
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Delivering protected content

an approach for next generation mobile technologies

Collet, Jean Bernard

Award date:
2010

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/delivering-protected-content(1b836421-0edc-495c-a57d-46fe4ddb8840).html

Facultés Universitaires Notre-Dame de la Paix, Namur
Faculté d’Informatique

Anne académique 2009-2010

Delivering protected content :

an approach for next generation

mobile technologies

Jean Bernard COLLET

Mémoire présenté en vue de l’obtention du grade de master en informatique.

Abstract

The mobile industry is growing every day and the mobile phone became in the past
few years the most personal device ever. Often, it is the first interface someone looks
at in the morning (with the alarm clock) and the last one in the evening (either for the
alarm clock or just check the last messages). The combination of this personal aspect
and its growing power opens new commercial perspectives for the future. It is easy now
to imagine watching movies in the train via streaming or side loading using those next
generation mobile devices. This experience can even be dramatically improved by using
adaptive streaming, a technology that allows for dynamic selection and adaptation of vi-
deo quality during playback, based on the available bandwidth, thus providing an overall
better end-user experience. However, delivering digital content to mobile devices raises
the copyright and intellectual property issues. Therefore, protected delivery mechanisms
are required, that often rely on a specific DRM (Digital Rights Management) scheme.

In this thesis, we will address design and implementation of a DRM agent on an open
platform in order to support protected media when using adaptive streaming.

Keywords

computer science, Android, DRM, adaptive streaming, secure storage, post-instalable

iii

Résumé

L’industrie de la téléphonie mobile est en constante croissance et le téléphone mobile
est devenu depuis quelques années l’appareil le plus personnel jamais créé. Souvent, c’est
la première interface informatique qu’une personne consulte le matin (avec le réveil de
l’appareil) et la dernière (pour ajuster le réveil de l’appareil, ou simplement consulter ses
messages). La combinaison de cet aspect personnel et de la puissance en augmentation
de ces appareils ouvre de nouvelles perspectives commerciales pour l’avenir. Il est très
simple d’imaginer regarder un film dans le train en streaming ou après avoir pré-téléchargé
le contenu. L’expérience utilisateur peut être fortement améliorée grâce à l’utilisation de
l’adaptive streaming, une technologie qui permet la selection dynamique et l’adaptation
de la qualité video (et audio) pendant la lecture d’un contenu (estimé en fonction de la
bande passante). Cela offre alors une expérience utilisateur bien meilleure. Cependant,
fournir du contenu digital à des smartphones soulève des problèmes de droits d’auteur.
Des mécanismes de protection sont nécessaires. Ceux-ci sont souvent basés sur les DRM
(Digital Rights Management).

Dans ce mémoire, nous allons nous concentrer sur le design et l’implémentation d’un
agent DRM sur une plateforme ouverte afin d’utiliser de l’adaptive streaming.

Mots-clés

informatique, Android, DRM, adaptive streaming, stockage sécurisé, post-installable

v

Acknowledgements

This thesis is the final result of five-year of university in Computer Science. It is a
important step in my life between university and a future job. It is also the result of
many hours of reading, researches, tests, developments and writing. This work was also
a great opportunity to meet very interesting people and places around Europe.

First, I want to return thanks to Prof. Jean-Noël Colin, my promotor, for its support
and its feed-backs. He guided me for my internship in Germany. We had very interesting
discussions about how to write this thesis, and about its related technologies. It was a
real pleasure to work together. I hope we will have further opportunities to work together
again and wish him the best for the future.

Then, I also want to return thanks to everyone who helped me during this work
like Doc. Susanne Guth, Boras Fehr and Michael Stattmann. They provided me a very
great help and support during my internship and thanks to them, I had the chance to
be introduced into German culture.

