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lNTRODUCTlON O.l 

INTRODUCTION 

Today·s co~puter systems are structured as a collection of sub­

systems called processes, alrnost always running in parallel. These 

processes can run on a single CPU and share it dynamicaliy, or be 

distributed over many processors. Recent advances in hardware 

technology have made possible the construction of distributed systems 

and multiprocessors. The parallel execution of processes leads to 

more powerful and reliable systems. But in order to achieve this goal, 

the processes must share resources and cooperate. This is done by 

synchronization and communication between processes . 

The advantages of parallelism have as a counterpart the 

complexity of constructing and debugging of such systems . The non­

sequential programming makes it more difficult to find out the correct 

execution of a prograrn consisting of several processes. This is due to 

the cornbinatorial explosion of the number of states of the entire 

system in function of the nurnber of states of the components on the 

one hand, and the difficulty or inability of observing the states of 

the whole system on the other hand. This can sometirnes be aggravated 

by the system being non-deterministic. 

It is then indispensable to be able to verify and validate the 

system in construction. This cannot be done by informal reasoning or 

testing because these methods are net reliable enough. That is why we 

need a formal analysis method permitting to rnodel the system and to 

state expected properties. 

Petri nets are abstract formal rnodels for the analysis of 

concurrent systems. Their inherent parallelism rnakes them suitable for 

the representation of systems of concurrent activities . Petri nets 

have such analytical properties that the behavior of the rnodeled 

system can be analyzed in a systematic manner with respect to 

important properties. The essential advantages over other verification 

rnethods (e . g. assertions) is the fact that most of the analytical 
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methods are mechanizable. Petri nets deal essentially with the 

control part of computation, which is a fundamental aspect of 

synchronizing software . If synchronization mechanisms can be 

formulated by means of Petri nets, the analysis mechanisms of Petri 

nets can be applied to these synchronization mechanisms. 

There are two types of Petri net theory. Pure Petri net theory is 

the study of Petri nets to develop analytical tools used to verify 

properties. The second direction is the applied Petri net theory . 

Applied Petri net theory is the application of the results of pure 

Petri net theory to systems modeled by Petri nets. The direction 

followed in this dissertation is rather the second one . 

The first chapter introduces the definitions used throughout the 

following chapters. Chapter two shows how to model systems of 

concurrent activities and gives an overview of some synchronization 

and cormnunication mechanisms moqeled by Petri nets . The different 

properties to verify and a method for doing the analysis are 

introduced in chapter three. Chapter four describes a software tool 

implementing the analysis method proposed in the preceding chapter and 

discusses some implementation details. Chapter five concludes this 

dissertation with the application of the automatic analysis technique 

to some synchronization problems . 
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CHAPTER 1: PETRI NET CONCEPTS 

In this chapter the Petri net concepts used throughout this 

dissertation are defined. First of all, the structure of a Petri net 

and the corresponding graph are described, then the concept of marking 

is defined, followed by an enumeration of the different firing rules. 

At the end of this _chapter, the concepts of marking class and 

reachability set are introduced. 

1. Petri net structure and graph 

A Petri net is a four-tuple PN = (P,T,I,O), with 

l. a finite non-empty set of places P = {p, .. ,p }, 
l n 

2. a finite non-empty set of transitions T = {t , .. ,t }, 
l m 

3. a forward incidence function or input function : I:PxT -> N, 

4. a backward incidence function or output function : O:PxT -> N. 

The sets P and Tare disjoint (P n T = ~). In the figures, the places 

are represented by circles and the transitions by squares or bars. 

Two matrices I and o are associated respectively with the input 

and output functions. Input places of a transition tare such that 

I(t,p) > O and an arc labeled by the value of I( t, p) is drawn from 

place p to transition t (ifl(t,p) = l the label is not required ) . 

output places are such that 0( t,p) > 0, and are connected to 

transition t by an arc outgoing frorn this transition and eventually 

labeled by the value O(t,p). 

Frorn the definition of a Petri net it follows that a Petri net 

graph is a bipartite graph, i.e. only nodes of different types (Tor 

P) can be linked by arrows. 

In Figure l.l the places "processor free" and "job awaiting 

processing" contain the conditions for the succeeding transition 

"start processing" (these places are input places to the transition). 
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This transition effects the transfer from the input places to the "job 

running; processor ip use" place (output place of the transition), 

which is now the condition for the "processing completed" transition . 

This last transition has two output places "job completed" and 

"processor free". 

pl Processor free 

p2 Job awaiting processing 

p3 Job running; Processor not free 

p4 Job completed 

tl Start processing 

t2 Processing completed 

Figure 1.1 A simple computer system 

2. Markings 

Astate, called "marking" , of a Petri net is a map M:P -> N 
n 

with n = IPI . A marking may be indicated on the graph by indicating, 

for every place P, a number M(p) in the corresponding circle or, where 

M(p) is sufficiently small , putting M(p) dots or tokens in the circle 

corresponding top. A place pis called marked if M(p) > l. 

In Figure 1.1 for instance, we can indicate that the processor 

is free and that a job awaiting processing is present by putting one 

token on each of the places representing the se condi.tions ( pl. and p2 ) . 

As the marking represents the state of the system and this state 
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can change, the marking of the Petri net must change too. The initial 

state of the system is represented by an initial marking. The 

transition from one state to another is defined by the firing rules. 

3. Firing rules 

The number and the position of tokens in the Petri net changes by 

the firing of transitions. In order to fire, a transition must be 

enabled or firable. A transition t is enabled by a marking M if and 

only if 

(Vp€P) M( p) ~ I( t, p) . 

Notation M[b 

If an enabled transition fires, it changes the marking by removing 

I(t,p) tokens if pis an input place to t and adding O(t,p) tokens if 

pis an output place to t. The new marking M" is such that : 

(V p € P) M"(p) = M(p) - I(t,p) + O(t,p) 

We can say that transition t is enabled by marking M and that its 

firing leads to the marking M" , the follower marking of M, and note 

this : 

M[t>M " 

During the execution of a Petri net, (i.e. the firing of 

transitions) always only one transition can fire at a time even if 

more transitions are enabled. 

Figure 1.2 (a) shows a Petri net with an intial marking. In this 

situation the transition tl is enabled since the only input place of 

this transition is pl and pl is marked . Figure l. 2 ( b) shows the 

Petri net after the firing of the transition tl. The only enabled 

transition is still tl because a firing of t2 requires two tokens to 

reside in place p3. This will be the case after having fired tl a 

second time . The resulting marking is shown in Figure 1.2 (c). Note 

t hat in that situat i on, the two transitions are enabled . 
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p3 

(a) (b) ( C) 

Figure 1.2: The firing of transitions 

4. Marking class and reachability set · 

A rnarking Mk is reachable from a marking M if 

3 ( t , .. , t ) € T and 
l k 

M(t >M , M [t >H , .. , 
l l l 2 2 . 

3(M , .. ,M )€N 
l k-1 

M [t >H 
k-1 k k 

l. 4 

n 
such that 

i.e. there exists a firing seguence leading from a marking M to a 

marking M . 
k 

Notation M(->Mk 
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The set of all markings reachable from a marking M is called the 

marking class and noted 

[M] = {M} U {M . 
l. 

M[->M . } 
l. 

The marking class of the initial marking M of a ·Petri net is called 
0 

the reachability set of the Petri net and represents the state space 

of the system modeled by the Petri net. 

Figure 1.3 (a) (c) illustrates the process of firing of 

transitions of the Petri net presented in Figure l.l and how to obtain 

the marking class or the reachability set. 

= (l,l,O,O). Transition tl is enabled and The initial marking is M 
0 

fires to give the marking M 
l 

and fires giving the marking 

= (0,0,1,0). Now transition tz is firable 

Petri net halts at this 

enabled. 

(a) 

M = (l,0,0,l). 
2 

marking because 

( C) 

The execution of the 

no other transition is 

( b) 

Figure 1 .. 3 : Execution of the simple computer system 

Thus, we have 

M [tl>H (M is a follower marking of M ), 
O l l 0 

M [->M (M is reachable from M ), 
0 2 2 0 

[M] = {M ,M ,M} is the reachability set and describes all the 
0 0 l 2 

possible states in which the system can be with respect to the 

initial state. 



MODELING OF CONCURRENT PROCESSES 

CHAPTER 2: MODELING OP CONCURRENT PROCESSES 

In this chapter, it will be shown how to model 

concurrent activities with Petri nets. Pirst some 

synchronization problems will be modeled with Petri nets, 

2.1 

systems of 

classical 

then some 

basic primitives for the expression of concurrency are described. 

l. Classical synchronization problems 

1.1. Mutual exclusion 

The problem of mutual exclusion is defined by two or more 

processes executing concurrently but each process having a "critical 

section" which must be executed without any other process executing 

its own critical section at the same time. Here is how Dijkstra [7) 

stated the problem "In considering two sequential processes, 

"process l" and "process 2", they can for our purposes be regarded as 

cyclic. In each cycle a so-called "critical section" occurs, critical 

in the sense that at any moment at most one of the two processes is 

allowed to be engaged in its critical section. In order to effectuate 

this mutual exclusion, the two processes have access to a number of 

common variables. We postulate that inspecting the present value of 

such a common variable and assigning a new value to such a common 

variable are to be regarded as indivisible, non-interfering actions." 

A Petri net model representing this problem and a solution to it 

is given in Figure 2.1. 
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process l process 2 

5 

Figure 2.1: The mutual exclusion problem 

This model corresponds to the description given by Dijkstra. The two 

processes are cyclic, each process has a critical section: place l for 

process land place 2 for process 2. Place 3 represents a common 

variable each process has access to. The other places correspond to 

different values of the instruction pointers of the two processes. 

The restriction that the reading of a common variable and assigning a 

new value are indivisible and non-interfering holds with respect to 

the definition of the firing rules for Petri nets. 

The solution given in this model corresponds to the solution 

given by Dijkstra using a binary semaphore variable. In chapter 5 it 

will be shown that the model gives a correct solution to the problem, 

i.e. it will be shown that : 

l. at any moment at most one of the processes is engaged in its 

critical section; 

2 . the decision which of the processes is the first to enter its 

critical section cannot be postponed to eternity; 

3. stopping a process in its remainder of cycle has no effect upon 

the others. 

Point two will not be proved since it is an assurnption on how a Petri 

net fires as long as there are enabled transitions the execution 

i.e. the firing of transitions will not halt. 

This problern of mutual exclusion has been generalised to N cyclic 

processes, each having a critical section. A solution to this problem · ! 
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with N=4 is given in Figure 2.2. 

Figure 2.2: The general mutual exclusion problem 

(for 4 processes) 

1.2. The Dining Philosophers Problem. 

2.3 

This problem was originally stated and solved by Dijkstra [B] . It 

can be stated as follows : Five philosophers (processes) are at a 

dinner at a round table; each one alternately eats and thinks. In the 

middle of the table is a bowl of rice and a chopstick is place<l 

between each adjacent pair of philosophers (5 chopsticks). From time 

to time, a philosopher gets hungry and tries to pickup the two 

chopsticks that are closest to him i.e. philosopher i picks up both 

chopsticks i and i+l (where 5+1=1). When a philosopher succeeds in 

picking up the two chopsticks, he can eat without releasing them. 

