
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

The modeling and analysis of concurrent processes using Petri nets

Horst, Wilmes

Award date:
1985

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/the-modeling-and-analysis-of-concurrent-processes-using-petri-nets(8c8642bb-c9a5-49ef-acec-6f7a7fc0742c).html

1

l

1
1
1

INSTITUT D'INFORMATIQUE

FNDP NAMUR

THE MODELING AND ANALYSIS
OF CONCURRENT PROCESSES

USING PETRI NETS

ANNEE ACADEMIQUE

1984/85

MEMOIRE PRESENTE PAR

HORST WILMES
EN VUE DE L'OBTENTION

OU DIPLOME DE
LICENCIE ET MAITRE

EN INFORMATIQUE

•

Acknowledgments

First of all I would like t o thank Mr. Ramaekers for having

accepted to conduct this thesis.

I am grateful to Mr . Engelhardt and Mr . Ries whose cooperation

lead me to the domain of this thesis .

I would also like to thank all the other people involved in the

elaboration of this thesis.
'

TABLE Of' CONTENTS

o. Introduction

l. Petri net concepts

1.1. Petri net structure and graph

1.2. Markings

1.3. Piring rules

1.4. Marking .class and reachability set

2 . Modeling of concurrent processes

2.1 . Classical synchronization problems

2.1.l . Mutual exclusion

2 . 1.2. The Dining Philosophers Problern.

2.1.3. The Producer/Consumer problem

2.1.4. The Readers/Writers Problem

2 . 2. Synchronization Primitives

2. 2 .l. Parbegin and Parend

2.2 . 2 . Fork and Join

2 . 2 . 3 . The sernaphore

2. 2. 4. Message passing

2.2.5 . The ADA "Rendezvous"

3. Analysis of Petri nets

3.1. Analysis Problems

3 . 1.l. Safeness

3.1.2 . Boundedness

3.1.3. conservation and Invariants

3.1 . 4 . Liveness

3.1 .5 . The reachability problem

- i -

1
1

TABLE OP CONTENTS

3 . 2. Analysis technique (Reachability tree)

3.3. Resolution power of the reachability tree

3.3.1. Safeness and Boundedness

3.3.2. Conservation and Invariants

3.3.3. Coverability

3.3.4. Limitations of the reachability tree

3 . 4. Other analysis techniques

3.4.1. Linear algebra

3.4.2. Reductions of nets

3.4.3. Petri net classes

4. A Petri net analysis program

4.1. Overall description of the tool

4.2. Functional analysis

4 . 2.1. Input of a new model

4.2.2. Construction of the reachability tree

4.2.3. Modification of the initial marking

4 . 2.4. Direction of output

4 . 2.5. Printing the reachability tree

4.2 . 6. Stop the session

4.2.7 . Query results

4 . 2 . 8 . Boundedness

4.2.9. Oeadlock

4.2.10. Coverability

4. 2. ll. Reachability

4.2.12. Invariance on the sum

4.2.13. Invariance on the product

4.3. Implernentation details

- ii

,·

TABLE OP CONTENTS

4.3 .1. Data structures

4.3.1 . 1. The Petri net

4.3.l.2. The reachability tree

4.3 . 2 . Algorithms

4 . 3.2.l. The reachability tree construction

4 . 3.2.2. Breath-first search

5. Applications

5 . 1. The mutual exclusion problem

5.2 . The Dining Philosophers

5 . 3. The Sender/Receiver model

6 . Conclusions

Appendix A Modeling language

Appendix B Algorithms

. Appendix C Analysis Results

_ . iii

lNTRODUCTlON O.l

INTRODUCTION

Today·s co~puter systems are structured as a collection of sub­

systems called processes, alrnost always running in parallel. These

processes can run on a single CPU and share it dynamicaliy, or be

distributed over many processors. Recent advances in hardware

technology have made possible the construction of distributed systems

and multiprocessors. The parallel execution of processes leads to

more powerful and reliable systems. But in order to achieve this goal,

the processes must share resources and cooperate. This is done by

synchronization and communication between processes .

The advantages of parallelism have as a counterpart the

complexity of constructing and debugging of such systems . The non­

sequential programming makes it more difficult to find out the correct

execution of a prograrn consisting of several processes. This is due to

the cornbinatorial explosion of the number of states of the entire

system in function of the nurnber of states of the components on the

one hand, and the difficulty or inability of observing the states of

the whole system on the other hand. This can sometirnes be aggravated

by the system being non-deterministic.

It is then indispensable to be able to verify and validate the

system in construction. This cannot be done by informal reasoning or

testing because these methods are net reliable enough. That is why we

need a formal analysis method permitting to rnodel the system and to

state expected properties.

Petri nets are abstract formal rnodels for the analysis of

concurrent systems. Their inherent parallelism rnakes them suitable for

the representation of systems of concurrent activities . Petri nets

have such analytical properties that the behavior of the rnodeled

system can be analyzed in a systematic manner with respect to

important properties. The essential advantages over other verification

rnethods (e . g. assertions) is the fact that most of the analytical

INTRODUCTION 0.2

methods are mechanizable. Petri nets deal essentially with the

control part of computation, which is a fundamental aspect of

synchronizing software . If synchronization mechanisms can be

formulated by means of Petri nets, the analysis mechanisms of Petri

nets can be applied to these synchronization mechanisms.

There are two types of Petri net theory. Pure Petri net theory is

the study of Petri nets to develop analytical tools used to verify

properties. The second direction is the applied Petri net theory .

Applied Petri net theory is the application of the results of pure

Petri net theory to systems modeled by Petri nets. The direction

followed in this dissertation is rather the second one .

The first chapter introduces the definitions used throughout the

following chapters. Chapter two shows how to model systems of

concurrent activities and gives an overview of some synchronization

and cormnunication mechanisms moqeled by Petri nets . The different

properties to verify and a method for doing the analysis are

introduced in chapter three. Chapter four describes a software tool

implementing the analysis method proposed in the preceding chapter and

discusses some implementation details. Chapter five concludes this

dissertation with the application of the automatic analysis technique

to some synchronization problems .

PETRI NET CONCEPTS l.l

CHAPTER 1: PETRI NET CONCEPTS

In this chapter the Petri net concepts used throughout this

dissertation are defined. First of all, the structure of a Petri net

and the corresponding graph are described, then the concept of marking

is defined, followed by an enumeration of the different firing rules.

At the end of this _chapter, the concepts of marking class and

reachability set are introduced.

1. Petri net structure and graph

A Petri net is a four-tuple PN = (P,T,I,O), with

l. a finite non-empty set of places P = {p, .. ,p },
l n

2. a finite non-empty set of transitions T = {t , .. ,t },
l m

3. a forward incidence function or input function : I:PxT -> N,

4. a backward incidence function or output function : O:PxT -> N.

The sets P and Tare disjoint (P n T = ~). In the figures, the places

are represented by circles and the transitions by squares or bars.

Two matrices I and o are associated respectively with the input

and output functions. Input places of a transition tare such that

I(t,p) > O and an arc labeled by the value of I(t, p) is drawn from

place p to transition t (ifl(t,p) = l the label is not required) .

output places are such that 0(t,p) > 0, and are connected to

transition t by an arc outgoing frorn this transition and eventually

labeled by the value O(t,p).

Frorn the definition of a Petri net it follows that a Petri net

graph is a bipartite graph, i.e. only nodes of different types (Tor

P) can be linked by arrows.

In Figure l.l the places "processor free" and "job awaiting

processing" contain the conditions for the succeeding transition

"start processing" (these places are input places to the transition).

PETRI NET CONCEPTS l. 2

This transition effects the transfer from the input places to the "job

running; processor ip use" place (output place of the transition),

which is now the condition for the "processing completed" transition .

This last transition has two output places "job completed" and

"processor free".

pl Processor free

p2 Job awaiting processing

p3 Job running; Processor not free

p4 Job completed

tl Start processing

t2 Processing completed

Figure 1.1 A simple computer system

2. Markings

Astate, called "marking" , of a Petri net is a map M:P -> N
n

with n = IPI . A marking may be indicated on the graph by indicating,

for every place P, a number M(p) in the corresponding circle or, where

M(p) is sufficiently small , putting M(p) dots or tokens in the circle

corresponding top. A place pis called marked if M(p) > l.

In Figure 1.1 for instance, we can indicate that the processor

is free and that a job awaiting processing is present by putting one

token on each of the places representing the se condi.tions (pl. and p2) .

As the marking represents the state of the system and this state

PETRI NET CONCEPTS 1.3

can change, the marking of the Petri net must change too. The initial

state of the system is represented by an initial marking. The

transition from one state to another is defined by the firing rules.

3. Firing rules

The number and the position of tokens in the Petri net changes by

the firing of transitions. In order to fire, a transition must be

enabled or firable. A transition t is enabled by a marking M if and

only if

(Vp€P) M(p) ~ I(t, p) .

Notation M[b

If an enabled transition fires, it changes the marking by removing

I(t,p) tokens if pis an input place to t and adding O(t,p) tokens if

pis an output place to t. The new marking M" is such that :

(V p € P) M"(p) = M(p) - I(t,p) + O(t,p)

We can say that transition t is enabled by marking M and that its

firing leads to the marking M" , the follower marking of M, and note

this :

M[t>M "

During the execution of a Petri net, (i.e. the firing of

transitions) always only one transition can fire at a time even if

more transitions are enabled.

Figure 1.2 (a) shows a Petri net with an intial marking. In this

situation the transition tl is enabled since the only input place of

this transition is pl and pl is marked . Figure l. 2 (b) shows the

Petri net after the firing of the transition tl. The only enabled

transition is still tl because a firing of t2 requires two tokens to

reside in place p3. This will be the case after having fired tl a

second time . The resulting marking is shown in Figure 1.2 (c). Note

t hat in that situat i on, the two transitions are enabled .

PETRI NET CONCEPTS

p3

(a) (b) (C)

Figure 1.2: The firing of transitions

4. Marking class and reachability set ·

A rnarking Mk is reachable from a marking M if

3 (t , .. , t) € T and
l k

M(t >M , M [t >H , .. ,
l l l 2 2 .

3(M , .. ,M)€N
l k-1

M [t >H
k-1 k k

l. 4

n
such that

i.e. there exists a firing seguence leading from a marking M to a

marking M .
k

Notation M(->Mk

PETRI NET CONCEPTS 1. 5

The set of all markings reachable from a marking M is called the

marking class and noted

[M] = {M} U {M .
l.

M[->M . }
l.

The marking class of the initial marking M of a ·Petri net is called
0

the reachability set of the Petri net and represents the state space

of the system modeled by the Petri net.

Figure 1.3 (a) (c) illustrates the process of firing of

transitions of the Petri net presented in Figure l.l and how to obtain

the marking class or the reachability set.

= (l,l,O,O). Transition tl is enabled and The initial marking is M
0

fires to give the marking M
l

and fires giving the marking

= (0,0,1,0). Now transition tz is firable

Petri net halts at this

enabled.

(a)

M = (l,0,0,l).
2

marking because

(C)

The execution of the

no other transition is

(b)

Figure 1 .. 3 : Execution of the simple computer system

Thus, we have

M [tl>H (M is a follower marking of M),
O l l 0

M [->M (M is reachable from M),
0 2 2 0

[M] = {M ,M ,M} is the reachability set and describes all the
0 0 l 2

possible states in which the system can be with respect to the

initial state.

