
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Understanding Data-Intensive Systems Through The Analysis of SQL Execution
Traces

Noughi, Nesrine

Award date:
2018

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/understanding-dataintensive-systems-through-the-analysis-of-sql-execution-traces(f68c95d9-2569-4d9b-9fa4-3e70d4b59af4).html

University of Namur

PReCISE Research Center

Doctor of Philosophy
Discipline : Computer Science

presented by

Nesrine Noughi

Understanding Data-Intensive
Systems Through The Analysis of

SQL Execution Traces

Prof. Anthony Cleve University of Namur Promotor
Prof. Naji Habra University of Namur Co-promotor
Prof. Wim Vanhoof University of Namur President
Prof. Vincent Englebert University of Namur Internal Reviewer
Prof. Tom Mens University of Mons External Reviewer
Dr. Alexander Serebrenik Eindhoven University of Technology External Reviewer

2

Abstract

Most software systems need to be adapted during their life-cycle. It is esti-
mated that more than 60% of the cost of a software system is related to its
maintenance and evolution. The evolution of a software system not only in-
volves the modification made to its various components, but it also includes
an indispensable preliminary phase, which is the in-depth understanding of
each component of the system. This is especially true for a certain type
of systems called data-intensive systems. Within such a system, the inter-
actions between the application programs and the database are becoming
increasingly difficult to analyze, and therefore to understand.

This is why program understanding in general has become a important
topic of interest for software engineering researchers and developers. In par-
ticular, understanding today’s data-intensive systems clearly calls for auto-
mated support.

The goal of this thesis is to facilitate the understanding of large data-
intensive systems using dynamic analysis, visualization and process mining
techniques. The dynamic analysis techniques seek to analyze and visualize
the data-manipulation behavior of data-intensive systems via the analysis of
their SQL execution traces. The process mining techniques seek to retrieve
recurring patterns and extract the data-manipulation processes followed by
the program itself.

i

ii ABSTRACT

Résumé

La plupart des systèmes logiciels doivent être adaptés au cours de leur vie.
On estime que plus de 60% du coût d’un logiciel est lié à sa maintenance
et à son évolution. L’évolution d’un logiciel ne consiste pas seulement en la
modification apportées à ses différents composants, mais elle comprend aussi
une phase préliminaire indispensable qui est la compréhension en profondeur
de chaque composant du système. C’est d’autant plus vrai pour une cer-
taine catégorie de systèmes, tel que les systèmes à forte intensité de données
(Data-intensive systems). Dans ce genre de systèmes, l’interaction entre les
programmes d’application et la base de données est de plus en plus difficile
à analyser, et donc à comprendre.

De ce fait, la compréhension de programmes est devenue aujourd’hui
une réelle préoccupation des chercheurs et développeurs. Car il s’agit d’un
problème complexe, en particulier dans le cas de ce type de systèmes qui
nécessitent l’utilisation de méthodes et techniques automatisées et ingérées
aux sein des environnements de développement de logiciels.

Cette thèse a pour objectif l’amélioration de la compréhension de ces
grands systèmes à l’aide des techniques de l’analyse dynamique, de la vi-
sualisation de programmes et de l’exploration de processus. La technique
d’analyse dynamique a pour but d’analyser et de visualiser le comportement
de la manipulation de données d’un programme d’application via l’analyse
de leurs traces d’exécution SQL. La technique d’exploration de processus a
pour objectif de retrouver des patterns récurrents et d’extraire le workfow de
la manipulation de données suivi par le programme.

iii

iv RÉSUMÉ

Acknowledgments

First of all, I would like to thank God for making all things possible for me
and giving me strengthen to carry out this research work.

I would like to express my sincere gratitude to my advisor Prof. Anthony
Cleve for the continuous support during this thesis, his valuable advice,
and enthusiasm. His guidance helped me to acquire new understanding and
extend my experiences. He was not only an advisor but also a good listener
and a friend who showed me what I was able to achieve even when I did not
see it myself.

Besides my advisor, I would like to thank all the members of the jury, for
their insightful comments and encouragement, but also for the hard questions
which prompted me to widen my research from various perspectives. Namely,
I would like to thank Prof. Wim Vanhoof, the president of the jury, Prof.
Naji Habra, my co-promotor and internal member of the jury, Prof. Vincent
Englebert, internal member of the jury, and Prof. Tom Mens and Prof.
Alexander Serebrenik external members of the jury.

Special thanks to my colleague Csaba Nagy for his help and encourage-
ments to give me back my confidence. Anne-France Brogneaux, Jonathan
Lemaitre, Marco Mori, Javier Bermúdez, Loup Meurice, Adrien Bibal, Maxime
Gobert, Minh Vu my officemates for the stimulating discussions, and for all
the fun we have had in the last seven years. Also, I thank all my colleagues
for the all good times spent together in every coffee break which made the
Computer Science Faculty a great place to work, as well as all my friends
(Fadhela, Hanane, Irina, Hajer, Nesrine, Abdelmounaim, George) who have
given me their moral support during this year of study, I thank them sincerely

Last but not the least, the simplest words being the strongest, I address
all my affection to my family, and especially to my parents. Despite my
distance since (too) many years, their confidence, their tenderness, their love
carries me and guide me every day. Thank you for making me what I am
today. I love you.

Finally, a big thank you to the people who believed in me and who allowed
me to reach the end of this thesis.

v

à la mémoire de mon cher papa
Essaid Noughi

à ma chère maman,
à ma chère famille

viii RÉSUMÉ

Contents

Abstract i

Résumé iii

1 Introduction 1
1.1 Research Context . 1
1.2 Objective and Research Questions 2
1.3 Contributions . 3
1.4 Thesis Outline . 4
1.5 Publications . 7

I Research Domain and Related Literature 9

2 Research Domain 11
2.1 Introduction . 11
2.2 Software Maintenance and Evolution 12
2.3 Program Comprehension . 14
2.4 Data-Intensive Systems . 15
2.5 Database Engineering . 16
2.6 Database Reverse Engineering 18
2.7 The Generic Entity-Relationship Model 20

2.7.1 Conceptual Schema . 20
2.7.2 Logical Schema . 21

2.8 Program Analysis . 22
2.8.1 Static Program Analysis 23
2.8.2 Dynamic Program Analysis 25
2.8.3 Static Analysis vs. Dynamic Analysis 27

2.9 Software Visualization . 27
2.9.1 Definition . 28
2.9.2 Classification of Software Visualization 28

ix

x CONTENTS

2.9.3 How Do We Choose The Right Visualization? 29
2.9.4 2D vs. 3D Visualization 30

2.10 Process Mining . 31
2.11 Conclusions . 32

3 Related Literature 35
3.1 Introduction . 35
3.2 Program Analysis for Program Comprehension 36

3.2.1 Dynamic Analysis for Program Comprehension 36
3.2.2 SQL Statement Analysis 39

3.3 Process Mining for Program Comprehension 44
3.3.1 Synthesis . 45

3.4 Visualization for Program Comprehension 46
3.4.1 Synthesis . 49

3.5 Conclusions . 49

II Dynamic Analysis of SQL Execution Traces for
Data-Intensive Systems 51

4 Overview of The Framework 53
4.1 Introduction . 53
4.2 Motivation . 54
4.3 Preliminaries . 55

4.3.1 Mapping between Conceptual and Logical Schemas . . 55
4.3.2 SQL Execution Traces 56

4.4 Problem Statement . 57
4.5 Approach Definition . 57

4.5.1 Phase 1: Intra-scenario Analysis 58
4.5.2 Phase 2: Inter-scenario Analysis 59
4.5.3 Phase 3: Code Re-documentation 60

4.6 Conclusions . 60

5 Understanding the Data Manipulation Behavior from SQL
Execution Traces 61
5.1 Introduction . 61
5.2 Approach and Research Questions 62
5.3 Trace Capturing . 63

5.3.1 Query Interception . 64
5.3.2 Query Parsing . 67

5.4 Intra-Query Analysis . 69

CONTENTS xi

5.4.1 Sub-schema Extraction: 69
5.4.2 Object Frequency . 70
5.4.3 Synthesis . 71

5.5 Inter-Query Analysis . 71
5.5.1 Dependency Extraction 72
5.5.2 Loop Detection . 74
5.5.3 Synthesis . 77

5.6 Query Interpretation . 78
5.6.1 Trace Abstraction . 78
5.6.2 Subschema Annotation 80
5.6.3 Interpretation Generation 81

5.7 Tool Support . 82
5.7.1 Metrics . 84
5.7.2 DB-MAIN . 84
5.7.3 JUNG Library . 84
5.7.4 DAViS User Interface 85
5.7.5 Visualization Modes 87
5.7.6 Component 1: Intra-query Analysis Visualization . . . 89
5.7.7 Component 2: Inter-query Analysis Visualization . . . 90
5.7.8 Component 3: Query Interpretation Visualization . . . 91

5.8 Case Studies . 93
5.8.1 Traces Capturing . 95
5.8.2 Queries Parsing . 96
5.8.3 Sub-schemas Results 97
5.8.4 Dependency Results 101

5.9 Conclusions . 102

6 Extracting Data Manipulation Processes from SQL Execu-
tion Traces 105
6.1 Introduction . 105
6.2 Illustrative Scenario . 106
6.3 Approach and Research Questions 108
6.4 Data-oriented Properties . 110

6.4.1 Query Filtering . 110
6.4.2 Associating Properties 111
6.4.3 Query Clustering . 112
6.4.4 Cluster Labeling . 113

6.5 Process Mining . 117
6.5.1 Traces Abstraction . 117
6.5.2 Process Extraction . 118

6.6 Evaluation . 121

xii CONTENTS

6.6.1 Scenario Used . 122
6.6.2 Experiments Description 123
6.6.3 Threats To Validity . 126

6.7 Conclusions . 127

7 Code Re-documentation from SQL Execution Traces 129
7.1 Introduction . 129
7.2 Motivation . 130
7.3 Approach and Research Questions 131
7.4 Preliminaries . 132

7.4.1 Java DataBase Connectivity (JDBC) 132
7.4.2 Extraction Techniques of SQL Trace Locations 133
7.4.3 JAVA Abstract Syntax Tree (AST) 134

7.5 Comments Generation . 135
7.5.1 Information Determination 135
7.5.2 Information Gathering 138

7.6 Comments Injection . 138
7.7 Discussions . 139
7.8 Illustrative Example . 141
7.9 Results . 143
7.10 Conclusions . 144

III Evaluation and Validation 147

8 An Empirical Study on the Use of SQL Execution Traces for
Program Comprehension 149
8.1 Introduction . 149
8.2 Related Work . 150
8.3 Experimental Description . 151

8.3.1 Initial Considerations 151
8.3.2 Evaluation Questions and Hypotheses 152
8.3.3 Used Scenario . 152
8.3.4 Tasks Design . 153
8.3.5 Pilot Studies . 154
8.3.6 Experiment Procedure 155
8.3.7 Data Collection . 156

8.4 Experiment Execution . 157
8.4.1 Selection of Participants 157
8.4.2 Concrete Setting . 157

8.5 Results . 159

CONTENTS xiii

8.5.1 EQ1: Does DAViS reduce the time needed to complete
the tasks? . 160

8.5.2 EQ2: Does the educational background influence the
usability of DAViS? . 163

8.5.3 EQ3: Does DAViS increase the correctness of the tasks?163
8.6 Discussion . 164

8.6.1 Reasons for Different Time Requirements 165
8.6.2 Reasons for The Education Level Independence 168
8.6.3 Reasons for Correctness Differences 168

8.7 Threats to Validity . 168
8.7.1 Internal Validity . 169
8.7.2 External Validity . 169

8.8 Conclusions . 170

IV Conclusions 171

9 Conclusions 173
9.1 Summary of The Contributions 173
9.2 Future Challenges . 179

xiv CONTENTS

List of Figures

1.1 General structure of the thesis. 5

2.1 The approximate cost of each phase of the software life-cycle
[77] . 13

2.2 Software maintenance types according to the authors of [42] . 14
2.3 An example of data-intensive systems architecture considered

in this thesis . 16
2.4 Database and application design processes 17
2.5 Database reverse engineering design processes 19
2.6 A conceptual schema example 20
2.7 The logical schema example and rough relational translation

of the conceptual schema of Figure 2.6 22
2.8 Programs analysis techniques 23
2.9 Types of software visualization [47] 28
2.10 Types of process mining . 31

4.1 General framework . 54
4.2 An example of a mapping between a logical schema and a

conceptual schema. 56
4.3 An example of a SQL execution trace + result of query q1. . . 57
4.4 An overview of the framework 58

5.1 Bottom-up approach: Intra-scenario analysis. 62
5.2 The conceptual schema of a Customer-Order application . . . 65
5.3 The logical schema of a Customer-Order application 65
5.4 An example of an SQL trace extracted from Customer-Order

application + result of query q1 66
5.5 Sub-schema affected by the trace of Listing 5.4 71
5.6 The loop detection results of the SQL queries of trace 5.4. . . 77
5.7 Overall framework of DAViS 83
5.8 DAViS user interface . 86

xv

xvi LIST OF FIGURES

5.9 The global visualization of the trace of Figure 5.4 87
5.10 The local visualization of the first SQL statement of the SQL

trace 5.4 (Left: the input, Right: the output visualization) . . 89
5.11 The sub-schema affected by the SQL execution trace of the

trace of Figure 5.4 . 90
5.12 Loop visualization . 91
5.13 Trace abstraction and visual interpretation 92
5.14 Natural language interpretation 93
5.15 Logical schema of WebCampus application 94
5.16 Logical schema of WebDeb application 95
5.17 Left: The logical schema of WebCampus, right: The sub-

schema of the install applet scenario 98
5.18 Left: The logical schema of WebDeb, right: The subschema

of the validate affirmation scenario 99
5.19 The detected dependencies of the install applet senario of We-

bCampus . 99
5.20 Left: The foreign key dependency of the Install applet sce-

nario, right: The join query dependency of the Install applet
scenario . 101

5.21 Left: The input-input dependency of the Install applet sce-
nario, right: The joint access dependency of the Install applet
scenario . 101

5.22 The detected loops of the install applet scenario of WebCampus102

6.1 The logical schema (Web-Store case study) 107
6.2 The conceptual schema (Web-Store case study) 107
6.3 Web Store: Three SQL execution traces 108
6.4 Bottom-up approach: Inter-scenario analysis. 109
6.5 Web Store : Abstracted Traces of SQL statements 118
6.6 Web Store: Process mined with Trace 1, 2 and 3. 120
6.7 RestaurantReservation: Mined process (top) and process cor-

rected by the designer (bottom). 124
6.8 e-Restaurant case study: Average recall measure (a) and av-

erage precision measure (b) of the mined process models de-
pending on log coverage (1-trace logs, 2-trace logs, ..., 6-trace
logs). 125

7.1 Bottom-up approach: A code re-documentation 131
7.2 The Abstract Syntax Tree workflow [38] 134
7.3 Conceptual schema of AcadYearManager application 141
7.4 The logical schema of an AcadYearManager application 142

LIST OF FIGURES xvii

7.5 A fragment of the collected SQL trace 142
7.6 The intra-scenario analysis results 143
7.7 The loop detection results . 144
7.8 The abstraction of the first detected loop 144

8.1 Handouts for each group . 156
8.2 Interaction diagram of round 1 for the between-subject factor

tool and the within-subject factor task 162
8.3 Interaction diagram of round 2 for the between-subject factor

tool and the within-subject factor task 162

9.1 How the contributions are connected 178

xviii LIST OF FIGURES

List of Tables

2.1 Characteristics of static and dynamic analysis for program
analysis . 27

2.2 Characteristics of 2D and 3D visualization 30

3.1 Summary of research works focusing on program comprehension 37
3.2 Summary of research works focusing on SQL statement analysis 43
3.3 Summary of research studies focusing on visualization 48

5.1 Example of the parser structure 68
5.2 The object frequency of the trace of Listing 5.4 72
5.3 The clusters of the SQL queries of trace 5.4 76
5.4 Abstraction rules of nested queries 78
5.5 Visual metaphors used by DAViS 85
5.6 The systems description . 94
5.7 Characteristics of the parsed queries of the 14 scenarios of

WebCampus application . 96
5.8 Characteristics of the parsed queries of the 6 scenarios of Web-

Deb application . 97
5.9 The parser’s results . 97
5.10 Statistics about the Webcampus subschemas analysis 98
5.11 Statistics about the WebDeb subschemas analysis 98
5.12 The access frequencies of the tables of the scenario install applet

. 100
5.13 The access frequencies of the tables of the scenario validate

affirmation . 100

6.1 The rules of associating properties according to the parser
clauses . 111

6.2 Web Store: Properties of the traces of SQL statements 112
6.3 Web Store: Properties of the SQL statements 113
6.4 Clusters of SQL queries of the Web Store application 6.3 . . . 114

xix

xx LIST OF TABLES

6.5 The rules of labeling for the select query 115
6.6 Web Store: Data manipulation functions and I/O parameters . 116
6.7 Example traces . 119

7.1 Dependency comment template 136

8.1 Characteristics of the four scenarios in the given system 152
8.2 Comprehension tasks . 153
8.3 Visualization proposed by DAViS 154
8.4 Experiment layout . 154
8.5 Distribution of students in the two groups 157
8.6 Measured response times (in seconds) 158
8.7 T-tests on individual tasks (round 1) 161
8.8 T-tests on individual tasks (round 2) 163
8.9 Left: Exact Fisher tests on individual tasks about correctness

(round 1), right: Exact Fisher tests on individual tasks about
correctness (round 2) . 164

8.10 Debriefing questionnaire: perceived task difficulty with DAViS 165
8.11 Debriefing questionnaire: perceived help of DAViS 165

9.1 Thesis contributions . 174

Chapter 1

Introduction

Satisfaction lies in the effort, not in the attainment,
full effort is full victory.

Mahatma Gandhi

Contents
1.1 Research Context 1

1.2 Objective and Research Questions 2

1.3 Contributions . 3

1.4 Thesis Outline . 4

1.5 Publications . 7

1.1 Research Context
Nowadays, software systems are not simple computer applications that we
use in personal computers or at work. Many in fact are highly sophisticated,
large and complex software packages that play an important role in society
and the economy. Now, software systems exist almost everywhere and they
often constitute the heart of business-critical activities. As a consequence,
software engineering, defined as an engineering discipline that focuses on all
aspects of software system development [37], has remained one of the main
centers of interest for researchers over the past four decades.

In the software development process, several models for the software life-
cycle are defined, which can be grouped into six main phases according to the
Waterfall Model introduced by Royce [72]: (1) Requirements, describes the

1

2 CHAPTER 1. INTRODUCTION

customer’s needs and all their constraints; (2)Analysis, consisting in trans-
forming requirements into models, schemas and business rules; (3) Design,
resulting in the software architecture; (4) Programming, consisting of trans-
lating specifications into a programming language and integration of software;
(5) Testing, the systematic discovery and debugging of defects; (6) Operations,
the installation, migration, support, and maintenance of complete systems.

However, we live in world that is constantly and rapidly changing. This is
why software systems have to evolve in order to adapt to their ever-changing
environment. Therefore, software maintenance and evolution, defined as ”the
modification of a software product after delivery to correct faults, to improve
performance or to adapt the product to a modified environment” [68], are
known to be major factors in the cost of the software development process
[77]. More specifically, David Lo [46] has estimated that up to 50% of the
costs of software maintenance are related to software understanding, which is
a typical initial task of the phase that is required before making any changes.

Software documentation has long been regarded as the most important
source of information for software understanding. Unfortunately, nowadays
documenting application programs has become so outdated, economically un-
sustainable and psychologically unbearable. As a consequence, most of the
existing systems are virtually undocumented or have an outdated documen-
tation. Thus, maintaining and evolving such systems can be performed only
if the system has been sufficiently understood in terms of its structure and
behavior. To cope with this, understanding the objectives, the behavior and
the internal artifacts of an existing and undocumented software system must
be achieved in some another way. It therefore seems obvious that we need
effective techniques and tools to support this task. To this end, numerous
methods have been proposed that seek to analyze and understand a software
system from its artifacts such as source code, architectural diagrams, design
information, execution traces and event log.

1.2 Objective and Research Questions
However, as Cleve et al. [11] highlighted in a study on data-intensive sys-
tems challenges, very few of the recently proposed studies were interested in
modern data-intensive systems that consist of a set of applications perform-
ing complex, continuous and dynamic interactions among the application
programs and a large set of data, typically stored in a database. In such sys-
tems, the communication and relation with the database system are usually
realized by the Structured Query Language (SQL), where the SQL queries are
built dynamically at runtime, even through String concatenations or through

1.3. CONTRIBUTIONS 3

an external view of data, such the very popular object-relational mapping
(ORM) technique, which lets programmers apply an object-oriented view of
the database. This programming technique is widely used in the Java world
with various frameworks such as Hibernate, JPA and JGrinder. Therefore,
the understanding of the database access behavior of a program, which has
become an important (yet largely ignored) aspect of program comprehension
constitutes an important part of the program behavior, which are important
to consider and understand.

In the light of this, the main objective of this research line, which is the
process of data-intensive systems understanding, is to define new framework
to analyze the program-database interractions to help developers to under-
stand data-intensive systems. To achieve this goal, we intend to rely on the
intensive use of dynamic program analysis, with the help of visualization
techniques and process mining to present the results of our cross-analysis
techniques to the user. More specifically, we wish to recover and understand
the data-manipulation behavior of data-intensive applications, by analyzing
the information that can be captured from SQL execution traces.

To structure our methodology towards this objective, we need to answer
the following questions that drive our research methodology:

RQ1: Can we automatically relate the program execution traces, program
source code and the database schema to each other?

RQ2: Does an analysis of the data manipulation behavior support the un-
derstanding of data-intensive programs?

RQ3: How can we automatically extract a model of the data manipulation
behavior?

RQ4: Can we automatically re-document this behavior in the program source
code?

1.3 Contributions
During this study, we propose to examine the problematic areas associated
with the understanding of data-intensive systems through the analysis of
their data-manipulation behavior. This purpose is achieved through a list of
contributions that seek to address the four research questions stated above.

1. An automated approach for understanding data-manipulation
behavior through the analysis of a single SQL execution trace:

4 CHAPTER 1. INTRODUCTION

• A parser that extracts and represents the most relevant informa-
tion of an SQL execution trace in a unified data-object.

• Algorithms that extract implicit dependencies between consecu-
tive SQL statements.

• A visual tool supported by the approach, implementing the various
given algorithms.

2. An automated approach for extracting a model of data ma-
nipulation behavior through the analysis of multiple SQL ex-
ecution traces:

• Algorithms that extract, label and clusters data-manipulation func-
tionalities to recover the followed data manipulation model.

3. An automated approach for re-documenting the program source
code through comments:

• An algorithm that generates textual comments to be injected into
programs source code.

• An algorithm that injects the generated comments.

4. A two steps evaluation approach:

• Case studies conducted to demonstrate the practical usefulness
and validate the correctness of the different proposed algorithms.

• An empirical study on the use of SQL traces analysis to demon-
strate the feasibility, efficiency and accuracy of some parts of our
proposed approach.

1.4 Thesis Outline
The thesis contains nine chapters (including the Introduction and Conclu-
sions chapters) organized in three main parts with an additional introduction
and conclusions, as depicted in Figure 1.1. The remainder of this manuscript
is organized as follows:

1. Part 1: Research Domain and Related Literature

• Chapter 2: We present a background on our research context.
we start by defining concepts related to software maintenance and
evolution of data-intensive applications. Then, we summarize the
most widely used methods and techniques for supporting program
comprehension.

1.4. THESIS OUTLINE 5

Figure 1.1: General structure of the thesis.

6 CHAPTER 1. INTRODUCTION

• Chapter 3: We summarize and discuss the different existing ap-
proaches and tools that assist software understanding and it is
grouped into three categories according to the techniques used. It
also places our work in relation to the most relevant approaches
used.

2. Part 2: Dynamic Analysis of SQL Execution Traces for Data-
intensive Systems

• Chapter 4: We introduce a set of suitable definitions and pre-
liminaries. Based on these concepts and definitions, we formally
define our problem statement, research questions and approach in
three parts.

• Chapter 5: We present a new approach for understanding the
data-manipulation behavior of programs based on an analysis of
its data accesses via SQL queries (CRUD operations). It starts
by formally defining the solution needed to achieve this goal in
terms of successive levels of understanding and illustrates each
level using a running example scenario. Then, it presents the tool
supported by the proposed approach before concluding with two
case studies.

• Chapter 6: We propose a new approach for extracting data-
manipulation processes through the analysis of multiple SQL exe-
cution traces of the same program scenario. The approach consists
of a set of algorithms for extracting, clustering, labeling and merg-
ing data manipulation functions followed by the given scenario.

• Chapter 7: In the last chapter of this part, we provide a new
approach that shows how we can re-document the program source
code with its data manipulation behavior through comments.

3. Part 3: Evaluation and Validation

• Chapter 8: We describe an empirical study on the use of SQL
execution traces. It starts by defining a general objective of the
empirical study. Then, it defines the addressed hypothesis before
presenting details of the experiment performed. Finally, we pro-
vide some evaluation results before drawing some conclusions.

4. Part 4: Conclusions and Future Work

• Chapter 9 : Here, we seek to outline the general conclusions
of this thesis. We start by summarizing the contributions of the

1.5. PUBLICATIONS 7

thesis related to the above research questions. Then, we make
some suggestions for future research needed to achieve our long-
term objectives.

1.5 Publications
Most of the contributions presented in this thesis were published as peer-
reviewed publications:

1. Nesrine Noughi, Stefan Hanenberg and Anthony Cleve. An Empirical
Study on the Use of SQL Trace Visualization for Program Understand-
ing. In IEEE International Conference on Software Quality, Reliability
and Security Companion, (QRS-C 2017).

2. Nesrine Noughi, Stefan Hanenberg and Anthony Cleve. An Empirical
Study on the Use of SQL Trace Visualization for Program Understand-
ing. In Seminar series on Advanced Techniques & Tools for Software
Evolution (SATToSE’16).

3. Nesrine Noughi and Anthony Cleve: Conceptual Interpretation of SQL
Execution Traces for Program Comprehension. Proceedings of the 6th
International Workshop on Program Comprehension through Dynamic
Analysis (PCODA 2015) - Colocated with the 22nd IEEE Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER 2015). IEEE Computer Society Pres.

4. Marco Mori, Nesrine Noughi and Anthony Cleve: Mining SQL Exe-
cution Traces for Data Manipulation Behavior Recovery. In CAiSE
Forum 2014, Selected Extended Papers. (Lecture Notes in Business
Information Processing).

5. Nesrine Noughi, Marco Mori, Loup Meurice and Anthony Cleve: Un-
derstanding the Database Manipulation Behavior of Programs - Pro-
ceedings of the 22nd International Conference on Program Comprehen-
sion (ICPC 2014): Early Research Achievement Track. IEEE Com-
puter society.

6. Marco Mori, Nesrine Noughi and Anthony Cleve: Mining SQL Execu-
tion Traces for Data Manipulation Behavior Recovery. Proceedings of
the 26th International Conference on Advanced Information Systems
Engineering (CAiSE 2014): CAiSE forum track. CEUR-WS.org, Vol.
1164, p. 41-48 8 p.

8 CHAPTER 1. INTRODUCTION

7. Anthony Cleve, Nesrine Noughi and Jean-Luc Hainaut: Dynamic pro-
gram analysis for database reverse engineering. In Ralf Lämmel, Joaõ
Saraiva, and Joost Visser, editors, Generative and Transformational
Techniques in Software Engineering, Volume 7680 of Lecture Notes in
Computer Science, pages 297–321. Springer, 2013.

8. Nesrine Noughi, Anthony Cleve: Understanding Data Intensive Sys-
tems Using Dynamic Analysis and Visualization - International Confer-
ence on Software Maintenance (DS-ICSM 2013): Doctoral Symposium.
IEEE Computer society.

9. Loup Meurice, Nesrine Noughi and Anthony Cleve. Visualizing SQL
execution traces for program understanding. In Seminar series on Ad-
vanced Techniques & Tools for Software Evolution (SATToSE’13).

Part I

Research Domain and Related
Literature

9

Chapter 2

Research Domain

The secret of getting ahead is getting started.
Mark Twain

Contents
2.1 Introduction . 11
2.2 Software Maintenance and Evolution 12
2.3 Program Comprehension 14
2.4 Data-Intensive Systems 15
2.5 Database Engineering 16
2.6 Database Reverse Engineering 18
2.7 The Generic Entity-Relationship Model 20
2.8 Program Analysis 22
2.9 Software Visualization 27
2.10 Process Mining . 31
2.11 Conclusions . 32

2.1 Introduction
With software maintenance and evolution, the key ingredient is program
comprehension. Program comprehension has become a primary task of the
software maintenance and evolution phase mostly due to the absence of (suffi-
cient, up-to-date) documentation. This is especially true in the case of data-
intensive systems, which are characterized by the complex and extremely

11

12 CHAPTER 2. RESEARCH DOMAIN

dynamic nature of interactions between the application programs and their
underlying database.

In the light of this, numerous approaches have been proposed which use
different techniques such as static analysis, dynamic analysis, process mining,
and visualization, with the aim of improving the program comprehension
phase of software systems.

In this chapter, we start by discussing program comprehension in software
evolution and maintenance. Then, we present some fields that are relevant
to program comprehension such as database engineering, database reverse
engineering and the generic entity-relationship model, before defining data-
intensive systems. Lastly, we present and discuss some techniques that we
identified as being relevant to this problem such as program analysis, visual-
ization and process mining.

2.2 Software Maintenance and Evolution
The software life-cycle refers to all the steps of software development from
design to delivery. According to Schach et al. [77], most models of the
software life-cycle include the following steps:

1. Requirements engineering, represents the expression, collection and
formalization of the customer’s needs and all their constraints. This
step offers a formal specification of the general software architecture;

2. Design, consisting of defining precisely how the software will be con-
structed in order to meet the specifications agreed upon in the require-
ments specification document;

3. Programming, consisting of translating the functionalities of the de-
sign phase into a programming language. In order to handle the com-
plexity of the programming process, the program is usually divided into
separate units called modules;

4. Integration, consisting of ensuring that the combination of the differ-
ent modules form the integrated software product;

5. Delivery, which is summarized by the delivery of the completed soft-
ware product to the customer. Then, the customer will conduct accep-
tance testing in order to validate whether it meets the specifications
agreed upon in the requirements specification document;

2.2. SOFTWARE MAINTENANCE AND EVOLUTION 13

6. Maintenance, includes all corrective (corrective maintenance) such as
bug fixes, correct real-world unidentified problems and scalable (scal-
able maintenance) actions on the software such as adding new function-
ality.

Figure 2.1: The approximate cost of each phase of the software life-cycle [77]

Schach et al. [77] have estimated the approximate relative costs of the
phases of the software life-cycle. Figure 2.1 describes the relative cost of
each task. From the figure, we can see that the maintenance step greatly
dominates the cost of the software life-cycle. In the light of this, many studies
have focused on this phase of the software life-cycle to define approaches that
seek to reduce this cost and help developers to maintain systems.

Software maintenance and evolution processes often necessitate the recov-
ery of a sufficient understanding of the software system, before the latter can
be adapted to new or changing requirements. According to Lientz et al. [42],
software maintenance and evolution includes four types, these being: (1) cor-
rective, which concerns bugs-fixing; (2) perfective, concerns all changes in the
software that occur when we add new functionalities; (3) adaptive, concerns
all changes in the software that take place to enable it to adapt to the new

14 CHAPTER 2. RESEARCH DOMAIN

Figure 2.2: Software maintenance types according to the authors of [42]

environment - for instance, run the software on a new operating system and
(4) preventive, this type consisting of implementing changes to prevent the
occurrence of errors.

In this thesis, we also focus on the maintenance and evolution phase of
the software life-cycle. More specifically, we will focus on its first activity,
which is program comprehension.

2.3 Program Comprehension
Program understanding is the first task of each software maintenance type.
Indeed, it is necessary to achieve a certain level of insight into the application
before the application can be maintained. Corbi et al. [13] estimated that
program understanding takes up to 50-60% of the maintenance time. Hence,
improving the efficiency of this task may be regarded as a significant time
saving in the entire maintenance phase.

With this in mind, several approaches have been proposed to support

2.4. DATA-INTENSIVE SYSTEMS 15

program comprehension, which can be grouped into two main categories,
according to the following development model:

1. Top-down approach: A top-down approach is an overview of the
system that is formulated by specifying, but without detailing, any
first-level subsystem. Each subsystem is then refined in yet greater de-
tail, sometimes with many additional subsystem levels, until the entire
specification is reduced to base elements. With the program compre-
hension approach, the top-down understanding approach is typically
chosen when developers are familiar with the system (in terms of code,
problem domain and/or solution space). For instance, when source
code is implemented by the developer who wants to maintain this sys-
tem. Therefore, he already has absolute control over the code that had
performed more or less the same functionalities. In this case, these
similarities in code structure are easier to recognize in a top-down un-
derstanding process.

2. Bottom-up approach: In the bottom-up approach, the individual
base elements of the system are first specified in great detail. These
elements are then linked together to form larger subsystems, which in
turn are linked, sometimes in many levels, until a complete top-level
system is formed. In the program comprehension model, the bottom-
up understanding approach is sufficient when the developer who wants
to change the system is completely unfamiliar with it.

Nevertheless, these approaches have some similarities with the analysis
techniques that they use to support program understanding (e.g. dynamic
analysis and static analysis), which we will present later.

2.4 Data-Intensive Systems
In this thesis, we are mainly interested in data-intensive systems. By data-
intensive systems, we mean all systems that rely on intensive interactions
between the application programs and their database. Figure 2.3 shows an
example of the given data-intensive systems architecture. Such systems have
two main characteristics:

1. They have to manage an increasing amount of data that are usually
stored in databases;

2. Databases often occupy a central place;

16 CHAPTER 2. RESEARCH DOMAIN

Figure 2.3: An example of data-intensive systems architecture considered in
this thesis

3. The communication between the application programs and their database
becomes increasingly important and dynamic;

Therefore, the evolution of data-intensive systems clearly requires new
and better-adapted techniques to deal with new challenges of these systems,
such as data capturing, data analysis, visualization, querying, updating and
information privacy. This is especially true in the maintenance and the evo-
lution phases, where the understanding task is treated as a complex problem.
Because of this, program comprehension of data-intensive systems has now
become a real research interest for researchers and developers.

2.5 Database Engineering
As mentioned in the last section, databases occupy a central place in data-
intensive systems. Now, we are going to introduce the important concepts
related to databases - more specifically, relational databases. A relational
database is a set of tables containing a collection of related data grouped into
predefined categories in order to make data access easier. They are managed
by so-called database management systems (DBMS), more specifically, rela-
tional database management systems (RDBMS), which are software packages
for creating, managing, manipulating and retrieving data from a relational
database [30].

We focused on the relational model because historically the first database
model that solved the issue of inconsistency, redundancy, concurrency and
other problems was the relational model. In addition, the most widespread
database management systems are relational [69].

Figure 2.4 depicts the main phases of database design connected with
the application design phases. Here, we will just focus on the database

2.5. DATABASE ENGINEERING 17

Figure 2.4: Database and application design processes

design processes. During these processes, different database schemas are
produced, where each database schema represents a model, i.e., an abstract
formal representation of a given application domain. Such a model allows
one to better understand this application domain and to build an operational
database that allows one to store and manipulate information about it (see
Figure 2.4).

1. Requirement collection and analysis: The first step of this process
is the collection and analysis of the users’ requirements. This step seeks
to gather and collect the user’s requirements for the application domain
under consideration. During this step, the database designers have to
interview the users in order to understand what persistent data they
want to store in the proposed system. The result of this phase is a
document including the detailed requirements provided by the users in
order to validate the understanding of requirements with users.

2. Conceptual design: The second phase, called conceptual design, also
known as conceptual analysis, is where the database designers analyze
the requirements document in order to produce the conceptual schema.

18 CHAPTER 2. RESEARCH DOMAIN

This latter should give a concise summary of all user’s requirements
in terms of what the data items are, what attributes they have, which
constraints apply and what relationships hold between data items, as
the overall aim is to develop a single shared database. The schema
should not be overly formal or highly encoded but rather expressed in
natural language.

3. Logical design: The third phase, called logical design, consists of
translating the conceptual schema obtained in the previous phase into
a logical schema. The logical schema is more concrete than the con-
ceptual schema and it is more conceptual and abstract than the phys-
ical design. This phase attempts to describe concretely the database’s
structures, the relationships between these structures and the integrity
constraints.

4. Physical design: The physical design consists of extracting the physi-
cal schema from the logical schema obtained in the previous phase. The
physical schema is a representation of a data design as implemented, or
intended to be implemented, in a Database Management System. The
schema should include all the database artifacts required to create rela-
tionships between tables or to achieve performance goals (e.g. indexes,
constraint definitions and linking tables).

