Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

Reasoning on Gene Regulatory Networks using Constraint Logic Programming

Herbin, Geoffroy

Award date:
2018

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/reasoning-on-gene-regulatory-networks-using-constraint-logic-programming(0a3c4c12-c656-48df-8bd1-791565152319).html

UNIVERSITE DE NAMUR
Faculty of Computer Science
Academic Year 2017-2018

Reasoning on Gene Regulatory
Networks using Constraint Logic

Programming

Geoffroy Herbin

UNIVERSITE
DE NAMUR

FACULTE
D'INFORMATIQUE

Supervisor: (Signed for Release Approval - Study Rules art. 40)
Jean-Marie Jacquet

A thesis submitted in the partial fulfillment of the requirements
for the degree of Master of Computer Science at the Université of Namur

ii

Acknowledgments

I would like to thank my supervisor, Prof. Jean-Marie Jacquet, who first introduced me to
the constraint logic programming, and offered me to work on this thesis’ topic. I am extremely
grateful for his ideas, advices, observations and guidelines that helped me throughout this thesis.

[am very grateful to my family for their continuous unconditional amazing support, care
and encouragements. They have been a precious help not only on this thesis, but also during

the past two years.

I express as well my sincere gratitude to all of my friends who supported me since this
adventure has started.

Finally, I couldn’t be more thankful to Ana for her extreme patience, her tolerance, her
solicitude, and her encouragements.

iii

v

Abstract

Gene Regulatory Networks (GRN) inference is of great interest for biologists, considering the
substantial information these networks can provide. This thesis shows how the GRN inference
can be translated into a Constraint Satisfaction Problem (CSP), and benefit from the Constraint
Logic Programming (CLP) paradigm.

Starting from current known modeling techniques, this thesis details how to model a GRN
inference problem as a CSP. Based on this theoretical result, the prototype of a tool capable of
reasoning over GRN is built as a Web application, back-end and front-end.

This tool aims at allowing the biologists to infer GRN from experimental data, but also
assess hypotheses on parameters of the networks. Required degrees of freedom, based on the
biological modeling and assumptions, are provided to the user.

Different implementations of the core of the CSP, part of the back-end, are provided,
and their performances are assessed thanks to a systematic tests framework developed. This
assessment helps defining heuristic allowing to automatically or manually choose, in the tool,
what methodology using depending on the user inputs or expectations. As an illustration, a
case-based application of the tool is provided, the simplified lac operon network.

Keywords

Gene Regulatory Networks, Constraint Logic Programming, Prolog

vi

Contents

Abstract
Introduction
1 Context
1.1 Introduction L
1.2 Biological notions
1.2.1 Gene and protein
1.2.2 Gene expression
1.2.3 Generegulationo
1.2.4 Gene Regulatory Networks - GRN
1.3 Modeling Gene Regulatory Networks
1.3.1 Utility o
1.3.2 Empirical properties L
1.3.3 Mathematical framework
1.3.4 Data-Driven methods o
1.3.5 Logical Models
1.3.6 Differential Equation Models and Linearization
1.4 Practical case : the infamous lac operon L.
1.4.1 Overview of the lacoperon
1.4.2 Different situations
1.5 Conclusion

Constraint Logic Programming

2.1 Imntroduction
2.2 Constraint Programming
2.2.1 Classification
2.2.2 Constraint Propagation
2.2.3 Backtracking Search
2.2.4 Modeling
2.2.5 Labeling
2.3 Constraint Logic Programming,
2.3.1 Logic Programming
2.3.2 Constraints logic programs
2.3.3 Tool for Constraint logic programming
2.3.4 N-Queen - Example of CLP(FD) resolution.
2.3.5 General Resolution of CSP using CLP
24 Conclusion L

vii

viil

3 Inferring GRN using Constraint Logic Programming

3.1 Introduction
3.2 Theoretical background - generalized logical method
3.2.1 Delay and Asynchronism
3.2.2 Sigmoid function and Step function
3.3 Model Variables oo
3.4 Model constraintso
3.4.1 Gene Expression Levels constraint
3.4.2 Sparsity constrainto
3.5 Labeling
3.5.1 Variable ordering L.
3.5.2 Valueordering.
3.6 Modeling GRN with constraints in the literature
3.7 Conclusion

4 Tool Definition

4.1 Introduction
4.2 Requirements Overview
4.3 Architecture
4.3.1 Standalone or Web based
4.3.2 Styleo
4.3.3 Data Exchange Format
4.4 Technology
4.4.1 Front-end technology
4.4.2 Back-end technology
4.4.3 Technology - final words
4.5 UserInputs
4.6 Conclusion

5 Back-end development

5.1 Introduction
5.2 General overview L
5.3 Controller Layer
5.4 Constraint Logic Program
5.4.1 Preambule: JSON processing
5.4.2 Program structure
5.4.3 Association List L.
5.4.4 Constraints - introduction
5.4.5 User constraints
5.4.6 Constraints on the Gene expression Level
5.4.7 Sparsity
54.8 Labeling oo
5.5 Systematic testso
5.5.1 Creation of the tests files
5.5.2 Systematic test frameworko
5.5.3 Synchronous methods assessment
5.5.4 Labeling assessment
5.5.5 Other features tests
5.6 Conclusiono

CONTENTS

CONTENTS ix

6 Front-End development 91
6.1 Introduction 91
6.2 Overview of the front-end 91
6.3 Inputstab 92
6.4 Resultstab 93

6.4.1 Graphical view of the solutions 93
6.4.2 Multiple Solutions 94

7 Case-based application of the tool 97
7.1 Introduction 97
7.2 Network assessed 97
7.3 Case 1: Interactions and initial conditions 97

7.3.1 Firststeps 98
7.3.2 Equilibriumo 99
7.4 Case 2: Inferring based on experimental data 101
7.5 Conclusion 102

8 Perspectives 105
8.1 Introduction 105
8.2 Modeling 105
8.3 CSP implementationo 106
8.4 Production-Grade web application 107

8.4.1 Back-end 107
8.4.2 Front-End 108
8.5 Uses e 108
8.6 Conclusion 109

Conclusion 111

Bibliography 112

Appendices 119

A Source Code 121
A.1 Prolog server code 121
A2 JSON from/to terms translation 123
A3 Main CLP e 125

A.3.1 Association list construction L. 128
A4 Constraints predicates 130
A.4.1 User Constraints 130
A.4.2 Niveau constraints methods 135
A4.3 Sparsity 144
A4.4 Labeling 144
AL Logger 147
A6 Tests e 148
A.6.1 Ground Truth 148
A6.2 Lac Operon 149
A.6.3 Sparsity Results 150
A6.4 Prolog 153
A.6.5 Pythonscripts. 156

A7 Front-End 161

X CONTENTS

B Log files 169

Introduction

Personalized medicine — a type of medical care in which treatment is customized for an individual
patient — is probably one the most promising fields of medical research. To that end, massive
amount of work is still needed, sharing a common interest: better understand the human
genome, constituted of genes, these basic physical and functional biochemical units.

Understanding human genome passes by understanding genome in general — the complete set
of genes or genetic material present in a cell or organism —, and how it affects the development
of organisms, the response to external stimuli,...

In that context, it is fundamental to deeply understand how the genes and their products,
the proteins, interact on each others in an environment, and to learn the mechanisms and
influences governing the way proteins are produced. This is the very base of the gene regulatory
networks (GRN), which attempt to concentrate all these interactions and mechanisms called
gene expression. This information is later used, for instance, in the context of personalized
medicine.

There are multiple ways of building those networks, according to different modeling techniques.
Some techniques are quantitative, aiming at providing to biologists the exact values of expression
levels or gene products concentration levels, while others, qualitative, help defining the overall
evolutions of these concentration and expression levels. These qualitative techniques allow in
particular to compensate the lack of experimental or noisy data. One of the most known and
used models is the Boolean network, a logic modeling technique described by Kauffman in [36]
or Thomas in [62, 63, 64].

While these techniques are used in practice to reason on the GRN and the dynamic of
the genes interactions, it remains a difficult task to easily assess new biological hypotheses,
confirm modeling choices, and compare different possibilities of GRN that all could explain
experimental results. Practically, there is quite a lack of tools offered to the biologists to
properly and efficiently reason on the gene regulatory networks.

This thesis aims at suggesting a prototype of such a tool, usable by biologists, and based
on the powerful paradigm of constraint logic programming.

The constraint logic programming is particularly well suited to solve efficiently combinatorial
search problems. The GRN inference can be considered as such a problem, with many unknowns
— constrained by biological modeling-related assumptions —, and uncertainty linked to biological
hypotheses and experimental data.

The first chapter of this thesis focuses on giving the biological notions required to understand
the gene regulatory networks. Graphical examples of GRN are provided, and their utility
is discussed in more details, in order to fully perceive the interest of the different modeling
techniques. Some of these techniques are then elicited, with first a presentation of the required
mathematical framework generally accepted and used in the modeling, then the presentation
of the data-driven methods, logical methods, and differential equations methods. The interests
of these various methods are discussed. A concrete example of a real gene regulatory network
is shown in practice, the lac operon. This enlightens the utility GRN have, and how they can
be used in practice. It confirms also that GRN are not per se the final output, but rather a

2 CONTENTS

tool to help in understanding biochemical reactions and behaviors.

The second chapter introduces largely the constraint logic programming paradigm used
along this thesis. It describes first the idea behind the constraint programming paradigm,
then gets into the details of constraint satisfaction problem (CSP) solving: the constraint
propagation, the search, the modeling and the labeling. As constraint programming relies on
similar notions as logic programming, the opportunity to merge the two is presented, ending up
with the constraint logic programming (CLP), and several tools currently used. A reminder of
the logic programming — without constraints — is shown, then a more detailed CSP resolution
using CLP is graphically detailed. Finally, the nominal steps of a CLP resolution are described:
variables elicitation, constraints elicitation and labeling.

The third chapter presents how the gene regulatory network inferring can be seen as a
constraint satisfaction problem. After a theoretical background presentation, going deeper in
the biological-related modeling technique followed — based on Boolean networks —, the chapter
is structured as the CSP resolution: first the variables modeling, then the constraints modeling,
and finally the labeling techniques are detailed in the specific context of GRN. A last section also
discusses the current work related to constraints and GRN models inference in the literature.

The fourth chapter focuses on the suggested tool prototype, and details the main choices
in terms of general architecture — a Web application — and technologies. Based on that choices
and on the modeling of the third chapter, a domain specific language is introduced. This serves
to describe the network to reason on, and the expected services awaited by the user from the
tool. This is largely covered in the last section of the chapter.

The fifth chapter goes into the details of the development of the back-end in Prolog, the
programming language extensively used in this thesis. A presentation of the back-end’s layered
architecture is given, followed by the implementation of its core: the constraint logic program.
Different modeling and labeling methods are implemented and assessed. This comparison, using
a developed systematic tests framework, aims at opening avenues for heuristic developments and
expert systems. Other features developed in the scope of the modeling presented in Chapter
3 (p33), are also presented and tested from a user perspective, setting basic use cases and
assessing the results from the back-end computation. The sixth chapter succinctly presents the
front-end developed, extensively used during the development. In particular, it is shown how
to input data, request an inference and visualize the results, specifically when several solutions
are provided.

The seventh chapter then shows a case-based application of the tool. Reusing the lac operon
example introduced at the very beginning, two use cases are shown: the first one considering
very few experimental data while the network is almost fully described, and the second one
with the complete set of experimental data, but no interactions between genes known.

Finally, the eighth chapter aims at summarizing perspectives for future work that are raised
in the thesis. Different aspects are covered, from the modeling and CLP themselves to the tool
prototype development and uses.

Numerous code extracts are provided along the thesis, or referred to in Appendix, as material
support. The complete source code, log files and utility scripts are available upon request to
the author.

Chapter 1

Context

1.1 Introduction

This chapter introduces the reader with the real-world application context of this thesis, the
gene regulatory networks. Firstly, explanations of several key notions are given, from the
gene itself and its products up to the gene regulatory networks. These notions are explained,
pictures when required, and real-life example are cited. Secondly, the interest of these gene
regulatory networks and the way they are built, or rather modeled, is discussed. Several
modeling techniques are presented in more details as they are — sometimes extensively, as for
the logical modeling methods — used later in this thesis. Thirdly, a concrete and well-known
example of real gene regulatory network, the lac operon, is introduced and sums up the chapter.
This example allows showing how a gene regulatory network (re)acts in its environment, and
how it can be described.

1.2 Biological notions

1.2.1 Gene and protein

A gene is considered to be a basic physical and functional biochemical unit, as expressed in
[79]. The genes are made up by the DNA, a double helix formed by base pairs attached to
a sugar-phosphate backbone. A graphical representation of the DNA is given in Figure 1.1
(p4). The bases are adenine (A), guanine (G), cytosine (C) and thymine (T). Those four bases
help storing the information about any organism, the same way the alphabet helps defining the
words of a language. DNA stands for deoxyribonucleic acid.

The genes act as a recipe to produce molecules of a specific type: the proteins. Among
the proteins produced are the amino acids, and the genes that code the synthesis of the amino
acids are known as “structural genes”. The proteins are large, complex molecules that play
critical roles in organisms. Specifically for the human body, the proteins do most of the work
in the cells, and are required for the structure, function, and regulation of the body’s tissues
and organs. More information about the DNA can be found in [81].

1.2.2 Gene expression

Gene expression is the process by which the genetic code of a specific gene is used to direct
protein synthesis, and produces the structures of the cell. Production of proteins from the
gene code follows a complicated path consisting of two major steps: the transcription and the
translation. Together, the transcription and translation are known as gene expression. The
interested reader will find much more information on this process in online sources such as [19].

3

4 CHAPTER 1. CONTEXT

Phosphate
Backbone

Base pair

Adenine Thymine

. Guanine
Cytosine

FIGURE 1.1: DNA representation

1. Transcription : the information stored (or coded) in a gene DNA is transfered to another
similar molecule called RNA (ribonucleic acid) by the enzyme RNA polymerase. RNA
have slightly different chemical properties. The type of RNA that contains information
for making of a protein is called messenger RNA, usually referred to as mRNA. Two
other kinds of RNA are also produced, the transfer RNA and ribosomal RNA, which
both participate in the translation process, as shown in Figure 1.2 (p4).

2. Translation : it produces the protein from the previously built RNA.

The details about how transcription and translation actually work have limited interests in
the context of this work, provided that the basic principle of gene expression is understood.
More details about this process are given in numerous resources, such as in [18].

DNA Polymerase replication
(DNA ->DNA)

PXD>AD>P>> [PNA

transciption
(DNA ->RNA)

RNA Polymerase

translation
W (RNA-> Protein)

RNA

Ribosome
0-0-0-0-0-0-0-0-0-0 Protein

FI1GURE 1.2: Gene Expression

Considering a structural gene, a gene that codes an amino acid, two major kinds of components
can be observed :

1.2. BIOLOGICAL NOTIONS)

o Exons : they code for amino acids, and collectively determine the amino acid sequence
of the protein product. The exons are in fine represented in mature mRNA molecules.

o Introns : they are the portions of the gene that don’t code for amino acids. They are
removed from the mRNA molecule before translation.

1.2.2.1 Gene Control regions

Several specific regions of a gene are remarkable, as they play a key role in this gene expression.
1. Start site: the localization of the start for the transcription process.

2. Promoter: a region upstream of the gene. It is not transcribed into mRNA, but will
rather control the gene transcription, allowing the binding of transcriptional factors.

3. Enhancers: regions where some transcription factors called activators will bind in order
to increase the rate of transcription. Some enhancers are conditional: they can only work
in the presence of other factors.

4. Silencers: regions where some transcription factors called repressors will bind in order
to decrease the rate of transcription.

1.2.3 Gene regulation

As indicated in [18], gene regulation is the name given to the processes that control how genes
expression happens.

In multicellular organisms, cells in different tissues, organs,... differentiate and become
specialized by making different sets of proteins, whereas all the cells in the organism have the
same genome (with a couple of exceptions). Furthermore, the amount of genes in different
organisms is relatively constant across different scales of organisms complexity : the baker’s
yeast, Saccharomyces cerevisiae, so tiny, has indeed almost 6000 genes, which is about a quarter
of the amount of genes that constitute a sophisticated human genome. As described in [29],
it can be stated that the diversity and complexity of life does not arise from a disparity in
the number of available basic components, but rather from the nature and dynamics of the
interactions between those available components.

The gene expression can be regulated by various processes whereas the goal of the gene
regulation is to control the amount and nature of the genes products, mainly proteins. This
control is handled at numerous levels, thanks to other regulatory proteins, as indicated in [49].

As stated in [37], four main sources or levels of regulation of the gene expression can occur:

e DNA rearrangement which is rather funky and not really frequent. This can happen
for the immune system, for instance.

o Transcription which is the most frequent. The regulation of the gene expression can
happen when the transcription of the RNA is initiated.

o Translation: when mRNA is converted to proteins. That is not automatic, and is
important.

o Post-translational: the proteins can be inactive in some specific conditions. Even if
they are created, the proteins do not express themselves.

6 CHAPTER 1. CONTEXT

At some point, all of those four regulation levels happen, but the most crucial is at the level
of transcription, when the DNA in transcripted to RNA (see Figure 1.2 (p4)). These proteins
really bind to the DNA and send signals that will further (hence indirectly) control the rate of
the gene expression.

The concept of gene regulation is related to the operon: an operon is a collection of genes
that are regulated together. Genes in an operon are transcribed as a group, and have a
single promoter. Operons are quite common in bacteria or prokaryotes, although quite rare
in eukaryotes such as humans. Each operon contains regulatory DNA sequences, which act as
binding sites for regulatory proteins that will promote (or activate) or inhibit transcription, as
described in [28]. Usually, operons control important biochemical processes.

1.2.4 Gene Regulatory Networks - GRN

Measuring directly the interactions between components is quite complicated within live cells.
However, measuring the components presence in a defined volume is much easier, and recent
technological improvements have decreased the cost of such measurements ([20, 38, 57], or
discussion in [10]), providing the motivation to reconstruct computationally those interactions
and their structures.

Gene Regulatory Network is usually described as the set of all regulatory transcription
interactions in a cell. Typically, a GRN is represented as a graph with edges connecting
regulators to regulated genes, the nodes of the graph. Several examples are given in Figures
1.3 (p7), 1.4 (p7) and 1.5 (p7), for different networks and as a schematic view.

A definition of a gene regulatory network is given in [10]: We call a network that has been
inferred from gene expression data a “gene regulatory network,” briefly denoted as GRN.

A notion often related to the GRN is the data inference, setting the data retrieved from
experience in the center of the analysis. In the following section, it will be shown that several
modeling techniques, although based on experimental data, go way beyond simple data inference
in order to cope with inherent experimental noise.

Usually, the transcriptor factor (TF, regulator) can be known, while the target genes (TGs,
regulated genes) are mostly unknown. Another idea is simply to consider each gene as a
potential TF and TG, and consider that all the genes in a system may be regulators and
regulated.

The main focus of this work is on the regulation during the transcription, as it is the
most frequent source of gene regulation (see Section 1.2.3 (p5)). However, other mechanisms
happen, providing other means to regulate the gene expression. Those mechanisms are currently
biologically less well explored, while it is believed that their effects may be as prevalent as the
transcriptional control on the genes expressions. That is, while a gene may have no effect on
the expression of another at RNA transcription level, it could be important for the protein
expression. These aspects are out of the scope of this work, see Chapter 8 (p105).

1.3 Modeling Gene Regulatory Networks

Proteins are the final product of the process of gene expression ([29]); and the control of the
gene expression is applied through the action of the gene products themselves.

The improvement in the field of gene expression measurements makes it possible to simul-
taneously measure the level of expression of several genes. Using reverse engineering techniques,
one can reconstruct the interactions between genes (including their products) based on the
measured data. This is one kind of possible GRN modeling. Many methods were developed
in order to model the gene regulatory networks, that will be briefly described in this section,
based on [14] and [29].

1.3. MODELING GENE REGULATORY NETWORKS 7

FIGURE 1.3: From [43], Gene Regulatory Network of Transcription Factor family NFKB! in human

/

¥

> —
EGFR 18~ BCL21 T cD4OLG (RELB <

-
-

P

A X
VCAM1 BCL2 CR2

e ip BE— e e CDKN1A ITGAM CD14

input ge

targetjgene

FIGURE 1.5: From [31], Schematic view of a gene regulatory network

A first important consideration is that, as elicited in [11], there is most likely not one
method better than all the others, but rather a number of methods that result in an overlapping
spectrum having the potential to infer similar biological information. That is, to get the global
overview of a network, several viewpoints are most likely needed.

8 CHAPTER 1. CONTEXT

The interested reader can consult other resources in the literature, starting with [29] and
[73], for more in-depth information.

1.3.1 Utility

Depending on the availability of empirical data (related to gene expression) and the desired
level of abstraction, different levels of modeling can be used, as shown in the Figure 1.6 (p8)
from [14]. It represents a hypothetical gene network. On the left are multiple levels of gene
regulations, while the abstraction on the right uses the information to specify interactions
between genes only. The nature of the interactions is either inducing (arrow) or repressing
(dull end).

The different levels of abstraction represented on the left on Figure 1.6 (p8) serve typically
different purposes, from simple hypothesis testing to extensive quantitative work.

) T <
Gene 1 Gene 3 Gene 4

Metabolite 2

Protein 1
Protein 3
Protein 4

——-—

- H = Gene?2

Gene 2's cis—region

FIGURE 1.6: Different GRN modeling level

Per se, the inference of a GRN is not the ultimate result, rather a help in solving different
biological and biomedical problems, which could be split, as defined in [10], in the different
following categories.

1.3.1.1 Causal map of interactions

The gene regulatory networks can be understood as maps of the interactions between the
genes (or proteins, or other gene products). Considering this map, the GRN can be used to
derive new biological hypothesis about those interactions, specifically during the transcription
of the mRNA. The GRN corresponds (or are supposed to correspond) to real binding events
between genes, and it is therefore possible to reason on those models. This remains however a
challenging tasks as the models usually do not take into account all possible interactions with
other intermediate genes — including unknown gene products. Several promising results are
compiled in [10].

1.3.1.2 Experimental design and perturbation experiments

The gene regulatory networks can precede lab experiments and guide the experimental design.
More specifically, many experiments have as main objectives to deliver observational data: the
experiments “observe” the system as it is, without any intervention or perturbation. Knowing

1.3. MODELING GENE REGULATORY NETWORKS 9

the part of the GRN to be observed allows to design experiments purposefully, where dedicated
perturbations could be conducted to favor the system response, hence improving the efficiency
of the experiments.

1.3.1.3 Networks as biomarkers

GRN;, or part of them, can also be used in order to build markers based on several genes instead
of individuals. As stated in [10], this is possible as the hallmarks of some complex diseases, such
as cancer, are represented by pathways in which genes are actively interacting. Network-based
biomarkers can help for those types of disorders, where there is a need to consider interaction
changes instead of individual gene changes, which neglects the interactions between genes.

1.3.1.4 Comparative network analysis

Building GRN’s and performing statistical comparison between them allows to learn about
the interactions changes across different conditions (disease, physiological changes,...), hence
improving the knowledge of biomedical processes. A subsequent need to achieve this comparative
analysis is to establish free-access databases of the gene regulatory networks.

1.3.1.5 Network medicine and drug design

A better knowledge about the interactions between genes/gene products allows a better targeting
during drug development. The article in [10] mentions for instance different studies eliciting
concrete examples of the use of GRN’s in drug development.

1.3.2 Empirical properties

Many researchers work on deriving networks from experimental gene expression data. The
assumptions already validated by prior work can be used to ease the modeling tasks, and
constitute modeling rules to follow. In particular, three biological properties are considered:

o Topology: it defines the connections between nodes, and it can be a starting point
for modeling. It has been observed that the topology of GRN is usually quite sparse,
meaning that there is solely a small number of edges per node. This number of edges
is much smaller than the total number of nodes, and the graph resulting (network) is
therefore far from complete. This property can be used to prune the search space during
inference.

Also, the frequency distribution of the connectivity of nodes seems to be better described
by P(k) = k=9 where k is the degree of the node and g is some specific constant. Such
a network is called scale-free, and its connectivity gives two interesting properties: the
availability to reach rapidly any node, from any starting node, and the emergence of
hubs(nodes connected to many others), which are central in the network - involved in
many regulation interactions. More information on such scale-free graph are available in
[54]. These hubs correspond to highly central nodes in the gene network, i.e. genes that
do a large amount of the overall regulation.

 Robustness: Real gene networks are very robust to fluctuations in their parameter
values, which can be achieved only by specific topology choices. For instance, this
fluctuation includes quite an insensitivity to variations in molecular concentrations at
a certain period of time (organism development). The scale-freeness property is also a
key to ensure the robustness of the gene network.

10 CHAPTER 1. CONTEXT

o Noise: As many natural phenomena, biochemical reactions are stochastic? per nature.
Several modeling methods handle this stochasticity introducing discretization, or use real
stochastic techniques, see Section 1.3.5 (p11). Others do not really handle this behavior.

1.3.3 Mathematical framework

Most of the GRN modeling techniques, based on Reverse Engineering principle, rely on math-
ematical material that is introduced in this section.

The following definition is taken from [29]: a directed network, or a graph, is a pair (V, E),
where V is a finite set of nodes, and E is a set of edges, or arcs, connecting those nodes. If [is
a set indexing the nodes, the set of edges is a subset of the Cartesian Product so that £ C I x 1,
with element (i7) indicating the presence of an edge between node ¢ and node j. An undirected
network is a network where the edge set is symmetric under swapping the indices of the nodes.

This definition of the network will be used in subsequent modeling techniques.

In the gene regulation domain, the nodes represent any compound of the system that
interacts — or not — with others. It is therefore quite broad. In the following chapters, the
mention to “gene” will refer either to a gene, a gene product (such as a protein), or any other
entity that is part of the network.

In the models presented, the values linked to the nodes, as defined here above, denote the
genes expression level — or as per previous remark, compounds expression level or compounds
product concentration level (see Section 3.4.1 (p36)). The edges, however, are given quite
different semantics according to the model techniques applied. In this context, the usual
technique is to add a weight on each edge. This weight can have different meaning in the
literature: a probabilistic existence factor, as used in Bayesian networks (see [73]), a threshold
of edge activation, such as in [50], the existence confidence of the link, as expressed in [15], the
impact of the source gene on the concentration level of the sink gene, etc.

1.3.4 Data-Driven methods

A first class of method to infer GRN uses a fully connected weighted network, and associate to
the weight of the edge (ij) the estimated dependence of the gene j to the gene i.

The implementation is relatively simple, providing the data are accurate enough. Some
techniques exist in order to normalize the experimental data, and take into account the inevitable
noise of such data. Although it is of major interest for all subsequent modeling techniques, the
normalization of the data is out of the scope of this work.

1.3.4.1 Regression-based methods

One of the most popular approaches in the context of Data-Driven methods is to predict a
variable based on the others, using simple linear regression. The slope indicates therefore the
strength of the dependence. Applied to the gene regulation network, the network weights are
computed by regressing each gene in turn against all others, see [29]. That is, for every gene ¢,
the expression level in sample ¢ of g, x4 is found by solving the regression equation

[L'gi = Z w]‘xﬂ + €
J7#g
where ¢; integrates the noise on experimental data. The weight w; is then associated with

the edge (7g), between gene j and gene g. An important consequence of using the regression
technique is the intrinsic directivity given to the network.

2Denotes something having a random probability distribution or pattern that may be analyzed statistically
but may not be predicted precisely.

1.3. MODELING GENE REGULATORY NETWORKS 11

Two examples of tools using this techniques are TIGRESS software, which description is
found in [25], and GENIE3, which is found in [72].

This method also allows dealing with time series data, hence providing predictive capability,
if used such as the gene expression of g at time ¢ is regressed against the expression data of the
others genes at time ¢ — 1.

The equation introduced above can incorporate more specific terms than the ones indicated
to reflect well-known biological reactions, such as the influence of the kainate or other bias, see
[73].

Generally, the regression-based methods induce more intense computation, but provide
major advantages on other data-driven methods such as the predictability — the ability to
predict the expression level of remaining genes or for later time?®, based on the experimental
data.

1.3.4.2 Other data-driven methods

Other types of data-driven methods exist and are succinctly introduced, to give a broader
picture of the data-driven methods. They are however not tied to the work presented in the
next chapters.

o Correlation network: Given the experimental data and the genes in presence, one can
compute the pairwise gene correlations, which is directly reported as the weight of an
undirected network. The particular interest is the scalability, as the complexity scales
linearly with the number of experiments and quadratically with the number of genes.

o Information Theoric scores: intuitively, it consists in finding the Mutual Information
(MI), which quantifies the degree of dependence of two random variables : the MI is zero
when the two random variables are independent, and when they are deterministically
linked, the MI returns the entropy of the marginal distribution. The formal equation is
given here under:

MIX,Y] = Z P(z;,y;)log Plzi,y;) = Z P(xi,yj)logw

i,y P<xl)P(yj) Ti,Y;
where X and Y are the random variables, and P(X,Y") their joint probability distribution.
Applying this technique to GRN, the probability distributions to be used are the empirical
distributions of the expression level for each pair of genes, estimated from the experiment
samples. As the previous method, this straightforwardly gives a weight to each possible
edge, ending up with a fully connected, weighted but undirected network. This method
is better at finding complex regulatory relation, while having other drawbacks :

1. the complexity is quadratic in both number of genes and samples,

2. joint probability estimation is sensitive to noise in experimental data if the sample
size is too small,

3. non predictive.

1.3.5 Logical Models

One of the simplest and most basic idea in modeling methodology relies on the discretization
of the data, and the logical thinking. Kauffman [36] and Thomas ([62, 64, 63]) introduced
logic-based models applied to GRN in order to represent the state of each entity in the system.

3for which no data is available

12 CHAPTER 1. CONTEXT

As already stated, this entity is either a gene or any other gene product, or yet another element
part of the gene regulatory network.

The state of each entity is represented as a discrete level, at any discrete time step. Often,
the evolution over time is assumed synchronous : the levels of each entity are updated at each
time step according to the regulation.

This type of model is discrete, reasoning mostly in qualitative terms, and abstracting the
modeling from the continuous and noisy experimental data.

1.3.5.1 Boolean Network

Modeling a GRN in terms of a Boolean Network is introduced by Thomas in [62]. A Boolean
Network is a dynamic model of time-discrete synchronous interactions between the nodes. A
more detailed description can be found in [14] or [30].

As the mathematical framework introduced, a Boolean Network is a directed graph (X, E),
where the nodes x; € X are Boolean variables. The expression level is discretized into being
above a limit, then “ON” Boolean value true or 1, or the expression level is below a limit, and
the value of z; is false, or 0. At any time, the state of the network is given by the values of all
the nodes of the network: State(t) = S(t) = (x1(t), x2(t), ..., x,(t)). To each node is associated
a Boolean function, that takes as arguments the parent nodes of z; in the network. That is, x;
is associated to b;(zs,, sy, ..., 7;,),l < n,x;; € X. A Boolean function is a function of Boolean
variables connected only by logic operators. For each node, its Boolean function models the
aggregated regulation effect of all its parent nodes, and is defined as

zi(t + 1) = bi(wi, (1), 2y (1), ., w4, (1))

In this model, the state of each individual nodes are updated synchronously, and all states’tran-
sitions together correspond to a state transition of the network from S(t) to the new network
state, S(t + 1). The passage form S(t) to S(t + 1) is called a trajectory.

Although the logic underneath the model is an oversimplification of true biological behavior,

as stated in [30], the Boolean networks have demonstrated their utility when reasoning over
GRN:

o when the focus is on the generic principles rather than quantitative biochemical detail,
Boolean networks can capture many biological phenomena, predict the trajectory between
states, and provide a qualitative description of a system,

o the simplicity allows the model to be applied to larger GRN (containing a large number
of nodes), when more detailed methods would be infeasible simply due to the lack of
sufficient experimental data or computational complexity.

The simplicity of the method also brings drawbacks, as expressed in [30]:

+ A steady-state of the continuous model based on differential equation (see Section 1.3.6
(p14)) will not necessarily be a steady state of the Boolean Model,

« Because of the intrinsic two-state nodes, the experimental data - measured on a continuous
scale - need to be binarized. This step introduces risk and uncertainties in the modeling,
as the key decision lays on the choice of the threshold between the two Boolean states,

e The Boolean Networks are deterministic, whilst true biological networks are known to
have stochastic components. For instance, proteins can be produced from an activated
promoter in short bursts that seem to occur at random time intervals.

1.3. MODELING GENE REGULATORY NETWORKS 13

An example of boolean network is given in Figure 1.7 (p13), presented in [55]. The GRN is
represented in different forms : as (A) a graph, (B) rules, (C) complete table of possible states
before and after transitions, and (D) as a state/transitions graph.

In the graph (A), the nodes X, Y and Z are connected by two kinds of edge depending if
the source is an activator or an inhibitor. The symbol & implies that X and Z are expressed
together. Based on this graph, the rules (B) can be expressed straightforwardly. In the truth
table (C), the values for ¢ are imposed and, based on the graph or the rules, values for ¢t + 1 are
given. Considering the definition of a state given above and the truth table, the state transitions
graph (D) can be drawn. The four representation are viewpoints of the same reality, expressed
in different formalisms.

B Y=X&Z, X=Y, Z= X

A
t t+1
C XY Z| X Y Z
0 0 00 0 1
0 0 1,0 0 1
01 01 0 1
01 1/1 0 1
1.0 0[0 0 O
& 10 1/0 1 0
. 11 0[1 0 0
11 11 1 0

D State transitions
Tr)—10-—A00—<000—~001)

FI1GURE 1.7: Example of a Boolean network

1.3.5.2 Beyond the boolean model

To go beyond some limitations of the boolean model, several improvements have been suggested
by different authors:

» The asynchronous behavior of real system is discussed in [63], explaining the phenomena,
and how to take it into account in the stable states definition and search,

o Multi-valued thresholds as explained in [50], to better fit to reality when required. Tt
discretizes the concentration levels in several values, and as a result breaks the boolean
principle ON/OFF, by introducing a threshold scale. This is further discussed in Chapter
3 (p33),

o Addition of the linearized equations ideas to the logical models, taking into account multi-
valued principles, to the logical description, detailed in [51]. This is also further discussed
in Chapter 3 (p33).

1.3.5.3 Probabilistic Boolean Networks

As indicated in [73], due to reasons such as the lack of experimental data, noisy data, or
unknown assumptions over entities, it can be that several regulatory functions are possible for
an entity. This raises the need to express uncertainty in the logic. The resulting model is a

14 CHAPTER 1. CONTEXT

boolean model where, at each time step, an entity is subjected to a regulatory function that
is randomly selected among the pre-defined possibilities, according to pre-defined probabilities.
The global amount of stable state can be considerably larger with this stochastic behavior
introduction compared to the initial model.

1.3.5.4 Bayesian Networks

The graphical representation of a Bayesian network for GRN is a directed acyclic graph,
where each node is a random variable representing a gene’s expression, and the edges indicate
dependencies, as reminded in [55] and [73]. Mathematically, the Bayesian Networks approach
is Bayes’ Theorem: for any two random variables X and Y, P(X,Y) = P(X|Y)P(Y).

The random variables of the Bayesian network are drawn from conditional probability
distributions : it implicitly encodes the Markov Assumption that “the future is independent of
the past, given the present”, [39, 83].

The details of the Bayesian networks methods are out of the scope of this present work -
the interested reader is encouraged to consult [29] and [55] for a more thorough description.

1.3.6 Differential Equation Models and Linearization

A gene network can be modeled as a system of differential equations. It allows more detailed
descriptions of the network dynamics by explicitly modeling the concentration changes over
time.

The equations system relies on parameters that are usually difficult to measure or estimate
accurately. Also, an important characteristic of the GRN is the robustness, as stated in Section
1.3.2 (p9). If the equations system does not converge to a solution (is not stable) when the
parameters slightly change, it is doubtful that the system represents a real GRN. Hence, the
real networks are robust with respect to variations in the substances’ concentration, and the
corresponding system should keep this stability property. Wehn the system is stable, from a
mathematical point of view, the exact values of its parameters should not be critical. Several
models exists and are introduced in [29] or [26].

Many challenges remain in the computational efficiency (as for many modeling techniques),
as well as in the accuracy of the equations system itself, including the parameters value.

1.4 Practical case : the infamous lac operon

One of the most well-known, and well studied, real-life example of a transcriptional control is
found in FEscherichia Coli, also called lac operon. The interested user can watch the MIT
given class on the topic in [37]. Abundant other literature references exist and are easily found
on the web. This section uses some biological vocabulary (the names of proteins, genes, sugar,
...) that is not itself relevant for the understanding of the thesis.

1.4.1 Overview of the lac operon

The bacteria E. Coli, in order to grow, needs sugar. Its favorite sugar is glucose, a monosaccharide.
When the glucose levels are low in the environment, the E. Coli needs to switch to alternative
sources of energy (other types of sugar) to continue growing. Another possible source of sugar
is the lactose, which is a disaccharide. Without going into details in this thesis, the lactose
is composed by two monosaccharides that are glucose and galactose. In order to metabolize
the lactose, the bond between the two monosaccharides must be broken. Of course, if glucose

1.4. PRACTICAL CASE : THE INFAMOUS LAC OPERON 15

Glucose | Lactose || Z, Y, A transcription
0 0 —
0 1 +
1 0 —
1 1 —

TABLE 1.1: Transcription of the three structural genes based on the presence of sugar

is available, there is no need to synthesize a protein that will cleave lactose into glucose and
galactose.

The lac operon consists on three genes involved in the processing of the sugar lactose — a
disaccharide. The three genes are:

Z that codes for a protein called S-galactosidase. This protein is responsible of splitting
lactose into glucose and galactose. It is in the heart of the lac operon system.

Y that codes for a protein called permease
A that codes for a protein called transacetylase

As they are part of an operon, Z, Y and A are grouped together : they have a single
controlling region.

A first logical table can be established, where “1” means “present” and “0” means “absent”
for glucose and lactose, and “+” or “-” denotes an increase of decrease of the genes Z, Y, A
products concentration levels (directly related to their transcription).

The results in Table 1.1 (p15) for the transcription are well understood when no sugar is
present, or when one of the sugar is present. However, the transcription result when both
glucose and lactose are present seems odd, as one could imagine that E. Coli would simply pick
the preferred sugar, and the transcription could go on. The result is explained in the following
sections.

1.4.1.1 DNA structure of the lac-operon

The DNA structure of the lac-operon is given in Figure 1.8 (p16). As indicated previously,
the operon is made of the three structural genes Z, Y and A. Upfront this triplet is found
the operator site (0), part of the regulatory sequences, which is composed by a promoter for
regulatory gene (p;), the regulatory gene (i), and the promoter for the operon, pi.. p; and i
are not per se part of the lac operon, but they play a key role in the regulation hence are part
of the regulatory sequences for the structural genes Z, Y and A.

This DNA structure helps understanding how the lactose can be properly metabolized when
needed, according to Table 1.1 (p15).

1.4.2 Different situations
1.4.2.1 Lactose is absent

When there is no lactose in the environment, the repressor protein Lacl is synthesized
continuously by the gene i. This protein will bind with the promoter site, right in front of
the operon, preventing the transcription of the operon. No [-galactosidase or other A)Y,Z
products are generated as imaged in Figure 1.9 (p16).

16 CHAPTER 1. CONTEXT

lac Operon
|<— Regulatory sequences -—»‘ ~—— Structural genes ——
|

DNA I I ' =
| z y a
\
Promoter for / / Operator (0) / Structural gene
regulatory gene Promoter for Structural gene for B-galactoside
(pi) structural genes (p;,) for B-galactosidase transacetylase
Regulatory gene Structural gene
(i) codes for for B-galactoside
repressor protein permease

LIFE: THE SCIENCE OF BIOLOGY, Seventh Edition, Figure 13.16 The lac Operon of E. coli
©2004 Sinaer Associates, Inc. and W, H. Freeman & Co.

FIGURE 1.8: DNA Structure of the lac-operon

Promoter
Regulatory A

s

Operator\

DNA A\

RNA

l 3 / made
mRNA ﬁ RNA

polymerase

Active
Protein repressor

FI1GURE 1.9: No lactose, repressor lacl is transcribed and blocks the A,Y,Z transcription

1.4.2.2 Lactose is present

When lactose is present in the environment, the sugar lactose (a dissacharide) fits onto the
repressor protein, at a specific active site. As a result, the repressor protein will change its
shape, in such a way it can no longer bind the operator site. The mRNA can reach the
structural genes and the Z,Y and A products can be synthesized.

As the [-galactosidase is produced when lactose is present, the lactose acts as an inducer for
the enzymes responsible of its metabolization.

Though, it still does not explain why the operon is not transcribed when lactose and glucose
are present together: another mechanism necessarily needs to be set up to prevent the operon

transcription when both sugar are present in the environment. This is explained in the following
sections.

1.4. PRACTICAL CASE : THE INFAMOUS LAC OPERON 17

Glucose | Lactose | CAP-cAMP | lacl | Z, Y, A transcription

0 0 + *) —
0 1 + S +
1 0 S, + —~
1 1 S, - -

TABLE 1.2: Transcription of the three structural genes based on the presence of sugar

1.4.2.3 Control of the lac-operon expression in presence of Glucose

Two other proteins help understanding the process in which the presence or absence of glucose
controls the transcription of structural gene through the control of the RNA polymerase binding:

o CAP, that stands for Catabolite activator protein,
o cAMP, that stands for cyclic Adenosine MonoPhosphate.

Together, they form the CAP-cAMP complex, which binds DNA. When CAP-cAMP binds
DNA, the efficiency of RNA polymerase binding is increased at the lac operon promoter, which
increases the transcription of structural genes.

reinforces

CAP-cAMP on DNA ———— RNA polymerase on lac operon promoter

increases

7,Y,A transcription

The formation of CAP-cAMP complex is directly linked to the presence or absence of glucose
in the environment : when the level of glucose is low, the concentration cAMP is abundant and
the complex CAP-cAMP is formed; when the level of glucose is high, the CAP-cAMP complex
does not form, and the RNA polymerase cannot bind to the lac-operon promoter efficiently.

Glucose and Lactose are present. As the glucose is present, the complex CAP-cAMP
does not form. The RNA polymerase cannot really bind to the promoter, and the structural
genes are not transcribed.

Lactose only is present. As the glucose is absent, the complex CAP-cAMP is abundant,
allowing the binding of the RNA polymerase on the promoter site. The structural genes can
be produced.

1.4.2.4 Summary of the evolution

Table 1.1 (p15) can be explained thanks to two other entities : the product of the gene i and
the complex CAP-cAMP.

Considering the evolution of the concentration levels with a + denoting an increase, and a
— denoting a decrease, the original table can be completed with the two regulatory entities.
The result is given in Table 1.2 (p17). The values circled are the leading effect of each line.

18 CHAPTER 1. CONTEXT

1.5 Conclusion

This chapter succinctly introduces the reader with the biological notions required to understand
gene regulatory networks and their utility. It gives as well some references to the current main
techniques used to infer or model the GRN.

Those techniques all experience the difficulty to wisely give a value to the parameters of the
model. Furthermore, the GRN are not by themselves the final outcome of the inference, but
only an intermediate result. As suggested in [10], tools such as platforms should exist to serve
the biologist or medical expert: it would allow the downstream analysis of gene networks.

Such analysis and visualization tools would benefit from being accessible to non-technical
experts, and help intuitively reason on those gene regulatory networks. A usable tool should
enable not only the inference of GRN’s, but also, more importantly, to evaluate hypotheses on
known and unknown networks, to confront the experimental data allowing to vary parameters,
to integrate data uncertainties, etc.

This thesis introduces the reader to a tool concept built in that purpose: to give to a non-
technical expert the opportunity to infer a GRN based on data, and to assess its hypotheses or
reason on an existing network, based on her/his inputs.

Chapter 2

Constraint Logic Programming

2.1 Introduction

This chapter familiarizes the reader with the main computer science topic of this thesis: the
constraint logic programming paradigm.

Firstly, an overview describes the constraint programming paradigm, and introduces the
notions that come up in this work. Topics as constraint propagation, search — specifically
backtracking —, problem modeling and labeling are largely addressed.

Secondly, having presented the required notions, the paradigm of constraint logic program-
ming is introduced. A simple yet illustrative example of the logic programming paradigm
is given, then some tools that can be used in the context of constraint logic programs are
presented. In particular, Prolog, the computer language which is abundantly used in this
thesis, is introduced. An example of usual problem — the N-queen problem —, and its resolution
using the constraint logic programming is given, followed by the presentation of the nominal
structure of a resolution.

2.2 Constraint Programming

Constraint Logic Programming is a powerful computing paradigm particularly indicated to
solve combinatorial search problems, as presented in [52].

The main idea is rather straightforward : the user states the constraints, and a general
purpose constraint solver is used to solve the constraints.

The constraints are relations, and a constraint satisfaction problem (CSP) consists in a set
of variables, each associated with some domain of values, and a set of relations — the constraints
— on subsets of these variables. A more formal definition can be found in [53] and [22].

Constraint solvers take a real-world problem represented, according to a CSP, as decision
variables and constraints, and will look for an assignment of all the variables that satisfies the
constraints. This assignment can be extended for instance so that the solution is optimized
according to specific criteria, or such that all solutions for which the constraints are fulfilled
are found by the solver.

The constraint solvers search the solution space systematically, using different techniques
such as backtracking (see Section 2.2.3 (p22)), branch and bound!, ... Those systematic methods
mix the search part with an inference part, where the information contained in a constraint
is propagated throughout the other constraints (see Section 2.2.2 (p20)). The goal of this
inference is to reduce the search space.

LOther techniques as local search exist. This is out of the scope of this introduction.

19

20 CHAPTER 2. CONSTRAINT LOGIC PROGRAMMING

Some constraints, called global constraints, apply on sequences of variables: they generally
represent real-life constraints, and come with special propagation procedures. They often allow
the systematic search to be more efficient and more effective, being optimized in the solver’s
implementation.

The main task, and probably the most complicated one, consists in the good modeling of
the real-world problem into constraints : defining the model that works well with a chosen
solver is not easy. Among the main difficulties are the symmetry of the solutions to a problem,
or the fact that many real-world problems are over-constrained. Specific techniques involving
the addition of soft constraints exits, as well as technique to guide to an optimal solution.

Generally speaking, a constraint solver can be implemented in any language, while some
are particularly indicated as they already rely on similar notions: logic-based programming
languages, such as Prolog, that natively rely on relations and backtracking search.

2.2.1 Classification
2.2.1.1 Domains

There is theoretically no limitation of the possible domains on which the constraint programming
paradigm can be applied. As presented in [22], a basic CSP involves variables that are discrete
and have finite domains. In this case, if the domain size of any variable is d, and the number
of variables in n, the number of possible complete assignments is O(d"), exponential in the
number of variables. A specific case is when the domain is limited to boolean values true or
false, for which several specific and optimized library are built (see [58] for instance, as a specific
Prolog Boolean CLP library).

Discrete variables can have infinite domains, as integers or naturals, for instance. Enum-
erating all possible combinations is no longer possible, and specific solution algorithms must be
used, such as the Simplex algorithm, for linear constraints over infinite domains, introduced in
[7] or [69].

In real world applications, several problems require continuous domains. A specific and
well-known category of such problems is the linear programming problems : the constraints are
only linear (in)equalities. They can be solved in a time polynomial in the number of variables.
Other category (quadratic constraint programming, ...) are still being studied.

2.2.1.2 Constraints

Different types of constraints exist: unary - involving one variable, binary - between two
variables, or high-order. Those constraints may be absolute: any violation of such a constraint
does not lead to a solution.

In the real-world, the solution often results from trade-offs and preferences. A solution is
needed, even if all conditions are not fulfilled. This leads to another type of constraints being
the soft constraints, as discussed in [22]. These constraints allow an improved optimization and
cost function : the respect of a soft constraint will decrease the cost of the solution, while a
violation of a soft constraint - although still being part of the solution - increases its cost. The
optimal solution is the one having the lowest cost.

2.2.2 Constraint Propagation

The notion of constraint propagation is linked to the notion of consistency. As defined in
[52], a local inconsistency is an instantiation of some of the variables that satisfies the relevant
constraints, but cannot be extended to one or more additional variables. This partial instantiation
will not end up to a global solution, and should therefore be rejected. Using the backtracking

2.2. CONSTRAINT PROGRAMMING 21

search to find a solution, this type of inconsistencies can be the reason of numerous dead-ends,
implying useless effort. Effective constraint propagation techniques have emerged in order to
avoid losing computational power in infertile work.

To understand the propagation and related consistencies, a CSP is to be seen as a graph, as
explained in [53] : the nodes are the variables, and the arcs, or edges, are the constraints. More
generally, an hypergraph? represents a CSP such that the nodes are connected by hyperedges,
as shown on the example below and Figure 2.1 (p21).

C4 Cq

C3

F1GURE 2.1: Hypergraph representation of a CSP

variables: X1, X2, X3, X4, X5, X6 with domain 0..1
constraints:

cl: X1 + X2 + X6
c2: X1 - X3 + X4
c3: X4 + X6 - X6
cd: X2 + Xb - X6

v
O O = =

2.2.2.1 Local consistency

Different local consistencies exist :

Node consistency: each value from the domain of variable V; satisfies all unary constr-
aints over V;

Arc consistency: arc(V;, V;) is arc consistent, iff there is a value y for each value
x from the domain of V; such that the assignment V; = z,V; = y satisfies all binary
constraints over V;, V;. The arc consistency is directional: consistency of arc(V;, V;) does
not guarantee consistency of arc(V;, V;).

CSP is arc consistent, iff all arcs, in both directions, are arc consistent.

Arc consistency is an important local consistency technique in practice. A given constraint
can be made arc consistent by repeatedly removing the values that lead to an inconsistency.
Removing such values is called pruning the domains. Enforcing arc consistency over the

2generalization of a graph in which an edge can join any number of nodes.

22 CHAPTER 2. CONSTRAINT LOGIC PROGRAMMING

complete CSP requires to iterate over the domains until a fix point is reached, where all arcs
are consistent. Although efficient algorithm are developed, it could represent a heavy load: a
trade-off exists between the cost of the propagation, and the amount of pruning. A common
technique to reduce the propagation costs is bounds consistency, where only the extrema values
of a domain must be consistent (must have a value for the other variable of the constraint such
that it is satisfied). Bounds consistency is weaker than arc consistency, but has proven to be
useful, specifically for arithmetic constraints and global constraints.

The node and arc consistency can be generalized to k-consistency, as presented in several
sources such as [53].

2.2.2.2 Global constraints

Intuitively, a global constraint is a constraint over a sequence of variables. Their interest relies
often in the accompanying pruning strategies that come with them, which are largely optimized
in the solvers. Expressing global constraints allows reducing the search space efficiently, hence
help prune the search tree.

One of the most speaking examples is the all_different constraint. all_different,
applied to a sequence or a set of variables, forces all these variables to be pairwise different.
This corresponds to many real-world situations.

Most of the global constraints are built-in in constraint solving systems. Their benefits is
double: firstly, it eases the modeling task of the programmer, and secondly it prunes more
efficiently the search space. Example of the complexity is reported in [52] or [24] Among the
most famous global constraints are, despite all_different,

gcc, that states that over a set of variables and values, the number of variables instantiating
to a value must be between two bounds (which can be different for each value),

cumulative, which is specifically designed to handle task/resources/time problems.

2.2.3 Backtracking Search

The search is probably the most algorithmic technique used for solving CSP. Considering a
finite search tree, it can either be complete or incomplete. Complete search guarantees that a
solution will be found if it exists, or can be used to prove that no solution to the CSP exists.
On the other hand, incomplete search cannot be used to prove that no solution exists or to find
a provable optimal solution, but is often an effective way to find a solution if one exists, and
an approximation of an optimal solution. In the scope of this work, we will mostly focus on a
complete search technique, the backtracking?.

The backtracking search strategy is a depth-first traversal of a search tree, which is generated
as the search progresses. The overall idea is to select, at each node, a variable that is
uninstantiated, and extend the node with different branches out representing the alternatives,
or choices, that may have to be examined to eventually find a solution. Several techniques
exist to improve the efficiency of a backtracking search algorithm, among which the constraint
propagation, nogood recording, heuristics for variable and value ordering.

2.2.3.1 Constraint propagation during search

One method to improve the efficiency of the search is to maintain the level of local consistency
(see Section 2.2.2.1 (p21)) during the backtracking, and to perform the constraint propagation
at each node of the search tree. The main benefit is the pruning the search tree:

3 As expressed, complete only if the search tree is finite

2.2. CONSTRAINT PROGRAMMING 23

e by removing a complete branch without solution due to an empty domain for a variable,

o by reducing the domain of a variable to a single value, that does not require further
branching,

e by reducing the domain : fewer further branching

Rossi, in [52], refer different authors that suggested constraint propagation techniques.
Usually, those techniques are built-in in the constraint solvers.

2.2.3.2 Nogood recording

Nogood recording consists in adding implied constraints, also called nogoods. A constraint is
considered implied if the set of solutions to the CSP is the same, with or without the constraint.
The goal of adding such implied constraints is to:

* Remove many dead-ends from the search tree,

o Help discovering other dead-ends easily (in an easier way than without the implied
constraint)

Rossi, in [52], suggests three techniques:
1. Add implied constraints by hand during modeling phase,
2. Add implied constraints automatically by applying a constraint propagation algorithm,

3. Add implied constraints automatically after a local inconsistency or dead-end is encoun-
tered

The overall idea is that the added constraints will prune the search space in the future,
reducing the size of the problem.
More information on nogoods can be found in [35] and [52].

2.2.4 Modeling

As previously stated, the overall idea of constraint programming is straightforward: the user
states the constraints, and a general purpose constraint solver is used to solve the constraints.
Stating the constraints of the problem refers to modeling the problem. It remains one of the
most important challenges of the methods: problems usually can be modeled in different ways,
logically equivalent, while the efficiency of the solver can have different outputs. Furthermore,
a modeling efficient for one solver is not de facto efficient on other solvers. Properly modeling
a problem is a matter of the programmer’s experience, although several good practices have
been identified:

o Decide if constraint programming is an appropriate technology. A possible hint is to
extract from the real-world problems or the end-user the constraints and try to build a
model.

o Define the variables, their domain, and the constraints that apply. Constraints should be
expressed easily,

o Symmetry. Naturally, many real-world problems present symmetries in their answers,
that often are irrelevant for the end-user. Removing this symmetry - pruning the search
space - can drastically help to reduce the search time, while keeping the most important
solution variations. In order to remove symmetry, several techniques can be applied :

24 CHAPTER 2. CONSTRAINT LOGIC PROGRAMMING

— Adding constraints on the variables to eliminate the symmetric solutions,

— Posting simple precedence constraints on the values, if they are originally inter-
changeable. The example introduced in Section 2.3.4 (p29) uses this technique,

— Modify the search procedure (see Section 2.2.3 (p22)) to avoid visiting nodes that
lead to symmetric solutions.

2.2.5 Labeling

Once the variables are defined, and the constraints are modeled, the remaining task is to assign,
to each variable, a value compatible with all the constraints. This step is usually called the
labeling. As already introduced in Section 2.2.3 (p22), it consists in two sub-steps:

1. Decide an effective ordering to label the variables,

2. Decide which value from the domain will be assigned first

2.2.5.1 Variable and value ordering heuristics

This sequence of decisions, called variable and value ordering, can have a major impact on the
performances of the (backtracking) search. A simple strategy can be to label the variables in
the simple order given by the context, then try the value starting from the lower domain bound
(provided it is a finite domain) to the upper bound. However, many alternative heuristics are
based on choosing the variable with the smallest number of values remaining in the domain.
Depending on the particular situation and real-world problem to solve, the heuristic can be
modified to improve the performances.

A famous example of a variable ordering heuristic is called the first fail, usually considered
as an efficient technique. A ff labeling selects the remaining variable with the smallest domain
to label first. It follows the idea: “To succeed, try out first where you are most likely to fail”.
An important consideration when selecting values and variables ordering is that it depends on
the modeling part of the problem. As stated in the Section 2.2.4 (p23), different models can
represent real-life problems. Specific labeling techniques may be more adapted to a particular
modeling. Empirical comparison on a subset of inputs may be worthwhile in order to observe
the difference in performances, and select case by case the most appropriate heuristic.

2.3 Constraint Logic Programming
The Constraint Programming paradigm can be embedded in many environments, but several
are more suited or convenient, as relying on the same reasoning. In particular, the following
characteristics make constraint paradigm naturally close to logic programming.

e constraints can be seen as relations - or predicates -,

 their conjunction corresponds to a logical and,

» backtracking search is the basic search algorithm to solve constraints,

Together, they form the Constraint Logic Programming paradigm, which semantics can be
found in [33].

2.3. CONSTRAINT LOGIC PROGRAMMING 25

2.3.1 Logic Programming

The logic programs are logical implications between collections of predicates.

The program is constituted by : a set of rules, the clauses, which relate the truth value
of a literal, the head of the clause, to the collection of other literals, the body of the clause.
Executing such a program looks for the truth value of a statement. This statement is called the
goal. Repeatedly, the goal is transformed during the resolution steps until the goal is empty -
and the proof is successful - or the goal is not empty but no extra resolution step is possible -
this is a failure, the goal is false - or the resolution continues forever - infinite computation.

Each resolution step involves a unification between a part of a goal, and the head of a clause.

An example of such a program is given hereunder. The first thing to notice are the facts, that
state what is true. The predicates female/1 and male/1 indicate literals representing a (fe)male
person. parent/2 indicates who is the parent of whom, such as in parent (X,Y), X is the parent
of Y. The second part of the program consists of the rules, as defined above. For instance,
father(X,Y) :- parent(X,Y), male(X). states that if the conjunction of parent(X,Y) and
male(X) holds, than father (X,Y) holds, and vice versa. Intuitively, it is simple to state that
X is the father of Y if X is the parent of Y and X is a male.

Theoretically, there is no ordering in the way the predicates are inserted. In concrete
implementation of the logic program interpreters, however, proper ordering allows to improve
the efficiency of the resolution, and to avoid infinite loop. As a simple example, the base case
of a recursive predicate should be placed before the recursive case.

% Family - Logic Programming - Prolog (SWI-Prolog version 7.6.4)
% Facts

male(geoffroy) .

male(etienne).

male(olivier).

male(valery).

male(jacques).

female(vero).
female(laetitia).
female(camille).
female (suzane) .
female (madeleine) .

parent (etienne,geoffroy).
parent (etienne,camille).
parent (etienne,laetitia).
parent (vero,geoffroy) .
parent (vero,camille).
parent (vero,laetitia).
parent (suzane,vero) .

parent (jacques,vero) .
parent(valery,etienne).
parent (madeleine, etienne).

% Rules
father(X,Y) :- parent(X,Y), male(X).
mother (X,Y) : - parent(X,Y), female(X).
grandparent (X,Z) : - parent(X,Y), parent(Y,Z).
offspring(X,Y) :- parent(Y,X).
sister(X,Y):- parent(Z,X), parent(Z,Y), female(X), X\=Y.

26 CHAPTER 2. CONSTRAINT LOGIC PROGRAMMING

brother(X,Y) :- parent(Z,X), parent(Z,Y), male(X), X\=Y.

Asking for the true value of a goal can be done in several ways - or serve different purposes.
Several executions are shown below.

2.3.1.1 male(geoffroy).

The most simple resolution of this program consists in asking if the goal male(geoffroy). is
true.

7- male(geoffroy).
true.

The interpreter answers true, as male(_) can be unified with a fact stated in the program.

2.3.1.2 male(X).

A more interesting goal is to ask who is a male. For that purpose, the goal is male (X), where
X is a variable.

7- male(X).

X = geoffroy

The answer is X=geoffroy, meaning that the goal is true provided that X is unified with
geoffroy. If one presses on the “;”, other solutions are shown:

7- male(X).

X = geoffroy ;

X = etienne ;
X = olivier ;
X = valery ;
X = jacques.

Indeed, in the knowledge base — the program —, male(X) is true if X is either geoffroy or
etienne or olivier or ...

This shows one of the main properties of logic programming: the ability to show and find
all solutions.

2.3.1.3 sister(laetitia,Y).

This last example of execution shows a slightly more complex predicate. Intuitively, again,
we would like to know who is laetitia the sister of. As we know the family, the answers are
clearly camille and geoffroy. The predicates sister/2 states that sister(X,Y) is true when
X and Y have the same parent, X is a female, and X is different than Y*.
Asking the interpreter, the execution gives all the solutions, using the

@, ”
3

?- sister(laetitia,Y).

Y = geoffroy ;
Y = camille ;
Y = geoffroy ;
Y = camille ;
false.

4Semantically, one could argue that the parent/2 predicate is not enough has a half-sister would also be
unified and considered as sister. This discussion is not relevant in the context of logic programs

2.3. CONSTRAINT LOGIC PROGRAMMING 27

This execution enlightens one of the main features of logic program resolution, the backtracking:
after geoffroy and camille are discovered, the system “backtracks” to the previous choice
point, where it chooses the alternative as asked by the “;” command. In this specific case, the
second path of resolution gives the same answer.

The backtracking can be used in two different occasions: when looking for other solutions,
as done here with the “;”, or in case a decision made at a choice point did not lead to a true
value of the goal. The system automatically backtracks to the last choice point not explored
yet in order to try a different resolution path.

More information on the logic programs can be found in [32].

2.3.2 Constraints logic programs

Adding the constraint paradigm to the logic paradigm syntactically consists in considering
constraints as special predicates. Semantically, as introduced in [52] or in [33], several aspects
are improved:

e The concept of unification is extended to constraint solving, and a goal can therefore be
described via some term equations but also general constraints.

o It improves in many cases the resolution, adding the arithmetic reasoning directly on top
of the logic semantics of the Herbrand universe.

o The constraint solver allows the combination of the inherent backtracking search of logic
programming with the constraint propagation (see Section 2.2.2 (p20)), improving the
overall efficiency.

CLP can be applied to various classes of constraints. Choosing a particular language induces
the choice of a certain constraints class, and an adequate constraint solver. For instance,
CLP(FD) stands for Constraints Logic Programming over Finite Domain, CLP(B) stands for
CLP over Boolean Domain, etc.

2.3.3 Tool for Constraint logic programming

CLP naturally blends in logic programming tools. At the University of Namur, Prolog is the
commonly used logic programming language.

Origin of Prolog. As related in [82], founded in 1972 in Marseille by Colmerauer and
Roussel, Prolog is designed to reconcile the use of logic as a declarative knowledge representation
language with procedural knowledge representation. Originally, the intent was to work on
natural language processing (computer and human language interactions), but the scope has
been broadened ever since.

Currently, Prolog remains largely used in the context of logic programming for expert
systems, artificial intelligence, theorem proving and - as originally - natural language processing.
Since 1995, Prolog has an ISO/IEC standard : the ISO 13211. The last correction is dated
2017.

Different implementations. Prolog has different implementations. The list is too wide and
represents limited interest to be elicited in the present work. A core using purely ISO-Prolog
language is supposedly portable from an implementation to the other. Unfortunately, it is far
for covering all the needs: many functionalities are not regulated by the standard, leading to
non portability caused by multiple factors such as :

28 CHAPTER 2. CONSTRAINT LOGIC PROGRAMMING

Bounded or Unbounded integer arithmetic,

Additional types (not covered by ISO),

Multi-threading,

Use of libraries unavailable in other implementations.