MODELING OF CONCURRENT PROCESSES

CHAPTER 2: MODELING OP CONCURRENT PROCESSES

In this chapter, it will be shown how to model

concurrent activities with Petri nets. Pirst some

synchronization problems will be modeled with Petri nets,

2.1

systems of

classical

then some

basic primitives for the expression of concurrency are described.

l. Classical synchronization problems

1.1. Mutual exclusion

The problem of mutual exclusion is defined by two or more

processes executing concurrently but each process having a "critical

section" which must be executed without any other process executing

its own critical section at the same time. Here is how Dijkstra [7)

stated the problem "In considering two sequential processes,

"process l" and "process 2", they can for our purposes be regarded as

cyclic. In each cycle a so-called "critical section" occurs, critical

in the sense that at any moment at most one of the two processes is

allowed to be engaged in its critical section. In order to effectuate

this mutual exclusion, the two processes have access to a number of

common variables. We postulate that inspecting the present value of

such a common variable and assigning a new value to such a common

variable are to be regarded as indivisible, non-interfering actions."

A Petri net model representing this problem and a solution to it

is given in Figure 2.1.

MODELING OF CONCURRENT PROCESSES 2.2

process l process 2

5

Figure 2.1: The mutual exclusion problem

This model corresponds to the description given by Dijkstra. The two

processes are cyclic, each process has a critical section: place l for

process land place 2 for process 2. Place 3 represents a common

variable each process has access to. The other places correspond to

different values of the instruction pointers of the two processes.

The restriction that the reading of a common variable and assigning a

new value are indivisible and non-interfering holds with respect to

the definition of the firing rules for Petri nets.

The solution given in this model corresponds to the solution

given by Dijkstra using a binary semaphore variable. In chapter 5 it

will be shown that the model gives a correct solution to the problem,

i.e. it will be shown that :

l. at any moment at most one of the processes is engaged in its

critical section;

2 . the decision which of the processes is the first to enter its

critical section cannot be postponed to eternity;

3. stopping a process in its remainder of cycle has no effect upon

the others.

Point two will not be proved since it is an assurnption on how a Petri

net fires as long as there are enabled transitions the execution

i.e. the firing of transitions will not halt.

This problern of mutual exclusion has been generalised to N cyclic

processes, each having a critical section. A solution to this problem · !

MODELING OF CONCURRENT PROCESSES

with N=4 is given in Figure 2.2.

Figure 2.2: The general mutual exclusion problem

(for 4 processes)

1.2. The Dining Philosophers Problem.

2.3

This problem was originally stated and solved by Dijkstra [B] . It

can be stated as follows : Five philosophers (processes) are at a

dinner at a round table; each one alternately eats and thinks. In the

middle of the table is a bowl of rice and a chopstick is place<l

between each adjacent pair of philosophers (5 chopsticks). From time

to time, a philosopher gets hungry and tries to pickup the two

chopsticks that are closest to him i.e. philosopher i picks up both

chopsticks i and i+l (where 5+1=1). When a philosopher succeeds in

picking up the two chopsticks, he can eat without releasing them.

When he has finished, he puts them down and starts meditating again.

There is a solution to this problem (Figure 2.3) which is not

correct since deadlock can occur. This solution represents the fact

that each philosopher first takes one chopstick and only after having

acquired it takes the other one. In this solution it can happen that

all philosophers succeed in acquiring one chopstick but no one can

take t he second because all chopsticks are in the hands of

philosophers.

MODELING OF CONCURRENT PROCESSES 2.4

Figure 2.3: Philosophers problem

A deadlock is avoided in the correct solution by a philosopher

taking both chopsticks at the same time. This solution is shown in

Figure 2.4.

Figure 2.4: Philosophers a deadlock-free solution

A problem not solved in this last solution is starvation. It is

possible that two philosophers could cause starvation of the

philosopher sitting between them by alternately eating and preventing

the philosopher in the middle to take the two chopsticks needeà to

eat. A possible solution preventing starvation is presented in Figure

2.5. The philosophers take always one chopstick at a time as in the

first solution, but only 4 philosophers are admitted to pick up

MODELING OF CONCURRENT PROCESSES 2.5

chopsticks at a time to prevent a deadlock situation.

In the second solution a philosopher can starve because wanting to eat

he must wait until the two chopsticks closest to him are on the

table. But it can happen that the chopsticks are never at the same

time on the table. The third solution does prevent from starvation

because a philosopher always waits for only one chopstick and sooner

or later the chopstick will be available if the system cannot run

into a deadlock situation as in the first solution. The deadlock

prevention in this solution is realized by permitting only to a

maximum of fo"ur philosophers to pickup chopsticks.

Figure 2.5: Philosophers problem starvation free

In chapter 5 it will be shown that the first solution is not

correct and results in a deadlock situation and that the second and

the third one are both correct solutions whith respect to deadlock.

MODELING OF CONCURRENT PROCESSES 2.6

1.3. The Producer/Consumer problem

An important synchronization problem is that of the

Producer/Consumer. The producer and consumer are both cyclic

processes. In each cycle, the producer produces some information that

the consumer has to consume in one of his cycles. Each tinte the

producer produces data, he deposits it in a buffer. The consumer

removes data from the buffer to consume it. In the "unbounded buffer"

producer/consurner problem, it is assurned that the buffer is of

unlimited capacity.

The producer and consumer must

consumer does not try to consume

be sychronized, so that the

items which have not yet been

produced. A Petri net representing such a producer/consumer pair is

given in Figure 2.6.

Figure 2 . 6: Unbou_nded Producer/Consumer

An unbounded capacity of the buffer is not a realistic

assumptions. This leads us to the following problem statement. The

"bounded buffer" producer/consurner problem assumes that the buffer has

a limited capacity N. In this case, the producer can only produce if

the buffer is not full, in order to prevent an overflow of the buffer.

The behavior of the consumer can remain the same as for the unbounded

buffer problem. The corresponding Petri net is shown in Figure 2 . 7 .

HODELING OF CONCURRENT PROCESSES 2.7

Figure 2.7: Bounded Producer/Consumer

1.4. The Readers/Writers Problem

This problem was stated in [6]. There are two classes of

processes sharing a data object. The processes of the first class,

named writers, must have exclusive access to the object, but processes

of the second class, the readers, may share the object with other

readers.

;rn the bounded version of the "first" readers/writers problem, up

to n reader processes may read simultaneously and no reader should be

kept waiting unless a writer has already obtained the permission to

use the shared abject. In other words, no reader should wait for other

readers to finish simply because a writer is waiting. A Petri net

representing this situation is given in Figure 2.8.

The second readers/writers problem is the sarne as the first one

except that if a writer is ready to write, no reader may start reading

until all (up tom) waiting writers have finished writing. The Petri

net in Figure 2.9 models the second readers/writers problem.

MODELING OF CONCURRENT PROCESSES 2.8

pl (p4) process wanting to r~ad (write)

p2 < ps) process reading (writing)

p3 (p6) process finished reading (writing)

p7 synchronizing place

Figure .2.8: Readers/Writers I

6

Figure 2.9: Readers/Writers II

A process wanting to read can only start reading if there are m tokens

on place pl, i.e. there is no process wanting to write, and if there

is at least one token on place p2, i.e. there are not yet n processes

reading concurrently . A process wanting to write must first take one

token from pl to indicate to the readers that he wants to write. · Then

the writer must wait until no process is reading (n tokens on place

MODELING OF CONCURRENT PROCESSES

p2) and can start writing. Place pl

variables and the other places

pointers of processes.

2.9

and p2 represent synchronizing

are dwell-points for instruction

MODELING OF CONCURRENT PROCESSES 2.J.O

2. Synchronization Primitives

2.1. Parbegin and Parend

When modeling systems of concurrent activities, we must be able

to specify that some actions · are executed concurrently. For this

purpose, Dijkstra [7] introduced extensions to ALGOL 60 to enable

someone to describe parallelism of execution

"When a sequence of statements - separated by semicolons as usual in .
ALGOL 60 is surrounded by the special statement bracket pair

"parbegin" and "parend" this is to be interpreted as parallel

execution of the constituent statements."

The example given by Dijkstra can be modeled by means of Petri nets as

shown in Figure 2.10. The formulation of the example is the following

"begin Sl; parbegin S2;S3;S4 parend; SS end"

MODELING OF CONCURRENT PROCESSES 2 . .11

Figure 2.10: Parbegin and Parend

Other primitives with the sarne functionality have been introduced as

for exarnple the cobegin coend construct. Thus, the modeling

primitives for such constructs are a transition with multiple output

places for the parbegin and a transition with multiple input places

for the parend.

2.2 . Fork and Join

With the parbegin - parend construct, the process includïng the

pair of instructions is suspended until all constituent statements are

executed and then only resumes the main process.

The fork instruction however produces two concurrent executions,

one starting at the label specified by the fork instruction, the other

being the continuation of the process emitting the fork. The join

MOOELING OF CONCURRENT PROCESSES 2. J.2

instruction permits to recombine two concurrent computations into one.

The Petri net model for this construct (Fork-Join) is the same as

the one for parbegin - parend, but the interpretation differs: the

fork starts one new process and executes it concurrentJ.y to the

pro"cess containing the fork instruction whereas the parbegin creates

two new processes and suspends the calling process until completion of

the processes created by the parbegin.

2 . 3. The Semaphore

A semaphore is an integer variable whose value can only be

altered by the operations P and V defined as follows [7]:

the P-operation decreases the value of its argument semaphore by

J. as soon as the resulting value would be nonnegative. The

completion of the P-operation is to be regarded as an indivisible

operation.

the V-operation increases the value of its argument semaphore by

one.

A semaphore which has a maximum value of one is caJ.J.ed a binary

semaphore; if the maximum value of a semaphore is greater than one, it

is caJ.led a general semaphore. Figure 2.ll shows how a semaphore and

the operations upon it are realized ·by means of a Petri net.

Figure 2.ll: P/V

The semaphore is represented by a places and its initial value by the

corresponding number of tokens on that place. The P-operation is a

transition taking a token from the semaphore place; the V-operation

puts one token on the semaphore place.

Remark : This model is a functional representation of the semaphore

MODELING OF CONCURRENT PROCESSES 2.13

concept; i . e. the semaphore and the operations defined on it are shown

as the user of such constructs sees them; the implementation· details

are hidden.

2.4. Message passing

The function of a

communicate with each

message system is

other without the

to allow processes to

need to resort to shared

variables. An interprocess communication facility basicallly provides

two operations send and receive. A process executes send to passa

message to another process; the other process accepts information by

executing a receive.

When we study message passing systems, we are not interested in

the data flow taking place betweeen processes, but in the

synchronization, i.e. the control flow of the processes modeled by

Petri nets. The property of message passing systems influencing the

control flow is the capacity of the link between the processes. The

capacity determines the number of messages that can termporarily

reside in the link . There are three types of capacities leading to

three different models for message passing systems:

l. unbounded capacity : the link between two processes can contain

an infinite number of messages. The sender can always continue

after executing a send and he is never delayed. This situation

corresponds to the unbounded buffer problem and is represented in

Figure 2 . 12.

Send Receive

Figure 2.12: Send/Receive (unbounded capacity)

2. bounded capacity: The link is of bounded capacity n; thus at

most n messages can reside in it. If the link is not full when a

MODELING OF CONCURRENT PROCESSES 2.l4

message is sent, it is placed in the link and the sender can

continue without waiting. If the link is full, the sender is

delayed until a message is removed from the link by a receive

operation. Figure 2.l3 shows this construct.

