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Résumé

La conception d’une loi de contrôle afin de stabiliser la température et la concentration des composants

chimiques lors d’une réaction dans un réacteur tubulaire non isotherme avec dispersion axiale reste en-

core un défi dans le milieu du génie des procédés. Des étapes préliminaires telles que le caractère bien

posé, l’analyse de stabilité et l’analyse des équilibres d’un tel réacteur chimique sont alors cruciales.

Dans ce mémoire, ces différentes étapes sont développées pour une réaction du type A→ B où A re-

présente le réactif et B le produit. Ce type de système à paramètres répartis est régi par des équations

aux dérivées partielles dites de réaction-convection-diffusion avec un terme non linéaire. Nous montrons

d’abord que le système étudié est bien posé au moyen de la théorie des semi-groupes linéaires et non

linéaires notamment. Ensuite, la stabilité exponentielle de la partie linéaire est prouvée. L’étape suivante

est l’analyse des équilibres qui s’articule autour de deux nombres spécifiques, le nombre de Peclet mas-

sique et le nombre de Peclet thermique. Les analyses déjà présentes sont étendues dans le cas où ces

deux nombres sont différents. Le résultat principal obtenu est que le réacteur peut exhiber un ou trois

équilibres, notamment en fonction du coefficient de diffusion. De plus, des formes analytiques appro-

chées des profils d’équilibre sont calculées explicitement au moyen de la théorie des perturbations. La

dernière partie de ce mémoire traite de la stabilité des profils d’équilibre. Un modèle linéarisé autour des

différents équilibres est construit et le caractère bien posé de celui-ci est démontré. En ce qui concerne

l’étude de stabilité, diverses approches sont mises en oeuvre. Une méthode numérique connue sous le

nom de méthode des résidus de Galerkin est notamment développée pour des nombres de Peclet égaux

et étendue à des nombres de Peclet différents. Toutes les analyses et les résultats obtenus sont appuyés

par des simulations numériques.

Mots-clés : Réacteur tubulaire non isotherme - Semi-groupes positifs - Système non linéaire de dimen-

sion infinie - Nombre de Peclet thermique, massique - Stabilité exponentielle - Profils d’équilibre
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Abstract

The design of a control law to stabilize the temperature and the concentration of the chemical components

during a reaction in a nonisothermal tubular reactor with axial dispersion is still a challenge in process

engineering. Preliminary steps like the well-posedness, the stability analysis or the analysis of the equili-

brium profiles in such a reactor are important. In this master’s thesis, these different steps are developed

for a reaction of the form A→ B where A denotes the reactant and B the product. This kind of distributed

parameter systems is governed by partial differential equations known as reaction-convection-diffusion

with a supplementary nonlinear term. We first show that the system under consideration is well-posed

using the theory of linear and nonlinear semigroups, notably. Then, the exponential stability of the linear

part is proved. The next step is the analysis of the equilibrium profiles which is based on two specific

numbers, the mass Peclet number and the thermal Peclet number. The well defined analysis are extended

to the case of two different Peclet numbers. The main result is that the reactor can exhibit one or three

equilibrium profiles, especially depending on the diffusion coefficient. Moreover, approximated analytic

forms of these equilibria are computed using perturbation theory. The last part of this thesis is dedicated

to the stability analysis of the equilibrium profiles. A linearized model around the different equilibria

is constructed and the well-posedness of this model is proven. For the stability analysis, different ap-

proaches are used. A numerical method known as Galerkin’s residuals method is developed for equal

Peclet numbers and extended to different Peclet numbers. The analysis and the results are illustrated by

numerical simulations.

Keywords : Nonisothermal tubular reactor - Positive semigroups - Infinite-dimensional nonlinear sys-

tems - Mass, thermal Peclet number - Exponential stability - Equilibrium profiles
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Introduction

Controlled systems are ubiquitous in real life. A lot of current technologies use such systems daily, see

e.g. automation, driving assistant systems, ... . They play also an important role in industrial processes

and in particular in chemical and biochemical engineering. Many dynamical models describing control-

led systems are governed by partial differential equations that exhibit most of the time nonlinear aspects.

Moreover, this kind of systems possesses generally unstable equilibria or equilibria that do not have

a desired behavior. The design/modeling and the implementation of a robust control law that forces a

physical system to have a predetermined behavior is then necessary. Before controlling a dynamical sys-

tem, preliminary steps are also fundamental and not trivial. These encompass notably the well-posedness

(existence and unicity of a solution), the stability and also the equilibrium analysis.

The controlled system under study in this master’s thesis is a distributed parameter system, which is

a model of a nonisothermal tubular reactor with axial dispersion. This class of systems are dynamical

controlled systems for which the state space is infinite-dimensional.

Since 1980, a mathematical theory has been developed to model, analyse and build control laws for

distributed parameters systems. This theory is based on the strongly continuous semigroup of bounded

linear operators approach for the modeling and the dynamical analysis parts essentially. More recently,

this theory focuses on the well-posedness of abstract dynamical models involving unbounded control

and observation operators and is a nontrivial extension of the existing theories for finite-dimensional

systems, see e.g. (Curtain and Zwart, 1995; Jacob and Zwart, 2012; Callier and Winkin, 1992; Curtain

and Pritchard, 1978).

In (Aksikas et al., 2007), the nonisothermal plug flow reactor is studied. For this model and the correspon-

ding axial dispersion reactor, some results were obtained, notably for the existence and the uniqueness

of solutions (well-posedness). This comprises the linearized model with axial dispersion (Winkin et al.,

2000), the nonlinear plug flow model and the nonlinear reactor with axial dispersion respectively (Laa-

bissi et al., 2001). Therefore, the semigroup approach was used, both in the linear and in the nonlinear

cases. In (Laabissi et al., 2005), the exponential stability of the linear operator describing the dynamic is

proven. More generally, a stability analysis of chemical reactors similar to the one under considerations

in this master’s thesis is developed in (Delattre et al., 2003; Drame et al., 2008; Laabissi et al., 2001). The

methodology is notably based on the notions of Riesz-Spectral operators and Sturm-Liouville ones. In

(Drame et al., 2008), which is dedicated to the asymptotic behavior and to the stability of solutions of a

distributed parameters model of a biochemical reactor, a qualitative method was applied for the existence

and the multiplicity of equilibrium profiles. This method is based on an analysis of the model when the

axial dispersion phenomenon dominates the plug flow, i.e. the diffusion coefficient is dominant on the

superficial velocity of the fluid. The stability analysis of the equilibrium profiles of a chemical reactor has

Dynamical analysis of a nonisothermal axial dispersion reactor — A. HASTIR 1



Introduction

also been envisaged in (McGowin and Perlmutter, 1970) and in (Varma and Aris, 1977) where different

techniques are highlighted and especially numerical techniques.

In this master’s thesis, the well-posedness, the stability and the equilibrium analysis of a nonisothermal

tubular reactor with axial dispersion are studied for an irreversible chemical reaction A→ B, where A

denotes the reactant and B the product. For the well-posedness and the stability of the linear operator

describing the dynamic, some results in the literature are recalled and proven. These results are based

mainly on the semigroup approach. Furthermore, this analysis is considered using the port-Hamiltonian

formalism, see e.g. (Jacob and Zwart, 2012), for which the results can be more easily deduced once the

equations describing the system are written in this formalism. The explorating part of this master’s thesis

concerns the analysis of the equilibrium profiles, which comprises the existence, the multiplicity and the

stability. This analysis focuses on the relation between two physical numbers, the mass and the thermal

Peclet numbers. Some results are already present in the literature in the case of two equal Peclet numbers.

These results are extended here in the cases of different or close Peclet numbers. The existence and the

multiplicity analysis goes along the lives of (Drame et al., 2008). In particular, it is shown that the reactor

can exhibit one or three equilibria, depending on the parameters of the system and especially on the

diffusion coefficients. Analytical approximated expressions of the equilibria are given both in the cases of

equal and different Peclet numbers using perturbation theory. For the stability analysis, a linearized model

around an equilibrium is built and it is shown that it is well-posed, using the semigroup approach. A

numerical method known as Galerkin’s residuals method is studied. In (McGowin and Perlmutter, 1970),

this approach is developed in the case of equal Peclet numbers. This method is extended to different or

close Peclet numbers. Numerical simulations illustrate the theoretical results.

Contents

This master’s thesis is divided into different chapters. A brief description of each of them is provided

below.

• Chapter 1. This chapter is more an introductive chapter and is dedicated to the presentation of

some concepts of chemical engineering. The notions of chemical reaction, reaction rate are pro-

vided. An overview of some types of chemical reactors is also presented and a real life tubular

reactor is highlighted.

• Chapter 2. The nonlinear PDEs describing the dynamic of a nonisothermal tubular reactor with

axial dispersion are introduced. A state space representation is provided and the definition of a

well-posed system is given. It is shown that the nonlinear PDEs are well-posed using the semigroup

approach. The port-Hamiltonian formalism is introduced and it is shown that the linear part of the

system under study fits the class of dissipative port-Hamiltonian systems.

• Chapter 3. The exponential stability analysis of the linear operator of the dynamic is studied. The

notions of Riesz basis, Riesz spectral operator and Sturm-Liouville systems are described. It is

proven that the linear operator of the dynamic is a Riesz spectral operator and in this case, the

Dynamical analysis of a nonisothermal axial dispersion reactor — A. HASTIR 2



Introduction

stability analysis reduces to an eigenvalue problem. In particular, it is shown that this operator is

exponentially stable.

• Chapter 4. In this chapter, the analysis of the existence and the multiplicity of equilibrium profiles

of a nonisothermal axial dispersion tubular reactor is developed. The results supposing two equal

Peclet numbers are extended to different or close ones. It is shown that the reactor can exhibit

one or three equilibria depending on the parameters of the system, especially on the diffusion

coefficient. Some numerical simulations support the theoretical results.

• Chapter 5. The stability of the equilibrium profiles is studied. A linearized model around an

equilibrium is built and it is shown that it is well-posed. Then, the stability is analysed from an

eigenvalues point of view. Some theoretical results and also numerical ones are exposed, which

are based notably on the Galerkin’s residuals method. In particular, for equal Peclet numbers,

it is shown that in the case of one equilibrium, the latter is always exponentially stable and in

the case of three equilibria, the pattern « exponentially stable – unstable – exponentially stable »

is present. However, it is not always the case for different or close Peclet numbers. The more

the Peclet numbers are different, the more the central equilibrium becomes exponentially stable.

For different or close Peclet numbers, the Galerkin’s method is developed and some numerical

simulations are highlighted.

Contributions

The main contribution of this master’s thesis concerns the existence and the multiplicity of the equili-

brium profiles. Theoretical results were highlighted in the cases of equal, different or close Peclet num-

bers providing necessary and sufficient conditions for the reactor to exhibit equilibrium profiles. These

researches and these results were made and obtained in collaboration with François Lamoline, a FRIA

researcher of the department of mathematics at the University of Namur, Professor Joseph Winkin, full

professor and researcher in the same department and Professor Denis Dochain, full professor and re-

searcher at the ICTEAM, « Institute of Information and Communication Technologies, Electronics and

Applied Mathematics », Polytechnic University of Louvain, UCL. This collaboration led to the submis-

sion of a scientific paper, as full paper, in the « IEEE Transactions on Automatic Control », see (Hastir

et al., 2018).
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Chapter 1

Chemical reactors

Contents
1.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Different types of chemical reactors . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The anaerobic digestor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

This first introductive chapter is dedicated to the presentation of some notions related to chemical en-

gineering. In particular, the roles of chemical reactors and some usages of them in the industry are dis-

cussed. Then, the concepts of chemical reaction and reaction rates are exposed. Several types of reactors

are introduced with a short description, notably making the distinction between isothermal and noniso-

thermal reactors. One example of a chemical reactor in real life, the anaerobic digestion pilot reactor of

INRA - LBE, Narbonne, is presented.

1.1 General considerations

Basically, a chemical reactor is a device where a chemical reaction occurs. The main objective of wor-

king with such systems is to transform inexpensive chemicals into valuable ones. Before entering the

reactor and after leaving it, the materials (raw materials at the entrance and products at the output) have

to be purified such that the reactor behaves well, notably. These steps are called the separation processes

(see Figure 1.1) and are the most expensive ones among the successive steps of a chemical process. In

that way, improvments in the reactor usually have enormous impact on the two separation processes and

the aim of designing a chemical reactor is to ensure that the reaction proceeds with the highest efficiency

as possible while producing the desired output at the lowest costs as possible.

The type of chemical reaction we are interested in is the irreversible reaction

A→ B, (1.1)

where A denotes the reactant and B is the product. Irreversible means that the reactant can change to

the product but the product cannot change back to the reactant. That kind of reaction is the most used

example in chemical kinetics, see e.g. combustion reactions. Combustion occurs whenever a fuel burns.

During the reaction, fuel may combine with oxygen to produce carbon dioxide and water, see e.g. the

Raw materials Separation process Chemical process Separation process Products

Fig. 1.1 – Chemical process.
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Chapter 1. Chemical reactors

combustion of methane

CH4 +2O2→CO2 +2H2O.

The products (carbon dioxide and water) cannot react (back) to find methane and oxygen again so that

the reaction is irreversible.

An important concept in chemical engineering is the reaction rate. This is an empirical expression, de-

noted by k, that describes the dependence of the rate of transformation (of reactant into products) on the

parameters of the system, see (Schmidt, 1998). Generally, the reaction rate depends on the temperature

of the reaction and an empirical expression of it is given by Arrhenius Law (see (Schmidt, 1998; Aksikas

et al., 2007))

k(T ) = k0e−
E

RT , (1.2)

where T denotes the temperature, E the activation energy of the reaction, R the gaz constant and k0 is a

kinetic constant. The Arrhenius Law describes the variation of the velocity of a chemical reaction as a

function of the temperature. The activation energy plays an important role here. Indeed, if the latter is

small (which implies a large reaction rate), then the reaction occurs quickly. However, if that energy is

large, then the reaction occurs slowly. Looking at (1.2), a similar reasoning holds with the temperature.

A large temperature implies a fast reaction while a small one produces a low reaction.

1.2 Different types of chemical reactors

The classification of the different chemical reactors we present here is not exhaustive but covers a relati-

vely large class of them.

Chemical reactors can either operate in batch or in flow modes. No mass can be added into or out of a

batch reactor after time t = 0 ; for this reason, a batch reactor is sometimes called a closed reactor. On

the other hand, flow reactors can be loaded during the reaction.

The following distinction concerns only flow reactors. They operate between limits of completely un-

mixed contents and completely mixed ones, involving different phases : solid, liquid and gas. Reactors

for which the medium is homogeneous are called tank reactors (e.g. the CSTR or Continuous Stirred

Tank Reactor) and if the medium can be nonhomogeneous, they are said to be tubular reactors, e.g. the

PFTR (Plug Flow Tubular Reactor).

The reactors we are interested in are the tubular reactors. One can still make a separation for these reac-

tors, considering on one hand the plug flow tubular reactor wherein the flow is supposed to be laminar,

i.e. no turbulances are allowed inside the reactor, which assumes low reaction velocities and which is not

realistic in chemical engineering. On the other hand, one introduces the concept of axial mixing which

takes into account the fact that the contents of the reactor can move from right to left and vice versa

during the reaction process, see e.g. plug flow reactors with axial mixing (or the TRAD : Tubular Reac-

tor with Axial Dispersion). Tubular reactors are sometimes called diffusion-convection-reaction reactors.

Dynamical analysis of a nonisothermal axial dispersion reactor — A. HASTIR 5



Chapter 1. Chemical reactors

The diffusion phenomenon is symbolized by displacement of atoms or molecules from regions with high

concentration to regions with low ones. The diffusion occurs in tubular reactors notably because of the

axial mixing. Moreover, the convection models the heat transfer through the reactor and is due to the

plug flow effect in tubular reactors. Furthermore, the reactors are called adiabatic if no heat exchange

occurs between the inside of them and the external environment, and nonadiabatic otherwise.

One can still go a step further distinguishing isothermal reactors from nonisothermal ones. Isothermal

reactors are reactors in which the temperature is fixed, specified and does not change during the reaction

process. These kind of reactors are relatively idealistic since reactions generate or absorb large amounts

of heat (exothermic or endothermic reactions), which produces a lot of variations in the temperature in

the reactor. For this reason, one speaks more generally of nonisothermal reactors. For these reactors,

we have to consider two conflicting aspects. First, we notice that the temperature inside these reactors

has to be sufficiently high to activate the reaction but it cannot blow up or be too high. In this case, the

equilibrium limitation can limit the conversion and slow the activation of the reaction down, or simply

overheating can happen or thermal runaway can produce pressure buildup and release of chemicals. The

reason for considering this kind of reactors and trying to control the temperature inside of them is be-

cause it represents the major cause of accidents in chemical plants !

The equations governing the dynamic of a nonisothermal tubular reactor are nonlinear partial differential

equations (PDEs) derived from mass and energy balances, based notably on the laws of thermodynamics.

The nonlinearities are located in the kinetic terms. On one hand, we usually use the well-known Arrhe-

nius Law for the dependence of these terms on the temperature, see (1.2), and on the other hand, the

dependence of the kinetic terms on the reactant concentration can be represented by many mathematical

expressions, depending on the reaction we are interested in. For example, one finds the mass action law

which assume that the kinetic terms depend on the product of the concentration of the reactant and the

product, each term raised to a power which depends on the stoechiometric constant, see (Schmidt, 1998).

The one under consideration here is a first order dependence. Denoting by C the chemical concentration

of the components in the reactor, the kinetic term that is exhibited here is k0Ce−
E

RT , see e.g. (Aksikas,

2005). In addition to this nonlinearity, the linear part of the PDEs is called the diffusion-convection-

reaction part since it includes these different phenomena. The diffusion (or the axial dispersion) is mode-

lised by a second order spatial derivative operator while the convection is modeled by a first order spatial

derivative operator. The complete PDEs with the associated boundary conditions can be found in the first

section of Chapter 2.

The classification of the different reactors introduced in this section is depicted in Figure 1.2.

1.3 The anaerobic digestor

This section is dedicated to a brief presentation of a particular tubular reactor namely, the anaerobic reac-

tor. An illustration of such a reactor can be found in Figure 1.3, wherein the reactor of INRA – LBE of

Narbonne is presented.

Dynamical analysis of a nonisothermal axial dispersion reactor — A. HASTIR 6



Chapter 1. Chemical reactors

Chemical reactors

Batch reactors Flow reactors

Tank reactors (e.g. CSTR) Tubular reactors

Axial mixing (TRAD) Axial mixing (PFTR)
+ distinction isothermal/nonisothermal
+ distinction adiabatic/nonadiabatic

Fig. 1.2 – Classification of the different reactors.

Fig. 1.3 – Anaerobic digestion pilot reactor of INRA - LBE, Narbonne, see (Gouzé and Steyer, 2007).

Anaerobic digestion is a chemical/biochemical process in which biodegradable material is degraded in

the absence of oxygen. It occurs naturally in lakes, paddy fields, ... but it is sometimes convenient to
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accelerate and maintain the process. Therefore, anaerobic digestion can take place in chemical reactors

in which dark waters or sludge are transformed in usable methane (called biogas or biomethane) and

substratum. This kind of reactors are sometimes called methanisors since one of the expected output (or

product) is the methane.

The anaerobic reactor presented in this section fits the class of chemical reactors that are under study in

this master’s thesis since the latter is a tubular reactor that can involve axial mixing and behave noniso-

thermal, see also Figure 1.2, part Axial mixing (TRAD).
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Dynamical analysis of the model
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This chapter is dedicated to the dynamical analysis of a nonisothermal tubular reactor with axial dis-

persion. It is organized as follows. We first introduce the equations (PDEs) related to the considered

model with the associated boundary conditions. Then, we present a dimensional reduction of these equa-

tions. The next section is devoted to the well-posedness of both linear and nonlinear parts of the PDEs

governing the model. In particular, it is shown that the operators describing the dynamic generate a

C0−semigroup, which is nonlinear. In the last section of this chapter, the port-Hamiltonian formalism

is presented and it is shown that the linear part of the PDEs governing the model can be written in this

formalism, notably by adding a dissipation term in the classical definition of a linear port-Hamiltonian

system. In addition, results concerning notably well-posedness will be presented using this approach.

2.1 Introduction of the model

We are interested in tubular reactors involving a chemical reaction of the form

A→ B

where A denotes the reactant and B the product. In the model, the state components are defined as the

temperature (T [K]) and the concentration of reactant (C [mol/l]). The equations of a nonisothermal

tubular reactor are directly deduced from mass and energy balances on a slice of infinitesimal tickness

dz during an infinitesimal time dt, as depicted on Figure 2.1. They are given by the following nonlinear

PDEs (see (Laabissi et al., 2001))




∂T
∂ t =−v ∂T

∂ z +
λea
ρCp

∂ 2T
∂ z2 − ∆H

ρCp
k0Ce−

E
RT + 4h

ρCpd (Tw−T )

∂C
∂ t =−v ∂C

∂ z +Dma
∂ 2C
∂ z2 − k0Ce−

E
RT .

(2.1)
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Constant Unit Description
L m Reactor’s length
v m

s Fluid superficial velocity
λea

kJ
msK Axial energy dispersion coefficient

Dma
m2

s Axial mass dispersion coefficient
∆H kJ

kg Heat transfer coefficient
ρ

kg
m3 Fluid density

Cp
kJ

kgK Specific heat
k0

1
s Kinetic constant

E kJ
kg Activation energy

R kJ
kgK Gas constant

h kJ
m2 K s Wall heat transfer coefficient

d m Reactor’s diameter
Tw K Coolant temperature
Tin K Input temperature
Cin

kg
m3 Input reactant concentration

TABLE 2.1 – System parameters.

where T (t,z) and C(t,z) denote the temperature in the reactor and the concentration of the reactant res-

pectively at time t and position z. Note that t takes values in [0,+∞) and z in [0,L] where L denotes the

length of the reactor. Such equations are usually called convection-diffusion-reaction equations (CDR).

The meaning and the units of the parameters are summarized in Table 2.1.

