
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

The tailoring of user interfaces by means of a command language

Dahmen, Guy

Award date:
1985

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/the-tailoring-of-user-interfaces-by-means-of-a-command-language(f19c7d6d-6010-41c0-a1a2-c49a11dc335e).html

- . ·- ·- - ····-~- -_;;...._...~- ~ ----..:~ =:..=~ ~ --~ =- ·-···•··- . -

INSTITUT O'INFORMATIOUE

FNOP NAMUR

THE TAILORING OF

USER INTERFACES

BY MEANS OF

A COMMAND LANGUAGE

ANNEE ACADEMIQUE

1984/85

MEMOIRE PRESENTE PAR

GUY OAHMEN

EN VUE DE L'OBTENT ION

OU DIPLOME DE

LICENCIE ET M AITRE

-EN INFORMATI QUE

.. ~- -~ - . - ,.:·:.: i.-~ ... ---

Wo bin ich?

Wie bin ich bloB
hierher gekommen?

Wie komme ich hier
wieder weg?

Die zentralen Fraqen an
die Dialog-Schnittstelle

(nach Nievergelt)

Where am I?

How just did
I get here?

, How shal 1 I get
out of here?

The central questions
to the user interface

(according to Nievergelt)

Acknowledqments

First of all, I would like to thank Mr. Jean Ramaekers for

having accepted to conduct this thesis.

I am especially grateful to Dr. Helmut Stiegler who gave me

the first impulse ta this thesis and whose advice was of a

g~eat importance in more than one occasion.

I am also grateful to Mr.

e x planations o~ the SDF.

Last, but not least, I

Emmanuel de Cocquéau for hi s

would like to thank all people

involved from far and near in the elaboration of this thesis.

TABLE OF CONTENTS 1

INTRODUCTION•.............................. 1

Chapter 1: DEFINITIONS AND GENERALITIES

1. 1 The user interface .. 4

1.1.1 Introduction
1. 1.2 Definition

1.2 Tailoring of user interfaces 6

1.2.1 Introduction
1.2.2 Definition and generalities
1.2.3 Aspects comprised

1. 3 Command Language•.•....... 8

1.3.1 Introduction
1.3.2 Definition
1.3.3 Command vs. programming language
1.3.4 Command procedures

1.4 The Command Language Processor 12

1.4.1 Introduction
1.4.2 Definition
1.4.3 Procedure and batch job handling
1.4.4 The command implementor

1.5 "User-friendliness" 1.5

Chapter 2: ENDS

2.1 E>:istence of different types of users 17

2.2 The typing approach chosen 18

2.2.1 The sophistication/transaction model
2.2.2 The role concept

2.3 Improvement of initial tra ini ng 21

2.3.1 The rank beginner
2.3.2 The "advanced novice "

2.4 Support of evoluting user 22

2.5 Plurilinguistic aspects 22

2.6 A standardized user interface•.................. 23

2. 7 Securi ty aspects 23

TABLE OF CONTENTS 2

Chapter 3: LANGUAGE CHARACTERISTICS REQUIRED

3.1 Functionality•..................... 25

3.2 Natural-language-likeness •............................... 27

3.3 Semantically meaningfLtl operand names 27

3. 4 Con si stency 29

3.4.1 What kind of consistency?
3.4.2 How can consistency be achieved?
3.4.3 Standardisation
3.4.4 In-house committees

3.5 Powerful, "user-friendly" abbreviation facility" .•....... 32

3.5.1 Why an abbreviation facility?
3.5.2 Techniques for constructing abbreviations
3.5.3 Which one to choose?
3.5.4 The technique chosen: truncation
3.5.5 Sorne problems

3.6 The case of the responses•............... 35

3.6.1 What are responses?
3.6.2 Guidelines for the design of "good messages"
3.6.3 "Summary" of the gLtidelines
3.6.4 Achievement of the responses characteristics

Chapter 4: THE .GUIDANCE CONCEPT IN THE CL CONTEXT

4. 1 Def in i t ions ... 38

4.1.1 Masks
4.1.2 HELP

4. 2 What i s gui dance?•............................... 40

4.3 ReqLtirements ... 40

4.4 How to achieve the requirements? 41

4.4.1 Choice of the command
4.4.2 Use of the command
4.4.3 Different guidance levels
4.4.4 Temporary guidance
4.4.5 On-line transitions between guidance levels

4.5 Command grouping .. 47

4. 6 Mask networ k ... 49

. ~--·. :.-•.

TABLE OF CONTENTS 3

Chapter 5: INTERFACE CONSIDERATIONS

5.1 Interface specification ...•........•....•................ 51

5.2 External command interfaces••..................... 53

5.2.1 Definition and generalities
5.2.2 Constituents of an external interface

5.3 Interna! command interfaces •....•..•..•..•..••...•......• 59

5.3.1 Definition ·
C" ~ ,...,

J. -'· ~ Constituents of an interna! interface

5.4 Command descriptions•.•.......•••.•..•..••...•...•• 61

5.5 Processing of commands .••.•..•....•.•...•..•......•...... 61

5.6 Syntax chec~! ... 62

5.7 Command expansion •................•.••................... 62

5. 8 Map p ~ n g . ..•.................•...........•..•. 63

5.9 Name resolution of the operands 63

5.9.1 Pros and cons of the approaches
5.9.2 Comparison of different systems

Chapter 6: CENTRALIZED, DATA-DRIVEN DIALOGUE MANAGER

6.1 Why a Dialogue . Manager <DM)? 70

6. 2 Features of a DM•....•...........•....... 71

6.2.1 Different dialogue levels
6.2.2 Processing of sequences of commands
6.2.3 Availability to application programs
6.2.4 Separation of user interface from function
6.2.5 . Message handling

6 . 3 Achievement of the features 73

6.3.1 Different dialogue levels
6.3.2 Processing of sequences of commands
6.3.3 Availability to appli c ation programs
6.3.4 Separation of user interface from function
6.3.5 Message handling

6.4 Why net let the DM do all of the job ? 7 8

6.5 Sorne figures ... 78

--~ - -.~.

TABLE OF CONTENTS 4

Chapter 7: THE COMMAND EDITOR

7.1 Necessity of the editor ~ 80

7.2 Scope of edition•..•............................... 81

7.3 Objects which can be edited•.... 81

7.3.1 Global informations
7.3.2 Domains
7.3.3 Programs
7.3.4 Commands
7.3.5 Operands
7.3.6 Values

7.4 Localization of abjects •••.•.......•.........•........... 84

7. 5 I BM S / 38 •.......•.•.••............................. 84

Chapter 8: USER PROFILE

8. 1 Al l owed acti ans •...•........ • 85

8.2 Way ta use the system.; 86

8.3 Supervision ..•.............. 86

8.4 Modification of the user profile•.... 86

8.5 The user profile in the S/38 87

Chapter 9: USING T~E MEANS TO ACHIEVE THE ENDS

9.1 Building a tailored command set 88

9.2 Improvement of initial training 89

9.3 Support of evoluting user 90

9.4 Plurilinguistic aspects 90

9.5 A standardized user interface 91

9.6 Security aspects 91

CONCLUSION 93

APPENDICES

Appendi >: A ; ... 97
Appendi >: 8 98
Appendi >: C .. lûO

-~ - . . ~--'' ,.' .. ~-·

TABLE OF CONTENTS 5

GLOSSARY • •..•..••••..•.•.•.••.•..•....•.•................... 108

BIBL I OGRAPHY ••••••••••••••••••••••.••••••••••.•.••..••..•••• 112

INTRODUCTION 1

Most of today's general-purpose systems are becoming more

and more complex, and there seems to be no

c omp 1 e>: i t y . A user's access to a computer

various facilities is, in

Language.

almost all cases,

1 i mit to this

system and its

via a Command

The growing complexity of the systems does not render the

Command Language, and hence the user interface, less complex.

The trouble cornes from the fact that Command Languages, as well

Linder l yi ng functions usually are designed and as their

implemented by computer professionals having each their own

ideas about what a "user-friendly" user interface is, so that

many different

whole system.

user interfaces are scattered throughout the

This situation is barely acceptable by these computer

professionals. New, due to the ever growing number of end users

gaining access to the general-purpose systems, it becomes

ineluctable to harmonise those user interfaces, i.e. to render

them consistent.

Providing each user of such a system an own environment,

consistent and tailored to his needs and requirements, would

put him at ease and thLtS render the system more

"user-fri endl y".

It is shown in this thesis that a command language can be

used as a basis for the tailoring of user interfaces.

In the first chapter, the most important concepts used

throughout this dissertation are defined.

The different ends pursued in user interface tailoring are

gone through in chapter 2;

Chapters 3 to 8 treat the different

achieve user interface tailoring.

me ans necessary to

Chapter- 3 discusses the language character-istics a Command

Language should

inter-faces.

provide to suppor-t the tailoring of Ltser-

INTRODUCTION 2

Chapter 4 describes the guidance concept in the special

context of Command Languages.

Chapter 5 handles command interface considerations.

Cometh next a chapter about the concept of a centralized,

data-driven Dialogue Manager, which is a widening of one of the

concepts defined in the first chapter, namely the Commmand

Language Processor.

Chapter 7 describes the command editor, a function

permitting to edit the data (abjects) which drive the Dialogue

Manager discussed in the chapter before.

Chapter 8 goes (briefly) over the concept of user profile.

Chapter 9 shows how the different means are ta be used ta

, achieve the ends enounced in chapter 2.

A few remarks before going into it.

It is assumed that the reader has some notions in the field

of Operating Systems.

The systems we are primarily concerned with in this thesis

are general-purpose time-sharing systems. This ta justify why

approaches like for instance the LISA one are not taken into

account, becau~e being infeasible for the systems discussed

(although the LISA user interface is also a kind of Command

Language) .

As many other fields in the edp universe, human computer

interaction is in the early stages of a science's development.

As a result, the field contains principles which are sometimes

Fontradictory and there is no consensus about the concepts used

in i t.

This is surely net surprising, as the main concern is on the

user, i . e. a human bei ng wi th, al 1 its pecularities and

absurdities. How else could one explain the growing interest of

psychologists in this aspect of human computer interaction?

Be that as i t may, the concepts and principles used

throughout this dissertation are surely defined and used

otherwise elsewhere. If no satisfying definition was found, the

one proposed is of course given while keeping in one's minci the

goal pursued, namely the tailoring of user interfaces.

INTRODUCTION 3

Even if the main basis for this dissertation was the way

"it" was done in the Siemens BS2000's SDF, . this is neither a

user manL1al for the SDF nor an e>:act description of how "it

works''. The latter would anyway have been difficult to provide,

as assuming that the reader knows the BS2000 is irrealistic and

presenting the B52000 is beyond the scope of this thesis . .

DEFINITIONS AND GENERALITIES 1. 1

Chapter 1: DEFINITIONS AND GENERALITIES

In this chapter, the most important concepts used throughout

the thesis are defined: the user interface, the tailoring of

user interfaces, the Command Language and the Command Language

Processor. At the end corne a few reflexions on the concept of

"user-friendliness".

1.1 The user interface

"Interfaces keep things tidy,

Functions do." (Alan J. Perlis,

but don't accelerate growth:

Epigrams on Programming)

This section begins with introducing the concept of user

interface by showing the way it is defined in the 1·iterature.

The second part gives the definition of the concept as used

throughout the thesis.

1.1.1 Introduction

There are many (often informal) definitions of what the user

interface to a computer system is.

Accord i ng to Martin, the user interface i s "the wi ndow

through which the user sees the computer system " . ([MART73J)

i nter·f ace are "the aspects or t he For Parnas, the user

system behavior that a user sees." ([PARN69J)

Schofield et al. take another v iew: for them, "the 'user

interface' consists of al! messages that can pass between th e m

[i.e. the user and the system] and the condit ions under wh i ch

they occur. To the system, the interface is f ull y defined, b u t

the user can only rely on his e x pectations , developed during

use of the system. He will describe an inter f ace as 'friendly '

or 'confusing ' ; to obtain his approval, the in t erface must be

more than just a collection of ad hoc messages and conventions

DEFINITIONS AND GENERALITIES 1. 2

- it must forma systematic whole." ([SCHQB,JJ)

Here is another view, taken from a 1980 Data Report: "die

Benutzeroberfliche i st als Ebene zwischen Benutzer und

Edv-system definiert - sie bestimmt den Grad der Nutzbarkeit

und dami t der Akzeptanz dL1rch den Benutzer" <"the L1ser

interface is defined as the level between the user and the

edp-system it determines the degree of usability and

therewi th of acceptance by the user. ") (CDATA80 J)

A definition close to the latter is given by Moran: "the

user interface of a system consists of those aspects that the

user cornes in contact with physically, perceptually, or

conceptually. Those aspects of the system that are hidden from

the user are often thought of as

< CMORABl J >.

1.1.2 Definition

its i mpl ementati on."

None of those definitions is obviously false but, -except for

the second one,

practice.

they are far too general to be Llsed in

A better approach in my eyes is to start with the separation

of the functional~ty of a computer system from its user

interface (see fig. 1. 1).

user

I
user

inter fa ce

l
f L1nct ions

fig. 1.1: the user- interface

- c:; -

DEFINITIONS AND GENERALITIES 1. 3

The functionality of a computer system is defined by the set

of functions Cor tasks) the system is able to perform.

The user interface mediates between the user and the

functions. From the user's point of

language (i.e. a form of

control the functions.

communication)

view, it implements a

that allows him te

It is the way this language permits him to control the

functions which determines the degree of Ltsabi 1 i ty and

therewith of acceptance by him (e.g. a powerful application may

loose or obscure much of its functionality if the user

interface is net designed with care).

For this user interface to be "friendly", it must make the

functions of the system transparent to the user.

The attentive reader will have noted that there is a bit of

each of the definitions given above in the one proposed.

A language must be natural to use: natural for the user and

natural to the function.

interaction, the type of

When choosing the format for an

linguistic structures should be

appropriate to the function and to the ability of

Here is where tailoring cornes into effect.

1.2 Tailoring of user interfaces

This section begins by introducing the concept of

the user.

tailoring

by showing the way it is viewed in the ljterature. The second

part defines the concept and discusses some generalities, while

the third part presents the aspects comprised by user interface

tailoring.

1.2.1 Introduction

Tailoring is seldomly discussed in the literature:

[BOTT78J and [BOTT82J discuss it in the context of command

set tailoring for the IBM S/38, a workstation-oriented system.

DEFINITIONS AND GENERALITIES 1. 4

[KUGL80J treats tools for the constrLtction of "application

oriented interfaces, tailored to the semantic levels of the

single Ltsers". This i s an approach based on the concept of

abstract machine.

[RAYN80] proposes to provide a tailored HELP environment for

the different Ltsers of a general~pLtrpose system.

1.2.2 Definition and generalities

Tailoring is

interfaces is the

defined

process

as follows: the tailoring of

allowing the defin i tion of

LlSer

user

interfaces according to the individLtal user requirements; this

way, it should accomodate the user and render the system more

"user-friendly".

Tailoring, due to the means to be Ltsed (see chapters 3 to

8), permits to avoid the non-Ltniformity of langLtage features

throughout the system; it also permits to h i de inessential

details from the Ltser.

This is very important, as" ... we are better off if

inessential details are made INACCESSIBLE. So l ong as deta i ls

are accessible there will be a temptation to use the knowledge

of these details - for example to gain some local efficiency.

In the long range context of program rel i abilit y and

modifiability, however, such exploitation of detailed knowledge

al most al ways has a net negat ive conseqLtence. " ([l<UGLB':1 J)

As tailoring consists in fact in start i ng from a whole

language and providing each user what he needs, it coLt l d be

compared to the view concept used for data bases. However ,

tailoring goes further than providing views.

1 .2. 3 Aspects comprised

Tailoring comprises man y aspects; I shall restrict myself ta

the aspects s~ecifically related ta the Command Language, whic h

are the following:

visibility of abjects;

different views of ab j ects;

DEFINITIONS AND GENERALITIES

individual command interfaces;

forms of dialogue;

response language;

plurilinguistic aspects.

1. 5

Other aspects are access rights, individual exception

handlers,... I shall not treat them because on the one hand

they have been discussed tao many times elsewhere (as for

instance the access rights) and on the other hand this would

lead us toc far.

1.3 Command Language

"A good system can"t have a weak command language." (Alan J.

Perlis, Epigrams on Programming)

The first part of this section introduces the concept of

Command Language, this time by an excerpt out of the

literature. It is defined in the second part, while ·the third

part concerns the discussion of its relation to programming

languages. The last part defines the concept of command

procedures.

1.3.1 Introduction

The

resumed

usual approach

in the following,

of people to Command Languages is

e:-: tracted from CSCHN80J: "One of

best

the

most tedious tasks a programmer faces is using a central

language to invoke operating system functions. Log-on

procedures, password check i ng , fi 1 e construction, camp i 1er·

invocation, library usage~ linkage editing, and device

allocation require a special l anguage which is rarely designed

for easy use. Mention IBM's Job Central Language to a group of

programmers and you will usuall y get a c ollegial sm i le

indicating recognition of shared anguish. What makes these

programmers se angry? Is the JCL bad, or is there something

aboutit which produces unwarranted dissatisfaction? Can these

languages be improved? Why have manufacturers persisted in

using fi x ed or constrained formats with arbitrary and complex

coding schemes?"

DEFINITIONS AND GENERALITIES 1. 6

However, things have changed, primarily due to the fact that

more and more non-computer specialists are confronted with

their use.

1.3.2 Definition

For more and more users, a computer is not an end in itself,

soit is to be viewed to them as a tool, a servant, and the

command language is to be used to command this servant.

So, the term " Command Language" is to be unde·rstood in its

broadest sense as providing the outermost level of dialogue

· between users and general-purpose systems. Thus they include

both commands and responses.

Indeed, one is more and more talking about a common OSCRL

(Operating System Command and Response Language); the reader

interested in standardisation efforts should ref~r to [HILL83J ,

[NEWM83J and [HOPP84J.

The reader

dissertation:

should bear this

"gobbledygook"-JCL's

in mind while reading this

are no more viable regarding

today's user community, even if they are still used.

Whilst the Command Language is primarily interactive (in the

past, manufacturer-provided JCL's emphasized batch use), it

should be usable in a batch environment. However, I shall

emphasize the interactive aspect and not treat the batch aspect

in detail. This only to put things right.

A command

operands (which

follows:

i s composed of

may be empty),

an operation and of a set of

expressed s yntactically as

<command >::=<operation> <operation >< operand >

<operation >::=<operation name >

<operand) ::=<operand name >< separator >< operand value >

[(operand-separator ><operand >J

<operation name) ::=<structured name >

DEFINITIONS AND GENERALITIES 1. 7

<operand name>::=empty <structured name>

<separator>::=empty

<operand value>::=<actual value of operand >

<operand-separator>: := ' '/'

1.3.3 Command vs. programming language

One more important point arising from what has been said

· above is that a Command Language is net merely a programming

language even if there are programming language constructs in

it for the purpose of flow control.

There is one very important difference between using a

programming language and using a command language. Using a

programming language means to write my own ideas in some formai

way, using a Command Language means I become incorpo~ated into

a very complex system I can never understand. A Command

Language has to hide the complex system before me, which is

much more than . a programming language is doing and has to do.

Nevertheless, people have gone very far in the "cross

breeding'' of command languages with programming languages,

mostly influenced by the UNIX shell approach. Two striking

examples are Ellis's LISP shell <CELLIB,3J, CLEVISûJ) and the

Command Language for the Ada environment ([BREN80J, CKRAN82J).

Ellis's LISP shell is a command language embedded in LISP

and runni ng under the UNI X system. It i s perhaps better

described as an extended version of LISP designed to handle

files, directories, etc., and to run pr-ograms wr-itten in

1 angLtages other than LISP. In f act, such programs wi 11 in

practice very commonly be system utilities as the editor, the

directory lister, the off-line pr-int, etc.

The MAPSE Command Language (MCL) blends features from the

UNIX environment (such as ID redirection, pipes and background

processing) with features of t.he Ada programming language (such

as Ada-like parameter passing).

DEFINITIONS AND GENERALITIES 1. 8

1.3.4 Command procedures

Commands can be grouped, to perform a given action, into

command procedures which can generally be parametrized

(similarly ta a procedure call in a programming language).

Command procedures are contained in files, sometimes with

special commands to indicate beginning and end of the procedure

(like in the BS2KDO>, sometimes not (UNIX>. They are generally

called by issuing a special command.

The name of a procedure is always the name of the file

containing the sequence of commands performing the given

action.

Generally, commands contained in a procedure file must begin

with the command herald (e.g. •;• for the 8S2000); an exception

to this rule is the UNIX system.

Examples of command procedures are:

- the shellfiles in UNIX: two possibilities are offered ta

execute command procedures: either ta issue sh <procedure file

name > (sh for shell) or ta mark the file as "e>:ecutable" and

issue its name at command level;

MIC files in TOPS-20 (Macro Interpreted Commands): these

files must be of the type 11 .MIC " and called by DO <file name >;

VAX/VMS command pracedures: the file mus t be given the

type 11 .COM", and the command procedure is called by issuing the

file name;

BS2KDO procedure files: procedures ar e en c l osed bet ween

two commands, BEGIN-PROCEDURE and END-PROCED URE , a n d t he y ar e

called by CALL-PROCEDURE <f ile name >;

there even e>:ist micros 1,;iith a (l .i mited) pracedure

facility, as for instance the UCSD OS on the APPLE II.

DEFINITIONS AND GENERALITIES 1. 9

1.4 The Command Language Processor

This section starts (once again) by showing the way the

concept is shown in the literature and then proposes a

definition. The third part treats the procedure and batch job

cases of command processing, while the fourth part concerns a

concept introduced in the part before, namely the command

implementor.