In the context of this work, several elements were required or wished to select the imple-
mentation, among which:

1. Free license,

2. ISO-Prolog syntax,

3. Support of Constraint Logic Programming,
4. Support of HTTP (see Section 4.3 (p42)),

The SWI-Prolog implementation ([59]), fulfills all these requirements. What’s more, SWI-
Prolog is mature (from 1987), still active (last release in January 2018), and provides a solid
documentation online. For these reasons, SWI-Prolog is the Prolog implementation that will
be actively used in the context of this work.

CLP Extension. The CLP extension of core Prolog is declined in different constraint solvers
for the different domains, or constraints classes (see Section 2.3.2 (p27)).
SWI-Prolog provides four constraints solvers, to solve constraints over Boolean variables
(clpb), integer variables (clpfd), rational numbers (clpq) or floating point numbers (clpr).
Due to the main context of this work, the library used will be clpfd, as all the parameters
and data can be discretized. clpfd is originally developed by Markus Triska, see [68]. Many
online examples are also available in [67].

Other tools. Other tools exist, which are usually used as a library or a complete interface
for the user, abstracting the solving tasks. Choco and Minizinc are among the most popular of
those possibilities.

« Choco, presented in [48], is a Free Open-Source Java library dedicated to Constraint
Programming.

o Minizinc is a free and open-source constraint modeling language. The real-world problem
is written in a high-level language, solver-independent, and is then compiled into FlatZinc,
a solver input language that is understood by a wide range of solvers, including Choco,
ECLiPSe, SICStus Prolog, etc. The complete list of compatible solvers is given in the
website, [40]. This sounds promising, as the modeling is not linked or blocked by a solver,
but an abstraction layer exists.

Although that would be interesting, broadening the scope of the current work using those
solvers/tools is left for future work.

2.3. CONSTRAINT LOGIC PROGRAMMING 29

One solution to the eight queans puzzle

FIGURE 2.2: Chess queen acceptable movements FIGURE 2.3: 8-queen solution

2.3.4 N-Queen - Example of CLP(FD) resolution

To sum up the theoretical framework explained in this chapter, a concrete example of problems
resolved using constraints logic programming is given and detailed in this section.

The infamous N-Queen problem is detailed as well in [16]. The problem can be phrased as
placing N chess queens on an N x N chessboard so that no two queens attack each other.
Figure 2.2 (p29) gives an overlook of the acceptable movements for the chess queen, and
Figure 2.3 (p29) shows a solution for a 8 x 8 board.

Several techniques can be employed in order to solve this problem: for instance, one could
think of generating and testing one by one the different alternatives until a proper solution is
discovered. For small values of N, it could be acceptable. As soon as the number of queens
increases, the amount of possibilities exponentially increases as well, leading to a practically
unsolvable problem. In general, there are NV different possibilities to explore: table 2.2 (p29)
gives an idea of this number for several cases.

N | Number of configurations
1 1

2 4

4 256

8 16777216

16 1, 844674407 x 10%°

TABLE 2.2: Number of configurations to test

Another technique is to define the N-queen problem as a constraint satisfaction problem.
This CSP can be defined as a 3-tuples where:

e Q={q,..-,qn}, a set of variables. ¢; represents the queen in the column i. Associating
a queen to a column - as a rapid understanding of the problem suggests - is already a
pruning of the possible search space.

e D={D,...,Dy}, a set of domains, one for each of the variables. Each domain is finite,
and contains the possible values for the corresponding variable {1, ..., N},

« C={C,...,C.}, aset of constraints. As a reminder, a constraint is a relation defined on
a subset of Q).

The goal is to find a value for all the variables {qi, ..., gn} that satisfies all the constraints
{C1,...,C.}. The problem description and understanding suggests the conditions that need
to be fulfilled: two queens cannot attack each other. Consider ¢; and g¢;, with ¢ # j, being
two queens. The values denoted by the variables are the rows the queens are placed in. The
constraints can therefore be established.

30 CHAPTER 2. CONSTRAINT LOGIC PROGRAMMING

C1 not in the same column. This is verified per construction,
C2 not on the same row: ¢; # ¢;,

C3 not along the same diagonal |i — j| # ¢ — ¢;l.

And the solution to the problem will be any assignment of values to the variables ¢, ..., qn
that satisfies all the constraints.

Numerous implementations can be found on the web. Triska’s implementation using Prolog
and its CLP(FD) library is available in [67].

The resolution can be detailed and visualized for the case N = 4, as shown is Figures 2.4
(p31), 2.5 (p31), 2.6 (p31) and 2.7 (p31). After modeling the constrained as described above,
the labeling phase starts assigning an acceptable domain value to the variables qi, ¢2, ¢3 and ¢q4.
The domain of ¢; is at that time [1,2, 3, 4]. Considering the assignment starts from the leftmost
variable, and the minimum value of the domain, the system first tries to assign the value 1 to ¢;.
Applying consistency techniques as presented in Section 2.2.2 (p20), the acceptable domains for
other variables are reduced, hence the reddish color in the left chessboard of Figure 2.4 (p31).

q1—>1 = QQ€[3,4]
= Q3 € [274]
= q4 € [273]

The system then assigns an acceptable value in the domain of ¢, the first one being 3.
Propagating the constraint, it leads effectively to no solution, as the domain of ¢3 would not
contain any acceptable value anymore, as shown in Figure 2.4 (p31). Applying the backtracking
search technique, the systems goes back to the last choice performed, rewinds its last assignment
g2 — 3 and removes the propagation linked to this assignment. A new choice is performed,
as represented in Figure 2.5 (p31): ¢o is assigned to 4. Applying the propagation for this new
assignment, the domains for remaining variables are given by:

a—1l,e—4 = g€2
= q € [3]

Pursuing the labeling with the third variable g3 leads also to a dead-end, as there is, after
application of the consistency, no more acceptable value in the domain of ¢4.

At this point, the system needs to backtrack to the previous choice point: up to the
assignment of ¢;. Instead of assigning ¢; — 1, the system tries the second acceptable value of
the domain, considering all other propagation applied earlier are removed — when the system
backtracks, it needs to let down the consistency checks performed with previous choices. The
domain of ¢ is therefore [1,2,3,4] and the value 1 has already been tested and lead to no
solution. ¢ is then assigned to 2. The situation is represented in Figure 2.6 (p31). In the exact
same way as previously explauned, the consistency techniques are successively applied, for the
four variables. With this assignment, the result is different: all variables can be assigned with
an acceptable value of their domain. That is, a solution exists, hence the green color on the
chessboard depicted.

This is the first solution of the problem.

If another solution is desired — if the user presses “;” for instance — then the system
backtracks again, up to the choice point of the ¢; assignment. This choice can be removed
and the system can try out ¢g; — 3. The situation is shown in Figure 2.7 (p31). An experienced

2.3. CONSTRAINT LOGIC PROGRAMMING 31

eye directly recognizes the situation the system is in: a new solution is provided with the
assignment, per symmetry with respect to previous assignment.

Finally, backtracking to try the assignment ¢; — 4 does not lead to any solution, as this is
the symmetrical problem with respect to ¢; — 1.

FIGURE 2.4: 4-queen, No solution if ¢ =1 and g2 = 3

FIGURE 2.5: 4-queen, No solution if g1 =1 and g2 = 4

.

FIGURE 2.7: 4-queen, Symmetric acceptable solution

The execution of the program written by Triska in [67] confirms the solutions found above.

?7- n_queens(4,[Q1,02,Q3,Q4]), labeling([],[Q1,Q2,Q3,Q4]1).

Q1 = 2,

Q2 = 4

Q3 =1

Q4 =3

Q1 =3
1
4
2

Q2 =
Q3 =
Q4 =

2.3.5 General Resolution of CSP using CLP

A problem modeled using constraints, a Constraint Satisfaction Problem (CSP), can be solved
using Constraint Logic Programming by a nominal canvas. It consists of three steps in order
to take usually the most out of the constraint solver, and guide the programmer. Of course,
experienced programmers may want to revisit this canvas to adapt it to a specific situation.
This is not covered in this work.

The three parts are the variable definition and domain specification, the constraints elicita-
tion, and the labeling.

32 CHAPTER 2. CONSTRAINT LOGIC PROGRAMMING

2.3.5.1 Variable definition and domain specification

Considered as the very beginning of the modeling part, it consists in choosing, from the real
world problem, what are the variables on which constraints will need to be applied. Ideally, for
all these variables, a domain should be specified.

Many real world problems can have a simpler representation (inducing finite domains) when
abstracting details or limiting redundant solutions. For instance, the N-Queen problem limits
redundant solutions by directly imposing that a queen belongs to a specific column. The only
remaining variables are therefore the rows. This is a smart choice of variables.

2.3.5.2 Constraints Elicitation

Once the variables are known, the constraints need to be elicited. In particular, real world
problems often have global constraints. Soft constraints can be introduced. If possible, implied
constraints and symmetry-breaking constraints can be introduced as well, in order to limit the
number of possible solutions while keeping all the relevant ones.

2.3.5.3 Labeling

When the variables are known and the constraints are applied, the solver can look for a solution,
assigning a specific value successively to all the variables. As introduced in this chapter,
successively may have a large impact on the efficiency, and specific heuristics can be developed.

2.4 Conclusion

This chapter introduces the computer science background of this thesis, and presents the
main techniques that are used in the subsequent chapters. Constraint Logic Programming
is addressed in details, specifically regarding a constraint satisfaction problem modeling and
resolution, including the three steps: variables and their domain definition, constraints elicitation
and labeling. The challenges regarding the modeling and the important notions of performance
and efficiency are discussed along this chapter as well.

The main programming language that is used in the thesis, Prolog, is presented and a
simple example of logic program in Prolog is given. A complete resolution of the famous
N-queen problem using the constraints technique is detailed for the particular case N = 4.

These notions are extensively used in the next chapters, where the key notions addressed
already are merged: the gene regulatory networks and the constraint logic programming.

Chapter 3

Inferring GRN using Constraint Logic
Programming

3.1 Introduction

A GRN modeling technique based on the logical method introduced in Section 1.3.5 (pl1),
using declarative approach and constraints, is introduced, with quite positive outcomes, by
several authors (see [8, 15, 17, 50, 51]). In those work, the biological knowledge of the network
and its dynamic, are formulated as a set of constraints.

The constraints paradigm seems very promising as, often, the detailed information on the
cellular components and their interactions are either not available, or largely uncertain, and
depend on many parameters and factors.

The formal declarative description of the biological knowledge as a set of constraints gives
an interesting framework that is compatible with different matters:

e Simulation when all parameters are known,
» Reverse engineering to infer parameters,

o A combination of both, when some but not all parameters are known, and some data are
foreboded or measured.

An alternative use of the framework can also be to simulate the network, changing one or more
parameters, in order to assess the impacts of the modification.

Yet another interest for this paradigm is the capacity to deliver multiple outputs: while it
is not always the case for traditional methods, constraint-based solving can output different
solutions if the model is not over-constrained. There can be more than a unique model that
satisfy all the known biological properties entered in the constraint solver. This can actually
give extra information to the user, and help refining the assumptions when working on GRN’s.

This chapter covers the adaptation of a biological model, based on the logical model from
Thomas [62], to the Constraint Logic Programming. It enlightens in particular the variables at
stake, the different constraints that can be modeled, several modeling possibilities, as well as
labeling techniques.

3.2 Theoretical background - generalized logical method

Richard, Comet and Bernot, in [50], re-introduce the reader with the notions already presented
in Section 1.3.5 (p11) regarding Thomas’ method and logical approach. The topology of the
network — one of its main properties to infer — can be described thanks to an interaction graph -

33

34 CHAPTER 3. INFERRING GRN USING CONSTRAINT LOGIC PROGRAMMING

a notion that is used in later work as [8]. An interaction graph is an oriented graph where nodes
represent genes and arrows represent interactions between genes. The arrow in labeled with
the sign of the influence, indicating if the source is activator or inhibitor. A simple example is
shown in Figure 3.1 (p34), representing a system where two genes are interacting. According to
the formalism commonly accepted, and faithful to Thomas’initial approach, it states that gene
a is an activator of gene b provided a has a concentration level higher than a first threshold
(4,1 on the arrow a — b). Similarly, gene b is an inhibitor of a if its concentration level is
higher than the first threshold (—, 1 on the arrow b — a), and self activator if its concentration
level goes over a second threshold value (+,2 on the arrow b — b).

An important precision, specifically for the reader not familiar with the domain, is that
the notions of gene expression level and gene product concentration level are intimately tied
together. From [50], if a is an activator of b, then an increase of the concentration of the
protein A encoded by gene a induces, generally following a sigmoidal curve, an increasing of
the rate of synthesis of the protein B encoded by b.

In this work, considering a gene and its products (proteins) are tied, expression level and
concentration level will be employed indifferently, provided the assumptions that the expression
level would refer to the gene itself, while concentration level would refer to the gene product.

_I_l +72

— 1

FIGURE 3.1: An interaction graph

The notion of threshold is crucial, as it states when an interaction becomes effective. The
reality of the thresholds, which is not discussed in this t, leads to a discretization of the
concentrations, the very basis of the logical method.

Each gene can be associated with a finite interval of integers, which corresponds to the
different levels of concentration of the (product of the) gene. Simplistically, one could only
differentiate the levels with boolean values, denoting the fact that the gene is either present
(1), or absent (0).

3.2.1 Delay and Asynchronism

The idea of delay refers to the time required for an interaction to produce its effect, or the time
for the concentration level of one product to be affected by its activators or inhibitors.

A direct consequence is an asynchronism, which is linked to the fact that the evolution of
the expression level involves biological phenomena that are not instantaneous, and a priori with
delays mutually distinct. It is very unlikely for two concentration levels to change exactly at the
same time, and therefore, the discretization of time can lead to only a single gene expression
change per time step considered. In the synchronous modeling, one could argue that still,
modeling the delays - that are often unknown - represents a biological interest.

The particularity of asynchronism with respect to synchronism is widely discussed, with
different views, in the literature, such as in [3, 14, 73].

It does not belong to the computer scientist to choose for the biologist this parameter - or
at least it shouldn’t, and both views need to be considered.

3.3. MODEL VARIABLES 35

3.2.2 Sigmoid function and Step function

It is generally admitted that the relation between the concentration of a regulator and its effect
— the increase of the rate of gene production — follows a sigmoid curve. Directly expressed in
several logical modeling formalisms, such as Thomas’ in [62, 64, 63], this sigmoid is approximated
in logical modeling by a step function. The step function introduces a simple +1 depending on
the concentration of the regulator which respect to the threshold. This way of modeling has
been widely reused since, and will be used in the present work.

3.3 Model Variables

Gene Level. From Thomas'modeling, well explained in [50], each gene is associated with an
integer variable which domain represents the discrete different levels of concentration of gene
products: X, = {0, ...,1,}. In the following, and in Chapter 5 (p57) in particular, this variable
will be referred to as the Niveau of the gene. To be able to address this concentration level
over time, a specific Niveau is associated to a time step. For instance, Niveau, designates the
concentration level at the beginning of the experiment, Niveau; at the first time step, etc. The
steps being discrete, they do not represent a real timing in seconds. This is not an issue as the
logical based models are qualitative.

The notion of time has to be seen in perspective with the delay and asynchronism notions
as discussed here above.

Threshold. As explained in Section 1.3.5 (p11) and reminded above, an interaction between
a gene a and a gene b at the step N of the experiment is only effective if the concentration
level of the product of a (or the expression level of a) is above a threshold, often denoted in the
literature 6,,. Considering the discretization of the concentration level, the threshold is also
discrete, with a domain encompassed in [1, ..., l,] where [, defines the maximum concentration
level of a. The lower bound is 1 as a bound of 0 would imply an interaction between a and b
when a is absent - which is a nonsense in the real world experiment.

This threshold is at the very essence of the logical models, and the base of the main constraint
to be modeled.

Delay. Considering the synchronous versus asynchronous discussion above, this work considers
two ways to understand the modeling of the delays. The delay itself, as explained in [3], is
supposed to be non-null, a priori unknown, parameter.

Asynchronous representation: the delays, as expressed in [50], are a priori mutually distinct,
and lead to the asynchronism: at each step, only one gene sees its expression level evolving.

Synchronous representation: intuitively, it simply represents the time the interaction takes to
produce its effect. For an a — b interaction, it represents the number of steps after which
b will effectively perceive the influence of a. This modeling therefore allows a gene to have
a delayed effect on another, while still, all the concentration levels are computed for all
steps, hence the synchronous consideration. This is detailed in Section 3.4.1.1 (p36). In
the general case where no delay is desired, a 0 value can be given for all interactions.

Effect. It denotes the increase or decrease of the concentration level induced by an individual
interaction. It is restricted to a symmetrical domain with respect to 0, as the source gene
can be inhibitor or activator, generally speaking. For instance, the Effect is within the [—3, 3]
domain. The literature often seems to limit the upper bound to 1, as in [6, 8, 50, 62], while other

36 CHAPTER 3. INFERRING GRN USING CONSTRAINT LOGIC PROGRAMMING

references, such as Ropers in [51], allow specifying a different value, as an idea of integrating
specificities of the linear differential equations. Once more, the tool built in the context of
this work is not to select specifically one or another, and the way the effect of an interaction
between genes is considered should comply with both ideas: the upper bound can therefore be
arbitrarily set.

3.4 Model constraints

This section presents the high level constraints that will be implemented. The details are left
for the Chapter 5 (p57).

3.4.1 Gene Expression Levels constraint

The very essence of the inferring or simulation work relies in the interconnection between the
variables cited in Section 3.3 (p35).

3.4.1.1 Mathematical relations

The logical model generalized, as discussed in Sections 1.3.5 (p11) and 3.2 (p33), can be summed
up in order to define the constraints to apply on the variables. In particular, the concentration
level at a given time can be described as:

X;(t) = X;(t —1)+ Contribution;(t) (3.1)
Contribution;(t) = s(X;(t —Delay,; — 1), Threshold;;) - Effect;; (3.2)

0

=

where X denotes the concentration level, Delay, Threshold and Effect are linked to a specific
interaction between the genes ¢ and j, and s(X(t), 0) is the boolean function which value is set
as:

s(X(£),0) = 1ifX(t) >0 (3.3)
s(X(1),0) = 0ifX(t) <0

As clearly shown, there is a form of logical OR intrinsic to the modeling : either the
concentration level is greater than or equal to the threshold, leading to the effectiveness of
the interaction, or the concentration level of the source gene is smaller than the threshold
- which may be unknown, in the most general case - leading to a null contribution of that
particular gene.

These mathematical expressions will be used, and their implementation detailed in Section 5.4
(p60).

At this point, a disclaimer needs to be addressed. Equations 3.1 (p36) to 3.4 (p36) are
set as the output of the unification of several biological studies listed in references: as stated
along the first chapters, not all methods agree, and differences between authors can be from
cosmetic to drastic. As for example, the synchronous versus asynchronous modeling, that both
have sponsors across biologists community - also due to the ultimate use of the models. Once
more, although having the most accurate possible representation of the up-to-date knowledge of
the GRN inference is important, it does not prevent this work for showing the interest of the
Constraint Logic Programming techniques.

3.4. MODEL CONSTRAINTS 37

Asynchronous case. Equations 3.1 (p36) to 3.4 (p36) are used as is for the synchronous
case. While considering the asynchronous modeling, things get quite different, as only one
interaction is to be considered at a time. The time precisely does not really follow a real
time reference, but rather indicates the sequence in which the interactions are applied. The
asynchronous case may seem easier, as only one interaction is defined at a time step, but is
trickier when considering a concrete interpretation.

The literature, such as Thomas in [63, 64] suggests and explains that delays are most likely
mutually distinct and only one interaction between genes need is to be considered at a time. It
is also generally assumed that the delays are unknown : they appear as perfect candidates for
the CLP paradigm. Nevertheless, the challenge consists in selecting properly which interaction
to choose at a given time. This topic raises several questions, not answered at the time of
writing these lines, such as how to model the fact that in general, there is no reason why all
the interactions should be applied one after the other, in a unique pathway. Because of this
delay, the time that an interaction takes, some fast interactions could be applied several times
before another one, slower, becomes effective the first time. As an illustration, let’s imagine
three interactions a — b, a — ¢, ¢ — b, associated respectively with D, D,., D, the distinct
delays. Let’s consider that Dy, < D, < Dg.

In the most general case, depending on the real delays and most likely also on many other
parameters, all the following pathways could be acceptable:

e a—bthena — cthenc—b

a — b then a — b then ¢ — ¢ then ¢ — b

a — b then ¢ — ¢ then a — b thenc — b

a — b then ¢ — ¢ then a — b then a — b then ¢ — b

In other words, there is no reason why the first pathway would happen, as the first interaction
could apply its effect several times before the second one is realized.

As a further question, what happens after ¢ — b is effective : does the pathway start again
from the beginning of the sequence, or does a complete other pathway interact ?

That is, it is unclear! whether all the interactions of a GRN are to be taken in a single
order, or if the delays may change, or if the pathways change, etc. Following the disclaimer
presented above, these considerations specifically directed to the modeling of the GRN in the
logical world will not be investigated any further in this work. To go on with asynchronous
models, however, the following assumptions will be taken:

H1 the delays, in the asynchronous case, are distinct,
H2 the delays are unknown, although the user can suggest a (partial) order,

H3 the interactions are applied following a specific sequence, defined by the delay. Using the
same example as above, over a period of 6 steps of time, the sequence of interactions
application would bea - b,a—>c,c—b,a—b,a—c,c—b.

H4 the gene expression level to be compared to the threshold will be the one from the previous
step.

'From the author perspective, to say the least, most likely due to a lack of biological knowledge, although
the biological sciences may still have discoveries to make.

38 CHAPTER 3. INFERRING GRN USING CONSTRAINT LOGIC PROGRAMMING

Intuitively, as only one interaction is active at a time, it won’t be surprising to observe
phenomena taking much more time steps than in the synchronous case.

Another modeling possibility, left for the perspectives in Chapter 8 (p105), for the asynchro-
nous case could be the following: For each step N, for each gene g of the system, are considered
all the potential interactions ¢ that could start, as the expression level of g is higher than the
threshold 6;. All those potential interactions are then sorted according to the Delay variable.
The next 7 to occur is the one with the smallest Delay value.

3.4.2 Sparsity constraint

This extra constraint, introduced in [15], comes from the idea stated in Section 1.3.2 (p9) that
usually, only a (small) subset of genes are regulators, and the overall amount of interactions
is limited. At first, it is considered that all genes can have an interaction with all the others.
This constraint allows specifying a maximum number of interactions.

For the sake of clarity, this way of modeling could be improved : the sparsity constraint as
foreseen here limits the number of interactions, and not the number of regulators. This could
constitute an improvement, if judged necessary by domain-related users.

Adding this constraint, which should be optional in the most general case, may not help
finding a solution, but could definitely limit the total amount of acceptable solutions.

3.5 Labeling

As introduced in the Section 2.2.5 (p24), labeling is the part of the resolution of a CSP where
the variables are assigned a value, based on specific variable and value ordering.

Regarding the application domain and its modeling formalism adopted, five types of variables
require a labeling: the Niveau’s, the Effect’s, the Threshold’s, the BorneEffect’s? and the
Delay'’s.

The concrete implementation of this labeling is detailed in Section 5.4.8 (p70), but key
indications are given in this section. Based on theoretical considerations, several ordering
techniques for both variables and value can be foreseen.

3.5.1 Variable ordering

A first heuristic to apply is to use the broadly efficient first-fail technique : the variable to be
selected first is the one with the smallest number of elements in the domain.

A second variable ordering technique is to label first specific type of variables, such as
the Niveau’s and the Effect’s, as they are intuitively the most constrained variables, while
the Threshold’s and BorneEffect’s would just adapt to the defined values. In this case, the
assignment of the Niveau’s and Effect’s will always be done before the other variables. The
backtracking algorithm will therefore first try out the choice points left for those last variables,
if no other specific dispositions are taken. This is discussed in Section 5.4.8 (p70).

3.5.2 Value ordering

The value ordering problematic lets appear very interesting notions in the domain of interest.
The first ordering technique, usually the default one, consists in assigning the value from
the lower bound to upper bound. When all the values have equal chances of being part of a

2These variables simply stand for the bounds of the Effect’s domain. This is introduced longer in
Section 5.4.3 (p63)

3.6. MODELING GRN WITH CONSTRAINTS IN THE LITERATURE 39

real-world solution, that is, when the probability of all the values of the domain to be part of
the solution is the same, there is no specific reason why the order would matter regarding the
relevance of the solution found, and the values ordering can simply be guided by the efficiency
to find a solution. For instance, if the problem modeled is related to assigning seats around a
table, provided all the constrained modeled are respected, one can assume there is no better
solution than another.

On the contrary, if the modeled real-world problem is under-constrained — leading to several
solutions — and if it is known that some solutions are more relevant, the value ordering is a
technique to have those more relevant solutions appear first.

This is interesting, as it can be understood as an integration of a probabilistic framework
over the labeling: by selecting appropriately the values assigned to variables in a way that
respects the known or estimated probability of appearances, the optimal solutions - the ones
that are given first by the solver — will be the most relevant ones.

The GRN modeling domain is definitely impacted by this promising behavior, as confirmed
by the probabilistic modeling considered in Section 1.3.5.3 (p13) or described by Georgoulas
and Sanguinetti in [21]. Of course, ordering the values so that the most frequent ones are tried
out first does not intend to fully integrate a complete probabilistic model.

In particular, the ordering of the values to be assigned to the Effect’s variables can
appropriately selected, as it is foreseen that solely a small number of genes participate to
the regulation.

The implementation of the different ordering techniques is detailed in Section 5.4.8 (p70).

Finally, although the labeling may suggest prospective more relevant solutions first, it does
not not prevent - in the general case at least - to find all the others.

3.6 Modeling GRN with constraints in the literature

The main overall idea, specifically described in [8], is to start from Thomas’ logical model of
the network (see Section 1.3.5 (p11)), adding several more complicated features such as delays
or asynchronism, and to determine all the possible states for the system. Then, applying
constraints, paths between the starting and steady states are computed, in such a way it
gives how the system necessarily evolved under the constraints. Recently, Fromentin, in [17], or
Fioretto [15] suggested different constraints modeling, as using community networks to integrate
predictions from individual methods (presented in Chapter 1 (p3)) in a “meta predictor”; in
order to compose the advantages of different methods and soften individual limitations. This
is out of the scope of this thesis.

As also notified in [8], they suggest to relax some constraints if no path are possible.
Although this technique shows good results to reason on the dynamics of networks, our work
will not focus on the stable states of the system, but rather directly on the gene expression and
on the gene products concentration. That is, rather than finding paths and successors to states
to go from starting genes concentration levels to steady states, or to find all possible states of
a system, this work will focus on the tool described at the end of Chapter 1 (p3), using the
introduced constraints framework to describe the biological knowledge.

3.7 Conclusion

This chapter describes how to build a constraint logic program starting from a biological model.
It goes into detail in the theoretical background required to understand the context, then it
addresses the way to convert it in a CSP using the three steps: variables elicitation, constraints
elicitation, and labeling. The reader should be familiar with the notions described in this

40 CHAPTER 3. INFERRING GRN USING CONSTRAINT LOGIC PROGRAMMING

chapter as they really are the concrete base upon which the whole implementation is built. In
particular, the variables and their semantics is important. The CSP implementation detailed
in Chapter 5 (p57), detailed in the subsequent chapters, abundantly refers to these notions.

Chapter 4

Tool Definition

4.1 Introduction

Considering the needs for the biologist' expressed at the end of Chapter 1 (p3), a tool developed
in the context of the present work.

This chapter first introduces the reader with the major requirements for this tool, at different
levels. For that purpose, Lucy, a typical biological-user, is introduced as the reference persona
(see Section 4.2 (p41)). Secondly, the architecture of the suggested tool is discussed, and chosen.
The technologies to be used for the implementation are selected, based on the technical needs,
the availability, the timing constraints and personal ability.

The user inputs required, based on Chapters 1 (p3) and 3 (p33), are listed and detailed.

As a result, at the end of this chapter, the reader will have an overview of the global structure
of the tool built, its use, its architecture, and its technology.

4.2 Requirements Overview

This section provides the main requirements of the tool. The goal is not here to apply a
specific software development process, such as the “V” development cycle or following Agile
method — this would have little interest in the context of the work. It rather gives an informal
description of what is expected to be provided. Subsequent sections detail how the tool fulfills
those requirements.

The very succinct persona (as defined in [45]) of the expected biologist user is Lucy: a biology
aware person, used to work with a personal computer for administrative or office tasks, or able to
use experts software in its field of activity. Presumably, Lucy has no programming experience,
and is definitely not aware of any constraint logic programming paradigm as presented in
Chapter 2 (p19). The tool is dedicated to help Lucy in her work related to GRN’s. The tool
should:

e be able to infer gene interactions based on user inputs,
« be able to simulate and generate data based on interaction rules defined by the user,

e be able to fill the gaps in rules and data: based on a subset of rules and a subset of data,
reconstruct the complete set of rules, and set of data.

The three requirements listed above can be refined and expressed directly as a user story [71]:

o As a user, I want to provide the entities, part of the system I want to study with the tool.

Lgeneric word designating a student, an expert — anyone interested in the field of gene regulatory networks

41

42 CHAPTER 4. TOOL DEFINITION

e As a user, I want to provide data so that the GRN can be inferred.

o As a user, I want to provide the interaction rules between genes so that data expressing
the concentration levels of the gene products can be generated.

o As a user, I want to be able to manually modify the interaction rules suggested by the
tool.

o As a user, I want to be able to see the results of the inference or data generation.

From a technical perspective, as it also consists in the main topic of this work, the tool
should integrate the constraint logic programming paradigm (see Chapter 2 (p19)).

4.3 Architecture

4.3.1 Standalone or Web based

To build this tool, several architecture types are possible. One could think first to develop
a tool based on a standalone executable, that Lucy can install and run on her own machine.
Alternatively, the tool can rely on the web service idea : Lucy would only need a web browser
to access to the tool.

The choice of one or another solution is mostly linked to non-functional requirements, as
both architecture could handle the functionalities listed in Section 4.2 (p41).

4.3.1.1 Standalone application

As defined in [2], a standalone application can be defined as any software program that does
not require anything else in order to run, provided the environment is compatible (for instance:
Java is installed on the machine). Essentially, it is a software that can stand on its own without
help from the Internet or another computer process. From other sources, the definition may
slightly differ, but the essence remains.

The main advantage of the standalone application, from the user perspective, is the inde-
pendence of use with respect to an Internet connection. Installed on a limited environment —
Lucy’s computer — the standalone application does not require external access to process data
or provide its services. This is however not true if the application requires a connection to an
external database or other external service to properly run.

A second advantage is the security — or at least the control — offered: it is easier to limit
the threads on an individual machine.

From a programming perspective, a standalone application necessarily means to handle the
different architectures it will need to run on: different OS, different HW material (laptops,
desktops, mobile devices,...). This results in a considerable overhead in terms of development
but also test, as all the configurations should be tested prior to official release. Of course,
appropriate technological choice can reduce the overhead, such as relying on the JVM? to run
the application, making it portable. Yet, the different configurations should be tested.

For the user, despite not needing an Internet connection, the ease of use of a standalone
application may not be optimal. Among some common issues, one can cite:

« problems related to specific machines (hardware/software compatibility),

o permissions and rights issues — specifically on machines managed inside a larger organiza-
tion, where the individual may not have the rights to install third party software,

Zsee [60]

4.3. ARCHITECTURE 43

o resources issues, for lickerish applications (ex: CAD Software often need powerful computer,
with many GB of RAM to guarantee a correct user experience).

Regarding the maintenance, all the individuals that have their version of the software
installed will need to reqularly update the applications. As commonly admitted, this cumbersome
aspect often leads to non-updated software versions still running. In regards of the security
aspect mentioned above, this can on the contrary constitute a risk, as patches and updates also
deal with security reinforcement. Leaving software running that are not up-to-date in terms of
security updates can cause breaches.

Finally, imposing as many downloads and installations as users may limit the spread of the
software developed.

4.3.1.2 Web application

At the very opposite of standalone application, a Web application is a computer program that
uses web browsers and web technology to perform tasks over the Internet, as defined in [80].

Web applications are installed in a unique (or considered unique) place, a server, and the
users — usually called the clients, can access it traditionally through their classical Web browser,
using their Internet connection.

This simple definition may be declined in different ways or detailed in terms of web technology
used for instance — while the essence still remains the access to a service using web technologies.

If several years or decades ago, having an Internet connection and data bandwidth allowing
large amount of data being exchanged between client and server was not always easy, it’s rarely
an issue nowadays — for most of the users at least, specifically in the context of Lucy’s work.

Web applications present the main advantage of the ease of use for the user : Lucy does not
need to care about her configuration on the device she uses, as only a web browser is required?®.

Regarding the installation and updates, web applications need to be installed only once, on
the server side. From a maintainability perspective, this is a major advantage.

Security-wise, web applications are much more at risk than standalone applications as
they are intrinsically more exposed, being open to the web. Several well-known tactics and
tools however help the programmers in deploying in security the application, but yet, it
remains a challenge to ensure the continuity of service and data security while forbidding
access to unauthorized clients. As always, the needs of security (all aspect wise) of a particular
application depend on its security risk analysis.

Web service. A distinction needs to be made between Web service and Web application,
although depending on the source, the information may vary and both may be used in the
context of this work. A Web service is the software on the server-side that exchanges information
— sometimes processed — via a standard web protocol, typically HT'TP. The interface offered by
the Web service is called API. The Web application is considered the software that uses this
API, provided by the Web service, typically to show the information to the end user. Usually,
the Web service itself is not destined to the end-users, but rather to another software such as
a Web application.

4.3.1.3 Conclusion

The previous paragraphs gave a succinct indication on when using standalone application
or when using web application/web service, mostly depending on the non-functional quality
attributes such as maintainability, security, ease of use, resources consumption, etc.

30ne may however argue that yet, Flash, JavaScript or other packages would need to be up and running on
the client side. This does not really go against the ease of use when compared to standalone application

44 CHAPTER 4. TOOL DEFINITION

Based on the facts that the intent is to have:

« a tool widely spread among Lucy’s,

« an effortless integration in Lucy’s work environment,
e an easy-to-test tool without requiring time to install,

and considering that the security and connectivity are not a limitation, the choice of a web
application seems the most appropriate.

Figure 4.1 (p44) depicts schematically the Web application principle as considered here.
Users located behind several kind of workstations, from a desktop to a tablet, provided they
have access to a Web browser, can access through the Internet to an application server, where
are actually installed the services the users want to access. Behind this schematic view of the
application server is in reality a much more complicated architecture, integrating all the specific
functional and non-functional needs for the application®.

/ ';R_iu\ogy Faculty - - N
university X D
™

) Application Server

b

A

A

-

f Ci
Private Biopharma company

Student -

FIGURE 4.1: Web Application - schematic view

This overview is purposely limited in terms of components.

This work aims at providing a prototype of the tool rather than a production-grade software,
and the goal is to establish the base, making sure the choices are motivated, without digging
into the details of the application implementation.

The distinction between Web service and Web application is important: the focus is primary
put on the server side, the Web service, rather than on the client side, the application.

As a consequence, the tool built as part of this work will not address the following topics:

sessions or security-related,

graphical usability,

data persistence (connections to databases),

quality attributes related to production mostly, as the scalability, the reliability, ...

Still, those topics are clearly important for real and in production web application. Chapter 8
(p105) will discuss several suggestions to convert the prototype to a real product.

4For instance, load balancers hardware or software, firewall

4.3. ARCHITECTURE 45

4.3.2 Style

The Web application as used for the tool prototype is based on a client-server architectural
style (see [12]). The client, used by Lucy, invokes a service of the server component.

The tool is divided in two parts: the server part, called back-end, and the client part, called
front-end. The server part also corresponds to the Web Service definition.

The Web Service developed reuses the principles, without calling itself fully compliant, of
a REST API. The REST style was initiated by Fielding, see [13]. The objective is not to fully
describe and discuss the style, but rather to informally summarize the major principles that
make REST a widely used and appreciated style.

REST stands for Representational State Transfer, and is governed by several principles:

o Client-Server As already discussed implicitly, the client shall connect to the server,
exchange information and receive a response based on its request. This is typically a Web
Service Architecture style. It reinforces the separation of concerns principle, with help
with the portability of the client (as the server remains identical on another platform, for
instance), the modifiability of the parties, as their internal modification has no impact on
the others. Only the interface, or API in the field of Web services, needs to be modified.

o Stateless: REST is based on the Client-Server stateless idea that the request of the
client is self-contained, and the result should not depend on the server context. As no
information is kept on the server side, this implies an increase of the data exchanged
during a request. Besides this, stateless style has proven itself to be easily scalable (it
can be easier to integrate load balancing techniques, as the requests are self-contained),
reliable (independent of the server state), and easier to debug since there is no context to
take into account.

o Layered System: REST allows n-tiers style, while traditional client-server style are
generally 2-tiers. The client should know to what server it is connected. Layered — and
multi-layered — architecture can allow resources sharing and scalability improvement.

o Cacheable: optional, the response to a request can be labeled, implicitly or explicitly,
as cacheable or not. If cacheable, it means that the client has the right to reuse later the
same data as response for the same (or equivalent) request. This cache can have a timing
validity and be updated if required.

o Uniform Interface: the messages shall be self-descriptive and the request self-contained,
the resources shall be identified, and their manipulation done through representations.

These principles will be partially followed. The tool is built based on a stateless client-server
style. It uses HT'TP protocol to communicate with clients, and the communication are based
essentially on the HTTP POST command. The data format of the resources exchanged is
discussed in Section 4.3.3 (p45).

The multi-layered design is not needed yet in the context of the prototype. Besides, the
first version of the tool will not support the cacheable constraint, while improvement can be
made without fundamental changes.

4.3.3 Data Exchange Format

As the client side and the server side will exchange information, the interface needs to be well
specified including the format in which the data will be sent/received.

The data exchanged are largely detailed in Section 4.5 (p51). They include the complete
knowledge for the server to perform the GRN inference as expected, hence the stateless property.

46 CHAPTER 4. TOOL DEFINITION

As indicated in specialized Web services resources such as [78], the two most common data
exchange formats are JSON and XML (or XML-derived formats such as WSDL)

XML. XML stands for Extensible Markup Language. It is used to define documents with
a standard format, that can be read by all XML-compatible application. The tags are not
predefined (like HTML tags are). Originally, XML was designed to carry data, with the focus
on what data are, as specified in [84]. An example from [34] is given here under.

<computer>
<name>Gaming PC</name>
<components>
<cpu>Intel i7 3.4GHz</cpu>
<ram>16GB</ram>
<storage>2TB HDD</storage>
</components>
</computer>

JSON. JSON stands for “JavaScript Object Notation”. Specifically designed to transmit
structured data, it has imposed itself for data transfer in web application and web servers, as
confirmed in [34]. Its main strength is the compactness of the representation, specifically with
respect to XML. The encoding of the previous example in JSON becomes:

{
"computer": {
"name": "Gaming PC",
"components": {
"cpu": "Intel i7 3.4GHz", "ram": "16GB", "storage": "2TB HDD"
}
}
b

Numerous online sources describe the pros and cons of JSON and XML to exchange the
data (for instance, [85]). In the present work, considering the lightweight idea of JSON, its
increasing popularity for web development, the easiness to set up at first the test bench, the
accessibility of the documentation, and personal habits, JSON has been selected as the data
exchange format between the server and the client.

Several other formats typically XML based, were developed a few years ago in specific
context — some of them in the field of Biology and Biochemistry. Such formats are for instance
SBML?, CellMLS. Considering the context, it has not been judged relevant to use such a format
as

o they are not common outside of the scope of their applicative domain. For instance,
BioPAX" is specialized to describe biochemical networks, and doing so can be used in the
context of GRN. But BioPAX is also unknown in other network domains.

o even though they are XML based, there are not many dedicated parsing tools,

o there exist a multitude of formats: the goal of standardization using one of the others is
not achieved yet,

Shttp://sbml.org/Main_ Page.
Shttp://www.cellml.org.
"http://www.biopax.org/.

4.4. TECHNOLOGY 47

it may be more efficient to develop the service based on a real standard interface and add a
layer of transcription (compatible with the REST style) that would convert specific format
into JSON, then back to specific format, rather than implementing different interfaces for
all the potential biological-related data exchange formats.

4.4 Technology

The suggested solution gives a lot of freedom for the implementation. The back-end (server
side) and the front-end (client side) can be handled in many ways: it reinforces the separation
of concerns principle. Chapters 5 (p57) and 6 (p91) detail the implementations.

Many tools/technologies are — at the time of writing those lines — available for a programmer
to implement reusing code rather than starting from scratch. On the front-end side, this code
reuses can go equally from a Javascript library that ease the visualization of networks, such
as vis.js, to a complete framework such and Angular or React, integrating natively many
functionalities. On the back-end or server part, code reuse techniques also involve frameworks
such as Spring Boot, a kind of simpler and more integrated Spring, or Play, quite recent
but with extensive references already. Many others yet exist.

The following sections aim at discussing the possibilities and defining the selected technologies
for both part of the tool to build, front-end and back-end.

4.4.1 Front-end technology

The Front-End of a website is the part that users interact with. It consists in the software
code that is used by the client to request the service, enter its inputs, view the outputs, ...
In the context of this work, the tool to be built requires a front-end in order to call the Web
service developed. Indeed, if the back-end can essentially be called using HTTP request, tools
like cURL or Postman can theoretically be used. However, it appears obvious that it does not
consist in a viable and easy-to-use solution, even for a prototype, and a dedicated front-end
should be provided. The details of the implementation will be covered in Chapter 6 (p91).

Nowadays, all the content that can be viewed when navigating on Internet, using web
browsers, is a mix of three languages:

HTML: it defines how every website is organized, and is the backbone of the front-end
technology. Thanks to HTML, the desired content can be added on the web page. It is a
markup language (same idea as XML, introduced above) with dedicated tag. The current
version is HTML5, recently updated. The complete specification can be found on the W3
organization website [76].

CSS: it defines the style of the HTML document, its layout — how the elements are displayed
on the screen. This really is related to the colors, the size, the shapes, ... The interested
reader can find much information on the W3 organizationwebsite [75].

JavaScript: it is used to program the behavior of the web pages, to add dynamic content
or react to user actions. Extensive documentation is provided on the W3 organization
website, [77].

Evolution of the cited languages, and JavaScript in particular, makes front-end quite powerful,
and a lot of computation can now be made on the client side, rather than on the server side.
It helps having a dynamic interfaces — as single page application — , as the server does not
need to recompute and send a whole new page but rather the client refreshes the current page
without reloading static content, for instance. An example is the Ajax technique, with which

48 CHAPTER 4. TOOL DEFINITION

the page is dynamically refreshed by the front-end while data are downloaded from the server
in the background, which allows single page application. More information is available online,
in [74].

Although the languages selection seems standardized, building front-ends has been consider-
ably improved by several frameworks and libraries that help the programmer in finding solutions
on common problems, or provide bunch of code dedicated to specific function. For instance,
a framework can have a built-in strategy to ensure good-looking content no matter the device
used (a laptop, a desktop, a smartphone, a tablet,...), or it can natively include a common
login form, etc. As pointed out in [65], the main purpose of those frameworks is to serve as
skeletons, specifically for single page applications. They let programmers focus on the interface
elements, using JavaScript and HTML, without worrying about the overall code structure or

maintenance, which is encapsulated by the frameworks. Using a well-chosen framework can
help:

the maintenance and structure of the code, following recognized guidelines,
 using piece of validated codes such as common login forms,
e using security features, built-in,

o focus on the interface elements rather than on the structure details®, without needing any
action from the programmer,

 build single page application.

Single page application has become one of the most popular ways to develop web applications.
As already introduced above®; it can significantly improve the response time, as a new page is
not reloaded at each request: only the modified element is fetched.

It is simply impossible to list all the frameworks that are currently'® used, and specialized
websites are constantly running benchmarks and publish detailed comparisons. The most
popular frameworks at the time of writing these lines seem to be React, Angular, Ember
and Vue, while still many others exist. The interested reader will find a comparison between
the four main players in [65]. A complement is also given in [66]. In [41], an informal while
relevant map is given. This map sets some frameworks in perspective, as the choice can be
crucial.

At the bottom of it, even the essence of the choice need to be assessed, as using a framework
represents always an overhead: it shall be worth it. It may not be adequate for all situations,
specifically for prototyping, if the framework is initially unknown. In conclusion, the decision
of using a framework or plain HTML/CSS/JavaScript and the selection of this framework are
a matter of the use cases, the preferences and the quality attributes that are looked for. If
production-grade front-end may hugely take benefits of a framework, for which the return on
time investment will stand in no time, it may not be the case for simple interfaces.

Back to the context of this work, hence, the goal is to provide Lucy a simple interface,
fulfilling the very basic requirements as in Section 4.2 (p41). No need for fancy interfaces,
extremely dynamic behavior, or integration of complex patterns. However, Ajax techniques
can be used to benefit from single page application idea, and several libraries — rather than
frameworks — will be used to help and ease the implementation. This will be detailed in
Chapter 6 (p91). At this point, it is relevant to point out that the separation of concerns
principle followed in the architecture style choice, with separated front-end and back-end, helps

8For instance, the structure of the codes is naturally split following the MVC pattern[42]
9When discussing the Ajax technique
10Tt indeed changes rapidly

4.4. TECHNOLOGY 49

developing this simple interface without limiting evolution as another front-end could interface
with the exact same back-end, providing the JSON data exchange is respected.

4.4.2 Back-end technology

The back-end consists on the server side of the application, the part that is not directly in
contact with the user, or client (front-end, see Section 4.4.1 (p47)). It consists mainly on the
server software and the data persistence. The back-end, in the previously selected architecture
stateless, client-server style, is the code that will receive and understand the requests, process
the data according to the request, then set up a response that will be sent back to the requester.

An interesting schematic view of the components involved is given in Figure 4.2 (p49). The
source of the image is the Upwork website, [1].

BACK-END DEVELOPMENT & FRAMEWORKS IN work
SERVER SIDE SOFTWARE

THE FRONT END

server-side
software Server
FRAMEWORKS are libraries (scripts & framaworks)
of server-side programming
languages that construct the server-side scripts process APIs structure i
back-end structure of a site. requests and pull what they how data is
need from the database exchanged HIE
between a SRS
I database and E‘[E' (a:‘
any software .
' APIs aczessing it.) °
The “STACK" comprises
the database, server-side
framework, server, and
operating system (OS). Database Internet

FIGURE 4.2: Schematic view of a back-end development architecture

Back-end development includes, as shown in Figure 4.2 (p49) the API part, the code that
does something with the request and resources, business related and core of the intelligence of
the server, and then usually a persistence layer involving one or more databases. Similarly to
the front-end development technologies, the back-end development can benefit from multiple
frameworks, all of them having their own particularities and pros/cons.

Specialized websites often classify the server development frameworks, and a major distinction
is usually the programming language used. By contrast with the front-end languages, multiple
programming languages can be used for back-end development. A vast choice is offered: some
languages are Object-Oriented, others are compiled rather than interpreted,... Choosing a
language implies several consequences regarding the ease of implementation, the non-functional
attributes, the execution time, the control, etc. The following list is based on current popularity,
according to [1] and [27]. Examples of corresponding framework are given as well. The following
list is not exhaustive and many others exist.

Java (Spring Boot, Play, ...)

Python (Django, ...)

Ruby (Ruby on Rails,...)

JavaScript (Node.js, ...)

50 CHAPTER 4. TOOL DEFINITION

« PHP (Symfony, ...)
 Scala (Play, ...)

As for the front-end, the choice of framework and programming language has an impact on
the back-end development.

As Java is commonly used at the University of Namur, two Java-related frameworks will be
succinctly reviewed.

It is important to keep in mind, reading these sections, that in the scope of this work, as
described in Section 4.3 (p42), the tool developed will not include a data persistence layer, and
will limit the requests handling part to the minimum required. The core of the back-end is the
business related constraints logic program.

4.4.2.1 Spring Boot

Spring Boot, see [56] is a Java framework for building Spring-based applications, and web
application in particular. Spring Boot is “designed to get you up and running as quickly as
possible, with minimal upfront configuration of Spring”.

One of the main force of Spring Boot is the community of developer around it and the
abundance of documentation, how-to’s, but also “native” functionalities offered by the framework.
In particular:

 an initialiser, “Initializr”, that allows to select what features to integrate to the working
project, in order to minimize imports later on,

o tools and classes to easily implement REST API’s, Streaming, WebSocket, ...

« integration of a dedicated Security environment, [44], that helps in the production-grade
security requirements,

 wide support of many database systems (SQL and NoSQL)

Spring Boot is broadly used worldwide, and comes with many features built-in, which, once
more, encourage the code reuse, hence improve its quality.

Although impossible to fully describe in a few lines, Spring Boot consists in a complete
environment that can support most of the needs of application or Web applications.

4.4.2.2 Play

With the same fast bootstrapping as Spring Boot, the Play framework intends to help building
a Web application in Java or Scala easily, with high velocity. The documentation is available
in [46]. In particular, it encloses natively many relevant features to help developing RESTful
API such as JSON support, stateless behavior by default, asynchronous request, etc.

Furthermore, it includes rapid application development, where the code running on the
server simply needs a browser refresh to be applied — and no server restart. This is a time saver
during development phase (which never really ends).

The documentation and example projects, while being not as abundant as for Spring Boot,
is accessible and dedicated how-to’s are provided to start-up quickly the application.

As Spring Boot, Play comes with a multitude of ready-to-use functionalities including
security aspects, data persistence tools, etc.

4.5. USER INPUTS 51

4.4.2.3 Prolog

Considering the use of Prolog for the part of the system related to Constrain Logic Programming,
as indicated in Chapter 2 (p19), it is interesting to note that the chosen implementation,
SWIPL, comes with a specific WEB application environment, detailed in [70]. Among other
features available, it defines or helps in particular to

o receive and answer to HT'TP Request,
 handle JSON inputs/outputs,
o deal with classical CORS aspects, see [9].

Many other aspects such as authentication, session handling, data persistence and connection
to a SQL database, ... are also covered in the tutorial.

The main drawback, as all development done in Prolog, is the lack of IDE to ease the
developer task: everything is coded using the programmer’s favorite text processing software.
This is beautiful as no complicated machinery or configuration is required, but it also involves
some tasks or errors usually taken care of by common IDE’s.

4.4.3 Technology - final words

It is imperative to remind that the main focus of this work resides in building a prototype
tool using Constraint Logic Programming to reason over Gene Regulatory Network. It is not
to fully implement a production-grade web application. Corollary, most of the usual quality
attributes related to WEB development are not fully covered, neither the tactics to respect
those non functional needs.

Similarly, in order to stay focus on the main mission and not spreading the resources
available, it has been decided to drastically limit the front-end part to what’s required to
imagine a possible product — and to spare the back-end or server part from important but
cumbersome work in this context.

These considerations have guided the choice of technology use:

Back-end: The server side is completely in Prolog, using dedicated HTTP module in
particular to handle the REST Style. The back-end implementation, including the CSP,
is detailed in Chapter 5 (p57).

Front-end: HTML, CSS and JavaScript, using relevant libraries when useful, will be
used. The front-end implementation is detailed in Chapter 6 (p91).

4.5 User Inputs

The previous sections have enlightened what an API is, and selected JSON data exchange
format as the API formalism in Section 4.3 (p42).

This APT consists in exchanging the information required for the server to understand and
execute the request, and for the front-end to receive, process and set up appropriately the
server’s response to the user.

Given the context, a DSL! has emerged, in order to properly describe the networks. From
the front-end to the back-end, the user inputs are given, while —using the same format— the
response integrates the server processing.

"1Domain Specific Language

52 CHAPTER 4. TOOL DEFINITION

To contextualize, a network as represented in Figure 4.3 (p52) is to be inferred using the
tool. The corresponding JSON file is given here under. The network consists in three entities,
two of the node type, and one of the control type. The interactions and their effect are visually
represented in Figure 4.3 (p52).

Despite specific nodes and edges, several global network parameters need to be given —
which explicit either global boundaries and thresholds that are applied as limits by default — as
well as other solving parameters such as the labeling method to apply, or the modeling method.
The complete details of the information in the JSON exchange file are given in Table 4.1 (p55).

Altogether, these JSON properties allow defining precisely the network under assessment
and the task to perform.

T genez
N -
\] fuf
f&:imatff
g;ubsu{&

FI1GURE 4.3: Network represented as a graph

{"network": [

{

"name": "yourName",

"borneMax":10,

"borneMin":0,

"borneEffectOnOthers":5,

"borneEffectOnSelf":0,

"globalThreshold":9,

"steps":4,

"method":"lineaire",

"sparsity":0,

"labeling":"all_ff",

"nSol":1,

"nodes": [

{"label":"genel","type":"node"},

{"label":"gene2","type":"node"},

{"label":"substA","type":"control"}],

"edges": [

{"id":"toChange","from":"genel","to":"gene2","threshold":4,
"borneEffect":5,"delay":0,"effect":2},

{"id":"toChange","from": "gene2","to":"genel","threshold":"/",
"borneEffect":5,"delay":0,"effect":-1}],

"data": [

{"node":"substA","step":4,"niveau":2},

4.5. USER INPUTS

93

{"node":"substA","step":3,"niveau":4},
{"node":"substA","step":2,"niveau":4},
{"node":"substA","step":1,"niveau":2},
{"node":"substA","step":0,"niveau":0},
{"node":"genel","step":0,"niveau":5},
{"node":"gene2","step":0,"niveau":0}]1}]1}

Parameter

Semantic and acceptable values

name

borneMax

borneMin

borneEffectOnOthers

borneEffectOnSelf

globalThreshold

steps

method

sparsity

labeling

nSol

This is the name of the network as given by the user. It can include
spaces, “_ 7 or numbers. The core of the back-end, the CLP, does
not use the name.

Maximum value that any concentration level can have. Typically,
for a boolean network, the borneMax is 1. If the concentration level
is expressed in percentage, borneMax is 100. Any positive or null
value can be given. The largest borneMax, the largest the solution
space is, and the longest may take the search.

Minimum value that any concentration level can have. Typically,
for a boolean network, the borneMin is 0. Any positive or null
value can be given. The concentration levels will be bounded by
[borne Min, borneM azx)

Maximum effect that a gene product can induce on another gene.
This upper bound is a positive or null integer.

Maximum effect that a gene can induce on itself. This upper bound
is a positive or null integer. In the first version, the self effect are
unfortunately not effective.

Maximum value that any threshold defined in the edges can take.
It consists in an upper bound. The globalThreshold is a positive or
null integer.

Number of time steps during which the CSP needs to perform the
inference. The largest the steps, the longest may take the search.

It denotes the modeling method to apply. In the current version, the
possibilities are : lineaire, tmp, memoisation or asynchronous.
Often, lineaire is a sensible choice. More information on these
methods in Section 5.4 (p60).

It denotes the maximum number of interactions between genes,
as described in Section 3.4.2 (p38) and described in Section 5.4.7

(p69).

It denotes the labeling method to apply. In the first version,
labeling can take the values all_ff or optimized. More
information in Section 5.4.8 (p70).

It is the number of solutions that will be computed by the CSP.
It consists on a maximum: if nSol is larger than the amount of all
possible solutions, only the possible solutions are sent to the user.
nSol is a positive integer.

54 CHAPTER 4. TOOL DEFINITION

nodes It consists on an array of all the entities that belong to the system.
The entities shall be added according to the JSON format, as shown
in the example file.

label It denotes the name of the entity. It is used directly by the CSP
. it starts with a lowercase letter, and does not contain any space.
This serves as an identifier for the entity.

type It denotes the type of entity that is added. Two choices are offered:
node and control. A node substance is constrained according to
the modeling discussed (see Section 3.4.1.1 (p36) and Chapter 5
(p57)). A control substance does not have its concentration levels
constrained by the regulatory network models. Its concentration is
supposed arbitrarily controlled.!?

edges It consists in an array containing all the interactions description

id It refers to an ID for the current interaction between entities.
This parameter is not used in this version of the system, and is
automatically replaced. It may be used in the future.

from It denotes the source of the interaction. It shall be the label of any
of the entities contained in nodes.

to It denotes the target of the interaction. It shall be the label of any
of the entities contained in nodes.

threshold It denotes a specific threshold for the interaction. The threshold is
an integer between 1 and the GlobalThreshold. If it is unknown,
the user can input "/" that is a special character for the CSP.

borneEffect It denotes a specific symmetric bound for the interaction. The effect
of the relation will be bounded by +borneEffect. It is a positive
or null integer, lower than borneEffectOnOthers. If it is unknown,
the user can input "/" that is a special character for the CSP.

delay It denotes the delay of the current interaction. It can have different
meaning. More information in Chapter 3 (p33) and Sections 5.4
(p60) and 3.4 (p36). If it is unknown, the user can input "/" that
is a special character for the CSP.

effect It denotes the impact that the source gene may have on the target
gene, according to the mathematical relations in Section 3.4.1.1
(p36). It is a positive or null integer. If it is unknown, the user can
input "/" that is a special character for the CSP.

data It consists in an array containing all the concentration levels data
description.
node It is the label of the entity for which the concentration level is given.

It should match one of the label in nodes

step It is the time step for which the concentration level is provided.

niveau It is the concentration level input of the node at time step.

12Note that if a concentration level is not given as input for a time step, the CSP considers the concentration
level is O for this time step

4.6. CONCLUSION 55

TABLE 4.1: User inputs, in detail

4.6 Conclusion

This chapter introduces the tool prototype as a Web Application, back-end and front-end.

First a review of the requirements is presented, which leads to architectural and technological
choices in the context of this thesis.

Back-end technologies are reviewed, and the choice is motivated. The back-end is a Prolog-
coded server, implementing a Web Service and expecting a dedicated JSON file as input. The
architectural style on which the server is clearly based upon is the REST style, presented in
this chapter.

Front-end technologies are reviewed as well, and the implementation selected is a plain
HTML/CSS/JavaScript single page application.

As largely discussed, the production-grade quality attributes are left out of the scope of
this prototype — back-end or front-end side —, as the focus of this work is voluntarily kept on
the core of the back-end, the constraint logic program. However, several ideas and technologies
are introduced in order to guide further development, in the perspective of a in-production
application. Those perspectives are reminded in Chapter 8 (p105).

This chapter introduces in fine details the description of the network and modeling task
as JSON formatted data. This JSON constitute the interface between any front-end and the
back-end.

The next chapters introduce the implementation of the back-end (Chapter 5 (p57)) and the
front-end (Chapter 6 (p91)).

o6

CHAPTER 4. TOOL DEFINITION

Chapter 5

Back-end development

5.1 Introduction

This chapter finely details the back-end implementation.

As expressed in Chapter 4 (p41), the back-end consists mainly in a Web service developed,
following REST architectural style. It is coded in Prolog, and does not properly handle
production-grade quality attributes. However, it completely integrates the constraint logic
programs, at the heart of this thesis’ work and contribution.

Firstly, the layered structure is introduced, with explicitly the separation between the
controller — from the MVC pattern —, and the constraint logic program, core of the Prolog
implementation. Secondly, the CLP is analyzed, and the different steps are detailed. The
steps follows the nominal resolution discussed in Chapter 2 (p19), with the association list
construction eliciting the variables, then the constraints implementations — from the user, from
the modeling followed, or from other biological hypotheses —, and finally the labeling techniques
followed.

As several implementations regarding the main modeling constraints and labeling are sug-
gested, the development of a systematic tests framework is detailed, that helps assessing the
different methods. The set up and use of the systematic tests framework and observations
based on the results obtained are largely discussed. Other functionalities integrated are tested
from a high level perspective.

5.2 General overview

There is no real IDE dedicated to Prolog development, and the best tool remains a simple
word processing software and a terminal to compile the produced code. While constituting a
attractive form of programming, it also imply a need for discipline in the code structure to keep
it organized, clean, readable and bottom-line efficient.

Following the layered principle, the source code is split in different files, as visible in the
Figure 5.1 (p58). This diagram is organized as the code structure, in layers.

The back-end is organized in different layers, having their own responsibilities.

The first layer consists in the requests handlers in the controller. These handlers are found
in prolog_server.pl source file. An HTTP request, coming from the client, is received by
the server. It contains the JSON inputs data to process, arrives at the controller which, after
a first set of verifications, successively calls the predicates required: translation of the JSON
input into usable Prolog data — implemented in json2go.pl —, resolution using the constraint
solver — implemented in phase0.pl—, then JSON production — implemented in json2go.pl-,
and reply to the client.

o7

o8 CHAPTER 5. BACK-END DEVELOPMENT

systematic test

rolog server mmmmmm
P e test file

json2go phase0 logger

association Constraints myLabeling

/ contraindre_tmp

contraindre_lineaire

sparsity

contraintes_utilisateurs

contraindre_memoisation

contraindre_asynchrone

FI1GURE 5.1: Layered view of the back-end source code in Prolog

Faithful to the idea of prototyping and bootstrapping the concept, this prototype server
remains tiny and limited in the functionalities provided to the user. Corollary, no view is
generated by the server. That is, there is no HTML code, web page, or visual information
that is generated at this level. The VIEW part of the infamous MVC pattern, represented in
Figure 5.2 (p59), see [42], which can be informally described as all the (visual) interactions with
the user, is only handled by the front-end (see Chapter 6 (p91)). This confirms the interest for
the REST architectural style selected and the Web Service concept, as explained in Section 4.3
(p42).

The layered split of the code, although quite natural, allows to update the business part, the
processing of the constraints, without modifying the server. In case of business modification,
the controller is impacted only when a change in the interface occurs.

5.3 Controller Layer

The controller part of the MVC pattern is implemented directly in prolog_server.pl predicate.
The controllers are considered as the predicates that guide the user requests to the correct
Model predicates. In this first implementation, the Web Service being built is rather tiny in
regards to the services provided. It would not be the case generally speaking, and having a
controller layer separated helps defining new services, preparing in such the extension.
After starting the server with built-in predicate http_server, one can access to the web

5.3. CONTROLLER LAYER 99

User Controller state view modification View state

inputs messages

—_— >

Controller methods View methods
Y
Model queries
Model edits and updates
Model state

Y

Model methods

FIGURE 5.2: Schematic view of the MVC pattern

service sending a HTTP POST type request to /api handler, which immediately dispatch
the request to the handle_api controller. This controller verifies first the request type, and
eventually the request is taken care of by the POST controller, which calls successively the
JSON reading predicate, built-in - hence, the interest of the JSON data exchange file for
this implementation -, then the handle_api_ predicate which will guide through low levels
predicates myTranslate/15 and multiple_instances/15, which are detailed in Section 5.4.1
(p60). The built-in reply_json reshapes the output of the MODEL to be properly sent, attach
the nominal code 201 as HTTP response status, then sends it to the VIEW part, the client
(front-end implementation).

It is well just a Web Service as fundamentally, from the outside, a JSON data file arrives to
the server, and a JSON data file is sent as the response. No HTML page is generated at this
point by the server.

server (Port) : -
http_server (http_dispatch, [port(Port)]).