To the PDEs (2.1), we associate specific boundary conditions, known as the Danckwerts’conditions (Dan-

ckwerts, 1953), which are given by

λea

ρCp

∂T
∂ z

(t,0) = v(T (t,0)−Tin),

Dma
∂C
∂ z

(t,0) = v(C(t,0)−Cin),

∂T
∂ z

(t,L) = 0 and
∂C
∂ z

(t,L) = 0,

for all t in [0,+∞).

2.2 Reduction of the model

The following step is to introduce a state space representation of the model governed by Equations (2.1)

and moreover, to write the PDEs (2.1) with an abstract differential equation. This representation has the

form {
ẋ(t) = Ax(t)+N (x(t)) ,

x(0) = x0
(2.2)
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dz

z = 0 z = L

z

Fig. 2.1 – Profile view of a tubular reactor.

where A is the linear (unbounded) operator associated to PDEs (2.1) and N represents the nonlinear ope-

rator associated to the same PDEs 1.

To reach such a representation, we first consider the following change of coordinates

τ = t
v
L
, ζ =

z
L
.

In this way, the derivative operators become

∂

∂ t
=

v
L

∂

∂τ
,

∂

∂ z
=

1
L

∂

∂ζ
,

∂ 2

∂ z2 =
1
L2

∂ 2

∂ζ 2 .

Applying this change of coordinates 2 to (2.1) yields the following equivalent PDEs





∂T
∂τ

=− ∂T
∂ζ

+ 1
Peh

∂ 2T
∂ζ 2 − ∆HL

ρCpv k0Ce−
E

RT − 4hL
ρCpdv(T −Tw)

∂C
∂τ

=− ∂C
∂ζ

+ 1
Pem

∂ 2C
∂ζ 2 − k0L

v Ce−
E

RT .

(2.3)

where Peh and Pem denote the thermal and the mass Peclet numbers respectively, which are given by

Peh =
ρCpvL

λea
, Pem =

vL
Dma

. (2.4)

These are dimensionless numbers representing the ratio between the convection transfer and the conduc-

tion transfer (thermal Peclet number) or the ratio between the convection transfer and the diffusion trans-

fer (mass Peclet number).

1. Equations (2.2) hold pointwise in t, i.e. hold for each t ∈ [0,+∞).
2. One can easily verify that τ and ζ are dimensionless variables defined on [0,+∞) and [0,1] respectively.
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The corresponding boundary conditions are given by

∂T
∂ζ

(τ,0) = Peh (T (τ,0)−Tin) ,

∂C
∂ζ

(τ,0) = Pem (C(τ,0)−Cin) ,

∂T
∂ζ

(τ,1) = 0 and
∂C
∂ζ

(τ,1) = 0.

(2.5)

Notice that the system (2.3) with the boundary conditions (2.5) is a system of controlled PDEs. In fact,

these are controlled at the boundary by the input temperature, Tin, and by the input reactant concentration,

Cin respectively. These are also controlled along the spatial domain (distributed control) by the coolant

temperature, Tw.

Finally, assuming that Tw,Tin and Cin are constant, we consider the further change of variables

x1 =
T −Tin

Tin
, x2 =

Cin−C
Cin

, xw =
Tw−Tin

Tin
. (2.6)

From now, we consider Tw and Tin equal, which entails that xw is equal to 0. In this way, (2.3) can be

rewritten as 



∂x1
∂τ

=
[

1
Peh

∂ 2x1
∂ζ 2 − ∂x1

∂ζ
− γx1

]
+αδ (1− x2)e

µx1
1+x1

∂x2
∂τ

=
[

1
Pem

∂ 2x2
∂ζ 2 − ∂x2

∂ζ

]
+α(1− x2)e

µx1
1+x1 ,

(2.7)

where

µ =
E

RTin
, α =

k0L
v

e−µ , δ =
−∆H
ρCp

Cin

Tin
,γ =

4hL
ρCpdv

. (2.8)

The associated boundary conditions are given by

∂x1

∂ζ
(τ,0) = Pehx1(τ,0),

∂x2

∂ζ
(τ,0) = Pemx2(τ,0)

∂x1

∂ζ
(τ,1) = 0,

∂x2

∂ζ
(τ,1) = 0.

Let us now define the linear (unbounded) operator

Ax =

(
β1

d2

dζ 2 − d
dζ
− γI 0

0 β2
d2

dζ 2 − d
dζ

)(
x1

x2

)
(2.9)

on the domain D(A) defined as

{
x ∈ H|x a.c.,

dx
dζ
∈ H a.c.,

d2x
dζ 2 ∈ H,βi

dxi

dζ
(0)− xi(0) = 0 =

dxi

dζ
(1), i = 1,2

}
, (2.10)
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in the Hilbert space H = L2 (0,1)×L2 (0,1) where the notation

β1 =
1

Peh
,β2 =

1
Pem

is adopted. Moreover, the nonlinear operator N : D→ H is defined as (see (Laabissi et al., 2001))

N(x) =
(

αδ (1− x2)e
µx1

1+x1 , α(1− x2)e
µx1

1+x1

)T
(2.11)

on the domain

D := {x ∈ H|−1≤ x1(ζ ),0≤ x2(ζ )≤ 1, for a.e. ζ ∈ [0,1]} . (2.12)

Using these operators, the system (2.7) with the associated boundary conditions and with initial condition

can be described by the following abstract differential equation

ẋ(τ) = Ax(τ)+N (x(τ)) , x(0) = x0, (2.13)

where the vector x is defined for τ ∈ [0,+∞) by

x(τ) :[0,1]→ R2

ζ  (x(τ))(ζ ) := (x1 (τ,ζ ) ,x2 (τ,ζ ))
T ,

where x1 and x2 are the functions defined by (2.6).

2.3 Well-posedness

In this section, we show that the model introduced in the previous section is well-posed, i.e. that (2.13)

possesses a unique mild solution on [0,+∞). By mild solution, we mean the following definition, see

(Jacob and Zwart, 2012, Definition 2.2.2.).

Definition 1. A continuous function x : [0,+∞)→ H is called a mild solution of (2.13) if x is conti-

nuous and satisfies the integrated version of the differential equation (2.13), i.e., if it satisfies

x(t) = x0 +
∫ t

0
Ax(s)+N (x(s))ds, for t ≥ 0. (2.14)

In order to show that the model is well-posed, we use the semigroup approach. We first show that

the operator describing the linear part of the system, A, is the infinitesimal generator of a contraction

C0−semigroup, using the Lumer-Phillips theorem. Then, looking at the nonlinear operator, N, it is shown

that A+N is the infinitesimal generator of a nonlinear semigroup. All these considerations provide well-

posedness in the sense we defined it.

2.3.1 Linear operator

In this part, we show that the operator A defined by (2.9) and (2.10) is the infinitesimal generator of a

C0−semigroup and moreover, a contraction semigroup. We start by defining the notion of C0−semigroup,
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see (Jacob and Zwart, 2012, Definition 5.1.2.).

Definition 2. Let H be a Hilbert space. (T (t))t≥0 is called a C0−semigroup, or strongly continuous

semigroup, if the following conditions hold

1. For all t ≥ 0, T (t) ∈ L(H), i.e T (t) is a bounded linear operator on H,

2. T (0) = I,

3. ∀t,s≥ 0,T (t + s) = T (t)T (s),

4. ∀x0 ∈ H, lim
t→0+
||T (t)x0− x0||= 0.

Furthermore, the semigroup (T (t))t≥0 is called a contraction semigroup if the inequality

‖T (t)‖ ≤ 1

holds for all t ≥ 0, see (Jacob and Zwart, 2012, Definition 6.1.1.). We introduce now the notion of

infinitesimal generator of a C0−semigroup, see (Jacob and Zwart, 2012, Definition 5.2.1.).

Definition 3. Let H be a Hilbert space and (T (t))t≥0 a C0−semigroup on H. Operator A with

domain D(A) is called the infinitesimal generator of (T (t))t≥0 if

Ax = lim
t→0+

T (t)x− x
t

for all x ∈ D(A). Moreover, D(A) is given by

D(A) =
{

x ∈ H, lim
t→0+

T (t)x− x
t

exists
}
.

Ax can be viewed as the time derivative of the C0−semigroup in a strong sense.

The following theorem, called the Lumer-Phillips Theorem, gives conditions on an operator A to be the

infinitesimal generator of a strongly continuous contraction semigroup on a Hilbert space H, see (Jacob

and Zwart, 2012, Theorem 6.1.7.).

Theorem 1. Let A with domain D(A) be an operator on a Hilbert space H. A is the infinitesimal ge-

nerator of a strongly continuous contraction semigroup (T (t))t≥0 on H if and only if A is dissipative

and Im(I−A) = H, i.e. I−A is onto.

Before applying this theorem to the operator A defined by (2.9) and (2.10), we introduce some definitions.

The first is the dissipativity of a linear operator, see (Jacob and Zwart, 2012, Definition 6.1.4.).
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Definition 4. Let A be a linear operator with domain D(A) on a Hilbert space H. A is dissipative if

and only if

Re〈Ax,x〉 ≤ 0, x ∈ D(A) (2.15)

where 〈·, ·〉 denotes the inner product on H.

Then, the inner products in the Lebesgue spaces L2(0,1) and L2(0,1)×L2(0,1) are recalled.

Definition 5. Let x and y be two elements of the Lebesgue space L2(0,1). The inner product between

x and y, denoted by 〈x,y〉L2(0,1) is defined as

∫ 1

0
x(ζ )y(ζ )dζ . (2.16)

Definition 6. Let x and y be two elements of the product Lebesgue space L2(0,1)×L2(0,1) = H.

〈x,y〉L2(0,1)×L2(0,1) := 〈x1,y1〉L2(0,1)+ 〈x2,y2〉L2(0,1),

where x = (x1 x2)
T , y = (y1 y2)

T .

The two assumptions of the Lumer-Phillips theorem will be successively verified, beginning by the dis-

sipativity of the operator A.

Proposition 1. The operator A defined by (2.9) and (2.10) is dissipative.

Proof. Let x be in D(A). Due to the definition 6, inequality (2.15) becomes :

Re〈Ax,x〉=Re〈(Ax)1,x1〉+Re〈(Ax)2,x2〉 ≤ 0.

One way to prove this inequality is to show that both Re〈(Ax)1,x1〉 ≤ 0 and Re〈(Ax)2,x2〉 ≤ 0. We will

only prove that Re〈(Ax)1,x1〉 ≤ 0. The proof for the other component can be found in Appendix A. By

(2.9), we have

Re〈(Ax)1,x1〉=Re

(∫ 1

0
(Ax)1(ζ )x1(ζ )dζ

)

=Re

(∫ 1

0

((
β1

d2

dζ 2 − d
dζ
− γI 0

0 β2
d2

dζ 2 − d
dζ

)(
x1

x2

))

1

(ζ )x1(ζ )dζ

)

=Re

(∫ 1

0

(
β1

d2x1

dζ 2 (ζ )−
dx1

dζ
(ζ )− γx1(ζ )

)
(x1(ζ ))dζ

)

=Re

(∫ 1

0
β1x1(ζ )

d2x1

dζ 2 (ζ )dζ

)

︸ ︷︷ ︸
(a)

−Re

(∫ 1

0
x1(ζ )

dx1

dζ
(ζ )dζ

)

︸ ︷︷ ︸
(b)

−Re

(∫ 1

0
γx2

1(ζ )dζ

)

︸ ︷︷ ︸
(c)

.
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The three integrals will be computed separatively, using essentially integration by parts. Note also that

the real parts are not mentionned anymore, the quantities being real.

(a) Let f = x1 and dg
dζ

= d2x1
dζ 2 , we have d f

dζ
= dx1

dζ
and g = dx1

dζ
. Using integration by parts like

∫
f

dg
dζ

= f g−
∫ d f

dζ
g,

yields the following

∫ 1

0
β1x1(ζ )

d2x1

dζ 2 (ζ )dζ =

[
β1x1(ζ )

dx1

dζ
(ζ )

]1

0
−
∫ 1

0
β1

(
dx1

dζ
(ζ )

)2

dζ

= β1x1(1)
dx1

dζ
(1)−β1x1(0)

dx1

dζ
(0)−

∫ 1

0
β1

(
dx1

dζ
(ζ )

)2

dζ

(2.10)
= −β

2
1

(
d2x1

dζ 2 (0)
)2

−
∫ 1

0
β1

(
dx1

dζ
(ζ )

)2

dζ

not.
= −β

2
1

(
dx1

dζ
(0)
)2

− k2
1.

(b) Let f = x1, dg
dζ

= dx1
dζ

. In this way, d f
dζ

= dx1
dζ

and g = x1, which implies that

∫ 1

0
x1(ζ )

dx1

dζ
(ζ )dζ =

[
x2

1(ζ )
]1

0−
∫ 1

0

dx1

dζ
(ζ )x1(ζ )dζ .

This is also equivalent to

∫ 1

0
x1(ζ )

dx1

dζ
(ζ )dζ =

[
x2

1(ζ )
]1

0
2

.

(c) We introduce the notation

∫ 1

0
γx2

1(ζ )dζ = k2
2.

Combining (a), (b) and (c), we have

〈(Ax)1,x1〉=−β
2
1

(
dx1

dζ
(0)
)2

− k2
1−

[
x2

1(ζ )
]1

0
2

− k2
2

=−β
2
1

(
dx1

dζ
(0)
)2

− k2
1−

x2
1(1)
2

+
x2

1(0)
2
− k2

2

(2.10)
= −β

2
1

(
dx1

dζ
(0)
)2

− k2
1−

x2
1(1)
2

+
1
2

β
2
1

(
dx1(0)

dζ

)2

− k2
2

=−β
2
1

1
2

(
dx1

dζ
(0)
)2

− k2
1−

x2
1(1)
2
− k2

2 ≤ 0.

The same result holds for 〈(Ax)2,x2〉, see Appendix A. Hence, the operator A is dissipative. �
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Proposition 2. Considering the operator A defined by (2.9) and (2.10), we have Im(I−A) = H,

where I is the identity operator on H = L2(0,1)×L2(0,1).

Proof. To get the surjectivity of I−A, we will show that Im(I−A)⊂ H and Im(I−A)⊃ H.

We start by the first inclusion, Im(I−A)⊂ H, which is directly deducted from (2.10).

Considering the second one, Im(I−A) ⊃ H, it is equivalent to the fact that for all y ∈ H there exists

x ∈ D(A) such that (I−A)x = y holds. Let us consider y = (y1 y2)
T in H. In what follows, we will find

explicitly a vector x = (x1 x2)
T in D(A) which satisfies (I−A)x = y. Developing (I−A)x = y, we have

(I−A)x = y⇔
((

I 0

0 I

)
−
(

β1
d2

dζ 2 − d
dζ
− γI 0

0 β2
d2

dζ 2 − d
dζ

))(
x1

x2

)
=

(
y1

y2

)

⇔
(
−β1

d2

dζ 2 +
d

dζ
+(γ +1)I 0

0 −β2
d2

dζ 2 +
d

dζ
+ I

)(
x1

x2

)
=

(
y1

y2

)

⇔




−β1

d2x1
dζ 2 + dx1

dζ
+(γ +1)x1 = y1

−β2
d2x2
dζ 2 + dx2

dζ
+ x2 = y2.

Each of the two equations above can be treated separately, because of the fact that they do not depend on

each other. Looking at the first one,

−β1
d2x1

dζ 2 +
dx1

dζ
+(γ +1)x1 = y1, (2.17)

which is a second order ODE, putting u = dx1
dζ

and v = x1, we have





du
dζ

= 1
β1

u+ γ+1
β1

v− 1
β1

y1

dv
dζ

= u.

Rewriting previous system in a matrix form yields

d
dζ

(
u

v

)
=

(
1
β1

γ+1
β1

1 0

)(
u

v

)
+

(
− 1

β1

0

)
y1. (2.18)

To express analytically the solution of such systems, an analogy is made with systems of the form

{
dx
dζ

= Ax+Bu,

x(0) = x0
(2.19)

where x represents a state vector (whose dimension is n) depending on the spatial variable ζ , A is a n

dimensional matrix, B is a vector of length n and u a function depending on ζ . The solution of (2.19) is
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given by

x(ζ ) = exp(Aζ )x0 +
∫

ζ

0
exp(A(ζ − z))Bu(z)dz,

see (Winkin, 2017, Chapter 2, page 45). To use (2.19) in the case of (2.18), we denote A1 the matrix

(
1
β1

γ+1
β1

1 0

)

and B1 the vector
(
− 1

β1
0
)T

. In this way,

(
u(ζ )

v(ζ )

)
= exp(A1 ζ )

(
u0

v0

)
+
∫

ζ

0
exp(A1 (ζ − z))B1y1(z)dz. (2.20)

Note that the state vector x from (2.19) is
(

u v
)T

in our particular case. We still have to put the boundary

conditions, given by (2.10), in the solution. The condition on the state and its first order derivative for

ζ = 0 is expressed as

β1u0 = v0. (2.21)

In order to use the other boundary condition, we first evaluate (2.20) in ζ = 1, which gives

(
u(1)

v(1)

)
= exp(A1)

(
u0

v0

)
+
∫ 1

0
exp(A1(1− z))B1y1(z)dz. (2.22)

For a sake of readability, we denote by w1 =
(

w11 w12

)T
the vector

∫ 1

0
exp(A1(1− z))B1y1(z)dz.

Furthermore, the matrix exp(A1) is noted

(
a11 a12

a21 a22

)
.

With the introduced notations, (2.22) becomes

(
u(1)

v(1)

)
=

(
a11 a12

a21 a22

)(
u0

v0

)
+

(
w11

w12

)
.

Using the boundary condition for ζ = 1, we have

0 = a11u0 +a12v0 +w11. (2.23)

Keeping together equations (2.21) and (2.23), we have a system of two equations with two unknowns in
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the variables u0 et v0, which is given by

{
β1u0− v0 = 0,

a11u0 +a12v0 +w11 = 0

and whose solution is 



u0 =− w11
a11+a12β1

,

v0 =− β1w11
a11+a12β1

.

We are only interested in the second component of
(

u v
)T

, the latter representing the first component

of the state x =
(

x1 x2

)T
. With all the above, we have

v(ζ ) = x1(ζ ) =−Mζ 21
w11

a11 +a12β1
−Mζ 22

β1w11

a11 +a12β1
+W(ζ )12 (2.24)

where

exp(A1ζ ) =

(
Mζ 11 Mζ 12
Mζ 21 Mζ 22

)

and ∫
ζ

0
exp(A1 (ζ − z))B1y1(z)dz =

(
W(ζ )11

W(ζ )12

)
.

We now take a look at the equation

−β2
d2x2

dζ 2 +
dx2

dζ
+ x2 = y2.

We will hold a similar reasoning to the previous one used for (2.17). Therefore, let u = dx2
dζ

and v = x2.

The ODE takes the form of the following system

d
dζ

(
u

v

)
=

(
1
β2

1
β2

1 0

)(
u

v

)
+

(
− 1

β2

0

)
y2.

Denoting by A2 the matrix (
1
β2

1
β2

1 0

)

and B2 the vector
(
− 1

β2
0
)T

, we have

(
u(ζ )

v(ζ )

)
= exp(A2 ζ )

(
u0

v0

)
+
∫

ζ

0
exp(A2 (ζ − z))B2y2(z)dz,

where (Winkin, 2017, Chapter 2, page 45) is used again. To find
(

u0 v0

)T
, (2.10) is used. For the

boundary condition in ζ = 0, we have

β2u0 = v0. (2.25)
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Developing the other condition, for ζ = 1, one gets

(
u(1)

v(1)

)
= exp(A2)

(
u0

v0

)
+
∫ 1

0
exp(A2(1− z))B2y2(z)dz.

We denote by exp(A2) the matrix (
b11 b12

b21 b22

)

and by w2 =
(

w21 w22

)T
the vector

∫ 1

0
exp(A2(1− z))B2y2(z)dz.

In this way, we have the following

(
u(1)

v(1)

)
=

(
b11 b12

b21 b22

)(
u0

v0

)
+

(
w21

w22

)
.

By exploiting the fact that u(1) = 0, we obtain

0 = b11u0 +b12v0 +w21. (2.26)

By bringing together equations (2.25) and (2.26), we have the system

{
β2u0− v0 = 0,

b11u0 +b12v0 +w21 = 0,

whose solution is given by {
u0 =− w21

b11+b12β2
,

v0 =− β2w21
b11+b12β2

.

By gathering all the elements, there holds

v(ζ ) = x2(ζ ) =−Nζ 21
w21

b11 +b12β2
−Nζ 22

β2w21

b11 +b12β2
+W(ζ )22 (2.27)

where

exp(A2ζ ) =

(
Nζ 11 Nζ 12
Nζ 21 Nζ 22

)

and ∫
ζ

0
exp(A2 (ζ − z))B2y2(z)dz =

(
W(ζ )21

W(ζ )22

)
.
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Using (2.24) and (2.27), the whole state trajectory x =
(

x1 x2

)T
is given by

x(ζ ) =




x1(ζ )

x2(ζ )


=



−Mζ 21

w11
a11+a12β1

−Mζ 22
β1w11

a11+a12β1
+W(ζ )12

−Nζ 21
w21

b11+b12β2
−Nζ 22

β2w21
b11+b12β2

+W(ζ )22


 .

Thus, the vector x has been found in an explicit way. Moreover, this vector is in D(A). We conclude that

H ⊂ Im(I−A).

So, the relation Im(I−A) = H holds. �

Keeping Propositions 1 and 2 in mind, the following result is stated.

Proposition 3. The operator A defined by (2.9) and (2.10) is the infinitesimal generator of a contrac-

tion semigroup on D(A).

Proof. Lumer-Phillips theorem is used in order to prove this proposition, see (Jacob and Zwart, 2012,

Theorem 6.1.7.). The result follows directly by Propositions 1 and 2. �

2.3.2 Nonlinear operator

In this subsection, we will analyze the nonlinear operator (2.11), which is given by

N(x) =
(

αδ (1− x2)e
µx1

1+x1 α(1− x2)e
µx1

1+x1

)T

for x = (x1 x2)
T in the domain

D := {x ∈ H|−1≤ x1(ζ ),0≤ x2(ζ )≤ 1, for a.e. ζ ∈ [0,1]} .