When he has finished, he puts them down and starts meditating again. 

There is a solution to this problem (Figure 2.3) which is not 

correct since deadlock can occur. This solution represents the fact 

that each philosopher first takes one chopstick and only after having 

acquired it takes the other one. In this solution it can happen that 

all philosophers succeed in acquiring one chopstick but no one can 

take t he second because all chopsticks are in the hands of 

philosophers. 
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Figure 2.3: Philosophers problem 

A deadlock is avoided in the correct solution by a philosopher 

taking both chopsticks at the same time. This solution is shown in 

Figure 2.4. 

Figure 2.4: Philosophers a deadlock-free solution 

A problem not solved in this last solution is starvation. It is 

possible that two philosophers could cause starvation of the 

philosopher sitting between them by alternately eating and preventing 

the philosopher in the middle to take the two chopsticks needeà to 

eat. A possible solution preventing starvation is presented in Figure 

2.5. The philosophers take always one chopstick at a time as in the 

first solution, but only 4 philosophers are admitted to pick up 
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chopsticks at a time to prevent a deadlock situation. 

In the second solution a philosopher can starve because wanting to eat 

he must wait until the two chopsticks closest to him are on the 

table. But it can happen that the chopsticks are never at the same 

time on the table. The third solution does prevent from starvation 

because a philosopher always waits for only one chopstick and sooner 

or later the chopstick will be available if the system cannot run 

into a deadlock situation as in the first solution. The deadlock 

prevention in this solution is realized by permitting only to a 

maximum of fo"ur philosophers to pickup chopsticks. 

Figure 2.5: Philosophers problem starvation free 

In chapter 5 it will be shown that the first solution is not 

correct and results in a deadlock situation and that the second and 

the third one are both correct solutions whith respect to deadlock. 
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1.3. The Producer/Consumer problem 

An important synchronization problem is that of the 

Producer/Consumer. The producer and consumer are both cyclic 

processes. In each cycle, the producer produces some information that 

the consumer has to consume in one of his cycles. Each tinte the 

producer produces data, he deposits it in a buffer. The consumer 

removes data from the buffer to consume it. In the "unbounded buffer" 

producer/consurner problem, it is assurned that the buffer is of 

unlimited capacity. 

The producer and consumer must 

consumer does not try to consume 

be sychronized, so that the 

items which have not yet been 

produced. A Petri net representing such a producer/consumer pair is 

given in Figure 2.6. 

Figure 2 . 6: Unbou_nded Producer/Consumer 

An unbounded capacity of the buffer is not a realistic 

assumptions. This leads us to the following problem statement. The 

"bounded buffer" producer/consurner problem assumes that the buffer has 

a limited capacity N. In this case, the producer can only produce if 

the buffer is not full, in order to prevent an overflow of the buffer. 

The behavior of the consumer can remain the same as for the unbounded 

buffer problem. The corresponding Petri net is shown in Figure 2 . 7 . 
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Figure 2.7: Bounded Producer/Consumer 

1.4. The Readers/Writers Problem 

This problem was stated in [6]. There are two classes of 

processes sharing a data object. The processes of the first class, 

named writers, must have exclusive access to the object, but processes 

of the second class, the readers, may share the object with other 

readers. 

;rn the bounded version of the "first" readers/writers problem, up 

to n reader processes may read simultaneously and no reader should be 

kept waiting unless a writer has already obtained the permission to 

use the shared abject. In other words, no reader should wait for other 

readers to finish simply because a writer is waiting. A Petri net 

representing this situation is given in Figure 2.8. 

The second readers/writers problem is the sarne as the first one 

except that if a writer is ready to write, no reader may start reading 

until all (up tom) waiting writers have finished writing. The Petri 

net in Figure 2.9 models the second readers/writers problem. 
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pl (p4) process wanting to r~ad ( write) 

p2 < ps) process reading ( writing) 

p3 ( p6) process finished reading ( writing) 

p7 synchronizing place 

Figure .2.8: Readers/Writers I 

6 

Figure 2.9: Readers/Writers II 

A process wanting to read can only start reading if there are m tokens 

on place pl, i.e. there is no process wanting to write, and if there 

is at least one token on place p2, i.e. there are not yet n processes 

reading concurrently . A process wanting to write must first take one 

token from pl to indicate to the readers that he wants to write. · Then 

the writer must wait until no process is reading (n tokens on place 
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p2) and can start writing. Place pl 

variables and the other places 

pointers of processes. 

2.9 

and p2 represent synchronizing 

are dwell-points for instruction 
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2. Synchronization Primitives 

2.1. Parbegin and Parend 

When modeling systems of concurrent activities, we must be able 

to specify that some actions · are executed concurrently. For this 

purpose, Dijkstra [7] introduced extensions to ALGOL 60 to enable 

someone to describe parallelism of execution 

"When a sequence of statements - separated by semicolons as usual in . 
ALGOL 60 is surrounded by the special statement bracket pair 

"parbegin" and "parend" this is to be interpreted as parallel 

execution of the constituent statements." 

The example given by Dijkstra can be modeled by means of Petri nets as 

shown in Figure 2.10. The formulation of the example is the following 

"begin Sl; parbegin S2;S3;S4 parend; SS end" 
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Figure 2.10: Parbegin and Parend 

Other primitives with the sarne functionality have been introduced as 

for exarnple the cobegin coend construct. Thus, the modeling 

primitives for such constructs are a transition with multiple output 

places for the parbegin and a transition with multiple input places 

for the parend. 

2.2 . Fork and Join 

With the parbegin - parend construct, the process includïng the 

pair of instructions is suspended until all constituent statements are 

executed and then only resumes the main process. 

The fork instruction however produces two concurrent executions, 

one starting at the label specified by the fork instruction, the other 

being the continuation of the process emitting the fork. The join 



MOOELING OF CONCURRENT PROCESSES 2. J.2 

instruction permits to recombine two concurrent computations into one. 

The Petri net model for this construct (Fork-Join) is the same as 

the one for parbegin - parend, but the interpretation differs: the 

fork starts one new process and executes it concurrentJ.y to the 

pro"cess containing the fork instruction whereas the parbegin creates 

two new processes and suspends the calling process until completion of 

the processes created by the parbegin. 

2 . 3. The Semaphore 

A semaphore is an integer variable whose value can only be 

altered by the operations P and V defined as follows [7]: 

the P-operation decreases the value of its argument semaphore by 

J. as soon as the resulting value would be nonnegative. The 

completion of the P-operation is to be regarded as an indivisible 

operation. 

the V-operation increases the value of its argument semaphore by 

one. 

A semaphore which has a maximum value of one is caJ.J.ed a binary 

semaphore; if the maximum value of a semaphore is greater than one, it 

is caJ.led a general semaphore. Figure 2.ll shows how a semaphore and 

the operations upon it are realized ·by means of a Petri net. 

Figure 2.ll: P/V 

The semaphore is represented by a places and its initial value by the 

corresponding number of tokens on that place. The P-operation is a 

transition taking a token from the semaphore place; the V-operation 

puts one token on the semaphore place. 

Remark : This model is a functional representation of the semaphore 
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concept; i . e. the semaphore and the operations defined on it are shown 

as the user of such constructs sees them; the implementation· details 

are hidden. 

2.4. Message passing 

The function of a 

communicate with each 

message system is 

other without the 

to allow processes to 

need to resort to shared 

variables. An interprocess communication facility basicallly provides 

two operations send and receive. A process executes send to passa 

message to another process; the other process accepts information by 

executing a receive. 

When we study message passing systems, we are not interested in 

the data flow taking place betweeen processes, but in the 

synchronization, i.e. the control flow of the processes modeled by 

Petri nets. The property of message passing systems influencing the 

control flow is the capacity of the link between the processes. The 

capacity determines the number of messages that can termporarily 

reside in the link . There are three types of capacities leading to 

three different models for message passing systems: 

l. unbounded capacity : the link between two processes can contain 

an infinite number of messages. The sender can always continue 

after executing a send and he is never delayed. This situation 

corresponds to the unbounded buffer problem and is represented in 

Figure 2 . 12. 

Send Receive 

Figure 2.12: Send/Receive (unbounded capacity) 

2. bounded capacity: The link is of bounded capacity n; thus at 

most n messages can reside in it. If the link is not full when a 
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message is sent, it is placed in the link and the sender can 

continue without waiting. If the link is full, the sender is 

delayed until a message is removed from the link by a receive 

operation. Figure 2.l3 shows this construct. 

Figure 2.13: Send/Receive (bounded capacity) 

3. zero capacity The link has a capacity of zero messages, i.e. no 

message can be queued. In this case, the two processes must be 

synchronized for a message transfer to take place. If the send 

occures first, the sender is blocked until the receive occurs; 

then the transmission of the m~sssage takes place and both 

processes are allowed to proceed. Conversely, if the receive 

occurs first, the receiver is blocked until the send occurs. This 

synchronization is also called "rendezvous". In this method, the 

sender never proceeds before the receiver has effectively 

received the message. This arrangement is shown in Figure 2.14. 

( 

S< 
' 
1 

1, 

R 

• . 
Figure 2 . 14: send/Receive (Zero-capacity) 
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The zero capacity message 

prograrnming languages ?uch as 

features of these languages are : 

1. Dijkstra·s guarded commands 

nondeterminism, 

passing method is implemented in 

CSP and OCCAM (11,18]. The main 

for introducing and controlling 

2. a parallel command, based on Dijkstra·s parbegin, 

3. input and output commands are used for communication between 

concurrent processes, 

4. no automatic buffering : the communication is synchronized (O­

capacity message passing), 

5. Input commands may appear in guards to permit a process to wait 

for input from any one of a number of channels. The input is 

taken forn the first channel on which output by another process is 

available. 

2.5. The ADA "Rendezvous" ----

The rendezvous mechanisrn in ADA is based on the "blocking send" 

which is an extension of the zero-capacity message passing. In this 

case, the answer permitting the resumption of the sender is not given 

by the receive operation but has to be given explicitly. The 

"blocking send" scheme eliminates send and receive and replaces them 

by three new operations.: BlockingSend, Accept and Reply. Accept can 

only receive a message sent by BlockingSend, and Reply can only answer 

a message received by Accept. This makes it possible for the receiver 

process to perform some action before giving the acknowledgment 

(Reply) to the sender, Notice that if no action is performed before 

replying, this scheme is the same as the zero-capacity message 

passing. 

In ADA (17,12], the message and the reply (if any) are 

parameters. The send is an entry point invocation of the receiving 

process, the accept is the "accept" statement and the reply 

corresponds to the "end" of the accept-block (do .. end). 

The rendezvous thus achieves the following three basic notions (17]. 