1.4.1 Introduction

According to Beech, a language processor ''is expected to

understand correct utterances in the language, and to doits

best in presence of errors." (CBEEC80J)

For Jardine, "the command processor has the property of

binding an application program to the Operating System. "

(CJARD75J)

1.4.2 Definition

Taken together, both definitions provide a satisfying one;

of course, the Command Language Processor has to analyse

commands and "to do i ts best" in presence of errors. It shoul d

also provide the interface to the function implementing the

command and call this function (called henceforth the

implementor of the command) (see fig. 1.2).

According to this definition, during e x ecution of the

implementor, the CLP relinquishes control of the central

processor, and it may gain it only if one of two things happen

to the implementor execution: either the implementor terminates

(normally or abnormallyl, in which case the CL~ gains central

at the 1 evel i t had at the start o ·f the i mp 1 ementor; gr_ t he

implementor is interrupted (by some kind of a break signal), i n

which case the CLP gains only a restricted form o f control. So,

during the execution of an implementor, the CLP is inactive.

DEFINITIONS AND GENERALITIES

ERROR
MESSAGE

y

PROMPT

INPUT

CHECK
INPUT

CALL
IMPL •.

(CLP>

· <USER>

<CLP>

(CLP>

<CLP)

PROVIDE (IMPL. >

ACTION·

PROCESS <CLP)
R.V.

1. 10

The CLP indicates to the user
that it expects an input

The user provides an input

The CLP performs a syntax check
of the i npL1t

If syntax errer, issue errer
message

If no error, cal! the
i mplementor of the cmd

The function prov i des the
desired action

The CLP processes the Return
Values of the i mplementor

fig. 1 . 2 : command processi n g <V ER Y broad vi e w)

A question giving rise to controversy is whe t her the Command

Language Processor is implemented as a centralized facility or

is diffused throughout the system. According to [JARD75J,

"whether this is a conscious architectural decis i on, a design

trade-aff or an accident of implementat i on is a maot point."

DEFINITIONS AND GENERALITIES 1. 11

OS/360 is an example of a diffuse command processor; it

handles operator commands through a special interface (the

Master Scheduler), Job Central Language through an interpreter

(Reader-interpreter and Scheduler)

interfaces via subroutine calls

<Supervi sor Cal l s). (CJARD75J)

and application program

or programmed interrupts

-Mul ti es, UNIX, BS2000 and S/38 are examples of Operating

Systems with centralized processors.

1.4.3 Procedure and batch job handling

In case of procedure or batch job handling, the CLP does net

prompt the user for an input; input is read from the file

containing the commands constituing the procedure or the batch

job description.

In case of an errer rendering impossible continuation of

processing, the CLP either aborts the· procedure or batch job or

searches for a recovery point.

1.4.4 The command implementor

In the traditional approach, the implementor of a command is

a system-level function; this means that, once the implementor

has gained control, it is up toit to perform the dialogues

with the user, be it in command form or other. One of the

claims put forward in this dissertation is that application

level commands should be treated in the same way as system

level commands (at least in the way they are to be used by the

user). Application programs are in fact functions other than OS

functions.

In fact, application-level commands are commands correspon=

ding to sub-functions of system-level functions.

For this reason (among others>, the Command

Processor concept will be widened in chapter 6,

concept of a centralized Dialogue Manager.

Language

ta the

~

DEFINITIONS AND GENERALITIES 1. 12

1.5 "User-friendliness"

"The computer reminds one of Lon Chaney - it is the machine of

a thousand faces" (Alan J. Perlis, Epigrams on Programming)

As the term 11 L1ser-friendliness" is inseparably tied to the

term user interface, I shall have to say a few words aboutit.

Fi rst of al 1, I do not bel i eve that the term can be

precisely defined; anyone has its own ideas about what

"user-friendliness" is, and this is quite normal as anyone has

in mind a different model of the system he is using.

Let us

1 i teratL1re;

nevertheless look at the way it is shown in the

I think this will help to understand my position.

"User-friendliness" is a concept which. is often used but

seldom defined in detail and there seems to be no consensus

about its meaning.

Here is an e>:cerpt from [DEHNSl J: "Sorne authors regard user

friendl iness more generally as an aspect of 'acceptance', 'user

adequacy' or 'system quality'. Other authors Just talk about

'usefulness', 'usability', 'user's satisfation', 'people

compati b i 1 i t y' , .' adaptation to human needs' , 'ease of use' ,

'wel 1-behaved system' ".

Other authors go further and give a definition:

"User-friendliness is the ability of the system to react as

e>: pected by the user" < th i s one i s net toc bad) ;

"User-friendliness is the problem of facilitating the user-'s

access to the computer" (this one is a bit tao simple);

"In our opinion user-fr-iendliness of a dp-system means, that

all persans in the environment of the system are satisfied"

(this one was given by philanthropists);

"A computer system is called user-friendly, if its eqLlipment

DEFINITIONS AND GENERALITIES 1. 13

guarantees the psychical and physical well-being of the user,

and if it provides job satisfaction and decr-easing alienat.ion"

(same remark as above);

"For the user of a dialog system Llser--friendliness is

defined system-theoretically as the linear coordination of the

components input

(wow !) •

information and operation in the system"

All of these definitions are also taken from CDEHN81J; ther-e

is a whole chapter for the reader interested

friendliness" aspects.

in "user-

The most "user-fr-iendly" system would maybe be the one which

adapts itself to the user. And yet! this would probably disturb

certain (classes of) users. Anyway, we are still yar-ds away

fr-om such a system, even if r-esear-ch is done (see for- instance

[G00D84J: the dialogue is iteratively refined by hand based on

the analysis of the user's behavior).

To conclude, the reader should bear in minci the fact that I

do not bel i eve that THE "user-fri endl y" system e>: i sts to date

and that · I do net claim the propositions made in this

dissertation to be the most "user-friendly", even if they coLtld

render today's general purpose systems' user inter-faces more

"user-f ri end 1 y".

ENDS 2. 1

Chapter 2: ENDS

===============

In this chapter, the ends pursued in user i nterf ac·e

tailoring are considered, beginning wit h discussing the

existence of different types of users of a given system; it is

shown that the definition of these types is not as

straightforward ~s it could seem first. This fact influences

the choice of our typing approach and the first two ends

presented, namely the improvement of the initial training and

the support of the evoluting user. Three further ends are then

enounced, concerning plurilinguistic aspects, the introduction

of a standardi zed system-wide user interface and the

enhancement of security aspects.

2.1 Existence of different types of users

The first (and most obvious) reason for the necessity of

user interface tailoring is the existence of different kinds of

users of a system. Let us look first at the way these types are

presented in the literature.

According to . one approach (see [UNGE79J, [BCS 78]), the

user~ can (broadly) be divided into two major groups~ the first

consisting of those who use some general-purpose programming

language, while the second group employs canned packages of

several kinds. Whereas the first type of user interacts

directly with the command language processor, the second one

usually does net; this kind of classificat ion corresponds to

the approach commonly used, i.e. classifying users by task.

Another approach is taken by Ledgard et al. ([LEDG81J J ,

detailed in CLEDG81 J >, which classify users

according to their

computing:

level of familiarity with

i nto 3 g1roups

interactive

Group 1: "i ne~: per i enced users" (1 ess than 10 heurs of

terminal use>

Group 2: "fami 1 i ar users" (between 11 and 1(10 hours)

ENDS 2. 2

Group 3: "experienced users" (more than 100 heurs)

(Note that all users belong to one "task class"; in the case of

the experiment presented, they were all students)

Further views are compared in CDEHN81J (pp.11-14), among

which Martin, who distinguishes between trained and untrained,

programmer and non-programmer, casual and dedicated users, with

equivalence between (casual, untrained, non- programmer) and

quasi-equivalence between (dedicated, trained, programmer).

Another view pre~ented is the view of Dolotta, who names three

groups: end users, mid users and system users.

A~ is easily seen, there is no consensus in the literature

about these user types; however, some important aspects should

be clear:

a casual user of one system can be a dedicated one of another

system, and vice-versa;

a programmer cornes to use "non-programming" canned packages;

even an e>:pert user can "have a bad day", and this should not

compel him to fall back upon user manuals.

Tailoring considerations should take all

account.

2.2 The typing approach chosen

of this i nto

Therefore, we shal l base our typing approach on two

concepts: the sophistication / transaction model proposed by

Schneider et al . (C SCHN80 J) and the rol e concept .

2.2.1 The sophistication/transaction model

The sophistication mode! relates the user ' s sophistication

level

1. 1).

with his experience of a language or s y stem (see fig.

The length of time a user remains at a given level is dependent

upon:

1. the frequency of use of the language;

2. the language structure;

3. the language complexity;

ENDS 2. 3

4. the degree of experience with similar languages.

Remark: Progress is not guaranteed: a user can remain "forever"

at a given level.

User

1 eve·l

Novice

E>:pert

Advanced

Intermediate

Experience

Fig. 1.1: User"s ability vs. experience with a system

The model is independent of the user"s task: he can be at

the novice level in one feature, advanced in another. It is te

be used together with what Schneider et al. cal 1 the

transaction model, considering the stages required for the

completion of a transaction:

Stage Action

1 What function is te be used

2 How is the function used

3 How is the function coded

4 System responses

5 Evaluation of the response

Let us now look in somewhat more detail

levels:

at the differ-ent

The novice user- is the beginner or t he user hav i ng

i nfrequent interactions with the system; f o r the beginner ,

guidance at stages 1 and 2 will be necessary, te first

in i t s determine what function is required and then be guided

use, whereas the infrequent user- may know what function te use

but may have forgotten its details.

1

1
1
1

ENDS 2. 4

After a period of time, the novice user will usually evolve

into an intermediate user who may require little assistance in

choosing a function or in its basic use. Help may be required

in infrequently employed or complex structures, operands, or

keywords. This user class will issue a command in as concise a

formas possible.

The next step in the evolution is the transition from

intermediate to advanced user (less drastic than the tl'"ansition

fl'" • m novice te ~ntermediate); the main difference between this

two levels consists in the fact that the advanced user is

concerned with groups of commands l'"ather than single line

constructions.

The expert user will employ all facilities of the system,

and will be in a position to augment its functions th,,-ough the

design and development of new primitives and advanced programs.

The advanced and expert users are the ones which will add

new c • mmands to the system, the formel'" "merely" by grouping

commands and the latter by adding new functions.

2.2.2 The l'"Ole concept

The second concept is the concept of role of the user,

namely the function he executes in the system. Roles can be for

instance <system administ,,-ator >, <application pl'" • gl'"ammer >,

end-L1ser "based" rel es, . . . and permit to def i ne the

l'"esponsibility of and actions performable by a given user.

The ,,-ole notion in fact extends the model, as in a s y stem

there al'"e persans which have very clearly defined l'"oles, while

others have nat (in general, it is a matter of persans which

lack enough knowledge of the system to be assigned a role) .

Similarly, for same persans, their role will change while

evoluting, and for others net. However that may be, once arole

has been assigned to a persan, its interface can be precisel y

conceived.

In fact, the use of these concepts defines the graining

level of the tailoring. While a system administ,,-ator will be

somebody at the expel'"t level, an applications pl'"ogrammel'" will

,:·:...

ENDS 2. 6

2.3.2 The "advanced novice":

In this case, there is only one important premise te be met

(aside from the fact that his · default mode of interaction

should be the unguided mode), namely that the user interfaces

te the different functions (for instance a new programming

environment, a program for financial modelling, ...) present

the same structure, similarly to the APPLE LISA approach. In

this way, once knowing how to use one function, one can learn

to use the others by comparison.

2.4 Support of evoluting user

This concerns the users which have crossed the novice level;

as we have seen (see 2.2.1), these users require more help for

e>:ecuti ng a function than for choosing one. For them, the

default mode of interaction is the unguided mode, and a

temporary guidance mode

which guidance is provided

is required. The latter is a mode in

just for the ex eCLlt ion of one

command, without having te change the guidance level explicitly

(i.e. by means of a command).

One further argument for this temporary guidance is the

following, claimed by users of interactive systems (see

CNICK81J, p.475): "Effective use of the system depends on

knowing tao much details." There is the point: effective use

should not depend on knowing details, but on knowing how to get

these details without leasing time.

2.5 Plurilinguistic aspects

This section, as own e x perience has shown, primarly concerns

the rank beginner, because of acceptance problems ~rom the side

of the other users. Nevertheless, the latter are also concerned

IIJ i th t h i s aspect , as the y c: ou 1 d g et " h E' l p " i n f or· mat i on i n the i r

native language, while using the commands in the (t radit ional)

English-based form.

Providing an interface completely based on the user's native

language would relieve this user from having to learn English,

ENDS 2. 7

still considered as THE basis for Command Languages.

2.6 A standardized user interface

As it is difficult to evaluate which is the primary user

level of a given system (i.e. the level to which belong the

most users), though it seems to be the intermediate level,

according to CSCHN80J, the interface handling should take all

levels into account. This means that it should provide a given

interface to all users (from noviie to expert) as well as give

the expert <and advanced) users -and those users whose role

- requires it- flexible, consistent means to build up their

command interfaces (for their own use or for others).

Moreover, there is no reason why application-level commands

should be handled in a way different from system-level commands

(at least the way they are seen (and thus used) by the user).

All this is only made possible by providing a tailorable,

generalized user-interface which can be imposed as a unique,

standard interface throughout the whole system. This in fact is

a typical example of a means becoming an end in itself.

A stan?ard interface has several advantages:

for the user: uniformization of interaction throughout the

whole system;

for the application designer: the time for designing a new

application is reduced since he is relieved from outprogramming

(and thus testing, ...) the in t eractions ~ith the user; anyone

who has ever conceived a user-oriented application

much time this takes)

2.7 Security aspects

knows how

A further end in user interface tailaring is the enhancement

of security; the tailoring is one possible realization of the

well-known "need-to-know" principle, which is described in a

more detailed way in [SILB83J, [DENN82J or [FERN81J. In short

terms, this policy restricts information to those people who

really need the information to do their job, and only the

ENDS 2. 8

amount of information necessary for doing it.

This cames close to wha t has been said concerning the role

concept: once arole is clearly defined, it is possible to

provide the interface tailored to the needs of this role, and

nothing more or less. To achieve this, it is necessary not only

to provide only the subset of commands needed by the user. Even

more; the commands themselves should be tailored to the needs

of the user by rendering certain operands invisible.

Tailoring could also be used to resolve the problem of what

could- be called the "sensitive" commands, i.e. commands which

· have to be used with caution (e.g. DELETE-FILE, ...). It is

clear that a novice user is much more concerned with this than

another one and he should therefore be the only one who is

"bored" with confirmation as king,

MEANS: LANGUAGE CHARACTERISTICS 3. 1

Chapter 3: LANGUAGE CHARACTERISTICS REQUIRED

=============== ============================

In this chapter, the language characteristics required by

the CL are discussed, beginning with its functionality; it is

then stated that it should bear aspects of natura1~1anguage

likeness, that its operand names should be semantically

meaningful, and most important of al l, that it must be

consistent. An outcome of the previous proper~ies is the

necessity of a powerful, "L1ser-friendly" abbreviation facility,

' which is discussed next. At the end cames a section on

responses.

The required language characteristics are also (the basis

of) a set of guidelines for design and maintenance of a Command

Language.

3.1 Functionality

The command names should have a relationship to their

underlying function, i.e. commands should be given semantically

meaningful names, describing (to the extent possible) what

their ~nderlying function does.

Sa, for instance <BS2KDO):

COPY-FILE

DISPLAY-FILE

CONCATENATE-FILES

SHOW-FILE-ATTRIBUTES

rather than (UNIX):

cp - copy file

cat - concatenate 2 files/ display a file on screen

(the trouble cames from the fact that the side effects

of the cat command are used for the display case)

1s - show file attributes

or, even better:

grep - search file for pattern <this one deserves a prize)

MEANS: LANGUAGE CHARACTERISTICS 3. 2

People want the machine to do something for them, they are

action-oriented. In short, as they want the system to perform

some action on some abject, the general form of a command

should be the following: <action >< object >, i.e. <verb><noun>.

Objects include passive abjects (like files fo r instance) as

well as processing activities Clike programs, f ile-transfer,.).

The difference between these abjects should only appear to the

user through the <action>-verbs chosen, and not on basis of a

formal difference between commands (i.e. on basis of the seman=

tics, not of the syntax).

A verb-object scheme is a dual-level hierarchy; Thomas and

Carroll report (CTHOM81J) that people rate hierarchically

consistent command languages better than those that are not

hierarchical. They found that people learn hierarchical command

languages more quickly and that the frequency of some types of

errors was reduced by using a hierarchical CL.

Similarly, Green CGREE79J showed that a "bigger'' langLtage

with clearly exhibited structure was easier to learn than a

"smaller" language with an inscrutable structure. This detracts

from the usual . <small is beautiful > approach taken for instance

for the UNIX system.

A natural outcome of this requirement is that overloading is

totally eliminated; a command performs one action on a single

type of abject. Overloading may seem to be a way of keeping the

command set smaller, but there are subtle (and sometimes

treacherous) distinctions to be made wh i ch are up to the user.

This poses a burden on him which should be supported by the

system. Moreover, a same command having different meanings i n

different contexts will make him feel at least uneasy .

Another outcome is that "rattletrapping" is also avoided. An

example of commands used as rattletraps are the SET and SHOW

commands in the VAX DCL.

For instance , the SET command ((VAX 81]):

Format:

SET option

where the options are

CARD-READER

MEANS: LANGUAGE CHARACTERIST I CS

CNOJCONTROL-Y

DEFAULT

MAGTAPE

MESSAGE

C ••• J

Purpose:

3. 3

The SET command defines or changes, .for the current terminal

session or batch job, characteristics associated with files and

devices owned by the process.

3.2 Natural-language-likeness

In CLEDG80J, Ledgard et al. state that "an interactive

system should be based on familiar, descriptive, everyday words

and legitimate English phrases", while Green and Payne view

English-likeness as one of the guiding principles in CL

learnability (CGREE84J).

This means that the operand names should be choseri in such a

way that they reflect, together with the command name, an

English-like phrase, easier te learn (and retain)

L1sers.

for novice

Needless to sa1/, it is net possible te arrange all operands

in such a fashion that the command reflects an NL phrase.

Generally, it suffices te regard the first operands, which are

the essential ones (concerni n g the abject the command is acting

against) and the most often used anyway.

For instance,

COPY-FILE FROM-FILE=file1,TO-FILE=file2,

which can also be used as follows:

COPY-FILE TO~FILE=file2,FROM-FILE=filel.

3 .3 Semantically meaningful operand names

For al 1 operands which can not be designed such as to

reflect this NL aspect, the design rule is the following: the

operand name is to be chosen in such a way that the semantics

of the corresponding value can be read off from it.

1 :_____ .•

MEANS: LANGUAGE CHARACTERISTICS

For- instance,

CREATE-FILE C ••• J

ACCESS-METHOD= ...

3. 4

Of course, there should be a possibility of dr-opping these

operand names or/and to abbr-eviate them. For- the latter- aspect,

see section 3.5; the for-mer brings us to the problem of whether

oper-ands can be specified by position, by keyword or if both

should be allowed.

Only by position: this means that once a user begins to

enter the oper-and values positionally, he must go ahead in the

same way. This would be very error-prone: consider the case

wher-e he wants to give, say, the first and ninth oper-and of a

commanda value: CREATE-FILE hugo,,,,,,,,toto. Counting the

separ-ators is of course very amusing, but also very

er-ror--prone. Sa thi.s way shou ld be r-ejected.

Only by keywords: this will be boring once the us~r becomes

accustomated to the use of the command. So, it should be

r-ej ected, too.

By position and keywords: this is the most "Ltser-fr-iendly "

way to doit, but it should be handled with caution, and this

for two reasons:

The first reason is that allowing the user to "switch" from

positional to keyword-specification alternatively is error

pr-one, too, as it would compel him to know the or-der of the

operands. So, once he begins to use keyword-specification, he

. should not be allowed to switch to positional specification:

COPY-FILE filel,file2,0PD-4=opd-4,0PD - B=opd-8 , 0PD-5=opd-5

The second r-eason is tied t o the evolutionar y aspect of an y

edp-system, and thus of the commands:

r-emoved. Pr-ab lems can arise for-

operands can be added or

instance with command

procedures where operands have been specified exclusively by

position. So, in command procedures, operands should always be

specified by keyword; this seems straightfor-ward in theory but

is not in practice.

MEANS: LANGUAGE CHARACTERISTICS

3.4 Consistency

This is in my eyes the major property any Command Language

should possess, because it is a guiding principle for a novice

user Che feels in control because consistency makes him

comfortable; he is certain that unknown things will function

like known ones) and because it keeps the Command Language from

becoming unmanageably comple>:. The first part of this section

discusses the scope of the required consistency and illustrates

it by some examples, while the second part presents the means

to achieve consistency. The nex t two parts treat in more detail

the aspects of the solution proposed in the part before.

3.4.1 What kind of consistency?

Both syntax and semantics of the

consistent.

commands ffiLlSt be

First of all, the command names should be constructed in a

consistent way, that is, always in the form <action > against

<abject>, i.e. <verb) <noun >. Similarly, the first operand

should be the abject the command is acting against (e.g.

CREATE-FILE and DELETE-FILE should have as first operand

FILE-NAME).

Second, command names should be congruent; congruence should

exist on two levels:

- for one and the same abject X, between actions performed

on X: CREATE-X, DELETE-X;

- for two different abjects X and Y, between equivalent

actions: DELETE-X, DELETE-Y and net

DELETE-X, ERASE-Y

Third, if you have the commands CREATE-FILE and DELETE-FILE ,

the operand name indicating the file to create / delete should

be the same (e.g. FILE-NAME), and so on for all operands with

corresponding meaning.

