpressed receptor in many 

types of carcinomas). We described the successful antibody conjugation to the GNPs surface as well 

as the chemical characterizations made on this new nano-objects. The affinity of the conjugated GNPs 

for the EGFR was assessed using two different cell lines: A431 cells – a human epidermoid carcinoma 

cell line overexpressing EGFR; and MDA-MB 453 cells - a human breast carcinoma cell line that does 

not express EGFR. Finally, we investigated whether this targeting influenced the radiosensitizing 

effect. 

 

8.2. Fourth manuscript: “Antibody-functionalized gold nanoparticles as tumor 

targeting radiosensitizers for proton therapy” – Nanomedicine 2019. 
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9. Towards a better understanding of DNA damage induced by high-Z 

particles 
 

9.1. Context and goal of the study 

As discussed in the introduction, individual radiosensitivity is a key factor which mediates the 

success of radiotherapy. The term “radiosensitivity” refers to either the extent of IR-induced biological 

responses or the susceptibility to IR-induced carcinogenesis. Nowadays, 15 genetic disorders 

associated to increased cellular radiosensitivity have been identified including ataxia telangiectasia 

(ATM mutation) and LIG4 syndrome (LIG4 mutation) [181]. Cells with ATM or LIG4 mutations are highly 

sensitive to radiation. Thereby, these mutations could drastically influence the treatment. On one 

hand, highly radiosensitive patients (such as homozygous patients of ATM or LIG4 mutations) develop 

huge side-effects associated to radiation. It was indeed reported that classical radiotherapy 

treatments may be fatal for these patients. On the other hand, radioresistant patients may receive an 

insufficient radiation dose to achieve a satisfactory tumor control. Nevertheless, these genetic 

disorders are very rare with occurrence in the population around 1 in 100,000 for ATM mutation and 

only one case reported for LIG4 mutation [181]. Currently, it has been evidenced that patient-related 

factors account for as much as 80 to 90 % of the variation observed in patient response to radiation 

[56]. Although the origin of this variability was attributed to genomic variations, scientific community 

failed to identify other genetic disorders associated to them.  

  In this context, we used genome-wide-association study (GWAS) to identify single nucleotide 

polymorphisms (SNP) associated to a radiosensitive phenotype in mice. SNP is a variation in a single 

nucleotide that occurs at a given position in the genome with a frequency within the population above 

1 %. In the first part of this work, we focused on the study and quantification of inter-individual 

radiosensitivity variations by assessing DNA damage repair as a biomarker of irradiation exposure. 

Since the DNA damage repair may vary with the dose and the LET of the incident particles, the cells 

were exposed to X-rays as well as to charged particles of different LET. In addition to the interest in 

radiotherapy researches, these results can serve for the selection of spacecraft mission candidates 

that will be exposed to high-Z charged particles during their mission. Thereby, we carefully 

characterized the dose and LET dependence of radiation-induced foci after irradiation of 76 primary 

skin cells derived from 15 different strains of mice. The repair kinetics were analyzed through both 

radiation characteristics and mouse strains, suggesting a genetic component. In the second part of 

this study, we used GWAS to identify the SNPs responsible for the observed higher radiosensitivity. 

 

9.2. Fifth manuscript: “Dose, LET and strain dependence of radiation-induced 

53BP1+ foci in 15 mouse strains” 
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9.3. The 15-strain irradiation study Part II 

9.3.1. Kinetic of DNA repair process 

We propose to compute the track repair kinetic by measuring the rate of change in RIF/µm as a 

function of time, according to the equation: 

𝑅𝐼𝐹

µ𝑚
=  (

𝑅𝐼𝐹

µ𝑚
)

0

. exp (−
𝑡

𝜏
 ) (24) 

 

Where (RIF/µm)0 is the number of RIF/µm directly after irradiation, t is the time [hours] and τ 

is a kinetic parameter depending on the strain [hours-1]. As shown in Figure 31A, the number of RFI/µm 

decrease through the time, evidencing a repair process. In order to quantify the kinetic of this process, 

the Tau parameters were calculated for each mice strain and summarized in Figure 31B. It must be 

noted that τ parameters were calculated by pooling the data obtained for male and female, 

characterizing the repair kinetic after high-LET exposition. Animals characterized by a fast repair 

kinetic are associated to a low τ parameter while a high τ parameter indicates a low repair kinetic. It 

is interesting to note that the five reference mice strains known to be radiation-induced cancer 

sensitive are associated to high tau parameters, as illustrated in Figure 31B. 

 

Figure 31. DNA damage repair kinetics and Persistent RIF/µm at 48h compared across different mouse strains. 
(A) Representative example of the exponential decrease of RIF/µm observed in CBA cells over the time post-
irradiation. (B) Tau parameter calculated from an exponential fit across the different strains. Results are 
presented for 650 MeV/n Fe irradiation. (C) Persistent RIF/µm observed across the different strain 48h post 
exposition to 650 MeV/n Fe. 
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9.3.2. Genome-wide association analysis of HZE particle induced RIF formation in inbred-

mice skin derived fibroblasts 

This cell-dependent DNA repair kinetic suggests that this phenotype is driven by genetics. 

Therefore, we sought to associate phenotype RIF/µm averaged from males and female mice for each 

strain, at 48 hour time-point post radiation (Figure 31C) with the genotype of the CC and reference 

strains of inbred mice. To identify genomic loci responsible for the variation in DNA damage response, 

we performed a mouse genome wide association analysis with genome-wide significance threshold of 

4.1 x 10-6 [182] and identified three potential associations on chromosomes 10 and 13 corresponding 

to 600 MeV/n Fe (Figure 32, Table 7). Analysis performed for 350 Mev/n Ar identified seven potential 

loci located at chromosome 2,3,7,10,11 and 19 (data not shown). Interestingly, for both high Z 

radiations, a common locus on chromosome 10 was identified, with peak SNP as UNC18214722 (p 

value = 7.22 x 10-7 for Fe and 4.24 x 10-6 for Ar) yielding to the identification of fourteen genes related 

to DNA damage response (Table 7). 

 

 

Figure 32. Manhattan plot for GWAS analysis of persistent DNA damage observed across the mouse strains 
after 650 MeV exposition. 