1. Synchronization : The calling task must issue an entry call, and 

the called task must reach a corresponding accept statement. 
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2. Exchange of information : at the realization of the rendezvous, 

parameters can be received by the acceptor. After the end 

statement, parameters may be passed back to the caller process. 

3. Mutual exclusion : If two or more tasks call an entry point of a 

task, only one call can be accepted at a tillle. 

As in CSP and OCCAM, a guarded command construct is availahle 

the select statement. It provides a task with a mechanism to wait for 

a set of events whose order cannot be predicted in advance. 

The synchronization between an entry point invocation and an accept 

statement are shown in Figure 2.15. 

r 
1 
1 accept 
1 
1 

~ 
invocation accept block 

1 

l.. 

Figure 2.15: An ADA "Rendezvous" 

. The select can be 

producer/consumer problem 

illustrated 

( 2, 21] . 

with the bounded-buffer 

The bounded buffer and the 

operations allowing to insert and remove elements are irnplemented by 

an ADA task as follows: 
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task body boundedbuffer is 

buffer array(o .. 9] of item; 

in,out integer; 

count integer; 

in := 0; 

out := 0; 

count := 0; 

begin 

loop 

end; 

end. 

select 

when count < 10 => 

accept insert (it in item) 

do buffer(in mod 10] := it end; 

in :=in+ l; 

count := count + l; 
or when count > o => 

accept remove (it : out item} 

doit := buffer(out mod 10] end; 

out := out - l; 

count := count - l; 

end select; 

2.17 

This task can be modeled by the Petri net in Figure 2.16. 

In this Petri net, place pl represents the number of empty slots in 

the buffer (for the "when count < 10"} and place p2 the number of used 

slots. Transition tl corresponds to "whe!'\ count < 10 => accept insert 

... ". Place p4 indicates that the task is executing the accept block 

(do .. end}. Place p3 assures the mutual exclusion between more 

accepts. Places p6 and pa are marked if another task has invoked one 

of these entries and p7 and p9 represent the acknowledgment send to 

the calling task. 
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p'1 
p6 p8 

t'1 

"(_, . 

bp9 

Figure 2 . l6: A bounded-buffer task 
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CHAPTER 3: ANALYSIS OP PETRI NETS 

In this chapter, a method for analyzing Petri nets is described. 

Pirst of • all, the different analysis problems are stated. Then a 

technique for analyzing a Petri net is given and it will be shown how 

the different analysis problems can be solved using this method and 

which of the problems stated can be solved (as this method doesn·t 

provide a solution to all problems). In a last section, some other 

analysis techniques are mentioned. 

1. Analysis Problems 

1.1. safeness 

A place in a Petri net is said to be safe if the number of tokens 

in that place never exceeds one. A Petri net is safe if all its places 

are safe. A Petri net in which places represent conditions must be 

safe because a condition can be true (place contains 1 token) or false 

(place contains o tokens). Multiple tokens on a place could lead to 

misbehavior in the Petri net. 

The property of safeness is also very important in the modeling 

of hardware devices constructed with binary elernents. Each binary 

element can represent the value zero or one. 

A definition of the safeness property can be formulated as 

follows: A place P . € P of a Petri net PN = (P,T,I,O) with initial 
1 

marking is safe if for all M. E · [M], M"(P . ) ~ 1. A Petri net is safe 
1 

if each place in the net is save. 

Figure 3.1 is a Petri net which is not safe. Places pl and p2 are 

safe but not place p3 . 
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1 

Figure 3.1: An unsafe Petri net 

1.2. Boundedness 

If .the Petri net is constructed such that there can be at most k 

tokens on a given place, then this place is said to be "k-bounded". 

The bound k on the number of tokens can be a function of the place, 

i.e. different places can have different bounds. If a place is k­

bounded, then it is also bounded for each k ' > k . 

Using this property it can be observed that a Petri net is k-bounded 

if all places are k-bounded. The bound for the Petri net is the 

maximum value of the bounds of each place. If the exact value of k is 

unknown, but is known to be some finite nurnber, then the net is just 

referred to as being "bounded". safeness is a special case of 

boundedness with k=l. The net in Figure 3.1 is not bounded since 

place p3 can hold an infinite number of tokens. 

Boundedness is a very important property especially on single 

places . In the modeling of the bounded buffer problern we must verify 

that the number of tokens on the place representing the number of 

elements in the buffer never exceeds the bound for that place i.e. the 

capacity of the buffer. For the readers-writers problem , there are 

bounds imposed on several places: the number of processes reading must 

not exceed a certain number, the number of processes writing must not 

exceed one i. e . the place must be safe. 
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1.3. Conservation and Invariants 

Another property that might be important is conservation of 

tokens . If tokens are used to represent resources, we would like to 

show that these tokens are neither distroyed nor created since the 

resources they represent are neither destroyed nor created. A Petri 

net is strictly conservative if the number of tokens in the net 

remains the same : 

given a Petri net PN = (P,T,I,O) with the initial marking M, 
0 

the Petri net is strictly conservative for all M. € [MO] if 

and only if 

LM.(p _)= LM(p _) 
l. 0 l. 

P EP P . €P 
i l. 

The strict conservation is too restrictive since the number of input 

places and the number of output places of one transition must be the 

same. 

we notice that net all tokens in a Petri net represent resources. 

Sorne tokens represent resources, others represent a particular value 

of the instruction pointer of a process, etc. So it would be 

interesting to be able to distinguish between different tokens. But we 

can only identify a token by its position on a place. That is why a 

weighting vector can be associated to the Petri net. · The weighting 

vector gives a weight for each place and that weight is multiplied 

with the number of tokens on that place before summing up the number 

of tokens . 

A Petri net is conservative with respect to a weighting vector w = 
(w, .. ,w) n=IPI if for all M' € [H] 

1 n O 

L w . " M' ( p . ) = L,,, . " M ( p ) 
l. l. l. 0 i 

i i 

A strictly conservative Petri net is conservative with respect to a 

weighting vector (1,1, .. ,1). All Petri nets are conservative with 

respect to (O,O, .. ,0) . 

Because all Petri nets are at least conservative with respect to one 

weighting vector, it is said that a Petri net is conservative if it is 
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conservative with respect to a non-zero weighting vector, w > o (w > 
i 

0). 

A Petri net conservative with respect to a weighting vector is a 

Petri net satisfying an invariant, the weighting vector being called 

the invariant. 

Another kind of invariant can be applied to the product of the 

number of tokens on two places. For a product invariant it will be 

verified that the product of the token nurnbers of two different places 

is zero. And this must be the case for each combination of two places 

corresponding to non-zero components of the product invariant. With a 

product invariant, it can be verified that two places are never marked 

at the same time. 

_!._1. Liveness 

A transition t is potentially firable in a marking M if there 

exists a marking M' in the marking class of M under which t is 

enabled: 

3 M' € [M] : M' [t> 

A transition is called live at a marking M if it is potentially 

firable in every marking in the marking class of M: 
\ 

VM' € [M] 3 · M" € [M'] : M"[t> 

Transition t is called dead at ( under) M' if t cannot be activated 

under any marking of the marking class of M' : 

V M" € [M'] 7 (M" [t>) 

The marking M- is then called t-<lead. The transition t is thus not 

live if and only if there exists a marking M' € (M] such that t is 

dead at .M' 

A marking Mis called dead if all transitions are dead under M. 

The Petri net PN is called live if and only if each transition is live 

at the intitial marking M. 
0 

Thus, if a Petri net has a dead marking, the system represented 

by the net can run into astate where the whole system cannot proceed: 

there occurs a deadlock-situation. Figure 3.2 illustrates this 
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problem. After the firing of transition t3, the net is in a dead 

marking and no transition can fire. If the Petri net is not live, it 

can run into astate where a transition can never be fired again, i.e. 

part of the system · cannot proceed. 

Figure 3.2: A net which can run into a deadlock 

An example of a deadlock situation is a situation in which two 

processes Pl and PZ need two resources A and B. Each process obtained 

one resource. Now the two processes are each waiting for the other to 

release the second resource it needs to continue. Thus, the two 

processes are blocked, each waiting for the other. 

1.5. The reachability problem 

The reachability problem can be stated as follows: "given a Petri 

net and an initial markinq M, is M € [M ]?" 
0 0 

Thus a marking M is called reachable from a marking H 
k 

there exist transitions t ' .. ,t and markings M ' .. ,H 
l k l 

firing of transition t produces the marking M out 

M (i:l. .k). 
i-1 

i . i 

if and only if 
0 

, suèh that the 
k 
of the marking 

This problem is particulary important because many analysis 

questions can be expressed in terms of reachability. For instance, 

Hack [9] has shown that the liveness problem is reducible to the 

reachability problem and that in fact the two problems are equivalent, 

since reachablility is also reducible to liveness. 

Another problem is the coverability problem: given a Petri net 

with an initial ma~king MO and a marking M-, M- is coverable if and 
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only if 

3 M" E [ H ] 
0 

M" ~ M. 

~ . Analysis technique (Reachability tree) 

3 . 6 

It is usefui to represent the elementary changes of markings by a 

reachability tree . The reachability tree represents the reachability 

set of a Petri net. The nodes of the tree are reachable markings M E 

[M ], and the arcs are labeled by the transitions which cause the 
0 

marking changes. 

This tree can be constructed as follows : 

1. let the initial marking M be the root of the tree; 
0 

let the root be the current node; 

2 . for each transition t enabled at the current marking M: 

create a new node with the marking M. such that M[t>M. , 

create an arc from the current node to the new node and 

label the arc with t; 

3. repeat the second step for all newly created nodes . 

It is obvious that this tree can be infinite if the net has 

unbounded capacity (an infinite number of tokens can be accumulated on 

a place) or if a marking is reproducible (M[->M) . This is illustrated 

in Figure 3.3 which shows the reachability tree of the unbounded 

buffer mode l (Figure 2.6 ) . 
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(l,0,0,1,0) 

l t1 

(0,1,1,l,O) 

~~ 
(O,l,?,O,l.) 

(O,l.,2,l,O) 

(l.,O,l.,l,O) 

~~ 
(l,0,0,0,l.) 

/ ~ 
( 1,0,0, 1,0) 

Figure 3.3: The reachability tree of the unbounded buffer 

It can be observed that the sequence of transitions tl.,t3 can be fired 

as ofter as wanted increasing the number of tokens on place p3. 

Consequently, an infinite number of tokens can be accumulated on place 

p3. The initial marking is reproducible by firing for instance the 

sequence tl.,t3,t2,t4, causing the generation of an infinite number of 

nodes in the reachability tree. 

If we want to use the reachability tree for analysis of Petri 

nets, we must modify our procedure in order to obtain a finite tree. 

This reduction of the tree is helped by dead markings because their 

marking class consists of the singleton 

Thus, for dead markings no further nodes 

{M} if Mis the dead marking . 

will be generated in the 

reachability tree and the node will be called a terminal node and 

constitutes a leaf of the tree. 

Another class of leaves consists of the nodes having a marking 

that appears already in the reachability tree and for which the 

marking class has already been generated. It is not necessary to 

generate the marking class once again for the new node because it will 

be the sarne as for the one already encountered. This node will be said 

to be a duplicate node in the reachability tree and it will not be 

considered anymore in the reachability tree construction. 