5. Coding phase: The last phase is the coding phase that involves
translating physical schema into Data Definition Language code for
a database management system. The generated code allows one to
create tables and constraints (e.g. checks and triggers).

2.6 Database Reverse Engineering
During the software system life-cycle, developers are often led to make changes
not only in the program source code but also in the structures and constraints
of their databases in order to adapt the database to ever-changing needs. As
a consequence, such changes directly affect the current documentation when
it becomes outdated. In addition, many legacy systems, including databases,
have not been designed in a systematic way. In other words, they did not
follow the software engineering process and the database engineering process
during the design phase, which may result in a lack of documentation on
programs and databases. Sometimes, the source code of the system and the
DDL code of the database constitute the only available documentation.

2.6. DATABASE REVERSE ENGINEERING 19

Figure 2.5: Database reverse engineering design processes

Recovering this information is an inevitable task when maintaining or
extending old applications. To this end, the use of reverse engineering tech-
niques is a necessary requirement. Here, it involves reconstructing the func-
tional and technical documentation of the application program and the logical
and conceptual schemas of its database, starting mainly from the source code
of programs and the DDL code. As in the previous section, we just focus
on the database reverse engineering design phases. The database reverse en-
gineering is treated as the recovery of the conceptual schema starting from
the DDL code. This process is depicted in Figure 2.5. The database reverse
engineering process is composed of three successive steps. These are:

1. Physical design recovery: Starting from the DDL code of the database,
we recover the physical schema. It is worth noticing that the physical
schema obtained represents a raw schema, which means that it contains
only the information belonging to the DDL code. Therefore, it is pos-
sible that some information linked to the implicit database constructs
such as foreign keys will be overlooked.

2. Logical design recovery: This phase seeks to recover the logical
schema from the physical schema obtained in the previous phase. To
this end, we need additional information such as program source code
and database contents to get a logical schema that is as complete as
possible (e.g. to recover the foreign keys).

3. Conceptual design recovery: Lastly, in order to recover the most
abstract schema, which is the conceptual schema, we used the logical
schema to derive the conceptual schema.

20 CHAPTER 2. RESEARCH DOMAIN

2.7 The Generic Entity-Relationship Model
The basic Entity-Relationship Model (ER) is used to model a domain of
application, which involves a transition from the real world to its computer
representation. More specifically, the ER model is an abstract data model
that defines a data or information structure that can be implemented in a
database, typically a relational database. It was designed by Peter Chen [6].

The Generic Entity-Relationship model as defined by Hainaut [28] is an
extended ER model, where it mostly comprises the concepts of schema, entity
type, domain, attribute, relationship type, key, as well as various constraints.
The GER model considers three levels of abstraction, these being: conceptual
schema, logical schema and physical schema. We are now going to define the
GER model according to two levels of abstraction (conceptual and logical
schemas).

2.7.1 Conceptual Schema

Figure 2.6: A conceptual schema example

A conceptual schema represents information gathered from business re-
quirements, where entities and relationships modeled in such schema are de-
fined around the business’s need. In other words, a conceptual schema may
be viewed as an abstract representation of the application domain (described
by users). It seeks to delineate the specific entities in the software system,
along with their attributes, and the relationships among these entities, where:

• Entity types are the core modeling constructs in an ER model. They
represents the structure of top-level concepts, such as author, document

2.7. THE GENERIC ENTITY-RELATIONSHIP MODEL 21

or book. They can be organized into is-a hierarchies (super-types/sub-
types). An is-a hierarchy may be ”total” (T), where a super-type may
be specialized in at least one subtype or ”disjoint” (D), where a super-
type may be specialized in at most one subtype or both ”partition” (P).
Each entity type should contain the following information: a unique
name, attributes which represent their properties, and a primary key
defined by one or more attributes. Entity-types are related to other
entity types through relationship types.

• Relationship types are used to associate one or more entity types. How-
ever, relationship types cannot exist as “stand alone”; there must be
at least 2 entity types assigned to it. Like entity types, relationships
may also have attributes. A relationship type is characterized by two
or more roles, where each role has a cardinality constraint [i-n] that de-
fines the possible number (minimum - maximum) of occurrences of one
entity, which are associated with the number of occurrences in another.
We call each relationship type that has exactly two roles a binary re-
lationship type, while a relationship type with more than two roles is
generally called an n-ary relationship type.

• Attributes are properties or characteristics of entities and/or relation-
ships that hold it. An attribute has a name that describes the property
and a type that describes the kind of attribute it is. It may be either
atomic or compound. The compound attribute includes at least one
sub-level attribute which may be atomic or compound.

Figure 2.6 shows an example of a conceptual schema using the generic
entity-relationship representation. The schema describes a part of the appli-
cation domain of a library management. It contains 5 entities (AUTHOR,
DOCUMENT, REPORT, BOOK, BORROWER), each with its respective
set of attributes (atomic or compound), linked through three association re-
lationships: write, reserve and responsible. For instance, the author can
write one or several documents, where each document is written by several
authors.

2.7.2 Logical Schema
A logical schema is the translation of the conceptual schema into an opera-
tional schema complying with the data model of a particular database man-
agement system (DBMS), such as relational or object-oriented data model.
The purpose of a logical schema is to describe how data should be organized
and stored physically using a particular DBMS. In most cases, the logical

22 CHAPTER 2. RESEARCH DOMAIN

schema is generated automatically from the conceptual schema, which con-
sists of translating the conceptual objects into logical objects understandable
by the target DBMS. For instance, a GER entity type will be translated to a
table, while an attribute will be translated to a column using the relational
terminology. Hence, the logical schema provides a lower-level description
which is less intuitive in terms of understanding and more technical than the
related conceptual schema.

Figure 2.7: The logical schema example and rough relational translation of
the conceptual schema of Figure 2.6

Figure 2.7 shows the logical schema of the conceptual schema described
in Figure 2.6 after a transformation. The logical schema contains 8 tables
(AUTHOR, DOCUMENT, REPORT, BOOK, BORROWER, KeyWords,
write and reserve), each with its respective set of columns, where entities are
translated into tables, attributes into columns and association relationships
into either foreign keys or tables.

2.8 Program Analysis
Program analysis consists of developing algorithms and tools that can analyze
other programs. It can be used to provide a result to developers (e.g. bugs
and mistakes), to users (e.g. support for program comprehension), and also

2.8. PROGRAM ANALYSIS 23

Figure 2.8: Programs analysis techniques

for other software tools, such as a compiler and optimizers. In the literature,
there are several techniques available that can be grouped into two general
categories (see Figure 2.8), these being static program analysis and dynamic
program analysis.

2.8.1 Static Program Analysis
Static analysis is the analysis of programs without executing them, which
is performed after coding and before running the programs. In other words,
static program analysis includes a set of formal methods that seeks to extract
information about the system behavior in order to understand it. Their main
characteristic is the analysis of the program’s behavior without execution.
Those techniques are generally carried out either on source code or some
form of the object code. In most cases, the analysis consists of exploiting
source code and documentation artifacts. These techniques are generally
used to optimize compilers in order to produce efficient code, detect bugs,
ensure conformance to coding guidelines and others tools that assist program
understanding. In the literature, there are several techniques available, but
here we shall just mention some relevant ones:

1. Hoare logic: The Hoare logic technique was proposed by Hoare et al.
[31] in 1969. This technique is a formal system with a set of logical

24 CHAPTER 2. RESEARCH DOMAIN

rules that attempts to work out the logical correctness of the programs.
Hoare logic consists in a triple APB which asserts that “If program
P is started in a state satisfying condition A, if it terminates, it will
terminate in a state satisfying condition B.”

2. Abstract interpretation: The abstract interpretation was formalized
by Cousot et al. [17] in the late 1970. It is the formalization of the
notion of approximation. The idea of an abstract interpretation is
to create a new semantics of the programming language. In other
words, it may be viewed as a partial execution of a program which seeks
information about its semantics without performing all the calculations.
The main contribution of such techniques is to understand why program
static analyzers can be formally designed by discrete approximation of
programming language semantics. This technique may be used to either
analyze programs in order to decide whether certain optimizations are
possible or apply transformations that are suitable for debugging.

3. Data-flow analysis: This was developed by Kildall et al. [34] in 1973.
It is a static technique that tries to gather information about the pos-
sible set of values calculated at various points in a program. Starting
from program’s control flow graph (CFG), where the CFG is a repre-
sentation, using graph notation, of all paths that might be traversed
through a program during its execution [2], in order to determine those
parts of a program to which a particular value assigned to a variable
might propagate. This technique is often used by compilers to optimize
the program.

4. Model checking: This began with the work proposed by Emerson et
al.[21] in 1980. Model checking seeks to exhaustively and automatically
check whether the model of a system given as an input meets a given
specification. The aim of the model checking algorithm is to determine
whether the abstraction of the program model satisfies the formula
of program specification. The main contribution of such a technique
is to be completely automatic and in the case where a property is
not satisfied, the model returns a counterexample, and this led to a
widespread use of this technique.

5. Static program slicing: The technique of slicing was defined by
Weiser et al. [87] in 1981. A program slice consists of the parts of
a program that potentially affect the values computed at some point
of interest, referred to as a slicing criterion (usually line-number and

2.8. PROGRAM ANALYSIS 25

variable), where program slicing is the computation of the set of pro-
gram slices. The static program slice S consists of all statements in
program P that may affect the value of variable V at some point of
program P . This technique can be used for different purposes such as
debugging, program comprehension, reverse engineering and program
testing. There are many forms of slicing, which can be grouped into
two main categories, these being static program slicing and dynamic
program slicing, where the dynamic slicing can be thought of as an
augmentation of the static form.

6. Static code instrumentation: According to Grossman [25], this is a
technique that attempts to add additional code to a program/environ-
ment to monitor/change some program behavior. It is used for different
purposes, such as software profiling, testing, debugging and optimizing.
Code instrumentation can be performed with or without source code
(using byte code or binary code). Static instrumentation without us-
ing the source code comes after compilation to add those additional
machine instructions to the generated binary code. Then, the added
instructions are executed with the others during the execution of the
program.

A classic example using a static analysis technique is a compiler in order
to find lexical, syntactic and even some semantic mistakes. For instance,
static analysis is useful to detect formulas which use uninitialized or even
undeclared variables. Moreover, several tools have been developed using
static analysis to maintain code quality, program understanding and reverse
engineering that we will present some of them in the next chapter. The well-
known benefits of static approaches are mainly compactness and complete-
ness. However, their results may contain some noise because they consider
all possible execution paths of a program and variable values, by ignoring
those invoked during a run-time execution.

2.8.2 Dynamic Program Analysis
In contrast to static analysis, the dynamic analysis of programs involves
analyzing the program during runtime. More precisely, dynamic program
analysis techniques focus on run-time aspects of programs by tracing their
execution, and by considering a limited set of execution scenarios. These tech-
niques potentially offer more details on important aspects such as late binding
and accuracy. However, their results may overlook some program execution
paths, thus leading to some silence. Another limitation of this technique is

26 CHAPTER 2. RESEARCH DOMAIN

the potential impact that instrumentation may have on the execution of the
program to be analyzed (including temporal properties). Therefore, in order
to make the analysis more efficient, it is necessary to provide the target pro-
gram with sufficient test inputs in order to produce significant behavior. In
the literature, there are several techniques available, but here we shall just
mention some relevant ones:

1. Code coverage analysis: This was used by Miller et al. in 1963 [52].
It is a measure used to describe the degree to which the source code
of a program is executed when a particular test suite runs. In other
words, code coverage tests how much your code is covered under tests.
This technique was invented mainly for systematic software testing.

2. Dynamic program slicing: In contrast with static program slicing,
dynamic program slicing makes use of information about a particular
execution of a program. According to Korel [36], it is characterized by
the construction of a program slice which exploited the available infor-
mation related to the input that caused the errors. Then, a dynamic
slice contains all statements that actually affect the value of a variable
at a program point for a particular execution of the program. This
technique is useful for applications like debugging and testing.

3. Runtime assertions: The term assertion means a statement that is
expected to be always true at the point where it appears in the code.
If it is not (the assertion is evaluated false at runtime), an assertion
failure results, which typically leads the program to crash, or to throw
an assertion exception. This technique is generally used to help spec-
ify programs and to reason about program correctness. Taylor et al.
[80] reviewed the use of assertions and they made suggestions for their
incorporation in languages.

4. Dynamic code instrumentation: According to Nethercote [58], the
dynamic instrumentation of a program is mainly based on two tech-
niques. The first one is to instrument the byte-code of classes during
loading phase. The second is to use the virtual machine in order to
intercept only events that interest us using the hooks.

A well-known benefit of dynamic analysis is that we can detect subtle
defects and vulnerabilities that cannot be detected by a static analysis. Al-
though dynamic analysis can play a role in ensuring the security of software,
its usual goal is to find and correct errors.

2.9. SOFTWARE VISUALIZATION 27

Advantages Limitations

Static analysis

- Reasons about all exe-
cutions paths
- Abstract domain (slow
if precise)
- Conservative due to ab-
straction

- Less precise
- Sound (false positives
and false negatives)

Dynamic analysis
- More precise
- Concrete execution
(slow if exhaustive)

- Results limited to ob-
served executions
- Unsound (silence) does
not generalize

Table 2.1: Characteristics of static and dynamic analysis for program analysis

2.8.3 Static Analysis vs. Dynamic Analysis
So far we have presented two techniques belonging to program analysis.
These techniques are normally used to assist developers in debugging, test-
ing, program understanding, extracting the program’s behavior, and so on.
Both techniques provide different degrees of accuracy and completeness along
with varying degrees of generality and compactness to deliver the expected
benefits. We compared each one according to their advantages and their
limitations. The results are presented in Table 2.1. We note that both are
complementary because no single approach can meet all the criteria. This
leads us to conclude that both techniques should never be thought of as if they
were in direct competition with each other. Thus, it is more useful to con-
sider them as mutually supporting techniques that together make the tasks
of debugging, testing and program understanding easier and more efficient.
Hence, there are numerous approaches available which use a combination of
the two techniques in order to increase the effectiveness of the approach.

2.9 Software Visualization
In software engineering, there are two disciplines that concern visualization
and are often confused with each other. These are: (1) visual programming,
which is any programming language that uses graphical elements and figures
to implement a program and (2) program visualization, which consists of
producing animated views of information related to programs. Here, we will
just focus on the program visualization that concerns the use of graphic

28 CHAPTER 2. RESEARCH DOMAIN

representations in order to highlight certain aspects of software systems.

2.9.1 Definition
According to definition given by Roman et al [71]: ”program visualization
is the extraction of information about certain aspects of a program and their
presentations in graphic form”. A second definition is given by Petre et
al. [67]: ” Program visualization is trying to find simplicity in a complex
artifact (e.g. several thousand lines of code), in order to produce a selective
representation.”. From these two definitions, we could deduct that software
visualization is the static or animated 2D or 3D visual representation of
information about software systems based on their structure, size, history or
behavior, etc.

In recent years with the growth of data-intensive systems, they manip-
ulate an ever-increasing amount of data. Software visualization became a
new center of interest to support the understanding of such systems. In this
context, several techniques have been proposed, where they focus on different
aspects of software systems, such as source code, software structure, runtime
behavior, component interaction and software evolution. These techniques
can be grouped according to the classification given by Maletic in [47].

2.9.2 Classification of Software Visualization
In the literature, there are several types of visualization according to the
diverse nature of these aspects. Figure 2.9 summarizes the different types
of software visualization according to the classification proposed by Maletic
[47].

Figure 2.9: Types of software visualization [47]

2.9. SOFTWARE VISUALIZATION 29

• Program visualization: Based on the definition given by Roman et
al. [71], program visualization is a mapping from programs to graphical
representations. And Richard Hamming [33] defined program visual-
ization as the production of the animated views of program executions,
where it is not limited to algorithms or activities that are evident in pro-
gram source-code. It may include activities in the compiled code, the
run-time system, data, and even the underlying hardware. It became
very useful to support debugging, evaluating and improving program
performance, evaluating and reducing resource utilization, evaluation
of algorithms in the context of complete programs and real data, under-
standing program behavior and teaching. Recently, many tools have
been proposed in this context. They differ widely in capability, tech-
nique, and applicability, and some of them will be presented in the next
chapter.

• Algorithm visualization: According to Richard Hamming [33] defi-
nition, algorithm animation involves producing animated visualizations
of algorithms, usually during program execution in order to evaluate
and improve them.

• Data visualization: This is a general term that describes any effort
to help people to understand the significance of data by placing it
in a visual context. Patterns, trends, and correlations that might go
undetected in text-based data can be exposed and recognized more
easily with data visualization software.

2.9.3 How Do We Choose The Right Visualization?
As in any technique of visualization, we can raise one or several difficulties
like getting the necessary data and information for visualization, identifying
the aspect of program behavior to be visualized, finding a suitable visual
representation for the behavior, considering the effects of the visualization
on the behavior of the program being visualized and that the limited screen
space often creates problems in presenting information from real programs,
etc.

In the light of this, it is advisable to ask what a good visualization might
be, what properties are needed to support and the characteristics it must
have. Maletic et al. [48] define Quintilian questioning as that which allows
researchers to ask the right questions in order to get a good delimitation
of the purpose and also to choose from which perspective the goal will be
treated. Then to know which kind of visualization is appropriate for the
given purpose:

30 CHAPTER 2. RESEARCH DOMAIN

Criteria 2D metaphor 3D metaphor
Emergence 1950 1970
Popularity more common less common
Implementation easier to implement less easy to implement
Metaphors

graphs, trees,
diagrams, etc.

geographic (coun-
tries, cities), graphs
with 3 axes, etc.

Advantages
intuitive, simple, one
piece of information
at a time, etc.

several navigation
modes, fairly clear
overview, avoids
overlap, etc.

Drawbacks cognitive overload, information overload
restricted navigation

Table 2.2: Characteristics of 2D and 3D visualization

• Why is visualization needed?

• Who applies visualization?

• What should be represented?

• How should it be represented?

• Where should it be represented?

Once we have answered all these questions, the next step is to define the
visual metrics and metaphors. According to the definition given by Diehl [19],
a visual metaphor is an analogy that is the basis of a graphic representation
of an entity or an abstract concept, where its aim is to transfer the properties
of the graphic representation to those of the abstract entity or the concept.
It is worth remarking that the choice of visual metaphor is crucial because it
directly affects the effectiveness of the visualization. This is why it is neces-
sary to be especially careful about the choice. Moreover, it is imperative that
all visual metrics provided by the chosen metaphor are sufficient to represent
all the required aspects; and above all, it can be employed consistently.

2.9.4 2D vs. 3D Visualization
In the literature, there are several types of visual metaphors available. Ac-
cording to the diverse nature of these metrics, we can classify them into two

2.10. PROCESS MINING 31

categories. These are:

1. 2D visualization: The main principle of this category is the use of
graphics, trees and diagrams to visualize information that is given in a
two dimensional representation.

2. 3D visualization: In contrast to 2D dimensional visualization, 3D
visualization is a graphic that uses a three-dimensional representation
to represent data.

Table 2.2 offers a small comparison between these two categories in terms
of advantages, drawbacks, popularity and metaphors. Although 2D visual-
ization is the oldest, it is the easiest to implement, the most widely used and
intuitive. Nevertheless, it can quickly become overloaded, when there is too
much information (data) to visualize.

Figure 2.10: Types of process mining

2.10 Process Mining
Process Mining is a discipline that lies somewhere between process analysis
and data analysis (machine learning, big data). According to the definitions

32 CHAPTER 2. RESEARCH DOMAIN

proposed by [83] [84], process mining techniques seek to extract knowledge
from event logs commonly available in today’s information systems, in order
to provide a new means to discover, monitor and improve processes in a
variety of application domains. Therefore, the key ingredient of a process
mining is an event log, which logs each step of the process to be analyzed.
Starting from this input, the process mining can be divided into 3 axes [83].
Figure 2.10 summarizes them according to their input and output.

1. Discovery: It seeks to extract or discover a new process model from
the low-level event log given as an input. This type improves the over-
all knowledge of the process based on its history. Many techniques
were defined that sought to automatically extract process models (for
example, Petri net [26], pi-calculus expression [75]) based on an event
log.

2. Conformance checking: It seeks to compare the existing model and
the process event log of the same process in order to check if the model
of the process is conform with reality, as recorded in the log, conforms
to the model and vice versa;

3. Enhancement: It attempts to extend or improve an existing process
model with a new aspect or perspective using information about the
current process recorded in some event log.

Process mining became a new focus of interest because :(1) an increasing
amount of events is being recorded, and this provides a strong indication
about the history of processes; and (2) there is a need to improve and support
business processes in competitive and rapidly changing environments.

2.11 Conclusions
In this chapter, we presented different concepts and techniques related to our
research domain that support software evolution and maintenance – more
specifically the program comprehension of certain types of systems called
”Data Intensive Systems” . We started by discussing software maintenance
and evolution, then we focused on the first task, which is program comprehen-
sion because it is considered to be the most time-consuming task and this is
especially true in the case of data-intensive systems. Afterwards, we defined
different techniques that are mainly used in such areas and also which we
will apply in our approach, namely database engineering/reverse engineering,
static analysis, dynamic analysis, visualization and process mining.

2.11. CONCLUSIONS 33

In the next chapter, we will present some techniques and tools related to
the understanding of data-intensive systems using the techniques described
here.

34 CHAPTER 2. RESEARCH DOMAIN

Chapter 3

Related Literature

Great things are not done by impulse,
but by a series of small things brought together.

Vincent Van Gogh

Contents
3.1 Introduction . 35

3.2 Program Analysis for Program Comprehension 36

3.3 Process Mining for Program Comprehension . . 44

3.4 Visualization for Program Comprehension . . . 46

3.5 Conclusions . 49

3.1 Introduction
Many approaches have been proposed in the literature to assist program un-
derstanding. In this chapter, we review those that share a common goal
which is to help users and/or developers to better understand software sys-
tems, or those who applied some techniques that inspired our approach such
as program analysis, process mining and visualization. Below, we start by
reviewing some of the existing approaches using program analysis, where we
have grouped them into three categories: (1) approaches using dynamic anal-
ysis for program comprehension, (2) approaches using static SQL statement
analysis. (3) approaches using dynamic SQL statement analysis. Then in
Section 3.3, we review some existing approaches which make a use of process
mining techniques to extract and understand the process models of systems.

35

36 CHAPTER 3. RELATED LITERATURE

In Section 3.4, we review existing approaches that use visualization for pro-
gram understanding. Lastly, we present some shortcomings of the related
approaches by identifying differences and bring out the main contribution of
our approach.

3.2 Program Analysis for Program Compre-
hension

Many approaches have been proposed in the literature to assist program un-
derstanding. Program analysis has been considered as a valuable technique
for a long time. It consists of supporting program-understanding tasks by
analyzing a software system from its artifacts such as source code, documen-
tation, architectural diagrams, design information, execution traces and the
event log. In this section, we focus only on those that applied techniques
that inspired our approach such as dynamic analysis, static and dynamic
SQL execution trace analysis. However, only a few approaches focused on
data-intensive programs - which is our main concern. Lastly, we synthesize
and compare all contributions of these approaches according to our main
contribution.

3.2.1 Dynamic Analysis for Program Comprehension
There are many approaches that concentrate on program comprehension
through a dynamic program analysis. Cornelissen et al. [15] summarized
most of them in a thorough survey, where they scanned a total of 4,795 arti-
cles that had been published between 1999 and 2008. Among those papers
surveyed, they selected 172 articles that strongly emphasized the use of dy-
namic analysis in program comprehension contexts and 30 approaches that
were related to the analysis of program execution traces. Out of these studies,
we are only interested in those that are strongly related to our approach.

The approaches presented in [79, 3, 24] reveal the advantages of using a
combination of static analysis and dynamic analysis for different purposes.
The approach proposed by Systa et al.[79] introduces Shimba, a prototype
of a reverse engineering environment, which combines static and dynamic
analysis to help understand the run-time behavior of an object-oriented soft-
ware system by analyzing the generated scenario diagrams. They employed a
static analysis to select a set of components that need to be examined during
a dynamic analysis. The approach is based on the assumption that a soft-
ware engineer does not need to trace the whole system if only a specific part
needs to be analyzed. Antoniol et al.[3] defined and implemented a WANDA

3.2. PROGRAM ANALYSIS FOR PROGRAM COMPREHENSION 37

Year Authors Technique Systems Objective
2000 Systa et

al.[79]
- Dynamic +
static analysis
- Visualization

Java soft-
ware sys-
tems

Shimba - a reverse
engineering environ-
ment to support the
understanding of Java
software systems

2004 Antoniol
et al.[3]

- Dynamic +
static analysis
- Visualization

Web appli-
cations

WANDA - to recover
the Web application
architecture using the
dynamic and static
analysis

2006 Hamou-
Lhadj et
al.[29]

- Dynamic analy-
sis

Object-
oriented
systems

Summarizing the con-
tent of large execution
traces

2006 Greevy
et al.[24]

- Dynamic analy-
sis
- Visualization

Object-
oriented
systems

Analyzing the evolution
of systems through
features views

2012 Trumper
et al.[81]

- Dynamic analy-
sis
- Visualization

Embedded-
systems

Software-based tracing
technique for tracing
and visualizing the
runtime behavior of
embedded systems

2013 Sarkar et
al.[76]

- Dynamic analy-
sis

Object-
oriented
systems

Understanding the
dynamic behavior of
object oriented systems

2013 Labiche
et al.[39]

- Dynamic +
static analysis

Java soft-
ware sys-
tems

Reverse-engineer sce-
nario diagrams for
program comprehen-
sion

2018 Noughi
et al.
[61]

- Dynamic anal-
ysis

Data-
intensive
systems

Understanding data
manipulation behav-
ior of data-intensive
systems

Table 3.1: Summary of research works focusing on program comprehension

38 CHAPTER 3. RELATED LITERATURE

(Web Applications Dynamic Analyzer) approach for the dynamic analysis
of Web applications, where they combine the advantages of static analysis
and dynamic analysis to recover the architecture of Web application; more
specifically, UML documentation such as component, deployment, sequence
and class diagrams. Greevy et al.[24] showed how a feature-centric analysis
of a software system supported software evolution and maintenance activi-
ties. For this, they combined the dynamic models of feature behavior and
the static models of the source code in order to extract the mapping between
features and code, and then show that a features perspective of a system is
an added-value to help understand the underlying reasons for changes.

In another context, Hamou-Lhadj et al. [29] presented a semi-automatic
approach seeking to summarize the content of large execution traces in or-
der to understand the main behavioral aspects of the given system using a
dynamic analysis. The main objective of the approach is to take as input an
execution trace in order to provide a summary of its main content by reduc-
ing its size and complexity, while retaining as much of its sense as possible.
The traces they focused on were based on routine calls, which refer to any
routine, function, or procedure, regardless of whether it is a method or a
class.

The approaches presented in [81, 76, 39] make use of instrumentation
for different purposes. The software-based tracing technique proposed by
Trumper et al.[81] attempts to trace and visualize the runtime behavior of
embedded software systems to support software maintenance; more specif-
ically the program comprehension of such software systems. The authors
make use of tracing in order to record the system runtime behavior, where
they used a dynamic binary instrumentation technique to intercept the func-
tion entry and the function exit events. Then, they analyzed visually the
resulting traces in order to provide a means for facilitating debugging and
the program comprehension of embedded systems. Sarkar et al.[76] proposed
an approach that sought to extract and understand the dynamic behavior of
an object-oriented system through its UML sequence diagram. They used dy-
namic analysis in order to extract a sequence diagram from an object-oriented
system program at runtime. For this purpose, they instrumented the Java
code of the program and got a new instrumented Java code. Then, they gen-
erated a image file by a message sequence when they ran the instrumented
Java code. Lastly, they got the sequence diagram from the image file. In
the same context, Labiche et al.[39] combined static and dynamic analysis to
reverse engineer the scenario diagrams of Java software, where the goal was
to facilitate the software life-cycle activities; more precisely, program compre-
hension. The authors used static analysis to extract the control flow graph
from Java software source code, and dynamic byte-code instrumentation in

3.2. PROGRAM ANALYSIS FOR PROGRAM COMPREHENSION 39

order to obtain program execution traces. Then, based on model transfor-
mations, they represented both sets of information using a UML sequence
diagram representation.

3.2.1.1 Discussion and Comparison to Our Approach

From an analysis of the approaches in question, we noted that program un-
derstanding has existed for a long time and it had been the subject of several
studies [79, 3, 24, 29, 81, 76, 39]. However, the problem of comprehension is
still unresolved and it remains a key aspect of software evolution and main-
tenance.

Table 3.2.1 summarizes the research related to program comprehension
through dynamic analysis or a combination of static and dynamic analysis.
The first column recalls the year of the work. The second column includes
the related work reference. The third column enumerates the techniques
used. The fourth column highlights the targeted kind of software system.
Lastly, the last column summarizes in one sentence the main objective of the
proposed approach.

From an analysis of the approaches examined, we observe that none of
the presented approaches focus on data-intensive systems (data-oriented sys-
tems), which have more problems than the comprehension of general-purpose
systems. As we saw previously, these systems are characterized by intensive
and complex interactions between programs and their databases, which are
realized by SQL statements. Owing to this, our work will focus on the
understanding of the data-manipulation behavior of data-intensive systems
through an analysis of their SQL statements.

3.2.2 SQL Statement Analysis
Analyzing the data-manipulation behavior of programs via their SQL state-
ments is one of the most powerful techniques available in software evolution
and maintenance. Hence, extracting and analyzing the SQL statements of
such systems may be viewed as a useful technique to understand, evolve or
maintain them. This goal can be achieved in two different ways according to
the capture technique of SQL statements used, involving a static analysis or
dynamic analysis.

3.2.2.1 SQL Statement Static Analysis

Now, we present and discuss approaches that used static analysis in the
context of SQL statement analysis. The studies outlined in [66, 92, 10, 82]

40 CHAPTER 3. RELATED LITERATURE

proposed approaches based on an analysis of the access of SQL statements
using static analysis for different purposes.

The technique presented in [66] seeks to extract an entity relationship
(EER) schema from an operational relational database to improve database
reverse engineering. The enrichment of the raw schema comes from an anal-
ysis of the SQL queries available in the application programs. In particular,
joins are seen as heuristics for the detection of implicit dependencies between
the columns of distinct tables.

Willmor et al.[92] proposed an approach based on a static program slicing
technique. The authors defined an approach that supports slicing over both
program and database state, where they introduced two new forms of states
along with the standard program states in order to take into account the
additional semantics of a database state. The first one is called a program-
database dependency caused by the interaction between the program and its
database state. The second is called a database-database dependency that
exists between pairs of statements which both manipulate the database state.

In the same context, Cleve et al.[10] proposed an approach based on static
analysis, namely a program slicing technique where they analyzed the source
code of programs in order to detect and exploit data-flow dependencies that
hold within and between (successive) SQL queries. They showed that the
proposed approach, and its supporting tools, permit the recovery of implicit
knowledge on the database structures and constraints such as undeclared for-
eign keys, finer-grained decomposition and more expressive names for tables
and columns.

Vanden Brink et al.[82] presented an approach to the tool-assisted quality
assessment of the data access aspects of systems that employ embedded SQL.
The authors used a static analysis technique, more specifically a control and
data-flow analysis, to reconstruct embedded SQL queries from the source
code. Then, they analyzed them in order to define measures to quantify the
quality of systems with embedded SQL queries.

Quite recently, some studies were interested in the static analysis of SQL
queries, but for purposes other than program comprehension. For instance,
Meurice et al.[51] defined a static analysis technique seeking to identify the
dynamic database access locations and the database objects (tables and
columns) accessed by a given access. They were interested in three types of
Java database access technologies, these being Java DataBase Connectivity
(JDBC), Hibernate and Java Persistence API (JPA). The authors identified
the source code locations querying the database based on the call graph of
the given method, where it is based on an inter-procedural analysis.

Later as an extension of the previous approach, Meurice et al.[50] pro-
posed a tool-supported approach seeking to support the adaptation of appli-

3.2. PROGRAM ANALYSIS FOR PROGRAM COMPREHENSION 41

cation programs to database schema changes. To this end, they first analyzed
how the source code and database schema had co-evolved in the past. Then,
they simulated a database schema change and automatically determine the
set of source code locations that would be affected by this change. Finally,
they provided recommendations about what developers should modify at
these source code locations in order to avoid inconsistencies.

In the context of a code smell detector, Nagy et al.[56, 57] defined a new
approach seeking to help developers to accomplish SQL-related maintenance
tasks in the code such as where it accesses a given part of the database,
or which is responsible for the construction of a given SQL query. To this
end, they performed various analyses on embedded SQL queries, once they
had extracted them from JAVA applications using static analysis techniques.
They also implemented the approach as an integrated eclipse plug-in called
SQLInspect.

3.2.2.2 SQL Statement Dynamic Analysis

Although the previously studied approaches can extract to a certain extent
the data access logic, the static program analysis techniques are limited
in the case of highly dynamic database interactions, or in the presence of
object-relational mapping technologies, involving the automatic generation
of database queries at runtime. In such situations, dynamic information is
crucial to attain a sufficient level of precision in the understanding process.
The approaches presented in [18, 7, 1] analyze the access of SQL statements
using dynamic analysis.

Del Grosso et al.[18] proposed an approach that attempted to automati-
cally identify the application features of data-intensive programs in order to
export these features as services. The method consists of collecting all SQL
queries resulting from the interactions between the application programs and
their database. Then, the authors applied clustering techniques in order to
group together the SQL queries that access to the same database schema
elements. Lastly, using existing migration techniques, they exposed them as
a service.

The approach proposed by Cleve et al. [7] focused on the issue of database
and program evolution; more precisely, the recovering of missing documenta-
tion about the database. The authors think that database re-documentation
is an important source of information that is needed before evolving program
and database. The main objective of the approach involves recovering the im-
plicit database constructs and constraints, such as detecting implicit foreign
keys of the database. With this in mind, the authors were led to analyze not
only database code, but also other artifacts such as the source code of pro-

42 CHAPTER 3. RELATED LITERATURE

grams accessing to the target database via SQL execution statements using
a dynamic analysis technique.

In a slightly different context, Alalfi et al.[1] presented the WAFA ap-
proach (Web Application Fine-grained Analysis), which analyzes the database
interactions of dynamic Web applications in order to extract a fine-grained
model and then to recover and control security properties such as the details
of user roles and permission.

3.2.2.3 Dicussion

Many approaches have been proposed to assist software maintenance and
evolution via an analysis of SQL execution traces. Here, we placed them into
two categories according to the type of technique used: (1) approaches that
focus on a static analysis of SQL execution statements [82, 92, 10, 66, 51,
50, 56, 57]; and (2) approaches that focus on a dynamic analysis of the SQL
execution statements [18, 7, 1].

Table 3.2 summarizes all of them according to five aspects. The first
column recalls the year of the work. The second column includes the related
work reference. The third and the fourth columns define the technique used.
Lastly, the last column summarizes in one sentence the main objective of the
proposed approach.

Of course, these approaches demonstrated their relevance to software
maintenance and evolution. However, we see that they have some limita-
tions as well as certain aspects that were not considered:

• We can clearly state that very few of the given approaches focus on
modern data-intensive (data-oriented) systems, i.e., applications where
the most relevant features consist of interaction with different portions
of a database. For such applications, it is necessary to recover the
data-manipulation behavior in order to support the understanting.

• The approaches that used classical static analysis techniques are not
sufficient in the context of highly dynamic systems. They generally fail
to produce meaningful behavioral models in the case of these systems,
which are mainly characterized by complex, dynamic and continuous
interactions among the application programs and their databases. In
this case, we observe that is more judicious to use dynamic analysis
techniques to achieve more completeness and precision.

• We also observe that there is no approach supporting the analysis of
program-database interactions with the ultimate goal of recovering and

3.2. PROGRAM ANALYSIS FOR PROGRAM COMPREHENSION 43

Year Authors Static Dynamic Systems Objective
1994 Petit et

al.[66]
! Systems

using re-
lational
database

Extracting an EER schema
from an operational relational
database to improve database
reverse engineering

2004 Willmor
et al.[92]

! Supporting the software main-
tenance process through pro-
gram slicing

2006 Cleve et
al.[10]

! Data-
intensive
systems

Recovering implicit knowl-
edge on the database struc-
tures and constraints through
program static slicing

2007 Del
Grosso
et al.[18]

! Data-
intensive
programs

Identify services in data-
intensive programs

2007 Vanden
et al.[82]

! Systems us-
ing embed-
ded SQL
queries

Quality assessment of sys-
tems through embedded SQL
queries

2008 Cleve et
al.[7]

! Data-
intensive
applica-
tions

Recovering implicit knowl-
edge on the database struc-
tures and constraints using
dynamic analysis technique

2009 Alalfi et
al.[1]

! Web Appli-
cations

WAFA – An approach for Web
Application fine-grained anal-
ysis

2016 Meurice
et al.[51]

! Java Sys-
tems

Identifying the dynamic
database access locations in
Java Systems using static
analysis techniques

2016 Meurice
et al.[50]

! Data-
intensive
applica-
tions

Detecting and Preventing Pro-
gram Inconsistencies under
Database Schema Evolution

2017 Nagy et
al.[56,
57]

! Java Sys-
tems

SQLInspect for statically ex-
tracting and analyzing SQL
queries embedded in Java to
support SQL-related mainte-
nance tasks.