 

Among the genes identified, SUMO3 and PIAS4 have been known to accumulate at sites of DNA 

damage [183]. SUMO3 acts in a mechanistically similar fashion to ubiquitin [183, 184] and Pias4 is 

required for the productive association of 53BP1and BRCA1 [185]. BRCA1, also identified as one of the 

high LET response genes, has been studied extensively in relation to breast and ovarian cancer. Several 

lines of evidence have suggested recruitment of BRCA1 as a large complex into the sites of double 

stranded breaks and has been implicated in the maintenance of G1/S, S-phase and G2/M checkpoints. 

Interestingly, BRCA1 has been shown to participate in both main DNA repair processes, the 

homologous recombination and the non-homologous end joining [186]. HDAC5 was also identified 

and this class IIA lysine deacetylase is known to play a role in DNA repair involving base excision (BER), 

nucleotide excision and mismatch repair [187]. TDG, also a gene candidate in this loci, is a thymine 

DNA glycosylase contributing to BER pathways through transcriptional regulation and demethylation 

[188]. Of interest, DNMT3l which was also identified, acts as methylation regulator and interacts with 

HDAC1, repressing transcription during DNA damage response [189]. SIRT6, an histone deacetylase 

was found to activate PARP1, indicating a role in both BER and DSB repair [190]. Others DDR proteins 
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identified in the high LET associations support chromatin architecture, including Mum1 and ATXN7I3 

[191]. 

This analysis was also performed with X-ray induced phenotype for high and low doses but no 

significant hits (p > 4.1 x 10-6) were obtained. This can be attributed to several factors but we strongly 

believe that the number of strains used in this study is too low to obtained significant hits. To cope 

with this limitation, additional experiments are ongoing by associating phenotype RIF/µm 48 hour 

post irradiation with the genotype of inbred mice without averaging male and female of a same strain. 

Thereby, we will have 76 different animal samples instead of 15 strain samples.  

 

Table 7. List of genes identified by the GWAS analysis to be associated to DNA damage phenotype observed 
after 650 MeV/n Fe exposition.  

SNP Gene Symbol Function 

   

UNC18214722 

Cdc34 Initiation of DNA replication 

Dnmt3I DNA methyltransferase (genomic integrity, DNA repair) 

Fzr1 Required for the G2 DNA damage checkpoint 

Mcm3ap Initiation of DNA replication 

Mum1 Maintenance of chromatin architecture after DNA damage  

Nfic DNA-binding proteins that activates transcription and replication 

Pias4 DNA double-strand break repair 

Polr2e RNA Polymerase II (transcription of DNA) 

Rrp1 Ribosomal RNA Processing (DNA repair) 

Sirt6 DNA double-strand break repair (genomic stability, aging) 

Smarcb1 Tumor suppressor, relieves repressive chromatin structures 

Stk11 Serine-Threonine Kinase 11 (tumor suppressor) 

Sumo3 Sumoylation – DNA replication and repair 

Tdg Thymine-DNA glycolase that removes thymine through base-

excision repair 

JAX00021248 Btg1 Anti-proliferative signal  

UNC20271233 

Atxn7I3 Chromatin organization 

Hdac5 Alters chromosome structure – transcriptional regulation 

Brca1 DNA damage sensor 

Rdm1 Homologous recombination DDR protein 

 



Penninckx Sébastien  Discussion 

 

175 
 

 

 

 

 

 

 

PART IV: Discussion & further 

directions 

 
  



Penninckx Sébastien  Discussion 

 

176 
 

10. The mechanisms responsible for the radiosensitization effect of 

GNPs 
 

10.1. Physical enhancement 
 

Prior to the publication of the majority of the studies regarding the use of nanomaterials to 

increase the radiation effectiveness, one of the earliest accounts related to this process was the 

increase in radiation dose observed around metal implants by Castilo et al [192]. They reported that 

a 6 MV irradiation delivered a 17 to 23 % higher dose in tissue around metal implants than in tissue 

without metal implants in proximity. This observation initiated the speculation that metallic materials 

may be used to enhance the photon absorption and so, to increase the cell death. As mentioned in 

the introduction, this physical enhancement can be obtained due to the difference in photon 

absorption between high-Z elements and water. In the same way, a higher stopping power was 

predicted when a charged particle passes through high-Z elements rather than in water. These 

phenomena can be translated into a significant increase in local dose deposition when even a small 

amount of high-Z element is present in the medium. This extra dose is associated to electron emission 

from NPs depositing their energy in the surrounding medium, resulting in ROS overproduction and 

thus, potential extra DNA damages. Although this physical enhancement was rapidly suggested as the 

mechanism responsible for this GNP-induced radiosensitization effect, its validity was difficult to be 

verified since complex indirect measurements using chemical or biological reactions are needed. 

Experimental works focused on the different parts of this mechanism to validate it. Alkhatib et al. 

[193] demonstrated an increased energy deposition near lead foils embedded in a phantom. They 

placed a radiographic film between two lead foils separated by 4 nm of water. After irradiation with 

an 18 MV X-ray beam, a dose of 140 cGy without the lead foils and 210 cGy with them was measured. 

This represents an enhancement of 0.5 DEU when lead foils were present. Although this experience 

was the most direct way to visualize the energy deposition enhancement, it was performed using a 

bulk material but not with nanomaterials. The importance of using NPs instead of bulk materials was 

evidenced by Casta et al. [194]. They measured the electron emission from 6 nm GNPs and gold plane 

surface in vacuum after X-ray irradiation. The authors demonstrated that the ratio of emitted 

electrons from GNPs to gold surface is around 2.3 and displayed a prominent peak below 100 eV. They 

reported a maximal ratio of 5.1 for electrons below 10 eV. Since it has been demonstrated that low-

energy electrons could be very efficient at causing damage to DNA molecules though dissociative 

electron attachment [195], these findings are in agreement with the suggested mechanism 

hypothesis. Another experimental evidence of this mechanism was the work of Brun et al. [196] which 

studied the influence of GNPs on DNA damage generation under irradiation. Supercoiled plasmid DNA 

and GNPs were mixed together prior to be exposed to kV X-rays. Subsequently, a gel electrophoresis 

was performed to determine the DNA damage. Indeed, when damages occur in supercoiled plasmid 