Fourth, defaults must be chosen in a consistent way, i.e.

operands with similar function should default to the same

value .

- O" • • •w • • ~ • • •

MEANS: LANGUAGE CHARACTERISTICS 3. 6

Last, but net least, if you have a command SHOW-X

ATTRIBUTES, with which the names of the specified object(s) is

(are) also shown (this is yet consistent, as the name of an

object is part of its attributes), the name of this abject

should be modifiable by using, say, MODIFY-X-ATTRIBUTES, but

there should net exista command like RENAME-X.

3.4.2 How can consistency be achieved?

First

must be

throughout

system.

of al!, consi!Stency rules like the ones cited above

defined; second, these rules mL1st be enforced

the whole design and evolution phase of the entire

The ideal solution would be te have one standard Command

Language (like the OSCRL) defining the consistency rules and to

have in-house committees to enforce these rules during design

and evolution of a given system.

3.4.3 Standardisation

Unfortunately, concerning the first aspect, the lecture of

the different standardis~tion status reports gives rise to two

impressions: the first is that they seem to be breeding up

"little" monsters and the second that we shall have beards 'to

the ground before something constructive will be realized and

implemented.

Furthermore, who will be able to impose these standards?

(the answer coming to one's mind is less than reassuring).

3.4.4 In-house committees

While waiting for a standard Command Language (?), in-house

committees are necessary to maintain consistency; I know about

three committees: DEC's DCL Clearinghause, IBM's Usability

Committee and Siemens KSK.

(1) One of the Command LangL1age issues of DEC' s DCL

Clearinghouse is the DCL's . consistency: "The overall

consistency is verified by comparing the syntax with other

MEANS: LANGUAGE CHARACTERISTICS 3. 7

produc:ts having similar functions and/ or a similar command

syntax. The assumption is tha~ a given function should be

invoked with the same command and syntax wherever it is used in

DCL (and vice versa). The basic philosophy is that the command

set should be kept as small as reasonably possible."

< C GRAY85 J) •

Alas! Keeping the command set small gave rise to commands

like SET and SHOW; the SET command for instance is used to

change defaultsr characteristics of devices, "the CL1rrent

status or attributes of

consistent.

a file", ' this is net very

(2) The philosophy behind IBM's Usability Committee (working

on System/38) was that "usability must be designed into the

system from the very beginning, and it must be as integral a

part of the development process as performance, reliability,

and serviceability. [...] CTo achieve this,J the Usability

Commit tee had responsibility for: [• • • J (3) Developing

usability standards that ensure the consistency of bdth syntax

and semantics throughout the various interfaces of the system

including: the design of commands such that their syntax and

semant i es fol l ow consistent rul es [... J". (CDEME81 J)

In the System/38, each command is used to request a single

operation on a specific type of abject. So far, so well.

Trouble starts with the construction of the command names (see

CBOTT82J). They are constructed by concatenating abbreviations

for verbs and nouns. Now, even if the different abbreviations

are used consistently throughout the whole command set, the

so-claimed "mnemonic" names seldomly have mnemonic power.

For instance:

CRT: CReaTe

Dl<T: Disl<eTte

SBS: SuBSystem

STR: STaRt

RDR: ReaDeR

Ther-e is 1 i t ·t 1 e consistency in the choice of the

abbreviations; you mean they always dropped vowels? No, as in:

USR: USeR

MEANS: LANGUAGE CHARACTERISTICS

OBJ: OBJect

DEV: DEVice

(although these ones are more mnemonic)

3. 8

Note that apart from this, S/38's user interface really is

consistent.

(3) Similarly, one of the pur-poses of the Siemens KSK

<KommandoSchnittstellenKontrolle) is to design and maintain a

consistent Command Language for the BS2000 (BS2KDO).

The working method of these committees seems ta .be fairly

the same:

proposition by working group;

review/comment by committee;

back to development group;

discussion(s) between design group and committee until

an agreement is reached.

The last point involves a fair amount of

negotiation ([GRAY85J and own experience).

diplomacy and

3.5 Powerful, "user-friendly" abbreviation facility"

--------------~---------------------------------

The first part of this section states the necessity of an

abbreviation facility (which is in the same time the reason why

i t i s presented here, together wi th the 1 anguage

characteristics, although it is rather a characteristic of the

Command Language Processor). The second part presents some

techniques for constructing abbreviations, whilst the third one

gives guidelines for the c hoice of the technique. The fourth

part discusses the technique chosen for the SDF, and the last

part treats some problems which could arise due to · the use of

the chosen technique.

3 .5.1 Why an abbreviation facil i ty?

As we have seen, the command and operand names as required

by the characteristics (i.e. functionality, •..) discussed above

will be rather long, and compelling the user to always enter

MEANS: LANGUAGE CHARACTERISTICS 3. 9

the full command and operand names will soon become

frL1strat i ng.

Obviously, as stated by Benbasat and Wand in CBENB84AJ,

"command abbreviations increase the general efficiency of the

human user by

importantly,

reducing input

the option of

time and entry errors.

abbreviating increases the

More

Ltser

friendliness of a system since, for frequent users,

the full command name can become annoying."

entering

3.5.2 Techniques for constrycting abbreviations

There are a variety of

abbreviations, among which:

techniques for constructing

contraction: delete the vowels from a word; this gives

rather strange-looking results;

abbreviations formed by consensus: the abbreviations ar e

imposed, there is no real construction rule for the user.

This compels him to know not only the command nam~s but also

their abbreviation;

mnemonics: see for instance section 3.4 (S/38); this is not

very consistent. Furthermore the "mnemonic" power of these

abbreviations is discussible (a lollipop for the one who

tells me the me?ning of DCLDTAARA, DSPSYSSTS or CRTDSPF);

choosing the names in such a way that they can be

abbreviated to the first letter. This is the approach chosen

by Ledgard et al. < [LEDGS 1 J > ;

truncation: starting from the right end of the word and

dropping off one or mo r e contiguous letters until the

desired abbreviation is obtained. Truncation can be "free"

or with an imposed minimum (e.g. 4 letters for the VAX DCL) .

3.5.3 Which one to choose?

Command abbreviation rules should be consistent and simple.

Consistent meaning that the abbreviation rule can be stated

unambiguously and simply, and simple meaning that it should be

easy for the user te devise t he abbreviation by a simple

mechanical process.

MEANS: LANGUAGE CHARACTERISTICS 3.10

According to this, the rule proposed by Ledgard et al. would

be acceptable. Unfortunately, it is not very realistic in the

context of a big system; Ledgard et al. made their

investigations using an editor with a small set of commands.

Regarding the language characteristics discussed above,

creation of command and operand names is net a trivial task.

Imposing the constraint of first-letter abbreviation would make

this task impossible. Priority is given to those

characteristics.

3.5.4 The technique chosen: truncation

Therefore, the technique chosen for the SDF was "free"

truncation (no minimum number of letters imposed), and this on

two 1 e·vel s: on the 1 evel of each word composi ng the command (or

operand) name and on the whole name.

So for instance,

COPY-FILE

can be abbreviated to:

CO-F (because of CREATE-FILE)

or to:

COP

This rule is thé more interesting the more words are used te

construct the name (because this brings us back to Ledgard"s

first-letter abbreviation).

For instance:

SHOW-FILE-ATTRIBUTES

gives

S-F-A

Benbasat and Wand have shown in [BENB84J that the truncation

method is the one the subjects prefered ta use without trying

any other forms of abbreviations (the subjects were only told

they could abbreviate, but not how or how net to abbreviate).

This means that truncation is the most natural way of

abbreviating (the proportion of abbreviations using truncation

was 8(1 percent) .

MEANS: LANGUAGE CHARACTERISTICS 3. 11

3.5.5 Sorne groblems

Problems can arise using the "free" trL1ncation method, dLte

to the existence of commands with similar beginning (e.g. CR-F

and CO-F) and to the evolutionary aspect of systems (once

again), when new commands are introdL1ced which make previous

abbreviations fallacious.

The solution to this problem is two-fold:

in the case .of ambiguous abbreviations (e . g. C-F), inform

the user in the following way:

AMBIGUITY POSSIBLE BETWEEN:

<list of possible commands >

provide a list of existing commands,

alphabetical order.

on screen and in

3.6 The case of the responses

The first part of this section tries te define what response

are (in a rather informa! manner), while the second one

present s some gL1i del i nes for the des ign of "good" responses.

Part three tries to resL1me the guidelines, and part four shows

how to achieve the responses ' characteristics.

3.6.1 What are responses?

Responses are in fact all messages sent to the user by the

different functions he uses (or tries te use). According te

Dean, "one reason that some computer programs or s y stems

contain bad messages may be that ' message ' has corne ta means a

terse one-liner that people are not expected to understand

without an explanation. there are g uidelines f o r

preparing documentation to explain messages. And manuals are

written te reveal what messages often do no t r-e v eal

rneaning.

their

People want a computer ta provide messages that e xpla i n

themsel ves , that say what the y rnean. In f act , p sychol og i cal 1 y ,

the meaning is the message. A message whose meaning has ta be

explained does not communicate - it fails as a message.

MEANS: LANGUAGE CHARACTERISTICS 3.12

How do we ensure that a computer's messages are useful to

the people who recei ve them?" (CDEAN82J).

3.6.2 Guidelines for the design of "good messages"

Dean defines a set of guidelines for the design of "good"

messages. I shall briefly enounce the ones which are the most

important in my eyes. I believe them to be self-explanatory,

but al so someti mes rather "rul es of thLtmb" rather than real

guidelines. The interested reader should refer to (CDEAN82J).

"Do not make messages arbitrarily short"

"Identify the messages that people need"

"Anticipate people's e>:pectations"

"Help people fit the pieces together"

"Do not force people to re-read"

"Put people at ease"

"Write messages well"

"Use vocabulary that is familiar"

"Use standard conversational language"

"Use standard punctuation"

3.6.3 "Summary" of the quidelines

What follows is not really a summary, rather my opinion

about the most important features messages should provide.

First of all, messages must (of course) be syntactically

and semantically consistent; this in my eyes summarizes many o f

the guidelines cited above.

Second, different levels of verbosity must be provided, with

the most concise level providing meaningful messages (this is

MEANS: LANGUAGE CHARACTERISTICS 3.13

very difficult to achieve).

Thi rd, al 1

levels) must

messages (comprising the different verbosity

be presented to the user in a consistent way,

throughout the whole system.

3.6.4 Achievement of the responses characteristics

To achieve consistency, the same solution as proposed for

the Command Language is at hand, namely in-house committees

defining and enforcing rules (standards).

Tc achieve the different

consistent presentation, the

be centralized. As will be seen

straightforward at all.

levels of verbosity and the

handling of the messages should

in chapter 6, this is net

- ..,...,. ~

MEANS: GUIDANCE 4. l

Chapter 4: THE GUIDANCE CONCEPT IN THE CL CONTEXT

===

This chapter begins with the definition of two concepts used

henceforth. The guidance concept is then defined, after what

the requirements made to a guidance facility are enounced. The

way of achieving these requirements is discussed afterwards.

Section 5 presents an additional guiding aid, situated on a

more logical level. The last section discusses some

characteristics of the mask network composing the guidance

facility presented.

4.1 Definitions

Before going on, I shall define two concepts used in what

follows, namely the mask and HELP concepts.

4.1.l Masks

The concept used here is the one corresponding to the

standard layout formas proposed by the DIN ([DIN 84]).

A mask is a schema represented on screen,

display and input of data.

A mask has 3 parts (see fig. 4.1):

the head with status information;

to be used for

the body containing the information and input possibility

(if any) corresponding to the task currently to be performed;

the tail with on the one hand a contrai area for the user (2

lines showing the possible inputs and one or several lines to

enter the desired input); examples of centra l actions are

commands to get the previous or next mask, c ancel the current

state, answer-ahead commands to bypass one or several masks, .. ;

on the other hand an area for responses to the previous i nput.

MEANS: GUIDANCE

HEAD

BODY

TAIL: CONTROL AREA

RESPONSES AREA

fig. 4.1: amask

4. 1. 2 HELP

4. 2

Help systems are now widely available on most mainframes,

minicomputers and even a few micros. Online help s y stems

provide a range of assistance from simple command assistance t o

elaborate and detailed tutoring ([HOUG84J).

The helpfulness of help fac i lities is often l i mited because

help panels usually give general reference information rather

than specific advice for the given situation, and they

obliterate the screen that contains the input that is in errer.

There even e>:ist "HELP" systems needing a user rnanual on

their own, as for instance TOPS-20's interactive user manual.

MEANS: GUIDANCE

helpful help

of addi ti onal

facilities should

information that

4. 3

provide small

satisfy two

Really

increments

conditions: first, they should be specific and relevant to the

input that is considered and second, they should be displayable

along with the input.

4.2 What is guidance?

The guidance concept it goes about here is what is generally

called "computer-guided dialogue" (in contrast to "user-guided

dialogue; see for instance CBENB84BJ): the computer guides the

-user through the system, by proceeding stepwise from an initial

situation (state) te a final situation (state>.

The way this is usually done is by a question-answer

session, where each couple question/answer is a step.

This works well in a system where the number o f states is

manageably small.

Unfortunately this is net the case in a b i g system; let us

take an e>: amp 1 e:

[. ..]

WHAT DO YOU WANT TO DO?

create a file

LINDER WHAT NAME?

hugo

WITH WHAT PROTECTION?

?

So far, so well; but what about additional options (if any,

are they desired or not?).

4. 3 Requirements

Furthermore, the eKample i mplicitl y assumes that the user

knows what to do; as we have seen in the chapter ENDS , this is

just what guidance is required for in the case of the novice

user. (What function to use?). How to bring the user smoothly

to use commands?

- 4~ -

MEANS: GUIDANCE

Moreover, the

teaching capability

same

for

guidance function

the novice user

guidance capability for the others.

Briefly, the requirements are two-fold:

should

and as

guide the user in the choice of the command;

guide the user in the use of the command.

4.4 How to achieve the requirements?

4. 4

serve as

temporary

I shall present the way it was done for the SDF, because in

m·y eyes it r-eally achieves the r-eqLtir-ements cited above. This

section begins with discussing fir-st the choice of the command,

then the use of the command. The necessity of and presentation

of different guidance levels is discussed in the thir-d part~

while the fourth part presents a particular kind of guidance,

namely temporary guidance. Part five discusses on-line

transitions between guidance levels.

4.4.1 Choice of the command

The user is guided in choosing the command by providing him

the list of all ~vailable commands, in alphabetical or-der and

sub for-m of a menu (presented as a mask).

A menuisa process whereby a set of numbered choices ar-e

displayed on the screen for- selection by the user (see fig.

4. 2) .

For- the menu appr-oach to be sufficient for choosing a

command~ the command names must be functional. Additional

information is provided under the form of an e x p l anation of t he

function of the command.

- 41 -

MEANS: GUIDANCE

DOMAIN: FILE

1 ADD-PASSWORD

2 CHANGE-FILE-LINK

3 COPY-FILE

4 CREATE-FILE

5 DELETE-FILE

6 DELETE-SYSTEM-FILES

7 EXPORT-FILE

8 IMPORT-FILE

9 MODIFY-FILE-ATTRIBUTES

H3 SHOW-FILE-ATTRIBUTES

NEXT=

n~mber -OR- command -OR- (domain) - OR

*CANCEL -OR- *DOMAIN-MENU

fig. ~.2: a command menu

- 42 -

4. 5

MEANS: GUIDANCE 4. 6

4.4.2 Use of the command

Once a command has

guidance for the use of

·been

this

chosen,

command

the

by

user is provided

fill-in-the-blanks

forms (also presented as a mask): see fig. 4.4 .

. DOMAIN: FILE

FILE-NAME

INFORMATION

SELECT

OUTPUT

NEXT=

COMMAND:SHOW-FILE-ATTRIBUTES

= *ALL · · • · • ·

*ALL -OR- full-filename -OR

partial-filename

= NAME-AND-SPACE•.....

NAME-AND-SPACE -OR- SPACE-SUMMARY

-OR- ALL-ATTRIBUTES

= ALL · · · · · · ·

ALL -OR- BY-ATTRIBUTES

= *SYSOUT . ..•...........•..••••.• · •.

*SYSOUT -OR- *SYSLST -OR- PRINTER

*EXECUT~ -OR- command -OR- (demain) -OR

*DOMAIN-MENU -OR- *CANCEL

fig. 4.3: an operand form

This clearly detracts from the usual HELP approach in that

there is done more than just presenting information about the

command and its operands: the same form shows how ta use the

command and permits ta use it (by entering the desired values).

Sorne operands may have sub-forms if one of their values

introduces a structure (see section 5.2) .

Avery important aspect of user assistance is the use of

defaults; it is a two-edged weapon: if the command language

contains no default option~ the user is forced to always enter

maybe boring details. If too many default options are

- .d~ -

MEANS: GUIDANCE 4. 7

available, it can happen that a user can never find an errer

occurring in one of his command procedures (or batch jobs)

because the system "fixes the bug" somehow - without the user

knowing what is really going on.

Therefore, defaults are always displayed. This is crucial

because it allows the user to see the default values and become

accustomed to their being consistent. Displaying defaults

allows a decision to be made prier to execution based on the

defaults, not after execution.

4.4.3 Different guidance levels

Regarding what has been said in the chapter ENDS, different

guidance modes and levels are obviously necessary.

There are two modes: the guided and the unguided mode.

The unguided mode provides two levels:

- the expert level: the prompt is the command herald, there

is no support in case of errors; this level allows what has

been called par.allel-sequential tradeoff ([GAIN84J): the expert

user may enter commands singularly or several in sequence,

allowing him to speed up his interaction with the system as he

becomes accustomed to the required sequence of commands;

the "NO" level (which would better be

"advanced" level): the prompt is "ENTER COMMAND"

called the

<and "ENTER

STATEMENT" at application-level>; there is support in case of

errors by re-presenting the whole command up to the erroneus

operand, together with an errer message.

The latter level is interesting in case of command procedure

processing, as it permits to correct an occurring errer and

thus avoids the procedure to be aborted automati~ally.

The guided mode provides three

amount of information provided to the

maximum):

- .4..4. -

levels, differing

user <minimum,

in the

medium and

MEANS: GUIDANCE 4. 8

For the operands:

mi~imum: only the operands and the default values (if any)

are shown

e.g. FILE-NAME = *ALL •.......

- medium: the different input alternatives are also shown

e.g. FILE-NAME = *ALL

*ALL -OR- full-filename -OR

partial-filename

maximum: additionally, a help text is shown

e.g. FILE-NAME = *ALL•.••

For commands:

*ALL -OR- full-filename -OR

partial-filename

Name of the files about which

information is requested

minimum: only the names are shown

medium,

maximum: additionally, a text explaining the function of

the command is shown

Moreover, the text specifying the allowed actions in the

control area changes due to these levels.

Note that ther~ is an inconsistency in the way these modes/

levels are modified: the same operand is used and to modify the

mode and to modify the levels. In fact, from the users point of

view, there are five levels (but still an unguided and a guided

modes): EXPERT, NO, MINIMUM, MEDIUM, MAXIMUM. This will in my

eyes disturb the user. The best approach would be to have the

following command:

MODIFY-DIALOG-CHARACTERISTICS

[. ..]

INTERACTION-MODE=UNGUIDED <LEVEL=EXPERT,

ADVANCED>,

GUIDED<LEVEL=MINIMUM,

MEDIUM,

MAXIMUM>

(The underlined values are the default values)

- 45 -

MEANS: GUIDANCE 4. 9

4.4.4 Temporary guidance

As has been brought forward in the chapter concerning the

ends (see s~ction 2.4), a temporary guidance mode is necessary,

i.e. a mode in which guidan ce is provided just for the

execution of one command, withou t having te change the guidance

level explicitly (i.e. by means of a command). Inputting a"?"

at prompting level brings the user into the command menu

(command choice); inputting the name of the command followed by

a"?" brings him .in the fill-in-the-blanks form corresponding

te that command (command use>.

4.4.5 On-line transitions between guidance levels

It is possible to interactively change the guidance level in

two ways <the temporary guidance is a transition between modes

of gui dance):

by issuing a command changing the level explicitly for the

rest of the user session (or until the same command is used

again);

by inputti~g a "?" in the entry field of one (or more)

operand(s), which will provide the information corresponding to

the maximum guidançe level.

Note that there is another inconsistency: the same feature

(i . e.

level

the "?"

(i.e.

is used to get information of a

a change between levels) and

higher guidance

to get into the

temporary guidance mode (i.e. a change between modes).

A possible solution would be to make the temporary guidance

available when a function key is used . .

Moreover, a feature that is lacking is the possibilit y of

modifying the guidance mode or level anywhere in the system (to

date, if one is in an appl i cation progra~, one must go to

system-level to change the guidance level); this would help in

hiding the system-level aspect t o given users.

- 46 -

MEANS: GUIDANCE 4.10

4.5 Command grouping

An additional guiding aid is provided by allowing to

logic:ally group commands into demains (e.g. FILE, JOB, USER,.);

this is very interesting in case of a big command set. This

grouping should be done in suc:h a way that the commands

contained in one -demain define a kind of "working set" in whic:h

the user will · stay "for a while". See for instance fig. 4.2.

If commands have been gr • Ltped, inputting a "?" at prompting

level brings the user into the demain menu (see fig. 4.4),

where he has the choice between getting into the command menu

of a given demain or to the form corresponding to a command.