2018 Noughi
et
al.[61,
60]

! Data-
intensive
systems

Understanding the data-
manipulation behavior of
data-intensive systems

Table 3.2: Summary of research works focusing on SQL statement analysis

44 CHAPTER 3. RELATED LITERATURE

understanding the data-manipulation behavior of data-intensive pro-
grams. With the highly dynamic program-database interactions, the
database queries may only exist at runtime. This is one reason that mo-
tivated us to develop a new tool-supported framework allowing develop-
ers to gain a better understanding of the data-manipulation behavior
of data-intensive software systems. Our approach is able to analyze
program-database interactions in order to understand data manipula-
tion behavior of programs.

3.3 Process Mining for Program Comprehen-
sion

Process mining techniques can be seen as the fact of using methods of data
analysis on problems related to a process in order to automatically discover
process models, check the conformance of process models to reality, and ex-
tend or improve process models. These techniques may be regarded as useful
and versatile in the context of program comprehension, where numerous ap-
proaches and tools have been proposed to assist program understanding using
these techniques.

After examining the nature of data intensive systems, process models
expressing data-manipulation behavior became a center of interest for devel-
opers, administrators and users. On one hand, developers and administrators
(server-side users) design, develop, maintain and migrate data-intensive appli-
cations, thus supporting the whole system life-cycle. For migration purposes,
they query models to capture the variability of the data-intensive applications
in terms of the use of different functionalities (with data). Moreover, they re-
cover sub-processes of the legacy system for understanding and checking their
conformance with design-time models. On the other hand, users (client-side)
should have access to the subset of the database that is required to perform
the currently required data-manipulation functions. Hence, models express-
ing data-usage patterns for a single user can support his reconfiguration of
data, e.g., by identifying data portions that it always accesses together.

The approach presented by Yang et al.[94] recovered an initial domain
feature model from multiple existing domain applications to support the re-
covery of a feature model by means of an aspect-based tracing technique and
formal concept analysis. The authors started by identifying the mapping
between application data schemas and domain data model. Then, they used
the data access semantics defined on database schemas as the business intent
of all the program methods, where they identified a common basis of anal-

3.3. PROCESS MINING FOR PROGRAM COMPREHENSION 45

ysis for domain model recovery with consistent data access semantics. The
authors applied formal concept analysis where they combined methods taken
from different applications as objects and data access semantics as properties
in order to extract the feature model.

The approach presented in [59] proposed a solution to the problem of
identifying relevant processes from event log traces that capture Web service
interactions. Information gathered from message interactions are analyzed to
support the user in filtering in a semi-automatic manner the events of interest.
Based on these logs, their approach is able to produce the corresponding
process models that are relevant for the user.

In another context, Eisenbarth et al.[20] defined a new technique seeking
to derive the feature-component correspondence, which represents a docu-
mentation artifact that describes which components are needed to implement
a particular feature or set of features. With this in mind, the authors used
dynamic information (got from execution traces, where they used a profiler
to generate them) and concept analysis in order to get information on rela-
tionships among features and required components.

The approaches presented in [49, 73, 70] show how process mining can be
applied to different application scenarios with the intention of understanding,
checking and enhancing process models in real working environments. Mans
et al. [49] demonstrated the applicability of process mining techniques to the
health-care domain - more precisely, a gynecological oncology process. The
authors analyzed the health-care process from three different perspectives,
namely the control flow, the organizational perspective and the performance
perspective, where they extracted different event logs from hospital informa-
tion systems and analyzed them using the ProM framework (an extensible
framework that supports a wide variety of process mining techniques in the
form of plug-ins). The study outlined in [73] demonstrated the applicability
of process mining techniques to less structured processes such processes of
ASML (the leading manufacturer of wafer scanners in the world). The au-
thors used the ProM framework in order to improve the testing process. In
the same context, Rebuge et al. [70] utilized the techniques of process mining
in the context of health-care processes in order to increase organizational per-
formance by identifying regular behavior, process variants and exceptional
medical cases.

3.3.1 Synthesis
Most of the approaches presented previously apply process-mining techniques
to traces of system execution, but they do not consider data accesses. In
addition, none of these approaches is suitable for data-intensive systems,

46 CHAPTER 3. RELATED LITERATURE

i.e., systems where the most relevant features consists of interactions with
different portions of a data sources. For such systems it is necessary to
recover the data-manipulation behavior to support understating, checking
and enhancement of their process models, which is our main concern.

3.4 Visualization for Program Comprehension
Program understanding is not an easy task, especially in the case of data-
intensive systems, where it generally involves combining several techniques.
Moreover, it is difficult to analyze, understand and manage a huge volume of
data. Thus, it is necessary to present them in an understandable form. In the
light of this, visualization is regarded as the most popular technique to resolve
this problem. Hence, according to Stasko [78], all types of visualization seek
to transform information into a meaningful, useful visual representation from
which a human observer can gain an understanding. Visualization also has a
big potential and it can lead to a better and quicker understanding of systems,
which helps developers to save time and provide valuable information to help
maintain and evolve them.

The use of advanced visualization techniques such as graphical visualiza-
tion becomes even more indispensable in the case of software systems like
which may include thousands of entities and rely on highly complex and dy-
namic interactions. A survey of the most popular visualization techniques
was carried out by Caserta et al. [5], who summarized the most relevant
techniques and tools in a systematic survey. They considered 2D and 3D
based visualization, representing static aspects of the software and its evolu-
tion. They categorized and compared them to identify what was the most
relevant for program comprehension.

In this section, we will summarize only those that somehow seem to be
related to our approach. The approaches proposed in [32, 63, 14, 16, 40] were
implemented in a 2D visualization tool.

Jerding et al.[32] proposed an approach seeking to identify, visualize and
analyze interactions in object-oriented program executions in order to exam-
ine and understand dynamic program behavior. Their approach was imple-
mented in an integrated tool called ISVis, which supports the analysis of
the execution traces generated from object-oriented systems. The authors
considered that large execution traces consist of recurring patterns, and vi-
sualizing these patterns is useful for reverse engineering. To this end, they
defined a data structure for the internal representation of the traces, where
they relied on the idea that a trace of method calls, which is a tree structure,
can be transformed into its compact form. As a result, they obtained an

3.4. VISUALIZATION FOR PROGRAM COMPREHENSION 47

ordered directed acyclic graph, where the same subtrees are represented only
once. This representation allows ISVis to scale up to very large traces.

The approach proposed by Pauw et al.[63]] sought to visually explore
Java program’s run-time behavior visually. They implemented Jinsight – a
visualization tool supported by the approach that is based on 2D visualiza-
tion. It provided several views, that were linked to each other in many ways
allowing navigation from one view to another. The authors affirmed that
navigation makes the collection of views far more powerful than the sum of
their individual strengths. Jinsight is used to help developers to find and
fix bugs, for a performance analysis and any task where they need to better
understand what the Java program is really doing.

Cornelissen et al. [14, 16] presented EXTRAVIS, a tool-based approach
consisting of analyzing and visualizing the execution traces of programs in
the context of trace understanding. They thought that the execution traces
contained huge amounts of data that are not easily understood by the tra-
ditional visualization techniques. For this purpose, EXTRAVIS allows one
to visualize, on one hand, these execution traces, and on the other hand,
the program’s package decomposition. In addition, it provides the means to
navigate this information according to two synchronized interactive views,
based on 2D visualization. These are: (1) EXTRAVIS’ massive sequence
view, consisting of a large-scale UML sequence diagram, that provides an
interactive overview of the trace; (2) EXTRAVIS’ circular bundle view, that
hierarchically projects the program’s structural entities on a circle and shows
their interrelationships in a bundled fashion.

Lanza et al. [40] presented the Evolution Matrix, an approach seeking to
visualize the evolution of classes in object oriented software systems. They
combined software visualization with software metrics in order to help the
recovery of the evolution of the object oriented software systems. The tool
supported by the approach is based on a 2D visualization, which displays
the evolution of the classes of a software system in the form of a matrix.
Each column represents a version of software, while each row represents the
different versions of the same class. In addition, the authors defined a set of
metrics in order to reflect the measurements of classes. For instance, they
used the metrics number of methods for the width and number of instance
variables for the height.

In contrast to the approaches and tools defined above, the approach
presented By Wettel et al. [88, 91, 90] was implemented in a language-
independent interactive 3D visualization tool called CodeCity. The main
principle of this approach is the analysis of large-scale object-oriented soft-
ware systems using a city metaphor. Here, the authors represented the given
system as a city, where classes are depicted as buildings (the number of meth-

48 CHAPTER 3. RELATED LITERATURE

ods represents the building height and the number of attributes represents
the base size of the building), and packages as districts of the city. Such
visualization allows one to get a preliminary understanding of the system in
question, and gather some statistics about the program, which will enable
users to identify the most sensitive classes and packages that are crucial for
comprehension and maintenance.

Year Approach 2D 3D Tool Objective
1997 Jerding et

al.[32]
! ISVis Analyze the execution

traces generated from
object oriented systems
in order to detect the
recurring patterns

2001 Pauw et
al.[63]

! Jinsight Explore Java program’s
run-time behavior visu-
ally

2001 Lanza et
al.[40]

! Evolution
Matrix

Gain a quick under-
standing of the evolu-
tion of classes within a
software system

2007 Wettel et
al.[88, 91,
90]

! CodeCity A language-
independent interactive
3D visualization tool
for the analysis of large-
scale object-oriented
software systems

2009 Cornelissen
et al.[14, 16]

! EXTRAVIS A tool-based approach
for the analysis and
the visualization of the
execution traces

2018 Noughi et
al.[62]

! DAViS A tool-supported
approach for dy-
namic analysis and
visualizarion of SQL
execution traces

Table 3.3: Summary of research studies focusing on visualization

3.5. CONCLUSIONS 49

3.4.1 Synthesis
Numerous visualization tools have been proposed to assist program under-
standing. Here, we choose the most relevant for our contribution or those
who have inspired us to design our tool. Table 3.4 summarizes them ac-
cording to the kind of the visualization, the main objective and the year of
their implementation. Through this study, we observe that a visualization
represents an important contribution in the context of program comprehen-
sion, and more specifically in the case of data-intensive systems. However,
choosing the right visualization in order to represent the information in an
understandable form is the most difficult task. This is especially true when
we consider the huge amount of data and information that we need to repre-
sent. In this case, the choice becomes crucial, because we have to take into
consideration two aspects that have an inverse correlation, these being: (1)
the amount of information to represent using a different visual metric and
(2) keeping the simplicity of the visualization in order to make it intuitive
and easy to understand.

3.5 Conclusions
Many approaches have been proposed to enhance the software maintenance
and evolution phases. More precisely, program comprehension has always
been an essential part of software maintenance and evolution. In this con-
text, different approaches have been proposed to improve this phase of the
software life-cycle. In this chapter, we outlined different approaches that sup-
port program understanding, where we classified them into three categories
according to the used techniques. These are: (1) approaches that used pro-
gram analysis, where it is regarded as the most common and appropriate
technique to support the understanding of software systems; (2) approaches
that used process mining techniques and (3) approaches that used visualiza-
tion. For each category, we presented and discussed the most relevant studies
related to our research work or that helped us to define our approach.

The next part will present our approach in detail. In chapter 4, we present
an overview of the global approach as well as the research questions that we
wish to answer. Then, we describe each part of the framework in chapters 5,
6 and 7. In Chapter 5, we elaborate on how we can use an SQL execution
trace to extract the data-manipulation behavior of program. In Chapter 6,
we show how we can use multi-SQL execution traces to extract the data-
manipulation processes of programs. Lastly, in chapter 7, we outline how we
can use the data-manipulation behavior to re-document source code.

50 CHAPTER 3. RELATED LITERATURE

Part II

Dynamic Analysis of SQL
Execution Traces for

Data-Intensive Systems

51

Chapter 4

Overview of The Framework

Big things have small beginnings
Prometheus

Contents
4.1 Introduction . 53
4.2 Motivation . 54
4.3 Preliminaries . 55
4.4 Problem Statement 57
4.5 Approach Definition 57
4.6 Conclusions . 60

4.1 Introduction
In the previous chapter, we showed how much effort has been made to en-
hance the software evolution and maintenance phase - more specifically, the
program comprehension task. However, many limitations still remain and
prevent program comprehension from being the least complex task of the soft-
ware life-cycle. In the light of this, we elaborate on how to combine program
analysis, visualization and process mining to support program comprehen-
sion. To this end, we defined an integrated framework seeking to understand
the data-manipulation behavior of data-intensive systems via an analysis of
their SQL execution traces. To achieve this goal, we start by presenting
the motivation that allowed us to define our problem statement. Then, we
present some formal definitions of concepts that are related to our method-
ology. Afterwards, we will explicitly define the problem statement. Then we

53

54 CHAPTER 4. OVERVIEW OF THE FRAMEWORK

will describe, at an abstract level, the different objectives of the framework
we propose, and these will be touched upon throughout this thesis.

4.2 Motivation

Figure 4.1: General framework

As we said earlier, our main objective is to support the understanding
of «data-intensive systems» by analyzing the communication between the
application programs and their database, which is realized by SQL execution
traces. For this purpose, we defined a framework which is summarized in
Figure 4.1.

The framework includes three phases of analysis, where each phase has
its own objective: (1) phase 1, seeks to support the understanding of data-
manipulation behavior via an analysis of a single SQL execution trace; (2)
phase 2, which seeks to recover data-manipulation processes via an analysis
of multiple SQL execution traces and (3) phase 3, which seeks to re-document
programs source code with their data-manipulation behavior. The framework
was motivated by the fact that:

1. From the existing approaches so far, in the context of program compre-
hension, more precisely, those that were reviewed in Chapter 3, very
few of them can be directly applied to modern data-intensive systems.
We mean by data-intensive systems all systems that are mainly charac-
terized by complex and dynamic interactions between the application

4.3. PRELIMINARIES 55

programs and a large set of data, through SQL queries, where the SQL
queries are built dynamically at runtime.

2. Given the nature of these systems, program-database interactions con-
stitute an important part of the program’s behavior, which is important
to consider and to understand. As luck would have it, none of the pre-
viously studied approaches (see Chapter 3) focuses on the analysis of
these interactions for program comprehension.

3. In addition, the highly ”dynamic” (Web applications, automatically
generated queries, etc.) and ”transparent” (Object Relational Mapping
frameworks) nature of these interactions prevent them from being read-
ily analyzed by means of classical program analysis techniques, such as
static analysis.

4.3 Preliminaries
Now, we will introduce several concepts that will help to better understand
the methodology we developed.

4.3.1 Mapping between Conceptual and Logical Schemas
The mapping between conceptual schema and logical schema can be defined
as the correspondence relationship between each logical object with its corre-
sponding conceptual object. In practice, each object belonging to the schema
(logical or conceptual) has a meta-property (i.e., an annotation) called a Map-
ping Object Identifier (MappingOID). Hence, two objects belonging to dis-
tinct schemas (one to the logical schema and one to the conceptual schema)
are mapped to each other if and only if they have the same Mapping Object
Identifier (MappingOID).

Figure 4.2 shows the mapping between the conceptual schema (bottom
figure) and the logical schema (down figure). The conceptual schema de-
scribes the application domain of a company selling products to customers.
It contains 3, namely CUSTOMER, PRODUCT, ORDER, each with its re-
spective set of attributes, linked through two association relationships (place
and detail). For instance, customer can place one or several orders, where
each order belongs to one and only one customer. And the logical schema
represents the transformation of the conceptual schema above, where it con-
tains 4 tables, namely CUSTOMER, PRODUCT, ORDERS and DETAIL,
each with its respective set of columns, where entities are translated into ta-
bles, attributes into columns and association relationships into foreign keys.

56 CHAPTER 4. OVERVIEW OF THE FRAMEWORK

Figure 4.2: An example of a mapping between a logical schema and a con-
ceptual schema.

For instance, the entity ”CUSTOMER” belonging to the conceptual schema
is mapped with the table ”CUSTOMER” of the logical schema, where their
MappingOID is equal to 1.

4.3.2 SQL Execution Traces
In software engineering, tracing means recording information about the pro-
gram’s execution. Thus, a trace is a program execution representation. The
tracing is used for different purposes, such as debugging and analyzing the
program’s behavior according to the type and level of detail contained in the
traces. Traces can be captured either statically, off-line, by analyzing the
program source code or dynamically, at runtime, by capturing the generated
code during the compilation and execution phases.

In the remainder of this thesis, traces represent the interactions occurring
between application programs and their database, which are realized by SQL
queries with their results. Hence, a trace is a sequence of SQL queries with
their results. Through tracing, we are able to intercept all SQL queries that
occurred in a program execution scenario with their results. From this, we
obtain a sequence of queries with their results. Figure 4.3 depicts a fragment
of an SQL trace, expressed in the input logical schema of Figure 4.2. The
first query q1 searches the number and the name of all customers living in

4.4. PROBLEM STATEMENT 57

Result of q1:

NCUST NAME
B062 GOFFIN
C123 MERCIER
L422 FRANK
S127 VANDERKA

Figure 4.3: An example of a SQL execution trace + result of query q1.

Namur. Each following query (q2-q5) selects the number and the date of all
orders placed by a given customer.

4.4 Problem Statement
Given a set of SQL execution traces of the same program execution scenario,
a logical schema, a conceptual schema and a mapping between them,

1. Can we automatically relate the program execution traces, the program
source code and the database schema?

2. Does an analysis of the data-manipulation behavior support the under-
standing of data-intensive programs?

3. How can we automatically extract a model of the data-manipulation
behavior?

4. Can we automatically re-document this behavior in the program source
code?

4.5 Approach Definition
Starting from the key element of the problem statement, which is «SQL
execution traces», it is necessary to find a way to answer the above questions.
To achieve this, a complete framework of the problem, research methodology

58 CHAPTER 4. OVERVIEW OF THE FRAMEWORK

and outputs are described in Figure 4.4. Using the different highlighted
concepts, the framework includes three analysis phases, which are:

Figure 4.4: An overview of the framework

4.5.1 Phase 1: Intra-scenario Analysis
It starts from a single SQL execution trace that corresponds to a specific
program execution scenario. This phase seeks to extract, analyze and under-
stand the data-manipulation behavior of programs, in order to translate it
into an easier representation that permits developers to better understand
the impact of application programs on their database. For this purpose,
based on dynamic analysis and visualization techniques, this phase provides
three levels of understanding:

1. The first level is the intra-query analysis, which highlights the logical
subschema affected by the trace given as an input and translates it into

4.5. APPROACH DEFINITION 59

an easier representation allowing an intuitive low-level understanding.
In other words, it helps users to have a general overview describing the
overall functioning of the program at the logical level.

2. The second level is the inter-query analysis, which consists of extracting
and visualizing all implicit dependencies between queries belonging to
the same SQL execution trace. This level seeks to help users to better
understand how the successive queries depend on each other.

3. The third level is the query interpretation, the previous two levels
have a significant contribution in terms of understanding logically the
database-manipulation behavior of programs. However, they do not
allow us to understand what the program really consists of from an ab-
stract point of view. Based on the conceptual schema, this level tries
to help users to better understand the data-manipulation behavior of
programs by means of conceptual objects. To this end, it considers two
kinds of representation. These are: (1) A conceptual visualization and
(2) A natural language interpretation, which we will describe later.

4.5.2 Phase 2: Inter-scenario Analysis

The second phase of the approach seeks to recover the data-manipulation
processes of data-intensive systems. The approach makes use of clustering,
conceptualization and process mining techniques starting from multiple SQL
execution traces corresponding to multiple (and possibly different) execution
scenarios of the same «business process». What is more, the intra-scenario
analysis phase (phase 1) constitutes the main basis of the inter-scenario anal-
ysis, insofar as it uses some of its outputs. The approach includes two steps,
these being (1) data-oriented properties, where it is worth noting that this
phase is a strictly database-oriented approach. Here, we consider queries im-
plementing the same data-manipulation function as a unique event. Starting
from these SQL traces, this step seeks to identify the data-manipulation func-
tion to which each query belongs; (2) process mining, which seeks to recover
the data-manipulation process followed by the given SQL execution traces.

Moreover, we will discuss how we can exploit current practice technologies
to implement the approach and we will carry out a set of experiments to
assess the goodness of the recovered processes depending on the coverage of
the input traces.

60 CHAPTER 4. OVERVIEW OF THE FRAMEWORK

4.5.3 Phase 3: Code Re-documentation
According to Linares-Vásquez et al. [44], source code comments may be
viewed as an another source of documentation that could help developers
to understand nuances of the model and database usage. In the light of
this, the third phase of our global framework is code re-documentation. The
main objective of this phase is to re-document program source code with its
data-manipulation behavior through comments. To achieve this, we defined
a new approach that seeks to automatically generate a natural language
interpretation of database-manipulation behavior in order to inject it as a
comment into its corresponding source code location. More specifically, each
method communicating with a database will be automatically commented
based on the dynamic analysis results of SQL execution traces.

4.6 Conclusions
In this chapter, we began by formulating the overall objective of the thesis,
which is ”understanding data-intensive systems by analyzing the interactions
between application programs and their database, which are realized by SQL
execution traces”. Then, we introduced the complete framework of the fo-
cused problem, research methodology and the expected outputs. This frame-
work examined three phases of understanding, these being (1) intra-scenario
analysis (phase 1), (2) inter-scenario analysis (phase 2) and (3) source code
re-documentation (phase 3). The chapters following this one will elaborate
each of these phases.

In Chapter 5, we describe the intra-scenario analysis, which supports the
understanding of the database-manipulation behavior extracted from SQL
execution traces. In Chapter 6, we describe the inter-scenario analysis, which
supports the extraction of data-manipulation processes from SQL execution
traces. Lastly, in Chapter 7, we outline the final part of the framework, which
is source code re-documentation.

Chapter 5

Understanding the Data
Manipulation Behavior from
SQL Execution Traces

You may never know what results come of your actions,
but if you do nothing, there will be no results.

Mahatma Gandhi

Contents
5.1 Introduction . 61
5.2 Approach and Research Questions 62
5.3 Trace Capturing 63
5.4 Intra-Query Analysis 69
5.5 Inter-Query Analysis 71
5.6 Query Interpretation 78
5.7 Tool Support . 82
5.8 Case Studies . 93
5.9 Conclusions . 102

5.1 Introduction
In the previous chapter, we defined the global objectives of our framework
divided into three parts of analysis. Now, we will detail the first analysis,
namely an intra-scenario analysis. In this part will discuss how the analysis

61

62 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

of program-database interactions could help developers to understand the
data-manipulation behavior of data-intensive systems. First, we start by
outlining the approach as well as the related research questions. Then, we
present DAViS – a tool supported by the approach. Lastly, we introduce two
case studies to illustrate and evaluate all the steps belonging to the defined
approach through DAViS.

The work presented in this chapter was published in conference proceed-
ings [8] [61] [60].

5.2 Approach and Research Questions

Figure 5.1: Bottom-up approach: Intra-scenario analysis.

Here, we are going to describe the approach that we have defined to as-
sist the understanding of the data-manipulation behavior of data-intensive
systems. The main idea behind our approach is that in data-intensive sys-
tems many interactions among application programs and database arise via
database accesses. To this end, we combine the use of dynamic analysis

5.3. TRACE CAPTURING 63

technique and visualization in order to be able to identify, analyze and visu-
alize these interactions. The approach considers four levels of understanding
when analyzing a given data-intensive program execution scenario, each level
requiring specific inputs. Figure 5.1 depicts the bottom-up approach used,
starting from a single SQL execution trace:

• Level 0:(Trace capturing) is the initial level of the approach. This
level attempts to answer which database queries are executed in a sce-
nario. For this, first we identify the interactions between program and
its database, which are realized by a set of SQL queries. Then, we parse
them in order to extract the most relevant information to consider.

• Level 1:(Intra-query analysis) this level seeks to answer which
database schema elements are accessed by the SQL queries given as
input. Starting from the parsed queries, we highlight the subschema
(logical and conceptual) affected by the given trace. Also, for each
element belonging to the subschema, we compute its access frequency.

• Level 2:(Inter-query analysis) this level seeks to answer how the
successive queries depend on each other. With this question, we extract
the most relevant dependencies between successive queries belonging to
the same SQL execution trace. For example: output/input dependency,
input/input dependency and joint access dependency, which we will
define later.

• Level 3:(Query interpretation) We look for the answer to the ques-
tion about what the SQL trace given as an input means in terms of
domain specific concept manipulation. Based on a conceptual schema,
we interpret the trace according to a more abstract point of view, in
terms of concepts and relationships (based on the conceptual schema).

5.3 Trace Capturing
As we mentioned previously, the interaction between the program and its
database offers potential information about the data-manipulation behavior
of a program. In this light, the trace capturing level seeks to capture all the
interactions that occur between programs and their database. Indeed, these
interactions are realized by SQL execution statements and their results. To
achieve this objective, this level has two steps, namely: (1) query interception
and (2) query parsing.

64 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

5.3.1 Query Interception
Many SQL traces intercepting techniques were presented by the authors of
[8]. They range from simply using the DBMS log to instrumenting the ap-
plication program via sophisticated program transformations. Among those
techniques, let us briefly mention some of them:

1. Database logs: It is worth recalling that a database log is usually
used to write all the data required to recover from a volatile storage
failure and also from errors discovered by a transaction or database sys-
tem. In other words, it is a history of actions executed by a database
management system used to guarantee atomicity, consistency, isolation,
and durability properties over crashes or hardware failures. For each
action, a database management system records in a journal the follow-
ing data: a start-of-transaction marker, the transaction identifier, the
record information, the operation(s) performed on the records (select,
insert, delete, modify), the previous values of the modified data, the
update values of the modified records, a commit transaction marker if
the transaction has committed or otherwise an abort or rollback trans-
action marker. For instance, MySQL writes in its general query log,
all the executed queries in the order it received them. The main ad-
vantages of this technique are the fact that it is processed off-line and
it does not require any modification nor recompilation of the program
source code. However, it does not include the results of those queries
nor any source code location information that allows one to map the
executed queries to the program source code files. Furthermore, the log
includes other information that is not interesting for reverse engineering
purposes, such as the queries accessing the system tables.

2. Tracing aspects: Aspect-oriented programming (AOP) is a program-
ming paradigm that seeks to increase modularity by allowing the sep-
aration of cross-cutting concerns. The main focus of this paradigm is
an aspect, or feature that can be found across methods and classes.
An aspect can be viewed as a combination of point-cut and advice. A
point-cut represents the point of execution in the application at which
cross-cutting concern needs to be applied and an advice is a piece of
code that should execute at each of the join points specified by the
point-cut. AOP is typically used in the context of logging. For in-
stance, when we want to log a method calls, a method execution or an
object instantiation.

3. Program instrumentation: As we defined in Chapter 2, static and
dynamic program instrumentation attempts to add additional code in

5.3. TRACE CAPTURING 65

the source code, byte-code or binary code. In the context of trace
capturing, it is possible to use program instrumentation to capture
SQL execution traces and their results. To this end, it is necessary
to implement instrumentation in the form of code instructions that
monitor the dedicated code section before each program point of this
statement and after its result. This technique requires the analysis of
program source code in order to identify the location of the executed
SQL statements. However, the instrumentation is limited by execution
coverage, which means that if a program never reaches a particular
point of execution, then instrumentation at that point collects no data.
In addition, it could cause a drastic increase in the program execution
time.

The approach we defined is actually completely independent of the chosen
SQL trace capturing technique, where it requires a minimal input as a se-
quence of SQL queries corresponding to a given program execution scenario,
together with the results of these queries. However, according to the cho-
sen technique, we obtain traces which contain different information. Hence,
we implemented an algorithm that sought to produce a unified XML file at-
tempting to represent any kind of SQL statement trace given as an input. In
addition, the result of each query is recorded in a MySql database.

Figure 5.2: The conceptual schema of a Customer-Order application

Figure 5.3: The logical schema of a Customer-Order application

66 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

q1: select name , ncust from customer where Locality = ’Namur ’;
q2: select norder , ncust , date from order where ncust = ’B062 ’;
q3: select norder , ncust , date from order where ncust = ’C123 ’;
q4: select norder , ncust , date from order where ncust = ’L422 ’;
q5: select norder , ncust , date from order where ncust = ’S127 ’;
q6: select name , ncust from customer where Locality = ’Poitiers ’;
q7: select norder , ncust , date from order where ncust = ’B112 ’;
q8: select norder , ncust , date from order where ncust = ’C400 ’;
q9: select norder , ncust , date from order where ncust = ’F010 ’;
q10: select ncust , name from customer where ncust not in (select ncust

from order);
...

Result of q1:

NAME NCUST
GOFFIN B062

MERCIER C123
FRANK L422

VANDERKA S127

Figure 5.4: An example of an SQL trace extracted from Customer-Order
application + result of query q1

In the case of the illustrative examples and the case studies, we used the
database log to intercept SQL traces, where, we recorded the intercepted
SQL queries into an unified XML file and their results in a MySql database.
Each result is identified by the name of the scenario and the sequence number
of the query.

To illustrate the different steps of the defined approach. Figure 5.2 de-
picts a «simplified» conceptual schema with its corresponding logical schema
(Figure 5.3) describing the application domain of a company selling products
to customers. The logical schema contains 4 tables, namely CUSTOMER,
PRODUCT, ORDERS and detail, each with its respective set of columns. Let
us now assume that a given execution scenario of a given application program
accesses the information about customer orders. Through the query inter-
ceptor step, we are able to intercept the SQL queries involved in the scenario
in question (Figure 5.4), where queries q1 and q6 select all customers living
in Namur and Poitiers, respectively. Then, (q2, q3, q4, q5) and (q7, q8, q9)
select all orders placed by all the customers living in Namur and Poitiers
respectively. Finally, q10 select all customers who have not placed an order.
And the results of each SQL query are recorded in a MySQL database. Each
result is identified by the name of the scenario and the sequence number of
the query.

5.3. TRACE CAPTURING 67

5.3.2 Query Parsing
Once SQL execution traces have been collected, the query parsing step at-
tempts to parse each query belonging to the trace in order to extract the
most relevant information that will be the basis for understanding the data-
manipulation behavior of the given data-intensive system. To this end, we
implemented a parser that seeks to decompose each SQL query into a set of
clauses. The parser takes one SQL query as an input, and according to the
nature of the query, it produces a unified data object including clauses that
can represent any kind of SQL statement (select, update, insert, delete, etc.).

To achieve this goal, we decided to utilize JSqlParser 1, which is a Java
library, to parse statements according to the basic grammar of SQL. This
grammar includes the common CRUD operations, namely select, delete, in-
sert, replace, update. This parser analyzes and translates a SQL statement
into a hierarchy of Java classes. Based on this hierarchy, we created a Java
object that represents any query by just considering a subset of the informa-
tion produced by the parser. We decomposed a query into several clauses
containing different information according to the query type. In the follow-
ing, we will describe the clauses that we recorded for each type of query.
These are:

• SELECT: we record the select clause containing the output attributes,
a from clause with the names of tables, and a where clause expressing
the conditions for selecting the attributes of the select clause. These
conditions may vary from a simple comparison operation to possible
join conditions or a sub query. In the case of a simple comparison
condition, we record the operands and the comparison operator; in the
case of a join condition, we record the tables involved in the join along
with their join conditions; while in the case of a sub-query condition,
we iteratively record the same information as for the external select
query. However, we add the query level information (for instance level
0 for the main query, level 1 for the first nested query).

• DELETE: we record the delete clause containing the name of the table
from which delete rows and a where-clause as obtained for the where
clause of the SELECT query.

• UPDATE and REPLACE: we record for such queries a clause con-
taining the table name, the set clause containing all the attributes to
edit or replace (of the form: column = value) and a where as presented
for the previous queries.

1http://jsqlparser.sourceforge.net/

68 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

• INSERT: we record the insert clause with the table name, the set
clause containing all the attributes to insert and the values clause con-
taining the values for the corresponding attributes.

However, it should be noted that parser just considers the recovered or
modified information and the related selection criteria, and it ignores all
logical operators (and, or) between conditions (for instance in the where-
clause).

Query Clauses

SELECT name, ncust
FROM customer
WHERE locality = ’Namur’;

Selectclause={name, ncust}
Fromclause={customer}
Whereclause={(=, locality, ’Namur’)}

SELECT ncust, name
FROM customer
WHERE cat = ’C1’ and ncust
not in (select ncust from or-
der);

Selectclause={(ncust, name), (ncust)}
Fromclause={customer, order}
Whereclause={(=, cat, ’C1’), (not in,
ncust, select...) }

UPDATE order
SET norder = 32540
date = ”2017-02-03”,
ncust= ”CS464”

Updateclause={order}
Setclause={(=, norder,32540),
(=, date,”2017-02-03”),
(=, ncust,”CS464”)}

INSERT INTO order
(norder, date, ncust)
VALUES (32541,
”2017-02-04”, ”CS464”)

Insertclause={order}
Valuesclause={(=, norder,32541),
(=, date,”2017-02-04”),
(=, ncust,”CS464”)}

DELETE FROM customer
WHERE ncust =”CS464”

Deleteclause={customer}
Whereclause={(=, ncust,”CS464”)}

Table 5.1: Example of the parser structure

Table 5.1 lists the parsing (in terms of clauses) of five examples of queries
extracted from the collected traces of Customer-Order application (Figure
5.3). For instance, the first query depicts the parsing of a select query, where

5.4. INTRA-QUERY ANALYSIS 69

we obtained three clauses (SelectClause, FromClause and WhereClause), each
of them containing a specific item of information.

5.4 Intra-Query Analysis
Starting from the data object including the parsed queries, this level attempts
to analyze independently each query in order to extract all the statistics about
data-manipulation behavior in a given program execution scenario.

5.4.1 Sub-schema Extraction:

The identification of database fragments involved (i.e., read or modified) in
a given program execution scenario is the first level of understanding of data-
manipulation behavior. This phase consists of filtering out from the input
logical schema the elements that have not been accessed by any of the queries
appearing in the input trace.

Definition 5.4.1. Given a set of SQL queries belonging to one execution
trace (T), the output is a subschema SubSch that must respect the following
condition:

SubSch = {obj|∃q ∈ T : obj ∈ q.objs}

• T denotes one execution trace representing a sequence of SQL queries;

• q denotes an SQL query occurring in T ;

• obj denotes the name of a table or a column;

• q.objs denotes the set of objects used by q;

Starting from the set of queries belonging to one SQL execution trace T ,
we defined an algorithm (Algorithm 1) implementing the previous definition.
The algorithm seeks to identify the sub-schema SubSch affected by the trace
T given as an input. The algorithm starts by parsing each SQL query q
belonging to the trace T in order to extract all objects (q.objs) present in q
(Line 3). Then, for each object belonging to q.objs, the algorithm makes the
concerned object obj visible in SubSch (Line 5).

70 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

Algorithm 1 Sub-schema extraction algorithm
Require: A logical schema of the system LS and an SQL trace T
Ensure: Sub-schema Subsch impacted by T

1: SubSch← LS
2: for all q ∈ T do
3: q.objs← Parse(q)
4: for all obj ∈ q.objs do
5: SubSch.SetV isible(obj)
6: end for
7: end for

5.4.2 Object Frequency
A parsed query can be viewed as a set of logical objects belonging to the
logical schema and manipulated by the initial query, such as columns, tables
and relationships between objects (e.g. join). However, knowing how many
times each object is used in the same input trace of the same scenario may
be regarded as an important item of information and this may help one
to understand the impact of each object on the program as well as on the
database. With this in mind, for each object (obj) belonging to the input
trace (T), we attach a property called Frequency (freq), which represents the
number of queries of the same trace in which the current object (obj) is used,
according to the following definition:

freq(obj, T) = |{q | q ∈ T ∧ obj ∈ q.objs}|

• obj denotes the name of a table or a column;

• q.objs denotes the set of objects used by q;

Based on the previous definition, we defined an algorithm 2 that seeks to
compute the access frequency of each object belonging to the trace given as
an input. Starting from the set of queries in a trace T , the algorithm starts
by parsing each query q belonging to the trace T (Line 2), and increments
for each element its access frequency (Line 4). In the end, we obtain a set of
objects with their access frequency property.

