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Abstract

Abstract. Software measurement aims at providing a reliable and repeatable method to
assess software quality. However, quantifying precisely (i.e. defining meaningful thresholds)
the connection between software metrics and higher level quality attributes has been a
continuing challenge. Machine learning can be exploited to improve our understanding of
software metrics and the relationship with software quality. This requires the analysis of large
amounts of data. Fortunately, online social coding platforms such as GitHub make large
amounts of software-related data (both source code and metadata) publicly available. This
study uses machine learning on GitHub repositories to assess their quality. Specifically, this
work (1) makes publicly available a dataset with the metadata of 71,942 GitHub repositories,
then uses it to (ii) describe the characteristics of the use of GitHub and (iii) define criteria to
select projects relevant to software quality analysis. Additionally, the study (iv) builds an
extended version of the dataset with software metrics of 3,074 GitHub repositories
exploitable by standard machine learning techniques, (v) examines the style of code in this
platform and (vi) creates a machine learning model to analyse the quality of these
repositories.

Keywords. Machine learning, Software Measurement, Software Metrics, Software Quality,
GitHub, Software Repositories Mining.

Résumé. La mesure logicielle cherche a fournir une méthode fiable et répétable d’évaluation
de la qualité¢ logicielle. Néanmoins, la quantification précise (incluant une définition
significative des seuils) de la relation entre les métriques logicielles et les attributs de qualité
de plus haut niveau reste un défi. L’apprentissage automatique peut étre utilisé pour renforcer
notre compréhension des métriques logicielles et leur lien avec la qualité logicielle, ce qui
requiert ’analyse de grandes quantités de données. Toutefois, certaines plateformes de
programmation collective en ligne, telles que GitHub, ont I'avantage de rendre ces données
logicielles disponibles au public (aussi bien le code source que les métadonnées). Cette étude
utilise ’apprentissage automatique sur des dépdts (repositories) de GitHub afin d’évaluer
leur qualité. En particulier, ce travail (i) rend public les métadonnées de 71942 dépots de
GitHub, utilisées ultérieurement pour (ii) décrire les caractéristiques de 1’utilisation de
GitHub et (i11) définir les critéres de s€lection des projets pertinents a 1’analyse de la qualité
logicielle. En outre, 1’é¢tude (iv) rassemble une version étendue de I’ensemble de données
contenant les métriques logicielles de 3074 projets de GitHub exploitables par les techniques
standard d’apprentissage automatique, (v) décrit le style de programmation dans cette
plateforme et (vi) crée un modele d’apprentissage automatique pour analyser la qualité de ces
projets.

Mots-clés. Apprentissage automatique (machine learning), Mesure Logicielle, Métriques
Logicielles, Qualité Logicielle, GitHub, Exploration (mining) de données de projets logiciels.
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I. Introduction

Software quality assessment is crucial in software development, which in turn is essential to
companies, clients, developers and other entities working with software. Software
measurement, together with software inspection, is one of the main methods used to establish
meaningful relationships between measurable properties of software artefacts (e.g., lines of
code, depth of inheritance tree, coupling between objects, etc.) and high-level software
quality characteristics (e.g., reliability, maintainability, efficiency, etc.) [1]-[4].

The academic analysis of software metrics has significantly increased in the last years, but
software industry has remained reluctant to incorporate these metrics. The main reason is that
the concrete relationships between software metrics and quality have not been yet accurately
characterised (i.e. with suitable thresholds to interpret quality based on measurement values),
while the limitations of metrics are still under discussion [5]-[7]. The goal of this study is to
contribute to improving the current understanding of the connections between software
metrics and quality.

The use of numerous and diverse source codes is undoubtedly key to providing significant
results in this research. With the increasing popularity of social coding platforms, an
enormous amount of data is publicly available which can be used to this purpose. In recent
years, GitHub has become the most widespread collective code hosting platform. Therefore,
it offers a very rich source of data GitHub the study of software quality and metrics. It
provides not only the source code of projects, but also interesting additional metadata such as
reported issues, liveliness of the project, etc. Therefore, GitHub can be used both to extract
the software metrics from code and to obtain indicators of software quality related to this
metadata.

Machine learning provides a great opportunity to process this enormous amount of data and
better analyse and understand them. Specifically, machine learning can help in the actual
quantification of the relationship between software metrics and high-level quality
characteristics. In a classical empirical setting, it would require intractable efforts to do this
manually and it would be very difficult to analyse how different metrics are related with each
other and with quality. Applying machine learning techniques to software measurements
extracted from GitHub has great potential to yield meaningful results to improve the
understanding of quality and metrics.

Many standard machine learning algorithms require a set of features and targets. It is
therefore crucial to identify those software metrics which can be used as features and those
properties of GitHub projects which denote quality and can be employed as targets. This is a
challenge in itself: taking a GitHub software repository and identifying relevant properties on
which algorithms can be applied in order to detect relevant patterns that characterise it.
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To summarise, this study aims at analysing the connections between software quality and
software metrics using machine learning with data retrieved from GitHub. To achieve this, a
dataset with metadata about the use of GitHub is gathered and made publicly available. This
also enables to analyse the properties of the use of this platform. An extended version of the
dataset is built, containing relevant software metrics and quality data retrieved from GitHub.
This dataset is fed to a machine learning algorithm which contributes to understand the
correlation between software metrics and quality and its limitations. The dataset is also used
to characterise the properties of source code hosted in GitHub.

The remaining content of this document is as follows: chapter II analyses the state-of-the-art
in the use of GitHub for research in software quality and metrics. In chapter III, metadata
from GitHub repositories are extracted in order to build a dataset, which are employed to
characterise the use of this platform and define the criteria of the set of repositories used to
analyse quality and metrics. In chapter IV, the state of the art on software quality and metrics
is analysed, specially fault proneness and static software product metrics. Chapter V uses
machine learning on an extended dataset, containing software metric features and quality
targets retrieved from GitHub. It also explains the process of feature and target extraction and
uses the retrieved metrics to characterise the source code in GitHub. In Chapter VI,
improvements and future work to deepen the current understanding of software quality are
proposed.

The appendix includes a paper that was submitted to the Workshop on Machine Learning
Techniques for Software Quality Evaluation (MaLTesQuE 2018) in March 2018 in
Campobasso, Italy.



II. State-of-the-Art: Using GitHub 1n
Software Quality Research

For the software engineering researcher, social coding platforms and software forges are a
very promising subject of study and a precious source of available data. In our study, aimed
at improving the understanding of software quality and software metrics, they appear to be a
very valuable tool. Among these collective coding platforms, the most widespread is GitHub.

This chapter examines whether GitHub is an appropriate tool for the research on software
metrics and software quality. To answer this question, one needs to evaluate whether GitHub
has already been used as a subject or a tool for research. It is also necessary to evaluate the
amount of data available and compare its characteristics with others possible source of data,
such as software engineering research databases. Analysing the risks that the use of GitHub
entails in scientific research is also important. For example, one of the main challenges of
using this coding platform in research is its constant evolution, which makes it difficult to
ensure the replicability of studies.

Analysing the scientific works already carried out with GitHub in this field can help assess
whether GitHub is valid tool to analyse software quality and software metrics. Specifically, it
is essential to investigate how previous works have measured the software quality of projects
in this platform. It is also important to consider which type of software metrics can be
extracted and which ones have been so far used in previous studies.

Collecting raw data on software metrics and quality is not enough, as these informations need
to be processed and analysed. Identifying and understanding the methods that can be used to
handle these data is necessary. Analysing which methods have already been used in
preceding works can help in this objective.

In summary, this section endeavours to present the state-of-the-art in research around GitHub,
with special interest in software quality and metrics. Specifically, section II.A analyses the
potential of GitHub as a source of data in software research, compared to other sources of
data, such as those used before the emergence of GitHub. Section II.B analyses how
replicability can be ensured for a platform in constant evolution like GitHub. Section II.C
examines the pitfalls that have been identified in using GitHub as a subject of research and
proposes some measures to avoid these risks. II.D concentrates on studying the software
metrics and quality indicators available in GitHub and how they have been exploited in
previous works. Finally, section IL.LE addresses which methods are available and have been
used in order to process software quality and metrics extracted from GitHub.



A. GitHub as a Data Source for Software Research

In the Open Source Software (OSS) community, software forges are web-based collaborative
platforms, used mostly for version control, code sharing among developers, bug tracking,
source code management, documentation management, etc. Various commercial and open
source coding platforms exist, such as SourceForge, Subversion, GitHub, GitLab, Bitbucket,
Google Code, etc. The largest among these collaborative code hosting platforms is GitHub,
started in February 2008. It is based on Git, a distributed version control system which adds
social interaction features. Its popularity has greatly increased and, as of July 2018, it has
more than 30 million users and around 28 millions public repositories. At the end of 2017 it
accounted for a total of 67 millions repositories [8], including private repositories.

The aforementioned web-based software forges have been used for research in software
engineering. Other sources of data have been employed, such as public datasets with data
about various software projects. Among these, one of the most relevant ones is the PROMISE
repository [9]. In 2002 the NASA established the Metrics Data Program (MDP), which
gathered static code metrics from their projects. Some of these data were used to create the
Promise repository in 2004. Ever since, the number of datasets have increased and covers a
wide range of software engineering research datasets.

One of the main problems of software engineering research is that many studies used their
own ad-hoc datasets, many of which are private. Catal et al. show in Fig. 1 that, before the
creation of the PROMISE repository, only 31% of the datasets used in software fault
prediction studies were public. From 2005, the number of public datasets in research
increased to 52% (Fig. 2) [10]. Notwithstanding this increase, it would be desirable for
replicability that public databases were used more often in scientific studies.

Partial / unknown Public

60%

Private
Public
Private — s Partial / unknown

Fig. 1. Distribution of public and private datasets (data from [10]).
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Fig. 2. Distribution of public and private datasets since 2005 (data from [10]).

Although the platform has less than 10 years of existence, its popularity has made GitHub a
subject of research in a wide range of topics. Cosentino et al. [11] analyse 315 works
involving GitHub. They classify them in three groups, depending on the role of this
repository hosting service:

- 167 “source papers”, that use GitHub as a “source of repositories”, but did not study
any specific feature of this tool.

- 157 “target papers”, that analysed specific features of this platform and they way they
were used.

- 18 *“description papers”, that studied GitHub as part of studies that compared open-
source platforms.

Among those classified as “target papers”, table I lists the subjects that they covered. Among
other topics, it shows a significant interest in the social dimension of GitHub (e.g. analysis of
distributed coding tools such as issues and forks, interaction between its users, examining
their teams and discussions, etc.).

10
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TABLE 1. Areas of “target papers” research.

Areas Topics In topic  In area
Code contributions 21
Software development [ssues 6 34
Forking 12 )
Characterization 19
L Popularity 14 )
Projects Communities & teams 18 46
Global discussions 12
Characterization 21
Rockstars 10
Users Issue reporters and assignees 2 34
Followers 10
Watchers 6
Characterization 8
Ecosystem Transparency 9 23
Relationship with ther platforms 7

Table included in [11]

B. Replicability in GitHub

Using GitHub as a scientific research tool raises the problem of replicability. Due to its
popularity, it is continuously evolving: new repositories and users are added, projects change
through time, artifacts are removed from the platform, etc. Furthermore, GitHub’s interface,
mechanisms and features have changed over time and some functionalities have evolved:
these changes hinder replicability.

Given the importance of replicability and the enormous amount of data stored in GitHub,
various projects have created datasets of the information contained in this platform at specific
moments, mostly used for big data analysis and machine learning. One of the most used is
GHTorrent [12], a queriable mirror database hosting a significant part of GitHub metadata,
stored both in a SQL database and a set of MongoDB files. The dumps with the data can be
downloaded and queried offline, or directly queried online. It is a useful snapshot on which to
conduct research in a controlled and replicable manner. GHTorrent holds metadata
information about GitHub users, repositories, commits, etc. However, it does not include
code or repositories as such.

In a similar manner, the GitHub archive [13] provides a dataset of public events in the
GitHub event stream as from 2011. Specifically, it proposes three datasets, depending on the
time range they cover: the year dataset that contains activities for each year from 2011, the
month dataset and the day dataset.

Another available dataset is the GitHub Java Corpus [14], gathered for the work conducted in
[15]. It is a snapshot of all the open-source Java projects with at least one fork that were

11
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publicly available in October 2012 (a total of 14785 projects). This source of data is not a
database strictly speaking, but a compilation of the files with extension “java” used in their
research.

Cosentino et al. [11] show in Fig. 3 that GHTorrent is the most frequently used source of data
for GitHub research (41.25%). The second most frequent way to retrieve data is by directly
querying the GitHub API (31.25%), instead of using previously existing datasets.

Manual / mixed / other

GitHub Archive

22%
5%
31%
GitHub API
41%
GHTorrent
e —
GHTorrent
GitHub API

GitHub Archive
Manual / mixed [ other

Fig. 3. Sources of data for GitHub research (data from [8]).

A more recent database is the Public Git Archive [16], a dataset consisting of 182,014
repositories (based on the GHTorrent MySQL dump from January 2018) having at least 50
stargazers. Stargazers of a repository are those GitHub users that have bookmarked it, in
order to have easier access to it, indicating interest in this project.

The Public Git Archive contains 248,043 files for a total of 3TB of data, along with a CSV
file containing metadata about the repositories, which can be queried or downloaded. This
facilitates the replicability and retrieval of repositories’ source code, metadata and
development evolution.

Another approach to build a dataset about GitHub is the one used by Gyimesi et al. [17] and
Toth et al [18], who focus on bug detection: they analysed 13 and 15 GitHub projects
respectively, searching commits referencing a bug (as identified by the SZZ algorithm [19]—
[21]). This information is gathered throughout different releases, in intervals of six months,
along with software product and process metrics.
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B1. Limitations of Existing Datasets

A positive and promising trend can be observed in the increase of available GitHub datasets.
However, there are limitations to the use of these datasets in the context of software quality
and metrics:

e GHTorrent and the GitHub Archive do not contain any information on software
metrics. They collect metadata about the use of GitHub, but do not analyse their
source code.

e The GitHub Java Corpus is not a database than can be directly exploited for software
metrics or quality. It contains a snapshot of Java files from 14,785 projects, but holds
no relevant information to evaluate the software quality (such as GitHub metadata).
Furthermore, the information contained is not particularly recent (2012) and uses only
projects having been forked (which can bias their quality).

e The datasets used in [17] [18] gather detailed software metrics information, but only
for a limited number of GitHub projects (13 and 15 respectively), which seem not
enough projects to represent a variety of styles and patterns in coding.

e The Public Git Archive is a very valuable and up to date source of data, with
information about 182,014 repositories. It contains metadata on the repositories and
the files of these repositories. However, like the GitHub Java Corpus, it contains the
source files and not their software metrics. When a researcher wants to use these data,
he would need to download all the repositories and extract their metrics with an
appropriate software metric tool. Furthermore, it contains data only for repositories
with a certain popularity (more than 50 stargazers), which can bias the quality of
projects.