The aim is to prove that the sum of the linear operator A defined by (2.9) and (2.10) and the nonlinear one

is the infinitesimal generator of a nonlinear semigroup on D. Therefore, we will use a theorem described

and proved in (Laabissi et al., 2001). In order to understand this theorem, the following definition is

presented.

Definition 7. Let D be a subset of the Hilbert space H = L2(0,1)×L2(0,1). For each y ∈ H, the

distance between the vector y and the subset D, noted d(y;D) is defined as

d(y;D) = inf
x∈D

d(x,y)

where d(x,y) is the distance induced by the norm in H, i.e. d(x,y) = ‖x− y‖L2(0,1)×L2(0,1).

Denoting by (T (t))t≥0 the linear semigroup generated by operator A, the following result is introdu-

ced.
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Theorem 2. Let

• D be T (t)−invariant, i.e T (t)D⊂ D for each t ≥ 0

• For each x in D,

lim
h→0+

1
h

d (x+hN(x);D) = 0

• N is a continuous function on D and there exists lN ∈ [0,+∞) such that (N− lNI) is dissipative

on D.

Then, equation (2.2) possesses a « mild solution » x(t,x0) on [0,+∞) for each x0 in D. Furthermore

if S(t) is defined on D for each t 6= 0 and for each x0 ∈ D by S(t)x0 = x(t,x0), it is a nonlinear

semigroup on D whose A+N is the infinitesimal generator.

The proof of this theorem is not recalled. However, we note that it provides us the well-posedness of

the model under considerations, which is quite an important step in the dynamical analysis. In this way,

problems like asymptotic stability, exponential stability, ... can be considered. Before we start with these

kinds of questions, we introduce in the next section the port-Hamiltonian formalism, which provides

easier results to study the well-posedness or the stability of a system and which is interesting from a

physical point of view.

2.4 port-Hamiltonian formalism

In this section, the general class of port-Hamiltonian systems is first introduced. The well-posedness

for this class of systems is recalled. Then, port-Hamiltonian systems with dissipation are addressed by

showing that the system under study fits this class.

2.4.1 First order port-Hamiltonian systems

The equation (PDE) describing a first order port-Hamiltonian system is

∂x
∂ t

(ζ , t) = P1
∂

∂ζ
(H(ζ )x(ζ , t))+P0H(ζ )x(ζ , t) (2.28)

where P1 ∈ Rn×n is invertible and symmetric, i.e. PT
1 = P1, P0 ∈ Rn×n is skew-symmetric, i.e. PT

0 =−P0

andH∈ L∞ ([a,b] ;Rn×n) is symmetric and satisfies mI ≤H(ζ )≤MI for a.e. ζ ∈ [a,b], for some m,M >

0, see also (Jacob and Zwart, 2012, Definition 7.2.1.). The Hilbert space X = L2 ([a,b] ;Rn) is equipped

with the inner product

〈 f ,g〉X =
∫ b

a
g(ζ )∗H(ζ ) f (ζ )dζ . (2.29)

The corresponding Hamiltonian to (2.28), or equivalently the energy, E : [0,∞)→ R, is given by

E(t) =
1
2
〈x,x〉X , (2.30)
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see (Jacob and Zwart, 2012, Definition 7.2.1.). To the PDE (2.28), we associate some controlled and

homogeneous boundary conditions, formulated in term of the boundary effort, noted e∂ and the boundary

flow, noted f∂ , given by

u(t) =WB,1

[
f∂

e∂

]
, 0 =WB,2

[
f∂

e∂

]
(2.31)

where e∂ = 1√
2
(Hx(b)+(Hx)(a)) and f∂ = 1√

2
(P1Hx(b)−P1(Hx)(a)), see (Jacob and Zwart, 2012,

Section 7.2) and where WB =

[
WB,1

WB,2

]
∈Rn×2n. We write the homogeneous (uncontrolled) PDE (2.28) as

an abstract ODE, which is given by

dx
dt

(t) = P1
d

dζ
(Hx(t))+P0 (Hx(t)) (2.32)

and which holds pointwise in t. Hence, we can define the operator

Ax := P1
d

dζ
(Hx)+P0 (Hx) (2.33)

on the domain

D(A) =

{
x ∈ X |Hx ∈ H1 ([a,b] ;Rn) ,

[
f∂

e∂

]
∈ Ker(WB)

}
(2.34)

where H1 ([a,b] ;Rn) denotes the Sobolev space defined by

H1 ([a,b] ;Rn) =

{
f ∈ L2 ([a,b] ;Rn) | f a.c. ,

d f
dζ
∈ L2 ([a,b] ;Rn)

}
. (2.35)

2.4.2 Well-posedness

This subsection is dedicated to the presentation of a theorem from (Jacob and Zwart, 2012, Theorem

7.2.4.) which provides conditions so that the operator A defined by (2.33) and (2.34) is the generator of

a contraction semigroup on X . In this way, one has the following result,

Theorem 3. Consider operator A defined by (2.33) and (2.34) associated to (2.28). Moreover, the

matrix WB introduced in the previous section is an n× 2n matrix of rank n. Then the following

statements are equivalent.

• A is the infinitesimal generator of a contraction semigroup on X .

• Re〈Ax,x〉X ≤ 0 for every x ∈ D(A).

• WBΣW ∗B ≥ 0. where Σ =

[
0 I

I 0

]
∈ R2n×2n.

Notice that by the last condition, the generation of a contraction semigroup is reduced to the product of

three matrices, which is quite easy to compute. It is precisly that condition that we will use in order to
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prove that the linear part of the model under study generates a contraction semigroup. We shall introduce

now the dissipative port-Hamiltonian systems which are essential in our case, in order to model the

diffusion part of our PDEs.

2.4.3 Dissipative port-Hamiltonian systems

Considering the general PDE describing a first order port-Hamiltonian system, see (2.28), the addition

of a dissipation term results in the PDE

∂x
∂ t

(ζ , t) = (A−GRSG?R)(Hx)(ζ , t), (2.36)

where the operator A is defined by (2.33) and (2.34) and where

GR f = G1
∂ f
∂ζ

+G0 f ,G?Rx =−GT
1

∂x
∂ζ

+GT
0 x, (2.37)

see (Zwart and Jacob, 2009, Section 7.2). The operator G?R is known as the formal adjoint operator of GR.

Moreover, we assume that G0,G1 ∈ Rn×r, S ∈ L∞ ([a,b] ;Rr×r) is symmetric and satisfies m1I ≤ S(ζ )≤
M1I for some constants m1,M1 > 0.

2.4.4 The nonisothermal tubular reactor as a dissipative port-Hamiltonian system

In a first time, we just recall the linear part of the system we study, which is a system of uncoupled

second order PDEs. The diffusion part (second order derivative of the state) is then modeled as a dissi-

pation term, see (Zwart and Jacob, 2009, Chapter 7). An extended model will be constructed to retrieve

the form of a first order port-Hamiltonian system, see (2.28). Notice that the time variable is denoted by t.

Considering only the linear part of (2.3) with the associated boundary conditions, it yields





∂T
∂ t = 1

Peh

∂ 2T
∂ζ 2 − ∂T

∂ζ
− γT

∂C
∂ t = 1

Pem

∂ 2C
∂ζ 2 − ∂C

∂ζ

∂T
∂ζ

(t,0) = Peh (T (t,0)−Tin) ,
∂C
∂ζ

(t,0) = Pem (C(t,0)−Cin)
∂T
∂ζ

(t,1) = 0 = ∂C
∂ζ

(t,1) = 0.

(2.38)

Due to the fact that the PDEs are uncoupled, we will distinguish the variables T and C to show that this

system fits the dissipative port-Hamiltonian formalism. We shall separetaly work on





∂T
∂ t = 1

Peh

∂ 2T
∂ζ 2 − ∂T

∂ζ
− γT

1
Peh

∂T
∂ζ

(t,0) = T (t,0)−Tin
∂T
∂ζ

(t,1) = 0

and





∂C
∂ t = 1

Pem

∂ 2C
∂ζ 2 − ∂C

∂ζ

1
Pem

∂C
∂ζ

(t,0) =C(t,0)−Cin
∂C
∂ζ

(t,1) = 0.

(2.39)

• First system without dissipation
By posing x(t,ζ ) = T (t,ζ ), P1 = −1, P0 = 0,H(ζ ) = 1, the first system of (2.39) without the

second order derivative term and without the term −γT has exactly the same form as (2.28) and
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describes a first order port-Hamiltonian system, i.e.

∂T
∂ t

=−∂T
∂ζ

(2.40)

describes a first order port-Hamiltonian system.

• First system with dissipation
The remaining term, 1

Peh

∂ 2T
∂ζ 2 − γT , is modeled as a dissipative term, i.e.

−GRSG?R =
1

Peh

d2

dζ 2 − γI. (2.41)

By posing S =

[
1

Peh
0

0 γ

]
,G0 =

[
0 1

]
,G1 =

[
1 0

]
, one has GR =

[
d

dζ
I
]

and G?R =

[
− d

dζ

I

]
.

Hence, equation (2.41) is satisfied and

∂x
∂ t

(t,ζ ) = (J1−GRSG?R)(Hx)(t,ζ ) (2.42)

where operator J1 is defined by J1x = − ∂x
∂ζ

. To prove that the operator J1−GRSG?R is the infini-

tesimal generator of a contraction semigroup, one has to rewrite the dissipative port-Hamiltonian

system (2.42) as an extended port-Hamiltonian system. By (Zwart and Jacob, 2009, Lemma 7.2.6.),

the operator J1−GRSG?R can be seen as the mapping Je together with the closure relation ep = S fp

where Je is defined by

Je

(
e1

ep

)
=

(
P1 G1

GT
1 0

)
∂

∂ζ

(
e1

ep

)
+

(
P0 G0

−GT
0 0

)(
e1

ep

)
(2.43)

where e1 can be seen as the initial variables and ep as the extended variables. From equation (2.43),

we define new matrices P1,ext and P0,ext by

(
P1 G1

GT
1 0

)
and

(
P0 G0

−GT
0 0

)
(2.44)

respectively. We can observe that equation (2.43) fits exactly equation (2.28) and also the rela-

ted assumptions. In this way, by (Zwart and Jacob, 2009, page 111), one can define the exten-

ded Hilbert space Xext = L2 ([0,1] ;Rn+r) where n = 1 and r = 2 in this case. By using the clo-

sure relation ep = S fp and the mapping Je defined by (2.43), the extended variable, noted xp, is

S
(

GT
1

∂

∂ζ
e1−GT

0 e1

)
, or equivalently

[
1

Peh

∂T
∂ζ

−γT

]
. By (Zwart and Jacob, 2009, page 111), we equip

the space Xext with the inner product

〈(
x

xp

)
,

(
z

zp

)〉

Xext

=
∫ 1

0
x(ζ )TH(ζ )z(ζ )dζ +

∫ 1

0
xp(ζ )

T zp(ζ )dζ . (2.45)
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The associated extended boundary effort and boundary flow are given by

(
f∂ ,Hx,xp

e∂ ,Hx,xp

)
=

1√
2

(
P1,ext −P1,ext

In+r In+r

)



(Hx)(1)

xp(1)

(Hx)(0)

xp(0)



. (2.46)

Using all the matrices introduced before, the extended boundary flow and effort are given by

(
f∂ ,Hx,xp

e∂ ,Hx,xp

)
=

1√
2




−1 1 0 1 −1 0

1 0 0 −1 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 1 0 1 0

0 0 1 0 0 1







T (1)
1

Peh

dT
dζ
(1)

−γT (1)

T (0)
1

Peh

dT
dζ
(0)

−γT (0)




=
1√
2




−(T (1)−T (0))+ 1
Peh

(
dT
dζ
(1)− dT

dζ
(0)
)

T (1)−T (0)

0

T (1)+T (0)
1

Peh

(
dT
dζ
(1)+ dT

dζ
(0)
)

−γ (T (1)+T (0))




. (2.47)

It remains to compute the matrix WB satisfying




u(t)

0

0


=WB

[
f∂ ,Hx,xp

e∂ ,Hx,xp

]
, (2.48)

where f∂ ,Hx,xp and e∂ ,Hx,xp are expressed by (2.47) and where the boundary control u(t) is given

by −Tin(t). In this way, the matrix WB is given by

WB =
1√
2



−1 0 γ −1 1 0

1 1 −γ 0 1 0

0 0 1 γ 0 1


 . (2.49)

We have now all the elements to write the first system of (2.39) as an extended dissipative port-

Hamiltonian system. Therefore, let us define the operator Aext by

Aext

(
x

xp

)
= P1,ext

∂

∂ζ

(
(Hx)

xp

)
+P0,ext

(
(Hx)

xp

)
(2.50)
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on the domain

D(Aext) =





(
x

xp

)
∈ Xext|

(
Hx

x

)
∈ H1 ([0,1] ;R3) ,WB

[
f∂ ,Hx,xp

e∂ ,Hx,xp

]
=




u(t)

0

0








(2.51)

such that
∂

∂ t

(
x

xp

)
= Aext

(
x

xp

)
. (2.52)

The last step consists in showing that the operator Aext is the infinitesimal generator of a contraction

semigroup on D(Aext). Therefore, we recall a theorem which provides a condition similar as in

Theorem 3, see (Zwart and Jacob, 2009, Theorem 7.2.8.).

Theorem 4. The operator Aext defined by (2.50) and (2.51) generates a contraction semigroup

on Xext if and only if WBΣW T
B ≥ 0.

Computing the matrix WBΣW T
B , one finds

WBΣW T
B =




1 0 0

0 1 0

0 0 1


 ,

which is a positive definite matrix. Hence, operator Aext generates a contraction semigroup on Xext.

All the process will not be repeated for the second system of (2.39) but is quite similar. In fact, it can

be proven in a same way that the second system of (2.39) fits the extended dissipative port-Hamiltonian

formalism. In this case, it can also be shown that the extended operator Aext for the second system of

(2.39) generates a contraction semigroup on the extended Hilbert space L2
(
[0,1] ;R2

)
using Theorem 4.

In conclusion, one can remark that checking the generation of a contraction semigroup is quite easier

with the port-Hamiltonian formalism than by using Lumer-Phillips theorem. However, showing that the

model fits the port-Hamiltonian formalism, and moreover the dissipative port-Hamiltonian formalism, is

not necessarily obvious.
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An important part of this chapter is dedicated to the analysis of the stability of the semigroup whose infi-

nitesimal generator is the operator A defined by (2.9) and (2.10), and especially the exponential stability.

In this way, the notion of Sturm-Liouville and Riesz-spectral operators will be introduced. In particular,

it is shown that the opposite of the linear operator A is a Sturm-Liouville operator and in this case, by

(Delattre et al., 2003), it is a Riesz-Spectral operator. Thus, the exponential stability can be addressed

by an eigenvalue problem. In our case, it is shown that the linear operator A is exponentially stable. The

eigenvalues and the eigenvectors of this operator will be computed explicitly and the resolvent equations

are presented. After the stability analysis, we will take a look at the resolvent operator of the operator A

and also at the corresponding resolvent set. An explicit form of the resolvent operator will be given from

a Riesz-Spectral point a view. For the classical expression, the reader is referred to the Appendix B.

3.1 Exponential stability

We start this section by defining the concept of exponential stability of a semigroup, see (Jacob and

Zwart, 2012, Definition 8.1.1).

Definition 8. The semigroup (T (t))t≥0 on the Hilbert space H is said to be exponentially stable if

there exist positive constants M and α such that

‖T (t)‖ ≤Me−αt , for t ≥ 0.

Notice that this definition is not the only one. There exist also some others characterizations of the

exponential stability we do not recall here. As said in the introduction of this chapter, the concept of

Riesz-Spectral operators is used in order to prove exponential stability. We need therefore two concepts :

Riesz-Spectral basis and Riesz-Spectral operator, see (Curtain and Zwart, 1995, Definition 2.3.1.) and

(Curtain and Zwart, 1995, Definition 2.3.4.) respectively.

Definition 9. A set of vectors {φn,n≥ 1} in a Hilbert space H forms a Riesz basis if

• spann≥1 {φn}= H

• There exist positive constants m and M such that for an arbitrary N in N and for arbitrary

scalars αn,n = 1, . . . ,N one has

m
N

∑
n=1
|αn|2 ≤

∣∣∣∣∣

∣∣∣∣∣
N

∑
n=1

αnφn

∣∣∣∣∣

∣∣∣∣∣

2

≤M
N

∑
n=1
|αn|2.
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Definition 10. Let A be a closed, linear operator on a Hilbert space H. Let {λn,n≥ 1} be the set

of eigenvalues of A. Suppose that the corresponding eigenvectors {φn,n≥ 1} form a Riesz basis in

H. If the closure of {λn,n≥ 1} is disconnected, i.e for all a,b in {λn,n≥ 1}, [a,b] is not included in

{λn,n≥ 1}, then A is called a Riesz-Spectral operator.

The following step consists of showing that A is a Riesz-Spectral operator. We will use therefore (Delattre

et al., 2003, Lemma 1), which states that if the opposite of an operator is a Sturm-Liouville operator with

appropriate boundary conditions, then it is a Riesz-Spectral operator. In order to apply this result, we

decompose the operator A as

A =

(
A1 0

0 A2

)
(3.1)

where A1 et A2 are operators defined respectively by β1
d2

dζ 2 − d
dζ
− γI and β2

d2

dζ 2 − d
dζ

on

D(A1) =

{
x ∈ L2(0,1)|x a.c.,

dx
dζ
∈ L2(0,1) a.c.,

d2x
dζ 2 ∈ L2(0,1),β1

dx
dζ

(0) = x(0),
dx
dζ

(1) = 0
}

(3.2)

and

D(A2) =

{
x ∈ L2(0,1)|x a.c.,

dx
dζ
∈ L2(0,1) a.c.,

d2x
dζ 2 ∈ L2(0,1),β2

dx
dζ

(0) = x(0),
dx
dζ

(1) = 0
}
. (3.3)

Theorem 5. The opposites of operators A1 and A2 are Sturm-Liouville operators.

Proof. By (Delattre et al., 2003), operator A1 is a Sturm-Liouville operator if

∀x ∈ D(A1),−A1x =
1

ρ(ζ )

(
d

dζ

(
−p(ζ )

dx
dζ

(ζ )

)
+q(ζ )x(ζ )

)
, (3.4)

where p,d p/dζ ,q and ρ are real continuous functions such that ρ > 0 and p > 0. Considering

ρ(ζ ) = exp
(
− 1

β1
ζ

)
, p(ζ ) = β1ρ(ζ ),q(ζ ) = γρ(ζ ),

we find that (3.4) is satisfied. A similar argument can be formulated for the operator A2 taking

ρ(ζ ) = exp
(
− 1

β2
ζ

)
, p(ζ ) = β2ρ(ζ ),q(ζ ) = 0.

�

To apply (Delattre et al., 2003, Lemma 1), we still have to verify that the domains of A1 and A2 are in the

form
{

x ∈ L2(a,b),x a.c. ,
dx
dz

a.c. ,
d2x
dζ 2 ∈ L2(a,b),αa

dx
dζ

(a)+βax(a) = 0,αb
dx
dζ

(b)+βbx(b) = 0
}
,
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where a and b are real numbers such that (αa,βa) 6= (0,0) and (αb,βb) 6= (0,0). This form is respected

since D(A1) and D(A2) are given by (3.2) and (3.3) respectively. Hence, operators A1 and A2 are Riesz-

Spectral operators. Because of the diagonal form of operator A whose diagonal elements are operators

A1 and A2, it is also a Riesz-Spectral operator. In this particular case, it has a lot of interesting properties,

notably properties on its eigenvalues, which will completely caracterize the exponential stability of the

semigroup (T (t))t≥0. Let first remark that by (Curtain and Zwart, 1995, Theorem 2.3.5.), the growth

bound of (T (t))t≥0 is given by

ω0 = inf
t>0

(
1
t

log(‖T (t)‖)
)
= sup

n≥1
Re(λn) (3.5)

since A is a Riesz-Spectral operator. Notice that {λn,n≥ 1} represents the set of eigenvalues of the

operator A. Note also that all the following results concern operators A1 and A2 and will be automati-

cally reported on A because of the diagonality of it. The main interest of relation (3.5) is explained by

introducing the following definition, see (Jacob and Zwart, 2012, Theorem 5.1.5., point e.).

Definition 11. Let (T (t))t≥0 be a semigroup. For all ω > ω0, where ω0 represents the growth bound

of (T (t))t≥0, there exists Mω such that for all t ≥ 0,

||T (t)|| ≤Mωeωt . (3.6)

First notice that relation (3.6) is valid for every ω > ω0. If ω0 < 0, it is always possible to find ε > 0

sufficiently small such that ω0 + ε < 0. In particular, for each ω ∈]ω0,ω0 + ε[, (3.6) is satisfied. By

choosing ω̃ ∈]ω0,ω0 + ε[, ω̃ < 0 and

‖T (t)‖ ≤Mω̃eω̃t , for all t ≥ 0 (3.7)

hold. By Definition 8, (T (t))t≥0 will be exponentially stable. In order to use this argument, it remains to

prove that the growth bound of the semigroup is negative, or equivalently that supn≥1Re(λn)< 0. To do

so, one has first to compute the eigenvalues of operator A, i.e. the eigenvalues of operators A1 and A2 due

to the diagonality of A. By denoting σ(A) the set of eigenvalues of A,

σ(A) = σ(A1)∪σ(A2) (3.8)

holds. Looking at operator A1 and taking xn ∈ D(A1), one finds the eigenvalues equation

A1xn = λ1,nxn,

which can be written as

β1
d2xn

dζ 2 −
dxn

dζ
− γxn = λ1,nxn. (3.9)

By finding the eigenvalues and the eigenvectors of A1, we mean solving the ODE (3.9) with the corres-

ponding boundary conditions given by D(A1). By (Dehaye and Winkin, 2016), the eigenvalues {λ1,n}n≥1
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are expressed as

λ1,n =−
s2

1,n +1
4β1

− γ

where s1,n,n≥ 1 are solutions of the resolvent equation

tan
(

s
2β1

)
=

2s
s2−1

,s ∈ [0,+∞) . (3.10)

It is obvious that for n≥ 1,

λ1,n ≤−
(

1
4β1

+ γ

)
< 0 (3.11)

holds. In such a way, we have

sup
n≥1

λ1,n < 0.