Figure 2.13: Send/Receive (bounded capacity)

3. zero capacity The link has a capacity of zero messages, i.e. no

message can be queued. In this case, the two processes must be

synchronized for a message transfer to take place. If the send

occures first, the sender is blocked until the receive occurs;

then the transmission of the m~sssage takes place and both

processes are allowed to proceed. Conversely, if the receive

occurs first, the receiver is blocked until the send occurs. This

synchronization is also called "rendezvous". In this method, the

sender never proceeds before the receiver has effectively

received the message. This arrangement is shown in Figure 2.14.

(

S<
'
1

1,

R

• .
Figure 2 . 14: send/Receive (Zero-capacity)

MODELING OF CONCURRENT PROCESSES

The zero capacity message

prograrnming languages ?uch as

features of these languages are :

1. Dijkstra·s guarded commands

nondeterminism,

passing method is implemented in

CSP and OCCAM (11,18]. The main

for introducing and controlling

2. a parallel command, based on Dijkstra·s parbegin,

3. input and output commands are used for communication between

concurrent processes,

4. no automatic buffering : the communication is synchronized (O­

capacity message passing),

5. Input commands may appear in guards to permit a process to wait

for input from any one of a number of channels. The input is

taken forn the first channel on which output by another process is

available.

2.5. The ADA "Rendezvous" ----

The rendezvous mechanisrn in ADA is based on the "blocking send"

which is an extension of the zero-capacity message passing. In this

case, the answer permitting the resumption of the sender is not given

by the receive operation but has to be given explicitly. The

"blocking send" scheme eliminates send and receive and replaces them

by three new operations.: BlockingSend, Accept and Reply. Accept can

only receive a message sent by BlockingSend, and Reply can only answer

a message received by Accept. This makes it possible for the receiver

process to perform some action before giving the acknowledgment

(Reply) to the sender, Notice that if no action is performed before

replying, this scheme is the same as the zero-capacity message

passing.

In ADA (17,12], the message and the reply (if any) are

parameters. The send is an entry point invocation of the receiving

process, the accept is the "accept" statement and the reply

corresponds to the "end" of the accept-block (do .. end).

The rendezvous thus achieves the following three basic notions (17].

1. Synchronization : The calling task must issue an entry call, and

the called task must reach a corresponding accept statement.

entry

name

~------- --- -- . - - ·- -··--- ~

MODELING OF CONCURRENT PROCESSES

2. Exchange of information : at the realization of the rendezvous,

parameters can be received by the acceptor. After the end

statement, parameters may be passed back to the caller process.

3. Mutual exclusion : If two or more tasks call an entry point of a

task, only one call can be accepted at a tillle.

As in CSP and OCCAM, a guarded command construct is availahle

the select statement. It provides a task with a mechanism to wait for

a set of events whose order cannot be predicted in advance.

The synchronization between an entry point invocation and an accept

statement are shown in Figure 2.15.

r
1
1 accept
1
1

~
invocation accept block

1

l..

Figure 2.15: An ADA "Rendezvous"

. The select can be

producer/consumer problem

illustrated

(2, 21] .

with the bounded-buffer

The bounded buffer and the

operations allowing to insert and remove elements are irnplemented by

an ADA task as follows:

MODELING OF CONCURRENT PROCESSES

task body boundedbuffer is

buffer array(o .. 9] of item;

in,out integer;

count integer;

in := 0;

out := 0;

count := 0;

begin

loop

end;

end.

select

when count < 10 =>

accept insert (it in item)

do buffer(in mod 10] := it end;

in :=in+ l;

count := count + l;
or when count > o =>

accept remove (it : out item}

doit := buffer(out mod 10] end;

out := out - l;

count := count - l;

end select;

2.17

This task can be modeled by the Petri net in Figure 2.16.

In this Petri net, place pl represents the number of empty slots in

the buffer (for the "when count < 10"} and place p2 the number of used

slots. Transition tl corresponds to "whe!'\ count < 10 => accept insert

... ". Place p4 indicates that the task is executing the accept block

(do .. end}. Place p3 assures the mutual exclusion between more

accepts. Places p6 and pa are marked if another task has invoked one

of these entries and p7 and p9 represent the acknowledgment send to

the calling task.

MODELING OF CONCURRENT PROCESSES 2 . l8

p'1
p6 p8

t'1

"(_, .

bp9

Figure 2 . l6: A bounded-buffer task

ANALYSIS OF PETRI NETS 3.1

CHAPTER 3: ANALYSIS OP PETRI NETS

In this chapter, a method for analyzing Petri nets is described.

Pirst of • all, the different analysis problems are stated. Then a

technique for analyzing a Petri net is given and it will be shown how

the different analysis problems can be solved using this method and

which of the problems stated can be solved (as this method doesn·t

provide a solution to all problems). In a last section, some other

analysis techniques are mentioned.

1. Analysis Problems

1.1. safeness

A place in a Petri net is said to be safe if the number of tokens

in that place never exceeds one. A Petri net is safe if all its places

are safe. A Petri net in which places represent conditions must be

safe because a condition can be true (place contains 1 token) or false

(place contains o tokens). Multiple tokens on a place could lead to

misbehavior in the Petri net.

The property of safeness is also very important in the modeling

of hardware devices constructed with binary elernents. Each binary

element can represent the value zero or one.

A definition of the safeness property can be formulated as

follows: A place P . € P of a Petri net PN = (P,T,I,O) with initial
1

marking is safe if for all M. E · [M], M"(P .) ~ 1. A Petri net is safe
1

if each place in the net is save.

Figure 3.1 is a Petri net which is not safe. Places pl and p2 are

safe but not place p3 .

ANALYSIS OP PETRI NETS 3.2

1

Figure 3.1: An unsafe Petri net

1.2. Boundedness

If .the Petri net is constructed such that there can be at most k

tokens on a given place, then this place is said to be "k-bounded".

The bound k on the number of tokens can be a function of the place,

i.e. different places can have different bounds. If a place is k­

bounded, then it is also bounded for each k ' > k .

Using this property it can be observed that a Petri net is k-bounded

if all places are k-bounded. The bound for the Petri net is the

maximum value of the bounds of each place. If the exact value of k is

unknown, but is known to be some finite nurnber, then the net is just

referred to as being "bounded". safeness is a special case of

boundedness with k=l. The net in Figure 3.1 is not bounded since

place p3 can hold an infinite number of tokens.

Boundedness is a very important property especially on single

places . In the modeling of the bounded buffer problern we must verify

that the number of tokens on the place representing the number of

elements in the buffer never exceeds the bound for that place i.e. the

capacity of the buffer. For the readers-writers problem , there are

bounds imposed on several places: the number of processes reading must

not exceed a certain number, the number of processes writing must not

exceed one i. e . the place must be safe.

ANALYSIS OP PETRI NETS 3.3

1.3. Conservation and Invariants

Another property that might be important is conservation of

tokens . If tokens are used to represent resources, we would like to

show that these tokens are neither distroyed nor created since the

resources they represent are neither destroyed nor created. A Petri

net is strictly conservative if the number of tokens in the net

remains the same :

given a Petri net PN = (P,T,I,O) with the initial marking M,
0

the Petri net is strictly conservative for all M. € [MO] if

and only if

LM.(p _)= LM(p _)
l. 0 l.

P EP P . €P
i l.

The strict conservation is too restrictive since the number of input

places and the number of output places of one transition must be the

same.

we notice that net all tokens in a Petri net represent resources.

Sorne tokens represent resources, others represent a particular value

of the instruction pointer of a process, etc. So it would be

interesting to be able to distinguish between different tokens. But we

can only identify a token by its position on a place. That is why a

weighting vector can be associated to the Petri net. · The weighting

vector gives a weight for each place and that weight is multiplied

with the number of tokens on that place before summing up the number

of tokens .

A Petri net is conservative with respect to a weighting vector w =
(w, .. ,w) n=IPI if for all M' € [H]

1 n O

L w . " M' (p .) = L,,, . " M (p)
l. l. l. 0 i

i i

A strictly conservative Petri net is conservative with respect to a

weighting vector (1,1, .. ,1). All Petri nets are conservative with

respect to (O,O, .. ,0) .

Because all Petri nets are at least conservative with respect to one

weighting vector, it is said that a Petri net is conservative if it is

ANALYSIS OF PETRI NETS 3 .4

conservative with respect to a non-zero weighting vector, w > o (w >
i

0).

A Petri net conservative with respect to a weighting vector is a

Petri net satisfying an invariant, the weighting vector being called

the invariant.

Another kind of invariant can be applied to the product of the

number of tokens on two places. For a product invariant it will be

verified that the product of the token nurnbers of two different places

is zero. And this must be the case for each combination of two places

corresponding to non-zero components of the product invariant. With a

product invariant, it can be verified that two places are never marked

at the same time.

_!._1. Liveness

A transition t is potentially firable in a marking M if there

exists a marking M' in the marking class of M under which t is

enabled:

3 M' € [M] : M' [t>

A transition is called live at a marking M if it is potentially

firable in every marking in the marking class of M:
\

VM' € [M] 3 · M" € [M'] : M"[t>

Transition t is called dead at (under) M' if t cannot be activated

under any marking of the marking class of M' :

V M" € [M'] 7 (M" [t>)

The marking M- is then called t-<lead. The transition t is thus not

live if and only if there exists a marking M' € (M] such that t is

dead at .M'

A marking Mis called dead if all transitions are dead under M.

The Petri net PN is called live if and only if each transition is live

at the intitial marking M.
0

Thus, if a Petri net has a dead marking, the system represented

by the net can run into astate where the whole system cannot proceed:

there occurs a deadlock-situation. Figure 3.2 illustrates this

ANALYSIS OF PETRI NETS 3.5

problem. After the firing of transition t3, the net is in a dead

marking and no transition can fire. If the Petri net is not live, it

can run into astate where a transition can never be fired again, i.e.

part of the system · cannot proceed.

Figure 3.2: A net which can run into a deadlock

An example of a deadlock situation is a situation in which two

processes Pl and PZ need two resources A and B. Each process obtained

one resource. Now the two processes are each waiting for the other to

release the second resource it needs to continue. Thus, the two

processes are blocked, each waiting for the other.

1.5. The reachability problem

The reachability problem can be stated as follows: "given a Petri

net and an initial markinq M, is M € [M]?"
0 0

Thus a marking M is called reachable from a marking H
k

there exist transitions t ' .. ,t and markings M ' .. ,H
l k l

firing of transition t produces the marking M out

M (i:l. .k).
i-1

i . i

if and only if
0

, suèh that the
k
of the marking

This problem is particulary important because many analysis

questions can be expressed in terms of reachability. For instance,

Hack [9] has shown that the liveness problem is reducible to the

reachability problem and that in fact the two problems are equivalent,

since reachablility is also reducible to liveness.

Another problem is the coverability problem: given a Petri net

with an initial ma~king MO and a marking M-, M- is coverable if and

ANALYSIS OP PETRI NETS

only if

3 M" E [H]
0

M" ~ M.

~ . Analysis technique (Reachability tree)

3 . 6

It is usefui to represent the elementary changes of markings by a

reachability tree . The reachability tree represents the reachability

set of a Petri net. The nodes of the tree are reachable markings M E

[M], and the arcs are labeled by the transitions which cause the
0

marking changes.

This tree can be constructed as follows :

1. let the initial marking M be the root of the tree;
0

let the root be the current node;

2 . for each transition t enabled at the current marking M:

create a new node with the marking M. such that M[t>M. ,

create an arc from the current node to the new node and

label the arc with t;

3. repeat the second step for all newly created nodes .

It is obvious that this tree can be infinite if the net has

unbounded capacity (an infinite number of tokens can be accumulated on

a place) or if a marking is reproducible (M[->M) . This is illustrated

in Figure 3.3 which shows the reachability tree of the unbounded

buffer mode l (Figure 2.6) .