In spite of the increase in the number of publicly available datasets, it would be desirable to
create a dataset of diverse and heterogeneous GitHub projects gathering both software
metrics of repositories and their metadata (which can be used to assess its quality).

C. Pitfalls in GitHub for research

In order to use GitHub’s repositories for research, it is useful to analyse their characteristics,
since they can have an impact on the results of the studies. It is particularly important to be
aware of the possible pitfalls and risks for its use in software research.

Firstly, the repositories accessible for research are public repositories. As mentioned before,
the 28 millions public repositories accounted for less than half of the total repositories in
GitHub (around 67 millions by the end of 2017). This implies that any research carried out on
GitHub data is necessarily a partial view of the whole platform.

Another crucial observation reported by Kalliamvakou et al [22] is the fact that, albeit its
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original purpose, more than one third of GitHub projects are not software development, as
shown in table II. To prevent incorporating these noisy projects to research, they propose to
consider the types of files in the repositories, as well as the review descriptions and
README files.

TABLE 2. Number of repositories per type of use.

Category of use Number of repositories
Software development 275(63.4 %)
Experimental 53 (12.2 %)
Storage 36 (8.3 %)
Academic 31 (7.1 %)
Web 25 (5.8 %)
No longer accessible 11 (2.5 %)
Empty 3(0.7 %)
Table included in [22]

In [22], it is also underlined that most projects have low activity (the median number of
commits for a project is only 6 commits) and almost a half of them were inactive (only 54%
of them had had commits in the last 6 months).

A relevant aspect of GitHub resides in the use of its social coding features (contributions to
source code by different developers). A small subset of projects account for most source
interaction in the platform. Specifically, it has been proved that the distribution of code
contributions is highly skewed (power-law distribution) towards a small number of projects
with numerous contributors [11]. Most projects are developed by small teams.

Furthermore, [22] shows that most projects do not use code contributions at all: 67% of
GitHub projects are personal and only have one committer. 87% repositories have two or less
committers, 93% have three or less. Therefore, when a researcher intends to avoid personal
projects, it is recommended to take into consideration the number of committers in the
repository.

Issue tracking is one of the main tools provided by GitHub to allow its community to interact
with regards to code. This tool enables users to point out and fix bugs, propose new features,
etc. Bissyande et al. [23] analysed in 2013 a hundred thousand GitHub projects to
characterise the use of issue trackers and came to the conclusion that the use of this feature
was very rare: about 30% of the projects used issues, whereas 3% disabled issue tracking and,
remarkably, 66% did not disable them but still did not use them. The use of tags to categorise
issues is scarcely used: less than 30% of issues are labelled.

GitHub allows to create repository copies (called forks), to which modifications (such as bug
fixes) can be made and later proposed to the owner of the project (pull request). Again, the
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distribution of forks is very skewed and unevenly distributed among projects: most of them
are never forked, but few projects account for a great number of forks [11] [24] [25].

Another precaution to observe when using GitHub as a source of research data is that many
projects do not use GitHub exclusively: they also recur to external forms of collaboration and
many are mirrors of popular projects [22]. Using external tools is one of the reasons that
explains why most projects do not use a considerable number of GitHub features, such as pull
requests, issues, etc [11].

D. Quality Indicators and Software Metrics 1n
GitHub Research

As it will be addressed in chapter IV, one of the main challenges in the field of software
quality is reinforcing our understanding of the connections between external attributes,
perceived by the user of the software, and internal attributes, which describe the
characteristics of the software product and its code source. The exact quantification of the
relationship between metrics and software quality is still disputed.

One of the main difficulties of using GitHub for software quality research is finding
indicators of software quality within the data available in the platform. The extraction and
analysis of the massive amount of source code in GitHub can be challenging. However, it can
be automated and, therefore, practicable. On the contrary, retrieving indicators of external
quality attributes (e.g. manual inspection of the quality characteristics of running GitHub
software) is not feasible for such an enormous quantity of projects.

D1. Quality indicators in GitHub research

Various works have dealt differently with the automatic extraction of quality indicators from
GitHub repositories. They can be summarised in two main approaches: those resorting to
indicators of the number of bugs and the default proneness of projects, and those relying on
popularity indicators.

Some researchers have opted for using fault-proneness indicators in GitHub. For instance,
[17] and [18] use the issue tracking GitHub system, filtering the commits related to bugs and
fixes labels, and link them using the SZZ algorithm [19]-[21], intended to determine which
changes in code are responsible for a specific bug. Muthukumaran et al. [26] also mine data
from GitHub based on bug-related commits (those with a commit message containing the
words “bug”, “fix” or “fixed”) and link them to software change metrics.

In general, using issues and commits to quantify the number of bugs is one of the main
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external quality indicators in GitHub. Indeed, although labels are not systematically used in
GitHub repositories, among those using them the most common tags are bug-related (i.e.

9% ¢

containing words such as “bug”, “defect”, “type:bug”, “Browser Bug”, “bugfix", etc.) [23].

The other common approach to GitHub quality measurement is using indicators of the
popularity of the project (number of forks, watchers, etc.). For instance, Allamanis and Sutton
[15] postulate in their work that “low quality projects are more rarely forked”. Markovtsev et
al. [16] built up a GitHub-based dataset for repositories having at least 50 stargazers, as a
“proxy on the degree of public awareness and project quality within the community”.

Using the popularity of a project within GitHub as an indicator of its quality seems a more
high-risk approach than the one recurring to default-proneness indicators. It does not appear
to be an unequivocal and certain correlation between the most popular projects and those
having the highest software quality.

The use of these quality indicators, both those axed around default-proneness and around
popularity, could be of use for researching software quality in GitHub. However, in the
aforementioned studies they have been used as hypothetical indicators of quality, but to our
knowledge there are no papers which confirm that they actually reflect the software quality.
These different criteria have not been either compared among them to assess which are better
predictors of GitHub projects quality. Carrying out these type of studies would help improve
our understanding of software quality in GitHub.

D2. Software metrics in GitHub research

Having at their disposal such an enormous quantity of available data for software engineering
investigation, various authors have used GitHub to extract software metrics in order to
conduct research. In this section, some previous studies which make use of software metrics
on data gathered from this social coding platform are analysed.

For instance, Gyimesi et al. [17] and Toth et al. [18] retrieved repositories from GitHub and
extracted class-level and file-level static software metrics to create a public bug database for
research in the field of fault-prediction. In [18], these data were used for automatic
recognition of source code defects with machine learning.

Dwivedi et al. [27] extract 67 different static software object-oriented metrics from source
code in GitHub with JBuilder [28]. They used these measurements to automatically predict
software design patterns (i.e. Abstract Factory and Adapter) using machine learning
algorithms (Layer Recurrent Neural Network and Decision Tree). For their part, [26] resorts
to the aforementioned change metrics, easily retrievable from the history of GitHub projects,
and feed them into machine learning algorithms to predict buggy files.

Software metrics are also used works using GitHub as a source of data to analyse the specific
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characteristics of various families of programming languages. In [29], software metrics like
Cyclomatic Complexity are extracted from Scala projects in GitHub in order to illustrate that
functional programming repositories have methods with a very low complexity.

To summarise, GitHub projects have already been used to study software metrics. However,
previous work has not yielded conclusive results on the quantification of its connection with
software quality (e.g. establishing irrefutable thresholds for software metrics).

E. Massive GitHub Data Processing: Machine
Learning

It is difficult to analyse individually the vast amount of repositories available in GitHub.
Therefore, studies using this platform usually process these repositories automatically, in
bulk, and the data obtained are later interpreted. For instance, [11] shows that 71.5% of
GitHub studies rely exclusively in the mining and observation of GitHub metadata, while
only 12.5% use interviews and surveys and 16.25% mix both approaches.

Among those studies that use GitHub as a data source, it is also very common to resort to
automated analysis by machine learning techniques. The enormous amount of data in GitHub
can be ideally processed by machine learning tools and algorithms. It is the case of [15],
which uses machine learning on GitHub repositories to build a probabilistic language model
of source-code, employed to propose and validate new complexity metrics and measure the
centrality of a module within the project. In [30], it is shown that using deep learning
algorithms on GitHub repositories outperforms other machine learning algorithms in fields
such as source code suggestion.

Other works, like [18], use machine learning techniques to predict the fault proneness of 15
GitHub projects. The scope of this work is very similar to our current study. However, in
[18], the authors train and test their machine learning models with the data of the projects
separately. Therefore, the results of that work cannot be generalised to a wider scope of
GitHub projects. Two models trained with the data of two different projects could both yield
positive results, but perform poorly predicting the results of the other project. Also [26]
applies machine learning algorithms on GitHub repositories to predict faults in source code
files according to their change metrics.

In other words, the use of machine learning techniques in the study of data retrieved from
GitHub is increasingly popular. This trend in the use of machine learning is not exclusive to
GitHub studies. Catal et al. [10] show that machine learning is by far the most frequent
method of data analysis in the field of fault prediction (59% of all works, Fig. 4), and this has
increased from 2005 up to a 66% of all research (Fig. 5).
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Fig. 4. Methods of data analysis in fault proneness studies [10].
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Fig. 5. Methods of data analysis in fault proneness studies since 2005 [10].

F. Summary

In this chapter, it has been shown that GitHub is a valid source of data for studying software
metrics and software quality. It offers around 28 million public repositories which can be
used for research. This is an unparalleled quantity of data, larger than any of the other sources
of information used in software engineering research (such as the datasets gathered in the
PROMISE repository [9]). A significant proportion of the datasets used in software research
are private, while public GitHub repositories are available to all researchers.

However, the unequalled potential of GitHub as a research tool also pose potential risks that

need to be addressed. One of them is the difficulty to ensure replicability of the scientific
experiences making use of this platform. To overcome this limitation, in recent years there
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has been an increase in the number of available datasets containing GitHub data, offering
snapshots of the platform at specific moments.

The increase in the public GitHub datasets is a very promising trend. However, our analysis
shows that these datasets have limitations when used in the context of software quality and
metrics research. Mainly, they do not include both software metrics and software quality
indicators (such as GitHub metadata), or the project selection biases the quality of projects, or
they do not hold information about a sufficient number of different projects. Therefore, it is
desirable to collect a dataset that overcomes these limitations and which can be exploited in
software metrics and quality studies.

Other shortcomings of using GitHub stem from the very uneven and skewed characteristics
of its use: most projects are small, personal, not interactive and rarely use many of the
GitHub features. However, a small proportion of the projects are very popular, have a
substantial size, use the social coding features offered by this platform, etc.

For the use of GitHub in software quality, previous studies use diverse quality indicators,
mostly concentrating around two pillars: the fault proneness of the project and its popularity.
These indicators, which can be automatically extracted at massive scale in GitHub, seem
promising. However, literature has not sufficiently studied whether they reflect the actual
software quality of the project, nor has compared them to evaluate which are better
predictors.

It has also been shown in this chapter that, in recent years, the use of machine learning to
analyse software quality (and specifically fault prediction) has increased, clearly surpassing
the use of more classical approaches such as statistic analysis. This seems particularly
appropriate in the case of using GitHub, since it provides vast amounts of data which appear
to be particularly fit for use in machine learning.
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[II. Contributions: Gathering Data and
Analysing the Use of GitHub

In chapter I1, it was shown that GitHub is a valid and useful source of data for our research in
software quality and software metrics. However, it is not feasible to manually process all of
the great number of its public repositories. Furthermore, not all projects seem equally
valuable for our study on software quality and metrics (for example, many repositories are
not even software repositories). As a consequence, it is necessary to define a set of criteria to
select the subset of repositories which will be mined.

In this chapter we aim at defining the characteristics of the GitHub projects which can be
relevant for this research on software metrics and quality. To achieve this, it is necessary to
gain a global understanding of GitHub characteristics and users. The literature analysed in
chapter II, such as [11], [22] or [23], demonstrate some very interesting characteristics of this
platform. Some of the data used in these studies were extracted in the year 2013 and before.
Therefore, it is relevant to extract current data from GitHub to analyse other characteristics
and to corroborate whether there have been significant changes in GitHub with regards to
growth and popularisation in recent years.

It is also relevant to describe the process and tools used to extract and analyse GitHub
metadata. This enables replicability for other researchers and allows them, when they need to
mine GitHub for other types of metadata, to apply a similar process suited to their specific
needs.

It is also desirable to make publicly available the results of this GitHub metadata extraction.
In the url https://github.com/david-fdez/metadata dataset, a set of JSON files with the
relevant metadata of the 71.942 repositories mined in this chapter can be found and exploited
for research purposes.

In the remaining of this chapter, section III.A explains the process, tools and choices made
for the extraction of the GitHub metadata. In III.B, the most relevant results of this process
are shown and discussed: the characteristics of the use of GitHub are presented and compared
to the results of the previous works. Finally, in III.C these results are used to select a series of
criteria to define the subset of repositories that will be used in the study of software quality
and metrics in chapter V.
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A. Metadata Extraction Tools and Process

In order to define the criteria for the data targets in our research, the characteristics of GitHub
need to be analysed. In this section, the choices made to perform this analysis are presented.
There are various tools available for gathering large datasets from GitHub. The first and most
obvious tool is the GitHub REST API. This API sets limitations to the number of requests
that a single user can make: an authenticated user can make up to 5000 requests per hour,
whereas a non authenticated one has a limit of 60 requests per hour. Ensuring replicability in
GitHub is challenging because the GitHub’s API evolves frequently, which can lead to
different results for the same calls to the API over time (cft. section I1.B.1). To prevent this, it
is advisable to gather datasets and make them accessible for research, as proposed in [10].

Libraries in different languages exist, providing a layer of abstraction to the GitHub REST
API, facilitating the interaction with the platform. This study has used the Python library
PyGithub'. Other libraries in different languages exist to interact with GitHub, such as
github3? in Python, the GitHub Java API’ or the GitHub API for Java®. These and other
similar third-party libraries to interact with the GitHub REST API can be found in [31].

Different attempts have been made to make publicly available snapshots of GitHub, which
allow to retrieve the state of the platform at different moments. When a researcher wishes to
emulate the results of a previous study, the same data can be accessed. One of the most
widespread, as mentioned in section II.C.1, is GHTorrent [12], a set of periodical datasets
containing a considerable part of GitHub metadata.

The GHTorrent database could have been used to retrieve the metadata and present the
characteristics of GitHub use. However, we preferred to query directly the GitHub API,
mainly because for this section it is critical that data are not biased by the date of creation of
the repositories. Unfortunately, this bias is present in the GHTorrent data: its data mining
process makes that it holds a larger proportion of data from repositories created after 2011,
and that it does not contain projects which have not been updated since that date.

Other available GitHub datasets which enable the use of GitHub metadata, already mentioned
in the section I1.B, are the GitHub archive [13], the GitHub Java Corpus [14] or the recent
Public Git Archive [16]. Other datasets, such as the bug dataset of To6th et al. [18], do not
contain directly the GitHub metadata, but already processed software metrics and number of
bugs. Section II.B.1 presented the shortcomings of these databases, which make it preferable
to query the GitHub REST API for the characterisation of GitHub.