It remains to prove the same result for operator A2. By (Dehaye and Winkin, 2016), one has

λ2,n =−
s2

2,n +1
4β2

(3.12)

where s2,n,n≥ 1 satisfy the following resolvent equation

tan
(

s
2β2

)
=

2s
s2−1

,s ∈ [0,+∞) . (3.13)

Moreover, these eigenvalues verify

λ2,n ≤−
1

4β2
< 0. (3.14)

Hence,

sup
n≥1

λ2,n < 0.

It follows by these considerations that the supremum of the set of the eigenvalues of operator A is also

negative. Thus, the semigroup (T (t))t≥0 is exponentially stable.

As an indication, some solutions of the resolvent equation (3.10) are depicted in Figure 3.1. To compute

them, the function fzero was used with the software MATLAB. The initial point given to this function

is the root of the left-hand side of (3.10), namely 2nβ1π .

3.2 Resolvent operator

This section is devoted to the introduction of the resolvent set and the resolvent operator related to

operator A. In order to present these two notions, we will use the fact that the operator A is a Riesz-

Spectral operator. We first recall the definition of the resolvent set of an operator and the resolvent

operator associated to one element of the resolvent set, see (Jacob and Zwart, 2012, Section 5.2.).
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Fig. 3.1 – Solutions of the resolvent equation (3.10) with β1 = 1 and γ = 1.

Definition 12. The resolvent set of an operator A, noted ρ(A), is defined by

ρ(A) :=
{

λ ∈ C | (λ I−A)−1 exists and is bounded
}
. (3.15)

Taking λ in ρ(A), the operator (λ I−A)−1 is called the resolvent operator. In the case of a Riesz-Spectral

operator, the resolvent set and the resolvent operator have a particular form, provided by the following

theorem, see (Curtain and Zwart, 1995, Theorem 2.3.5.).

Theorem 6. Let A be a Riesz-Spectral operator, (λn)n≥1 the set of its eigenvalues, (φn)n≥1 the

corresponding eigenvectors and (ψn)n≥1 the set of the eigenvectors of the adjoint operator a A?,

where, for all m,n≥ 1,〈φn,ψm〉= δnm. We have

• ρ(A) = {λ ∈ C| infn≥1 |λ −λn|> 0}

• For λ in ρ(A),

(λ I−A)−1 =
+∞

∑
n=1

1
λ −λn

〈·,ψn〉φn. (3.16)

a. The adjoint operator of A, noted A? is defined for x ∈ D(A) and y ∈ D(A?) by 〈Ax,y〉= 〈x,A?y〉.

In order to use this result, we will take decomposition (3.1) into account, i.e. we will work on operators

A1 and A2 separately. Notice that the resolvent operator of A will be a diagonal operator whose diagonal

elements are the resolvent operators of A1 and A2 respectively. We start by operator A1, results being
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similar for operator A2. By (Dehaye, 2015, Section 4.1.3.), the eigenvectors of A1 and of A?
1 are given for

n ∈ N0 and for each ζ ∈ [0,1] by

φ1,n(ζ ) = K1,ne
1

2β1
ζ

(
cos
(

s1,n

2β1
ζ

)
+

1
s1,n

sin
(

s1,n

2β1
ζ

))

and

ψ1,n(ζ ) = K1,ne−
1

2β1
ζ

(
cos
(

s1,n

2β1
ζ

)
+

1
s1,n

sin
(

s1,n

2β1
ζ

))

respectively. Note that s1,n,n≥ 1 are solutions of equation (3.10). Thanks to Theorem 6, the resolvent set

of A1 is given by

ρ(A1) =

{
λ ∈ C| inf

n≥1
|λ −λ1,n|> 0

}

where (λ1,n)n≥1 are the eigenvalues of A1, given by (3.11). In a similar way, the eigenvectors of A2 and

of A?
2 are given by

φ2,n(ζ ) = K2,ne
1

2β2
ζ

(
cos
(

s2,n

2β2
ζ

)
+

1
s2,n

sin
(

s2,n

2β2
ζ

))

and

ψ2,n(ζ ) = K2,ne−
1

2β2
ζ

(
cos
(

s2,n

2β2
ζ

)
+

1
s2,n

sin
(

s2,n

2β2
ζ

))

respectively, see (Dehaye, 2015, Section 4.1.3.). The coefficients s2,n,n ≥ 1 are solutions of equation

(3.13). Moreover, the resolvent set of A2 is given by

ρ(A2) =

{
λ ∈ C| inf

n≥1
|λ −λ2,n|> 0

}

where (λ2,n)n≥1 are the eigenvalues of A2, given by (3.12). Due to the diagonality of operator A, it is

quite natural to define the resolvent set of A, noted ρ(A), by

ρ(A) = ρ(A1)∩ρ(A2). (3.17)

This definition allows the existence of the resolvent operators of A1 and A2 once λ is choosen in ρ(A).

Hence, for λ ∈ ρ(A) defined by (3.17),

(λ I−A)−1 =

(
(λ I−A1)

−1 0

0 (λ I−A2)
−1

)
.

By using Theorem 6,

(λ I−A)−1 =




+∞

∑
n=1

1
λ−λ1,n

〈·,ψ1,n〉φ1,n 0

0
+∞

∑
n=1

1
λ−λ2,n

〈·,ψ2,n〉φ2,n


 ,

where λ ∈ ρ(A). As an indication and by will of diversity, the integral form of the resolvent operator of

the operator A is given in Appendix B.
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Analysis of the existence and the multiplicity of
equilibrium profiles
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In this chapter, the existence and the multiplicity of equilibrium profiles are investigated in three different

cases depending on the link between the Peclet numbers. As in (Dochain, 2016), we consider adiabatic

reactors, i.e. we assume that there is no energy exchange with the environment (h= 0, or equivalently γ =

0). The main idea is to use perturbation theory, see (Hoppensteadt, 2013, Regular Perturbation Theorem).

Firstly, we consider the case Peh = Pem
not.
= Pe for which the analysis of (Dochain, 2016, Section 3) is

revised and consolidated. The two other cases are Peh 6= Pem and Peh = Pem +η , where η is a small

parameter. To do so, we write equations (2.7) at the equilibrium, which read as follows





1
Peh

d2x1
dz2 − dx1

dz +αδ (1− x2)e
µx1

1+x1 = 0

1
Pem

d2x2
dz2 − dx2

dz +α(1− x2)e
µx1

1+x1 = 0

dx1
dz (0)−Pehx1(0) = 0 = dx1

dz (1)

dx2
dz (0)−Pemx2(0) = 0 = dx2

dz (1),

(4.1)

where the spatial variable is denoted by z.

4.1 Case 1 : Peh = Pem
not.
= v

D

Considering the change of variables
y1 = x1, y2 = x1−δx2,

it follows from the second equation and the last boundary conditions of (4.1) that y2 ≡ 0 (formally, y2

corresponds to a reaction invariant), see (Dochain et al., 1992) and (Gavalas, 1968). Moreover, by using

the functions u and w defined by

u(z) = y1(1− z), w(z) =
dy1

dz
(1− z), (4.2)

the first equation of (4.1) with the associated boundary conditions take the form





du
dz =−w,

dw
dz =− 1

D (vw−g(u)) ,

u(0) = a,w(0) = 0,w(1) = v
D u(1),

(4.3)
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where a is a real parameter and g is the nonlinear function defined by g(−1) = 0 and, for x ∈ (−1,∞), by

g(x) = vα (δ − x)e
µx

1+x .

Interested readers are referred to Appendix C.1 for calculation details.

Lemma 1. For some values of the parameters µ and δ , there exist D∗ large enough, v∗1 > 0 and

v∗2 > 0 such that for all D≥ D∗, the set of equations (4.3) has either

• at least three solutions, if v belongs to (min{v∗1,v∗2} ,max{v∗1,v∗2}), or

• at least one solution, otherwise.

Remark 1. We are not interested in finding a solution to (4.3) but in finding a function v(a,D)

such that the final condition w(1) = v
D u(1) is satisfied. Thus, if there are a1 6= a2 and D > 0 such

that v(a1,D) = v(a2,D), the equations (4.3) have at least two solutions. To reach this goal, we use

pertubation theory (Hoppensteadt, 2013), which consists of disturbing the equations with a small

parameter ε . Then, if a solution can be found to the disturbed equations with ε = 0, perturbation

theory guarantees that the system has a solution for small ε , under a few assumptions, especially

continuity conditions.

Proof. Let us introduce the following notations :

ε =
1
D
, uε = u, wε =

1
ε

w, (4.4)

where D satisfies D ≥ D∗ for D∗ sufficiently large such that ε is small enough. Equations (4.3) can be

rewritten as 



duε

dz =−εwε

dwε

dz =−(vεwε −g(uε))

uε(0) = a,wε(0) = 0,wε(1) = vuε(1),

(4.5)

where v is now interpreted as a function of a and ε , denoted by v(a,ε). These equations have the trivial

solution

uε(z) = a, wε(z) = g(a)z

for ε = 0, provided that using the boundary conditions,

g(a) = v(a,0)a.

The function v is then given for ε = 0 by

v(a,0) =
g(a)

a
=

k0L(δ −a)e
−µ

1+a

a
(4.6)
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and its first order derivative is given by

k0Le
−µ

1+a

[
−(µ +δ )a2 +δ (µ−2)a−δ

a2 (1+a)2

]
.

The second order derivative of v(a,0) is equal to

k0Le
−µ

1+a

a3 (1+a)4 [ (2δ +2µ)a4 +
(
2µ−µ

2−4δ µ +8δ
)

a3 +
(
12δ +δ µ

2−6δ µ
)

a2 +(8δ −2δ µ)a+2δ ].

The stationary points of v(a,0) are thus characterized by the following equation :

− (µ +δ )a2 +δ (µ−2)a−δ = 0. (4.7)

The discriminant of (4.7) is given by

ρ = µδ (µδ −4δ −4) (4.8)

and is first considered to be positive. The roots of (4.7) are then given by

a∗1 =
δ (µ−2)
2(µ +δ )

− 1
2(µ +δ )

√
µδ (µδ −4δ −4) and a∗2 =

δ (µ−2)
2(µ +δ )

+
1

2(µ +δ )

√
µδ (µδ −4δ −4).

Note also that the function v(a,0) has two singularities in −1 and 0 (Observe that −1 is actually a

removable singularity). So, we have to find an interval in which a∗1 and a∗2 are both located and which

does not contain any singularity. Combining this constraint with the assumption that ρ is positive, one

gets that the only possibility is a∗1 > 0 and a∗2 > 0. In this case, µ and δ must satisfy either

δ > 0, µ > 4, δ (µ−4)> 4 or δ <−2, µ > 2, µ +δ < 0, δ (µ−4)< 4.

Let us denote v(a∗1,0) and v(a∗2,0) by v∗1 and v∗2, respectively. On one hand, for δ > 0, µ > 4 and

δ (µ−4) > 4, the point (a∗1,v
∗
1) corresponds to a minimum of v(a,0) and (a∗2,v

∗
2) to a maximum. On

the other hand, for δ < −2,µ > 2,µ +δ < 0 and δ (µ−4) < 4, we get the opposite. Considering both

cases, it follows that, if one takes any value v∗ in the interval (min{v∗1,v∗2} ,max{v∗1,v∗2}) , we are sure

that there are at least three values of a such that v(a,0) = v∗. Otherwise, we are only sure that there exists

at least one value of a at which v∗ is reached by v(a,0). The only assumption that remains to be checked

is

lim
ε→0

v(a,ε) = v(a,0).

From (Hirsch et al., 2004, Theorem 17.3, p. 192), the functions uε and wε are both continuous with

respect to ε . Observe also that the last boundary condition in (4.5) is equivalent to

v(a,ε) =
wε(1)
uε(1)

.

So v(a,ε) is continuous with respect to ε , and thus specifically in 0. We shall now develop the cases
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where ρ is either negative or equal to 0. When ρ is negative, the first order derivative of v has no real

root. So, the function v has no extremum. A chosen value of v can be reached by at most one value of

a (on any interval where v is continuous). When ρ is zero, the first order derivative of v has one root,

namely

a∗ =
δ (µ−2)
2(µ +δ )

.

In addition, il follows from (4.8) that

δ =
4

µ−4
,

which yields

a∗ =
2

µ−2
. (4.9)

Moreover, the polynomial factor in the second order derivative of v can be written as

2(µ−2)2

µ−4
a4 +

(2−µ)
(
µ2−4µ +16

)

µ−4
a3 +

4µ2−24µ +48
µ−4

a2−8a+
8

µ−4
.

See Appendix C.1 for further details. Using (4.9), this polynomial can be factorized as

[
2(µ−2)2

µ−4
a3 +

(2−µ)
(
µ2−4µ +12

)

µ−4
a2 +

2µ2−16µ +24
µ−4

a+
−4µ +8

µ−4

]
(a−a∗) .

This means that a∗ is also a root of the second order derivative of v. The point (a∗,v(a∗,0)) is neither

a minimum nor a maximum, but a saddle point of v(a,0). By choosing a value of v denoted by v∗, one

can find at most one point in the domain of v at which the value v∗ is reached by v(a,0) (on any interval

where v is continuous). �

An illustration of Lemma 1 and its proof can be found in Figure 4.2 for ρ > 0 and in Figure 4.1 for ρ = 0.

We present now a corollary of Lemma 1 that provides approximated solutions to equations (4.5). Moreo-

ver, with these solutions, one can also find solutions of equations (4.1) for equal Peclet numbers using the

appropriate change of variables. The method used is based on perturbation theory (Hoppensteadt, 2013).

Corollary 1. Taking into account the existence of equilibrium profiles under the conditions of

Lemma 1, approximated solutions of equations (4.5) are given by

uε(z) = a− εg(a)
2

z2, wε(z) = g(a)z− εvεg(a)
2

z2,

that correspond to the approximated form vε of function v given by

g(a)
a

=
k0L(δ −a)e

−µ

1+a

a
.
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Fig. 4.1 – Illustration of Lemma 1 with µ = 3 and δ =−4 (ρ = 0).
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Fig. 4.2 – Illustration of Lemma 1 with µ = 10 and δ = 1 (ρ > 0).

Dynamical analysis of a nonisothermal axial dispersion reactor — A. HASTIR 38



Chapter 4. Analysis of the existence and the multiplicity of equilibrium profiles

Proof. Perturbation theory guarantees that the solutions uε and wε have the form

uε(z) = u0(z)+u1(z)ε +O(ε2) (4.10)

wε(z) = w0(z)+w1(z)ε +O(ε2). (4.11)

Using the same decomposition for function vε (also depending on ε), one finds

vε = v0 + v1ε +O(ε2). (4.12)

Note that all the terms including ε2 or higher order of ε are considered to be negligible. By plugging

(4.10) and (4.11) in equations (4.5), one gets





du0
dz + du1

dz ε =−ε (w0 +w1ε)

dw0
dz + dw1

dz ε =−vεw0ε− vεw1ε2 +g(u0 +u1ε)

u0(0)+u1(0)ε = a,w0(0)+w1(0)ε = 0.

(4.13)

By identification, and by using the approximation g(u0 +u1ε)≈ g(u0) for small ε , we have





du0
dz = 0

du1
dz =−w0

dw0
dz = g(u0)

dw1
dz =−vεw0

u0(0) = a,u1(0) = 0,w0(0) = 0,w1(0) = 0.

(4.14)

A simple integration yields the desired forms for uε and wε . The last step is to find the form of v to

reach the boundary condition wε(1) = vεuε(1). Knowing the form of functions uε and wε and using the

decomposition of vε , provided by (4.12), one has the relation

g(a)− v0g(a)
2

ε− v1g(a)
2

ε
2 = (v0 + v1ε)

(
a− g(a)

2
ε

)
.

By identification, the function vε is given by g(a)
a . �

To estimate the form of solutions of equations (4.1), one has to consider Corollary 1, and relations (4.2)

and (4.4). This leads to

x1(z)' a− g(a)
2D

(1− z)2 ,

x2(z)'
a
δ
− g(a)

2δD
(1− z)2 , (4.15)

which are approximated solutions to equilibrium equations for equal Peclet numbers.
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The equality assumption between Peh and Pem appears to be too restrictive. Indeed, the equality entails

the following condition :

Dma =
λea

ρCp
,

which seems to be physically unrealistic and leads us to consider the case Peh 6= Pem in the next section.

4.2 Case 2 : Peh 6= Pem

The methodology that is followed for this case is quite similar to the one used in the previous section.

However, the analysis and the computation are more involved in view of the fact that there are two

interconnected sets of equilibrium equations of type (4.3) with an auxiliary function g of two variables :

see (4.17) below. Considering that Peh and Pem are different, a change of variables is no more possible.

In the following, the notations D1 for λea and D2 for Dma, respectively, will be used. We introduce also

the notation kp := ρCp. Defining the function g for (x1,x2) in R2 such that −1 < x1 and 0≤ x2 ≤ 1, by

g(x1,x2) = vα (1− x2)e
µx1

1+x1 = k0L(1− x2)e
−µ

1+x1 ,

and g(−1,x2) = 0, the equilibrium equations become





D1
d2x1
dz2 − vkp

dx1
dz + kpδg(x1,x2) = 0

D2
d2x2
dz2 − v dx2

dz +g(x1,x2) = 0

D1
dx1
dz (0)− vkpx1(0) = 0 = dx1

dz (1)

D2
dx2
dz (0)− vx2(0) = 0 = dx2

dz (1).

(4.16)

We use now the functions

u1(z) = x1(1− z), w1(z) =
dx1

dz
(1− z),

and

u2(z) = x2(1− z), w2(z) =
dx2

dz
(1− z)

to rewrite (4.16) as a system of four first order differential equations. Taking the boundary conditions

into account, we find 



du1
dz =−w1

dw1
dz =− kp

D1
(vw1−δg(u1,u2))

du2
dz =−w2

dw2
dz =− 1

D2
(vw2−g(u1,u2))

u1(0) = a1,w1(0) = 0,w1(1) =
vkp
D1

u1(1)

u2(0) = a2,w2(0) = 0,w2(1) = v
D2

u2(1).

(4.17)
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Once again we have to find v(a1,a2,D1,D2) s.t. w1(1) =
vkp
D1

u1(1) and w2(1) = v
D2

u2(1) hold. A similar

argument as for the one-dimensional case is developed. If there are (a1,a2) 6= (a3,a4), D1 > 0 and D2 > 0

such that

v(a1,a2,D1,D2) = v(a3,a4,D1,D2),

then the system (4.17) has at least two solutions. In order to find the function v, perturbation theory is

applied to (4.17). To do so, we introduce

ε1 =
1

D1
, uε1 = u1, wε1 =

1
ε1

w1

and

ε2 =
1

D2
, uε2 = u2, wε2 =

1
ε2

w2,

where D1 and D2 verify D1 ≥ D∗1 and D2 ≥ D∗2 respectively with D∗1 and D∗2 sufficiently large such that

ε1 and ε2 are small enough. Thus, the system (4.17) takes the form





duε1
dz =−ε1wε1 ,

dwε1
dz =−(kpvε1wε1− kpδg(uε1 ,uε2)) ,

duε2
dz =−ε2wε2 ,

dwε2
dz =−(vε2wε2−g(uε1 ,uε2)) ,

uε1(0) = a1,wε1(0) = 0,wε1(1) = vkpuε1(1),

uε2(0) = a2,wε2(0) = 0,wε2(1) = vuε2(1),

(4.18)

whose solution with ε1 = ε2 = 0 is given by

uε1(z) = a1, wε1(z) = kpδg(a1,a2)z

and

uε2(z) = a2, wε2(z) = g(a1,a2)z.

Taking the difference of the boundary conditions for z = 1, it follows that

v(a1,a2,0,0) = (1−δ )k0L
(1−a2)e

−µ

1+a1

a2−a1
, (4.19)

which is a necessary form for the function v. The reader is referred to Appendix C.2 for further calculation

details. The continuity assumption described by

lim
ε1,ε2→0

v(a1,a2,ε1,ε2) = v(a1,a2,0,0)

holds since

v =
wε1(1)

kpuε1(1)
and v =

wε2(1)
uε2(1)

(4.20)
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are both continuous with respect to ε1 and ε2. This is a consequence of the theorem of dependence of

the solutions of differential equations on parameters (see (Hirsch et al., 2004, 17.3, p. 192)). Keeping in

mind that our study of equilibrium is qualitative, we first give the gradient of function v :

−→
∇ v(a1,a2,0,0) = (1−δ )k0Le

−µ

1+a1




(1−a2)((1+a1)
2+µ(a2−a1))

(a2−a1)
2(1+a1)

2

a1−1
(a2−a1)

2


 . (4.21)

Observe also that the entries of the Hessian matrix of function v, denoted by ∇2v(a1,a2,0,0)
not.
= H (a1,a2),

are given by

H11(a1,a2) =
1−a2

a2−a1
(1−δ )k0Le

−µ

1+a1 H̃11,

H12(a1,a2) = H21(a1,a2) = (1−δ )k0Le
−µ

1+a1 H̃12,

H22(a1,a2) =
−2(a1−1)

(a2−a1)
3 (1−δ )k0Le

−µ

1+a1 ,

where

H̃12 =
1

(a2−a1)
2 +

2(a1−1)

(a2−a1)
3 +

µ (a1−1)

(a2−a1)
2 (1+a1)

2

and

H̃11 =
2

(a2−a1)
2 +

2µ

(a2−a1)(1+a1)
2 −

2µ

(1+a1)
3 +

µ2

(1+a1)
4 .

Setting (4.21) to 0, we find that the only possibility is

(a1,a2) =

(
1,

µ−4
µ

)
:= (a∗1,a

∗
2) . (4.22)

Plugging (4.22) in H , we obtain that

H

(
1,

µ−4
µ

)
= k0L(1−δ )e

−µ

2

(
− µ2

16 +
µ

16
µ2

16
µ2

16 0

)
.

Therefore, the point (a∗1,a
∗
2) is a saddle point.