Let us now apply these two algorithms on the extracted SQL trace (Figure
5.4) from the described application program of Figure 5.3. We automatically
obtained from the intra-query analysis the affected subschema described in
Figure 5.5), with the corresponding access frequency of each object belonging
to this sub-schema (Table 5.2).

5.5. INTER-QUERY ANALYSIS 71

Algorithm 2 Object frequency algorithm
Require: A sub-logical schema of the system SubSch and an SQL trace T
Ensure: obj.freq of each object belonging to T

1: for all q ∈ T do
2: q.objs← Parse(q)
3: for all obj ∈ q.objs do
4: obj.freq ← obj.freq + 1
5: end for
6: end for

Figure 5.5: Sub-schema affected by the trace of Listing 5.4

5.4.3 Synthesis
We could conclude that the first level of the intra-scenario analysis, which
is the intra-query analysis, attempts to highlight two main aspects of the
data-manipulation behavior of programs. These are:

• Here, we just focus on logical objects of the database that are affected
by the analyzed trace, where we have eliminated all the other objects
from the logical schema given as input. This allows us (developers) to
save time by avoiding the analysis of non-affected objects before making
any changes on the application programs and/or database.

• In addition, the access frequency allows us (developers) to gain a better
insight into the data-manipulation behavior by identifying the most fre-
quent objects to be taken into consideration before making any changes
on application programs and/or database.

5.5 Inter-Query Analysis
Starting from the parsed queries, this level seeks to determine how succes-
sive queries depend on each other and it has two steps, these being: (1)
dependency extraction and (2) loop detection.

72 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

Objects # Frequency
CUSTOMER 3
CUSTOMER.NCUST 3
CUSTOMER.NAME 3
CUSTOMER.LOCALITY 2
ORDER 8
ORDER.NORDER 7
ORDER.DATE 7
ORDER.NCUST 8

Table 5.2: The object frequency of the trace of Listing 5.4

5.5.1 Dependency Extraction
The dependency extraction step consists of implementing different algorithms
that attempt to extract implicit links between queries involved in the same
trace. More precisely, we are interested in three types of dependencies. These
are: (1) Joint access dependency, (2) Output/Input dependency and (3) In-
put/Input dependency.

Definition 5.5.1. (Joint access dependency) We identify a joint access
dependency between two tables t1 and t2, when we have a query q belonging
to the trace T which uses both t1 and t2. In formal terms:

` ∃q ∈ T : t1 ∈ q.objs ∧ t2 ∈ q.objs

• ti denotes a table i of a relational database;

• q.objs denotes the set of objects used by q;

Listing 5.1 shows an SQL execution trace fragment from the trace described
in Listing 5.4 containing an example of a joint access dependency between
two tables (customer and order). We notice that query q10 uses the table
customer and the table order.

Listing 5.1: An SQL query extracted from the trace 5.4 with a joint access
dependency

...
q10: select ncust , name from customer where ncust not in (select ncust

from order);
...

5.5. INTER-QUERY ANALYSIS 73

Definition 5.5.2. (Output/Input dependency) We identify an output/in-
put dependency (O/I) between two successive queries qi and qj belonging to
the same trace (T), when query qj uses as input some of the results of qi and
query qi is executed before qj. In formal terms:

` ∀i, j ∈ [1, |T |] : (i < j)⇒ (qi.out ∩ qj.in) , ∅

• qj.in denotes the set of input values of qj;

• qi.out denotes the set of output values of qi;

The O/I dependencies can be identified in different cases. For instance, in
a procedural join between the source and target tables of a foreign-key, the
value of the foreign-key column(s) is used to retrieve the target row using
a subsequent query. Conversely, the value of the identifier of a given target
row can be used to extract all the rows referencing it.

Listing 5.2: An SQL execution trace fragment with an output-input depen-
dency.

q1: select name , ncust from customer where Locality = ’Namur ’;
// getString (1) = B062
q2: select norder , ncust , date from order where ncust= ’B062 ’;
...

Listing 5.2 depicts an SQL execution trace fragment containing an exam-
ple of an output-input dependency between two successive queries (q1 and
q2). We observe that the output of value of column ncust of the first query
is the same as the input value of column ncust in the second query.

Definition 5.5.3. (Input/Input dependency) We identify an input/in-
put dependency (I/I) between two successive queries qi and qj belonging to
the same trace (T), when qi shares common input values with qj. In formal
terms,

` ∀i, j ∈ [1, |T |] : (i < j)⇒ (qi.in ∩ qj.in) , ∅

Listing 5.3: An SQL execution trace fragment with an input-input depen-
dency.

q1: select count (*) from customer where ncust = ’B062’;
q2: insert into order (norder , DATE , NCUST)
values (47869 , ’28/02/2014 ’ , ’B062’)
...

74 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

As an illustration, we will examine the fragment of SQL execution trace
given in Listing 5.3. The fragment includes two SQL queries extracted with
an input-input dependency on the value ’B062’.

The presence of input-input dependencies in SQL execution traces con-
stitutes another strong indication of the presence of foreign keys [8]. Several
data-manipulation patterns for referential constraint management make in-
tensive use of input-input dependent queries. Among the most popular ex-
amples, the delete cascade mechanism, which involves deleting all referencing
rows before deleting a target row, makes use of delete queries that share a
common input value: the primary/foreign key value of the target rows to
be deleted. A second example is the check-before-insert pattern, which at-
tempts to preserve a referential integrity constraint when inserting rows in
the database. When inserting a row in a referencing table, the program first
checks that the provided foreign key value is valid, i.e., it corresponds to the
primary key value of an existing row in the target table. Similar patterns
can be observed in delete and update procedures.

5.5.2 Loop Detection
The inter-query analysis step also seeks to automatically detect potential
loops. In other words, the loop detection step supports the identification of
nested queries in the application program. We say that the queries q2, q3, ..., qn

are nested in the query q1, if their execution is performed before the result
set of the preceding query q1 has been completely emptied. Such a situation
strongly suggests that a data dependency exists between the output values
of q1 and the input values of q2, q3, ..., qn or, in other words, q2, q3, ..., qn are
most probably output-input dependent on q1.

To achieve this aim, we implemented an algorithm that is summarized in
Listing 3. The algorithm consists in analyzing the imbrication relationship
between SQL statements, according to the following definition:

Definition 5.5.4. (Loop dependency) We identify nested queries belong-
ing to the same trace T , when:

` ∀i ∈ [1, |T |], ∃j ∈]i, |T |] : (qi.out ∩ qj.in) , ∅ ∧
|qi.out| = |{qj|i < j ≤ |T |∧(qi.out ∩ qj.in) , ∅}|

The algorithm described in Listing 3 refers to new concepts. These con-
cepts need to be formally defined in order to be able to understand the
process.

5.5. INTER-QUERY ANALYSIS 75

Definition 5.5.5. (Formal Concept Analysis) Formal concept analysis
(FCA) is a method of data analysis which describes a relationship between a
particular set of objects and a particular set of attributes. FCA produces two
kinds of output from the input data. The first is a concept lattice which is a
collection of formal concepts in the data which are hierarchically ordered by
a subconcept-superconcept relation. The second output of FCA is a collection
of so-called attribute implications where an attribute implication describes a
particular dependency which is valid in the data. Ganter et al. [22] provides
the definition of FCA as a formal context C = (O,A,R) where O is the set
of objects, A is the set of attributes and R ⊆ O × A is the relation between
objects and attributes. For the formal context, a formal concept c is defined
as a pair (Oi, Ai) where Oi ⊆ O and Ai ⊆ A and every object in Oi has each
attribute in Ai.

In our case, objects O are SQL statements while attributes A are the
clauses of a query as described in Section 5.3.2, where each concept c con-
tains queries that implement the same data-manipulation functions, i.e. SQL
statements of the same type and with equal clauses but with potentially dif-
ferent values taken by the input parameter. A concept groups the objects,
i.e. queries, which have the same set of attributes.

Algorithm 3 Loop detection algorithm
Require: A set of concepts (CL) each containing a set of queries c ∈ 2T and the trace

T = {q1, ..., qt}
Ensure: A set of potential loops LS
1: for all C ∈ CL do
2: for all q ∈ C do
3: NBq = 0
4: Nestedqueries = {}
5: q−1 ← Prec(q)
6: if (OutInDep(q−1, q)) then
7: for all r ∈ C do
8: r−1 ← Prec(r)
9: if (r−1 = q−1 ∧OutInDep(q−1, r)) then

10: NBq + +
11: Nestedqueries.add(r)
12: end if
13: end for
14: if |QRes(q−1)| = NBq then
15: LS ← LS ∪ (q−1, Nestedqueries)
16: end if
17: end if
18: end for
19: end for

76 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

Cluster Queries Clauses
c1 {q1, q6} Selectclause ={name, ncust}

Fromclause = {customer}
Whereclause ={(=,locality)}

c2 {q2, q3, q4, q5, q7, q8, q9} Selectclause ={norder, ncust,
date}
Fromclause = {order}
Whereclause ={(=,ncust)}

c3 {q10} Selectclause ={(ncust, name),
(ncust)}
Fromclause = {customer, or-
der}
Whereclause ={(in, ncust)}

Table 5.3: The clusters of the SQL queries of trace 5.4

Therefore, using the defined FCA, we first cluster queries belonging to
the trace T and having the same set of clauses, possibly with different input
values. Starting from this set of clusters, Algorithm 3 seeks to identify loops
in the program based on the presence of O/I dependencies (OutInDep :
(2T , 2T) → Boolean) (the query results used as an input by other queries).
By looking at the results obtained by a certain query and by checking the
number of times its successive query occurs with different input values, it is
possible to identify a possible loop in the program.

The algorithm starts by checking, for each query q of each concept C,
whether there exists an O/I dependency between q and its nearest preceding
query (Prec(q)) in the input trace belonging to a different cluster, i.e., query
q−1. If this condition is satisfied, the algorithm checks to see whether all
or some of the other queries within the concept also have q−1 as a nearest
preceding query in a O/I dependency (line 9). If this is the case, the algorithm
checks to see if the query result (QRes(q−1)) retrieved by q−1 correspond to
the number of queries in concept C (condition on line 14). This means that
all or some of queries of cluster C have been successively executed once for
each result of its preceding query. We can then make the hypothesis that
there is a nesting relationship between the query q−1 and Nestedqueries.

Starting from the SQL trace of Figure 5.4, we generate 3 concepts (Table
5.3): C1={q1, q6} contains a query having name and ncust as select clause,
customer as from clause and locality as where clause; C2={q2, q3, q4, q5,
q7, q8, q9} regroups queries having norder, ncust and date as select clause,
orders as from clause and ncust as where clause. Lastly, C3={q10} contains

5.5. INTER-QUERY ANALYSIS 77

Figure 5.6: The loop detection results of the SQL queries of trace 5.4.

a query having ncust and name as select clause, customer as a from clause
and a sub-query as a where clause.

When applying the algorithm to this set of concepts, we detect a nest-
ing between the first query q1 of concept C1 and the queries of concept
C2={q2, q3, q4, q5} and between the query q6 of concept C1 and the queries
C2={q7, q8, q9} (see Figure 5.6). Indeed, (i) the queries {q2, q3, q4, q5 } in C2
are preceded by q1 = q2−1 = q3−1 = q4−1 = q5−1 (resp. {q7, q8, q9} in C2 are
preceded by q6=q7−1=q8−1=q9−1) (ii) it exists an O/I dependency between
q1 and the queries {q2, q3, q4, q5} in C2 (resp. it exists an O/I dependency
between q6 and the queries {q7, q8, q9} in C2) and (iii) the number of results
of query q1 (resp. q6) is equal to the number of queries within concept C2,
i.e., (|QRes(q1)|=4 resp. |QRes(q6)|=3).

5.5.3 Synthesis
Analyzing dependencies between successive queries may help developers to
understand how they depend on each other. However, it is worth noting that
the loop detection algorithm and the O/I dependencies detection fail in some
situations, such as:

• In the case where we do not have the SQL query results as input.
Otherwise, we considered an alternative way to detect loops, where
we rely on the logical schema of database, specifying the foreign keys
between tables. First, we detect all couples of queries (qi, qj) where
qi selects a primary key column of table Ti as an output and qj uses
a foreign key column of table Tj which refers to the primary key of
Ti as an input (or vice versa). Second, we gather all the couples of
queries: (q1, q2), (q1, q3), ...,(q1, qn) sharing the same q1 and q2, q3,
...qn having the same properties with possible different values. Then,
we may assume that there is a loop between these queries, where q1
represents the main query and q2, q3, ...qn represent the nested queries.

78 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

• In the case where the program does not use the complete results set
of the queries it executes. However, as part of the algorithm that we
implemented, we considered only the case where the main query uses
the complete set of its results by assuming that it is the common case.

5.6 Query Interpretation
The query interpretation phase requires two additional inputs: (1) the con-
ceptual schema of the database, i.e., a platform-independent, more abstract
specification of the application domain concepts, their attributes and relation-
ships. This schema can be either available, or can be obtained via database
reverse engineering techniques [27]. (2) the mapping between the conceptual
and logical schemas, that specifies the correspondences between the logical
schema objects (tables, columns, foreign keys) and the high-level concepts
they implement (entity types, attributes, relationship types).

Using these two additional inputs, this phase automatically provides a
conceptual interpretation of the SQL traces, expressed as a set of concept
manipulation operations in order to answer the following research question:
What do these SQL traces mean in terms of domain-specific concept manip-
ulation?. To address this question, we divided this phase into three steps,
namely (1) trace abstraction; (2) sub-schema annotation and (3) interpreta-
tion generation.

Main query Nested queries Abstracted query
Select c11 , c12 , ...c1n
from T1 where col11
op11 val11 and ... col1m
op1m val1m ;

select c21 ,c22 , ...c2n from T2
where col2 = valc11

and col21
op21 val21 and... col2m op2m
val2m ;

select c12 , ...c1n , c21 ,c22 , ...c2n from T1, T2
where col11 op11 val11 and ... col1m op1m
val1m and T1.col1 = T2.col2 and col21 op21
val21 and... col2m op2m val2m ;

Select c11 ,c12 , ...c1n
from T1 where col11
op11 val11 and ... col1m
op1m val1m ;

Delete from T2 where col2 =
valc1 and col21 op21 val21 and...
col2m op2m val2m ;

Delete from T2 where col21 op21 val21 and...
col2m op2m val2m and T1.col1 = T2.col2 and
col11 op11 val11 and ... col1m op1m val1m ;

Select c11 ,c12 , ...c1n
from T1 where col11 op11
val11 and ... col1m op1m
val1m ;

Update T2 Set col21 = exp21 ,
col22 = exp22 ,..., col2m = exp2m
where col2 = valc1 and col21 op21
val21 and... col2m op2m val2m ;

Update T2 Set col21 = exp21 , col22 =
exp22 ,..., col2m = exp2m where col21 op21
val21 and... col2m op2m val2m and T1.col1
= T2.col2 and col11 op11 val11 and ... col1m
op1m val1m ;

Select c11 , c12 , ...c1n
from T1 where col11 op11
val11 and ... col1m op1m
val1m ;

Insert into T2 (c21 , c22 , ..., c2n)
Values (val21 , val22 , ...,val2n);

Insert into T2 (c21 , c22 , ..., c2n) Select c11 ,
c12 , ...c1n from T1 where col11 op11 val11 and
... col1m op1m val1m ;

Table 5.4: Abstraction rules of nested queries

5.6.1 Trace Abstraction
This step depends on the previous level (inter-query analysis), where it re-
quires the results of the dependencies detection and the loops detection. The

5.6. QUERY INTERPRETATION 79

main objective of this step is to abstract the SQL execution trace given as an
input, more specifically the nested queries which we identified in the previ-
ous step (Loop detection algorithm 3). This means that the procedural join,
implemented via successively nested queries, will be interpreted as one single
join query. As result, we obtain a new SQL trace containing a set of ab-
stracted queries representing the data manipulation behavior corresponding
to the given program execution scenario.

To achieve this objective, we first defined a set of rules that represent the
possible cases between one main query and a set of nested queries. Table 5.4
lists the required transformation for the four possible cases:

1. The select/select join query representing the case where the main query
and nested queries are all select queries.

2. The select/delete join query representing the case where the main query
is a select query and the nested queries are delete queries.

3. The select/update join query representing the case where the main
query is a select query and the nested queries are update queries.

4. The select/insert join query representing the case where the main query
is a select query and the nested queries are insert queries.

Algorithm 4 SQL trace abstraction algorithm
Require: LS set of potential loops and the trace T = {q1, ..., qt} containing

a set of queries
Ensure: Abstracted trace AT containing a set of abstracted queries

1: for all q ∈ T do
2: if q ∈MainQueryOf(LS) then
3: qabstracted ← ApplyRulesNestedQueries(q)
4: T ← T − (NestedQueries(q) − (NestedQueries(q) ∩

Mainqueries(LS)))
5: AT ← AT ∪ qabstracted

6: else
7: AT ← AT ∪ q
8: end if
9: end for

Second, we defined an algorithm that implements these rules, which is
described in Algorithm 4. The algorithm starts by checking, for each query
q belonging to the trace T , if it represents a main query among the detected

80 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

loops (Line 2) . If this is the case, the algorithm applies one of the corre-
sponding rules in order to abstract it to an equivalent join query (Line 3).
Then, the algorithm removes all the nested queries that do not play any role
of the main query for other loops (Line 4).

Listing 5.4: The abstracted trace of trace 5.4
q ’1: select customer .name , customer .ncust , order .norder , order .date from

customer , order where customer .ncust = order .ncust and locality = ’Namur
’;

q ’2: select customer .name , customer .ncust , order .norder , order .date from
customer , order where customer .ncust = order .ncust and locality = ’
Poitiers ’;

q ’3: select customer .ncust , customer .name from customer where customer .ncust
not in (select ncust from order);

By applying Algorithm 4 on the trace of Figure 5.4, we get a new SQL
trace (Listing 5.4), where we abstract the two procedural joins (q1 with
q2, q3, q4, q5 and q6 with q7, q8, q9) to two equivalent join queries q′1 and
q′2.

This phase allows us (developers) to gain a better understanding of the
program source code in terms of loops and to filter out from the input SQL
trace all the repetitive queries in order to extract data manipulation functions
followed by the program execution scenario at a higher level of abstraction.

5.6.2 Subschema Annotation
In order to generate the interpretation of each query, we need to manually
annotate the resulting sub-conceptual schema by means of meta-properties
(i.e., textual annotations that can be attached to schema constructs). These
annotations will form the basis of the interpretation generation step. For
instance, the attributes Address and Locality of the conceptual schema in
Figure 5.2 will have living in as meta-property and the relationship type
place will have two meta-properties. Each meta-property will describe the
role of the relationship type according to the reading direction:

1. Meta − property 1= “who placed”, represents the left-hand-side role
of the relationship type place. It will be used when the program looks
for all those customers who placed given orders.

2. Meta− property 2= “placed by”, represents the right-hand-side role of
the relationship type place. It will be used when the program retrieves
all orders placed by some customers.

In the case where the conceptual subschema is not annotated, we treated
the name of concepts and relationships as meta-properties.

5.6. QUERY INTERPRETATION 81

5.6.3 Interpretation Generation
The third step of the query interpretation is the interpretation generation.
This step requires as inputs: (1) the abstracted trace resulting from the
first step and (2) the annotated sub-conceptual schema. Based on these
inputs, this step provides an interpretation of each SQL query belonging to
the abstracted trace. In the light of this, we chose two ways to represent
this interpretation: (1) a natural language interpretation and (2) a visual
interpretation.

5.6.3.1 Natural Language Interpretation:

Algorithm 5 Natural Language Interpretation algorithm
Require: The trace AT = {q1, ..., qt} containing the abstracted queries and The concep-

tual schema CS
Ensure: Set of sentences LS
1: for all q ∈ AT do
2: Concept← ExtractAllConceptsOf(q, CS)
3: Level← getLevelOfQuery(q)
4: FilteredConcept← FilteringOutFrom(Concept, Level)
5: OrderedConcept← OrderedAllConceptsOf(FilteredConcept)
6: for all c ∈ OrderedConcept do
7: if ExistMetaProprietyOf(c, CS) then
8: mp← getMetaProprietyOf(c, CS)
9: sentence← sentence ∪mp

10: else
11: sentence← sentence ∪ c
12: end if
13: end for
14: LS ← LS ∪ sentence
15: end for

We define an algorithm (Algorithm 5) that seeks to provide a textual
interpretation of an abstracted trace given as an input. It is expressed as
a set of sentences in natural language. Based on the annotated conceptual
subschema and the abstracted SQL trace resulting from the previous steps,
the algorithm starts by extracting all concepts, attributes and relationships
accessed by each query q belonging to the abstracted trace (line 1). According
to the level number of the query (level 1 means that the query contains one
sub-query), we filter out from the resulting set all unnecessary concepts for
the interpretation (line 4). Then, the algorithm orders the subset of concepts
(line 2). Finally, the algorithm generates the sentence corresponding to the
current query by exploiting the conceptual schema annotations.

82 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

For instance, the concepts of the query q′1 (Listing 5.5) of the abstracted
trace (Listing 5.4) are : name, ncust, norder, date, customer, order, locality.
Then, they will be ordered as follows: name → ncust → norder → date →
order → customer → locality. After, each concept is replaced by its meta-
property, as follows: name → numberofcustomer → numberoforder →
dateoforder → order → placedby → customer → living in. Then, the
algorithm generates the following interpretation: “Retrieve name, number
of customer, number of order and date of order placed by customer living in
Namur”.

Listing 5.5: Query q′1 of the abstracted trace of the trace in Listing 5.4
q ’1: select name , ncust , norder , date from customer , orders where customer

.ncust = orders .ncust and locality = ’Namur ’;
....

5.6.3.2 Visual Interpretation

With this type of interpretation, we provide users with a visual interpretation
of the abstracted SQL trace. To this end, we use the sub-conceptual schema
as representation model. Starting from the clauses representing the parsed
queries belonging to the abstracted trace, we classify them into two main
categories. These are:

1. The selection criteria: This category includes the where and the
join clauses. It attempts to graphically highlight the search criteria of
the query.

2. The output information: This category contains the set of query
results. According to the type of the query, this category includes a
different clause: (1) in the case of a select query, this category includes
the select and the from clauses; (2) in the case of a delete query, this
category includes the delete clause; (3) in the case of a insert query,
this category includes the insert clause and (4) in the case of a update
query, this category includes the update and the set clauses.

In the next section, we will present a tool supported by the approach that
implements this.

5.7 Tool Support
Here, we provide an overview of DAViS (Dynamic Analysis and Visualization
of the SQL execution traces) - a tool that allows us to support the defined

5.7. TOOL SUPPORT 83

approach, which helps us better understand the data-manipulation behavior
of data-intensive systems via the visualization of the SQL execution traces
analysis. The overall framework of the tool (see Figure 5.7) is implemented
as a plug-in in an integrated tool, called DB-Main2, a CASE tool supporting
database design and evolution. The inputs required by DAViS are:

Figure 5.7: Overall framework of DAViS

1. One SQL execution trace in the form of an XML file containing a set of
SQL queries representing the execution program of the given scenario
and its results;

2. The logical database schema using the basic Entity-Relationship (ER)
model (e.g., tables, foreign keys, primary keys);

3. Its corresponding conceptual schema with the mapping between both
(This third input is optional).

DAViS includes three components corresponding to each level (levels 1,
2 and 3) of the proposed approach, and it provides multiple visualizations
including the analysis results of one or multiple components.

2http://www.db-main.be

84 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

5.7.1 Metrics
DAViS provides a way to visualize the analysis results of each level. It
is a graph-based representation, where nodes represent an object (tables,
columns, entities, attributes, etc.) and the edges represent a relationship
between two objects. We opted for a graph-based representation in order
to retain the same metaphors of logical schema and conceptual schema visu-
alization proposed by DB-main. Furthermore, we consider the information
visualized as the main contribution of this study. Thus, it is possible to choose
other visual metaphors while keeping the same objective of the analysis.

Before presenting DAViS’ interface, it is necessary to present the metaphors
that it uses. Table 5.5 enumerates them in order to be able to understand
the proposed visualizations. Here, we select a shape for each object and the
size of the latter to represent its access frequency.

5.7.2 DB-MAIN
DB-MAIN 3 is a CASE tool (Computer-Aided Software Engineering) sup-
porting database design and evolution. It is designed to help developers and
analysts in most data engineering processes, such as design processes (con-
ceptual design, logical design, etc.), transformations (schema transformation,
model transformation, etc.), reverse engineering (schema analysis, code anal-
ysis, etc.), maintenance and evolution (database evolution, impact analysis,
etc.).

Moreover, DB-MAIN includes meta-modeling components that allow one
to develop new functions and to extend its repository through plug-ins. Be-
sides this, DB-MAIN was chosen to represent the database schemas. DAViS
is implemented as a plug-in.

5.7.3 JUNG Library
In order to implement DAViS, we used JUNG API 4 (Java Universal Network/
Graph Framework) a JAVA software library specially designed to model, an-
alyze and visualize data that can be represented by a graph or network. We
opted for this library due to the fact that it supports a wide variety of entity
representations and their relations, such as directed and undirected graphs
and graphs with parallel edges. It also allows us to annotate graphs, entities,
and relations with meta-data. Here, we used it to implement a graph-based
representation using our own metaphors.

3http://www.rever.eu/fr/db-main
4http://jung.sourceforge.net/

5.7. TOOL SUPPORT 85

Element Metaphor

N
od

es

- Table
- Entity

- A rectangle containing the name of the
table/entity

- Column
- Attribute

- An oval containing the name of the
column/attribute

E
dg

es

- Relationship (concep-
tual visualization)

- An hexagon containing the name of
the relationship

- I/I dependency
- O/I dependency
- Join query

- A dotted line between two columns

- Join access - A dotted line between two tables

- Foreign key - An arrow between two tables

- Membership - A line between entity-attribute, table-
column, entity-relationship

O
th

er
s

- Element frequency - The size of the object
- The thickness of the link

Table 5.5: Visual metaphors used by DAViS

5.7.4 DAViS User Interface
Figure 5.8 depicts the interface of DAViS, which includes five important
panels:

1. Components panel: This panel includes all the proposed visualiza-
tion by DAViS (logical visualization, loops visualization and conceptual
visualization). It allows users to switch from one visualization to an-
other.

2. Main view panel: As its name suggests, this panel seeks to dis-
play all the proposed visualizations, such as: sub-logical schema, sub-
conceptual schema, dependencies and loops.

86 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

Figure 5.8: DAViS user interface

5.7. TOOL SUPPORT 87

3. Graph evolution panel: This panel contains a set of features that
allows us to dynamically manipulate the chosen visualization. For in-
stance, it might play the evolution of the subschema affected by the
trace. It also allows one to export the current visualization into a ”png”
format and/or inject the information contained in the visualization as
meta-properties in DB-main.

4. Control panel: This panel contains a set of features that allows users
to choose the information that they want to display, by filtering out
from the current visualization any unnecessary information. For in-
stance, it may just display only one type of dependency or only display
only tables without their columns.

5.7.5 Visualization Modes
In addition to the visual metaphors, DAViS incorporates two visualization
modes depending on the needs of users: (1) the global visualization, which
involves visualizing the global impact of the whole SQL statements belonging
to the trace given as an input on database; (2) the local visualization, where it
just focuses only on one SQL statement in order to understand its meaning.

5.7.5.1 Global Visualization

Figure 5.9: The global visualization of the trace of Figure 5.4

It worth noting that the input trace is given in an XML file containing
a set of SQL statements executed in the order of appearance in the latter.
From this context, we thought of implementing a global visualization, where
it allows us on the one hand to visualize statically the final state as well as the

88 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

intermediary states of the database portion affected by the trace given as an
input; on the other hand, it allows us to visualize dynamically the evolution
of the database portion affected by the trace from the first SQL statement to
the last SQL statement belonging to the trace. Figure 5.9 shows the global
visualization of the SQL execution trace of the example described in Listing
5.4.

Through this visualization mode, we can extract useful information that
will help users to gain an overall understanding of the data-manipulation
behavior of the given trace. This information can be grouped into two cate-
gories, these being:

• Sensitive objects: We consider having a global visualization of the
objects impacted in the trace given as an input with their access fre-
quencies, which allows users to identify not only objects to focus on,
but also the degree of their importance. Such information can be seen
as a support for the detection of some related program problems. For
instance, the problem generated by the excessive use of only one table
(entity) in one execution scenario. In such a case, this could be an
indicator of a database design problem. Another example is the case of
the called God table, which contains hundreds of (unrelated) columns,
and it used by almost all programs.

• Related objects: For most legacy databases, some integrity con-
straints may be implicit, which means they exist but they have not
been explicitly declared in the DDL code. This is because most legacy
database management systems do not allow the explicit declaration of
foreign keys (e.g. MySQL-MyISAM) and therefore, when we want to
reverse engineer the database, the recovery of these constraints is neces-
sary, which is not an easy task. In this context, the global visualization
of the inter-query analysis (where we detect all implicit dependencies
between queries) facilitates the recovery of such relationships. For in-
stance, from the joint access dependency (the tables that are accessed
jointly) and especially this with a high access frequency, we can assume
that there is an undeclared Foreign Key between these tables.

5.7.5.2 Local Visualization

In contrast to the global visualization, which seeks to understand the global
impact of the given trace on the database of the studied system, the local
visualization seeks to provide a support to understand the meaning of each
SQL statement belonging to the given trace. We will focus on the behavior of
a single SQL statement in order to understand its meaning and consequently

5.7. TOOL SUPPORT 89

understand its corresponding source code. The proposed visualization is
dynamically animated and it has two phases. These are:

1. Input visualization: This phase concerns the visualization of the
selection criteria of the SQL query if it exists.

2. Output visualization: This phase concerns the visualization of the
output part of the SQL query, which consists of the query results, such
as select clause, update clause and insert clause.

Figure 5.10: The local visualization of the first SQL statement of the SQL
trace 5.4 (Left: the input, Right: the output visualization)

Figure 5.10 shows the local visualization of the first SQL statement be-
longing to the trace of the example described in trace 5.4, where the query
attempts to select the name, ncust, norder and date of orders placed by cus-
tomers living in ”Namur”. The left hand figure shows the first phase, which
is the selection condition, while the right hand figure shows the result of the
query which name, ncust, norder and date of the customer.

5.7.6 Component 1: Intra-query Analysis Visualiza-
tion

The first component of DAViS is the intra-query analysis, based on the logi-
cal schema, this component highlighting the database subschema involved in
the given trace, i.e., the set of tables and columns involved in the SQL exe-
cution trace given as input. The proposed visualization leads to a technical
understanding of the given trace, in terms of a global impact on the database.

90 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

It worth mentioning that the minimal inputs of this component are a single
SQL execution trace and the logical schema of the system’s database. Oth-
erwise, the conceptual schema is provided with the mapping between both
(logical and conceptual) schemas. This component also allows one to visual-
ize the conceptual subschema affected by the trace using the same filtering
algorithm.

In addition, each object belonging to the visualized subschema is provided
with its access frequency, which is visually represented by the size of this
object. This helps users to understand what the most sensitive objects are
for possible modification.

Figure 5.11: The sub-schema affected by the SQL execution trace of the trace
of Figure 5.4

Figure 5.11 shows the logical subschema of trace 5.4. From the visual-
ization, we can see that all the objects present are used by the trace with a
different frequency. More precisely, the trace uses 2 of 4 initial tables, where
table order and columns norder and ncust are the most frequently used with
an access frequency equal to 7.

5.7.7 Component 2: Inter-query Analysis Visualiza-
tion

The second component of DAViS is the inter-query analysis, based on the logi-
cal schema of the program database, this component visually emphasizing im-
plicit dependencies between successive SQL queries involved in the captured
SQL execution trace. This component leads to a technical understanding of
how queries depend on each other by visualizing the detected dependencies.
These dependencies may be grouped into two categories, these being: (1)

5.7. TOOL SUPPORT 91

Figure 5.12: Loop visualization

one-to-one dependency: This category includes all dependencies which
link two queries, such as output/input dependency (O/I), input/input depen-
dency (I/I), joint access dependency, foreign-key and membership; (2) one-
to-many dependency: This category includes the dependency between a
set of queries, and it mainly focuses on the nested queries.

According to these two categories, the inter-query analysis component
provides two visualizations. The first one is the visualization of all one-to-one
dependencies based on the logical schema representation, while the second
one is the visualization of all nested queries. The component also proposes
tree-based visualization for the one-to-many dependency, where we can get
the details of each detected nested query.

Figure 5.12 shows the loop visualization of the detected loops from the
trace of Figure 5.4. In the sample trace given as input, there are two loops
between order and customer on column ncust with 4 and 3 iterations, respec-
tively. We can also run through the tree-based representation on the right of
Figure 5.12, where we can inspect separately each of the nested queries.

5.7.8 Component 3: Query Interpretation Visualiza-
tion

The third component of DAViS is the query interpretation component, which
provides a visualization for the abstracted trace using a tree-based visual-
ization as a representation model. Figure 5.13 shows the abstracted trace

92 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

obtained from the SQL trace of Listing 5.4 given as input. In addition, it pro-
vides two interpretation modes (visual interpretation and natural language
interpretation).

5.7.8.1 Conceptual Interpretation

Figure 5.13: Trace abstraction and visual interpretation

Based on the conceptual schema representation, this component provides
a visualization of the conceptual sub-schema affected by the SQL trace. Here,
it allows us to visualize the effect of each query q belonging to the abstracted
trace on the conceptual schema in order to understand the meaning of the
query from an abstract perspective. Figure 5.13 shows the abstracted trace
and its corresponding conceptual subschema, where we can select any query
from the abstracted trace in order to visualize its effect dynamically.

5.7.8.2 Natural Language Interpretation

The natural language interpretation generates an external xml file containing
a set of sentences expressed in natural language, as shown in Figure 5.14. This
interpretation helps users to understand data-manipulation functions from
an abstract point of view.

5.8. CASE STUDIES 93

Figure 5.14: Natural language interpretation

5.8 Case Studies
In order to evaluate the approach defined in this chapter as well as DAViS
(the tool supported by the analysis), this section presents two case studies
in which we evaluate DAViS to show how it facilitates the understanding of
SQL execution traces. To achieve this goal, we have selected two open-source
systems. These two systems were chosen for the reasons that they provide
different features, each accessing a different portion of an underlying database
to support different activities. They can be considered good representative for
data-intensive systems i.e., systems where most of the complexity is concealed
in their interactions with their database. Even though these systems are of
limited size and complexity, they demonstrated sufficiently the capability of
the proposed approach in real environments. With this in mind, we also
mitigated the quality of the input traces by analyzing features of a different
nature. These are:

1. WebCampus: WebCampus is an open-source Learning Management
Systems (LMS) that allows teachers to manage learning and collabo-
ration activities on the Web and to offer on-line courses to their stu-
dents. This system consists of almost half a million of lines code written
in PHP and it exploits a MySql database consisting of 33 tables and
198 columns, representing the data on available on-line courses, course
users, university departments, etc. Figure 5.15 shows the logical schema
describing the application domain of WebCampus.

2. WebDeb: WebDeb is a collaborative open-source platform called Web-
Deb5, designed to capture a debate’s arguments with their actors, de-
fine relations between them, and run a Natural Language Processing

5https://www.webdeb.be/

94 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

Figure 5.15: Logical schema of WebCampus application

analysis. More specifically, it is a Web application that permits the
logical storage of arguments used in any kind of public debate (polit-
ical, scientific, social, etc.). It is based on the fact that any text is
made of a complex blend of assertions, which may take the form of a
descriptive, prescriptive, appreciative or performative statement, and
they are treated as «basic blocks». WebDeb allows one to display the
various positions and justifications of different actors on each assertion
and, also, to map the links between assertions. Figure 5.16 shows the
logical schema describing the application domain of WebDeb.

System Language # Table # Column
WebCampus PHP/MySql 33 198
WebDeb Java/MySql 55 231

Table 5.6: The systems description

Table 5.6 provides some statistics about the two applications in ques-
tion. Here the first system’s database (WebCampus) contains 33 tables
(e.g. CL cours, CL notify, CL module, etc.), each with its respective set of
columns. The second system’s database (WebDeb) is structured according

5.8. CASE STUDIES 95

Figure 5.16: Logical schema of WebDeb application

to the various objects (statements, actors, references, themes, etc.), which
are connected between them. It is a MySql database consisting of 55 tables
and around 231 columns.