DNA, its spatial conformation change leading to a difference in its ability to migrate in a gel 

electrophoresis. The authors reported an enhancement of 0.48 DEU for an equivalent gold in water of 

0.4 WP, giving rise to a 1.2 DEU.WP-1.  

 

 Furthermore, theoretical simulations have been performed to progress in the understanding 

of this physical enhancement. Early models investigated the macroscopic dose enhancement induced 

by the presence of GNPs randomly distributed in a volume. Several authors evidenced an energy 
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dependent physical enhancement. Cho et al. [100] have observed a 1.5, 0.9 and 0.01 DEU.WP-1 when 

GNPs were exposed to 140 kVp, 250 kVp and 6 MV X-ray respectively. Despite the experimental data 

of Brun et al. [196] matching the theoretically physical enhancement predicted by Cho et al. [100], all 

these results are not in agreement with in vitro and in vivo results, as discussed in section 3.5 of the 

introduction. This may be partly explained by the fact that theoretical works are performed in 

conditions that did not reflect the in vitro and in vivo experimental conditions. In fact, GNPs are known 

to be distributed heterogeneously throughout the tumor volume under both passive and active 

targeting [136, 149, 197]. Moreover, it was reported that NPs typically aggregate and form clusters 

within cells [136, 198] increasing the heterogeneity of the NP distribution. In the light of this, the short 

ranges of electrons ejected from the NPs imply an energy deposition mostly in the vicinity of GNPs 

themselves, where the probability to find another GNPs is high. This may result in a non-uniform 

spatial distribution of the dose enhancement within cells.  

Thereby, more recent studies considered microscopic dose distributions to obtain information of dose 

enhancement in area close to the GNP surface. McMahon et al. [199] performed an energy deposition 

study under 40 keV X-ray irradiation by comparing the macroscopic and microscopic approaches. They 

found that macroscopic enhancement was 0.075 DEU for a loading of 0.05 WP (1.5 DEU.WP-1) while 

they reported a 1.05 DEU (21 DEU.WP-1) at 2 nm away from the gold-filled region. This led them to 

suggest that the GNP radiosensitization effect is caused by several huge dose enhancement peaks 

located in close vicinity of the nano-objects. Although the microscopic approach enables to find higher 

physical dose enhancement than macroscopic one, all the deviations reported in section 3.5 of the 

introduction are not solved. Indeed, the absorption of megavoltage X-rays is negligible and 

microscopic physical enhancement predictions are still not in agreement with in vitro and in vivo 

works. Moreover, this theory does not seem to explain charged particle irradiation results. In fact, 

Heuskin et al. [104] recently demonstrated that the interaction probability of GNPs with the incident 

beam is very low. Based on [136] which reported a significant 0.14 DEU, they calculated that a 10-6-

10-5 fraction of the total nanoparticle content interacts per Gy of radiation. Moreover, their 

simulations showed no increase in neither the macroscopic, nor the microscopic dose in cells. In the 

meantime, Sotiropoulos et al. [200] reached the same conclusions by studying another system for 

which a significant radiosensitization effect was measured experimentally. 

Finally, the issue of GNP location is still unresolved. In fact, simulation studies performed by Carter et 

al. [201] demonstrated that GNPs need to be located in close proximity of DNA to maximize the tumor 

death. This conclusion was confirmed by Cho et al. who showed that GNPs have to be internalized 

inside the nucleus to produce an increase in cell death. However, only a few works have described a 

nuclear localization of GNPs while the large majority of studies evidenced a localization in the 

cytoplasm.  

 

All these works evidenced that while a physical dose enhancement occur under GNPs irradiation, 

it could not explain on its own the enhancement effect observed. Therefore other mechanisms have 

to be involved to explain the radiosensitization effect. In the light of the results obtained during this 

thesis, two main other types of enhancement can be suggested: a chemical enhancement and a 

biological one. 
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10.2. Chemical enhancement 

 

We reported that the presence of radical scavengers during the irradiation significantly reduce 

the radiosensitization effect in A549 and A431 cells. Moreover, enhancements of 0.94 DEU (H2O2) and 

1.44 DEU (°OH) were measured when 0.005 WP of 10 nm GNPs were irradiated. According to the 

previous section, physical enhancement due to this gold content should only give a negligible value. 

In addition, we observed a dose rate dependency of the enhancement effect which is not in agreement 

with the physical hypothesis. In fact, physical enhancement is independent of dose rate because the 

dose rate does not affect how photons are absorbed by GNPs or how charged particles lose their 

energy in GNPs. These results support a non-physical enhancement processes. One of them could be 

through ROS production. In contrast to the widely accepted theory that GNPs are chemically inert 

materials, increasing evidences showed that GNP surface is electronically active and is capable of 

catalyzing chemical reactions. It was demonstrated that the alteration in the electronic configuration 

of surface atoms enables a radical production at the GNP surface [202]. This could explain the 

observed enhanced ROS production that we reported when A549 cells were incubated with GNPs in 

the absence of radiation. Indeed, some studies claimed that GNPs catalyze the formation of ROS 

through a surface interaction with molecular oxygen, which facilitates surface-mediated transfer of 

electrons [202, 203]. In combination with ionizing radiation, the catalytic properties of GNPs can be 

enhanced by interacting with the highly reactive environment formed by the irradiation.  

 

Misawa et al. [170] studied the enhancement effect of five different GNP sizes in terms of 

superoxide radical production. They used solutions of 10 to 1000 ppm (0.001 to 0.1 WP), at 

concentrations too low to cause any physical enhancement. However, they reported up to a 7.86-fold 

increase in superoxide anions production upon irradiation with 100 kVp X-rays. The authors attributed 

the observed enhancement to secondary X-ray fluorescence and Auger electron emission which 

suggested the enhancement was of a physical origin. However, evaluation of the relationship between 