Finally, I want to return thank to my family and particularly Sophie Dupuis, for her
support, her advices, her trust and simply for being present.

vii

Table of Contents

Table of Contents ix

List Of Figures xi

List Of Figures xiii

1 Introduction 1
1.1 Context and objectives of the thesis . 1
1.2 Motivations . 1
1.3 Overview of the thesis . 3
1.4 Notations . 4

1.4.1 Definitions . 4
1.4.2 Abbreviations . 5

2 Technological context 6
2.1 Mobile Operating System : Google’s Android 6

2.1.1 Application development . 6
2.1.2 System’s architecture . 8
2.1.3 Security model . 10

2.2 Digital Right Management . 13
2.2.1 General principles . 13
2.2.2 Standard differences . 15
2.2.3 DRM content distribution overview 16
2.2.4 Dealing with DRM protected content 18

2.3 Video Technology . 20
2.3.1 Traditional Streaming . 20
2.3.2 Progressive Download . 20
2.3.3 Http-based Adaptive Streaming 21

2.4 Security . 24
2.4.1 Symmetric and Asymmetric Key Cryptography 24
2.4.2 Public Key Infrastructure . 24

ix

TABLE OF CONTENTS

3 Protected content delivering on Android : Solution design 26
3.1 Product description : Use Case scenarios 26

3.1.1 Diagram . 26
3.1.2 Scenario details . 26

3.2 Design and operating constraints . 29
3.2.1 CMLA security policy . 29
3.2.2 Post-Installable solution and Time to market 29
3.2.3 Low computer power . 30

3.3 Proposed architecture . 31
3.4 Adaptive Streaming architecture . 33

3.4.1 Playback scenario . 33
3.4.2 The video player’s core components 34

3.5 Streaming with OMA DRM 2.1 . 38
3.5.1 Standard specifications . 38
3.5.2 DRM Agent Initialization . 39
3.5.3 Rights Object Acquisition . 40

3.6 Secure storage : a way to securely store sensitive files 41
3.6.1 Trusted Platform Module . 41
3.6.2 Encrypted data . 42

4 Implementation and experiments 48
4.1 The video player . 48

4.1.1 The Android Application . 48
4.1.2 Implementation . 50
4.1.3 Third-party libraries bundled with the application 54

4.2 The video samples and the server . 57
4.3 Results diagrams . 58
4.4 Conclusions of the experiments . 60

5 Conclusion 61
5.1 Further work . 62

A CMLA : Confidentiality and Integrity Table 65

B Rights Object Sample 69

C Adaptive Streaming Client Manifest Sample 71

Collet Jean Bernard x/71

List of Figures

2.1 Anatomy of an Android application . 7
2.2 Android’s software stack . 9
2.3 DRM Delivery Methods . 13
2.4 Forward Lock Mode . 14
2.5 Combined Delivery Mode . 14
2.6 Separate Delivery Mode . 14
2.7 Super Distribution . 15
2.8 DRM Content delivery overview . 17
2.9 Example of ROAP exchanges . 19
2.10 RTSP is an example of a traditionnal streaming protocol 20
2.11 Adaptive streaming is a hybrid media delivery method 22
2.12 Adaptive Streaming File Format (ISMV or ISMA file) 23
2.13 Adaptive Streaming Wire Format . 23
2.14 In asymmetric crypto, the encrypting key cannot be used to decrypt ; you

must use its partner . 25

3.1 Use Case defined for this prototype . 26
3.2 Proposed High-Level Architecture . 31
3.3 File processing at server side . 33
3.4 Video playback scenario . 34
3.5 Adaptive Streaming download scenario 36
3.6 Streaming with OMA DRM 2.1 . 38
3.7 DRM Agent Process . 40
3.8 Trusted Platform Module Architecture 41
3.9 Data Encryption using TPM . 41
3.10 Data storage using the secure storage API 45
3.11 Secure Storage structure, based on PKCS#12 46

4.1 ListingActivity (Screenshot from the 13-08-2010) 49
4.2 PlayerActivity (Screenshot from the 13-08-2010) 49
4.3 General idea Diagram . 50
4.4 High Level Class Diagram . 50
4.5 Duration of the demo chunks . 58
4.6 Bitrate variation during a demo playback 58