DOMAIN MENU

1 ACCOUNTING.

2 FILE

3 FILE-TRANSFER

4 JOB

5 MESSAGE-PROCESSING

6 PROCEDURE

7 PROGRAM

8 USER

NEXT=

number -OR- command -OR- (domain) -OR

*CANCEL

fig. 4.4: the demain menu

- 47 -

MEANS: GUIDANCE 4. 11

This grouping is only possible for system-level commands, as

application-level commands are considered te be grouped under

the name of the program they belong te.

This is yet another inconsistency as from the user•s point

of view, bath groupings constitute working sets (and they are

indeed presented in a similar manner to the user: see fig.

4.5), but the way of getting into and out of bath is quite

different (te get into a demain, one must enter (demain) in the

mask's control a~ea, while te get into an application, one must

either enter START-PROGRAM <application-name> or APPLICATION

if APPLICATION has been def i ned as command at system-! evel (by

usi n'g the procedure concept) •

PROGRAM: SDF-A

1 AOD-DOMAIN

2 ADD-PROGRAM

3 ADD-COMMAND

4 ADD-STATEMENT

5 ADD-OPERAND

6 AOD-VALUE

[• • • J

NEXT=

number -OR- statement

fig. 4.5: an application-level command menu

- 48 -

- - --- ----------------- -----------------

MEANS: GUIDANCE 4. 12

4.6 Mask network

As has been seen in what precedes, the guidance facility

presented constitutes in fact a mask network (see fig. 4.6).

N

fig. 4.6 the mask network

Note: all of the states represented may be displayed on

- 49 -

MEANS: GUIDANCE 4.13

several screens, depending on the amount of information to be

displayed. In this case, it is possible to get the

previous/next mask by paging commands ('-' and•+•).

The problem of "getting lest" in this mask networ-k

(mentioned in CBROW82J) is resolved by the status display in

the head of the mask.

Moreover, at each state, it is possible to go back to a

higher-level state by cancelling the current state Cby using a

command *CANCEL or by using a function key); at each state, it

is possible to issue a command to be executed or

followed by a 11 ? 11 > or a demain to get into, i.e.

answer-ahead.

not (i.e. ·

to issue an

This answer-ahead featur-e makes that this guidance facility

is not merely menu-driven, similar-ly to the ZOG appr-oach, for

instance CCROBE81J).

- 50 -

MEANS: INTERFACE CONSIDERATIONS 5. 1

Chapter 5: INTERFACE CONSIDERATIONS

--=-------==----==--=-=-=----==-=--

This chapter deals with the separation of the external and

i nternal interfaces of a command. It begi ns wi th general

considerations about the interface specification of a command

and goes then over to a closer look to the e~ternal and

internal interface. Comes then a brief section about the

representation of these interfaces, followed by the processing

of commands as required by this separation of external/

i nte.rnal interface. The most important steps are di scussed in

more detail in the following sections.

5.1 Interface specification

The interface specification in a command langu~ge mainly

serves two purposes: it defines how a user may use the command

and how actual parameters are passed through to the command

impleme~tor. The more information the interface specification

contains, the more errors can be detected by the command

language processor. As a matter of fact, one of the goals put

in the foreground for the design of the brandnew command

language for BS2000 was that the syntax-description had te

contain as muchas possible semantical dependencies (this will

be explained in a more detailed way in the following section,

concerning the external interface).

For flexible, powerfull tailoring te be possible, it is

necessary to split the interface specification of a command

into two separate parts, one describing the internal interface,

as seen by the command itself, the other one describing the

external interface, as seen by the user.

The definition given above i s a short-hand definit i on (more

detailed definitions are gi ven below >; it i s interesting to

note that the DIN NI AK 5.5. work ing on OSCRL standards gives

this definition without detailing it and what ' s more

important - states that additionally, some informations has to

- 51 -

MEANS: INTERFACE CONSIDERATIONS 5. 2

be provided to map the external interface to the interna!

interface (though they propose to store it

interface).

in the external

The approach of splitting these interfaces allows the

definition of different external interfaces to the same command

for different (classes of) users (see fig. 5.1).

L1ser a

external
interface a

user b

!
e>:ternal
interface b

interna! command
interface

1
command

implementor-

user c

!
external
interface c

Fig. 5.1: Exter-nal and interna! command interfaces

Note that this concept clear- l y separates the concerns of the

user and the concer-ns of the command implementor and that it is

independent on how the command i s implemented - as a program or

a command procedure -; in any of these cases, the command

language processor is able to control the specifications of the

command, taking this task away from the executing module (as

far as possible).

MEANS: INTERFACE CONSIDERATIONS 5. 3

5.2 External command interfaces

This section begins by defining the concept and discussing

some related generalities, and then presents the elements

constituing an external interface.

5.2.1 Definition and generalities

The external interface of a command contains all

· informations causing effect on the user interface.

The external interfaces are to be used to restrict and

tailor the use of ccmmands for individual (classes of) users.

Thus the concept of external interface allows user-dependent

interface tailoring, and it provides a kind of syntax-oriented

protection mechanism, allowing errors of the user te be

detected prier to the execut i on of the command.

Using this approach, the introduction or modification of

commands is possible without declaring command procedures (this

is the "class~cal" approach, see for instance CSNOW84J for the

HYDRA CL or CBOUR78J for the UNIX shell), thus avoiding to

introduce high numbers of procedures for the only purpose of

interface modification (e.g. for changing default values, for

introducing default values in order to change a required

operand to an optional one, for suppressing operands or

restricting the range of allowed input values, .••).

One final remark before talk i ng about the constituents of

the specification of an external interface: the only place in

the literature where a definition of the e x ternal/internal

interface was found is the already mentioned DIN ... report; the

trouble is that the specification given rests on tao much

concepts (resulting partially from the ad-hoc approach (sic]

taken by the OIN ...) t h an could be shortl y described;

therefore, I shall restrict myself to describe the constituents

of the BS2KOO specification (the reader i nterested in the

OIN ... approach should refer to (DINN84J).

- 53 -

MEANS: INTERFACE CONSIDERATIONS 5. 4

5.2.2 Constituents of an external interface

Here thus are the constituents of the specifitation of an

external interface:

*)operation specific information:

operation name;

help texts Cwhich may be language dependent in order to

support users which are willing to use english commands but

have a very limited vocabulary);

mode of guidance (some commands are net allowed in the

gLli ded mode);

- accessibility (e.g. some commands may only be given in

batch mode or out of command procedures);

demains name(s) to which the command belongs (case of

system-level command;

- program name to which the command belongs (case of

application-level command);

Note: in the BS2KDO terminology, a distincti-• n is made

between a

respectively

system- and application-level command,

"command" and "statement". As commands of bath

levels should be handled the same way at the user interface,

there are mostly internal differences between them. I shall

henceforth use the term command when what is said stands for

bath levels and statement when it is specific to the

application-level;

*)operand specific information:

- operand name;

def aul t val L1es;

an indication if the operand is to be shown at the user

interface or not;

help te>:ts;

mode of guidance (e.g. v ery sophisticated features are not

included in the guided mode for novice users but only on

help for expert users);

accessibility (see above);

informations allowing the automatic generation of the

masks for the menus used in the guided mode;

MEANS: INTERFACE CONSIDERATIONS 5. 5

*>valuas specific information:

- type of the value with range indication if possible: an

enhanced typing possibility has been introduced, merging the

types required by a full screen manager with those required

by an Operating System (e.g. integer, alphanumeric-name,

filename, time, date, .•. for more details, see Appendix A).

The value definition is net restricted te a single data type

as "integer" or "keyword". Any fusion of syntactic:ally

separable data types may be allowed. This is more general

than proposed in CFRAS83J. For instance, in order to make

the semantics of alternatives clear very often keywords are

used te indicate some kind of "meta-values" as well-known

from fill-in-the-blanks forms, e.g. PARTNER-ADRESS=

<address> or *AS-ABOVE. The most often found way of type

fusion is c:ombining keywords with other data types, since

keywords are often used te indicate default values, e.g.

*AS-ABOVE could be the default value for partner-address

which is assumed by the system if no value is explicitl y

entered;

an indication if the value introduc:es a structure (see

below in th~ description of the operand tree> ;

- visibility of values in display and logging (e.g.passwords

must never be logged nor displayed);

- a list of possible values (optional): if no value is given

explicitly, the input is checked against the type <and

range) of the value, otherwise the entered value must be

within the specified list;

- an indication if the value can be overwritten dynamic:all y

by the implementor of the c:ommand;

- 55 -

MEANS: INTERFACE CONSIDERATIONS 5. 6

*)the description of the operand tree (fig. 5.2):

r-oot: operation

oper~nd-1 oper-and-2 operand-3 operand-4 ...

value-1 value-2 ... value-1 value-2 ...

operand-1 operand-2 operand-3

value-1 value-2 value-3 . . .

fig. 5.2 the operand tree

- 56 -

MEANS: INTERFACE CONSIDERATIONS

SHOW-FILE-ATTRIBUTES

FILE-NAME INFORMATION SELECT OUTPUT ...

*ALL . FULL-FILENAME .. ALL BY-ATTRIBUTES

CREATION- EXPIRATION- LAST-
DATE DATE ACCESS-

DATE

ANY TODAY YESTERDAY .. .

fig. 5.2 the operand tree: example:
command SHOW-FILE-ATTRIBUTES

- 57 -

5. 7

-- - - ------- -------- ----------------------

MEANS: INTERFACE CONSIDERAT10NS 5. 8

- names (keywords);

dependencies between operands: in classical command

languages those dependencies can be checked either by

programs [JOSL81J or by command procedures [BOTT82J; another

approach has been taken here: the operands are arranged into

a tree according to dependencies between them (i.e. all

dependencies have to be reduced to tree-shaped

dependencies). This is done by introducing a new

syntax-el ement cal 1 ed "Struktur" (structure) : a structure

embodies several operands by putting them between brackets,

expressing the logical dependencies of the structure

operands. What is more, structures can be hung immediately

at a value (input alternative) of a given operand, making it

strictly dependent from this value.

E.g. the commmand CREATE-FILE:

CREATE-FILE

NAME

[...]

= <filename>

,ACCESS-METHOD= SAM

,I SAM (KEY-POSITION= .. .

, KEY-LENGTH= .. .

,SHARED-UPDATE= ...)

In the example, the operands l<EY-POSITI • N, ... are only ta be

specified if the access-method for the file to be created is

!SAM.

The operand tree of a command allows consistenc y between the

values (input alternatives) of operands to be checked by the

interface interpreter without requiring chec k-programs or

command procedures;

- level of operands relative to the root (operationl

the structure they are pending at;

or to

potential spanning of t he tree by multiple values for

single operands.

- 5B -

MEANS: INTERFACE CONSIDERATIONS

5.3 Internal command interfaces

The first part of this section defines the concept,

the second one presents its constituents.

5.3.1 Definition

5. 9

while

The interna!- interface of a command contains all

informations influencing the interface to the command

implementor and the informations influencing the internal

processing of the command.

5.3.2 Constituents of an internal interface

The specification of an internal command interface contains

the following constituents:

*>informations concerning the implementor of the command,

depending on the "type" of the implementor:

- if the command is implemented by a system program (i • e.

Operating System functions, like for instance CREATE-FILE,

COPY-FILE, •.•): specification of:

+) the entry,

+) the interface type (Assembler or other),

+) the type of the calling interface for reasons of

compatibility (to old i n terfaces) and simplicity <there are

cases where there is no need to express complex dependencies

between operands,

not): OLD or NEW:

be it a brandnew created interface or

== > OLD corresponds to delivery in string f ormat,

== > NEW corresponds to delivery in (new)

(see appendi>:)

structured format

+) the mode of logging (i.e. if the executing module or the

command language processor i tself has to perform the command

logging),

[+) + several 8S2000-specific informations J

if the command is implemented inside of an application

program (for instance utilities): no specific information

- 59 -

MEANS: INTERFACE CONSIDERATIONS 5.10

required;

- if the command is implemented by a command procedure: name

of the procedure; providing the possibility of calling

command procedures by using an own command is interesting on

two levels: first, one can, at the extreme, hide the

procedure concept; second, the guidance feature is also

available, which is above all interesting in the case where

the procedure has many parameters;

*)internai names (which must be strictly identifying

according to their level);

*)layout of the internai form

implementor;

as expected by the

*)access rights for modification; (e.g. certain commands, as

LOGOFF, may not be removed);

*)residency of command descriptions (for performance

reasons) : often used commands are kept resident.

- 60 -

MEANS: INTERFACE CONSIDERATIONS 5. 11

5.4 Command descriptions

Even if there is a logical splitting between the external

and the interna! interfaces, physically, bath are contained in

one and the same command description , these command

descriptions being contained in so-called syntax-files.

Command descriptions take up to 30K of space in the BS2KDO;

this is an indication of the complexity and size of the

underlying system more than of the command descriptions.

Syntax files can be created and modified by a special system

function, which will be described in chapter 7.

Note : in lieu of talking about external / interna!

interface, it is also possible to view the command description

as containing two kinds of information, namely syntax oriented

information (corresponding to the external interface) and

semantic oriented information <corresponding to the interna!

interface). Besides, this is the approach taken by H. Stiegler

and the author in [STIE85J.

5.5 Processing of commands

Before presenting the different steps, one important remark:

the presentation given here is a broad view of the processing

steps, describing the aspects specific te the separation of

external / interna! interface.

Here thus are the different steps:

(1) the name of th~ operation is resolved by (trying to)

match it against a list of available (allowed) commands;

(2) the operands are checked for syntactical correctness;

(possibly some protection chec ks may be done at this

syntactical level);

(3) the default mechanisms specified in the e x ternal command

interface are applied to expand the command entered by the

user;

(4) the actual parameters are mapped to the formal

- bt -

MEANS: INTERFACE CONSIDERATIONS ::i. 12

parameters of - the interna! form using the mapping mechanism as

specified in the -interna! interface;

(5) the names of the operands are resolved;

(6) and <7> now and/or during the following command

execution the protection mechanisms (if any) are applied (for

instance access controls te files, ..•).

5.6 Syntax check (step 2)

The basic principle for the syntax check is a matching

operation between the syntax description of the command and the

command entered by the user.

In the SDF, syntax check is done by using the operand tree,

and this in a breadth-first manner.

Moreover, due te the enhanced typing possibility, the range

checking and the expression of semantical dependencies between

operands by means of the operand tree, some "semantic" checks

can be done at this syntactical level.

5.7 Command expansion <step 3)

This is another kind of matching operation; if in the

çommand entered by the user, an operand has net been explicitly

specified by him, two cases are possible:

first, the operand is an optional one and thus has a default

value assigned te itself; the command is expanded by this

def aul t val Lie;

second, it is not optional 1 and the value must thus be asked

te the user <the way this is done depends - in the SDF - on the

guidance mode and level defi ned for the user: see chapter 4).

Note: the steps (2) and (3) could be done in parallel;

whether this is the case or not depends on if one performs the

mapping by starting from the command entered by the user (not

in parallel) or from the command description (well in

parallel).

- L--, -

MEANS: INTERFACE CONSIDERATIONS 5.13

5.8 Mapping (step 4)

This can be done either by "merely" concatenating the

different values into a string or by performing a more

sophisticated m~pping. For the SDF case, see Appendix B for the

description of the standard layout form.

5.9 Name resolution of the operands <step 5)

.
This means to check if the values of operands (which have

not yet been checked at synta>: level > correspond to existing

abjects, as for instance wildcard expansion for files.

This step is the one in the processing which is the most

subject to controversy, namely who has to perform the name

resolution: the Command Language Processor or the command

implementor?

(a) the Command Language Processor: this is the approach

taken by the DIN •.. and in a certain measure in the UNIX

system, where the shell performs the wildcard expansion;

(b) the command implementor: this is the approach taken in

the object-orientéd IBM System/38 (CPINN78J, CCONW78J,

CHARV78J, CBOTT78J>, and for the BS2KDO;

5.9.1 Pros and cons of the approaches

Bef ore 1 ook i ng at the di f f erent systems, I shal 1 g ive the

pros and cons of the two approaches:

<a> if the name resolution is performed by the Command

Language Processor, it will always be done in the same,

homogenous way; moreover, it takes this task away from the

implementor.

Unfortunately, this goes against any security aspects

because implicating a strong

sensitive informations.

centralization

- , ..,.

of perhaps

MEANS: INTERFACE CONSIDERATIONS 5. 14

An elegant solution to this problems is ta have one specific

module per~orm the name resolution for one given type of abject

(e.g. files) and to make this module available to all other

modules needing it. This way, the homogeneity and security

problems are solved, in a more flexible way than it would be by

letting the Command Language Processor do the name resolution:

as a matter of fact, if there is need to add a new type of

abject, letting the Command Language Processor do the task

would compel te rewrite it in order to enable it to treat the

case of the add~tional type of abject, whereas the other

solution only implicates te add a new module to the system,

without having te touch at the Command Language Processor.

 if the name resolution is done by the command

implementor-, the security problems are reduced because each of

the modules has only access to a part of the informations,

possibly only in a given, reduced context.

There is one more argument for this approach, namely the

case of the distributed system: here the name resolution has to

be performed on the hast, whereas the steps up to the mapping

are to be performed on the terminal processor.

5.9.2 Comparison of different systems

Let us now look at ·the different systems:

First of all, the DIN •.. proposai: as it is not an existing

system, it could seem curious to examine it; in fact, this has

been done because it is the only place where a definition of

the external / interna! interfaces as well as a description of

the processing steps related toit have been found.

5.4)

(see fig.

As the proposai is aimed at big-sized systems, the

homogeneity aspect is of real importance; yet the security

aspect is of even greater importance. Anyway, the homogeneit y

pr?blem can be solved by the solution we proposed , which in our

eyes does not go against standard's requirements.

Next, the UNIX system: the first thing to note is that the

shell does only perform name resolution in a certain measure;

- ,'.4 -

MEANS: INTERFACE CONSIDERATIONS 5.15

this net so much because it ''only" performs the wildcard

handling (a~tually, directories are considered as files, I/O

devices ara associated special files, •••), but rather because

it does the latter in a rather amazing way: the shell tries to

expand the wildcards (if any) by attempting to match the files

contained in the current directory: if any of the files match,

the alphabetized list of matching names is delivered to the

implementor; if not, the unchanged string is delivered to the

implementor CCHRI83J. So, unlike the DIN ••• approach, no errer

dialogue is performed by the command interpreter for the case

of name resolution.

Regarding this mode of name resolution, one could put the

shell in a third category, namely where the name resolution is

performed by the _Command Language Processor and/or the command

implementor (see fig. 5.5)

As the IBM System/38 is a workstation-oriented system, it

seems quite normal that the approach chosen was tolet the

implementor perform the name resolution, even if the

object-orientation could have allowed the Command Language

Processor to do the job. (see f i g. 5.6)

Let us now corne to the BS2KDO: here the choice to let the

implementor perform the task has been made above all because of
the distributed-system aspect ([STIE84AJ>, together with the

security aspect . and the fact that it has been designed for an

existing system <where the implementors already did the job).

(see fig. 5.7)

- L~ -

MEANS: INTERFACE CONSIDERATIONS

List of available
commands

1
1
1

1

Command

L----------------------> Name resolution
• •• , •••••••• 1 • ' •• , •• ,

V'
E>: ternal
interface ,

: Cmd. syntax
r--------- ------------>
1
1

1

specification

~---------------------->
1

1
1

1
1

Defaults

L---------------------->
r---------------------->
1

1
Types of

of operation

Synta>: check

E:-:pand command

Mappi ng e:-:t. == >
int. interface

v 1

Internal ------------------> Name resolution
interface operands of operands

. . . . , , . . .
v/

Object-oriented -----------) Protection
access right's

Delivery == >
implementor

5. 16

ERROR
(1)

ERROR
(2)

(3)

(4)

ERROR
(5)

(6) E:RROR

CLP
======================

Meaning of
th e darts:

a~b b i s the ne>: t
step following a

a--->b buses information
forma

a)b a delivers info.
to b

Command
e >: ecut ion ·

command
i mplementor

ERRlJR
(7)

Fig. 5.4: Pr-ocessing of c ommands , case o f OIN ...

- LL -

MEANS: INTERFACE CONSIDERATIONS

List of available
commands

1
1

1

L---------------------->
~ ••• ' •••• t • • • • ' ... , ••

· Command r-ule
(definition)

1 Cmd. syntax
~---------------------->
1 s~ecification
1

1

1 Cmd. validity chec:king

~---------------------->
specifications

1 M . app1ng
L---------------------->

information

Command

, J

Name resolution
of operation

1/

Syntax check

,11
Validity
check '

1/

Mapping

\/
Delivery == >

i mpl ementor

============================ -------=-~--------

Dir-ector-ies, ••• ----------->

t4••••••,••l••••ttt•

v
Object-oriented ----------->
access r-ights

Meaning of
the dar-ts:

a-----,b b i s the ne>: t
step following a

a---)b buses information
form a

a .. -0b a delivers info.
to b

.

,11
Name r-esolution

of oper-ands . .
' .

\I;

Pr-otection

\1/
Command
e>:ecuti on

r\

5.17

ERROR
(1)

ERROR

(2)

ERROR
(3)

(4)

CLP
==============

command
implementor

ERROR
(5)

ERROR
(6)

ERROR
(7)

Fig. 5.5: Processing of commands, case of the S/38

- /..7 -

MEANS: INTERFACE CONSIDERATIONS

List of available
commands

1

1

5.18

Command

L----------------------> Name resolution
of operati on (1)

ERROR

Current -------7
directory t

y

E>:pand ==>
li st

y

Delivery ==>
implementor

Condl:Wildcards
present?