Once chosen to use the GitHub REST API, we select random repositories in order to gain an
overview of the characteristics of the GitHub repositories. For that, one can request the

Lhttp://pygithub.readthedocs.io

2https://github.com/sigmavirus24/github3.py
3https://github.com/eclipse/egit-github/tree/master/org.eclipse.egit.github.core
4http://github-api.kohsuke.org/
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resource “‘/repositories” with its pagination parameter “since”, which returns the 100
repositories with an id above the selected one. In our case, we have mined public projects
with an id lower than 102775889, ranging from the start of GitHub until 07/09/2017. The
current research has fetched a total of 71,942 repositories.

Al. Dataset Availability

The dataset with the metadata of these 71,942 repositories can be accessed at the url
https://github.com/david-fdez/metadata dataset. The data are stored in the form of a zip file,
containing a number of JSON files. The name of each of these files is the day and out at
which its metadata were extracted (e.g. the file “2017 12 20 07 18 57.json” was extracted
the 20th December 2017 at 07:18:57). Each of these files consists of a JSON object, having
the id of the repository as the key, and an object with its relevant metadata as its value.

B. Characteristics of the Use of GitHub

In this section, the characteristics of the 71,942 GitHub repositories are presented. One of the
surprising results is, as shown in Fig. 6, that 23.3% of the repositories are not software
development, i.e. they do not have a main language. Among them, there are empty
repositories, as well as non-software files (repositories making use of GitHub as a file storage
service). This is a slight increase compared to the state of GitHub before 2014, when
Kalliamvakou et al. [22] claimed that 63.4% of repositories manually inspected where
software repositories, 12.2% were experimental software code (examples, demos, etc.) and
another 5.8% were categorised as “Web” (websites, blogs). A 16% of the repositories they
analysed correspond roughly to the “no language” category (“storage”, 8.3%; “academic”,
7.1%; “empty”, 0.7%).

This increment in the number of non-software repositories can be partially explained by the
increase of GitHub popularity: being a free hosting platform, one can assume that both
developers and non-developers have used it for other purposes than merely collaborative
software development. The rough correspondence between the analysis carried out in [22]
and ours can also partially justify this increase: Kalliamvakou carries out a manual
examination of the GitHub projects, one by one, to split them into seven categories; in our
study, the main language of the repository is automatically extracted.
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Fig. 6. Repositories with a main programming language.

Fig. 7 shows the distribution of repositories as a function of their main language. The results
indicate that, among the main programming languages used in GitHub repositories, the most
widespread is Javascript, followed by Java, Python, Ruby and HTML. Among the 71,942
repositories, 16,727 do not have any programming language, 11,076 are mainly written in
JavaScript, 8,190 in Java, 5,415 in Python, 3,848 in Ruby and 3,806 in HTML.

As for object-oriented languages, Java is by far the most widespread: it is the main language
of 11.38% of all GitHub repositories (Fig. 7). It is interesting to note that, until 2012, Java has
increased its presence in GitHub. Before that year, the GitHub ecosystem was dominated by
Javascript, Ruby and Python. Since 2013, Java has taken the second place of the most
widespread languages [11]. The data extracted in this study confirm this position in 2017.
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Fig. 7. Distribution of repositories according to their main language.

GitHub stores in its metadata information about the programming languages of each software
repository, such as its principal language or the size of code in each used language for a
repository. This programming language information is extracted by GitHub using the open
source Linguist library [32].

Fig. 8 shows the total size of code written in the 15 most used programming languages in
GitHub. It is interesting to note the difference between the main language of repositories and
the size of code for each language. While Javascript, Java and Python are most frequently the
principal language of software projects, it is surprising that there is more code written in C
and C++ languages (Fig. 8). Among the analysed repositories, there are 44,368 TB of code
written in C, 13,665 TB in C++, 13,268 TB in Javascript and 9,001 TB in Java.
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Fig. 8. Programming languages according to their total size in source code.

There are various reasons for the surprising fact that C and C++ are the languages with more
code in GitHub, but are only the 9" and 7" in the ranking of main languages in GitHub
repositories. These languages are more ubiquitous and can be found across different types of
projects, regardless of their principal language. Different types of projects can make use of
libraries written in C or C++. For example, it seems more likely that a Java project uses a
third party component written in C, than it would be to find, for instance, PHP or Python

code.

Furthermore, C and C++ languages are more verbose than most of their counterparts. This
contributes to the surprisingly high quantity of code in these two languages present in
GitHub. Finally, some specially big projects, such as operating systems that are hosted in
GitHub (e.g. the Linux kernel®), are fundamentally written in C.

As a social coding platform, the data on interaction between developers in GitHub are a
precious source of information for characterising the platform’s ecosystem. Furthermore,
interaction information has been used as an indicator of the quality of the repository (either as

a manner to identify and fix bugs, or as an expression of its popularity).

A limitation of these data derives from the fact that 72% of all repositories are personal (i.e.
have only one committer) and/or do not use the mechanisms foreseen for this interaction,
such as pull requests and issue tracking [11] [22]. One of the central GitHub features to
enable social interaction is called forking. The platform allows to create copies (called forks)
of a repository (base repository) owned by another user. On the fork, one can make

Shttps://github.com/torvalds/linux
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modifications, such as bug fixes, that will later be proposed to the owner of the project (pull
request). In turn, forks can also have their own forked copies.

Fig. 9 shows the distribution of base and fork repositories: a 43.4% are forks. Base
repositories have more forks, issues and pull requests than forks. The reason for this seems to
be that the developer community tends to interact more with the main, original repository,
than with a fork (many of which are used only to add a specific feature or correct a bug of the
base repository).

Fork repositories

/ 43.4%

56.6%

Base repositories

Fig. 9. Distribution of base and fork repositories in GitHub.

Fig. 10 (which, like other figures in this paper, uses logarithmic scale) shows the distribution
of GitHub repositories based on their number of pull requests. Even if more than half of the
repositories are base repositories, only 5.6% of the repositories analysed in this study have
pull requests. One reason to explain this is that pull requests distribution is very skewed: few
projects concentrate most pull requests [22]. Furthermore, many forks are used as copies not
intended to be pulled to the base repository.

26


https://paperpile.com/c/Jz6V60/K6Ae

10° 4
10% 4

107 4

number of repositories

N N | | .
0 500 1000 1500 2000 2500 3000
number of pull requests

Fig. 10. Distribution of GitHub repositories by their number of pull requests.

In addition, many projects are experimental, empty or not related to software development.
Evidence shows that direct code contributions by a user with write access to a repository
(pushed commits) are more frequent than indirect contributions by means of pull requests
[11] [33]. Finally, our data show that most projects are personal projects, not collective,
hence the absence of pull requests from other users.

Another tool for interaction between developers in GitHub are issues. It is a tracking system
mainly conceived as central bug tracker, but it can also be used to propose new features,
enhancements to the software, etc. Issues are opened when they are created and closed when
the work related to the issue is accomplished or the proposal is rejected.

Issue trackers are scarcely used. In 2013, about 30% of the projects had issues, whereas 3%
disabled issue tracking and, remarkably, 66% did not disable them but still did not use them
[23]. This situation has changed significantly in the data collected in 2017. Fig. 11 shows that
43.6% of repositories disable issue trackers, 48.5% do not disable them but don't use them
and only 7.9% actually use issues.

The decline of issue tracking can be explained by the increasing number of personal projects
in GitHub due, among other factors, to the popularity of the platform. It can also be partially
the result of the fact that [23] excludes, unlike this study, projects with less than 1000 lines of
code.
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The number of issues per repository confirm that issue-tracking is seldom used in GitHub
projects. Among the analysed repositories, the one with the maximum number of issues
accounted for a total of 5,928. However, this was clearly an outlier. Fig. 12 (in logarithmic
scale) illustrates that repositories rarely account for more than 250 issues in total.

issues activated and used
issues activated but not used
[ issues not activated and not used

Fig. 11: Use of issue tracking in GitHub repositories.
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Fig. 12. Distribution of repositories by number of issues.
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C. Selection of Repositories Criteria

This section examines the criteria to select the subset of GitHub repositories, which will be
later used to analyse software quality and metrics.

Firstly, it seems a coherent choice to study object-oriented languages. They are widely
accepted in industry and academia, and many software metrics are adapted to these kind of
languages. As illustrated in section I11.B, Java is by far the most widespread object-oriented
language in GitHub. Its presence has increased significantly since 2012. Furthermore, it is
widely used in industry and code metric tools can often analyse it. Therefore, this research
will analyse repositories having Java as their main language.

Secondly, only not-fork repositories are selected. Analysing the same code several times
(original repositories and forks) can introduce a bias for the most popular projects in GitHub.
Also, base repositories are more prone to interaction among different users than forks, in
terms of issues, pull requests, comments, etc. This social interaction gives a better insight into
the quality of the code, via issues related to bugs, fixes, pull requests, etc.

Finally, only repositories using issues are selected. Analysing issues can be a fruitful manner
to measure code quality, as they can be related to fault proneness of the repository.
Furthermore, repositories having used the issue tracker system are more likely to be
collective, collaborative repositories, instead of personal projects. Collective projects are less
interesting in this research, since the lack of interaction between developers makes it difficult
to assess the quality of the code using the repository metadata.

To summarise, three selection criteria have been retained:

e The repository has Java as its main language.
e [t is a base repository, not a forked one.
e [t uses the GitHub issue-tracking system.

Among the 71,942 repositories whose metadata were analysed, only 498 fulfilled the three
criteria (0.69%). Extrapolated to the number of public GitHub repositories, approximately 28
millions, the number of repositories fulfilling these criteria would be of around 193,200
repositories.

D. Conclusion

This chapter has explained the process of extracting the GitHub metadata of 71,942 public
repositories, in order to characterise the use of this platform. It introduces a number of tools
that can be used to interact with the GitHub data. In order to analyse GitHub metadata, it is
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preferable to query directly the GitHub REST API (in this case, using the PyGithub library
for facility) instead of the existing databases: the later do not contain the relevant GitHub
metadata, or do not cover a sufficient number of different projects or projects are unevenly
distributed depending on their date of creation (GHTorrent).

Once the data were gathered, they have been made publicly available at the url
https://github.com/david-fdez/metadata dataset.

Analysing these data, it has been shown that the number of non-software repositories has
increased since 2014. Among the object-oriented languages, Java is clearly the most
widespread in GitHub. This study confirms that Java remains the second most used languages
in GitHub, position that it holds since 2013. Remarkably, some languages such as C and C++,
although they rarely are the main language of repositories, are very present in the GitHub
ecosystem.

This section also highlights some characteristics of GitHub that are particularly relevant for
studying software quality and metrics. A great majority of GitHub repositories are personal
(interaction data cannot be used to assess its software quality). Almost half of the repositories
are forks (copies of another repository) and they use less the interaction features of GitHub
than the rest of the GitHub projects.

Another remarkable finding is the fact that the use of issue tracking in GitHub has
remarkably decreased. In 2013, around 30% of GitHub projects used them, while in 2017
scarcely 8% does.

Finally, based on this characterisation of GitHub, the criteria to create a subset of GitHub
repositories on which to analyse software metrics and quality has been defined. The criteria
are: repositories must have Java as their main language, must be base repositories (not
forked) and must actually use the GitHub tracking system. The number of repositories
fulfilling these three criteria amounts to a 0.69% of GitHub repositories (193,200 repositories
approximately for the total of public GitHub repositories).
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IV. State-of-the-Art: Software Quality
and Metrics

The analysis and improvement of software quality is crucial for all the stakeholders in
software development. The main goal of this part of the study is to contribute to increase our
understanding of software quality, improve its assessment and delve into its connection with
software metrics. The use of software measurement and metrics are the main methods,
together with software inspection, to evaluate the quality of software.

This chapter seeks to analyse the state of the art in software quality and metrics, in order to
better understand how can quality be assessed. One of the main ways to assess quality is
static software product measurement. Specifically, it is important to understand the role of
static software product metrics, which summarise characteristics of source code.

Among the software qualities that denote software quality, one of the most widespread is
fault proneness. This section also presents the current situation of fault proneness research
and analyses how it is related to software quality and metrics.

In the remaining of this chapter, IV.A presents various models of software quality. In section
IV.B different ways in which software quality can be assessed recurring to software
measurement are discussed. [V.B.1 and IV.B.2 describe the main type of metrics used in
software measurement: software product metrics. Section IV.B.3 analyses fault proneness,
one of the main quality attributes in software, and how it can be measured. Section IV.C
discusses another possible type of software metric, named change metrics, which analyses the
modifications made to files in order to predict its future faults. Finally, IV.D deals with the
use of machine learning by previous works on software metrics and quality.

A. Software Quality

Software quality is of paramount concern for developers, companies, users, etc. There are
multiple aspects to software quality. Does the software meets its requirements? Which
aspects should be taken into account for quality assessment? The user satisfaction? The
efficiency of the developer? Is it mainly concerned with the functional requirements and
features of the product? Is it instead connected with its non-functional dimension and/or the
subjective impression on the user?

Software quality is a polysemic concept with unclear boundaries and different meanings
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depending on the viewpoint of the person who coins it. For the International Organization for
Standardization (ISO), software quality is defined by six characteristics: functionality,
reliability, usability, efficiency, maintainability and portability [34]. Authors like Juran [35]
underline two aspects of software quality, customer satisfaction (meeting the customers
needs) and absence of errors and deficiencies, to summarise software quality as “fitness for

purpose”.

Numerous quality models have been proposed, each of which sets out a number of quality
attributes. These quality attributes are measurable characteristics of software, either gathered
by the subjective experience of the user or by using objective measurements.

These quality attributes can be gathered in two main groups: external and internal attributes
[36]. External attributes are those which can be noticed while software is being executed.
Most of this type of attributes can be observed directly by the user of the software product,
not necessarily by an expert. For instance, a quality attribute such as “efficiency” can be
assessed externally by measuring the time it performs a specific functionality.

Internal attributes, on the other hand, are those that can be measured statically from the
software product itself (mostly by analysing the source code). They express the inner
characteristics of software, such as its structural properties, mostly due to its architectural and
programming choices.

A crucial assumption in software quality is that both internal and external attributes are
related and, more specifically, that external attributes are (at least partially) the result of
internal attributes. That is to say: the inner characteristics of the code or architecture of
software have an effect on its actual execution behaviour.

According to [34], internal attributes influence external attributes, “so that there is both an
external aspect and an internal aspect to most characteristics”. As an example, it mentions
reliability, which can be externally quantified by the number of failures during a period of
execution time. It can also be internally measured by inspecting the specifications and source
code in order to assess the fault tolerance of the software product. “The internal attributes are
said to be indicators of the external attributes”, it concludes, as represented in Fig. 13.

= ~characteristic - ~

intermal attributes external attributes
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Fig. 13. Relationship between internal and external attributes (included in [34]).