One final means to eut down ·the reachability tree to a finite 
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representation is based on the observation that often two markings H € 

[ M .] and M' € [M), with M < 
0 

M' define a lot of different markings 

{M ,M , . . . } ç [M]. 
l 2 

In this set M is obtained from 
i+l 

Mi by the firing of the same 

transition sequence leading from M to W. 

Then, we have M' - M = H - M ) o. 
i+l i 

This firing sequence can be repeated over and over, increasing the 

number of tokens in some place of the net. 

In the reachability tree construction procedure, this subset of 

markings will be reduced to one node in the reachability tree and the 

special symbol w (omega) is used to designate an infinite number of 

tokens. 

The definition of€ can be given by the following properties 

for all z € z 
w+z=w-z=w 

z < w 

w < w 
0 it W = 0 

Let z = z u { w } . 
w 

For any two vectors x,y of z , the relations and operations x+y, x-y, 
w 

x=y, x < y are understood componentwise. The relation x < y however is 

satisfied if and only if x ~ y and x ~ y. 

The precise algorithrn __ for the reachability tree construction can 

now be stated. Each node is of one of the following types: terminal, 

duplicate, interior, frontier . Interior nodes are nodes already 

processed by the algorithm and which are neither terminal nor 

duplicate. A frontier node is anode not yet processed. To each node 

is associated a marking with M(p _) € N . 
1 W 
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The algorithm is the following 

let the tree consist of one node, the root r; 

declare r frontier; 

while there are frontier nodes do 

choose a frontier node to process x; 

od. 

if there exists another node y in the tree 

which is nota frontier node, and has 

the same marking M(x]=M(y], 

fi 

then if y is of type terminal 

then declare x terminal 

else declare x duplicate 

fi 

else if no transitions are enabled at M(x] 

then declare x terminal 

else for each transition t : M(x] (t> do 

create a new node z; 

fi 

od 

M ( z] : = fire ( t, M (X] ) i 

if there exists anode y 

on the path from the root 

to X with M(y] < M(x] 

then for each M(y]i < M(z]i do 

M(y]i :=W; 

od 

fi 

direct an arc labeled t from x to z; 

declare z frontier; 

declare x interior; 

The reachability tree of Pigure 3.4 is shown in Pigure 3.5 

3.9 
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4 

Figure 3.4: A Petri net with marking (J.,0,1,0) 

and infinite state-space 

(J.,O,J.,O) interior 

1, t3 

(l,0,0,1) interior 

(i,w,J.,O) interior 

~ ---z 
(l,W,O,O) terminal (l,W,O,l) interior 

l t2 
(l,W,J.,O) duplicate 

Figure 3.5: The reachability tree of the Petri net 

in Figure 3.4 

3.10 

For the reachability tree constructing algorithm to be useful it 

is very important that it terminates. To prove this, it must be shown 

that the reachability tree is finite. Then the algorithm cannot 

continue to create frontier nodes forever. Since this dissertation 

stresses on .the application of results obtained in pure Petri net 

theory, the prove is not given here . A proof can be found in Peterson 

(20] . 
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3. Resolution power of the reachability tree 

In this section, the resolution power of the reachability tree is 

discussed. For the decidable problems, we indicate how to solve them. 

Then, the limitations of the reachability tree are discussed. 

3 . 1. Safeness and Boundedness 

The safeness and the boundedness problerns are decidable using the 

reachability tree . 

A Petri net is bounded if and only if the symbol w never appears in 

the reachability tree, i.e. no place of the net can contain an 

unlimited nurnber of tokens. If the symbol w occurs in the 

reachability tree, there exists a firing sequence which can be 

repreated arbitrarily often to increase the nurnber of tokens to 

infinity. The symbol w indicates by its position the unbounded 

place(s). Thus, a place in a Petri net is bounded if there is no 

rnarking in the reachability tree such that the component corresponding 

te the place is w . The boundedness problem and the submarking 

boundedness problem can be decided by inspection of the reachablility 

tree. 

The safeness problem can also be decided by inspection of the 

reachability tree . If there is no marking in the tree with the 

component corresponding te a given place greater than one, then the 

place is safe. 

An interesting property is that of submarking boundedness. Even 

if a net is net bounded, some places can be bounded and that may 

sometirnes suffice to verify the correct functioning of the net. 

In the bounded buffer problern, for instance, if the place representing 

the nurnber of elernents in the buffer is bounded to the capacity of the 

buffer, t he buffer will never overflow. 

In the readers/writers model , the place representing the number of 
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processes writing must be safe (at most one writes). 

These properties can always be verified on the reachability tree, even 

when the whole net is unbounded. 

If the Petri net is bounded, it represents a finite state system 

and the reachability tree · contains all reachable markings. The 

reachability tree represents the whole state space of the system and 

all other analysis questions can be solved by the inspection of the 

tree. 

3.2. Conservation and Invariants 

Conservation can be tested using the reachability tree. The 

weighted surn can be computed for each marking and all the sums can be 

compared for equality. If the sum is the same for all the markings, 

the Petri net is conservative with respect to the given weigths 

vector. If the sums are not equal, the net is not conservative . 

If the net is not bounded, the weigths associated to the unbounded 

places must be zero, else the net is not conservative. 

Thus, we can verify if a net is conservative with respect to a 

weighting vector. But we can also use the reachabliy tree another way 

round. The reachbility tree can be used to determine if a Petri net is 

conservative by finding a weighting vector. As defined earlier, a 

Petri net is conservative if it is conservative with respect to a 

strictly positive weigths vector. This imposes the boundedness of the 

net. If the net is conservative, a weighted sum S and a weights 

vector w=(w ,w , . . w) exist. For each reachable marking M, we have : 
l 2 n 

w * M(p ) + w * M(p ) + . .. + w * M(p ) = S 
l l 2 2 n n 

This defines a set of k linear equations in n+l unknowns if the 

reachability tree contains k nodes. If we add to this the constraints 

w > 0, i : 1,2, . . ,n 
i 

we have a well defined problern which can be solved. 

Exarnple let us consider the mutual exclusion problem. Figure 3.6 
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gives the model and the corresponding reachability tree. 

The 

(0,0,l,l,l) 

~~ 
(J.,O,î,O,J.) (O,J.,,,1,0) 

t t3 vt4 
(O,O,J.,1,1) (0,0,l,l,l) 

Figure 3.6: The rnutual exclusion problem and 

the corresponding reachability tree 

system of equations· is thus the following 

w3 + w4 + ws = s 
Wl + ws = s 
W2 + w4 = s 
wi > 0, i = J... 5 

A solution to this system is 

wl = 2, w2 = 2, W3 = w4 = ws = l 

3.J.3 

The invariant on the sum of rnarkings is the sarne as the 

conservation with respect to a weigthing vector with possibly sorne 

negative or zero weights. In the bounded buffer problern (Figure 2.7), 

for example, the sum of the two places representing the number of 

empty buffers and the number of full buffers must always be equal to 

the number of buffers n . 

. 
The product invariant is used to verify the mutual exclusion . It 

suffices to show that mutually exclusive places ( e . g. critical 

sections) are never marked · at the same time, i . e. the product of the 

markings of this places is zero for each marking in the reachability 
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tree. This shows then that if one process is in its critical section 

(place marked), the other one is not . (place not marked). 

3 . 3 . Coverability 

Given a marking M, is there a reachable marking M. which covers 

M, i.e. such that M' is greater or equal than M? This problem can be 

solved by inspection of the reachability tree. 

3 . 4. Limitations of the reachability tree 

The two problems of liveness and reachability can not in general 

be solved with the reachability tree. If the Petri net is unbounded, 

the tree contains omegas and there is some loss of information. 

But although the reachability tree does not solve this problems 

in general, sometimes it does. If there is a terminal node in the 

reachability tree, it can be concluded that the net is not live. For 

the reachability problem, it may be the case that the marking is in 

the tree and then it is obviously reachable. If ·a marking is not 

covered, then it is not reachable. 

If the tree contains no omegas, all reachability and liveness 

problems can be solved using the reachability tree. sometimes, it is 

possible to modify a model in order to make it bounded; e.g. the 

unbounded buffer problem is transformed into a bounded buffer problem. 

Another problem with the reachability tree construction is that 

even if the Petri net is bounded, the reachability tree can become 

very big. In such cases, the space or the computational power required 

to build the tree are sometimes too large for the analysis to be 

usefull. 
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4. Other analysis techniques 

This section will introduce some other analysis techniques used 

to verify properties of Petri nets. These techniques are not developed 

within the frarnework of this dissertation. They are only mentioned to 

signal that there exist other analysis techniques for Petri nets. 

4.1. Linear algebra 

The Petri net analysis with linear algebra studies essentially 

structural properties of Petri nets, i.e. properties not depending on 

the initial rnarking of the net . This is done by looking into the 

structure of the incidence rnatrix c. The incidence matrix is obtained 

by subtracting the input rnatrix I frorn the output matrix o : C = O 

I. 

We observe that the passage from a marking M to a marking M' by the 

firing of a transition sequence s can be represented by the following 

equation: 

M' = M + C·s ·. 

s · is a colurnn vector and each of its components stands for the number 

of tirnes the corresponding transition fires in the firing sequence. 

4.2 . Reductions of nets 

The Petri net models are sometimes too complex to be analyzed by 

the available techniques . This is often the case for the reachability 

construction. In particular cases, the complexity can be reduced by 

eliminating some aspects not relevant for the property to verify . 

Reductions of a Petri net, provided that they preserve its properties, 

may then be used to obtain a new net which suits to the analysis by 

reachability tree construction. For the linear algebra method, 

reductions can reduce the size of the matrixes to manipulate . A 
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reduction can consist of place substitution or suppression of 

transitions . 

4.3 . Petri net classes ---

There exist extensions to Petri nets and subclasses of Petri 

nets. The class of extended Petri nets is characterized by a greater 

modeling power than general Petri nets. Because of the extensions, 

some analysis methods for Petri nets cannot further be applied to this 

class of nets. This leads to a lower decision power for extended Petri 

nets. An exarnple for this class are nets with inhibitor arcs. An 

inhibitor arc is an arc that enables a transition only if the incoming 

places are not marked . 

Subclasses of Petri nets often corne to live due to the 

observation that the modeling of some classes of systems don · t require 

the whole modeling power of Petri nets. This leads to classes of Petri 

nets with a restricted modeling power, but with an increased decision 

power. Exarnples of subclasses of Petri nets are state machines, marked 

graphs and free-choice Petri nets. 