ANALYSIS OF PETRI NETS 3.7

(l,0,0,1,0)

l t1

(0,1,1,l,O)

~~
(O,l,?,O,l.)

(O,l.,2,l,O)

(l.,O,l.,l,O)

~~
(l,0,0,0,l.)

/ ~
(1,0,0, 1,0)

Figure 3.3: The reachability tree of the unbounded buffer

It can be observed that the sequence of transitions tl.,t3 can be fired

as ofter as wanted increasing the number of tokens on place p3.

Consequently, an infinite number of tokens can be accumulated on place

p3. The initial marking is reproducible by firing for instance the

sequence tl.,t3,t2,t4, causing the generation of an infinite number of

nodes in the reachability tree.

If we want to use the reachability tree for analysis of Petri

nets, we must modify our procedure in order to obtain a finite tree.

This reduction of the tree is helped by dead markings because their

marking class consists of the singleton

Thus, for dead markings no further nodes

{M} if Mis the dead marking .

will be generated in the

reachability tree and the node will be called a terminal node and

constitutes a leaf of the tree.

Another class of leaves consists of the nodes having a marking

that appears already in the reachability tree and for which the

marking class has already been generated. It is not necessary to

generate the marking class once again for the new node because it will

be the sarne as for the one already encountered. This node will be said

to be a duplicate node in the reachability tree and it will not be

considered anymore in the reachability tree construction.

One final means to eut down ·the reachability tree to a finite

ANALYSIS OF PETRI NETS 3.8

representation is based on the observation that often two markings H €

[M .] and M' € [M), with M <
0

M' define a lot of different markings

{M ,M , . . . } ç [M].
l 2

In this set M is obtained from
i+l

Mi by the firing of the same

transition sequence leading from M to W.

Then, we have M' - M = H - M) o.
i+l i

This firing sequence can be repeated over and over, increasing the

number of tokens in some place of the net.

In the reachability tree construction procedure, this subset of

markings will be reduced to one node in the reachability tree and the

special symbol w (omega) is used to designate an infinite number of

tokens.

The definition of€ can be given by the following properties

for all z € z
w+z=w-z=w

z < w

w < w
0 it W = 0

Let z = z u { w } .
w

For any two vectors x,y of z , the relations and operations x+y, x-y,
w

x=y, x < y are understood componentwise. The relation x < y however is

satisfied if and only if x ~ y and x ~ y.

The precise algorithrn __ for the reachability tree construction can

now be stated. Each node is of one of the following types: terminal,

duplicate, interior, frontier . Interior nodes are nodes already

processed by the algorithm and which are neither terminal nor

duplicate. A frontier node is anode not yet processed. To each node

is associated a marking with M(p _) € N .
1 W

ANALYSIS OF PETRI NETS

The algorithm is the following

let the tree consist of one node, the root r;

declare r frontier;

while there are frontier nodes do

choose a frontier node to process x;

od.

if there exists another node y in the tree

which is nota frontier node, and has

the same marking M(x]=M(y],

fi

then if y is of type terminal

then declare x terminal

else declare x duplicate

fi

else if no transitions are enabled at M(x]

then declare x terminal

else for each transition t : M(x] (t> do

create a new node z;

fi

od

M (z] : = fire (t, M (X]) i

if there exists anode y

on the path from the root

to X with M(y] < M(x]

then for each M(y]i < M(z]i do

M(y]i :=W;

od

fi

direct an arc labeled t from x to z;

declare z frontier;

declare x interior;

The reachability tree of Pigure 3.4 is shown in Pigure 3.5

3.9

ANALYSIS OP PETRI NETS

4

Figure 3.4: A Petri net with marking (J.,0,1,0)

and infinite state-space

(J.,O,J.,O) interior

1, t3

(l,0,0,1) interior

(i,w,J.,O) interior

~ ---z
(l,W,O,O) terminal (l,W,O,l) interior

l t2
(l,W,J.,O) duplicate

Figure 3.5: The reachability tree of the Petri net

in Figure 3.4

3.10

For the reachability tree constructing algorithm to be useful it

is very important that it terminates. To prove this, it must be shown

that the reachability tree is finite. Then the algorithm cannot

continue to create frontier nodes forever. Since this dissertation

stresses on .the application of results obtained in pure Petri net

theory, the prove is not given here . A proof can be found in Peterson

(20] .

ANALYSIS OF PETRI NETS 3 . 11

3. Resolution power of the reachability tree

In this section, the resolution power of the reachability tree is

discussed. For the decidable problems, we indicate how to solve them.

Then, the limitations of the reachability tree are discussed.

3 . 1. Safeness and Boundedness

The safeness and the boundedness problerns are decidable using the

reachability tree .

A Petri net is bounded if and only if the symbol w never appears in

the reachability tree, i.e. no place of the net can contain an

unlimited nurnber of tokens. If the symbol w occurs in the

reachability tree, there exists a firing sequence which can be

repreated arbitrarily often to increase the nurnber of tokens to

infinity. The symbol w indicates by its position the unbounded

place(s). Thus, a place in a Petri net is bounded if there is no

rnarking in the reachability tree such that the component corresponding

te the place is w . The boundedness problem and the submarking

boundedness problem can be decided by inspection of the reachablility

tree.

The safeness problem can also be decided by inspection of the

reachability tree . If there is no marking in the tree with the

component corresponding te a given place greater than one, then the

place is safe.

An interesting property is that of submarking boundedness. Even

if a net is net bounded, some places can be bounded and that may

sometirnes suffice to verify the correct functioning of the net.

In the bounded buffer problern, for instance, if the place representing

the nurnber of elernents in the buffer is bounded to the capacity of the

buffer, t he buffer will never overflow.

In the readers/writers model , the place representing the number of

ANALYSIS OF PETRI NETS 3.J.2

processes writing must be safe (at most one writes).

These properties can always be verified on the reachability tree, even

when the whole net is unbounded.

If the Petri net is bounded, it represents a finite state system

and the reachability tree · contains all reachable markings. The

reachability tree represents the whole state space of the system and

all other analysis questions can be solved by the inspection of the

tree.

3.2. Conservation and Invariants

Conservation can be tested using the reachability tree. The

weighted surn can be computed for each marking and all the sums can be

compared for equality. If the sum is the same for all the markings,

the Petri net is conservative with respect to the given weigths

vector. If the sums are not equal, the net is not conservative .

If the net is not bounded, the weigths associated to the unbounded

places must be zero, else the net is not conservative.

Thus, we can verify if a net is conservative with respect to a

weighting vector. But we can also use the reachabliy tree another way

round. The reachbility tree can be used to determine if a Petri net is

conservative by finding a weighting vector. As defined earlier, a

Petri net is conservative if it is conservative with respect to a

strictly positive weigths vector. This imposes the boundedness of the

net. If the net is conservative, a weighted sum S and a weights

vector w=(w ,w , . . w) exist. For each reachable marking M, we have :
l 2 n

w * M(p) + w * M(p) + . .. + w * M(p) = S
l l 2 2 n n

This defines a set of k linear equations in n+l unknowns if the

reachability tree contains k nodes. If we add to this the constraints

w > 0, i : 1,2, . . ,n
i

we have a well defined problern which can be solved.

Exarnple let us consider the mutual exclusion problem. Figure 3.6

ANALYSIS OF PETRI NETS

gives the model and the corresponding reachability tree.

The

(0,0,l,l,l)

~~
(J.,O,î,O,J.) (O,J.,,,1,0)

t t3 vt4
(O,O,J.,1,1) (0,0,l,l,l)

Figure 3.6: The rnutual exclusion problem and

the corresponding reachability tree

system of equations· is thus the following

w3 + w4 + ws = s
Wl + ws = s
W2 + w4 = s
wi > 0, i = J... 5

A solution to this system is

wl = 2, w2 = 2, W3 = w4 = ws = l

3.J.3

The invariant on the sum of rnarkings is the sarne as the

conservation with respect to a weigthing vector with possibly sorne

negative or zero weights. In the bounded buffer problern (Figure 2.7),

for example, the sum of the two places representing the number of

empty buffers and the number of full buffers must always be equal to

the number of buffers n .

.
The product invariant is used to verify the mutual exclusion . It

suffices to show that mutually exclusive places (e . g. critical

sections) are never marked · at the same time, i . e. the product of the

markings of this places is zero for each marking in the reachability

ANALYSIS OP PETRI NETS 3.14

tree. This shows then that if one process is in its critical section

(place marked), the other one is not . (place not marked).

3 . 3 . Coverability

Given a marking M, is there a reachable marking M. which covers

M, i.e. such that M' is greater or equal than M? This problem can be

solved by inspection of the reachability tree.

3 . 4. Limitations of the reachability tree

The two problems of liveness and reachability can not in general

be solved with the reachability tree. If the Petri net is unbounded,

the tree contains omegas and there is some loss of information.

But although the reachability tree does not solve this problems

in general, sometimes it does. If there is a terminal node in the

reachability tree, it can be concluded that the net is not live. For

the reachability problem, it may be the case that the marking is in

the tree and then it is obviously reachable. If ·a marking is not

covered, then it is not reachable.

If the tree contains no omegas, all reachability and liveness

problems can be solved using the reachability tree. sometimes, it is

possible to modify a model in order to make it bounded; e.g. the

unbounded buffer problem is transformed into a bounded buffer problem.

Another problem with the reachability tree construction is that

even if the Petri net is bounded, the reachability tree can become

very big. In such cases, the space or the computational power required

to build the tree are sometimes too large for the analysis to be

usefull.

ANALYSIS OP PETRI NETS 3.lS

4. Other analysis techniques

This section will introduce some other analysis techniques used

to verify properties of Petri nets. These techniques are not developed

within the frarnework of this dissertation. They are only mentioned to

signal that there exist other analysis techniques for Petri nets.

4.1. Linear algebra

The Petri net analysis with linear algebra studies essentially

structural properties of Petri nets, i.e. properties not depending on

the initial rnarking of the net . This is done by looking into the

structure of the incidence rnatrix c. The incidence matrix is obtained

by subtracting the input rnatrix I frorn the output matrix o : C = O

I.

We observe that the passage from a marking M to a marking M' by the

firing of a transition sequence s can be represented by the following

equation:

M' = M + C·s ·.

s · is a colurnn vector and each of its components stands for the number

of tirnes the corresponding transition fires in the firing sequence.

4.2 . Reductions of nets

The Petri net models are sometimes too complex to be analyzed by

the available techniques . This is often the case for the reachability

construction. In particular cases, the complexity can be reduced by

eliminating some aspects not relevant for the property to verify .

Reductions of a Petri net, provided that they preserve its properties,

may then be used to obtain a new net which suits to the analysis by

reachability tree construction. For the linear algebra method,

reductions can reduce the size of the matrixes to manipulate . A

- - - ------- ----- ------------- - - - ~~=---- -

ANALYSIS OP PETRI NETS 3.l6

reduction can consist of place substitution or suppression of

transitions .

4.3 . Petri net classes ---

There exist extensions to Petri nets and subclasses of Petri

nets. The class of extended Petri nets is characterized by a greater

modeling power than general Petri nets. Because of the extensions,

some analysis methods for Petri nets cannot further be applied to this

class of nets. This leads to a lower decision power for extended Petri

nets. An exarnple for this class are nets with inhibitor arcs. An

inhibitor arc is an arc that enables a transition only if the incoming

places are not marked .