As mentioned above, numerous quality models (and their corresponding set of quality
attributes) have been proposed. The six main attributes of software quality proposed in [34]
have already been mentioned. Boehm et al. [37] proposed their well-known software quality
characteristics tree, shown in Fig. 14, in which its most specific characteristics (the leaves of
the tree) are a necessary condition of some of the more general characteristics (closer to the
root of the tree).
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Fig. 14: The software quality characteristics tree (included in [37]).

B. Software Measurement

After having defined software quality, it is necessary to analyse how it can be assessed. In the
software development process, quality is evaluated during the verification and validation
process. It is generally considered that verification consists of checking that the implemented
software corresponds to the requirement specifications, while validation means verifying that
the software complies with the actual users needs. In the celebrated formulation of Boehm
[38], verification answers the question “Are we building the product right?”’, while validation
replies to “Are we building the right product?”.
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In industry, two activities stand out to evaluate the quality of software: tests and inspections.
Testing consists of observing the dynamic behaviour of software during execution, usually
with test data. Software inspections consist of the static analysis of software by an expert or
an automated tool. It can concern the source code of the software product or other
representations (models and abstract representations of the system).

To transcend a purely subjective approach and enable us to compare software products, it is
necessary to resort to the field of software measurement: the extraction of numerical values
from software, which can be used to summarise its characteristics and its quality. In other
words, these measurements allow us to quantify the aforementioned quality attributes.

Depending on the aspects of software one desires to measure, the type of values used in
software measurement range from metrics related to the software process, the programming
techniques used, the documentation produced, etc. These measurements can be used mainly
for two purposes: to evaluate the quality and characteristics of a software system, or to
identify anomalous and sub-optimal components of the product.

Software measurements can mainly evaluate two aspects of software: the attributes of the
software product itself or the process of developing this software [36] [39]. Some software
quality attributes are difficult to evaluate merely analysing the software product. Since the
quality of the software development process has an indirect impact on the quality of the
software product, measuring and improving the process quality seems to be positive for the
quality of the resulting software. Our study mostly focuses on the software product attributes,
since it relates more directly to the quality of software.

In spite of the significant increase in research on software metrics in academia, books or
conferences, the software industry at large has been less enthusiastic about adopting these
metrics. Fenton [6], for example, observes a certain increase in the use of metrics in
professional software development, but he regrets that the “industrial take-up of most
academic software metrics work has been woeful” and it has been “based almost entirely on
metrics that were around in the early 1970s”. Among other reasons, he underlines that a
significant part of the academic work on this field is irrelevant for industry. He also argues
that, while using software metrics entails an overhead on software development projects
-between 4% and 8%-, the effectiveness of these metrics is still contested within the software
industry.

Indeed, some studies have shown that software metrics are related to high-level quality
characteristics [5] [40] [41] but the actual quantification of this relationship has never been
fully accomplished (e.g. establishing unequivocal thresholds to interpret quality based on
measurement values). Furthermore, several limitations to software metrics have been pointed
out [6] [5]. Therefore, the concrete connection between metrics and quality remains under
discussion both in the software industry and the academy.
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Other reasons can be found for the reluctance to use software measurements in industry, such
as the difficulty to quantify a return on investment, the lack of standards for software metrics,
or the perceived difficulty to include process measurement techniques in the increasingly
widespread agile software processes.

B1. Software Product Metrics

This study focuses mainly in one of type of software measurement, software product metrics,
since it is more closely related to software quality than other types of measurements (e.g.
development process metrics). Software product metrics is a very wide area of research,
including those metrics common to all procedural and imperative languages, as well as those
specific to object-oriented languages. In recent years, object-oriented metrics have been
subject to more attention in research.

Object-oriented metrics can be defined at different levels of granularity: class-level, method-
level, system-level, etc. For example, Catal et al. analysed in [10] fault proneness literature
and came to the conclusion that most works made use of method-level granularity, such as
the metrics proposed in the 1970s by Halstead [4] and McCabe [3]. Fig. 15 shows the clear
predominance of this fine granularity (60% of the studies), followed by class-level metrics,
such as those proposed in the 1990s by authors such as Chidamber and Kemerer [1], or Brito
e Abreu and Carapuca [42]. The other levels of granularity are very rarely used.

Other
System

15%

Class

Y

24%

60%

Method

\___,_,_,—:—'"’/
Fig. 15. Distribution of metrics granularity in fault proneness studies (data from [10]).
The less common granularities (i.e. those which are not method-level or class-level) could be

further investigated in order to explore their potential in understanding software quality.
Mainly, the system-level granularity seems particularly interesting: often the perceived
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quality of a software artifact is not related exclusively to one specific method or class, but to
the overall quality of its code, style and architecture patterns and the connection between its
different components.

The most frequent method for extracting software product metrics is static analysis: deriving
static metrics from the software artifact. Most static metrics are obtained from the analysis of
the software source code, although they can also be elicited from design diagrams or other
static representations of the software product design or implementation [43].

It is also possible to use “dynamic metrics”, as proposed by [43], extracted from a running
program during its execution. They are less frequently used than static metrics, mainly
because they can be more difficult to extract. Furthermore, unlike static metrics, they cannot
be applied in early stages of the software development process [5] [36].

B2. Review of Main Software Metrics

Since the late 1960’s, lines of code (LOC) were used to roughly describe the size and
complexity of a software product, together with KLOC (thousands of lines of code) [36] [6].
By the mid-1970s, the limitations of this metric became apparent. Mainly, due to the
increasing variety of programming languages with different degrees of abstraction and
verbosity, which became very difficult to compare among them.

The mid-1970s saw a great interest in finding new manners to assess the characteristics of

software. Among these new metrics, one of the most popular is the complexity metrics

proposed by McCabe [3] and specially his cyclomatic complexity V, defined by
V=E-N+2P ,

where E is the number of edges of the control flow graph, N its number of nodes and P its
number of connected components.

In 1977, Halstead proposed another relevant suite of metrics, which measured complexity,
effort and understandability using four measures: the number of distinct operators, the
number of distinct operands, the total number of operators and the total number of operands

[4].

With the popularity of object-oriented languages, new class-level metrics were proposed in
the 1990s, some of which will be used in chapter V. One of the most relevant are those
proposed by Chidamber and Kemerer [1].

Their Lack of Cohesion in Methods (LCOM) measures the cohesiveness of a class: it
quantifies the number of shared attributes used by different methods. This metric received

critics. As a consequence, some improvements have been proposed, such as LCOM4
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suggested by [44], which takes into account not only the shared class-level variables, but also
the calls among methods.

High cohesiveness is recommended and the ideal value of LCOM and LCOM4 is 1, meaning
a completely cohesive class, whereas other values are discouraged: higher values entail lower
cohesiveness and, in LCOM4, a value of zero implies that the class does not contain any
method.

Ref. [1] also proposes Coupling Between Objects (CBO) as a measure of the coupling of a
class. Low coupling is recommended, since it increases the simplicity, understandability and
maintainability of software. The CBO of a class is measured by counting the number of other
classes to which it is coupled, i.e. the classes of the methods or variables it uses.

It also introduces the Depth of Inheritance Tree (DIT) metric. The DIT of a class is the length
of the longest path from this class to the root of its inheritance tree (whose DIT value is 0).
Inheritance is one of the characteristics of object-oriented languages and enhances the reuse
of code. However, an excessive use of inheritance can increase the complexity of a software
product. Some studies propose a threshold maximum value of 6 for DIT [5].

Other metrics proposed by Chidamber and Kemerer include the Weighted Methods per Class
(WMCQ), the Response for a Class (RFC) or the Number of Children (NOC).

Brito e Abreu et al. [2] [42] also propose a set of metrics which has been widely adopted for
software measurement: the Metrics for Object Oriented Design (MOOD) suite. In section V,
the total Coupling Factor (CF) of repositories will be discussed. CF measures coupling: a
class is considered coupled to another when it includes at least one non-inheritance reference
to it. Unlike CBO, which also measures coupling, it does not take into account coupling
related to inheritance and bidirectional coupling is counted twice instead of only once.

Other metrics included in the MOOD suite are the Method Hiding Factor (MHF), the
Attribute Hiding Factor (AHF), the Metric Inheritance Factor (MHF), the Attribute
Inheritance Factor (AIF) and the Polymorphism Factor (PF).

B3. Metrics and Fault-Proneness

Among the external quality attributes discussed in chapter I, one of the most frequently used
is fault-proneness and presence of errors, defaults and bugs in software. This is usually
considered an indicator of software reliability. The impact of software metrics on fault-
proneness is due to the cognitive complexity, which leads to poor understandability and
maintainability. Cognitive complexity depends on the coding style, which in turn is reflected
in software metrics [43].
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Different studies have shown empirical connections between software product metrics and
fault-proneness. For instance, ElI-Emam et al. found a correlation between the probability of a
class to have a fault and metrics such as the total number of attributes (NAI), depth of
inheritance (DIT) and coupling [43].

However, the specific results in various studies vary depending on the type of metrics and
software used. Clear, widely accepted evidence on the specific impact of software has not
been attained yet and further study to consolidate conclusions is necessary [43].

At the same time, interest in fault prediction has increased significantly. Catal et al. [10]
underline that most papers (86%) dealing with fault prediction in software have been
published after the year 2000. As shown in Fig. 16, only 14% of the papers they analysed are
previous to that year.

Before 2000

/ 14%

86%

After 2000

Fig. 16. Fault prediction papers published before and after the year 2000 (data from [10]).

C. Change Metrics

This study focuses mainly in software product metrics. Other recent studies focus on a
different approach to measure software: change metrics. Unlike static software product
metrics, change metrics do not analyse the content of the source code. Instead, they quantify
the changes made to the code files over time. Usually, these data are retrieved from analysing
the software version control system, such as CVS, Subversion or Git. For instance,
Muthukumaran et al. [26] use code change metrics to analyse different versions of the Eclipse
JDT project hosted in GitHub, in order to predict the number of bugs.

The advantages of using code change metrics can be their accuracy. According to Moser et
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al., “overall change data are effectively better indicators of the presence or absence of
software defects than static code attributes” [45]. Other researches come to a more nuanced
conclusion. For example, D’ Ambros et al. [46] carry out a comparison among the main bug
prediction approaches, where static object-oriented attributes (such as Chidamber and
Kemerer class metrics) predictive power performs equally or slightly better than the change
metrics proposed by Moser et al., while their explanatory power is lower.

In our research we have preferred to use static software product metrics, mainly because,
even though change metrics can help predict faults, they do not give any insight on the
content of source code. They can help predict that a specific file is more likely to include
bugs, but it does not provide any information about how should the developer code to avoid
these bugs. Therefore, they do not contribute to a better understanding of software quality and
its connections to software metrics and good coding practices. This will be addressed in detail
in section V.A.2.

D. Software Metrics and Machine Learning

Machine learning has already been consistently used in research around software metrics and
quality. Allamanis and Sutton use machine learning in [15] to elaborate new complexity
metrics, that they call data-driven complexity metrics. They also predict the centrality of a
module within a repository, in order to identify classes more likely to include utility reusable
code.

In [18], data on software metrics and bugs are gathered from Java projects in GitHub, using
the SZZ algorithm. They use this information to predict faulty components using 13 machine
learning algorithms. This is a very interesting attempt to use machine learning to improve our
understanding of software metrics and fault proneness. However, the limited number of
projects analysed (15 projects) and the fact that the models are trained and tested on each
project separately threaten the validity of the results for a wider scope of GitHub projects.

Muthukumaran et al. [26] extract a series of change software metrics from 5 different
versions of the Eclipse JDT project in order to predict the number of bugs in the project,
using five different machine learning algorithms (Gaussian Naive Bayes, Decision Tree,
Logistic Regression, Naive Bayes Tree).

In [27], Dwivedi et al. extract 67 different object oriented metrics from source code from
GitHub. They are fed as feature vectors to machine learning algorithms (Layer Recurrent
Neural Network and Decision Tree) in order to identify software design patterns.

Malhotra et al. [47] use the Xerces dataset, included in the PROMISE repository [9], to

compare the performance of 17 different machine learning algorithms in predicting defect
prone classes based on the object-oriented metrics of these classes.
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To summarise, software metrics have already been used in previous research to predict
software quality. However, none of the works carried out used a sufficient number of
different GitHub repositories to predict software quality using static software product metrics.

E. Summary

This chapter presents an analysis of the state of the art in software quality and metrics. It
defines quality and discusses some of its main definitions in previous work. It discusses the
different ways in which quality can be measured, mainly by quantifying either the product
artifact or its development process.

There has been a significant increase in the use of software metrics in academia. However,
this academic surge has not been followed in the software industry, which is more reluctant to
the use of software measurement and, when it is not, it tends to use old metrics. The reasons
for this reluctance stems, among other reasons, from the absence of clear quantifications of
the relation between software metrics and quality.

Studies on software quality and fault proneness use almost only method-level and class-level
metrics. Other granularities, mainly at system-level, seem thus to have a great potential for
being further developed and explored in order to understand their connection to software
quality. Some of the main software product metrics, which will be later used in chapter V,
were introduced.

In this chapter, change metrics have also been presented. Although according to some of the
existing literature, they are better indicators of fault proneness than software product metrics,
and this could present some advantages (e.g. for application in industry), their characteristics
are not appropriate for improving our understanding of software code quality. Fault
proneness is one of the main software quality attributes used in previous works and recent
years have seen an increasing interesting in it.
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V. Contributions: Predicting Quality
with Machine Learning

In section III.C, three criteria were chosen in order to select a subset of repositories for
further investigating software quality and metrics. After analysing state-of-the-art in the field
of software quality and metrics in IV, this chapter analyses the the software metrics and
quality indicators of the subset of repositories from GitHub that fulfil the criteria from II1.C.

Machine learning techniques seem specially fit to deal with the great amount of data that can
be extracted for GitHub. Many standard machine learning techniques require a feature
extraction phase prior to their application. In the case of this study, the features are software
metrics, whose connection with software quality wishes to be better understood.

The feature extraction process is challenging: it requires taking a complex entity and
identifying the relevant properties on which the machine learning algorithms can be applied.
Therefore, it is important to select the appropriate features and the quality targets that will be
used for machine learning. Once this has been defined, the appropriate tools must be used to
extract these data from GitHub repositories.

While the GitHub metadata analysed in chapter III gave an overview of the use of GitHub
(interactions between users, use of GitHub features, etc.), the software metrics extracted in
this section from 3,074 GitHub repositories give a clear view on the source code hosted in
this platform. This is valuable information to understand the coding practices and styles of
GitHub users, as well as to better understand their quality.

The application of machine learning algorithms to the features and targets extracted can give
an insight on whether the quality targets chosen are valid to reflect the actual quality of
repositories, and whether these are related to their software metrics.

Specifically, V.A analyses the choice of the software quality targets and the metrics features
that are to be extracted from GitHub repositories. Section V.B presents and discusses the
tools (V.B.1) and process (V.B.2) established to extract these features (V.B.3) and targets
(V.B.4). Section V.C analyses the software metrics extracted, which help give an overview of
the properties of source code in GitHub. Finally, V.D examines the results of applying a
linear machine learning algorithm on these data and proposes improvements for improving
these results in future work.
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A. Machine Learning Features and Targets

This section analyses which are the targets and features extracted from GitHub to build a
dataset exploitable by standard machine learning algorithms.