xi

LIST OF FIGURES

4.7 Download Time during a demo playback 59
4.8 Alpha variation during a demo playback 59

Collet Jean Bernard xii/71

List of Listings

2.1 Using Permission with the AndroidManifest file 11
2.2 Declaring Permission with the AndroidManifest file 11
2.3 OMA DRM 2.1 Common Headers Box 18
3.1 Secure Storage API . 43
4.1 Java Native Interfaces of libasplayer.so 51
4.2 QualityLevel Sample . 52
4.3 Chunk Sample . 52
4.4 FFMpeg Configure Command . 54
4.5 FFMpeg on the application Makefile 54
4.6 OpenGL on the application Makefile . 55
4.7 LibCurl Configure Command . 55
4.8 LibCurl on the application Makefile . 55
4.9 TinyXML on the application Makefile 56
4.10 Content encoding commands . 57
B.1 Rights Object Sample . 69
C.1 Adaptive Streaming Client Manifest Sample 71

xiii

Chapter 1
Introduction

1.1 Context and objectives of the thesis

Vodafone has become in the past few years, more than a telecommunication network
operator. It is now a major service provider (media content provider, social network)
and works with various networks (mobile networks and broadband) and devices types
(desktop, laptop, netbooks, smartphones). Due to this variety of devices, they have to
deal with a wide market, and therefore, they have to deploy products adapted for many
platforms and types of users.

Nowadays, most of the content providers require the copyrighted content to be pro-
tected via secured system. The most common one, even if it is unpopular, is Digital
Rights Management. DRM provides to the content provider mechanisms to control the
use of digital media content like music, movies, games and many other types of content.
As business models are changing every day, this technology is still evolving and need to
be upgraded frequently.

The purpose of this thesis is to describe in detail a method to implement and deploy
a new way to deliver and consume protected content for modern smartphones, which are
the next generation mobile devices. It will detail the complete implementation of the me-
dia player, the integration of DRM’s, the content preparation and the server deployment.

1.2 Motivations

Actually, on most mobile devices, the Open Mobile Alliance (OMA) DRM is the
de facto standard implemented by default. This implementation is installed during the
manufacturing process where Vodafone has no or limited access to. Some DRM Client
located on those devices may only have a partial support of the standard i.e. some fea-
tures are missing.

The reason why most DRM Client are installed on devices while manufacturing pro-
cess is because they need particular features from the operating system to enable a good

1

CHAPTER 1. INTRODUCTION

security level. For example, the necessary key certificates are pre-installed that way ins-
tead of Over The Air (OTA) installation. Other particular features may be a specific
filesystem for sensitive data storage, mechanisms to authenticate an application, secure
channels for data exchange. Most of the time, those features need some system modifi-
cations.

Everyday, the market evolves and new business models appear. And they may require
particular features that may not be supported by a DRM Client. This is one of many
reasons for using post-installable DRM Client on device. Sometimes, existing standards
need to be adapted depending on the new feature to be implemented. Those adaptations
are needed because when a company finds a new market to explore, they have to react
as fast as possible. They could not afford to wait for standards to be compliant with
their needs. Time to market is thus an determinative factor.

The present work will use a technique called ”Adaptive Streaming” for media consump-
tion. Its particularity is it improves the user experience while the video playback by
enabling video quality switch. It results on a video quality which perfectly match the
bandwidth capacity and no lags while playback. Used on a device with a fully OMA
DRM compliant DRM Client, it would not work due to the fact that OMA DRM cur-
rently does not support that technology. In that particular case, an adaptation should
not be so complex to do, but will still need to extends the existing standard.

The previous example demonstrate the need of a post-installable DRM client. The
following work will try, among other things, to set up concepts and design lines for
building a post-installable content protection solution integrate them on the proof of
concept of this work. That solution must meet some requirements like security, easy to
evolve,multiple platform compliant, multiple standard compliant and easy to maintain.

– Security : Security is a key aspect of content protection, simply because every
protection mecanism depends on it. It would require to study, among others, au-
thentication mechanisms (to check if the program is really who he claims to be),
cryptography and key distribution (for encrypting files that should not be read by
other applications) and filesystems (to store protected data in a secure way).

– Easy to evolve : As mentioned earlier, an easy to evolve solution is also a key
aspect. As the market and the needs change every day, mechanisms and support
for adapting existing standards are necessary to provide a solution in the long term.

– Multiple platform compliant : Nowadays, the mobile phone market is changing.
Many operating systems are coexisting and are often updated. Thus, the solution
described in this document should be as platform independent as possible. However,
some system specifications may be required.

– Multiple standard compliant : Due to the fact that a lot of standards are actually
existing and used, it is important too to have a solution which can switch easily
from one standard to another, or to one version to the next.