Subclasses of Petri nets often corne to live due to the

observation that the modeling of some classes of systems don · t require

the whole modeling power of Petri nets. This leads to classes of Petri

nets with a restricted modeling power, but with an increased decision

power. Exarnples of subclasses of Petri nets are state machines, marked

graphs and free-choice Petri nets.

State machines are Petri nets such that each transition has exactly

one input and one outRut place and the arcs connecting it to these

places are of value l. A marked graph is a Petri net in which each

place is an input for exactly one transition and an output for exactly

one transitions. A free-choice Petri net is a Petri net in which each

arc is labeled by land if two or more transitions have an input place

in common·, they share all their input places.

A PETRI NET ANALYIS PROGRAM 4.1

CHAPTER 4: A PETRI NET ANALYSIS PROGRAM

This chapter describes a tool for anlyzing Petri nets. This tool

is nota complete Petri net analysis package, but implements only one

analysis method, the one described in this dissertation. It seemed

important tome to enforce the present analysis method with a software

tool showing that the theory presented is directly applicable. In a

first section, an overall description of the software tool will be

given. The following sections give a functional analysis of the

program and some implementation details.

Notice

programrning

that the program is written in the VAX-11 PASCAL

language which runs under VMS. The program does not make

use of special features of the VAX-11 PASCAL implementation in order

to enforce understandability and portability.

1. Overall description of the tool

The program is based -.. on the reachabili ty tree analysis technique.

Once a Petri net has been input and the initial marking has been set,

the reachability tree of the net can be constructed. After the

construction of the reachability tree, different properties can be

verified on the reachability tree.

The input of the Petri net consists in the decoding of a Petri

net model stored previously in a text file. The model is a set of

formulas describing the transitions. A transition is defined by the

effect it has on the token load of places. If transition tl, when

fired, removes one token from place pl and puts 2 tokens on place p2,

this will be expressed by the following formula :

tl=-pl+2p2

A PETRI NET ANALYIS PROGRAM 4. 2

To illustrate the use of this modelisation language, Figure 4.1 shows

a Petri net and the corresponding model.

p1 t1 p 2

a-~~l--=--2 ---'-0

tl=-pl+pl+2p2

t2=-pl+p3

p3

Figure 4.1: A Petri net and its model

After having decoded a model, the user can set the initial

marking for the Petri net. Once the marking set, the reachability tree

can be constructed. For the sarne model, the process of setting an

initial marking and building the reachability tree can be repeated an

arbitrary number of times. This permits to analyze different scenarios

depending on the initial marking of the Petri net.

The reachability tree can be displayed at the terminal or be

printed to an output file . This possibility of having the output of

the system displayed at the user terminal or printed to file exists

for all analysis tasks.

The analysis questions a user can ask are the following

1 . boundedness of the Petri net,

2 . deadJ.ock,

3 . coverability of a given marking,

4 . reachability,

5. invariance on the sum of markings (conservation),

6. invariance on the product of markings (mutual exclusion).

This functions will be described in more detail in the next section.

------------- -----------~-~~~----~~~~ -=---=-~=~---c-:-- --.,, =-=----c-=-- ~-=-----~

A PETRI NET ANALYIS PROGRAM 4.3

2 . Functional analysis

This section gives an overview of all the functions perforrned by

the Petri net analysis tool and describes the effect of each function.

2 . l. Input of a new model

This function allows a user to input a Petri net from a model

file. The system asks for the name of the model and then decodes the

model contained in that file. The · name of the model file must be of

type (extension) ".MOD". When asked for the file name, the user must

not supply the file type (".MOD"), the system adds it automatically to

the file name if it is not given. The model must respect the syntax

given in Appendix A.

If there are errors in the model, the

appropriate message is given. When

error, the number of transitions and

communicated to the user.

decoding is aborted and an

the decoding succeeds without

places in the Petri net are

2.2 . Construction of the ieachability tree

This task constructs the reachability tree of the Petri net given

an initial marking. If no model is present, the task is aborted after

having printed an appropriate message to the user. If there is no

initial marking, the user is asked to introduce one.

After having verified the initial conditions, the reachability

tree is constructed according to the algorithm given in chapter 3.

The user is kept informed on the progress of the reachability tree

construction by printing one dot c· .·) for each creation of a new

node. Once the reachability tree construction finished, the system

displays the number of nodes in the tree and terminates the task.

A PETRI NET ANALYIS PROGRAM 4.4

2.3. Modification of the initial marking

This function allows the modification of the initial marking . The

user can introduce another initial marking in order to construct the

reachability tree with this marking. This feature makes it possible to

analyze different scenarios depending on the initial marking of the

Petri net.

2.4. Direction of output

The output of the reachability tree and the analysis results can

be directed to the user terminal or to a file that can be printed

after the session. If the output is directed to a file, the name of

the file will be given to the user. This name is "PNOUT.RES" if no

model file has been read in. If a Petri net · has already been

introduced from a model file, the filename of the model file will be

taken and the extension (file type) will be ",RES". Thus, if the

model file "MUTEX . MOD" has been input and afterwards the output is

directed te file, the file containing the results will have the name

"MUTEX. RES".

2.5 . Printing the reachability tree

If a reachability tree has already been constructed, it is output

te the user terminal or to the output file if the output is directed

to a file.

First, the number of nodes of the reachability tree is printed.

The reachabilit y tree is then printed level by level. In other words,

for each marking, starting with the initial marking, all its follower

markings are printed, prefixed by the type of the node (interier,

A PETRI NET ANALYIS PROGRAM 4.5

duplicate or terminal) and by the transition leading toit. Figure 4.2

shows the reachability tree of the mutual exclusion problem and the

corresponding printout.

(0,0,l,l,l)

(0,0,l,l,l)

i tl

i t2

(l,0,0,0,J.)

(O,l,0,1,0)

(l,0,0,0,l.}

d t3 : (0,0,1,1,J.)

(0,1,0,J.,O)

d t4: (0,0,l,l,J.)

(0,0,l,l,l)

Pigure 4.2: A reachability tree

2.6. Stop the session

Stops the session and leaves the program closing the output file,

if it exists.

A PETRI NET ANALYIS PROGRAM 4.6

2.7. ~ results

This is an entry point to a number of questions the user can ask

about the properties of the Petri net. Thus, this function proposes a

menu with different choices and leads to one of the functions

described in the sequel.

After having answered a question, the system returns to this menu

and the user can get out of it making the choice "E exit" to return to

the first level.

2.8. Boundedness

This function gives an answer to the global boundedness of the

Petri net. In either of the two cases, the bounds vector is given.

This vector gives the bound for each place of the Petri net. Thus,

the submarking boundedness problem can be answered for a given set of

places using this bounds vector.

2 . 9 . Deadlock

This function detects whether the system modeled by the Petri net

can run into a deadlock state or not. A deadlock state is represented

by a reachable marking at which no transition is enabled. If the

system can run into a deadlock state, we are sure that the system is

not live. If there are some dead markings, the system will signal it

and the user can request a list of these markings.

A PETRI NET ANALYIS PROGRAM 4.7

2 . 10. Coverability

This function can be invoked to know if a given marking is

covered by any other marking of the reachability tree. The user must

introduce the marking for which to decide if it is coverable and the

system will then decide if it is coverable. If this is the case, the

first marking found in the reachability tree that covers the given one

is printed.

2.11. Reachability

For a bounded Petri net, the reachability problem is decidable

and this function decides whether a given marking is reachable or not.

In the case of an unbounded Petri net, the problem is more

delicate. If the marking is in the reachability tree, obviously it is

reachable. If it is not in the reachability tree and is not coverable

by any other marking of the reachability tree, then we are sure that

it is not reachable. In all other cases, the program cannot decide

whether the marking is reachable or not.

2.12. Invariance on the sum

This function verifies the invariant on the sum of the markings.

For each marking in the reachability tree the weighted sum of the

marking is calculated and compared to the sum given by the user until

a marking is found that does not satisfy the equality. The user gi.ves

the weights vector and the sum. If a marking is found that does not

satisfy the condition (weighted sum = given sum), this marking is

printed .

A PETRI NET ANALYIS PROGRAM 4.8

2.13 . Invariance on the product

This function verifies a product invariant on all the markings.

The user gives in a vector specifying the places to be considered in

the verification . For all the considered places it is then verified

that the marking product of all pairs of places is zero.

For exarnple , if the places pl,p2 and ps are considered, it will be

verified that for each marking Min the reachability tree

M(pl) * M(p2) = 0 and

M(pl) * M(p5) = 0 and

M(p2) * M(p5) = 0

If a marking is found in the reachability tree which does not satisfy

this condition, it will be printed .

Remark : This technique is not necessary to verify the mutual

exclusion between two places. The problem will be solved more

efficiently by solving the submarking reachability problem. In fact,

if a submarking is reachable with the two places containing one token,

the mutual exclusion is not assured. In the case of a mutual

exclusion of more than two places, the product invariant technique is

s horter to formulate . For the example given before, we would have to

solve three times the submarking reachability problem.

A PETRI NET ANALYIS PROGRAH 4.9

3. Implementation details

In this se~tion, some implementation issues for the program

described in this chapter are discussed.

3.1. Data structures

3.1 . 1. The Petri net

As already mentioned, the external representation of a Petri net

is given by a model encoded in a modelisation language for which the

syntax is given in Appendix A.

The internal presentation of the Petri net consists of two matrixes.

These matrixes are the matrixes associated to the Input and the Output

function respectively. Thus, the two matrixes, named inp and outp, are

of size n * m, with n representing the maximum number of transitions

and m the maximum number of places. Each transition in the Petri net

is then defined by two rows in the two matrixes. Row tin the input

matrix defines the input function for transition t and row t in the

output matrix defines the output function of t.

To these two matrixes, we associate two integer variables representing

the actual number of transitions and places of the Petri net.

Another representation would be the incidence matrix c of the

Petri net. This matrix is obtained by subtracting I the matrix inp form

the matrix outp: C = outp - inp.

This matrix is often used in linear algebra analysis techniques for

Petri nets, but doesn · t fit to our use because such a representation

dictates a restriction on the structure of the Petri net. This

restriction is that a given place p cannot be an input and an output

place of a transition. In fact, if transition t would have pas input

and output place (with mu l tiplicity 1), the subtraction of inp from

outp would result in a value o for place pin the incidence vector for

A PETRI NET ANALYIS PROGRAM 4.10

transition t. This would mean that place p doesn·t intervene in ·

transition t, which is not the case .

3 . 1.2 . The reachability tree

The reachability tree is represented as a collection of items

connected with pointers. Each item contains the marking corresponding

t o the node , the number of the transition leading to that marking and

the type of the node. The type can be interior, duplicate or terminal.

Furthermore , an item contains pointers to the father, the son and the

brother nodes . Thus, the structure of anode in the reachability tree

is as shown iri Figure 4.3. The reachability tree is given by a pointer

to the root of the tree.

Marking

tr transition leading to Marking

ty type of node (i,d , f)

f pointer to father

d pointer to son

f pointer to brother

Figure 4 . 3 Anode of the reachability tree

An example of a Petri net and the corresponding reachability tree

is given in Figure 4 . 4 .

A PETRI NET ANALYIS PROGRAM 4.1.1

(1,0,0) 0 i /1. /1.

~

'
(0,l.,0) 1 t /1. (0,0,1) 2 /1.

(1,0,0) 3 d /1. /1.

Figure 4.4 A reachability tree

Notice that a father points toits ·first son only (if any), and not

to all sons. This representation is choosen in order to economize in

space. If we want all the pointers to the sons in the node, we would

need an array of pointers to all sons of the node. This array would be

of size n ~ size of pointer with n equals the maximum nu.mer of

transitions.