Al. Software Quality Targets

Using GitHub for improving the understanding of the connection between software quality
and software metrics requires establishing indicators of software quality. Given the massive
amount of data provided by GitHub and exploitable by machine learning, it is important that
these quality indicators can be automatically extracted instead of on an individual or manual
basis.

Two main groups of indicators can be retrieved from GitHub data, those based on fault
proneness and those connected to the popularity of the project (cfr. section II.D.1). This
research explores both types of data.

Among the fault proneness indicators, we resort to the issue-tracking GitHub system. The
total number of issues can be interpreted as an indicator of fault proneness and bugginess of
the repository. However, some issues can not be related to bugs, but to additional features or
improvements. A notion of “buggy issues” seems appropriate to elude this limitation. We
define buggy issues as those having a message which contains any of the following words:

nn nn

"bug","fix","error","exception","problem","fail".

Other quality indicators are related to the popularity of the project: number of watchers,
stargazers and forks.

To summarise, the following quality targets are retained:

- total number of issues

- total number of open issues

- total number of closed issues

- total number of buggy issues

- percentage of buggy issues over all issues
- total number of open buggy issues

- total number of closed buggy issues

- total number of watchers

- total number of stargazers

- total number of forked repositories
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A2. Software Metric Features

There are different possibilities as to how and which software metrics to extract from GitHub
repositories. These choices refer to whether the software metrics are static or dynamic, their
granularity and their approach to the evolution of the repository.

Software metrics can be the result either of static analysis, which measures the static software
artifact (mainly its source code or diagrams synthesising its implementation characteristics),
or dynamic analysis, which extracts results from the execution of the software product (cft.
section [V.B).

This study will focus on static metrics. It would be impractical to use dynamic metrics, which
required the compilation and execution of each repository in order to measure it.
Furthermore, unlike dynamic metrics, static metrics can be gathered from early stages of the
development lifecycle. When extracting massive data from GitHub repositories, it is not
possible to know in advance with certainty the stage of the development of each repository.
Static metrics therefore seem a better choice for this study than dynamic metrics, which
require an extraction process very difficult to automate.

It is also necessary to decide whether to use software product metrics or change metrics. In
this study, static software product metrics have been preferred to change metrics. While the
latter can be accurate at predicting faulty components in software (classes, files, etc.), they
provide no information about which characteristics of code make them more prone to faults.
The use of change metrics can be valuable for industrial use, helping developers know which
components should be receive special attention as being more likely to contain bugs.
However, change metrics are less useful to find connections between software coding
patterns and quality. Furthermore, change metrics are only applicable at late stages of
development, once a significant number of modifications have been made to source code,
enabling to gather the change metrics of the different software components.

Another choice for the software metrics concerns their granularity. In section IV.B.1, it was
mentioned that object-oriented metrics can be measured at different levels of abstraction:
system-level, class-level, method-level, etc. [43]. Most research papers (60%) on fault-
prediction make use of the finest grained approach [10]: method-level metrics, such as those
proposed by Halstead [4] and McCabe [3].

In the case of our study, system-level metrics have been chosen. Specifically, software
product metrics are extracted at GitHub repository-level. This choice benefits from a number
of advantages compared to other metrics, but also entails some risks.

Firstly, finer granularity metrics are very difficult to connect with automatically extracted
software quality targets from GitHub repositories. The most widespread quality indicators of
quality in GitHub refer to the project as a whole and not to a specific method or class. For
instance, when one uses popularity indicators as quality targets (e.g. the number of GitHub
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watchers, forks or stars), they are not applicable to specific classes or components of the
repository, but to the totality of the project.

Fault indicators of quality (such as number of bug-fixing issues or commits) are also difficult
to relate unequivocally to one specific method or class. For instance, the SZZ algorithm
[19]-[21] retrieves the specific lines of code modified by a bug-fixing commit and use this
information to track the commit which initially inserted this bug.

The SZZ algorithm is a very promising and smart approach, but it makes a strong assumption
on the locality of bugs. In our view, often bugs are not so specifically and clearly located: a
bug is the result of the difficulty to understand and apprehend the complexity of a program’s
source code, and the resolution of a specific bug can be made by modifying very different
parts of the source code. The fault proneness of these specific parts of the code is not
necessarily related to its concrete method or class metrics.

Our hypothesis is that of a more holistic approach to fault proneness: the bugginess of a
repository is linked to its general coding style, patterns and understandability, rather than to
finer-grained metrics.

System-level metrics have rarely been used fault prediction studies (1% according to Catal
[10]) and in software quality research in general. Consequently, it seems an approach that
could benefit from further exploration.

Using system-level metrics also entails risks. The main risk of using this coarser grained
approach is that quantification can be less precise. For example, in a large repository with
many classes, the impact of specific outliers (i.e. classes with abnormal class-level metrics)
can be blurred by the other classes characterised by average metrics.

Specific system-level metrics have been proposed in the last years, since the years 2000s, and
they are still subject to discussion among the community and researchers are still working on
them [10]. Since they are still recent and subject to discussion, few software metric tools
include these new specific system-level metrics.

On the contrary, some metric tools such as Analizo [48] take class-level metrics (such as
those proposed by Chidamber and Kemerer [1] or Brito e Abreu and Carapuca [42]) and
apply them to system-level. This allows to measure aggregate values of the class metrics for
the component. For instance, this enables to quantify the average, median, variance, average
or skewness of the classes of a project, among other relevant metrics.

In this research, since specific class-level metrics are still under discussion and are not
included in most existing software metric tools, class-level metrics are used with a system-

level scope.

Another choice that needs to be made is our approach with regards to the impact of the
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repository evolution in the extraction of metrics (features for the machine learning algorithm)
and software quality criteria (targets of the machine learning algorithm). GitHub is built upon
the version control system Git. As such, repositories hosted in this platform evolve
continuously. These modifications of code are grouped in commits.

There are mainly two options when handling the extraction of software metrics and the
impact of the repository evolution. One, that we call diachronic approach, takes different
commits as snapshots of the state of the repository at different moments in time. In order to
analyse the connection between software quality and software metrics, this approach enables
to compare the variations, for the same repositories, of metrics and quality throughout time.
This diachronic approach is used in studies such as [49], [26], [17] or [18].

The other possible option can be labelled synchronic approach. It extracts the software
metrics and quality criteria once, instead of using different snapshots over time. Under this
perspective lies the assumption that the correlation between quality and metrics is not
immediate or easily divisible over time: eventual bugs coming from undesirable software
metrics can arise non immediately after the code has been modified. In a similar fashion,
some quality criteria based on popularity (number of forks, watchers, etc.) seems to match
better with this approach: most repositories are increasingly popular over time and changes in
software metrics do not seem to have an immediate effect on popularity.

This synchronic approach will be more prone to compare the metrics and results of different
projects, regardless of its evolution over time, instead of comparing different snapshots of the
same repository throughout its lifecycle (as the diachronic approach would be inclined to do).

These are the reasons (a more holistic approach to the impact of evolution on repositories and
a better connection with some quality criteria available in GitHub) why this research has
chosen to use the approach we have called synchronic. However, both approaches seem valid.
It would be revealing to explore and compare them in future work.

To summarise, this research extracts from GitHub software metrics that fulfil the following
criteria:

e Static software product metrics, instead of dynamic or change metrics
e C(lass-level metrics extended to system-level granularity
e Synchronic approach to repository evolution

B. Data Extraction

This section discusses the tools used for retrieving the software product metrics and the
extraction process from GitHub. The various software metrics extracted are documented and
examined and the resulting dataset is presented.
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B1. Extraction Tools

Different tools for metric evaluation exist. For example, Kayarvizhy reviews and compares a
series of 10 object oriented metric tools in [50]. Different metric tools, provided with the
same source code, can offer different results due to differences in the specificities of their
implementation [51] .

In this study, the appropriate software measurement tool is selected based on its
characteristics. First of all, among the criteria for selecting repositories, this research effort
focused on Java projects. Therefore, some tools which do not support Java analysis are
discarded, such as SD Metrics or QMOOD-++ [50].

Also, given the number of projects to be analysed, it is not feasible to have to manually
compile each repository. Furthermore, many of these projects must be configured before
compilation or contain errors which hamper compilation. A tool that can extract data from
source non-compiled Java files (“.java”, not “.class”) is needed. This discourages the use of
tools such as ckjm, Jdepend [50], Chidamber and Kemerer Java Metrics or Dependency
Finder [51]

It is also impracticable to extract the metrics of each repository, one at a time. Instead, given
the number of projects, we expect the tool to be able to process repositories in batch. Tools
such as the Eclipse IDE plugins (Eclipse Metrics Plugin) are therefore not the best option,
since they require importing each project individually into the specific IDE.

An open source solution is preferred to a commercial one. It allows to clearly understand how
metrics are measured and facilitates that other researchers share the same tool. Replicability
is also better guaranteed when the researcher knows what happens under the hood. This
criteria suggests to push aside tools such as RSM, Jhawk, JMT [50] or Understand for Java.
Some solutions used in the above mentioned papers seem not to be active any longer, such as
Analyst4j or JIMT.

Analizo is a tool that fits the conditions of our study. It is an open-source, non commercial
tool, created within the scientific community [48]. It extracts a wide range of object oriented

(OO) metrics for Java projects and files, which do not need to be compiled or even
compilable. Furthermore, it allows to process repositories in batch, and not one by one.

B2. Extraction Process

In chapter III, metadata from GitHub were extracted to characterise the projects hosted on
this platform and define a set of criteria to select the relevant projects for this research. Once
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this criteria has been settled, the repositories are to be retrieved, i.e. download their actual
code. From this code, the software product metrics and relevant metadata will be extracted, in
order to define whether the projects fulfils the criteria and to use these metadata as an
indicator of the repository criteria.

Retrieving the code of a repository and its relevant metadata requires around 10 or 20 calls to
the GitHub API (depending on factors such as the number of pages of issues). Since the
hourly limitation is of 5000 calls, approximately 300 repositories per hour can be retrieved.
Given that only a 0.69% of the repositories fulfil the three criteria described earlier, only the
data for two repositories can be expected per hour. Therefore, this approach, adequate to
gather metadata for chapter III, is less adapted for finding repositories fulfilling the criteria
established. A more efficient approach is to preselect in GitHub those repositories that fulfil
the selection criteria. It is then possible to retrieve the current code and metadata of these
repositories.

For this pre-selection, this study has used the GHTorrent database. Instead of querying
directly the GitHub API, impractical for the reasons mentioned above, GHTorrent allows to
easily query the database in order to retrieve the url of the repositories fulfilling the criteria
set in section I1I.C.

GHTorrent database is a very big database. Already in January 2015, the MongoDB version
stored 4TB of JSON data, while the SQL version of the data had more than 1.5 billion rows.
The latest SQL versions, once decompressed, take around 270 GB in CSV files. We preferred
to use a slightly older version of the database, from January 2016, which took around half of
the size, making it easier to handle.

It is not necessary to load and process all the tables in the GHTorrent database. For the scope
of this work, only a few tables (projects, issues, issue labels, project languages) were used,
since they contain the information required to select repositories. The mirror offered a total of
25,364,494 repositories. Among them, 2,243,734 repositories had Java as their main
language. Around half of them were not forked (1.109.893). In total, 122,074 projects fitted
the three conditions in section III.C.

Once the repositories fulfilling the criteria were pre-selectionned, the process conducted in
this study to download the repositories, extract the software product metrics and repositories
metadata was the following.

After having identified in GHTorrent the set of repositories fulfilling the selection criteria, a
batch script would download the sources of the repository, decompress them, and extract the
software metrics with Analizo. This same script would retrieve the relevant metadata: date
and time of extraction, number of issues, number of issues with labels or comments related to
bugs and errors, etc.

As it had been done at the pre-selection stage, the metadata of the repositories could have
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also been obtained by querying GHTorrent instead of retrieving them directly from GitHub.
However, the metadata would refer to the state of the repository at the moment in which
GHTorrent data were extracted, previous to the download and extraction of the repository.
Therefore, it was not advisable to query GHTorrent for metadata, but rather to retrieve them
at the same time of downloading the repository and extracting its metrics.

B3. Software Metric Features Extracted

After removing features which often yielded non-numerical values, 170 different features
were retained from GitHub repositories. Some of them are directly extracted from the
repository, while others are obtained from the individual classes and Analizo extract
statistical metrics for the project.

Table III shows the repository-level metrics, together with the reference in which they are

defined and the name in the dataset collected for this study. Further definitions and
explanations on these metrics can also be found in [48] and [52].

TABLE III. Repository-level metrics extracted.

Repository-level metric Defined in Column name in dataset
Total Coupling Factor [2] total cof

Total Number of Classes - total modules

Total Number of Methods - total nom

Total Lines of Code [53] total loc

Total Number of Classes - total modules with_defined
with at Least One Defined _methods

Method

Total Number of Classes - total modules with defined
with at Least One Defined _attributes

Attribute

Total Number of Abstract - total abstract classes
Classes

Total Number of Methods - total methods per abstract
per Abstract Class class

Total Number of Effective [54] total eloc

Lines of Code

Change Cost [55] change cost

Table IV shows the class-level metrics, collected from the GitHub repositories, from which
Analizo extracted statistical metrics for the repository. Specifically, for each of these metrics,
it measured the following 10 statistical values:

e Mean
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Sum

Variance

Median (“quantile_median” in the dataset)

Standard deviation

Minimum (“quantile min” in the dataset)

Maximum (“quantile_max” in the dataset)

Lower quartile (“quantile lower” in the dataset)
Upper quartile (“quantile upper” in the dataset)

95th percentile ("_quantile ninety five" in the dataset)

TABLE IV. Class-level metrics extracted from repositories.

Class-level metric Defined in Column name
in dataset

Afferent Connections per Class [56] ace
Average Cyclomatic Complexity per Method [3] accm
Average Method Lines of Code - amloc
Average Number of Parameters per Method [56] anpm
Coupling Between Objects [1] cbo
Depth of Inheritance Tree [1] dit
Lack of Cohesion of Methods [44] lcom4
Lines of Code [53] loc
Maximum Method Lines of Code - mmloc
Number of Attributes [56] noa
Number of Children [57] noc
Number of Methods [56] nom
Number of Public Attributes [56] npa
Number of Public Methods [56] npm
Response For a Class [1] rfc
Structural Complexity [55] sC

A significant part of these metrics have already been addressed in section IV.B.2. The
definition of the other metrics can easily be found in the research papers mentioned in tables
IIT and IV. It would be cumbersome to reproduce here again each one of these definitions.

The features extracted include the main software quality related metric dimensions. They
include measurements related to the size of the repository (e.g. Total Number of Classes,
Total Lines of Code, Total Number of Effective Lines of Code, etc.). Also metrics significant
to the coupling of the classes are included: Total Coupling Factor, Coupling Between
Objects, Afferent Connections, Response for a Class, etc.