State machines are Petri nets such that each transition has exactly 

one input and one outRut place and the arcs connecting it to these 

places are of value l. A marked graph is a Petri net in which each 

place is an input for exactly one transition and an output for exactly 

one transitions. A free-choice Petri net is a Petri net in which each 

arc is labeled by land if two or more transitions have an input place 

in common·, they share all their input places. 
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CHAPTER 4: A PETRI NET ANALYSIS PROGRAM 

This chapter describes a tool for anlyzing Petri nets. This tool 

is nota complete Petri net analysis package, but implements only one 

analysis method, the one described in this dissertation. It seemed 

important tome to enforce the present analysis method with a software 

tool showing that the theory presented is directly applicable. In a 

first section, an overall description of the software tool will be 

given. The following sections give a functional analysis of the 

program and some implementation details. 

Notice 

programrning 

that the program is written in the VAX-11 PASCAL 

language which runs under VMS. The program does not make 

use of special features of the VAX-11 PASCAL implementation in order 

to enforce understandability and portability. 

1. Overall description of the tool 

The program is based -.. on the reachabili ty tree analysis technique. 

Once a Petri net has been input and the initial marking has been set, 

the reachability tree of the net can be constructed. After the 

construction of the reachability tree, different properties can be 

verified on the reachability tree. 

The input of the Petri net consists in the decoding of a Petri 

net model stored previously in a text file. The model is a set of 

formulas describing the transitions. A transition is defined by the 

effect it has on the token load of places. If transition tl, when 

fired, removes one token from place pl and puts 2 tokens on place p2, 

this will be expressed by the following formula : 

tl=-pl+2p2 
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To illustrate the use of this modelisation language, Figure 4.1 shows 

a Petri net and the corresponding model. 

p1 t1 p 2 

a-~~l--=--2 ---'-0 

tl=-pl+pl+2p2 

t2=-pl+p3 

p3 

Figure 4.1: A Petri net and its model 

After having decoded a model, the user can set the initial 

marking for the Petri net. Once the marking set, the reachability tree 

can be constructed. For the sarne model, the process of setting an 

initial marking and building the reachability tree can be repeated an 

arbitrary number of times. This permits to analyze different scenarios 

depending on the initial marking of the Petri net. 

The reachability tree can be displayed at the terminal or be 

printed to an output file . This possibility of having the output of 

the system displayed at the user terminal or printed to file exists 

for all analysis tasks. 

The analysis questions a user can ask are the following 

1 . boundedness of the Petri net, 

2 . deadJ.ock, 

3 . coverability of a given marking, 

4 . reachability, 

5. invariance on the sum of markings (conservation), 

6. invariance on the product of markings (mutual exclusion). 

This functions will be described in more detail in the next section. 
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2 . Functional analysis 

This section gives an overview of all the functions perforrned by 

the Petri net analysis tool and describes the effect of each function. 

2 . l. Input of a new model 

This function allows a user to input a Petri net from a model 

file. The system asks for the name of the model and then decodes the 

model contained in that file. The · name of the model file must be of 

type (extension) ".MOD". When asked for the file name, the user must 

not supply the file type (".MOD"), the system adds it automatically to 

the file name if it is not given. The model must respect the syntax 

given in Appendix A. 

If there are errors in the model, the 

appropriate message is given. When 

error, the number of transitions and 

communicated to the user. 

decoding is aborted and an 

the decoding succeeds without 

places in the Petri net are 

2.2 . Construction of the ieachability tree 

This task constructs the reachability tree of the Petri net given 

an initial marking. If no model is present, the task is aborted after 

having printed an appropriate message to the user. If there is no 

initial marking, the user is asked to introduce one. 

After having verified the initial conditions, the reachability 

tree is constructed according to the algorithm given in chapter 3. 

The user is kept informed on the progress of the reachability tree 

construction by printing one dot c· .· ) for each creation of a new 

node. Once the reachability tree construction finished, the system 

displays the number of nodes in the tree and terminates the task. 
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2.3. Modification of the initial marking 

This function allows the modification of the initial marking . The 

user can introduce another initial marking in order to construct the 

reachability tree with this marking. This feature makes it possible to 

analyze different scenarios depending on the initial marking of the 

Petri net. 

2.4. Direction of output 

The output of the reachability tree and the analysis results can 

be directed to the user terminal or to a file that can be printed 

after the session. If the output is directed to a file, the name of 

the file will be given to the user. This name is "PNOUT.RES" if no 

model file has been read in. If a Petri net · has already been 

introduced from a model file, the filename of the model file will be 

taken and the extension (file type) will be ",RES". Thus, if the 

model file "MUTEX . MOD" has been input and afterwards the output is 

directed te file, the file containing the results will have the name 

"MUTEX. RES". 

2.5 . Printing the reachability tree 

If a reachability tree has already been constructed, it is output 

te the user terminal or to the output file if the output is directed 

to a file. 

First, the number of nodes of the reachability tree is printed. 

The reachabilit y tree is then printed level by level. In other words, 

for each marking, starting with the initial marking, all its follower 

markings are printed, prefixed by the type of the node (interier, 
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duplicate or terminal) and by the transition leading toit. Figure 4.2 

shows the reachability tree of the mutual exclusion problem and the 

corresponding printout. 

(0,0,l,l,l) 

(0,0,l,l,l) 

i tl 

i t2 

(l,0,0,0,J.) 

(O,l,0,1,0) 

(l,0,0,0,l.} 

d t3 : (0,0,1,1,J.) 

(0,1,0,J.,O) 

d t4: (0,0,l,l,J.) 

(0,0,l,l,l) 

Pigure 4.2: A reachability tree 

2.6. Stop the session 

Stops the session and leaves the program closing the output file, 

if it exists. 
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2.7. ~ results 

This is an entry point to a number of questions the user can ask 

about the properties of the Petri net. Thus, this function proposes a 

menu with different choices and leads to one of the functions 

described in the sequel. 

After having answered a question, the system returns to this menu 

and the user can get out of it making the choice "E exit" to return to 

the first level. 

2.8. Boundedness 

This function gives an answer to the global boundedness of the 

Petri net. In either of the two cases, the bounds vector is given. 

This vector gives the bound for each place of the Petri net. Thus, 

the submarking boundedness problem can be answered for a given set of 

places using this bounds vector. 

2 . 9 . Deadlock 

This function detects whether the system modeled by the Petri net 

can run into a deadlock state or not. A deadlock state is represented 

by a reachable marking at which no transition is enabled. If the 

system can run into a deadlock state, we are sure that the system is 

not live. If there are some dead markings, the system will signal it 

and the user can request a list of these markings. 
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2 . 10. Coverability 

This function can be invoked to know if a given marking is 

covered by any other marking of the reachability tree. The user must 

introduce the marking for which to decide if it is coverable and the 

system will then decide if it is coverable. If this is the case, the 

first marking found in the reachability tree that covers the given one 

is printed. 

2.11. Reachability 

For a bounded Petri net, the reachability problem is decidable 

and this function decides whether a given marking is reachable or not. 

In the case of an unbounded Petri net, the problem is more 

delicate. If the marking is in the reachability tree, obviously it is 

reachable. If it is not in the reachability tree and is not coverable 

by any other marking of the reachability tree, then we are sure that 

it is not reachable. In all other cases, the program cannot decide 

whether the marking is reachable or not. 

2.12. Invariance on the sum 

This function verifies the invariant on the sum of the markings. 

For each marking in the reachability tree the weighted sum of the 

marking is calculated and compared to the sum given by the user until 

a marking is found that does not satisfy the equality. The user gi.ves 

the weights vector and the sum. If a marking is found that does not 

satisfy the condition (weighted sum = given sum), this marking is 

printed . 
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2.13 . Invariance on the product 

This function verifies a product invariant on all the markings. 

The user gives in a vector specifying the places to be considered in 

the verification . For all the considered places it is then verified 

that the marking product of all pairs of places is zero. 

For exarnple , if the places pl,p2 and ps are considered, it will be 

verified that for each marking Min the reachability tree 

M(pl) * M(p2) = 0 and 

M(pl) * M(p5) = 0 and 

M(p2) * M(p5) = 0 

If a marking is found in the reachability tree which does not satisfy 

this condition, it will be printed . 

Remark : This technique is not necessary to verify the mutual 

exclusion between two places. The problem will be solved more 

efficiently by solving the submarking reachability problem. In fact, 

if a submarking is reachable with the two places containing one token, 

the mutual exclusion is not assured. In the case of a mutual 

exclusion of more than two places, the product invariant technique is 

s horter to formulate . For the example given before, we would have to 

solve three times the submarking reachability problem. 
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3. Implementation details 

In this se~tion, some implementation issues for the program 

described in this chapter are discussed. 

3.1. Data structures 

3.1 . 1. The Petri net 

As already mentioned, the external representation of a Petri net 

is given by a model encoded in a modelisation language for which the 

syntax is given in Appendix A. 

The internal presentation of the Petri net consists of two matrixes. 

These matrixes are the matrixes associated to the Input and the Output 

function respectively. Thus, the two matrixes, named inp and outp, are 

of size n * m, with n representing the maximum number of transitions 

and m the maximum number of places. Each transition in the Petri net 

is then defined by two rows in the two matrixes. Row tin the input 

matrix defines the input function for transition t and row t in the 

output matrix defines the output function of t. 

To these two matrixes, we associate two integer variables representing 

the actual number of transitions and places of the Petri net. 

Another representation would be the incidence matrix c of the 

Petri net. This matrix is obtained by subtracting I the matrix inp form 

the matrix outp: C = outp - inp. 

This matrix is often used in linear algebra analysis techniques for 

Petri nets, but doesn · t fit to our use because such a representation 

dictates a restriction on the structure of the Petri net. This 

restriction is that a given place p cannot be an input and an output 

place of a transition. In fact, if transition t would have pas input 

and output place (with mu l tiplicity 1), the subtraction of inp from 

outp would result in a value o for place pin the incidence vector for 
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transition t. This would mean that place p doesn·t intervene in · 

transition t, which is not the case . 

3 . 1.2 . The reachability tree 

The reachability tree is represented as a collection of items 

connected with pointers. Each item contains the marking corresponding 

t o the node , the number of the transition leading to that marking and 

the type of the node. The type can be interior, duplicate or terminal. 

Furthermore , an item contains pointers to the father, the son and the 

brother nodes . Thus, the structure of anode in the reachability tree 

is as shown iri Figure 4.3. The reachability tree is given by a pointer 

to the root of the tree. 

Marking 

tr transition leading to Marking 

ty type of node (i,d , f) 

f pointer to father 

d pointer to son 

f pointer to brother 

Figure 4 . 3 Anode of the reachability tree 

An example of a Petri net and the corresponding reachability tree 

is given in Figure 4 . 4 . 
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(1,0,0) 0 i /1. /1. 

~ 

' 
(0,l.,0) 1 t /1. (0,0,1) 2 /1. 

(1,0,0) 3 d /1. /1. 

Figure 4.4 A reachability tree 

Notice that a father points toits ·first son only (if any), and not 

to all sons. This representation is choosen in order to economize in 

space. If we want all the pointers to the sons in the node, we would 

need an array of pointers to all sons of the node. This array would be 

of size n ~ size of pointer with n equals the maximum nu.mer of 

transitions. 