Observe that we are dealing with equilibrium curves and no more discrete set of points. A level v∗ of

function v satisfies equation

v∗ = (1−δ )k0L
1−a2

a2−a1
e
−µ

1+a1 .

The set of equilibrium points for a level v∗ of function v is given by

Cv∗ =



(a1,a2) ∈ R2 : a1 6= a2,a2 =

(1−δ )k0Le
−µ

1+a1 +a1v∗

v∗+(1−δ )k0Le
−µ

1+a1



 . (4.23)
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We now present a preliminary result related to the existence of equilibrium profiles in this case. To expand

this analysis, we focus on a specific direction, namely, an affine direction of the form a2 = αa1 +β with

α,β ∈ R.

Lemma 2. For some values of the parameters µ and δ , taking an affine direction of the form a2 =

αa1 +β with α,β ∈ R, there exist D∗1 and D∗2 sufficiently large, v∗1 > 0,v∗2 > 0 such that for D1 ≥
D∗1,D2 ≥ D∗2 the system (4.17) has either

• at least three solutions if v belongs to (min{v∗1,v∗2} ,max{v∗1,v∗2}), or

• at least one solution otherwise.

Proof. Function v (see (4.19)) in the direction a2 = αa1 +β becomes

v(a1,αa1 +β ,0,0) =
(1−δ )k0L(1−β −αa1)e

−µ

1+a1

(α−1)a1 +β
(4.24)

and its first order derivative is given by

(1−δ )k0Le
−µ

1+a1

((α−1)a1 +β )2 (1+a1)
2 (−(αµ (α−1)+(α−1)+β )a2

1

+(α (−2+µ−2β µ)+(−1+β )(−2+µ))a1

+(−α− (−1+β )(1+β µ))).

The discriminant of the polynomial factor in this first order derivative has the form

−(−1+α +β )µ

[
−4+4(α−β )2 +µ− (α +β )µ

]

and is considered to be positive here. In this case, the first order derivative of v has two real roots, which

are denoted a∗11 and a∗12. Furthermore, let us denote

v∗1 = v(a∗11,αa∗11 +β ,0,0) and v∗2 = v(a∗12,αa∗12 +β ,0,0) .

Applying the same method as in the proof of Lemma 1, the result follows. �

Lemma 2 is illustrated in Figure 4.3, where a zoom on the first extremum of the function is provided for

the sake of readability.

Remark 2. Note that Lemma 2 provides necessary conditions for the existence of equilibrium pro-

files. To have necessary and sufficient conditions, one has to adapt the form of function v. By consi-

dering equations (4.20) for ε1 = ε2 = 0, one finds that a2 has to be equal to 1
δ

a1. This implies that

the affine direction is described by αa1 +β with α = 1
δ

and β = 0.

Taking Remark 2 into account, a theorem is now stated which gives necessary and sufficient conditions

for the multiplicity of equilibrium profiles for distinct Peclet numbers.
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Fig. 4.3 – Illustration of Lemma 2 with µ = 10,δ = 4,α = 0.7 and β =−0.1.

Theorem 7. For some values of the parameters µ and δ , there exist D∗1 and D∗2 sufficiently large,

v∗1 > 0,v∗2 > 0 such that for D1 ≥ D∗1,D2 ≥ D∗2 the system (4.17) has either

• at least three solutions if v belongs to (min{v∗1,v∗2} ,max{v∗1,v∗2}), or

• at least one solution otherwise.

Proof. Based on Remark 2, the function v has to be restricted in the direction a2 = αa1 +β with α = 1
δ

and β = 0. By injecting α = 1
δ

and β = 0 in (4.24), this leads to

v
(

a1,
1
δ

a1,0,0
)
=

(1−δ )k0L
(
1−0− 1

δ
a1
)

e
−µ

1+a1

( 1
δ
−1
)

a1 +0

=
(1−δ )k0L

(
δ−a1

δ

)
e
−µ

1+a1

(
1−δ

δ

)
a1

=
k0L(δ −a1)e

−µ

1+a1

a1
.

The conclusion follows by Lemma 2 and by noting that function v has the same expression as in Lemma

1 (see equation (4.6)). �

Similarly as in Case 1, approximated solutions of equations (4.18) are given in the following corollary.

Dynamical analysis of a nonisothermal axial dispersion reactor — A. HASTIR 44



Chapter 4. Analysis of the existence and the multiplicity of equilibrium profiles

Corollary 2. Taking into account the existence of equilibrium profiles under the conditions of Theo-

rem 7, approximated solutions of equations (4.18) are given by

uε1(z) = a1−
ε1kpδg

(
a1,

1
δ

a1
)

2
z2, wε1(z) = kpδg

(
a1,

1
δ

a1

)
z−

ε1k2
pvε1,ε2δg

(
a1,

1
δ

a1
)

2
z2,

uε2(z) =
1
δ

a1−
ε2g
(
a1,

1
δ

a1
)

2
z2, wε2(z) = g

(
a1,

1
δ

a1

)
z− ε2vε1,ε2g

(
a1,

1
δ

a1
)

2
z2,

that correspond to the approximated form vε1,ε2 of function v given by

k0L(δ −a1)e
−µ

1+a1

a1
.

Proof. The method used to find these approximated functions is exactly the same as the one used in the

case of equal Peclet numbers. Just note for example that uε1(z) is developed as u01(z)+u11(z)ε1 and also

that g(u01 +u11ε1,u02 +u12ε2) is approximated by g(u01 ,u02) for ε1,ε2 small enough. �

As in Case 1, approximated solutions of equilibrium equations (4.16) are obtained by applying Corollary

2. These are expressed as

x1(z)' a1−
kpδg

(
a1,

1
δ

a1
)

2D1
(1− z)2 , x2(z)'

a1

δ
− g

(
a1,

1
δ

a1
)

2D2
(1− z)2 . (4.25)

The last case considered is Peh = Pem +η with η small enough.

4.3 Case 3 : Peh = Pem +η

The approach used here is similar to the one used for Peh 6= Pem. Writing the equations (4.1) again with

Pem +η and Pem, we get





d2x1
dz2 − (Pem +η) dx1

dz +(Pem +η)αδ (1− x2)e
µx1

1+x1 = 0

d2x2
dz2 −Pem

dx2
dz +Pemα(1− x2)e

µx1
1+x1 = 0

dx1
dz (0)− (Pem +η)x1(0) = dx1

dz (1) = 0

dx2
dz (0)−Pemx2(0) = dx2

dz (1) = 0.

Since Pem = vL
D , the equilibrium equations are given by





D d2x1
dz2 − (v+ηD) dx1

dz +(v+ηD)αδ (1− x2)e
µx1

1+x1 = 0

D d2x2
dz2 − v dx2

dz + vα(1− x2)e
µx1

1+x1 = 0

D dx1
dz (0)− (v+ηD)x1(0) = dx1

dz (1) = 0

D dx2
dz (0)− vx2(0) = dx2

dz (1) = 0.
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Let us introduce the coefficient kη , that verifies v+ηD = vkη , i.e. kη = 1+ 1
Pem

. Then, the equilibrium

equations take the form 



D d2x1
dz2 − vkη

dx1
dz + kηδg(x1,x2) = 0

D d2x2
dz2 − v dx2

dz +g(x1,x2) = 0

D dx1
dz (0)− vkηx1(0) = dx1

dz (1) = 0

D dx2
dz (0)− vx2(0) = dx2

dz (1) = 0

(4.26)

where the function g is defined as

g(x1,x2) = vα(1− x2)e
µx1

1+x1

for −1 < x1 and 0≤ x2 ≤ 1 and g(−1,x2) = 0. Observe that equations (4.26) have the same form as the

equations (4.16). Hence, the analysis is the same as in Section 4.2. Note also that if one lets η → 0, then

one recovers the case Pem = Peh.
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In this chapter, an analysis of the exponential stability of the equilibrium profiles is performed. We first

construct a linearized model of the nominal one around a specific equilibrium profile. Then, we study

the well-posedness of this linearized model. After this step, three cases are taken into account, especially

based on the relation between the Peclet numbers, as for the analysis of the existence of equilibrium

profiles. In this way, some changes of variables are introduced to put the linearized model in some form

in order to show notably that the stability analysis is reduced to an eigenvalue problem. Some numerical

simulations support the theoretical results.

5.1 Construction of a linearized model around an equilibrium profile

In order to write a linearized model around an equilibrium denoted by (x?1,x
?
2), we consider PDEs (2.3)

with the associated boundary conditions and we define the variables

{
ξ1(t,z) = x1(t,z)− x?1(z),

ξ2(t,z) = x2(t,z)− x?2(z),
(5.1)

for t ∈ [0,+∞) and z∈ [0,1], being the time and the spatial variables respectively. Note that these variables

represent the perturbations about the equilibrium (x?1,x
?
2). For the sake of simplicity, we denote by g the

function defined for (x1,x2) in R2 such that −1 < x1 and 0≤ x2 ≤ 1 by

g(x1,x2) = α (1− x2)e
µx1

1+x1 =
k0L
v

(1− x2)e
−µ

1+x1 .

Looking at the time derivative of the first variable of (5.1) and taking PDEs (2.7) into account, we have

∂ξ1

∂ t
=

∂x1

∂ t
=

1
Peh

∂ 2x1

∂ z2 −
∂x1

∂ z
− γx1 +δg(x1,x2)

=
1

Peh

∂ 2 (ξ1 + x?1)
∂ z2 − ∂ (ξ1 + x?1)

∂ z
− γ (ξ1 + x?1)+δg(ξ1 + x?1,ξ2 + x?2)
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=
1

Peh

∂ 2ξ1

∂ z2 −
∂ξ1

∂ z
− γξ1 +

1
Peh

d2x?1
dz2 −

dx?1
dz
− γx?1 +δg(ξ1 + x?1,ξ2 + x?1) .

Notice that the different parameters are available in Table 2.1 and in equations (2.4) and (2.8). To linearize

the model, we have to approximate the function g by its first order approximation around the equilibrium

(x?1,x
?
2), which is given by

g(ξ1 + x?1,ξ2 + x?2)' g(x?1,x
?
2)+

∂g
∂x1

(x?1,x
?
2)ξ1 +

∂g
∂x2

(x?1,x
?
2)ξ2. (5.2)

By plugging (5.2) into the time derivative of ξ1 and denoting the functions ∂g
∂x1

(x?1,x
?
2) and ∂g

∂x2
(x?1,x

?
2) by

g?x1
(z) and g?x2

(z) respectively, it follows that

∂ξ1

∂ t
=

1
Peh

∂ 2ξ1

∂ z2 −
∂ξ1

∂ z
− γξ1 +δg?x1

(z)ξ1 +δg?x2
(z)ξ2 +

(
1

Peh

d2x?1
dz2 −

dx?1
dz
− γx?1 +δg(x?1,x

?
2)

)

=
1

Peh

∂ 2ξ1

∂ z2 −
∂ξ1

∂ z
− γξ1 +δg?x1

(z)ξ1 +δg?x2
(z)ξ2,

where the last equality is deduced from the equilibrium equations (4.1). Similarly, we have

∂ξ2

∂ z
=

1
Pem

∂ 2ξ2

∂ z2 −
∂ξ2

∂ z
+g?x1

(z)ξ1 +g?x2
(z)ξ2. (5.3)

The associated boundary conditions are expressed as

∂ξ1

∂ z
(t,0) =

∂x1

∂ z
(t,0)− dx?1

dz
(0) = Pehx1(t,0)−Pehx?1(0)

= Peh (x1(t,0)− x?1(0))

= Pehξ1(t,0),

and

∂ξ2

∂ z
(t,0) = Pemξ2(t,0),

∂ξ1

∂ z
(t,1) = 0,

∂ξ2

∂ z
(t,1) = 0.

So, the whole linearized model around the equilibrium (x?1,x
?
2) is given by





∂ξ1
∂ t = 1

Peh

∂ 2ξ1
∂ z2 − ∂ξ1

∂ z − γξ1 +δg?x1
(z)ξ1 +δg?x2

(z)ξ2

∂ξ2
∂ z = 1

Pem

∂ 2ξ2
∂ z2 − ∂ξ2

∂ z +g?x1
(z)ξ1 +g?x2

(z)ξ2

∂ξ1
∂ z (t,0) = Pehξ1(t,0),

∂ξ2
∂ z (t,0) = Pemξ2(t,0)

∂ξ1
∂ z (t,1) = 0, ∂ξ2

∂ z (t,1) = 0.

(5.4)

5.2 Well-posedness of the linearized model

Before analyzing the stability of the equilibrium profiles, i.e. the stability of the linearized model construc-

ted in the previous section, we have to show that this linearized model is well-posed, i.e. that the linear
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(unbounded) operator describing the dynamic is the infinitisimal genarator of a C0−semigroup. Looking

at equations (5.4), this linear operator is given by

(
1

Peh

d2

dz2 − d
dz − γI +δg?x1

(z)I δg?x2
(z)I

g?x1
(z) 1

Pem

d2

dz2 − d
dz +g?x2

(z)I

)
not.
= Â (5.5)

on the domain D
(
Â
)
= D(A) where A is the operator defined by (2.9) and (2.10). The operator Â can be

decomposed as

Â =

(
1

Peh

d2

dz2 − d
dz − γI 0

0 1
Pem

d2

dz2 − d
dz

)
+

(
δg?x1

(z)I δg?x2
(z)I

g?x1
(z)I g?x2

(z)I

)
= A+

(
δg?x1

(z)I δg?x2
(z)I

g?x1
(z)I g?x2

(z)I

)
. (5.6)

In order to show that Â is the infinitesimal generator of a C0−semigroup, we present the following result

from (Engel and Nagel, 2006, Bounded perturbation theorem) which provides conditions on the operator

B such that A+B is the infinitesimal generator of a C0−semigroup whenever so is A.

Theorem 8. Let operator A with domain D(A) be the infinitesimal generator of a strongly conti-

nuous semigroup (T (t))t≥0 on a Banach space H satisfying

‖T (t)‖ ≤Meωt for all t ≥ 0

and some ω ∈ R,M ≥ 1. If B ∈ L(H), then C := A+B with D(C) := D(A) generates a strongly

continuous semigroup (S(t))t≥0 satisfying

‖S(t)‖ ≤Me(ω+M‖B‖)t for all t ≥ 0.

We know from Chapter 2 that the operator A defined by (2.9) and (2.10) generates a C0−semigroup. In

order to apply Theorem 8, we still have to show that the operator

(
δg?x1

(z)I δg?x2
(z)I

g?x1
(z)I g?x2

(z)I

)
:= Ã (5.7)

is linear and bounded from H to H, which will lead to the fact that A+ Ã generates a C0−semigroup 1,

i.e. that the linearized model around the equilibrium is well-posed. In order to perform this step, we

decompose Ã as Ã1 + Ã2 where

Ã1 :=

(
δg?x1

(z)I 0

0 g?x2
(z)I

)
(5.8)

and

Ã2 :=

(
0 δg?x2

(z)I

g?x1
(z)I 0

)
. (5.9)

1. Note that the domain of Ã is H since it is a matrix whose elements are multiplicative functions depending on the spatial
variable.
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The operator Â is now expressed as A+ Ã1+ Ã2. We will successively apply twice Theorem 8, first on the

pair of operators
(
A, Ã1

)
and then on

(
A+ Ã1, Ã2

)
. To do so, first notice the explicit forms of functions

g?x1
(z) and g?x2

(z), which are given by

k0L
v

µ (1− x?2(z))

(1+ x?1(z))
2 e

−µ

1+x?1(z) (5.10)

and

− k0L
v

e
−µ

1+x?1(z) (5.11)

respectively. Note also that x?1(z) and x?2(z) satisfy

−1≤ x?1(z) and 0≤ x?2(z)≤ 1 (5.12)

for a.e. z ∈ [0,1]. This is basically due to the fact that the operator A is the infinitesimal generator of a

C0−semigroup on D, which is given by (2.12).

Proposition 4. The operators Ã1 and Ã2 defined by (5.9) with D
(
Ã1
)
= D

(
Ã2
)
= H are linear and

bounded on H, i.e. are in L(H).

Proof. The linearity of these two operators can be easily shown. For the boundedness, we will show it

only for operator Ã1. Similar arguments can be used for operator Ã2. We have to show that there exists

some constant c > 0 such that for every ξ =
(

ξ1 ξ2

)T
∈ H,

‖Ã1ξ‖ ≤ c‖ξ‖

holds. Taking ξ ∈ H, a straightforward computation of ‖Ã1ξ‖2 gives

∥∥Ã1ξ
∥∥2

=
∥∥(Ã1ξ

)
1

∥∥2
+
∥∥(Ã1ξ

)
2

∥∥2

=

∥∥∥∥∥δ
k0L
v

(1− x?2)e
−µ

1+x?1
µ

(1+ x?1)
2 ξ1

∥∥∥∥∥

2

+

∥∥∥∥−
k0L
v

e
−µ

1+x?1 ξ2

∥∥∥∥
2

,

where the norm on H is given in Definition 6. The dependence on the spatial variable of the equilibrium

profile has been omitted for the sake of readability. Using relations (5.12) combined with the definition

of the norm in L2(0,1), we have

∥∥Ã1ξ
∥∥2 ≤ δ 2k2

0L2µ2

v2

∥∥∥∥∥
1

(1+ x?1)
2 ξ1

∥∥∥∥∥

2

+
k2

0L2

v2 ‖ξ2‖2

≤ δ 2k2
0L2µ2κ

v2 ‖ξ1‖2 +
k2

0L2

v2 ‖ξ2‖2 ,

where

κ =

∥∥∥∥∥
1

(1+ x?1)
2

∥∥∥∥∥
∞

,
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which is constant and finite since 1+ x?1 has no root 2 in [0,1]. In this way,

∥∥Ã1ξ
∥∥2 ≤max

{
δ 2k2

0L2µ2κ

v2 ,
k2

0L2

v2

}(
‖ξ1‖2 +‖ξ2‖2

)

= max
{

δ 2k2
0L2µ2κ

v2 ,
k2

0L2

v2

}
‖ξ‖2 .

This last inequality provides us with an estimate of
∥∥Ã1
∥∥ :

∥∥Ã1
∥∥≤

√
max

{
δ 2k2

0L2µ2κ

v2 ,
k2

0L2

v2

}
.

Hence, operator Ã1 is bounded from H to H. �

Remark 3. In the proof of Proposition 4, we used the infinity-norm ‖ · ‖∞. The space L∞(a,b) is

defined as the Lebesgue space of complex-valued essentially bounded functions on [a,b], i.e. for a.e.

elements of [a,b]. Taking f ∈ L∞(a,b), the associated norm, ‖ f‖
∞

is defined as

supess
z∈[a,b]

| f (z)|= inf{C ∈ [0,+∞) : | f (z)| ≤C a.e.on [a,b]} .

Theorem 9. The operator Â with domain D
(
Â
)
= D(A) is the infinitesimal generator of a C0−

semigroup on D
(
Â
)
.

Proof. The result follows directly by using Theorem 8 successively on (A, Ã1) and (A+ Ã1, Ã2) and by

taking Proposition 4 into account. �

5.3 Transformation on the linearized system

This subsection is devoted to the computation of a change of variables on (5.4) in order to express

it in a certain form to be able to justify the choice of the method adopted to analyze the stability of the

equilibrium profiles in the next sections. This change of variables was proposed in (Varma and Aris, 1977,

Section 2.5.2.). Note also that in the following considerations, we suppose the reactor to be adiabatic,

which implies that γ = 0. The proposed change of variables is

{
ξ1(t,z) = e

Peh
2 ξ̂1(t,z)

ξ2(t,z) = e
Pem

2 ξ̂2(t,z).
(5.13)

Putting this change of variables in equations (5.4), a straightforward computation yields the new system

2. This is a conjecture. The opposite could not be found in numerical simulations but a proof is still expected.
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∂ ξ̂1
∂ t = 1

Peh

∂ 2ξ̂1
∂ z2 − Peh

4 ξ̂1 +δG1(z)ξ̂1 +δ Ĝ2(z)ξ̂2

∂ ξ̂2
∂ t = 1

Pem

∂ 2ξ̂2
∂ z2 − Pem

4 ξ̂2 + Ĝ1(z)ξ̂1 +G2(z)ξ̂2

∂ ξ̂1
∂ z (0) =

Peh
2 ξ̂1(0),

∂ ξ̂2
∂ z (0) =

Pem
2 ξ̂2(0)

∂ ξ̂1
∂ z (1) =−

Peh
2 ξ̂1(1),

∂ ξ̂2
∂ z (1) =−

Pem
2 ξ̂2(1),

(5.14)

where

G1(z) = gx1 (x
?
1,x

?
2) , G2(z) = gx2 (x

?
1,x

?
2) (5.15)

and

Ĝ1(z) = G1(z)e
Peh−Pem

2 z, Ĝ2(z) = G2(z)e
Pem−Peh

2 z. (5.16)

As pointed out in (Varma and Aris, 1977, Section 2.5.2.), equations (5.14) form a pair of coupled para-

bolic PDEs with corresponding boundary conditions.

5.4 Case 1 : Peh = Pem
not.
= Pe

In this subsection, the stability of the equilibrium profiles for equal Peclet numbers will be investigated

with different tools. Due to the equality between Peh and Pem, we will first simplify the analysis by

reducing the system (5.14). Then, we will present a theorem first introduced in (Amundson, 1965) and

then taken up in (Varma and Aris, 1977, Section 2.5.2.1.). This theorem provides necessary and sufficient

conditions for an equilibrium to be stable or unstable. Finally, a numerical method for the detection of

stability or instability of an equilibrium will be considered. All these concepts are illustrated by some

numerical simulations.

First notice that in this case, the identites

Ĝ1(z) = G1(z), Ĝ2(z) = G2(z)

hold for all z ∈ [0,1]. In order to simplify equations (5.14), we introduce the following change of va-

riables, see (Varma and Aris, 1977, Section 2.5.2.)