Cond2:Any
matching file
in current
directory?

shell
==================================== --

Directories ---------------> Name resolution

~
Access rights -------------> Protection

Meaning of
the darts:

a~b b i s the ne>:t
step following a

a--->b buses information
forma

a,,,1b a delivers info.
to b

Command
e>:ecution

implementor

ERROR
(5)

ERROR
(6)

ERROR
(7)

Fig. 5.6: Processing of commands, case of the
UNIX shell

- /..

MEANS: INTERFACE CONSIDERATIONS

List of available
commands

1

1

1

Command

L----------------------> Name resolution .
E>:te'f.nal
interface

1 Cmd. syntax

of operation

L----------------------) Syntax check
: specification

1

1

L-------------------- .-> Expand command
Defaults

Internal ------------------> Mapping ==>

(1)

(2)

(3)

interface del i ver y f orm (4 >

Delivery ==>
implementor

5. 19

ERROR

ERROR

SDF
=================================== -======================

Directories, ..• -----------> Name resolution
of operands

.

.
YI

Access rights -------------> Protection

Meaning of
the darts:

a~b b i s the ne>: t
step following a

a--- •b buses information
forma

a"••>b a delivers info.
to b

Command
e>: ec:Ltt ion

c:ommand
i mpl ementor

ERROR
(5)

ERROR
(6)

ERROR
(7)

Fig. 5.7: Processing of commands , case of the SDF

- 1,q -

MEANS: DIALOGUE MANAGER 6. 1

Chapter 6: CENTRALIZED, DATA-DRIVEN DIALOGUE MANAGER

===c==

The first section of this chapter briefly discusses the

necessity of a Dialogue Manager, while the second one consists

of a closer look at the features it should provide; their

achievement is discussed next. Cometh then a discussion of the

scope of contrql the Dialogue Manager should be allowed to

perform, followed by some figures showing the size of the task

of developing a Dialogue Manager and its associated Command

Language.

6.1 Why a Dialogue Manager <DM>?

The capabilities required by the CLP to handle guidance

clearly overstep the possibilities of what could be called a

"normal" command i nterpreter, i.e.:

PROMPT

READ INPUT

SYNTAX-CHECK

IF ERROR

THEN ISSUE ERROR-MESSAGE

ELSE CALL EXECUTING MODULE

PROMPT

[••• J

This is why the concept of CLP is widened, as yet announced

in section 1.4.

what is needed i s what is now commonly called a

Dialogue Manager, combining the features of a "normal" command

interpreter with those of a ful l screen manager.

Actually, it should be seen as an extension to the Operating

system, upon which any kind of function can call to perform the

man-machine dialogues it currently requires.

- ..,,,,,. -

MEANS: DIALOGUE MANAGER 6. 2

Tc avoid misunderstandings, I shall henceforth use the term

Dialogue Manager (or DM) in lieu of CLP.

6.2 Features of a DM

This section presents the different features a Dialogue

Manager should provide.

6.2.1 Different dialogue levels

There is no agreement on the number of dialogue levels, but

it i~ certain that a multi-level interface has a much better

chance of pleasing its users than a single-level one. These

levels should be consistent with each other; an example of a

system with inconsistent levels is Mozeico's graphies system,

using a five-level interface: one in a question-answer

dialogue, another one in a tutorial frame-driven dialogue and

the remaining three in a CL style <CMOZE~~J).

6.2.2 Processina of seguences of commands

It should provide a means for processing sequences of

commands, be it for a batch job, a command procedure or

parallel-sequential tradeoff.

6.2.3 Availabi1ity te application programs

Its features should also be made available to application

programs, such as to offer the same interface as is provided on

system-level. Actually, as has yet been stated in the chapter

discussing the ends, it should be possible to hide this

"system-level" aspect from given users (depending on their

role). So, similarly to the UNIX shell, the DM is net part of

the OS, while the CLP is generally considered as being part of

the OS.

- 71 -

MEANS: DIALOGUE MANAGER 6. 3

6.2.4 Separation of user interface from function

Changes to the user interface should be handled in such a

way that they do not require recompilation of the underlying

program, i.e. the description of the user-interface should be

totally separated from the underlying function.

6.2.5 Message handling

A means to handle the messages addressed ta the user is also

.necessary. To discuss this point, I shall start from a typing

of the messages needed by people interacting with a function,

based on the one given by Dean in CDEAN82J. It is a typing by

purpose, in contrast ta a typing by audience, i.e. by the

"receiver"; the audience aspect is (should be) provided by the

different verbosity levels (see section 3.6).

Messages are of the following types:

report on the function's reaction to input (processing

finished, progress display, results of processing, ...)

report on the function's assumptions about input (e.g.

assumed defaults)

request for a go-ahead

request to choose among alternatives (e.g . among actions ta

be taken, options governing processing, ...)

request for missing information

request for correction of input

Moreover, it should be possible to modify the verbosity

level and to "switch" these messages "off" .

- 7.., -

~ ~ -~---~--------- ---- - ------------------

MEANS: DIALOGUE MANAGER 6. 4

6.3 Achievement of the features

Let us now look at the way these features can be achieved; I

shall once again present the way it was done in the SDF and

compare it to other systems where appropriate.

6.3.1 Different dialogue levels

The different _dialogue levels are provided by the different

QUidance modes and levels (see chapter 4).

The fill-in-the-blanks forms for the entry of the operand

values in the guided mode serve a dual goal: first, te provide

assistance for entering the operand values for a command;

second, they can be used as data entry panels; (similarly to

the screen forms provided by a full screen manager); this is

made possible by the enhanced typing possibility (see appendix

A and 5.2.2).

6.3.2 Processinq of seguences of commands

The processing of sequences of commands is achieved by

making the DM read its commands from a logical file which is

assigned a given file (batch job or procedure file) or the

terminal <"normal" command by command input or par al 1 el -

sequential tradeoff).

Of course,

mode.

these groupings are only possible in unguided

Tc enable parallel-sequential tradeoff, a buffered I/0

handler is necessary: if the data required has already been

input the DM reads this directly from an input buffer. If this

buffer is empty the user is prompted for the input.

6.3.3 Availability to application proqrams

The DM facilities are made available to application programs

(themselves yet called by a command) by providing two

programming interfaces (macros): one to read and process a

statement (processing steps 1- >4, section 5.5) and another one

1

' 1
1

MEANS: DIALOGUE MANAGER 6. ::,

to correct a statement.

While the purpose of the former is clear, the latter needs a

few words of explanation: one of the design goals for the SDF

was that semantic errors (resulting from the name resolution of

operands: see section 5.5, step (5)) had to be corrected in the

same way as syntactic errors (meaning they should be corrected

interactively using the SDF). So, the correcting interface

permits the implementor of a command te call upon the SDF to

perform the erro~-handling dialogue(s).

The two interfaces provide the following informations for

the DM:

The reading interface:

internal name of the program te which the statement(s)

belong;

address of delivery area;

a list of allowed statements (all statements of the

program or a . subset, sub form of a list of internal

names) ;

an indication for whether to ask for the statement

name or to present the user immmediately the fill-in

the-blanks form of the operands of the statement; only

used in guided mode, and in the case where the state=

ment to be read is known (i.e. only one statement can

be entered by the user>;

information for overwriting of defaults for operand

values (if any are to be overwritten); defaults of

several statements can be overwritten (those given in

the list of allowed statements);

specification of a message to be output by the DM (if

any);

The correcting interface:

- address of delivery area (used as input where wrong

operands have been mar ked) and as output (after cor=

rection);

overwriting of defaults: see above;

message: see above.

Note: for the description of the delivery area, see appendix

- -rA -

MEANS: DIALOGUE MANAGER 6. 6

B.

Two similar interfaces are provided for the system functions.

6.3.4 Separation of user interface from function

The usual approach to separate the user-interface

description from the underlying function is to define the input

syntax and the screen layout for each mask, thus having to

specify sequences of masks, too. This specification is done

either in a UISL (User Interface Specification Language), as in

CROBI85J or in a lower-level language, as for instance FORTRAN

in CDIX085J.

This brings upon several problems: first, there is still an

important programming burden on the application programmer.

Second, there are problems with the help texts (comprising

information on syntax of input and additional informations).

If they are specified separately, they must be very concise,

as they constitute information to be displayed additionally to

the one yet on the screen.

If, on the other hand, user-interfaces to the same function,

differenciated by their verbosity level are to be provided,

they must all be specified and thus stored separately.

In both cases, providing

guidance levels is difficult:

different, on-line modifiable

in the former because too concise

information is not enough to provide guidance, in the latter

because "switches" from one mask specification to the other

would cause consistency problems to the DM.

The approach taken for the SDF was to make it

data-driven, i.e. all information required by

provided by the data stored in the syntax-files:

completely

the DM i s

- "gener al" i nf or mati on, as . for instance the one to be

displayed in the tail of the masks, the title of the demain

menu, ... ;

- a list of available demains to generate on the one hand

- "70::::: -

MEANS: DIALOGUE MANAGER 6. 7

the demain menu and ta perform on the othe~ hand the name

resolution for the demain names;

- a list of the available commands for the name resolution

of the operation;

information on the belonging of the commands te demains

for the generation of the command menus for the given

demains (if any>;

the command ~escriptions: for a closer . look at the

information provided by the command descriptions, see

chapter 5. The different masks related te a command are

generated algorithmically by the DM on basis of the command

description.

Here another purpose of the operand tree becomes clear: it

allows only mutually independent operands to display within

one mask and to generate the correct order of masks

according to the actual selection mode by a user. In other

words, it allows the automatic derivation of sequences of

masks (depending on the amount of information different

numbers of forms have to be displayed).

This one-data description for commands covering all possible

ways of user-interaction allows the user te switch into a

different guidance level at any moment without causing any

consistency problems for the DM.

This approach permits prototyping and testing of user

interfaces even if the underlying (sub-l function is not yet

implemented. Modifications to the user interface are easily

performed by using the command editor described in chapter 7.

For a given user the currently valid syntax files are

arranged in a hierarchy of three levels:

1. System-common (standard system interface),

2. User-group specific restrictions and privileges,

3. User private extensions.

Each higher one can overrule the appearance of a lower one,

MEANS: DIALOGUE MANAGER 6. 8

e.g. the name under which a command can be invoked. If a file

of the third level is currently activated, it is searched for a

given command first, and if the command is not found, the file

of level 2 (if any) is searched through, •..

Levels 2 and 3 permit subsetting

system-common command set (e.g.

and supersetting of the

if several commands of the

sys.tem-common set are to be made i naccessi bl e to the user, they

are marked "del eted" in the 1 i st of avai 1 able commands of i ts

user syntax file: subsetting; or commands are added in its user

f i 1 e: SLlp er set t i n g > ·•

The main intent of this hierarchy is the saving of space;

only the commands explicitly modified for a given user (group

of users) are to be specified (and thus stored) entirely.

6.3.5 Message handling

As is easily seen, most of the message types are directly

implemented by the guidance concept and the command

descriptions (e.g. report on the function's assumption about

input, request to choose among different alternatives,

for missing information, •..).

reqLtest

A problem arises for the first type of messages, namely the

report on the functions reaction on input.

The question is now: should the Dialogue Manager handle all

messages ta the user or not?

This is a very intricate problem,

should handle ail interactions with

as on the one hand , the DM

the Ltser (and thL1s al 1

messages), and on the other

defined at a semantical level

function).

hand, these messages are to be

(i . e. at the 1 evel of the

This problem seems open-ended, as letting the DM handle

these messages imposes constraints on their synta>:, form and

size, and this is quite in opposition with the semantics aspect

(which always involves a certain "ad-hoc-ness" and the messages

to be jargon-free and tending ta verbosity rather than

conci seness).

MEANS: DIALOGUE MANAGER 6. 9

The modification of the verbosity level and the "switching

off'' of the messages handled by the Dialogue Manager are

provided by the different guidance modes and levels.

6.4 Why not let the DM do all of the job?

This would mean that the DM, in

application to read and correct

lieu of being called by the

a command, once a given

application has been called, stays in control, making it call

the different sub-functions constituing the application.

This could seem more consistent when considering the

similarity to the demain concept (see section 5.3): an

application is also a kind of working set for the user.

Unfortunately, there are interactions between the different

sub-functions constituing the application which can net be

handled by the DM. So for instance, the use of a statement

depending on the use of another statement or default values of

a statement changing due to the use of another statement. An

example of this is the command editor, described in chapter 7.

On OS level, the DM can stay in central because a one-to-one

mapping between commands and functions is generally possible

(at least should be), because it is a matter of very high level

abjects.

On application on the other hand, this one-ta-one

mapping is only possible within the

generally net possible to provide

application, and it is

commands on system-level

corresponding to each of this sub-functions. This because of

the interaction mentioned above and because the abjects are

lower-level abjects, often contained in system-level abjects

(e.g. command descriptions ~- ~ syntax .file) .

6.5 Sorne figures

The figures given in this section will make clear that the

task of providing a Dialogue Manager and its associated Command

Language for a system of the size of the 8S2000 is everything

- ~o -

MEANS: DIALOGUE MANAGER 6.10

else than trivial. This may explain that the implementation of

some concepts is net as neat as it should be. It is one more

example for the fact that Software Engineering is very

difficult to apply te real systems.

Planning, design and implementation of the Dialogue Manager

took more or less 300 man/month, while the KSK spent 60

man/month te design the new Comm~nd Language, to which 120

man/month were added for the syntax file handl i ng.

The Dialogue Manager coun t s 75 KLOC (Kilo Lines Of Code),

and 1600 pages of documents were produced during the different

phases.

There is an additional overhead for the whole CPU time of

2'ï..

Note that for the VAX, figures and overhead are similar.

<Stiegler, oral communication)

MEANS: COMMAND EDITOR 7. 1

Chapter 7: THE COMMAND EDITOR

=============================

The command editor described in this chapter is the command

editor of the BS2KDO. The first section of this chapter

discusses the necessity of the command editor, while the· second

one defines the scope of edition (i.e. the possible actions).

The next section describes the abjects which can be edited,

while the fourth one briefly addresses the problem of

localizing abjects. The last section describes the means

provided by the IBM S/38 to act upon a command set.

7.1 Necessity of the editor

As has yet been stated earlier, tailoring consideratians ,

concern the aspect of offering a given, tailored environment ta

certain users (novice, intermediate) as well as al l owing others

(advanced, expert) ta build up or extend themselves their

environment.

What i s more, these two aspects shoul d (have to) be made

possible by one and the same utility, this for (at least) three

reasons:

first, to avoid the proliferation of

throughout the whole system;

command dialects

second,

semantical

to assure syntactical and (to the extent possible)

consistency throughout the different hierarchies of

command sets;

third, to enhance security considerations by making this

utility the only tool allowed to handle syn tax-files (by means

of some checksum on the abjects contained in the syntax-files) .

In fact, the

should reside

only

in the

for-mer, it is some

difference between these two

persan who uses this utility:

kind of system adm i nistrator or

as.pects

in the

"user-

••, 4 • _ ._ • r.~••--~~---c-=---c---,---c~---~-----~--~~-----------

MEANS: COMMAND EDITOR 7. 2

interface specialist"

himself. Of course, the

and in

latter

the latter,

should have

it is the L1ser

only restricted

tailoring capabilities (regarding the reasons mentioned above),

i.e. the use of the utility should itself be tailored to the

needs and ability of its user.

7.2 Scope of edition

In fact, this utility is a set of commands, and the command

edition constitutes a working set for the user (similarly to

the demain concept presented in chapter 4).

Given this, the tailoring of the utility becomes easy using

the utility itself, i.e. for a given user only a restricted set

of editing commands is provided by Llsing a "complete" editor at

disposition of, say, the system administrator.

This working set comprises the following actions

abjects are described in the following section) :

show an abjects characteristics;

copy abjects from another syntax-file;

remove an abject;

add an abject=

modify an object's characteristics.

(the

Of course, there are two further commands to open and close

the syntax -files to be created or updated.

7.3 Objects which can be edited

Ali abjects contained

Regarding this, it could

erroneous, but the most

i n a syntax-file can be edited.

seem that the t i t le o f th e chapter is

i mportant ab j ect s c ontained in a

syntax-file remain the commands .

MEANS: COMMAND EDITOR 7. 3

The abjects are the following:

7.3.1 Global informations

These are of two kinds:

profile (see next chapter) and

those making part of the user

language-dependent texts used

by the DM <e.g. 'integer ' , 'filename', title of the demain

menu, •••). The former can be shown and modified while the

latter can be shown, modified or removed for a given (natural)

language.

7.3.2 Demains

Demains can be shown, added, removed, modif i ed or copied

from another syntax-file; their characteristics are their name,

internal name and a (language-dependent) help tex t (optional).

7.3.3 Programs

Programs are in fact application programs; they can be

shown, added, ~emoved, modified or copied from another syntax

file; their characteristics are their name and i nternal name.

7.3.4 Commands

Commands can be acted upon in the following ways:

- show a command's characteristics:

are available:

the fol l owing options

+) to show or not its operands and v al ues;

+) ta determine the amount of information, which can be

minimum, medium or ma x imum , corresponding more or less to

the d i fferent guidance levels;

+) to show the external and / or the interna! interfac e ;

+) to determine which help texts ta show

(i.e. corresponding ta what natural l anguage).

note: Appendi x B shows an example .of the in formation

provided when a command ' s characteristics are shown by the

editor.

... :· .. __ . . ' . ·-· . .,_ ---- ·

MEANS: COMMAND EDITOR

- remove a command;

add a command (external/internal interface);

modify a command (external/internal inter f ace).

7.3.5 Operands

Operands can be acted upon in the following ways:

7. 4

show an operand's characteristics: the following options

are available:

+) to determine the amount of information, which can be

minimum, medium or maximum, corresponding more or less to

the different guidance levels;

+) to show the external and/or the internal interface;

+) to determine which help texts to show

(i.e. corresponding ta what natural language).

- remove an operand;

- add an operand (external/internal interface);

- modify an operand (external/internal interface).

7.3.6 Values

Values are characteristics of operands, but also abjects on

their own, so they can be acted upon in the following ways:

- show a value's characteristics: the following options are

available:

+) to determine the amount of information, which can be

minimum, medium or maximum, correspond i ng more or less to

the different guidance levels;

+) to show the external and/or the interna! interface;

+) te determine which help texts to show

(i.e . corresponding to what natural language).

- remove a value;

- add a value (external/internal interface) ; because of the

MEANS: COMMAND EDITOR 7. 5

type fusion and the expression of semantical dependencies

between opeiands using structures, several values may be

defined for one operand;

- modify a value (external/internal interface).

7.4 Localization of abjects

All abjects except the global information must be localized

to be modified; in fact, the localization is a positioning at

the given object. For operands and values to be added,

positioning in the operand tree is also necessary. This

localization is also done using a command.

7.5 IBM System/38

In the IBM S/38, three commands are provided to allow a user

to modify its command set: one to create a commmand (CRTCMD>,

one to delete a command (DLTCMD) and a third one to modify the

attributes of a command (CHGCMD). ([S/38??], pp. 385-394)

MEANS: USER PROFILE 8. 1

Chapter 8: USER PROFILE

===========~-==========

There must be a means for matching a tailored user-

interface to a given L\ser; this is made possible by the concept

of user profile. It is a logical concept, i.e. not to be seen

as a physical entity. It specifies as well the actions a given

user is to be .allowed to perform as the way he is to L\se the

system and the way the system supervises him. These three

aspects are discussed in the first three sections; the fourth

section concerns the modification of the L\ser profile. The last

section shows how the concept is constituted in the IBM S/38.

8.1 Allowed actions

They are defined by several things:

first, the command/operand/value set as provided by the

syntax files assigned to the user;

second, the name of this syntax fi 1 e,

activated for this user at logon-time;

as it has to be

third, at the extrerne, if the role of the user confines him
to a given applica~ion program, the name of this program should

be indicated to be started at the end of the logon-processing.

Note the duality at the level of information provided by the

syntax file: as well its name as its contents.

The definition of the actions allowed for a given user

defines the initial context for this user, i.e. what abjects he

can act against and what actions he can perform on these

abjects. This is made easy to realize thanks ta the

functi onal i ty aspect of the command names. In the case of a

heavily ov~rloaded language it would be more difficult, if not

impossible.

MEANS: USER PROFILE

8.2 Way to use the system

This includes the following aspects:

the default guidance mode and level;

8. 2

the default temporary guidance level if the default

guidance mode is the unguided mode (te date, the default

temporary guidan~e level is always the MAXIMUM guidance);

the default values for certiin operands;

the language the user wants for the help texts associated

to commands and operands;

- the natural language te be used for the command/operand/

value set.

8.3 Supervision

The way -the system supervises the user is determined by the

way of logging the commands: if it haste be done at all, if

the command/operand names are to be expanded, if the logging is

only to be performed in case of erroneous commands or not, ...

Logging can be used for an errer analysis of the command

use, which in turn can be used to test the Command Language's

ability to meet the user's requirements.

Accordi ng to Davis, "Cammand 1 anguage-based systems are

amenable to a detailed errer analysis in a way that programming

languages can not be. If such an analysis is coupled with a

formalized task analysis (also better suited to Command

language systems), one can be used to predict the other

gener at i ng man y test ab 1 e recommendat ions. " (C DAV I 83 J)

8.4 Modification of the user profile

Sorne elements of the user profile can be madified

temporarily (i.e. only for the current user session), as the

guidance mode or level, the language for the help texts. The

user can even activate another syntax file (if his command set

MEANS: USER PROFILE 8. 3

comprises the command to do so), so he can for instance switch

from an English-based command set to a German- or French-based

command set.

Other elements can be modified in a lasting way, so the

default values of the operands, the elements that can be

changed temporarily (see above). These mèdifications will corne

into effect at the beginning of the next session.

The question is now, who will be allowed ta make these

modifications, and td what extent? This depends on the elements

to be changed (e.g. logging <= > guidance) and on the role of

, the user, of course. As these modifications are to be made by

using ••• commands, the use of these commands is once again

tailorable to the role of the user.