Furthermore, metrics measuring the complexity of the project are included, e.g. Average
Cyclomatic Complexity, Structural Complexity, etc. They also measure other relevant
properties of the repository, such as the use of inheritance (with metrics such as the Depth of
Inheritance Tree, Number of Children, Total Number of Abstract Classes), cohesion (e.g.
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Lack Of Cohesion of Methods) or encapsulation (e.g. Number of Public Attributes or
Number of Public Methods).

B4. Dataset Availability

The dataset extracted in this chapter can be found in https:/github.com/david-
fdez/metrics_quality dataset. It has been encoded using the Python library NumPy library®.
Specifically, using its method savetxt(). The features have been saved as a two-
dimensional matrix array (each line represents one repository, each column one feature) in
the file “features.out”.

To load with Python the features, the following two lines of code enable to do it:

import numpy as np
features = np.loadtxt( fectures.out’, delimiter=",\t\t")

The name of the specific feature of each column (i.e. the software metric) is included in the
header of the file (the first line of the document).

The quality targets have been saved in different files, each of which contains a one-
dimensional array, i.e. the files named:

target _issues_count.out

target open_issues_count.out

target closed issues_count.out

target buggy issues count.out

target open_buggy issues count.out
target closed buggy issues_count.out
target forks count.out

target stargazers count.out

target watchers count.out

They can be loaded in a similar fashion to the features. In order to extract the targets of a
specific type (e.g. for the “target issues count.out” file), it is just necessary to execute the
following instructions with Python:

import numpy as np
targets = np.loadtxt( target issues count.out’, delimiter=",|t\t")

6https://docs.scipy.org/doc/numpy/index.html
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C. Characterisation of Code in GitHub

For the scope of this paper, a total of 4,449 repositories were processed. Among them, 726 no
longer existed. Analizo was unable to extract the metrics of another 644 repositories. 5
repositories were too big (more than 1Gb of source code). For the remaining 3,074
repositories, all the metrics that Analizo is capable of extracting (described in [52]) are
included in the dataset. This section focuses on some of these classical software metrics that
allow to characterise the dataset.

Analysing the metrics, it clearly shows a tendency of most repositories to be rather small. Fig.
17 presents the distribution of repositories by their total size and fig. 18 by their number of
classes. It is indeed very rare to find repositories with a size bigger than 200MB. A

significant number of repositories have few classes, very rarely exceeding systems of more
than 200 classes (Fig. 18).

103 A
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Fig. 17. Distribution of repositories by their total size..
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Fig. 18. Distribution of repositories by number of classes.

Fig. 19 shows the distribution of repositories by their total effective lines of code (actual lines
of source code, excluding empty lines, comments, etc.). It confirms that it is unusual to find
very big projects in GitHub: most of them contain less than 10,000 effective lines of code and
it is rare to encounter repositories consisting of more than 40,000.

number of repositories

10000 20000 30000 40000 50000 60000 70000
total effective lines of code

Fig. 19. Distribution of repositories by total effective lines of code.
The complexity of source code has an impact on its quality. High cohesion of classes

manifest high quality, by which each class has one, and only one, purpose. One way to
measure cohesion is the lack of cohesion in methods (LCOM) metric, proposed by
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Chidamber and Kemerer [1] and later improved by Hitz et al. (LCOM4) [44]. It quantifies the
number of groups of related methods and fields that exist within a class. It has been described
in IV.B.2.

The desirable value for LCOM4 is 1, meaning a highly cohesive class, whereas bigger values
reflect classes that should be split. A value of 0 means that there are no methods in the class,
which is also not recommended. Fig. 20 shows the number of repositories in GitHub,
depending on the mean value of LCOM4 of its classes. Most repositories have non-cohesive
classes, having a mean LCOM4 value of around 2.5 (greater than the ideal value: 1.0).

102 4
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LCOM4 mean

100 -

Fig. 20. Distribution of GitHub repositories by their LCOM4 mean.

Analysing the classes with a maximum value of LCOM4 for each project, the non-
cohesiveness of GitHub repositories is confirmed. Fig. 21 illustrates that a great majority of
GitHub repositories contain classes exceeding a LCOM4 value of 10. In other words, all
these projects contain at least one class which should be split into 10 or more smaller and
more cohesive classes.
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Fig. 21. Distribution of GitHub repositories by their class with a higher LCOM4 value.

Another element to measure dependencies is how coupled classes are to each other. This can
be measured using the Coupling Factor (CF), proposed by Brito e Abreu et al. [42], or the
Coupling Between Objects (CBO), put forward by Chidamber and Kemerer [1]. Both metrics
have been introduced in IV.B.2.

High coupling is undesirable. [58] proposes CF not to exceed 11.2%, while [59] suggests that
CBO should not be above 14. It is indeed the case: most of the repositories analysed in
GitHub present low coupling.

Fig. 22 shows the CBO mean of the GitHub repositories analysed. It presents two interesting
results. Firstly, many repositories have no coupling at all (their CBO mean is close to 0). This
is related to Fig. 18 too: when repositories contain few classes, it is more likely that each
class depends on few others. Secondly, the mean CBO in repositories is evenly distributed
between values 0 and 2. Their classes have a low coupling to each other.
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Fig. 22. Distribution of GitHub repositories by their CBO mean.

Most repositories have a low mean CBO, but this does not imply that, within these
repositories, there are no classes with a too high coupling. Fig. 23 shows the distribution of
repositories by the maximum CBO of their classes. It is remarkable that, unlike the mean
CBO which is very low, many repositories have classes with a very high coupling (i.e. above
the value of 14 that [56] recommends).

MNumber of repositories

| | | I | |
0 10 20 30 40 50 60 70 80
maximum CBO

Fig. 23. Distribution of repositories by the maximum CBO of their classes.

Also the analysis of the CF mean illustrates also a rather low coupling among the repositories
analysed. The distribution of repositories by their total CF is illustrated in Fig. 24. It indicates
that a significant part of the projects had CF values below 0.2. A peak can be observed at
value 1 (100% coupling), which is explained by the fact that this value is given to all of the
projects which consist of a single class.
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Fig. 24. Distribution of repositories by their total CF.

Terceiro et al. propose in [60] a measure for structural complexity, measured as the product
of LCOM4 and CBO. Fig. 25 shows the distribution of GitHub repositories by their structural
complexity mean. It confirms that most of the GitHub repositories analysed have low
complexity.
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Fig. 25. Distribution of GitHub repositories by their structural complexity mean.

It is also interesting to compare the mean number of methods per class among the different
repositories in GitHub, as is shown in Fig. 26. Most projects have less than 10 methods per
class, reaching its peak around five methods per class.
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Fig. 26. Distribution of repositories by their mean number of methods per class.

One of the particularities of object oriented languages is the possibility to inherit methods
and/or variables from parent classes. While method inheritance promotes reuse of code, it
also increases complexity and can make it more difficult to understand the behaviour of a
specific class. It is therefore recommended not to have a too big depth of inheritance tree
(DIT) [1] metric value. Some studies propose not to exceed a DIT value of 6 [5]. Fig. 27
shows the DIT mean values of GitHub repositories, indicating that most repositories do not
use inheritance excessively: their mean DIT values mostly range from 0 to 2.

2 3 4
DIT mean

Fig. 27. Distribution of GitHub repositories by their DIT mean.

The fact that inheritance is rarely abused in GitHub is confirmed by examining also Fig.28,
which shows the classes with maximum depth of inheritance within each project. It confirms
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that the deepest class of most GitHub projects has two or less ancestor classes. It is very rare
when the DIT of a repository exceeds a value of 6.

number of repositories by dit_quantile_max
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Fig. 28. Distribution of repositories by the maximum DIT among its classes.

In summary, the selected GitHub repositories have a tendency to be small, lack cohesion, not
be very coupled, not use inheritance excessively and, in general, not be too complex.
However, the dataset contains rich and varied values, making it suitable for analysing its
impact on quality assessment indicators (such as the number of bugs, issues or other metadata
extracted from GitHub).

D. Predicting Quality with Software Metrics using
Machine Learning

This section explains the machine learning algorithm used to predict the quality of the
GitHub repositories and analyse the results obtained.

D1. Presentation of Results

After having presented the software metrics characteristics of these 3074 repositories, these
data are fed into machine learning algorithms to evaluate its predictive and explanatory
power. Different targets and subsets of the features mentioned in section V.C were used.

To assess the efficiency of this score, we chose to use the Lasso algorithm, as applied by the

Python machine learning library scikit learn. It is a linear model which tries to minimise the
function
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min > X oY |+ allo|, ,

where m is the number of samples, @ is a vector of the coefficients of the model, X is the
matrix of features, Y is a vector of the targets and « is a constant value, which is used as
penalty term to limit the number of non-zero coefficients in @ [61].

This penalisation of non-zero coefficients, make this algorithm specially fit for cases, such as
this one, in which the number of features is high and it is desired to reduce the number of
features taken into account by the model. Furthermore, it can be efficient even when it is not
fed with an enormous number of samples.

This Lasso algorithm was applied with 3-fold cross-validation (CV). This means that the
training data is split into three groups, which are used to find the optimal value of the (alpha)
parameter. Each one of the three subsets is used to test the effectiveness of a model trained
with the other two subsets. The average of the three partitions is used to compare the possible
values of the o constant.

As for the training and test subsets, a 75% of the dataset samples are used to train the Lasso
model, while the other 25% are used to calculate the score of the model. This split of the
dataset into two subsets, one for training the model and another one for testing it, is common
practice in machine learning. If the tests and the training of a model were to use the same
data, they would easily lead to overfitting: the model learns too precisely the specificities of
the dataset but fails to predict new samples.

The score was calculated using the coefficient of determination R? of the predicted output, as
calculated by scikit-learn, which yields a result from 0 to 1 (where 1 is a perfect score and 0
means that there is no linear relationship between the predicted outputs and the actual
targets). This is given by

where m is the number of samples in the test, , is the value predicted by the model for the

i" sample, y, is the actual target value of that i/ sample in the test subset and ¥ is the

mean of the actual target values in the test subset [62].

Various subsets of features and quality targets were measured, as explained below. For each
of these combinations, the results were repeated 20 times, since the coefficients learnt can
fluctuate from one time to the other, depending on the split of the training and test subsets. In
the tables below, the best and worst score is included. In certain cases, the R? score of the
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predicted model can be negative (when its predictions are arbitrarily negatively correlated

with the actual targets). For those negative cases, the score was calculated as having a value
of 0.

Table V shows the minimum, maximum and median R* score using each of the 10 possible
targets, having trained the Lasso algorithm with the data of the 170 features.

TABLE V. Lasso results using all features.

Target Minimum R* | Median R* Maximum
score score R? score

total number of issues 0.0 0.027 0.187

total number of open issues 0.0 0.016 0.098

total number of closed issues 0.0 0.015 0.206

total number of buggy issues 0.0 0.0 0.200
percentage of buggy issues over all | 0.007 0.019 0.029
issues

total number of open buggy issues 0.0 0.018 0.078

total number of closed buggy issues 0.0 0.030 0.293

total number of watchers 0.0 0.0 0.003

total number of stargazers 0.0 0.0 0.0

total number of forked repositories 0.0 0.0 0.008

In general, the results do not show a strong correlation between the software metrics features
and the quality targets. The best R* scores are yielded when using the total number of closed
buggy issues (0.293), the total number of closed issues (0.206) and the total number of buggy
issues (0.2). The weights for the 170 features seem slightly unstable in certain cases, ranging
from low scores to higher scores depending on which samples are used in the test and training
subsets (e.g., for the target “total number of closed buggy issues”, R? yields scores ranging
from no correlation to a 0.293 score). One reason for this instability can be the high number
of features used in the training algorithm for a dataset of 3,074 samples.

Using fewer features confirms their impact on the volatility of the trained models. With less
features, the R? scores tend to become more stable, but also become closer to zero,
confirming that there is a weak correlation between the predicted results and the testing set.
Specifically, table VI shows the R* score using 16 features, which represent the averages of
the different software metrics enumerated in V.B.2. It also includes the results using 5
features related to cohesion and complexity which are particularly meaningful in fault
proneness studies (average lines of code, average depth of inheritance tree, average coupling
between objects, average lack of cohesion of methods and average cyclomatic complexity).
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TABLE VI. Lasso results using 16 features.

R’*score using 16 features R’*score using 5
features
Target Min. Median Max. Min. Median

total number of issues 0.0 0.015 0.041 0.0 0.022
total number of open issues 0.0 0.016 0.043 0.0 0.025
total number of closed issues 0.0 0.016 0.058 0.0 0.021
total number of buggy issues 0.0 0.007 0.057 0.0 0.022
percentage of buggy issues over all | 0.0 0.011 0.025 0.0 0.014
issues

total number of open buggy issues | 0.0 0.006 0.022 0.0 0.012
total number of closed buggy issues | 0.0 0.019 0.050 0.0 0.012
total number of watchers 0.0 0.0 0.003 0.0 0.0

total number of stargazers 0.0 0.0 0.0 0.0 0.0
total number of forked repositories | 0.0 0.0 0.0 0.0 0.0

D2. Analysis of Results

The results show that the models trained with these data offer a low predictive capacity: they
do not show a strong relation between the software metrics and the quality targets extracted
from GitHub. This is an important conclusion since it provides some insight on the future
work necessary to fully exploit GitHub as a source of data for the study of software quality
and metrics.

Fault-proneness related quality targets clearly outperform quality criteria related to
popularity, which offer very poor results. Targets such as “total number of closed buggy
issues” and “total number of closed issues” have R* scores of 0.293 and 0.206 respectively,
while the best popularity-related target result only reaches a value of 0.008 (total number of
forked repositories).

Using the 170 metrics features yields better results but it also makes them more dependent on
the splitting of the training and test subsets, making them more unstable. With less features,
the scores were more stable but also were closer to zero (less correlation for the predicted
values).

A plausible reason for the low correlation scores is that the criteria targets are not precise
enough to reflect the actual quality of each repository. As mentioned in chapters II and III,
the popularity, size and activity of GitHub repositories are very unequal and have very
skewed distributions. Most projects are personal or have a small community of developers,
are small, rarely use interaction features such as issue tracking and have few activity.
However, a few projects are very popular or collective, or are very big, or accumulate most of
the activity and interactions of GitHub.
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This uneven distribution (of the popularity, size and use of GitHub interactive features) has
an impact on the quality targets. Issues and buggy issues could be a good indicator of default
proneness. However, the GitHub projects that are very popular will accumulate a greater
numbers of issues than those less popular, regardless of the actual quality of their code, since
less popular repositories barely use issue tracking. The target criteria related to popularity,
such as the number of forks, stargazers or watchers, are also insufficient. The most popular
projects will have more watchers, forks and stargazers than the rest, but that does not
necessarily imply that their software quality is greater. In a similar fashion, differences of size
or activity between repositories have an impact on these quality targets and bias their
connection with software metrics.