:-http_handler('/api', handle_api, []).

handle_api(Request) :-
option(method(options), Request), !,
cors_enable(Request, [methods([post])]),
format('~n').

handle_api(Request) :-

option(method(post), Request), !,

http_read_json(Request, JsonIn),

setup_call_cleanup(
createlog,
handle_api_(JsonIn,DictOut),
closelLog),

cors_enable,

reply_json(DictOut, [status(201)]).

% Modified predicate - details in appendix
handle_api_(JsonIn,Jsons) :-

60 CHAPTER 5. BACK-END DEVELOPMENT

myTranslate/15,
multiple_instances/15.

This constitutes the very base of the server developed. As pointed out in Chapter 4 (p41),
an extensive server using more machinery has not been judged useful for this prototyping tool
to run, considering the few predicates line that are actually required to access to the CSP, the
core of the back-end. Chapter 8 (p105) will however explain why such an intermediate server
using other technologies could be useful, in a production-grade environment.

5.4 Constraint Logic Program

The Business part of the server is dedicated to process the inputs of the user in order to infer
a GRN, according to what was described in previous sections of this report.

The core of this part starts with the solve predicate!, which really consists in the constraint
logic program. This section, taking a top-down approach, details how the program is built, and
how technically, the constraints elicited in Section 3.4 (p36) are implemented.

Only the main ideas and the specificities are detailed in this chapter. The curious reader
will find all the code in Appendix A (p121).

5.4.1 Preambule: JSON processing

The JSON file such as presented in Section 4.5 (p51) is converted into usable Prolog compounds
and terms. Using unification, the conversion is rather straightforward considering the built-in
predicate http_read_json/2, that takes the HT'TP request as input, and outputs the Prolog
JSON equivalent. From this equivalent, the conversion to the required terms, considering a few
lists manipulation for reshaping, is direct.

As concrete example, hereunder is given an original request JSON file and its Prolog
equivalent. With this equivalent, the unification is straightforward.

Original JSON:

{"network": [

{"name":"association_list",

"borneMax":10,

"borneMin":0,

"borneEffectOnOthers":5,

"borneEffectOnSelf":0,

"globalThreshold":9,

"steps":2,

"method" : "memoisation",

"sparsity":0,

"labeling":"all_ff",

"nSol":1,

"nodes": [

{"label":"genel","type":"node"},

{"label":"substA","type":"control"}],

"edges": [

{"id":"toChange", "from":"substA", "to":"genel", "threshold":4,
"borneEffect":5, "delay":0,"effect":"/"}],

"data": [

L As concerned about the logic programming, we speak about predicates and not methods or procedures

5.4. CONSTRAINT LOGIC PROGRAM 61

node" :"subst , 'ste 42, Nlveau : s

{ " de":" b A" pu 2. "nj n 7}

{"node" :"substA","step":1,"niveau":7},
node'" :"subst , 'ste U, ' niveau : s

{ " de":" b A" pu 0."nj n 6}

{"node" :"genel","step":0,"niveau":5}1}1}

Prolog-equivalent:

json([network=[
json([name=association_list,
borneMax=10,
borneMin=0,
borneEffectOn0Others=5,
borneEffectOnSelf=0,
globalThreshold=9,
steps=2,
method=memoisation,
sparsity=0,
labeling=all_f£ff,
nSol=1,
nodes=[
json([label=genel,type=node]),
json([label=substA,type=control])],
edges=[
json([id=toChange,from=substA,to=genel,

threshold=4,borneEffect=5,delay=0,effect=(/)]1)],

data=[
json([node=substA,step=2,niveau=7]),
json([node=substA,step=1,niveau=7]),
json([node=substA,step=0,niveau=6]),
json([node=genel,step=0,niveau=5])11)11)

The shaping of the response in JSON happens in two steps: first, the solutions are computed,
as a list of Prolog-equivalent JSON terms. The number of solutions depend on the user input,
as explained in 4.5 (p51). Those Prolog-equivalent JSON terms are then compiled together
with the predicate build_final json(+DictOuts,-Jsons), where the DictOuts is the list of
all the solutions found, and Jsons is the final response Prolog equivalent. The built-in predicate
reply_json transform this Jsons to send properly the response in standard JSON format.

For the simple network provided, an example of the output with two solutions computed is
given in Prolog-equivalent JSON term. This enlightens the respect of the JSON data format
structure for both request and response.

{"network": [

{"name":"association_list",

"borneMax":10,"borneMin":0, "borneEffectOnOthers":5, "borneEffectOnSelf":0,

"globalThreshold":9,"steps":2, "method": "memoisation",

"sparsity":0,"labeling":"all_ff","nSol":2,

"nodes": [{"label":"genel","type":"node"},{"label": "substA","type":"control"}],

"edges": [

{"id":"toChange","from":"genel","to": "substA","threshold":0,
"borneEffect":0,"delay":0,"effect":03},

{"id":"toChange","from":"substA","to":"genel","threshold":4,
"borneEffect":5,"delay":0,"effect":-5}],

"data": [

62 CHAPTER 5. BACK-END DEVELOPMENT

{"node" : "substA","step":2,"niveau":7},
{"node" :"substA","step":1,"niveau":7},
{"node" : "substA","step":0,"niveau":6},
{"node" :"genel","step":2,"niveau":0},
{"node" :"genel","step":1,"niveau":0},
{"node" :"genel","step":0,"niveau":5}1},

{"name":"association_list",

"borneMax":10,"borneMin":0, "borneEffectOnOthers":5, "borneEffectOnSelf":0,

"globalThreshold":9,"steps":2, "method": "memoisation",

"sparsity":0,"labeling":"all_ff","nSol":2,

"nodes": [{"label":"genel","type":"node"},{"label": "substA","type":"control"}],

"edges": [

{"id":"toChange","from":"genel","to": "substA","threshold":0,
"borneEffect":0,"delay":0,"effect":0},

{"id":"toChange","from":"substA","to":"genel","threshold":4,
"borneEffect":5,"delay":0,"effect":-4}],

"data": [

{"node":"substA","step":2,"niveau":7},

{"node" : "substA","step":1,"niveau":7},

{"node":"substA","step":0,"niveau":6},

{"node" :"genel","step":2,"niveau":0},

{"node":"genel","step":1,"niveau":1},

{"node" :"genel","step":0,"niveau":5}1}1}

5.4.2 Program structure

As defined in Section 2.3.5 (p31), the structure follows three steps:

1. Three predicates takes the inputs of the user to build together the data structure that
will pass along all the other steps. This is detailed in Section 5.4.3 (p63)

2. The constraints, coming from the user or from the biological model described in Section 3.2
(p33), are detailed in Sections 5.4.5 (p64), 5.4.6 (p65), and 5.4.7 (p69),

3. The labeling, either following standard guidelines or personalized for the problem, is
detailed in Section 5.4.8 (p70).

The predicate solve/13% directly calls reseau/13%. Its signature is given below. The
arguments names are as defined in Section 4.5 (p51). The inputs are noted according to
classical Prolog syntax. The output, Lassoc, is largely defined in the section related to the
association list, see Section 5.4.3 (p63).

reseau(+Method, +Sparsity, +Labeling, +Nodes, +Edges, +Data,
+BorneMinNiveau, +BorneMaxNiveau, +BorneEffectOnOthers,
+BorneEffectOnSelf, +GlobalThreshold, +Steps, -Lassoc).

2This is the notation as used in the literature, where the amount of inputs or outputs are denoted as an
integer following a slash. This notation will be used in the report

3The reason of these two predicates being pretty much the same thing is historical: another branch was at
first foreseen at this node, but left out later on. This has zero impact on the rest of the codes.

5.4. CONSTRAINT LOGIC PROGRAM 63

5.4.3 Association List

The association list, noted Lassoc in the predicates, is the structure that gathers all the
variables on which constraints are applied. Considering the context, Lassoc includes three
kinds of predicates to link the variables together:

e niveau/4, that links a concentration level to a given time step, for a particular gene.

o gen_gen/7, that describes an edge of a GRN. It is considered that the GRN is a complete
graph, hence all the potential edges are automatically created. All the genes are connected
to all other genes by an edge (unique, at this point) represented by gen_gen. The gen_gen
predicate explicits an ID*, the source and target genes, the threshold of this edge within
the meaning of Section 1.3.5 (pll), the mazimal bound that this edge can have, the
delay within the meaning of Section 1.3.5 (pl1) and eventually the effect the source
gene has on the target gene. In the code, the predicate is usually noted gen_gen(ID,
GeneFrom,GeneTo,Threshold,BorneEffect, Delay, Effect),

o self/2, that is related to the effect that a gene has on itself, and is noted self (Gene,
Effect). This relation is not used in this first version of the system, although the
architecture and interface has already been foreseen.

The list Lassoc is built based on the main inputs from the user : the list of genes in the
system, the amount of discrete steps during which the GRN is considered, and the global bounds
or thresholds. At this time, the particular inputs associated to a specific gene or edge are not
considered. For instance, if the user selected a maximum threshold of 10 for the GRN under
consideration, but knows also that for an edge specified from geneA to geneB, the threshold
is 6, this information is not yet taken into account.

The domain of each variable is limited at that time according to these global inputs:

o the Threshold is bound in [1,GlobalThreshold],

o the Delay is bound in [0,1000 x N] where N is the number of steps®,
+ the BorneEffect is bound in [0..BorneEffectOnOthers]

« the Effect is bound in [-BorneEffect, +BorneEffect],

Three predicates build each part of Lassoc, which are then appended to produce the
complete structure. This structure is abundantly used in the rest of the program.

Example. As a concrete example, taking the simple JSON input file from Section 5.4.1
(p60), the corresponding association list is given hereunder. The graphical representation of
this network (nodes and interactions) is given in Figure 5.3 (p64).

Lassoc = [
niveau(control,substA,2,Varl),
niveau(control,substA,1,Var2),
niveau(control,substA,0,Var3),
niveau(node,genel,2,Var4),
niveau(node,genel,1,Var5),
niveau(node,genel,0,Var6),

4The ID is currently not used at all in the first version, and is automatically changed to "toChange" to
emphasize it is not taken care of. This behavior should change in a future version
5The upper bound is set up purely arbitrarily

64 CHAPTER 5. BACK-END DEVELOPMENT

gen_gen(toChange,genel,substA,0,0,0,0),
gen_gen(toChange,substA,genel,Var7,Var8,Var9,Vari0),
self (substA,0),

self (genel,0)]

“genel |

SubstA

FI1GURE 5.3: Graphical representation of the network - Lassoc example

5.4.4 Constraints - introduction

Different constraints need to be modeled in order for the solver to find an appropriate solution,
respectful of Lucy’s domain. The first one is related to the user inputs as described in Section 4.5
(p51), the second to the GRN itself, as explained in 3.4 (p36). It has been decided to allow
two substances types, as defined in Section 4.5 (p51): node and control. If node represents
a classical gene, as usually expressed in this work, a control substance can be whatever
entity which concentration is not subject to gen_gen interactions, while still participates to the
regulation. The concentration levels for each time step need to be provided, or is considered
to be 0 by default. It allows to introduce completely controlled entity in the domain, inducing
external gen_gen interactions that applies on the node entities, hence providing an additional
degree of freedom for the modeling and hypothesis tests.
The sparsity constraint, inherent to the application domain, is also provided.

5.4.5 User constraints

As elicited in Section 4.5 (p51), the user has the possibility to give several different inputs
to the system. The fact that those inputs come from experimental data, observations, other
studies, or assumptions is irrelevant in the context of the tool itself.

Those inputs from the user are directly linked to Lassoc, and all the information added will
eventually be linked to a reduction of the domain of one of the variables contained in Lassoc.
More specifically:

« if a specific threshold or delay is given for an edge, Lassoc is modified accordingly,

o if a BorneEffect is given for an edge, Lassoc is modified, and the Effect subject to this
BorneEffect has its domain reduced,

o if an Effect is given, Lassoc is modified accordingly,

« if a data is added, specifying a level of a gene at a specific time step, Lassoc is modified
accordingly

5.4. CONSTRAINT LOGIC PROGRAM 65

The back-end handles the fact that an edge may not be fully known, leading to incomplete
or partial information. Typically, it could concern the Threshold or Delay, for instance. Yet,
the information sent via the JSON file in the request is integrated within Lassoc. This was
introduced in Section 4.5 (p51).

5.4.6 Constraints on the Gene expression Level

As indicated in the modeling section, see Section 3.4 (p36), the gene expression levels, marked X,
are computed based on Equations 3.1 (p36). Those equations can be understood as constraints
on the variables associated with these gene expression levels.

The amount of variables to constraints is important : (N + 1) [time steps] - n [genes]®. To
set the constraint, each expression level variable needs:

the n variables associated with a previous gene expression level,

the n — 1 variables associated to the Threshold of each potential interaction,

the n — 1 variables associated with the Delay of each potential interaction,

the n — 1 variables associated with the Effect of each potential interaction.

Those relations being the very core of the constraint program, it is worth spending time on
them. There are multiple ways of implementing these constraints, and three of them will be
presented for the synchronous state.

As presented in Chapter 2 (p19) and Section 2.2.4 (p23), the constraints should be expressed
easily. This is the idea of the first method followed, called lineaire.

5.4.6.1 Constraining using lineaire

This implementation is the closest to the common interpretation of the sum represented by
Equations 3.1 (p36). It consists mainly in recursive predicate over Lassoc, and includes the
following major steps if the element under concern is niveau(Gene, Temps,Var) with Temps>O0:

1. Find all the Expressors, meaning all the genes for which an association gen_gen(_,

Expressor, Gene, _, _, _, _) exists. The classical (and ISO function) findall/3
predicate is used to that end:
findall (Expr, member(gen_gen(_ ,Expr,Gene, , , ,_), Lassoc), Exprs),

2. Convert this genes list to actual rate list, or effect list, using the predicate
convertGeneListToRateList/5, explained below,

3. Sum the rate list obtained in order to get the Contribution. This uses the built-in
predicate sum/4

4. Apply the boundaries/4 predicate, to make sure the value computed stays in the interval
required. The details are given below.

641 because of the start at 0

66 CHAPTER 5. BACK-END DEVELOPMENT

convertGeneToRateList/5 Let’s take a target gene g and the expressors list found at
the previous step being [a]. The expression level to constrain is X, at time Temps. As input,
convertGeneToRateList/5 takes the list of expressors found previously = [a]. Recursively, it
converts this expressors list to a list of Effect according to the X, being above or below the
Threshold,,, as indicated in Equations 3.1 (p36). For each gene of the Expressors list, there
are three possibilities for this conversion:

o casel: the effect of the interaction a — ¢ is known, and is 0. In that case, no matter the
concentration level of a, the effect to consider for the Contribution of X, is 0,

« case2: X, at the time Temps - Delay - 1 issmaller that Threshold,, or the time Temps
- Delay - 1 is negative. Then the effect to consider for the Contribution of X, is also
0,

e case3: X, at the time Temps - Delay - 1 is greater than or equal to Threshold,,. Then
the effect to consider for the Contribution of X, is Effect,,.

Basically, this distinction follows directly Equations 3.1 (p36). The recursion ends up with
a list of Effect’s. The very details of the implementation are given in Appendix A (p121). The
sum gives the Contribution to add to the concentration level of the previous time, in order to
get the concentration level at the present time.

boundaries/4 This predicate is built in such a way that does not introduce choice point
(only one clause), to limit useless backtracking during the search:

boundaries (In,Out,Min,Max) : -
V1 #= min(In,Max),
Out #= max(V1,Min).

5.4.6.2 Constraining using tmp method

As indicated by the denomination, this method originally was a test that actually proves itself of
some interest. The idea is to split the information collection from the threshold processing and,
by doing so, limit the possible backtracking required by the threshold modeling, see Section 3.4
(p36).

At first, the method is similar to the 1ineaire method as the main predicate is recursively
applied over Lassoc, with the same main steps. The two methods differ however in the way the
information to compute Contribution are obtained. In the tmp method, first, the Effect’s
of interactions are compiled in a list, along with the corresponding Niveau’s and Threshold’s.
Second, the boolean values are obtained based on the Niveau’s and Threshold’s.

Three predicates are responsible for the computation of the Contribution :

getAllInfo (+Expressors,+Gene,+Temps,+Lassoc,-Niveaux,-Thresholds,-Effects),
apply_predicate_list(+Niveaux,+Thresholds,-BooleanValues),
scalar_product(+BooleanValues,+Effects,#=,+Contribution),

scalar_product is a built-in predicate, and getA11Info/7 uses pure recursion over Lassoc
to gather the relevant information. The details are left in Appendix A (p121).

apply_ predicate_ list/3 A dedicated predicate is used to apply, over lists, the threshold
idea.

5.4. CONSTRAINT LOGIC PROGRAM 67

apply_predicate_list(Ls1,Ls2,Ls3):-
maplist(gt_threshold,Lsl, Ls2, Ls3).

gt_threshold(L1,L2,L3) :-
L1 #>= L2,

L3 is 1.
gt_threshold(L1,L2,L3) :-
L1 #< L2,

L3 is 0.

It takes benefit from the maplist built-in predicate, optimized at low-level to faster apply a
predicate over lists. gt_threshold is a homemade implementation : it is reviewed in the next
method presented, memoisation

5.4.6.3 Constraining using memoisation method

Inspired by the previous method, constraining using contraindre_memoisation splits completely
the part of the work dedicated to grabbing information with the constraints application. This
method does not support the Delays introduced by the user.

Information formatting. The first step is to get the information required to - later on
- apply the constraints and to format it in a usable structure. This is done in one recursion of
the association list Lassoc. Considering the modeling introduced, the information is, for each
expression level Var, its previous value VarPrev, then the list of Niveau, Threshold, Effect
of all genes that can contribute to Var, according to Equations 3.1 (p36).

A concrete example is given here under, considering the very basic network given.

{"network": [
{
"name": "memoisation_explained",
"borneMax":10,
"borneMin":0,
"borneEffectOnOthers":5,
"borneEffectOnSelf":0,
"globalThreshold":9,

"steps":2,
"method" : "memoisation",
"nodes": [

{"label":"genel","type":"node"},
{"label":"gene2","type":"node"},
{"label":"gene3","type":"node"}],
"edges": [],
"data": []
}
1}

This network has for association list :

Lassoc = [

niveau(node,gene3,2,X32) ,niveau(node,gene3,1,X31) ,niveau(node,gene3,0,X30),
niveau(node,gene2,2,X22) ,niveau(node,gene2,1,X21) ,niveau(node,gene2,0,X20),
niveau(node,genel,2,X12) ,niveau(node,genel,1,X11) ,niveau(node,genel,0,X10),
gen_gen(toChange,genel,gene2,Th12, ,_ ,Eff12),
gen_gen(toChange,gene2,genel,Th21, , ,Eff21),

68 CHAPTER 5. BACK-END DEVELOPMENT

gen_gen(toChange,genel,gene3,Th13, , ,Eff13),
gen_gen(toChange,gene3,genel,Th31,_,_ ,Eff31),
gen_gen(toChange,gene2,gene3,Th23, , ,Eff23),
gen_gen(toChange,gene3,gene2,Th32, _,_ ,Eff32),
self (gene3,0),self (gene2,0),self(genel,0)]

And the resulting structure is :

[
[X32,X31]-[[X11,X21], [Th13,Th23], [Eff13,Eff23]],
[X31,X30]-[[X10,X20], [Th13,Th23], [Eff13,Eff23]],
[X22,X21]-[[X11,X31], [Th12,Th32], [Eff12,Ef£f32]],
[X21,X%X20]-[[X10,X30], [Th12,Th32], [Eff12,Ef£f32]],
[X12,X11]-[[X21,X31], [Th21,Th31], [Eff21,Eff31]],
[X11,X10]-[[X20,X30], [Th21,Th31], [Eff21,Ef£f31]]
]

Considering the first element of the matrix structure, all the information are accessible to
later on constraint X32, the expression level of gened for the time step 2. This constraint, or
equation, comes directly from Equations 3.1 (p36) :

X32 = X31 + s(X11, Th13) - Ef£13 + s(X21, Th23) - Ef£23 (5.1)

At first, this part was built using extensively findall/3 and bagof/3, built-in predicates,
to take advantages of the low-level optimizations. However, after extensive tests, it appears
that this route was quite a dead-end, at least for several configuration : findall/3 and
bagof/3, handle quite badly the constraints propagation. Because of user inputs and association
list construction, all the variables are already constrained, and the predicatesperformances
dramatically fall as the amount of variables increase. This was shared also in [47]. As a result,
a conventional approach using recursion was preferred, to limit the (unknown) side effects. A
benefit of using classical recursion, on the other side, is the portability of the code with respect
to Prolog implementation.

Constraint application. The constraints are applied recursively on this structure only.
Provided entries from the user, as defined in Section 5.4.5 (p64), the search will backtrack on
this part only, where are the latest choice points related to the boolean function s(z,). In
order to (try to) optimize the performances, the built-in predicate zcompare/3 is used for the
s() function”, wrapped in a myzcompare/4 that outputs 1 or 0 depending on the concentration
level being higher or lower than the threshold. The myzcompare/4 is applied on the lists of
Niveau and Threshold using the built-in predicate maplist, once again in order to optimize
the execution. Eventually, the value obtained following Equation 5.1 (p68) in bounded by the
classical boundaries/4 explained above.

apply_constraint(_,_,[1).

apply_constraint (BorneMinNiveau,BorneMaxNiveau,Matrix) :—
Matrix = [[Var,VarPrev]-[Niveaux,Thresholds,Effects]|Tail],
maplist (myzcompare,Relations,Niveaux,Thresholds,TrueVal),
scalar_product(TrueVal, Effects, #=, Contribution),
VarTmp #= VarPrev+Contribution,
boundaries(VarTmp,Var,BorneMinNiveau,BorneMaxNiveau),
apply_constraint (BorneMinNiveau,BorneMaxNiveau,Tail) .

“instead of the gt_threshold/3 used in the tmp method

5.4. CONSTRAINT LOGIC PROGRAM 69

5.4.6.4 Asynchronous

The asynchronous case, as discussed in Section 3.4.1 (p36) follows four assumptions in this
work. The major difference is related to the Delay variable, which semantic changes : the
Delay’s are pairwise all different, and the value of the delay a — ¢ is directly linked to the
application of the interaction a — g on g. It is considered (H3) that the application of the
interactions respect a fixed sequence.

Following the four assumptions, the steps of the implementation are:

1. Get all the Delay’s variables and limit their domain to [0, NumberOfDelays],
2. Impose the global constraint (see Section 2.2.2.2 (p22)) that all Delay’s are different,
3. Apply recursively, over the time steps, the constraint on the expression level:

« Find the applicable interaction for the time step under consideration,

o Compute and apply the Contribution to the expression level of the target gene
using the very same way as described in the 1inear method,

o For all the other genes - not target of the applied interaction -, constraint the
expression level to be the same as the previous time step.

5.4.7 Sparsity

Sparsity denotes the limitation of the amount of interactions that have an effect different from 0.
As explained in Section 3.4 (p36), it has a real biological interest, and for the CLP itself, it can
help limit the global amount of solutions that fulfills the constraints : it may not decrease the
time required to find the first solution, but it will limit the total amount of solutions possible.
sparsity(+NbreMaxEffect,+BorneEffectOnOthers,+Lassoc) imposes that no more than
NbreMaxEffect Effect are different from 0 in Lassoc. The implementation takes advantage
of a common global constraint (see Section 2.2.2.2 (p22)), global_cardinality/2, see [23]:

“global_cardinality(+Vs, +Pairs): Vsis a list of finite domain variables, Pairs is
a list of Key-Num pairs, where Key is an integer and Num is a finite domain variable. The
constraint holds iff each V in Vs is equal to some key, and for each Key-Num pair in Pairs, the
number of occurrences of Key in Vs is Num.”

o +Vs is defined as the list of all Effect from Lassoc, that is straightforward to get,

e Pairs is the list of Key-Num, where Key is a possible value that Effect can take, and Num
is the number of occurrences of this value in the list of Effect’s.

At this point, a concrete example may be useful. Consider the association list :

Lassoc = [...

gen_gen(_,genel,gene2, , , ,Eff12),

gen_gen(_,gene2,genel, , , ,Eff21),

gen gen(_,genel,gene3, , , ,Eff13),

gen gen(_,gene3,genel, , , ,Eff31),

gen gen(_,gene2,genel3, , , ,Eff23),

gen_gen(_,gene3,gene2, ,_, ,Eff32),
.

Then,

70 CHAPTER 5. BACK-END DEVELOPMENT

7- sparsity(2, 5, Lassoc).

List_of Effects = [Eff12,Eff21,Eff13,Eff31,Eff23,Eff32],
Pairs_Key-Num = [0-V1,-5-V2,-4-V3,-3-V4,-2-V5,-1-V6,1-V7,2-V8,3-V9,4-V10,5-V11],
[(v2,v3,v4,V5,V6,V7,V8,V9,V10,V11] ins 0..2,
V2+V3+V4+V5+V6+V7+V8+VO+V10+V11 #=<2,

V1 in 4..6.

where V; are the occurrences of the value denoted by the Key in the list of Effects. Except for
the variable associated to 0, all the domains of V; are - considering the worst case where all the
Effect’s would have only one value - [0, NbreMaxEffect|, which is [0, 2] in the example shown.
The sum of all V; should be less than or equal to NbreMaxEffect. The variable remembering the
number of occurrences of the value 0 among the Effect, variable V1, has a domain compatible
with the NbreMaxEffects, so [4, 6] in the shown example.

Applying the constraint global_cardinality makes the link between the Effect variables,
and the V; variables.

5.4.8 Labeling

The labeling phase is of particular relevance considering the application domain. As hinted in
Section 3.5 (p38), there is quite a chance that the problem will be under-constrained, leading
to several - even lots of - different acceptable solutions.

Among this set of solutions, a few are more relevant than the others. The main goal of the
implementation of the labeling is to give first the most relevant possibilities - while still offer
the opportunity to observe the others.

The central predicate, 1abeling/2 for the implementation of the labeling technique is given,
with pre-defined many possible options, by SWI-PROLOG. The first argument is a list (possibly
empty) of options, and the second argument is the list of variables to be labeled. The list of
variables is obtained by recursion on Lassoc, according to different predicate for labeling the
whole bunch of variables, or specific variable types only, as discussed in Section 3.5 (p38).

Labeling/2 is always complete, always terminates, and yields no redundant solutions, as
elicited in [59]. Tt is strongly advised to use the native implementation® unless required.

Four different variables ordering are implemented and tested:

1. Simple ordering, by default. As announced in the documentation [59], the default consists
in labeling the variables in the order they occur,

2. First Fail ordering. The variables are sorted before labeling. The list of variables contains
the five types of variables introduced in the modeling (Niveau, Effect, Threshold, Delay,
BorneEffect),

3. Home-made ordering: The labeling follows this ordering:

8Note that the implementation itself can be found in [67] - helping for portability purpose, if a
reimplementation is required

5.4. CONSTRAINT LOGIC PROGRAM 71

This ordering is arbitrary, although labeling first the variables that could most likely
induce a failure and that are the most constrained.

4. Reverse Home-made ordering : the labeling follows the exact reverse order of the previous
ordering. The intent is to show the impact that the ordering can have on the performances.

Along with changing the variables ordering, as introduced in Section 5.4.8 (p70), the value
for each variable can be set to integrate real world consideration.

As a reference, the default value ordering for three variables is given here under, and act as
reference for the following discussion:

Vars = [V1,V2,V3], Vars ins -5..5, labeling([],Vars).

Vars = [-5, -5, -5]; Vars = [-5, -5, -4]; Vars = [-5, -5, -3];
Vars = [-5, -5, -2]; Vars = [-5, -5, -1]; Vars = [-5, -5, 0];
Vars = [-5, -5, 1]; Vars = [-5, -5, 2];Vars = [-5, -5, 3];
Vars = [-5, -5, 4]; Vars = [-5, -5, 5]; Vars = [-5, -4, -5];
Vars = [-5, -4, -4]; Vars = [-5, -4, -3];

The main goal of using a different value ordering, at least in this work, is not specifically to
have a more efficient labeling, but rather to find the most relevant solutions first. The measures
that have been implemented are :

Effect values ordering. The Effect are labeled as if the statistical distribution of the
Effect’s values would follow a Gaussian, centered at 0.

For instance, let’s imagine the variables [Eff1, Eff2, Eff3] represent effects that need to be
labeled, and the domain of all effects is [—5,...,5]. The values that will be tried out first are
given by:

[Eff1,Eff2,Eff3]=

[0, 0, 0];

(-1, o, o];[0, O, 1];[0, 1, O];[0, O, -11;[1, O, O];
(o, o, 1l1;[1, o, ol;[0, 1, 0];[1, O, O1;[0, O, 11;

[-2, 0, Oo];[0, O, 2];[-1, -1, O1;([0, 1, 1]1;[-1, O, -1];
(1, o, 11;[0-1, o, 11;[1, o0, 11;[-1, 1, 01;[0, 1, 1]1;
(o, -2, ol;ro, 2, ojJ;ro, -1, -11;M1, 1, ol;[ro, -1, 11;
[1, 1, ol;[0, 0, -2];[2, O, O];[0, O, 2];[2, O, O];

(o, 1+, -11;101, 1, o1;[0, 1, 11;[0, 2, 01;I[1, -1, 0O];

The ordering is clearly really different, favoring first values close (either positive or negative)
to 0. To implement this ordering, the native labeling/2 predicate is used, with specific options
set: the minimization of the sum of all the effects. During the labeling, an additional constraint
(as introduced in Section 2.2.1 (p20)) is therefore added between all the Effect variables: the
sum of the absolute values of all the effects labeled shall be minimum.

Threshold and BorneEffect values ordering. After the Niveau and the Effect variables
are labeled, the values assigned to the Threshold and BorneEffect variables, as long as they
respect the constraints, may appear less interesting. As a possibility, in order to remove
irrelevant checkpoint, an option could be proposed to the user to directly assign the most
relevant bound of the acceptable domain. Assigning the value would decrease the number of
choices and, using the backtracking, only a new Effect or Niveau value given would induce
a change in the Threshold or BorneEffect. This opportunity is implemented also during the
labeling phase. As for all the code, the implementation is given in Appendix A (p121).

72 CHAPTER 5. BACK-END DEVELOPMENT

5.5 Systematic tests

In the previous sections, the development of different methods for applying constraints —
specifically for the synchronous case — and for the labeling have been introduced.

As explained in Chapter 2 (p19), different modeling and labeling methods may have an
impact on the performance of the search space, and lead of different execution times. This
previous chapter also indicated that many real-world problems were to be better solved using
dedicated heuristic, to cut down the time required for the resolution considering the usual
combinatorial nature of those problems. Analyzing the performances of the methods developed
is a first step towards these heuristics.

In order to ease the comparison between the different alternatives developed, a systematic
test framework has been built. Overall, it serves as an integration tests framework, where the
user input, nominally coming via an HT'TP POST request in JSON, as explained in Section 4.3
(p42), is replaced by a local JSON file.

Thanks to the systematic property, a massive amount of tests can be played, allowing to
assess as thoroughly as possible the behavior of the method under test.

Synchronous methods for applying constraints. In the context of the three different
constraints application methods, the goals are:

1. To confirm that the different methods end up with compatible results. Based on the same
modeling hypothesis, only the implementation is supposed to change. The ultimate result
of the execution of an input file should not be different using a method or another. This
will give an hint on the correctness of the implementation : if a method gives a different
- and not explicable - result than the others, it’s likely there is an implementation error,
while if the three different methods give the same result, it is likely the implementation
is correct - the result of the test depending then on the correctness of the modeling itself.

2. To assess the performances of the different methods that are coded differently. Regarding
this phase, the less interesting case would be to observe the exact same performances for
the three tested methods. Indeed, it would imply that the differences in the implementation
have zero impact on the global execution. On the contrary, if differences are enlightened,
it could be a hint that one method should preferably be used in a specific case, while
another performs better in other conditions. That is, having a notable differentiation in
the methods performances (provided it is not the same method that outperforms for all
test files), indicate the opportunity for a heuristic development.

Labeling. In the context of labeling, systematic tests allow a comparison of the performances
of the labeling algorithm applied — without forgetting that the labeling goals are also to provide
the most relevant solutions first.

The global idea of this systematic framework is to generate multiple (realistic) test files,
execute them in a row, and log the relevant information for further processing.

5.5.1 Creation of the tests files

In order to run systematic tests, a set of relevant inputs files, representing networks in JSON
format, are required. These inputs files will be used, as expressed in the introduction, to assess
the performances of the constraints methods (for synchronous models), of the labeling, with
the hope that they help providing an heuristic based on the results, or at least give an idea of
the behavior of the system according to the inputs given.

5.5. SYSTEMATIC TESTS 73

A test file generator script has been written in Python to generate these input files. They
should ideally sweep a large part of the different parameters that can have an impact. Precisely,
the major impacting parameters and their value in the test files generated are:

e the method for constraints application. As a reminder, those methods are the 1ineaire,
tmp, and memoisation, as fully described in Section 5.4 (p60).

o the number of nodes. In the context of this work, this number varies between 2, 3 and 4,

o the number of edges provided, which varies between 0 and twice the amount of nodes, by
step of 2,

o the number of data provided, which can vary by skipping 0, 1, 2 or 3 data from the ground
truth, which is complete (full edges, full data),

o the number of time steps, which varies from 2 to 8, by step of 2.

The intervals chosen for the parameters are mainly defined to optimize the time spent
on the tests, while still obtaining relevant information for comparison. Increasing the value
for a parameter (for instance, adding a node) results in an increase of the complexity, hence
increasing the timing (and memory) required for the test.

To build a JSON input file, the Python script contains a database of a ground truth, a
specific case that has been manually built so that the complete information is mastered. A
graphical representation of the ground truth network is given in Figure 5.4 (p73), and the
result of its concentration levels is given in Figure 5.5 (p74). The corresponding JSON version
is given in Appendix A.6.1 (p148). The graphical evolution of the concentration levels comes
from a print screen of the front-end built to ease the development. More information on the
front-end is provided in Chapter 6 (p91).

The name of the input files generated gathers the values of the different parameters set, so
that the information can be later used by a dedicated parser (see Appendix A.6.5 (p156)).

FIGURE 5.4: Ground Truth used for test generation - Graphical representation of the network

In the end, the Python script generates the test files by passing through nested for loops
in order to have a file generated for all the combinations of the parameters mentioned above.

74 CHAPTER 5. BACK-END DEVELOPMENT

12

:/ \

/

6
4
2 / -
0 r 1 s %
0 1 2 3 4 5 8 7 8
-8~ genel =-e-gene2 gene3 =-e-gened

F1GURE 5.5: Ground Truth used for test generation - Concentration levels evolution over 8 steps of time

Relevance of test outcome. As all the files are generated from a ground truth by selecting
specific data, the validity of the ground truth is not a guarantee of the validity of all the test
files created. Another way to express this is that the fact that the ground truth fulfills the
constraints considering Chapter 3 (p33) — and can therefore be called valid GRN — does not
mean that all the test files generated by selecting part of the data, edges, nodes, ... from the
ground truth will lead to an acceptable GRN. Several files lead to inconsistent constraints and
no solution.

However, depending what is at stakes, the fact a test file leads to a positive outcome (inputs
can be inferred to a valid GRN) or not (inputs cannot lead to a valid GRN) is not particularly
relevant: attesting an input does not lead to a solution is part of the work that the tool (and
the constraints) should accomplish. Moreover, a false result, indicating that in the whole
search space, there is no combination that leads to a GRN considering the inputs, implies often
digging a lot, hence taking more time, than finding a true result. Rather than the outcome,
the timing of the processing, and specifically compared to other methods timing, is the most
relevant information of such systematic tests.

5.5.2 Systematic test framework

The Prolog predicate systematic_test/2 is at the top of this framework. The first argument
consists in a term indicating which test list should be played, based on the constraint application
method, and the second is the name of the log file that will be saved at the end of the execution.
After retrieving the proper list of test to play according to the first argument, systematic_test
calls recursively the test/1 predicate, giving the name of the test to play as argument. The
call to test is wrapped to cover the logging and the timeout cases. When called, test applies
the exact same steps as a nominal execution would: the input translation to Prolog usable
terms, the solving tasks, then the production of the JSON output.
The implementation is given in Appendix A (p121).

5.5.3 Synchronous methods assessment

Section 5.4 (p60) introduced three different methods for applying the constraints that are
assessed in this section.

Practically, thanks to the tests generator script described in Section 5.5.1 (p72), 144 test
cases covering many different configurations have been generated for each method. Using the

5.5. SYSTEMATIC TESTS 75

systematic_test predicate, those tests can be played, and the results logged in the indicated
logfile, locally. This log file includes the results of all the tests performed, and the time spent
or a timeout (considering a time limit given). Another Python script parses the results logged,
produces a more readable file and reshapes the results in order to ease the comparison.

This Python script:

o open the logfile provided,
o read the logfile line after line, and for each line:

1. retrieve all the information logged,

2. build a matrix with the results.
o print the matrix in a more readable file called summary.txt,

The first lines of a logfile before and after reshaping are given here under - the complete file
is given in Appendix B (p169).

Before:

network_test_memoisation_steps8_nodes3_edges4_data3.json,1534154490.9839895,FAIL,0.010194063186645508, [s]
network_test_tmp_steps4_nodes3_edges2_data3.json,1534154490.9942567,timeout, inf, [s]
network_test_tmp_steps2_nodes4_edges4_datal. json,1534154491.9945407,0K,0.006990194320678711, [s]
network_test_memoisation_steps6_nodes3_edges4_data2.json,1534154492.0015447 ,FAIL,0.002248525619506836, [s]
network_test_tmp_steps4_nodes3_edges4_data0. json,1534154492.003824,FAIL,0.003116130828857422, [s]

After

TEST	LIN ([ms])	TMP ([ms])	MEM ([ms])
2-2-0-0	0(2.0)	0(2.0)	0(6.0)
4-2-2-3	0(8.0)	0(15.0)	0(32.0)
4-3-0-0	0(27.0)	0(23.0)	0(596.0)
4-3-0-1	1(638.0)	/ (inf)	/(inf)
4-3-0-2	1(1813.0)	1(16.0)	1(8.0)

In order to reproduce the experiment and the annexed results, the labeling option for the
synchronous tests was the all_ff, first fail without specific value ordering. The edges given
contains the Effect, and the Delay, but not the Threshold nor the BorneEffect.

5.5.3.1 Reading the logfile

After the Python logging parser has been run, the output is reshaped in a humanly readable
format, as a table containing the results and the time elapsed for the execution. The following
indications may help the reader to get used to the formalism:

e The test name X-Y-Z-D explicit the information contained in the input file: X is the
number of steps, Y is the number of nodes (only type used was "node", no "control"
were introduced), Z is the number of edges, and finally D, the data missed. D is the
number of data that are skipped between all the data picked from the ground truth list,

e LIN denotes the result running the test inputs with the lineaire method. TMP and
MEM stand for tmp and memoisation methods,

o The 0 result denotes a fail, a 1 denotes a true, and a / denotes a timeout (hence, the
inf as time),

o The times, in brackets, are given in ms,

76 CHAPTER 5. BACK-END DEVELOPMENT

5.5.3.2 Tests run

In total, 432 tests are run in a row, 144 for each method. While limiting the execution time to
a few seconds, considering the limited resources, the expectation beforehand is to observe the
behavior detailed in introduction of this section: the results for all methods should be consistent
as they are modeling the same real-world problem, and — hopefully — the methods don’t have
the exact same efficiency depending on the inputs.

5.5.3.3 Observations

At the end of the tests run, several major observations can be done, reading the processed
logfiles.

To make those observations, it may be easier to extract the most relevant information, and
to remove for instance all the test cases where either all the methods found the answer within
the same time frame, or where no methods could conclude to a result. Such an extract is
provided in the Figure 5.6 (p77).

e The very first thing to note is the matching of the results between the three different
implementations. Although the way the constraints are applied are differently implemented,
the outputs always agree when the test has terminated. This is a very positive indication
regarding the implementation itself.

o As expected, the amount of unresolved situations increase as the complexity increase.
Considering the run of all tests, a timeout was set after 1[s] or 5[s]. One could imagine
much longer experiments and hopefully see the proportion of unresolved cases decrease.

o If all data are all given (as a reminder, data defines a specific Niveau for a node, at a given
time step), at least one method can find a solution. This is interesting in the context
of the GRN inference, as often, the data - although requiring normalization and noise
filtration - can be known,

o The second really interesting aspect is the differentiation between the methods. On the
extract below, an extra column has been added, manually, to express the most efficient
method (based on the initials). As one can see, all the methods are, at some point, the
best for specific test cases. This results is very promising regarding the elaboration of a
heuristic,

e Overall, the memoisation method seems to be slower than the two others, that are quite
similar for many cases,

e memoisation seems to be particularly better adapted to situations where the edges are
already known, or foreboded.

5.5.3.4 Conclusion

The automatic run of complete cases, and the test file generations based on the ground truth
have revealed themselves as a major help on the analysis of the three different methods,
indicating the relevance of the systematic tests framework. The observations made would
of course need to be refined. Also, still using the framework, extended test cases based on
multiple ground truth and more resources could guide towards the appropriate heuristic, and
towards designing an expert system capable of deciding the most appropriate method to apply,
considering the user inputs.

5.5. SYSTEMATIC TESTS 7

| TEST | LIN ([ms])| TMP ([ms])| MEM ([ms])| | TEST | LIN ([ms])| TMP ([ms])| MEM ([ms])|

| 2-3-0-0 | 0(17.0) | 0(12.0) | 0(273.0) | LT | 4-4-2-2 | /(inf) | 1(19.0) | 1(17.0) | TM !
| 2-3-0-1 | 1(24.0) | 1(5.0) | 1(4.0) | M | 4-4-2-3 | /(inf) | 1(134.0) | 1(57.0) | TM !
| 2-3-2-0 | 0(13.0) | 0(10.0) | 0(140.0) | LT | 4-4-4-1 | /(inf) | 1(23.0) | 1(22.0) | TM !!
| 2-3-2-1 | 1(29.0) | 1(6.0) | 1(4.0) | M | 4-4-4-2 | /(inf) | /(inf) | 1(24.0) | M1
| 2-4-0-0 | 1(11.0) | 1(7.0) | 1(9.0) | T | 4-4-4-3 | /(inf) | 1(191.0) | 1(59.0) | TM !
| 2-4-0-2 | 1(9.0) | 1(13.0) | 1(8.0) | M | 4-4-6-1 | /(inf) | 1(19.0) | 1(15.0) | TM !
| 2-4-0-3 | 1(7.0) | 1(9.0) | 1(10.0) | L | 4-4-6-2 | /(inf) | 1(232.0) | 1(20.0) | TM !
| 2-4-2-0 | 1(9.0) | 1(8.0) | 1(6.0) | M | 4-4-6-3 | /(inf) | 1(¢(55.0) | 1(38.0) | TM!
| 2-4-2-1 | 1(13.0) | 1(8.0) | 1(9.0) | T | 6-2-0-0 | 0(4.0) | 0(3.0) | 0(9.0) | LT

| 2-4-2-3 | 1(9.0) | 1(10.0) | 1(8.0) | M | 6-2-0-1 | 0(25.0) | 0(23.0) | 0(310.0) | LT

| 2-4-4-0 | 1(10.0) | 1(9.0) | 1(7.0) | M | 6-2-0-2 | 0(81.0) | 0(76.0) | /(inf) | LT !
| 2-4-4-1 | 1(11.0) | 1(8.0) | 1(9.0) | T | 6-2-0-3 | 1(160.0) | 1(141.0) | 1(56.0) | M

| 2-4-4-2 | 1(9.0) | 1(8.0) | 1(11.0) | T | 6-2-2-1 | 0(7.0) | 0(6.0) | 0(24.0) | LT

| 2-4-6-0 | 1(9.0) | 1(7.0) [1(9.0) | T | 6-2-2-2 | 0(15.0) | 0(13.0) | 0(90.0) | LT

| 2-4-6-1 | 1(407.0) | 1(10.0) | 1(14.0) | TM | 6-2-2-3 | 0(24.0) | 0(22.0) | 0(136.0) | LT

| 2-4-6-3 | 1(8.0) | 1(10.0) | 1(7.0) | ML | 6-3-0-0 | 0(33.0) | 0(30.0) | 0(466.0) | LT

| 4-2-0-0 | 0(3.0) | 0(3.0) | 0(9.0) | LT | 6-3-2-0 | 0(21.0) | 0(17.0) | 0(199.0) | LT

| 4-2-0-1 | 0(13.0) | 0(11.0) | 0(132.0) | LT | 6-4-0-0 | 1(24.0) | /(inf) | /(inf) | LIt
| 4-2-0-2 | 1(23.0) | 1(6.0) | 1(4.0) | ™ | 6-4-2-0 | 1(23.0) | /(inf) | /(inf) | Lt
| 4-2-0-3 | 1(43.0) | 1(91.0) | 1(37.0) | M | 6-4-2-1 | 1(54.0) | /(inf) | /(inf) | LIt
| 4-2-2-1 | 0(4.0) | 0(3.0) | 0(10.0) | LT | 8-2-0-0 | 0(7.0) | 0(6.0) | 0(19.0) | LT

| 4-2-2-2 | 0(7.0) | 0(6.0) | 0(23.0) | LT | 8-2-0-1 | 0(70.0) | 0(55.0) | 0(754.0) | LT

| 4-2-2-3 | 0(9.0) | 0(7.0) | 0(33.0) | T | 8-2-0-2 | 0(217.0) | 0(170.0) | /(inf) | LT!
| 4-3-0-0 | 0(28.0) | 0(23.0) | 0(631.0) | LT | 8-2-0-3 | 0(430.0) | 0(396.0) | /(inf) | LT!
| 4-3-0-1 | 1(659.0) | /(inf) | /(inf) | Lt | 8-2-2-1 | 0(20.0) | 0(18.0) | 0(84.0) | LT

| 4-3-0-2 | /(inf) | 1(16.0) | 1(8.0) | ™ | 8-2-2-2 | 0(43.0) | 0(38.0) | 0(363.0) | LT

| 4-3-2-0 | 0(16.0) | 0(13.0) | 0(248.0) | LT | 8-2-2-3 | 0(76.0) | 0(82.0) | 0(878.0) | LT

| 4-3-2-1 | /(inf) | 0(950.0) | /(inf) | T 1! | 8-3-0-0 | 0(50.0) | 0(39.0) | 0(708.0) | LT

| 4-3-2-2 | 1(339.0) | 1(10.0) | 1(8.0) | TM | 8-3-2-0 | 0(35.0) | 0(29.0) | 0(282.0) | LT

| 4-4-0-0 | 1(14.0) | /(inf) | /(inf) | L1t | 8-4-0-0 | 1(71.0) | /(inf) | /(inf) | L1t
| 4-4-0-1 | /(inf) | 1(565.0) | 1(585.0) | TM | 8-4-2-0 | 1(85.0) | /(inf) | /(@inf) | Lt
| 4-4-0-2 | 1(55.0) | 1(25.0) | 1(16.0) | M | 8-4-4-0 | 1(41.0) | 1(18.0) | 1(17.0) | M

| 4-4-2-0 | 1(16.0) | /(inf) | /(inf) | L1t | 8-4-6-0 | 1(39.0) | 1(17.0) | 1(16.0) | ™

| 4-4-2-1 | 1(137.0) | 1(24.0) | 1(18.0) | TM

FIGURE 5.6: Extract of a post-processed logfile - timeout at 1 second

78 CHAPTER 5. BACK-END DEVELOPMENT

5.5.4 Labeling assessment

The labeling assessment is split into two parts, as already introduced: firstly, the timing
performance of the labeling, and secondly, the relevance of the first solutions computed, are
assessed. As already introduced in Section 5.4.8 (p70), additional constraints can be applied
in order to find the optimal solutions. It is worthy to attest that the implementation of the
labeling techniques fulfills the expectation regarding this optimization.

5.5.4.1 Performance analysis

The methodology followed to assess the different labeling techniques (including the variables
and values ordering) is similar to what is presented in the previous section.

Using the same systematic tests framework, the tests cases are played using four different
labeling techniques, as presented in 5.4.8 (p70):

o the default one,
o the first fail variable ordering,
o the home-made ordering including specific value ordering,

o the reverse home-made ordering. This last option is foreseen to be the worst in terms
of performances, representing very little interest, and constitutes more of an academic
confirmation.

In order to keep only relevant data, the test cases used during labeling systematic tests are
the ones for which the results is known true®. The test is repeated for the three constraints
assignment methods lineaire, tmp and memoisation.

A Python parser similar to the one described in Section 5.5.3 (p74) is written to reshape
the logfile from the systematic tests runs into an array humanly easier to read. The files for all
the methods are given in Appendix, and an extract is given here under, as example.

\% \%
\% AUTOMATICALLY GENERATED RESULT FILE \%
\% USING labeling_testbench.py \%
\% \%
TEST	ALL-std[ms]	ALL-ff [ms]	NORM [ms]	REV [ms]
memoisation_steps2_nodes2_edges0O_datal. json	5.0	9.0	11.0	21.0
memoisation_steps2_nodes2_edges0_data2. json	8.0	3.0	7.0	38.0
memoisation_steps2_nodes2_edgesO_data3. json	7.0	3.0	6.0	24.0
memoisation_steps2_nodes2_edges2_data2. json	4.0	2.0	6.0	4.0
memoisation_steps2_nodes2_edges2_data3. json	5.0	2.0	5.0	4.0
memoisation_steps2_nodes3_edges0O_datal. json	14.0	6.0	22.0	61.0
memoisation_steps2_nodes3_edges0O_data2. json	15.0	7.0	63.0	218.0
memoisation_steps2_nodes3_edges0_data3. json	16.0	7.0	59.0	217.0
memoisation_steps2_nodes3_edges2_datal. json	10.0	5.0	11.0	12.0
memoisation_steps2_nodes3_edges2_data2. json	11.0	5.0	15.0	111.0
memoisation_steps2_nodes3_edges2_data3. json	12.0	6.0	15.0	105.0

Reading the logfile. The reshaped logfile is quite straightforward to read : the first column
contains the list of tests that were played, then the four next columns give the time elapsed
for the test execution, in ms, for resp. the standard labeling, the first fail variables ordering,
the home-made labeling including values and variables ordering using soft constraints, and the
academical reverse ordering mentioned above.

9Typically, the tests taken for the labeling systematic tests are the ones for which the results was true in
the synchronous systematic tests campaign, as explained in Section 5.5.3 (p74)

5.5. SYSTEMATIC TESTS 79

5.5.4.2 Tests run

Intuitively, the fastest method is foreseen to be the global first fail, and the slowest the reverse
order home-made method. The global first fail is known to usually deliver proper results,
while the home-made integrates extra computation for reordering and minimizing the values
given. The reverse, as already expressed, is purely academical and should confirm it is mostly
slower than the others. Regarding the standard method, its performance results are quite
unpredictable, but are expected to be worst than the first fail results.

Observations.

o As expected, the last column is most of the time much slower than the others, and will
not be considered in this section anymore,

e The first column assign a value to the variables as they come, and from the lowest value.
The result is not bad — at all —, although the commonly used first fail shows the best
results.

e The home-made ordering is slower than the two firsts : this is easily explained by the
amount of calculation required to minimize the sum, as explained in Section 5.4.8 (p70).

e Overall, the time taken for the NORM labeling can, in some cases, vary from simple to
more than ten times the time taken for the first fail algorithm.

o There are differences in the timing required for the labeling between the three constraints
assignment implementations: the memoisation method seems better adapted to the
home-made ordering.

5.5.4.3 First Solutions analysis

One of the interests of the labeling is to provide best solutions first, adding constraints. This
was explained in Section 5.4.8 (p70).

Following the different implementations suggested for the labeling, it is possible to compare
the first outputs delivered by the system, and verify if it complies with the expected behavior:
more relevant solutions out of the home-made variables and values ordering (NORM labeling
method).

To emphasize the different labeling behaviors, the selected test input is a pure edges
inference: no edge information is given, whilst all the data are given. Indeed this allows a
better differentiation between the methods under test as all the variables but Niveau's'? are
free and need to be labeled, while Niveau variables are the most constrained ones, hence the
less likely to change with labeling methods. The test is performed using the memoisation
constraints application method — this is arbitrary —, and is repeated for the different labeling
techniques.

The graphical representation of the network provided to the system is given in Figure 5.7
(p80), while its JSON corresponding format is given hereunder!!.

{"network": [

{"name": "network_test_memoisation_steps2_nodes4_edges0_data0.json",
"borneMax":10,

"borneMin":0,

0and Delay, not yet taken into account

1At the time of writing these lines, the final JSON file does not yet include all the options, and some are
still hardcoded. It concerns the maximum number of solutions to provide, and the sparsity constraint, see
Section 5.4.7 (p69)

30

"borneEffectOnOthers":

CHAPTER 5. BACK-END DEVELOPMENT

FI1GURE 5.7: Graphical representation of the provided network - Labeling assessment

"borneEffectOnSelf":0,
"globalThreshold":9,

"steps":
"method"
"nodes":

{"label":
{"label":
{"label":
{"label":

"edges":
"data":

{"node":
{"node":
{"node":
{"node":
{"node":
{"node":
{"node":
{"node":
{"node":
{"node":
{"node":
{"node":

2,
:"memoisation",
L
llgeneill . "type"
l|gene2ll , Iltypeﬂ
llgenesll , lltypell
"gene4", "type"
a,
L
"genel","step":0,
"genel","step":1,
"genel","step":2,
"gene2","step":0,
"gene2","step":1,
"gene2","step":2,
"gene3","step":0,
"gene3","step":1,
"gene3","step":2,
"gened","step":0,
"gened","step":1,
"gened","step":2,

5,

:"node"},
:"node"},
:"node"},
:"node"}],

"niveau":5},
"niveau":6},
"niveau":7},
"niveau":0},
"niveau":2},
"niveau":4},
"niveau":0},
"niveau":1},
"niveau":2},
"niveau":9},
"niveau":7},
"niveau":5}1}1}

The plot of the concentration levels — which are all given in the JSON input file — is in
Figure 5.8 (p83). One can recognize the first steps of the ground truth network, as shown in

Figure

Results.

5.5 (p74).

The ground truth was originally built to have Delay variables assigned to 0. Further-

more, as indicated in Section 5.4 (p60), the memoisation method does not take the Delay into
account - those Delay variables are not relevant for this labeling methods comparison.
As the concentration levels are provided as inputs, the only information useful to compare the
labeling methods in term of solution relevance is the assignment for the interactions variables:
Threshold, BorneEffect and Effect variables. The values inferred are summed up in Table 5.1
(p8’2). The values circled are the changes with respect to the previous solution found.

5.5. SYSTEMATIC TESTS

Default First Fail Home-made
From To Th BE Eff | Th BE Eff | Th BE Eff
First solution
genel gene2 | 1 2 2 1 2 2 1) 2
gene2 genel | 1 0 0 1 0 0 1 0 0
genel gene3d | 1 1 1 1 1 1 1) 1
gene3d genel | 2 0 0 2 0 0 2 0 0
gene2 gened | 1 0 0 1 0 0 1 0 0
gene3 gene2 | 2 0 0 2 0 0 2 0 0
genel gened | 1 2 -2 1 2 -2 1 5 -2
gene4 genel 1 1 1 1 1 1 1 9 1
gene2 gened | 1 0 0 1 0 0 1 0 0
gened gene2 | 1 0 0 1 0 0 1 0 0
gene3 gened | 2 0 0 2 0 0 2 0 0
gened gened | 1 0 0 1 0 0 1 0 0
Second solution
genel gene2| 1 (3) 2 |1 2 2 [1 5 2
geme2 genel | 1 0 0 |1 0o o |1 () (O
genel gened | 1 1 1 1 1 1 1 5 1
gene3d genel | 2 0 0 @ 0 0 2 0 0
gene2 gened | 1 0 0 1 0 0 1 0 0
gene3 gene2 | 2 0 0 2 0 0 2 0 0
genel gened | 1 2 -2 1 2 -2 1) -2
gened genel | 1 1 1 | 1 1 1 5 1
gene2 gened | 1 0 0 1 0 0 1 0 0
gened gene2 | 1 0 0 1 0 0 1 0 0
gene3 gened | 2 0 0 2 0 0 2 0 0
gened gened | 1 0 0 1 0 0 1 0 0
Third solution
genel gene2| 1 (4) 2 |1 2 2] 1 5 2
gene2 genel | 1 0 0 1 0 0 1) 1
genel gened | 1 1 1 1 1 1 1) 1
gened genel | 2 0 0 @ 0 0 2 0 0
gene2 gened | 1 0 0 1 0 0 1 0 0
gene3 gene2 | 2 0 0 2 0 0 2 0 0
genel gened | 1 2 -2 1 2 -2 1) -2
gened genel | 1 1 1 |1 1 1 |[(9 5 1
gene2 gened | 1 0 0 1 0 0 1 0 0
gened gene2 | 1 0 0 1 0 0 1 0 0
gene3 gened | 2 0 0 2 0 0 2 0 0
gened gened | 1 0 0 1 0 0 1 0 0
Fourth solution
genel gene2| 1 (5) 2 |1 2 2] 1 5 2
geme2 genel | 1 0 0 |1 0 0|1 o0 (0
genel gened | 1 1 1 1 1 1 1) 1
gene3 genel | 2 0 0 @ 0 0 2 0 0
gene2 gened | 1 0 0 1 0 0 1 0 0
gene3 gene2 | 2 0 0 2 0 0 2 0 0
genel gened | 1 2 -2 1 2 -2 1) -2
gene4 gemel | 1 1 1 [1 1 1 |(@) 5 1
gene2 gened | 1 0 0 1 0 0 1 0 0

81

82

CHAPTER 5. BACK-END DEVELOPMENT

gened gene2 | 1 0 0 1 0 0 1 0 0
gene3 gened | 2 0 0 2 0 0 2 0 0
gened gened | 1 0 0 1 0 0 1
Fifth solution

genel gene2 | (2) 2 2 |1 2 2] 1 5 2
gene2 genel | 1 0 0 1 0 0 1 0 0
genel gened | 1 1 1 1 1 1 1) 1
gene3 gemel | 2 0 0 [(6) 0o o [(1) 0 0
gene2 gened | 1 0 0 1 0 0 1 0 0
gened gene2 | 2 0 0 2 0 0 2 0 0
genel gened | 1 2 -2 1 2 -2 1 5 -2
gened gemel | 1 1 1 [1 1 1 |() 5 1
gene2 gened | 1 0 0 1 0 0 1 0 0
gened gene2 | 1 0 0 1 0 0 1 0 0
gene3 gened | 2 0 0 2 0 0 2 0 0
gene4d gened | 1 0 0 1 0 0 1 0 0

TABLE 5.1: Labeling assessment - Five first solutions found

Observations. Even on a simple and short example as the JSON file tested, the impact of
the labeling method on the solutions relevance is visible. Table 5.1 (p82) allows to compare
intra solutions and inter solutions.

o Considering the first solutions found, the differences are in the values for the BorneEffect

variables. Indeed, the home-made method automatically assigns the maximum allowed
value on the remaining domain. As it’s a bound, the value of BorneEffect is actually
less interesting if not provided by the user as input. The values for the Effect variables
are alike : it could seem the minimization implemented has no impact. This is due to the
limitation of the solutions space, considering the inputs provided.

The second solution provided reveals how the labeling impacts the search: the “Default”
method has the first BorneEffect modified, while the “First Fail” has the first Threshold
modified, only. The difference is related to the remaining domain size when the labeling
occurs. While for those two methods, the solutions provided are indeed different in
numbers, they represent most likely little interest for the biologist, as they have zero
impact on the modeling itself, and cannot really guide the user in its search for the GRN.
The home-made method, however, provides a seemingly much more interesting answer :
one Threshold, one Effect and its BorneEffect are modified. It is a real other solution.

This was exactly the purpose of implementing another labeling : obtain most relevant
solutions first.

The next solutions behave the same way : while the two first methods, general and faster
(see previous test), provide solutions that did not differentiate much, the home-made
labeling allows getting quicker to different possibilities.

5.5.4.4 Conclusion

Labeling is a major aspect of Constraint Logic Programming, and many techniques and heuristics
can be set up. Some are more adapted than others when looking at a specific problem,
depending in particular on the desired behavior. In this section, it has been shown that the
different implementations have strongly different characteristics, and can therefore be used
differently, according to the user wish : obtain very quickly a solution, attest that an input

5.5. SYSTEMATIC TESTS 83

o = N0 W A 0o ;N e w o

04 02 0 02 04 06 08 1 12 14 16 18 2 22 24
-~ genel =-e- gene2 gene3 -o- gened

FI1GURE 5.8: Concentration levels evolution to infer - Labeling assessment

match a possible network, obtain several relevant solutions, etc. To be thorough, several other
labeling techniques can of course be implemented, to better match the users’ needs.

5.5.5 Other features tests

This section will go through several main user features that are implemented, and test them
from the user perspective. The graphical results come from the Q&D front-end developed for
this purpose are detailed in Chapter 6 (p91).

5.5.5.1 Sparsity Constraint

The sparsity constraint can be easily tested, still based on the ground truth file introduced
earlier. Using the same test input file as in Section 5.5.4.3 (p79), there are at least solutions
with either 4 or 5 interactions for which the Effect is different from 0.

Setting the sparsity constraint to have a maximum of 4 interactions produces solutions
accordingly, while before, the second solution provided had 5 interactions, as shown in the
previous section. The ten first solutions provided are given in Appendix A.6.3 (p150), using
JSON representation.

5.5.5.2 Delay Constraint - Synchronous Modeling

The Delay, as described in Chapter 3 (p33), can allow the user to explicitly take into account
the biological reaction time. The Delay for the asynchronous modeling is detailed in a next
section.

The usual ground truth test file being built with all the Delay variables at 0, another basic
network, arbitrary and purely on the purpose of showing the Delay effect, is given hereunder
in JSON format. Its graphical representation is given in Figure 5.9 (p84). Two genes have
an effect on each other, one positive, one negative. The resulting concentration levels graph is
given in Figure 5.10 (p84).

{"network":

{

llnamell : lldelayll s
"borneMax":5,
"borneMin":0,
"borneEffectOnOthers":3,
"borneEffectOnSelf":0,

84 CHAPTER 5. BACK-END DEVELOPMENT

- .

(fgenelii‘-‘\
2 1

L
.

" gene2)

FIGURE 5.9: Graphical representation of the network - Delay case

"globalThreshold":1,

"steps":5,
"method":"lineaire",
"nodes": [

{"label":"genel", "type":"node"},
{"label":"gene2", "type":"node"},
1,

"edges": [

{"id":1,"from":"genel","to":"gene2","threshold":1,"borneEffect":3,"delay":0,"effect":2},
{"iq":2,"from": "gene2","to":"genel","threshold":1,"borneEffect":3,"delay":0,"effect": -1},

1,

"data": [

{"node":"genel", "step":0, "niveau":5},
{"node":"gene2", "step":0, "niveau":0}

131}

-0.5 0 0.5 1 15 2 25 3 35

== genel == gene2

FIGURE 5.10: Concentration levels evolution - Basic case

5 5.5

Delay introduced as input. The tool offers the opportunity, for the synchronous modeling
using either lineaire or tmp, to add a Delay, as explained in Section 3.4 (p36).