3.2. Algorithms

It is not my intention to describe all the algorithms used in the

program but only some interesting one · s.

l·~·l· The reachability tree construction

This is a refinement of the algorithm given in section 3.2, with

some additional functions. The algorithm not only constructs the

reachability tree, but computes the bounds for the different places.

That is why the algorithm calls a function updating the bounds vector

each time it encounters a new marking. The algorithm also builds up a

list of all the terminal nodes.

This is done so because the boundedness and the deadlock questions are

A PETRI NET ANALYIS PROGRAM 4.12

the first questions asked about a Petri net. Thus, these two questions

are answered once the reachability tree is build; i.e. the bounds

vector contains the bounds and the list of terminal nodes contain~ all

markings at which no transition is enabled. The algorithm also keeps

track of the number of nodes in the reachability tree.

The algorithm is not reproduced here, but a Pascal implementation can

be found in Appendix B.

l·1 ·1 · Breath-first search

The algorithm searches through the whole tree until finding a

node satisfying the criterion. The criterion is evaluated in another

function. The search strategy is breath first. The algorithm is the

one listed on the next page.

A PETRI NET ANALYIS PROGRAM

found := false;

if tree not empty

fi

then worklist := empty;

resnode := root;

repeat

repeat

if criterion (resnode)

then found := true

else if resnode has son

then add son at tail

of worklist

fi

resnode := brother of resnode

fi

until found or (resnode = nil);

if not found

then remove first frorn worklist and

associate it to resnode

until found or

(worklist was empty at last remove)

4.l3

APPLICATIONS 5.1

CHAPTER 5: APPLICATIONS

In this chapter, I will show the usefulness of the tool described

in the previous chapter by using it to analyze· several systems of

concurrent activities and by verifying their correct functioning with

respect to their specification. First, the analysis tool is used to

analyze some of the problems stated in chapter 2. Then, an extended

send/receive model is presented and verified. All the models and the

results from the analysis tool are listed in Appendix c.

1. The mutual exclusion problem

This problem is described in section 2.1.l. After the

construction of the reachability tree, we know that the Petri net is

bounded. Thus, all the analysis problems are solvable. First, it must

be verified that at any moment at most one of the processes is engaged

in its critical section. This can be done by verifying a Product

Invariant on the places pl and p2. After inspection of the

reachability tree, it can be concluded that te invariant is verified.

In other ·words, place pl and place p2 are mutually exclusive. It

follows that at most one of the two processes can be in its critical

section.

Another property to verify is that stopping a process in the

remainder of his cycle (not in its critical section) has no effect

upon others. In fact, if we do not mark place p5 in the initial

marking, the second process is not activated. But this does not

prevent the first one from cycling and entering its critical section.

This can be seen by observing the bounds for the different places. The

bounds for place pl and p4 are 1 . . Since the places represent dwell­

points for the instruction pointer, it is verified that the process

runs .

Notice that the Petri net cannot run into a deadlock state with this

APPLICATIONS S.2

initial marking.

An application with a process leaving its critical section

without replacing a token on the synchronization place p3 would result

in a deadlock. This model is given in Pigure S.l.

Figure 5.1: Incorrect mutual exclusion

Transition ts would allow process 2 to leave the critical section

without replacing a token on the synchronization place. In a program,

this could be a branch instruction out of the critical section. The

analysis of this Petri net shows that it can run into a deadlock

state.

The general mututal exclusion problem can be verified using the

Product invariant technique. For the Petri net presented in Figure

2.2, it can be shown that at most one of the four places standing for

the critical section is marked at a tirne.

APPLICATIONS 5.3

2. The Dining Philosophers

In section 2.1.2, three different Petri nets are given for this

problem. The corresponding model files are given in Appendix C.

The analysis of the first of the three models shows that the

Petrj net can run into a deadlock state where each philosopher has

picked up one fork and cannot continue, because there are no more

forks on the table. In the dead marking, places pll through plS are

marked and no other places. Places pll through pl5 represent the fact

that the philosophers have picked up the first chopstick. Places pl

through ps represent the chopsticks, p6 trough plO stand for the

philosophers meditating and pl6 through p20 for the philosophers

eating.

The second model cannot run into a deadlock state. This Petri net

gives a correct solution to the Philosophers problem.

For the third solution, we have explained why the philosophers

cannot starve. The starvation freeness cannot be verified with our

tool, but we can verify that the solution is deadlock free.

3. The Sender/Receiver rnodel [22]

An application is given where a sender and receiver are

connected by a bounded capacity channel. The bound is set to 5 in this

exarnple. Each of the two processes can be in an active or in an

inactive state. The receiver can only go into the inactive state if

the sender is in the inactive state and if the channel is empty. To

realize this synchronization, we introduce a second channel between

the two processes. This channel is used to transmit the "finished"

message of the sender to the receiver. The send and receive for the

messages containing data are representeJ by

respectively . The send and receive for

transition t2 and t6

the "finished"-signal are

APPLICATIONS 5.4

implemented by transition t4 and ta. Note that another condition to

enable ta ' is that the channel is empty. This condition is satisfied

when place p5 holds n (5) tokens. Place p5 is the complement of place

p4 representing the number of messages in the link. To execute this

two processes, we have added some places and transitions to start up

the two processes. This places represent the environment of the

process . The model corresponding to this description is given in

Figure 5.2 .

1 4 7

13

Figure 5.2 Extended Sender/Receiver

If the send/receive system is correctly modeled, the model

verifies the following properties:

1. Sender and receiver are always in one of the following states

{pl,p2 , p3 } respectively {p7,pa,p9} . Place pl and p2 stand for

the sender being in an active state and in p3, the sender is

APPLICATIONS 5.5

inactive.

2. The channel never contains more than 5 messages (tokens).

3. The sender (resp. receiver) is inactive if and only if he has

given a corresponding signal to the environment. He can leave the

inactive state only through a signal from the environment.

4. If the sender is in the inactive state, he can leave this state

only when the receiver process is in his inactive state too.

s. The receiver·s decision to receive or to go into an inactive

state depends totally on the behavior of the sender.

6. The receiver can go into the inactive state only if the channel

is empty and the sender is inactive.

7. The Petri net cannot run into a deadlock state.

All this properties will now be verified using the Petri net

analysis tool. The construction of the reachability tree shows that it

contains 76 nodes and that the Petri net is bounded. All places except

the two representing the bounded channel (p4 and pS) are safe. The

results can be found in Appendix c.

Property 1 can be verified using a surn invariant. The invariant for

the sender is :

M(pl) + M(p2) + M(p3) = 1.

For the receiver, we have the invariant

M(p7) + M(p8) + M(p9) \: 1.

This two invariants are verified on each of the markings of the

reachability tree.

The second property is verified by looking to the bounds vector. The

bound for place p4 is 5, i.e. the channel never contains more than

five messages.

Property 3 is verified for the sender using the invariant

M(pl0) + M(plZ) - M(p3) = O.

In other words, place p3 is marked only if place plO or pl2 is

marked. The sarne property can be verified for the receiver with the

invariant

M(pll) + M(pl3) - M(p9) = O.

-----------~---

APPLICATIONS 5.6

Verifying the invariant

M(p6) - M(plO) + M(pll) = 0

shows that M(p6) = l implies M(plO) = l because a place cannot have a

negative marking. Thus, if the sender is inactive, plO is marked and

this mark can only be removed by a firing of t9. But t9 is only

enabled if the receiver is in the inactive state.

If property 5 is not satisfied, transition t6 and ta can be enabled

at the same time. This would require that M(p4) ~ 1, M(pS) ~ s and

M(p6) ~ l . It can however be shown on the reachability tree that

such a rnarking is not covered, i.e. there can never be a conflict

between the two transitions.

Property 6 is verified by the required token load for- ta to fire. The

number of tokens on place p6 must be greater or equal than one and the

marking of place ps must be greater or equal than five.

The last property is also verified by the Petri net. The reachablity

tree contains no dead rnarking.

CONCLUSIONS 6.1

CONCLUSIONS

In this dissertation, Petri nets were presented as a tool for

modeling and analyzing systems of concurrent activities. The first

chapter introduced common definitions of terms related to Petri nets

and their execution. These concepts allowed us to model

synchronization problems and mechanisms in chapter two. Chapter three

gave an overview of important analysis questions and showed how to

solve them using the reachability tree analysis technique. Since we

wanted to analyze automatically the modeled systems, a Petri net

analysis program was implemented. This software tool has been

described in chapter four and some implementation details were

discussed. Finally, chapter five showed how to put this method and the

tool to work, verifying some modeled systems.

These observations suggest some conclusion. It has been shown

that Petri nets are a good tqol for dealing with the modeling and

analysis of concurrent processes. The modeling of a lot of actually

existing synchronization mechanisms is feasible and much of the

analysis questions can be decided automatically.

Within the framework of this dissertation, only one analysis

method has been presented in detail . This method has also been

implemented to show the real usefulness of such a tool. A complete

Petri net analysis package however would do much more. It would

implement different analysis techniques, work on more classes of Petri

nets and include a powerful graphies based net editor. Let me signal

that there exist software packages implementing some of these features

(3, 4] .

This conclusion should encourage us to deal in a structured and

formal way with the construction of concurrent programs rather than

reasoning informally or trying to debug the prograrns by testing.

BIBLIOGRAPHY l

BIBLIOGRAPHY

1. P. Azema, B. Berthomieu, P. Decitre :

The Design and Validation by Petri Nets of a Mechanism for the

Invocation of Remote servers.

Information Processing 80, North-Holland 1980, 599-604

2. M. Ben-Ari

Principles of Concurrent Programming

Prentice-Hall 1982

3. G.W. Brams

Reseaux de Petri : Theorie et Pratique

Masson 1983, 2 vo1 · s

4. E. Ciapessoni, M. Negri, D. Pieragostini

Netlab : A Software Tool for Drawing and Validating Petri Nets

Special Interest Group "Petri Nets and related system models"

Gesellschaft fuer Informatik

Newsletter 18, Oct.84, 4-6

s . L.W. Cooprider

Petri Nets and the Representation of standard Synchronization

carnegie-Mellon University, Jan.76

6. P.J. Courtois, F . Heymanns, D.L. Parnas :

Concurrent Control with "Readers" and "Writers"

communications of the ACM, Vol.14, No . 10, oct.71, 667-668

7. E.W. Dijkstra :

Co-operating Sequential Processes

Programming languages, F. Genuys, ed.

Academic Press 1968, 43-112

(Reprint of Technical Report EWD-123, Technological University,

Eindhoven , 1965)

BIBLIOGRAPHY

8. E.W. Dijkstra :

Hierarchical ordering of Sequential Processes

Acta Informatica, Vol.l, N.2, 1971, 115-138

9 . M. H. Hack :

2

The Recursive Equivalence of the Reachability Problem and the

Liveness Problem for Petri Nets -and Vector Addition Systems

Proceedings of the 15th Annual IEEE Symposium on Switching

Autornata Theory, oct.74

10. o. Herzog

zur Analyse der Kontrollstruktur paralleler Progranune mit Hilfe

von Petri-Netzen.

Universitaet Dortmund, Abteilung Inforrnatik, Bericht Nr.24/76,

1976

11. C.A.R. Hoare :

Communicating sequential processes

communications of the ACM, Vol.21, No.a, 666~77

12 . R. C. Hol t :

Concurrent Euclid, the Unix System, and Tunis.

Prentice-Hall 1982

13. M. Jantzen, R. Valk :

Pormal Properties of Place/Transition Nets.