ξ (t,z) = ξ1(t,z)−δξ2(t,z). (5.17)

In this way, an equivalent system to (5.14) is





∂ξ

∂ t = 1
Pe

∂ 2ξ

∂ z2 − Pe
4 ξ

∂ ξ̂1
∂ t = 1

Pe
∂ 2ξ̂1
∂ z2 −G2(z)ξ −

(Pe
4 −G2(z)−δG1(z)

)
ξ̂1

∂ξ

∂ z (0) =
Pe
2 ξ (0), ∂ ξ̂1

∂ z (0) =
Pe
2 ξ̂1(0)

∂ξ

∂ z (1) =−Pe
2 ξ (1), ∂ ξ̂1

∂ z (1) =−Pe
2 ξ̂1(1).

(5.18)

The advantage is that the system of PDEs is now uncoupled. The first equation of this system with the
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associated boundary and initial conditions is a second order parabolic PDE whose solution is given by

ξ (t,z) =
+∞

∑
n=1

ψn Kn φn(z)e−(β 2
n +

Pe
4 )t , (5.19)

where

φn(z) = βn
√

Pecos
(

βn
√

Pez
)
+

Pe
2

sin
(

βn
√

Pez
)
, ψn =

∫ 1

0
f (z)φn(z)dz,

see also (Varma and Aris, 1977, Section 2.5.2.1.). Notice that the coefficients Kn are given by

Kn =

(∫ 1

0
φ

2
n (z)dz

)− 1
2

=

[
2

β 2
n Pe+Pe+ Pe2

4

] 1
2

(5.20)

and that f (z) is the initial condition, i.e. ξ (0,z) = f (z). Note also that the coefficients βn are solutions of

the resolvent equation

tan
(

β
√

Pe
)
=

4β
√

Pe
4β 2−Pe

. (5.21)

It is obvious from equation (5.19) that ξ (t,z) tends exponentially fast to 0 when t tends to +∞. Hence,

this term does not influence the exponential stability of the equilibrium profiles. In this way, stability is

based on the PDE with boundary conditions





∂ ξ̂1
∂ t = 1

Pe
∂ 2ξ̂1
∂ z2 −

(Pe
4 −G2(z)−δG1(z)

)
ξ̂1

∂ ξ̂1
∂ z (0) =

Pe
2 ξ̂1(0),

∂ ξ̂1
∂ z (1) =−Pe

2 ξ̂1(1),
(5.22)

which can be rewritten as




∂ ξ̂1
∂ t =−

(
∂

∂ z

(
− 1

Pe
∂ ξ̂1
∂ z

)
+q(z)ξ̂1

)

∂ ξ̂1
∂ z (0)− Pe

2 ξ̂1(0) = 0, ∂ ξ̂1
∂ z (1)+

Pe
2 ξ̂1(1) = 0

(5.23)

where q(z) = Pe
4 −G2(z)− δG1(z). According to (Delattre et al., 2003, Definition 2), equations (5.23)

describe a Sturm-Liouville system. Hence, the stability analysis can be adressed by solving an eigenvalue

problem. In view of equations (5.23), this eigenvalue problem is expressed as

{
1
Pe

d2φn
dz2 −q(z)φn =−λnφn

dφn
dz (0) =

Pe
2 φn(0),

dφn
dz (1) =−Pe

2 φn(1),
(5.24)

where {λn}n∈N represents the set of eigenvalues and {φn(z)}n∈N are the corresponding eigenvectors of

operator 1
Pe

d2

dz2 −q(z)I. Due to the parabolicity of PDE (5.23), the function ξ̂1 has the form

ξ̂1(t,z) =
+∞

∑
n=1

αn(t)φn(z) (5.25)

where αn(t) is e−λnt up to a multiplicative constant and φn(z) is the eigenvector introduced in (5.19). So,

the objective is now to estimate the least eigenvalue of (5.23) denoted by λ1. If λ1 is positive, it is obvious
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from (5.25) that the system (5.23) is exponentially stable. Otherwise, it is unstable. Therefore, we refer

to a theorem introduced in (Amundson, 1965) and recalled in (Varma and Aris, 1977, Section 2.5.2.1.).

Theorem 10. Consider the function q defined for z ∈ [0,1] by q(z) = Pe
4 −G2(z)−δG1(z) where the

functions G1 and G2 are given in (5.15). If p(z) is the solution of the system

{
1
Pe

d2 p
dz2 −qp = 0

p(0) = 1, d p
dz (0) =

Pe
2 ,

(5.26)

then necessary and sufficient conditions for the least eigenvalue of (5.24) to be positive are

• p(z)> 0 for all z ∈ [0,1]

• d p
dz (1)+

Pe
2 p(1)≥ 0.

Hence, the exponential stability is reduced to the computation of the solution of ODE (5.26). We shall

now present the proof of this theorem, first introduced in (Amundson, 1965). The main idea is the fol-

lowing : if the solution of equations (5.26) cuts the axis [0,1], then there is a negative eigenvalue for

equations (5.24) and the system is unstable. If it does not cut that axis at any point, the quotient
d p
dz (1)
p(1) can

be computed. If it is less than −Pe
2 , there is a negative eigenvalue and the system is unstable.

There is no loss of generality in assuming that the solution of (5.23) has value 1 for z = 0 and the

derivative of that solution has the value Pe
2 for z = 0 since any multiple of a solution of (5.24) is also a

solution of (5.24). Hence, the boundary condition

dφn

dz
(0) =

Pe
2

φn(0)

makes sense. Before starting the proof, consider the two systems

{
d2u
dz2 −G1(z)u = 0

u(0) = 1,u′(0) = Pe
2

(5.27)

and {
d2v
dz2 −G2(z)v = 0

v(0) = 1,v′(0) = Pe
2

(5.28)

whose solutions are u(z) and v(z) respectively. Suppose also that G1(z) and G2(z) are real continuous

functions. Moreover, one introduces two lemmas, see (Amundson, 1965), that will not be proven but

necessary to prove Theorem 10.

Lemma 3. Consider the two systems (5.27) and (5.28). If G1(z)≥G2(z) on [0,1] and G1(z) 6= G2(z)

on any finite subinterval, then if u(z) has m zeroes on a < z≤ b, contained in [0,1], v(z) has also at

least m zeroes in the same interval and the i−th zero of v(z) is less than the i−th of u(z).
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Lemma 4. Assume the same hypothesis as in Lemma 3 on the functions G1(z) and G2(z). Consider

a < c≤ b an interval contained in [0,1] and suppose c is not a zero of u(z) or v(z). Then, by Lemma

3, v(z) has at least as many zeroes as u(z) in (a,c). Moreover, if c is such that u(z) and v(z) have the

same number of zeroes in a < z < c, then

u′(c)
u(c)

>
v′(c)
v(c)

. (5.29)

Proof of Theorem 10. Consider the systems (5.27) and (5.28). Let G2(z) be q(z) of Theorem 10 and

denote by v(z) the solution of (5.28) with G2(z). Moreover, consider G1(z) being q(z)− ρ where the

function q is the same as before and ρ is a negative real constant. The solution of (5.27) with G1(z) is

denoted by u(z). Obviously, one has that G1(z)> G2(z).

Suppose also that v(z) has at least one zero in [0,1] and that ρ is an arbitrary parameter that is not fixed.

In this way, let us start by considering ρ = 0 in G1(z). More ρ decreases (hence, G1(z) increases), more

the curve of u(z) will have fewer and fewer oscillations between positive and negative values, according

to Lemma 3. For sufficiently large negative values of ρ , one can even imagine that u(z) will remain

strictly positive on [0,1]. Fix now ρ1 < 0 such that for ρ = ρ1, u(1) = 0 and for ρ < ρ1, u(z)> 0 for each

z ∈ [0,1]. Let ε > 0 ; one defines

{
G1(z) := q(z)−ρ, ρ < ρ1− ε

G2(z) := q(z)− (ρ1− ε).
(5.30)

In this way, G1(z)> G2(z). We denote by U(z) the solution of (5.27) with G1(z) and by V (z) the solution

of (5.28) with G2(z). By the assumptions and by construction, V (z) has no zeroes in [0,1] and by Lemma

3, so is U(z). By Lemma 4, the relation

U ′(1)
U(1)

>
V ′(1)
V (1)

(5.31)

holds. By letting ε tend to 0, the quantity V ′(1)
V (1) tends to −∞ because G2(z) tends to q(z)− ρ1 and by

assumption, V (1) = 0 in this case. Furthermore, for small values of ε , the function V is strictly positive,

so the only way to go to zero for z = 1 is that V decreases. Hence, V ′(1) is negative.

We will now choose ε sufficiently small such that

V ′(1)
V (1)

<−a∗ <−Pe
2
, (5.32)

where a∗ is a strictly positive and real constant. As ρ starts at ρ1− ε and further decreases, U ′(1)
U(1) va-

ries continuously from −a∗ to a positive value 3 and must pass through −Pe
2 because of the boundary

3. Since ρ decreases, the function V shows less and less oscillations to remain striclty positive. Consequently, during the
process, the only zero of U (for z = 1) becomes « less and less » a zero and the slope of U for z = 1 becomes less and less
negative and even positive.
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condition
dφn

dz
(1) =−Pe

2
φn(1).

When the quantity U ′(1)
U(1) is equal to −Pe

2 , the value of ρ is negative. At that moment, there is a negative

eigenvalue for equations 4 (5.24). Remember that we started by assuming that the solution of (5.26) pos-

sesses at least one zero in [0,1]. In that case, we showed that, by construction, at least one eigenvalue of

(5.24) was negative, which provides instability.

The next step consists of assuming that the solution of (5.26) does not vanish on [0,1]. In this case, if that

solution, denoted by v(z), satisfies
v′(1)
v(1)

<−Pe
2
, (5.33)

then there is a negative eigenvalue. To prove this, consider again G2(z) = q(z) and G1(z) = q(z)− ρ

(ρ ≤ 0) whose solutions are v(z) and u(z) respectively. Since by assumption v(z) does not vanish on

[0,1] and since G1(z)> G2(z), the inequality

u′(1)
u(1)

≥ v′(1)
v(1)

(5.34)

holds by Lemma 4. As ρ starts at 0 and becomes −∞, u′(1)
u(1) increases continuously varying from v′(1)

v(1) <

−Pe
2 to a positive number when ρ is very large and negative. Holding a same reasoning as before, there

must be a negative eigenvalue for which

u′(1)
u(1)

=−Pe
2
.

Hence, the system is unstable. The only possibility to get stability is that both the solution of (5.24),

denoted by u(z), does not vanish on [0,1] and u′(1)
u(1) ≥−Pe

2 . �

To go further in the analysis of the stability of an equilibrium profile in a nonisothermal axial dispersion

tubular reactor, we present a numerical method introduced in (McGowin and Perlmutter, 1970), known

as Galerkin’s method or Weighted Residuals method. The leading idea of this method is to work in a

finite-dimensional framework by making approximation estimates of the solution of (5.23). To construct

this method, we first consider again the PDE (5.18) in which we estimate the solution ξ̂1 by a trial one,

which is given by

ξ̃1(t,z) =
m

∑
n=1

αn(t)φn(z), (5.35)

i.e. we take the exact solution (5.25) in which we troncate the serie expansion by a finite sum. The more

m tends to +∞, the more ξ̃1 provides a good approximation of ξ̂1. Note that the trial solution (5.35)

satisfies the boundary conditions of (5.18). The aim of the method is to rewrite (5.22) as a system

ẋ = Ax (5.36)

4. Notice that the eigenvalues are {λn}n∈N. Hence, a « negative » eigenvalue is symbolized by a positive value of −λn (for
a given n), which means that the system is unstable.
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where A is a finite dimensional matrix in Rm×m and where the i−th element of vector x is αi(t). Once the

matrix A is built, there is only to look at its eigenvalues which caracterize the modes of the dynamical

system (5.36). Hence, the equilibrium profile is exponentially stable if the biggest real part of these

eigenvalues is strictly negative and unstable otherwise. In order to obtain the system (5.36), we define

the error residuals that results from the approximation (5.35) and which is given by

Γξ1(z) =
∂ ξ̃1

∂ t
− 1

Pe
∂ 2ξ̃1

∂ z2 +q(z)ξ̃1

=
m

∑
n=1

dαn

dt
(t)φn(z)−

1
Pe

m

∑
n=1

αn(t)
d2φn

dz2 (z)+q(z)
m

∑
n=1

αn(t)φn(z).

The Galerkin’s method, see (McGowin and Perlmutter, 1970), makes these residuals orthogonal to the

eigenfunctions {φn(z)}m
n=1, i.e. 〈Γξ1 ,φn〉L2(0,1) = 0 for n = 1, . . . ,m. Developping this relation, we have

∫ 1

0
Γξ1(z)φn(z)dz = 0, n = 1, . . . ,m. (5.37)

Expliciting the orthogonality for the i−th eigenvector, it yields the following

∫ 1

0

[
m

∑
n=1

dαn

dt
(t)φn(z)

]
φi(z)dz− 1

Pe

∫ 1

0

[
m

∑
n=1

αn(t)
d2φn

dz2 (z)

]
φi(z)dz

+
∫ 1

0

[
q(z)

m

∑
n=1

αn(t)φn(z)

]
φi(z)dz = 0

⇔
m

∑
n=1

dαn

dt
(t)
∫ 1

0
φn(z)φi(z)dz =

1
Pe

m

∑
n=1

αn(t)
∫ 1

0

d2φn

dz2 (z)φi(z)dz−
m

∑
n=1

αn(t)
∫ 1

0
q(z)φn(z)φi(z)dz.

(5.38)

The following step consists of using the orthogonality of the eigenfunctions φn(z), i.e.

∫ 1

0
φn(z)φi(z)dz =Cnδni (5.39)

and the fact that
d2φn

dz
(z) =−β

2
n Peφn(z). (5.40)

Plugging (5.39) and (5.40) in (5.38), we have that

∫ 1

0
Γξ1(z)φi(z)dz = 0

⇔
m

∑
n=1

dαn

dz
(t)Cnδni =

1
Pe

m

∑
n=1
−β

2
n Peαn(t)Cnδni−

m

∑
n=1

F(i,n)αn(t)

⇔dαi

dt
(t) =−β

2
i αi(t)−

1
Ci

m

∑
n=1

F(i,n)αn(t),

where

F(i, j) =
∫ 1

0
q(z)φi(z)φ j(z)dz.
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Defining xi = αi(t) and Ai j = −β 2
i δi j− 1

Ci
F(i, j) for i, j = 1, . . . ,m, (5.36) is reached. This numerical

method is summarized as an algorithm, see Algorithm 1.

Algorithm 1: Galerkin’s method applied to the TRAD for equal Peclet numbers

1 Fix m, the number of terms in the trial solution

2 Compute βi, i = 1, . . . ,m solutions of tan
(
β
√

Pe
)
= 4β

√
Pe

4β 2−Pe

3 Compute φi(z) and Ci, i = 1, . . . ,m such that φi(z) = βi
√

Pecos
(
βi
√

Pez
)
+ Pe

2 sin
(
βi
√

Pez
)

and
〈φi,φi〉L2(0,1) =Ci

4 Compute q(z) = Pe
4 −G2(z)−δG1(z) where

G2(z) =−
k0L
v

e
−µ

1+x?1(z) ,G1(z) =−
G2(z)(1− x?2(z))µ

(1+ x?1(z))
2

and where x?1(z) and x?2(z) are the approximated expressions of the equilibrium profiles given by
(4.15)

5 Compute F(i, j), i, j = 1, . . . ,m by ∫ 1

0
q(z)φi(z)φ j(z)dz

6 Compute the matrix A ∈Rm×m whose entries are given by Ai j =−β 2
i δi j− 1

Ci
F(i, j), i, j = 1, . . . ,m

7 Compute
λ
? = max

λ∈σ(A)
Re(λ )

where σ (A) is the set of eigenvalue of the matrix A
8 If λ ? < 0, the equilibrium profile is exponentially stable. Else, it is unstable.

To illustrate all these theoretical and numerical considerations, we present different numerical simula-

tions, both in the case of only one equilibrium profile and in the case of three equilibrium profiles.

5.4.1 Numerical simulations : one equilibrium profile

By (Varma and Aris, 1977, Section 2.5.2.1.), it is well-known that in the case of only one equilibrium

profile (ρ = 0, see equation (4.8)), the latter is always exponentially stable. We will take a set of para-

meters wich gives only one equilibrium profile and see what happens in this case with the different tools

presented here before to study the stability. The first test we present is the representation of function ξ̂1 as

a function of t and z and the representation of
∥∥∥ξ̂1(t, .)

∥∥∥
L2

as a function of t. The stability can already be

detected by these considerations. We take µ = 6 and δ = 2 such that ρ = 0 (see equation (4.8), it means

that the system can exhibit only one equilibrium profile). We choose as velocity 0.02 and as diffusion

coefficient 0.1 such that Pe = 0.2. In this case, the value of a for this equilibrium is 1.685. The functions

ξ̂1(t,z) and
∥∥∥ξ̂1(t, .)

∥∥∥
L2

are depicted in Figures 5.1 and 5.2 respectively. Note also that the choosen initial

condition is ξ̂1(0,z) =−sin(4π z)+1.

At the sight of these two graphs, it can be easily seen that the considered equilibrium profile is expo-

nentially stable. To support this first idea, we use Theorem 10. The representation of function p(z) can

Dynamical analysis of a nonisothermal axial dispersion reactor — A. HASTIR 58



Chapter 5. Stability of the equilibrium profiles

be seen on figure 5.3. Furthermore, the value d p
dz (1)+

Pe
2 p(1) is 1.07 in this case. With these two new

elements, it appears that the equilibrium profile is exponentially stable.

The last test that was established was the computation of λ ? (see Algorithm 1). This value is equal to

−4.478 which means that once again, the equilibrium profile is detected as exponentially stable.

5.4.2 Numerical simulations : three equilibrium profiles

In this section, we will establish the same tests as in the previous one : the numerical integration of the

PDE (5.23) with appropriated boundary conditions, the use of Theorem 10 and the execution of Algo-

rithm 1. All these tests will be performed on each of the three equilibria (ρ > 0, see equation (4.8)).

Notice also that the same quantities as before are represented in this section. By (Varma and Aris, 1977,

Section 2.5.2.1.), in the case of three equilibria, they are alternatively exponentially stable and unstable,

with the pattern « stable - unstable - stable ». We take as parameters µ = 9,δ = 3(ρ = 297). The velocity

v is fixed at 0.00815 and the diffusion coefficient D is equal set to 0.1. In such a way, Pe = 0.0815. The

first value of a that reaches the choosen value of v is 0.098 (this value corresponds to the first equili-

brium profile). The choosen initial condition is the same as in the case of only one equilibrium profile,

ξ̂1(0,z) =−sin(4πz)+1.

Looking at the Figures 5.4 and 5.5, it can be seen that the first equilibrium is detected as exponentially

stable by the numerical integration. Using Theorem 10 and by looking at Figure 5.6, it turns out that this

equilibrium is exponentially stable. Computing the value d p
dz (1)+

Pe
2 p(1), we obtain 0.0264. We conclude

the exponentially stability by Theorem 10. Finally, executing Algorithm 1 on this equilibrium, the value

λ ? found is −0.3183 which supports once again the exponential stability.

The second value of a that reaches the velocity is 0.0244 and caracterizes the second equilibrium profile.

All other parameters remain unchanged. The numerical integration reveals an unstable behaviour (see

Figures 5.7 and 5.8). Using Theorem 10 and looking only at the graph of p(z) (see Figure 5.9), one

cannot conclude the unstability but the value d p
dz (1)+

Pe
2 p(1) is −0.0248, which provides unstability of

this equilibrium profile. Computing the value λ ? of Algorithm 1, one finds 0.3021 which means that at

least one eigenvalue of (5.23) is positive. Hence, the equilibrium profile is unstable.

As exposed in (Varma and Aris, 1977, Section 2.5.2.1.), the last equilibrium profile is expected to be

exponentially stable. In this case, the value of a is 2.753. Firstly, Figures 5.10 and 5.11 (numerical in-

tegration) point in this direction. Applying Theorem 10, function p(z) is strictly positive on the interval

[0,1] (see Figure 5.12) and the value d p
dz (1)+

Pe
2 p(1) is 0.9295. The Theorem confirms exponential stabi-

lity. The dominant eigenvalue λ ? is equal to −9.8844, which means the same conclusion. Note also that

λ ? tells us information on the speed of convergence or divergence of the state trajectories. More negative

this value is, faster the state trajectory goes exponentially fast to 0 and more positive it is, faster the state

diverges.
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In conclusion, one can say with relatively high certainty that both numerical and theoretical results agree

and are also consistent with the theory first presented in (Amundson, 1965) and recalled in (Varma and

Aris, 1977, Section 2.5.2.1.).
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Fig. 5.1 – Function ξ̂1(t,z) for µ = 6,δ = 2,a =
1.685.
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Fig. 5.2 – L2−norm of ξ̂1(t, .) for µ = 6,δ =
2,a = 1.685.
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Fig. 5.3 – The function p(z) of Theorem 10 for µ = 6,δ = 2,a = 1.685.
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Fig. 5.4 – Function ξ̂1(t,z) for µ = 9,δ = 3,a =
0.098.
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Fig. 5.5 – L2−norm of ξ̂1(t, .) for µ = 9,δ =
3,a = 0.098.
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Fig. 5.6 – The function p(z) of Theorem 10 for µ = 9,δ = 3,a = 0.098.
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Fig. 5.7 – Function ξ̂1(t,z) for µ = 9,δ = 3,a =
0.244.
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Fig. 5.8 – L2−norm of ξ̂1(t, .) for µ = 9,δ =
3,a = 0.244.
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Fig. 5.9 – The function p(z) of Theorem 10 for µ = 9,δ = 3,a = 0.244.
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Fig. 5.10 – Function ξ̂1(t,z) for µ = 9,δ =
3,a = 2.753.
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Fig. 5.11 – L2−norm of ξ̂1(t, .) for µ = 9,δ =
3,a = 2.753.
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Fig. 5.12 – The function p(z) of Theorem 10 for µ = 9,δ = 3,a = 2.753.

5.5 Case 2 : Peh 6= Pem

In this section, the same analysis as in the previous section is presented but with different Peclet num-

bers. The first big difference is that, as for the existence of equilibrium profiles, the change of variables

(5.17) is no more possible and one has to consider the whole system (5.14) for the stability analysis.