8.5 The user profile in the IBM S/38

In the System/38, a user profile is constituted of the

following parts ([S/38??], p. 526):

- Basic par~: User name, special authority authorized to the

user, storage (allowed and used), priority lirnit, initial

program name, text description, number of abjects owned by the

user, and number of abjects authorized to the user

- Commands to which the user is explicitly authorized

- Devices to which the user is explicitly authorized

Objects to which the user is explicitly authorized and

what his authority for each abject is

- Objects owned by the user

In the S/38, only the security officer can create or change

a user profile (using a special cornmand).

MEANS==> ENDS 9. l

Chapter 9: USING THE MEANS TO ACHIEVE THE ENDS

==================================== =========

This chapter starts with showing how to build up a tailored

command set and then goes on to show how the ends discussed in

chapter 2 can be achieved by using the means previously

discussed; this is done by taking again the different sections

of chapter 2 and _discussing the aspects specific to each one of

them.

9.1 Building a tailored command set

To build a tailored command set means on the one hand to

provide a subset or superset of all available commands and on

the other hand to tailor the commands themselves, i.e.

a subset of the operands of the commands.

provide

Beth necessitate the use of the command editor (as it is the

only function which can act against syntax-files), the former

to add commands to the user's syntax file or to delete some

from it, the latter to modify given commands.

Adding or deleting a command is straightforward using the

commands provided by the editor, but modifying a command in

such a way that a certain "view" of the command is given needs

a few words of explanation.

As has yet been shown in chapter 5, the internal interface

to a command is always the same (the executing module expects

given data under a certain (standard) format), while the

external interface permits to define the visibility of operands

at the user interface (among other things).

So,

first,

second,

to make an operand invisible, two things are necessar y :

render it optional by giving it a default value, and

render it invisible (there is an indicator making part

of the external interface to do so: see section 5.2).

L

MEANS==> ENDS 9. 2

Caution is advisable: if the operand to be hidden has sub

operands, they must also be hidden and rendered optional.

Before proceeding to the ends, one important remark: I shall

only discuss the aspects specific to each end, so the user

profile - always necessary- will net be . mentioned, but well the

parts of it specific to the ends.

9.2 Improvement of initial training

First, the rank beginner: he has to be provided the guided

mode of interaction and should not be permitted to modify his

mode of interaction, thus he will not be provided a command to

do so.

He must be assigned a syntax file containing a subset of all

available commands; the existence of the command editor is to

be hidden from him, and perhaps also the procedure and batch

concepts (by hiding the corresponding commands).

The language characteristics discussed in chapter 3 are also

very important, as, on the one hand, they help in defining the

subset of commands needed by the novice, and on the other hand,

they augment the Command Languages resistance to semantic

errors. Resistance to semantic errors refers to the likelihood

that a user will type something he did not mean to type, and

that what he types is a valid syntactic construct nevertheless.

The greater that likelihood, of course, the less the resistance

([HARD82J). Resistance ta semantic errors is particularly

important for novice users.

Second, the advanced novice: his default mode of interaction

is the unguided mode, but he has a command at his disposition

to modify this. The same structure for the different

applications is guaranteed by the use of

Dialogue Manager.

the centralized

MEANS==> ENDS 9. 3

9.3 Support of evoluting user

Aside from a tailored command set, augmented when passing

from one sophistication level te another, the most important

thing is the temporary guidance. Yet this kind of user ~hould

also be enabled to change its guidance mode for more than just

one command (i.e •. by using a commandl.

Once again, the language characteristics are important

because supporting the augmentation of the command set: as the

user evolves toward higher sophistication levels, the language

terminology must remain consistent.

These L1sers need a way of modifying their command set; yet

these modifications should not be the same for all users. They

depend on the role of the users; therefore the command editor

should be tailored te this role:

9.4 Plurilinguistic aspects

On the technicpl side, what is needed is the command editor

te translate all names of the abjects contained in the syntax

files. As the Dialogue Manager is completely data-driven, a .

user can switch from one natural language ta another by

activating the given syntax file.

This is the end for which the language characteristics are

the most crucial. Translating a Command Language having the

size of the BS2KDO is a very tedious task. Even given the

language characteristics (most importantly, consistency), there

still remain 160 command names, 1000 operand names and 1200

operand values to be translated.

Discussion of the plurilinguistic aspects in a detailed way

would require several chapters on its own; the interested

reader should refer to [STIE85J.

MEANS==> ENDS 9. 4

9.5 A standardized user interface

This is made possible mostly thanks to the centralized,

data-driven dialogue manager with its algorithmically derived

masks and sequences of masks and its availability to

application programs.

For its use to be attrac t ive to the application designer,

the command editor is necessary, permitting for instance

testlng and prototyping of different user interfaces to the

same application.

9.6 Security aspects

The need-to-know principle is realized by providing a

tailored command set (corresponding to the use~'s role>,

permitting to render certain objects invisible or to disallow

certain actions on given abjects.

What is more, the command editor is the only function

allowed to manipµlate the syntax files; this further enhances

the security aspect.

Remains the problem of "sensitive" or dangerous commands;

there are users who must be asked confirmation before, for

instance, deleting a file, wh ile others must not (would even be

bored by it) .

The problem is: who has to ask this confirmation: the

Dialogue Manager or the co~mand implementor?

If it is the Dialogue Manager, it would always be done in a

consistent way.

It would necessitate to add to the external interface an

indication of the sensitivity of the command and a message to

be used (as characteristic of the operation>; additionally, the

user profile must contain an information about the ''sensitivity

MEANS==> ENDS 9. 5

level" of the L1ser, that is, its sophistication level (i.e.

novice== > expert).

UnfortLtnatel y, i-t coL1l d happen that the Dialogue Manager

asks for confirmation, this confirmation is given by the user ,

and afterwards the implementor replies that the abject doesn't

exist; this wollld disturb the user.

If i t

implementor

problems.

is the

does

implementor,

it in its

it

own

could happen

way, callsing

that each

consistency

This time,

on whether to

the implementor must be provided an information

ask the L1ser or not (i.e. whether he "is

sensitive" or not). This is easily done by adding an operand to

the command in question, denoting the sophistication level of

the user (i.e. novice to expert), and never shown at the L1ser

interface. When defining the command set for the LlSer, this

operand is given the appropriate valL1e. In this way, the

implementor is provided the information it needs.

The big advantage of this sollltion is that something like

"01<, Delete it" " " "Sarry, it doesn't e>:ist" wollld not

happen.

In my opinion, the second solution is the best one, because

it is. neat and totally within the scope of "normal" tailoring.

Yet it makes anew arise the qL1estion abolit the amount of

messages the Dialogue Manager should handle (see 6.3.5). What

is said is one more argument against letting the Dialogue

Manager handle all messages.

CONCLUSION AND FUTURE WORK 1

It has been shown in this thesis that a Command Language

possessing given properties, processed by a data-driven,

centralized Dialogue Manager and used together with an editor

for the data driving this Dialogue Manager can be used ta

tailor user interfaces.

In the first chapter, the most important concepts used in

this dissertation were defined.

The second chapter described the ends put forward for user

interface tailoring.

Chapters 3 to 8 discussed the means necessitated to achieve

the ends enounced, means which appeared net to be independent

one from another, but in certain cases q1osely tied to each

other. What is more, it was seen that some of these means have

interesting side-effects; for instance, the language

characteristics not only augment the "user-friendline"ss" of a

system and permit tailoring, but they also keep the Command

Language from becoming toc complex to be maintained.

Chapter 9 f~nally showed how to combine the means to achieve

the ends.

Tailoring augments the "user-friendliness" of a general-

purpose time-sharing system, as adapting the system to the user

(statically and, in a certain measure, dynamically) makes it

corne closer to him. Doing th i s, tailoring enhances people

efficiency, while it maybe does not enhance machine eff i cienc y ;

this is due to the means to be used and to the characteristics

of the systems under consider ation.

Sorne of the means discussed c an be enhanced to still augment

"user-friendliness"; so for instance, the guidance concept can

be enhanced to ameliorate user assistance i n case of errors

(e.g. if range errer, show (or h i ghlight) range , if semantic

errer, show (or highlight) help te>:t, ..) or to provide

query-in-depth information (i.e. get more verbose information

1 evel by 1 evel, by repeated use of "'?") •

CONCLUSION AND FUTURE WORK 2

One of the main claims put forward in this thesis (if net

THE main claim) was the claim for consistency of the user

interface throughout the whole system. As was seen, it could

not always been achieved in the system serving as the main

basis.

Of course, these inconsistencies should be removed. Most of

those which were pointed at had a solution proposed along with

the critique.

Yet there remains an important point that is unsolved: the

inconsistency on the level of the similarity between the demain

concept and the application programs. Providing the user a

means of entering (and quitting) an application program in the

same way as a demain would render him more confortable, because

it hides the "system-level" aspect.

This would means that it is up to the

call the corresponding application

Dialogue Manager to

program wheri the

corresponding command is issued in the central area of a given

mask (similarly to a (demain) command). This way, there would

also be no more need for the "statement" concept at the user

interface.

Unfortunately, if this fits well in the guided mode (the

implementation details laid aside), it will create another

inconsistency in . the unguided mode. Indeed, there must remain a

means to enter this application program in unguided mode; how

else than by using a ... command? and there we have our vicious

cercle.

Nevertheless, why net go ahead? The concepts defined

throughout the thesis are certainly valid for micros. What is

more, due to the fact that one is closer to the machine, it is

possible to ameliorate the user interface by eliminating some

restrictions specific ta general-purpose time-sharing systems.

The most interesting feature to use would be the windowing

technique, for errer messages, help texts, the management of

the mask network, ...

CONCLUSION AND FUTURE WORK

Moreover, on a micro, it will be possible to insulate the

user and to provide a one-level system, i.e. a system where a

one-to-one mapping between commands and functions is possible.

One more starting point for future work is the problem of

the functions reaction to input (see chapter 6), i.e. whether

to extend the Dialogue Manager to handle all of it or net.

APPENDICES 1

APPENDICES

==========

Appendix A shows the enhanced typing possibility for operand

values, as discussed in 5.2.2. It is taken from [WEBE84J,

p.234.

Appendix B shows and · comments the standard layout form to

which the external interface is mapped (see section 5.8).

Appendi>: C shows an example of command's characteristics as

shown by the command editor (see 7.3.4).

APPENDICES 2

Appendix A: enhanced typing possibility for operand values

ADD-VALUE°
TYPE=-

<
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

COMMAND-REST(SHORTEST-LENGTH•<(ANYl<integer>)>,
LONGEST-LENGTHa<(ANY!<integer>)>),

INTEGER (LOWEST•<(ANYl<integer>)>,HIGHEST•<(ALTil<inceger>)>,
OUT-FORM•<ÎBINARY I PACKED I UNPACKED I CHAR)>

X-STRING

C-STRING

(SHORTEST-LENGTH, LONGEST-LENGTH s.o.)

" ,LOWER-CASE

NAME

ALPHANUMERIC-NAME

STRUCTURED-NAME

LABEL

STAR-ALPHANUM-NA."Œ

"
Il

"

"

"

lŒYWORD (STAR=<(OPTIONALI XANDATORYIFQRBIDDEN>))

FULL-FILENAME

• <(YESINO))

(SHORTEST-LENGTH, LONGEST-LENGTH s.o., WILDCARDS=
<(YEs • No)>,CATALOG-ID=<(YESINo)>,
<USER-IDc<(YESINO)>,GENERATION~<(YESINO)>,
VERSION=((YESINO)>) -

PARTIAL-FILENA}Œ (SHORTEST-LENGTR, LONGEST-LENGTH;
WILDCARDS, CATALOG-ID, USER-ID s.o.)

TIHE

DATE

CAT-ID

SLASH-VALUE (SHORTEST-LENGTH , LONGEST-LENGTH s .o .)

TEXT (LOWER-C,\SF., Il

)

1

1

APPENDICES

Appendix B: standard delivery format

header

description

operand 1

[...]

description

operand N

additional

information

header: contains the following information:

length of delivery area

internal command name

- number of operands from upper level

operand description: contains the following information:

value description

3

address of value or of further descriptions (case

of lists of values or of structure>

additional info~mation:

values: length/"real"value

structure descriptions

list descriptions

APPENDICES 4

structure description:

number of operands of upper level of the structure

operand descriptions (see above)

list description: chained description of the different

values:

value description

address of next description ·

val Lle: 1 ength / "real "value

value description:

type identification

other information:

> value is present

> value is not present

> value is modifiable

> val Lle is not modifiable

> value is erroneous

> value is not erroneous

> value is to be used to replace a ·default

val Lte

> value is not to be used to replace a default

value

-

APPENDICES

C
Append i >:: example of command's characteristics as shown by the

command editor: command SHOW-FILE-ATTRIBUTES

SHOW-FILE-ATTRIBUTES

ADD-COMMAHD HAME=SH~-FILE-ATTRIBUTES,IHTERHAL-HAME=SHFAT,HElP=ECTEXT= -
C'Gives - information fro • the catalog entry of files'),
OOMAIH=FilE,IMPLEMEHTOR=P2CEHTRY=OCO'FSTAT,CALL=OLOC
O'UT-CMD-HAME=FSTATUS))

AOD-OPERAHO HAME=FILE-HAME,IHTERHAL-HAME=FILEHA,HELP=ECTEXT=
C'Ha • e of the files about which information are -

requested'),OEFAULT='*ALL',RESULT-OPERAHD-HAME=*POSITIOHCPOSITIOH=l),
CO'HCATEHATIOH-PO'S=l

AOD-VALUE TYPE=KEYWO'RDCSTAR=MAHDATO'RY),IHTERHAL-HAME=ALL,
VALUE='*ALL'COUTPUT=ORO'P-O'PERANO)

AOD-VALUE TYPE=FULL-FILEHAMECWILDCAROS=YES),IHTERHAL-HAME=
FULLFI

AOD-VALUE TYPE=PARTIAL-FILEHAME(WILDCARDS=YES>,IHTERHAL-HAME=
PARTFI

ADD-OPERAHD HAME=IHFORMATIOH,IHTERHAL-HAME=IHFORM,HELP=E<TEXT=
C'Amount of information requcsted'),OEFAULT=
'HAME-AHD-SPACE',RESULT-O'PERAHD-HAME=*POSITIOH(
P6SITIOH=2),COHCATEHATIO'H-P0'5=l

ADD-VALUE TYPE=KEYWORD,IHTERHAL-HAME=HAMEAH,VALUE=<
'HAME-AHD-SPACE'CO'UTPUT=DRO'P-O'PERAHD),
'SPACE-SUMMARY'COUTPUT='RESERVED',O'UT-TYPE=
KEYWO'RD),'ALL-ATTRIBUTES'(OUTPUT='ALL',O'OT-TYPE= -
KEYWO'RD> >

AOD-VALUE TYPE=KEYWORD,IHTERHAL-HAME=IHFORM,STRUCTURE=YES,
VALUE='IHFORMATIOH'CHULL-ABBREVIATIOH=YES,OUTPUT=
EMPTY-STRIHG)

ADD-aPERAHD HAME=STAHDARD,IHTERHAL-HAME=STAHDA,HELP=EC
TEXT='crutputs the acccss mcthod, the VSH -

type, the last page uscd and the sccondary allocation for the file.'), -
DEFAULT='HO',STRUCTURE-IMPLICIT=YES,
RESULT-ffPERAHD-HAME=*POSITIOHCPOSITIOH=2),
COHCATEHATIOH-P0S=2

ADD-VALUE TYPE=KEYWffRD,INTERNAL-NAME=NO,VALUE=(
'HO''COUTPUT=DROP-OPERAHD),'YES'CcrUTPUT=
'STAHDARD',OUT-TYPE=KEYWORO))

AOD-VALUE TYPE=KEYWO'RD, IHTERHAL-HAME-=STAllDA,
GUIDED-ALLOWED=HO',VALUE='STAHDARD'C
~UTPUT='STAHDARD',ffUT-TYPE=KEYWORD)

ADD-aPERAHD HAME=PROTECTIO'H,IHTERHAL-HAME=PROTEC,HELP=E<-
. TEXT=C'ffutputs the file security -

information.'),DEFAULT:'HO'',STRUCTURE-IMPLICIT=YES,RESULT-crPERAHD-HAME-=
*PO'SITIOHCPOSITIOH:3),CcrHCATEHATIOH-PCl'S=l

AOD-VALUE TYPE=KEYWURD,IHTERHAL-HAME=HCJ',VALUE=C
'HO'C5UTPUT=DROP-OPERAHD),'YES'COUTPUT=
'CATAL0G' ,OUT-TYPE-=KEYWCTRD))

AOD-VALUE TYPE=KEYW~RD,IHTERHAL-HAME=PROTEC,
GUIDED-ALLOWED=Ntl,VALUE-='PRCTTECTIGH'C
OUTPUT='CATAL~G' ,Cl'UT-TYPE=KEYWCTRD)

ADD-O'PEP.AHD HAME=FILE,IHTERHAL-NAME=FILE,HELP-=ECTEXT=
C'Spcciics that the FILE and the VcrLUME -

informati~ns will be produccd'),DEFAULT='HO' ,STRUCTURE-IMPLICIT=YES,
RESULT-crPERAHD-HAME-=*PCTSITIOHCP~SITIUN=4),
ccrHCA TEH AT I O'l~-P crs = 1

AOD-VALUE TYPE-=KEYWaRD,IHTERHAL-HAME=HO',VALUE=C
'HO'CCTUTPUT=DROP-CTPERAHD), 'YES'COUTPUT=-

5

APPENDICES

SHO'W-FILE-ATTRIBUTES

'TRAITS',CJUT-TYPE=KEYWCJRD))
AOD-VALUE TYPE=KEYWCJRD,IHTERHAL-HAME=FILE,

GUIDED-ALLCJWED=HO',VALUE='FILE'CCJUTPUT= -
'TRAITS',crUT-TYPE=KEYWO'RD)

ADD-CJPERAHD HAME=PASSWcrRDS,IHTERHAL-HAME=PASSWO',HELP=E< -
TEXT=C'Specifies whcther the fi l e is -

password protected~'>,DEFAULT='HO'' ,RESULT-OPERAHD-HAME=*PcrSITICTH<
PcrSITICTH=S),CCTHCATEHATicrH-PCTS=l

AOD-VALUE TYPE=KEYWORD,IHTERHAL-HAME=Hcr,VALUE=<
' H~•(~UTPUT=DRO'P-OPERAHD),'YES'(crUTPUT=
'PASSWO'RD',CTUT~TYPE=KEYWCTRD))

ÂDD-VALUE TYPE=KEYWcrRD,IHTERHAL-HAME=PASSWO,
GUIDED-ALLcrWED=HO',VAL~E='PASSWURDS'C
OUTPUT='PASSW~RD',OUT-TYPE=KEYWCTRD)

CLCJSE-STRUCTURE
ADD-CJPERAHD HAME=SELECT,IHTERHAL-HAME=SELECT,HELP=E(TEXT=C'The -

information must be takcn from the catalog entry of the file or from -
the Fl label of the private disk.'),DEFAULT='ALL',RESULT-O'PERAHD-NAME= -

VTO'C,CCJHCATEHATICTH-PVS=l
AOD-VALUE TYPE=KEYWORD,IHTERHAL-HAME=ALL,VALUE=C'ALL'CcrUTPUT=

DRCJP-CJPERAHO),'BY-Fl-LABEL'CCJUTPUT='YES',
CJUT-TYPE=KEYWcrRD))

AOD-VALUE TYPE=KEYWO'RD,IHTERHAL-HAME=BYATTR,STRUCTURE=YESC
SIZE=LARGE),VALUE='BY-ATTRIBUTES'C
HULL-ABBREVIATicrH=YES,O'UTPUT='HO',CJUT-TYPE=
KEYWO'RD)

ADD-CJPERAHD HAME=CREATIO'H-DATE,IHTERHAL-HAME=CREATI,
HELP=E<TEXT='Sclection of files by crcation -

date'),DEFAULT='AHY',STRUCTURE-IMPLICIT=YES,RESULT-OPERAHD-NAME=CRDATE,
CO'HCATEHATIOH-PO'S=l

AOD-VALUE TYPE=KEYWORD,IHTERHAL-HAME=AHY,VALUE=C
'AHY'CO'UTPUT=DRGP-O'PERAHD),'TO'DAY'C
crurPur~•raDAY',CJUT-TYPE=KEYWO'RD),
'YESTERDAY'CO'UTPUT='YESTERDAY' ,
O'UT-TYPE=KEYWO'RD))

AOD-VALUE TYPE=IHTEGERCLO'WEST=l,HIGHEST=999999,
cruT-FO'RM~CHAR),IHTERHAL-HAME=IHTEGE

AOD-VALUE TYPE=KEYWO'RD,IHTERHAL-HAME=INTERV,
STRUCTURE=YES,VALUE='IHTERVAL'C
HULL-ADBREVIATicrH=YES,O'UTPUT=
EI-IPTY-STRIHG)

ADD-CJPERAHD HAME=FRO'M,IHTERHAL-HAME=FRO'M,HELP=
ECTEXT='Selection of the files -

created after or at the specified date. '),DEFAULT='OOOlOl',
RESULT-6PERAHD-LEVEL=2,
RESULT-O'PERAHD-HAME=*PO'SITIOHC .
P~SITIO'H=l),CCTHCATEHATI5N-PCTS=l