The input test file can be modified in order to include a delay in the interaction gene2 —
genel, for example of 1 time step. The intuition is to observe the effect of this interaction 1

time step later in the resulting concentration levels inference.

"edges": [

{"id":1,"from":"genel","to":"gene2","threshold":1,"borneEffect":3,"delay":0,"effect":2},
{"iq":2,"from": "gene2","to":"genel","threshold":1,"borneEffect":3,"delay":1,"effect": -1},

1,...

5.5. SYSTEMATIC TESTS 85

The system computes the concentration levels knowing this Delay introduced. The resulting
concentration levels are graphically shown in Figure 5.11 (p85). As expected, the output shows
that the evolution of the concentration levels of genel are delayed by one time step : the
interaction becomes effective only after a delay, when the Threshold is crossed.

delay

-0.5 0 05 i 15 2 25 3 35 4 45 5 5.5

== genel == gene2

FiGURE 5.11: Concentration levels evolution - Delay case

Delay inferred. Currently, the Delay variables inference is not available for the synchronous
methods.

5.5.5.3 Control entity

Up to now, the accent has been put on the “node” type entities, which are basically part of the
whole regulatory process. The entity type “control” has been introduced to handle situations
where a substance is purely under control, that is, where one can control externally fully the
concentration levels, while still this substance can have an impact on the others.

An example of use is given here under, for the tiny network represented in Figure 5.12 (p86).
As the goal is to enlighten the use of the control substance, only two genes participate to the
system, and the interactions are forced to 0. Yet, the data given as inputs are such as there is
a need for a regulatory mechanism, as the concentration levels change over time. A control
substance is added, in order to take in charge those interactions, and it is supposed that the
concentration levels of this substance are given for each time steps.

{"network":

{

"name":"control_substance",
"borneMax":10,

"borneMin":0,
"borneEffectOnOthers":3,
"borneEffectOnSelf":0,
"globalThreshold":1,

"steps":5,

"method":"tmp",

"nodes": [

{"label":"genel", "type":"node"},
{"label":"gene2", "type":"node"},
{"label":"substA", "type":"control"},
1,

36 CHAPTER 5. BACK-END DEVELOPMENT

—

genel

\‘x\w

{SubstA |

FIGURE 5.12: Representation of the network - Control entity

"edges": [

{"id":1,"from":"genel","to": "gene2","threshold":"/", "borneEffect":"/","delay":0,"effect":0},
{"id":2,"from": "gene2","to":"genel","threshold":"/","borneEffect":"/","delay":0,"effect":0}
1,

"data": [
{"node":"genel", "step":0, "niveau":0},
{"node":"genel", "step":5, "niveau":5},
{"node":"gene2", "step":0, "niveau":9},
{"node":"gene2", "step":5, "niveau":0},
{"node":"substA", "step":0, "niveau":6},
{"node":"substA", "step":1, "niveau":8},
{"node":"substA", "step":2, "niveau":3},
{"node":"substA", "step":3, "niveau":7},
{"node":"substA", "step":4, "niveau":9},
{"node":"substA", "step":5, "niveau":2}
131}
10
9 -
8 “\\“R\
\
7 \
6 \\\\\\\‘
5 -
\ /"
4 ~. .f/”‘/’
2 .r’,,f—"""'w ‘\\\\\h
1 h””/’/,,f,f" '““Hmﬁ,ﬂ\hﬁkhh‘
0 . :

0.5 0 0.5 i 15 2 25 3 35 4 45 5 5.5

FIGURE 5.13: Concentration levels evolution with a substance of type control

The graphical results of the inference is given in the Figure 5.13 (p86) and the interactions
of the network resulting in those concentration levels are given in the JSON output extract,
below. Two interactions have been inferred having an Effect different from 0. As expected,
the control substance fully played its role : interacting with the others, while having a fully
externally controlled concentration level.

5.5. SYSTEMATIC TESTS 87

"edges": [
{"id":"toChange","from":"genel","to":"gene2","threshold":1,"borneEffect":0,"delay":0,"effect":0},
{"id":"toChange","from":"gene2","to":"genel","threshold":1,"borneEffect":0,"delay":0,"effect":0},
{"id":"toChange","from":"genel","to":"substA","threshold":0,"borneEffect":0,"delay":0,"effect":0},
{"id":"toChange","from":"substA","to":"genel","threshold":1,"borneEffect":3,"delay":0,"effect":1},
{"id":"toChange","from":"gene2","to":"substA","threshold":0,"borneEffect":0,"delay":0,"effect":0},
{"id":"toChange","from":"substA","to":"gene2","threshold":1,"borneEffect":3,"delay":0,"effect":-2}]

5.5.5.4 Asynchronism Modeling

The asynchronism modeling has been largely discussed in Chapter 3 (p33).

As a reminder, four assumptions were made prior to the implementation. Those assumptions
are written in Section 3.4.1.1 (p36). As a quick reminder, the asynchronous case refers to single
change per time step : only one gene will see its expression level being modified per time step.

This of course has an impact on the data to provide : two genes shall not experience a
change at the same time step in the inputs given to the system, or no solution will be found.
Similarly, when providing interactions, no two edges shall have the same Delay entered, as
this variable specifically tells when the change occurs: the same Delay twice would mean two
changes at the same time step, which is incorrect in this modeling.

According to those considerations, the usual ground truth test file cannot be used. A
dedicated network, arbitrarily tiny for the need of this section, has been created.

First, the inference of the interactions based on a subset of data is shown. Then, the input
file will be modified to leave only the interactions between genes and the initial conditions, to
attest the system can compute the concentration levels based on the interactions provided.

Interactions inference. The input file is given hereunder: are provided the entities — two
genes — and several concentration levels. Those are selected to arbitrarily guide the behavior
of the inference: there should be a positive effect on gene2 and a negative effect on genel.

{"network":

{

"name":"asynchronous_test",
"borneMax":5,

"borneMin":0,
"borneEffectOnOthers":3,
"borneEffectOnSelf":0,
"globalThreshold":1,

"steps":10,

"method":"asynchronous",

"nodes": [

{"label":"genel", "type":"node"},
{"label":"gene2", "type":"node"}

1,

"edges": [],

"data": [
{"node":"genel","step":3,"niveau":3},
{"node":"genel","step":0, "niveau":5},
{"node":"gene2","step":1,"niveau":2},
{"node":"gene2","step":0,"niveau":1}]1}1}

The results of the concentration levels is given in Figure 5.14 (p88), and the complete JSON
file, including the edges inferred, is given hereunder. The result matches the expectation, with
the foreboded Effect values assigned. Interesting to note, starting from step 6, the interaction
genel — gene2 has no effect anymore, as the value of genel is below the activation threshold.
gene2 is therefore stuck at a concentration level of 4, instead of the upper bound, 5.

{"network": [{

"name":"asynchronous_test",
"borneMax":5,"borneMin" :0, "borneEffectOnOthers" :3, "borneEffectOnSelf":0,
"globalThreshold":1,"steps":10, "method": "asynchronous",

"nodes": [{"label":"genel","type":"node"},{"label": "gene2","type": "node"}],
"edges": [

38

asynchronous_test

CHAPTER 5. BACK-END DEVELOPMENT

== genel == gene2

FI1GURE 5.14: Concentration levels evolution using asynchronous modeling

{"id":"toChange","from":"genel","to":"gene2","threshold":1,"borneEffect":3,"delay":1,"effect":1},
{"id":"toChange","from":"gene2","to":"genel","threshold":1,"borneEffect":3,"delay":0,"effect":-2}],
"data": [

{"node":"gene2","step":10, "niveau":4%},
{"node":"gene2","step":9, "niveau":4},
{"node": "gene2","step":8, "niveau":4},
{"node":"gene2","step":7,"niveau" :4},
{"node":"gene2","step":6, "niveau" :4},
{"node":"gene2","step":5,"niveau":4},
{"node":"gene2","step" :4, "niveau":3},
{"node":"gene2","step":3, "niveau":3},
{"node":"gene2","step":2, "niveau":2},
{"node":"gene2","step":1,"niveau":2},
{"node":"gene2","step":0,"niveau":1},
{"node":"genel","step":10,"niveau":07},
{"node":"genel","step":9,"niveau":0},
{"node":"genel","step":8, "niveau":0},
{"node":"genel","step":7,"niveau":0},
{"node":"genel","step":6,"niveau":0},
{"node":"genel","step":5,"niveau":1},
{"node":"genel","step":4,"niveau":1},
{"node":"genel","step":3,"niveau":3},
{"node":"genel","step":2,"niveau":3},
{"node":"genel","step":1,"niveau":5},
{"node":"genel","step":0,"niveau":5}1}1}

Concentration levels inference.

The edges inferred during the first test can be used as

inputs for the test in the other way around : giving the edges and inferring the complete
concentration levels flow. It is important to note that, in order to avoid the trivial case where
the concentration levels are zero all along, initial conditions are set. They slightly differ from

the previous test file, as gene2 starts at a level of 2. The input file becomes:

{"network":

{
"name":"asynchronous_test",
"borneMax":5,

"borneMin":0,
"borneEffectOnOthers":3,
"borneEffectOnSelf":0,
"globalThreshold":1,

"steps":10,
"method": "asynchronous",
"nodes": [

{"label":"genel", :"node"},

"type"

5.6. CONCLUSION 89

{"label":"gene2", "type":"node"}

1,

"edges": [
{"id":"toChange","from":"genel","to":"gene2","threshold":1,"borneEffect":3,"delay":1,"effect":1},
{"id":"toChange","from":"gene2","to":"genel","threshold":1,"borneEffect":3,"delay":0,"effect":-2}],
"data": [

{"node":"gene2","step":0,"niveau":2},

{"node":"genel","step":0, "niveau":5}

131}

The results are quite convincing, as the flow is easily inferred. Results are graphically shown
in Figure 5.15 (p89)

asynchronous_test

== genel =-e= gene2

FI1GURE 5.15: Concentration levels evolution using asynchronous modeling, input: edges

5.6 Conclusion

This chapter covered the implementation of the back-end of the tool developed.

Firstly, the code structure is introduced and the layered view detailed, setting in perspective
the development of the REST API, and the core of the service offered: the GRN inference tool.
The concrete implementation of the Constraint Logic Program of the tool is presented, from the
user input as JSON data in a HT'TP request, up to the output JSON data in the HT'TP response.
In particular, the implementation of the different steps of a CLP are detailed: association list,
modeling and labeling. As the heuristic development and optimization is an important part of
the CLP paradigm, a systematic tests framework is developed and detailed. This framework
allows to differentiate implementations methods used in the modeling and labeling part. The
methodology to use this systematic tests framework is specified, an intuition of the expected
results is provided, followed by the actual tests runs observations and conclusions. The base
for heuristics development is set in place.

Several tests on alternate development such as the sparsity constraints and Delay inferences
or asynchronous modeling method are also achieved, to verify the high level behavior of the
implemented features.

Overall, this chapter constitutes the core of this thesis, including the CLP development and
assessment.

90

CHAPTER 5. BACK-END DEVELOPMENT

Chapter 6

Front-End development

6.1 Introduction

The need of a user interface has already been discussed in Chapter 4 (p41). While the back-
end (see Chapter 5 (p57)) can be accessed with computer-expert software such as cURL!, Lucy,
introduced in Chapter 4 (p41), prefers, for obvious reasons, working with a dedicated front-
end. As discussed in Section 4.4.1 (p47), this front-end uses plain HTML/CSS/JavaScript
technologies, and is limited in terms of functionalities. The purpose of this front-end is to
have a concrete implementation that can be used during development, and help suggest new
development ideas, rather than a fully developed and production-grade user interface?.
This chapter details how the front-end is implemented and can be used.

6.2 Overview of the front-end

As introduced in Section 4.4.1 (p47), the front-end is built as a single page application. Lucy
stays on a single Web page, which content is refreshed according to her actions. It allows a
more dynamic behavior as there is no need to refresh the complete page, but only the modified
element.

The requirements to fulfill are elicited in Section 4.2 (p41), and reminded below in the form
of user stories. Considering the context, there is no specific needs to express these user stories
in more formal requirements.

o As a user, I want to provide the entities, part of the system I want to study with the tool.
o As a user, I want to provide data so that the GRN can be inferred.

o As a user, I want to provide the interaction rules between genes so that data expressing
the concentration levels of the gene products can be generated.

e As a user, I want to be able to manually modify the interaction rules suggested by the
tool.

» As a user, [want to be able to visualize the results of the inference or data generation.

To implement these functionalities in a structured way, a solution based on tabs is developed:
a first tab is dedicated to the inputs, a second tab is dedicated to the outputs and post-
treatment, and a third tab currently provides help and indications.

lhttps://curl.haxx.se/docs/manpage.html.
2The separation of concerns principle allows as many front-end development as necessary to become, later,
production-ready

91

92 CHAPTER 6. FRONT-END DEVELOPMENT

6.3 Inputs tab

This tab allows Lucy:
e to provide her inputs regarding the network to study,
e to send the request to the server.

Section 4.5 (p51) introduced the DSL used in the tool to define a gene regulatory network,
and to provide the back-end with all required information to infer the network. These inputs
are formatted into a JSON file sent to the back-end. Following the guideline driving this front-
end development, an HTML text area environment is provided to write this JSON input file,
directly. This is the main element of the Inputs tab, as visible in Figure 6.1 (p92). The JSON
input file must comply with the specifications given in Section 4.5 (p51). In order to provide
some assistance, a help tab gives a complete exemple of a correct JSON input.

When Lucy has written a correct JSON input file, she presses on the Process button, see
Figure 6.1 (p92). This will compile the information and properly set the request to the server.

Reasoning on Gene Regulatory Networks
iputsl Results Help

Inputs
Tab to declare inputs

Process

Input

{"network": [

{"name" : "mynetwork",

"borneMax":10,

"borneMin":@,

"borneEffectOnOthers":3,

"borneEffectOnSelf":0,

"globalThreshold":2,

"steps":7,

"method" :"tmp",

"sparsity”:@,

"labeling":"all ok",

"nSol":10,

"nodes": [

{"label":"genel", "type": "node"},
{"label":"gene2","type": "node"},

{"label":"gene3", "type": "node"}1,

"edges": [
{"id":"toChange","from":"genel","to":"gene2", "threshold":"
{"id":"toChange","from":"gene2", "to":"gene3", "threshold":"
{"id":"toChange","from":"gene3","to":"genel”, "threshold":"
{"id":"toChange","from":"gene3","to":"gene2", "threshold":"
"data":[

{"node":"genel", "step":0, "niveau":7},
{"node":"gene2", "step":0, "niveau":2},
{"node":"gene3", "step":0, "niveau":0}

131}

"borneEffect":"
"borneEffect":"
"borneEffect":"
"borneEffect":"

", "delay":
v "delay":
", "delay":
v "delay":

"effect":1},
"effect":2},
"effect": -1},
"aeffect":-1}1,

My, M,
oDoo @

/"
!’”I
/"
!’”I

FIGURE 6.1: Inputs tab

This tab implements the four first requirements regarding the front-end in a straightforward
way. Improvements can be foreseen as discussed in Chapter 8 (p105).

6.4. RESULTS TAB 93

6.4 Results tab

The Results tab provides the results of the inference realized by the back-end. In the nominal
case, the server computes the results and compiles them according to the specified JSON file, as
per Section 5.4.1 (p60). The response having a HTTP Status 201 is processed by the front-end
to properly display the results to Lucy.

The results are provided in two formats: a graphical view of the solutions, and the JSON
output file computed. An illustration of the Results tab is given in Figure 6.2 (p93). Although
the processing of the results are limited with this first version of the front-end, the most
important and required functionalities are available.

Reasoning on Gene Regulatory Networks

Inputs Results Help

Results
Tab to display the results of the processing

Solution #0 v Update

mynetwork JSON Response

"name": "mynetwork",
"borneMax": 10,
10 — "borneMin": @,
"borneEffectOn0thers": 3,
"borneEffectOnsSelf": o,
"globalThreshold": 2,
8 "steps": 7,

"method": "tmp",
"sparsity": o,

"labeling": "all_ok",
"nsol": 18,
6 \ "nodes": [
{
"label": "genel",
"type": "node"
4 I8
\ {
- "label": "gene2",
'\ "type": "node"
1 I
e {
"label": "gene3",
"type": "node"

0 H
0 1 5 8 4 5 & 7 !;?ges--:[

"id": "toChange",

-o- genel =-e- gene2 gene3 P wfrom 5geﬁ§g?,1 '
"threshold": 1,
"borneEffect": 1,
"delay": @,
"effect": 1

I

FIGURE 6.2: Results tab

6.4.1 Graphical view of the solutions

As shown in Figure 6.2 (p93), the left part of the screen offers a graphical view of the solution.
This graph is automatically refreshed as soon as a new JSON file is received from the server,
or when another solution is selected by the user, as explained in Section 6.4.2 (p94).

Based on the JSON response data, the front-end code extracts the name of the network, its
entities and their corresponding concentration levels for all time steps.

The graphical layout is implemented using a dedicated JavaScript library, canvas.js, see
[5]. This library has been chosen as it is particularly adapted to the desired functionality, for

94 CHAPTER 6. FRONT-END DEVELOPMENT

its ease of use and its extensive documentation. canvas generates the graph based on the data
given, which are directly extracted from the JSON response file received from the server.

6.4.2 Multiple Solutions

In the JSON input file, Lucy can specify, with the parameter nSol, the total number of solutions
she would like the back-end to compute®. After the response is received from the server, the
interest for Lucy is to be able to visualize all those solutions.

A possibility would be to open new HTML pages containing the results for all computed
solutions. This is however not acceptable, as, theoretically, in case of under-constrained
networks, the number of solutions can be quite high. Limiting this number because of the
results rendering is not appropriate. The front-end must be adapted to manage a large number
of solutions received from the back-end.

Another possibility is to simply provide a drop-down list containing a reference to each
solutions. Lucy, after selecting the desired solution to show, clicks on the Update button
provided, which refreshes the page accordingly. This solution has been implemented.

Before Lucy has selected a specific solution to be rendered, the very first solution computed
is displayed by default, and the global response JSON file is provided. When Lucy then selects
the solution she wants to analyze and clicks on the Update button, the graph is updated
according to the selected solution’s data, and only the corresponding JSON file part is shown.

A print screen of this functionality is given in Figure 6.3 (p95). The drop-down list allows
selecting the desired solution, and the Update button allows refreshing the page accordingly.

The drop-down list is refreshed every time a new response is received from the server: the
items in the list are removed, and new ones are added on the fly. This is yet another example
of the use of the Ajax techniques that were introduced in Section 4.4.1 (p47).

The detail of the code is found in Appendix A.7 (p161).

3This is introduced in Section 4.5 (p51)

6.4. RESULTS TAB

Reasoning on Gene Regulatory Networks

Inputs Results Help

Results

Tab to display the results of the processing

‘. solution #0 v | Update
Solution #0
Solution #1

- mynetwork

Solution #2
Solution #3
Solution #4

Solution #5
Solution #6

Results

Solution #7

Seolution #8
Solution #9

Trial Viersior - gene1 - genez

FIGURE 6.3: Visualization of the results computed - multiple solutions provided

{

"name": "mynetwork",
"borneMax": 18,
"borneMin": @,
"borneEffectOnOthers": 3,
"borneEffectOnSelf": @,
"globalThreshold": 2,
"steps": 7,

"method": "tmp",
"sparsity": @,
"labeling": "all ok",
"nSol": 10,

"nodes": [

"label": "genel",

"type": "node"
h
"label": "gene2",
“type": "node"
1
{
1
"edges": [
{
"id": "toChange",
"from": "genel",
"to": "gened",
"threshold": 1,
"borneEffect": 1,
"delay": @,
"effect": 1
1.

95

96

CHAPTER 6. FRONT-END DEVELOPMENT

Chapter 7

Case-based application of the tool

7.1 Introduction

The tool has been detailed from a general perspective in Chapter 4 (p41), from a back-end
perspective in Chapter 5 (p57) and from a user perspective in Chapter 6 (p91).

This chapter shows how the concrete implementation is used, based on a more realistic
case: the lac operon. This regulatory mechanism is introduced and explained in Section 1.4
(pl4). Different use cases are shown: when the interactions and initial conditions are known,
and when the experiment data are available — after normalization and noise reduction. These
situations match precisely the requirements as elicited in Section 4.2 (p41).

The goal of this chapter is not to thoroughly analyze the well-known lac operon GRN, but
to show how Lucy can use the tool developed on a practical cases.

7.2 Network assessed

The first step when assessing gene regulatory networks using the tool developed is to define the
network of interest. Considering the use case, several informations are required. For instance,
if Lucy wants to infer the interactions based on experiment data, at least several data points
must be provided.

In order to facilitate the understanding of the use cases discussed in this chapter, a simplified
modeling of the lac operon system is used. Considering the results of the transcription in
Table 1.2 (p17), five entities — nodes in the tool terminology — are part of the system: glucose,
lactose, CAP-cAMP, lacl and operonAYZ.

The global network and inference parameters are defined arbitrarily. As per the user input
JSON file, those parameters are given in Table 7.1 (p98).

7.3 Case 1: Interactions and initial conditions

For this first use case, although the lac operon system is quite known, Lucy wishes to assess
some parameters of the interactions. She desires to provide to the tool only the interactions —
the edges of the network — and let the tool rebuild all the data.

The network to study is given in Figure 7.1 (p98). The content of the corresponding JSON
file is given here under.

In order to avoid the trivial solution®, Lucy sets some initial conditions as defined in Table 7.2
(p99). Those conditions relate the state in which the system is at the very beginning of the

LAll concentration levels equals to 0, as if no entity were in the system under test

97

98 CHAPTER 7. CASE-BASED APPLICATION OF THE TOOL

Parameter Value
name lac operon
borneMax 10
borneMin 0
borneEffectOnOthers 3
borneEffectOnSelf 0
globalThreshold 2
method tmp
sparsity 0
labeling all_ff
nSol 10

TABLE 7.1: Global parameters used in the context of the detailed cases

. AN
- ‘_‘3\
~ Y
- ..

'2 HK___ -
/""__"/':\ [_L’ODETOI'IA‘(’Z:
{ lactose & ‘,(_ _

"fJ
- ____‘"‘__--' ',-"I
glucose) 2

(CAP_CAMP)
FIGURE 7.1: Lac operon network assessed - case 1

experiment. Lucy sets those initial conditions corresponding to a state where there is a lot of
lactose, as well as operonAYZ in the system. Lucy selects the other concentration levels to be
compatible with previous experiments realized.

Lucy expects the concentration to be modified according to Table 1.2 (p17): the lactose
concentration decreasing, and the glucose concentration increasing. The operon concentration
level should also rise, up to an equilibrium, and then decrease as the glucose concentration
would be high enough to limit the CAP-cAMP effect, while the lacl effect would rise.

7.3.1 First steps

As a good modeling practice, the first trial is performed with a small number of steps. Using
the tool on the network, the results are given within a few seconds, as per Figure 7.2 (p99).
As expected, the lactose concentration level decreases, and the glucose concentration level

7.3. CASE 1: INTERACTIONS AND INITIAL CONDITIONS 99

Entity Concentration level
lactose 9
lacl 2
operon 7
cAP-cAMP 8
glucose 1

TABLE 7.2: Initial conditions - case 1

increases. During these steps, the operon concentration level reaches the maximum value
defined as input.

Lac Operon

12

10

0.5 0 0.5 1 15 2 25 3 35 4 45

-8~ operonAYZ -e- lactose lacl -e-cap_cAMP -e- glucose

CanvasJS.com

FI1GURE 7.2: Lac Operon network assessed

7.3.2 Equilibrium

From a modeling perspective, an important element is to be observed on the first steps results
in Figure 7.2 (p99): the equilibrium is expected to happen thanks to the glucose limiting
the production of CAP-cAMP, and the lacl being produced in the absence of lactose. The
first effect is well modeled: the concentration level of CAP-cAMP decreases as the glucose
concentration rises in the first steps. The second effect, linked to the absence of lactose, is
not modeled properly: the lacl concentration level, that is supposed to increase while the
lactose concentration decreases, stays at its minimum level even when lactose concentration
level decreases.

This is easily explained by the fact the modeling does not integrate the complete system
and all the interactions, but only a subset.

100 CHAPTER 7. CASE-BASED APPLICATION OF THE TOOL

The tool allows to correct this modeling to make it consistent with the experiment: Lucy
can add a control entity, as introduced in Section 4.5 (p51). The concentration levels of such
entity are all imposed (and not subject to interactions from other entities) while interactions
can be forced. Lucy decides, to model the continuous production of lacl, to add a supportLacI
entity, that has a positive effect on the concentration level of the lacl. Lucy fixes the Effect of
the interaction at 1. The updated network is given in Figure 7.3 (p100)

-:'E%IlpporlLéé[j:-
.“.l\._
ﬁ'.lacl]
/') S
-~ \-‘3\\
»// \"‘\
‘_I_é_l__.c_’_\ ., (operonAYZ)
(0 close','-"l— — 4—«— -
) /
(glucase) 2

(CAP_cAMP)
FIGURE 7.3: Lac operon network assessed updated with control entity

As the network is fixed, two good practices should be added to speed up the processing:

1. Applying a sparsity constraint, that will limit the engine in its research for other interactions,

2. Setting all the Effect not mentioned in the network of Figure 7.3 (p100) to 0, which will
drastically help pruning the search tree, reinforcing the effect of the sparsity constraint.

The final JSON input file is given in Appendix A.6.2 (p149). This file can be copy-pasted
in the text area of the Inputs tab in order to run the complete experiment. The print screen of
the front-end with the JSON input file is given in Figure 7.4 (p101).

The results obtained from the back-end are shown in Figures 7.5 (p102) and 7.6 (p103).
The concentration levels follow the expected behavior:

» the lactose concentration level decreases and, as there is no other lactose input, it stays
low,

« the glucose concentration level increases as the concentration level of the operon allows
its synthesis,

« as the glucose concentration level increases, the CAP__cAMP concentration level decreases,
e the control substance now allows the lacl to be produced when there is no lactose,

« the operon concentration level start decreasing when the lacl concentration is high enough.

Confident that this base matches the reality, Lucy can now modify the parameters? one
by one, and run again the experiment to compare the results and make a potential biological
breakthrough, thanks to the tool developed.

2The Threshold’s, the Delay’s, the Effect’s, for instance

7.4. CASE 2: INFERRING BASED ON EXPERIMENTAL DATA 101

Reasoning on Gene Regulatory Networks

Inputs Results Help

Inputs
Tab to declare inputs
Process

Input

{"network": [

{"name":"Lac Operon",

"borneMax":18,

"borneMin": @,

"borneEffectOnOthers”:3,

"borneeffectOnself":o,

"globalThreshold":2,

"steps":7,

"method": "tmp",

"sparsity":0,

"labeling":"all ff",

"nSol":18@,

"nodes": [

{"label”:"operonAYZ", "type":"node"},

{"label”:"lactose","type": "node"},

{"label”:"lacI","type":"node"},

{"label":"cap cAMP",6"type":"node"},

{"label":"glucose","type": "node"},

{"label":"supportLacI", "type":"control"}1,

"edges": [

"id":"toChange", "from":"lactose","to":"lacl", "threshold":"/", "borneEffect":3, "delay":0, "effect":-2},
'id":"toChange","from":"lacI","to": "operonAYZ", "threshold":"/", "borneEffect":3, "delay":0, "effect":-3},
"id":"toChange","from": "operonAYZ", "to": "glucose", "threshold":"/", "borneEffect":3, "delay":0, "effect":1},
'id":"toChange","from":"operonAYZ","to":"lactose", "threshold":"/", "borneEffect":3,"delay":0, "effect": -2},
'1d":"toChange","from":"cap_cAMP","to":"operonAYZ","threshold":"/", "borneEffect":3,"delay":0,"effect":2},
'1d": "toChange","from":"glucose", "to": "cap_cAMP","threshold":"/", "borneEffect":"/", "delay":0, "effect":-2},
id":"toChange","from":"supportLacI","to":"lacI", "threshold":"/", "borneEffect":"/", "delay":0, "effect":1},
:"toChange","from":"glucose","to":"lacI", "threshold":"/", "borneEffect":1, "delay":0, "effect":0},

"id": "toChange","from":"qlucose","to":"lactose", "threshold":"/", "borneEffect":1, "delay":0, "effect":0},

e i i e i e e

FIGURE 7.4: Print screen of the Inputs tab of the complete experiment

7.4 Case 2: Inferring based on experimental data

In the previous use case, the edges were known and the data unknown, despite some initial
conditions. The tool can be used the other way around: Lucy can provide the entities and the
data only, without any edges, and the tool can infer the interactions between the entities that
can explain, considering the modeling chosen (see Section 5.4.6 (p65)), the experimental data.

In the context of this thesis, this can be easily done starting from the results of the previous
use case. The input file is the JSON response from the server, with the edges removed from
the file. This is a simple way of getting rid of the normalization and filtering of experimental
data. The general parameters can be left unchanged.

Figure 7.7 (p104) shows the Inputs tab, with no edge provided to the system as inputs.
When clicking on the Process button and sending the request, the back-end will infer the
interactions, and send back a JSON response file containing the definition of those interactions.
It is expected to retrieve the interactions from the original JSON input file, or — which would
even be better in terms of relevance of the inference — suggest other interactions that can explain
the experimental data.

The front-end could be improved for this situation in order to show a network graph of the
inferred interaction. This is discussed in Chapter 8 (p105).

102 CHAPTER 7. CASE-BASED APPLICATION OF THE TOOL

Lac Operon

NN e AN)

6 N "

. N AN

: S N

; / \\

1 . . \\ .

0 \'\\\\— . .
0 1 2 3 4 5 6 7

FIGURE 7.5: Result of the complete experiment, with the network given in Figure 7.3 (p100)

The inferred interactions are given here under®, and provided as a graph in Figure 7.8 (p104).
The results are beyond expectations: within a few seconds, the interactions are computed, and
are, for some, different from the input file of the use case developed in Section 7.3 (p97).

{"id": "toChange","from": "operonAYZ","to": "lactose","threshold": 1,"borneEffect": 2,"delay": 0,"effect": -2},
{"id": "toChange","from": "operonAYZ","to": "lacI","threshold": 1,"borneEffect": 1,"delay": 0,"effect": 1},
{"id": "toChange","from": "lacI","to": "operonAYZ","threshold": 1,"borneEffect": 3,"delay": 0,"effect": -3},
{"id": "toChange","from": "operonAYZ","to": "cap_cAMP","threshold": 1,"borneEffect": 2,"delay": 0,"effect": -2},
{"id": "toChange","from": "cap_cAMP","to": "operonAYZ","threshold": 1,"borneEffect": 2,"delay": 0,"effect": 2},
{"id": "toChange","from": "cap_cAMP","to": "lacI","threshold": 1,"borneEffect": 2,"delay": 0,"effect": -2},
{"id": "toChange","from": "operonAYZ","to": "glucose","threshold": 1,"borneEffect": 1, "delay": 0,"effect": 1},

From there onwards, Lucy can start her biological work, assessing the results based on her
expertise, and iterate with the tool using other inputs.

7.5 Conclusion

This chapter detailed two use cases where the tool helped Lucy, the biologist, in her reasoning
over the network of the lac operon. It has shown the steps and the methodology to use the
tools starting either from interactions data — the edges of the GRN —, or from the experimental
data.

30nly the ones for which the Effect is different from 0.

7.5. CONCLUSION

Reasoning on Gene Regulatory Networks

Inputs

Results

Results

Help

Tab to display the results of the processing

Solution #6 v

Update

Tr

Lac Operon

RN /N .
HERNN / N
NN A\
- AN \
) N \
; el NI
NN
1 /: :\\- .

S
%1 & § & 35 & 3

=% glucose -e- supportLacl

FIGURE 7.6: Print screen of the Results tab for the complete experiment

CanvasJS.com

JSON Response

103

"name”: "Lac Operon”,
"borneMax": 18,
"borneMin": 0O,
"borneEffectOn0thers": 3,
"borneEffectOnSelf": @,
"globalThreshold": 2,
"steps": 7,

"method": "tmp",
"sparsity": 7,
"labeling": "all_ff",
"nSol": 18,

“nodes": [

"label": "operonAYZ",

"type": "node"

1.

{
"label": "lactose",
"type": "node”

1.

{
"label": "lacI",
"type": "node"

1.

{
"label": "cap_cAMP",
"type": "node"

I

{
"label": "glucose",
"type": "node"

1.

{

"label": "supportLacI",

"type": "control”

104

CHAPTER 7. CASE-BASED APPLICATION OF THE TOOL

Reasoning on Gene Regulatory Networks

Inputs Resulks Help

Inputs

Tab to declare inputs

Process
Input
{"network": [{

"name": "Lac Operon",

"borneMax": 10,

"borneMin": @,

"borneEffectOnOthers": 3,

"borneEffectOnself": @,

"globalThreshold": 2,

"steps": 7,

"method": "tmp",

"sparsity": 7,

"labeling": "all_ff",

"nSol": 1@,

"nodes": [
1 "label": "operonAYZ", "type": "node" T,
{ "label": "lactose", "type": "node" 1.
{ "label": "lacI", "type": "node" 1.
{ "label": "cap_cAMP", "type": "node" 1.
1 "label": "glucose", "type": "node" T,
{ "label": "supportLacI", "type": "control" }

1,

"edges": [1,

"data": [
1 "node": "glucose", "step": 7, "niveau": 8 T,
1 "node": "glucose", "step": 6, "niveau": 7 T,
1 "node": "glucose", "step": 5, "niveau": 6 T,
{ "node": "glucose", "step": 4, "niveau": 5 T,
{ "node": "glucose", "step": 3, "niveau": 4 1,
{ "node": "glucose", "step": 2, "niveau": 3 1,
1 "node": "glucose", "step": 1, "niveau": 2 T,
1 "node": "glucose", "step": 0, "niveau": 1 T,
r Nemmeda e W~ ARATE L L MWemdarmmall e A 1

FIGURE 7.7: Print screen of the Inputs tab for the data inference: no edge is provided as input

AT
(lactose)
~

N2

CoperonAYZ)

/1/ \-2\“\\

s SN
e Ny - g
e ‘\\ Y

Sy

FI1GURE 7.8: Network inferred based on provided experimental data

Chapter 8

Perspectives

8.1 Introduction

The work described in the previous chapters has opened many doors that could induce further
studies. This chapter aims at compiling those perspectives, and to suggest avenues for reflection.

A first section describes the modeling opportunities opened in the context of constraint logic
programming representation, mentioning other libraries and other techniques that can be used.
A second section further discusses the constraint logic program itself: the performances, the
choices of implementation and the portability of the current solution. The global architecture
is succinctly reviewed, with suggestions on how to develop a real web application — production-
grade — based on the current prototype tool. Finally, discussions about the test strategies will
make the link with the biological world, starting point of this whole thesis, while suggesting
other uses of the modeling and techniques presented.

8.2 Modeling

The model behind the current implementation is based on Thomas’ work about boolean
networks, extended to multi-valued. This is longly discussed in Chapter 1 (p3) and 3 (p33).

As also presented, different models exist and could lead to other constraints and representa-
tion. Per se, the use of CSP in the context of regulatory networks is not limited to one specific
modeling. The current work could hence be extended to integrate other viewpoints.

As a first step, a good candidate is the linearized differential equations model. Written
as constraints, those equations can be used to compute the concentration levels directly. A
major impact however concerns the Finite Domain hypotheses: as such, the FD cannot be used
directly as it is unlikely that solutions using the linearized differential equations will be found
with integers only, at least without further precautions. Several tactics can be suggested:

e Keep the Finite Domain libraries in order to benefit from the built-in predicates, but
consider coefficients on a much larger domain: instead of [0, 10], one can use [0, 1000],
and rounding the values obtained to the nearest integer. This can be a quick-win solution
in regards of the benefit of keeping a FD library in the CSP.

o Using real numbers libraries. Some constraints solvers have developed constrained over
real numbers, that could be used as well. The labeling will then need to be modified:
an enumeration of all possibilities can no longer be applied, as the domain is infinite. A
home-made labeling strategy using a discretized domain can then be used to converge
towards a solution. This is most likely to be combined with values rounding.

105

106 CHAPTER 8. PERSPECTIVES

Another critical part is the asynchronous behavior modeling. In the current implementation,
the representation could benefit from further work. The modeling of the asynchronous behavior,
as introduced in Chapter 3 (p33), leads to two different tracks that should be discussed:

o Modification of the interactions pathway: instead of considering cyclic interactions, one
can implement that for each step N, for each gene g of the system, are considered all
the potential interactions i that could start, as the expression level of ¢ is higher than
the threshold 6;. All those potential interactions are then sorted according to the Delay
variable. The next interaction to occur is the one with the smallest Delay value.

o Considering the stochasticity of the events, one can also state that it is not possible
to predict or estimate the order in which the interactions will take place. A stochastic
behavior can therefore be introduced so that the next interaction is computed according
to a statistic distribution.

Yet another consideration is related to the events that are modeled. As announced at the
beginning in Section 1.2.3 (p5), although the main focus of this work is on the regulation during
the transcription, other mechanisms happen, which all provide means to regulate the gene
expression. Those post-transcription mechanisms are currently biologically less well explored,
while it is believed that their effects may be as prevalent as the transcriptional control on the
genes expressions. That is, while a gene may have no effect on the expression of another at
RNA transcription level, it could be important for the protein expression, and be integrated in
future versions of the tool.

8.3 CSP implementation

The implementation of the CSP can also be further developed, considering the modeling or the
considerations elicited in Section 8.2 (p105).
Several improvement can be implemented:

o The integration of the self effect. The association list is already foreseen, and the
impacts are only in the constraints linked to the Niveau variables, as described in
Section 5.4.6 (p65).

e The memoisation does not yet integrate the Delay provided by the user, as confirmed
in Section 5.5.5.2 (p83). Only the 0 value is added. The impact is limited to this one
predicate only.

e The use of the Delay variable is currently limited. The user can provide a Delay value,
but the system is not capable yet of inferring different Delay values. The impact of the
modification would also be on the constraints specified in Section 5.4.6 (p65),

e The ID of an interaction is currently not used at all by the server. What’s more, the
server changes the value given to a default so that the user realizes it may have changed.
However, this behavior is not optimal and the ID provided should be used and kept as
reference of the interaction.

Those changes represent work on the current implementation but do not induce at first
major impacts.

Other optimizations could be done on the CSP implementation in order to improve specifically
the performances. Firstly, improved pruning and constraint propagation techniques could be
used. Chapter 2 (p19) references types of constraints that can help pruning at an earlier stage of

8.4. PRODUCTION-GRADE WEB APPLICATION 107

the search process, such as the nogoods. Those techniques have not yet been used extensively.
In the same idea, another search algorithm different from the backtracking, should be suggested.
As confirmed in many sources such as [52], forward-checking or look-ahead techniques could be
implemented so that the propagation and pruning of the search tree are more efficient, leading
to improved performances.

Secondly, as already prepared, started and suggested, a relevant and global benchmark of
the performances of execution regarding the type of user inputs should be performed, in order
to apply the best resolution method or model case by case. The system could automatically
select the most appropriate method to provide the desired results in the most efficient way.

Finally, the CSP as implemented, although using ISO Prolog as much as possible, is quite
heavily linked to SWIPL and related implementation. To gain in portability and abstraction, it
could be an interesting upgrade to move to a more general language to describe the constraints,
such as suggested with the ZincMini approach (see [40]). It would also allow to benchmark the
execution of different implementations on different platforms.

8.4 Production-Grade web application

As quite heavily discussed and specified, the current development results in a tool prototype
which is not a production-grade software. To evolve to a usable and widely spread tool, several
changes are required. The impacts are both on the front-end, obviously, and on the back-end.

8.4.1 Back-end

The current architecture and technology choices result in having the complete back-end handled
in Prolog. Although it works well for limited scope and specific uses such as the prototype
described, a production-grade Web Application requires much more from the back-end side.

As discussed in Chapter 4 (p41), the quality attributes have not really been taken into
account. What’s more, in this implementation, the Web Service and complete application back-
end are essentially the same thing. Considering a layered architecture as an approved guideline,
a production-grade Web Application would widely benefit from having an intermediate server
in between the front-end and the Web Service in Prolog.

This intermediate server would concentrate the following responsibilities:

o Security aspects related to the data integrity and confidentiality. Other use cases could
emerge from a more detailed security risks analysis,

« User management, to give the user the ability to retrieve a previous request for instance,

« Data persistence, with connections to a database (prerequisite for many use cases not
implemented),

« Validation of the user inputs, as a second layer (after front-end), improving robustness
and reliability,

o Connection to the CSP, using the JSON interface developed,
o Cache of the received response, part of the REST guidelines,
o Integration of other business cases over the inferred network post-processing

The technologies to use for this intermediate server are introduced in Chapter 4 (p41). As
confirmed by the here above list, the possibilities of extended use cases are numerous.

108 CHAPTER 8. PERSPECTIVES

8.4.2 Front-End

Currently, the front-end consists of a modern idea of single page application. The interface
developed is restricted in terms of dynamism features offered to the user. It has not yet been
fully developed for optimizing user experience.

This could be easily solved with a solid front-end development. The choice of architecture
followed fully support the separation of concerns, leading to a completely unrelated front-end
development with respect to the server-side.

A front-end using a modern framework as discussed in Chapter 4 (p4l) could allow to
improve the user experience, and develop many features:

o The way inputs are provided can be reviewed. The JSON file does not need to be known
or viewed by the user: the inputs can be arranged as a JSON file in the background,
while the user has a user-friendly interface to enter the data.

e More than only graphical improvements, the front-end can allow dynamic parameters
modifications to respect the business related rules!, automatic completion of parameters
based on default set by the user, ... Sky is the limit regarding those kinds of facilitating
features to implement in the front-end side.

o Verifications on the inputs can be performed before sending the request to the server. For
instance, an incompatibility between parameters can be detected and either reported to
the user or automatically corrected.

o The results can be expressed in the real form of a network, using dedicated network viewer
libraries. Preliminary tests have been performed with vis.js?> — all the network graphical
representations in this thesis are realized using vis.js library —, quite promising although
not yet finalized. The choice of library should however be more thoroughly investigated.

e Receiving the JSON file output from the back-end, the front-end can include several
functionalities to help the user with the assessment of its hypothesis: comparison between
graphs, responses filtering according to user-defined criteria,...

8.5 Uses

In a perspective of being used in a biological research context, a first step shall be to assess the
developed tool on real cases. In close collaboration with biologists, real experiment data should
be input to the tool, and the results and execution assessed in terms of relevance, performances,
modeling, usability, etc.

The computer science tool shall remain a mean to help business-domain users to accomplish
their tasks. In that way, new ideas will most likely come up from discussions with end users.
This is one of the principles behind the Agile software development methods. Having set up a
prototype with this tool, experiencing it with users would be a nice step further.

This tool has been developed in a specific context: the gene regulatory networks. Nothing
however limits its use to this field of activities, provided the modeling fits another use case.
Moreover, having set the modeling as an option for the user to select, adapting the tool to other
network-related work is intrinsically within reach.

IFor instance, the thresholds modified if the global limit is set lower
2http://visjs.org/.

8.6. CONCLUSION 109

8.6 Conclusion

This chapter summarizes the perspectives for future developments that this thesis raises,
according to different topics discussed. Firstly, modeling improvements are suggested, either
in terms of improving the current modeling based on logical method, or to integrate other
modeling aspects such as linearized differential equations. Secondly, the CSP implementation
is discussed: current limitations as the Delay inference, or gene self effect are listed. Ideas of
optimizations regarding the performances, thanks to the developed systematic test framework,
and the portability of the CSP are provided. Thirdly, the production-grade consideration
is discussed: both back-end and front-end need further developments to become ready for
production. It goes by quality attributes — such as usability and security — considerations,
but also features such as data persistence implementation. Regarding the use of the tool
developed, real cases applications can constitute a major step forward. Use cases outside of
the gene regulatory networks inference can also be addressed, as long as the behind modeling
is acceptable — knowing that this modeling is a user selected option, and several others can be
implemented as well.

110 CHAPTER 8. PERSPECTIVES

Conclusion

This thesis presents the use of constraint logic programming (CLP) paradigm in the context
of the gene regulatory networks (GRN) inference, and introduces a tool prototype allowing to
reason on GRN based on CLP.

The required theoretical background regarding the GRN, including the biological related
notions is presented, including several modeling techniques commonly used. These techniques
and their utility are discussed, and the concrete biological example of the lac operon is given.
Then, the computer science related background related to the constraint logic programming
paradigm is detailed. Some specificities of this technique of problem solving are explained, and
the nominal resolution path is specified: variables elicitation, constraints elicitation, labeling.

Based on those two first chapters, the GRN inference problem is seen as a constraint
satisfaction problem, and the three resolution steps adapted to GRN inference are detailed.
This constitutes the base of the tool prototype.

The tool as a Web application is introduced starting from the general requirements, and
its architecture and technological choices are discussed and motivated. The domain specific
language created to describe the GRN itself and the inference tasks, including several parameters
or options, is introduced. The implementation of the two sides of the Web application, back-
end and front-end, is detailed. The back-end implementation, specifically, is finely analyzed
and assessed, with the development of a systematic tests framework. With the help of this
framework, different implementations suggested both for constraints modeling and labeling are
evaluated. Promising results are given, suggesting further heuristic developments in order to
improve the efficiency of the resolution.

Finally a case-based application, the lac operon, is studied with the help of the prototype
developed. It gives the reader a concrete view of the use cases that are currently handled.
While the outcomes are promising, further work is required.

Along the development of the tool, from the background up to the lac operon case-based
application, several avenues for reflection and improvement are raised. They are compiled and
discussed in the last chapter of this thesis, and summarized here after.

Firstly regarding the modeling itself, the main perspectives are the integration of other
approved biological modelings, the modification of the asynchronous case modeling, and the
integration of other biological effects on the regulation — the post-transcriptional mechanisms.
A good candidate to integrate to the current modeling is the linearized differential equations
model, which address quantitative aspects. It has however a major impact on the Finite Domain
hypothesis. Different tactics are suggested: a quick-win technique allowing to keep the FD
libraries, or a probably more complex one, with the integration of real numbers libraries in the
constraints solving. The asynchronous modeling can be improved in two different suggested
ways: reconsider the cyclic assumption, or integrate a stochastic behavior in the choice of
application gene interaction.

111

112 CHAPTER 8. PERSPECTIVES

Secondly, regarding the CSP implementation, several effects or interactions has not been
implemented yet: the self effect — the interaction of a gene product concentration level with its
own gene expression level —, the general inference of the Delay, or the global use of an identifier
to uniquely refer to an interaction. The implementation can also be optimized regarding the
CLP itself: other pruning, constraint propagation and search techniques, and — based on the
systematic tests framework — the selection of the most appropriate implemented resolution
method, considering the type of tasks to perform. The portability of this implementation is
also discussed in Chapter 8 (p105).

Thirdly, in order to transform the prototype into a production-grade Web Application, and
in particular integrating quality attributes, numerous opportunities and avenues are presented
and discussed, for both back-end and front-end.

This thesis has been the opportunity to get familiarized with several concepts related to
biology and computer science. Merging both domains have been incredibly interesting from a
scientific perspective. As final words, a quote that guided all this work: “Computer Science is
a science of abstraction — creating the right model for a problem and devising the appropriate
mechanizable techniques to solve it”, [4].

Bibliography

[1] A Beginner’s Guide to Back-end Development. URL: https://www.upwork.com/hiring/
development/a-beginners-guide-to-back-end-development/ (visited on 08/16/2018).

[2] A Guide to Stand-Alone Software. URL: https://www . thebalance . com/types-of -
stand-alone-software-1293731 (visited on 08/07/2018).

[3] Jamil Ahmad et al. Hybrid Modelling and Dynamical Analysis of Gene Regulatory Networks
with Delays. 2006. DOI: 10.1159/000110010. URL: https://www.karger.com/Article/
FullText/110010.

[4] Al Aho and Jeff Ullman. Foundations of Computer Science. 1992. Chap. 1, The Mec,
pp- 1-24. 1sBN: 978-0716782841. URL: http://i.stanford.edu/{~}ullman/focs/ch01.
pdf.

[5] Beautiful HTMLS5 JavaScript Charts | CanvasJS. URL: https://canvasjs.com/ (visited
on 07/23/2018).

[6] Gilles Bernot et al. “Semantics of Biological Regulatory Networks”. In: Electronic Notes
in Theoretical Computer Science 180.3 (2007), pp. 3—14. 1SsN: 15710661. DO1: 10.1016/
j.entcs.2004.01.038.

[7] Hax Bradley. “Solving Linear Programs”. In: Applied mathematical programming. Mathematic.
1. Addison-Wesley Publishing Company, 1977. Chap. 2, pp. 38-75.

[8] Fabien Corblin et al. A declarative constraint-based method for analyzing discrete genetic
requlatory networks. 2009. DOT: 10.1016/j .biosystems.2009.07.007.

9] Cross-Origin Resource Sharing (CORS) - HTTP | MDN. URL: https://developer .
mozilla.org/en-US/docs/Web/HTTP/CORS (visited on 08/08/2018).

[10] Frank Emmert-Streib, Matthias Dehmer, and Benjamin Haibe-Kains. “Gene regulatory
networks and their applications: understanding biological and medical problems in terms
of networks.” In: Frontiers in cell and developmental biology 2 (2014), p. 38. 1SSN: 2296-
634X. DoOI: 10.3389/fcell.2014.00038. URL: http://www.ncbi.nlm.nih.gov/
pubmed/25364745http://www.pubmedcentral .nih.gov/articlerender.fcgi?artid=
PMC4207011.

[11] Frank Emmert-Streib, Matthias Dehmer, and Benjamin Haibe-Kains. “Gene regulatory
networks and their applications: understanding biological and medical problems in terms
of networks.” In: Frontiers in cell and developmental biology 2 (2014), p. 38. 1SSN: 2296-
634X. DOI: 10.3389/fcell.2014.00038. URL: http://www.ncbi.nlm.nih.gov/
pubmed/25364745http://www.pubmedcentral .nih.gov/articlerender.fcgi?artid=
PMC4207011.

[12] Vincent Englebert. Software Architectures Engineering, Technologies and Methods-Engineering
Method for Software Architectures. URL: https://webcampus.unamur.be/course/view.
php?id=809.

113

114 BIBLIOGRAPHY

[13] Roy Thomas Fielding. “Architectural Styles and the Design of Network-based Software
Architectures”. PhD thesis. 2000, p. 162. 1SBN: 0599871180. porI: 10.1.1.91.2433.
arXiv: arXiv:1011.1669v3. URL: http://www.ics.uci.edu/{~}fielding/pubs/
dissertation/top.htm.

[14] Vladimir Filkov. Identifying Gene Regulatory Networks from Gene Expression Data. 2005.
DOI: 10.1017 /CB09781107415324 . 004. arXiv: arXiv: 1011 . 1669v3. URL: http://
scholar.google.com/scholar?hl=en{\&}btnG=Search{\&}q=intitle:Identifying+
Gene+Regulatory+Networks+from+Gene+Expression+Data+27.1{\#}0.

[15] Ferdinando Fioretto and Enrico Pontelli. Constraint Programming in Community-Based
Gene Regulatory Network Inference. 2013.

[16] Raimo Franke, Fabian J Theis, and Steffen Klamt. “From binary to multivalued to
continuous models: the lac operon as a case study.” In: Journal of integrative bioinformatics
7.1 (2010), pp. 1-19. 18sN: 1613-4516. DOI: 10.2390/biecoll-jib-2010-151.

[17] Jonathan Fromentin et al. Analysing gene regqulatory networks by both constraint programming
and model-checking. 2007. DOT: 10.1109/IEMBS.2007 .4353363.

[18] Gene Expression: An Quverview. URL: https://www.news-medical.net/life-sciences/
Gene-Expression-An-Overview.aspx (visited on 02/23/2018).

[19] Gene Expression and Regulation — University of Leicester. URL: https://wuw2.le.ac.
uk/projects/vgec/highereducation/topics/geneexpression-regulation (visited
on 02/23/2018).

[20] Gene Expression Is Analyzed by Tracking RNA | Learn Science at Scitable. URL: https:
/ /www . nature . com/scitable /topicpage / gene - expression- is - analyzed - by -
tracking-rna-6525038 (visited on 07/21/2018).

[21] Anastasis Georgoulas, Jane Hillston, and Guido Sanguinetti. ABC — Fun : A Probabilistic
Programming Language for Biology. 2013.

[22] Khaled Ghédira. Constraint Satisfaction Problems. 2009. DOT: 10.1016/j . jphysparis.
2009.05.013. arXiv: 0803.2955.

[23] global_cardinality/2. URL: http://www.swi-prolog.org/pldoc/doc{_}for?object=
global{_}cardinality/2 (visited on 08/11/2018).

[24] Fabrizio Grandoni and Giuseppe F Ttaliano. Algorithms and Constraint Programming.
2006.

[25] Anne Claire Haury et al. TIGRESS: Trustful Inference of Gene REgulation using Stability
Selection. 2012. DOI: 10.1186/1752-0509-6-145. arXiv: 1205.1181.

[26] Jonsson Henrik. Chapter 1 Modeling in systems biology. URL: http://home.thep. lu.
se/{~}Yhenrik/fytn05/lectureNotesSysBiol.pdf.

[27] Here are the best programming languages to learn in 2018. URL: https ://medium .
freecodecamp . org/best-programming-languages-to-learn-in-2018-ultimate-
guide-bfc93e615b35 (visited on 08/16/2018).

[28] Ryan Hoyle. Quverview: Gene requlation in bacteria. 2017. URL: https://www.khanacademy .
org / science / biology / gene - regulation / gene - regulation - in - bacteria/a/
overview-gene-regulation-in-bacteria (visited on 03/01/2018).

[29] Van Anh Huynh-Thu and Guido Sanguinetti. Gene regulatory network inference: an
introductory survey. 2018. arXiv: 1801 .04087. URL: http://arxiv.org/abs/1801.
04087.

BIBLIOGRAPHY 115

[30] Véan Anh Huynh-Thu et al. “Inferring regulatory networks from expression data using
tree-based methods”. In: PLoS ONE 5.9 (2010). Ed. by Mark Isalan, pp. 2009-2010.
ISSN: 19326203. pOI: 10. 1371/ journal . pone . 0012776. arXiv: arXiv:1205.1181v1.
URL: http://dx.plos.org/10.1371/journal .pone.0012776.

[31] Masayo Inoue and Kunihiko Kaneko. “Cooperative Adaptive Responses in Gene Regulatory
Networks with Many Degrees of Freedom”. In: PLoS Computational Biology 9.4 (2013).
Ed. by Erik van Nimwegen. 1SSN: 1553-7358. DOI: 10. 1371/ journal . pcbi. 1003001.
URL: http://dx.plos.org/10.1371/journal.pcbi.1003001.

[32] Jean-marie Jacquet. “Techniques d * Intelligence Artificielle : Logic Programming”. PhD
thesis. 2016.

[33] Joxan Jaffart et al. “Constraint Logic Programming”. In: POPL ’87 Proceedings of the
14th ACM SIGACT-SIGPLAN symposium on Principles of programming languages. 1987,
pp- 111-119. 18BN: 0897912152. DOI: 10.1145/234313.234416.

[34] JSON (JavaScript Object Notation) Definition. URL: https://techterms.com/definition/
json (visited on 08/15/2018).

[35] George Katsirelos and F Bacchus. Generalized nogoods in CSPs. 2005. URL: http://www.
aaai.org/Papers/AAAI/2005/AAAI05-062. pdf.

[36] S. A. Kauffman. “Metabolic stability and epigenesis in randomly constructed genetic
nets”. In: Journal of Theoretical Biology 22.3 (1969), pp. 437-467. 1SSN: 10958541. DOI:
10.1016/0022-5193(69)90015-0. arXiv: NTHMS150003.

[37] Eric Lander, Robert Weinberg, and Claudette Gardel. Introduction to Biology, Fall 200/
. 2004. URL: http://ocw.mit.edu (visited on 03/01/2018).

[38] A. Mandic et al. A novel method for quantitative measurements of gene expression in
single living cells. 2017. DOI1: 10.1016/j .ymeth.2017.04.008. URL: http://linkinghub.
elsevier.com/retrieve/pii/S1046202316303632http://www.ncbi.nlm.nih.gov/
pubmed/284566809.

[39] Markov Assumption. URL: https://www.cs.cmu.edu/{~}thrun/tutorial/s1d030.htm
(visited on 08/13/2018).

[40] MiniZinc. URL: http://www.minizinc.org/ (visited on 08/15/2018).

[41] Modern Frontend Developer in 2018 — tajawal — Medium. URL: https://medium. com/
tech-tajawal /modern- frontend - developer - in- 2018 - 4c2072fa2b9c (visited on
08/16/2018).

[42] MVC architecture - App Center | MDN. URL: https://developer .mozilla. org/en-
US/docs/Web/Apps/Fundamentals/Modern{_}web{_l}app{_l}tarchitecture/MVC{_
Yarchitecture (visited on 08/08/2018).

[43] NFKB gene regulatory network. URL: http://rulai.cshl.edu/TRED/GRN/NFKB.htm
(visited on 08/12/2018).
[44] No Title. \url{https://projects.spring.io/spring-security/}.

[45] Personas — A Simple Introduction | Interaction Design Foundation. URL: https://www.
interaction-design . org/literature/article/personas - why - and - how - you -
should-use-then (visited on 08/06/2018).

[46] Play Framework - Build Modern and Scalable Web Apps with Java and Scala. URL: https:
//www .playframework.com/ (visited on 08/16/2018).

116

[47]

[58]

[59]
[60]

[61]
[62]
[63]
[64]

[65]

BIBLIOGRAPHY

prolog - findall/3 creates new, unrelated variables in its resulting list - Stack Overflow.
URL: https://stackoverflow.com/questions/44728306/findall-3-creates—-new-
unrelated-variables-in-its-resulting-list (visited on 08/10/2018).

Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco Documentation.
TASC - LS2N CNRS UMR 6241, COSLING S.A.S. 2017. URL: http://www. choco-

solver.org.

Regulation of Gene Expression. URL: https://www.news-medical.net/life-sciences/
Regulation-of-Gene-Expression.aspx (visited on 02/23/2018).

Adrien Richard, Jean-paul Comet, and Gilles Bernot. R. Thomas’ Logical Method. 2008.

Delphine Ropers et al. Qualitative simulation of the carbon starvation response in Escherichia
coli. 2006. DOI: 10.1016/j.biosystems.2005.10.005.

Francesca Rossi, Peter Van Beek, and Toby Walsh. “Constraint Programming”. In: Handbook
of Constraint Programming. Ed. by Francesca Rossi, Peter van Beek, and Toby Walsh.
Elsevier, 2006. Chap. 1, pp. 1-31.

Hana Rudova. Constraint Programming and Scheduling Materials from the course taught
at HTWG Constanz , Germany Constraint Programming and Scheduling : Outline Constraint
Programming Constraint-based Scheduling. 20009.

Scale-free networks - Math Insight. URL: https://mathinsight.org/scale{_}free{_
Inetwork (visited on 07/23/2018).

Thomas Schlitt and Alvis Brazma. Current approaches to gene regulatory network modelling.
2007. por: 10 . 1186 /1471 -2105-8- 56 - S9. URL: http : //bmcbioinformatics .
biomedcentral.com/articles/10.1186/1471-2105-8-S6-S9.

Spring Documentation.

Sandra L Spurgeon, Robert C Jones, and Ramesh Ramakrishnan. “High Throughput
Gene Expression Measurement with Real Time PCR in a Microfluidic Dynamic Array”.
In: PLOS ONE 3.2 (2008), pp. 1-7. DOI: 10.1371/journal.pone.0001662. URL: https:
//doi.org/10.1371/journal .pone.0001662.

SWI-Prolog — CLP(B). URL: http://www.swi-prolog.org/pldoc/man?section=clpb
(visited on 08/14/2018).

SWI-Prolog. URL: http://www.swi-prolog.org/ (visited on 08/01/2018).

The Java® Virtual Machine Specification. URL: https://docs.oracle. com/ javase/
specs/jvms/se8/html/index.html (visited on 08/07/2018).

The NF-kB Signaling Pathway - Creative Diagnostics. URL: https://www.creative-
diagnostics.com/The-NF-kB-Signaling-Pathway.htm (visited on 08/12/2018).

René Thomas. “Boolean Formalization of Genetic Control Circuits”. In: J. theor. Biol.
42 (1973), pp. 563-585.

René Thomas. Regulatory Networks Seen as Asynchronous Automata : A Logical Description.
1991.

René Thomas and Richard D’Ari. Biological Feedback. Ed. by CRC Press. 1990, p. 316.
ISBN: (0849367662.

Top JavaScript Frontend Frameworks Comparison in 2018 | FusionCharts. URL: https:
//v3.fusioncharts . com/resources/ js-frontend- frameworks - comparison/{\#
}conclusion (visited on 08/16,/2018).

BIBLIOGRAPHY 117

[66]

Top JavaScript Libraries & Tech to Learn in 2018 — JavaScript Scene — Medium. URL:
https://medium. com/ javascript-scene/top- javascript-libraries-tech-to-
learn-in-2018-¢c38028e028e6 (visited on 08/16/2018).

Markus Triska. Constraint Logic Programming over Finite Domains. URL: https://
github.com/triska/clpfd (visited on 08/04/2018).

Markus Triska. The boolean constraint solver of SWI-prolog. 2016. DOI: 10.1007/978-3-
319-29604-3_4.

a. Tsinober. Constraint Logic Programming - An informal introduction. 2001. DOI: 10.
1007/0-306-48384-X. URL: http://www.springer.com/book/978-1-4020-0166-6.

Tutorial — Creating Web Applications in SWI-Prolog. URL: http://www.pathwayslms.
com/swipltuts/html/index.html (visited on 08/08/2018).

User Stories: An Agile Introduction. URL: http://www.agilemodeling.com/artifacts/
userStory.htm (visited on 08/06/2018).

Van Anh Huynh-Thu. GENIES vignette. 2018. URL: https : //bioconductor . org/
packages /release/bioc/vignettes/GENIE3/inst/doc/GENIE3 . html (visited on
08/15/2018).

Nedumparambathmarath Vijesh, Swarup Kumar Chakrabarti, and Janardanan Sreekumar.
“Modeling of gene regulatory networks: A review”. In: Journal of Biomedical Science and
Engineering 06.02 (2013), pp. 223-231. 1SsN: 1937-6871. DOIL: 10 .4236/ jbise . 2013 .
62A027. URL: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=
28365{\&}{\#}abstract.

W3. AJAX Introduction. URL: https://www.w3schools.com/xml/ajax{_}intro.asp
(visited on 08/01/2018).

W3. CSS Tutorial. URL: https://wuw.w3schools. com/css/default.asp (visited on
08/01/2018).

W3. HTMLS Introduction. URL: https://www.w3schools.com/html/html15{_ }intro.
asp (visited on 08/01/2018).

W3. JavaScript Tutorial. URL: https://www.w3schools.com/js/default.asp (visited
on 08/01/2018).