However, the eigenvalues approach is preserved since (5.14) is a coupled parabolic system of PDEs. In

the same way of Theorem 10, we present a result from (Nishimura and Matsubara, 1969, Theorem 3) to

get exponential stability. The problem is that this result provides only sufficient conditions which require

numerical simulations that can be very expensive. In such a way, this will not be computed in practice
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in this section. The two remaining approaches will be the numerical integration of (5.14) and the nume-

rical Galerkin’s method presented for the case Peh = Pem. Therefore, we extend the method to a more

technical one, especially due to the fact that one has two coupled PDEs instead of only one (necessarily

uncoupled). Some numerical simulations will be presented and it will notably be shown that the previous

pattern of « stable - unstable - stable » is not necessarily satisfied in the case of different Peclet numbers.

We start by stating sufficient conditions which provide exponential stability of an equilibrium profile, see

(Nishimura and Matsubara, 1969, Theorem 3).

Theorem 11. Let v1(z) and v2(z) be the solutions of the linear ODE

P
dv
dz
−Q(z)v = 0, z ∈ [0,1] (5.41)

with initial conditions

v1(0) =

[
1

0

]
,
dv1

dz
(0) =

[
Peh
2

0

]
(5.42)

and

v2(0) =

[
0

1

]
,
dv2

dz
(0) =

[
0

Pem
2

]
, (5.43)

where

P =

[
1

Peh
0

0 1
Pem

]
and Q(z) =

[
Peh
4 −δG1(z) −δ Ĝ2(z)

−Ĝ1(z) Pem
4 −G2(z)

]
, (5.44)

where G1, Ĝ1,G2 and Ĝ2 are the functions whose expressions are given by (5.15) and (5.16). Let V (z)

be the matrix composed as
[
v1 v2

]
. Then, a sufficient condition for the equilibrium profile under

consideration to be exponentially stable is that both of the following conditions hold simultaneously.

• V (z) is nonsingular on z ∈ [0,1],

• V ′(1)+AV (1)≥ 0 where A = diag
(

Peh
2 , Pem

2

)
.

This result is not proven here. We notice the similarity of this result with Theorem 10. It comes mainly

from the fact that stability is still addressed by an eigenvalue problem. Theorem 11 is the vectorial exten-

sion of Theorem 10. We notice also that the numerical computation of this theorem will not be performed,

for the reason that it is relatively expensive from an algorithmic point of view, especially the first condi-

tion. It requires the test of the nonsingularity of the matrix V (z) for each z ∈ [0,1], which is impossible

to do. Even for a discrete set of points in the interval [0,1], this can be very hard to perform in many cases.

In this way, we shall consider the previous Galerkin’s method extended to different Peclet numbers. As

previously said, the change of variable (5.17) is no more possible and the functions Ĝ1 and Ĝ2 cannot be

simplified. In order to develop the Galerkin’s method for different Peclet numbers, we still approximate
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the solutions ξ̂1 and ξ̂2 of equations (5.14) by trial ones, noted ξ̃1, ξ̃2 and given by

ξ̃1(z, t) =
m

∑
n=1

α
n
1 (t)φ

n
1 (z)

ξ̃1(z, t) =
m

∑
n=1

α
n
2 (t)φ

n
2 (z),

where the functions αn
1 (t) and αn

2 (t) are expressed as e−λ n
1 t and e−λ n

2 t up to a multiplicative constant

where {λ n
1 }m

n=1 ,{λ n
2 }m

n=1 are the set of eigenvalues associated to ξ̃ n
1 and ξ̃ n

2 respectively. As for equal

Peclet numbers, the functions φ n
1 and φ n

2 are the eigenfunctions associated to λ n
1 and λ n

2 respectively and

are given by

φ
n
1 (z) = β

n
1

√
Peh cos

(
β

n
1

√
Pehz

)
+

Peh

2
sin
(

β
n
1

√
Pehz

)

φ
n
2 (z) = β

n
2
√

Pem cos
(
β

n
2
√

Pemz
)
+

Pem

2
sin
(
β

n
2
√

Pemz
)
,

where {β n
1 }m

n=1 and {β n
1 }m

n=1 are solutions of the resolvent equations

tan
(

β
√

Peh

)
=

4β
√

Peh

4β 2−Peh

tan
(
β
√

Pem
)
=

4β
√

Pem

4β 2−Pem

respectively. For different Peclet numbers, the equations (5.14) reduce to a matrix system of the form

ẋ = Ax

but the matrix A is now a real 2m×2m matrix 5 and the vector x is
(

α1
1 (t) . . . αm

1 (t) α1
2 (t) . . . αm

2 (t)
)

.

The target is still to estimate the dominant real part of eigenvalues of matrix A. If it is negative, the equili-

brium profile under consideration will be stable. Otherwise, it will be unstable. We shall follow the same

steps as for equal Peclet numbers, i.e. developing the orthogonality between the error residuals associa-

ted to ξ̃1 and ξ̃2 with the eigenvector φ n
1 and φ n

2 respectively. The matrix A will be computed using these

considerations. Formally, we first explicit the error residuals due to the approximations of functions ξ̂1

and ξ̂2. These are noted Γ
ξ̂1
(z),Γ

ξ̂2
(z) and given by

Γ
ξ̂1
(z) =

∂ ξ̃1

∂ t
− 1

Peh

∂ 2ξ̃1

∂ z2 +
Peh

4
ξ̃1−δG1(z)ξ̃1−δ Ĝ2(z)ξ̃2

=
m

∑
n=1

dαn
1

dt
(t)φ n

1 (z)−
1

Peh

m

∑
n=1

α
n
1 (t)

d2φ n
1

dz2 (z)+
Peh

4

m

∑
n=1

α
n
1 (t)φ

n
1 (z)−δG1(z)

m

∑
n=1

α
n
1 (t)φ

n
1 (z)

−δ Ĝ2(z)
m

∑
n=1

α
n
2 (t)φ

n
2 (z)

5. Because of the fact that the considered PDEs are coupled and cannot be uncoupled since the change of variables (5.17)
makes no sense.
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and

Γ
ξ̂2
(z) =

∂ ξ̃2

∂ t
− 1

Pem

∂ 2ξ̃2

∂ z2 +
Pem

4
ξ̃2− Ĝ1(z)ξ̃1−G2(z)ξ̃2

=
m

∑
n=1

dαn
2

dt
(t)φ n

2 (z)−
1

Pem

m

∑
n=1

α
n
2 (t)

d2φ n
2

dz2 (z)+
Pem

4

m

∑
n=1

α
n
2 (t)φ

n
2 (z)− Ĝ1(z)

m

∑
n=1

α
n
1 (t)φ

n
1 (z)

−G2(z)
m

∑
n=1

α
n
2 (t)φ

n
2 (z).

The orthogonality between Γ
ξ̂1
(z),Γ

ξ̂2
(z) and φ n

1 (z) and φ n
2 (z) is expressed as

〈
Γ

ξ̂1
,φ n

1

〉
L2(0,1)

= 0 and
〈

Γ
ξ̂2
,φ n

2

〉
L2(0,1)

= 0. Developing the first orthogonality relation with the i−th eigenvector yields

∫ 1

0

[
m

∑
n=1

dαn
1

dt
(t)φ n

1 (z)

]
φ

i
1(z)dz− 1

Peh

∫ 1

0

[
m

∑
n=1

α
n
1 (t)

d2φ n
1

dz2 (z)

]
φ

i
1(z)dz

+
Peh

4

∫ 1

0

[
m

∑
n=1

α
n
1 (t)φ

n
1 (z)

]
φ

i
1(z)dz−

∫ 1

0

[
δG1(z)

m

∑
n=1

α
n
1 (t)φ

n
1 (z)

]
φ

i
1(z)dz

−
∫ 1

0

[
δ Ĝ2(z)

m

∑
n=1

α
n
2 (t)φ

n
2 (z)

]
φ

i
1(z)dz = 0. (5.45)

Taking into account the expression of the eigenvector φ n
1 (z), the relation

d2φ n
1

dz2 (z) =−(β n
1 )

2 Pehφ
n
1 (z) (5.46)

holds. Noticing that {φ n
1 }m

n=1 forms an orthogonal basis of functions with respect to the inner product in

L2(0,1), (5.45) becomes

m

∑
n=1

dαn
1

dt
(t)
∫ 1

0
φ

n
1 (z)φ

i
1(z)dz =

1
Peh

m

∑
n=1
−(β n

1 )
2

α
n
1 (t)

∫ 1

0
φ

n
1 (z)φ

i
1(z)dz− Peh

4

m

∑
n=1

α
n
1 (t)

∫ 1

0
φ

n
1 (z)φ

i
1(z)dz

+δ

m

∑
n=1

α
n
1 (t)

∫ 1

0
G1(z)φ n

1 (z)φ
i
1(z)dz+δ

m

∑
n=1

α
n
2 (t)

∫ 1

0
Ĝ2(z)φ n

2 (z)φ
i
1(z)dz

⇔
m

∑
n=1

dαn
1

dt
(t)Ci

1δni =
1

Peh

m

∑
n=1
−(β n

1 )
2

αn(t)Ci
1δni−

Peh

4

m

∑
n=1

αn(t)Ci
1δni

δ

m

∑
n=1

α
n
1 (t)

∫ 1

0
G1(z)φ n

1 (z)φ
i
1(z)dz+δ

m

∑
n=1

α
n
2 (t)

∫ 1

0
Ĝ2(z)φ n

2 (z)φ
i
1(z)dz

⇔ dαi

dt
(t) =−

[(
β i

1

)2

Peh
+

Peh

4

]
αi(t)+δ

m

∑
n=1

G1(i,n)αn
1 (t)+δ

m

∑
n=1

Ĝ2(i,n)αn
2 (t), (5.47)

where

〈
φ

i
1,φ

n
1
〉

L2(0,1) =Ci
1δin,G1(i,n) =

1
Ci

1

∫ 1

0
G1(z)φ n

1 (z)φ
i
1(z)dz, Ĝ2(i,n) =

1
Ci

1

∫ 1

0
Ĝ2(z)φ n

2 (z)φ
i
2(z)dz.
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Holding a similar reasoning for the equation
〈

Γ
ξ̂2
,φ n

2

〉
L2(0,1)

= 0 gives us

dα i
2

dt
=−

[(
β i

2

)2

Pem
+

Pem

4

]
α

i
2(t)+

m

∑
n=1

Ĝ1(i,n)αn
1 (t)+

m

∑
n=1

G2(i,n)αn
2 (t), (5.48)

where

〈
φ

i
2,φ

n
2
〉

L2(0,1) =Ci
2δin, Ĝ1(i,n) =

1
Ci

2

∫ 1

0
Ĝ1(z)φ n

1 (z)φ
i
2(z)dz,G2(i,n) =

1
Ci

2

∫ 1

0
G2(z)φ n

2 (z)φ
i
2(z)dz.

The equations (5.47) and (5.48) can be written in the form ẋ(t) = Ax(t) where

x(t) =
(

α1
1 (t) . . . αm

1 (t) α1
2 (t) . . . αm

2 (t)
)

and

A=




δG1(1,1) . . . δG1(1,m) δ Ĝ2(1,1) . . . δ Ĝ2(1,m)
...

. . .
...

...
. . .

...

δG1(m,1) . . . δG1(m,m) δ Ĝ2(m,1) . . . δ Ĝ2(m,m)

Ĝ1(1,1) . . . Ĝ1(1,m) G2(1,1) . . . G2(1,m)
...

. . .
...

...
. . .

...

Ĝ1(m,1) . . . Ĝ1(m,m) G2(m,1) . . . G2(m,m)




+diag
(
−
(
(β 1

1 )
2

Peh
+ Peh

4

)
. . . −

(
(β m

1 )
2

Peh
+ Peh

4

)
−
(
(β 1

2 )
2

Pem
+ Pem

4

)
. . . −

(
(β m

2 )
2

Pem
+ Pem

4

))
.

(5.49)

As for equal Peclet numbers, the Galerkin’s method is recalled in an algorithm (see Algorithm 2) in order

to implement it.

Notice that this numerical method provides necessary and sufficient conditions to prove exponential sta-

bility. The method has been computed for different sets of parameters, notably for either one equilibrium

profile or three. Therefore, numerical simulations are available in the next section.

5.5.1 Numerical simulations : one equilibrium profile

In this section, we shall present numerical simulations for which the reactor can exhibit only one equili-

brium profile. In particular, it is shown, as in the case of equal Peclet numbers, that the equilibrium profile

is exponentially stable. We choosed as parameters µ = 6,δ = 2. The velocity of the chemical reaction is

fixed to v = 0.015, the diffusion coefficients are D1 = 0.1 and D2 = 10, and the coefficient kp := ρCp is

equal to 15 such that Peh = 2.25 and Pem = 0.0015. The two first represented quantities are ξ̂1 and ξ̂2 as

functions of the spatial variable z and the temporal variable t. We represent also the L2×L2−norm of the

vector ξ̂ =
[
ξ̂1 ξ̂2

]T
. Notice that the functions ξ̂1 and ξ̂2 are the one introduced in (5.14). The initial
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Algorithm 2: Galerkin’s method applied to the TRAD for different Peclet numbers

1 Fix all the parameters, i.e. µ,δ ,v,k0,L,D1,D2,kp

2 Compute the quantity ρ = µδ (µδ −4δ −4). If it is 0, the reactor can exhibit only one
equilibrium profile. Else, if it is strictly positive, one can observe three equilibria. In both cases,
compute the value(s) of a such that

k0L(δ −a)e
−µ

1+a

a
= v

3 Compute the Peclet numbers like Peh =
vkp
D1

,Pem = v
D2

4 Fix m, the number of terms in the trial solution

5 Compute β i
1,β

i
2, i = 1, . . . ,m solutions of tan

(
β
√

Peh
)
= 4β

√
Peh

4β 2−Peh
and tan

(
β
√

Pem
)
= 4β

√
Pem

4β 2−Pem
respectively

6 Compute φ i
1(z),φ

i
2,C

i
1 and Ci

2, i = 1, . . . ,m such that

φ
i
1(z) = β

i
1

√
Peh cos

(
β

i
1

√
Peh z

)
+

Peh

2
sin
(

β
i
1

√
Peh z

)
,

φ
i
2(z) = β

i
2
√

Pem cos
(
β

i
2
√

Pem z
)
+

Pem

2
sin
(
β

i
2
√

Pem z
)
,

〈φ i
1,φ

i
1〉L2(0,1) =Ci

1 and 〈φ i
2,φ

i
2〉L2(0,1) =Ci

2

7 Compute G1(z), Ĝ1(z),G2(z) and Ĝ2(z) where

G2(z) =−
k0L
v

e
−µ

1+x?1(z) ,G1(z) =−
G2(z)(1− x?2(z))µ

(1+ x?1(z))
2

Ĝ1(z) = G1(z)e
(Peh−Pem)z

2 , Ĝ2(z) = G2(z)e
(Pem−Peh)z

2

and where x?1(z) and x?2(z) are the approximated expressions of the equilibrium profiles given by
(4.25)

8 Compute G1(i, j), Ĝ1(i, j),G2(i, j) and Ĝ2(i, j), i, j = 1, . . . ,m by

G1(i, j) =
1

Ci
1

∫ 1

0
G1(z)φ j(z)φi(z)dz, Ĝ1(i, j) =

1
Ci

2

∫ 1

0
Ĝ1(z)φ

j
1 (z)φ

i
2(z)dz,

G2(i, j) =
1

Ci
2

∫ 1

0
G2(z)φ

j
2 (z)φ

i
2(z)dz, Ĝ2(i, j) =

1
Ci

1

∫ 1

0
Ĝ2(z)φ

j
2 (z)φ

i
1(z)dz.

9 Compute the matrix A ∈ R2m×2m whose entries are given by

Ai j =





δG1(i, j)−
(
(β i

1)
2

Peh
+ Peh

4

)
δi j, 1≤ i, j ≤ m

δ Ĝ2(i, j−m), 1≤ i≤ m,m+1≤ j ≤ 2m
Ĝ1(i−m, j), m+1≤ i≤ 2m,1≤ j ≤ m

G2(i−m, j−m)−
(
(β i

2)
2

Pem
+ Pem

4

)
δi j, m+1≤ i, j ≤ 2m

(5.50)

10 Compute
λ
? = max

λ∈σ(A)
Re(λ )

where σ (A) is the set of eigenvalue of the matrix A
11 If λ ? < 0, the equilibrium profile is exponentially stable. Else, it is unstable.
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conditions for the simulation are ξ̂1(0,z) =−sin(8πz)+1 and ξ̂2(0,z) =−cos(4πz)+1. The value of a

that reaches the velocity is 1.7683.
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Fig. 5.13 – Function ξ̂1(t,z) for µ = 6,δ =
2,a = 1.7683.
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Fig. 5.14 – Function ξ̂2(t,z) for µ = 6,δ =
2,a = 1.7683.
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Fig. 5.15 – L2×L2−norm of ξ̂ (t, ·) for µ = 6,δ = 2,a = 1.7683.

At the sight of these graphs, it is quite evident that the considered equilibrium profiles is exponentially

stable. To confort this idea, the value λ ? has been computed following Algorithm 2. It is equal to−2.1474

in that case, which provides again exponential stability. More numerical simulations has been treated but

only one is shown for a matter of convenience and all of these simulations exhibited exponential stability,

like in the case of equal Peclet numbers.
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5.5.2 Numerical simulations : three equilibrium profiles

Unlike the case of equal Peclet numbers, there is no predetermined pattern for the stability of the equi-

librium profiles for different Peclet numbers. However, in the performed numerical simulations, one can

observe two different behaviors : « stable – unstable – stable » (like for equal Peclet numbers) or « stable

– stable – stable ». We do not have theoretical results to support these phenomena but we will give the

intuition to reach one pattern rather than another.

Notice that we show the same quantities as in the previous section with different parameters. We shall

present first a set of simulations for which the Peclet numbers are far apart. Then, we will change the

diffusion coefficients and the value of kp to get closer Peclet numbers but still well different. The initial

conditions remain also the same as previously. The choosen coefficients are µ = 9,δ = 3,v = 0.0015.

The three values of a that reach the velocity of the reaction are 0.0984,0.244 and 2.753 respectively. For

the first set of simulations, the diffusion coefficients D1 and D2 and the value of kp are 0.1,20 and 12

respectively such that Peh = 0.978 and Pem = 0.0004075.

In that case, the three equilibria are detected as exponentially stable by the numerical integration, see Fi-

gures 5.16, 5.17, 5.18 for the first equilibrium (a = 0.0984), Figures 5.19, 5.20, 5.21 for the second one

(a = 0.244) and Figures 5.22, 5.23, 5.24 for the last one (a = 2.753). That pattern could not be found in

the case of equal Peclet numbers. The exponential stability of the middle equilibrium is due to the « dis-

tance » between the Peclet numbers, which is quite considerable in this case. We will show with the next

set of parameters, choosen to bring the Peclet numbers closer, that the middle equilibrium is unstable,

like in the case of equal Peclet numbers. Notice also that this is just an intuition and that no theoretical

result can assure that behaviour. Like for only one equilibrium, the value of λ ? has been computed for

the three equilibria. These are given respectively by −0.0797,−0.0156 and −1.5013, which is coherent

with the numerical integration and also with the speed of exponential convergence of the trajectories to

0, see therefore the different figures in question in the begining of this paragraph. More λ ? is negatively

large, more the trajectories converge fast to 0.

We shall now consider the second set of parameters which gives us the other pattern of stability for the

equilibrium profiles, « stable – unstable – stable », the same as that for equal Peclet numbers. The para-

meters µ,δ and v remains unchanged. In this way, the three values of a that reach the velocity remain

also unchanged. As regards the diffusion coefficients and the coefficient kp, these are set at 0.1,0.2 and

3 respectively such that the Peclet numbers are Peh = 0.2445 and Pem = 0.0407. One can see that in

this case, they are quite closer than in the previous one and this is the main reason for which the middle

equilibrium is unstable. More the Peclet numbers are close, more the change of variables (5.17) is fea-

sible and the conclusion of the case of equal Peclet numbers can be recovered. These considerations are

depicted on Figures 5.25, 5.26, 5.27 for the first equilibrium (exponentially stable), Figures 5.28, 5.29,

5.30 for the second equilibrium (unstable) and Figures 5.31, 5.32, 5.33 for the last one (exponentially

stable). Like in the previous cases, the values λ ? were computed for each equilibrium. These are given

by −0.3580,0.2362 and −1.0435 respectively, which bring us to the same conclusion for the stability.
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Remark also that these values are coherent with the speed of convergence/divergence.

All the previous remarks and conclusions are summarized in Table 5.1.

5.5.2.1 First pattern
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Fig. 5.16 – Function ξ̂1(t,z) for µ = 9,δ =
3,a = 0.0984, first pattern.
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Fig. 5.17 – Function ξ̂2(t,z) for µ = 9,δ =
3,a = 0.0984, first pattern.
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Fig. 5.18 – L2×L2−norm of ξ̂ (t, ·) for µ = 9,δ = 3,a = 0.0984, first pattern.
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Fig. 5.19 – Function ξ̂1(t,z) for µ = 9,δ =
3,a = 0.244, first pattern.
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Fig. 5.20 – Function ξ̂2(t,z) for µ = 9,δ =
3,a = 0.244, first pattern.
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Fig. 5.21 – L2×L2−norm of ξ̂ (t, ·) for µ = 9,δ = 3,a = 0.244, first pattern.
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Fig. 5.22 – Function ξ̂1(t,z) for µ = 9,δ =
3,a = 2.753, first pattern.
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Fig. 5.23 – Function ξ̂2(t,z) for µ = 9,δ =
3,a = 2.753, first pattern.
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Fig. 5.24 – L2×L2−norm of ξ̂ (t, ·) for µ = 9,δ = 3,a = 2.753, first pattern.
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5.5.2.2 Second pattern
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Fig. 5.25 – Function ξ̂1(t,z) for µ = 9,δ =
3,a = 0.0984, second pattern.
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Fig. 5.26 – Function ξ̂2(t,z) for µ = 9,δ =
3,a = 0.0984, second pattern.
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Fig. 5.27 – L2×L2−norm of ξ̂ (t, ·) for µ = 9,δ = 3,a = 0.0984, second pattern.
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Fig. 5.28 – Function ξ̂1(t,z) for µ = 9,δ =
3,a = 0.244, second pattern.
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Fig. 5.29 – Function ξ̂2(t,z) for µ = 9,δ =
3,a = 0.244, second pattern.
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Fig. 5.30 – L2×L2−norm of ξ̂ (t, ·) for µ = 9,δ = 3,a = 0.244, second pattern.
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Fig. 5.31 – Function ξ̂1(t,z) for µ = 9,δ =
3,a = 2.753, second pattern.
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Fig. 5.32 – Function ξ̂2(t,z) for µ = 9,δ =
3,a = 2.753, second pattern.
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Fig. 5.33 – L2×L2−norm of ξ̂ (t, ·) for µ = 9,δ = 3,a = 2.753, second pattern.
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Num. int. λ ? (Alg. 2)
µ = 6,δ = 2 (1 eq.) exp. stable −2.1472 (exp. stable)

µ = 9,δ = 3 (3 eq.)