3.2. Algorithms 

It is not my intention to describe all the algorithms used in the 

program but only some interesting one · s. 

l·~·l· The reachability tree construction 

This is a refinement of the algorithm given in section 3.2, with 

some additional functions. The algorithm not only constructs the 

reachability tree, but computes the bounds for the different places. 

That is why the algorithm calls a function updating the bounds vector 

each time it encounters a new marking. The algorithm also builds up a 

list of all the terminal nodes. 

This is done so because the boundedness and the deadlock questions are 
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the first questions asked about a Petri net. Thus, these two questions 

are answered once the reachability tree is build; i.e. the bounds 

vector contains the bounds and the list of terminal nodes contain~ all 

markings at which no transition is enabled. The algorithm also keeps 

track of the number of nodes in the reachability tree. 

The algorithm is not reproduced here, but a Pascal implementation can 

be found in Appendix B. 

l·1 ·1 · Breath-first search 

The algorithm searches through the whole tree until finding a 

node satisfying the criterion. The criterion is evaluated in another 

function. The search strategy is breath first. The algorithm is the 

one listed on the next page. 
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found := false; 

if tree not empty 

fi 

then worklist := empty; 

resnode := root; 

repeat 

repeat 

if criterion (resnode) 

then found := true 

else if resnode has son 

then add son at tail 

of worklist 

fi 

resnode := brother of resnode 

fi 

until found or (resnode = nil); 

if not found 

then remove first frorn worklist and 

associate it to resnode 

until found or 

(worklist was empty at last remove) 

4.l3 
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CHAPTER 5: APPLICATIONS 

In this chapter, I will show the usefulness of the tool described 

in the previous chapter by using it to analyze· several systems of 

concurrent activities and by verifying their correct functioning with 

respect to their specification. First, the analysis tool is used to 

analyze some of the problems stated in chapter 2. Then, an extended 

send/receive model is presented and verified. All the models and the 

results from the analysis tool are listed in Appendix c. 

1. The mutual exclusion problem 

This problem is described in section 2.1.l. After the 

construction of the reachability tree, we know that the Petri net is 

bounded. Thus, all the analysis problems are solvable. First, it must 

be verified that at any moment at most one of the processes is engaged 

in its critical section. This can be done by verifying a Product 

Invariant on the places pl and p2. After inspection of the 

reachability tree, it can be concluded that te invariant is verified. 

In other ·words, place pl and place p2 are mutually exclusive. It 

follows that at most one of the two processes can be in its critical 

section. 

Another property to verify is that stopping a process in the 

remainder of his cycle ( not in its critical section) has no effect 

upon others. In fact, if we do not mark place p5 in the initial 

marking, the second process is not activated. But this does not 

prevent the first one from cycling and entering its critical section. 

This can be seen by observing the bounds for the different places. The 

bounds for place pl and p4 are 1 . . Since the places represent dwell­

points for the instruction pointer, it is verified that the process 

runs . 

Notice that the Petri net cannot run into a deadlock state with this 
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initial marking. 

An application with a process leaving its critical section 

without replacing a token on the synchronization place p3 would result 

in a deadlock. This model is given in Pigure S.l. 

Figure 5.1: Incorrect mutual exclusion 

Transition ts would allow process 2 to leave the critical section 

without replacing a token on the synchronization place. In a program, 

this could be a branch instruction out of the critical section. The 

analysis of this Petri net shows that it can run into a deadlock 

state. 

The general mututal exclusion problem can be verified using the 

Product invariant technique. For the Petri net presented in Figure 

2.2, it can be shown that at most one of the four places standing for 

the critical section is marked at a tirne. 
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2. The Dining Philosophers 

In section 2.1.2, three different Petri nets are given for this 

problem. The corresponding model files are given in Appendix C. 

The analysis of the first of the three models shows that the 

Petrj net can run into a deadlock state where each philosopher has 

picked up one fork and cannot continue, because there are no more 

forks on the table. In the dead marking, places pll through plS are 

marked and no other places. Places pll through pl5 represent the fact 

that the philosophers have picked up the first chopstick. Places pl 

through ps represent the chopsticks, p6 trough plO stand for the 

philosophers meditating and pl6 through p20 for the philosophers 

eating. 

The second model cannot run into a deadlock state. This Petri net 

gives a correct solution to the Philosophers problem. 

For the third solution, we have explained why the philosophers 

cannot starve. The starvation freeness cannot be verified with our 

tool, but we can verify that the solution is deadlock free. 

3. The Sender/Receiver rnodel [22] 

An application is given where a sender and receiver are 

connected by a bounded capacity channel. The bound is set to 5 in this 

exarnple. Each of the two processes can be in an active or in an 

inactive state. The receiver can only go into the inactive state if 

the sender is in the inactive state and if the channel is empty. To 

realize this synchronization, we introduce a second channel between 

the two processes. This channel is used to transmit the "finished" 

message of the sender to the receiver. The send and receive for the 

messages containing data are representeJ by 

respectively . The send and receive for 

transition t2 and t6 

the "finished"-signal are 
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implemented by transition t4 and ta. Note that another condition to 

enable ta ' is that the channel is empty. This condition is satisfied 

when place p5 holds n (5) tokens. Place p5 is the complement of place 

p4 representing the number of messages in the link. To execute this 

two processes, we have added some places and transitions to start up 

the two processes. This places represent the environment of the 

process . The model corresponding to this description is given in 

Figure 5.2 . 

1 4 7 

13 

Figure 5.2 Extended Sender/Receiver 

If the send/receive system is correctly modeled, the model 

verifies the following properties: 

1. Sender and receiver are always in one of the following states 

{pl,p2 , p3 } respectively {p7,pa,p9} . Place pl and p2 stand for 

the sender being in an active state and in p3, the sender is 
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inactive. 

2. The channel never contains more than 5 messages (tokens). 

3. The sender (resp. receiver) is inactive if and only if he has 

given a corresponding signal to the environment. He can leave the 

inactive state only through a signal from the environment. 

4. If the sender is in the inactive state, he can leave this state 

only when the receiver process is in his inactive state too. 

s. The receiver·s decision to receive or to go into an inactive 

state depends totally on the behavior of the sender. 

6. The receiver can go into the inactive state only if the channel 

is empty and the sender is inactive. 

7. The Petri net cannot run into a deadlock state. 

All this properties will now be verified using the Petri net 

analysis tool. The construction of the reachability tree shows that it 

contains 76 nodes and that the Petri net is bounded. All places except 

the two representing the bounded channel (p4 and pS) are safe. The 

results can be found in Appendix c. 

Property 1 can be verified using a surn invariant. The invariant for 

the sender is : 

M(pl) + M(p2) + M(p3) = 1. 

For the receiver, we have the invariant 

M(p7) + M(p8) + M(p9) \: 1. 

This two invariants are verified on each of the markings of the 

reachability tree. 

The second property is verified by looking to the bounds vector. The 

bound for place p4 is 5, i.e. the channel never contains more than 

five messages. 

Property 3 is verified for the sender using the invariant 

M(pl0) + M(plZ) - M(p3) = O. 

In other words, place p3 is marked only if place plO or pl2 is 

marked. The sarne property can be verified for the receiver with the 

invariant 

M(pll) + M(pl3) - M(p9) = O. 
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Verifying the invariant 

M(p6) - M(plO) + M(pll) = 0 

shows that M(p6) = l implies M(plO) = l because a place cannot have a 

negative marking. Thus, if the sender is inactive, plO is marked and 

this mark can only be removed by a firing of t9. But t9 is only 

enabled if the receiver is in the inactive state. 

If property 5 is not satisfied, transition t6 and ta can be enabled 

at the same time. This would require that M(p4) ~ 1, M(pS) ~ s and 

M(p6) ~ l . It can however be shown on the reachability tree that 

such a rnarking is not covered, i.e. there can never be a conflict 

between the two transitions. 

Property 6 is verified by the required token load for- ta to fire. The 

number of tokens on place p6 must be greater or equal than one and the 

marking of place ps must be greater or equal than five. 

The last property is also verified by the Petri net. The reachablity 

tree contains no dead rnarking. 



CONCLUSIONS 6.1 

CONCLUSIONS 

In this dissertation, Petri nets were presented as a tool for 

modeling and analyzing systems of concurrent activities. The first 

chapter introduced common definitions of terms related to Petri nets 

and their execution. These concepts allowed us to model 

synchronization problems and mechanisms in chapter two. Chapter three 

gave an overview of important analysis questions and showed how to 

solve them using the reachability tree analysis technique. Since we 

wanted to analyze automatically the modeled systems, a Petri net 

analysis program was implemented. This software tool has been 

described in chapter four and some implementation details were 

discussed. Finally, chapter five showed how to put this method and the 

tool to work, verifying some modeled systems. 

These observations suggest some conclusion. It has been shown 

that Petri nets are a good tqol for dealing with the modeling and 

analysis of concurrent processes. The modeling of a lot of actually 

existing synchronization mechanisms is feasible and much of the 

analysis questions can be decided automatically. 

Within the framework of this dissertation, only one analysis 

method has been presented in detail . This method has also been 

implemented to show the real usefulness of such a tool. A complete 

Petri net analysis package however would do much more. It would 

implement different analysis techniques, work on more classes of Petri 

nets and include a powerful graphies based net editor. Let me signal 

that there exist software packages implementing some of these features 

( 3, 4] . 

This conclusion should encourage us to deal in a structured and 

formal way with the construction of concurrent programs rather than 

reasoning informally or trying to debug the prograrns by testing. 
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APPENDIX A: MODELING LANGUAGE 

This appendix is a description of the modeling language used to 

represent a Petri net. 

A Petri net model consists of declarations of transitions. Each 

transition is built up from a transition identifier (e.g. tl), 

separated from an expression by an equal sign. 

An expression descril:>es the effect of the transition on the token load 

of the places. It consists of the enumeration of all places 

intervening in the transition. If a place belongs to the input places 

of a transition, it is prefixed by the minus sign. The place 

identifier can also be prefixed by an integer value representing the 

label of the arc connecting the place and the transition, i.e. the 

number of tokens to rèrnove or to put on the place. 

A place identifier is cornposed of the letter "p" followed by the 

number of the place. 