AOD-VALUE TYPE=INTEGERCL5WEST=l,HIGHEST= -
999999,5UT-F~RM=CHAR) ,I NTER NAL-HAME=
IHTEGE

ADD-VALUE TYPE=KEYWO'RD,IHTERHAL-NAME=
TCTDAY,VALUE=C'TODAY' COUTPUT='TODAY' ,
O'UT-TYPE=KEYWO'RD) , 'YES TERDAY'C
cruTPUT='YESTERDAY',~UT-TYPE=
KEYWORD))

AOD-CJPERAHD HAME=TCT,IHTERHAL-HAME=TO',HELP=EC

6

APPENDICES

5HcrW-FILE-ATTRIBUTES

TEXT=C'Select;on of the files -
created before or at the spec;fied date'),DEFAULT='TcrDAY',

RESULT-crPERAHD-LEVEL=2,
RESULT-crPERAHD-HAME=*PO'SITicrHC
PcrSITIO'H=2),CO'HCATEHATICTH-PcrS=l

AOD-VALUE TYPE=KEYWORD,IHTERHAL-HAME=
rcrDAY,VALUE=('T~DAY'(crUTPUT='TO'DAY',
O'UT-TYPE=KEYWcrRD), 'YESTERDAY'C
O'UTPUT='YESTERDAY' ,O'UT-TYPE=
KEYWCJ'RD))

AOD-VALUE TYPE=IHTEGERCLcrWEST=l,HIGHEST= -
999999,crUT-FffRM=CHAR),IHTERHAL-HAME=
I!HEGE

CLO'SE-STRUCTURE
ADD-O'PERAHD HAME=EXPIRATICTH-OATE,IHTERHAL-HAME=EXPIRA,

HELP=ECTEXT=C'Selection of the files by -
exp;ration date'),DEFAULT='AHY',STRUCTURE-IMPLICIT=YES,

RESULT-crPERAHD-HAME=EXDATE,
CCTHCATEHATicrH-PcrS=l

AOD-VALUE TYPE=KEYWURD,IHTERHAL-HAME=AHY,VALUE=C
I ANY f (cruTPUT=CIRO'P-ffPERAHO) II TO'MffRRCTW' (-
auTPUT='TDMCTRRDW',OUT-TYPE=KEYWORD),
'TcrDAY'CCTUTPUT='TODAY' ,O'UT-TYPE=
KEYWITRD),'YESTERDAY'(OUTPUT=
'YESTERDAY' ,CJ'UT-TYPE=KEYWO'RD))

AOD-VALUE TYPE=IHTEGERCL~WEST=l,HIGHEST=999999,
O'UT-FORM=CHAR),IHTERHAL-HAME=IHTEGE

AOD-VALUE TYPE=KEYWGRD,IHTERHAL-HAME=IHTERV,
STRUCTURE=YES,VALUE='IHTERVAL'C
HULL-ABBREVIATiffH=YES,O'UTPUT=
EMPTY-STRIHG)

ADD-O'PERAHD HAME=FROM,IHTERHAL-HAME=FRO'M,HELP=
ECTEXT='Selection of the files -

created after or at the spcc;f;ed date. 'J,DEFAULT='OOOlOl',
RESULT-ffPERAHD-LEVEL=2,
RESULT-ffPERAND-HAME=*POSITICTHC
PCTSITIO'N=ll,CC1HCATENATIO'N-PcrS=l

AOD-VALUE TYPE=INTEGERCLO'WEST=l,HIGHEST= -
999999,0'UT-FORM=CHAR),IHTERNAL-HAME=
IHTEGE

AOD-VALUE TYPE=KEYWO'RD,IHTERHAL-NAME=
TOMO'RR,VALUE=('TOMCTRRUW'CO'UTPUT=
'Hfr10RRl'.fW', O'UT-TYP E=KEYWO'RD),
'TITDAY'(O'UTPUT='TODAY' ,cruT-TYPE=
KEYWCTRD), 'YESTERDAY'CffUTPUT=
'YESTERDAY' ,cruT-TYPE=KEYWffRD))

ADD-O'PERAHD HAME=TO,IHTERHAL-H~ME=Tff,HELP=EC
TEXT=C'Sclcction of the fi lc5 -

creatcd before or at the spec;fied datc'l,DEFAULT='TODAY',
RESULT-OPERAHD-LEVEL=2,
RESULT-crPERAND-NhME=*POSITIOH(
PffSITION=2),CCTNCATEHATIOH-PCTS=l

AOD-VALUE TYPE=KEYWCTRD,INTERHAL-NAME=
TCTDAY,VALUE=C'TCTDAY'(CT~TPUT='TffDAY' ,
OUT-TYPE=KEYWO'RD) 1 I TO'l-11.'.fRROLJ I ccruTPUT=
' T~HffRRBW' ,CTUT-TYPE =KEYWCTRD),

7

APPENDICES

SHGW-FILE-ATTRIBUTES

'YESTERDAY'CGUTPUT='YESTERDAY',
cruT-TYPE=KEYWttRD))

AOD-VALUE TYPE=IHTEGERCLGWEST=l,HIGHEST= -
999999,crUT-FttRM=CHAR),IHTERHAL-HAME=
IHTEGE

CUJSE-STRUCTURE
Aoo~aPERAHD HAME=LAST-ACCESS-DATE,IHTERHAL-HAME=LASTAC, -

HELP=ECTEXT=C'Sclection of the file~ by -
last access date'),DEFAULT='AHY' ,STRUCTURE-IMPLICIT=YES,

RESULT-ttPERAHD-HAME=LADATE,
CttHCATEHATICTH-PaS=l .

AOD-VALUE TYPE=KEYWORD,IHTERHAL-HAME=AHY,VALUE=C
'AHY'CttUTPUT=DROP-OPERAHD),'TcrMCTRRCTW'C -
CTUTPUT='Te'MG'RROW',CTUT-TYPE=KEYWCIRD),
'TttDAY'CcrUTPUT='TttOAY',crUT-TYPE=
KEYUG'RD),'YESTERDAY'CCTUTPUT=
'YESTERDAY',OUT-TYPE=KEYWORO))

AOD-VALUE TYPE=IHTEGERCLOUEST=l,HIGHEST=999999,
crur-FORM=CHAR),INTERHAL-HAME=IHTEGE

AOD-VALUE TYPE=KEYWCTRD,IHTERHAL-HAME=IHTERV,
STRUCTURE=YES,VALUE='IHTERVAL'C
HULL-ADBREVIATIG'H=YES,ttUTPUT=
EMPTY-S TRIHG)

ADD-aPERAND HAME=FROM,IHTERHAL-HAME=FROM,HELP=
ECTEXT='Sclection of the files

created after or at the spec~fied date. '),DEFAULT='OOOlOl',
RESULT-OPERAHD-LEVEL=2,
RESULT-BPERAHD-HAME=*PcrsrrrcrHC
PCTSITIOH=l),CCTNCATENATinN-POS=l

AOD-VALUE TYPE=IHTEGERCLGWEST=l,HIGHEST= -
999999,0UT-FCTRM=CHAR),IHTERHAL-NAME=
IHTEGE

AOD-VALUE TYPE=KEYWORD,INTERHAL-HAME=
rcrMG'RR,VALUE=C'TOMCTRROW'(OUTPUT=
'TttMttRROW' ,OUT-TYPE=KEYWORD),
'TODAY'COUTPUT='TODAY',OUT-TYPE=
KEYWORD),'YESTERDAY'CGUTPUT=
'YESTERDAY',OUT-TYPE=KEYW(j'RD))

ADD-aPERAHD HAME=Tcr,IHTERNAL-NAME=T~.HELP=E(
TEXT=C'Sclection of the fi le~ -

· created before or at the specified datc'),DEFAULT='TODAY',
RESULT-OPERAHD-LEVEL=2,
RESULT-CTPERAHD-HAME=*POSITIOHC
PVSITIBH=2),CONCATEHATICTH-PCTS=l

~----- - - - - - -- - -

AOD-VALUE TYPE=KEYWCTRD,IHTERHAL-HAME=
TCTDAY,VALUE=C'TffDAY'(OUTPUT~•rcroAY' ,
crur-TYPE=KEYWO'RD), 'TOMO'RROW'(O'UTPUT=
'TCTMO'RRffW' ,O'UT-TYPE=KEYWORD),
'YESTERDAY'CaUTPUT='YE5TERDAY',
BUT-TYPE=KEYWORD>>

AOD-VALUE TYPE=IHTEGERCLO'WEST=l,HIGHEST= -
999999,CTUT-FCTRM=CHARl,IHTERHAL-HAME=
IHTEGE

CL!JSE-STRUCTURE
ADD-crPERAHD HAME=SUPPCTRT,IHTERHAL-HAME=SUPPOR,HELP=EC

TEXT=C'Sclcction of the f i les by the type -

8

. . . ·- . :. ... -... . . ' ~-- · .. ,: ..

APPENDICES

SH!'JW-FILE-ATTRIBUTES

of support'),DEFAULT='AHY',STRUCTURE-IMPLICIT=YES,LIST-POSSIBLE=YESC
LIMIT=3),RESULT-OPERAHD-HAME=SUPPORT,
COHCATEHATIOH-POS=l

AOD-VALUE TYPE=KEYWORD,IHTERHAL-HAME=AHY,VALUE=
'AHY'C!'JUTPUT=DROP-OPERAHD)

AOD-VALUE TYPE=KEYWtlRD,IHTERHAL-HAME=PUBLIC,
LIST-ALLcrWED=YES,VALUE=C'PUBLIC-DISK'C -
ALIAS-HAME=PUBLIC-DISC,OUTPUT='PUBLIC',
OUT-TYPE=KEYWURD), 'PRIVATE-DISK'C
ALIAS-HAME=PRIVATE-DISC,CTUTPUT=
'PRDISC',crUT-TYPE=KEYWcrRD), 'TAPE'(
OUTPUT='TAPE',!'1UT-TYPE=KEYWcrRD))

ADD-OPERAHD HAME=VOLUME,IHTERHAL-HAME=V!'JLUME,HELP=EC
TEXT=C'Sclection of the files containcd 1n -

the specified volu• e'),DEFAULT='*AHY',STRUCTURE-IMPLICIT=YES,
RESULT-OPERAHD-HAME=VOLUME,
COHCATEHATIOH-POS=l

AOD-VALUE TYPE=KEYWORDCSTAR=MAHDATORY),
IHTERHAL-HAME=AHY,VALUE='*AHY'CcrUTPUT= -
DROP-OPERAHD)

AOD-VALUE TYPE=ALPHAHUMERIC-HAMECLOHGEST-LEHGTH:6),
IHTERHAL-HAME=ALPHAH

ADD-OPERAHD HAME=SIZE,IHTERHAL-HAME=SIZE,HELP=ECTEXT=
C'Selection of the files by the number of -

pages'),DEFAULT='AHY',STRUCTURE-IMPLICIT=YES,RESULT-OPERAHD-HAME=SIZE, -
CGHCATEHATIGH-PffS=l

AOD-VALUE TYPE=KEYWGRD,IHTERHAL-HAME=AHY,VALUE=
'AHY'CcrUTPUT=DRffP-ffPERAHD)

AOD-VALUE TYPE=IHTEGERCLffWEST=O,HIGHEST=l6777215,
OUT-FGRM=CHARl,INTERHAL-HAME=IHTEGE

AOD-VALUE TYPE=KEYWcrRD,IHTERHAL-NAME=IHTERV,
STRUCTURE=YES,VALUE='IHTERVAL'C
NULL-ABBREVIATirrH=YES,6UTPUT=
EMPTY-S TRIHG)

ADD-OPERAHD HAME=FR!'JM,IHTERHAL-HAME=FRGM,HELP=
ECTEXT='Selection of the files with -

a nu• ber of extents greater than or cqual to the spccificd nuMber'),
DEFAULT='O' ,RESULT-!'JPERAHD-LEVEL=2, -
RESULT-GPERAHD-HAME=*PcrSITirrHc
PGSITIOH=l),CGHCATEHATIOH-P~S~l

AOD-VALUE TYPE=IHTEGERCL!'JWEST=O,HIGHEST= -
16777215,ffUT-FURM=CHAR),
IHTERHAL-NAME=IHTEGE

ADD-OPERAHD HAME=T5,INTERHAL-NAME=TO,HELP=EC
TEXT=C'Selcction of the files with -

a numbcr of extents less than or equal to the $pecified number. '),
DEFAULT:'16777215',
RESULT-cr?ERAND-LEVEL=2,
RESULT-crPERAHD-NAME=*PcrsrrrcrNc
PUSITicrH=2),CUNCATEHATI~H-PCTS=l

AOD-VALUE TYPE=IHTEGERCLffWEST=O,HIGHEST= -
16777215,CTUT-FffRM=CHAR),
IHTERHAL-HAME=INTEGE

Clt1S E-STRUCTURE
ADD-crPERAHD HAME=HUMBER-GF-EXTEHTS,IHTERHAL-HAME=HUMEXT,

HELP=ECTEXT=C'Selection of the fi le$ by lhe -

9

APPENDICES

SHO'W-FILE-ATTRIBUTES

nu~bcr of extcnts occupied'),DEFAULT='AHY',STRUCTURE-IMPLICIT=YES,
RESULT-O'PERAHD-HAME=EXTEHTS,
CO'HCATEHATicrH-PO'S=l

AOD-VALUE TYPE=KEYWO'RD,IHTERHAL-HAME=AHY,VALUE=
'AHY'CcrUTPUT=DROP-O'PERAHD)

AOD-VALUE TYPE=IHTEGERCLO'WEST=O,HIGHEST:65535,
auT-FORM=CHARl,IHTERHAL-HAME=IHTEGE

AOD-VALUE TYPE=KEYWORD,IHTERHAL-HAME=IHTERV,
STRUCTURE=YES,VALUE='IHTERVAL'C
HULL-ABBREVIATicrH=YES,crUTPUT=
EMPTY-STRIHG)

ADD-O'PERAHD HAME=FROM,IHTERHAL-HAME=FRO'M,HELP=
ECTEXT='Sclection of the files -

which have a nu• ber of not used rescrvcd pages grea~cr than or equal -
to the specified nu• ber.'),DEFAULT='O' ,RESULT-O'PERAHD-LEVEL=2,

RESULT-UPERAHD-HAME=*POSITIO'HC
PO'SITIO'H=ll,COHCATEHATitlH-POS=l

AOD-VALUE TYPE=IHTEGERCLOWEST=O,HIGHEST= -
65535,0UT-FORM=CHARl,IHTERHAL-HAME= -
IHTEGE

ADD-O'PERAHD HAHE=TO',IHTERHAL-HAME=Tcr,HELP=EC
TEXT=C'Sclcction of the files with -

a number of reserved pages not used lcss than or cqual to the -
spccified -number. 'l,DEFAULT='65535' ,RESULT-OPERAHD-LEVEL=2,

RESULT-O'PERAHD-HAME=*POSITIOHC
P05ITI~H=2),COHCATEHATIOH-POS=l

AOD-VALUE TYPE=IHTEGERCLOWEST=O,HIGHEST= -
65535,0UT-FORM=CHAR),IHTERHAL-HAME= -
IHTEGE

CLO'SE-STRUCTURE
ADD-O'PERAHD HAME=HUMBER-OF-FREE-PAGES,IHTERHAL-HAME=

HUMFRE,HELP=ECTEXT=C'Selection of files -
with the specified number of reservcd pages which arc not used'),

DEFAULT='AHY' ,STRUCTURE-IMPLICIT=YES,
RESULT-O'PERAND-HAME=FREESIZE,
CO'HCATEHATIO'H-POS=l

AOD-VALUE TYPE=KEYWO'RD,IHTERHAL-HAME=AHY,VALUE=
'AHY'(O'UTPUT=DROP-OPERAHD)

AOD-VALUE TYPE=IHTEGERCLOWEST=O,HIGHEST=l6777215,
crur-FORM=CHAR),IHTERHAL-HAME=INTEGE

AOD-VALUE TYPE=KEYLJO'RD, IHTERHAL-HAME=IHTERV,
STRUCTURE=YES,VALUE='INTERVAL'C
HULL-ABOREVIATIO'H=YES,OUTPUT=
EMPTY-STRIHG)

ADD-O'PERAHD NAME=FRffl"I, IHTERHAL-HAME=FRO'M, HELP=
ECTEXT=' Select ion of the files with -

a number of pages greather than or cqual to the spccificd numbcr'),
DEFAULT='O' ,RESULT-OPERAHD-LEVEL=2, -
RESU L T-O'P ERAN 0-HAME=*P crs IT I (Jll(
PaSITIOH=l),CO'HCATEHATIOH-PGS=l

AOD-VALUE TYPE=IHTEGERC LGWEST=O,HIGHEST= -
16777215,0'UT-FORM=CHAR),
IHTERHAL-HAME=IHTEGE

ADD-O'PERAHD HAME=Tcr,IHTERNAL-HAME=Tcr,HELP=E(
TEXT=C'Sclcction of the fi les ~ith -

a number of p~ges less than or cqual to the spcc i ficd number.'), ·

~-- - - ----- - ------- - - - - - 1 .-.-c: -

APPENDICES 11

SHcrW-FILE-ATTRIBUTES

DEFAULT='l6777215',
RESULT-GPERAHD-LEVEL=2,
RESULT-crPERAHD-HAME=*PcrsrrrcrN(
PcrsrricrH=2),CC1HCATEHATicrH-PcrS=l

AOD-VALUE TYPE=IHTEGERCLcrWEST=0,HIGHEST= -
16777215,crUT-FffRM=CHAR),
IHTERHAL-HAME=IHTEGE

CLGSE-STRUCTURE
ADD~GPERAHD HAME=ACCESS,IHTERHAL-HAME=ACCESS,HELP=EC

. TEXT=C'Selection of the files by acccss -
type'),DEFAULT='AHY',STRUCTURE-IMPLICIT=YES,RESULT-C1PERAHD-HAME=ACCESS,

CC1HCATEHATIC1H-PC1S=l
AOD-VALUE TYPE=KEYWC1RD,IHTERHAL-HAME=AHY,VALUE=C

'AHY'CC1UTPUT=DRCTP-C1PERAHD),'READ'C
cruTPUT='READ',crUT-TYPE=KEYWC1RD),
'WRITE'CC1UTPUT='WRITE',C1UT-TYPE=
KEYWC1RD))

ADD-GPERAHD HAME=PASSWC1RD,IHTERHAL-HAME=PASSWC1,HELP=EC
TEXT=C'Selection of the files uhich arc -

protected by a type of password or which do not have any password'),
DEFAULT='AHY',STRUCTURE-IMPLICIT=YES,
LIST-PC1SSIBLE=YESCLIMIT=4),
RESULT-C1PERAHD-HAME=PASSWC1RD,
CC1HCATEHATIC1N-PaS=l

AOD-VALUE TYPE=KEYWC1RD,INTERHAL-HAME=AHY,VALUE=
'AHY'CC1UTPUT=DRC1P-C1PERAHD)

AOD-VALUE TYPE=KEYWcrRD,IHTERNAL-HAME=HGHE,
LIST-ALLC1WED=YES,VALUE=('HC1HE' ·ccrurPUT= -
'NC1HE',C1UT-TYPE=KEYWC1RD),
'READ-PASSWC1RD'CC1UTPUT='RDPASS',
crur-TYPE=KEYWC1RD), 'WRITE-PASSWC1RD'(
C1UTPUT='WRPASS',OUT-TYPE=KEYWORD),
'EXEC-PASSWURD'CŒUTPUT='EXPASS',
cruT-TYPE=KEYWCTRD))

ADD-GPERAHD HAME=USER-ACCESS,IHTERHAL-HAME=USERAC,HELP= -
ECTEXT=C'Selcction of the files which are -

shareable or not'),DEFAULT='AHY',STRUCTURE-IMPLICIT=YES,
RESULT-C1PERAHD-HAME=SHARE,CC1HCATENATIC1H-PC1S=
l

AOD-VALUE TYPE=KEYWC1RD,IHTERNAL-NAME=ANY,VALUE=(
'AHY'CC1UTPUT=DRCTP-C1PERAHD),
't%JHER-C1HL Y' (CTUTPUT=' lH1', cruT-TYPE=
KtYWC1RD), 'ALL-USERS'COUTPUT='YES',
crur-TYPE=KEYWffRD))

ADD-GPERAHD HAME=STATUS,INTERHAL-NAME=STATUS,HELP=EC
TEXT=C'Sclcction of the files uhich arc not -

closed'),DEFAULT='AHY' ,STRUCTURE-IMPLICIT=YES,RESULT-CTPERAHD-HAME=
STATE,CffHCATEHATI~H-P~S=l

AOD-VALUE TYPE=KEYWORD,IHTERHAL-HAME=AHY,VALUE=C
'AHY'CC1UTPUT=DRCTP-C1PERAHD),
'HC1T-CLC1SED'(C1UTPUT='HOCL~s•,cruT-TYPE=
KEYWCJ'RD))

ADD-C1PERAHD HAME=ACCESS-METHC1D,IHTERNAL-HAME=ACCMET,
HELP=ECTEXT=C'Sclcction of the file~ by -

access • ethod'),DEFAULT='AHY' ,STRUCTURE-IMPLICIT=YES,LIST-PcrSSIBLE=YESC
LIMIT=S),RESULT-crPERAHD-NAME=FCBTYPE,

APPENDICES

SHOW-FILE-ATTRIBUTES

COHCATEHATIOH-POS=l
AOD-VALUE TYPE=KEYWCJRD,IHTERHAL-HAME=AHY,VALUE=

'AHY'CCJUTPUT=DRl'.l'P-OPERAHD)
AOD-VALUE TYPE=KEYWCJRD,IHTERHAL-HAME=PAM,

LIST-ALLCJWED=YES,VALUE=C'PAM'CCJUTPUT= -
'PAM' ,CJUT-TYPE=KEYWl'.l'RDJ, 'SAM'CCJUTPUT= -
'SAM',CJUT-TYPE=KEYWcrRD), 'ISAM'CCJUTPUT= -
'ISAM',crUT-TYPE=KEYWl'.l'RD), 'BTAM'CCJUTPUT=
'BTAM' ,Cl'UT-TYPE=KEYWCJ'.RD), 'HO'HE' CCJUTPUT=
'HffHE' ,CJUT-TYPE=KEYWl'.l'RD))