ROS production and GNP size highlighted that smaller GNPs yielded higher levels of ROS compared to 

bigger ones. This suggested a catalytic role of the GNP surface since smaller GNPs have larger 

surface/volume ratios. In another experiment, Cheng et al. [204] showed a 4 DEU using 0.5 WP of 7 

nm GNPs, which is higher than the predicted physical enhancement. They evidenced the importance 

of the GNP surface since no enhancement was detected when the GNP surface was covered using a 

silica layer. Furthermore, Gilles et al. [205] reported that GNP functionalization notably decreases the 

radiosensitization effect through hydroxyl radical production under X-rays. They observed a decrease 

in ROS production with the increase in number of atoms in the coating. They suggested two different 

explanations: first, the physical enhancement is expected to be responsible for electron emission from 

the GNPs at low X-ray energy. If these electrons are scavenged by the coating before they can react 

with water to produce ROS, hydroxyl radicals should be less abundant in solution. Secondly, they 

proposed that, at the nanoparticle-water interface, some H-OH bonds could be more easily broken by 

radiolytic processes. Then, ligands grafted at the GNP surface could disrupt the chemistry at the 

interface leading to a lower hydroxyl radical production. In the same way, we investigated this 

enhanced ROS production upon proton irradiation. When a solution containing 0.5 WP GNPs was 

exposed to 25 keV/µm protons, we reported a 0.94 and 1.44 DEU in the H2O2 and •OH production. 

Here also, concentrations were too low to cause any physical enhancement evidencing the importance 

of chemical enhancement. 
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Further investigations have to be performed by exploring others ROS produced upon 

irradiation to fully understand the influence of GNPs in radiolysis process. Although this catalytic ROS 

production can explain the higher dose enhancement reported in in vitro and in vivo studies compared 

to the physical enhancement prediction, these radicals will be created in cancer cells which exhibit a 

high redox status. In fact, it was reported that cancer cells exhibited higher reduced glutathione and 

detoxification enzyme contents leading to a resistance to oxidative stress [206]. Thereby, the GNP-

induced radiosensitization effect have also to be studied from a biological point of view to fully 

understanding it.  

 

 

10.3. Biological enhancement 

 

As discussed in the introduction, the success of modern radiotherapy is based on the “5 R” rules. 

At the molecular and cellular levels, if GNPs can modify pathways involved in this 5 R, they could 

modify the cellular response to radiation. Although a potential impact of NPs on biological pathways 

has been recognized, only a relatively small number of groups have investigated it. Evidences obtained 

to date for a “biological enhancement” can be classed according to the 5 R: 

 

 Repair: It is widely recognized that the number of unrepaired DNA damage is directly 

correlated to cell death [38]. There is a few evidence of DNA repair inhibition by GNPs. In fact, 

Cui et al. [121] reported a delay in DNA damage repair after irradiation of MDA-MB-231 cells 

containing tiopronin-coated GNPs. In the same way, residual DNA damage has been found 

when HepG2 cells were irradiated in the presence of GNPs [207]. The authors concluded that 

their nano-objects influenced the DNA repair pathways without hypothesizing how. 

Contrastingly, no significant difference in residual DNA damage at 24h was reported in U87 

cells pre-incubated with BSA-capped GNPs compared to cells that were not incubated with 

NPs [118]. Although other groups attributed these increases in residual DNA damage to a 

higher DNA damage induction caused by physical and chemical enhancement, the reality 

seems to be more complex. In fact, Cui et al. [121] did not observe any significant difference 

in DNA damage at 30 min post-irradiation suggesting that GNPs had no influence on their 

induction. Jain et al. [120] reached the same conclusion by reporting no impact of 1.9 nm 

GNPs on the DSB formation in MDA-MB-231 cells. In the same way, we reported a 25 % 

decrease in DSB repair when A549 cells containing GNPs were exposed to X-rays while no 

significant change in DNA damage formation was reported at 15 and 30 minutes post-

irradiation. Interestingly, Schaeublin et al. [208] observed that GNP incubation is associated 

to a down-regulation of various genes involved in DNA repair including ATM and RAD51.  

 

 Reoxygenation: It is well known that oxygen plays a major role in radiation therapy (cf. 

introduction). However, the impact of GNPs on reoxygenation was poorly investigated. It was 

reported that radiosensitization effect is greater under normoxia than hypoxia evidencing the 

importance of oxygen [209]. The authors suggested that this observation can be related to 

the chemical enhancement discussed before or to changes in cellular capacity to internalize 

the GNPs.  
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 Redistribution: The sensitivity of cells to ionizing radiation is influenced by their position in 

the cell cycle phases. It was reported that cells in G2 and M phases are the most 

radiosensitive. Although several groups reported an impact of GNPs on cell cycle distribution, 

results are controversial. Roa et al. [134] demonstrated a G0/G1 phase acceleration and a 

G2/M phase arrest when DU-145 cells are incubated with GNPs. Moreover, an increase in 

cyclin B1 and E expression was reported as well as a decreased expression of cyclin A. This 

G2/M cell cycle arrest was evidenced in melanoma cells [210] and SK-OV-3 ovarian cells [132] 

incubated with 44 nm and 14 nm GNPs respectively. Using 30 nm GNPs coated with a nuclear 

localization sequence, Mackey et al. observed an increase in S-phase and a decrease in G2/M 

phase in HSC-3 cells after a 24h incubation [211]. In contrast, several groups demonstrated 

no significant changes in cell cycle distribution when GNPs are incubated with cells [120, 121].  

 

 Repopulation: Subpopulation of repopulating cells have been identified as the main cause of 

radiotherapy failure. GNP ability to inhibit or to slow down the cell proliferation has been 

demonstrated by different groups both in vitro and in vivo. We reported a 1.42 fold increase 

in doubling time when 10 nm GNPs are incubated during 24h with A549 cells. Recently, Zhang 

et al. [123] have reported a partial growth inhibition of U14 cervical cells 24 days after 

intraperitoneal injection of GNPs. Contrastingly, Connor et al. [212] did not observe 

difference in growth rates between untreated cells and cells exposed to 18 nm GNPs. 

 

 Intrinsic radiosensitivity: A central issue in radiobiology is the marked difference in response 

to radiation observed between different cells. Since cancer cells result from the accumulation 

of genetic alterations, it is not surprising to observe gene expression changes in cancer cells 

that could modify their intrinsic radiosensitivity compared to normal tissue. For example, it 

was reported that cancer cells exhibited higher reduced glutathione and detoxification 

enzyme contents leading to a resistance to oxidative stress [206]. In this context, Butterworth 

et al. [116, 158] suggested that disruption of the cellular redox balance by using GNPs can 

modify the radiosensitivity. Taggart et al. [213] suspected that protein disulfide isomerase was 

a key mediator of the cellular response of GNPs. In the same way, we demonstrated that GNPs 

have the ability to inhibit TrxR, a regulator of redox reactions, in five different cell lines. We 

evidenced that overexpression of TXNRD1 (gene coding for TrxR) in tumor is associated to 

treatment resistance leading to a poor patient survival prognosis. To the best of our 

knowledge, no additional study identified a link between GNPs and a specific cellular target. 