The complete syntax description follows. It is represented in Backus­

Naur Fonn. 
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<petri-net> : : = <transition> 

<transition> <petri-net> 

<transition> : := <transid> <equal> {<sign>} <expr> 

<expr> ::= <factor> 

<factor> <Sign> <expr> 

<factor> : := <placeid> 

<unsigned> <placeid> 

<transid> : := t <unsigned> 

<placeid> : := p <unsigned> 

<equal> : := = 

<Sign> : : = + 1 -

<unsigned> : := <digit> 

<digit> <unsigned> 

<digit> : := o . . 9 

A . 2 

-- --- --- - -
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APPENDIX B: ALGORITHMS 

This appendix contains the listing of two algorithms implemented 

in PASCAL. The first one is the reachability tree constructing 

algorithm. The second one implements the breath-first search. The test 

of the criterion for the search is embedded in a function passed as an 

argument to the search procedure. The listing of the entire program 

can be obtained from the author . 
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1153 
1154 
1155 
11 56 
1157 
1158 
1159 
1160 
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1162 
1163 
1164 
1165 
1166 
1167 
1168 
1169 
1170 
11 71 
11 7 2 
1173 
1174 
1 1 7 S 
1176 
1 1 7 7 
1178 
1179 
11-3 0 
1131 
1182 
lld3 
1184 
1135 
1186 
1187 
1188 
1 1 d 9 
1190 
il91 
11 ·12 
1193 
119 4 
119 5 
1196 
1197 
11 18 
1199 
1200 
1201 
1202 
12 0 3 
1204 
1205 
1206 
1207 

5ource Listing 

procedura reach_tree; 

17-May-1985 14:12:31 
17-May-1985 14:11:18 

VAX-11 Pascal 
5YSSSYSD=VICE: 

(,:: function 
( ;;: ~iven a ?N defined by I ,O,n o ftr a n s , nofpl ac e s a n d a 

root noda, build the reachability tree 
( ::: 
(;;: input 
( ::: 
C :::, output 
( ::: 

( ::: invoke?s 
( ,:,. 

breath f1.rst 
find_mari<ing 
update bds vector ( :;: 

( :;.: 
( :;, 
( :;: 
( :;: 

( :::: 

var 

begin 

addhead -
remove 
enabled 
1nitlist 
print_dot 

x,y,newnode,son 
l 

nodeptr; 
integer; 

(* work nodes 
(* index for number of transitions 
(* boolean for result of search 
(* indicator for terminal nodes 
(* indicator of emptyness for the 
(* list of frontier nodes 

fnd, 
te rm, 
emptind bôolean; 

li s t ; 

marking; 

fr on tiers 

,.urkmark 

initlist Cfrontiars); 
nofnodes := 1; 
x := root; 
update_bds_vector(xA.mark); 
r-epe:1t 

xmark := xA.mark; 

(* list of frontier nodes 

(* work variable for markings 

braath_first (no_frontier,y,fnd); 
if fn d 

then if (yA.nodetypa = terminal) 
then xA.nodetype := terminal 
else xA.nodetype := duplicate 

else be ·~in 
term : = tr ·ue; 
for i := 1 to noftrans do 

if anabled (xA.mark,i) 
then b•?gin 

find_marking(xA.mark,i,x,wrkmark); 
update bds vector(wrkmark); 
nofnodës := nofnodes + 1: 
print dot (nofnodes); 
new(nëwnode); 
with newnodeA do 
begin 

mark != wrkmark; 
trans := i, 
father := x: 

*) 
,:: ) 
,n 
:',<) 
;',:) 

*) 
::: ) 
:;: ) 
*) 
*) 
~:) 
;':) 

*) 
;',:) 
::: ) 

:',<) 
:;:) 
:::) 
:;: ) 
:;<) 
;'t) 
;',:) 

:;, ) 

~ 
"Cl 
M z 
0 
H 

>< 



ANALPN 
01 

1208 
1209 
1210 
12 11 
1212 
1213 
1214 
1215 
1216 
12 1 7 
1218 
1219 
1220 
1221 
1222 
1223 
1224 
1225 
1226 
12 2 7 
1228 
1229 
1230 
12 31 

and; 

Source Listing 
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end; 

brother := nil; 
son := nil; 
nodetype != front ie r; 

end; 
if term C* first son of x *) 

then begin 
term := false; 
xA.son := newnoda; 

end 
xA.nodetype := interior: 

else sonA.brother := newnode; 
son != newnode; 
addtail Cfrontiers,newnode); 

end; 
if term <* no transition enabled C) 

then begin 
xA.nodetype := terminal; 
addtail (terminals,x); 

end; 

remove (frontiers,x,emptind); 
until emptind: ,, 

( ::, r a a c h _ t r e e t,, ) 

VAX-11 Pascal 
SYS$SYSOEVICt . 

~ 
'O 
l'tl z 
0 
H 
>< 

t:ll 



ANALPN 
01 

l O O 7 
1008 
1009 
1010 
10 11 
1012 
1013 
1014 
1015 
1016 
1017 
1018 
1019 
1020 
1021 
1022 
1023 
1024 
1025 
1026 
1027 
102 8 
1029 
1030 
10 31 
1032 
1033 
1034 
1035 
1036 
1037 
1038 
1039 
1040 
1041 
1042 
1043 
1044 
10 4 5 
1046 
1047 
104 8 
1049 
1050 
1051 
1052 
1053 
1054 
1 0 5 5 
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VAX-11 P3scal 
SYSSSYSD::VICE 

p roc2dure br eath_first (function criterion (tocheck : nodeptr) : boolean; 
var resnoda : nodeptr; 
var f ou n d : boo lean) ; 

(::, funct1on 
(;',: 
(* 
('::: 
( ::: 
( * 
(;',: input 
( * 
( ::, 
(* output : 
( ;': 
(::: 
( ;:: 
( ,:: 
( ,:: 
( ,:, invoK:as 
( ::, 
( * 

va r 

be g in 

..ur k lst 
isempty 

breath-first search on the reachability tree. 
returns found=true if node found for which criterion is 
sati5fied (resnode points to this node). 
return5 found=talse if no node in the reachability tree 
satisfies the criterion 

criterion boolean functions which evaluates a critarion 
for the node given as argument. 

resnode if found=true pointer ta the element of the 
re~chability tree for which criterion is satisfied 

foun d true if node found which satisfies the criterion 
false otherwise 

criterion 
addtail 
remove 

li s t; 
boolean; 

<* list of nodes to be con5idered later on 
(:;: used as emptyness indicator for wrklst 

found != fal~e: 
if root <> nil 

e nd; 

th ·en begin 

:a nd; 

initlist (wrklst); 
r~sncde := root; 
rep e at 

repeat 
if criterion (resnode) 

then f~und := true 
else begin 

if (resnodeA.son <> nil) 
then addtail (wrklst,resnodeA.son); 

resnode := resnodeA.brother; 
end; 

until found or (resnoda = nil); 
if (not found) 

than remove (wrklst,resnode,isempty); 
until found or isempty; 

( * bre a th first * ) 
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APPENDIX C: ANALYSIS RESULTS 

This appendix contains the analysis results of the cases studied 

in Chapter 5. 

1. The mutual exclusion problem 

The model file (MUTEX.MOD} 

tl=-p4-p3+pl 
t2=-p5-p3+p2 
t3=-ol+p3+p4 
t4=-pZ•p3+p.5 

The analysis results for this Petri net are listed below: 

5 

co,0,1,1,1> 
i tl : (l,J, 1] ,:,1) 
~ tL ( 0 ,t, 0 , 1 , ù) 

Cl,0,0,0,l) 
:::1 t3 CO, ,J ,:,~, 1) 

co,1,0,1,c) 
a t4 : CO,~,l,1,1) 

All plac~s cf th? Petri net a r 2 ~oun::Jej. 
nere are t ~e b~unds 
C 1 , 1 , 1 , l , l ) 

Th~ Petri net cannot run into a de3aiock 
The trae d~e;n't contain any t 2 r~ in2t no:::le 

Tne product inv~ri~nt : 
( 1 , l , 0 , 0 , 0 ) 
15 v~r1f1 ed fDr ~ll markin;s 
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~=l C~4 ) IL I TY TRE: 

NL.mber cf ne ::i e" 3 

co,0,1,1,0) 
i tl : (1, :J , ,J,0, C) 

(1,0,0,0,0) 
d t3 : co,0,1,1,0) 

All plac e s o f the Petr i net ar~ bounded. 

rlere are tne oounds 
( 1 , 0 , 1 , l , 0 ) 

The Petri net ca nnot run inta a -d2 a dlock 
The tr e e doe s n't con t a i n any t erminai nod 2 

The model file of the incorrect 

(MUTEXERR.MOD) and the analsis results 

tl=-p4-p 3 + ;:i l 
t2=-p5-p3+;) 2 
t3-=-pl+p3-+ p 4-
t4=-p2+pJ+ p 5 
t5=-p2+pS 

mutual 

~EC CHA3ILITY T~E: 

;~ u ;;, D •? r o f n o ;:; 2 s 0 

( 0 , 0 , l , l , l ) 
i t l : C 1 , J , 0 , 0 , l ) 
i :2 : CJ,1,0,1, 0 ) 

(1,0,0,G,1) 
d t3 : ( O, J ,1,1,1) 

C O , l , 0 , 1 , 0 ) 
d t 4 : ( ù , 0 , 1 , 1 , 1 ) 
t t 5 : ( 0 , 0 , 0 , l , 1 ) 

Al l pl a c as c i th ? ?e tr i n e t ar a ~oun d ed. 

~ere are t he bo un os 
( 1 , 1 , 1 , 1 , l ) 
The ?e tr~ n et c~ n run in t o a a ? adlo c k 

C. 2 

exclusion solution 

-~2 -::lSOn t~~ r e are t e r ~i nal nc d ei Ln th e r2 a ch 3bilit y tr ee 
i. e . dead m~ r ~in g s 
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LIST OF TE~ M:NQL NGS ES 

t 5 : C O , 0 , 0 , l , l ) 

General mutual exclusion for 4 processes 

~=~C1~SILIT Y ;~~= 
N u .-n D e r o f n o ,:j •~ s s 
( l , 0 , 1 , 0 , 1 , 0 , l , 0 , l ) 
i tl : c o , 1 , 0 ,0,1, ,J ,l,O,l.) 
i t3 : co, a ,1,1,o, a ,1, 0 , 1) 
.i tS : CJ, .J,1,0,1,1,0,J,1) 
.i t7 : CO,J,1,C,1, J ,1,1,0) 

co,1,o,o,1, O,1, O,1) 
d t2 : (1, ü ,1, 0 ,1, J ,::., J , 1 '\ 

co.O,1,1,O,O,1,0,1) 
d t4 : Cl, J ,l,J,l,'J ,1, 0 ,1) 

co,0,1,O,1,1,O,O,1) 
d t6 : (1, 0 ,1,0,1, 0 , 1 , 0 , 1) 

co,0,1,0,1,c,1,1 , o ) 
Cl t d : C l , J , 1 , i} , l , ,) ~ l· , .J , l ) 

~11 p:ac es of th~ ~etrl net 2 r 2 bo~nde d . 

~ere a re t~ e bcu nds 
( 1 , 1 , l , l , 1 , l , 1 , l , l ) 
Tn e Petri net cannot r ~n int~ ~ d230~o=k 
The tr 2e doesn't cont3~n any t ~ r ~ in a l ~o je 
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2. The Dining Philosophers 

The incorrect solut~on looks as follows (PHILINC.MOD): 

tl=-pl-p::,+pl: 
t2=-p2-p7+pl2 
t3=-o3-pa+pl3 
t4-=-p4-p ,+pl.::. 
tS=-p5-p-10+p!.5 
t6=-;:i5-pll+pl6 
t7=-pl-pl2+pl7 
t8=-p2-pl3+p:.:1 
t '1 =-03-pl4+p l '1 
t10=-p-:..-p15+;J2,J 
tll=-pl6+p6+p5+pl 
t12=-pl7+p7+~l+p2 
t13=-pl8+p 8 +~2+p3 
tl4=-p19+p ~+;3+p4 
tl5=-p20+pl0+p~+~5 

~ll placa s of tha Petri net are 0o~ndej. 