These results show the impact of bug reporting in GitHub being done on a voluntary
principle. This allows the developers working on a repository to use bug-tracking systems
external to the issue-tracking GitHub system, or to not use any bug-tracking system at all. In
both cases, using the number of issues of a repository to indicate its fault proneness is
misleading. There is not a unique reason that explains why some repositories use issues and
others do not. It is safe to assume that the most popular repositories will use more frequently
the issue-tracking system, but other factors surely play also a role (e.g. the type of project, the
number of developers, their personality and conscientiousness, etc.).

In order to exploit the potential of GitHub, it is crucial to discover better quality indicators
that can be automatically extracted at massive scale. To achieve this, one could analyse in
detail a subset of repositories for which quality measurements outside GitHub can be found
(for instance, expert inspections of these repositories or repositories systematically using bug
tracking systems outside GitHub). Other quality indicators could be analysed and evaluate
their connection with the actual quality of the software. For example, one could envisage
using technical debt (which can be calculated by coding tools such as SonarQube [63]) or
resorting to the time which repositories take to fix buggy issues (although this risks being
also biased by the popularity of the project).

Another way worth exploring is to group the different repositories in clusters (according to
their popularity, size, activity, etc.) and use the machine learning algorithms within them.
Besides, in addition to the selection criteria set in section III.C, thresholds could be used to
exclude projects with abnormal characteristics with regards to size, popularity, activity, etc.

In addition to the inadequacy of the quality criteria used, another possible reason for the low
scores of the machine learning algorithm is the use of class-level metrics at system-level.
Applying class metrics to repositories has some perils. For example, non relevant files (such
as configuration files, non object-oriented files, etc.) included in the repository can distort the
metrics of the repository as a whole. Furthermore, the existence of several classes can make
that different classes with values outside the norm are not really taken into account and are
finally evened out around the average value.
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The absence, to our knowledge, of system-level metrics hinders the exploitation of these type
of metrics for GitHub repositories. The use of this granularity is promising but rather recent.
In order to fully use the GitHub potential to study software quality and metrics, it is desirable
to develop software metric tools including these type of granularity.

Another interesting research path would be to try a combination of class-level and system-
level metrics. This could possibly benefit from the advantages of both granularities: the
specificity and concretion of class-level metrics, and a more holistic and integrated approach
provided by the system-level metrics.

It would also be revealing to compare the efficiency of the synchronic and diachronic
approaches to repositories evolution in GitHub quality studies. We called diachronic to the
approach that analysed the evolution in a project throughout time (mainly using different
commits of different moments of a repository lifecycle). The synchronic approach, on the
contrary, measures once the aggregated state of the repository and compares it to the
aggregated state of other repositories. While other works uses a diachronic approach, this one
suggests using a synchronic approach. This choice was made based on our understanding of
bug introduction. Future work could empirically confirm or reject this choice.

E. Conclusions

This chapter examines the relation between software metrics and quality in 3,074 GitHub
repositories using machine learning. Specifically, the features and targets to be fed to the
regression algorithm were defined: features would be the software metrics and the targets
would be the software quality indicators. Software metrics were extracted following some
choices which were discussed: the metrics used were static software product metrics, with
class-level metrics gathered at system-level component and a synchronic approach to the
repository evolution (this approach was defined in contrast with a diachronic approach).

Ten different quality targets were extracted and discussed, related both to the fault-proneness
of the project and to its popularity. The extraction process was reviewed. Various software
metric tools were examined and Analyzo was retained.

The data extracted illustrate that most repositories in GitHub have few classes. Their code
lacks cohesion, is not very complex and does not overuse inheritance. It also shows that most
classes have low coupling. The variety of metric values make the dataset suitable for studying
software quality.

The scores of the machine learning model show that the correlation between the predicted
values and targets is weak. The main reason is that the quality targets extracted do not seem
to reflect precisely the actual quality of the repository, since they are biased by other
characteristics of the repository (size, popularity and use of GitHub features). The quality
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criteria targets related to fault-proneness perform better than those related to the popularity of
the project.

The results shed light into possible improvements of these results. Mainly, they show that it is
crucial to find quality target criteria suited for exploring GitHub at massive-scale. Various
possibilities are suggested: using clusters to reduce the impact of other properties of
repositories, comparing diverse GitHub quality criteria with external indicators of quality
(external bug-tracking systems, technical debt as calculated by tools like SonarQube [63],
etc.).

The study of GitHub software quality and metrics could also be improved by developing
metric tools which extract system-level metrics, in addition to the class-level ones that most
of them currently include. Also, further progress could derive from empirically comparing the
diachronic (the state of a project is matched against its own state at some other time) and
synchronic (the aggregated state of one project is compared to the aggregated state of another
project) approaches to repositories evolution.
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VI. Conclusions and Future Work

This section summarises the conclusions of this study, proposes future work derived from its
findings and outlines its contributions to academic research.

A. Conclusions

The work reported in this thesis has explored the possibilities of using machine learning on
GitHub projects to improve the understanding of software quality and metrics. It shows that
GitHub is a valid source of data for this research and that it offers an enormous amount of
available data which can be exploited with machine learning. It also highlights some pitfalls
related to the use of this platform in scientific research, such as replicability.

The use of public datasets is encouraged and some of the limitations of the current available
datasets are analysed. A dataset with the metadata of 71,942 public repositories has been
gathered and made publicly available (https://github.com/david-fdez/metadata dataset).
These data allow to draw the current characteristics of GitHub. Non-software and personal
projects have increased in the last years, while issue-tracking (the main feature for user
interaction and bug tracking in the platform) has remarkably decreased.

In order to create a subset of GitHub repositories relevant for software quality studies,
selection criteria were discussed and defined. They must be non-fork repositories written
mainly in Java that make use of the issue tracking system.

This study also examined the difficulties to incorporate software metrics into the software
industry. Mainly, due to the absence of concrete quantification of the relationship between
different software metrics and higher level quality properties.

The study analysed different approaches to the extraction of machine learning features and
targets from GitHub repositories. The metric features gathered were static software product
metrics, with class-level granularity applied at the whole repository and a synchronic
approach to the evolution of the code. Ten different quality targets were collected, related
either to the fault-proneness of the project or to its popularity.

A dataset containing the metric targets and quality targets of 3,074 has been built and made
publicly available (https://github.com/david-fdez/metrics quality dataset). This allows to
assess the characteristics of code hosted in GitHub. Among other properties, it shows that
projects in GitHub are small and have few classes, lack cohesion and have low values of
coupling, are not very complex and make a limited use of object-oriented inheritance.
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The created dataset dataset was fed into a machine learning algorithm which showed weak
correlation between the metric features and the extracted quality targets. This is mainly due to
the imprecision of the chosen quality targets, biased by other properties such as the project
popularity. It makes clear that, in order to study the quality of GitHub projects, it is crucial to
find quality indicators that reflect accurately the actual quality of the project. From this
results, other proposals to deepen our understanding of software quality in GitHub were
examined.

B. Future Work

The data and analysis conducted in this research contribute to gain insight into the
possibilities that GitHub offers to improve our understanding of software quality and metrics
using machine learning techniques. They also suggest new paths to continue the investigation
in this promising area.

In the selection of features and targets for machine learning, some additional analysis have
already been proposed throughout this study:

e Crucially, finding appropriate quality indicators that can be automatically extracted
from GitHub projects. It would be interesting to compare the GitHub repositories
metadata with external measurements of quality not related to this platform (experts
analysis of code, bug tracking systems, technical debt, etc.).

e Using clusters of repositories with similar characteristics (i.e. size, popularity, number
of issues, etc.) to prevent them from biasing the data.

e Attempting other approaches to software metrics extraction: comparing synchronic
and diachronic approaches, combining class-level and system-level granularities. It
would also be useful to develop software metric tools which provide system-level
granularity metrics.

Once the selection of features and targets in GitHub is perfected, a larger dataset could be
extracted and made publicly available. Various machine learning algorithms should be
applied in order to evaluate the performance of existing metrics and to determine which of
them are more efficient in predicting software quality. This would also help propose
evidence-based optimal values for software metrics, probably the Achilles’ heel of these
metrics.

A further step could be to use machine learning (multivariate approach) to identify relevant

software metrics combinations. By doing so, new software metrics could be created, aimed at
yielding better results than classical metrics.
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C. Research Contributions

Here below, some of the contributions to academic research are briefly summarised.
In chapter 11 :

e Compilation and presentation of the current state of research in social coding
platforms such as GitHub, with a special focus on the use of machine learning
techniques and software metrics.

In chapter III:

e Making publicly available an exploitable database containing metadata of 71,942
GitHub projects. These metadata contain information about the use and characteristics
of the GitHub ecosystem.

Presentation of the current characteristics of GitHub as a social coding platform.
Selection of criteria to mine GitHub repositories relevant to software quality and
metrics.

In chapter IV:

e Compilation, presentation and analysis of the state of the art in software quality and
software metrics.

In chapter V:

e Making publicly available an exploitable database containing software metrics and
diverse quality indicators of 3,074 public open-source repositories in GitHub.

e Presentation and analysis of the process of extracting massive-scale software metrics
features and quality targets from GitHub, exploitable for machine learning tools.

e Analysis of the general patterns of coding in Java projects in GitHub, particularly with
regards to their software metrics values. Quality assessment of code in GitHub Java
projects.

e Use of machine learning to predict the quality of GitHub repositories based on their
software metrics.

e Suggestion of improvements in the selection of machine learning features and quality
targets in GitHub.
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Knowledge Acquisition from GitHub

for Software Quality Assessment

Abstract— Software measurement intends to provide a
reliable and repeatable method to assess software quality.
However, defining meaningful thresholds for quality metrics
values has been a continuing challenge for researchers. Machine
learning can be exploited to improve our understanding of
software metrics and their relationship with software quality.
This requires the analysis of large amounts of software-related
data. Fortunately, online code hosting platforms such as GitHub
make such large amounts of raw data (both source code and
metadata) publicly available. This paper investigates the process
of building a relevant dataset that (i) extracts data from Java
software projects hosted on GitHub, (ii) uses software metrics as
its feature extraction process and (iii) is exploitable by standard
machine learning techniques. Criteria are defined to select
relevant repositories from GitHub and challenges related to data
acquisition are investigated. This paper exposes findings
regarding the characteristics of object-oriented projects hosted
on GitHub and provides an overview of the collected software
metrics. Most repositories in this platform are small, not very
cohesive and have low complexity and coupling. The results show
that GitHub is a useful tool to produce a dataset on which to
conduct further studies.

Keywords— Machine learning, Software Measurement,
Software Quality, GitHub, Software Repositories Mining

I.  INTRODUCTION

Software quality assessment is a crucial part of software
development. Besides software inspection, software
measurement is one of the main methods used to assess the
quality of software. Multiple software metrics have been
designed to establish meaningful relationships between
measurable properties of software artefacts (e.g., lines of code,
cyclomatic complexity, etc.) and high-level software quality
characteristics (e.g., robustness, evolutivity, maintainability,
etc.) [1][2][3]. Unfortunately, these relationships have yet to be
accurately characterised (i.e. with suitable thresholds to
interpret quality based on measurement values) and several
limitations to metrics have been pointed out [4][5].

Machine learning provides new opportunities to dive into
software artefacts to better analyse and understand them. While
machine learning is often used as an improved form of
software inspection applied directly to the source code (e.g., for
defect prediction), many standard machine learning techniques
require a feature extraction phase prior to their application.
This feature extraction process is a challenge in itself, taking a
complex entity and singling out relevant properties on which
algorithms can be applied in order to detect relevant patterns
that characterize the entity. In the case of software quality,
software measurement provides a promising candidate to

conduct a relevant feature extraction. Indeed, software metrics
are known to be related to high-level quality characteristics [5]
[6][7] while the actual quantification of this relationship has
never been fully accomplished. In a classical empirical setting,
it would require a huge effort to do it manually and it would be
difficult to analyse how different metrics interact with each
other. Applying machine learning techniques to extracted

software measurement values should therefore yield
meaningful results regarding software quality.
Both software measurement and machine learning

techniques require a large amount of data in order to extract
relevant patterns from the studied domain. In order to study
software quality, the availability of numerous source codes is
key to provide significant results. In recent years, GitHub has
become the most widespread collective code hosting platform
and therefore provides a very rich source of data providing not
only the source code of a project but also interesting additional
data such as reported issues, liveliness of the project, etc.

The goal of our research is therefore to go beyond just
using classical metrics, i.e. (i) combine metrics and better
understand them and (ii) create new metrics that overtake
classical metrics. This paper constitutes the first milestone of
this ongoing research. It investigates the process of building a
relevant dataset that (i) extracts data from relevant Java
software projects hosted on GitHub, (ii) uses software metrics
as its feature extraction process and (iii) is exploitable by
standard machine learning techniques.

II. RELATED WORKS

GitHub has been increasingly used in research. Cosentino
et al. carry out a thorough and complete compilation of the
methods and findings of 80 relevant works around GitHub [8].
Kalliamvakou et al. [9] analyse the characteristics of the use of
GitHub and underline some of the perils and challenges that
mining this platform can entail for researchers.

Issue tracking is one of the main tools provided by GitHub
to allow its community to interact with regards to code. This
tool enables users to point out and fix bugs, propose new
features, etc. Bissyande et al. [10] analyse a hundred thousand
GitHub projects to characterise the use of issue trackers.

Machine learning tools have already been used to treat data
and code gathered from GitHub. Muthukumaran et al. [11]
extract a series of change metrics from 5 different versions of
Eclipse JDT project in order to predict the number of bugs on
the project. In [12], Allamanis and Sutton gather 14,807 open
source Java projects (the “GitHub Java corpus”), used to train a
n-gram language to predict Java tokens and analyse its code. In



a similar fashion, after tokenizing 16,221 GitHub Java projects,
White et al. [13] train a deep learning model for uses such as
code suggestion.

In [14], Dwivedi et al. extract object oriented metrics as
feature vectors fed to machine learning algorithms (layer
recurrent neural network and decision tree) in order to identify
software design patterns. Malhotra et al. [15] use the Xerces
dataset to compare the performance of 17 different machine
learning algorithms in predicting defect prone classes based on
the object oriented metrics of these classes.

Table 1 shows how machine learning is used in the above
works, in particular whether each project uses GitHub as a
primary data source, analyses multiple projects and extracts
software metrics to feed machine learning algorithms. As we
can see, several research efforts exploit GitHub and/or machine
learning and/or software metric to better understand software
quality. However, none of them use the three in conjunction as
this research proposes.

III. DATA AND CODE COLLECTION IN GITHUB

In this section, we present the tools and criteria used in this
paper to retrieve relevant repositories in GitHub.

A. Tools for Collection in GitHub

The present study retrieves code from GitHub repositories
in order to extract the appropriate object oriented metrics, along
with metadata that could indicate the quality of the code (e.g.
number of issues, errors, pull requests, number of forks, etc.).
Before doing so, we analyse the characteristics of repositories
hosted in GitHub, in order to define the selection criteria: what
are the characteristics of the repositories deemed relevant in
this research. Filtering repositories is a necessary step in order
to limit the enormous number of repositories in GitHub and
select those which are more relevant for this study.