Web Service Definition. URL: https://techterms.com/definition/web{_}service
(visited on 08/15/2018).

What is a gene? - Genetics Home Reference - NIH. URL: https://ghr.nlm.nih.gov/
primer/basics/gene (visited on 07/21/2018).

What is a Web Application? URL: https://www.maxcdn.com/one/visual-glossary/
web-application/ (visited on 08/07/2018).

What is DNA? - Genetics Home Reference. URL: https://ghr.nlm.nih.gov/primer/
basics/dna (visited on 02/23/2018).

What is Prolog? - Definition from Techopedia. URL: https://wuw .techopedia . com/
definition/24549/prolog (visited on 08/06/2018).

What is the correct quote for the Markov assumption? - Quora. URL: https://wuw .
quora.com/What-is-the-correct-quote-for-the-Markov-assumption (visited on

08,/13/2018).

XML Introduction. URL: https ://www . w3schools . com/xml /xml{\ _}whatis . asp
(visited on 08/15/2018).

118
[85]

[36]

BIBLIOGRAPHY

XML vs JSON. URL: https://www.cs.tufts.edu/comp/150IDS/final{_l}papers/
tstras01.1/FinalReport/FinalReport.html (visited on 08/15/2018).

Qing Zhou et al. “A gene regulatory network in mouse embryonic stem cells.” In: Proceedings
of the National Academy of Sciences of the United States of America. Vol. 104. 42.
National Academy of Sciences, 2007, pp. 16438-43. DOI: 10.1073/pnas.0701014104.
URL: http://www.ncbi.nlm.nih.gov/pubmed/17940043http://www.pubmedcentral .
nih.gov/articlerender.fcgi?artid=PMC2034259.

Appendices

119

0O Utk WN -

Appendix A

Source Code

This appendix provides part of the source code. The complete resources and source code are

available upon request to the author.

A.1 Prolog server code

http/thread__httpd)).
http/http_dispatch)).
http/http__json)).
http/http_cors)).

library
library
library
library

:— use_module
:— use_module
:— use_module
:— use_module

,_\ﬁ,_\/_\
o~~~

:— include(json2go).
:— include (phase0).
:— http__handler(/, say_hi, []).

:— http__handler('/test', handle_test, [methods(get,post,options)]).
:— http_handler('/api', handle_api, []).
:— set_setting (http:cors, [x]).

server (Port):—

http_server (http_ dispatch, [port(Port), timeout(5000)]).
stop__server (Port):—

http_ stop_ server (Port,[]) .

say__hi(_Request) :—
format ('Content—type: text/plain~n~n'),
format ('Hello World!~n").

handle test (Request) :—
option (method (options), Request), !,
cors_enable (Request, [methods([post])]),
format ('~n'").

handle__test (Request) :—
option (method (post), Request), !,
http_read_json(Request, JsonTest),

open('log_17072018.txt ', write, MS),
write (MS, JsonTest),
close (MS) ,
produceJson (
lineaire ,
test__put,
100,
07
10,
2,
57
[node—test2 ,node—test3],
[gen gen(test2 ,test3 ,3)],

[niveau (node, test2 ,0,0), niveau(node,test3 ,0,0)],

121

122 APPENDIX A. SOURCE CODE

49 DictOut) ,

50 cors__enable ,

51 reply json (DictOut ,[status (201)]) .
52

53 handle_api(Request) :—

54 option (method (options), Request), !,
55 cors__enable(Request, [methods([post])]),
56 format('~n'").

57

58 handle api(Request) :—

59 option (method (post), Request), !,

60 http_read_json(Request, Jsonln),

61 setup__call__cleanup (createLog,

62 handle_api_ (JsonlIn ,DictOut),

63 closeLog) ,

64 cors__enable ,

65 reply json (DictOut,[status (201)]) .
66

67 % SI la resolution Failed
68 handle api(Request) :—

69 option (method (post), Request), !,

70 http_read__json(Request, Jsonln),

71 cors__enable ,

72 reply json (Jsonln ,[status(400)]).

73

74 %https://github.com/mollerse/sudoku.pl/blob/master/server. pl
75 handle api(_) :— throw(http_ reply(server_ error('Method, not supported. Only POST.'))).
76

77 handle_api_ (JsonlIn, Jsons) :—

78 myTranslate (Name,

79 BorneMaxNiveau ,

80 BorneMinNiveau ,

81 BorneEffectOnOthers ,

82 BorneEffectOnSelf ,

83 GlobalThreshold ,

84 Steps,

85 Method ,

86 Sparsity ,

87 Labeling ,

88 NSol,

89 Nodes,

90 Edges,

91 Data,

92 Jsonln),

93 multiple_instances (Name, Method, Sparsity , Labeling ,NSol,Nodes, Edges,Data,BorneMinNiveau,

BorneMaxNiveau , BorneEffectOnOthers , BorneEffectOnSelf , GlobalThreshold , Steps , Jsons) .

95 % DictOut is the output as to be sent
96 one_instance (Name, Method, Sparsity ,Labeling ,NSol,Nodes, Edges,Data,BorneMinNiveau,
BorneMaxNiveau , BorneEffectOnOthers , BorneEffectOnSelf , GlobalThreshold , Steps ,DictOut):—

97 solve (Method , Sparsity , Labeling ,Nodes, Edges,Data,BorneMinNiveau ,BorneMaxNiveau,
BorneEffectOnOthers , BorneEffectOnSelf , GlobalThreshold , Steps , Lassoc) ,

98 get__data_edge(Lassoc ,Data_output,Edges_output),

99 produceJson (Name,

100 BorneMaxNiveau ,

101 BorneMinNiveau ,

102 BorneEffectOnOthers ,

103 BorneEffectOnSelf ,

104 GlobalThreshold ,

105 Steps ,

106 Method ,

107 Sparsity ,

108 Labeling ,

109 NSol,

110 Nodes,

111 Edges_ output ,

112 Data_ output ,

113 DictOut) .

114

115 multiple_instances (Name, Method , Sparsity , Labeling ,NSol,Nodes, Edges,Data,BorneMinNiveau,
BorneMaxNiveau , BorneEffectOnOthers , BorneEffectOnSelf , GlobalThreshold , Steps , Jsons):—
116 time(findnsols (NSol,DictOut,

117 one__instance (Name,
118 Method ,
119 Sparsity ,

120 Labeling ,

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138

0O Uk WN -

A.2. JSON FROM/TO TERMS TRANSLATION

NSol,
Nodes,
Edges,
Data ,
BorneMinNiveau ,
BorneMaxNiveau ,
BorneEffectOnOthers ,
BorneEffectOnSelf |
GlobalThreshold ,
Steps ,
DictOut) ,
DictOuts)),
build_ final_json (DictOuts, Jsons).

solve (Method, Sparsity , Labeling ,Nodes, Edges, Data, BorneMinNiveau,BorneMaxNiveau,

BorneEffectOnOthers , BorneEffectOnSelf , GlobalThreshold , Steps , Lassoc):—

reseau (Method, Sparsity , Labeling ,Nodes, Edges, Data, BorneMinNiveau, BorneMaxNiveau,
BorneEffectOnOthers , BorneEffectOnSelf , GlobalThreshold , Steps , Lassoc).

A.2 JSON from/to terms translation

:— use_module(library (http/json)).

%
%
% Lire un fichier JSON — test
%
%
myRead :— open('network_test.json', read, MonStream) ,

(json_read (MonStream, Json) ,
write (Json) ,

%myTranslate (Json, ListeGene),
fail ;true),

close (MonStream) .

JSON <—> PROLOG

N ESRRRN

% muytranslate et produceJson pourraient etre un seul predicat!
myTranslate (Name,

BorneMaxNiveau ,

BorneMinNiveau ,

BorneEffectOnOthers ,

BorneEffectOnSelf ,

GlobalThreshold ,

Steps ,

Method ,

Sparsity ,

Labeling ,

NSol,

Nodes,

Edges,

Data,

Json):—

Json = json ([network=]

json ([
name=Name,
borneMax=BorneMaxNiveau ,
borneMin=BorneMinNiveau ,
borneEffectOnOthers=BorneEffectOnOthers
borneEffectOnSelf=BorneEffectOnSelf,
globalThreshold=GlobalThreshold ,
steps=Steps,
method=Method ,
sparsity=Sparsity ,
labeling=Labeling ,
nSol=NSol,

nodes=NodesJson ,
edges=EdgesJson ,

NN XXX

RN N XN X

123

100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115
116
117
118
119
120
121
122
123
124
125
126

124

data=DataJson

1)
11

data_translate (DataJson ,Data),
edge_translate (EdgesJson ,Edges) ,
node translate (NodesJson ,Nodes) .

produceJson (Name,
BorneMaxNiveau ,
BorneMinNiveau ,
BorneEffectOnOthers
BorneEffectOnSelf ,
GlobalThreshold ,
Steps,
Method ,
Sparsity ,
Labeling ,
NSol,
Nodes ,
Edges,
Data,
Json):—

data_translate (DataJson ,Data),
edge_translate (EdgesJson ,Edges) ,
node_produce (NodesJson ,Nodes) ,
Json = json (]
name=Name,
borneMax=BorneMaxNiveau ,
borneMin=BorneMinNiveau ,

APPENDIX A. SOURCE CODE

borneEffectOnOthers=BorneEffectOnOthers
borneEffectOnSelf=BorneEffectOnSelf ,

globalThreshold=GlobalThreshold ,
steps=Steps,
method=Method ,
sparsity=Sparsity ,
labeling=Labeling ,
nSol=NSol ,

nodes=NodesJson ,

edges=EdgesJson ,

data=DataJson

1) -

% [json ([label=genel, type=node]) ,json ([label=gene2, type=node]) , json ([label=substA ,type=control
])] —> [control—substA ,node—gene2,node—genel |

node_translate (Json, ListeGene):—
node_translate acc(Json,ListeGene ,[]) ,!.

node_translate acc ([], ListeGene,ListeGene)
node_translate_acc ([H|T], ListeGene, Acc):—
H=json ([label=Gene, type=node]) ,

NewAcc = [node—Gene|Acc],
node_translate acc (T, ListeGene ,NewAcc) .
node_ translate_ acc ([H|T], ListeGene, Acc):—

H=json ([label=Gene, type=control]) ,
NewAcc = [control—Gene|Acc],
node_translate_acc (T, ListeGene ,NewAcc) .

% [control—substA ,node—gene2,node—genel] —> [json ([label=genel,type=node]) ,json ([label=gene2,
type=node]) ,json ([label=substA , type=control])]

node_produce(Json , ListeGene):—
node_produce_ (Json, ListeGene ,[]) ,!.

node_produce_ (Json, [], Json).

node_produce_ (Json, [node—Gene|T], Acc):—
node_produce_(Json,T,[json ([label=Gene,

node_produce_ (Json, [control—Gene|T], Acc)
node_produce_ (Json,T,[json ([label=Gene,

data_ translate (Json , ListeData):—
data_translate_acc(Json, ListeData ,[]) .

type=node]) | Acc]) .

type=control]) |Acc]) .

A.3. MAIN CLP 125

127

128 data_translate_ acc ([], ListeData ,ListeData):—!.
129 data_translate_ acc ([H|T], ListeData, Acc):—
130 H=json ([node=Gene, step=Step , niveau=Niveau]) ,

131 NewAcc = [niveau(Gene, Step , Niveau) | Acc],
132 data_translate acc (T, ListeData ,NewAcc).
133

134

135

136 edge translate(Json,ListeEdges):—

137 edge_translate_acc(Json, ListeEdges ,[]) ,!.
138

139 edge_ translate acc ([],ListeEdges, ListeEdges).

140 edge_translate_acc ([H|T], ListeEdges, Acc):—

141 H=json ([id=Id , from=GeneA , to=GeneB, threshold=Threshold , borneEffect=BorneEffect, delay=Delay,
effect=Effect]),

142 NewAcc = [gen_gen(Id ,GeneA,GeneB, Threshold , BorneEffect ,Delay , Effect) |Acc],

143 edge_translate acc (T, ListeEdges ,NewAcc) .

144

145

146 % To integrate several imnmer Json in the largest one

147 build_final__json (DictOuts, Jsons):—

148 Jsons = json ([network=DictOuts]) .

A.3 Main CLP

1 :— use_module(library (clpfd)).

2 :— include('./logger.pl').

3 :— include('./association.pl').

4 :— include('./convert__gene_list_to_rate_list.pl').

5 :— include('./contraintes utilisateurs.pl').

6 :— include('./contraindre_ lineaire.pl').

7 :— include('./contraindre_memoisation.pl"').

8 :— include('./contraindre_tmp.pl').

9 :— include('./contraindre asynchrone.pl').

10 :— include('./sparsity.pl').

11 :— include('./myLabeling.pl').

12

13

14 :— set_prolog_ flag(encoding, utf8).

15

16 % %
17 % %
18 % PREDICAT PRINCIPAL %
19 % %
20 % %

21 reseau (Method, Sparsity , Labeling ,Lgenes, Edges, Data,BorneMinNiveau, BorneMaxNiveau,
BorneEffectOnOthers , BorneEffectOnSelf , GlobalThreshold ,N, Lassoc) :—

22

23 logger (" [reseau] — begin"),

24 produire_Liste Assoc(Lgenes, steps(N),Levels, BorneMinNiveau, BorneMaxNiveau) ,

25 %logger ("[reseau] — after niveau'),

26 produire__Liste__Assoc__gg(Lgenes , EffectOnOthers, BorneEffectOnOthers, GlobalThreshold ,N) ,

27 %logger ("[reseau] — after edge'),

28 produire__Liste__Assoc_self(Lgenes, EffectOnSelf, BorneEffectOnSelf) ,

29 %logger ("[reseau] — after self'),

30 append ([Levels , EffectOnOthers , EffectOnSelf], Lassoc) ,!,

31

32 loggerl (" [reseau] Lassoc.=."), logger (Lassoc),

33

34 logger (" [reseau] contraintes_utilisateurs — begin"),

35 % SpAO©cifie les contraintes donnA®es par | 'utilisateur (confiance : 100%)

36 contraintes__utilisateurs (Edges,Data,Lassoc) ,!,

37

38 logger (" [reseau] contraintes wutilisateurs,— end"),

39

40 % Fizer les niveauxr mnon donnAO®s pour le control

41 fixer_niveau_ control(Lassoc),

42 1 % on mne veut pas offrir de backtracking avant ici,

43 loggerl (" [reseau] Avec ,Contraintes Utilisateurs et control fixA©® — Lassoc =,"), logger|(
Lassoc) ,

44 % Only Active when an Effect is set to 0,

45 prune tree effectO(Lassoc),

46 % loggerl ("[reseau] Prune Effect 0"), logger(Lassoc),

126 APPENDIX A. SOURCE CODE

47 1,

48 printDomainLassoc (Lassoc) ,

49

50 logger ("AVANT ,contraintes "),

51 Z%writeln (contraintes__niveauz),

52

53

54 get_time(Time init),

55 sparsity (Sparsity , BorneEffectOnOthers , Lassoc) ,!,

56 get_time (Time end),

57 Time_ Sparsity is Time_end — Time_ init ,

58 loggerl (" [reseau] Temps Sparsity =>,"), logger(Time_ Sparsity),

59

60 get_time (Time_init_con),

61 contraindre (Method ,N, BorneMinNiveau , BorneMaxNiveau, Lassoc) ,

62 get_time (Time_end_con),

63 Time_ Constrain is Time_end_con — Time_ init_con,

64 loggerl (" [reseau] Temps Contraindre,=>,"), logger (Time_Constrain),

65

66 get__time(Time_ init_label),

67 my_labeling (Labeling , Lassoc)

68 get__time (Time_end_label) ,

69 Time_Label is Time_end_label — Time_ init_label,

70 loggerl (" [reseau] Temps Labeling =>,"), logger (Time Label),

71 impression (Lassoc) .

72

73

% %

% %

6 % CONTRAINTES %

77 % But : rA@duire les domaines de contraintes %

8 % %

79

80 contraindre (asynchronous,N,BorneMinNiveau , BorneMaxNiveau, Lassoc):—

81 contraindre__asynchrone__main (N, BorneMinNiveau , BorneMaxNiveau, Lassoc) .

82 contraindre (memoisation ,N, BorneMinNiveau , BorneMaxNiveau, Lassoc):—

83 contraindre memoisation (Lassoc ,BorneMinNiveau , BorneMaxNiveau) .

84 contraindre (tmp, N, BorneMinNiveau ,BorneMaxNiveau, Lassoc):—

85 contraindre__tmp (Lassoc , BorneMinNiveau , BorneMaxNiveau , Lassoc) .

86 contraindre(lineaire , N,BorneMinNiveau ,BorneMaxNiveau, Lassoc):—

87 contraindre_lineaire (Lassoc ,BorneMinNiveau , BorneMaxNiveau, Lassoc) .

88

89

90 boundaries_not_opti(In, In, Min, Max):—

91 In #=< Max,

92 In #>= Min.

93

94 boundaries_not_opti(In,Max,_,Max):—

95 In #> Max.

96 boundaries_not_opti(In,Min,Min,_):—

97 In #< Min.

98

99

100 boundaries (In,Out,Min,Max):—

101 V1 #= min(In,Max) ,

102 Out #= max(V1,Min) .

103

104 % Si Effect est deja assignA® A 0, force le Threshold et la BorneEffect A waleur min du
domaine.

105 % Delay n'est pas forcA® pour compatibilitA® avec asynchronous

106

107 prune_tree_effect0 ([]) .

108 prune_tree_effectO ([gen_gen(_, , ,Threshold,BorneEffect, Delay, Effect)]|Tail]):—

109 integer (Effect),

110 Effect #= 0,

111 fd_inf(Threshold ,MinThreshold), Threshold#=MinThreshold,

112 fd_inf(BorneEffect ,MinBorneEffect), BorneEffect#=MinBorneEffect
113 %fd__inf(Delay, MinDelay), Delay#=MinDelay,

114 prune_ tree_ effectO(Tail).

115 prune_tree_effectO ([gen_gen(_, , , , , ,)| Tail]):—
116 prune_tree_effectO (Tail).

117 prune_tree_effectO ([niveau(_, , ,)|Tail]):—

118 prune_tree_effectO(Tail).

119 prune_tree_ effectO ([self(_,)| Tail]):—

120 prune_tree_effectO(Tail).

121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

A.3. MAIN CLP 127

UTILS

NN NN X
RN N NN X

valeur absolue(Listeln , ListeOut):—
valeur__absolue_ (ListelIn ,ListeOut ,[]) .
valeur__absolue_ ([] ,L,L).
valeur absolue ([H|T],L,Acc):—
Tmp #= abs(H),
valeur_ absolue (T,L,[Tmp|Acc]) .

%% Construit tous les couples possible d'une liste X donnAQe.
9%% si X = [L1,L2,L3], R=[[L1,L2], [L1,L3], [L2,L3]]
couplePossible (X,R):— couplePossibleRec (X,[] ,R).
couplePossibleRec ([_A|[]] ,R,R).
couplePossibleRec ([H|T] ,R,Z):—

construireCouple ([H|T], Rbis),

append (Rbis ,R,Rnew) ,

couplePossibleRec (T,Rnew,Z) .

%% Construit les couples formA©@s par le premier AOlAOment d'une liste , et tous les autres;
%% si L = [L1,L2,L8], Z = [[L1,L2],[L1,L3]]
construireCouple ([H|T],Z):— construireCoupleRec ([H|T],T,[] ,Z).
construireCoupleRec(_L,[] ,Z,Z).
construireCoupleRec ([H|_],[Q|S],R,Z):—
construireCoupleRec ([H| _],S,[[Q,H],[H,Q]|R],Z).

%% removeCouple : enleve les couples d'une liste de base impossible A avoir.
removeCouple (Lbase ,G, Lupdated) :— removeCoupleRec(Lbase,G,[] , Lupdated) .
removeCoupleRec ([] ,_G,Z,Z).

removeCoupleRec ([[X1,]|T],G,Z,Lupdated):— not(member(X1,G)) ,removeCoupleRec(T,G,Z, Lupdated).

removeCoupleRec ([[_,X2]|T],G,Z,Lupdated):— not(member(X2,G)) ,removeCoupleRec(T,G,Z, Lupdated) .

removeCoupleRec ([[X1,X2]|T],G,Z,Lupdated):— member(X1,G) ,member (X2,G) ,removeCoupleRec(T,G, [[X1
,X2]|Z],Lupdated) .

getNiveau (Gene, Temps, Variable , Lassoc):—
member (niveau (_,Gene,Temps, Variable) ,Lassoc) .

% a partir d'une liste de gene [geneA, geneB, geneC], retourne la liste des tuples:
% [[Niveau_ geneA , Effect geneA], [Niveau geneB, Effect geneB], [Niveau geneC, Effect geneC]].
getNiveauEffect (ListeInput , Temps, GeneCible, Lassoc, Output):—

getNiveauEffectAcc (Listelnput, Temps, GeneCible, Lassoc, Output, []).
getNiveauEffectAcc ([],_, , ,Out, Out).
getNiveauEffectAcc ([H|T], Temps, GeneCible, Lassoc, Output, Acc):—

getNiveau (H, Temps, Niveau , Lassoc) ,

member (gen_gen(_,H, GeneCible, , , ,Effect), Lassoc),

Tmp = [Niveau, Effect],

NewAcc = [Tmp|Acc],

getNiveauEffectAcc (T, Temps, GeneCible , Lassoc , Output ,NewAcc) .

% %
% Recuperation des DATA et EDGE A partir de LASSOC %
% %
get_data_edge(Lassoc ,Data,Edge):—

get_data_edge_ acc(Lassoc ,Data,Edge,[] ,[]) -

get_data_edge_ acc ([],Data,Edge,Data,Edge).

get_data_edge acc ([H|T], Data,Edge, DataAcc, EdgeAcc):—
H= niveau(_T,A,B,C),
DataAccNew = [niveau(A,B,C)|DataAcc],
get_data_edge_ acc(T,Data,Edge,DataAccNew , EdgeAcc) .

get_data_edge acc ([H|T], Data,Edge, DataAcc, EdgeAcc):—
H= gen_gen(_Id,_GeneA,_GeneB, __Threshold,__BorneEffect ,_Delay, Effect),
EdgeAccNew = [H|EdgeAcc],
get__data_edge_acc(T,Data,Edge,DataAcc, EdgeAccNew) .

128 APPENDIX A. SOURCE CODE

197
198 get_data_edge_acc ([H|T], Data,Edge, DataAcc, EdgeAcc):—
199 H= self (_A, B),

200 get_data edge acc(T,Data,Edge,DataAcc,EdgeAcc).

201

202

203

204 % %

205 % %

206 % IMPRESSION (modifie!) %

207 % %

208 % %

209

210 impression ([]) :— !.%, nl(stream).

211 impression ([niveau(_,Gene,Step,V)|T]) :—

212 loggerl ('[impression]"'),

213 format (atom(Text) , '~a ,~w ,~d ~w ~a' ,[Gene, "', t=',Step, ' —>,',V]),logger (Text),

214 logger_ice (Text),

215 impression (T) .

216 impression ([gen_ gen(_,GeneA,GeneB, Threshold , BorneEffect ,Delay ,V)|T]) :—

217 loggerl('[impression]"'),

218 format (atom(Text) , '~a ~w ~a ~w ~d ~w ~d ~w ~d ~w ~d' ,[GeneA, ' —>_"' ,GeneB, ', :,',V, '[',
BorneEffect, '], th=', Threshold, ',.delay=,', Delay]),logger(Text),

219 logger ice(Text),

220 impression (T) .

221 impression ([self (Gene,V)|T]) :—

222 loggerl ('[impression]'),

223 format (atom(Text) , '~a ~w,~d' ,[Gene, ' —>,"', V]) ,logger (Text),

224 logger ice(Text),

225 impression (T) .

226

227 Z%print(_).

228 print ([]):—nl(stream).

229 print ([H|T]):—

230 loggerl ("PRINT >"), nl(stream),

231 writeln (stream ,H) ,

232 print (T) .

233

234 Zhttp ://www. swi—prolog.org/pldoc/doc__for?object=fd_dom/2

235

236 printDomainLassoc ([]) .% —nl(stream).

237 printDomainLassoc ([niveau(_,Gene, Step ,V) |T]) :—

238 loggerl ('[printDomainLassoc] '),

239 fd _dom (V,Dom) ,

240 format (atom(Text) , '~w ~w ~d ~w ~w' [Gene, ', t=',Step, ''—>.',V]),loggerl(Text),

241 loggerl ('|.domaine de Niveau —>_'), loggerl(V), loggerl('.\=—>."'), loggerl(Dom) ,nl(stream),

242 printDomainLassoc (T) .

243 printDomainLassoc ([gen_gen(_,GeneA,GeneB, Threshold ,Borne, Delay ,V)|T]) :—

244 loggerl (' [printDomainLassoc] '),

245 format (atom(Text) , '~w ~w ~w_~w_~w' [GeneA,' —>',GeneB, ',:,',V]),loggerl(Text),

246 fd _dom (V,Dom) ,

247 fd dom(Threshold ,DomT) ,

248 fd_dom (Borne ,DomB) ,

249 fd dom(Delay ,DomDelay) ,

250 loggerl ('|_ domaine Effect '), loggerl(V), loggerl('.\=—>."'), loggerl(Dom) ,nl(stream),

251 loggerl ('| .domaine, Threshold,,,"'), loggerl (Threshold), loggerl('.\=—>,"'), loggerl (DomT) ,nl(
stream) ,

252 loggerl ('| .domaine Borne '), loggerl(Borne), loggerl('.=—=>,"'), loggerl (DomB) ,nl(stream),

253 loggerl ('|_.domaine Delay .. '), loggerl(Delay), loggerl('.=>,"'), loggerl (DomDelay) ,nl(
stream) ,

254 printDomainLassoc (T) .

255 printDomainLassoc ([self (Gene,V)|T]) :—

256 loggerl ('[printDomainLassoc] '),

257 format (atom(Text) , '~w ~w ~w' ,[Gene, ' —>.', V]),loggerl (Text),

258 fd _dom (V,Dom) ,

259 loggerl ('| .domaine, de self Effect.—>.'), loggerl(V), loggerl('.\=—>,"'), loggerl (Dom) ,nl(
stream) ,

260 printDomainLassoc (T) .

A.3.1 Association list construction

LISTES ASSOCIATIVES

TUR 0 N
NN NN X
NN XN X

[NolNe BEN le

10

12
13
14
15
16
17
18
19
20
21
22
23

25
26
27

29

A.3. MAIN CLP 129

% %
% Gene — niveau %
% %

% on associe un gene avec

% — un temps

% — une variable (qui sera la concentration dans le domaine donnA®©)

% — Nb est la borne du domaine pour toutes les concentrations

% steps(N) ou N est le nombre de steps considA©rA®s.

% produire__Assoc(ListeGenesInput, ListeAssoc, Nb),)

% BorneMinNiveau et BorneMazNiveau sont des bornes globales

produire Liste Assoc(Input, steps(N),Output,BorneMinNiveau,BorneMaxNiveau):—
lassoc (Input, Output, N, N,BorneMinNiveau, BorneMaxNiveau) .

lassoc ([],[], ., ,).
lassoc ([Type—Gene| GenesTail], [niveau(Type,Gene,N,Niveau) | AssocTail], N, Nmax, BorneMinNiveau,
BorneMaxNiveau):—
N>0,

NNew is N-1,
Niveau in BorneMinNiveau .. BorneMaxNiveau,
lassoc ([Type—Gene | GenesTail], AssocTail , NNew, Nmax, BorneMinNiveau,BorneMaxNiveau) .
lassoc ([Type—Gene | GenesTail], [niveau(Type,Gene,N,Niveau) | AssocTail], N, Nmax, BorneMinNiveau,
BorneMaxNiveau):—
N=0,
Niveau in BorneMinNiveau..BorneMaxNiveau ,
lassoc (GenesTail , AssocTail , Nmax, Nmax, BorneMinNiveau ,BorneMaxNiveau) .

%
% Association gene A gene %
%

produire_ Liste_Assoc_gg(Pairs ,Output, BorneEffectOnOthers, GlobalThreshold ,N):—
%pairs_values (Pairs, Input),
couplePossible (Pairs , ListeAssoc) ,
lassoc__gg (ListeAssoc ,Output, BorneEffectOnOthers , GlobalThreshold ,N) .

% [[genA,genB] ,[genA, genC], [genB,genC]]

% devient

% [gen__gen(Id1,GeneA, GeneB, Thresholdl , BorneEffectl , Effectl),
% gen_gen(Id2,GeneA, GeneC, Threshold2 , BorneEffect2, Effect2),
% gen__gen(1d3, GeneB, GeneC, Threshold3 , BorneEffect3 , Effect8)]

lassoc_gg ([],[],_,_,_)-
% pas de lien sur une substance completement controlee
lassoc_gg ([[T1-H1, control—H2]|T], [gen_gen(toChange ,H1,H2,0,0, 0,0)| Acc], BorneEffectOnOthers
, GlobalThreshold ,N):—
lassoc__gg(T,Acc,BorneEffectOnOthers, GlobalThreshold ,N).

lassoc_gg ([[T1-H1,T2-H2]|T], [gen gen(toChange ,H1,H2, Threshold , BorneEffect, Delay, Effect)| Acc
], BorneEffectOnOthers, GlobalThreshold ,N):—

Threshold in 1..GlobalThreshold ,

BorneEffect in 0 .. BorneEffectOnOthers,
abs(Effect) #=< BorneEffect ,
Delay #= 0,

Delay #< 1000«N, % purely arbitrary
lassoc_gg (T,Acc,BorneEffectOnOthers, GlobalThreshold ,N).

% %
% Effet propre %
% %

produire__Liste__Assoc_self(Pairs, Output, BorneEffectOnSelf):—
pairs_ values (Pairs, Input),
lassoc__self (Input ,Output, BorneEffectOnSelf).

lassoc_self ([],[],_)-
lassoc_self ([H|T], [self(H,Var)|Tail], BorneEffectOnSelf):—

78
79
80

© 00O Ui W

[R R e e e e el e T e i
N PO ©WOo~IO0 Ut kW~ O

23
24
25
26
27
28
29
30
31
32
33
34
35

37
38
39
40
41

42
43
44

45
46
47

49
50
51
52
53

55
56
57

58
59
60
61

130 APPENDIX A. SOURCE CODE

abs(Var) #= BorneEffectOnSelf
lassoc__self (T, Tail , BorneEffectOnSelf).

A.4 Constraints predicates

A.4.1 User Constraints

% %
% %
% CONTRAINTES_UTILISATEURS/3 %
% But : rAO©duire les domaines de contraintes en fonction de | 'entrAQ@e %
% utilisateur %
% %
% %
% Edges => [gen__gen(geneC,geneB,0) ,gen_gen(geneB,geneA,0)]
% gen__gen(Id,GeneA, GeneB, Threshold , BorneEffect , Delay, Effect)
% Data => [niveau(_,geneA,2,5),niveau(_,geneB,1,2) niveau(_,geneC,0,4)]
% %
% cas 0 : s'il n'y a plus de contraintes A prendre en compte, on arrete
contraintes__utilisateurs ([],[],_):—

!7

logger ("Fin, des_ contraintes, Utilisateurs [] []").
% cas 1 : un edge est spA@cifiA® et correspond A |'entrA@e de Lassoc
% gen_gen(Id,H1,H2, Threshold , BorneEffect, Var)
% —> plusieurs cas A considAOrer ==> il y a trois variables, et |'utilisateur peut donner

indA@pendamment autant de combinaisons

% qu'il le souhaite:

% 1 — uniquement effet

% 2 — wuniquement threshold

% 8 — uniquement borneEffect

% 4 — effet et threshold

% 5 — effet et borneEffect

% 6 — threshold et borneEffect

% 7 — effet, threshold et borneEffect
% 8 — uniquement delai

% 9 — threshold et delai

% 10— borneEffect et delai

% 11— effet et delai

% 12— effet et threshold et delai

% 15— effet et borneEffect et delai

% 14— threshold et borneEffect et delai
% 15— threshold et borneEffect et delai et effet

% 1— on fournit uniquement | 'effect de la transition (Threshold et BorneEffect ne sont pas
donnA®@s)
% => le Threshold applicable est le GlobalThreshold
% => le BorneEffect applicable est le gA@nAOral
contraintes_utilisateurs ([gen_gen(_,GeneA,GeneB, ThresholdGiven ,BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data,Lassoc):—
member (gen__gen (_,GeneA,GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),
ThresholdGiven = '/,
BorneEffectGiven = '/ ',
DelayGiven = '/',

integer (X), fd_size(X,1),

Var #= X,

logger("[contraintes_utilisateurs], cas 1"),
contraintes__utilisateurs (TEdges,Data, Lassoc) .

% 2— on fournit uniquement le threshold de la transition
% => on laisse les domaines des autres wvariables tels quels
contraintes__utilisateurs ([gen_gen(_,GeneA,GeneB, ThresholdGiven ,BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data,Lassoc):—
member (gen__gen (__,GeneA ,GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),
% Le domaine de Var est dA@jA limitA©
X="/",
BorneEffectGiven = '/ ',

A.4. CONSTRAINTS PREDICATES 131

62 DelayGiven ='/",

63

64 integer (ThresholdGiven), fd_size(ThresholdGiven, k1),
65 Threshold #= ThresholdGiven ,

66 % BorneEffect est dA@jA limitA®@ A —BorneEffectOnOthers —> BorneEffectOnOthers

67 logger ("[contraintes_utilisateurs]_ cas. 2"),
68 contraintes__utilisateurs (TEdges,Data, Lassoc) .
69

70 % 58— on fourmit la borne de l'effect de la transition

71 contraintes_utilisateurs ([gen_gen(_,GeneA,GeneB, ThresholdGiven , BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data,Lassoc):—

72 member (gen_gen(_,GeneA,GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),

73 % Le domaine de Var est dA@jA limitA©

74 % Le domaine de Threshold est dA©jA limitA©

75 ThresholdGiven = '/',

6 X='/",

77 DelayGiven ='/",

78

79 integer (BorneEffectGiven), fd_size(BorneEffectGiven ,1),

80 BorneEffect#=BorneEffectGiven ,

81 % Etant donnA© que ['on recontraint BorneEffect, on peut diminuer le domaine de | 'Effect (

Var)

82 %Lower is —BorneEffect,

83 %Higher is BorneEffect,

84 abs(Var) #=< BorneEffect ,

85
86 logger("[contraintes_utilisateurs],cas.3"),
87 contraintes utilisateurs (TEdges,Data, Lassoc).

88 % 4— effect et Threshold
89 contraintes__utilisateurs ([gen_gen(_,GeneA,GeneB, ThresholdGiven ,BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data,Lassoc):—

90

91 member (gen gen(_,GeneA,GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),
92 BorneEffectGiven = '/ ',

93 DelayGiven ='/",

94

95 integer (X), fd_size(X,1),
96 integer (ThresholdGiven), fd_size(ThresholdGiven,h1),

98 Var #= X,
99 Threshold #= ThresholdGiven ,

100

101 logger("[contraintes_utilisateurs], cas.4"),
102 contraintes utilisateurs (TEdges,Data, Lassoc).
103

104 % 5— effect et borneEffect

105 contraintes utilisateurs ([gen_ gen(_ ,GeneA,6 GeneB, ThresholdGiven ,BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data,Lassoc):—

106 member (gen__gen (__, GeneA , GeneB, Threshold , BorneEffect ,Delay, Var), Lassoc),

107 ThresholdGiven = '/ ',

108 DelayGiven="'/",

109 integer (X), fd_size(X,1),

110 integer (BorneEffectGiven), fd_size(BorneEffectGiven ,1),

112 Var #= X,

113 BorneEffect#=BorneEffectGiven ,

114 % Etant donnA® que ['on recontraint BorneEffect, on peut diminuer le domaine de | 'Effect (
Var)

115 % (double vAOrification car Var est dA©jA wunifiA©)

116 %Lower is —BorneEffect,

117 %Higher is BorneEffect,

118 abs (Var) #=< BorneEffect ,

119 % Threshold est dA©@jA IlimitA®©® A 0 .. GlobalThreshold
120 logger ("[contraintes utilisateurs]_ cas 5"),

121 contraintes_utilisateurs (TEdges,Data, Lassoc) .

122

123 % 6— Threshold et borneEffect

124 contraintes__utilisateurs ([gen_gen(_,GeneA,GeneB, ThresholdGiven , BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data,Lassoc):—

125 member (gen__gen (__, GeneA , GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),

126 X="'/"',

127 DelayGiven = '/',
128 integer (ThresholdGiven), fd_size(ThresholdGiven,1),
129 integer (BorneEffectGiven), fd_size(BorneEffectGiven ,1),

130

132 APPENDIX A. SOURCE CODE

131 Threshold #= ThresholdGiven ,

132 BorneEffect #= BorneEffectGiven ,

133

134 % Etant donnA© que ['on recontraint BorneEffect, on peut diminuer le domaine de | 'Effect (
Var)

135 %Lower is —BorneEffect,

136 %Higher is BorneEffect,

137 %Var in Lower .. Higher,

138

139 abs(Var) #=< BorneEffect ,

140 % X est dA©JA IlimitA©

141 logger ("[contraintes_utilisateurs] cas 6"),
142 contraintes utilisateurs (TEdges,Data, Lassoc) .
143

144 % 7— Effect, Threshold et borneEffect

145 contraintes_utilisateurs ([gen_gen(_,GeneA,GeneB, ThresholdGiven ,BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data, Lassoc):—

146 member (gen__gen(__,GeneA ,GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),

147 DelayGiven="'/",

148 integer (X), fd_size(X,1),

149 integer (ThresholdGiven), fd_size(ThresholdGiven, k1),

150 integer (BorneEffectGiven), fd_size(BorneEffectGiven,h1),

151

152 Var #= X,

153 Threshold #= ThresholdGiven ,

154 BorneEffect #= BorneEffectGiven ,

155

156 % Etant donnA© que ['on recontraint BorneEffect, on peut diminuer le domaine de | 'Effect (

Var)

157 % (double vAOrification car Var est dA@jA wunifiA©)

158 %Lower is —BorneEffect,

159 %Higher is BorneEffect,

160

161 abs(Var) #=< BorneEffect ,

162 % X est dA@JA IlimitA©

163 logger ("[contraintes_utilisateurs]_ cas, 7"),
164 contraintes_ utilisateurs (TEdges,Data, Lassoc) .
165

166

167 % 8 — wuniquement delai

168

169 contraintes_utilisateurs ([gen_gen(_,GeneA,GeneB, ThresholdGiven ,BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data, Lassoc):—

170 member (gen_gen (__,GeneA ,GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),

171 ThresholdGiven = '/',

172 BorneEffectGiven = '/ ',
173 X="",
174

175 integer (DelayGiven), fd_size(DelayGiven,h1l),
176 Delay #= DelayGiven,

177

178 logger ("[contraintes_utilisateurs]_cas. 8"),
179 contraintes utilisateurs (TEdges,Data, Lassoc) .
180

181

182 % 9 — threshold et delai

183 contraintes utilisateurs ([gen gen(,GeneA,6 GeneB, ThresholdGiven ,BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data,Lassoc):—

184

185 member (gen_gen(__,GeneA ,GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),

186 BorneEffectGiven = '/',

187 X ='/"',

188

189 integer (DelayGiven), fd_size(DelayGiven,h1),

190 integer (ThresholdGiven), fd_size(ThresholdGiven,k1),
191

192 Delay #= DelayGiven,
193 Threshold #= ThresholdGiven ,

194

195 logger ("[contraintes utilisateurs]_ cas 9"),
196 contraintes utilisateurs (TEdges,Data, Lassoc).
197

198

199 % 10— borneEffect et delai
200 contraintes_utilisateurs ([gen_gen(_,GeneA,GeneB, ThresholdGiven ,BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data,Lassoc):—

A.4. CONSTRAINTS PREDICATES 133

201

202 member (gen_gen(_,GeneA,GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),
203 ThresholdGiven = '/ ',

204 X ='/",

205

206 integer (DelayGiven), fd_size(DelayGiven,h1),

207 integer (BorneEffectGiven), fd_size(BorneEffectGiven ,1),
208

209 Delay #= DelayGiven,
210 BorneEffect #= BorneEffectGiven ,

211
212 logger ("[contraintes_utilisateurs]_ cas 10"),
213 contraintes utilisateurs (TEdges,Data, Lassoc).
214

215 % 11— effet et delai

216 contraintes_utilisateurs ([gen_gen(_,GeneA,GeneB, ThresholdGiven , BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data,Lassoc):—

217 member (gen_gen(_,GeneA ,GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),

218 ThresholdGiven = '/',

219 BorneEffectGiven = '/ ',

220

221 integer (DelayGiven), fd_size(DelayGiven,h1),
222 integer (X), fd_size(X,1),

223

224 Delay #= DelayGiven,
225 Var #= X,

226
227 logger ("[contraintes_utilisateurs]_ cas 11"),
228 contraintes utilisateurs (TEdges,Data, Lassoc).
229

230 % 12— effet et threshold et delai

231 contraintes_utilisateurs ([gen_gen(_,GeneA,GeneB, ThresholdGiven , BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data,Lassoc):—

232 member (gen_gen(_,GeneA,GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),

233

234 BorneEffectGiven = '/ "',

235

236 integer (ThresholdGiven), fd_size(ThresholdGiven k1),

237 integer (DelayGiven), fd_size(DelayGiven,h1l),

238 integer (X), fd_size(X,1),

239

240 Delay #= DelayGiven,

241 Threshold #= ThresholdGiven ,

242 Var #= X,

243

244 logger("[contraintes_utilisateurs]_ cas 12"),
245 contraintes utilisateurs (TEdges,Data, Lassoc).
246

247 % 13— effet et borneEffect et delai

248 contraintes utilisateurs ([gen_ gen(_,GeneA,GeneB, ThresholdGiven , BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data,Lassoc):—

249 member (gen gen(_,GeneA,GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),

250 ThresholdGiven = '/ ',

251

252 integer (BorneEffectGiven), fd_size(BorneEffectGiven ,1),
253 integer (DelayGiven), fd_ size(DelayGiven,1l),

254 integer (X), fd_size(X,1),

255

256 Delay #= DelayGiven ,
257 BorneEffect #= BorneEffectGiven ,
258 Var #= X,

259

260 logger ("[contraintes_utilisateurs]_ cas 13"),
261 contraintes utilisateurs (TEdges,Data, Lassoc) .
262

263 % 14— threshold et borneEffect et delai

264 contraintes_utilisateurs ([gen_gen(_,GeneA,GeneB, ThresholdGiven ,BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data, Lassoc):—

265

266 member (gen__gen (__, GeneA , GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),

267

268 X ='/"',

269

270 integer (ThresholdGiven), fd_size(ThresholdGiven, 1),
271 integer (DelayGiven), fd_size(DelayGiven,h1),

272 integer (BorneEffectGiven), fd_size(BorneEffectGiven ,1),

134 APPENDIX A. SOURCE CODE

273

274 Delay #= DelayGiven,

275 BorneEffect #= BorneEffectGiven ,

276 Threshold #= ThresholdGiven ,

277

278 logger ("[contraintes utilisateurs]_ cas. 14"),

279 contraintes_utilisateurs (TEdges,Data, Lassoc) .

280

281

282

283 % 15— threshold et borneEffect et delai et effet

284

285 contraintes utilisateurs ([gen_ gen(_,GeneA,GeneB, ThresholdGiven , BorneEffectGiven ,DelayGiven ,X) |
TEdges], Data,Lassoc):—

286

287 member (gen__gen (__,GeneA ,GeneB, Threshold , BorneEffect ,Delay ,Var), Lassoc),

288

289

290 integer (X), fd_size(X,1),

291 integer (ThresholdGiven), fd_size(ThresholdGiven,1),

292 integer (DelayGiven), fd_size(DelayGiven,h1l),

293 integer (BorneEffectGiven), fd_size(BorneEffectGiven,h1),

294

295 Delay #= DelayGiven,

296 BorneEffect #= BorneEffectGiven ,

297 Threshold #= ThresholdGiven ,

298 Var #= X,

299

300 logger ("[contraintes utilisateurs]_ cas 15"),

301 contraintes_utilisateurs (TEdges,Data, Lassoc) .

302

303

304

305 % cas 2 : une data est spAOcifiA@e et correspond A | 'entrA®e de Lassoc

306 contraintes_utilisateurs(Edges, [niveau(Gene,Temps,X)|TData], Lassoc):—

307 getNiveau (Gene, Temps, Var, Lassoc) ,

308 Var #= X,

309 contraintes_utilisateurs (Edges,TData, Lassoc) .
310

311 % cas 3 : ?2¢

312 contraintes_utilisateurs (Edges,[H|T], Lassoc):—
313 logger ("[contraintes_ utilisateurs] ERROR,"),
314 loggerl ("Edgesy,:"), logger (Edges),

315 loggerl1 ("H:"), logger (H),

316 logger1("T:"), logger(T),

317 loggerl("Lassoc:"), logger (Lassoc),

318 logger ("Fin_duycas.3"),

319 fail .

320 %

321

322

323

324 % %
325 % But : fizer le threshold d'activation de la relation %
326 % a une valeur donnA®Oe %

327 % %
328

329 fixer_ threshold (_,[]) .

330 fixer_ threshold (GlobalThreshold ,[niveau(_, , ,)|T]):—

331 fixer threshold (GlobalThreshold ,T).

332 fixer_threshold (GlobalThreshold ,[self(_,)|T]):—

333 fixer _threshold (GlobalThreshold ,T).

334 fixer_ threshold (GlobalThreshold ,[gen gen(, , ,Threshold, , ,)|T]):—
335 fd_size(Threshold ,1),

336 fixer threshold (GlobalThreshold ,T).

337 fixer_ threshold (GlobalThreshold ,[gen gen(_ , , ,Threshold, , ,)|T]):—
338 not (fd_size (Threshold ,1)),

339 Threshold in GlobalThreshold ,

340 fixer threshold (GlobalThreshold ,T).

341

342

343 % %
344 % But : fizer la borne d'effet de la relation %
345 % a une valeur donnA®Oe %

346 % %

347

A.4. CONSTRAINTS PREDICATES 135

348 fixer_ borne(_,[]) .

349 fixer_ borne(BorneEffect ,[niveau(_, , ,)|T]):—

350 fixer _borne (BorneEffect ,T).

351 fixer_borne(BorneEffect ,[self(_,)|T]):—

352 fixer_borne (BorneEffect ,T).

353 fixer_ borne(BorneEffect ,[gen gen(, , , ,Borne, ,)|T]):—
354 fd_size (Borne,l),

355 fixer borne (BorneEffect ,T).

356 fixer_borne(BorneEffect ,[gen_gen(_, , , ,Borne, ,)|T]):—
357 not (fd_size(Borne,1)),

358 Borne #= BorneEffect ,

359 fixer _borne (BorneEffect ,T).

360
361 % %
362 % But : fizer le delai de toutes les relations %
363 % a une valeur donnA®@e %
364 % ?— fizer_delay(+ Valeur,+Lassoc). &
365 % %
366
367 fixer delay(_,[]) .
368 fixer delay (DelayValue,[niveau(_, , ,)|T]):—
369 fixer _delay (DelayValue ,T).
370 fixer delay (DelayValue ,[self(_,)|T]):—
371 fixer delay (DelayValue ,T).
372 fixer_delay (DelayValue ,[gen_gen(_, ,_ , , ,DelayValue,_)|T]):—
373 fixer _delay (DelayValue,T).
374 fixer_delay (DelayValue ,[gen_gen(_, , , , ,Delay,)|T]):—
375 not (fd_size (Delay,1)),
376 Delay #= DelayValue,
377 fixer borne (DelayValue ,T).
378
379
380
381 % %
382 % But : fizer |'effet de la relation %
383 % a une valeur donnA®e — should not be used %
384 % %
385
386 fixer__effect ([]):—
387 logger (fixer_effect__end).
388 fixer_effect ([niveau(_, , ,)|T]):—
389 fixer effect (T).
390 fixer_effect ([self(_,)|T]):—
391 fixer effect (T).
392 fixer effect ([gen_gen(, , , , , ,Effect)]|T]):—
393 fd_size (Effect ,1),
394 fixer effect(T).
395 fixer_effect ([gen_gen(, , , , , [Effect)|T]):—
396 not (fd_size (Effect ,1)),
397 Effect #= 0,
398 fixer effect (T).
399
400 % %
401 % But : fizer les niveauzr des substances de controle %
402 % %
403 fixer niveau_ control ([]):—!.
404 fixer_niveau_ control ([niveau(control, , ,Niveau)|T]):—
405 integer (Niveau) ,
406 fixer _niveau_control(T).
407 fixer_ niveau_ control ([niveau(control, , ,Niveau)|T]):—
408 not (integer (Niveau)),
409 Niveau #=0,
410 fixer _niveau_control(T).
411 fixer_niveau_control ([niveau(node, , ,)|T]):—
412 fixer_niveau_control(T).
413 fixer niveau_control ([self(,)|T]):—
414 fixer_niveau_control(T).
415 fixer niveau_ control([gen gen(, , , , , ,)|T]):—
416 fixer_niveau_control(T).
A.4.2 Niveau constraints methods
1 contraindre_lineaire ([],_,_,).
2 contraindre lineaire ([gen_gen(, , , , , ,)| Tail],BorneMinNiveau,BorneMaxNiveau, Lassoc):—

3 contraindre_lineaire (Tail ,BorneMinNiveau , BorneMaxNiveau, Lassoc) .

136 APPENDIX A. SOURCE CODE

4 contraindre_lineaire ([self(_,_)| Tail],BorneMinNiveau,BorneMaxNiveau, Lassoc):—

5 contraindre_lineaire (Tail ,BorneMinNiveau , BorneMaxNiveau, Lassoc) .

6

7 contraindre_ lineaire ([niveau(control, , ,)| Tail], BorneMinNiveau,BorneMaxNiveau, Lassoc):—
8 logger ("[contraindre_lineaire]| niveau control => not constrained"),

9 contraindre lineaire (Tail,BorneMinNiveau , BorneMaxNiveau, Lassoc).

10

11 contraindre lineaire ([niveau(node,Gene,Temps, Var) | Tail],BorneMinNiveau , BorneMaxNiveau, Lassoc)
12 logger(" contraindre__lineaire ",

13 Temps>0,

14

15 TempsPrev #= Temps — 1,

16

17 loggerl ("[contraindre_lineaire] — Temps :"), logger (Temps) ,

18 loggerl ("[contraindre_lineaire] — Temps_ Prev:"), logger (TempsPrev),

19 getNiveau (Gene, TempsPrev, VarPrev , Lassoc) ,

20 loggerl ("[contraindre_lineaire] — Var Prev :"), logger(VarPrev),

21 loggerl ("[contraindre_lineaire] — Var :"), logger(Var),

22 % lien entre une variable et le calcul

23 % VarCourante = VariablePrA©cA©dente + expressor_impact (simple addition)

25 % Liste des taux applicables sur la variable courante, calculA® uniquement pour les
expresseurs actifs

26

27 % 1) recuperer les Expressors

28 findall (GeneFA, member(gen_gen(_,GeneFA,Gene, , , ,), Lassoc), Expressors),
29

30 loggerl ("[contraindre_lineaire|] — sur le gene :"), logger (Gene),

31 loggerl ("[contraindre lineaire] — Expressors :"), logger(Expressors),

32

33 convertGeneListToRateList (Gene, Expressors , Lassoc , Temps, TauxList) ,

34 loggerl ("[contraindre_lineaire] — Liste Taux :"), logger(TauxList),

35

36 sum(TauxList,#=,Contribution) ,

37 loggerl ("[contraindre_lineaire] — Contribution :"), logger(Contribution),

38

39 %% %ODEX% 3) recuperer les effets de ces expressors : Output = [[Niveaul, Effectl], [Niveau2,

Effect2], ...]

40 %0ODF% getNiveauEffect (Expressors, TempsPrev, Gene, Lassoc, NiveauEffect),

41 %% %ODEX% 4) ResultTmp = Produit scalaires des deux vecteurs, avec les effects "1000" x trop
grand

42 Y%0ODFE% sumAllList (NiveauEffect ,ResultTmp) ,

43 Y%0ODFE% Contribution #= ResultTmp div 100, % 1000 car W (effects) sont pris entre 0 et 1000 —>

0 et 1 = 500 => 0.5
44 %0DE% 5) Result = Result

45

46

47 Tmp #= VarPrev+Contribution ,

48 logger ("[contraindre lineaire] — Apres Calcul Tmp #= VarPrev + Contribution"),
49 boundaries (Tmp, Var, BorneMinNiveau , BorneMaxNiveau) ,

50 loggerl ("[contraindre_lineaire] — Var = "), logger (Var),

51 logger(" END Contribution ",

52

53 Y%0DE%s Var #< Tmp + 10,
54 Y%0ODF% Var #> Tmp — 10,

55

56 contraindre lineaire (Tail ,BorneMinNiveau , BorneMaxNiveau, Lassoc) .

57

58 contraindre_lineaire ([niveau(node,Gene,0,)| Tail], BorneMinNiveau,BorneMaxNiveau, Lassoc):—
59 getNiveau (Gene,1, ,Lassoc),

60 logger ("[contraindre_ lineaire] niveau 0"),

61 contraindre_lineaire (Tail ,BorneMinNiveau , BorneMaxNiveau, Lassoc) .

1

2

B Do kKA A KKK KA KKK KKK K KKK KA A A KKK KA KKK KA A KKK F A A AR FK)
4 % convertGeneListToRateList

5 %

6 B/ # kA A A A KKK KA KK KA KK A KA KA KKK KA KA A KA A KA A KA KA AKFAA)
7
8

9 %%% convertGeneListToVariableList(Input, Output).

10 %%% But : a partir d'une liste d'input (des genes expresseurs),

11 %%% on renvoie une liste des wvariables des niveauz correspondants.
12 %% Il est nA©@cessaire de donner le temps, et la liste d'association

52

54
55
56
57
58
59
60

61
62
63

64
65
66
67
68
69

70

71
72
73
74
75
76
77

78
79
80

81

A.4. CONSTRAINTS PREDICATES 137

%%convertGeneListToVariableList (Input, Lassoc, Temps, Output):—
%% convertGeneListToVariableListAcc (Input, Lassoc, Temps, Output ,[]) .

%%convertGeneListToVariableListAcc ([], _, _, Output, Output) .
I%%convertGeneListToVariableListAcc ([H|T], Lassoc, Temps, Output , Acc):—
%% getNiveauFromGene (H, Lassoc , Temps, Var) ,

%% NewAcc = [Var|Acc],

%% convertGeneListToVariableListAcc (T, Output, NewAcc) .

% Convertit les expressors en liste de Tauz d'influence

% on doit fournir le gene de dAO©part

convertGeneListToRateList (Gene, Expressors , Lassoc , Temps, TauxList):—
%writeln (convertGeneListToRateList),
convertGeneListToRateListAcc (Gene, Expressors , Lassoc , Temps, TauxList ,[]) .

convertGeneListToRateListAcc(_,[],_,_, TauxList , TauxList) .
convertGeneListToRateListAcc (Gene,[Hexpr| Texpr], Lassoc , Temps, TauxList , Acc):—
getRateFromActiveGene (Hexpr , Gene, Lassoc , Temps, Effet , _Niveau) ,
% nj(t) = nj(t—1) + wijsnl(t—1) + w2j*n2(t—1) + wSj*n3(t—1) +
% "div 10" devrait etre sans doute "div BorneEffect"

%Tmp #= Effet * Niveau,

%Tmp2 #= Tmp div 10,

%NewAcc = [Tmp2 [Acc],

NewAcc = [Effet | Acc],

convertGeneListToRateListAcc(Gene, Texpr, Lassoc,Temps, TauxList ,NewAcc) .

DB/ K K K KKK AA KKK A A K KKK KKK AAAA A A AT FFFF KKK KKK KKK KA AAAAAAAN)
% getRateFromActiveGene
%

getRateFromActiveGene (GeneA , GeneB, Lassoc , Temps, Effect ,_ NiveauPrev):—

integer (Effect), fd_size(Effect 1),

loggerl (" [getRateFromActiveGene] before_getRateFromActiveGene_cas_0"),loggerl (GeneA) ,loggerl
("=>"), loggerl (GeneB) ,loggerl(":"), logger (Effect),

dif (GeneA, GeneB) ,

member (gen gen(_,GeneA,GeneB, , , Delay, Effect),Lassoc),

%Pas nAOcessaire ici —

% TempsPrev is Temps — Delay,

Effect = 0,

%!, %roDO

loggerl (" [getRateFromActiveGene] after__getRateFromActiveGene_cas_0") ,loggerl (GeneA) ,loggerl (
"—>"), loggerl (GeneB) ,loggerl(":"), logger (Effect).

getRateFromActiveGene (GeneA , GeneB, Lassoc , Temps, Effect ToConsider , NiveauPrev):—
loggerl (" [getRateFromActiveGene] cas_1."),loggerl (GeneA) , loggerl("—>"), loggerl (GeneB),
logger1(":"), logger (Effect),
dif (GeneA, GeneB) ,
member (gen__gen (__, GeneA , GeneB, Threshold ,_,Delay, Effect),h Lassoc),
TempsPrev #= Temps — Delay — 1,
loggerl (" [getRateFromActiveGene] cas 1, TempsPrev,=>,"), logger (TempsPrev),
% TODO Quid si Delay n'est pas instantiA©
(getNiveau (GeneA , TempsPrev, NiveauPrev , Lassoc)—> loggerl (" [getRateFromActiveGene] cas_1,True
NiveauPrev, =>,"), logger (NiveauPrev),
loggerl (" [getRateFromActiveGene] cas_1,True Threshold =>,"),
logger (Threshold) ,
NiveauPrev#<Threshold ,
EffectToConsider #=0,
logger (" [getRateFromActiveGene] END cas 1")

; EffectToConsider #=0,
logger (" [getRateFromActiveGene] END cas_1,False")),
loggerl (" [getRateFromActiveGene] cas_1"), loggerl (after getRateFromActiveGene_ cas_0_),
loggerl (GeneA) ,loggerl ("—>"), loggerl (GeneB) ,loggerl(":"), logger (Effect).

getRateFromActiveGene (GeneA , GeneB, Lassoc , Temps, Effect ToConsider , NiveauPrev):—
loggerl (" [getRateFromActiveGene] cas_2.,"),loggerl (GeneA) ,loggerl ("—>"), loggerl (GeneB),
logger1(":"), logger (Effect),
dif (GeneA, GeneB) ,

82
83
84
85
86

87

103
104
105
106
107

108
109
110
111
112
113
114
115

116
117
118
119
120
121
122

123
124
125
126
127

128
129
130

131
132

133
134

= O © 000 Utk Wi

— =

138 APPENDIX A. SOURCE CODE

member (gen__gen (__, GeneA , GeneB, Threshold ,__, Delay , Effect) ,Lassoc),
TempsPrev #= Temps — Delay —1 |
loggerl (" [getRateFromActiveGene] cas_2, TempsPrev,=>,"), logger (TempsPrev),
()
(getNiveau (GeneA , TempsPrev, NiveauPrev ,Lassoc) —> loggerl ("[getRateFromActiveGene] cas_ 2
True NiveauPrev,=>,"), loggerl (niveauPrev_), logger (NiveauPrev),
loggerl (" [getRateFromActiveGene] cas_2 True Threshold = "),
loggerl (threshold_), logger (Threshold),
NiveauPrev #>= Threshold,
EffectToConsider#=Effect ,
logger (" [getRateFromActiveGene] END,cas_2 True")
; EffectToConsider#=0,
logger ("[getRateFromActiveGene] END cas_ 2, False ")),

loggerl (" [getRateFromActiveGene] cas_2"), loggerl (after_getRateFromActiveGene_cas_1_),
loggerl (GeneA) ,loggerl ("—>"), loggerl (GeneB) ,loggerl(":"), logger (Effect).

getRateFromActiveGene (Gene, Gene, Lassoc , Temps, Effect , NiveauPrev):—

TempsPrev #= Temps — Delay — 1,

%integer (Effect), fd_size(Effect,1),

loggerl (" [getRateFromActiveGene] cas_ 3 BEFORE ") ,loggerl (GeneA) ,loggerl ("—>"), loggerl (GeneB
),logger1(":"), logger (Effect),

member (self (Gene,0) ,Lassoc),

Effect = 0,

%IODO! ,

getNiveau (Gene, TempsPrev, NiveauPrev , Lassoc) ,

loggerl (" [getRateFromActiveGene] cas_ 3 AFTER.") ,loggerl (GeneA) ,loggerl ("—>"), loggerl (GeneB)
,logger1(":"), logger (Effect).

getRateFromActiveGene (Gene, Gene, Lassoc , Temps, Effect , NiveauPrev):—

%TODO changer en Delay si nA©@cessaire

TempsPrev #= Temps — Delay — 1,

%integer (Effect), fd_size(Effect,1),

loggerl (" [getRateFromActiveGene] cas_ 4, BEFORE") ,loggerl (GeneA) ,loggerl ("—>"), loggerl (GeneB)
,logger1(":"), logger (Effect),

member (self (Gene, Effect) ,Lassoc),

getNiveau (Gene, TempsPrev, NiveauPrev , Lassoc) ,

loggerl (" [getRateFromActiveGene] cas_4, AFTER, "), loggerl (niveauPrev_), logger(NiveauPrev),

loggerl (" [getRateFromActiveGene] cas_ 4 AFTER, "), loggerl (threshold), logger (Threshold),

NiveauPrev #>= Threshold ,

loggerl (" [getRateFromActiveGene] cas_4 AFTER") ,loggerl (GeneA) ,loggerl ("—>"), loggerl (GeneB),
logger1(":"), logger (Effect).

getRateFromActiveGene (Gene, Gene, Lassoc , Temps, Effect ToConsider , NiveauPrev):—

%TODO changer en Delay si nA©@cessaire

TempsPrev #= Temps — Delay — 1,

loggerl (" [getRateFromActiveGene] cas_5 BEFORE") ,loggerl (GeneA) ,loggerl ("—"), loggerl (GeneB)
,logger1(":"), logger (Effect),

member (self (Gene, Effect), Lassoc),

getNiveau (Gene, TempsPrev, NiveauPrev , Lassoc) ,

loggerl (" [getRateFromActiveGene] cas_5. self < threshold."), loggerl (niveauPrev_), logger(
NiveauPrev) ,

loggerl (" [getRateFromActiveGene] cas_5,self < threshold, "), loggerl (threshold), logger(
Threshold) ,

NiveauPrev#<Threshold ,

EffectToConsider #=0,

loggerl (" [getRateFromActiveGene] cas_5"), loggerl (after getRateFromActiveGene cas_0_),
loggerl (GeneA) ,loggerl ("—>"), loggerl (GeneB) ,loggerl(":"), logger (Effect).

%but : contraindre une wvariable de niveau
contraindre_tmp ([],_, ,).
contraindre tmp ([self(_,)|Tail],BorneMinNiveau, BorneMaxNiveau, Lassoc):—

%logger ("[contraintre_tmp] self"),
contraindre_tmp (Tail , BorneMinNiveau ,BorneMaxNiveau , Lassoc) .
contraindre_tmp ([gen_gen(_, , , , , ,)| Tail],BorneMinNiveau,BorneMaxNiveau, Lassoc):—

contraindre_tmp (Tail , BorneMinNiveau ,BorneMaxNiveau , Lassoc) .

contraindre_tmp ([niveau(control, , ,)| Tail],BorneMinNiveau,BorneMaxNiveau, Lassoc):—
logger (" [contraintre tmp] niveau,control,=> not. constrained"),
contraindre_tmp (Tail , BorneMinNiveau ,BorneMaxNiveau , Lassoc) .