ADD-~PERAHD HAME=eACKUP-CLASS,IHTERHAL-HAME=BACKUP,HELP=
ECTEXT=C'Selcction of the files by the -

backup level.'),DEFAULT='AHY',STRUCTURE-IMPLICIT=YES,LIST-PcrSSIBLE=YESC
LIMIT=S>,RESULT-CJPERAHD-HAME=BACKUP,
COHCATEHATicrN-POS=l

AOD-VALUE TYPE=KEYWORD,INTERHAL-NAME=AHY,VALUE=
'ANY'CcrUTPUT=DRCJP-1'.!'PERAHD)

AOD-VALUE TYPE=KEYWffRD,IHTERHAL-HAME=A,
LIS T-ALLO'WED=YES,VALUE=C'A'(CJUTPUT='A',
CJUT-TYPE=KEYWO'RDJ,'B'CCJUTPUT='B',
CJUT-TYPE=KEYWffRD), 'C'CCJ'UTPUT='C',
crUT-TYPE=KEYWffRO),'D'(~UTPUT='D',
CJUT-TYPE=KEYWCTRD>,'E'(CJUTPUT='E',
CJUT-TYPE=KEYU~RD))

ADD-~PERAHD HAME=SAVED,IHTERHAL-HAME=SAVED,HELP=ECTEXT= -
C'Selection of the files ~hich have already -

been saved or never been saved by ARCHIVE'),DEFAULT=~ANY',
STRUCTURE-IMPLICIT=YES,RESULT-CJPERAND-NAME= -
SAVE,CCJNCATENATIO'H-PCJS=l

AOD-VALUE TYPE=KEYWffRD,INTERHAL-NAME=ANY,VALUE=<
'AHY'(CJUTPUT=DRCJ'P-CJPERAHD>,'YES'(
CJUTPUT='YES',CJUT-TYPE=KEYWORD),'HO''C
ffUTPUT='NCJ',CJUT-TYPE=KEYWCl'RD))

ADD-~PERAHD NAME=GEHERATICJHS,IHTERHAL-HAME=GENERA,HELP= -
ECTEXT=C'Spccifies if the information must -

be given for the generations'),DEFAULT='NCJ',STRUCTURE-IMPLICIT=YES,
. RESULT-OPERAHD-HAME=GEH,CCJHCATEHATICJH-PCJS=l

AOD-VALUE TYPE=KEYWCJRD,IHTERHAL-HAME=HO,VALUE=(
'NCJ'CCJ'UTPUT=DRCJP-CJPERAHD), 'YES'(ffUTPUT=
'YES',CJUT-TYPE=KEYWCJRO))

ADD-crPERAHD HAME=TYPE-CJF-FILES,IHTERNAL-HAME=TYPECJF,
HELP=ECTEXT=C'Informations arc givcn only -

about file generation groups'),DEFAULT='AHY',STRUCTURE-IMPLICIT=YES,
RESULT-CJPERAND~NAME=TYPE,CCJNCATENATICJN-POS=l

AOD-VALUE TYPE=KEYWffRD,INTERNAL-NAME=AHY,VALUE=C
'AHY'CCJ'UTPUT=DRCJ'P-CTPERAND>,
'FitE-GRCJUP'(OUTPUT='FGG' ,CJUT-TYPE=
KEYWl'JRO))

CLOSE-STRUCTURE
ADD-1'.!'PERAHD HAME=CJUTPUT,INTERNAL-NAME=CJUTPUT,HELP=ECTEXT=C'Direct -

the system-output'>,DEFAULT='*SYSOUT',RESULT-Cl'PERAND-NAME=LIST,
CCJNCATEHATICJN-PCJS=l

AOD-VALUE TYPE~KEYWcrRDCS TAR=MANDATCJRYJ,IHTERHAL-HAME=SYS~UT, -
VALUE=('*SYscrur•ccruTPUT='(SYSCJUT)' ,crur-TYPE=
KEYWORD), '*SYSLST'(CJUTPUT='CSYSLST)' ,OUT-TYPE=
KEYWO'RD),'*PRIHTER'(Cl'UTPUT='CPRIHT)' , OUT-TYPE=

12

GLOSSARY 1

GLOSSARY

The references between brackets at the end of the concept's

explanations refer to the place in the dissertation where

additional information on the concept can be found.

application program: a program corresponding te a function

other than an Operating System function

answer-ahead: command permitting to bypass one or several masks

in a mask network (see 4.1.1 and section 4.6)

B52000: BetriebsSystem 2000~ one of Siemens's Operating

Systems

BS2KDO: 8S2000 KommandoSprache: the new Command Language of the

BS20l°10

CLP: see Command L~nguage Processor

command description: physical "container" of a command's

external and internal interfaces (see section 5.4)

Command LangL1age: a computer J. anguage to be used to "tell" the

system what function it should provide (and how to provide it)

(see 1.3.2)

Command Language Processor: a program "understanding" a given

Command Language and calling the functions implementing the

commands (see 1.4.2)

Command procedure:_ group (or sequence) of commands, intended to

perform a given action (see 1. 3 .4)

Dialogue Manager: a program blending the features of a CLP and

of a full screen manager (see chapter 6)

_ 1 ~o _ _ _

GLOSSARY
, ,
.,;.

OIN NI AK 5.3.2. Deutsches Institut für Normung e.V.,

Normungsausschuss Informationsverarbeitung, Arbeitskreis 5.3.2.

The OIN is responsible for standardisation in West Germany and

is organized in several standardisation committees (Normungs=

ausschüsse). The Normungssausschuss Informationsverarbeitung is

subdivided into two Branch Committees, one of which is the FBI

Informationsverarbeitung information

which in tLtrn i s subdivided inta several

(Fac:hbereich

processing),

sub-committees (Arbeitskreise; AK C:
..J • = AK Programming). For

further informations, the interested reader should refer ta

CSAUE83]. (see chapter 5)

DM: see Dialogue Manager

external c:ommand interface: part of the description of a

command containing all informations causing effect an the user

interface (see 5.2.1)

fill-in-the-blanks form: mask where several data of possibl y

different types may be entered at once (see 4.4.2)

form: see fill-in-the-blanks form

function: a given task a system can perform (see section 1.1)

guidance: process guiding the user through a computer system

(see section 4.2)

implementor of a command: program

implementing the function underlying

1. 4)

(module)

a command

or procedure

(see section

initial context: the abjects a user can ac t a gainst and the

actions he can perform an these abjects (see sec t ion 8. l l

interna! command interface: part of the description of a

command cantaining all informations influenc i ng the interface

ta the implementor and all informations influencing the

interna! processing of the command (see 5.3.1)

- 1 Ot.O - ~

GLOSSARY ...)

logging: memorization of command use (see section 8.3)

mask: schema represented on screen, to be used for display and

input of data (see 4.1.2)

mask network:

3.6)

network composed of a set of masks <see section

menu: process whereby a set of numbered choices are displayed

on the screen for selection by the user (see 4.4.1)

need-to-know principle: security policy restricting information

to those people who really need it to do their job and only the

amount of information necessary for doing it (see section 2.7)

operand (of a command): part of a command whose value provides

additional information to the function underlying the command

(see 5.2.2)

OSCRL: Operating Systems Command and Response Language: a

standard Command Language studied by several

committees (see section 1.3)

standardisation

parallel-sequential tradeoff: possibility of entering several

commands in sequence (see 4.4.3)

procedure: see command procedure

responses: the messages sent to the user by the functions he

uses (see 3.6.ll

role of user: the function t h e user has in the system (see

2.2.2)

S/38: IBM System/38: one of IBM's systems, which is

workstation-oriented

SDF: System Dialog Facility: BS2000's Dialogue Manager

shell: CLP of the UNIX system

-110I -

GLOSSARY 4

structure: syntax-element embodying several operands by putting

them between brackets~ expressing the logical dependency of the

structure-operands (see 5.2.2)

tailoring of user interfaces: process allowing

of user interfaces accord ing to the

requirements (see section 1.2)

the definition

individual user

temporary guidance: guidance provided just for the use of one

command (see 4.4.4)

type fusion: possibility of defining different types for the

same value of an operand (see 5.2.2)

user interface: a language allowing the user to control and use

the functions provided by a computer system (see section 1.1)

Ltser profile: logical

interface ta a given user

concept used to match a tailored user

(see chapter 8)

value (of an operand): actual value taken by one of a command's

operands~ e.g. FIL~-NAME=toto (see 5.2.2)

- 1 1 1 _

BIBLIOGRAPHY

[BCS 78J

[BENB81J

BIBLIOGRAPHY

============

BRITISH COMPUTER SOCIETY

Working Party on Job Central Language JOD (IFIP TC

2 Working Group 2.7, Bulletin no.2, 1978), pp.68-88

BENBASAT, I; DEXTER, A.S.; MASULIS, P.S.

"An experi mental Study of the HL1man/CompL1ter

Interface.";

CACM 24(11), 1981, pp. 752-762

[BENB84AJ : BENBASAT, Izak; WAND, Yair :

"Command Abbrevi ati on Behavi or in Human-CompL1ter

Interaction.";

CACM 27(4), April 1984, pp. 376-383

[BENB84BJ : BENBASAT, Izak; WAND, Vair :

[BOTT78J

"A structured approach to designing human-computer

di alogL1es";

!nt. J. Man-Machine Studies 21, 1984, pp. 14:)5-126

BOTTERILL, J.H.; EVANS, W.O.

"The rule-dr-iven Contr-ol Language in System/38";

1

IBM S/38 Technical Development, 1978 IBM Corporation

[BOTT82J

CBOUR78J

[BRAN84J

BOTTERILL, J.H.

"The design Rationale of the System / 38 user

interface";

IBM Systems Jour-nal, vol. 21, no. 4, 1982, pp.

384-423

BOURNE, S.R.

"The UNIX Shell";

the Bell System Technical Journal, vol. 57, - no. 6,

july-august 1978

BRANSCOMB, L.M.; THOMAS, J.C.

"Ease of Use: A system design challenge";

BIBLIOGRAPHY 2

[BROW82J

[CASE82J

[CHRI83J

[CONW78J

[DATA80J

[DAVI83J

CDEAN82J

CDEHN81J

[DENN82J

IBM Systems Journal 23(3), 1984, pp. 224-235

BRENDER, Ronald F.

"The Case Against Ada as an APSE Command Language";

SIGPLAN NOTICES, 15(10>, October 1980, pp. 27-34

BROWN, James W.

"Controlling the comple>:ity of Menu Networks";

CACM 25(7), July 1982, pp. 412-418

CASEY, Bernice E.; DASARATHY, B.

"Modelling and Validating the Man-Machine Interface";

Software-Practice and Experience, 12, 1982, pp.

557-569

CHRISTIAN, Kare:

"The UNIX Operating System";

John Wiley and sons, 1983

CONWAY, A.J.; HARVEY, D.G.

"User-System/38 interface design consideration";

IBM S/38 Technical Development, 1978 IBM Corporation

"KL1rz erklart: Benutzeroberflache";

Data Report 15(4), 1980, pp. 43

DAVIS, Richard

"Task analysis and user errors: a methodology for

assessing interactions";

Int. J. Man-Machine Studies, 19, 1983, pp. 561-574

DEAN, M.

"Havi a computer should tëdl-:: to people";

IBM SYST J 21 (4), 1982, pp. 424-45::-!.

DEHNIG, Waltraud; ESSIG, Heidrun; MAASS, Susanne:

"The Adaptation of Virtual Man-Computer Interfaces

to User F:eqLlirements in Dialogs";

Springer-Verlag 1981

DENNING, Dorothy E.

- f ,f -r

BIBLIOGRAPHY

"Cryptography and data security";

Addison-Wesley 1982

CDIN 84] : Deutsches Institut für Normung :

CDINN84J

CDIX085J

CFERN81J

CFF:AS83J

CGAIN81J

"Entwurf und GestaltLtng von Dialogsystemen,

Tei 1 1 : Gest al tung von Mas ken";

2. Vorlage Normenentwurf DIN 66290

Deutsches Institut für Normung,

Normungsausschuss Informationsverarbeitung,

Arbeitskreis 5.3.2.:

"OSCRL Standards"

DI XON, F. J.

"Simplifying Screen Specifications - the 'Full

Screen Manager' Interface and 'Screen Form'

Generating Routines";

The Computer Journal, 28(2), 1985, pp 117-127

ELLIS, John R.

"A LISP shel 1 ";

SIGPLAN NOTICES 15(5), May 1980, pp. 24-34

FERNANDEZ, Eduardo B.; SUMMERS, Rita C.; WOOD,

Christopher :

"Database SecL1rity and Integrity";

Addison-Wesley 1981

FRASER, Christopher W.

"A High-Level Programming and Command Language";

ACM SIGPLAN Notices, 18(6), June 1983, pp. 212-219

GAINES, 8.R.

"The technology of interaction -· dialogue

programming r·ules";

3

Int. J. Man-Machine Studies 14 (1), 1981, pp. 1:33-151:1

[G00D84J GOOD, M.D.; WHITESIDE, J.A.; WIXON, D.R.; JONES,

S.J.

"Building a User-Derived Interface";

CACM 27 C ll'1) , -1984, PP. 1032- ll'143

BIBLIOGRAPHY 4

CGRAY85J

CGREE79J

CGREE84J

CHARD82J

CHARV78J

[HILL83J

CHOPF'84J

CHOUG84J

GRAY, Benson W.

"A Methodology For Maintaining A Consistent Command

Language Within A Decentralized Software Development

Envi ronment";

Digital Equipment Corporation, DEC TR-333, January

1985

GREEN, T.R.G.

"The necessi ty of synta>: mar kers: two e>: per i ment s

with àrtificial languages";

Journal of Verbal Learning and Verbal Behavior, 18,

pp. 481-496

GREEN T.R.G.; PAYNE, S.J.

"Organization and learnability in computer

l anguages" ;

Int. J. Man-Machine StL1dies 21, 1984, pp. 7-18

HARDY, I. Trotter :

"The Synta>: of Interactive Command LangL1ages: A

Framework for Design " ;

Software - Practice and Experience 12, 1982, pp.

67-75

HARVEY, ' D.G.; CONWAY, A.J.

"Introduction to the System/38 Contrai Program

Fac il i t y";

IBM S/38 Technical Development, 1978 IBM Corporation

HILL, I • D. ; ME a :: , 8. L.

"The Current Programming Language Standards Scene

I: The Standardisation F·r-ocess";

North-Holland, Compu t ers and Standards, 2, 1983, pp.

69-73

HOPPER, K.; NEWSTED, F'.R.

"Management Implications of Job Control Language

Standardisation";

North-Holland, Computers and Standards, 3, 1984, pp.

19-27

HOUGHTON, Raymond C.

BIBLIOGRAPHY

CHUCl<80J

[JARD75J

[JOSL81J

[l<RAN82J

[l<UGLB(, J

[LEDG8ûJ

CLEDG81J

[LEVI8ûJ

"Onl i ne HELP Systems: a ConspectL1s";

CACM 27(2), February 1984, pp. 126-133

HUCl<LE, B.A.

"Design i ng a Command LangL1age For I ne>: per i enced

Computer Users";

in "Command Language Directions", D. Beech, ed.,

North-Holland 1980

JARDINE, D.A.

"The Structure of Operating System Central

Lang Liages";

in "Command Languages", C. Unger, ed.,

North-Holland 1975

J OSL IN, P. H.

"System Productivity Facility";

IBM Systems Journal, vol. 20, no. 4, 1981, pp.

388-4~)6

~::RANC, Morris E.

"A Command LangL1age for the Ada Envi ronment";

ACM · issue on Programming Environments, pp. 181-186

l<UGLER, ' H. J .

"Tools for the Const r uction of User I n terfaces";

in "Command Language Directions", D. Beech, ed.,

North-Holland 1980

LEDGARD, Henry; WHITESIDE, John A.; S I NGER, Andrew;

SEYMOUR, William:

"The Natural Language of Interactive Sy stems";

CACM 23 (10), October 1980, pp. 556-56 3

LEDGARD, Henr y ; S INGER, Andrew; ·wHI TES IDE, John

"Di r ections in Hu man Factors for I nt eracti v e

Sy stems";

Springer-Verlag 1981

LEVINE, John :

"Why a LISP-based Command Language?" ;

SIGPLAN NOTICES 15(5), May 1980, pp. 49-53

5

BIBLIOGRAPHY 6

CMART73J

CMORA81J

CMOZE82J

CNEWM83J

CNICl<81J

CNORM81J

CPARN69J

[F'INN78J

CRAYN80]

MARTIN, James :

"Design of Man-Compute,~ Dialogues";

Prentice-Hall Englewood Cliffs, 1973

MORAN, Thomas P.

"The Command Language Grammar: a representation for

the user interface of interactive systems";

Int. J. Man-Machine StL1dies 15, 1981, pp. 3-50

MOZEICO, Howard

"A Human/Computer Interface to Accomodate

User Learning Stages";

CACM 25(2), February 1982, pp. 100-104

NEWMAN, I.A.

"The Current Programmi ng LangLtage Standards Scene

XI: Operating System Command and Response Languages" ;

North-Holland, Computers and Standards, 2, 1983, pp.

129-132

NICKERSON, Raymond S.

"Why interactive computer systems are sometimes not

used by people who might benefit from them.";

Int. J.,Man-Machine Studies 15, 1981, pp. 469-483

NORMAN, Donald E.

"The trouble with UN I X.";

Datamation Nov. 1981 , pp. 14{:1-154..'I

F"ARNAS, D. L.

"On the use of transition diagrams in the design of a

user interface fo r an interactive computer system";

Proceedings of the 24th. National Conference, ACM

1969, pp. 379-385

PINNOW, K.W.; RANWEILER, J.G.; MILLER, J.F.

"System/38 object-or· i ented architecture";

IBM S/38 Technical Development, 1978 IBM Corporation

RAYNER, D.

"Designing user interfaces for friendliness";

BIBLIOGRAPHY

[ROBEBlJ

[ROBI85J

CS/38??]

CSAUE83J

CSCHN81JJ

[SCHOBOJ

[SILB83J

[SNOW84J

in "Command LangLlage Directions", O. Beech, ed.,

North-Holland 1980

ROBERTSON, G.; McCRACKEN, o.; NEWELL, A.

"The ZOG approach to man-machine communication";

!nt. J. Man-Machine Studies 14, 1981, pp. 461-488

ROBINSON, J.; BURNS, A.

"A Dialogue Development System for the Design and

Implementation of User Interfaces in Ada";

The Computer J • Llrnal, 28(1), 1985, pp. 22-28

"System/38 Central Program Facility - Programmers

guide";

IBM ??

SAUER, W.

"Information Processing Standardization in West

Germany";

North-Holland, Computers and Standards 2 ,1983,

pp. 181-184

SCHNEIDER, M.L.; WEXELBLATT, R.L.; JENDE,M.S.

"Designing Control LangLlages From the User's

Perspective";

in Co~mand Language Directions, D. Beech ed.,

North-Holland 1980

SCHOFIELD, D.; HILLMAN, A.L.; RODGERS, J.L .

"MM/1, a Man-Machine Interface";

Software-Practice and E:-:perience, 1,J, 1980,

pp. 751-763

SILBERSCHATZ, Abraham; PETERSON, James L .

"Operating System Concept s ";

Addison-Wesley 1983

SNOWGRASS, Richa~d :

"An object-oriented Command Language";

IEEE Transactions on Software Engineering,

vol . SE-9, no. 1, January 1983, pp. 1-8

7

BIBLIOGRAPHY 8

CSTIE83J STIEGLER, Helmut G.; LOETZERICH,· D.; SCHNEIDER, C.

"Komfor-tabler Mensch-Maschinen Dialog bei der-

wei ter-entwi ckel ten BS21~H~H:l-t<ommandospr-ache";

In Softwar-e-Er gonomie, D. Balzer-t (ed.), Tagung

1/1983 des German Chapter- of the ACM am 28. und

29.4.1983 in Nür-nber-g, B. G. Teubner- Stuttgar-t

CSTIE84AJ: STIEGLER, Helmut G.

CSTIE85J

CTHOM81J

[UNGE79J

[VAX 81]

CWEBE84J

"Distributed User-Interface Support";

submitted ta: Wor-kshop on Operating Systems in

Computer Networks

STIEGLER, Helmut G.; DAHMEN, Guy:

"Variants of the user interface to a general

purpose Operating System based on different

natural 1 angLtages";

submitted to the IFIP TC 2 WG 2.7. working

conference, to take place in september 1985,

with subject: "The future of Command Languages:

foundations for human-computer communication"

THOMAS, J.C.; CARROLL, J.M.

"Human Factors in Communication";

IBM System Journal 20(2), 1981, pp. 237-263

UNGER~ C.; KUGLER, H.J.; LEHMANN, N.;

PUTFARf<EN, P.

"Pr-oj ect NI COLA";

Progr-ess report no.3, Abteilung Infor-matik,

Univer-sitat Dortmund, Dortmund,

Ger-man y, 1979

VAX Softwar-e Handbook, Digital Equipment Corporation,

1981

WEBER, C.

"BS2f<DO: E>:terne Schnittstellen und Fun ktionen:

Gedachtn i sver1,oial tung " ·;

Computer- Gesellschaft Konstanz MBH, Entwicklung

Software, 1984