There exist various options to retrieve large datasets from
GitHub. The first and most obvious tool is the GitHub REST
API. This API sets limitations to the number of requests that a
single user can make. An authenticated user can make up to
5000 requests per hour, whereas a non authenticated one has a
limit of 60 requests per hour. Libraries in different languages
exist, providing a layer of abstraction to the GitHub REST API,
facilitating the interaction with the platform. This study has
used the Python library PyGithub, because of its simplicity and
because Python has a strong machine learning ecosystem.

TABLE L. RELATED PAPERS SCOPE
. analyses extracts
ref. | uses GitHub . .
several projects software metrics
. No (extracts
[11] Yes No (only Eclipse JDT) change metrics)
. No (treats code
[12] Yes Yes (14,807 projects) directly)
. No (treats code
[13] | Yes Yes (16,221 projects) directly)
[14] | Unclear No (only JHotDraw) Yes
No (Xerces
[15] dataset) Yes Yes

GHTorrent is a powerful tool for the GitHub data miner
[16]. It is a queriable mirror database of a significant part of
GitHub data, stored both in a SQL database and a set of
MongoDB files. The dumps with the data can be downloaded
and queried offline, or directly queried online. It is a useful
snapshot on which to conduct research in a controlled and
replicable manner. GHTorrent holds information about GitHub
users, repositories, commits, etc., but does not store the files
and code of the repositories. It is therefore insufficient in our
objective to extract software metrics. In a similar manner, the
GitHub archive [17] provides a dataset of events in the GitHub
event stream as from 2011 [9].

It is also worth mentioning the GitHub Java Corpus [18]
gathered for the work conducted in [12]. It is a snapshot of all
the open-source Java projects with at least one fork that were
publicly available in October 2012. This amounts to a total of
14,765 projects, summing up to approximately 352 million
lines of code. Using only repositories having at least one fork
aims to filter repositories with higher quality. In this study, we
have used GitHub REST API directly and PyGithub, in order
to retrieve repositories and their metadata. GHTorrent has been
used to preselect repositories relevant for this study.

B. A Characterisation of GitHub Repositories

In order to build the dataset, criteria to decide which
repositories are included must be defined. The aim of the
present study is to treat a set of object oriented projects,
randomly chosen from a subset of projects that are meaningful
for extracting information about software quality. For that,
characteristics of repositories on GitHub are analysed.

In order to select random repositories, one can request the
GitHub REST API resource “/repositories” with its
parameter “since” in order to retrieve random repositories. In
our case, we have mined public projects with an id lower than
102775889, ranging from the start of GitHub until 07/09/2017.
The current research has fetched a total of 71,942 repositories.

One surprising result is that 23.3% of the repositories are
not software development, as shown in Fig. 1. They do not
have a main language. Among these cases, we find empty
repositories, as well as non-software files (repositories making
use of GitHub as a file storage service).

Among the projects with a main programming language,
the most widespread is Javascript, followed by Java, Python,
HTML and Ruby. Being interested in the analysis of object
oriented languages, Java seems the appropriate choice: it is the
main language in 11.38% of all GitHub repositories (see Fig. 2

"~ no language
has language

23.3% | J6.d%

Fig. 1. Repositories with and without a main language.
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Fig. 3. Number of repositories by number of pull requests.

for all languages) and it is widely used in industry. Being a
social coding platform, interaction between developers in
GitHub is a valuable source of information to assess the quality
of code. However, data reveals that 72% of all repositories are
personal [9] (i.e. have only one committer) and/or do not use
the mechanisms foreseen for this interaction, such as pull
requests and issue tracking. For this paper, personal projects
are less interesting, since the lack of interaction between
developers makes it difficult to assess the quality of the code.

GitHub allows to create copies (called forks) of a repository
(base repository) to which one can make modifications, such as
bug fixes, that will later be proposed to the owner of the project
(pull request). In turn, forks can also have their own forked
copies. Of all repositories analysed, 43.7% are forks. Base
repositories have more forks, issues and pull requests than
forks. The reason for this seems to be that the developer
community tends to interact more with the main, original
repository, than with a fork (many of which are used only to
add a specific feature or correct a bug of the base repository).

Although more than half of the repositories are base
repositories, only 5.6% of them have pull requests, as shown in
Fig. 3 (which, like other figures in this paper, uses logarithmic
scale). The reasons are that few projects concentrate most pull
requests [9], that many forks are used as copies not intended to
be pulled to the base repository and that a lot of projects are
experimental, empty or not related to software development.

Issue trackers are also scarcely used in GitHub (Fig. 4). In
2013, about 30% of the projects had issues, whereas 3%
disabled issue tracking and a whole 66% did not disable them
but still did not use them [10]. This situation has changed
remarkably in 2017: 43.6% of repositories disable issue

issues activated and used
issues activated but not used
issues not activated and not used

48.5%

Fig. 4. Use of issue trackers in GitHub.

trackers, 48.5% do not disable them but don't use them and
only 7.9% actually use issues. The decline of issue tracking can
be explained by the increasing number of personal projects in
GitHub related to the popularity of the platform. It can also be
partially the result of the fact that [10] excludes, unlike this
study, projects with less than 1000 lines of code.

C. Criteria for Repositories Selection

Based on section III.B, we have selected three criteria to
filter the repositories treated in this paper:

e The repository has Java as its main language. The
study focuses mainly on object oriented metrics, so
choosing an object oriented language is a coherent
choice. This criteria excludes all non-software
repositories. Furthermore, Java is one of the most
widespread languages in GitHub and one that code
metric tools can often analyse.

e Only not-fork repositories are selected. Analysing
the same code several times (original repositories and
forks) can introduce a bias for the most popular projects
in GitHub. Also, base repositories are more prone to
interaction among different users than forks, in terms of
issues, pull requests, comments, ectc. This social
interaction gives a better insight into the quality of the
code, via issues related to bugs, fixes, pull requests, etc.

e Only repositories using issues are selected.
Analysing issues can be a fruitful manner to measure
code quality. Furthermore, repositories having used the
issue tracker system are more likely to be collective,
collaborative repositories, instead of personal projects,
making it easier to quantify code quality.

Among the 71,942 repositories whose metadata were
analysed, only 498 fulfilled the three criteria (0.69%).

D. Mining Repositories

Once settled the criteria to select the relevant projects for
this research, the repositories are to be retrieved, i.e. their code
and relevant metadata (language, number and type of issues,
pull requests, whether it is a forked repository, etc.).

Retrieving the code of a repository and its relevant
metadata requires around 10 or 20 calls to the GitHub API
(depending on factors such as the number of pages of issues).
Since the hourly limitation is of 5000 calls, approximately 300
repositories per hour can be retrieved. Given that only a 0.69%



of the repositories fulfil the three criteria described earlier, only
the data for two repositories can be expected per hour.
Therefore, this approach, adequate to gather metadata for
section III.B, is less adapted for finding repositories fulfilling
the criteria set in III.C. A more efficient approach is to
preselect in GitHub those repositories that fulfil the selection
criteria. It is then possible to retrieve the current code and
metadata of these repositories.

GHTorrent database is a very big database. Already in
January 2015, the MongoDB version stored 4TB of JSON data,
while the SQL version of the data had more than 1.5 billion
rows. The latest SQL versions, once decompressed, take
around 270 GB in CSV files. We preferred to use a slightly
older version of the database, from January 2016, which took
around half of the size, making it easier to handle.

It is not necessary to load and treat all the tables in the
GHTorrent database. For the scope of this work, only a few
tables (projects, issues, issue labels, project languages) were
used, since they contain the information required to select
repositories according to section I11.B.

The mirror offered a total of 25,364,494 repositories.
Among them, 2,243,734 repositories had Java as their main
language. Around half of them were not forked (1.109.893). In
total, 122,074 projects fitted the three conditions in III.C.

IV. OBJECT ORIENTED METRICS EVALUATION

In this section we discuss the tools and process to extract
software metrics from GitHub and present relevant results.

A. Tools for Metrics Evaluation

Different tools for metric evaluation exist. Kayarvizhy
reviews and compares a series of 10 object oriented metric
tools [19]. Provided with the same code, different metric tools
offer different results due to implementation specificities [20].
In this study, we selected the appropriate software
measurement tool based on its characteristics.

First of all, this paper chooses to analyse Java code.
Therefore, some tools which do not support Java analysis are
discarded, such as SD Metrics or QMOOD++ [19].

Also, given the number of projects to be analysed, it is not
feasible to have to manually compile each repository.
Furthermore, many of these projects must be configured before
compilation or contain errors which hamper compilation. A
tool that can extract data from source non-compiled Java files
(“java”, not “.class”) is needed. This discourages the use of
tools such as ckjm, Jdepend [19], Chidamber and Kemerer Java
Metrics or Dependency Finder [20].

It is also impracticable to extract the metrics of each
repository, one at a time. Instead, given the number of projects,
we expect the tool to be able to process repositories in batch.
Tools such as the Eclipse IDE plugins (Eclipse Metrics Plugin)
are therefore not the best option, since they require importing
each project individually into the specific IDE.

An open source solution is preferred to a commercial one. It
allows to clearly understand how metrics are measured and

facilitates that other researchers share the same tool.
Replicability is also better guaranteed when the researcher
knows what happens under the hood. This criteria suggests to
push aside tools such as RSM, Jhawk, JMT [19] or Understand
for Java. Some solutions used in the above mentioned papers
seem not to be active any longer, such as Analyst4j or JMT.

We concluded that Analizo is a tool that fits the conditions
of our study. It is an open-source, non commercial tool, created
within the scientific community [21]. It extracts a wide range
of object oriented OO metrics for Java projects and files, which
do not need to be compiled or even compilable. Furthermore, it
allows to treat repositories in batch, and not one by one.

B. Mining and Metrics Extraction Process

The process conducted in this study to download the
repositories, extract the OO metrics and repositories metadata
is the following. First, GHTorrent was queried offline to obtain
the set of repositories fulfilling the selection criteria mentioned
in section III.C. Once these repositories were identified, a
batch script would download the sources of the repository,
decompress them, and extract the OO metrics with Analizo.
This same script would retrieve the relevant metadata: date and
time of extraction, number of issues, number of issues with
labels or comments related to bugs and errors, etc.

The metadata could be obtained by querying GHTorrent
instead of retrieving it directly from GitHub. However, the
metadata would refer to the state of the repository at the
moment in which GHTorrent data was extracted, previous to
the download and extraction of the repository. Therefore, it is
not advisable to query GHTorrent for metadata, but rather to
retrieve it at the same time of downloading the repository and
extracting its metrics.

V. METRICS RESULTS

For the scope of this paper, we treated a total of 4,449
repositories. Among them, 726 no longer existed. Analizo was
unable to extract the metrics of another 644 repositories. 5
repositories were too big (more than 1Gb of source code). For
the remaining 3,074 repositories, all the metrics that Analizo is
capable of extracting (described in [21]) are included in the
dataset. In this section we focus on some of these classical
software metrics that allow to characterise the dataset.

Analysing the metrics, it is clear that there is a tendency of
most repositories to be rather small. It is indeed very rare to
find repositories with a size bigger than 200MB, as shown in
Fig. 5. A big number of repositories have few classes (Fig. 6).

The complexity and cohesion of the code can be measured
in different manners, all of them relevant to measure the
quality of the code. High cohesion of classes manifest high
quality, by which each class has one, and only one, purpose.

One way to measure cohesion is the lack of cohesion in
methods (LCOM) metric, proposed by Chidamber and
Kemerer [1] and later improved by Hitz et al. (LCOM4) [22].
It quantifies the number of groups of related methods and
fields that exist within a class. The desirable value for LCOM4
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is 1, meaning a highly cohesive class, whereas bigger values
reflect classes that should be split.

Fig. 7 shows the number of repositories in GitHub,
depending on the mean value of LCOM4 of its classes. It
reveals that most repositories have non-cohesive classes, with
most repositories having a mean LCOM4 value of around 2.5
(greater than the ideal value: 1.0).

Another element to measure dependencies is how coupled
classes are to each other. This can be measured using the
Coupling Factor (CF) proposed by Abreu et al. [2] or the
Coupling Between Objects (CBO) put forward by Chidamber
and Kemerer [1]. Sharma et al. [23] conclude it is preferable to
use CBO instead of CF. High CBO is undesirable, in particular
when it exceeds a threshold value of 14, according to [24].

The GitHub repositories analysed, as Fig. 8 shows, present
two interesting results. Firstly, many repositories have no
coupling at all (their CBO is 0). This is related to Fig. 6 too: if
repositories contain few classes, it is more likely that each class
depends on few others. Secondly, Fig. 8 shows that the mean
CBO in repositories is evenly distributed between values 0 and
2. Their classes have a low coupling to each other.

Terceiro et al. propose in [25] a measure for structural
complexity, measured as the product of LCOM4 and CBO. Fig.
9 shows that most of the GitHub repositories analysed have
low structural complexity.

It is also interesting to compare the mean number of
methods per class among the different repositories in GitHub.
Most projects have less than 10 methods per class (Fig. 9),
reaching its peak in 5 methods per class.
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One of the object oriented languages particularities is the
possibility to inherit methods and/or variables from parent
classes. While method inheritance promotes reuse of code, it
also increases complexity and can make it more difficult to
understand the behaviour of a specific class. It is therefore
recommended not to have a too big depth of inheritance tree
(DIT) [1] metric value. Fig. 10 shows that most repositories do
not overuse inheritance, with mean DIT values mostly ranging
from 0 to 2. This values refer to the mean of the whole project,
some classes within them can of course exceed these values.

In summary, the selected GitHub repositories have a
tendency to be small, lack cohesion, not be very coupled, not
overuse inheritance and, in general, not be too complex.
However, the dataset contains rich and varied values (see
figures), making it suitable for analysing its impact on quality
assessment indicators (such as the number of bugs, issues or
other metadata extracted from GitHub).

VI. CONCLUSIONS AND FUTURE WORK

This paper is the first milestone of a wider research aimed
at better understanding and improving software quality
measurement by using machine learning algorithms on a large
amount of data extracted from GitHub. This paper analyses the
process and tools used to extract a relevant dataset of software
metrics that can be treated by machine learning techniques. It
also proposes criteria to select relevant repositories in GitHub
in order to analyse software metrics.

We also presented a characterisation of Java repositories on
GitHub and showed some of their classical software metrics.
Results show that most repositories in this platform are small,
personal, rarely use issue tracking. The software metrics
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extracted from the dataset revealed that most code in GitHub
lacks cohesion, is not very complex and does not overuse
inheritance. It also shows that most classes have low coupling.
The variety of values still make the dataset suitable for further
analysis of its effects on code quality indicators retrieved from
GitHub.

Future work includes analysing correlation between metrics
and GitHub metadata, as well as trying to use machine learning
tools to identify relevant metrics combinations (multivariate
approach). Before that, more specifically, we will try to extract
software metrics from more GitHub repositories and
understand the reasons why some repositories could not be
correctly processed by Analizo in order to finalise (and then
make publicly available) a dataset as exhaustive as possible.
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