In a recent article, Jaffray’s lab regretted that no research describing links between intrinsic 

radiosensitivity of cells and radiosensitization effect of GNPs has been conducted [214]. It 

could be a key step towards the mechanism understanding. In fact, the only study which 

suggested a positive correlation between GNP enhancement and cell line radiosensitivity was 

undertaken by Marill et al. [215] using hafnium oxide NPs. However, they did not investigate 

the underlying mechanism(s).  

 

All these studies highlight that GNPs might have different biological impacts across different cell 

lines. However, the lack of consistency in the parameters (cell lines, radiation types, NPs …) used in 

literature does not allow to draw clear conclusions about the GNP effects. However, in this thesis, we 

evidenced the role played by TrxR and suggested a new mechanism responsible for the GNP 
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enhancement effect: first, GNPs enter into the cells through a receptor-mediated endocytosis leading 

to their sequestration in endosomes prior to the fusion with the lysosome. Second, the decrease in 

pH inside the vesicle triggers a partial GNP degradation leading to the release of gold ions that are well 

known TrxR inhibitor. This inhibition leads to a disruption in the oxidized - reduced Trx balance. Then, 

the decrease in the amount of reduced Trx further impacts the Trx peroxidase activity resulting in the 

accumulation of ROS in the cytoplasm, causing oxidative stress. These radicals could react with 

biomolecules and organelles such as mitochondria leading to a mitochondrial depolarization and 

therefore a decrease in the ATP production. The smaller amount of reduced Trx also impacts the 

ribonucleotide peroxidase which transforms ribonucleotides into deoxyribonucleotides, the building 

blocks of DNA. A set of the reported “biological dysfunctions” in literature could be a consequence of 

this suggested mechanism. In fact, the drop in ATP content could interfere with various biological 

pathways requiring a lot of energy such as DNA damage repair and cell division. Thereby, delay in DNA 

repair (Repair) and cell cycle arrest (Redistribution) observed by several groups can potentially be 

originated from the TrxR inhibition. Moreover, the decreased activity of ribonucleotide peroxidase 

subsequent to the TrxR inhibition can explain the observed decrease in cell proliferation 

(Repopulation). Finally, the reported decreased radiosensitization effect in hypoxia compared to 

normoxia (Reoxygenation) could be partially explained by a down-regulation of membrane protein 

involved in endocytosis [216]. This decrease in membrane protein expression in hypoxia leads to a 

lower GNP internalization which is directly correlated to the amount of TrxR inhibited, as evidenced 

in this thesis.  

At the beginning of this thesis, the accepted theory was that GNPs play a radioenhancer role. 

However, this thesis suggests that GNPs play also a radiosensitizer role by weakening the 

detoxification potential of cells. Although more experimental works have to be performed to validate 

our findings, this thesis highlights the importance of considering NP – cell interaction in further 

studies. To go further in our understanding of the GNP enhancement effect, we need a harmonization 

of the experimental conditions relating to these studies [217]. In fact, we have to (i) precisely 

characterize the NPs used in the studies including at least NP size, coating agent, shape and NP loading 

in the cell/tumor which are frequently lacking information in the literature; (ii) establish a set of cell 

lines to benchmark in vitro data; (iii) investigate the influence of the time between NP injection and 

radiation response, a key parameter totally neglected so far in literature.  

 

11. Design of the ideal NPs for an optimized enhancement effect 
 

The better understanding of the mechanisms involved in NP-induced radiosensitization allows to 

suggest a design for an optimized NP. 

 

The size of the nanoparticle is a key factor regarding the successful application of metallic 

nanoparticle in radiotherapy treatment. Since it influences the biological response as well as the GNP 

biodistribution, the size has to be optimized to achieve the highest therapeutic effectiveness. When 

the size of GNPs increases, the probability that the ejected secondary electrons lose their energy 

within the GNP increases, reducing the potential physical enhancement effect [218]. However, the 

increase in size can also increase this physical effect due to a higher interaction cross-section. 



Penninckx Sébastien  Discussion 

 

182 
 

Contrastingly, the decrease in GNP size increases the surface to volume ratio resulting in a higher 

chemical and biological enhancement. Chemical enhancement is based on the ability of GNPs to 

catalyze the formation of ROS through a surface interaction with molecular oxygen. In the same way, 

the biological enhancement originating from the digestion of GNPs in lysosome is a surface process 

which will be higher for GNPs with a large surface to volume ratio. Although size affects differently the 

enhancement mechanisms, these trends should be put into perspective in light of the number of GNP 

internalized by cells, which is also size-dependent. This parameter influences the GNP biodistribution 

and its accumulation in the tumor matrix, its diffusion in tumor tissue and the cell uptake as well as 

the GNP excretion from the body [218]. By compiling data regarding size-dependent cell uptake, we 

observed that NPs between 20 and 60 nm exhibit the maximum cell uptake in vitro [219-222], but the 

exact diameter value appears to be coating- and cell line-dependent. However, it has been reported 

that in vivo biodistribution of these large GNPs is problematic. In fact, macrophages in the 

reticuloendothelial system (RES) play the role of filters to eliminate NPs from the body rapidly after 

intravenous GNP injection. It has been reported that large GNPs (50 – 100 nm) tend to be captured 

more easily by this system leading to an accumulation in liver, spleen and lymph nodes instead of in 

the tumor [219, 223]. Contrastingly, small GNPs (< 5 nm) tend to be eliminated through renal excretion 

[224, 225]. These differences in clearance system influence the GNP circulation time in blood as well 

as their accumulation in tumor. Huang et al. [226] compared the biodistribution of GNPs ranging from 