Lecture Notes in Computer Science 84, Springer 1980

14. R.M. Keller :

Vector Replacement Systems

Asynchronous Systems

A Forrnalism for Modeling

TR 117, Computer Science Laboratory, Princeton University, 1972

15. R.M. Keller

Generalized Petri . Nets as Models for system Verification.

TR 200, Departmept of Electrical Engineering, Princeton

University, Dec.75

BIBLIOGRAPHY 3

16. K. Lautenbach, H.A. Schmid :

Use of Petri Nets for proving correctness of concurrent Process

Systems.

Proceedings of the IFIP Congress 74, Amsterdam 1974, 187-191

17. H. Ledgard :

Ada - An Introduction

second edition, Springer 1983

18 . D. May, R. Taylor :

Occam - an overview

Microprocessors and Microsystems, Vol.a, N.2, Mar.84, 73-89

19. J.L. Peterson

Petri Nets

Computing Surveys, Vol.9, N.3, Sep.77, 223-252

20. J.L. Peterson :

Petri Net Theory and the Modeling of Systems

Prentice Hall 1981

21. J.L. Peterson, A. Silberschatz

Operating System Concepts

Addison-Wesley 1983

22. W. Reisig:

Petrinetze - Eine Einfuehrung

Springer 1983

APPENDIX A.l

APPENDIX A: MODELING LANGUAGE

This appendix is a description of the modeling language used to

represent a Petri net.

A Petri net model consists of declarations of transitions. Each

transition is built up from a transition identifier (e.g. tl),

separated from an expression by an equal sign.

An expression descril:>es the effect of the transition on the token load

of the places. It consists of the enumeration of all places

intervening in the transition. If a place belongs to the input places

of a transition, it is prefixed by the minus sign. The place

identifier can also be prefixed by an integer value representing the

label of the arc connecting the place and the transition, i.e. the

number of tokens to rèrnove or to put on the place.

A place identifier is cornposed of the letter "p" followed by the

number of the place.

The complete syntax description follows. It is represented in Backus­

Naur Fonn.

APPENDIX

<petri-net> : : = <transition>

<transition> <petri-net>

<transition> : := <transid> <equal> {<sign>} <expr>

<expr> ::= <factor>

<factor> <Sign> <expr>

<factor> : := <placeid>

<unsigned> <placeid>

<transid> : := t <unsigned>

<placeid> : := p <unsigned>

<equal> : := =

<Sign> : : = + 1 -

<unsigned> : := <digit>

<digit> <unsigned>

<digit> : := o . . 9

A . 2

-- --- --- - -

APPENDIX B.l

APPENDIX B: ALGORITHMS

This appendix contains the listing of two algorithms implemented

in PASCAL. The first one is the reachability tree constructing

algorithm. The second one implements the breath-first search. The test

of the criterion for the search is embedded in a function passed as an

argument to the search procedure. The listing of the entire program

can be obtained from the author .

4NALPN
01

1153
1154
1155
11 56
1157
1158
1159
1160
1 1 6 l
1162
1163
1164
1165
1166
1167
1168
1169
1170
11 71
11 7 2
1173
1174
1 1 7 S
1176
1 1 7 7
1178
1179
11-3 0
1131
1182
lld3
1184
1135
1186
1187
1188
1 1 d 9
1190
il91
11 ·12
1193
119 4
119 5
1196
1197
11 18
1199
1200
1201
1202
12 0 3
1204
1205
1206
1207

5ource Listing

procedura reach_tree;

17-May-1985 14:12:31
17-May-1985 14:11:18

VAX-11 Pascal
5YSSSYSD=VICE:

(,:: function
(;;: ~iven a ?N defined by I ,O,n o ftr a n s , nofpl ac e s a n d a

root noda, build the reachability tree
(:::
(;;: input
(:::
C :::, output
(:::

(::: invoke?s
(,:,.

breath f1.rst
find_mari<ing
update bds vector (:;:

(:;.:
(:;,
(:;:
(:;:

(::::

var

begin

addhead -
remove
enabled
1nitlist
print_dot

x,y,newnode,son
l

nodeptr;
integer;

(* work nodes
(* index for number of transitions
(* boolean for result of search
(* indicator for terminal nodes
(* indicator of emptyness for the
(* list of frontier nodes

fnd,
te rm,
emptind bôolean;

li s t ;

marking;

fr on tiers

,.urkmark

initlist Cfrontiars);
nofnodes := 1;
x := root;
update_bds_vector(xA.mark);
r-epe:1t

xmark := xA.mark;

(* list of frontier nodes

(* work variable for markings

braath_first (no_frontier,y,fnd);
if fn d

then if (yA.nodetypa = terminal)
then xA.nodetype := terminal
else xA.nodetype := duplicate

else be ·~in
term : = tr ·ue;
for i := 1 to noftrans do

if anabled (xA.mark,i)
then b•?gin

find_marking(xA.mark,i,x,wrkmark);
update bds vector(wrkmark);
nofnodës := nofnodes + 1:
print dot (nofnodes);
new(nëwnode);
with newnodeA do
begin

mark != wrkmark;
trans := i,
father := x:

*)
,::)
,n
:',<)
;',:)

*)
:::)
:;:)
*)
*)
~:)
;':)

*)
;',:)
:::)

:',<)
:;:)
:::)
:;:)
:;<)
;'t)
;',:)

:;,)

~
"Cl
M z
0
H

><

ANALPN
01

1208
1209
1210
12 11
1212
1213
1214
1215
1216
12 1 7
1218
1219
1220
1221
1222
1223
1224
1225
1226
12 2 7
1228
1229
1230
12 31

and;

Source Listing
17-May-1985 14:12:31
17-May-1985 14:11:18

end;

brother := nil;
son := nil;
nodetype != front ie r;

end;
if term C* first son of x *)

then begin
term := false;
xA.son := newnoda;

end
xA.nodetype := interior:

else sonA.brother := newnode;
son != newnode;
addtail Cfrontiers,newnode);

end;
if term <* no transition enabled C)

then begin
xA.nodetype := terminal;
addtail (terminals,x);

end;

remove (frontiers,x,emptind);
until emptind: ,,

(::, r a a c h _ t r e e t,,)

VAX-11 Pascal
SYS$SYSOEVICt .

~
'O
l'tl z
0
H
><

t:ll

ANALPN
01

l O O 7
1008
1009
1010
10 11
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
102 8
1029
1030
10 31
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
10 4 5
1046
1047
104 8
1049
1050
1051
1052
1053
1054
1 0 5 5

Source Listing
17-May-1985 14!12:31
17-May-1985 14:11:18

VAX-11 P3scal
SYSSSYSD::VICE

p roc2dure br eath_first (function criterion (tocheck : nodeptr) : boolean;
var resnoda : nodeptr;
var f ou n d : boo lean) ;

(::, funct1on
(;',:
(*
(':::
(:::
(*
(;',: input
(*
(::,
(* output :
(;':
(:::
(;::
(,::
(,::
(,:, invoK:as
(::,
(*

va r

be g in

..ur k lst
isempty

breath-first search on the reachability tree.
returns found=true if node found for which criterion is
sati5fied (resnode points to this node).
return5 found=talse if no node in the reachability tree
satisfies the criterion

criterion boolean functions which evaluates a critarion
for the node given as argument.

resnode if found=true pointer ta the element of the
re~chability tree for which criterion is satisfied

foun d true if node found which satisfies the criterion
false otherwise

criterion
addtail
remove

li s t;
boolean;

<* list of nodes to be con5idered later on
(:;: used as emptyness indicator for wrklst

found != fal~e:
if root <> nil

e nd;

th ·en begin

:a nd;

initlist (wrklst);
r~sncde := root;
rep e at

repeat
if criterion (resnode)

then f~und := true
else begin

if (resnodeA.son <> nil)
then addtail (wrklst,resnodeA.son);

resnode := resnodeA.brother;
end;

until found or (resnoda = nil);
if (not found)

than remove (wrklst,resnode,isempty);
until found or isempty;

(* bre a th first *)

APPENDIX C.l

APPENDIX C: ANALYSIS RESULTS

This appendix contains the analysis results of the cases studied

in Chapter 5.

1. The mutual exclusion problem

The model file (MUTEX.MOD}

tl=-p4-p3+pl
t2=-p5-p3+p2
t3=-ol+p3+p4
t4=-pZ•p3+p.5

The analysis results for this Petri net are listed below:

5

co,0,1,1,1>
i tl : (l,J, 1] ,:,1)
~ tL (0 ,t, 0 , 1 , ù)

Cl,0,0,0,l)
:::1 t3 CO, ,J ,:,~, 1)

co,1,0,1,c)
a t4 : CO,~,l,1,1)

All plac~s cf th? Petri net a r 2 ~oun::Jej.
nere are t ~e b~unds
C 1 , 1 , 1 , l , l)

Th~ Petri net cannot run into a de3aiock
The trae d~e;n't contain any t 2 r~ in2t no:::le

Tne product inv~ri~nt :
(1 , l , 0 , 0 , 0)
15 v~r1f1 ed fDr ~ll markin;s

APPENDIX

~=l C~4) IL I TY TRE:

NL.mber cf ne ::i e" 3

co,0,1,1,0)
i tl : (1, :J , ,J,0, C)

(1,0,0,0,0)
d t3 : co,0,1,1,0)

All plac e s o f the Petr i net ar~ bounded.

rlere are tne oounds
(1 , 0 , 1 , l , 0)

The Petri net ca nnot run inta a -d2 a dlock
The tr e e doe s n't con t a i n any t erminai nod 2

The model file of the incorrect

(MUTEXERR.MOD) and the analsis results

tl=-p4-p 3 + ;:i l
t2=-p5-p3+;) 2
t3-=-pl+p3-+ p 4-
t4=-p2+pJ+ p 5
t5=-p2+pS

mutual

~EC CHA3ILITY T~E:

;~ u ;;, D •? r o f n o ;:; 2 s 0

(0 , 0 , l , l , l)
i t l : C 1 , J , 0 , 0 , l)
i :2 : CJ,1,0,1, 0)

(1,0,0,G,1)
d t3 : (O, J ,1,1,1)

C O , l , 0 , 1 , 0)
d t 4 : (ù , 0 , 1 , 1 , 1)
t t 5 : (0 , 0 , 0 , l , 1)

Al l pl a c as c i th ? ?e tr i n e t ar a ~oun d ed.

~ere are t he bo un os
(1 , 1 , 1 , 1 , l)
The ?e tr~ n et c~ n run in t o a a ? adlo c k

C. 2

exclusion solution

-~2 -::lSOn t~~ r e are t e r ~i nal nc d ei Ln th e r2 a ch 3bilit y tr ee
i. e . dead m~ r ~in g s

APPENDIX C.3

LIST OF TE~ M:NQL NGS ES

t 5 : C O , 0 , 0 , l , l)

General mutual exclusion for 4 processes

~=~C1~SILIT Y ;~~=
N u .-n D e r o f n o ,:j •~ s s
(l , 0 , 1 , 0 , 1 , 0 , l , 0 , l)
i tl : c o , 1 , 0 ,0,1, ,J ,l,O,l.)
i t3 : co, a ,1,1,o, a ,1, 0 , 1)
.i tS : CJ, .J,1,0,1,1,0,J,1)
.i t7 : CO,J,1,C,1, J ,1,1,0)

co,1,o,o,1, O,1, O,1)
d t2 : (1, ü ,1, 0 ,1, J ,::., J , 1 '\

co.O,1,1,O,O,1,0,1)
d t4 : Cl, J ,l,J,l,'J ,1, 0 ,1)

co,0,1,O,1,1,O,O,1)
d t6 : (1, 0 ,1,0,1, 0 , 1 , 0 , 1)

co,0,1,0,1,c,1,1 , o)
Cl t d : C l , J , 1 , i} , l , ,) ~ l· , .J , l)

~11 p:ac es of th~ ~etrl net 2 r 2 bo~nde d .