5.8.1 Traces Capturing
5.8.1.1 WebCampus

Examining the support of the WebCampus administrator Jean Roch Meurisse6,
who provided us a collection of SQL execution traces, each trace contains a
set of SQL statements belonging to one of the 14 different scenarios, namely:
install course tool, add course manager, add course user, create course, delete
course, delete course user, delete faculty attempt, install applet, uninstall ap-
plet, uninstall course tool, user register to course, user register to webcampus,
user unregister from course, and register user. Tables 5.7 lists the character-
istics in terms of the size of the traces (Statements), the size of the trace
results (Results) and the type of queries (Types) by scenario.

5.8.1.2 WebDeb

In order to be able to collect SQL traces of different scenarios, we locally
installed WebDeb. Then, using JDBC logger, we collected the SQL execution
traces corresponding to six typical interaction scenarios, namely: registration,

6https://directory.unamur.be/staff/jmeuriss

96 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

Scenario Q
ue

ry

Se
le

ct

In
se

rt

D
el

et
e

U
pd

at
e

R
es

ul
ts

install course tool 2169 2039 126 4 0 24180
add course manager 194 190 4 0 0 2391
add course user 155 151 4 0 0 1908
create course 29 20 9 0 0 299
delete course 132 124 1 7 0 1700
delete course user 84 83 0 1 0 996
delete faculty 37 37 0 0 0 419
install applet 88 82 4 0 2 721
uninstall applet 78 68 0 9 1 573
uninstall tool 1896 1888 0 8 0 22419
register to course 64 63 1 0 0 708
register to WebCampus 32 30 2 0 0 184
unregister from course 19 17 1 1 0 155
register user 27 24 3 0 0 163
Total 5004 4816 155 30 3 56816

Table 5.7: Characteristics of the parsed queries of the 14 scenarios of Web-
Campus application

add new actor, add new actor2, delete an actor, search an actor, validate
affirmation. Table 5.8 describes the content of each scenario in terms of the
number of statements, size of the traces results, and the type of queries.

5.8.2 Queries Parsing
We started by evaluating the developed parser on both systems. Here, Table
5.9 summarizes the parser results for both systems:

1. WebCampus: starting from 10,187 queries distributed on 14 scenar-
ios, the parser filtered out 5,026 queries which were out of the logical
schema and it was not able to parse 157 queries. As result, we obtained
5,004 parsed queries that represent 96.95 % of the initial queries.

2. WebDeb: starting from 4128 initial queries distributed on 6 scenarios,
the parser filtered out 820 queries that were out from the given logical
schema and it was not able to parse 409 queries. As result, we obtained
2899 parsed queries (2877 select, 11 insert, 4 delete and 7 update) that
represent 91.94% of the initial queries.

5.8. CASE STUDIES 97

Scenario Q
ue

ry

Se
le

ct

In
se

rt

D
el

et
e

U
pd

at
e

registration 270 266 2 0 2
add new actor 855 851 1 1 2
add new actor 2 353 345 6 1 1
delete an actor 263 260 1 1 1
search an actor 905 902 1 1 1
validate affirmation 253 253 0 0 0
Total 2899 2877 11 4 7

Table 5.8: Characteristics of the parsed queries of the 6 scenarios of WebDeb
application

of queries WebCampus WebDeb
Initial queries 10.187 4128
Out of the schema 5026 820
Unparsed queries 157 409
Parsed queries 5004 2899
Select query 4816 2877
Insert query 155 11
Delete query 30 4
Update query 3 7

Table 5.9: The parser’s results

It worth noting that most of the unparsed queries are due to the presence of
SQL functions which the parser cannot parse (e.g. FOUND-ROWS()). This
is due to the SQL grammar used by the « JSqlParser » library that we used.

5.8.3 Sub-schemas Results
Table 5.10 (resp. Table 5.11) provide statistics about the subschemas’ size
(tables and columns) affected by each scenario. From the results, we observe
that we reduce on average 2/3 of objects from the initial logical schema
of WebCampus and 1/2 objects from the initial logical schema of WebDeb,
which leads us to suppose that the understanding of the subschema affected
by each trace may reduce the cognitive effort than if we would have had the
whole schema.

Figure 5.17 supports our observations, where the left hand figure shows

98 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

Scenario # of tables % of tables # of columns % of columns
install applet 7/33 21.21 32/198 16.16
add course manager 11/33 33.33 77/198 38.88
add course user 11/33 33.33 77/198 38.88
create course 11/33 33.33 62/198 31.31
delete course 12/33 36.36 82/198 41.41
delete course user 11/33 33.33 69/198 34.84
delete department 6/33 18.18 26/198 13.13
install tool 10/33 30.30 65/198 32.82
register user 9/33 27.27 55/198 27.77
uninstall tool 8/33 24.24 49/198 24.74
register to a course 9/33 27.27 59/198 29.79
register to WebCampus 9/33 27.27 56/198 28.28
unregister from course 9/33 27.27 58/198 29.29
uninstall tool 6/33 18.18 30/198 15.15

Table 5.10: Statistics about the Webcampus subschemas analysis

Scenario # of tables % of tables # of columns % of columns
registration 24/55 43.63 96/231 41.55
add new actor 24/55 43.63 96/231 41.55
add new actor2 21/55 38.18 88/231 38.09
delete an actor 17/55 30.90 73/231 31.60
search an actor 24/55 43.63 103/231 44.58
validate affirmation 13/55 23.63 57/231 24.67
search an actor 24/55 43.63 103/231 44.58

Table 5.11: Statistics about the WebDeb subschemas analysis

Figure 5.17: Left: The logical schema of WebCampus, right: The subschema
of the install applet scenario

the initial logical schema of WebCampus and the right hand figure depicts
the sub-schema impacted by the install applet scenario. The same applies
to Figure 5.18, where the left hand figure shows the initial logical schema
of WebDeb and the right hand figure shows the sub-schema affected by the
validate affirmation scenario.

In addition to the fact that the subschema visualization provided by
DAViS seeks to highlight only objects that are necessary to be analyzed
to better understand the data-manipulation behavior of the SQL execution

5.8. CASE STUDIES 99

Figure 5.18: Left: The logical schema of WebDeb, right: The subschema of
the validate affirmation scenario

Figure 5.19: The detected dependencies of the install applet senario of Web-
Campus

trace given as an input, DAViS provides the access frequency of each object
belonging to this subschema:

• Tables 5.12 summarizes the access frequencies of all tables belonging to
the install applet logical subschema. From the results, we can see that

100 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

Tables Access frequency
CL module 23
CL module contexte 4
CL course tool 14
CL dock 53
CL moduel info 3
CL right profile 4
CL config file 1

Table 5.12: The access frequencies of the tables of the scenario install applet

Tables Access frequency
Person 12
Actor 8
Contribution 4
Contribution in group 4
Contributor has affiliation 32
Organization 6
Contributor group 36
Permission 34
Group has permission 34
Contributor 64
Contributor has group 64
Organization has sector 1
T business sector 1

Table 5.13: The access frequencies of the tables of the scenario validate
affirmation

there are three key tables (CL dock, CL module and CL course tool),
one of which has as frequency of 53. Here, the latter must be taken
into account in the case of any changes.

• Tables 5.13 summarizes the access frequencies of all tables belonging
to the validate affirmation logical subschema. From the results, we can
see that there are six key tables (Contributor has affiliation, Contrib-
utor group, Permission, Group has permission, Contributor, Contribu-
tor has group), two of which have a frequency of 64.

5.8. CASE STUDIES 101

Figure 5.20: Left: The foreign key dependency of the Install applet scenario,
right: The join query dependency of the Install applet scenario

Figure 5.21: Left: The input-input dependency of the Install applet scenario,
right: The joint access dependency of the Install applet scenario

5.8.4 Dependency Results
After extracting the subschemas affected by the different scenarios of the two
systems, we were interested in the dependencies existing between queries of
the same scenario (inter-queries analysis). Figure 5.19 shows the visualization
of the detected dependencies between queries belonging to the install applet
scenario. Here, each kind of dependency is represented by a different visual
representation. Figures 5.20 and 5.21 show each of them (foreign keys, join
query, joint access and input-input dependencies). It should be added that
each dependency is provided by the number of times it is used (frequency),
which is visually represented by the thickness of the link.

Figure 5.22 shows the nested queries detection of the same scenario In-
stall applet of WebCampus. From the figure, we can see that there are two
kinds of visualization, namely (1) graph-based visualization: where we have
the number of loops (we detected 6 loops), for each detected loop, the num-

102 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

Figure 5.22: The detected loops of the install applet scenario of WebCampus

ber of the nested queries; (2) tree-based visualization: where we have access
to the details of each detected loop via a tree (abstracted query, main query
and nested queries).

5.9 Conclusions
In this chapter, we presented an approach to assist the understanding of data
manipulation behavior from the analysis of the SQL execution traces of data-
intensive systems using visualization and dynamic analysis. We divided the
approach into three major levels. These were: (1) the intra-query analysis,

5.9. CONCLUSIONS 103

where we highlighted the subschemas affected by the input SQL trace; (2) the
inter-query analysis, where we extracted all implicit dependencies between
successive queries and (3) the query interpretation, where we interpreted the
meaning of the trace in terms of domain-specific concept manipulation based
on conceptual schema. Afterwards, we presented DAViS - a tool-supported
approach, and we demonstrated its correctness and usefulness in two real
case studies.

In the next chapter, we will present an approach that seeks to support
the extraction of data-manipulation processes of data-intensive systems via
an analysis of multiple SQL execution traces.

104 CHAPTER 5. UNDERSTANDING DMB FROM TRACES

Chapter 6

Extracting Data Manipulation
Processes from SQL Execution
Traces

Strength does not come from physical capacity.
It comes from an indomitable will.

Mahatma Gandhi

Contents
6.1 Introduction . 105
6.2 Illustrative Scenario 106
6.3 Approach and Research Questions 108
6.4 Data-oriented Properties 110
6.5 Process Mining . 117
6.6 Evaluation . 121
6.7 Conclusions . 127

6.1 Introduction
As we said earlier, data-intensive systems are mainly characterized by a
database and a set of applications performing frequent and continuous in-
teractions with the former. Maintaining and evolving such systems can be
effectively performed only after the system behavior has been sufficiently un-
derstood. In the previous chapter, we analyzed a single SQL execution trace

105

106 CHAPTER 6. EXTRACTING DMP FROM TRACES

so as to be able to extract the data-manipulation behavior of data-intensive
systems in terms of database usage, accesses and dependencies. However,
program understanding is not just about understanding the program’s ac-
cess to its database, but also about understanding their data-manipulation
processes. To this end, in this chapter, we are going to analyze multiple SQL
execution traces in order to recover the missing programs’ processes starting
from their logic of interactions with the database.

This chapter is structured as follows. We start by presenting a motivating
example for our approach to data-manipulation process recovery. Then, we
present our approach as well as the related research questions. Lastly, we
present a validation of our approach and we discuss the experimental results
before drawing some conclusions.

This study was carried out in collaboration with Marco Mori as part of his
postdoctoral project. The results were published in conference proceedings
[54, 53].

6.2 Illustrative Scenario
We consider an e-commerce Web store, where store administrators and cus-
tomers access the system in order to sell and to buy products respectively
in a worldwide area. In addition to the activities performed by stakehold-
ers, administrators have to maintain available products with attributes and
categories, check the current stock of products, issue orders to manufactures,
manage basics setting of the store, manage payments and shipping methods,
manage tax zones with tax rates, manage banners, newsletters and reviews.
And performing these activities, stakeholders may query a big database by
means of SQL-statements each belonging to one of the possible features,
namely: view products, user registration, payment registration, issue order,
register manufacturer, manage reviews, manage banners and manage newslet-
ters.

Each feature requires frequent and continuous interactions with the data-
base to fulfill its objective. For instance, the view products feature has to
access the information about categories, products in the store, detailed infor-
mation about selected products such as product price, product characteristics
and manufacturer information. What is more, since products can be searched
based on different parameters, we may have different accesses to the database
based on the selection criteria, i.e., in the case of a category-driven search,
the application accesses the corresponding category information, while in the
case of manufacturer-driven searches, the application will alternatively access
manufacturer information.

6.2. ILLUSTRATIVE SCENARIO 107

Figure 6.1: The logical schema (Web-Store case study)

Figure 6.2: The conceptual schema (Web-Store case study)

Capturing and understanding the interactions of the Web Store with its
database supporting the understanding of the feature processes, it supports
conformance checking with respect to a contract model; and lastly it can
also support the enhancement of the Web-Store processes. With the aim of
illustrating how we extract processes from database interactions, we present
an excerpt from a global Web-Store database in Figure 6.1 (logical schema)
and Figure 6.2 (conceptual schema). In order to illustrate our approach, we
will use an example of three SQL traces described in Figure 6.3.

108 CHAPTER 6. EXTRACTING DMP FROM TRACES

Listing 6.1: Trace 1
q1: SELECT Customer . Password FROM Customer WHERE Customer .Id = ’Mark27 ’;
q2: SELECT Category .Id , Category . Image FROM Category ;
q3: SELECT Product .Id , Product . Price FROM Product , PCategory WHERE

Product .Id= PCategory . Product_Id AND PCategory . Category_Id =’1’;
q4: SELECT PLang . Description FROM PLang , Language WHERE PLang . Language_Id =

Language .Code AND PLang . Product_Id =’1A23 ’ AND Language .Name=’Italian ’;
q5: SELECT SpecialProduct . NewPrice FROM SpecialProduct , Product WHERE

SpecialProduct . Product_Id = Product .Id AND Product .Id=’1A23 ’;
q6: SELECT Manufacturer .Name FROM Manufacturer , Product WHERE Manufacturer .

Id= Product . Manufacturer_Id AND Product .Id=’1A23 ’;
q7: SELECT PLang . Description FROM PLang , Language WHERE PLang . Language_Id =

Language .Code AND PLang . Product_Id =’1F32 ’ AND Language .Name=’Italian ’;
q8: SELECT SpecialProduct . NewPrice FROM SpecialProduct , Product WHERE

SpecialProduct . Product_Id = Product .Id AND Product .Id=’1F32 ’;
q9: SELECT Manufacturer .Name FROM Manufacturer , Product WHERE Manufacturer .

Id= Product . Manufacturer_Id AND Product .Id=’1F32 ’;
q10: INSERT INTO Log(IdEvent ,Event ,Date ,Time) VALUES (’021’,’ PrAcc1A23 -1

F32 ’ , ’2013 -02 -22 ’ , ’12:21:00 ’);

Listing 6.2: Trace 2
q11: SELECT Customer . Password FROM Customer WHERE Customer .Id = ’JennyMa ’;
q12: SELECT Category .Id , Category . Image FROM Category ;
q13: SELECT Product .Id , Product . Price FROM Product , PCategory WHERE

Product .Id= PCategory . Product_Id AND PCategory . Category_Id =’2’;

Listing 6.3: Trace 3
q14: SELECT Customer . Password FROM Customer WHERE Customer .Id = ’DanWer ’;
q15: SELECT Manufacturer .Id , Manufacturer .Name FROM Manufacturer ;
q16: SELECT Product .Id , Product . Price FROM Product WHERE Product .

Manufacturer_Id =’ AppleNamur01 ’ ;
q17: SELECT PLang . Description FROM PLang , Language WHERE PLang . Language_Id

= Language .Code AND PLang . Product_Id =’2D11 ’ AND Language .Name=’Italian
’;

q18: SELECT SpecialProduct . NewPrice FROM SpecialProduct , Product WHERE
SpecialProduct . Product_Id = Product .Id AND Product .Id=’2D11 ’;

q19: SELECT Manufacturer .Name FROM Manufacturer , Product WHERE Manufacturer
.Id= Product . Manufacturer_Id AND Product .Id=’2D11 ’;

q20: INSERT INTO Log(IdEvent ,Event ,Date ,Time) VALUES (’022’,’ PrAcc2D11
’ , ’2013 -02 -28 ’ , ’14:00:03 ’);

Figure 6.3: Web Store: Three SQL execution traces

6.3 Approach and Research Questions

Here, we are going to define an approach that supports the extraction of
the data-manipulation processes of data-intensive applications by analyzing
multiple SQL execution traces. To this end, we used the SQL parser de-
fined in the trace capturing level (see Section 5.3.2) of the previous chapter.
Starting from the parsing results, Figure 6.4 describes the defined bottom-

6.3. APPROACH AND RESEARCH QUESTIONS 109

Figure 6.4: Bottom-up approach: Inter-scenario analysis.

up approach. The approach requires two additional inputs (a logical schema
and a conceptual schema) and it examines two levels of understanding, these
being: (1)The data-oriented properties level and (2) the process mining level,
where each level contains a set of steps. These are:

• Level 1: (Data-oriented Properties)

1. Query filtering removes queries that do not refer to concepts
and relationships of the input conceptual schema.

2. Associating properties assigns to each query a set of data-
oriented properties, each describing its data-manipulation behav-
ior.

3. Query clustering clusters queries that have the same set of prop-
erties, thus they implement the same data-manipulation function.

4. Cluster labeling identifies the signature representing the data-
manipulation function (i.e., cluster). This signature is expressed
in terms of a label and a set of input/output parameters.

• Level 2: (Process mining)

1. Traces abstraction, seeks to replace traces of queries with their
corresponding signatures.

110 CHAPTER 6. EXTRACTING DMP FROM TRACES

2. Process extraction, generates the data-oriented process corre-
sponding to the input traces of a feature.

The defined approach will allow us to successively address the following
research questions for a given program execution scenario:

• RQ1: To what extent can we extract the data-oriented functions?

• RQ2: To what extent can we extract the data-manipulation processes?

6.4 Data-oriented Properties
Now, we will describe each step belonging to the first level of the approach.
We are going also to illustrate each step by means of the illustrative scenario
outlined earlier.

6.4.1 Query Filtering
Using the mapping between the conceptual schema and the logical schema
(which consists of the correspondence relationship between each logical object
and its corresponding conceptual object), we filter out from the input traces
all the queries that do not express end-user concepts, i.e., the ones referring
to database system tables or log tables that only appear in the logical schema.

Definition 6.4.1. Suppose we have a set of parsed queries (PQ), the sub-
logical schema (SL) and the sub-conceptual schema (SC). Then, we obtain a
set of filtered queries (FQ), which satisfy the following condition:

FQ = { q |∃objL ∈ SL, ∃objC ∈ SC : existmapping(objL, objC) ∧ objL ∈
q.objs ∧ q ∈ PQ}

• objL denotes a relational object (table or column) belonging to the
sub-logical schema SL;

• objC denotes a conceptual object (entity, attribute or relationship) be-
longing to the sub-conceptual schema SC;

• q.objs denotes the set of objects used by q;

In our example (Figure 6.3), we remove q10 and q20 accessing table Log
without a counterpart in the conceptual schema (see Figure 6.1 and Figure
6.2).

6.4. DATA-ORIENTED PROPERTIES 111

Query Clauses Properties

SELECT col1, col2 FROM tab1
WHERE col3 = val1;

Selectclause = { col1, col2 }
Fromclause = { tab1 }
Whereclause = {(=, col3 , val1) }

p1 = SELECT tab1.col1 tab1.col2
p2 = col3. EQ value

SELECT tab1.col1, tab1.col2
FROM tab1, tab2 WHERE
tab1.col1 = tab2.col1;

Selectclause = { tab1.col1,
tab1.col2 }
Fromclause = { tab1 , tab2 }
Whereclause = {(=, tab1.col1 ,
tab2.col1) }

p1 = SELECT tab1.col1 tab1.col2
p2 = tab1.col1 = tab2.col1

INSERT INTO tab1 (col1, col2,
..., coln) VALUES (val1, val2, ...,
valn) ;

Insertclause = { tab1 }
Valuesclause = {(=, col1, val1),
(=, col2, val2), ... (=, coln, valn)}

p1 = INSERT INTO tab1

UPDATE tab1 SET col1 = val1,
col2 = val2, ..., coln = valn
WHERE col1= val1 ;

Updatelause = { tab1 }
Setclause = {(=, col1, val1), (=,
col2, val2), ... (=, coln, valn)}
Whereclause = {(=, col1, val1)}

p1 = Update tab1
p2 = col1. EQ value

DELETE FROM tab1 WHERE
col1= val1 ;

Deleteclause = { tab1 }
Whereclause = {(=, col1, val1)}

p1 = DELETE tab1
p2 = col1. EQ value

Table 6.1: The rules of associating properties according to the parser clauses

6.4.2 Associating Properties

Using the queries parser (see Section 5.3.2) on the filtered traces, this step
seeks to assign to each SQL statement a set of data-oriented properties ac-
cording to the resulting clauses of the parsing phase. It is worth recalling
that the parser just considers the recovered or modified information and the
related selection criteria, and it ignores the actual values taken as input and
produced as output by each query.

To this end, for each type of query, we defined the properties to record.
For a select query, we record a property with the select clause. And for delete,
update or insert queries, we record a property with the name of the table. If
the query is update, we also record a property with the set clause and all its
attributes. Lastly, for all query types except the insert, we add a property
for the where clauses along with their attributes. Table 6.1 enumerates these
rules through examples.

Table 6.2 shows the data-oriented properties of the three SQL traces
presented in Figure 6.3. And Table 6.3 lists their corresponding properties.
These queries are created starting from the logical schema represented in
Figure 6.1. For instance, query q1 is a select query over attribute Pass-
word of Customer table (property p1) and it contains a where clause with
an equality condition over Id attribute (p2); query q2 is a select query over
attributes Id and the Image of Category, and it corresponds to property
p3; query q3 is a select over attributes Id and Price of Product (property

112 CHAPTER 6. EXTRACTING DMP FROM TRACES

Number Data-oriented property
p1 SELECT Customer.Password
p2 Customer.Id.EQ VALUE
p3 SELECT Category.Id Category.Image
p4 SELECT Product.Id Product.Price
p5 Product.Id=PCategory.Product Id
p6 PCategory.Category Id.EQ VALUE
p7 SELECT PLang.Description
p8 PLang.Language Id=Language.Code
p9 PLang.Product Id.EQ VALUE
p10 Language.Name.EQ VALUE
p11 SELECT SpecialProduct.NewPrice
p12 SpecialProduct.Product Id=Product.Id
p13 Product.Id.EQ VALUE
p14 SELECT Manufacturer.Name
p15 Product.Manufacturer Id=Manufacturer.Id
p16 INSERT INTO Log
p17 SELECT Manufacturer.Id Manufacturer.Name
p18 Product.Manufacturer Id.EQ VALUE

Table 6.2: Web Store: Properties of the traces of SQL statements

p4), it contains two where clauses, i.e., a natural join between Product.Id
and PCategory.Product Id (p 5) and an equality condition over PCategory
.Category Id attribute (p 6).

6.4.3 Query Clustering

Starting with these properties, we used the FCA (see Def.5.5.5) in order to
define a property clustering algorithm whose aim is to group together queries
that implement the same data-manipulation function. It is worth noticing
that FCA is much more powerful than how we used it earlier. Indeed, we
did not consider the possibility of objects (queries) having only subsets of
equal properties. Nevertheless, we implemented an algorithm to automate
the clustering of queries having the same set of data-oriented properties. The
algorithm is described in Listing 6.

In our case, each concept contains the queries that implement the same
data-manipulation function, i.e. SQL statements of the same type and with
equal input and output parameters, but with possible different values taken
by the input and output parameters. We build a concept lattice starting

6.4. DATA-ORIENTED PROPERTIES 113

Query Properties Query Properties
q1 p1,p2 q11 p1,p2
q2 p3 q12 p3
q3 p4,p5,p6 q13 p4,p5,p6
q4 p7,p8,p9,p10 q14 p1,p2
q5 p11,p12,p13 q15 p17
q6 p14,p15,p13 q16 p4,p18
q7 p7,p8,p9,p10 q17 p7,p8,p9,p10
q8 p11,p12,p13 q18 p11,p12,p13
q9 p14,p15,p13 q19 p14,p15,p13

Table 6.3: Web Store: Properties of the SQL statements

Algorithm 6 Properties clustering algorithm
Require: A set of parsed queries PQ = {q1, ..., qn}
Ensure: A set of clusters C

1: for all q ∈ PQ do
2: PropQ← AssociatProperties(q)
3: Objects← Add(q)
4: Attributs← Add(PropQ)
5: end for
6: C ← Clustering(Objects, Attributs)

from a set of SQL statement having each a certain set of properties. Then,
for each query, we search for the concept that has the same set of properties
of the query. After, we divide the queries into disjoint sets (clusters), each
performing different operations on the data.

We report in Table 6.4 the clusters obtained from queries in Table 6.3 by
applying the defined algorithm. It shows the clustering results built from a
sequence of SQL statements containing queries of Figure 6.3. Each cluster
can be identified by the set of SQL statements implementing the same data-
manipulation function and the properties that these queries have.

6.4.4 Cluster Labeling
Starting from these clusters, this step attempts to assign to each cluster
a unique and meaningful label representing the data-manipulation function
of the queries belonging to the cluster. For this, it requires an additional
input, which is the conceptual database schema. We identify a signature
in terms of a label and input/output (I/O), where the label is obtained by

114 CHAPTER 6. EXTRACTING DMP FROM TRACES

Cluster Queries Properties
c1 {q1, q11, q14} {p1, p2}
c2 {q2, q12} {p3}
c3 {q3, q13} {p4, p5, p6}
c4 {q4, q7, q17} {p7, p8, p9, p10}
c5 {q5, q8, q18} {p11, p12, p13}
c6 {q6, q9, q19} {p13, p14, p15}
c7 {q15} {p17}
c8 {q16} {p4, p18}

Table 6.4: Clusters of SQL queries of the Web Store application 6.3

exploiting information contained in the conceptual database schema, while
I/O parameters are created based on the data-oriented properties belonging
to each cluster.

The labels are obtained by analyzing the fragment of conceptual schema
that corresponds to the logical subschema accessed by the clustered queries.
In the case where the conceptual schema is not available, it is sufficient to
reverse engineer the logical schema by adopting a data-modeling tool like
DB-MAIN. Thus, given that the logical schema contains meaningful names,
it is still possible to obtain significant labels.

To determine the labels, we extract the portion of conceptual schema
accessed by the queries of a cluster and we apply a different labeling strategy
according to the query types. As regards the query types insert, delete and
update, we create the label of the data-manipulation functions starting from
the unique entity E of the conceptual schema accessed by each of these query
types, i.e., InsertIntoE, DeleteFromE and UpdateE respectively.

In the case of a select query, we distinguish four cases (Table 6.5) accord-
ing to the portion of the conceptual schema involved in the clustered queries
(see to Table 6.4 and Figure 6.2 for the given examples):

1. One entity E, in this case, we proposed two possible mapping names
based on the presence of an equality condition over the primary key
of E. If such a condition is present, we map the cluster with the la-
bel getEById. Conversely, we simply map the cluster with the label
getAllE. In our example, we translate cluster C1 to getCustomerById
since queries in C1 retrieve information contained within entity Customer
by taking as input its primary key. Concerning cluster C2, since its
queries retrieve all tuples of entity Category without considering any
condition over its primary key, it translates to getAllCategory.

6.4. DATA-ORIENTED PROPERTIES 115

Case Label

- getEById
- getAllE

- getAllE1OfE2V iaR

- getE1OfE2V iaR

- getE1OfE2V iaR
- getAllE2OfE1V iaR

Table 6.5: The rules of labeling for the select query

2. Two entities E1, E2 related by a many-to-many relationship R. In
this case, the adopted label is getAllE1OfE2V iaR providing that the
queries give as a result the attributes of all the instances of E1 associ-
ated with a given instance of E2 through R. As for our example, we
translate clusters C3 to getAllProductOfCategoryViaPCategory since
it extracts all the products of a certain category and we translate C4
to getAllLanguageOfProductViaPLang provided that it extracts all the
language descriptions of a product.

3. Two entities E1, E2 are related by a one-to-one relationship R. In
this case, we map the cluster with the label getE1OfE2V iaR provided
that the queries retrieve the instance of E1 associated to a certain
input instance of E2. In the Web-store example, we map cluster C5
to label getSpecialProductOfProductViaSProd in order to extract the

116 CHAPTER 6. EXTRACTING DMP FROM TRACES

occurrence of SpecialProduct related to a certain product via the one-
to-one relationship SProd.

4. Two entities E1, E2 are related by a one-to-many relationship R. In
this case, we distinguish two cases. If the queries return the instance of
E1 that participates to the relationship R with multiplicity N, we trans-
late the query with the function getE1OfE2V iaR. Conversely, if the
query returns the set of instances of E2 that participate to R with mul-
tiplicity 1, we translate the query with the label getAllE2OfE1V iaR.
In our Web-Store example, we translate cluster C6 to getManufac-
turerOfProductViaPManufact since it retrieves the single occurrence
of Manufacturer participating to the relationship PManufact with
Product. We translate cluster C8 to getAllProductOfManufacturerVi-
aPManufact since it retrieves the multiple occurrences of Product re-
lated to Manufacturer via PManufact.

After the labeling phase, we also look for the input parameters taken by
each data-manipulation function. To this end, we extract for each cluster
the input parameters of the data manipulation functions, which consist of
the attributes involved in equality or inequality conditions that appear in
the data-oriented properties of the queries. For the output parameters, we
simply list the set of attributes that are within of the property of the query
starts with a select. Here, we also introduce a complex type in case several
attributes are the outputs of a data-manipulation function. Table 6.6 shows
the list of data-manipulation functions for the Web Store case study along
with their input and output parameters.

Cluster Input Output
c1:getCustomerById {Id} {Password}
c2:getAllCategory − {Id, Image}
c3:getAllProductOfCategoryViaPCategory {Category Id} {Id, Price}
c4:getAllLanguageOfProductViaPLang {Product Id, Name} {Description}
c5:getSpecialProductOfProductViaSProd {Product.Id} {NewPrice}
c6:getManufacturerOfProductViaPManufact {Product.Id} {Name}
c7:getAllManufacturer − {Id, Name}
c8:getAllProductOfManufacturerViaPManufact {Manufacturer Id} {Id, Price}

Table 6.6: Web Store: Data manipulation functions and I/O parameters

It is worth noticing that in our approach it is enough to translate just one
arbitrary query within the same cluster and to evaluate its input and output
parameters; indeed all queries belonging to a cluster have the same set of

6.5. PROCESS MINING 117

properties and they consequently access the same portion of the conceptual
schema. In defining signatures, we have not considered the complete SQL
grammar, e.g., we ignored group by operators that add more fined-grained
information at the attribute level and we ignored the where clauses with-
out value-based equality and inequality conditions. Nevertheless, we plan
to adopt the latter so as to provide more detailed definitions of the data
manipulation functions.

6.5 Process Mining
For this level, we explain how it is possible to generate the data-oriented
process corresponding to the input traces. After replacing queries with their
corresponding meaningful signatures, this level seeks to extract a process
model. Such a process model may be the basis for supporting a different
analysis, namely checking the conformance of the process model defined at
run-time, enhancing it in case it is not compliant with the one defined at
design-time (if it exists) and more in general, and it forms the basis for
re-documenting the data-manipulation behavior of an already implemented
system.

So as to be able to generate a process starting from the traces of data-
manipulation functions of the previous level (data-oriented properties), we
will consider two steps. These are: (1) The traces abstraction, which replaces
SQL traces with their corresponding data-manipulation functions. (2)Process
extraction, which exploits a process-mining algorithm to extract the feature
behavior as a sequence of function executions with sequential, parallel and
choice operators.

6.5.1 Traces Abstraction
The objective of this step is to abstract the trace given as an input by replac-
ing each SQL statement with the corresponding meaningful signatures. As a
result, we get a new trace containing successive data-manipulation functions
corresponding to the given program execution scenario. Listing 6.5 depicts
the abstracted traces of the three traces given in the listening 6.3, where:

• Trace 1: It gets customer information (C1), and it performs a category-
driven search of products by means of getting all the product categories
(C2) and all the products of a certain selected category (C3). For
each retrieved product, three functions are twice iterated: C4 retrieves
product description, C5 extracts special product information and C6
extracts related manufacturer information.

118 CHAPTER 6. EXTRACTING DMP FROM TRACES

Listing 6.4: Abstracted Trace 1
q1: getCustomerById (C1)
q2: getAllCategory (C2)
q3: getAllProductOfCategoryViaPCategory (C3)
q4: getAllLanguageOfProductViaPLang (C4)
q5: getSpecialProductOfProductViaSProd (C5)
q6: getManufacturerOfProductViaPManufact (C6)
q7: getAllLanguageOfProductViaPLang (C4)
q8: getSpecialProductOfProductViaSProd (C5)
q9: getManufacturerOfProductViaPManufact (C6)

Listing 6.5: Abstracted Trace 2
q11: getCustomerById (C1)
q12: getAllCategory (C2)
q13: getAllProductOfCategoryViaPCategory (C3)

Listing 6.6: Abstracted Trace 3
q14: getCustomerById (C1)
q15: getAllManufacturer (C7)
q16: getAllProductOfManufacturerViaPManufact (C8)
q17: getAllLanguageOfProductViaPLang (C4)
q18: getSpecialProductOfProductViaSProd (C5)
q19: getManufacturerOfProductViaPManufact (C6)

Figure 6.5: Web Store : Abstracted Traces of SQL statements

• Trace 2: It is different from Trace 1, because after function C3 no
products are retrieved and the process ends.

• Trace 3: This is similar to Trace 1 except that it searches products
based on their manufacturer (functions C7 and C8) instead of searching
by category (C2 and C3).

6.5.2 Process Extraction
We extract the data-manipulation behavior in terms of a Petri Net [65], which
consists of a set of places, transitions, directed arcs and tokens. In order to
describe this step, we need to formally define this concept in order to be able
to understand the process.

Definition 6.5.1. Petri nets are a basic model of parallel and distributed
systems. The basic idea is to describe state changes in a system with tran-
sitions. According to the definition given by Murata et al. [55], Petri net
consists of two components, namely a net structure and an initial marking.
A net structure contains two sorts of nodes, namely places and transitions.

6.5. PROCESS MINING 119

T
ra

ce
1

T
ra

ce
2

T
ra

ce
3

ST
A

R
T

ST
A

R
T

ST
A

R
T

ge
tS

to
re

B
yI

d
(C

1)
ge

tS
to

re
B

yI
d

(C
1)

ge
tC

us
to

m
er

B
yI

d
(C

1)
ge

tA
ll
C

at
eg

or
y

(C
2)

ge
tA

ll
C

at
eg

or
y

(C
2)

ge
tA

ll
M

an
uf

ac
tu

re
r

(C
7)

ge
tA

ll
P

ro
du

ct
O

fC
at

eg
or

yV
ia

P
C

at
eg

or
y

(C
3)

ge
tA

ll
P

ro
du

ct
O

fC
at

eg
or

yV
ia

P
C

at
eg

or
y

(C
3)

ge
tA

ll
P

ro
du

ct
O

fM
an

uf
ac

tu
re

rV
ia

P
M

an
uf

ac
t

(C
8)

ge
tA

ll
L

an
gu

ag
eO

fP
ro

du
ct

V
ia

P
L

an
g

(C
4)

E
N

D
ge

tA
ll
L

an
gu

ag
eO

fP
ro

du
ct

V
ia

P
L

an
g

(C
4)

ge
tS

p
ec

ia
lP

ro
du

ct
O

fP
ro

du
ct

V
ia

SP
ro

d
(C

5)
ge

tS
p

ec
ia

lP
ro

du
ct

O
fP

ro
du

ct
V

ia
SP

ro
d

(C
5)

ge
tA

ll
L

an
gu

ag
eO

fP
ro

du
ct

V
ia

P
L

an
g

(C
6)

ge
tM

an
uf

ac
tu

re
rO

fP
ro

du
ct

V
ia

P
M

an
uf

ac
t

(C
6)

ge
tS

p
ec

ia
lP

ro
du

ct
O

fP
ro

du
ct

V
ia

SP
ro

d
(C

4)
E

N
D

ge
tM

an
uf

ac
tu

re
rO

fP
ro

du
ct

V
ia

P
M

an
uf

ac
t

(C
5)

ge
tL

an
gu

ag
eO

fR
ev

ie
w

V
ia

R
L

an
g

(C
6)

E
N

D

Table 6.7: Example traces

120 CHAPTER 6. EXTRACTING DMP FROM TRACES

Arcs run from a place to a transition or vice versa, never between places
or between transitions. More formally, according to the definition given by
Zuberek [95], a Petri Net is a 5-tuple N={P, T,A,w,B} where:

• P is a non-empty finite set of places

• T is a non-empty finite set of transitions

• A is a set ot directed arcs which connects places with transitions and
transitions with places, A ⊆ P × T ∪ T × P

• w is a weight function which assigns a positive integer ”weight” to each
arc of the net, w : A→ {1, 2, ...}

• B is a (possibly empty) set of inhibitor arcs, B ⊆ P ×T , and A and B
are disjoint sets

By adapting this definition to our traces Web-Store motivating scenario,
we create a process model for the feature represented by the traces, which
implements the visualization of products along with basic products details,
manufacturer information and if present authors’ reviews. In order to pro-
duce the process model, we consider as input a set of process instances, each
expressed as a sequence of data-manipulation functions generated from the
previous step. Starting from sequences of SQL statements, each of these
sequences corresponds to a different instance of the process performed by a
single user during a certain session and they can be captured by monitoring
database access. Table 6.5.2 shows the three possible instances of the process,
each with an additional starting function and ending function.