A.4. CONSTRAINTS PREDICATES

contraindre_tmp ([niveau(node, ,0,)| Tail],BorneMinNiveau,BorneMaxNiveau, Lassoc):—
contraindre_tmp (Tail , BorneMinNiveau ,BorneMaxNiveau , Lassoc) .

contraindre_tmp ([niveau (node, Gene, Temps, NiveauAContraindre) | Tail | , BorneMinNiveau,
BorneMaxNiveau, Lassoc):—
Temps > 0,
logger (" [contraintre tmp] BEGIN"),
loggerl (" [contraintre tmp]|_niveau,_ temps > ,0.=>,"),logger (Temps) ,
loggerl (" [contraintre tmp] Gene,=>,"), logger (Gene),

TempsPrev is Temps — 1,
findall (GeneFA, member(gen gen(_ ,GeneFA,Gene, , , ,), Lassoc), Expressors),
% From L

getAllInfo (Expressors ,Gene, Temps, Lassoc , NiveauFAs , ThresholdFAs , EffectFAs) ,
apply predicate_list (NiveauFAs, ThresholdFAs , Integer_ GT),
scalar__product (Integer_ GT , EffectFAs,#=,Contribution) ,

loggerl (" [contraintre_tmp] Niveau ,=>,"), logger (NiveauFAs) ,
loggerl (" [contraintre tmp] Threshold, =>.,"), logger (ThresholdFAs),
loggerl (" [contraintre_tmp]| Integer GT =>.,"), logger (Integer GT),

getNiveau (Gene, TempsPrev, NiveauPrev , Lassoc) ,

NiveauTmp#=NiveauPrev + Contribution ,

boundaries (NiveauTmp , NiveauAContraindre , BorneMinNiveau , BorneMaxNiveau) ,
logger (" [contraintre_tmp] END") ,

contraindre tmp (Tail ,BorneMinNiveau , BorneMaxNiveau, Lassoc) .

% permet de couper la liste MegaList (une liste de listes), en trois listes:
% MegaList = [[A1,A2,A8],[B1,B2,B3],[C1,C2,C3]]

% L1 = [Al, B1, C1]

% L2 = [A2, B2, (C2]

% L3 = [A8, B3, C3]

split_expr_ thresh eff(Listeln ,L1,L2,L3):—
split_expr_thresh_eff (ListeIln , L1, [], L2, [], L3,[]).

split_expr_thresh eff ([],L1, L1, L2, L2, L3,L3).
split_expr__thresh_eff_ ([[H1,H2,H3]|T],L1, AccExpr, L2, AccThresh, L3, AccEffects):—
split_expr_thresh eff (T,L1,[H1|AccExpr], L2, [H2|AccThresh], L3,[H3|AccEffects]).

% getAlllnfo

% From Ezpressors, GeneCible, TempsPrev et Lassoc,

% Fournit la liste des niveauz des genes (dans l'ordre), des thresholds, et des effects
% des expresseurs

getAllInfo (Expressors , GeneCible , Temps, Lassoc , NiveauFAs , ThresholdFAs , EffectFAs):—
%loggerl ("[getAllInfo] ListeGene —> "), logger (ListeGene),
%loggerl ("[getAllInfo] TempsPrev —> "), logger (TempsPrev),
getAllInfoMegalList (Expressors , GeneCible , Temps, Lassoc , MegaList) ,!,
split_expr_thresh_eff(MegaList ,NiveauFAs, ThresholdFAs , EffectFAs) .

getAllInfoMegaList (Expressors , GeneCible , Temps, Lassoc , MegaList):—
getAllInfoMegaList_ (Expressors , GeneCible , Temps, Lassoc , MegaList ,[]) .

% Recursif sur la liste des expresseurs

getAllInfoMegaList_ ([], ., , ,MegaList,MegaList).
getAllInfoMegaList ([HExpressors| TExpressors], GeneCible ,Temps, Lassoc , MegaList , Acc):—
getAllInfoRecLassoc (HExpressors, GeneCible, Temps, Lassoc, MegaListPart, [], Lassoc),

append (MegaListPart, Acc, NewAcc),
getAllInfoMegaList_ (TExpressors , GeneCible , Temps, Lassoc , MegaList , NewAcc) .

% Recursif sur la liste d'association directement
getAllInfoRecLassoc (HExpressors , GeneCible ,_, Lassoc, MegaListPart, MegaListPart, _):—
not (member (gen_gen(_, HExpressors , GeneCible, , , ,), Lassoc)).

getAllInfoRecLassoc (GeneFA, GeneCible, Temps, Lassoc, MegaListPart, AccPart, L):—
logger ("[getAllInfoRecLassoc]; begin "),

select (gen_gen(_,GeneFA, GeneCible , ThresholdFA, ,DelayFA, EffectFA) , 6 Lassoc, LassocRest),

logger ("[getAllInfoRecLassoc] after select DelayFA"),
TempsPrev #= Temps — DelayFA — 1,
logger ("[getAllInfoRecLassoc] TempsPrevi=>,"), logger (TempsPrev),

139

140 APPENDIX A. SOURCE CODE

87

88 (select (niveau(_,GeneFA, TempsPrev,NiveauFA) ,LassocRest , LassocRest2)

89 —> true,

90 logger ("[getAllInfoRecLassoc] True"),

91 AccTmp = [NiveauFA , ThresholdFA | EffectFA],

92 getAllInfoRecLassoc (GeneFA, GeneCible , Temps, LassocRest2, MegaListPart, [AccTmp|
AccPart], L)

93 ; logger ("[getAllInfoRecLassoc] False"),

94 getAllInfoRecLassoc (GeneFA, GeneCible , Temps, LassocRest , MegaListPart, AccPart, L)),

95 logger ("[getAllInfoRecLassoc]; end ")

96 .

97

98

99 % Ls8 est la liste des 1 ou 0 en fonction de si les AOlA@ments de L1 sont (ou mon) plus grands
que les AO@lements de L2.

100 apply_predicate_list(Lsl,Ls2,Ls3):—

101 maplist (gt__threshold ,Lsl, Ls2, Ls3).

102

103 gt _threshold(L1,L2,L3) :—

104 L1 #= L2,

105 L3 is 1.

106 gt_threshold (L1,L2,L3) :—

107 L1 #< L2,

108 L3 is 0.

1 contraindre memoisation (Lassoc ,BorneMinNiveau , BorneMaxNiveau):—
2
3 fixer__delay (0, Lassoc) ,
4 msort (Lassoc , LassocSorted)
5 loggerl (" [contraindre memoisation] Lassoc =,"), logger (Lassoc),
6 contraindre__memoisation_ main (LassocSorted , BorneMinNiveau, BorneMaxNiveau, LassocSorted,
Structure) ,
7 apply constraint (BorneMinNiveau , BorneMaxNiveau , Structure) .
8
9
10 contraindre_memoisation_main (Lassoc ,BLow,BUp, LassocBase, Out):—
11 contraindre__memoisation__ (Lassoc ,BLow,BUp, LassocBase ,Out,[]) .
12
13 contraindre__memoisation__ ([],_,_,_,Out,Out).
14 contraindre_memoisation_ ([gen_gen(_, , , , , .)| Tail],BorneMinNiveau, BorneMaxNiveau, Lassoc,
Out, Acc):—
15 contraindre__memoisation (Tail ,BorneMinNiveau , BorneMaxNiveau , Lassoc ,Out, Acc) .
16 contraindre_memoisation_ ([self(_,)| Tail],BorneMinNiveau,BorneMaxNiveau, Lassoc,Out,Acc):—
17 contraindre__memoisation__ (Tail ,BorneMinNiveau , BorneMaxNiveau, Lassoc ,Out, Acc) .
18
19 contraindre__memoisation__ ([niveau(control,_, ,)| Tail], BorneMinNiveau,BorneMaxNiveau, Lassoc,
Out,Acc):—
20 logger (" [contraindre_memoisation_] niveau control => not, constrained"),
21 contraindre__memoisation (Tail ,BorneMinNiveau , BorneMaxNiveau , Lassoc ,Out, Acc) .
22
23 contraindre memoisation ([niveau(node,Gene,0,)|Tail], BorneMinNiveau, BorneMaxNiveau, Lassoc,
Out, Acc):—
24 member (niveau (__,Gene,1,), Lassoc),
25 contraindre__memoisation_ (Tail ,BorneMinNiveau , BorneMaxNiveau, Lassoc ,Out,Acc) .
26

27 contraindre memoisation ([niveau(node,Gene,Temps,Var) | Tail], BorneMinNiveau , BorneMaxNiveau,
Lassoc ,Out,Acc):—

29 Temps>0,
30 TempsPrev is Temps — 1,

31 loggerl (" [contraindre__memoisation_], —_ Gene,Temps,:"), loggerl (Gene),loggerl (", "), logger(
Temps) ,

32 getNiveau (Gene, TempsPrev, VarPrev , Lassoc) ,

33 % recuperer les thresholds/Effects des associations et Niveaur associAOs

34 getBagThresholdsEffectsNiveaux (TempsPrev, Gene, Lassoc,BagThresholds, BagEffects ,
__BagPairsGeneNiveau , BagNiveaux) ,

36 % Les mettre dans le meme ordre
37 keysort (BagThresholds , PairThresholds) ,
38 keysort (BagEffects , PairEffects)

39 keysort (BagNiveaux , PairNiveaux) ,

40

41 % Ne garder que les wvaleurs (on n a pas besoins de conserver les cles = geneA, geneB, ...)
42 pairs_values (PairThresholds, Thresholds),

43 pairs_values(PairEffects , Effects),

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68

69
70
71
72
73

74
75
76

7

78
79
80

81

82
83
84

85

87
88
89
90

91

92
93

94
95

96
97
98

100
101
102

A.4. CONSTRAINTS PREDICATES 141

pairs_values (PairNiveaux, Niveaux),

NewAcc=[[Var, VarPrev]| —[Niveaux , Thresholds , Effects]| Acc],
contraindre_memoisation (Tail ,BorneMinNiveau , BorneMaxNiveau , Lassoc ,Out,NewAcc) .

apply_constraint(_, ,[]):—
logger ("[apply__constraint] End").
apply__constraint (BorneMinNiveau ,BorneMaxNiveau , Matrix):—
length (Matrix , LengthMatrix) ,
loggerl("[apply_ constraint]_ Main, MATRIX, Length . =,"), logger (LengthMatrix),

Matrix = [[Var, VarPrev]—[Niveaux, Thresholds , Effects]| Tail],

maplist (myzcompare , Relations , Niveaux , Thresholds , TrueVal) ,
scalar__product (TrueVal, Effects, #=, Contribution),

VarTmp #= VarPrev+Contribution ,
boundaries (VarTmp, Var, BorneMinNiveau , BorneMaxNiveau) ,
apply constraint (BorneMinNiveau , BorneMaxNiveau, Tail).

getBagThresholdsEffectsNiveaux (TempsPrev, Gene, Lassoc,BagThresholds,BagEffects,
BagPairsGeneNiveau , BagNiveaux):—
getBagThresholdsEffectsNiveaux_ (TempsPrev,Gene, Lassoc,BagThresholds, BagEffects,
BagPairsGeneNiveau ,[] ,[],[]),
getPairsGeneNiveau (BagEffects ,BagPairsGeneNiveau ,BagNiveaux) .

% cas de base : liste wide
getBagThresholdsEffectsNiveaux_ (TempsPrev,Gene, [],BagThresholds, BagEffects ,BagPairsGeneNiveau
,BagThresholds , BagEffects , BagPairsGeneNiveau) .

% cas self —> rien a faire
getBagThresholdsEffectsNiveaux_ (TempsPrev,Gene, [self(_,)| TailLassoc],BagThresholds,
BagEffects ,BagPairsGeneNiveau , AccThresholds , AccEffects , AccPairsGeneNiveau):—
getBagThresholdsEffectsNiveaux_ (TempsPrev,Gene, TailLassoc ,BagThresholds,BagEffects,
BagPairsGeneNiveau, AccThresholds, AccEffects, AccPairsGeneNiveau).

% cas "niveau" ou le temps = tempsPrev ==> on ajoute dans l'accumulateur
getBagThresholdsEffectsNiveaux_ (TempsPrev,Gene, [niveau(_,GeneTmp, TempsPrev,NiveauTmp) |
TailLassoc],BagThresholds , BagEffects ,BagPairsGeneNiveau, AccThresholds , AccEffects ,
AccPairsGeneNiveau):—
getBagThresholdsEffectsNiveaux_ (TempsPrev,Gene, TailLassoc ,BagThresholds,BagEffects,
BagPairsGeneNiveau , AccThresholds , AccEffects , [GeneTmp—NiveauTmp | AccPairsGeneNiveau]) .

% cas "niveau" ou le temps =/= tempsPrev ==> on ne fait rien
getBagThresholdsEffectsNiveaux_ (TempsPrev,Gene, [niveau(_, ,Temps,_)| TailLassoc],
BagThresholds , BagEffects , BagPairsGeneNiveau , AccThresholds , AccEffects , AccPairsGeneNiveau):—
dif (TempsPrev, Temps) ,
getBagThresholdsEffectsNiveaux_ (TempsPrev,Gene, TailLassoc ,BagThresholds,BagEffects,
BagPairsGeneNiveau, AccThresholds , AccEffects , AccPairsGeneNiveau) .

%% cas "gen_gen" ou le geneTo = gene ==> on ajoute dans | 'accumulateur
getBagThresholdsEffectsNiveaux_ (TempsPrev,Gene, [gen_ gen(_,From,Gene, Threshold, , ,Effect)|
TailLassoc], BagThresholds, BagEffects, BagPairsGeneNiveau, AccThresholds, AccEffects,
AccPairsGeneNiveau):—
getBagThresholdsEffectsNiveaux_ (TempsPrev,Gene, TailLassoc ,BagThresholds, BagEffects,
BagPairsGeneNiveau , [From—Threshold | AccThresholds] ,[From—Effect | AccEffects],
AccPairsGeneNiveau) .
%% cas "gen_gen" ou le geneTo =/= gene ==> on ne fait rien
getBagThresholdsEffectsNiveaux (TempsPrev,Gene, [gen gen(_ , From,GeneTo, Threshold, , , Effect
)| TailLassoc], BagThresholds, BagEffects, BagPairsGeneNiveau, AccThresholds, AccEffects,
AccPairsGeneNiveau):—
dif (Gene, GeneTo) ,
getBagThresholdsEffectsNiveaux_ (TempsPrev,Gene, TailLassoc ,BagThresholds,BagEffects,
BagPairsGeneNiveau, AccThresholds , AccEffects , AccPairsGeneNiveau) .

%getPairsGeneNiveau (BagEffects , BagPairsGeneNiveau , BagNiveauz):—
getPairsGeneNiveau (BagEffects ,BagPairsGeneNiveau ,BagNiveaux):—
getPairsGeneNiveau (BagEffects ,BagPairsGeneNiveau , BagNiveaux,[]) .

,__,BagNiveaux , BagNiveaux) .

getPairsGeneNiveau ([]
[GeneTmp— | TailBagEffects], BagPairsGeneNiveau ,BagNiveaux ,Acc):—

getPairsGeneNiveau_ (

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

© 00O U WN -

44
45
46
47
48
49
50
51
52

142 APPENDIX A. SOURCE CODE

member (GeneTmp—NiveauTmp, BagPairsGeneNiveau) ,
getPairsGeneNiveau_ (TailBagEffects ,BagPairsGeneNiveau ,BagNiveaux , [GeneTmp—NiveauTmp | Acc]) .

getPairsGeneNiveau ([GeneTmp— | TailBagEffects],BagPairsGeneNiveau ,BagNiveaux ,Acc):—
%loggerl ("[DEBUG] KO GeneTmp—G1 => "), logger (GeneTmp—_),
%loggerl ("[DEBUG] KO BagPairsGeneNiveau "), logger (BagPairsGeneNiveau),
logger (" [getPairsGeneNiveau | SHOULD NEVER, BE HERE") ,
not (member (GeneTmp—NiveauTmp, BagPairsGeneNiveau)),
logger (" [getPairsGeneNiveau] Will Fail"),
fail .

% Le cas ou le niveau=0 est necessaire
% Gestion d'un rA@seau ou les dA®@lais font qu'on n'a aucune contributiion plus tard

myzcompare (Rel ,N1,T1,Val):—
zcompare (Rel ,N1,T1) ,
ord_(Rel,Val).

ord (>,1).
ord (<,0).
ord_(=,1).

% CONTRAINDRE ASYNCHRONE
% DOIT COMMENCER AVEC TEMPS = (N)

contraindre asynchrone main (N, BorneMinNiveau , BorneMaxNiveau, Lassoc):—
logger (" [contraintre_asynchrone_main] BEGIN") ,
getDelays (Lassoc , Delays)
length (Delays , LengthDelays) ,
Up #= LengthDelays —1,
Delays ins 0..Up,
logger (" [contraintre asynchrone main] Before Rec"),
all distinct (Delays),
contraindre__asynchrone (N, BorneMinNiveau , BorneMaxNiveau, LengthDelays , Lassoc) .

contraindre__asynchrone (0, _,_, , _):— %IODO
logger (" [contraindre_asynchrone] Temps —>.0"),
logger (contraindre niveaux_ 0).

contraindre__asynchrone (Temps, BorneMinNiveau , BorneMaxNiveau, LengthDelays, Lassoc):—

logger ("[contraindre_ asynchrone] BEGIN- "y,
Temps>0,
TempsPrev is Temps — 1,

%Find Ezpressors
getRequiredExpressor (Temps, GeneFrom,GeneTo, LengthDelays, Lassoc),

loggerl (" [contraindre asynchrone] Temps.—> ") ,logger (Temps),
loggerl (" [contraindre_asynchrone] after, getRequiredExpressor GeneFrom —>_"),logger (GeneFrom)

logg(;rl ("[contraindre_asynchrone]_ after getRequiredExpressor GeneTo —>.") ,logger (GeneFrom) ,
getEffectFromActiveGene (GeneFrom, GeneTo, Lassoc , Temps, Effect ToConsider , _Niveau) ,

loggerl (" [contraindre asynchrone] EffectToConsider —>."),logger (EffectToConsider),
getNiveau (GeneTo, TempsPrev, VarPrev , Lassoc) ,

getNiveau (GeneTo, Temps, Var, Lassoc) ,

loggerl (" [contraindre_asynchrone] Var—>.") ,logger (Var),
loggerl (" [contraindre_asynchrone] VarPrev,—>_."),logger (VarPrev) ,

"

VarTmp #= VarPrev + EffectToConsider ,
boundaries (VarTmp, Var, BorneMinNiveau , BorneMaxNiveau) ,

loggerl (" [contraindre_asynchrone] GeneTo—Var,—> ") ,loggerl (GeneTo) ,loggerl (" .—,"), logger(
Var) ,

logger (" [contraindre_asynchrone] before remaining"),

contraindre__asynchrone_remaining (Temps, GeneTo, Lassoc , Lassoc) ,

logger (" [contraindre_asynchrone] after remaining"),

logger ("[contraindre__asynchrone] END "y,

contraindre asynchrone (TempsPrev, BorneMinNiveau , BorneMaxNiveau , LengthDelays , Lassoc) .

% Donner la meme valeur qu'au temps prA@cA@dent
contraindre__asynchrone_remaining (_, ,[],_):—

53
54
55

57

58
59
60
61
62
63
64

99
100
101
102
103
104
105

106
107
108
109
110
111

112
113
114

115
116
117
118
119
120
121
122

A.4. CONSTRAINTS PREDICATES 143

logger (" [contraindre_asynchrone_remaining] end of recursion").

% cas ou GeneTo =/= Gene, mais les temps sont ok
contraindre asynchrone remaining (Time, GeneTo, [niveau (node, Gene,Time, Var) | TBag] , Lassoc):—
%loggerl ("[contraindre__asynchrone_remaining] BEGIN —> "), logger (niveau (node, Gene, Time, Var))

dif (Gene,GeneTo) ,
TimePrev #= Time -1,
getNiveau (Gene, TimePrev, VarPrev, Lassoc) ,
Var #= VarPrev,
contraindre_asynchrone_ remaining (Time, GeneTo,TBag, Lassoc) .
contraindre asynchrone remaining (Time, GeneTo, [niveau (node,GeneTo, ,Var)|TBag], Lassoc):—
%loggerl ("[contraindre__asynchrone_remaining] BEGIN —> "), logger (niveau (node, Gene, Time, Var))

J
contraindre__asynchrone_remaining (Time, GeneTo,TBag, Lassoc) .

% cas ou GeneTo =/= Gene, mais les temps sont =/=
contraindre_asynchrone_ remaining (Time, GeneTo, [niveau (node,GeneA,TimeA,)|TBag], Lassoc):—
%loggerl ("[contraindre__asynchrone_remaining] BEGIN —> "), logger (niveau (node, Gene, Time, Var))

dif (GeneTo,GeneA) ,
dif (Time, TimeA) ,
contraindre_asynchrone_remaining (Time, GeneTo,TBag, Lassoc) .

contraindre_asynchrone_ remaining (Time, GeneTo, [niveau(control , , ,)|TBag],Lassoc):—
contraindre__asynchrone_remaining (Time, GeneTo,TBag, Lassoc) .

contraindre asynchrone remaining (Time, GeneTo,[self(_,)|TBag],Lassoc):—
contraindre__asynchrone_remaining (Time, GeneTo,TBag, Lassoc) .

contraindre asynchrone remaining (Time, GeneTo,[gen gen(_, , , , , ,)|TBag],Lassoc):—

contraindre_asynchrone_remaining (Time, GeneTo,TBag, Lassoc) .

% To get all the Delays wvariables out of Lassoc
getDelays (Lassoc , Delays):—
getDelays_ (Lassoc,Delays ,[]) .

getDelays_ ([], Delays, Delays) .

getDelays ([gen_gen(_, , , , ,Delay,)|Tail],Delays,Acc):—
getDelays_ (Tail,Delays ,[Delay|Acc]) .

getDelays_ ([niveau(_,_,_,)| Tail],Delays,Acc):—
getDelays (Tail ,Delays,Acc).

getDelays_ ([self(_,_)|Tail], Delays,6 Acc):—
getDelays_ (Tail,Delays,Acc).

% To get the required expressor, in a cyclic way
getRequiredExpressor (Temps, GeneFrom,GeneTo,LengthDelays, Lassoc):—
member (gen_gen(_, GeneFrom,GeneTo, , ,Delay,), Lassoc),
Delay #= Temps mod LengthDelays,
loggerl (" [getRequiredExpressor] Temps,=>,"), logger (Temps),
loggerl (" [getRequiredExpressor] Delay =>.,"), logger (Delay),
loggerl("[getRequiredExpressor] LengthDelays =>,"), logger (LengthDelays).

getEffectFromActiveGene (GeneA , GeneB, Lassoc ,_Temps, Effect ,_NiveauPrev):—

integer (Effect), fd_size(Effect 1),

loggerl (" [getRateFromActiveGene] before_getRateFromActiveGene_cas_0"),loggerl (GeneA) ,loggerl
("=>"), loggerl(GeneB) ,loggerl(":"), logger (Effect),

dif (GeneA ,GeneB) ,

member (gen gen(_,GeneA,GeneB, , , Delay, Effect),Lassoc),

%Pas nAOcessaire ici —

% TempsPrev is Temps — Delay,

Effect = 0,

loggerl (" [getRateFromActiveGene] after getRateFromActiveGene_ cas_0") ,loggerl (GeneA) ,loggerl (
"—>"), loggerl (GeneB) ,loggerl(":"), logger (Effect).

getEffectFromActiveGene (GeneA , GeneB, Lassoc , Temps, Effect ToConsider , NiveauPrev):—

loggerl (" [getEffectFromActiveGene] cas 1.,"),loggerl (GeneA) loggerl("—>"), loggerl (GeneB),
logger1(":"), logger (Effect),

dif (GeneA , GeneB) ,
member (gen__gen (_, GeneA ,GeneB, Threshold, , , Effect), Lassoc),
getNiveau (GeneA , TempsPrev, NiveauPrev , Lassoc) ,
TempsPrev #= Temps — 1, %IODO : Pas de Delay ici
loggerl (" [getEffectFromActiveGene] cas_1, ,TempsPrevi=>,"), logger (TempsPrev),
loggerl (" [getEffectFromActiveGene] cas 1, ,True NiveauPrev,=>,"), logger (NiveauPrev),
loggerl (" [getEffectFromActiveGene] cas_1,True Threshold =>,"), logger (Threshold),
NiveauPrev#<Threshold ,

144 APPENDIX A. SOURCE CODE

123 EffectToConsider #=0,

124 logger (" [getEffectFromActiveGene] END cas 1"),

125 loggerl (" [getEffectFromActiveGene] cas_1"), loggerl (after_getRateFromActiveGene_cas_0_),
loggerl (GeneA) ,loggerl ("—>"), loggerl (GeneB) , loggerl(":"), logger (Effect).

126
127 getEffectFromActiveGene (GeneA ,GeneB, Lassoc , Temps, EffectToConsider , NiveauPrev):—
128 loggerl (" [getEffectFromActiveGene] cas_2."),loggerl (GeneA) , 6 loggerl ("—>"), loggerl (GeneB),

logger1(":"), logger (Effect),
129 dif (GeneA ,GeneB) ,

130 member (gen__gen (__, GeneA , GeneB, Threshold ,_, , EffectToConsider) ,Lassoc),

131 TempsPrev #= Temps —1

132 loggerl (" [getEffectFromActiveGene] cas 2, TempsPrev,=>."), logger (TempsPrev),

133 getNiveau (GeneA , TempsPrev, NiveauPrev , Lassoc) ,

134 loggerl (" [getEffectFromActiveGene] cas_2,True NiveauPrev,=>,"), loggerl (niveauPrev_), logger
(NiveauPrev) ,

135 loggerl (" [getEffectFromActiveGene] cas_2,True, Threshold,=>."), loggerl (threshold), logger(
Threshold) ,

136 NiveauPrev #>= Threshold,

137 logger (" [getEffectFromActiveGene] END cas 2, True"),

138 loggerl (" [getEffectFromActiveGene] cas_2"), loggerl (after getRateFromActiveGene cas_1),

loggerl (GeneA) ,loggerl ("—>"), loggerl (GeneB) , loggerl(":"), logger (Effect).

A.4.3 Sparsity

1 % sparsity : Parmi tous les EFFETS, au moins "Coef" ont une valeur >= a un niveau,

2 % et au moins Coef ont une valeur <= threshold

3 % %

4 % But : limiter le nombre d'interactions A wun nombre donnA© %

5 % %

6

7 sparsity (0, _,):—1.

8 sparsity (NbreMaxEffect , BorneEffectOnOthers , Lassoc):—

9

10 % On recupere toutes les wvariables "Effect’

11 bagof(Var, ATB"C"D"E"F~ (member (gen_gen(A,B,C,D,E,F,Var) ,Lassoc)) ,BagOfVar) ,

12 % On optient leur nombre => parmi celles lA , seules NbreMazEffect peuvent A%re diffA@Orents
de 0

13 length (BagOfVar, Len_Effects_ Potentiels),

14

15 NbreMinZero is Len_ Effects_Potentiels—NbreMaxEffect ,

16 loggerl (" [sparsity]| Liste Effects —>."),logger (BagOfVar),

17

18 Low is —BorneEffectOnOthers,

19 Up is BorneEffectOnOthers,

20

21 % On crd©e la liste [—BorneEffect, BorneEffect] et on rA@cupA re sa version sans 0.
22 numlist (Low,Up, List) ,

23 select (0, List , ListSansZero)

24

25 % ?— pairs_keys_values(Pairs,[1,2,3],Inc).
26 % Pairs = [1-A, 2-B, 3-C],

27 % Inc = [A, B, C].

28

29 pairs__keys_ values (Pairs , ListSansZero ,Inc) ,
30 loggerl (" [sparsity |uInc.—>") ,logger (Inc),

31 % Inc contient la liste des nombres d'Effects qui sont diffAOrents de 0
32 Inc ins 0..NbreMaxEffect ,
33 sum (Inc,#=<,NbreMaxEffect) ,

34
35 MaxReal #>=NbreMinZero ,
36
37 append ([0 —MaxReal] , Pairs , NewPairs) ,
38 loggerl (" [sparsity | Liste Effects.,—>"),logger (BagOfVar),
39 loggerl (" [sparsity] Pairs Key—Num —>.") ,logger (NewPairs) ,
40
41 global_ cardinality (BagOfVar, NewPairs) ,
42 loggerl (" [sparsity]| Fin de Sparsity").
A.4.4 Labeling
1 % %
2 % %
3 % LABELING %
4 % %

A.4. CONSTRAINTS PREDICATES

X

Labeling: options
none = label__all (incompatible avec les

niveaur__only =

RN NN X KKK

my__labeling (Lassoc):—
label all(ff, Lassoc).
my__labeling (optimized , Lassoc):—
label niveaux (Lassoc),
label_effect (Lassoc),
label borneEffect (Lassoc) ,!,
label_threshold (Lassoc) ,!,
label delay (Lassoc) ,!.
my_ labeling (all_ok , Lassoc):—
label__all(ff, Lassoc).
my_labeling (all_ff , Lassoc):—
label _all(ff, Lassoc).

autres)

minimize__effects = minimizer la somme de tous les
min__threshold = Limiter les thresholds a la borne infA@rieure
max_borne = limiter 1|'effect A la borne maz

effects

NIVEAUX

SRR RN

0
abel niveaux (Lassoc) :—

logger ("Debut Labeling Niveau") ,
label niveaux aux(Lassoc,[]),
logger ("Fin_labeling Niveau"),
logger (Lassoc) .

—

label__niveaux_aux ([],L):—
labeling ([ffc],L).

label _niveaux_aux ([niveau(_, , ,Niveau)|Tail],L):—

label niveaux_ aux(Tail ,[Niveau|L]).

label niveaux_aux([gen_gen(_, , , , , .)|Tail] ,L):—

label niveaux_ aux(Tail,L).
label _niveaux_aux ([self(_,)| Tail],L):—
label__niveaux_aux(Tail ,L).

%
%
% EFFECTS
%
%

label effect (Lassoc) :—
logger ("Debut, Labeling Effet"),
label effect aux(Lassoc,[]),
logger ("Fin_labeling Effet"),
logger (Lassoc),
logger ("Prune Effect0"),
prune_effect0 (Lassoc).

%label effect_auz ([],L):—

% write (L),

% maplist (fd_dom, L,DomlL),

% write (DomL) ,

% maplist (dom__integers,DomL, ListDom) ,
% write (ListDom) ,

% maplist(#=,L, ListDom) ,

% write (L).

% %labeling ([ff],L).

% This is already an improvement : first
label effect aux ([],L):—
valeur__absolue (L, Labs) ,
sum (Labs,#=,Sum) ,

solutions

loggerl (" [label effect] SUM =>."), logger (Sum),

labeling ([min(Sum) , ffc , bisect],L).

label effect__aux ([niveau(_,_, ,_)| Tail],L):—

145

NN XXX

RN NN X

delivered are based on Effect = 0

146 APPENDIX A. SOURCE CODE

81 label effect aux(Tail,L).

82 label effect_ aux ([gen_gen(_, , , , , Effect)|Tail],L):—
83 label effect_aux(Tail,[Effect|L]) .

84 label effect aux ([self(,Effect)|Tail],L):—

85 label effect_aux(Tail ,[Effect |L]) .

86

87

88 % %
89 % %
90 % BORNE EFFECTS %
91 % %
92 % %
93

94 % This is already an improvement : BorneEffect are majoring their interval
95 label borneEffect (Lassoc) :—

96 logger ("Labeling BorneEffect"),

97 label borneEffect aux(Lassoc,[]) ,

98 logger ("End_ Labeling BorneEffect"),

99 logger (Lassoc) .

100

101 label_borneEffect aux ([],L):—

102 maplist (fd_sup, L,DomL),

103 maplist (#=,L,DomL) ,

104 labeling ([ff],L).

105 label borneEffect aux ([niveau(_, , ,)|Tail],L):—

106 label borneEffect aux(Tail ,L).

107 label borneEffect aux ([self(_,)| Tail], L):—

108 label borneEffect aux(Tail ,L).

109 label borneEffect aux([gen gen(, , , ,Borne, ,)|Tail], L):—

110 label _borneEffect_aux(Tail ,[Borne|L]) .

111

112

113

114 % %
115 % %
116 % THRESHOLDS %
117 % %
118 % %
119 % This is already an improvement : Threshold are minoring their interval
120 label threshold (Lassoc) :—

121 logger ("Labeling Threshold"),

122 label__threshold__aux (Lassoc,[]),

123 logger ("End, Labeling Threshold"),

124 logger (Lassoc) .

125

126 label_ threshold aux ([],L):—

127 maplist (fd__inf, L,DomL),

128 maplist (#=,L,DomL) ,

129 logger1 ("DOMAIN, RESTANT, THRESHOLDS =.,"), logger (DomL) ,

130 labeling ([ff],L).

131 label threshold aux ([niveau(_, , ,)|Tail] ,L):—

132 label threshold aux(Tail,L).

133 label_threshold aux ([self(_,)| Tail], L):—

134 label threshold aux(Tail,L).

135 label_threshold aux ([gen_gen(_, , ,Threshold, , ,)|Tail], L):—

136 label threshold aux(Tail,[Threshold|L]).

137

138

139

140 % %
141 % %
142 % DELAY %
143 % %
144 % %

145 label delay(Lassoc) :—

146 logger ("Labeling, Threshold"),

147 label__delay__aux(Lassoc ,[]) ,

148 logger ("End, Labeling Threshold"),
149 logger (Lassoc) .

150

151 label delay_aux ([] ,L):—

152 Z%maplist (fd_inf, L,DomL),

153 %maplist(#=,L,DomL) ,!,

154 labeling ([ff],L).

155 label delay aux([niveau(_, , ,)|Tail],L):—
156 label delay_aux(Tail ,L).

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

A.5. LOGGER

label__delay__aux ([self(_,_)| Tail], L):—
label delay_ aux(Tail ,L).

label__delay__aux ([gen_gen(_, , , , ,Delay,_)|Tail], L):—

label delay aux(Tail,[Delay|L]).

% %
% %
% ALL %
% %
% %
% On labelise tout en mA%me temps
label all (Option, Lassoc) :—
logger ("Labeling ALL") ,
label all _aux (Option, Lassoc,[]) ,
logger ("Labeling ,ALL_END") ,
logger (Lassoc) .
label _all_aux (ff ,[] ,L):—
labeling ([ff],L).
label all aux(std,[],L):—
label (L) .
label all aux(Option,[niveau(node, , ,Place)|Tail],L):—
label all aux (Option, Tail ,[Place|L]) .
label all aux (Option,[niveau(control, , ,Place)|Tail] ,L):—
label all aux(Option, Tail ,[Place|L]) .
label_all_aux (Option,[gen_gen(_,_ , ,Threshold,BorneEffect ,Delay, Effect)|Tail],L):—

append ([Threshold , BorneEffect ,Delay , Effect], L, Lnew),

label all_aux (Option, Tail ,Lnew) .
label all aux(Option,[self(,Effect)|Tail],L):—
label all _aux (Option, Tail ,[Effect |L]) .

Zhttp ://www. pathwayslms.com/swipltuts/clpfd/clpfd.html# optimization

dom_integers(D, Is) :— phrase(dom_ integers (D), Is).
dom__integers_ (1) —> { integer(I) }, [I].
dom__integers_ (L..U) —> { numlist (L, U, Is) }, Is.

dom_ integers (D1\/D2) —> dom_integers_ (D1), dom_integers_(D2).

% Si Effect est deja assignA® A 0, force le Threshold et la BorneEffect A

domaine.

% Delay n'est pas forcA® pour compatibilitA® avec asynchronous

prune_effectO ([]) .
prune_effect0 ([gen_gen(
integer (Effect),
Effect #= 0,
%write (" Threshold —> "),

—

fd_inf(Threshold ,MinThreshold), Threshold#=MinThreshold,

%write ("Borne —> "),

fd_inf(BorneEffect ,MinBorneEffect), BorneEffect#=MinBorneEffect

%write ("Delay —> "),
%fd__inf(Delay, MinDelay), Delay#=MinDelay,
prune_ effectO (Tail).

prune_effectO([gen_gen(_ , , , , , ,)|Tail]):—
prune_ effectO(Tail).
prune_effectO ([niveau(_, , ,)|Tail]):—

prune_effect0(Tail).
prune_effectO ([self(_,)| Tail]):—
prune_ tree_ effectO(Tail).

A.5 Logger

%createLog .
createLog :—

Threshold , BorneEffect ,Delay , Effect)| Tail]):—

valeur min du

147

0~ Ut WN -

18

19

20

21

22

148

get__time (X),
truncate (X,2,Y),

atomic__concat (Y, ".txt" ,FileName) ,
atomic_concat("logs/" ,FileName , CompleteName) ,
open (CompleteName , append ,MS, [alias (stream)]) .

%closeLog .

closeLog
close (stream) .

closeLog (A)
close (A).

Flogger (_):—1.
logger (X):—
writeln (stream ,X) .

%logger1 (_):—1.
loggerl (X):—
write (stream ,X) .

logger_ice (X):—
writeln (stream ,X) .

% tronque le rAOsultat pour des positifs
is floor (10"N%X)/10"N, !.

truncate (X,N, Result):— X >= 0, Result

Y%createLog (A) :—

% atomic__concat(A,". tzt ", FileName) ,
% atomic__concat("networks/systematic_test/logs /", FileName, CompleteName) ,
% open(CompleteName , append ,MS, [alias (stream)]) ,

% writeln (MS, 'Debut Log File').
createLog (A, StreamName)

atomic__concat (A,".txt" ,FileName) ,
atomic__concat("logs/" ,FileName ,CompleteName) ,
open (CompleteName , append ,MS, [alias (StreamName)]) .

A.6 Tests

At the time of passing some tests, the final JSON is not available yet, and some options may be
modified without notice. This does not impact the test results, as per non regression analysis.

A.6.1 Ground Truth

{"network ": |

"name": " test_tmp_5—2",
"borneMax ":10 ,
"borneMin ":0 ,

"borneEffectOnOthers ":5 ,
"borneEffectOnSelf":0,
"globalThreshold ":9,

"steps ":8,

"method ":"tmp",

"nodes ": |

{"label ":"genel","type":"node"},

{"label ":"gene2" ,"type":"node"},

{"label ":"gene3","type":"node"},

{"label ":"gened","type":"node"}]

"edges ":|[

{"id ":"toChange","from":" genel ",
"2},

{"id ":"toChange","from":" gene2 ",
"i—1},

{"id ":"toChange","from":" genel ",
“:1}7

{"id ":"toChange","from":" gene3 ",
“:0}7

{"id ":"toChange","from":" gene2 ",
“:71}7

{"id ":"toChange" ,"from ":" gene3",
"30},

{"id ":"toChange" ,"from ":" genel ",

":72}7

)

"to

"to

"to

"to

"

to

:"gene2"
:"genel "
:"gene3"
:"genel "
:"gene3"
:"gene2"

:"gened "

,"threshold"
,"threshold "
,"threshold "
,"threshold "
,"threshold "
,"threshold "

,"threshold"

APPENDIX A.

:4 ,"borneEffect
:9,"borneEffect
:1,"borneEffect
:1,"borneEffect
:4 ,"borneEffect
:1,"borneEffect

14 ,"borneEffect

"

"

"

"

"

"

"

:5,"delay ":0,"
:5,"delay ":0,"
:5,"delay ":0,"
:5,"delay ":0,"
:5,"delay ":0,"
:5,"delay ":0,"
:5,"delay ":0,"

SOURCE CODE

effect

effect

effect

effect

effect

effect

effect

23

24

25

26

27

© 00 O Ut W

A.6. TESTS

{"id ":"toChange"
":1}7

{"id ":"toChange"
"2},

{"id ":"toChange"
"0},

{"id ":"toChange"
"0},

{"id ": " toChange"

“:0}] b

"data ": |

{"node":" gened ",

{"node":" gened "

{"node":" gene4"

{"node":" gene4 "

{"node":" gene4 "

{"node":" gened ",
{"node":" gened ",
{"node":" gened ",
{"node":" gened ",
{"node":" gene3",
{"node":"gene3",
{"node":" gene3d",
{"node":"gene3",
{"node":" gene3d",
{"node":" gene3",
{"node":" gene3d",
{"node":" gene3",
{"node":"gene3",
{"node":" gene2",
{"node":" gene2 ",
{"node":" gene2",
{"node":" gene2",
{"node":" gene2",
{"node":" gene2",
{"node":" gene2",
{"node":" gene2",

{"node":"gene2",
{"node":" genel"
{"node":" genel"
{"node":" genel"

{"node":" genel ",
{"node":" genel ",
{"node":" genel ",
{"node":"genel",
{"node":" genel ",
{"node":" genel ",

)

)

)

)

)

"

[

"from ":

"from ":

"from "

"from "

"

"from

step "
step ":
step "
step ":
step "
step "
step ":
step ":
step "
step "
step ":
step "
step "
step "
step "
step ":
step "
step "
step "
step ":
step ":
step "
step "
step "
step ":
step ":
step "
step ":
step ":
step "
step "
step "
step "
step "
step ":
step ":

:6

5
04
:3

2
:0
:8

16
:5
04
:3

2

:0
:8

04

1
01
:5
03
2
1

:0

:"gened "
:"geneld"

;" gened "

18

6

7
7
7
8
7

16
:5
04
13
12

1
0

" gene4 "

" gene2 "

"
)

"
)

"
)

"
5

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
5

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
)

"
5

,"to":"genel"
,"to":" gened "
,"to":" gene2"
,"to":" gened "
,"to":" gene3d"

niveau":0},
niveau":0},
niveau":0},
niveau":0},
niveau":1},
niveau":3},
niveau":5},
niveau":7},
niveau":9},
niveau":2},
niveau":2},
niveau":2},
niveau":2},
niveau":2},
niveau":2},
niveau":2},
niveau":1},
niveau":0},
niveau'":10},
niveau":10},
niveau":10},
niveau":10},
niveau":8},
niveau":6},
niveau':4},
niveau":2},
niveau":0},
niveau":4},
niveau":5},
niveau":6},
niveau":7},
niveau":7},
niveau":7},
niveau":7},
niveau":

6} |
niveau":5}]}]}

A.6.2 Lac Operon

{"network ":|[

"name":" Lac Operon",

"borneMax":10 ,
"borneMin ":0,

"borneEffectOnOthers":3 ,
"borneEffectOnSelf":0,
"globalThreshold ":2,

"steps": 7,
"method":"tmp",
"sparsity ":7,

"labeling ":" all_ff",

"nSol":10,
"nodes ": |

{"label ":"operonAYZ" ,"type":"node"},
"label ":"lactose","type":"node"},

"label ":"lacl","type":"node"},

{
{
abel ":"cap_c ,"type":"node"},
"1 b 1 n " AMP " n n " d n
{"label ":" glucose","type":"node"},

{"label ":"supportLacl", "type":

"edges ":|

"

control"}],

,"threshold ":7," borneEffect
,"threshold ":9," borneEffect
,"threshold ":1,"borneEffect
,"threshold ":1,"borneEffect

,"threshold ":1," borneEffect

"

"

"

"

"

:5,"delay "
:5,"delay "
:5,"delay "
:5,"delay "
:5,"delay "

:0,"

:0,"

:0,"

:0,"

:0,"

149

effect
effect
effect
effect

effect

{"id ":"toChange","from":" lactose" ,"to":"lacl","threshold":"/" ,"borneEffect":3,"delay ":0,"

effect": —2},

{"id ":"toChange" ,"from ":"lacI","to":"operonAYZ" ," threshold ":" /" ," borneEffect ":3,"delay ":0,"

effect": —3},

{"id ":"toChange" ,"from ":"operonAYZ" ,"to ":" glucose"," threshold ":"/" ," borneEffect ":3,"delay ":0,"

effect ":1},

24

25

26

27

28
29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

150

APPENDIX A. SOURCE CODE

{"id ":"toChange","from ":" operonAYZ" ,"to":" lactose " ," threshold ":"/" ,"borneEffect ":3,"delay ":0,"

effect": =2},

{"id ":"toChange"," from":"cap_cAMP" ,"to ":"operonAYZ" ," threshold ":"/" ," borneEffect ":3," delay

":0,"effect ":2},

{"id ":"toChange","from":" glucose" ,"to":"cap_cAMP" ;" threshold ":"/" ,"borneEffect ":"/" ," delay

{u

T e T e T e T N e N e T e T e e

{n

id ":"toChange" ," from

id ":"toChange" ," from
id ":"toChange" ," from

id ":"toChange" ," from

":0,"effect": -2},
":"supportLacI","to":"lacI","threshold":"/"," borneEffect":"/" ,"delay
":0,"effect ":1},
":"glucose","to":"lacI" ,"threshold":"/" ," borneEffect ":1,"delay ":0,"
effect ":0},
":"glucose","to":"lactose","threshold":"/" " borneEffect":1,"delay ":0,"
effect ":0},

:" glucose" ,"to":"operonAYZ" ," threshold ":"/" ,"borneEffect ":1,"delay ":0,"
effect ":0},

id ":"toChange","from":"operonAYZ" ,"to":"lacI"," threshold":"/" ," borneEffect":1,"delay":0,"

effect ":0},

id ":"toChange","from":"operonAYZ" ,"to":"cap_cAMP" ," threshold ":"/" " borneEffect ":1," delay

":0,"effect ":0},

id ":"toChange","from":" lactose","to":"operonAYZ" ," threshold ":"/"," borneEffect":1," delay ":0,"

effect ":0},

id ":"toChange" ,"from":" lacI","to":"cap_cAMP" ," threshold ":"/" ," borneEffect ":1," delay ":0,"

effect ":0},

id ":"toChange","from":" lacIl" ,"to":" lactose"," threshold":"/" ,"borneEffect":1,"delay ":0,"

effect ":0},

id ":"toChange","from":" lacI" ,"to":" glucose","threshold":"/" ,"borneEffect":1,"delay ":0,"

effect ":0},

id ":"toChange","from":" lactose" ,"to":"cap_cAMP" " threshold ":"/" ,"borneEffect ":1,"delay ":0,"

effect ":0},

id ":"toChange","from":" lactose " ,"to":" glucose" ,"threshold":"/" ," borneEffect ":1,"delay ":0,"

effect ":0},

id ":"toChange","from":"cap_ cAMP" ,"to":" lacI"," threshold ":"/" ," borneEffect ":1," delay ":0,"

effect ":0},

id ":" toChange","from":"cap_ cAMP" ,"to ":" glucose" ,"threshold ":"/" ," borneEffect":1," delay ":0,"

effect ":0},

{"id ":"toChange" ,"from ":"cap_ cAMP" ,"to ":" lactose"," threshold":"/" ," borneEffect":1,"delay ":0,"

{"id ":"toChange","from ":" supportLacl",

effect ":0},

to":"lactose","threshold":"/"," borneEffect":1,"delay
":0,"effect ":0},

{"id ":"toChange","from ":" supportLacl","to":" glucose"," threshold ":"/" ," borneEffect ":1," delay

":0,"effect ":0},

{"id ":"toChange","from":" supportLacl","to":"cap_cAMP" ," threshold ":"/" ," borneEffect ":1," delay

":0," effect ":0},

{"id ":"toChange","from":" supportLacl","to":"operonAYZ" ,"threshold":"/" ," borneEffect ":1," delay

] b

":0," effect ":0}

"data ": |

"node ":" operonAYZ" ," step

"

:0,"niveau": 7},
lacI","step ":0,"niveau":2},

o

node ":"cap_cAMP" ,"step ":0,"niveau":8},
ode":"lactose

","step":0,"niveau":9},

glucose","step ":0,"niveau":1},

o

operonAYZ" ,"step ":3,"niveau":7},
lacI","step":3,"niveau":0},
cap_cAMP" |"step ":3 ,"niveau":2},
lactose","step":3,"niveau":3},
glucose " ,"step ":3,"niveau":4},

"o

"o
[T

supportLacl" ,"step":0,"niveau":1},
supportLacl","step":1," niveau":1},
supportLacl" "step":2,"niveau":1},
supportLacl" "step":3,"niveau":1},
supportLacl" "step":4,"niveau":1},
supportLacl" "step":5,"niveau":1},
supportLacl","step":6," niveau":1},
supportLacl" ,"step":7,"niveau":1}

[T
"o
"o
"o
[
"o
"o "

[T

A.6.3 Sparsity Results

{"network ":[{"name":" network__test_memoisation_steps2_nodes4_edgesO_data0.json","borneMax":10,"borneMin":0,"

borneEffectOnOthers ":5," borneEffectOnSelf":0," globalThreshold":9,"steps ":2,"method":" memoisation" ,"nodes
":[{"label ":"genel" ,"type":"node"} ,{"label ":"gene2" ,"type":"node"},{"label ":"gene3" ,"type":"node"} ,{"
label ":" gened" ,"type":"node"}],"edges":[{"id ":"toChange" ,"from":" genel" ,"to":" gene2" ,"threshold ":1,"
borneEffect ":5,"delay ":0," effect ":2} ,{"id ":"toChange" ,"from":" gene2" ,"to":"genel" ," threshold":1,"
borneEffect ":0,"delay ":0," effect ":0} ,

Tk W N

= O w3

==

A.6. TESTS 151

{ "toChange" ," from genel" ,"to":"gene3","threshold":1,"borneEffect":5," delay " ,"effect ":1},

{ toChange" ," from gene3" ,"to genel" ,"threshold ":2," borneEffect ":0," delay ,"effect ":0},

{ toChange" ,"from":" gene2","to":"gene3","threshold ":1," borneEffect ":0,"delay ":0," effect ":0},

{"id ":"toChange" ,"from ":" gene3" ,"to":"gene2","threshold ":2," borneEffect ":0,"delay ":0," effect ":0},{"id ":"
toChange" ,"from ":" genel" ,"to":" gene4" ,"threshold ":1," borneEffect":5,"delay ":0," effect": —2},{"id ":"
toChange" ,"from ":" gene4 " ,"to":" genel" ,"threshold ":1," borneEffect":5,"delay ":0," effect ":1},

{"id ":"toChange" ,"from ":" gene2" ,"to":" gene4 " ," threshold ":1," borneEffect ":0,"delay ":0," effect ":0},

{"id ":"toChange" ,"from ":" gened4 " ,"to":" gene2" ," threshold ":1," borneEffect ":0,"delay ":0," effect ":0},

{" toChange" ," from gene3" ,"to":"gened " ,"threshold ":2," borneEffect ":0," delay ,"effect ":0},

{"i toChange" ,"from ":" gened " ,"to":" gene3" ,"threshold ":1," borneEffect ":0," delay ,"effect ":0}],

" "

step":1,"niveau" 7} {"node": gened " ,"step ":0,
:1} ,{"node":" gened" ,"
:1,"niveau":2},{"node":
"genel" ,"step":1,"niveau":6},{"

"data ":[{"node":" gened " " "
niveau":9} ,{"node"
step ":0,"niveau":0},{" node
gene2" ,"step ":0,"niveau":0} ,{"node

step ":2,"niveau":5} ,{"node":" gened "

"gene3 ",

step ":2,"niveau":2} ,{"node":" gene3" step":l
gene2" ,"step ":2,"niveau":4} ,{"node : B
! "step":?,"niveau":7},{" node

"

"genel ",

node ":" genel" ,"step ":0,"niveau":5}]},{"name":" network_test__memoisation_steps2_nodes4__edges0O_data0.json","
borneMax":10,"borneMin":0," borneEffectOnOthers":5,"borneEffectOnSelf":0, "globalThrcshold"'9,"stcps":2 "
method ":" memoisation","nodes ":[{"label ":"genel","type ":"node"},{"label ":"gene2" ,"type":"node"},{"label ":"
gene3","type":"node"},{"label ":"gened " ,"type":"node"}]," edges ": [

{"id ":"toChange" ,"from ":" genel" ,"to":"gene2"," threshold ":1," borneEffect ":5,"delay ":0," effect ":2},

{"id ":"toChange" ,"from ":" gene2" ,"to":"genel","threshold ":1," borneEffect ":0," delay ,"effect ":0},

{"id ":"toChange" ,"from ":" genel" ,"to":"gene3"," threshold ":1," borneEffect ":5," delay ,"effect ":1},

{"id ":"toChange" ," from ":" gene3" ," to genel" ,"threshold ":2," borneEffect ":0," delay ,"effect ":0},

{"id toChange" ," from ":" gene2" ,"to gene3" ,"threshold ":1,"borneEffect ":0," delay ,"effect ":0},

{"id ":"toChange" ,"from ":" gene3" ,"to":" gene2" ," threshold ":2," borneEffect ":0," delay "effect ":0},{"id ":"
toChange" ,"from ":" genel" ,"to":" gened4 " ,"threshold ":1," borneEffect":5," delay ":0 ," effect "o—2},{"id":"
toChange" ,"from ":" gene4 " ,"to":" genel" ,"threshold ":7," borneEffect":5,"delay ":0," effect ":1},

{"id ":"toChange" ,"from ":" gene2" ,"to":"gened4 " ," threshold ":1," borneEffect v o," delay' 0,"effect ":0} s

{"id ":"toChange" ,"from ":" gened4" ,"to":"gene2" ," threshold ":1," borneEffect ":0,"delay ":0," effect ":0},

{"id toChange" ," from "gene3" ,"to":"gened" "threshold ":2,"borneEffect":0," delay ,"effect ":0},

{"id toChange" ,"from ":" gened" ,"to":" gene3" ,"threshold ":1," borneEffect ":0," delay ,"effect ":0}],

"data":[{"node":" gened " ,"step ":2,"niveau":5},{"node":"gened" ,"step ":1,"niveau":7},{"node":" gened" ,"step ":0,

niveau":9} ,{"node":" gene3" ,"step ":2,"niveau":2},{"node":" gene3" ,"step":1,"niveau":1},{"node":" gene3","
"niveau":0} ,{"node":" gene2" ,"step ":2,"niveau":4} ,{"node":" gene2" ,"step ":1,"niveau":2},{"node":"
step ":0,"niveau":0} ,{"node":" genel" ,"step ":2,"niveau":7} ,{"node":" genel" ,"step ":1,"niveau":6} ,{"
genel" ,"step ":0,"niveau":5}]},{"name":" network_ test_memoisation_steps2_ nodes4_edgesO_data0.json","
borneMax":10,"borneMin":0," borneEffectOnOthers":5," borneEffectOnSelf":0," globalThreshold ":9,"steps ":2,"
method ":" memoisation" ,"nodes ":[{"label ":"genel" ,"type":"node"},{"label ":"gene2" ,"type":"node"},{"label ":"
gene3" ,"type":"node"},{"label ":" gened" ,"type":"node"}],"edges ":[{"id ":"toChange" ,"from":" genel" ,"to":"

gene2" ,"threshold ":1," borneEffect ":5,"delay ":0," effect ":2} ,{"id ":"toChange" ,"from ":" gene2" ,"to":" genel","
threshold ":1,"borneEffect ":0," delay ":0," effect ":0},

{"id ":"toChange" ,"from ":" genel" ,"to":"gene3" ," threshold ":1," borneEffect ":5," delay " ,"effect ":1},
{"id toChange" ," from ":" gene3" ,"to genel" "threshold ":1," borneEffect ":0,"delay ,"effect ":0},
{"id toChange" ," from ":" gene2" ,"to gene3" ,"threshold ":1," borneEffect ":0," delay ,"effect ":0},
{"id ":"toChange" ," from ":" geneS ","to":"gene2" ,"threshold ":2," borneEffect ":0,"delay ":0," effect ":0},{"id ":"

from":" genel" ,"to":"gened" ," threshold ":1," borneEffect ":5,"delay ":0," effect": —2},{"id":"

toChange "
" vt gene4 ","to":"genel" ,"threshold":1," borneEffect":5,"delay ":0," effect ":1},

toChange" ," from

{"id ":"toChange" ," from ":" geneZ ","to":"gened" ,"threshold ":1," borneEffect":0," delay " ,"effect ":0},

{"id toChange" ," from ":" gened4 " ," gene2" "threshold ":1," borneEffect ":0," delay ,"effect ":0},

{"id ":"toChange" ,"from":" gene3 " ," "gened " ,"threshold ":2," borneEffect ":0,"delay ":0," effect ":0},

{"id ":"toChange" ,"from ":" gened4" ,"to":"gene3","threshold":1," borneEffect ":0,"delay ":0," effect ":0}],

"data":[{"node":" gened " ,"step ":2,"niveau":5},{"node":" gened " ,"step":1,"niveau":7},{"node":" gened" ,"step ":0,"
niveau":9},{"node":"gene3" ,"step ":2,"niveau":2},{"node":" gene3" ,"step":1,"niveau":1},{"node":" gened","
step ":0,"niveau":0} ,{"node":" gene2" ,"step ":2,"niveau":4} ,{"node":" gene2" ,"step ":1,"niveau":2} ,{"node":"
gene2" ,"step ":0,"niveau":0} ,{"node":" genel" ,"step ":2,"niveau":7},{"node":"genel" ,"step":1,"niveau":6},{"
node ":"genel" ,"step ":0,"niveau":5}]},{"name":" network_test__memoisation_steps2_nodes4__edges0_data0.json", "
borneMax":10,"borneMin":0," borneEffectOnOthers":5," borneEffectOnSelf":0," globalThreshold ":9,"steps ":2,"
method ":" memoisation" ,"nodes ":[{"label ":" genel" ,"type":"node"},{"label ":"gene2" ,"type":"node"} ,{"label ":"
gene3" ,"type":"node"},{"label ":" gened" ,"type":"node"}],

"edges ": [

{"id ":"toChange" ," from genel" "to":"gene2" ,"threshold ":1," borneEffect":5," delay " effect ":2},

{"id toChange" ," from gene2" "to":"genel" ,"threshold ":1," borneEffect":0," delay effect ":0},

{"id toChange" ,"from ":" genel" ,"to":" gene3" ,"threshold ":1," borneEffect ":5," delay effect ":1},

{"id toChange" ,"from ":" gene3" ,"to ":" genel" ,"threshold ":1," borneEffect ":0," delay effect ":0},

{"id toChange" ,"from ":" gene2" ,"to ":" gene3" ,"threshold ":1," borneEffect ":0," delay effect ":0},

{"id ":"toChange" ,"from ":" gene3" ,"to":"gene2"," threshold ":2," borneEffect ":0," delay " effect ":0},

{"id ":"toChange" ,"from ":" genel" ,"to":"gened " ," threshold ":1, "borncEffcct :5,"delay " effect": —2},{"id ":"
toChange" ,"from ":" gened" ,"to":" genel" ,"threshold ":7," borncEffcct ":5,"delay ":0," effect ":1},

{"id ":"toChange"," from ":" geneQ ","to":"gened4" ,"threshold ":1," borneEffect ":O ,"delay " ,"effect ":0},

{"id toChange" ," from ":" gened4" ,"to":" gene2" ,"threshold ":1," borneEffect ":0," delay ,"effect ":0},

{"id ":"toChange" ,"from ":" gene3" ,"to":"gened4 " ," threshold ":2," borneEffect ":0,"delay ":0," effect ":0},

{"id ":"toChange" ,"from ":" gene4" ,"to":"gene3"," threshold ":1," borneEffect ":0,"delay ":0," effect ":0}],

"data ":[{"node":" gene4 " ,"step ":2,"niveau":5} ,{"node":"gened " ,"step ":1,"niveau":7},{"node":" gene4" "step ":0,"
niveau":9} ,{"node":" gene3" ,"step ":2,"niveau":2} ,{"node":" gene3" ,"step ":1,"niveau":1} ,{"node":" gene3","
step ":0,"niveau":0} ,{"node":"gene2" ,"step ":2,"niveau":4} ,{"node":" gene2" ,"step ":1," niveau ":2} ,{"node ":"
gene2" ,"step ":0,"niveau":0} ,{"node":" genel" ,"step":2,"niveau":7},{"node":" genel" ,"step":1,"niveau":6},{"
node ":" genel" ,"step ":0,"niveau":5}]}

"name":" network_ test_memoisation_steps2_ nodes4_ edgesO__data0.json","borneMax":10," borneMin":0,"
borneEffectOnOthers":5," borneEffectOnSelf":0," globalThreshold":9,"steps ":2,"method":" memoisation","nodes

“:[{"label":"genel" "type":"node"},{"label ":"gene2" ,"type":"node"},{"label ":"gene3" ,"type":"node"} ,{"
label ":" gened " type":“node"}] "edges ": [

{" "toChange" , "from "genel" "to":"gene2" ,"threshold ":1," borneEffect":5," delay effect ":2},

{"i toChange" ," from ":" gene2","to":" genel" ["threshold ":3," borneEffect ":0," delay effect ":0},

{"id ":"toChange" ,"from ":" genel" ,"to":"gene3","threshold ":1," borneEffect ":5," delay "effect ":1},

{"i "toChange" ,"from ":" gene3" ,"to":" genel" ,"threshold ":2," borneEffect":0,"delay effect ":0},

{"i toChange" ,"from":" gene2" ,"to":" gene3" ,"threshold ":1," borneEffect ":0," delay "effect ":0},

{"id ":"toChange" ,"from ":" gene3" ,"to":"gene2"," threshold ":2," borneEffect ":0,"delay ":0," effect ":0},{"id ":"
toChange","from ":" genel","to":"gene4","threshold ":1," borneEffect ":5,"delay ":0," effect": —2},{"id":"
toChange","from ":" gene4" ,"to ":" genel" ,"threshold ":1," borneEffect ":5,"delay ":0," effect ":1},

{"id ":"toChange" ,"from ":" gene2" ,"to":" gene4 " ," threshold ":1," borneEffect v :0,"delay ":0," effect ":0},

{"id ":"toChange" ,"from ":" gene4" ,"to":" gene2" ," threshold ":1," borneEffect ":0,"delay ":0," effect ":0},

{"id ":"toChange" ,"from ":" gene3" ,"to":" gened4 " ," threshold ":2," borneEffect ":0,"delay ":0," effect ":0},

"id ":"toChange" ,"from ":" gened4 " ,"to":" gene3" ,"threshold ":1," borneEffect ":0 ," delay ":0," effect ":0}],

" "step":0,"

"data":[{"node":" gened " ,"step":2,
niveau":9} ,{"node":" gene3" ,"
step ":0,"niveau":0} ,{"node":" gene2",

niveau":5} ,{"node":"gened " ,"step ":1,"niveau":7},{"node":" gene4
step ":2,"niveau":2} ,{"node":" gene3" ,"step ": "niveau":1},{"node":" gene3",
"step":2,"niveau":4} ,{"node":" gene2" ,"step ":1,"niveau":2} ,{"node":"

gene2" ,"step ":0,"niveau":0} ,{"node":" genel" ,"step":2,"niveau":7},{"node":" genel" ,"step":1,"niveau":6},{"
node ":" genel" ,"step ":0,"niveau":5}]},