~ere a re t~ e bcu nds
(1 , 1 , l , l , 1 , l , 1 , l , l)
Tn e Petri net cannot r ~n int~ ~ d230~o=k
The tr 2e doesn't cont3~n any t ~ r ~ in a l ~o je

APPENDIX

2. The Dining Philosophers

The incorrect solut~on looks as follows (PHILINC.MOD):

tl=-pl-p::,+pl:
t2=-p2-p7+pl2
t3=-o3-pa+pl3
t4-=-p4-p ,+pl.::.
tS=-p5-p-10+p!.5
t6=-;:i5-pll+pl6
t7=-pl-pl2+pl7
t8=-p2-pl3+p:.:1
t '1 =-03-pl4+p l '1
t10=-p-:..-p15+;J2,J
tll=-pl6+p6+p5+pl
t12=-pl7+p7+~l+p2
t13=-pl8+p 8 +~2+p3
tl4=-p19+p ~+;3+p4
tl5=-p20+pl0+p~+~5

~ll placa s of tha Petri net are 0o~ndej.

~e re are the bou1d3
C 1 , l , 1 , l , l , l , l , : , l , l , l , l , l , l , l , 1 , l , l , 1 , 1)
The Petri net :2n r~n in~o 2 d22~lock

C.4

~eason tner e 2r~ t~rminal nodes in the rea chabili ty trae
i.e. deao ~~rki~gs

~rsT OF T~~MINJL NJD~S

t 5 : C J , J , S , 0 , Q , 0 , J , Q , J , Q , 1 , l , l , l , l , 0 , Q , J , J , J)

C C ' 0 ' 1 ' G ' G ' 1 ' 1 ' C ' : ' 1 ' 1 '
C 1 ' 0 ' C ' C ' C ' C ' . ' ! ' ! ' 7 ' C '

C T ' Q ' T ' 0 ' 0 1 C ' l

' " • r·•·, (1Tl p
1 1• f 1 1) p : C

0 ' 1 ' T ' 8 ' 0 • C ' 0 ' T)

(C ' O ' C ' ~ ' C ' 1 ' : ' ! ' C• ' : ' 1 ' 7 ' 1' C· ' O) C'Tl P
C 1 ' r ' C' ' 0 ' C ' 0 ' ! ' l ' 1 ' T ' C ' C ' l ' ! ' 1) L l P

C T ' 0 ' 0 1 ! ' 0 ' 0 ' 1 ' 1 ' 0 ' T ' 0 ' 0 ' 1 ' 0 ' 0)

(r ' C ' C ' ! ' 0 ' ! ' 1 ' : ' C ' 1 ' T ' 1 ' 7 ' G ' :) 6 l D
(J ' 1 ' 0 ' 0 ' C ' 1 ' 0 ' 1 ' 1 ' l ' ! ' r ' 0 1· 1 ' !) L l P

(0 ' 1 ' 0 ' I ' 0 ' 1 ' J ' T ' 0 ' 1 ' 1 ' 0 ' 0 ' 0 ' 0)

(~- ' C ' C ' C· ' T ' T ' : ' 1 ' 1 1 C ' C; ' 1 ' ! ' 1 ' (1
) f:. l P

(C' 1 ' C ' C' G' T' 0 ' l ': ' l '1 ' C ' C' ! '7) 91 c
C O ' 1 ' 0 ' 0 ' l ' 1 ' 0 ' l ' l ' 0 ' 0 ' 0 ' 0 ' T ' 0)

(C' O' C ' G' l 'l'l' l ' l ' O' "'T 'l' 1 1 8) g1 P
(C ' O ' T ' C ' C1 'T'l' C ' T 'T'T' T ' O ' C 'T) 9l P

(0 ' 0 ' I 1 0 ' T ' T ' 1 ' Q ' 1 ' 0 ' 0 ' 1 ' 0 ' 0 ' 0)

(2 ' 0 ' 0 ' G ' ~ ' 1 1 1 ' T ' 1 1 ! ' 1 ' 1 1 t ' 7 ' 1) 0 T l P
(1 • G 1 1 • C • C • 0 ' 1 ' C • 1 1 1 ' 0 ' C ' 0 ' 0 ' 1) (l D
(1 ' 0 ' 0 'l' C. ' O'l'T' O'T' G ' O 'î' O ' O) Zl. P

C 1 ' 0 ' 0 ' 0 ' 0 ' 0 ' T ' 1 ' 1 ' 1 ' 0 ' 0 ' 1 ' T ' T)

C O ' 0 ' C ' C ' C ' 1 ' T ' T ' T ' 1 ' T ' 1 ' 1 ' 1 ' 1) 6 l. P
C C' ' 1 ' C ' 1 ' 0 ' 1 ' 0 ' T ' C ' ! ' 1 ' 0 ' 0 ' C ' C) Z l P
(O'T'C.'O'~'T'0'1'1' C, ' O ' C ' C1 'l' O) 11- P

C O ' l ' 0 ' 0 ' 0 1 T ' 0 ' 1 ' 1 ' T ' 1 ' 0 ' 0 1 1 ' 1)

(0 ' C ' 0 ' 0 ' C ' ! ' l ' T ' l ' T ' T ' 1 ' 1 1 1 ' 1) P l P
(T ' C ' 1 ' C, ' G ' C ' ! ' 0 ' : ' 1 ' C ' r ' 0 ' C ' T) ç l l
CO 'C' i ' C ' 1 'T'T' O'T' O' O ' T ' C ' C ' O) Tl P

C O ' 0 ' T ' 0 ' 0 ' 1 ' 1 ' 0 ' 1 ' 1 ' T ' 1 ' G ' 0 ' t)

C C ' C ' C ' C ' G ' , ' 1 • 1 ' 1 ' 1 ' ! ' ! ' 1 ' : ' 1) : L ~ c-
C 1 ' C ' O' i' C ' C ' "'.'': ' ::," T ' C ' C ' 'I':: •' C') fl '!
cc, ' r ' c- ' 1 ' 0 ' 1 '0 1 1• c• ' i '1' ::, ' ::- • :: 1 c) · : "71-,

(O'O'O'î'O'l'T'T'O'T't'T'T'O'O)

(C ' C ' 0 'C ' 0 ' T' T' T ' l ' 1 '1 't 't' ! ' 1) 91 P
(C 'T' G'O'i'T' O'T'l' C ' C ' O ' C ' T ' C) : '"Jl. T
(0' 0 ' T 'C'1'1'1'C:'l' O' O' T 1 0 ' C· 'O) (l l

CO'O'O'O'T'l'T't't'O'O't't'T'O)

(T'C'C' C, ' C, '0' '7 '1'I'T' O' C 'T'T' T) : Çl 1'.

C C ' 1 ' c. ' 0 ' C ' 1 ' 0 ' i ' 1 ' 1 ' 1 ' C ' 0 ' t ' :) +:> l. T
(C ' C '1 1 C ' C• 'T' 1 ' C ' T ' T ' t '1' C ' 0 '1) : El. 1
CC'O' O'T'C'I'i'1' 0 'l' T 'T'T' C 'O) : Zl- T
(C'· 'C'O'C'T'T'i'T'T' C'O't' 1 ' 1 '0) : Tl 't

(O'O'0'O'O 1 1'T'T'l'T'T'T'T't'T)

H

.. -·-- --- ---
Ç C + 7 d + Q T d+ Ç T d -= O Tl.

-, à + 'ë d + E, d + '7 T d-: 6 l.
za +;:ct+ gc +rt~ -=ei
zc T1d+Ld + ? td-=L•
td+Sd+9e4+ Ttd-=9l

StC + CTd-Sd-,d-:Çl.
'"JTd + f.C-";d-(d-:";l
fid • Sd -fd-zd-:(l.
,1d+LC-ëd-Té-=Zl­
T:d+9d-td-Çd-=tl

: s:nnsa.2

s1sAT~U~ pu~ (aow·~o::YIIHd) s.2a4doso114d s i:14l .201 uo1ln10s l~a.2.20~

XION3'ddV

APPENDIX

All places of the ?etr1 n~t ar~ bounded.

Here are the bounds
(l , l , l , l , l , l , l , 1 , l , l , 1 , 1 , l , 1 , 1)
Tne ?etri net ca~not run into a de3diock
The tree doesn't conta~n any t3rminsl ~oae

C.6

A starvation free solution (PHILSTAR.MOD) that is shown to be

deadlock_-tree:

tl=-pl-p21+pll
t.2.=-pZ-pZ2+pl2
t3=-p3-p23-+pl3
t4=-p4-p24+pl4
t5=-p:5-p2:5+pl5
t6=-p5-pll+pl6
t7=-pl-pl,>·pl 7
t&=-p2-pl3+pl ,'3
t ·:; =- p 3 - pl 4 +pl '1
tl0=-p~-pl:5+;)2'J
tll=-pl6•pô-+p5+pl+~2i
tl2=-p~7•p7+~l+p2•;:,2 6
tl3=-plB+p 3 +~2•p3+p2~
tl~=-olS+p 3+~3+p~•~26
tl5=-p20+pl0•p~+~S•p2c
tl6=-p 26 -p6-t- ·J 21
tl7=-p2.6-p7+-.J2 2
tlè=-p26-pj+,JL 3
tl • =-p26-p;-+;:,2.:.
t2J=-p26-olG+o2.5

Th2 ~etr~ net cannot r~n int~ a de3clock
Tne tr2e aoesn 't conta:~ any t2r~inal ncde

APPENOIX

1· The sender/receiver

The model file (SEN~REC.MOO):

tl=-pl+p2
t2=-;)L-p5+pl+p.:.
t3=-o3-pl2+p .2
t4=-p2+p3+pé+pl0

. t5=-;:i7+p8
t6=-p4-p3+p5~p7
t7=-p9-pl3+p3+Sp5
td=-5p5-p8-pS+p9+pll
t~=-p10-pll+pl2+~13

Verification of property i

Tne sum invariant
c1,1,1,o,o,o,o,o,o,o,o,o,o)
with sum ,
is v~rif1e8 ior ~li m2rkin;s

The sum invariant
co,o,o,c,c,0,1,1,1,o,o,o,c)
~ith sum ; l
is verifiad for all mark1ngs

Verification of property 2

All ~lac?s oi th~ ?etri net a r e ~ound e d.

He re are tre bJund5
(1 , l , l , 5 , 5 , l , l , 1 , l , l , 1 , l , 1)

C. 7

APPENDIX

Verification of property 3

Tne sum invarlznt
co,0,-1,J,J,O,O,J, O,l,0,1,o)
~ith sum ; 0
is verlf1e d for a ll mark1niS

The sum invariant
(G • C , 0 , 0 , 0 , 0 , 0 , 0 , - i , •.) , l , .) , 1)
~itn sum : a
1s v~r~tl eci for 3 li m2rktn;s

Verification of property 4

The sum inv3ric:1~t
co,o,o,o,c,1,o,c,0,-1,1,0,0>
~ith sum 0
is ver1f1e~ fo r all ~arkings

Verification of property 5

Tna mark.in
co,0,0,1,s
1s not cov

1,O,O,0,0,o,o,o)
rad by a ny otner mark1ng

Verification of property 7

Tne ~etri net c~nnct r un 1nto a de3diock
Tn2 tree CO E in•~ conta1n a n y t~r~inal ~o d2

C.8