Figure 6.6: Web Store: Process mined with Trace 1, 2 and 3.

Figure 6.6 shows the process model mined starting from the three traces
in Table 6.5.2. The process contains a beginning (START) and an ending
(END) task since they are always present within the input traces. After
the START task, the process performs the first function getStoreById(C1).

6.6. EVALUATION 121

Then, the process has two possibilities, these being: (1) The two functions
getAllManufacturer(C7) and getAllProductOfManufacturerV iaPManu-
fact(C8) are performed. Then, the process performs the three functions
getAllLanguageOfProductV iaPLang(C4), getSpecialProductOfProduct-
V iaSProd(C5) and getManufacturerOfProductV iaPManufact(C6), be-
fore the task END is performed and the process is terminated (Trace 3); (2)
The two functions getAllCategory(C2) and getAllProductOfCategoryV ia-
PCategory(c3) are performed. Then, the process has a decision point; either
task END is performed and the process is terminated (Trace 2) or it en-
ters in a loop, where functions getAllLanguageOfProductV iaPLang(C4),
getSpecialProductOfProductV iaSProd(C5) and getManufacturerOfPr-
oductV iaPManufact(C6) are iterated, before the task END (Trace 1).

It is worth noticing that if we look more carefully at the traces and the
process together, we see that even if the process is able to re-produce the
traces, it can also generate additional traces. This depends on the chosen
process miner algorithm that produces complete models at the price of intro-
ducing noise. Our goal is to be able to recover the model that reproduces all
the input traces, while we do not take into account appropriateness, mean-
ing that the model can generate a bigger set of traces than the input one.
These requirements will guide our selection of the best process miner to adopt
during the experimentation phase.

6.6 Evaluation
The approach presented in this chapter is implemented in an integrated tool,
which takes as input a set of SQL traces (each representing an instance of
the same feature), the logical schema and optionally the conceptual schema
and the mapping between both. The tool relies on a set of implemented
components.

Among the implemented components, we exploited some components that
were implemented by DAViS 5.7, namely: (1) the SQL parser component
(Section 5.3.2), we exploited it in order to extract the data-oriented proper-
ties; (2) the filtering component (Section 5.4.1), and we used the conceptual
subschema in order to filter out the SQL queries referring to objects that are
not in the input conceptual schema; (3) the clustering component 5.5.2 to
cluster queries according to their properties.

Based on the previous components, the labeling component generates
data-manipulation functions (i.e., cluster signatures). And the traces ab-
straction component uses a Java library 1 to create standardized event logs.

1http://www.xes-standard.org/openxes/start

http://www.xes-standard.org/openxes/start

122 CHAPTER 6. EXTRACTING DMP FROM TRACES

Starting from the event logs obtained from the previous component, we
rely on the standard open source Process Mining framework (ProM) [86]
to mine data-manipulation processes. ProM integrates the functionality of
several existing process-mining tools and provides many additional process-
mining plug-ins. It supports multiple formats and multiple languages, such
as Petri nets and Social Networks. In the context of this approach, we chose
as a miner algorithm the Integer Linear Programming (ILP) miner [85], since
it is able to produce complete process models (i.e., Petri Nets [65]) with a low
level of noise. Petri nets, which come from the ILP miner, are semantically
well-defined models that permit different types of analysis, among which is
a precise comparison of different model instances. Once a process has been
created, we exploit the ProM tool to export the Petri Net as a Petri Net
Markup Language (PNML) – as a proposal of an XML-based interchange
format for a Petri net file, which can be given as input to a Petri Net editor
tool, e.g., WoPeD2 allowing reading and editing operations. ProM provides
user-friendly graphical interfaces which support designers in easily loading
standardized event logs, mining Petri Nets through ILP miner and exporting
such models for editing purposes enabled by WoPeD.

6.6.1 Scenario Used
In order to validate the proposed approach, we collected a set of database
access traces from an e-restaurant Web application developed by one of our
undergraduate students at our university.

This data-intensive system provides different features, each accessing a
different portion of an underlying database to support the activities of taxi
drivers, restaurant owners and clients. Clients consult an information menu
(MenuInfo feature), information about special offers (DailySpecials feature)
and general information about restaurants (RestaurantInfo feature). They
can reserve a table for a meal (Reservation feature) and they can issue orders
of meals with two possible options: they either pick up the meal at the
restaurant or they ask for a taxi service to deliver the booked meal to them
(IssueOrders feature). Restaurant owners prepare the meal to be delivered to
clients (RestaurantOrders feature), while taxi drivers check delivery requests
and they carry out the delivering process (TaxiDelivery feature).

Among a wide set of implemented features, we chose a subset of features
whose data-manipulation processes covered execution patterns of a different
nature, e.g., sequential execution, cycles and decision points. Since we played
the role of the designer, we were able to select the most interesting features

2www.woped.org

6.6. EVALUATION 123

i.e., DailySpecials, RestaurantInfo, MenuInfo, Reservation and IssueOrders.
Consequently, we collected the corresponding sequences of SQL queries to
give as input to the tool. We assume that for each feature, its input set of
extracted traces corresponds to a 100% coverage ratio of the process and it
contains exactly 6 different traces.

6.6.2 Experiments Description

Starting from the input data, we conducted a set of experiments seeking to
answer the following research question: How good are the processes extracted
through the integrated tool with a variable trace coverage, with respect to their
correct versions identified by the designer?

To address this research question, we decided to divide the experiment in
two different phases:

• The start-up phase creates for each feature the correct processes start-
ing from its complete set of traces (trace coverage = 100%) with the
support of the integrated tool and the intervention of the designer;

• The core phase mines processes with a variable trace coverage (≤ 100%)
and it evaluates the goodness of such processes with respect to the
correct ones previously identified with the support of ProM tool plug-
ins.

6.6.2.1 Start-up

For each feature, we adapted the tool so as to create the data-manipulation
processes with the complete set of traces. Consequently, since these models
may either contain noise or they may not be complete, we asked the designer
to derive a correct version from it. It is worth pointing out that the designers
have in dept knowledge and understanding of the processes and they can
easily assess the system regardless of whether a certain process is correct or
not.

In our case, as designers, we adapted the WoPeD tool in order to visualize
the processes as Petri Nets and to perform the possible required modifications,
i.e., addition/deletion of places and arcs. For instance, Figure 6.7 (top) shows
the feature RestaurantReservation mined with the proposed approach, while
Figure 6.7 (bottom) shows the version of the same feature as it had been
corrected by the designer.

124 CHAPTER 6. EXTRACTING DMP FROM TRACES

Figure 6.7: RestaurantReservation: Mined process (top) and process cor-
rected by the designer (bottom).

6.6.2.2 Core

Once the designer has determined the correct versions of the processes of
the input features, we performed a set of experiments in order to compare
them with the models produced by our approach with a different ratio of
the coverage of the input traces. To this end, we defined: (1) Ptool as the
Petri Nets produced by our approach, (2) Pexp as the correct Petri Nets and
(3) their corresponding set of valid traces as T (Ptool) and T (Pexp). After, we
defined two metrics:

1. Recall = |tp|
|tp+fn| = |T (Ptool)∩T (Pexp)|

|T (Pexp)|

2. Precision = |tp|
|tp+fp| = |T (Ptool)∩T (Pexp)|

|T (Ptool)|

Here tp represents the true positive, which is the set of traces identified
by our algorithm that is also included in the correct model, fp represents
the false positive, which is the set of traces identified by our algorithm that
have not been included in the correct model, while fn represents the false
negative, which is the set of traces not identified by our algorithm but it has
been included in the correct model.

Given that the set of traces for a Petri Net could be infinite, we consider
as an approximation the minimum number of traces that can cover the Petri
Net, where loops are iterated at most once. Since the ProM tool already
provides a plug-in for evaluating precision and recall between two Heuristic

6.6. EVALUATION 125

Net’s and to translate a Petri Net to a Heuristic Nets, we adopted both of
them for evaluating mined models.

(a)

(b)

Figure 6.8: e-Restaurant case study: Average recall measure (a) and average
precision measure (b) of the mined process models depending on log coverage
(1-trace logs, 2-trace logs, ..., 6-trace logs).

For each feature, we mined different processes starting from a variable
set of input traces. We considered as input all the combinations of 1, ..., t
traces from the global set of t traces (in our experiments t=6). For each
combination of traces, we mined the corresponding process model and we
measured precision and recall values of this model relative to the correct one.
Finally, we evaluated the average precision and recall obtained with all the
combinations of 1 trace from the t traces, all the combinations of 2 traces
from t traces, ..., and all the combinations of t traces from t traces. Then, we
repeated the same set of experiments for all the features. Figures 6.8(a) and

126 CHAPTER 6. EXTRACTING DMP FROM TRACES

6.8(b) show the average recall and precision values obtained for the input
features.

Figure 6.8(a) tells us that for all processes the average recall measure
increases if we consider a greater set of traces as input. When we consider
all the traces, we have a recall equal to 1, meaning that all the traces within
the correct model have been identified by our approach. On average, if the
number of traces decreases, the recall decreases as well.

In Figure 6.8(b), the average precision measure increases with the reduc-
tion of traces considered as input, meaning that on average with a lower
number of traces the noise introduced by our approach is lower than that
with a greater number of traces. We claim that the trend of precision and
recall averages does not depend on the nature of processes; indeed, they all
follow the same behavior that depends on the coverage of the input log.

6.6.3 Threats To Validity
Our approach extracts data-manipulation process models that may suffer of
two different types of noise:

• The first belongs to the adapted mining algorithm and it results in in-
correctly mined models having possibly additional traces. To mitigate
this noise problem, we asked designers to perform a correction to the
models mined by our approach. In this way, we were able to create
models that were 100% correct and which had been exploited as in-
put to evaluate the sensitivity of our approach depending on the log
coverage.

• The second type of noise belongs to the increasing number of SQL
statements that refer to technical implementation details not relevant
for the application logic. To overcome this problem, we introduced a
preprocessing phase to filter out queries that do not refer to a certain
subset of the conceptual schema as selected by the designer.

Our approach may also have threats to scalability depending on the in-
creasing input of SQL statements. Indeed, even after the non-relevant queries
have been pruned, we could still mine a non-readable process due to the large
space of extracted data-manipulation functions. To tackle this problem, we
advised designers to prune iteratively the conceptual schema until they ob-
tained a readable process (by iteratively applying our approach to the input
set of queries).

Recall and precision values obtained for the different features depend
on the adapted mining algorithm. In [4], different mining algorithms were

6.7. CONCLUSIONS 127

compared to identify the one that better fits the application needs. In our
experiments, we exploited the ILP miner algorithm, which is able to create
models with a fitness (precision) of 100% and an acceptable level of appropri-
ateness (recall) with respect to the input set of traces. By adapting mining
algorithms with different fitness and appropriateness, we would have obtained
different precision and recall values. Nevertheless, we claim that we expect
to get similar trends of precision and recall depending on the log coverage.
Indeed, we expect that by increasing the log coverage, we will subsequently
increase the recall while lowering the precision.

The e-restaurant system adapted in the experiments can be considered
a good representative for data-intensive systems i.e., systems where most of
the complexity is concealed in its interactions with its database. Actually,
the e-restaurant consists of numerous interactions with its database, where
data form the basis for supporting the core business activities. Even though
the experimental system is of limited size and complexity, it demonstrated
sufficiently the capability of the proposed approach by revealing heteroge-
neous data-manipulation processes in real environments. With this in mind,
we also mitigated the quality of the input traces by analyzing features of a
different nature. However, we may consider the threat that the approach has
been evaluated on a single case study (the e-restaurant system).

6.7 Conclusions
In this chapter, we proposed an approach for supporting the recovery of
the data-manipulation processes of data-intensive systems via the analysis of
multiple SQL execution Traces. The approach includes two phases. These
are: (1) Data-oriented properties:, which seeks to extract data-manipulation
functions and (2) Process mining:, which seeks to extract data-manipulation
processes. Then, we applied the ProM and the ILP miner algorithms to
extract the data-oriented processes of an e-restaurant Web application and
we conducted a set of preliminary experiments to assess the sensitivity of our
technique in producing correct processes that depend on the traces of the log
coverage.

128 CHAPTER 6. EXTRACTING DMP FROM TRACES

Chapter 7

Code Re-documentation from
SQL Execution Traces

The next best thing to knowing something is knowing where to find it.
Samuel Johnson

Contents
7.1 Introduction . 129
7.2 Motivation . 130
7.3 Approach and Research Questions 131
7.4 Preliminaries . 132
7.5 Comments Generation 135
7.6 Comments Injection 138
7.7 Discussions . 139
7.8 Illustrative Example 141
7.9 Results . 143
7.10 Conclusions . 144

7.1 Introduction
During software maintenance and evolution, software artifacts are constantly
changing (e.g. source code, database schemas and software documentation).
In this context, numerous studies have been interested in the co-evolution of
the program’s source code and its database schemas [9, 23, 43] at the expense
of software documentation. As a consequence, an inherent gap has been

129

130 CHAPTER 7. CODE RE-DOCUMENTATION

created between software system and its documentation, due to the lack of
an up-to-date documentation, which makes the software understanding task
more difficult. This is why, in the context of software understanding, software
documentation is a key ingredient, where improving software documentation
helps to facilitate the software understanding task and, in turn, it helps
software maintenance and evolution.

Assuming there is a lack of documentation, the approach we are going
to define in this chapter seeks to reduce this gap by re-documenting the pro-
gram’s source code with the interpretation of data-manipulation behavior
previously extracted through the analysis of SQL execution traces. Knowing
that source code comments may be viewed as an another source of documen-
tation could help developers to better understand nuances of database usage
and the programs in some ways as well.

The chapter is structured as follows. We start by presenting the context
and the motivation that led us to propose this approach. Then, we present
some formal definitions of techniques that are related to our methodology
before elaborating on the approach. Finally, to illustrate the approach we
present an example and we demonstrate its feasibility.

7.2 Motivation
As explained earlier, data-intensive systems manipulate dynamically and in-
tensively a huge amount of data stored in a database, which means the
database will have a central place. Therefore, the understanding of such
systems not only necessitates a detailed and an up-to-date knowledge of
database schemas, but also documentation on how features are implemented
by relying on database operations. Unfortunately, such information is not
available for most if not all of the current systems. Linares-Vàsquez et al
[45] estimated that 77% of the 33K+ studied methods of 3.1K+ open source
Java projects invoking SQL statements were completely undocumented.

In the light of this, up-to-date source code comments about data-manipulation
behavior may be viewed as a valuable source of documentation, especially for
these kinds of systems. In this context, Linares-Vasquez et al. [44, 41] de-
fined DBScribe, an approach that seeks to statically analyze source code
and the database schema of a given database-centric application in order to
automatically generate up-to-date natural language descriptions of the SQL
statements related to methods’ execution, along with the schema constraints
imposed on these statements.

However, we can clearly highlight some limitations; e.g. the authors only
treated the logical level as a basis for comments. For instance, «It inserts the

7.3. APPROACH AND RESEARCH QUESTIONS 131

Figure 7.1: Bottom-up approach: A code re-documentation

Username, Passwd attributes into table logindetails» is a comment example of
an insert query. Besides this, as we mentioned in Chapter 2, the logical level
is usually highly technical, where sometimes objects have a technical name
(e.g. cl id). Here in this chapter we are going to define an approach for re-
documenting program source code by treating the conceptual level as a basis
for comments, i.e. comments will be expressed in terms of a domain-specific,
platform-independent model.

In addition, given the dynamic nature of the interactions (programs/-
database) of such systems, SQL statement are generally dynamically con-
structed preventing them to be easily analyzed by static analysis techniques.
Hence, we will propose a new approach to generate comments according to
the results obtained from the dynamic analysis of data-manipulation behav-
ior and inject them into their corresponding source code location.

7.3 Approach and Research Questions
In the light of the above motivation, we defined a bottom-up approach which
is depicted in Figure 7.1. This approach first attempts to automatically gener-
ate an up-to-date natural language interpretation of database-manipulation
behavior. Then, it injects the generated interpretation as comments into the
appropriate source code locations. This leads us to formulate the following
research question: To what extent can we re-documented the program source
code starting from its SQL execution traces?.

Starting from the dynamic analysis results of SQL execution traces ob-
tained from the approach defined in Chapter 5, the approach includes two

132 CHAPTER 7. CODE RE-DOCUMENTATION

levels. These are:

1. Level 1: (Comments generation) this level seeks to answer the
question about what relevant information should be injected. To this
end, we first identify what type of information should be saved. Second,
we generate comments to be injected according to the information type.

2. Level 2: (Comments injection) this level seeks to answer the ques-
tion about where should we inject the generated comments in program
source code. For this, we first identify the source code location before
injecting the generated comments.

7.4 Preliminaries
Before introducing in detail each level of the approach, it is worth defining
some techniques and concepts that we used in order to be able to understand
what follows.

7.4.1 Java DataBase Connectivity (JDBC)
JDBC is an API Java (a set of classes and interfaces) defined in order to
allow access to the relational databases using the Java language via SQL
queries. JDBC allows Java applications to manage three main programming
activities. These are:

• Connection to the database.

• Send queries and update statements to the database.

• Retrieve and process the results received from the database in response
to the sent query.

Listing 7.4.1 depicts a Java code fragment using JDBC API to connect
to the database, execute a SQL query and get the result of the query. The
first step consists of instantiating a DriverManager object in order to estab-
lish a connection to the database driver and then to log into the database.
The second step consists of instantiating a Statement object that carries the
SQL language query to the database. Finally, the third step instantiates a
ResultSet object in order to collect the results of the SQL statement.

7.4. PRELIMINARIES 133

Listing 7.1: Java code fragment using JDBC technology
1 public void DatabaseAccesses(String username, String password) {
2

3 // Connexion to the database
4 Connection connexion =

DriverManager.getConnection("jdbc:myDriver:myDatabase",
username, password);

5

6 // Querying the database
7 Statement statement = connexion.createStatement();
8 ResultSet result = statement.executeQuery("select name, ncust

from customer where locality = ’Namur’");
9

10 // Retrieve the results received from the database
11 while (result.next()) {
12 String name = result.getInt("name");
13 String ncust = result.getString("ncust");
14 }
15 }

7.4.2 Extraction Techniques of SQL Trace Locations
In the literature, there is a surprisingly big number of techniques available for
extracting and locating SQL execution statements that occur in a application
program. They range from simply using a JDBC logger for instrumenting
program source code to sophisticated program analysis techniques. Among
these techniques, we shall briefly mention two of them:

7.4.2.1 JDBC Logger

The term logging consists of adding processing in applications in order to
allow the storage of messages following events. Logging is used for different
purposes and it provides, for instance, the means to trace or debug appli-
cation programs and generate detailed log output, while keeping track of
the exceptions that occur in the application program and the various events
related to the execution of applications, etc. The JDBC driver provides a
logging feature, which is a set of classes that allow logging information about
events that occur when the JDBC driver code runs. JDBC logging feature
can include either user-visible events, such as SQL exceptions, running of
SQL statements or JDBC internal events, such as entry to and exit from

134 CHAPTER 7. CODE RE-DOCUMENTATION

Figure 7.2: The Abstract Syntax Tree workflow [38]

internal JDBC methods.

7.4.2.2 Static Program Instrumentation

Using static program instrumentation 2.8.1, Loup et al. [51] defined a static
analysis technique that sought to identify the dynamic database access lo-
cations and the database objects (tables and columns) accessed by a given
access. They were interested in three types of Java database access technolo-
gies, these being JDBC, Hibernate and Java Persistence API (JPA). The
authors identified the source code locations querying the database based on
the call graph of the given method, which is derived from an inter-procedural
analysis.

7.4.3 JAVA Abstract Syntax Tree (AST)
The Abstract Syntax Tree seeks to represent the abstract syntactic structure
of source code based on a tree representation. Here, each node of the tree
represents a construct occurring in the source code. The syntax is called
«abstract» because it does not represent every detail appearing in the real
syntax. According to the definition given by Kuhn [38], the AST is the base
framework for many powerful tools of the Eclipse IDE such as refactoring,
Quick Fix, Quick Assist. Therefore, the abstract syntax tree-based repre-
sentation is very popular in studies that attempt to analyze and modify the
source code.

7.5. COMMENTS GENERATION 135

Figure 7.2 describes a typical workflow of an application using an AST:
(1) in the first step we provide the source code to parse; (2) then, the source
code is placed in the parser; (3) the Abstract Syntax Tree is the output
provided by the parser; (4) the fourth step consists of manipulating the
AST (modifying, removing or adding) to achieve the chosen goal; (5) finally,
changes are applied to the source code provided.

7.5 Comments Generation

7.5.1 Information Determination
As stated in the approach definition, our main goal is to re-document the
program source code by adding comments about its data-manipulation be-
havior. To achieve this, it is important to identify what type of information
should be considered and how it should be presented. For this purpose, we
looked at two categories of information, namely (1) comments about implicit
dependencies occurring between successive SQL queries; and (2) comments
about the conceptual interpretation of SQL execution traces expressed in
natural language terms.

7.5.1.1 Comments about Dependencies

As we said earlier, data-intensive systems are characterized by intensive in-
teractions between programs and their database. Hence, understanding the
behavior of their data-manipulation should provide a major support for the
understanding of such systems. In the same way, we examine the issue of
documenting program source code with comments about how SQL queries
depend on each other and it offers a significant added-value to developers,
especially in the case of systems where most of their methods invoke SQL
statements.

For instance, let us assume that we have two method fragments (MF1,
MF2), where each of them accesses the database via a SQL query q1 (re-
spectively q2). In addition, there is a dependency between q1 and q2. In this
case, adding a comment about this dependency before each query execution
can be viewed as useful. This is especially helpful before making any changes
(modification or deletion) on the two methods, or objects belonging to both
queries. Otherwise, failing to correctly adapt programs or database may
create program inconsistencies, which in turn may cause program failures.

For this purpose, based on the analysis results of the inter-queries level
(see Section 5.5), we looked at two types of dependency, namely (1) out-
put/input dependency; and (2) loops (nested queries).

136 CHAPTER 7. CODE RE-DOCUMENTATION

Type Comment
O/I Output/Input [lx - ly]: tabx.colx ↔ taby.coly
Loops Loop [lmq - lnq]: tabm.colm ↔ tabm.colm

Table 7.1: Dependency comment template

Table 7.1 gives the comment template of each of these two types. Here,
each comment consists of three parts, these being (1) the type of the depen-
dency (output/input, loop); (2) a pair [lx - ly], where lx and ly designate the
source code location of the queries in question; and (3) the last part contains
the dependent database objects.

Listing 7.2: A fragment of an example of a SQL trace
q1: select name , ncust from customer where Locality = ’Namur ’;
q2: select norder , date from order where ncust= ’B062’;
q3: select norder , date from order where ncust= ’C123 ’;
q4: select norder , date from order where ncust= ’L422 ’;
q5: select norder , date from order where ncust= ’S127 ’;
...

For instance, Listing 7.2 shows a fragment of five SQL queries representing
a loop (nested queries), where the main query is q1 and q2 to q5 are the nested
queries extracted from the system described in Section 5.3.1. And Listing
7.5.1.1 contains a portion of the JAVA source code corresponding to the trace
of Listing 7.2.

Once we have analyzed the trace, the detected loop will be commented
as: Loop [8-14]: costumer.ncust ↔ order.ncust.

7.5.1.2 SQL Interpretation Comments

The second category of comments concerns the natural language interpreta-
tion generated from the analysis of SQL execution traces. It is worth recall-
ing that we got the natural language interpretations of SQL statements from
«the query interpretation level» (see Section 5.6). Here, the latter provides
as an output a set of natural language sentences expressing the conceptual
interpretation of the trace given as input.

Injecting these sentences into the appropriate source code locations may
be viewed as a support for developers and help them to better understand
data-manipulation behavior, and also the relevant portion of program source
code.

7.5. COMMENTS GENERATION 137

Listing 7.3: The program source code invoking the trace of Listing 7.2
1 ...
2 public void SearchOrders(String nametab, String locality)

throws SQLException{
3 ...
4 this.connect();
5 String sqlselect="select ncust, name from "+nametab+" where

Locality = ?";
6 java.sql.PreparedStatement preparedStatement1 =

con.prepareStatement(sqlselect);
7 preparedStatement1.setString(1, locality);
8 ResultSet res = preparedStatement1.executeQuery(sqlselect);
9 while (res.next()) {

10 String ncust = res.getString(1);
11 String sqlselect2 = "select norder, date from order where

ncust=?";
12 java.sql.PreparedStatement preparedStatement2 =

con.prepareStatement(sqlselect);
13 preparedStatement2.setString(1, ncust);
14 ResultSet res2 = preparedStatement2.executeQuery(sqlselect2);
15 ...
16 }
17 ...
18 }
19 ...

Listing 7.4: The natural language interpretation of the trace of Listing 7.2
...
<Trace abstraction >

<InterpretatedQuery >
Retrieve name of customer , number of order and date of order placed by

customer living in Namur
<AbstractedQuery >

Select name , ncust , norder , date from customer , order where customer
.ncust = order .ncust and locality = ’Namur ’;

<AbstractedQuery >
<InterpretatedQuery >

...

Listing 7.4 shows the conceptual interpretation resulting from the query
interpretation level (see Section 5.6) of the trace described in Listing 7.2.
Here, the loop was firstly abstracted as a join query (Select customer.name,
orders.norder, order.date from customer, order where customer.ncust = or-

138 CHAPTER 7. CODE RE-DOCUMENTATION

der.ncust and customer.locality = ’Namur’). Then, it was conceptually in-
terpreted as Retrieve name of customer, number of order and date of orders
placed by customer living in Namur based on the given conceptual schema.

7.5.2 Information Gathering

Listing 7.5: The XML structure of the prepared comments file
...
<comment location ="8" > Loop [8- 14]: customer .ncust <-> order .ncust </

comment >
<comment location ="8" > Retrieve name , number of customer , number of order

and date of order placed by customer living in Namur </comment >
...

Once we have selected the useful information to be injected as well as
generated the appropriate comments, we can begin. This step seeks to iden-
tify the source code location where comments should be injected. To achieve
this goal, we first need to recover the source code location of each SQL state-
ment belonging to the analyzed trace. Then, we identify for each generated
comment its corresponding location in the source code.

The above approach is actually independent of the technique chosen for
the SQL location extraction. And we used the JDBC logger to identify the
source code location of SQL statements. Here, we configured the JDBC
logger to log the full stack trace that includes the following information: the
executed queries, their results and their locations in the source code.

Once we have collected all the required information (comments and loca-
tions), the second step of this level involves associating comments with their
corresponding source code locations in order to unify the input of the second
level of the approach,

Listing 7.5 describes the XML structure of the gathered information
through an example of the SQL query represented given in Listing 7.2.

7.6 Comments Injection
Starting from the XML file, this level seeks to inject comments into the
program source code at their appropriate locations. For this, it needs an
additional input, which is the program source code. Based on this input,
this level provides as an output a commented source code.

To achieve these aims, we defined an algorithm that is described in List-
ing 7. The first step of the algorithm consists of extracting the AST of the
program source code given as input (Line 1). Then, for each comment be-
longing to the XML file (Line 2), the algorithm traverses this AST in order

7.7. DISCUSSIONS 139

to identify the location where the current comment should be injected (Line
3). After, the algorithm modify the AST by integrating the comment at the
identified location (Line 5). Lastly, the algorithm applies all the changes
made on the source code (Line 6).

Algorithm 7 Comments injection algorithm
Require: program source code (SC) and XML file of (comments/locations)

(XMLFile)
Ensure: Re-documented program source code (with comments) (RSC)

1: ASTsc← CreateAST (SC)
2: for all elt ∈ XMLFile do
3: position← SearchPosition(elt.getLocation(), ASTsc)
4: comment← elt.getComment()
5: ASTRewriteSC ← InjectComment(comment, position,ASTsc)
6: SCR ← ApplyChange(ASTRewriteSC)
7: end for

By applying the principle of the algorithm on the JAVA code of Listing
7.5.1.1 and the XML file containing the generated comments (Listing 7.5),
we obtain the commented source code (Listing 7.6), where we have injected
two comments (the first one describing the loop dependency between the two
executed queries and the second one describing the conceptual interpretation
of the procedural join which is implemented as a loop).

7.7 Discussions
The main contribution of this approach is the re-documentation of programs
with its data-manipulation behavior by injecting comments about: (1) the
conceptual interpretation of its SQL execution traces and (2) the dependen-
cies that occur between its SQL queries. However, it is worth mentioning
and discussing some untreated aspects as well as some borderline cases that
may adversely affect the contribution of our approach:

• It should be noted that the analysis results that we obtained from the
different levels of the approach and were described in Chapter 5 have
not been properly scrutinized. More precisely, we assumed that all the
results obtained were 100% accurate, which means that we neglected
the possibility that results may include some noise. This is especially
true for the algorithms on dependency detection. For instance, when
the loops detection algorithm detects a false loop. In this case, the
resulting abstracted trace, as well as the conceptual interpretation of

140 CHAPTER 7. CODE RE-DOCUMENTATION

Listing 7.6: The commented program source code of the trace (Listing7.2)
1 ...
2 public void SearchOrders(String nametab, String locality)

throws SQLException{
3 ...
4 this.connect();
5 String sqlselect="select ncust, name from "+nametab+" where

Locality = ?";
6 java.sql.PreparedStatement preparedStatement1 =

con.prepareStatement(sqlselect);
7 preparedStatement1.setString(1, locality);
8 //Loop [8-14]: costumer.ncust <-> order.ncust
9 //Retrieve name, number of customer, number of order and date of

order placed by customer living in Namur
10 ResultSet res = preparedStatement1.executeQuery(sqlselect);
11 while (res.next()) {
12 String ncust = res.getString(1);
13 String sqlselect2 = "select norder, date from order where

ncust=?";
14 java.sql.PreparedStatement preparedStatement2 =

con.prepareStatement(sqlselect);
15 preparedStatement2.setString(1, ncust);
16 ResultSet res2 = preparedStatement2.executeQuery(sqlselect2);
17 ...
18 }
19 ...
20 }
21 ...

the latter, will be insignificant. Thus, it is more judicious to reduce
as much as possible noise to be able to retain only the most pertinent
comments. To this end, analyzing the program source code may be
a solution to validate the accuracy of the detected information. For
instance, determining whether the detected potential loop is actually
a loop in the program source code before injecting it corresponding
comment.

• The generated comments are always injected just before query exe-
cution. However, we are not able to validate whether it is the most
appropriate and useful location, where they should be injected. To this

7.8. ILLUSTRATIVE EXAMPLE 141

end, evaluating several possible source code locations in order to iden-
tify the most appropriate location may be an important aspect to take
into account for the future improvements of this approach.

• In the proposed approach, we considered only results that are obtained
from the analysis of a single SQL execution trace (the intra-scenario
analysis 5). However, the results obtained from an analysis of mul-
tiple SQL executions traces to recover the data-manipulation process
(Chapter 6) can also be useful for re-documenting program source code.

Figure 7.3: Conceptual schema of AcadYearManager application

7.8 Illustrative Example
Now, we present a example in which we apply our approach to demonstrate
its feasibility and to show how it facilitates the understanding of program by
adding comments to its source code.

To achieve this, we defined a Learning Management Systems (LMS) that
allows the administration to manage all about teachers, teaching, students
and courses, etc. This system, called AcadYearManager, consists of thou-
sands of lines of code written in Java. It manipulates a MySQL database
consisting of 30 tables and 192 columns representing the data on available

142 CHAPTER 7. CODE RE-DOCUMENTATION

Figure 7.4: The logical schema of an AcadYearManager application

Figure 7.5: A fragment of the collected SQL trace

courses, faculties, teachers, students, classes, etc. Figure 7.3 (resp. 7.4)
depicts the conceptual schema (resp. the logical schema) of the AcadYear-
Manager application.

7.9. RESULTS 143

Figure 7.6: The intra-scenario analysis results

7.9 Results

In order to show the different steps of the approach, we collected an event
log file with an SQL execution trace (SQL queries with their results) corre-
sponding to one program execution scenario. The collected trace contains 69
queries (only select query). Figure 7.5 shows a fragment of the set of SQL
queries belonging to the collected trace. After, we apply an intra-scenario
analysis on this trace. Figure 7.6 depicts the analysis results, where it in-
cludes the subschema impacted by the «scenario 1» as well as the existing
dependencies between queries belonging to the collected trace. And Figure
7.7 depicts the loops detection results. Here, the trace includes four possible
loops, each of them being represented by the sequence number of its main

144 CHAPTER 7. CODE RE-DOCUMENTATION

Figure 7.7: The loop detection results

Figure 7.8: The abstraction of the first detected loop

query as well as the sequence numbers of its nested queries.
Afterwards, the trace was abstracted by transforming the four procedu-

ral loops into join queries. As result, we got a new abstracted trace that
contains 40 queries instead of 69. Figure 7.8 shows the abstracted query of
the first detected loop (the top of the figure shows the initial trace, while the
bottom of the figure shows the abstracted loop). Based on the annotated sub-
conceptual schema, we obtained the conceptual interpretation of the abstract
trace expressed in natural language terms. The abstracted query of the first
detected loop of Figure 7.8 is interpreted as: Retrieve all the characteristics
of assistant courses that give courses containing «info».

7.10 Conclusions
The last phase of our global framework described in Chapter 4.4 is Code
re-documentation from SQL execution traces. In this chapter, we proposed

7.10. CONCLUSIONS 145

an approach for supporting program comprehension by re-documenting pro-
grams source code with their data-manipulation behavior. More precisely,
we proposed a bottom-up approach that allows us to automatically generate:
(1) comments about SQL statements dependencies (output/input and loops
dependencies) and (2) a natural language interpretation of SQL statements.

In the next chapter, we will present an empirical study, which is a user
experiment that attempts to assess the benefits of the approach implemented
by DAViS.

146 CHAPTER 7. CODE RE-DOCUMENTATION

Part III

Evaluation and Validation

147

Chapter 8

An Empirical Study on the Use
of SQL Execution Traces for
Program Comprehension

The only source of knowledge is experience.
Albert Einstein

Contents
8.1 Introduction . 149
8.2 Related Work . 150
8.3 Experimental Description 151
8.4 Experiment Execution 157
8.5 Results . 159
8.6 Discussion . 164
8.7 Threats to Validity 168
8.8 Conclusions . 170

8.1 Introduction
In this chapter, we describe an empirical study carried out in an academic
setting. It empirically assesses how developers/students are able to under-
stand interactions between the database and the application program using
DAViS, the tool supported by the proposed approach outlined in Chapter
5. To this end, we design a controlled experiment that quantitatively eval-
uates to what extent DAViS can influence program comprehension in terms

149

150 CHAPTER 8. AN EMPIRICAL STUDY

of duration and correctness of the tasks. We also investigate which types
of database manipulation comprehension tasks benefit most from the trace
visualization support provided by DAViS. To address these questions, the
experiment quantitatively measures how DAViS influences (1) the time re-
quired to achieve typical database manipulation comprehension tasks, and
(2) the correctness of the answers related to these comprehension tasks.

The remainder of the chapter is organized as follows. Section 8.2 provides
a summary of the related literature in the context of empirical studies. Sec-
tion 8.3 gives a description of the experiment, while Section 8.4 describes the
experimental setting. In Section 8.5, we summarize the results of our exper-
iment, which are then discussed in Section 8.6. In Section 8.7, we elaborate
on the threats to validity, then in Section 8.8 we make some remarks and
draw some pertinent conclusions.

8.2 Related Work
Several related empirical studies [64, 90, 35, 14] inspired us to design our own
experimental protocol.

In [64], the authors perform a controlled experiment in order to compare
the development times using Java and Groovy with Eclipse IDE.

Wettel et al. [90] perform a large-scale evaluation of CodeCity [89], a
3D software visualization tool based on a city metaphor. The purpose of the
controlled experiment was to provide empirical evidence that the tool had a
positive impact on program comprehension tasks, taking IDE-based source
code inspection as a baseline.

The controlled experiment described in [14] seeks to evaluate Extravis,
a tool for the visualization of large execution traces. The main objective of
the experiment was to measure to what extent Extravis could reduce the
response time and the correctness of typical program understanding tasks,
as compared to a simple source code inspection in an IDE. This experiment
was similar to the one presented in this chapter. However, (1) we focus on
understanding the interactions between the programs and its database, rather
than understanding the interactions within and between source code entities;
(2) we compare the performance of participants when trying to understand
SQL execution traces (with vs. without our visualization tool), rather than
when trying to understand the program’s source code (with vs. without
a visualization tool). In other words, in our experiment the input of the
comprehension tasks is the SQL execution trace, not the corresponding source
code fragment.