~e re are the bou1d3 
C 1 , l , 1 , l , l , l , l , : , l , l , l , l , l , l , l , 1 , l , l , 1 , 1 ) 
The Petri net :2n r~n in~o 2 d22~lock 

C.4 

~eason tner e 2r~ t~rminal nodes in the rea chabili ty trae 
i.e. deao ~~rki~gs 

~rsT OF T~~MINJL NJD~S 

t 5 : C J , J , S , 0 , Q , 0 , J , Q , J , Q , 1 , l , l , l , l , 0 , Q , J , J , J ) 



C C ' 0 ' 1 ' G ' G ' 1 ' 1 ' C ' : ' 1 ' 1 ' 
C 1 ' 0 ' C ' C ' C ' C ' . ' ! ' ! ' 7 ' C ' 

C T ' Q ' T ' 0 ' 0 1 C ' l 

' " • r·•·, (1Tl p 
1 1• f 1 1) p : C 

0 ' 1 ' T ' 8 ' 0 • C ' 0 ' T ) 

( C ' O ' C ' ~ ' C ' 1 ' : ' ! ' C• ' : ' 1 ' 7 ' 1' C· ' O ) C'Tl P 
C 1 ' r ' C' ' 0 ' C ' 0 ' ! ' l ' 1 ' T ' C ' C ' l ' ! ' 1 ) L l P 

C T ' 0 ' 0 1 ! ' 0 ' 0 ' 1 ' 1 ' 0 ' T ' 0 ' 0 ' 1 ' 0 ' 0 ) 

( r ' C ' C ' ! ' 0 ' ! ' 1 ' : ' C ' 1 ' T ' 1 ' 7 ' G ' : ) 6 l D 
( J ' 1 ' 0 ' 0 ' C ' 1 ' 0 ' 1 ' 1 ' l ' ! ' r ' 0 1· 1 ' !) L l P 

( 0 ' 1 ' 0 ' I ' 0 ' 1 ' J ' T ' 0 ' 1 ' 1 ' 0 ' 0 ' 0 ' 0 ) 

( ~- ' C ' C ' C· ' T ' T ' : ' 1 ' 1 1 C ' C; ' 1 ' ! ' 1 ' (1 
) f:. l P 

( C' 1 ' C ' C' G' T' 0 ' l ': ' l '1 ' C ' C' ! '7) 91 c 
C O ' 1 ' 0 ' 0 ' l ' 1 ' 0 ' l ' l ' 0 ' 0 ' 0 ' 0 ' T ' 0 ) 

(C' O' C ' G' l 'l'l' l ' l ' O' "'T 'l' 1 1 8) g1 P 
( C ' O ' T ' C ' C1 'T'l' C ' T 'T'T' T ' O ' C 'T) 9l P 

( 0 ' 0 ' I 1 0 ' T ' T ' 1 ' Q ' 1 ' 0 ' 0 ' 1 ' 0 ' 0 ' 0 ) 

( 2 ' 0 ' 0 ' G ' ~ ' 1 1 1 ' T ' 1 1 ! ' 1 ' 1 1 t ' 7 ' 1 ) 0 T l P 
( 1 • G 1 1 • C • C • 0 ' 1 ' C • 1 1 1 ' 0 ' C ' 0 ' 0 ' 1 ) ( l D 
( 1 ' 0 ' 0 'l' C. ' O'l'T' O'T' G ' O 'î' O ' O ) Zl. P 

C 1 ' 0 ' 0 ' 0 ' 0 ' 0 ' T ' 1 ' 1 ' 1 ' 0 ' 0 ' 1 ' T ' T ) 

C O ' 0 ' C ' C ' C ' 1 ' T ' T ' T ' 1 ' T ' 1 ' 1 ' 1 ' 1 ) 6 l. P 
C C' ' 1 ' C ' 1 ' 0 ' 1 ' 0 ' T ' C ' ! ' 1 ' 0 ' 0 ' C ' C ) Z l P 
(O'T'C.'O'~'T'0'1'1' C, ' O ' C ' C1 'l' O) 11- P 

C O ' l ' 0 ' 0 ' 0 1 T ' 0 ' 1 ' 1 ' T ' 1 ' 0 ' 0 1 1 ' 1 ) 

( 0 ' C ' 0 ' 0 ' C ' ! ' l ' T ' l ' T ' T ' 1 ' 1 1 1 ' 1 ) P l P 
( T ' C ' 1 ' C, ' G ' C ' ! ' 0 ' : ' 1 ' C ' r ' 0 ' C ' T ) ç l l 
CO 'C' i ' C ' 1 'T'T' O'T' O' O ' T ' C ' C ' O) Tl P 

C O ' 0 ' T ' 0 ' 0 ' 1 ' 1 ' 0 ' 1 ' 1 ' T ' 1 ' G ' 0 ' t ) 

C C ' C ' C ' C ' G ' , ' 1 • 1 ' 1 ' 1 ' ! ' ! ' 1 ' : ' 1 ) : L ~ c-
C 1 ' C ' O' i' C ' C ' "'.'': ' ::," T ' C ' C ' 'I':: •' C' ) fl '! 
cc, ' r ' c- ' 1 ' 0 ' 1 '0 1 1• c• ' i '1' ::, ' ::- • :: 1 c) · : "71-, 

(O'O'O'î'O'l'T'T'O'T't'T'T'O'O) 

( C ' C ' 0 'C ' 0 ' T' T' T ' l ' 1 '1 't 't' ! ' 1) 91 P 
( C 'T' G'O'i'T' O'T'l' C ' C ' O ' C ' T ' C ) : '"Jl. T 
(0' 0 ' T 'C'1'1'1'C:'l' O' O' T 1 0 ' C· 'O) (l l 

CO'O'O'O'T'l'T't't'O'O't't'T'O) 

(T'C'C' C, ' C, '0' '7 '1'I'T' O' C 'T'T' T) : Çl 1'. 

C C ' 1 ' c. ' 0 ' C ' 1 ' 0 ' i ' 1 ' 1 ' 1 ' C ' 0 ' t ' : ) +:> l. T 
( C ' C '1 1 C ' C• 'T' 1 ' C ' T ' T ' t '1' C ' 0 '1) : El. 1 
CC'O' O'T'C'I'i'1' 0 'l' T 'T'T' C 'O) : Zl- T 
(C'· 'C'O'C'T'T'i'T'T' C'O't' 1 ' 1 '0) : Tl 't 

(O'O'0'O'O 1 1'T'T'l'T'T'T'T't'T) 

H 

.. -·-- --- ---
Ç C + 7 d + Q T d+ Ç T d -= O Tl. 

-, à + 'ë d + E, d + '7 T d-: 6 l. 
za +;:ct+ gc +rt~ -=ei 
zc T1d+Ld + ? td-=L• 
td+Sd+9e4+ Ttd-=9l 

StC + CTd-Sd-,d-:Çl. 
'"JTd + f.C-";d-(d-:";l 
fid • Sd -fd-zd-:(l. 
,1d+LC-ëd-Té-=Zl­
T:d+9d-td-Çd-=tl 

: s:nnsa.2 

s1sAT~U~ pu~ (aow·~o::YIIHd) s.2a4doso114d s i:14l .201 uo1ln10s l~a.2.20~ 

XION3'ddV 
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All places of the ?etr1 n~t ar~ bounded. 

Here are the bounds 
( l , l , l , l , l , l , l , 1 , l , l , 1 , 1 , l , 1 , 1 ) 
Tne ?etri net ca~not run into a de3diock 
The tree doesn't conta~n any t3rminsl ~oae 

C.6 

A starvation free solution (PHILSTAR.MOD) that is shown to be 

deadlock_-tree: 

tl=-pl-p21+pll 
t.2.=-pZ-pZ2+pl2 
t3=-p3-p23-+pl3 
t4=-p4-p24+pl4 
t5=-p:5-p2:5+pl5 
t6=-p5-pll+pl6 
t7=-pl-pl,>·pl 7 
t&=-p2-pl3+pl ,'3 
t ·:; =- p 3 - pl 4 +pl '1 
tl0=-p~-pl:5+;)2'J 
tll=-pl6•pô-+p5+pl+~2i 
tl2=-p~7•p7+~l+p2•;:,2 6 
tl3=-plB+p 3 +~2•p3+p2~ 
tl~=-olS+p 3+~3+p~•~26 
tl5=-p20+pl0•p~+~S•p2c 
tl6=-p 26 -p6-t- ·J 21 
tl7=-p2.6-p7+-.J2 2 
tlè=-p26-pj+,JL 3 
tl • =-p26-p;-+;:,2.:. 
t2J=-p26-olG+o2.5 

Th2 ~etr~ net cannot r~n int~ a de3clock 
Tne tr2e aoesn 't conta:~ any t2r~inal ncde 
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1· The sender/receiver 

The model file (SEN~REC.MOO): 

tl=-pl+p2 
t2=-;)L-p5+pl+p.:. 
t3=-o3-pl2+p .2 
t4=-p2+p3+pé+pl0 

. t5=-;:i7+p8 
t6=-p4-p3+p5~p7 
t7=-p9-pl3+p3+Sp5 
td=-5p5-p8-pS+p9+pll 
t~=-p10-pll+pl2+~13 

Verification of property i 

Tne sum invariant 
c1,1,1,o,o,o,o,o,o,o,o,o,o) 
with sum , 
is v~rif1e8 ior ~li m2rkin;s 

The sum invariant 
co,o,o,c,c,0,1,1,1,o,o,o,c) 
~ith sum ; l 
is verifiad for all mark1ngs 

Verification of property 2 

All ~lac?s oi th~ ?etri net a r e ~ound e d. 

He re are tre bJund5 
( 1 , l , l , 5 , 5 , l , l , 1 , l , l , 1 , l , 1 ) 

C. 7 
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Verification of property 3 

Tne sum invarlznt 
co,0,-1,J,J,O,O,J, O,l,0,1,o) 
~ith sum ; 0 
is verlf1e d for a ll mark1niS 

The sum invariant 
( G • C , 0 , 0 , 0 , 0 , 0 , 0 , - i , •.) , l , .) , 1 ) 
~itn sum : a 
1s v~r~tl eci for 3 li m2rktn;s 

Verification of property 4 

The sum inv3ric:1~t 
co,o,o,o,c,1,o,c,0,-1,1,0,0> 
~ith sum 0 
is ver1f1e~ fo r all ~arkings 

Verification of property 5 

Tna mark.in 
co,0,0,1,s 
1s not cov 

1,O,O,0,0,o,o,o) 
rad by a ny otner mark1ng 

Verification of property 7 

Tne ~etri net c~nnct r un 1nto a de3diock 
Tn2 tree CO E in•~ conta1n a n y t~r~inal ~o d2 

C.8 