2 to 15 nm. Twenty-four hours post NP injection in mice, they evidenced a higher tumor uptake and a 

reduced normal tissue accumulation of 2 nm GNPs compared to bigger ones. They also reported a 

longer circulation time in the blood for the smaller GNPs. In another studies, researchers 

demonstrated that the use of smaller NPs leads to homogeneous distribution in the tumor matrix 

while larger NPs have shown to be localized in the tumor periphery [226, 227]. In a recent article, Chou 

reported a continuous increase in tumor uptake for the 15 nm GNPs [228] while a maximum 

accumulation in the 4 to 8 hours post-injection was observed for the 100 nm GNPs. This peak was 

followed by a rapid decrease in gold content into the tumor over 24 hours. However, this elimination 

of GNPs seems to be tissue-dependent. Sadauskas et al. [229] reported a slow hepatic elimination of 

GNPs since more than 90 % of the gold loading in liver was still present in this organ 6 months post-

injection. It was demonstrated that this long-term GNP retention in liver is associated to side-effects 

including histological alterations [230] and inflammatory cytokine secretion [231]. Overall, small NPs 

appear to be better to enable a high tumor accumulation in vivo. However, many studies have 

reported their higher toxicity in mammalian cells compared to bigger NPs due to a higher surface to 

volume ratio [232]. To overcome this issue, an adequate surface coating has to be chosen.  

 

 The coating agent is an essential element of the nano-object design since it fulfills multiple 

roles. First, it enables an increased stability of the GNP in a medium preventing aggregation and all 

the issues which are associated to a potential change in NP size. Second, it influences the cell uptake 

through its surface properties, amongst which is the charge. Indeed, it was reported in vitro that 

positively-charged GNPs promote cell internalization driven by electrostatic interactions with the 

negatively-charged phospholipid constituting cell membrane [219, 233]. Moreover, cancer cell 

membranes are more negatively charged than normal cell membranes due to an increased 

glycoprotein content [234], reinforcing this electrostatic interaction with positively charged GNPs. In 

in vivo studies, these positively-charged NPs have been reported to be more accumulated in liver and 

spleen than in tumor [235]. In contrast, a higher tumor loading was observed with neutral NPs due to 

a prolonged circulation time [236]. This could be explained by the third role played by the coating 
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agent: preventing the opsonization9 process. It was demonstrated that surface coating with large 

amount of PEG (a biocompatible neutral coating agent) enables to reduce the amount of opsonin 

attached to the GNPs resulting in a stronger protection against clearance through the RES [222]. While 

the grafting of increasing PEG molecules amount enables to gain in NPs stability, it also decreases the 

chemical enhancement effectiveness. In fact, Sicard-Roselli et al. [205] observed a lower hydroxyl 

radical production upon X-ray irradiation when GNPs are coated by PEG compared to naked GNPs. 

This phenomenon could be explained by (i) an energy deposition of emitted electrons in the coating 

instead of the surrounding medium; (ii) reaction of °OH radicals with the coating, especially if it 

contains alcohol or thiol reactive groups; (iii) a reduced catalysis generation of °OH due to the 

disruption of GNP-water interface by the coating. However, in our study on radiosensitization effect 

of GNPs conjugated to EGFR antibody, a significant cell death enhancement was observed even if the 

coating thickness was high.  

 

 Another parameter is the administration route of the nano-objects. In this thesis, we focused 

on the intravenous route, which is the most common one since it yields to a high systemic distribution. 

Thanks to EPR effect, GNPs accumulate within the tumor perivascular regions. However, in vivo studies 

reported that only 1 % of the injected GNPs are able to reach the tumor [237, 238]. The authors 

claimed that high NP clearance from the blood and the relatively high intratumoral pressure limit the 

passive GNP entry into the tumor. To overcome this, we designed a GNP coupled to EGFR antibody 

enabling a better tumor targeting. In addition to the significant cell death enhancement that we 

reported in vitro, literature showed an increase in the tumor targeting (up to 7 % of the injected dose) 

with this kind of active targeting GNPs in vivo [237]. However, an optimal radioenhancement effect 

could only be obtained through the maximization of the tumor gold loading. Based on the reported in 

vivo data of Hainfeld with which a significant increase in the median survival was observed, we have 

to inject between 1.35 to 1.9 g/kg [149, 150, 153]. For a human of 70 kg, this corresponds to 94 to 133 

g of gold. This highlights the need for administration of high GNP doses in order to achieve a 

satisfactory radiosensitizing effect. A suggested alternative to the intravenous administration route 

was the intraperitoneal one, a route used to achieve high concentrations of therapeutic agents in the 

peritoneal cavity especially in the case of ovarian and gastric cancers [214]. However, no significant 

increase in the tumor gold loading was observed and a high undesirable heterogeneous distribution 

in liver, lungs and heart was reported [239]. To reduce the systemic toxicity associated to intravenous 

and intraperitoneal injection, intratumoral administration route was proposed. It consists to inject the 

therapeutic agent directly at the tumor site in order to achieve a high local dose of it into the tumor. 

Lin et al. [240] demonstrated the success of this administration route by observing that, 2 weeks post-

injection, half of the administrated GNPs were still present in the tumor. 

 

                                                           
9 Opsonization is a term that refers to an immune process where foreign objects are identified and targeted for 
destruction by the immune system. This process is triggered by the binding of given molecules, called opsonin, 
at the object surface. 
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Figure 33. Comparison between photon cross section in water and in different materials. The ratio of absorption 
cross section in a NP on absorption cross section in water was plotted according to the incident photon energy 
and atomic number of the material of interest. Red areas indicate high dose deposition areas while purple ones 
correspond to no significant increase in photon absorption. 

 

Finally, the metallic nature of the NP is the last parameter that can be optimized. The ideal NP 

should maximize the photon absorption (to optimize the physical enhancement) and release ions that 

have the ability to bind the thiol active site of TrxR (to achieve the biological enhancement). Firstly, 

we focused on physical enhancement. We analyzed the photon absorption in elements of the periodic 

table and compared it to the photon absorption in water. As illustrated in Figure 33, the photon 

absorption increases with atomic number of NP. This explains the focus of metallic radiosensitizer 

studies on high-Z materials such as hafnium (Z = 72), platinum (Z = 78), gold (Z = 79) or bismuth (Z = 

83). However, a second interesting high photon absorption area appears in Figure 33 for atomic 

number ranging from 47 to 50. This could justify the significant radiosensitization effect observed with 

silver NPs (Z = 47) although its atomic number is lower compared to the aforementioned ones. In 

addition to these elements which absorb photons around 20 and 30 keV, the lanthanides (Z = 60 to 

70) seem to be interesting materials since they absorb photons in a wider range of photon energies. 