In [74], the authors present an empirical study which established that

8.3. EXPERIMENTAL DESCRIPTION 151

Entity-Relationship (ER) models are easier to understand than their corre-
sponding SQL data definition language (DDL) code. The study consisted
of providing students with several ER models and some other students with
their corresponding DDL code. They then compared their performance in
answering questions about the databases represented by these artifacts. In
contrast with our study, the authors focused on the understanding of SQL
DDL statements (e.g., create table statements), which describe the structure
of the database. Here, we focus on understanding SQL data-manipulation
language (DML) queries (e.g., select-from-where statements) that allow pro-
grams to manipulate the database contents.

8.3 Experimental Description

8.3.1 Initial Considerations

The main purpose of the experiment is to quantitatively evaluate the effec-
tiveness and efficiency of the approach implemented by DAViS – inspired by
studies such as [93] and [16].

Our analysis of the SQL execution traces is the main contribution of
the approach defined in Chapter 5. This provides users with a preliminary
understanding of what happens in the program, in terms of participating
objects and how they depend on each other. In this chapter, we analyze the
possible impact of DAViS on comprehension for different tasks where each
task has a specific purpose. For the visualization, we assume it allows a quick
understanding. And finally, we assess whether different levels of education
(Bachelor VS Masters students) get a different benefit from the tool. Thus, we
want to measure the response time for each task. Furthermore, we consider
non-trivial traces: in the experiment, we capture traces with an average size
of 60 SQL queries. Hence, our goal is to design an experiment with the
independent variable tool (factor with and without DAViS), the independent
variable task (with different tasks to be achieved in the experiment), the
independent variable level of education (factor with Bachelor and Masters),
and the dependent variables response time and correctness.

In order to gain more precision and confirmation, it is necessary to collect
participants’ sentiments via a debriefing questionnaire about proposed tasks,
complexity, the help proposed and the understanding gained.

152 CHAPTER 8. AN EMPIRICAL STUDY

8.3.2 Evaluation Questions and Hypotheses
The goal of the experiment is to reflect on three evaluation questions related
to the use of DAViS:

• EQ1: Does DAViS influence the time needed to complete the tasks?

• EQ2: Does the educational background influence the usability of DAViS?

• EQ3: Does DAViS influence the correctness of the tasks?

In order to address these evaluation questions in an experiment, we will
transform them into testable hypotheses:

• H01: There is no difference in the response time for different tasks
between participants using DAViS and those that do not use DAViS.

• H02: There is no difference in response times for Bachelor or Masters
students.

• H03: There is no difference in the correctness of responses between
participants using DAViS and those that do not use DAViS.

8.3.3 Used Scenario
We evaluate the approach in the context of AcadYearManager system – a
Learning Management Systems (LMS) described in Section 7.8 that allows
the administration to manage all the data about teachers, teaching, students
and courses, etc. The first step that we performed on the AcadYearManager

Scenario #Queries Types of queries
Scenario 1 69 Select queries
Scenario 2 60 Select queries
Scenario 3 65 Select queries
Scenario 4 62 Select queries

Table 8.1: Characteristics of the four scenarios in the given system

system was to collect SQL execution traces corresponding to four typical
program execution scenarios. For each scenario, we recorded an event log
file with the SQL queries executed during the scenario. For each executed
query in the trace, we also recorded its result. Each collected execution trace
contains a set of SQL queries, each belonging to one of the four different

8.3. EXPERIMENTAL DESCRIPTION 153

scenarios. Table 8.1 summarizes the content of the four SQL execution traces,
while Listing 8.1 shows four SQL queries belonging to the execution trace of
”scenario 2”.

Listing 8.1: An example of the trace extracted from scenario 2
...
SELECT DISTINCT (Of_Code), Hours_courses FROM academic . courses ;
SELECT * FROM academic . assistant_courses WHERE Of_Code =" infob12 ";
SELECT Name FROM academic . member WHERE Name LIKE % 2015%;
SELECT Name , Year FROM academic . exchange_prog ;
...

8.3.4 Tasks Design

Question Description
Q1 What are the tables which are accessed in

the scenario?
Q2 What are the columns which are accessed in

the scenario?
Q3 What are the objects (tables and columns)

which are accessed the most frequently in
the scenario? And how many times?

Q4 What are the pairs of tables which are accessed
jointly in the scenario (within the same query)?

Q5 What are the input/input dependencies between
the following pairs of tables?

Q6 How many queries would fail in the scenario,
if we renamed this table?

Q7 How many queries would fail in the scenario,
if we deleted this column?

Q8 What are the nested queries in the following
set of queries?

Table 8.2: Comprehension tasks

We defined a set of eight comprehension tasks based on the work presented
in [14]. The tasks are described in Table 8.2. Note that the tasks were chosen
to highlight one or more aspects of the program understanding proposed by
the different levels of understanding of the proposed approach.

The first level focuses on the usage statistics of each database schema ele-
ment involved in the execution scenario (questions 1, 2 and 3). For instance,

154 CHAPTER 8. AN EMPIRICAL STUDY

Visualization Description
Sub-schema The sub-schema affected by the scenario
Frequencies The frequency of each accessed element
Dependencies The dependencies between consecutive elements
Nested queries The nested queries in the scenario

Table 8.3: Visualization proposed by DAViS

question 1 seeks to identify all tables used in the input scenario. For this
set of questions, DAViS provides a visualization of the subschema affected
by the trace given as input. Then, at the second level, we will focus on the
global behavior of the data-manipulation of the program (questions 4 to 8).
This set of tasks attempts to focus on a slightly higher level of understanding,
where we wish to understand the dependencies that exist between successive
queries of the same scenario. In this way, we can in turn better understand
the links that exist between distinct elements of the database schema. In
this case, DAVIS provides a visualization for each kind of dependency. In
Table 8.3, we summarize the different visualizations proposed by DAViS in
the context of the evaluation.

Note that in our case, a task involves answering a question. Each task
highlights one or more program comprehension aspects at a given level of
understanding.

8.3.5 Pilot Studies

Group 1 Group 2
Round 1 Scenario 1/DAViS Scenario 1/DAViS
Round 2 Scenario 2/DAViS Scenario 2/DAViS

Table 8.4: Experiment layout

Before defining the final experiment, we realized four pilot studies in order
to optimize and adjust several experimental parameters, such as the number
of questions, their order, their clarity, feasibility, the time limit and time
taken to solve problems as they emerged in each pilot study. We performed
the pilots studies in three steps:

1. The first pilot study for the experimental group was performed by Ste-

8.3. EXPERIMENTAL DESCRIPTION 155

fan Hanenberg1 an expert in empirical analysis with whom we collabo-
rated to realize this experiment. Initially, it was not part of the design
of the approach or the content of experimental design.

2. The second step sought to repeat the same pilot once the changes sug-
gested by the previous one had been applied. This pilot had exactly the
same objectives as the previous one. In addition, we wanted to estimate
the time needed to finish the experiment. The pilot was conducted by
a graduate student in his first year.

3. In the third step, we conducted two pilot studies, one for the control
group and the second for the experimental group. The two pilot studies
were conducted by two PhD students in their first year.

It is worth noting that the four pilot studies hadn’t any information about
the approach before the pilot. The results of these pilots studies led to a
change in the question order and to combine two groups of questions related
to the database schema elements involved, and to the dependencies between
successive queries because some of the questions are related to both categories.
It also allowed us to remove two questions about the feelings of subjects
because they were too abstract and very difficult to evaluate and compare.
Furthermore, the pilot studies led us to rephrase several questions and add
some missing information in order to make the questions clearer.

8.3.6 Experiment Procedure
The experiment was designed as an 8x2 crossover trial where eight different
tasks were performed by the participants with and without the DAViS output.
The first group solved all the tasks first with the help of DAViS (while the
second group solved it without the help of DAViS) and then solved the same
tasks in a different scenario without the tool (the second group vice versa).
Table 8.3.5 summarizes the experimental layout, while Figure 8.1 describes
the handouts of each group.

The first independent variable is the availability of DAViS’ visualizations
during the experiment. This variable has two treatments (with and without
the help of DAViS), while the second independent variable is tasks (the an-
swer to each question), which has eight different treatments. The dependent
variables in the experiment are the time needed for each question (measured
in seconds), and the number of correct answers (measured in terms of being
correct or incorrect).

1https://www.dawis.wiwi.uni-due.de/team/stefan-hanenberg/

156 CHAPTER 8. AN EMPIRICAL STUDY

Figure 8.1: Handouts for each group

8.3.7 Data Collection
We created a MySQL database to record, during the experiment, all relevant
information that could help us to measure the dependent variables. For the
first dependent variable, we recorded the “start” time when the question was
displayed to the participants and also the “end” time when the participants
switched to the next question. Since going back to earlier questions was not
allowed and the session was supervised, the time spent on each question could
be easily found by determining the difference between the two times. For the
second dependent variable, we recorded each time the participant attempted
to provide an answer. This is time needed to calculate the number of trials
before finding the right answer and then, going to the next question.

Additionally, we counted the number of skipped questions. It is worth
mentioning that in order to move to the next question, it is either necessary
to find the right answer or to exceed a period of 10 minutes without finding
the correct answer. In this case, a skip button appears (after 10 minutes) in
order to skip the current question and go to the next question. We added the
option of skipping a question in order to keep participants in the experiment
(when they were unable to answer a given question). At the same time, we
were confident that the participants using DAViS would be able to answer
the questions within 10 minutes (based on our experiences with the pilot
studies).

Lastly, in order to get informal feedback from participants, we asked
them to fill a debriefing questionnaire 2 at the end of the experiment. The
participants were asked to assess the level of difficulty of each task and the

2Available at http://info.unamur.be/davis_debriefing

http://info.unamur.be/davis_debriefing

8.4. EXPERIMENT EXECUTION 157

usefulness of visualization provided by DAViS, and (optionally) to share with
us interesting insights about their experiences during the experiment.

8.4 Experiment Execution

8.4.1 Selection of Participants
After the pilot study involving four participants, we conducted the experi-
ment with a total of 53 participants. The participants were chosen based on
convenience: all participants were students at the University of Namur, ei-
ther in their last year of the Bachelor or Masters studies. The students were
a sample of all students attending the two programs. They were not selected
based on their background, but simply because of their availability (with
the requirement that they had some basic knowledge about SQL, browsing,
database schema notations, DB-MAIN, XML, etc.). All the participants par-
ticipated on a voluntary basis, and none of them had any prior experience of
using DAViS. We randomly assigned the students to one of the two groups
and this for each degree. In Table 8.5, we summarize the distribution of
students in the two groups of each degree. It should be added that we didn’t
consider the results of 4 students. Because they went back to the previous
questions, we couldn’t compute the time spent on each question.

Students
Groups

Group 1 Group 2
Bachelor 16 14
Masters 9 10

Table 8.5: Distribution of students in the two groups

8.4.2 Concrete Setting
The experiment was performed at the university of Namur. It was conducted
in two phases:

1. First, we commenced with a small presentation of an example that
applied all the technologies used in the experiment, They were mostly
the representation of the logical database schema using the DB-MAIN
notation (e.g., tables, foreign keys, primary keys), and the XML file
that contained a single SQL execution trace;

158 CHAPTER 8. AN EMPIRICAL STUDY

Q
u

es
ti

o
n

1
Q

u
es

ti
o

n
2

Q
u

es
ti

o
n

3
Q

u
es

ti
o

n
4

Q
u

es
ti

o
n

5
Q

u
es

ti
o

n
6

Q
u

es
ti

o
n

7
Q

u
es

ti
o

n
8

Grade

Group

Subjects

DAViS

DAViS

DAViS

DAViS

DAViS

DAViS

DAViS

DAViS

DAViS

DAViS

DAViS

DAViS

DAViS

DAViS

DAViS

DAViS

B
1

1
12

8
59

3
19

2
44

1
75

22
9

41
10

1
34

62
4

35
29

26
22

39
0

21
6

B
1

2
10

7
11

1
30

7
79

5
67

75
8

21
7

49
7

36
48

28
10

8
15

63
24

4
14

1
B

1
3

43
7

66
0

30
1

65
3

16
5

65
2

63
11

8
61

65
7

96
26

2
56

34
6

75
61

9
B

1
4

88
59

3
40

5
70

8
99

13
8

32
14

7
32

61
8

51
62

22
55

11
3

65
8

B
1

5
55

4
22

8
41

7
68

7
94

60
8

62
33

13
0

31
8

15
3

46
30

39
12

7
14

4
B

1
6

43
8

11
2

41
4

51
65

37
3

39
64

14
61

3
51

81
28

65
92

63
9

B
1

7
60

3
31

2
35

1
68

2
56

54
0

29
16

5
39

60
3

40
89

37
68

30
2

25
8

B
1

8
18

4
11

9
21

3
64

7
21

8
39

4
39

92
24

63
9

11
0

12
8

30
10

3
67

8
22

4
B

1
9

18
9

43
3

27
0

61
9

58
14

8
21

60
18

32
9

24
79

36
62

15
4

19
1

B
1

10
33

4
47

2
39

4
68

9
27

7
46

7
28

10
17

61
0

36
10

4
19

99
11

9
61

2
B

1
11

33
4

19
2

66
4

85
6

11
2

61
1

51
11

6
52

63
7

44
25

60
61

1
24

6
64

0
B

1
12

71
46

8
31

4
69

9
76

40
5

15
93

46
79

1
22

61
20

74
84

15
1

B
1

13
12

0
18

8
24

2
62

7
13

7
15

1
47

71
44

62
3

20
2

52
34

45
20

3
20

4
B

1
14

41
3

35
6

28
1

79
0

94
19

1
28

19
2

31
61

2
32

77
24

77
87

46
7

B
2

15
63

28
7

17
3

63
7

52
40

1
7

54
12

5
27

2
20

61
21

16
0

67
71

0
B

2
16

52
78

0
10

3
61

3
42

29
1

12
90

30
5

24
20

15
6

24
56

31
59

1
B

2
17

13
5

42
4

15
0

10
20

60
61

1
7

70
96

54
7

12
30

11
41

12
1

61
4

B
2

18
96

34
7

25
3

63
7

55
13

8
8

15
5

38
8

27
21

43
5

16
16

0
40

60
6

B
2

19
53

17
5

20
8

96
9

63
20

4
10

11
1

85
55

4
74

36
19

25
46

31
8

B
2

20
39

26
7

15
4

11
27

89
88

7
15

66
13

3
11

9
17

26
20

34
38

51
8

B
2

21
70

51
3

17
7

10
46

60
23

2
10

57
34

7
10

0
24

28
29

52
96

63
5

B
2

22
56

24
2

21
6

13
02

65
17

0
8

54
99

58
9

22
29

41
54

44
62

9
B

2
23

81
90

3
17

9
69

2
78

66
1

8
14

2
21

3
39

39
70

23
39

10
7

61
9

B
2

24
66

41
3

40
2

66
2

48
28

2
7

81
18

6
39

21
26

14
37

65
60

7
B

2
25

48
96

13
0

65
6

60
31

2
12

20
19

5
55

28
36

25
28

43
59

3
B

2
26

74
30

2
21

5
68

6
50

33
7

10
53

70
60

6
19

68
46

70
68

62
8

B
2

27
21

4
53

3
27

6
70

3
90

26
8

12
50

23
4

44
1

38
33

32
56

61
69

4
B

2
28

61
25

6
16

7
10

25
49

35
6

10
23

18
5

14
5

22
37

17
38

13
7

61
0

B
2

29
64

78
1

21
5

67
4

42
22

2
8

79
78

11
8

16
33

20
29

45
62

2
B

2
30

12
5

51
5

16
2

93
4

50
21

6
9

21
4

13
8

13
4

44
77

24
40

41
62

7
M

1
31

77
17

5
19

0
39

1
11

2
15

1
20

39
15

61
7

29
62

17
66

66
62

8
M

1
32

11
2

18
9

22
3

58
7

92
15

7
27

72
37

63
6

56
15

9
23

11
3

74
61

6
M

1
33

10
5

52
5

21
1

62
4

63
68

6
18

14
7

27
63

9
29

34
14

36
44

63
0

M
1

34
16

5
14

0
49

3
80

9
91

65
0

58
88

20
60

8
18

7
11

8
98

16
6

80
60

7
M

1
35

16
5

16
0

24
8

66
0

84
44

3
55

68
35

50
6

31
43

42
58

75
66

9
M

1
36

16
8

17
5

25
2

67
8

83
39

3
68

45
28

64
1

39
33

18
11

1
65

62
2

M
1

37
12

2
37

3
26

6
56

2
87

62
1

59
12

4
12

6
62

7
12

9
54

26
64

76
46

6
M

1
38

16
9

17
3

25
3

38
3

13
1

15
1

27
85

53
26

1
49

51
23

10
9

69
70

2
M

1
39

25
9

72
9

29
8

62
0

10
5

44
3

35
21

7
22

64
0

35
20

7
35

17
2

18
4

65
3

M
1

40
31

9
42

1
25

1
71

0
10

5
34

8
45

19
2

44
62

9
50

49
36

79
15

2
63

4
M

2
41

33
15

2
10

7
67

5
32

98
13

11
0

21
1

15
6

28
63

28
39

47
61

2
M

2
42

83
48

0
16

6
10

03
81

31
5

15
59

51
1

56
9

43
51

35
24

56
63

5
M

2
43

73
16

1
25

0
92

4
94

32
1

11
45

10
0

60
6

35
47

15
52

47
61

0
M

2
44

10
7

24
3

18
6

77
6

86
52

3
15

88
13

7
62

4
24

53
23

44
51

61
5

M
2

45
12

2
31

2
21

2
71

9
49

21
4

19
67

56
9

30
2

26
20

31
29

53
18

29
M

2
46

79
18

2
20

0
66

8
71

26
3

47
62

13
4

21
5

38
41

18
42

68
95

7
M

2
47

87
20

6
16

7
77

2
51

26
9

23
15

4
11

8
26

5
33

33
30

44
51

55
2

M
2

48
61

98
4

23
6

23
27

50
25

9
14

53
13

6
18

2
31

36
41

52
48

65
1

M
2

49
66

21
2

16
4

63
0

78
10

4
16

49
67

22
8

46
61

30
32

47
30

5

Table 8.6: Measured response times (in seconds)

2. Second, we conducted the test on workstations (one per participant).
Each participant had to answer the questions of an on-line survey 3.

3Survey url: https://projects.info.unamur.be/eval_daviz/

https://projects.info.unamur.be/eval_daviz/

8.5. RESULTS 159

The survey was mostly written in PHP and HTML/JavaScript. The de-
briefing questionnaire was prepared using Google Forms. All the participants
had workstations with similar characteristics, i.e. a 17-inch screen with an
identical screen resolution. Both sessions were supervised by at least two
assistants to ensure the valid execution of the experiment. The experiment
took about two hours in total, including the two rounds.

8.5 Results
The raw measurements of response times can be found in Table 8.6, which
describes for each subject their level of education and the response times for
each task (with or without DAViS).

The experiment was a three-factor crossover experiment that contained
the following factors: education (Bachelor and Master), tooling (with and
without DAViS), and tasks (with 8 different tasks). The crossover was per-
formed on the factors tooling and tasks: after the first round, the subjects
switch the tool (from with DAViS to without DAViS or vice versa) and redo
the tasks for another scenario.

Due to the crossover design, there was the potential problem of a carry-
over effect (such as learning effects when the subject switched from one tool
to the other). To reduce the influence of this design choice on the results, we
analyzed both rounds separately.

We ran a repeated measures ANOVA on the first round, as well as the
partial eta-squared (η2

p) to measure the effect size, we obtained the following
results:

• Within-subject factor task: The factor tasks is significant (p <
.001) with a large effect size (η2

p = .534).

• Between-subject factor education: The factor education is only
approaching significance (p = .061) with a very small effect size (η2

p =
.076).

• Between-subject factor tool: The between-subject factor tool is
significant (p < .001) with a very large effect size (η2

p = .774).

• Interaction effects: There is no interaction effect between task and
education (p = .16, η2

p = .03) and no interaction effect between the
task, education, and the tool (p = .49, η2

p = .02). Furthermore, there

User: Namur
Password: PhD2018

160 CHAPTER 8. AN EMPIRICAL STUDY

is no interaction effect between education and the tool (p = .23, η2
p =

.03). But there is a significant and medium interaction effect between
the task and tool (p < .001, η2

p = .22).

Performing the same analysis on the second round gave the following
results:

• Within-subject factor tasks: The factor tasks is significant (p <
.001) with a large effect size (η2

p = .623).

• Between-subject factor education: The factor education is not
significant (p = .441, η2

p = .013).

• Between-subject factor tool: The between-subject factor tool is
significant (p < .001) with a very large effect size (η2

p = .854).

• Interaction effects: There are a interaction effect between the task
and education (p = .026, η2

p = .32) and an interaction effects between
the task, education, and tool (p = .006, η2

p = .37). And there is a very
strong interaction between the task and tool (p < .001, η2

p = .90).

8.5.1 EQ1: Does DAViS reduce the time needed to
complete the tasks?

8.5.1.1 Analysis of Response Times

Regardless of whether we consider the first round or the second round, the
factor tooling is always significant and strong (with η2

p between .78 and .85).
In terms of absolute values the differences in means with (M=120 s) and
without DAViS (M=290 s) lay between 141 and 196 seconds (95% confidence
interval) in the first round. In the second round the differences were higher:
with (M=83 s) and without (M=340 s) DAViS led to a difference between
225 and 289 seconds (95% confidence interval). Hence, H01 can be rejected.

Although this overall result is valid, it conceals the fact that the factor
task itself is significant and strong (meaning that the response times among
tasks are different – independent of the other factors) and that there was a
significant interaction between the task and tool (where there is a difference
in strength between the first and the second rounds). Furthermore, we should
take into account the fact that the tasks were different: the first three tasks
referred to the frequency of elements in queries, while the last five tasks
referred to the dependencies of queries.

8.5. RESULTS 161

Q p-
value

Means (s) 95% conf. interval Mean
diff.

Saved
time (%)DAViS DAViS DAViS -DAViS

1 .012 236 391 273 ; 36 155 40
2 < .001 310 556 373 ; 119 246 44
3 < .001 106 318 289 ; 135 212 67
4 .009 47 80 58 ; 9 33 41
5 < .001 41 278 327 ; 147 237 85
6 .941 65 63 38 ; -41 -2 -3
7 .021 32 51 35 ; 3 19 37
8 <.001 158 590 513 ; 349 432 73

Table 8.7: T-tests on individual tasks (round 1)

8.5.1.2 Task-Wise Analysis on Response Times

While the (ordinal) interaction between the factors shows for both rounds
that DAViS reduced the response times, the factor task is significant, i.e. the
differences in response times depending on the kind of task. Hence, it is
better to analyze the impact of the tool on each task separately.

Taking into account the fact that we did find any a significant effect of
education, we ran each task on the whole sample (i.e. without distinguishing
between levels of education) and the independent T-Test in the first round
as well as in the second round.

Table 8.7 summarizes the t-test results (for round 1), where all tasks
except task 6, reveal significant differences with p<.05. Furthermore, only
tasks 1 and 7 display a p-value above .01, while all others are below .01.
While Figure 8.2 shows the interaction diagram for the between-subject factor
tool and the within-subject factor task: in all cases, the group using DAViS
required less time than the group without DAViS except task 6.

Repeating the same analysis for the second round gave the results as
shown in Table 8.8. In the second round, all tasks show a significant benefit
for DAViS with p<.05. Furthermore, only task 7 has a p-value equal to
.002, while all others are below .001. However, we see as well that there is
a tendency that the differences in means are larger, an indication that there
are some novelty effects (with the assumption that the learning effects are
counterbalanced by the crossover). While Figure 8.3 shows the interaction
diagram for the between-subject factor tool and the within-subject factor
task: in all cases, the group using DAViS required less time than the group
without DAViS with a large difference.

162 CHAPTER 8. AN EMPIRICAL STUDY

Figure 8.2: Interaction diagram of round 1 for the between-subject factor
tool and the within-subject factor task

Figure 8.3: Interaction diagram of round 2 for the between-subject factor
tool and the within-subject factor task

8.5. RESULTS 163

Q p-
value

Means (s) 95% conf. interval Mean
diff.

Saved
time (%)DAViS DAViS DAViS -DAViS

1 < .001 80 329 166; 331 249 76
2 < .001 195 624 354; 504 429 69
3 < .001 62 405 256; 429 343 85
4 < .001 13 118 64 ; 146 105 89
5 < .001 194 564 284; 455 370 66
6 < .001 30 84 29 ; 79 54 64
7 .002 25 113 35 ; 140 88 78
8 < .001 61 475 324; 504 414 87

Table 8.8: T-tests on individual tasks (round 2)

8.5.2 EQ2: Does the educational background influence
the usability of DAViS?

In both rounds, the education factor was not significant, but in the first
round it was approaching significance (with p=.061). However, it is essential
to speak not only about the significance but also about the size of the effect.
And in the first as well as in the second round the effect sizes were very small.
Hence, although we should bear in mind that in the first round the results
were approaching significance, we conclude (based first on the pure technical
argument that the p-values were above .05 and that the sizes of the effect
were below .1), hence we cannot reject H02.

8.5.3 EQ3: Does DAViS increase the correctness of
the tasks?

8.5.3.1 Task-wise Analysis of Correctness

In addition to the response time, we measured the correctness of the answers
given by the subjects which is a dichotomous variable (i.e., we distinguish
only between correct and incorrect). What we observed was that only two
subjects were unable to give a correct answer to the question when the output
of DAViS was available (subject 11 in task 2 and subject 17 in task 5). In all
other cases, we got correct answers from the subjects for both rounds. For the
non-assisted groups, the results were rather mixed: While for example most
subjects were able to give a correct answer for question 6 (resp. question 7)
without DAViS (with one exception for each) only 5 subjects were able to
give a correct answer for question 2.

164 CHAPTER 8. AN EMPIRICAL STUDY

Round 1 Round 2
Questions p-value Questions p-value

1 .49 1 .11
2 < .001 2 < .001
3 .235 3 .002
4 >.99 4 constant
5 < .001 5 < .001
6 >.99 6 constant
7 constant 7 0.49
8 < .001 8 < .001

Table 8.9: Left: Exact Fisher tests on individual tasks about correctness
(round 1), right: Exact Fisher tests on individual tasks about correctness
(round 2)

We ran for each task on the whole sample (i.e. without distinguishing
between levels of education) the exact Fisher tests in the first round as well
as in the second round. Table 8.9 summarizes the results of both rounds
separately. We get for the first round as well as for the second round sig-
nificant results for tasks 2, 5, and 8 (each p < .001), where the group using
DAViS had correct results significantly more often, while the other tasks had
no significant differences. For task 3, we got significant differences in round
2 (p < .05), but not for round 1 (p = .235). Note that tasks 4 (round 2),
6 (round 2) and 7 (round 1) are «constant» which means that there is no
variability deviation and then the p-value cannot be calculated, this is due
to the fact that the two groups obtained exactly the same results.

Hence, in 3 of the 8 cases, we rejected hypothesis H03, while in 5/8 cases
we could not reject hypothesis H03.

8.6 Discussion

In this section, we are going to discuss the results of the experiment. To this
end, we also considered the outcome of the debriefing questionnaire, which
is described in tables 8.10 and 8.11. Here, Table 8.10 summarizes the partici-
pants’ difficulty in the perception of each task. From the table, we can clearly
state that on average 90% of participants with the help of DAViS considered
the tasks easy. And Table 8.11 summarizes the participants’ perception of
DAViS’ help for each task.

8.6. DISCUSSION 165

Perceived task difficulty with DAViS (%)
Task Trivial Easy difficult Impossible
T1 82.7 13.5 1.9 1.9
T2 63.5 28.8 3.8 3.8
T3 59.6 32.7 5.8 1.9
T4 67.3 23.1 9.6 0
T5 51.9 26.9 13.5 7.7
T6 61.5 32.7 5.8 0
T7 63.5 28.8 5.8 1.9
T8 59.8 25 0 13.5

Table 8.10: Debriefing questionnaire: perceived task difficulty with DAViS

Perceived help of DAViS (%)
Task Yes, definitely I think Yes I think No No, definitely
T1 32.7 51.9 7.7 1.9
T2 30.8 57.7 3.8 1.9
T3 36.5 48.1 7.7 1.9
T4 30.8 48.1 15.4 0
T5 36.5 36.5 19.2 1.9
T6 25 40.4 23.1 5.8
T7 30.8 36.5 23.1 3.8
T8 36.5 38.5 7.7 11.5

Table 8.11: Debriefing questionnaire: perceived help of DAViS

8.6.1 Reasons for Different Time Requirements

The lower response time with DAViS-assisted subjects can be explained by
the fact that all the information offered by DAViS provides a quick means to
answer the questions. In others words, the proposed visualizations help one
to answer a question. The time difference between the two rounds (tables
8.7 and 8.8) can be explained by a learning effect. In the second round,
the participants repeated the same questions in the same order on the same
system, but with a different scenario. We found that question 6 was not
significant (we recall that question 6 concerns the number of queries that
would fail if we renamed a table). This insignificant result could be explained
by two reasons: (1) participants had already made the calculations for the
table concerned in the previous tasks; (2) The search tool which was available

166 CHAPTER 8. AN EMPIRICAL STUDY

to the participants (via the browser) allowed them to get exactly the right
answer.

Still, several factors may have had an impact on the time requirements
of DAViS users:

• The visualization proposed by DAViS: We consider the fact that
all the information offered by DAViS’s visualization makes it easier
to answer a question. In addition, we proposed for each question the
correct visualization, and this stopped the subjects from losing time by
looking for the right visualization for the respective question. Based
on the study on the visualization, we can explain this difference by
the fact that visual information was much more accessible than textual
information. In other words, retrieving information from a visualization
is much faster than retrieving it from a text.

• Scenarios: We consider the size of traces (60 queries for scenario 1
and 65 queries for scenario 2) one of the major reasons for this time
difference, where we had sufficiently large traces to be significant and
reflect reality and small enough to be manipulable in an acceptable
period of time. Still, two hypotheses may be deducted directly from
the latter: (1) small traces will reduce the response time for the group
not using DAViS and this is due to the fact that manipulation of the
trace becomes much easier. More explicitly, if a small trace prevents
users from scrolling the screen to find information, they will have all the
information in a single view. (2) large traces will dramatically increase
the response time of the groups who don’t have DAViS’s outputs. This
causes a loss of concentration, and then the abandonment of the thread
of the evaluation. In addition, we considered a non-trivial trace, and
this may explain the time response difference. For instance, the search
tool will not help users who are not using DAViS to directly find the
right answer.

• DAViS’s errors: In the experiment we conducted, we only reviewed
the case where DAViS provided good answers, where the error rate is
0%. In this case, the DAViS-assisted subjects didn’t care about the
accuracy of the information provided by Davis. This may explain the
big difference in time because otherwise (where visualization proposed
by Davis may contain some errors) the DAViS-assisted subjects should
check the accuracy of the information and this can take longer.

8.6. DISCUSSION 167

8.6.1.1 Individual Task Performance

We have seen the reasons that might influence the response time between
DAViS-assisted subjects and the others in a general way. Now, we are going
to discuss in more detail the time difference individually for each question.
In this context, the results can be grouped into two large categories, which
are supported by the debriefing questionnaire, where we can observe this
categorization:

• Comparable results: Here, there was no large difference between the
DAViS-assisted group and the non-assisted group. In this case, we have
three questions (4, 6 and 7). Question 4 concerns the tables that are
assessed jointly in the same query. For the DAViS-assisted subjects,
this can be explained by the fact that DAViS provides a visualization
highlighting all the joint tables, so they needn’t take a long time to
find the answer from the XML file. while the non-assisted subjects
took more or less the same time, which is due to the complexity of the
queries. More precisely, there were no sub-queries, which makes the
research task easier. Then, participants could use the research tool to
find the ”From” clause where they could check easily if there is two
tables. Questions 6 and 7 concern the identification of the number of
queries that would be invalid if we delete (resp. modify) table (resp.
column). The response time difference between the two groups (with
and without DAViS) is not very large, which is due to the fact that
the non-assisted group had already calculated the frequency of each
affected object in questions 1 and 2. So they didn’t need to recalculate
it for the object concerned.

• Incomparable results: Here, there was a large difference between
the DAViS-assisted group and the non-assisted group. This category
includes questions (1, 2, 3, 5 and 8). Question 1 and 2 concern the
identification of the tables (resp. columns) that are used in the scenario
given as input. For the DAViS-assisted participants, this is due to the
fact that DAViS provides the visualization of the subschema affected
by the scenario given as input. And the non-assisted group had to read
the XML file and get each object belonging to the scenario, which is a
time-consuming task. This is also the case of question 3 and 4, where
the question concerns the identification of the most affected table and
column (resp. the identification of all input-input dependencies). In
this case, the non-assisted group had to read the XML file as many
times as the number of objects impacted by the scenario (resp. the
number of possible combination). Lastly, question 8 seeks to identify

168 CHAPTER 8. AN EMPIRICAL STUDY

all the nested queries. In this case DAViS provides the visualization
in terms of boxes, where each box represents the main query and their
nested queries, while the non-assisted group had to search and extract
all the combinations from the XML file.

8.6.2 Reasons for The Education Level Independence
Regarding the education level of participants, we did not find any dependence
between the level-study of participants/DAViS’s added value. In other words,
the participants didn’t need to have a high level of expertise to use DAViS.
Moreover, even with a strong background, DAViS brings an added value in
response time and also in correctness. The result can be explained by the
fact that the chosen comprehension tasks are not very hard to solve, but
they are time-consuming. Thus, we may conclude that with or without some
expertise, DAViS provides a considerable time-saving.

8.6.3 Reasons for Correctness Differences
We attribute the added value of DAViS in terms of correctness to two main
factors. The first is the inherent precision of DAViS. The fact that DAViS
only displays correct information allows one to increase the correctness for
the DAViS-assisted groups. The second is that after several failed attempts
to find the right answer, the non-assisted participants lose motivation and
prefer to skip the task when it is possible to do so. For example, for task 2
(we recall that task 2 seeks to identify all columns used in the given scenario),
only one participant from the DAViS non-assisted group was able to find the
right answer. The other participants of the group have spent more than 10
minutes on it without finding the correct answer, and they eventually skipped
the question.

8.7 Threats to Validity
This section describes the threats to our experiment’s validity – something
that is typically done in controlled experiments and explicitly asked for (see
[35]). Here, we should reflect on possible influencing factors (that might or
might not have appeared accidentally). It is worth noticing that there are
different classification schemas for different types of threats of an experiment.
We opted for the classification proposed by [12], and we are going to detail
two categories, namely internal and external validity.

8.7. THREATS TO VALIDITY 169

8.7.1 Internal Validity
• Experiment Design: We considered two different SQL executions sce-

narios, one in each round, where each scenario used more or less differ-
ent objects in order to reduce the learning effect in the second round.
However, it is possible that this goal was actually not completely achieved
by the change of the given scenario because the types of questions and
the subject system were the same in each round. Then there is a risk
that a person’s memory will affect the experimental results of the sec-
ond round, as the participants know how the evaluation is conducted.

• Participants: In the context of this experiment, participants were not
randomly chosen. Indeed, we conducted the experiment on students in
their final year of their Bachelors or Masters degree, as part of a course
on database modeling. However, the participation was not mandatory,
it was just done on a voluntary basis. Therefore, we should note the
following threats: (1) with student expertise, we should consider the
threat that the students weren’t sufficiently competent in the area of
program comprehension. However, we made sure that they had basic
knowledge about the concepts covered in the evaluation; (2) students
motivation: knowing that the duration of the evaluation is about two
hours, we may consider the threat of loss of motivation before and
during the experiment, although the participation was on a voluntary
basis.

• Questions: The definition of the questions may be influenced by the
output proposed by DAViS. In addition, for each task, we proposed
only the output that concerned the required information.

8.7.2 External Validity
The external validity refers to the conditions that limit our ability to gener-
alize the results of the experiment to the realistic cases.

• System/scenarios used: The system on which we carried out the ex-
periment may be viewed as a threat, because it does not attain the
complexity of large systems used in the industry, in terms of numbers
of tables in its database schema. Hence both the size and complexity
of the scenarios were much smaller than the size of real-life execution
traces.

• Participants: Another external validity threat is students. Undergrad-
uate students may not be viewed as a fully representative population

170 CHAPTER 8. AN EMPIRICAL STUDY

of the target profile of potential users of DAViS.

• Questions: Lastly, the representativeness of the questions is a potential
threat to the validity of the results, i.e., the questions may not reflect
real program comprehension task. It is possible that other kinds of
tasks/questions matter more than the ones we considered.