{"name":" network_test_memoisation_steps2_ nodes4_ edges0O_data0.json","borneMax":10,"borneMin":0,"
borneEffectOnOthers":5," borneEffectOnSelf":0," globalThreshold":9,"steps ":2,"method":" memoisation"," nodes

":[{"label ":"genel" ,"type":"node"},{"label ":"gene2" ,"type":"node"},{"label ":"gened" ,"type":"node"} ,{"

60
61
62
63
64
65
66
67
68
69
70
71
72
73

74

75
76
7
78
79
80
81
82
83
84
85
86
87

88

89
90
91
92
93
94

95
96
97
98
99

100

101
102

103

104
105
106
107
108
109
110
111
112
113
114
115
116

152

APPENDIX A. SOURCE CODE

label ":"gened" ,"type":"node"}]," edges ":

[

{"id toChange" ," from ":" genel " gene2" ,"threshold ":1,"borneEffect ":5," delay ,"effect ":2},

{"id toChange" ," from ":" gene2" genel" ,"threshold ":3," borneEffect ":0," delay ,"effect ":0},

{"id ":"toChange" ," from ":" genel" gene3" ,"threshold ":1," borneEffect":5,"delay ":0," effect ":1},

{"id ":"toChange" ," from ":" gene3" genel" ,"threshold ":2," borneEffect ":0,"delay ":0," effect ":0},

{"id ":"toChange" ," from ":" gene2" gene3" ,"threshold ":1," borneEffect ":0,"delay ":0," effect ":0},

{"id toChange" ," from ":" gene3" gene2" ,"threshold ":2," borneEffect ":0,"delay ":0," effect ":0},

{"id toChange" ," from genel " gene4 " "threshold ":1," borneEffect ":5,"delay ,"effect":—2},

{"id toChange" ," from gened " | genel" "threshold ":7," borneEffect ":5,"delay ,"effect ":1},

{"id toChange" ," from gene2" | gene4 " "threshold ":1," borneEffect ":0,"delay ,"effect ":0},

{"id toChange" ," from gened " | gene2" "threshold ":1," borneEffect ":0," delay ,"effect ":0},

{"id toChange" ," from ":" gene3 ", gene4" "threshold":2,”borneEffect":O,"delay ,"effect ":0},

{"id toChange " gene3","threshold ":1," borneEffect ":0,"delay ":0," effect ":0}],

"data":[{"node":" :2,"n1veau" 5}, {"node": gene4","step":l,"niveau" 7},{"node":"gened" ,"step ":0,"
niveau":9} ,{"node ","step" ‘2,"n1veau" 2},{"node":"gene3d" ,"step ":1, "nlveau":l},{"node“:“geneS“,“
stcp":O,"nivcau":O},{"nodc“:"gcan“,"stcp":2,"nivcau":4},{"nodc":"gcncZ" "step":1,"niveau":2},{"node":"
gene2","step ":0,"niveau":0} ,{"node":" genel" ,"step":2,"niveau":7},{"node":" genel" ,"step":1,"niveau":6},{"
node ":" genel " ,"step ":0,"niveau":5}]},

"name":" network_test__memoisation_steps2_nodes4__edgesO_data0.json","borneMax":10,"borneMin":0,"
borneEffectOnOthers":5," borneEffectOnSelf":0," globalThreshold":9,"steps ":2,"method":" memoisation" ,"nodes
":[{"label ":" genel", "type":"node"},{"label":"geneQ","type":"node"},{"label":"geneB","type":"node"},{"
label ":" gened4 " ,"type ":" node"}] "edges ": |

{"id ":"toChange" ," from ":" genel " ," to"'" gene2" ,"threshold ":1,"borneEffect ":5,"delay effect ":2},

{"i toChange" ,"from ":" gene2" ,"to ":" genel " ,"threshold ":3," borneEffect ":0," delay effect ":0},

{"id ":"toChange" ,"from ":" genel" ,"to":" gene3" ," threshold ":1," borneEffect ":5,"delay ":0," effect ":1},

{"i toChange" gene3" ,"to":"genel" ,"threshold ":1,"borneEffect":0,"delay effect ":0},

{ toChange" gene2" "to":"gene3" ,"threshold ":1," borneEffect":0," delay effect ":0},

{ toChange" gene3" ,"to":"gene2" ,"threshold ":2," borneEffect ":0," delay effect ":0},

{ toChange" genel" ["to gened " "threshold ":1," borneEffect ":5," delay effect": —2},

{ toChange " gened " | "to genel" "threshold ":1," borneEffect ":5,"delay effect ":1},

{ toChange " gene2" ,"to gened" "threshold ":1," borneEffect ":0," delay effect ":0},

{ toChange " gened " ,"to":"gene2" ,"threshold ":1," borneEffect":0," delay effect ":0},

{ toChange" , gene3" ,"to":"gened" ,"threshold ":2," borneEffect ":0,"delay effect ":0},

{ toChange " gened" ,"to":"gene3" ,"threshold ":1," borneEffect":0," delay cffcct":()}],
":[{"node":" s stcp“:2,"n1vcau"'5} {"node":"gened" ,"step":1,"niveau":7}, {"nodc": gened " ,"step ":0,"
niveau":9},{"node":" gene3" ,"step ":2,"niveau":2},{"node":" gene3" ,"step":1,"niveau":1},{"node":" gene3d","
step":O,"niveau":O},{"node":"geneQ","step":Q,"niveau":4},{"node":"geneQ","step":l,"niveau":Q},{"node":"
gene2" ,"step ":0,"niveau":0},{"node":"genel" ,"step ":2,"niveau":7} ,{"node":" genel" ,"step":1,"niveau":6} ,{"
node ":" genel" ,"step ":0,"niveau":5}]},

"name":" network_ test_memoisation_ steps2_ nodes4_edgesO__data0.json","borneMax":10,"borneMin":0,"
borneEffectOnOthers":5," borneEffectOnSelf":0," globalThreshold":9,"steps ":2,"method":" memoisation" ,"nodes
":[{"label":"genel","type":"node"},{"label":"gene2","type":"node"},{"label":"geneS","type":"node"},{"
label ":" gene4" ,"type":"node"}],"edges ":[

{"id ":"toChange" ," from ":" genel",'to":" gene2" ,"threshold ":1," borneEffect ":5,"delay " ,"effect ":2},

{"i toChange" ,"from ":" gene2" ,"to":" genel" ,"threshold ":3," borneEffect ":0," delay "effect ":0},

{"i toChange" ,"from ":" genel" ,"to":" gene3" ,"threshold ":1," borneEffect ":5," delay "effect ":1},

{"i toChange" ," from":" gene3" ,"to ":" genel","threshold":l,"borneEffect":O,"delay "effect ":0},

{"i toChange" ," from ":" gene2" ,"to gene3" ,"threshold ":1," borneEffect" ,"delay "effect ":0},

{" toChange","from "gene3d" ,"to": geneQ","threshold":2,"b0rneEffect":O "delay :0,"effect ":0},{"id":"
toChange "from ":" genel","to" "gene4","threshold“:1,"borneEffect":S,“delay ,"effect":72} {"1d":"
toChange" ,"from ":" gene4 " ,"to":"genel" ,"threshold ":7," borneEffect":5,"delay ":0," effect ":1},

{"id ":"toChange" ,"from ":" gene2" ,"to":"gened " ," threshold ":1," borneEffect ":0," delay " ,"effect ":0},

{" toChange" ," from gened " ,"to gene2" ,"threshold ":1,"borneEffect ":0," delay ,"effect ":0},

{"id ":"toChange" ,"from ":" gene3" ,"to":"gened " ," threshold ":2," borneEffect ":0,"delay ":0," effect ":0},

{"id ":"toChange" ,"from ":" gene4" ,"to":" gene3" ," threshold ":1," borneEffect ":0,"delay ":0," effect ":0}],"data":[{"
node ":" gened4 " ,"step ":2 ,"niveau":5} ,{"node":"gened " ,"step ":1,"niveau":7} ,{"node":" gene4" ,"step ":0,"niveau
":9},{"node":"gened" ,"step ":2,"niveau":2} ,{"node":"gene3" ,"step ":1,"niveau":1} ,{"node":" gene3" ,"step ":0,"
niveau":0} ,{"node":"gene2" ,"step ":2,"niveau":4} ,{"node":" gene2" ,"step ":1,"niveau":2} ,{"node":" gene2","
step ":0,"niveau":0} ,{"node":" genel" ,"step ":2,"niveau":7} ,{"node":" genel" ,"step ":1,"niveau":6} ,{"node":"
genel" ,"step ":0,"niveau":5}]} ,{"name":" network_test_memoisation_steps2_ nodes4__edgesO_datal.json","
borneMax":10," borneMin " "borneEffectOnOthers":5," borneEffectOnSelf":0," globalThreshold ":9,"steps ":2,"
method ":" memoisation" ,"nodes ":[{"label ":" genel" ,"type":"node"},{"label ":"gene2" ,"type":"node"} ,{"label ":"
gene3" ,"type":"node"},{"label ":"gened" ,"type":"node"}],"edges ":[{"id ":"toChange" ,"from":" genel" ,"to":"
gene2" ,"threshold ":1," borneEffect ":5,"delay ":0," effect ":2} ,{"id ":"toChange" ,"from":" gene2","to":" genel","
threshold ":2," borneEffect ":0,"delay ":0," effect ":0},

{"id ":"toChange" ,"from ":" genel" ,"to":"gene3"," threshold ":1," borneEffect ":5,"delay ":0," effect ":1},{"id":"
toChange" ,"from ":" gene3","to":"genel" ,"threshold ":2," borneEffect ":0,"delay ":0," effect ":0},{"id":"toChange
","from":" gene2","to":"gene3","threshold ":1," borneEffect":0,"delay ":0," effect":0},{"id":"toChange"," from

"gene3","to":"gene2","threshold ":2," borneEffect ":0,"delay ":0," effect ":0},{"id ":"toChange","from":" genel
","to":"gened4 " ,"threshold ":1," borneEffect ":5,"delay ":0," effect": —2},{"id ":"toChange"," from ":" gened" ," to

"genel","threshold":1,"borneEffect":5,"delay ":0," effect ":1},{"id":"toChange","from ":" gene2","to":" gene4d
","threshold ":1,"borneEffect ":0,"delay ":0," effect ":0} ,{"id ":"toChange" ,"from":" gene4" ,"to":" gene2","
threshold ":1,"borneEffect ":0,"delay ":0," effect ":0},{"id ":"toChange" ," from ":" gene3","to":" gened " ,"
threshold ":2 ,"borneEffect ":0," delay ":0," effect ":0},

{"id ":"toChange" ,"from ":" gened4" ,"to":"gene3" ," threshold":1," borneEffect ":0,"delay ":0," effect ":0}],

"data":[{"node":" gened " ,"step ":2,"niveau":5} ,{"node":" gene4" "step“ 1,"niveau":7},{"node":"gene4","step":O,"
niveau":9} ,{"node":" gene3" ,"step ":2," niveau":2},{"node" "gene3" ,"step":1,"niveau":1},{"node":" gene3" ,"
step ":0,"niveau":0} ,{"node":" gene2" ,"step ":2 ,"niveau":4}, {“node":"gene2“ "step":1,"niveau":2} ,{"node":"
gene2" ,"step ":0,"niveau":0} ,{"node":" genel","step":2,"niveau":7},{"node" "genel" ,"step":1,"niveau":6},{"
node ":" genel" ,"step ":0,"niveau":5}]},

{"name":" network__test_memoisation_steps2_nodes4__edgesO_data0.json","borneMax":10," borneMin":0,"
borneEffectOnOthers":5," borneEffectOnSelf" "globalThreshold ":9 ,"steps ":2,"method":" memoisation" ," nodes
“:[{"label":"genel" "type":"node"} ,{"label ":"gene2" ,"type":"node"},{"label ":"gene3" ,"type":"node"} ,{"
label ":" gened " typc":“ node"}],"edges ": [

{"id ":"toChange" genel" ,"to":"gene2","threshold ":1," borneEffect":5,"delay ,"effect ":2},

{"id toChange " gene2" ,"to":"genel" ,"threshold ":2,"borneEffect":0,"delay ,"effect ":0},

{"id toChange " genel" ,"to":"gene3" ,"threshold ":1," borneEffect":5," delay ,"effect ":1},

{"id toChange" gene3" ,"to":"genel" ,"threshold ":2," borneEffect ":0," delay ,"effect ":0},

{"id ":"toChange" gene2" ,"to":"gene3" ,"threshold ":1," borneEffect ":0," delay ,"effect ":0},

{"id ":"toChange" gene3" ,"to":"gene2" ,"threshold ":2," borneEffect ":0," delay ,"effect ":0},

{"id ":"toChange" genel" "to":"gened4" ,"threshold ":1," borneEffect":5," delay ,"effect": —2},

{"id toChange" gened " "to":"genel" ,"threshold ":7," borneEffect ":5," delay ,"effect ":1},

{"id toChange" gene2" ,"to gene4" "threshold ":1,"borneEffect ":0," delay ,"effect ":0},

{"id toChange" gened " | "to gene2" "threshold ":1," borneEffect ":0,"delay ,"effect ":0},

{"id toChange" gene3d" ,"to gened ", "threshold":Z,"borneEffect":O,“delay ,"effect ":0},

{"id toChange " gened " ,"to":"gene3" ,"threshold ":1," borneEffect ":0,"delay ,"effect ":0}],

"data " :[{"node":"gene4","step":2,"niveau":S},{"node": gene4","step":l,"nivedu" 7} {"node" "gened " ,"step":0,"
niveau":9} ,{"node":"gene3" ,"step ":2,"niveau":2} ,{"node":" gene3" ,"step ":1 ":1},{"node":" gened" ,"
step":O,"niveau":O},{"node":"geneZ","step":2,"niveau":4},{"node":"gene?", :1,"niveau":2},{"node":"
gene2","step ":0,"niveau":0} ,{"node":" genel" ,"step":2,"niveau":7},{"node":" genel" ,"step":1,"niveau":6},{"
node ":" genel " ,"step ":0,"niveau":5}]}]}

A.6. TESTS 153

A.6.4 Prolog

1 :— include(prolog_server).

2

3 % lancer la campagne de test : ?— systematic_test(all, "logfile JIMMAAAA HHMM") .
4 systematic_ test (A, General logfile):—

5 % Recupere la liste de tous les networks (fichiers)
6 liste (A, Lclean),

7

8 setup_ call_cleanup (

9 createLog (General__logfile ,globalStream)

10 systematic_test_rec(globalStream ,Lclean),

11 closeLog (globalStream)) ,!.

12

13 systematic_test_rec(GL,[]):—writeln("Done!").
14 systematic_test_rec(GL,[H| Tail]):—

15 write (GL,H) , write(GL, ","), get_ time(T1l), write(GL,T1),%

16 (catch(call _with time limit(5,test (H)),Exception, true)—>

17 (var (Exception)—> !,

18 write ("OK,") ,

19 get_time(T2),

20 T is T2-T1,

21 write (T)

22 writeln (" [s]"),

23 write (GL, " ,OK, ") ,

24 write (GL, T),

25 writeln (GL, " ,[s]")

26 ; ! writeln ("timeout") ,writeln (GL, " ,timeout,inf ,[s]"))

27 ; 1,

28 get_time(T3),

29 Tf is T3-T1,

30 write (GL, " ,FAIL,") ,

31 write (GL, Tf),

32 writeln (GL, " ,[s]"),

33 write (" ,FAIL,.") ,

34 write (Tf) ,

35 writeln("[s]u")),

36

37 write("j'ai testAO =>,"), writeln (H),

38 systematic_test rec(GL, Tail).

39

40

41 test (Fichier_Test) :—

42 setup_ call_cleanup (

43 createlLog ,

44 test_ (Fichier_Test),

45 closeLog) .

46

47 test_ (Fichier_ Test) :—logger("test"),

48 atomic_concat("networks/systematic_test/",Fichier Test, Fichier),

49 open(Fichier , read, MonStream) ,

50 json__read (MonStream, JsonIn) ,

51 close (MonStream) ,

52 logger (Jsonln) ,

53 myTranslate (Name,

54 BorneMaxNiveau ,

55 BorneMinNiveau ,

56 BorneEffectOnOthers

57 BorneEffectOnSelf ,

58 GlobalThreshold ,

59 Steps,

60 Method ,

61 Sparsity ,

62 Labeling ,

63 NSol,

64 Nodes ,

65 Edges,

66 Data,

67 JsonIn) ,

68 logger ("[test] Before Solve"),

69 solve (Method , Sparsity , Labeling ,Nodes, Edges,Data,BorneMinNiveau ,BorneMaxNiveau,
BorneEffectOnOthers , BorneEffectOnSelf , GlobalThreshold , Steps , Lassoc)

70 logger ("[test] After, Solve"),

71 get__data__edge(Lassoc ,Data_output,Edges_output),

72 produceJson (

73 Name,

154 APPENDIX A. SOURCE CODE

74 BorneMaxNiveau ,

75 BorneMinNiveau ,

76 BorneEffectOnOthers
7 BorneEffectOnSelf ,
78 GlobalThreshold ,

79 Steps,

80 Method ,

81 Sparsity ,

82 Labeling ,

83 NSol,

84 Nodes,

85 Edges_output,

86 Data_ output,

87 DictOut) ,

88 logger ("[test] Done").
89

90

91 nettoyer_ liste(L,Lclean):—
92 nettoyer_ liste (L, Lclean,[]) .
93

94 nettoyer_liste_ ([],Acc,Acc):—!.
95 nettoyer_ liste ([H|T], Lclean,6 Acc):—

96 file. name_extension(_, json, H),

97 nettoyer_ liste (T, Lclean ,[H|Acc]) .

98 mnettoyer_ liste ([H|T],Lclean ,Acc):—

99 nettoyer_liste (T, Lclean ,Acc).

100

101 liste (all ,L):—

102 directory files("networks/systematic_ test/" ,Ltmp),
103 nettoyer_ liste (Ltmp,L).

104

105 liste (lineaire ,Lcleanlin):—

106 Lcleanlin =["network__test_lineaire_steps2_nodes2__edges0_datal.json", "

"

network_test_lineaire_steps2_nodes2_edgesO_data2.json",
network_test_lineaire_steps2_nodes2_edgesO_data3.json",
network_test_ lineaire_steps2_nodes2_edges2_data2.json",
network_test_lineaire_steps2_nodes2_edges2_data3.json",
network_test_lineaire_steps2_nodes3__edgesO_datal. json"
network_ test_lineaire_steps2_ nodes3__edges0O_data2.json"
network_test_lineaire_steps2_nodes3__edgesO_data3.json"
network_ test_lineaire_steps2_ nodes3__edges2_ datal.json",
network_test_lineaire_steps2_nodes3__edges2_data2.json",
network_test_lineaire_steps2_ nodes3__edges2_data3.json",
network_test_lineaire_steps2_nodes4__edgesO_data0.json",
network_ test_lineaire_steps2_ nodes4_edgesO__datal.json",
network_ test_lineaire_steps2_ nodes4_edgesO_data2.json",
network_test_lineaire_steps2_nodes4__edgesO__data3.json",
network_ test_lineaire_steps2_ nodes4_edges2_data0.json",
network__test__lineaire__steps2_nodes4__edges2__datal.json",
network_test_lineaire_steps2_nodes4_edges2_data2.json",
network__test_lineaire_steps2_nodes4_edges2_data3.json",
network_ test_lineaire_steps2_ nodes4_edges4d_data0.json",
network__test_lineaire_steps2_nodes4__edges4__datal.json",
network_ test_lineaire_steps2_ nodes4__edges4_data2.json",
network_test_ lineaire_steps2_nodes4_edges4_data3.json",
network_ test_lineaire_steps2_ nodes4__edges6__data0.json",
network_test_ lineaire_steps2_nodes4_edges6__datal.json",
network_test_lineaire_steps2_nodes4__edges6__data2.json",
network_test_ lineaire_steps2_nodes4_edges6__data3.json",
network_test_lineaire_steps4_nodes2_edgesO_data2.json",
network_test_ lineaire_steps4_nodes2__edgesO__data3.json",
network_ test_lineaire_steps4_nodes3__edgesO_datal.json",
network_test_lineaire_steps4_nodes3__edges2__data2.json",
network_ test_lineaire_steps4_nodes4_edgesO_data0.json",
network_test_lineaire_steps4_nodes4__edgesO_data2.json",
network_test_lineaire_steps4_nodes4d_edges2_data0.json",
network_test_lineaire_steps4_nodes4__edges2_datal.json",
network_ test_lineaire_steps4_nodes4d_edges4d_data0.json",
network__test_lineaire_steps4_nodes4__edges6__data0.json",
network_ test_lineaire_steps6_nodes2_edgesO_data3.json",
network_test_ lineaire_steps6_nodes4_edgesO_data0.json",
network_ test_lineaire_steps6_nodes4__edges2_data0.json",
network_test_ lineaire_steps6_nodes4_edges2_datal.json",
network_test_lineaire_steps6_nodes4_edgesd_data0.json",
network_test_ lineaire_steps6_nodes4__edges6__data0.json",
network__test_lineaire_steps8_nodes4__edgesO_data0.json",

107
108
109

110
111
112

A.6.

TESTS

network_test_lineaire_steps8_nodes4__edges2__data0.json",
network_ test_lineaire_steps8_ nodes4_edges4_data0.json",

"

"

network__test_lineaire_steps8_nodes4_edges6__data0.json"].

liste (tmp, Lcleantmp):—

Lcleantmp = ["network test tmp steps2 nodes2 edges0_ datal.json",

network__test__tmp_ steps2_nodes2__edgesO__data2.json",
network test_tmp_ steps2_nodes2 edgesO_data3.json",
network_test_tmp_ steps2_nodes2_ edges2 data2.json",
network test_tmp_ steps2_nodes2_ edges2 data3.json",
network_test_tmp_ steps2_nodes3__edgesO_datal. json"
network_ test_tmp_ steps2_ nodes3__edgesO_data2.json",
network_test_tmp_ steps2_nodes3__edgesO__data3.json",
network_test__tmp_ steps2_nodes3__edges2_datal.json",
network test_tmp_ steps2_nodes3__edges2 data2.json",
network_test_tmp_ steps2_nodes3_edges2 data3.json",
network test__tmp_ steps2_nodes4d_edgesO__data0.json",
network_test_tmp_ steps2_nodes4_edgesO_datal.json",
network_test_tmp_ steps2_ nodes4d_edgesO_data2.json",
network_test_tmp_ steps2_nodes4d_edgesO__data3.json",
network_test__tmp_ steps2_nodes4d__edges2_data0.json",
network_test_tmp_ steps2_nodes4d_edges2_ datal.json",
network_ test_tmp_ steps2_nodes4 edges2 data2.json",
network_test__tmp_ steps2_nodes4__edges2_ data3.json",
network_ test_tmp_ steps2_nodes4_ edges4 data0.json",
network_test__tmp_ steps2_nodes4__edges4_datal.json",
network_ test_tmp_ steps2_nodes4d_edges4d data2.json",
network_test__tmp_ steps2_nodes4d__edges4d_data3.json",
network_ test_tmp_ steps2_nodes4d edges6_data0.json",
network__test__tmp_ steps2_nodes4d__edges6__datal.json",
network test_tmp_ steps2_nodes4d edges6_data2.json",
network_test_tmp_ steps2_nodes4_edges6__data3.json",
network test__tmp_ steps4_nodes2_ edgesO__data2.json",
network_test_tmp_ steps4_nodes2_ edgesO_data3.json",
network_ test_tmp_ steps4_nodes3__edgesO_data2.json",
network_test_tmp_ steps4_nodes3__edges2_ data2.json",
network_test__tmp_ steps4_nodes4d__edgesO__datal.json",
network_test_tmp_ steps4_nodesd_edges2_ datal.json",
network_ test_tmp_ steps4_ nodes4 edges2 data2.json",
network_test__tmp_ steps4_nodes4d__edges2_ data3.json",
network_ test_tmp_ steps4_nodes4d edges4d data0.json",
network_test_tmp_ steps4d_nodesd_edges4d_datal.json",
network_ test_tmp_ steps4_nodesd_ edgesd data3.json",
network_test__tmp_ steps4_nodes4d__edges6__datal.json",
network test_tmp_ steps4_nodesd edges6_datal.json",
network_ test_tmp_ steps4_nodes4d edges6_data2.json",
network_test__tmp_ steps4_nodes4d__edges6__data3.json",
network_ test_tmp_ steps6_nodes2 edgesO_data3.json",
network_test__tmp_ steps6_nodes4d__edges4d__data0.json",
network_test_tmp_ steps6_nodes4d_ edges6_data0.json",
network_test__tmp_ steps8_nodes4d__edges4d_datal.json",
network test tmp steps8 nodes4d edges6_ datal.json'].

liste (memoisation , Lcleanmem):—

Lcleanmem = ["network_ test_ memoisation_steps2 nodes2_ edgesO_datal.json",

"

network_test__memoisation_steps2_nodes2_edges0__data2.
network_test__memoisation_steps2_nodes2_edges0_data3.
network_test__memoisation_steps2_ nodes2_ edges2_data2.
network_test__memoisation_steps2_nodes2_edges2_data3.
.json"
network_test__memoisation_steps2_nodes3__edges0__data2.
network_ test_ memoisation_steps2_nodes3__edges0__data3.
network__test__memoisation_steps2_nodes3__edges2__datal.
network_test__memoisation_steps2_ nodes3__edges2_ data2.
network__test__memoisation_steps2_nodes3__edges2__data3.
network_test__memoisation_steps2_ nodes4_edgesO_data0.
network__test__memoisation_steps2_nodes4__edges0__datal.
network_test__memoisation_steps2_ nodes4d_edges0_data2.
network_test__memoisation_steps2_nodes4__edges0__data3.
network_test__memoisation_steps2_ nodes4_edges2_data0.
network_test__memoisation_steps2_nodes4_edges2_datal.
network_test__memoisation_steps2_ nodes4__edges2_data2.
network_test__memoisation_steps2_nodes4_edges2_data3.
network_test__memoisation_steps2_ nodes4_edges4_data0.
network_test__memoisation_steps2_nodes4__edges4_datal.
network_test__memoisation_steps2_nodes4__edges4_data2.

network_ test_memoisation_ steps2_ nodes3__edges0__datal

json"
json"
json"
json"

json"
json"
json"
json"
json"
json"
json"
json"
json"
json"
json"
json"
json"
json"
json"
json"

)

)

)

)

"

155

"

"

© 00O U W~

R R R R R W0 W W W W W W W W WNNNDNDNDNDNDNDNDN R e e
DU WN P OOOTDDUER WNFRFOOOTDNUER WNRFE OO U WN RO

156 APPENDIX A. SOURCE CODE

network_test__memoisation_steps2_nodes4__edges4__data3d.json",
network_ test__memoisation_steps2_ nodes4_edges6_data0.json",
network_test__memoisation_steps2_ nodes4__edges6__datal.json",
network_ test__memoisation_steps2_nodes4_edges6_data2.json",
network_test__memoisation_steps2_nodes4__edges6__data3.json",
network_ test__memoisation_steps4_nodes2_edgesO_data2.json",
network__test__memoisation__steps4_nodes2__edges0O__data3.json",
network_ test__memoisation_steps4_nodes3__edgesO_data2.json",
network_test__memoisation_steps4_nodes3__edges2_ data2.json",
network_test__memoisation_steps4_nodes4__edgesO__datal.json",
network_test__memoisation_ steps4_nodes4_edges2_datal.json",
network_test__memoisation_steps4_nodes4_edges2_data2.json",
network_test__memoisation_steps4d_nodes4d__edges2_ data3d.json",
network_test__memoisation_steps4_nodes4__edges4__data0.json",
network_ test__memoisation_steps4_nodes4__edges4d_datal.json",
network_test__memoisation_steps4_nodes4_edges4_data2.json",
network_test__memoisation_steps4_nodes4__edges4_data3d.json",
network_test__memoisation_ steps4_nodes4__edges6_data0.json",
network test__memoisation_steps4_nodes4_edges6__datal.json",
network_test__memoisation_steps4d_nodes4__edges6__data2.json",
network_test__memoisation_steps4_nodes4__edges6__data3.json",
network_test__memoisation_steps6_nodes2__edgesO__data3.json",
network_ test__memoisation_steps6_nodes4_edges4 datal.json",
network_test__memoisation_steps6__nodes4__edges6__datal.json",
network_ test__memoisation_steps8_ nodes4_edges4 datal.json",
network__test_ memoisation_steps8_nodes4__edges6__data0.json"].

A.6.5 Python scripts

#!/usr/bin/python
import os

#
#to change according to the test done

source = open("logs/test_logfile2.txt","r").

text__source = source.readlines ()
text__source.sort ()

Creation des fichiers cibles

targetMemoisation = open("results/memoisation.txt",6 "w")
targetLineaire = open("results/lineaire.txt","w")
targetTmp = open("results/tmp.txt","w")

targetAsync = open("results/async.txt", "w")

targetTable = open("results/table.txt","w")

summary = open("results/summary.txt",6 "w")

Initialisation des fichiers cibles
for target in [targetMemoisation, targetLineaire, targetTmp, targetAsync]:
target.write("[")

counter_ fail_tmp 0
counter_ fail_lin 0
counter fail memo = 0
counter__fail_async = 0

counter_timeout__tmp = 0
counter__timeout_lin = 0
counter_timeout memo = 0
counter__timeout__async = 0
ind i=0

nomTestList =[]
linRes =[]
tmpRes =[]
memRes =]
asyRes=][]
linTime =[]
tmpTime=]]
memTime=/]
asyTime =[]

targetTable . write (" | _MEIHOD, | _STEPS, | _NODES, | EDGES/ | _DATA | RESULT.|_\n")

A.6. TESTS 157

47 summary. write ("|"+"TEST" . center (12) +"|"+"LIN, ([ms]) ".center (12) + "|"+ "IMP,([ms])".center
) \n")

(12) + "|" + "MEM,([ms])".center (12) + "|" + "\n")# ASY (
48
49 #network__test__asynchronous__steps8_mnodes3__edgesO__datal.json
50
51 for line in text source:
52 if(line [0] !'= "%" and len(line) > 2):
53 splitLine = line.split(",")
54 nomTest = splitLine [0]
55 #print (nomTest)
56 nomSplit = nomTest.split (" ")
57 #print (nomSplit)
58 method = nomSplit [2]
59 steps = nomSplit [3][5:]
60 nodes = nomSplit [4][5:]
61 edges = nomSplit [5][5:]
62 data = nomSplit [6][4:]. split () [0]
63
64 logfile = splitLine [1]
65 result =splitLine [2]
66 timing =splitLine [3]
67 time_ms = round(float (timing), 3)*1000
68
69 if result=="timeout":
70 res="/"
71 if result="FAIL":
72 res="0"
73 if result="OK":
74 res="1"
75
76 if method[0:3]=="1in"
7 linRes .append(res)
78 linTime . append (str (time ms))
79 elif method[0:3]=="tmp"
80 tmpRes.append (res)
81 tmpTime. append (str (time ms))
82 elif method[0:3]=="mem":
83 memRes. append (res)
84 memTime. append (str (time_ms))
85 elif method[0:3]=="asy"
86 asyRes.append(res)
87 asyTime.append (str (time ms))
88
89 strName=str (steps)+"—"+str (nodes)+"—"+str (edges)+"—"+str (data)
90 if (not(strName in nomTestList)):
91 nomTestList . append (strName)
92
93 #if result==" timeout ":
94 # time = splitLine [8]
95 if (result="timeout" and method=="asynchronous"):
96 counter__timeout__async+=1
97 if (result="timeout" and method=—"tmp"):
98 counter_ timeout_ tmp+=1
99 if (result="timeout" and method=—"lineaire"):
100 counter timeout lin+=1
101 if (result="timeout" and method=—"memoisation"):
102 counter_ timeout memo+=1
103
104 if (result="FAIL" and method=="asynchronous"):
105 counter_ fail async+=1
106 targetAsync. write("\"" + nomTest+"\",")
107 if (result="FAIL"' and method="tmp"):
108 counter_ fail__tmp+=1
109 targetTmp . write ("\"" 4+ nomTest+"\",")
110 if (result="FAIL" and method="lineaire"):
111 counter_ fail_lin+=1
112 targetLineaire.write("\"" + nomTest+"\",")
113 if (result="FAIL" and method=—"memoisation"):
114 counter fail memo+=1
115 targetMemoisation. write("\"" + nomTest+"\",")
116
117 targetTable. write ("] "+method [0:3]. center (12)4"| "+steps.center (12)+"| "+nodes.center (12)4"|"
+edges.center (12)+" | "+data.center (12)+"|"+res.center (12)+"|\n")
118

119 for i in range(0,len(nomTestList)—1):
120 #print (i)

121

122
123

124

125
126
127
128
129
130
131
132

© 00 O Ut WN -

29

30

31

32
33

35

36
37

38
39
40
41
42
43
44
45

47
48
49
50

158 APPENDIX A. SOURCE CODE

summary . write (" | "+nomTestList [i]. center (12)4"|"+ (linRes[i]+"("+linTime[i] +")").center (12)
+ "|"+ (tmpRes[i]+" ("+tmpTime[i] +")").center (12)+ "|"+ (memRes[i]+"("+memTime[i] +")").
center (12) + "|\n")#asyRes[i]+"("+ +") [\n")

print ("FAILED, LIN — TMP — MEMO — ASYNC ==>_" + str(counter_fail lin) + " —_" + str(
counter_ fail_tmp) + ".—_" + str(counter_fail _memo) + " ,—_" + str(counter_fail_async))
print ("TIMEOUT_LIN_ — TMP_— MEMO_— ASYNC =—=>," + str(counter_timeout_lin) + "_—_" + str(

counter__timeout__tmp) + " —_" + str(counter_timeout_memo) + " — " + str(
counter_timeout_async))

Fermetures des fichiers cibles

source . close ()

targetTable. close ()

summary . close ()

for target in [targetMemoisation, targetLineaire, targetTmp, targetAsync]:
target . write("]")
target .close ()

#!/usr/bin/python
import os
from numpy import x*

#to change according to the test done
A4

method="tmp"

source_labeling reverse = open('logs/essai_ labeling reverse "4+ method +".txt","r")
source__labeling_all_ff = open("logs/essai_labeling_all_ff "+ method +".txt","r")
source__labeling__all_std = open("logs/essai_labeling_all_std_ "+ method +".txt","r")
source_labeling norm = open('logs/essai_labeling norm_ "4+ method +".txt","r")
text_source_labeling norm = source_labeling norm.readlines ()
text__source_labeling_all_std = source_labeling_all_std.readlines ()
text__source_labeling_all_ff = source_labeling_all_ff.readlines ()
text__source_labeling_ reverse = source_labeling_ reverse.readlines ()
text__source_labeling_norm.sort ()
text__source_labeling__all_std.sort ()
text_source_labeling all_ ff.sort ()
text__source_labeling_reverse.sort ()
Creation des fichiers cibles
summary_ labeling = open("results/summary_labeling_ "+method+".txt" , "w")
Initialisation des fichiers cibles
for target in [summary labeling]:

target . write ("

% 0\
n")
target . write ("% AUTOMATICALLY, GENERATED RESULT, FILE
Z\n")
target.write ("% USING, ,labeling__testbench .py
Z\n")

target . write ("
% P\

n')

results =[[],[],[],[],[]]
summary labeling.write("|"+ "TEST".center (43) + "|" 4+ "ALL—std [ms]".center(11) +"|"+ "ALL—ff,
[ms]".center(11) +"|"+ "NORM, [ms]".center(11) + "|"+"REV, [ms]".center (11) +"[\n")

metwork__test_ lineaire__steps2_nodes2__edgesO__datal.json ,1534178956.3300853,0K
,0.0086669921875,[s]
metwork_test_lineaire__steps8_nodes3__edgesO__datal.json

ce sont les memes noms par methode appliquees
for line in text_source_labeling norm:
if(line [0] !'= "%" and len(line) > 2):
splitLine = line.split(",")
nomTest = splitLine [0]
nomSplit = nomTest.split (" _
results [0].append (nomTest[13:])

[l

indice_ colonne=1
for text_source in [text_source_labeling all std, text_source_labeling all_ff,

0O Ut WK

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

30

A.6. TESTS

text__source__labeling_norm ,
for line in text source:
if (line [0] != "%" and len(line) > 2):
splitLine = line.split(",")
timing =splitLine [3]
time ms = round(float (timing), 3)*1000
time_str = str(time_ms)
results [indice__colonne].append (time_str)
indice colonne+=1

for i in range(0,len(results[0])—1):
#print (i)
summary_ labeling . write (" | "+results [0]]
[2][i].center (11)+"|"+results [3][1

i].cent
|. cente

Fermetures des fichiers cibles
source_labeling reverse.close ()
source__labeling all_std.close()
source__labeling__all_ff.close ()
source_labeling norm. close ()
summary__labeling. close ()

#!/usr/bin/python
import os

suppression des fichiers
dirdest = os.getcwd ()

nodeList = ["genel","gene2","gene3","gened","geneb"
edgeList = |
"{\“id\":\"tOChal’lge\“7\"f1‘0n’1\“2\“genel\",\“tO\“
\":\“/\"7\“delay\":07\"effect\":Q}",
"{\“id\":\"tochange\“7\|Vfr0m\":\“gene2\"7\Vlt0\"
\IV:\“/\H7\“(:1613431\“:()’\IIeffe(:t\“:_]‘}"7
IV{\“id\":\“tochange\“7\|Vfr0m\“:\“genel\“7\Vlt0\“
\"Z\"/\“7\"dela,y\"107\"effeCt\":l}"7
"{\“id\“:\"tochange\"7\"fI‘Om\“Z\"geHeQ\"7\"t0\“
\IV:\IV/\VI’\IVdelay\Vl:07\Yleffect\":Q}IV’
“{\"id\“:\“tOChange\"7\“fr0m\":\"gene4\“7\"t0\"
\":\"/\"7\"delay\":07\“effect\“:l}"7
"{\"id\":\"tochange\"7\"f1‘0m\":\"gene3\"7\"1:0\"
\IV:\IV/\VI7\"dela’},\":07\“ef'fe(:t\“:o}IV7
"{\"id\"l\"tochange\"7\"f1'0m\"2\"gene3\",\"tO\“
VAT AT A delav)"0 A" effect N0V "
AN y\":0,\ :
"{\“id\":\"toch&nge\“7\"fI‘0m\"Z\“gene3\",\"tO\“
\":\“/\"7\“delay\":07\"effect\":o}"]
edgeList_full = |
"{\“id\":\"tochange\“7\|Vfr0m\":\“genel\"7\Vlt0\“
delay \":0,\" effect \":2}",
"{\“id\":\"tochange\“,\"from\":\“geneZ\",\"to\“
delay \":0,\" effect\":—1}",
"{\"id\":\"tochange\",\"from\":\"genel\",\"to\"
delay \":0,\" effect \":1}",
"{\"id\":\"tochange\",\"from\":\"geneQ\",\"to\"
delay \":0,\" effect \":2}",
"{\"id\":\"tochange\",\"from\":\"gene4\"7\"t0\“
delay \":0,\"effect\":1}",
"{\"id\":\"tochange\“,\"from\":\"geneS\",\"to\"
delay \":0,\"effect\":0}",
"{\“id\":\"tochange\“,\"from\":\“gene?)\",\"to\"
delay \":0,\"effect \":0}",
"{\“id\":\"tochange\“7\"fI‘0m\"Z\“g6n63\"7\“'50\"

delay \":0,\"effect\":0}"]

dataList =

["{\"node\":\"gened4\",\"step\":8,\"niveau\":0}"
,"{\"node\":\"gene2\",\"step\":8,\"niveau\"
Vi),

["{\"node\":\"gened4\",\"step\":7,\"niveau\":0}"
,"{\"node\":\"gene2\",\"step\":7,\"niveau\"
V151717 node "<\ T gened ", \" step \":6,\"

159

text__source__labeling_reverse]:

er (43)+"|"+results [1]

[i].center (11)+"|"+results
r(11)+"|" + results [4]]i

].center (11)+"|" +"\n")

,"geneb" "gene7" ,"gene8" "gene9" ,"genell"]

:\"gene2\",\"threshold\":\"/\",\"borneEffect
:\"genel\",\"threshold\":\"/\",\"borneEffect
:\"gene3\",\"threshold\":\"/\",\"borneEffect
:\"gened4\",\"threshold\":\"/\",\"borneEffect
:\"genel\",\"threshold\":\"/\",\"borneEffect
:\"genel\",\"threshold\":\"/\",\"borneEffect
:\"gened4\",\"threshold\":\"/\",\"borneEffect
:\"gene2\",\"threshold\":\"/\",\"borneEffect
:\"gene2\",\"threshold\":4,\"borneEffect \":5,\"
:\"genel\",\"threshold\":9,\"borneEffect\":5,\"
:\"gene3\",\"threshold\":1,\"borneEffect \":5,\"
:\"gened4\",\"threshold \":9,\"borneEffect\":5,\"
:\"genel\",\"threshold\":7,\"borneEffect\":5,\"
:\"genel\",\"threshold\":1,\"borneEffect\":5,\"
:\"gene4\",\"threshold\":1,\"borneEffect \":5,\"
:\"gene2\",\"threshold\":1,\"borneEffect\":5,\"

,"{\"node\":\"gene3\",\"step\":8,\"niveau\":2}"
:10} " ,"{\"node\":\"genel\",\"step\":8,\"niveau

,"{\"node\":\"gene3\",\"step\":7,\"niveau\":2}"
:10}","{\"node\":\"genel\",\"step\":7,\"niveau
niveau\":0}","{\"node\":\"gene3\",\"step\":6,\"

niveau\":2}","{\"node\":\"gene2\",\"step\":6,\"niveau\":10}","{\"node\":\"genel\",\"step

31
32
33
34
35
36
37
38
39
40

41

43

44

160

APPENDIX A. SOURCE CODE

\":6,\"niveau\":6}"],["{\"node\":\"gened4\",\"step\":5,\"niveau\":0}"," {\"node\":\" gene3
\'",\"step\":5,\"niveau\":2}","{\"node\":\"gene2\",\"step\":5,\ " "niveau\":10}","{\"node\":\"
genel\",\"step\":5,\"niveau\":7}"],["{\"node\":\"gened\",\"step\":4,\"niveau\":1}","{\"
node\":\"gene3\",\"step\":4,\"niveau\":2}","{\"node\":\"gene2\",\"step\":4,\"niveau\":8}",
"{\"node\":\"genel\",\"step\":4,\"niveau\":7}"],["{\"node\":\"gened\" ,\"step\":3,\" niveau
\":3}","{\"node\":\"gene3\",\"step\":3,\"niveau\":2}"," {\"node\":\"gene2\",\"step\":3,\"
niveau\":6}","{\"node\":\"genel \",\"step\":3,\"niveau\":7}"],["{\"node\":\"gened \",\"step
\":2,\"niveau\":5}","{\"node\":\"gene3\",\"step\":2,\"niveau\":2}","{\"node\":\"gene2\" \"
step\":2,\"niveau\":4}","{\"node\ ":\"genel\",\"step\":2,\"niveau\":7}"],["{\"node\":\"
gened \",\"step\":1,\"niveau\":7}","{\"node\":\"gene3\",\"step\":1,\"niveau\":1}","{\"node
\'":\"gene2\",\"step\":1,\"niveau\":2}","{\"node\":\"genel\",\"step\":1,\"niveau\":6}"],["
{\"node\":\"gened4\",\"step\":0,\"niveau\":9}","{\"node\":\"gene3\",\"step\":0,\"niveau
\":0}","{\"node\":\"gene2\",\"step\":0,\"niveau\":0}"," {\"node\":\"genel\",\"step\":0,\"
niveau\":5}"]]

edgeList__bool = |
"{\"id \":\"tochange\",\"from\":\"genel\",\"to\":\"gene2\",\"threshold\":\"/\",\"borneEffect

N\ /\" L\ "delay \":0,\"effect \":1}",

"{\"id \":\"tochange\",\"from\":\"gene2\",\"to\":\"genel\",\"threshold\":\"/\",\"borneEffect

VT Ndelay \ "0\ " effect \":—1}"

"{\"id \":\"tochange\",\"from\":\"genel\",\"to\":\"gene3\",\"threshold\":\"/\",\"borneEffect

VTV T delay \"0,\ " effect \ "1} "

"{\"id \":\"tochange\",\"from\":\"gene2\" ,\"to\":\"gened\",\"threshold\":\"/\",\"borneEffect

VA T/\T L\ M delay \ "0\ " effect \":1} ",

"{\"id \":\"tochange\",\"from\":\"gened\" ,\"to\":\"genel\",\"threshold\":\"/\",\"borneEffect

VAT " delay \ "0\ " effect \":1} ",

"{\"id \":\"tochange\",\"from\":\"gene3\",\"to\":\"genel\",\"threshold\":\"/\",\"borneEffect

N\ /\",\"delay \":0,\"effect \":0}",

"{\"id \":\"tochange\",\"from\":\"gene3\",\"to\":\"gened\",\"threshold\":\"/\",\"borneEffect

N\ /\" L\ "delay \":0,\"effect \":0}",

"{\"id \":\"tochange\",\"from\":\"gene3\",\"to\":\"gene2\",\"threshold\":\"/\",\"borneEffect

N\ /\" L\ "delay \":0,\"effect \":0} "]

dataList_bool = |
["{\"node\":\"gened4\",\"step\":8,\"niveau\":0}","{\"node\":\"gene3\",\"step\":8,\"niveau\":2}"

,"{\"node\":\"gene2\",\"step\":8,\"niveau\":2}","{\"node\":\"genel\",\"step\":8,\"niveau
10377,

["{\"node\":\"gened\",\"step\":7,\"niveau\":0}","{\"node\":\"gened\",\"step\":7,\"niveau\":2}"

for

for

,"{\"node\":\"gene2\",\"step\":7,\"niveau\":2}","{\"node\":\"genel\",\"step\":7,\"niveau
\N":1}"],["{\"node\":\"gened\",\"step\":6,\"niveau\":0}","{\"node\":\"gene3\",\"step\":6,\"
niveau\":2}","{\"node\":\"gene2\",\"step\":6,\"niveau\":2}","{\"node\":\"genel\",\"step
\":6,\"niveau\":1}"],["{\"node\":\"gened4\",\"step\":5,\"niveau\":0}"," {\"node\":\" gene3
\",\"step\":5,\"niveau\":2}","{\"node\":\"gene2\",\"step\":5,\"niveau\":2}","{\"node\":\"
genel\",\"step\":5,\"niveau\":1}"] ,["{\"node\":\"gened\",\"step\":4,\"niveau\":1}","{\"
node\":\"gene3\",\"step\":4,\"niveau\":2}","{\"node\":\"gene2\",\"step\":4,\"niveau\":2}",
"{\"node\":\"genel\",\"step\":4,\"niveau\":1}"],["{\"node\":\"gened\",\"step\":3,\"niveau
\N":2}","{\"node\":\"gene3d\",\"step\":3,\"niveau\":2}","{\"node\":\"gene2\",\"step\":3,\"
niveau\":2}","{\"node\":\"genel \",\"step\":3,\"niveau\":2}"],["{\"node\":\"gened\",\"step
\":2,\"niveau\":2}","{\"node\":\"gene3\",\"step\":2,\"niveau\":2}","{\"node\":\"gene2\" \"
step\":2,\"niveau\":2}","{\"node\":\"genel \",\"step\":2,\"niveau\":2}"],["{\"node\":\"
gened \",\"step\":1,\"niveau\":2}","{\"node\":\"gene3\",\"step\":1,\"niveau\":1}","{\"node
\'":\"gene2\",\"step\":1,\"niveau\":1}","{\"node\":\"genel\",\"step\":1,\"niveau\":2}"],["
{\"node\":\"gened\",\"step\":0,\"niveau\":2}","{\"node\":\"gene3\",\"step\":0,\"niveau
\N":0}","{\"node\":\"gene2\",\"step\":0,\"niveau\":0}","{\"node\":\"genel\",\"step\":0,\"
niveau\":2}"]]

fichier in os.listdir (dirdest):
if 'nmetwork test' in fichier:

os.remove (os.path.join (dirdest , fichier))

method in ["lineaire", "tmp", "memoisation"]:#, "asynchronous"]:

for steps in [2,4,6,8]:

for nbreNode in [2,3,4]:
for nbreEdge in range(0, 2xnbreNode, 2):
nbreData represente le mombre de donnees skippee entre deuzr data. 0 signifie que
toutes les data sont donnees.
for nbreData in [0,1,2,3]:

filename = "network_test_ "4+method+" steps'+str (steps)+"'_nodes'"+str (nbreNode)+" edges
"+str (nbreEdge)+"_data"+str (nbreData)+". json"
node i = 0
nodeStr = ""
while node_i <nbreNode:
gene = nodeList [node_i]

nOdeStI‘ +: IV{\"label\“:\“ "—‘,—gene—‘r“\“,7\"type\“1\"110de\"}"
if node_1i != (nbreNode—1):

A.7. FRONT-END 161

64 nodeStr +=","

65 node i+=1

66

67 edge_ i =0

68 edgeStr =""

69

70 while edge i <nbreEdge:

71 edge_to_add = edgeList[edge_i]
72 edgeStr += edge_to_ add

73 if edge i != (nbreEdge—1):
74 edgeStr +=","

75 edge i+=1

76

7 node_j = 0

78 step_i =0

79 dataStr = ""

80 # Permet de produire un string contenant les donnees completes adaptees a la duree.
81 # node_j : from 0 —> 38

82 while node_j <nbreNode:

83 step__i=0

84 # step__i : from 0 —> 8

85 while step_i <= steps:

86 dataStr += dataList[8—step_ i][3—node_ j]
87 dataStr += ","

88 step_i +=(1+nbreData)

89 node_j +=1

90 dataStr = dataStr[: —1]

91 print (nbreNode)

92 print (nbreEdge)

93 print (dataStr)

94

95 target = open(filename ,"w")
96 borneMax=10

97 borneMin=0

98 borneEffectOnOthers = 5

99 borneEffectOnSelf=0

100 globalThreshold=9

101 mySteps=steps

102 sparsity=0

103 labeling="all_ ff"

104 nSol=1

105 content="{\"network\": , [{\"name\":\"" + filename +"\",\"borneMax\": "+str (borneMax)+

" Lu\"borneMin\": "+str (borneMin)+" ,\"borneEffectOnOthers\": "+ str(
borneEffectOnOthers)+" ,\"borneEffectOnSelf\": "+str (borneEffectOnSelf) + " ,\"
globalThreshold \": "+str (globalThreshold)+" ,\"steps \": "+str (mySteps)+" ,\"method
\":\" "+method +"\", \"sparsity \":"+str(sparsity)+",\"labeling\":\" "+labeling +"
\",\"nSol\": "+str(nSol)+" ,\"nodes \":["+nodeStr+"],\"edges\": ["+edgeStr+"],\"
data\": ["+ dataStr + "]}]}"

106 target.write (content)

107 target . close ()

A.7 Front-End

1 <DOCTYPE html>
2 <htmI>
3 <head>
4 <meta charset="utf-8">
5 <link rel="stylesheet" href="css/main.css">
6 <title>GeneTool< /title>
7 <script>
8 var Matrices=[];
9 // 1. create a new XMLHttpRequest object -- an object like any other!
10 var myRequest = new XMLHttpRequest () ;
11 // 2. open the request and pass the HTTP method name and the resource as
parameters
12 // 3. write a function that runs anytime the state of the AJAX request changes
13 myRequest.onreadystatechange = function () {
14 // 4. check if the request has a readyState of 4, which indicates the server
has responded (complete)
15 if (myRequest.readyState —= 4) {
16 // 5. insert the text sent by the server into the HTML of the '
ajax-content'
17 document.getElementByld ('ajax-content ') .innerHTML =

myRequest.responseText;
18 1

162 APPENDIX A. SOURCE CODE

19 s

20

21 function test (){

22 console.log('test');

23 var myRequest3 = new XMLHttpRequest () ;

24 myRequest3.open('POST', 'http://localhost:8080/test’' , true);

25 myRequest3.setRequestHeader (' Content-Type','application/json');

26 myRequest3.onreadystatechange = function () {

27 if (myRequest3.readyState 4){// && myRequest2.status === 200) {

28 console.log ("ok request 3");

29 console.log (myRequest3.getAllResponseHeaders ());

30 var json = JSON.parse(myRequest3.responseText);

31 var nameNetwork = json.network [0].name; //mkyong

32 var dataGenes = json.network [0]. data;

33 for (datakey in dataGenes){

34 var node = dataGenes[datakey];

35 console.log (node) ;

36 }

37 document.getElementByld (' nameNetwork').innerHTML = nameNetwork;

38 document.getElementBylId ('dataGenes ') .innerHTML = dataGenes;

39 }

40

41 var toSendText ={"network": [{"name":"nameGiven", "borneMax":100,"borneMin":0,"
borneEffectOnOthers":10,"borneEffectOnSelf":2,"steps":5,"nodes":[{"label":
"geneB", "type":"node" } ,{"label":"geneA", "type":"node" } ,{ "label":"geneC",

"type":"node"}],"edges": [{"id":0, "from":"geneB", "to":"geneA", "effect"

:0},{"id":0, "from":"geneA", "to":"geneB", "effect":3}],"data": [{"node":"
geneB", "step":1, "niveau":2},{"node":"geneA", "step":0, "niveau":1}]}]};

42 var toSend = JSON.stringify (toSendText);

43 var data_test = JSON.stringify ({"name": "test_geot"});

44 myRequest3.send (toSend) ;

45 }

46 function api() {

47 var genesList = [];

48 var dataPoints = [];

49 var matrix = [];

50 Matrices = [];

51 //using the function:

52 removeOptionsSelect () ;

53 var myRequest4 = new XMLHttpRequest () ;

54 myRequest4.open('POST', 'http://localhost:8080/api' true);

55 myRequest4.setRequestHeader (' Content-Type','application/json');

56 myRequest4.onreadystatechange = function () {

57 if (myRequestd.readyState 4 && myRequest4.status 201) {

58

59 console.log (myRequestd.getAllResponseHeaders ());

60

61 var json = JSON.parse(myRequestd.responseText);

62 Matrices = json.network;

63

64 for (var j = 0; j < Matrices.length; j++) {

65 // do something

66 AddItemSelect (j,]);

67 }

68

69 //console.log(Matrices) ;

70

71 var nameNetwork = json.network [0].name; //mkyong

72 var steps = json.network [0]. steps;

73 var dataGenes = json.network [0]. data;

74 var edgeGenes = json.network [0]. edges;

75 var nodeGenes = json.network [0]. nodes;

76 // on rhecupi~re les arcs

7 for (edgekey in edgeGenes){

78 var node = edgeGenes[edgekey |;

79 }

80 // on rRkecupi-'re les "genes"

81 for (nodekey in nodeGenes){

82 var node = nodeGenes [nodekey |;

83 genesList.push (node.label);

84

85 var nbreGenes = nodeGenes.length;

86

87 // on rRecupi-'re les donnlees pour chaque step calculle

88 for (datakey in dataGenes){

89 var node = dataGenes[datakey];

A.7. FRONT-END 163

90 //console.log(node) ;

91 //console.log(node.step);

92 //console.log(node.niveau) ;

93

94 addData(dataGenes , genesList , matrix);

95

96 //matrix.forEach(printSimple);

97 var chart = new CanvasJS.Chart("chartContainer", {

98 title: {

99 text: nameNetwork

100 },

101 axisX: {

102 ¥,

103 axisY2: {

104

105 1,

106 data: [

107]

108 1)

109 function addSerie(element){

110 var newSeries = {

111 showInLegend: true,

112 legendText:element [0].name,

113 type: "line',

114 dataPoints: element

115 }s

116 chart.options.data.push (newSeries);

117

118 matrix.forEach (addSerie);

119 chart.render () ;

120 document.getElementByld (' jsonCalcul').innerHTML = JSON.stringify (json
undefined , 2);

121 document.getElementBylId ("button_tab_results").click ()

122

123

124 if (myRequest4.readyState 4 && myRequestd.status 400) {

125 var json = JSON.parse(myRequest4.responseText);

126 document.getElementByld ('nameNetwork ') .innerHTML = 'erreur 400",

127 document.getElementById (' jsonCalcul ') .innerHTML = JSON.stringify (

json ,undefined , 2);

128 }

129

130

131

132 }

133

134

135 var toSendText = document.getElementById (' jsonInput_text').value;

136 console.log (toSendText) ;

137 var toSend = JSON.stringify (toSendText);

138 myRequest4.send (toSendText) ;

139 //chart.render () ;

140 function addData(dataGenes, genesList, matrix) {

141 console.log ('addData');

142 //Initialisation de la matrice

143 for (var i=0; i<genesList.length; i++) {

144 console.log("Initialisation de la matrice");

145 console.log("i - matrix index = " 4+ i);

146 matrix[i] = [];

147

148 // on parcourt toutes les data renvoyhoes

149 for (var i = 0; i < dataGenes.length; i++) {

150 // on rRecupi~'re 1'indice du gh2ne dans la liste de genes

151 var a = genesList.indexOf(dataGenes[i].node);

152 //console.log(a);

153 dataPoints.push ({

154 x: dataGenes[i].step,

155 y: dataGenes[i].niveau

156 b

157 matrix [a]. push ({

158 x: dataGenes[i].step,

159 y: dataGenes[i].niveau,

160 name:dataGenes[i].node

161 b

162

163 //chart.render () ;

164 APPENDIX A. SOURCE CODE

164 }

165 function printOut (element) {

166 console.log ("name(x,y) = "+ element.name +"(" + element.x + ',' +
element.y + ') ');

167 }

168 function printSimple(element){

169 console.log (element);

170 }

171 }

172

173

174 function updateGraph(i){

175 var genesList = [];

176 var dataPoints = [];

177 var matrix = [];

178

179 var nameNetwork = Matrices[i].name; //mkyong

180 var steps = Matrices[i]. steps;

181 var dataGenes = Matrices[i]. data;

182 var edgeGenes = Matrices[i]. edges;

183 var nodeGenes = Matrices[i].nodes;

184 // on rhecuph're les arcs

185 for (edgekey in edgeGenes){

186 var node = edgeGenes [edgekey];

187 }

188 // on rhecuph're les "genes"

189 for (nodekey in nodeGenes){

190 var node = nodeGenes [nodekey |;

191 genesList.push (node.label);

192 }

193 // on rhecuph're les donnlees pour chaque step calculle

194 for (datakey in dataGenes){

195 var node = dataGenes [datakey |;

196

197 addData (dataGenes , genesList , matrix);

198 var chart = new CanvasJS.Chart("chartContainer", {

199 title: {

200 text: nameNetwork

201 ¥,

202 axisX: {

203 ¥,

204 axisY2: {

205

206 },

207 data: [

208

209]

210 b

211 function addSerie(element){

212 var newSeries = {

213 showInLegend: true,

214 legendText:element [0] . name,

215 type: "line',

216 dataPoints: element

217 };

218 chart.options.data.push (newSeries) ;

219

220 matrix.forEach (addSerie);

221 chart.render () ;

222

223 function addData(dataGenes, genesList, matrix) {

224 //Initialisation de la matrice

225 for (var i=0; i<genesList.length; i++4) {

226 console.log("Initialisation de la matrice");

227 console.log("i - matrix index = " 4 i);

228 matrix[i] = [];

229

230 // on parcourt toutes les data renvoyloes

231 for (var i = 0; i < dataGenes.length; i++) {

232 // on rRecupi~'re 1'indice du gh2ne dans la liste de genes

233 var a = genesList.indexOf (dataGenes[i].node);

234 //console.log(a);

235 dataPoints.push ({

236 x: dataGenes[i].step,

237 y: dataGenes[i].niveau

238 1)

A.7. FRONT-END 165

239 matrix [a]. push ({

240 x: dataGenes[i].step,

241 y: dataGenes[i].niveau,

242 name:dataGenes[i].node

243 1)

244

245 //chart.render () ;

246 }

247

248 document.getElementById (' jsonCalcul ') .innerHTML = JSON.stringify (Matrices[i],
undefined ,2) ;

249 }

250

251 function printValue () {

252 var jobValue = document.getElementBylId (' jsonInput_text').value;

253 console.log (jobValue);

254 }

255

256 // add an item to the dropdown list

257 function AddItemSelect (text,value)

258 {

259 // Create an Option object

260 var opt = document.createElement ("option");

261

262 // Assign text and value to Option object

263 opt.text = "Solution #'"4+ text;

264 opt.value = value;

265

266 // Add an Option object to Drop Down List Box

267 document.getElementByld ('selection_answer').options.add (opt);

268 }

269

270 function removeOptionsSelect ()

271 {

272 var selectbox = document.getElementBylId('selection_answer');

273 var i;

274 for (i = selectbox.options.length — 1 ; i >0 ; i——)

275 {

276 selectbox.remove (i);

277 }

278 }

279

280

281

282 function openTab(evt, tabName) {

283 // Declare all variables

284 var i, tabcontent, tablinks;

285

286 // Get all elements with class="tabcontent" and hide them

287 tabcontent = document.getElementsByClassName("tabcontent");

288 for (i = 0; i < tabcontent.length; i++) {

289 tabcontent [i].style.display = "none";

290 }

291

292 // Get all elements with class="tablinks" and remove the class "active"

293 tablinks = document.getElementsByClassName ("tablinks");

294 for (i = 0; i < tablinks.length; i++) {

295 tablinks [i].className = tablinks[i].className.replace (" active", "");

296 }

297

298 // Show the current tab, and add an "active" class to the button that opened
the tab

299 document.getElementById (tabName) . style.display = "block";

300 evt.currentTarget.className += " active';

301 }

302

303

304

305 < /script>

306 </head>

307

308 <body>

309

310 <hIl>Reasoning on Gene Regulatory Networks</hl>

311

312 <div class="tab">

166

313
314

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

</div>

APPENDIX A. SOURCE CODE
<button class="tablinks" onclick="openTab(event, 'tab_inputs')" id="button_tab_default
">Inputs</button>
<button class="tablinks" onclick="openTab(event, 'tab_results')" id="
button_tab_results'">Results</button>
<!--<button class="tablinks" onclick="openTab(event, 'tab_results2')">NA</button>-->
<button class="tablinks" onclick="openTab(event, 'tab_help')">Help</button>
<!-- Tab content -->
<div id="tab_inputs" class="tabcontent">

<h3>Inputs</h3>
<p>Tab to declare inputs </p>
<button class="myButton" id="API" onclick="api () ">Process</button>
<div id="jsonlInput" align="center">
<p align="center">Input</p>
<textarea class="inline-txtarea"
id="jsonInput_text"
rows="50" cols="150"></textarea>
</div>

</div>

<div id="tab_results" class="tabcontent">

<h3>Results< /h3>

<p>Tab to display the results of the processing</p>

<select id="selection_answer" name="solList" ></select>

<button id="updateGraph" onclick="updateGraph(document.getElementById ('
selection_answer ') .value) ">Update</button>

<div class="container_result'">

<div id="chartContainer" >
<p align="center ">Chart</p></div>

<div id="jsonOutput"><p align="center">/p>
<h3 align="center ">JSON Response</h3>
<pre class="inline-txtarea" id:"jsonCalcul”></pre>