Amongst these lanthanides, gadolinium (Z = 64) appears to be a good candidate due to an absorption 

window ranging from 9 to 70 keV.  

Additionally, the ideal NPs need to have the ability to release ions that can bind the thiol-

active site of TrxR. To predict the reactivity of metallic ions for thiol groups, we used the hard soft acid 

base (HSAB) theory. This theory uses Lewis acid-base and classifies them on the basis of their relatively 
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“hard” or “soft” character, a concept associated to polarizability10. Hard character will be associated 

to low polarizability elements while highly polarizable elements will be defined as soft. This chemical 

hardness as a quantitative definition enabling to classify every chemical element as a hard or soft acid 

or base [241]. The theory states that soft acids react faster and form stronger bonds with soft bases, 

whereas hard acids react faster and form stronger bonds with hard bases. Thiol groups constituting 

the active site of TrxR are Lewis bases which have a low hardness parameter, i.e. are soft bases in 

HSAB theory. Thereby, the ideal NPs have to release metallic ions which are soft acids in the HSAB 

theory. According to [241, 242], the potential candidates are Cu+, Ag+, Au+, Tl+, Pd2+, Cd2+, Pt2+, Hg2+, 

Ti2+, Fe2+, Pb2+ and metal atoms at zero oxidation state. Amongst these elements, cadmium and silver 

NPs grab our attention because literature reports an important ion release from these NPs at pH 4 

[243], a mandatory step for the TrxR inhibition. Moreover, in these elements are found gold, silver 

and platinum, the most studied metallic NPs in radiosensitization experiments. It will be interesting to 

investigate if the biological mechanism that we proposed to explain GNP enhancement effect could 

be extended to these other NPs. If it is the case, further experiments evaluating the ability of these 

soft acid candidates to release ions in acidic conditions have to be performed. At that time, the 

potential use of these NPs as radiosensitizer should be evaluated while taking account to toxicity data 

that are missing for the moment. 

 

Taken together all these data and by assuming that metallic nature of NPs did not influence 

data regarding impacts of GNP size, coating agent and biodistribution, the ideal NPs should have the 

following characteristics: 

 

 Small size (< 5 nm): This will enable a better biodistribution as well as a high tumor 

accumulation. Moreover, the high surface/volume ratio of these NPs will maximize the 

chemical and biological enhancement.  

 

 Surface coating: Neutral coating agent such as PEG will enable a long circulation half-life, a 

high tumor accumulation and a low cytotoxicity. An alternative could be squalene, a natural 

lipid which is an intermediate metabolite in the cholesterol synthesis. Recently, it has been 

evidenced that squalene binds lipoproteins present in the blood [244]. Due to an enhancing 

need of lipids to tumor growth, cancer cells exhibit high expression of lipoprotein receptors 

[245] enabling to take advantage of the squalene-lipoprotein association to indirectly target 

cancer cells.  

 

 Silver or Cadmium NPs: These nano-objects exhibit a high photon absorption compared to 

water enabling a maximization in the local dose deposition after irradiation (physical 

enhancement). Moreover, their ability to release high amount of ions that can bind TrxR active 

site suggesting a potential strong biological enhancement. Moreover, these elements have to 

advantage to be cheaper (0.40 €/g and 0.01€/g for Ag and Cd respectively) than classical high-

Z elements (34 €/g and 23€/g for Au and Pt respectively).  

 

                                                           
10 The ease with which electron density can be displaced or delocalized to form new covalent bonds. 
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Besides the design of an ideal NPs, the better understanding of the mechanisms responsible for 

the GNP radiosensitization effect opens the question of the clinical indications in which GNPs can be 

used. From the physical enhancement point of view, an optimized photon absorption will be obtained 

when low kilovoltage X-rays encounter NPs, as illustrated in Figure 33. These radiations are clinically 

used in two cases:  

 

 Intra-operative radiotherapy (IORT): IORT is a radiation mobile radiotherapy technique 

consisting to delivered an X-ray boost between 30 and 50 keV to the tumor and the tumor bed 

(tissues surrounding the tumor up to 10 mm depth), at the time of surgical resection [246]. 

This technique reduces the need for post-surgical radiotherapy as well as the risk of 

recurrence in breast cancer patients [247]. In this context, an intratumoral injection of NPs 

prior to radiation exposition could significantly increase the effectiveness of IORT by 

enhancing the local dose deposition. Moreover, we reported a proportional relationship 

between the amplification factor and the dose delivered in vitro [131]. This feature could be 

interesting in the case of IORT with delivers a large single dose.  

 

 Brachytherapy: Permanent brachytherapy is a radiation technique that consists in the 

insertion of radiative millimeter-sized seeds into the tumor. These seeds contain radioactive 

elements which emit low-energy photons that are attenuated by a few micrometers of 

biological tissue. This enables to constrain the radiation inside of the tumor, sparing healthy 

tissues. The main radioactive elements used in brachytherapy seeds are 125I (59.4 days half-

life, photon emission peak at 27.5 keV), 103Pd (16.9 days half-life, photon emission peak at 

20.7 keV) and 131Cs (9.7 days half-life, photon emission peak at 30.4 keV) [248]. As in the case 

of IORT, the presence of NPs near the radioactive seeds could significantly increase the local 

dose deposition in the tumor. 