Peh = 0.978
Pem = 4.075e−4
(1st pattern)

exp. stable −0.0797 (exp.stable)
exp.stable −0.0156 (exp.stable)
exp. stable −1.5013 (exp.stable)

Peh = 0.2445
Pem = 0.0407
(2nd pattern)

exp.stable −0.3580 (exp.stable)
unstable 0.2362 (unstable)
exp.stable −1.0435 (exp.stable)

TABLE 5.1 – Summary of the stability of equilibrium profiles for different Peclet numbers.

5.6 Case 3 : Peh = Pem +η

As for the existence of the equilibrium profiles in Chapter 4, the stability analysis for close Peclet num-

bers can be reduced to the same analysis as for different Peclet numbers. However, the change of variables

(5.17) is no more possible and only the Galerkin’s method is developed. We do not recall it. Notice also

that the numerical integration of the PDEs governing the model is still feasible in this case but reduces

also to the same case as for different Peclet numbers. The numerical simulations are not shown anymore.

However, as mentionned in the previous section (different Peclet numbers), the more the Peclet numbers

are close, i.e. the more η is close to 0, but still different, the more the central equilibrium (in the case of

three equilibrium profiles) is unstable and the more the case of equal Peclet is recovered. Due to these

similarities, we do not insist more on the exponential stability of equilibrium profiles for close Peclet

numbers.

To conclude this chapter, we would like to insist on the fact that most of the techniques used to detect

stability in a tubular reactor are numerical methods, especially for different Peclet numbers. An important

remark is that all the simulations made are coherent through each of the methods that are exposed. As

for equal Peclet numbers, an objective (and even a challenge) could be to investigate theoretical results

that provide necessary or sufficient conditions for which an equilibrium profile is exponentially stable or

unstable in the case of different Peclet numbers.
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Conclusion

In this master’s thesis, a dynamical analysis of a nonisothermal axial dispersion tubular reactor has been

envisaged. First, some concepts and basic notions of chemical engineering were recalled to get the reader

more familar with the framework. Then, the first part of the dynamical analysis, the well-posedness, has

been treated. A state space representation of the model has been constructed and the resulting abstract

differential equation has been shown to be well-posed, i.e. there exists a unique mild solution to it. The

port-Hamiltonian formalism has been notably addressed to show well-posedness of the linear part.

Next, the concepts of Riesz basis, Riesz spectral operators, Sturm-Liouville systems have been defined

and it has been shown that the system under study is exponentially stable using these different tools, i.e.

the norm of the state trajectory generated by the linear operator converges to zero exponentially fast.

The last part that has been considered is the analysis of the equilibrium profiles and can be decomposed

in two distinct ones. First, one addressed the existence and the multiplicity of these equilibrium profiles,

developing notably new theorems for the case of different or close Peclet numbers. To illustrate these

results, numerical simulations were also provided. Some approximated analytical forms of the equili-

brium profiles have been computed using perturbation theory. Then, the question of the stability of the

equilibrium profiles was investigated. A linearized model around an equilibrium was build and in parti-

cular, it was shown that it is well-posed. Next, some theoretical results concerning the stability in the case

of equal Peclet numbers were recalled and proven. A numerical method, known as Galerkin’s residuals

method, was also studied, first for equal Peclet numbers and secondly, an extension of this method was

developed for the case of different Peclet numbers. Numerical integration of the PDEs that describe the

dynamic was also performed and numerical simulations were depicted.

Perspectives

A non limited list of perspectives is provided below, in the continuity of this master’s thesis.

• The first perspective that could be investigated is the consolidation of additional theoretical results

to address the asymptotic or exponential stability of the equilibrium profiles. This is most for the

case of different Peclet numbers where more numerical methods are up to now envisaged. For

example, an indirect Lyapunov method could be considered, for which the theoretical foundations

are consolidated and clarified in (Al Jamar and Morris, 2018) for controlled dynamical systems

whose state space is an infinite-dimensional space.

• Another perspective is to look at the stability of the equilibrium profiles of the nonlinear PDEs des-

cribing the dynamic of the system under study. Unfortunately, an asymptotically or exponentially
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stable equilibrium of the linearized model is not necessarily a stable one for the nominal system.

Theoretical tools would be developed to lead such a study, mainly based on (Al Jamar and Morris,

2018), where the question is considered and where some results are already highlighted.

• This perspective is more challenging and consists in the conception of a control law for a class

of nonlinear distributed parameters systems described by reaction-convection-diffusion equations

and in particular for a nonisothermal chemical reactor with axial dispersion. The designed control

law would minimize the following cost functional

J(u,x,∞) =
1
2

∫
∞

0

[
‖Cx(t)‖2 +u(t)∗Qu(t)

]
dt,

where u denotes the control, x the state trajectory, C is the observation operator and Q is a positive-

definite weighting matrix. This kind of control is called LQ-optimal control. Due to the noniso-

thermal behavior of the system under considerations, the quantity that has to be controlled here

is the temperature. Under suitable assumptions, the LQ-optimal control law is known to be stabi-

lizable. The objectives are multiple. For example, one could stabilize an unstable equilibrium or

change the behavior of a stable one in order to have a higher margin of stability or to improve the

robustness, ... . In order to implement such a law, different approaches have to be envisaged. First,

we distinguish the action on the system : boundary control (control that acts on the border of the

domain) or distributed control (control that takes part of the dynamic, along the spatial domain).

These two controls are in this case the inlet temperature at the entrance of the reactor and the co-

oling temperature along the reactor respectively. Secondly, two methods can be studied to compute

the LQ-optimal control : one in the temporal domain based on the operatorial Riccati equation and

another in the frequency domain, the spectral factorization method. The main interests of these two

methods is that they make it possible to compute an optimal control law by state feedback and the

optimal corresponding cost. In that way, preliminary steps have also to be envisaged. One of them

is the well-posedness analysis of the linearized model around an equilibrium, which has already

been done in this master’s thesis. Further analysis as the study of the accessibility/controlability,

the exponential stabilizability, the observability or the exponential detectability have to be envisa-

ged.

This perspective would be an extension of many works that are present in the litterature. One can

find control (LQ-optimal) on a reaction – convection system with the nonlinearity but without

axial dispersion in (Aksikas et al., 2007). The control law is there computed via the Riccati equa-

tion and the spectral factorization method. LQ-optimal control has also been studied in (Dehaye

and Winkin, 2016; Dehaye, 2015) where the model of reaction – convection – diffusion is consi-

dered without nonlinearities and where the spectral factorization is privileged. In particular, the

boundary control for the whole model could be treated as an extension of the works made in (De-

haye and Winkin, 2016) by injecting it in the dynamic using a Dirac delta function in order to

render homogeneous the boundary conditions. An analysis of the well-posedness would also be

made in this case.
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This project would be first analysed for the nonisothermal axial dispersion tubular reactor and then,

it could be interesting to extend all the results on a whole class of distributed parameters systems

described by reaction – convection – diffusion PDEs with an additional nonlinearity, including for

example bioreactor models based on a kinetic of type « Haldane generalized ».
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Nomenclature

List of abbreviations

a.c. absolutely continuous

a.e. almost everywhere

CDR convection-diffusion-reaction

LQ linear quadratic

ODE ordinary differential equation

PDE partial differential equation

TRAD tubular reactor axial despersion

List of notations

ẋ(t) The time derivative of x with respect to t

(λ I−A)−1 The resolvent operator of the operator A, with λ ∈ ρ(A)

(T (t))t≥0 C0−semigroup of bounded linear operators

A The matrix A

C The set of complex numbers

R The set of real numbers

L(X ,Y ) The vector space of all bounded operators from X to Y

L(X) The vector space of all bounded operators from X to X

ρ(A) The resolvent set of the operator A

σ (A) The spectrum of the operator A

A The linear (unbounded) operator A

A? The topological adjoint of the operator A

D(A) The domain of the operator A

H1 ([a,b],W ) The Sobolev space of W−valued square integrable functions defined on [a,b] and

whose first order derivative is in L2([a,b],W )
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Nomenclature

H1 (a,b) The Sobolev space of complex-valued square integrable functions defined on [a,b] and

whose first order derivative is in L2(a,b)

I The identity operator

L2([a,b],W ) The Lebesgue space of W−valued square integrable functions defined on [a,b]

L∞ ([a,b],W ) The Lebesgue space of W -valued essentially bounded functions defined on [a,b]

L∞ (a,b) The Lebesgue space of complex-valued essentially bounded functions on [a,b]

Lp (a,b) The Lebesgue space of complex-valued p−integrable functions defined on [a,b]

N The nonlinear operator N
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Chapter A

Dissipativity of the operator A

Directly linked with Proposition 1, we give more details about the computation of Re〈(Ax)2,x2〉 for

x ∈ D(A). Keeping in mind (2.9) and (2.10), we have

Re〈(Ax)2,x2〉=Re

(∫ 1

0
(Ax)2(ζ )x2(ζ )dζ

)

=Re

(∫ 1

0

((
β1

d2

dζ 2 − d
dζ
− γI 0

0 β2
d2

dζ 2 − d
dζ

)(
x1

x2

))

2

(ζ )x2(ζ )dζ

)

=Re

(∫ 1

0

(
β2

d2x2

dζ 2 (ζ )−
dx2

dζ
(ζ )

)
(x2(ζ ))dζ

)

=Re

(∫ 1

0
β2x2(ζ )

d2x2

dζ 2 (ζ )dζ

)

︸ ︷︷ ︸
(a)

−Re

(∫ 1

0
x2(ζ )

dx2

dζ
(ζ )dζ

)

︸ ︷︷ ︸
(b)

.

(a) Denoting f = x2 and dg
dζ

= d2x2
dζ 2 , we have d f

dζ
= dx2

dζ
and g = dx2

dζ
. Integration by parts yields

∫ 1

0
β2x2(ζ )

d2x2

dζ 2 (ζ )dζ =

[
β1x2(ζ )

dx2

dζ
(ζ )

]1

0
−
∫ 1

0
β2

(
dx2

dζ
(ζ )

)2

dζ

= . . .

=−β
2
2

(
dx2

dζ
(0)
)2

− l2
1

where

l2
1 =

∫ 1

0
β2

(
dx2

dζ
(ζ )

)2

dζ .

(b) Let f = x2 and dg
dζ

= dx2
dζ

. Hence, d f
dζ

= dx2
dζ

and g = x2 hold. It follows that

∫ 1

0
x2(ζ )

dx2

dζ
(ζ )dζ =

[
x2

2(ζ )
]1

0
2

.

Consequently, one has

Re〈(Ax)2,x2〉=−β
2
2

(
dx2

dζ
(0)
)2

− l2
1 −

[
x2

2(ζ )
]1

0
2

=−β
2
2

(
dx2

dζ
(0)
)2

− l2
1 −

x2
2(1)
2

+
x2

2(0)
2

(2.10)
= −β

2
2

1
2

(
dx2

dζ
(0)
)2

− l2
1 −

x2
2(1)
2

≤ 0.
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Chapter B

Resolvent operator

This appendix is dedicated to the computation of the integral form of the resolvent operator of operator

A defined by (2.9) and (2.10). We first fix y = (y1 y2)
T ∈H = L2(0,1)×L2(0,1) and λ ∈ ρ(A) defined

by (3.17). Then, we will search x = (x1 x2)
T ∈ D(A) such that

(λ I−A)x = y. (B.1)

We first notice the similarity of this problem with the surjectivity of I−A, established in Chapter 2. In

particular, this similarity will be seen in the solution of (B.1). Developing that equation, one has

(λ I−A)x = y⇔
((

λ I 0

0 λ I

)
−
(

β1
d2

dζ 2 − d
dζ
− γI 0

0 β2
d2

dζ 2 − d
dζ

))(
x1

x2

)
=

(
y1

y2

)

⇔
(
−β1

d2

dζ 2 +
d

dζ
+(γ +λ )I 0

0 −β2
d2

dζ 2 +
d

dζ
+λ I

)(
x1

x2

)
=

(
y1

y2

)

⇔




−β1

d2x1
dζ 2 + dx1

dζ
+(γ +λ )x1 = y1

−β2
d2x2
dζ 2 + dx2

dζ
+λx2 = y2.

Once again, each of these second order ODEs is treated separately. Looking at the first one, which is

given by

−β1
d2x1

dζ 2 +
dx1

dζ
+(γ +λ )x1 = y1, (B.2)

we note u = dx1
dζ

and v = x1. The second order ODE can be expressed as a system of two first order ODEs,

whose expression is
d

dζ

(
u

v

)
=

(
1
β1

γ+λ

β1

1 0

)(
u

v

)
+

(
− 1

β1

0

)
y1. (B.3)

Let us denote by A1λ the matrix (
1
β1

γ+λ

β1

1 0

)

and by B1 the vector
(
− 1

β1
0
)T

. Hence, by using (Winkin, 2017, Chapter 2, page 45), one finds

(
u(ζ )

v(ζ )

)
= exp(A1λ ζ )

(
u0

v0

)
+
∫

ζ

0
exp(A1λ (ζ − z))B1y1(z)dz.
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Appendix B. Resolvent operator

It remains to adapt the vector
(

u0 v0

)T
taking the boundary conditions into account, whose are given

by D(A), i.e. by (2.10). It can be easily deduced from (2.10) that

β1u0 = v0. (B.4)

Next, we evaluate the vector
(

u(ζ ) v(ζ )
)T

in ζ = 1, which gives us

(
u(1)

v(1)

)
= exp(A1λ )

(
u0

v0

)
+
∫ 1

0
exp(A1λ (1− z))B1y1(z)dz. (B.5)

For a sake of readability, the matrix exp(A1λ ) is denoted by

(
aλ 11 aλ 12

aλ 21 aλ 22

)

and the notation wλ 1 =
(

wλ 11 wλ 12

)T
is introduced to express the vector

∫ 1

0
exp(A1λ (1− z))B1y1(z)dz.

All these considerations allow us to rewrite the first component of (B.5) as

0 = aλ 11u0 +aλ 12v0 +wλ 11. (B.6)

Putting (B.4) and (B.6) together yields





u0 =− wλ 11
aλ 11+aλ 12β2

,

v0 =− β1wλ 11
aλ 11+aλ 12β2

.

Taking into account that only the component v(ζ ) is usefull to express the solution of (B.2), one has

v(ζ ) = x1(ζ ) =−Mλζ 21
wλ 11

aλ 11 +aλ 12β1
−Mλζ 22

β1wλ 11

aλ 11 +aλ 12β1
+W(ζ )λ12

where

exp(A1λ ζ ) =

(
Mλζ 11 Mλζ 12
Mλζ 21 Mλζ 22

)

and ∫
ζ

0
exp(A1λ (ζ − z))B1y1(z)dz =

(
W(ζ )λ11

W(ζ )λ12

)
.

With regards to the equation

−β2
d2x2

dζ 2 +
dx2

dζ
+λx2 = y2, (B.7)

we allow ourselves not to repeat all the developments, these being similar to those previously exposed
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Appendix B. Resolvent operator

for the resolution of (B.2). However, the solution of (B.7) is given by

x2(ζ ) =−Nλζ 21
wλ 21

bλ 11 +bλ 12β2
−Nλζ 22

β2wλ 21

bλ 11 +bλ 12β2
+W(ζ )λ12

where

A2λ =

(
1
β1

γ+λ

β1

1 0

)
,wλ 2 =

(
wλ 21 wλ 22

)T
=
∫ 1

0
exp(A2λ (1− z))B2y2(z)dz,

exp(A2λ ζ ) =

(
Nλζ 11 Nλζ 12
Nλζ 21 Nλζ 22

)
and

∫
ζ

0
exp(A2λ (ζ − z))B2y2(z)dz =

(
W(ζ )λ11

W(ζ )λ12

)
.

Hence, the solution of (B.1) is given by

x(ζ ) =




x1(ζ )

x2(ζ )


=



−Mλζ 21

wλ 11
aλ 11+aλ 12β1

−Mλζ 22
β1wλ 11

aλ 11+aλ 12β1
+W(ζ )λ12

−Nλζ 21
wλ 21

bλ 11+bλ 12β2
−Nλζ 22

β2wλ 21
bλ 11+bλ 12β2

+W(ζ )λ12


 .
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Chapter C

Existence of equilibrium profiles

In this appendix, more detailed arguments are provided to the reader for the derivation of the main results

in Chapter 4.

C.1 Case 1 : Peh = Pem

First at all, we will develop only once the transition from Equations (4.1) to Equations (4.3). Note that

we denote Peh and Pem by Pe for simplicity of notation. The first change of variables is

y1 = x1, y2 = x1−δx2.

The first equation of (4.1) takes the form

1
Pe

d2y1

dz2 −
dy1

dz
+α (δ − y1 + y2)e

µy1
1+y1 = 0

and the second one becomes
d2y2

dz2 −Pe
dy2

dz
= 0.

The related boundary conditions are

dy1

dz
(0)−Pey1(0) =

dy1

dz
(1) = 0

and
dy2

dz
(0)−Pey2(0) =

dy2

dz
(1) = 0.

Using these conditions, it follows that y2 is the null function. Therefore,

1
Pe

d2y1

dz2 −
dy1

dz
+α (δ − y1)e

µy1
1+y1 = 0. (C.1)

Now let us introduce the functions

u(z) = y1(1− z), w =
dy1

dz
(1− z),

with a view to rewrite (C.1) as a system of two first order differential equations. Using the relation

Pe = v
D , one gets

du
dz

=−dy1

dz
=−w
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and

dw
dz

=−d2y1

dz

=− v
D

dy1

dz
+

v
D

α (δ − y1)e
µy1

1+y1

=− 1
D
(vw−g(u)) ,

where the function g is defined by

g(x) = vα (δ − x)e
µx

1+x .

In addition, the boundary conditions are derived as follows :

u(0) = y1(1) =: a,

w(0) =
dy1

dz
(1) = 0,

w(1) =
dy1

dz
(0) = Pey1(0) =

v
D

u(1).

In the proof of Proposition 1, when ρ > 0, for a matter of simplicity, an interval where the extrema are

located is considered in order to avoid the study of the second order derivative of the function v. It entails

three possibilities :

• a∗1 <−1 and a∗2 <−1 ;

• −1 < a∗1 and a∗2 < 0 ;

• 0 < a∗1 and 0 < a∗2.

Developing each of these inequations, it can be deduced that the two first possibilities lead to a contra-

diction, and thus the only possibility is the third one. To find the sets of feasible parameters, we combine

this double inequality with the positivity of ρ . Two cases should be distinguished :

• µδ > 0 and µδ −4δ −4 > 0 ;

• µδ < 0 and µδ −4δ −4 < 0.

This leads to the fact that µ (which should be positive, see Chapter 2) and δ have to satisfy either

δ > 0,µ > 4,δ (µ−4)> 4 (C.2)

or

δ <−2,µ > 2,µ +δ < 0,δ (µ−4)< 4. (C.3)

Noting that the coefficient of a2 in the first order derivative of v is −(µ +δ ), it is obvious that, in the

case (C.2), a∗1 corresponds to a minimum and a∗2 to a maximum and vice-versa for the case (C.3).
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Now we take a look at the last part of the proof of Lemma 1 concerning the case ρ = 0. Since the product

µδ cannot be zero from a physical point of view, it follows that

µδ −4δ −4 = 0,

which is equivalent to

δ =
4

µ−4
. (C.4)

Putting the identity (C.4) into the polynomial factor in the second order derivative of v yields the follo-

wing expression :

2(µ−2)2

µ−4
a4 +

(2−µ)
(
µ2−4µ +16

)

µ−4
a3

+
4µ2−24µ +48

µ−4
a2−8a+

8
µ−4

.

C.2 Case 2 : Peh 6= Pem

The arguments for deducing a necessary form of function v are similar to the case Peh = Pem. We take

the solutions

uε1(z) = a1, wε1(z) = kpδg(a1,a2)z,

uε2(z) = a2, wε2(z) = g(a1,a2)z

and we used the boundary conditions

wε1(1) = vkpuε1(1),

wε2(1) = vuε2(1).

We find {
kpδg(a1,a2) = vkpa1

g(a1,a2) = va2.

Taking the difference of these equations, we have

(1−δ )g(a1,a2) = v(a2−a1) .

Therefore, the function v satisfies

v(a1,a2,0,0) = (1−δ )
g(a1,a2)

a2−a1
.

Note that this expression is a necessary form of function v.

The last point we discuss is related to the Hessian matrix of function v. This matrix is symmetric, there-
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fore its eigenvalues are real and its determinant satisfies

detH =
2

∏
i=1

λi, (C.5)

where {λi}2
i=1 denotes the set of eigenvalues of H . Since the matrix H evaluated at (a∗1,a

∗
2) is given by

H

(
1,

µ−4
µ

)
= k0L(1−δ )e

−µ

2

(
− µ2

16 +
µ

16
µ2

16
µ2

16 0

)
,

we deduce that

detH
(

1,
µ−4

µ

)
=−k2

0L2 (1−δ )2 e−µ

(
µ2

16

)2

< 0.

Using (C.5), we find that λ1λ2 < 0, which means that H is indefinite. The point (a∗1,a
∗
2) is therefore a

saddle point.
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