</div>

</div>

</div>

<div id="tab_results2" class="tabcontent">

<h3>Visual Graph</h3>
<p>Under Construction</p>

</div>
<div id="tab_help" class="tabcontent">

<h3>Help</h3>
<p>Example of correct JSON input file</p>
<pre id="jsonHelp'"></pre>

</div>

network graph builder

<script>

var jsonHelpfile={"network":|
"name":"Lac Operon",

"borneMax":10,

"borneMin":0,

"borneEffectOnOthers":3,

"borneEffectOnSelf":0,

"globalThreshold":2,

"steps":7,

"method":"tmp",

"sparsity":0,

"labeling":"all_ok",

"nSol1":10,

"nodes" : [
{"label":"operonAYZ" ,"type":"node"},
{"label":"lactose" ,"type":"node"},
{"label":"lacI","type":"node"},
{"label":"cap_cAMP" ,"type":"node"},
{"label":"glucose" ,"type":"node"},
{"label":"supportLacI" ,f "type":"control"}],

"edges": [
{“id”:"toChange",“from”:“lactose",”to“:”lacI","threshold":“/“,"

borneEffect":"/" ,"delay":0,"effect":—2},

A.7. FRONT-END 167

385 {"id":"toChange" ,"from":"lacI","to":"operonAYZ" ,"threshold":"/" k"
borneEffect":"/","delay":0,"effect":—3},

386 {"id":"toChange" ,"from":"operonAYZ" ,"to":"glucose" ,"threshold":"/" "
borneEffect":"/","delay":0,"effect":1},

387 {"id":"toChange" ,"from":"operonAYZ" ,"to":"lactose" ,"threshold":"/" "
borneEffect":"/","delay":0,"effect":—2},

388 {"id":"toChange" ,"from":"cap_cAMP" ,"to":"operonAYZ" ,"threshold":"/" 6"
borneEffect":"/","delay":0,"effect":2},

389

390 {"id":"toChange" ,"from":"glucose" ,"to":"cap_cAMP","threshold":"/", 6"
borneEffect":"/","delay":0,"effect":—2},

391 {"id":"toChange" ,"from":"supportLacI","to":"lacI","threshold":"/",k"
borneEffect":"/","delay":0,"effect":1},

392

393 {"id":"toChange”,"from":"glucose","to”:"lacI”,"threshold”:"/",”
borneEffect":1,"delay":0,"effect":0},

394 {"id":"toChange" ,"from":"glucose","to":"lactose","threshold":"/", "
borneEffect":1,"delay":0,"effect":0},

395 {"id":"toChange" ,"from":"glucose" ,"to":"operonAYZ" ,"threshold":"/" "
borneEffect":1,"delay":0,"effect":0},

396 {"id":"toChange" ,"from":"operonAYZ" ,"to":"lacI","threshold":"/" 6"
borneEffect":1,"delay":0,"effect":0},

397

398 {"id":"toChange" ,"from":"operonAYZ" ,"to":"cap_cAMP","threshold":"/", 6"
borneEffect":1,"delay":0,"effect":0},

399 {"id":"toChange" ,"from":"lactose" ,"to":"operonAYZ" ,"threshold":"/" "
borneEffect":1,"delay":0,"effect":0},

400 {"id":"toChange" ,"from":"lacI" ,"to":"cap_cAMP" ,"threshold":"/" 6"
borneEffect":1,"delay":0,"effect":0},

401 {"id":"toChange" ,"from":"lacI","to":"lactose","threshold":"/" "
borneEffect":1,"delay":0,"effect":0},

402 {"id":"toChange" ,"from":"lacI","to":"glucose","threshold":"/" k"
borneEffect":1,"delay":0,"effect":0},

403

404 {"id":"toChange" ,"from":"lactose" ,"to":"cap_cAMP" ,"threshold":"/" k"
borneEffect":1,"delay":0,"effect":0},

405 {"id":"toChange" ,"from":"lactose" ,"to":"glucose" ,"threshold":"/" k"
borneEffect":1,"delay":0,"effect":0},

406 {"id":"toChange" ,"from":"cap_cAMP" ,"to":"lacI","threshold":"/" "
borneEffect":1,"delay":0,"effect":0},

407 {"id":"toChange" ,"from":"cap_cAMP" ,"to":"glucose","threshold":"/" 6"
borneEffect":1,"delay":0,"effect":0},

408 {"id":"toChange","from":"cap_cAMP","to":"lactose","threshold":"/" k"
borneEffect":1,"delay":0,"effect":0},

409

410 {"id":"toChange" ,"from":"supportLacI" ,f"to":"lactose","threshold":"/" k"
borneEffect":1,"delay":0,"effect":0},

411 {"id":"toChange" ,"from":"supportLacI" ,"to":"glucose","threshold":"/", k"
borneEffect":1,"delay":0,"effect":0},

412 {"id":"toChange","from":"supportLacI","to":"cap_cAMP","threshold":"/",
"borneEffect":1,"delay":0,"effect":0},

413 {"id":"toChange" ,"from":"supportLacI" ,"to":"operonAYZ" ,"threshold":"/"
,"borneEffect":1,"delay":0,"effect":0}

414],

415 "data":|

416 {"node":"operonAYZ" ,"step":0,"niveau":7},

417 {"node":"lacI","step":0,"niveau":2},

418 {"node":"cap_cAMP" ,"step":0,"niveau":8},

419 {"node":"lactose","step":0,"niveau":9},

420 {"node":"glucose" ,"step":0,"niveau":1},

421

422 {"node":"operonAYZ" ,"step":3,"niveau":7},

423 {"node":"lacI","step":3,"niveau":0},

424 {"node":"cap_cAMP" ,"step":3,"niveau":4},

425 {"node":"lactose" ,"step":3,"niveau":3},

426 {"node":"glucose","step":3,"niveau":4},

427

428

429 {"node":"supportLacI",f"step":0,"niveau":1},

430 {"node":"supportLacI",f"step":1,"niveau":1},

431 {"node":"supportLacI",f"step":2,"niveau":1},

432 {"node":"supportLacI","step":3,"niveau":1},

433 {"node":"supportLacI",f"step":4,"niveau":1},

434 {"node":"supportLacI","step":5,"niveau":1},

435 {"node":"supportLacI",f"step":6,"niveau":1},

436 {"node":"supportLacI","step":7,"niveau":1}

168 APPENDIX A. SOURCE CODE

437 131}

438 // Get the element with id="defaultOpen" and click on it

439 document.getElementById ("button_tab_default").click ();

440 document.getElementById (" jsonHelp") .innerHTML = JSON.stringify (jsonHelpfile ,undefined ,
2);

441 < /script>

442

443 <script src="https://canvasjs.com/assets/script/canvasjs.min.js">
444 < /script>

445

446 < /body>

447

448 < /html>

OO~ U kA WN -

Appendix B
Log files

network_test__memoisation_steps8_nodes3__edges4_data3.json ,1534257926.621911,FAIL,0.0034012794494628906,[s]
network_test_tmp_steps4_nodes3__edges2_data3.json ,1534257926.62534 ,timeout ,inf ,[s]
network_test_tmp_steps2_nodes4__edges4__data0.json ,1534257931.626098 ,0K,0.008955001831054688 ,[s]
network_test__memoisation_steps6_nodes3__edges4_data2.json ,1534257931.6350858 ,FAIL,0.002515554428100586,[s]
network_test__tmp_steps4_nodes3__edges4__data0l.json ,1534257931.6376176 ,FAIL,0.0035729408264160156,[s]
network__test_lineaire_steps2_ nodes4_edges4_datal.json ,1534257931.6412082,0K,0.010091543197631836,[s]
network_test_tmp_steps6_nodes3__edges2_datal.json ,1534257931.651334 ,FAIL,3.0350427627563477,[s]
network_test__memoisation_steps8_ nodes4__edgesO_data0O.json ,1534257934.68642,timeout ,inf ,[s]
network_test__tmp_steps6_nodes4__edges0O__data0.json ,1534257939.686757 ,timeout ,inf ,[s]

network test_tmp_steps4_nodes3__edgesO__datal.json ,1534257944.6875803,timeout,inf ,[s]
network_test_lineaire_ steps4_nodes4 edges4 datal.json ,1534257949.6878636,timeout ,inf ,[s]
network_test__memoisation_steps2_nodes4__edges2_data2.json ,1534257954.6881483,0K,0.01009058952331543,[s]
network test_lineaire_steps4_nodes4_edges6__data0.json ,1534257954.698291,0K,0.012897014617919922,[s]
network test__tmp_steps2_ nodes3__edges4_data0.json ,1534257954.7112453 ,FAIL,0.0020837783813476562,[s]
network test_ tmp_ steps4 nodes4 edges6_data3.json ,1534257954.7133608 ,0K,0.05526876449584961,[s]

network test_tmp_steps4 nodes3__edges2_ datal.json ,1534257954.768684 ,FAIL,0.8962094783782959,[s]

network test_ lineaire steps4 nodes4 edges6_datal.json ,1534257955.6649578 ,timeout ,inf ,[s]
network__test_lineaire_steps2_nodes3__edges0O_datal.json ,1534257960.6662986 ,0K,0.022145509719848633,[s]
network__test_lineaire_steps4_nodes2_ edges0O_data0.json ,1534257960.6885002,FAIL,0.0026259422302246094 ,[s]
network_test__memoisation_steps2_nodes4_edges4_data2.json ,1534257960.6911595,0K,0.010919570922851562,[s]
network__test_lineaire_steps4_nodes2_ edges2_datal.json ,1534257960.702098 ,FAIL,0.0036232471466064453,[s]
network_test__memoisation_steps4_nodes4__edges6__datal.json ,1534257960.7057827,0K,0.01526951789855957 ,[s]
network_test_lineaire_steps4_nodes4__edgesO_data3.json ,1534257960.7210834 ,timeout ,inf ,[s]
network_test__memoisation_steps8_nodes2__edges2_ datal.json ,1534257965.7219267 ,FAIL,0.08501720428466797 ,[s]
network_test__tmp_steps6_nodes3__edges0_data0.json ,1534257965.8070018 ,FAIL,0.023842573165893555,[s]
network_ test_tmp_steps4_nodes4__edges2_ datal.json ,1534257965.8309007,0K,0.0231168270111084 ,[s]
network__test_lineaire_steps4_nodes2_ edges2_ data2.json ,1534257965.8540723 ,FAIL,0.006420135498046875,[s]
network_test_lineaire_steps6_nodes3__edgesO_data0.json ,1534257965.860525 ,FAIL,0.030551433563232422,[s]
network__test_lineaire_steps6_nodes4__edges4_ data2.json ,1534257965.8911335,timeout ,inf ,[s]

network test_tmp_steps8 nodes4_edges4 data3.json ,1534257970.891368,timeout ,inf ,[s]
network_test__memoisation_steps8_nodes4__edges4__data3.json ,1534257975.8916094,timeout ,inf ,[s]

network test_lineaire steps6_nodes3__edges4 data3.json ,1534257980.8924885 ,FAIL,0.003543376922607422,[s]
network_test_lineaire_steps6_nodes4_edgesO_datal.json ,1534257980.896052,timeout ,inf ,[s]

network test memoisation steps6_nodes3__edgesO_data0.json ,1534257985.8962789 ,FAIL,0.4291994571685791,[s]
network_test_tmp_steps6_nodes2_edges0_data0.json ,1534257986.3255384 ,FAIL,0.002650022506713867,[s]
network__test_lineaire_steps6_nodes4__edges6__data3.json ,1534257986.32822,timeout ,inf ,[s]
network__test_lineaire_steps2_nodes2_ edges2_data0.json ,1534257991.3284755,FAIL,0.0011882781982421875,[s]
network_test_lineaire_steps8_nodes4__edges0O_data2.json ,1534257991.3297167 ,timeout ,inf ,[s]
network_test_tmp_steps8_nodes2_edges2_data2.json ,1534257996.3299377 ,FAIL,0.036932945251464844 ,[s]
network_test__tmp_steps8_nodes4__edges2_datal.json ,1534257996.366989 ,timeout ,inf ,[s]
network_test_lineaire_steps6_nodes4_edges0O_data2.json ,1534258001.3672714 ,timeout ,inf ,[s]

network_ test_tmp_steps8_nodes4__edges2__data0l.json ,1534258006.3678608 ,timeout,inf ,[s]

network test_tmp_steps6_nodes4_edges4_datal.json ,1534258011.3688195,timeout,inf ,[s]
network_test__memoisation_steps8_nodes3__edgesO__datal.json ,1534258016.3698738,timeout ,inf ,[s]
network_test__memoisation_steps2_ nodes3__edgesO__data3.json ,1534258021.3701432,0K,0.005298614501953125,[s]
network_test__memoisation_steps6_nodes4__edges4__data3.json ,1534258021.375476,timeout ,inf ,[s]

network test_tmp_steps2_ nodes3__edges2_data3.json ,1534258026.3768625,0K,0.005632877349853516,[s]

network_ test__memoisation_steps2_nodes3__edges4__data3.json ,1534258026.3825307 ,FAIL,0.001306295394897461,[s]
network_ test_tmp_steps6_nodes4_ edges4_data0l.json ,1534258026.3838506,0K,0.014627456665039062,[s]

network test tmp_ steps6_nodes3_edgesO_datal.json ,1534258026.398517,timeout ,inf ,[s]

network test_tmp_steps6_nodes2_ edges2_ data2.json ,1534258031.3993976 ,FAIL,0.01474618911743164,([s]
network_ test_tmp_steps6_nodes2_ edges0_data2.json ,1534258031.4141874 ,FAIL,0.07350373268127441 ,(s]
network_test__memoisation_steps6_nodes2__edges2_datal.json ,1534258031.4877608 ,FAIL,0.02258920669555664 ,[s]
network__test_lineaire_steps2_nodes4__edges2_datal.json ,1534258031.5104218 ,0K,0.009817838668823242,[s]
network__test_lineaire_steps2_nodes3__edges0O_data3.json ,1534258031.5202742,0K,0.004586696624755859,[s]
network_test_tmp_steps8_nodes3__edges0_data3.json ,1534258031.5248783,timeout ,inf ,[s]
network__test_lineaire_steps4_nodes3__edges2_data0.json ,1534258036.5252936 ,FAIL,0.018312692642211914 ,[s]
network_test_lineaire_steps2_ nodes4__edges6__data3.json ,1534258036.5436509,0K,0.0071887969970703125,[s]
network_test_tmp_steps6_nodes4__edgesO__datal.json ,1534258036.5508928 ,timeout,inf ,[s]
network_test__memoisation_steps4_nodes4__edges4d_data3.json ,1534258041.5511918 ,0K,0.05970287322998047,[s]
network__test_lineaire_steps6_nodes2_ edges2_ data3.json ,1534258041.6109295 ,FAIL,0.023845672607421875,[s]
network_ test__tmp_steps2_nodes3__edges4__data2.json ,1534258041.6348133 ,FAIL,0.0013659000396728516,[s]
network_ test_memoisation_steps6_nodes4__edges2_ data0.json ,1534258041.6361933,timeout ,inf ,[s]
network_test__memoisation_steps6_nodes4__edges2_data3.json ,1534258046.6373925,timeout ,inf ,[s]

network test_lineaire_steps2_ nodes3__edgesO_data2.json ,1534258051.6377418,0K,0.0035724639892578125,[s]
network test_tmp_steps2_ nodes3__edges2_data0.json ,1534258051.641329 ,FAIL,0.009250640869140625,[s]
network test_ tmp_ steps6_nodes4 edges6_data0.json ,1534258051.6505983,0K,0.013431787490844727,[s]
network_test_lineaire_ steps8_ nodes4_edges0O_datal.json ,1534258051.6640842,timeout ,inf ,[s]

network test_ lineaire steps6_nodes3_edgesO_data3.json ,1534258056.6648543,timeout ,inf ,[s]

network_ test__memoisation_steps8_nodes2_edges0O_datal.json ,1534258061.6659956 ,FAIL,0.7156186103820801,[s]
network__test_lineaire_steps4_nodes2_edges0O_data3.json ,1534258062.381653,0K,0.0415194034576416,(s]
network_test_lineaire_steps6_nodes4__edges0O_data3.json ,1534258062.4231896,timeout ,inf ,[s]
network_test_lineaire_steps8_nodes4__edges2_datal.json ,1534258067.4242547 ,timeout ,inf ,[s]
network_test_tmp_steps2_nodes4__edges2_data3.json ,1534258072.4250498 ,0K,0.008034944534301758,[s]
network__test_lineaire_steps2_nodes2_ edges0_data0.json ,1534258072.4331155,FAIL,0.0017614364624023438,[s]
network_test_lineaire_steps2_nodes4_edges0O_data2.json ,1534258072.4349086 ,0K,0.010200262069702148,[s]
network_test__memoisation_steps4_nodes3__edges4__data3.json ,1534258072.44515,FAIL,0.0024793148040771484 ,[s]

169

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

170 APPENDIX B. LOG FILES

network test_tmp_steps8_nodes4_edgesO__data0.json ,1534258072.4476898,timeout ,inf ,[s]

network test_lineaire steps6_nodes2 edges2 datal.json ,1534258077.4480188 ,FAIL,0.008008480072021484 ,[s]
network_test_memoisation_steps4_nodes4_edges2_ datal.json ,1534258077.4560835,0K,0.017900705337524414 ,[s]
network test memoisation steps6_nodes3__edges4 datal.json ,1534258077.4740343,FAIL,0.0037064552307128906,[s]
network_ test_tmp_steps4_nodes3__edges0O_data0.json ,1534258077.4778445 ,FAIL,0.023485660552978516,(s]
network_test__memoisation_steps8_nodes3__edges2_ data2.json ,1534258077.5013855,timeout ,inf ,[s]
network_test_tmp_steps4_nodes2_edges2_data3.json ,1534258082.5029202 ,FAIL,0.01533961296081543,[s]
network_test_tmp_steps4_nodes2_edges2_ data2.json ,1534258082.5182893 ,FAIL,0.007619619369506836,[s]
network_test__tmp_steps6_nodes4__edges6__data2.json ,1534258082.525942,timeout ,inf ,[s]
network_test__memoisation_steps4_nodes3__edges4__datal.json ,1534258087.5262651 ,FAIL,0.003742218017578125,(s]
network__test_lineaire_steps8_nodes3__edges0O__datal.json ,1534258087.5300415,timeout ,inf ,[s]
network_test_tmp_steps2_ nodes2_edges0_datal.json ,1534258092.530307,0K,0.002141237258911133,[s]
network__test__memoisation_steps6_nodes3__edgesO__data2.json ,1534258092.5324612,timeout ,inf ,[s]
network_test__memoisation_steps8_nodes4__edgesO__datal.json ,1534258097.5326736,timeout ,inf ,[s]
network_test_lineaire_ steps2_ nodes4_ edges4_ data3.json ,1534258102.5328918 ,0K,0.008754253387451172,[s]
network__test_lineaire_steps6_nodes4__edges2_ datal.json ,1534258102.5416613,0K,0.05423140525817871,[s]
network test_tmp_steps8_ nodes3__edgesO__datal.json ,1534258102.5959275,timeout ,inf ,[s]
network_test_lineaire_steps6_nodes4__edges2_ data2.json ,1534258107.5968828 ,timeout ,inf ,[s]

network test memoisation steps8 nodes3_edges4_ data2.json ,1534258112.5971887 ,FAIL,0.003836393356323242,[s]
network_ test_memoisation_steps6_nodes4_edges6__datal.json ,1534258112.6010394,timeout ,inf ,[s]

network test_ lineaire steps8 nodes4 edges4 datal.json ,1534258117.6024446,timeout ,inf ,[s]
network_test__memoisation_steps4_nodes3__edges4_data2.json ,1534258122.6027272,FAIL,0.0021703243255615234,[s]
network_test_tmp_steps8_nodes4_edges6__data0.json ,1534258122.6049302,0K,0.016531944274902344 ,[s]
network_test_tmp_steps4_nodes3__edgesO_data2.json ,1534258122.6215012,0K,0.015901565551757812,[s]
network__test_lineaire_steps4_nodes3__edges0O_data2.json ,1534258122.6374354,0K,1.8130903244018555,(s]
network_test__memoisation_steps4_nodes3__edges2_ datal.json ,1534258124.450562,timeout ,inf ,[s]
network_test__tmp_steps4_nodes3__edges4__data3.json ,1534258129.4512882 ,FAIL,0.0017180442810058594 ,[s]
network__test_lineaire_steps2_ nodes4__edges0_data3.json ,1534258129.4530213,0K,0.007387876510620117,[s]
network_test_tmp_steps2_nodes2_edges2_data3.json ,1534258129.4604409,0K,0.0015032291412353516,[s]
network_test_lineaire_steps8_nodes2 edges0O_data3.json ,1534258129.4619582 ,FAIL,0.4006962776184082,[s]
network__test__memoisation_steps4_nodes4__edgesO__data2.json ,1534258129.8626914,0K,0.0163266658782959,[s]
network test_tmp_steps2_ nodes4_ edges6__datal.json ,1534258129.8790693,0K,0.010194063186645508,[s]

network_ test__tmp_steps4_nodes4__edges4_datal.json ,1534258129.889281,0K,0.02176809310913086 ,[s]

network_ test_memoisation_steps2_ nodes4__edges2 datal.json ,1534258129.911085,0K,0.00826406478881836,[s]
network_test__memoisation_steps6_nodes4__edgesO__data2.json ,1534258129.9193628,timeout ,inf ,[s]
network test_ tmp_ steps4 nodes3_edges4 data2.json ,1534258134.9196343,FAIL,0.0019078254699707031,]
network_test_lineaire_ steps2_ nodes4_edges2_ data3.json ,1534258134.921571,0K,0.007441997528076172,]
network_ test_tmp_steps2 nodes3__edgesO_data2.json ,1534258134.9290447,0K,0.00577998161315918,[s]
network_test_memoisation_steps2_nodes3__edges2_datal.json ,1534258134.934841,0K,0.004605770111083984 ,([s]
network_test_tmp_steps2_nodes2_edges2_datal.json ,1534258134.9394891,FAIL,0.0027599334716796875,[s]
network_ test_tmp_steps8_ nodes3__edges4_data3.json ,1534258134.9422638 ,FAIL,0.002164125442504883,(s]
network_test_tmp_steps4_nodes4__edges6__datal.json ,1534258134.9444413,0K,0.018872737884521484 ,[s]
network_test__memoisation_steps4_nodes4_edges0_data3.json ,1534258134.96335,0K,1.0396652221679688,[s]
network__test_lineaire_steps8_nodes2_ edges2_data0.json ,1534258136.0030358 ,FAIL,0.0029277801513671875,[s]
network_test__memoisation_steps8_nodes4__edges4_data0.json ,1534258136.0059972,0K,0.017101049423217773,[s]
network_test__memoisation_steps2_nodes4__edges4__data3.json ,1534258136.0231187,0K,0.007961034774780273,[s]
network_test__memoisation_steps6_nodes4__edges4_data2.json ,1534258136.0311189,timeout ,inf ,[s]

network_ test__tmp_steps6_nodes4__edges6__datal.json ,1534258141.0314343,timeout,inf ,[s]
network_test_lineaire_ steps8_ nodes4_ edges4_ data0.json ,1534258146.0317645,0K,0.039307355880737305,[s]
network test_tmp_steps8_ nodes2_edges0O_data0.json ,1534258146.071091,FAIL,0.0057184696197509766,[s]
network__test_lineaire_steps6_nodes3__edges0O__data2.json ,1534258146.0768425,timeout ,inf ,[s]
network_test__memoisation_steps2_nodes3__edges2_data2.json ,1534258151.0775702,0K,0.0036706924438476562,[s]
network__test_lineaire_steps6_nodes2_ edgesO_data3.json ,1534258151.0812912,0K,0.14483046531677246,[s]
network test memoisation_ steps4_ nodes4_ edges2 data3.json ,1534258151.2261786 ,0K,0.04921889305114746,[s]
network_test_memoisation_steps2_nodes4_edges6__datal.json ,1534258151.2754526 ,0K,0.014240741729736328,[s]
network test memoisation steps6_nodes4_edges6_data3.json ,1534258151.2897763,timeout ,inf ,[s]
network_test__memoisation_steps8_nodes2__edges0O_data0.json ,1534258156.2911348 ,FAIL,0.019431114196777344 ,[s]
network_test__memoisation_steps4_nodes2__edges0_data2.json ,1534258156.3106325,0K,0.0039174556732177734,[s]
network_test_tmp_steps4_nodes2_edges0O_data2.json ,1534258156.3145819,0K,0.0056078433990478516,[s]
network_test_memoisation_steps4_nodes4__edges4_ datal.json ,1534258156.3203871,0K,0.020006656646728516,[s]
network_test__tmp_steps4_nodes4__edges0O_data3.json ,1534258156.340447 ,timeout ,inf ,[s]
network__test_lineaire_steps4_nodes4__edges6__data2.json ,1534258161.341478 ,timeout ,inf ,[s]
network_test__memoisation_steps8_nodes4__edges6__data2.json ,1534258166.3423893,timeout ,inf ,[s]
network__test_lineaire_steps2_nodes3__edges4_data0.json ,1534258171.3427572 ,FAIL,0.0033767223358154297,[s]
network_test__memoisation_steps2_nodes4__edges6__data2.json ,1534258171.346155,0K,0.007865428924560547 ,[s]
network_test__memoisation_steps4_nodes3__edges4__data0.json ,1534258171.3540564 ,FAIL,0.0031337738037109375,[s]
network test_tmp_steps2_ nodes4_edgesO_data0O.json ,1534258171.3572516 ,0K,0.0087127685546875,[s]
network_test__memoisation_steps4_nodes3__edges2_data3.json ,1534258171.3660069,timeout ,inf ,[s]

network_ test_memoisation_ steps8_ nodes3__edges2_ data0.json ,1534258176.3669522 ,FAIL,0.25417518615722656,[s]
network_ test__memoisation_steps4_nodes3__edgesO__datal.json ,1534258176.6211684,timeout ,inf ,[s]

network test_lineaire steps2_ nodes4_ edges2_ data0.json ,1534258181.622002,0K,0.009401559829711914,[s]
network test_tmp_steps2_ nodes4_edgesO_data2.json ,1534258181.6314378,0K,0.011676549911499023,[s]

network test_ lineaire steps6_nodes3_edges2_ data0.json ,1534258181.6431568 ,FAIL,0.02121138572692871,[s]
network_test_lineaire_steps2_nodes2_edges2_data2.json ,1534258181.6644106,0K,0.0018792152404785156,(s]
network_test__memoisation_steps8_nodes4__edges6__datal.json ,1534258181.6663237,timeout ,inf ,[s]
network__test_lineaire_steps6_nodes2__edgesO_datal.json ,1534258186.667847 ,FAIL,0.021958112716674805,(s]
network__test_lineaire_steps4_nodes2_edges2_data3.json ,1534258186.6898477 ,FAIL,0.008080482482910156,[s]
network_test_tmp_steps2_nodes4__edges6__data0.json ,1534258186.6979527 ,0K,0.0074291229248046875,[s]
network_test__memoisation_steps2_nodes2__edges2_data0.json ,1534258186.7054234 ,FAIL,0.0015366077423095703,[s]
network__test_lineaire_steps6_nodes4_edges2_ data3.json ,1534258186.7069788 ,timeout ,inf ,[s]
network__test__memoisation_steps6_nodes2__edges2_data2.json ,1534258191.7071335,FAIL,0.08681273460388184 ,[s]
network_test__memoisation_steps4_nodes3__edgesO__data2.json ,1534258191.7939875,0K,0.008085012435913086,[s]
network_ test__tmp_steps8_ nodes3__edges2_data0.json ,1534258191.8021076 ,FAIL,0.027761459350585938,[s]
network_ test_lineaire_ steps6_nodes3__edges4 datal.json ,1534258191.829933,FAIL,0.0025331974029541016,[s]
network__test__memoisation_steps4_nodes3__edges2__data2.json ,1534258191.8325067,0K,0.007577419281005859,[s]
network test_tmp_steps8 nodes4_ edges6_data2.json ,1534258191.840118,timeout ,inf ,[s]
network_test_lineaire_steps8_nodes4__edgesO_data3.json ,1534258196.840307,timeout ,inf ,[s]

network test_ tmp_ steps6_nodes2 edges2 data3.json ,1534258201.8407862,FAIL,0.021468162536621094,(s]
network test_tmp_steps2_ nodes2_ edgesO_data3.json ,1534258201.8622794,0K,0.002227306365966797,[s]

network test__memoisation_ steps4_nodes4__edges6__data0.json ,1534258201.8645222,0K,0.010958433151245117,[s]
network_test_memoisation_steps6_nodes4_edges4_datal.json ,1534258201.875508 ,timeout ,inf ,[s]
network_test_tmp_steps8_nodes4__edges2_data2.json ,1534258206.8757324 ,timeout ,inf ,[s]
network__test_lineaire_steps8_nodes4__edges2_data2.json ,1534258211.876111,timeout ,inf ,[s]
network__test_lineaire_steps2_nodes4__edges0O_datal.json ,1534258216.8771772,0K,0.00804591178894043,[s]
network_test__memoisation_steps4_nodes2__edges2_ data3.json ,1534258216.885254 ,FAIL,0.031810760498046875,[s]
network_test_memoisation_steps2_nodes4_edges2_ data3.json ,1534258216.9171107,0K,0.007609844207763672,[s]
network_test_lineaire_steps6_nodes4_ edges6__data0.json ,1534258216.9247463,0K,0.014336585998535156,[s]
network_ test_tmp_steps8_nodes3__edgesO0_data2.json ,1534258216.9391258 ,timeout,inf ,[s]
network_test_lineaire_steps8_nodes3__edges4_ datal.json ,1534258221.9400315,FAIL,0.002900838851928711,[s]
network_ test__tmp_steps6_nodes3__edges4__data0l.json ,1534258221.9429643 ,FAIL,0.0031692981719970703,[s]
network test_tmp_steps4_ nodes4_edges4 data3.json ,1534258221.946165,0K,0.15393853187561035,[s]
network__test__memoisation_steps4_nodes4__edgesO__datal.json ,1534258222.1001427,0K,0.5282185077667236,[s]
network_ test__tmp_steps2_ nodes4__edges4_datal.json ,1534258222.628416,0K,0.007724285125732422,[s]

s

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

171

network_test__memoisation_steps6_nodes3__edges2_data2.json ,1534258222.6361716,timeout ,inf ,[s]

network test_lineaire steps2_ nodes3__edges4 data3.json ,1534258227.6373103,FAIL,0.001497030258178711,[s]
network test_tmp_steps2_ nodes4_edgesO_datal.json ,1534258227.6388426,0K,0.008683443069458008,[s]

network test memoisation steps2_ nodes3__edges2 data0.json ,1534258227.6475585,FAIL,0.13155150413513184,[s]
network__test_lineaire_steps8_nodes4__edges2_data0.json ,1534258227.7791672,0K,0.06592464447021484,[s]
network_test_tmp_steps8_nodes2_edges0_data3.json ,1534258227.8451445 ,FAIL,0.35985445976257324 ,[s]
network__test_lineaire_steps2_nodes4__edges6__data2.json ,1534258228.2050552,0K,0.006693124771118164,[s]
network__test_lineaire_steps6_nodes2_edges2_data0.json ,1534258228.211781 ,FAIL,0.001947641372680664 ,(s]
network__test_lineaire_steps4_nodes3__edges4__datal.json ,1534258228.2137601 ,FAIL,0.001847982406616211,[s]
network__test__memoisation_steps2_nodes4__edges6__data0.json ,1534258228.2156389 ,0K,0.008750200271606445,[s]
network_test__tmp_steps4_nodes4__edges4_data2.json ,1534258228.224468 ,timeout ,inf ,[s]
network_test__tmp_steps6_nodes3__edges0_data3.json ,1534258233.225474 ,timeout ,inf ,[s]
network_test__memoisation_steps8_nodes4__edges6__data3.json ,1534258238.225769,timeout ,inf ,[s]
network__test_lineaire_steps8_nodes3__edges0__data3.json ,1534258243.2266219,timeout ,inf ,[s]

network_ test_memoisation_steps2_ nodes4__edges6__data3.json ,1534258248.2280803,0K,0.007083415985107422,[s]
network test__tmp_steps2_ nodes3__edges2__datal.json ,1534258248.2351956 ,0K,0.004446506500244141,[s]

network test_lineaire_steps8_ nodes3__edges2_ data0.json ,1534258248.2396755,FAIL,0.03448820114135742,(s]
network test_tmp_steps8_nodes4_edges4_datal.json ,1534258248.2742205,timeout ,inf ,[s]

network test_lineaire steps8 nodes4 edges6_data2.json ,1534258253.2745228,timeout ,inf ,[s]

network test_tmp_steps6_nodes2_ edgesO_data3.json ,1534258258.2754745,0K,0.13626933097839355,(s]

network test memoisation steps8 nodes4_edges2 data0O.json ,1534258258.4117985,timeout ,inf ,[s]

network_ test__memoisation_steps4_nodes4_edgesO_data0.json ,1534258263.4121394 ,timeout,inf ,[s]
network_test__memoisation_steps8_nodes4__edgesO_data3.json ,1534258268.4124947 ,timeout ,inf ,[s]
network_test_tmp_steps6_nodes4__edges0O_data2.json ,1534258273.4146197 ,timeout,inf ,[s]
network_test__memoisation_steps2_nodes2_edges0_data0.json ,1534258278.4148972,FAIL,0.006427764892578125,[s]
network_test__memoisation_steps2_nodes4_edges0_data0.json ,1534258278.4213593,0K,0.006208181381225586,[s]
network__test_lineaire_steps2_nodes4__edges4__data0.json ,1534258278.427611,0K,0.010190486907958984 ,[s]
network_test__memoisation_steps6_nodes2_edges2_ data3.json ,1534258278.437843,FAIL,0.11266565322875977,[s]
network__test__memoisation_steps8_nodes2__edgesO_data2.json ,1534258278.55056 ,FAIL,4.516624927520752,[s]
network_test_lineaire_steps2_nodes3__edgesO_data0.json ,1534258283.0672102 ,FAIL,0.015125751495361328,[s]
network test__tmp_steps4_nodes2_edges2_datal.json ,1534258283.0823581 ,FAIL,0.00348663330078125,[s]
network_test__memoisation_steps6__nodes2_ edgesO_data3.json ,1534258283.0858643,0K,0.057564735412597656,[s]
network__test_lineaire_steps4_nodes4__edges2_ datal.json ,1534258283.1434824,0K,0.11573052406311035,[s]
network test_tmp_steps4 nodes4 edges2_ data2.json ,1534258283.2592487,0K,0.018961429595947266,[s]
network_test__memoisation_steps8_nodes4__edgesO__data2.json ,1534258283.2782505,timeout ,inf ,[s]

network test_ tmp_ steps6_nodes3_ edges4_ data3.json ,1534258288.2802076 ,FAIL,0.0019192695617675781,[s]
network test_ tmp_steps6_nodes4_ edges2_ datal.json ,1534258288.282142,timeout ,inf ,[s]

network_ test_memoisation_steps8_ nodes3__edges2 data3.json ,1534258293.2833023,timeout,inf ,[s]
network_test_memoisation_steps8_nodes4_edges6__data0.json ,1534258298.2848775,0K,0.011673450469970703,[s]
network__test_lineaire_steps8_nodes2_edges2_data3.json ,1534258298.296571,FAIL,0.0778505802154541,[s]
network__test_lineaire_steps2_nodes3__edges4_datal.json ,1534258298.3744771,FAIL,0.0015988349914550781,[s]
network_test_tmp_steps8_nodes3__edges4__datal.json ,1534258298.376108 ,FAIL,0.003931283950805664 ,[s]
network_test__memoisation_steps4_nodes4__edges2_ data0.json ,1534258298.38007,timeout ,inf ,[s]
network_test_memoisation_steps2_nodes4_edges0_data2.json ,1534258303.3815005,0K,0.009040594100952148,[s]
network_ test_tmp_steps6_nodes4_edges2_data3.json ,1534258303.3905957 ,timeout ,inf ,[s]
network_test_tmp_steps6_nodes3__edges2__data2.json ,1534258308.3919954 ,timeout,inf ,[s]
network__test_lineaire_steps4_nodes4__edgesO_data2.json ,1534258313.3929992 ,0K,0.05506467819213867,[s]
network_test__tmp_steps2_ nodes3__edges2_data2.json ,1534258313.448101,0K,0.006190776824951172,[s]
network_test__memoisation_steps8_ nodes2_ edges2_ data2.json ,1534258313.4545898 ,FAIL,0.316054105758667 ,[s]
network_test__memoisation_steps6__nodes4__edges2_datal.json ,1534258313.7707148 ,timeout ,inf ,[s]

network test__tmp_steps4_nodes3__edgesO__data3.json ,1534258318.7723825,timeout,inf ,[s]

network test_tmp_steps2_ nodes3__edgesO_datal.json ,1534258323.7753832,0K,0.004464626312255859,[s]
network_test__memoisation_steps6__nodes3__edges2_ data0.json ,1534258323.7798867 ,FAIL,0.17276787757873535,[s]
network test_lineaire steps8 nodes2 edges0O_datal.json ,1534258323.9527154,FAIL,0.0581052303314209,[s]
network test_tmp_steps6_nodes2_ edgesO_datal.json ,1534258324.010861,FAIL,0.018726110458374023,[s]
network_ test_ lineaire steps8 nodes4 edges4 data2.json ,1534258324.0296476,timeout ,inf ,[s]

network_ test__memoisation_steps8_nodes4__edges4_datal.json ,1534258329.0305119,timeout ,inf ,[s]
network_test_tmp_steps8_nodes4__edgesO0_datal.json ,1534258334.0307093,timeout ,inf ,[s]
network_test_tmp_steps4_nodes3__edges2_data0.json ,1534258339.0325792 ,FAIL,0.013915538787841797,(s]
network_test_tmp_steps2_nodes3__edges4_datal.json ,1534258339.046524 ,FAIL,0.0017409324645996094 ,(s]
network__test_lineaire_steps8_nodes3__edges4_data3.json ,1534258339.0482886 ,FAIL,0.0023956298828125,[s]
network_ test_tmp_steps6_nodes3__edges2_data3.json ,1534258339.0507035,timeout ,inf ,[s]
network__test_lineaire_steps4_nodes4__edges6__data3.json ,1534258344.0518494 ,timeout ,inf ,[s]
network__test__memoisation_steps6_nodes4__edgesO__datal.json ,1534258349.0530443,timeout ,inf ,[s]
network__test_lineaire_steps8_nodes2_ edges2_ data2.json ,1534258354.054592 ,FAIL,0.04409050941467285,[s]
network__test_lineaire_steps2_nodes2_ edges0O_datal.json ,1534258354.0987444,0K,0.004397869110107422,[s]
network_ test_memoisation_steps2_ nodes3__edgesO__datal.json ,1534258354.1031754,0K,0.003654003143310547,[s]
network_ test__tmp_steps4_nodes3__edges2_ data2.json ,1534258354.106862,0K,0.010120391845703125,[s]

network test_tmp_steps8_ nodes2 edges2_ data0.json ,1534258354.1170254,FAIL,0.0035331249237060547,[s]
network_test__memoisation_steps8_nodes3__edgesO__data2.json ,1534258354.1205862,timeout ,inf ,[s]

network test_lineaire steps6_nodes3_edges4 data2.json ,1534258359.1223793 ,FAIL,0.003838777542114258,[s]
network test_tmp_steps2 nodes4_edges2_ datal.json ,1534258359.1262558 ,0K,0.00769495964050293,[s]

network test tmp_ steps8 nodes4 edgesO_data3.json ,1534258359.1339653,timeout ,inf ,[s]
network_test_lineaire_steps6_nodes2_ edges0O_data0.json ,1534258364.135407 ,FAIL,0.0050199031829833984,[s]
network_test__memoisation_steps4_nodes4__edges6__data3.json ,1534258364.1405072,0K,0.03622078895568848,[s]
network_test__memoisation_steps8_nodes4_edges2_data2.json ,1534258364.1767454 ,timeout ,inf ,[s]
network_test__memoisation_steps8_nodes2_edges0O_data3.json ,1534258369.1770954 ,timeout ,inf ,[s]
network__test_lineaire_steps8_nodes3__edges0O_data0.json ,1534258374.1780198 ,FAIL,0.05046677589416504,(s]
network_test_tmp_steps6_nodes2_edges2_data0.json ,1534258374.2285278 ,FAIL,0.001642465591430664 ,[s]
network_test__memoisation_steps4_nodes3__edgesO_data0.json ,1534258374.2302024 ,FAIL,0.5960931777954102,[s]
network_test_tmp_steps2_nodes2_edges2_data2.json ,1534258374.8263533,0K,0.0015540122985839844 ,[s]
network_test__memoisation_steps8_ nodes3__edgesO_data3.json ,1534258374.8279383,timeout ,inf ,[s]
network__test__memoisation_steps2_nodes2_edgesO_data3.json ,1534258379.8295279,0K,0.003924131393432617,[s]
network_test_lineaire_ steps6__nodes4 edges6__data2.json ,1534258379.8335106,timeout ,inf ,[s]

network test__tmp_steps8_ nodes2_edgesO_datal.json ,1534258384.8344767 ,FAIL,0.053528785705566406,[s]
network_ test_memoisation_ steps4_nodes3__edges2_ data0.json ,1534258384.8880265,FAIL,0.20573711395263672,([s]
network_ test_tmp_steps2_ nodes4__edges4_data3.json ,1534258385.093816,0K,0.006990671157836914,[s]

network test_lineaire steps8_ nodes3__edges4_ data2.json ,1534258385.100838 ,FAIL,0.002109527587890625,[s]
network test_tmp_steps8 nodes3__edges2_ data3.json ,1534258385.102979,timeout ,inf ,[s]

network test_tmp_steps4 nodes2_ edgesO_data0.json ,1534258390.1041014,FAIL,0.003674030303955078 ,(s]
network_test_memoisation_steps2_nodes4_edgesO_datal.json ,1534258390.1077929 ,0K,0.00770878791809082,(s]
network__test_lineaire_steps4_nodes3__edges2_datal.json ,1534258390.115538 ,FAIL,1.0373456478118896,[s]
network_test_lineaire_steps8_nodes2_edges2_datal.json ,1534258391.1529384 ,FAIL,0.01891469955444336,(s]
network_test__memoisation_steps4_nodes2__edges2_data0.json ,1534258391.171935,FAIL,0.0018496513366699219,[s]
network__test_lineaire_steps4_nodes2_edgesO_data2.json ,1534258391.17382,0K,0.021175861358642578,(s]
network_test_lineaire_steps4_nodes4__edges2_data2.json ,1534258391.1950457 ,timeout ,inf ,[s]
network_test_lineaire_steps6_nodes2_ edgesO_data2.json ,1534258396.1958892 ,FAIL,0.07841849327087402,[s]
network__test_lineaire_steps4_nodes3__edgesO_data3.json ,1534258396.2743397,0K,1.6214630603790283,[s]
network_ test_tmp_steps2 nodes4__edges4_ data2.json ,1534258397.8958383,0K,0.00790095329284668 ,[s]
network__test__memoisation_steps2_nodes2_edgesO__datal.json ,1534258397.9037533,0K,0.001865386962890625,[s]
network_test_lineaire_ steps8_ nodes3__edges2 datal.json ,1534258397.9056313,timeout ,inf ,[s]
network_test_lineaire_steps4_nodes3__edges4_data0.json ,1534258402.906584 ,FAIL,0.0023491382598876953,[s]
network__test_lineaire_steps6_nodes2_edges2_data2.json ,1534258402.908965,FAIL,0.015382528305053711,[s]

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

172 APPENDIX B. LOG FILES

network_test__memoisation_steps4_nodes4__edges4_data2.json ,1534258402.9243896 ,0K,0.02161240577697754,[s]
network test_ tmp_ steps8 nodes4 edges6_data3.json ,1534258402.9460204,timeout,inf ,[s]
network_test_memoisation_steps4_nodes2_ edgesO__datal.json ,1534258407.9476116 ,FAIL,0.1221160888671875,[s]
network test_ lineaire steps8 nodes4 edges6_datal.json ,1534258408.0697837,timeout ,inf ,[s]

network_ test_tmp_steps6_nodes3__edges4_datal.json ,1534258413.0709414 ,FAIL,0.0024166107177734375,[s]
network_test_lineaire_steps8_nodes3__edges2_data3.json ,1534258413.07339,timeout ,inf ,[s]
network__test_lineaire_steps6_nodes3__edges2_data3.json ,1534258418.074231,timeout ,inf ,[s]
network__test_lineaire_steps8_nodes4__edges2_data3.json ,1534258423.075012,timeout ,inf ,[s]
network__test_lineaire_steps4_nodes3__edges4_data2.json ,1534258428.0759187 ,FAIL,0.0017485618591308594 ,[s]
network_ test_tmp_steps8_nodes4__edges4_dataO.json ,1534258428.0777,0K,0.0170133113861084 ,[s]
network_test__memoisation_steps8_nodes4__edges4__data2.json ,1534258428.0947747 ,timeout ,inf ,[s]
network__test__memoisation_steps8_nodes2__edges2_data0.json ,1534258433.0970666 ,FAIL,0.002272367477416992,[s]
network__test_lineaire_steps4_nodes3__edges2_ data3.json ,1534258433.099353,0K,1.1625418663024902,[s]
network_ test__tmp_steps4_nodes2_edgesO__data3.json ,1534258434.261948 ,0K,0.08692312240600586 ,[s]

network test_tmp_steps2_ nodes4_ edges2_data2.json ,1534258434.3489535,0K,0.008194446563720703,[s]

network test_tmp_steps4_nodes4__edges6__data2.json ,1534258434.3571794,0K,0.2124776840209961 ,[s]

network_ test_memoisation_steps6__nodes3__edges4_data0.json ,1534258434.5697126 ,FAIL,0.0034728050231933594,[s]
network_test__memoisation_steps8_nodes2_edges2_data3.json ,1534258434.5732179,FAIL,0.8213341236114502,[s]
network test_ tmp_ steps8 nodes4 edges4 data2.json ,1534258435.3946095,timeout ,inf ,[s]
network_test_lineaire_ steps4_nodes4_edgesO_datal.json ,1534258440.3960927,timeout ,inf ,[s]

network test_ memoisation steps2_ nodes4_edges4 data0O.json ,1534258445.3980286,0K,0.007910013198852539,[s]
network__test_lineaire_steps6_nodes4__edges4_data3.json ,1534258445.405959 ,timeout ,inf ,[s]
network__test_lineaire_steps4_nodes4__edges0O_data0.json ,1534258450.4074461,0K,0.013883590698242188,[s]
network__test_lineaire_steps4_nodes4__edges4__data3.json ,1534258450.421388 ,timeout ,inf ,[s]
network_test_tmp_steps6_nodes4__edgesO_data3.json ,1534258455.4226325,timeout ,inf ,[s]
network_test_lineaire_steps8_nodes3__edges0O_data2.json ,1534258460.4242065,timeout ,inf ,[s]
network_test_tmp_steps6_nodes3__edges0_data2.json ,1534258465.42565,timeout ,inf ,[s]

network_ test_tmp_steps6_nodes3__edges4_data2.json ,1534258470.426694 ,FAIL,0.0022406578063964844 ,[s]
network_test__tmp_steps4_nodes4__edges6__data0.json ,1534258470.428967 ,0K,0.00847315788269043,[s]
network_test__memoisation_steps4_nodes2_edgesO_data0.json ,1534258470.437453 ,FAIL,0.009091377258300781,[s]
network_ test_tmp_steps4_nodes4__edges4__data0O.json ,1534258470.4466286 ,0K,0.012592554092407227,[s]

network test_tmp_steps4_ nodes2_ edgesO_datal.json ,1534258470.459261 ,FAIL,0.01119375228881836,[s]
network_test__memoisation_steps8_nodes3__edges4__data0.json ,1534258470.470493 ,FAIL,0.004198789596557617 ,[s]
network test_tmp_steps8_ nodes3__edges4_ data2.json ,1534258470.4747052,FAIL,0.0021812915802001953,[s]
network_test_lineaire_steps2_nodes2_edges2_data3.json ,1534258470.4769208,0K,0.0015785694122314453,[s]
network test_ tmp_ steps8 nodes2 edges2 datal.json ,1534258470.478851,FAIL,0.016942262649536133,([s]
network_test_lineaire_steps2_nodes2_ edges2_ datal.json ,1534258470.4958684 ,FAIL,0.0022385120391845703,[s]
network test_tmp_steps8_ nodes2_ edges2_data3.json ,1534258470.498124 ,FAIL,0.06963753700256348,[s]
network_test_lineaire_steps2_ nodes4_edges6_datal.json ,1534258470.5678172,0K,0.36690735816955566 ,[s]
network_ test_tmp_steps2_nodes3__edges0_data0.json ,1534258470.9347785 ,FAIL,0.011674165725708008,(s]
network_test_lineaire_steps6_nodes3__edges0O__datal.json ,1534258470.9464715,timeout ,inf ,[s]
network_test_tmp_steps6_nodes4__edges4d__data3.json ,1534258475.949017 ,timeout ,inf ,[s]
network_test__memoisation_steps2_nodes3__edges4_datal.json ,1534258480.9507058 ,FAIL,0.0017211437225341797,[s]
network_test_memoisation_steps6_nodes2__edges0_data2.json ,1534258480.9524484 ,FAIL,1.3920435905456543,[s]
network_ test_tmp_steps4_nodes3__edges4_datal.json ,1534258482.344531,FAIL,0.0018434524536132812,(s]
network_test__memoisation_steps6_nodes4__edges6__data2.json ,1534258482.3463888 ,timeout ,inf ,[s]
network__test_lineaire_steps2_ nodes3__edges4_ data2.json ,1534258487.3482432 ,FAIL,0.0015244483947753906,[s]
network_ test__tmp_steps6_nodes2_edges2_ datal.json ,1534258487.3498056 ,FAIL,0.005206108093261719,[s]
network_test_memoisation_steps4_nodes4__edges6__data2.json ,1534258487.3550253,0K,0.019952058792114258,[s]
network__test__memoisation_steps2_nodes3__edges4__data0.json ,1534258487.3749943 ,FAIL,0.0020837783813476562,[s]
network__test_lineaire_steps8_nodes4__edges6__data3.json ,1534258487.377097,timeout ,inf ,[s]
network_test_lineaire_steps6_nodes4_edgesO_data0.json ,1534258492.3781462,0K,0.022153854370117188,[s]
network test_tmp_steps8_nodes3__edges2_datal.json ,1534258492.4003608,timeout,inf ,[s]

network test_lineaire steps4_nodes2 edges2 data0.json ,1534258497.4015675,FAIL,0.002616405487060547 ,[s]
network_ test_memoisation_steps2_nodes3__edges4_data2.json ,1534258497.4042413,FAIL,0.002228260040283203,[s]
network test tmp_ steps8 nodes3_ edges2 data2.json ,1534258497.4065084 ,timeout,inf ,[s]
network__test_lineaire_steps8_nodes2_ edges0O_data2.json ,1534258502.4078946 ,FAIL,0.1830437183380127,[s]
network__test_lineaire_steps6_nodes3__edges4_data0.json ,1534258502.5910096 ,FAIL,0.003162384033203125,[s]
network_test_memoisation_steps2_nodes3__edges2_data3.json ,1534258502.5942037,0K,0.003518342971801758,[s]
network__test_lineaire_steps2_nodes2_ edges0_data2.json ,1534258502.5977337,0K,0.001607656478881836,[s]
network_test_lineaire_steps6_nodes3__edges2_data2.json ,1534258502.5993717 ,timeout ,inf ,[s]
network_test_lineaire_steps8_nodes4_edges4_data3.json ,1534258507.6005342,timeout ,inf ,[s]
network_test_lineaire_steps2_nodes2_edgesO_data3.json ,1534258512.6019297,0K,0.0016410350799560547 ,([s]
network__test_lineaire_steps6_nodes4__edges2_data0.json ,1534258512.603603,0K,0.02033090591430664 ,[s]
network__test_lineaire_steps4_nodes4__edges4_data2.json ,1534258512.623971,timeout ,inf ,[s]
network_test__tmp_steps2_nodes4__edgesO_data3.json ,1534258517.6252942 ,0K,0.007477760314941406,[s]

network test_tmp_steps8_ nodes2_ edgesO_data2.json ,1534258517.6328034 ,FAIL,0.16649389266967773,[s]
network_test__memoisation_steps4_nodes2_edges2__data2.json ,1534258517.7993374 ,FAIL,0.019325733184814453,[s]
network test_memoisation_steps8_ nodes4_edges2_ data3.json ,1534258517.8186855,timeout ,inf ,[s]
network_test_lineaire_steps4_nodes3__edgesO__data0.json ,1534258522.8207552 ,FAIL,0.026768207550048828,[s]
network test memoisation steps4_ nodes2_ edges2_ datal.json ,1534258522.8475988 ,FAIL,0.009721040725708008,[s]
network_ test_memoisation_steps6_nodes3__edges2_ datal.json ,1534258522.857341,timeout ,inf ,[s]

network test tmp_ steps2 nodes4 edges6_data2.json ,1534258527.8583744,0K,0.006714582443237305,[s]
network_test__memoisation_steps2_nodes2_edges2_data3.json ,1534258527.8651228,0K,0.0022954940795898438,(s]
network_test__memoisation_steps6_nodes3__edgesO_data3.json ,1534258527.8674767 ,timeout ,inf ,[s]
network_test__memoisation_steps2_nodes2_edges0O_data2.json ,1534258532.8691065,0K,0.002819538116455078,[s]
network_test__memoisation_steps2_nodes4_edges4_datal.json ,1534258532.8719637,0K,0.0075762271881103516,[s]
network__test_lineaire_steps2_nodes4__edges0O_data0.json ,1534258532.8795774,0K,0.009897947311401367,[s]
network__test_lineaire_steps2_nodes3__edges2_data0.json ,1534258532.8895166 ,FAIL,0.011719226837158203,[s]
network_test__memoisation_steps6_nodes4__edgesO_data0.json ,1534258532.9012609,timeout ,inf ,[s]
network__test__memoisation_steps6_nodes3__edgesO__datal.json ,1534258537.9028084 ,timeout ,inf ,[s]

network_ test__tmp_steps4_ nodes4__edges0_data2.json ,1534258542.904446,0K,0.026413679122924805,[s]
network__test_lineaire_steps6_nodes3__edges2_datal.json ,1534258542.9308774,FAIL,3.240157127380371,[s]
network_test_lineaire_steps4_nodes4_edges4_ data0.json ,1534258546.1710908 ,0K,0.00894784927368164 ,[s]
network__test_lineaire_steps8_nodes3__edges4_data0.json ,1534258546.1800697 ,FAIL,0.004777431488037109,[s]
network_ test_memoisation_ steps6_nodes3__edges2_ data3.json ,1534258546.184908,timeout ,inf ,[s]
network_test_lineaire_steps8_nodes2_ edgesO__data0.json ,1534258551.1863213 ,FAIL,0.006634235382080078,[s]
network_ test_lineaire steps6_nodes4 edges6__datal.json ,1534258551.192991,timeout ,inf ,[s]

network_ test_memoisation_steps2_nodes4_edges2_ data0.json ,1534258556.1938736,0K,0.005958080291748047,[s]
network_test_lineaire_steps4_nodes3__edgesO_datal.json ,1534258556.1998436,0K,0.6382021903991699,(s]
network_test_lineaire_steps4_nodes3__edges4_data3.json ,1534258556.838081 ,FAIL,0.0016477108001708984 ,([s]
network_test__memoisation_steps6_nodes4__edges2_data2.json ,1534258556.8397613,timeout ,inf ,[s]
network_test_lineaire_steps4_nodes2_ edges0O_datal.json ,1534258561.841364,FAIL,0.01455831527709961,[s]
network_test_tmp_steps4_nodes4__edgesO_data0O.json ,1534258561.8559434 ,timeout ,inf ,[s]
network_test_tmp_steps2_nodes4__edges2_data0.json ,1534258566.856228 ,0K,0.010141134262084961,[s]
network__test_lineaire_steps6_nodes4__edges4_datal.json ,1534258566.866408 ,timeout ,inf ,[s]

network_ test_tmp_steps8_nodes4_edges6__datal.json ,1534258571.8678048 ,timeout,inf ,[s]
network__test__memoisation_steps6_nodes2__edgesO__data0.json ,1534258576.869282 ,FAIL,0.013608217239379883,([s]
network_ test__tmp_steps2_ nodes3__edgesO_data3.json ,1534258576.8829463,0K,0.004863739013671875,[s]
network__test_lineaire_steps2_nodes4__edges6__data0.json ,1534258576.88783,0K,0.008908987045288086,(s]
network test_tmp_steps6_nodes4_ edges2_ data0l.json ,1534258576.8967624 ,timeout,inf ,[s]

network test_tmp_steps2_ nodes2_edgesO_data2.json ,1534258581.8970776 ,0K,0.004108905792236328,[s]

network test__tmp_steps6_nodes3__edges2_ data0.json ,1534258581.9012382 ,FAIL,0.016342639923095703,[s]

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

network test_tmp_steps6_nodes4_edges2_data2.json ,1534258581.9176059,timeout ,inf ,[s]

network_ test_lineaire steps4_ nodes3__edges2_ data2.json ,1534258586.9187915,0K,0.3052990436553955,[s]
network test_tmp_steps2_ nodes2_ edgesO_data0.json ,1534258587.2241476 ,FAIL,0.0016758441925048828,[s]
network test memoisation steps6_nodes4_ edgesO_ data3.json ,1534258587.225857 ,timeout ,inf ,[s]
network_test__memoisation_steps2_nodes2_edges2_ datal.json ,1534258592.2276866 ,FAIL,0.005255937576293945,(s]
network_test__memoisation_steps6_nodes4__edges6__data0.json ,1534258592.2329984 ,0K,0.010898828506469727,[s]
network_test__memoisation_steps6_nodes4__edges4_data0O.json ,1534258592.2439208,0K,0.01204681396484375,[s]
network_test_tmp_steps6_nodes4d__edges6__data3.json ,1534258592.2560503,timeout ,inf ,[s]
network_test_memoisation_steps6_nodes2__edges0_datal.json ,1534258597.2573776 ,FAIL,0.2781238555908203,[s]
network_test__memoisation_steps6_nodes3__edges4_data3.json ,1534258597.53556 ,FAIL,0.0018210411071777344,[s]
network_test__tmp_steps8_nodes3__edges4__datal.json ,1534258597.5374131 ,FAIL,0.0026464462280273438,[s]
network_test__tmp_steps4_nodes2_edges2_data0.json ,1534258597.5400908 ,FAIL,0.0012791156768798828,[s]
network_ test_tmp_steps4_nodes4__edgesO__datal.json ,1534258597.541402,0K,0.5338530540466309,[s]

network test_tmp_steps4_nodes4__edges2__data0l.json ,1534258598.0752726 ,timeout ,inf ,[s]
network_test_lineaire_ steps2_ nodes4_ edges2 data2.json ,1534258603.0762217,0K,0.008859634399414062,[s]
network_ test__tmp_steps6_nodes4_edges4d_data2.json ,1534258603.085117,timeout ,inf ,[s]

network test_lineaire_steps4_nodes4_edges2_ data0.json ,1534258608.0864341,0K,0.01581859588623047,[s]
network_ test_tmp_steps8_nodes3__edgesO_data0.json ,1534258608.102299 ,FAIL,0.03789830207824707,[s]

network test_lineaire steps2_ nodes3__edges2 datal.json ,1534258608.1402361,0K,0.02789926528930664 ,[s]
network_ test_memoisation_steps6_nodes2_ edges2_ data0.json ,1534258608.1681714,FAIL,0.001771688461303711,[s]
network test tmp_ steps2 nodes2 edges2_ data0.json ,1534258608.1699748 ,FAIL,0.0009748935699462891,[s]
network_ test__memoisation_steps2_nodes3__edges0O_data2.json ,1534258608.1709812,0K,0.003988981246948242,[s]
network_test_tmp_steps2_nodes4__edges6__data3.json ,1534258608.1749816 ,0K,0.009404182434082031,[s]
network_test_tmp_steps8_nodes4__edges2_data3.json ,1534258608.1844609 ,timeout ,inf ,[s]
network_test__memoisation_steps2_nodes3__edges0_data0.json ,1534258613.18604 ,FAIL,0.24876046180725098,[s]
network_test_lineaire_steps8_nodes3__edges2_data2.json ,1534258613.4348428 ,timeout ,inf ,[s]
network__test_lineaire_steps8_nodes4__edges0O_data0.json ,1534258618.4356577,0K,0.06462550163269043,[s]
network_test__memoisation_steps4_nodes2_edgesO_data3.json ,1534258618.5003393,0K,0.035064697265625,[s]
network__test_lineaire_steps6_nodes4__edges4_data0.json ,1534258618.5354311,0K,0.013251066207885742,[s]
network_test_lineaire_steps8_nodes4_ edges6__data0.json ,1534258618.5487375,0K,0.033965110778808594 ,[s]
network__test_lineaire_steps2_nodes3__edges2_data2.json ,1534258618.58276,0K,0.003034830093383789,[s]
network_test_lineaire_steps4_nodes4_edges2_ data3.json ,1534258618.585829,timeout ,inf ,[s]
network__test_lineaire_steps2_nodes4__edges4_data2.json ,1534258623.5890024,0K,0.0074121952056884766,[s]
network test_memoisation_steps4_nodes3__edgesO__data3.json ,1534258623.5964518 ,timeout ,inf ,[s]

network_ test_tmp_steps8_ nodes4_edgesO_data2.json ,1534258628.597787,timeout ,inf ,[s]

network test_ tmp_ steps4 nodes4 edges2 data3.json ,1534258633.5980942,0K,0.1289064884185791,[s]

network_ test_memoisation_steps4_nodes4_edges4_data0.json ,1534258633.7270558 ,0K,0.010926246643066406,[s]
network test_tmp_steps2_ nodes3__edges4_data3.json ,1534258633.7380376 ,FAIL,0.0019664764404296875,[s]
network_test_memoisation_steps8_nodes3__edgesO_data0.json ,1534258633.7400417 ,FAIL,0.6575107574462891,[s]
network_test__memoisation_steps8_nodes4__edges2_datal.json ,1534258634.3976061,timeout ,inf ,[s]
network_test__memoisation_steps8_nodes3__edges2_ datal.json ,1534258639.3994582,timeout ,inf ,[s]
network_test__memoisation_steps8_nodes3__edges4_datal.json ,1534258644.400624 ,FAIL,0.0027496814727783203,[s]
network_test__memoisation_steps4_nodes4__edges2_ data2.json ,1534258644.403406 ,0K,0.016785144805908203,[s]
network__test_lineaire_steps2_nodes3__edges2_data3.json ,1534258644.4202137,0K,0.003626108169555664 ,[s]
network_test__memoisation_steps2_nodes4__edgesO_data3.json ,1534258644.4238794,0K,0.010286569595336914 ,[s]
network_test__memoisation_steps2_nodes2__edges2_ data2.json ,1534258644.4342136 ,0K,0.0019605159759521484 ,[s]

173