 

From the biological enhancement point of view, GNPs can be useful in the treatment of 

overexpressing TrxR tumors which were reported to be more aggressive and associated to treatment 

resistance [249, 250]. Thereby, overexpression of TXNRD1 (gene coding for TrxR) is associated to a 

poor overall patient survival, as reported in this thesis. In this context, we investigated the mRNA 

expression of TrxR in various cancer types using 15 different TCGA datasets. Although TXNRD1 was 

expressed in all cancer types, higher expression was found in testicular (median at 32 FPKM) and lung 

(median at 27 FPKM) cancers compared to other ones (average median 13 FPKM), as illustrated in 

Figure 34B. Testicular cancers are mainly treated by chemotherapy. However, radiation therapy is the 

main treatment for lung cancer (77 % of the patients receive radiation during their treatment 

according to [9]). As a result of the reported higher TXNRD1 expression in this cancer type, injection 

of GNPs prior to radiotherapy sessions could result in the improvement of the treatment. In fact, 

median survival time of lung cancer patients decreased from 102 months to 44 months when tumors 

have high TXNRD1 expression (cf. our 3rd manuscript). Thereby, a GNP injection prior the radiotherapy 

treatment will inhibit TrxR inside the tumors which could increase the efficiency of treatment as well 

as the median patient survival time. However, a TrxR inhibition sufficient to allow a radiosensitization 

can be reached only with a huge gold loading in the tumor. This suggests the use of intratumoral 

administration route which could give rise to some technical issues for moving tumors such as lung 

ones.   
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Figure 34. mRNA expression of TXNRD1 gene in 15 different cancer types. Data were collected from the following 
TCGA datasets: breast (TCGA-BRCA, 1075 patient samples); cervix (TCGA-CESC, 291 patient samples); colorectal 
(TCGA-COAD & TCGA-READ, 597 patient samples); glioma (TCGA-GBM, 153 patient samples); head & neck 
(TCGA-HNSC, 499 patient samples); kidney (TCGA-KIRC, 877 patient samples); liver (TCGA-LIHC, 365 patient 
samples), lung (TCGA-LUAD & TCGA-LUSC, 994 patient samples), melanoma (TCGA-SKCM, 102 patient samples); 
ovarian (TCGA-OV, 373 patient samples); pancreas (TCGA-PAAD, 176 patient samples); prostate (TCGA-PRAD, 
494 patient samples); stomach (TCGA-STAD, 354 patient samples); testis (TCGA-TGCT, 134 patient samples); 
thyroid (TCGA-THCA, 501 patient samples). (A) RNA-seq data are reported as FPKM (number fragments per 
kilobase of exon per million reads) according to the cancer tissue. (B) The median TXNRD1 mRNA expression was 
plotted according to the cancer tissue.  

 

12. Towards personalized medicine in radiotherapy 
 

The choice of radiation therapy in the treatment plan of a given patient is currently driven by 

clinical and pathological features including the primary site localization, the tumor stage and its 

histology. However, the increasing understanding of the tumor heterogeneity complexity enables to 

expose the limitations of this medical framework: each person is fundamentally different from the 

average of the population. For example, a higher risk of locoregional recurrence was highlighted in 

HER2 (human epidermal growth factor receptor 2) overexpressing breast cancer patients compared 

to other ones [251]. Thereby, cancer therapy should be tailored to patients according to their 

individualized tumor molecular fingerprints. This new medical framework is called “personalized 

medicine”. Since several years, this approach is frequently used in chemotherapy treatment. In fact, 

KRAS mutation has been shown to be predictive factor of cetuximab treatment failure in colorectal 

cancer [252]. Moreover, EGFR mutations have been shown to predict benefit from tyrosine kinase 

inhibitors [253]. Contrastingly, the use of this approach for clinical decision-making in radiation 

oncology had not been very widespread. In addition to this decision-making tool, clinicians could take 

advantage of personalized radiotherapy by providing alternative dosing schedules for patients that 

may require more or less total dose of radiation. 
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The further development of personalized medicine in radiotherapy will be associated to the 

discovery of interesting radiation response biomarkers as well as to the development of companion 

diagnostics:  

 

 Radiotherapy response biomarker: the most interesting biomarker is a marker of patient 

sensitivity to radiation therapy which will enable to adjust the treatment to each patient. In 

fact, highly radiosensitive patients may develop huge side-effects associated to radiation 

while radioresistant patients may receive an insufficient radiation dose to achieve a 

satisfactory tumor control.  

 

 Companion diagnostics: according to FDA, companion diagnostics (CD) are “in vitro diagnostic 

devices that provides information that is essential for the safe and effective use of a 

corresponding therapeutic product” [254]. On a daily basis, these tests will enable to select 

patients that might benefit from the treatment and exclude the non-responding ones who 

would only suffer from adverse effects.  

 
 Some attempts in developing predictive tools for tumor radiosensitivity have been made 

including assays based on ex-vivo determination of tumor survival fraction at 2 Gy [255]. However, 

they were impractical for routine clinical applications. Tumor survival determination required primary 

cancer cells culture in vitro, a process that would take several weeks to complete. Thereby, a fast and 

reliable clinical method enabling a patient radiosensitivity measure still remains to be established. In 

this thesis, we used genomics to identify radiation sensitive genetic markers. A list of 19 genes, mainly 

involved in DNA damage repair were significantly associated to a more radiosensitive phenotype in 

mice. Although these SNPs have to be investigated for radiation response phenotype in humans, our 

work constitutes a proof-of-concept that GWAS analysis and genomics in general can be helpful for 

the improvement of radiotherapy treatment.  

 

In addition to this intrinsic radiosensitivity of a person, cancer cells results from mutation 

accumulations leading to biologically different tumors of a same histology. Moreover, it was reported 

that even within a single tumor, different regions can have different radiosensitivity due to specific 

genetic or molecular alterations [256]. Thereby, further treatment designs have to be take into 

account individual radiosensitivity as well as tumor genetic alteration to optimize the chance of 

treatment success. For example, the potential use of GNPs as radiosensitizer in clinic will only be able 

to develop in a context of personalized medicine. We demonstrated that the inhibition of TrxR by gold 

ions participates to GNP radiosensitization effect. Thereby, the use of genomic assays assessing the 

mRNA TXNRD1 expression in tumor after biopsy can drive the application of GNP radiosensitizer in 

clinic.  

Altogether, it seems obvious that the analysis of a single biomarker will only give limited 

information and development of multiplex assays will be needed in the future. In addition to the 

improvement the daily treatment decision-making, biomarker analysis will help to optimize the design 

and quality of preclinical and clinical studies. Since few decades, the randomized phase III trials have 

enrolled large numbers of patients which have the same kind of cancer leading to a high number of 

subsequent negative clinical trials [256]. In future, personalized medicine will be extended to clinical 

trials leading to patient enrolment based on biologically tumor features. 
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