8.8 Conclusions
In this chapter, we presented a controlled experiment seeking to evaluate
how DAViS (a tool supported by the approach outlned in Chapter 5), can
influence program comprehension in terms of duration and correctness of
performing tasks. In the experiment presented in this chapter, we evaluated
two components of DAViS, which are: (1) the intra-scenario analysis and (2)
the inter-scenario analysis.

The results of the study indicate that DAViS does indeed reduce the
response time and it increases the correctness (with a large effect size), which
means that we found a strong indication that the chosen approach is truly
able to help developers. This allowed us to answer our three evaluation
questions and to validate our three hypotheses:

• The DAViS group needed 48% (on the scenario 1) and 76.75% (on the
scenario 2) less time to achieve the selected understanding tasks.

• The added value of DAViS does not depend on the expertise-level of the
participants. The gain in terms of response time remains significant,
even when the participants have a higher level of expertise.

• The DAViS group achieved a higher level of correctness when answering
the questions related to the understanding tasks.

This result is statistically significant, which means that there is a strong
indication that the chosen dynamic analysis and visualization tool (DAViS)
can greatly help developers. In order to determine which kinds of visualiza-
tion are useful to gain a better understanding of the system, we analyzed
separately the results of each user per question in more detail. In addition,
we developed a debriefing questionnaire to identify the sentiments of the
participants and verify our results.

Part IV

Conclusions

171

Chapter 9

Conclusions

Research is a journey, never a destination
Ralph Waldo Emerson

Contents
9.1 Summary of The Contributions 173
9.2 Future Challenges 179

The main objective of this thesis can be summarized by the following ques-
tion:

How can we provide automated support for the program
comprehension of data-intensive systems through an anal-
ysis of their data-manipulation behavior?

In the previous chapters, we presented in detail our framework, method-
ology and solutions to answer this question. In this chapter, we are going
to summarize our contributions, draw some conclusions and suggest future
challenges. We will answer our research questions and elaborate on the main
lessons we have learned.

9.1 Summary of The Contributions
We viewed the problem of software understanding as an inevitable task for
developers while adding a new feature, maintaining it or debugging an error.
It is generally considered to be the most complex and costly task in terms
of time and resources. Numerous approaches and tools have been proposed
here to support the primary task of the software maintenance and evolution

173

174 CHAPTER 9. CONCLUSIONS

phase, which is program comprehension. However, modern data-intensive
systems make the program understanding task even more difficult because
of their dynamic and intensive use of data.

To overcome this problem, we first started by considering different fields
relevant to this problem, namely, database engineering, database reverse engi-
neering, program analysis, software visualization and process mining. Based
on an in-depth study of these research fields (Chapter 2) as well as reviewing
of the most relevant literature on what has been proposed in each of these
domains (Chapter 3), we were able to: (1) first, highlight some problems
and limitations of the existing solutions which have not been considered or
treated so far; (2) second, formally define our problem statement and struc-
ture it through four main research questions.

Part 1: Understanding Data-manipulation Behavior from SQL Execution Traces
Design Implementation Evaluation

C1: A trace parser !
- WebCampus
- WebDeb
- e-restaurant
- AcadYearManager
- Web store

C2: Subschema extraction algorithm !
- WebCampus
- WebDeb
- e-restaurant
- AcadYearManager
- Web store

C3: Dependencies extraction algorithms
(O/I, I/I, joint access) !

- WebCampus
- WebDeb
- Web Store
- AcadYearManager

C4: Loop detection algorithm !
- WebCampus
- AcadYearManager

C5: Trace abstraction algorithm !
- AcadYearManager

C6: Conceptual interpretation algorithm !

- AcadYearManager
- Illustrative examples

C7: DAViS – a visual tool supported by the
approach !

- Empirical evaluation

Part 2: Extracting Data-manipulation Process from SQL Execution traces
Design Implementation Evaluation

C8: Algorithms that extract, label and
cluster data manipulation functionalities 7 - Web Store

Part 3: Code Re-documentation Analysis
Design Implementation Evaluation

C9: Algorithm generation comments
!

- Illustrative examples

C10: Algorithm injection comments
7

- Feasibility study

Table 9.1: Thesis contributions

To answer these questions, we proposed a framework comprising three
incremental parts that support the program understanding of data-intensive
systems via an analysis of their SQL execution traces (Chapter 4). This goal

9.1. SUMMARY OF THE CONTRIBUTIONS 175

is achieved through a list of contributions distributed across these three parts.
Tables 9.1 summarizes them according to three criteria; that is, the main
objective of the contribution (design), whether the contribution has been
implemented or not (implementation) and how was it evaluated (evaluation).

The remaining part of the contributions summary brings together the
research contributions made while attempting to answer our research ques-
tions:

RQ 1: Can we automatically relate the program execution traces,
program source code and the database schema to each other?
In Chapter 4, we introduced a new framework to assist the program
understanding of data-intensive systems based on an analysis of their
SQL execution traces. The main idea is to dynamically analyze the
SQL execution traces of data-intensive systems, i.e., interactions that
occur between application programs and the database which are real-
ized by SQL queries. Through an analysis of SQL execution traces,
the framework was divided in three parts, where each part focused
on: (1) understanding the data-manipulation behavior; (2) extracting
the data-manipulation processes and (3) re-documenting the program
source code through comments. The results obtained from the whole
framework suggest that with the combined use of dynamic analysis,
visualization and process mining, we can indeed relate the program
execution traces, the program source code and the database schema.

RQ 2 : Does an analysis of the data manipulation behavior sup-
port the understanding of data-intensive programs?
In Chapter 5, we addressed this question, by defining a bottom-up ap-
proach for supporting the understanding of data-manipulation behav-
ior of programs from the analysis of a single SQL execution trace. The
approach targeted in particular the analysis of data-intensive systems
in the presence of automatically generated SQL queries and focused
on relational databases. This approach identified four levels of under-
standing, relying on two inputs, namely a single SQL execution trace
and database schemas (logical and conceptual). Here, a generic model
(GER) was chosen as a pivot model for database schemas and CRUD op-
erations as a SQL grammar model. The first level, called the trace cap-
turing level, seeks to capture an SQL execution trace in order to parse
it, so as to be able to extract the database objects used. The second
level, called the intra-query analysis, seeks to highlight the sub-schema
impacted by the trace given as input as well as the access frequency
of each object used. The third one, called the inter-query analysis,

176 CHAPTER 9. CONCLUSIONS

seeks to extract dependencies (input-input dependencies, output-input
dependencies and nested queries) between successive queries to under-
stand how they depend on each other. And the last level, called query
interpretation, seeks to interpret the SQL execution trace given as input
from a more abstract point of view based on the conceptual schema.

In this chapter, we also presented a tool supported by the approach
called DAViS (Dynamic Analysis and Visualization of SQL execution
traces). DAViS was implemented as a Plug-in to DBmain (a data-
modeling and data-architecture tool). Based on the graphical represen-
tations of DBmain’s schemas, DAViS provides a 2D visualization for
each level associated with the approach. An initial experiment, based
on two real-life applications (WebCampus and WebDeb), allowed us to
establish that the analysis of SQL execution traces was a very promising
technique for supporting the understanding of the data-manipulation
behavior of data-intensive systems. As far as validation is concerned,
in Chapter 8 we reported an empirical study for which the approach
and DAViS presented in Chapter 5 had been empirically evaluated.
The results were quite promising, which means that the suggested ap-
proach, and its supporting tool may support some program comprehen-
sion tasks.

RQ 3: How can we automatically extract a model of the data-
manipulation behavior?

In Chapter 6, we presented a bottom-up approach that sought to ex-
tract data-manipulation processes of data-intensive systems based on
an analysis of SQL execution traces. The main idea is to dynamically
analyze a multiple SQL execution trace of the same program execution
scenario in order to recover the data-manipulation process followed by
this one. The approach identifies two levels of understanding, relying
on two inputs, these being a multiple SQL execution trace and database
schemas (logical and conceptual). The first level, called data-oriented
properties, first attempts to filter out from the given traces, all queries
that do not belong to the conceptual schema of the system in question.
Then, it associates with each SQL query, a set of properties that rep-
resents it. Afterwards, it clusters all queries that have the same set of
properties, in order to associate with them a label that represents the
data-manipulation function of the cluster. The second level, called pro-
cess mining, seeks to recover the data-manipulation process followed
by the program execution scenario which is represented by the SQL
executions traces given as input.

9.1. SUMMARY OF THE CONTRIBUTIONS 177

In this chapter, we showed that using process-mining techniques may
significantly contribute to the recovery of the data-manipulation pro-
cess of programs, especially for the queries clustering and the iden-
tification of the variability of traces belonging to the same scenario.
An initial experiment, based on an illustrative scenario and one small
application (e-restaurant), gave promising results, which means that
we found a strong indication that the selected approach can truly help
developers to recover data-manipulation processes of data-intensive sys-
tems through an analysis of their SQL execution traces.

RQ 4: Can we automatically re-document this behavior in the
program source code?

In Chapter 7, we addressed this question by defining a new approach for
the re-documentation of program source code via the injection of nat-
ural language comments expressing their data-manipulation behavior.
Through these comments, the approach focuses on the frequent situ-
ations where such information is not available for the majority if not
all current modern systems. This approach includes two steps, namely:
(1) comments generation, which first attempts to identify what pieces
of information should be considered. Then, according to the type of
information, a natural language comment is generated; (2) comments
injection, which makes a use of the AST representation of the program
source code in order to inject the generated comments into the appro-
priate locations. Even though this chapter is at the exploratory stage,
we did demonstrate its usefulness in the context of the program com-
prehension of data-intensive systems, as well as its feasibility through
an illustrative example. The preliminary results indicate that this auto-
matic mode of source code re-documentation is feasible and may assist
program comprehension tasks.

We should also mention here that most of the contributions presented
in this thesis were published at peer-reviewed international workshops and
conferences, allowing us to in some ways validate our proposed approaches
in the communities of experts in research field.

Links between Research Questions through Contribu-
tions
The ultimate goal of this thesis was to support the program comprehen-
sion task of the software maintenance and evolution phase. The dynamic

178 CHAPTER 9. CONCLUSIONS

Figure 9.1: How the contributions are connected

analysis and visualization techniques support the understanding of the data-
manipulation behavior of programs, by visualizing the analysis results of
a single SQL execution trace. The process mining techniques support the
recovery of data-manipulation processes, by analyzing a multiple SQL exe-
cution trace. The conceptual interpretation supports the automatic source
code re-documentation through comments injection. Several important in-
terconnections exist among the contributions (C) made with respect to the
above research questions (RQ). We mean by an interconnection between two
contributions (C1 and C2), the fact that the inputs of the contribution C2
depend on the outputs of the contribution C2. In other words, the contribu-
tion C2 is based on the results of C1. Figure 9.1 summarizes all the existing
interconnections among the contributions by grouping them according to the
research questions:

• RQ2-RQ3, RQ2-RQ4 : the approach and the tool-supported defined in
Chapter 5 seek to support the understanding of data-manipulation be-
havior through an in-depth analysis of a single SQL execution trace of
a program. The chapter mainly focuses on the identification of the ex-
isting implicit dependencies between SQL queries, which in turn consti-
tute the primary basis of the extraction of data-manipulation processes
(Chapter 6) and source code re-documentation (Chapter 7).

• RQ1-RQ2, RQ1-RQ3, RQ1-RQ4 : the global framework defined in
Chapter 4 aims to support program understanding task, according to
several levels of understanding divided into three parts (Chapter 5,
Chapter 6 and Chapter 7).

9.2. FUTURE CHALLENGES 179

9.2 Future Challenges
Our methodology has allowed us to achieve most of our goals in a core set
of our defined problem. However, there remain some aspects that have not
been considered and that may be extended in multiple ways but can also
lead to further research topics. Indeed, this is due to the fact that we have
made some assumptions and placed constraints in certain cases.

Here, we are going to suggest some possible improvements of the proposed
framework that may overcome its existing limitations. Then, we propose
some directions on how the tool we developed in the study could be ex-
tended and thoroughly validated. Lastly, we propose some future directions
of research based on the results obtained in our study.

• Enhancing of the defined framework: The accuracy of the loop
detection algorithm will be evaluated by the measures called precision
and recall. In the experiment, we will perform a static analysis to check
whether the detected loops really are loops in the program source code.
Moreover, the use and usefulness of the conceptual interpretation of
SQL execution traces will be evaluated through a user experiment. And
the tool supported by the code re-documentation approach will be fully
implemented and integrated with DAViS. Lastly, a systematic experi-
ment could be conducted on the different implemented algorithms as
well as DAViS, using real-world data-intensive systems.

• Extending the scope of the inter-scenario analysis: As out-
lined in Chapter 6, the main objective of the inter-scenario analy-
sis was the extraction of the behavior of data-intensive systems in
terms of a process model, e.g., a workflow describing with sequen-
tial, parallel and choice operators the sequence of execution of data-
manipulation functions. However, we intend to consolidate and ex-
tend our initial approach with future prediction use. The main idea
of this enhancement is to be able to calculate for each possible exe-
cuted data-manipulation function, the probability of performing each
possible function as the next one. In other words, we assign for each
executed data-manipulation function the probability of moving to any
other data-manipulation function. This analysis is based on the ob-
served execution traces.

• Extending the scope of dynamic analysis of SQL execution
traces: as discussed in chapters 5, 6 and 7, we just used the dynamic
analysis of SQL execution queries in the context of data-intensive pro-
gram comprehension. Hence, we intend to consolidate and extend our

180 CHAPTER 9. CONCLUSIONS

initial results, by exploring the use of dynamic analysis in domains
other than data-intensive program comprehension, including a quality
assessment for database queries, data security and consistency manage-
ment.

Bibliography

[1] M. Alalfi, J.R. Cordy, , and T.R. Dean. WAFA: Fine-grained dynamic
analysis of web applications. In Proceeding of WSE’2009, pages 41–50.
IEEE CS, 2009.

[2] Frances E. Allen. Control flow analysis. In Proceedings of a Sympo-
sium on Compiler Optimization, pages 1–19, New York, NY, USA, 1970.
ACM.

[3] Giuliano Antoniol, Massimiliano Di Penta, and Michele Zazzara. Un-
derstanding web applications through dynamic analysis. In Program
Comprehension, 2004. Proceedings. 12th IEEE International Workshop
on, pages 120–129. IEEE, 2004.

[4] JoosC.A.M. Buijs, BoudewijnF. Dongen, and WilM.P. Aalst. On the role
of fitness, precision, generalization and simplicity in process discovery.
In OTM, volume 7565 of LNCS, pages 305–322, 2012.

[5] P. Caserta and O. Zendra. Visualization of the static aspects of software:
A survey. IEEE Transactions on Visualization and Computer Graphics,
17(7):913–933, 2011.

[6] Peter Pin-Shan Chen. The entity-relationship model—toward a unified
view of data. In Readings in artificial intelligence and databases, pages
98–111. Elsevier, 1988.

[7] A. Cleve and JL. Hainaut. Dynamic analysis of SQL statements for
data-intensive applications reverse engineering. In Proceeding of WCRE,
pages 192–196. IEEE CS, 2008.

[8] A. Cleve, N. Noughi, and JL. Hainaut. Dynamic program analysis for
database reverse engineering. In Generative and Transformational Tech-
niques in Software Engineering, 2012.

181

182 BIBLIOGRAPHY

[9] Anthony Cleve, Maxime Gobert, Loup Meurice, Jerome Maes, and Jens
Weber. Understanding database schema evolution: A case study. Science
of Computer Programming, 97:113–121, 2015.

[10] Anthony Cleve, Jean Henrard, and Jean-Luc Hainaut. Data reverse
engineering using system dependency graphs. In Proceeding of the 13th
Working Conference on Reverse Engineering (WCRE’2006), pages 157–
166, Washington, DC, USA, 2006. IEEE Computer Society.

[11] Anthony Cleve, Tom Mens, and Jean-Luc Hainaut. Data-intensive sys-
tem evolution. Computer, 43(8):110–112, 2010.

[12] T.D. Cook and D.T. Campbell. Quasi-experimentation-design and anal-
ysis issues for field settings. In Houghton Mifflin Compagny, Boston,
1979.

[13] T. A. Corbi. Program understanding: Challenge for the 1990’s. IBM
Syst. J., 28(2):294–306, June 1989.

[14] B. Cornelissen, A. Zaidman, and A. van Deursen. A controlled exper-
iment for program comprehension through trace visualization. IEEE
Transactions on Software Engineering, 37(3):341–355, May 2011.

[15] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke. A systematic survey of program comprehension through
dynamic analysis. IEEE Trans. SE., 35(5):684–702, 2009.

[16] B. Cornelissen, A. Zaidman, A. van Deursen, and B. van Rompaey. Trace
visualization for program comprehension: A controlled experiment. In
Program Comprehension, IEEE International Conference on Program
Comprehension ’09., pages 100–109, May 2009.

[17] Patrick Cousot and Radhia Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages
238–252. ACM, 1977.

[18] C. Del Grosso, M. Di Penta, and I. Garćıa Rodŕıguez de Guzmán. An ap-
proach for mining services in database oriented applications. In Proceed-
ing of European Conf. Software Maintenance and Reengineering 2007,
pages 287–296. IEEE Computer Society, 2007.

BIBLIOGRAPHY 183

[19] Stephan Diehl. Software visualization: visualizing the structure, be-
haviour, and evolution of software. Springer Science & Business Media,
2007.

[20] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Feature-driven
program understanding using concept analysis of execution traces. In
Program Comprehension, 2001. IWPC 2001. Proceedings. 9th Interna-
tional Workshop on, pages 300–309. IEEE, 2001.

[21] E Allen Emerson and Edmund M Clarke. Characterizing correctness
properties of parallel programs using fixpoints. In International Col-
loquium on Automata, Languages, and Programming, pages 169–181.
Springer, 1980.

[22] B. Ganter, R. Wille, and R. Wille. Formal concept analysis. Springer
Berlin, 1999.

[23] Mathieu Goeminne, Alexandre Decan, and Tom Mens. Co-evolving
code-related and database-related changes in a data-intensive software
system. In Software Maintenance, Reengineering and Reverse Engineer-
ing (CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference
on, pages 353–357. IEEE, 2014.

[24] Orla Greevy, Stéphane Ducasse, and Tudor Gı̂rba. Analyzing software
evolution through feature views. Journal of Software Maintenance and
Evolution: Research and Practice, 18(6):425–456, 2006.

[25] Franklin C Grossman, David C Angel, and David A Seidel. Ir code
instrumentation, November 16 1999. US Patent 5,987,249.

[26] M. Hack. Petri Net Languages. Computation Structures Group memo.
Laboratory for Computer Science, 1976.

[27] Jean-Luc Hainaut. Introduction to database reverse engineering. Cite-
seer, 2002.

[28] Jean-luc Hainaut and Jl Hainaut. A generic entity-relationship model.
In in Proc. of the IFIP WG 8.1 Conf. on Information System Concepts:
an in-depth analysis, North-Holland. Citeseer, 1989.

[29] A. Hamou-Lhadj and T. Lethbridge. Summarizing the content of large
traces to facilitate the understanding of the behaviour of a software
system. In Proceeding of the IEEE 14th International Conference on
Program Comprehension, pages 181–190, 2006.

184 BIBLIOGRAPHY

[30] Richard Healey, Steve Dowers, Bruce Gittings, and Mike J Mineter. Par-
allel processing algorithms for GIS. CRC Press, 1997.

[31] Charles Antony Richard Hoare. An axiomatic basis for computer pro-
gramming. Communications of the ACM, 12(10):576–580, 1969.

[32] D. F. Jerding, J. T. Stasko, and T. Ball. Visualizing interactions in pro-
gram executions. In Software Engineering, 1997, pages 360–370, 1997.

[33] T. Kehl. The purpose of computing is insight, not numbers. Transactions
of the Society for Computer Simulation, 7(6):280–280, 1966.

[34] Gary A Kildall. A unified approach to global program optimization. In
Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 194–206. ACM, 1973.

[35] H. Kitchenham, B.and Al-Khilidar, M. Babar, M. Berry, K. Cox, Jacky
K., F. Kurniawati, M. Staples, H. Zhang, and L. Zhu. Evaluating guide-
lines for reporting empirical software engineering studies. Empirical
Software Engineering, 13(1):97–121, 2008.

[36] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information
processing letters, 29(3):155–163, 1988.

[37] Gerald Kotonya and Ian Sommerville. Requirements engineering: pro-
cesses and techniques. Wiley Publishing, 1998.

[38] Thomas Kuhn and Olivier Thomann. Abstract syntax tree. Eclipse
Corner Articles, 20, 2006.

[39] Y. Labiche, B. Kolbah, and H. Mehrfard. Combining static and dynamic
analyses to reverse-engineer scenario diagrams. In Software Maintenance
(ICSM), 2013 29th IEEE International Conference on, pages 130–139,
Sept 2013.

[40] M. Lanza. The evolution matrix: Recovering software evolution using
software visualization techniques, 2001.

[41] Boyang Li. Automatically documenting software artifacts. In Software
Maintenance and Evolution (ICSME), 2016 IEEE International Confer-
ence on, pages 631–635. IEEE, 2016.

[42] Bennet P Lientz, E. Burton Swanson, and Gail E Tompkins. Charac-
teristics of application software maintenance. Communications of the
ACM, 21(6):466–471, 1978.

BIBLIOGRAPHY 185

[43] Dien-Yen Lin and Iulian Neamtiu. Collateral evolution of applications
and databases. In Proceedings of the joint international and annual
ERCIM workshops on Principles of software evolution (IWPSE) and
software evolution (Evol) workshops, pages 31–40. ACM, 2009.

[44] Mario Linares-Vásquez, Boyang Li, Christopher Vendome, and Denys
Poshyvanyk. Documenting database usages and schema constraints in
database-centric applications. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, pages 270–
281, New York, NY, USA, 2016. ACM.

[45] M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshyvanyk. How do
developers document database usages in source code? (n). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 36–41, Nov 2015.

[46] David Lo, Siau-Cheng Khoo, Jiawei Han, and Chao Liu. Mining Soft-
ware Specifications: Methodologies and Applications. CRC Press, Inc.,
Boca Raton, FL, USA, 1st edition, 2011.

[47] Jonathan I. Maletic. An introduction to software visualization.

[48] Jonathan I Maletic, Andrian Marcus, and Michael L Collard. A task ori-
ented view of software visualization. In Visualizing Software for Under-
standing and Analysis, 2002. Proceedings. First International Workshop
on, pages 32–40. IEEE, 2002.

[49] R. S. Mans, Helen Schonenberg, Minseok Song, Wil M. P. van der Aalst,
and Piet J. M. Bakker. Application of process mining in healthcare - a
case study in a dutch hospital. In BIOSTEC (Selected Papers), pages
425–438, 2008.

[50] Loup Meurice, Csaba Nagy, and Anthony Cleve. Detecting and pre-
venting program inconsistencies under database schema evolution. In
Software Quality, Reliability and Security (QRS), 2016 IEEE Interna-
tional Conference on, pages 262–273. IEEE, 2016.

[51] Loup Meurice, Csaba Nagy, and Anthony Cleve. Static analysis of dy-
namic database usage in java systems. In Advanced Information Systems
Engineering - 28th International Conference, CAiSE 2016, Ljubljana,
Slovenia, June 13-17, 2016. Proceedings, pages 491–506, 2016.

[52] Joan C. Miller and Clifford J. Maloney. Systematic mistake analysis of
digital computer programs. Commun. ACM, 6(2):58–63, February 1963.

186 BIBLIOGRAPHY

[53] Marco Mori, Nesrine Noughi, and Anthony Cleve. Extracting data ma-
nipulation processes from SQL execution traces. In Information Systems
Engineering in Complex Environments - CAiSE Forum 2014, Thessa-
loniki, Greece, June 16-20, 2014, Selected Extended Papers, pages 85–
101, 2014.

[54] Marco Mori, Nesrine Noughi, and Anthony Cleve. Mining SQL execution
traces for data manipulation behavior recovery. In Joint Proceedings
of the CAiSE 2014 Forum and CAiSE 2014 Doctoral Consortium co-
located with the 26th International Conference on Advanced Information
Systems Engineering (CAiSE 2014), Thessaloniki, Greece, June 18-20,
2014., pages 41–48, 2014.

[55] Tadao Murata. Petri nets: Properties, analysis and applications. Pro-
ceedings of the IEEE, 77(4):541–580, 1989.

[56] Csaba Nagy and Anthony Cleve. A static code smell detector for SQL
queries embedded in java code. In 17th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2017,
Shanghai, China, September 17-18, 2017, pages 147–152, 2017.

[57] Csaba Nagy and Anthony Cleve. Sqlinspect: A static analyzer to in-
spect database usage in java applications. In In ICSE ’18 Companion:
40th International Conference on Software Engineering, May 27-June 3,
2018, Gothenburg, Sweden, page 4 pages, 2018. to appear.

[58] Nicholas Nethercote. Dynamic binary analysis and instrumentation.
Technical report, University of Cambridge, Computer Laboratory, 2004.

[59] Hamid R. Motahari Nezhad, Régis Saint-Paul, Fabio Casati, and
Boualem Benatallah. Event correlation for process discovery from web
service interaction logs. VLDB J., 20(3):417–444, 2011.

[60] N. Noughi and A. Cleve. Conceptual interpretation of sql execution
traces for program comprehension. In In Proceeding PCODA, pages
19–24, 2015.

[61] N. Noughi, M. Mori, L. Meurice, and A. Cleve. Understanding the
database manipulation behavior of programs. In Proceeding of IEEE
International Conference on Program Comprehension, page 4, 2014.

[62] Nesrine Noughi, Stefan Hanenberg, and Anthony Cleve. An empirical
study on the usage of SQL execution traces for program comprehension.
In 2017 IEEE International Conference on Software Quality, Reliability

BIBLIOGRAPHY 187

and Security Companion, QRS-C 2017, Prague, Czech Republic, July
25-29, 2017, pages 47–54, 2017.

[63] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John M.
Vlissides, and Jeaha Yang. Visualizing the execution of java programs.
In Revised Lectures on Software Visualization, International Seminar,
pages 151–162, London, UK, UK, 2002. Springer-Verlag.

[64] P. Petersen, S. Hanenberg, and R. Robbes. An empirical comparison of
static and dynamic type systems on api usage in the presence of an ide:
Java vs. groovy with eclipse. In Proceeding of IEEE International Con-
ference on Program Comprehension 2014, pages 212–222. ACM, 2014.

[65] James Lyle Peterson. Petri Net Theory and the Modeling of Systems.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1981.

[66] Jean-Marc Petit, Jacques Kouloumdjian, Jean-Francois Boulicaut, and
Farouk Toumani. Using queries to improve database reverse engineer-
ing. In Proceeding of the 13th International Conference on the Entity-
Relationship Approach (ER’1994), pages 369–386. Springer-Verlag, 1994.

[67] Marian Petre, AF Blackwell, and TRG Green. Cognitive questions in
software visualization, 1998.

[68] Thomas M Pigoski. Practical software maintenance: best practices for
managing your software investment. Wiley Publishing, 1996.

[69] Philip J Pratt and Joseph J Adamski. Concepts of database management.
Cengage Learning, 2011.

[70] Álvaro Rebuge and Diogo R. Ferreira. Business process analysis in
healthcare environments: A methodology based on process mining. Inf.
Syst., 37(2):99–116, 2012.

[71] Gruia-Catalin Roman and Kenneth C. Cox. Program visualization: The
art of mapping programs to pictures. In Proceedings of the 14th Inter-
national Conference on Software Engineering, ICSE ’92, pages 412–420,
New York, NY, USA, 1992. ACM.

[72] Winston W Royce. Managing the development of large software systems:
concepts and techniques. In Proceedings of the 9th international confer-
ence on Software Engineering, pages 328–338. IEEE Computer Society
Press, 1987.

188 BIBLIOGRAPHY

[73] Anne Rozinat, Ivo S. M. de Jong, Christian W. Günther, and Wil M. P.
van der Aalst. Process mining applied to the test process of wafer scan-
ners in asml. IEEE Transactions on Systems, Man, and Cybernetics,
Part C, 39(4):474–479, 2009.

[74] P. Sánchez, M. E. Zorrilla, R. Duque Medina, and A. Nieto-Reyes. Are
models easier to understand than code? an empirical study on compre-
hension of entity-relationship (ER) models vs. structured query language
(SQL) code. Computer Science Education, 21(4):343–362, 2011.

[75] Davide Sangiorgi and David Walker. PI-Calculus: A Theory of Mobile
Processes. Cambridge University Press, New York, NY, USA, 2001.

[76] Mrinal Kanti Sarkar and Trijit Chaterjee. Reverse engineering: An
analysis of dynamic behavior of object oriented programs by extracting
uml interaction diagram. International Journal of Computer Technology
and Applications, 4(3):378, 2013.

[77] Stephen R. Schach. Software engineering, fourth edition. In Software
Engineering, Fourth Edition, McGraw-Hill, Boston,, page 11, 1999.

[78] John Stasko. Software visualization: Programming as a multimedia ex-
perience. MIT press, 1998.

[79] Tarja Systa. Understanding the behavior of java programs. In Reverse
Engineering, 2000. Proceedings. Seventh Working Conference on, pages
214–223. IEEE, 2000.

[80] Richard N. Taylor. Assertions in programming languages. SIGPLAN
Not., 15(1):105–114, January 1980.

[81] Jonas Trümper, Stefan Voigt, and Jürgen Döllner. Maintenance of em-
bedded systems: Supporting program comprehension using dynamic
analysis. In Software Engineering for Embedded Systems (SEES), 2012
2nd International Workshop on, pages 58–64. IEEE, 2012.

[82] Huib van den Brink, Rob van der Leek, and Joost Visser. Quality as-
sessment for embedded sql. In Proceeding of the 7th IEEE Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM’2007), pages 163–170. IEEE Computer Society, 2007.

[83] Wil Van Der Aalst, Arya Adriansyah, Ana Karla Alves De Medeiros,
Franco Arcieri, Thomas Baier, Tobias Blickle, Jagadeesh Chandra Bose,

BIBLIOGRAPHY 189

Peter van den Brand, Ronald Brandtjen, Joos Buijs, et al. Process min-
ing manifesto. In International Conference on Business Process Man-
agement, pages 169–194. Springer, 2011.

[84] Wil MP Van Der Aalst and Schahram Dustdar. Process mining put into
context. IEEE Internet Computing, 16(1):82–86, 2012.

[85] Jan Martijn EM van derWerf, Boudewijn F van Dongen, Cor AJ
Hurkens, and Alexander Serebrenik. Process discovery using integer
linear programming. Fundamenta Informaticae, 94(3):387–412, 2009.

[86] Boudewijn F Van Dongen, Ana Karla A de Medeiros, HMW Verbeek,
AJMM Weijters, and Wil MP Van Der Aalst. The prom framework:
A new era in process mining tool support. In ICATPN, volume 3536,
pages 444–454. Springer, 2005.

[87] Mark Weiser. Program slicing. In Proceedings of the 5th International
Conference on Software Engineering, ICSE ’81, pages 439–449, Piscat-
away, NJ, USA, 1981. IEEE Press.

[88] R. Wettel and M. Lanza. Visualizing software systems as cities. In IEEE
Working Conference on Software Visualization’ 2007, pages 92–99, 2007.

[89] R. Wettel and M. Lanza. Visualizing software systems as cities. In Pro-
ceeding of IEEE Working Conference on Software Visualization 2007),
pages 92–99, 2007.

[90] R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: A con-
trolled experiment. In Proceeding of the 33rd International Conference
on Software Engineering, ICSE ’11, pages 551–560. ACM, 2011.

[91] Richard Wettel and Michele Lanza. Codecity: 3d visualization of large-
scale software. In Companion of the 30th International Conference on
Software Engineering, ICSE Companion ’08, pages 921–922, New York,
NY, USA, 2008. ACM.

[92] David Willmor, Suzanne M. Embury, and Jianhua Shao. Program slicing
in the presence of a database state. In ICSM’2004: Proceeding of the
20th IEEE International Conference on Software Maintenance, pages
448–452, Washington, DC, USA, 2004. IEEE Computer Society.

[93] C. Wohlin, M. Runeson, P., MC. Ohlsson, B. Regnell, A. Wesslén, and
A. Von Mayrhauser. Experimentation in software engineering : an intro-
duction. The Kluwer international series in software engineering. Kluwer
Academic, Boston, London, 2000.

190 BIBLIOGRAPHY

[94] Y. Yang, X. Peng, and W. Zhao. Domain feature model recovery from
multiple applications using data access semantics and formal concept
analysis. In Proceeding of Working Conf. Reverse Engineering’2009,
pages 215–224. IEEE CS, 2009.

[95] WM Zuberek. Timed petri nets definitions, properties, and applications.
Microelectronics Reliability, 31(4):627–644, 1991.

	Page de garde
	Abstract
	Résumé
	Introduction
	Research Context
	Objective and Research Questions
	Contributions
	Thesis Outline
	Publications

	I Research Domain and Related Literature
	Research Domain
	Introduction
	Software Maintenance and Evolution
	Program Comprehension
	Data-Intensive Systems
	Database Engineering
	Database Reverse Engineering
	The Generic Entity-Relationship Model
	Conceptual Schema
	Logical Schema

	Program Analysis
	Static Program Analysis
	Dynamic Program Analysis
	Static Analysis vs. Dynamic Analysis

	Software Visualization
	Definition
	Classification of Software Visualization
	How Do We Choose The Right Visualization?
	2D vs. 3D Visualization

	Process Mining
	Conclusions

	Related Literature
	Introduction
	Program Analysis for Program Comprehension
	Dynamic Analysis for Program Comprehension
	SQL Statement Analysis

	Process Mining for Program Comprehension
	Synthesis

	Visualization for Program Comprehension
	Synthesis

	Conclusions

	II Dynamic Analysis of SQL Execution Traces for Data-Intensive Systems
	Overview of The Framework
	Introduction
	Motivation
	Preliminaries
	Mapping between Conceptual and Logical Schemas
	SQL Execution Traces

	Problem Statement
	Approach Definition
	Phase 1: Intra-scenario Analysis
	Phase 2: Inter-scenario Analysis
	Phase 3: Code Re-documentation

	Conclusions

	Understanding the Data Manipulation Behavior from SQL Execution Traces
	Introduction
	Approach and Research Questions
	Trace Capturing
	Query Interception
	Query Parsing

	Intra-Query Analysis
	Sub-schema Extraction:
	Object Frequency
	Synthesis

	Inter-Query Analysis
	Dependency Extraction
	Loop Detection
	Synthesis

	Query Interpretation
	Trace Abstraction
	Subschema Annotation
	Interpretation Generation

	Tool Support
	Metrics
	DB-MAIN
	JUNG Library
	DAViS User Interface
	Visualization Modes
	Component 1: Intra-query Analysis Visualization
	Component 2: Inter-query Analysis Visualization
	Component 3: Query Interpretation Visualization

	Case Studies
	Traces Capturing
	Queries Parsing
	Sub-schemas Results
	Dependency Results

	Conclusions

	Extracting Data Manipulation Processes from SQL Execution Traces
	Introduction
	Illustrative Scenario
	Approach and Research Questions
	Data-oriented Properties
	Query Filtering
	Associating Properties
	Query Clustering
	Cluster Labeling

	Process Mining
	Traces Abstraction
	Process Extraction

	Evaluation
	Scenario Used
	Experiments Description
	Threats To Validity

	Conclusions

	Code Re-documentation from SQL Execution Traces
	Introduction
	Motivation
	Approach and Research Questions
	Preliminaries
	Java DataBase Connectivity (JDBC)
	Extraction Techniques of SQL Trace Locations
	JAVA Abstract Syntax Tree (AST)

	Comments Generation
	Information Determination
	Information Gathering

	Comments Injection
	Discussions
	Illustrative Example
	Results
	Conclusions

	III Evaluation and Validation
	An Empirical Study on the Use of SQL Execution Traces for Program Comprehension
	Introduction
	Related Work
	Experimental Description
	Initial Considerations
	Evaluation Questions and Hypotheses
	Used Scenario
	Tasks Design
	Pilot Studies
	Experiment Procedure
	Data Collection

	Experiment Execution
	Selection of Participants
	Concrete Setting

	Results
	EQ1: Does DAViS reduce the time needed to complete the tasks?
	EQ2: Does the educational background influence the usability of DAViS?
	EQ3: Does DAViS increase the correctness of the tasks?

	Discussion
	Reasons for Different Time Requirements
	Reasons for The Education Level Independence
	Reasons for Correctness Differences

	Threats to Validity
	Internal Validity
	External Validity

	Conclusions

	IV Conclusions
	Conclusions
	Summary of The Contributions
	Future Challenges