– Easy to maintain : All of the previous described aspects tend to evolve. Mainte-
nance is also really important for correcting bugs first, then to tend to apply major
updates to every device, no matter its platform and standard.

Collet Jean Bernard 2/71

CHAPTER 1. INTRODUCTION

1.3 Overview of the thesis

The first part on this work will focus on the technological context. It will explain
the basic concepts of the technologies and techniques used, such as Google’s Android,
Digital Rights Management and Adaptive Streaming.

Then, the solution design will be explained, starting with the use cases of the proof
of concept produced with this work, then the operating constraints will be introduced.
Every single component of this project will be detailed.

After explaining the solution design, the implementation will be introduced with a
technical point of view. Experiments will be done and commented.

Finally, we will conclude this work with further work, improvements and general
comments on the feasibility of this project.

Collet Jean Bernard 3/71

CHAPTER 1. INTRODUCTION

1.4 Notations

1.4.1 Definitions

Content One or more objects
Content Issuer The entity making content available to the DRM Agent
DRM Agent The component in the device that manages Permissions

for Media Objects on the device.
DRM Content Media Objects that are consumed according to a set of

Permissions in a Right Object
Media Object A digital work e.g. a ringtone, a screen saver, a game or

a composite object
Permission Actual usages or activities allowed (by the Right Issuer)

over DRM Content.
Right Issuer An entity that issues Rights Objects to OMA DRM

conformant devices.
Rights Objects A collection of Permissions and other attributes which

are linked to DRM Content.
Super-distribution A mechanism that allows a User to distribute DRM

Content to other devices through potentially insecure
channels and enables the User of that device to obtain
a Right Object for the super-distributed DRM Content.

Collet Jean Bernard 4/71

CHAPTER 1. INTRODUCTION

1.4.2 Abbreviations

CEK Content Encryption Key
CMLA Content Management License Administrator
CPU Central Processing Unit
DCF DRM Content Format
DRM Digital Right Management
GPS Global Positioning System
GSM Group System for Mobile
GOP Group Of Pictures
HTTP HyperText Transfer Protocol
IDE Integrated Development Environment
IrDA Infrared Data Association
JNI Java Native Interface
MMS Multimedia Messaging Service
NDK Native Development Kit
OCSP Online Certificate Status Protocol
OMA Open Mobile Alliance
OS Operating System
OTA Over The Air
PKI Public Key Infrastructure
RDT Real Data Transport
REK Right Encryption Key
RFC Request For Comments
RI Right Issuer
ROAP Right Object Acquisition Protocol
RO Right Object
RTP Real Time Transport Protocol
RTSP Real Time Streaming Protocol
SDK Software Development Kit
SMS Short Message Service
UI User Interface
URI Uniform Resource Indicator
VM Virtual Machine
WAP Wireless Application Protocol

Collet Jean Bernard 5/71

Chapter 2
Technological context

This section’s purpose is to describe the key technologies to support the solution
designed during this work. First of all, it starts with a short description of Android, a
mobile operating system made by Google. The second part will be about Digital Right
Management (DRM) with an overview of existing standards and a brief comparison.
The next part will introduce the existing video technologies, especially streaming and
streaming at variable bitrate. Finally, some security principles will be explained in order
to understand further developments.

2.1 Mobile Operating System : Google’s Android

Android is a software stack for mobile devices that includes an operating system,
middleware and key applications. It includes a set of core libraries that provides most of
the functionality available in the core libraries of the Java programming language. Every
Android application runs in its own process, with its own instance of the Dalvik virtual
machine. Dalvik has been written so that a device can run multiple Virtual Machines effi-
ciently. The Dalvik Virtual Machine executes files in the Dalvik Executable (.dex) format
which is optimized for minimal memory footprint. The Dalvik VM relies on the Linux
kernel for underlying functionality such as threading and low-level memory management.
Android relies on Linux version 2.6 for core system services such as security, memory
management, process management, network stack, and driver model. The kernel also
acts as an abstraction layer between the hardware and the rest of the software stack.

2.1.1 Application development

On Android, applications are written in a Java like language. To compile such soft-
ware, a developer has to use the Software Development Kit (SDK) for the target Android
platform (1.5, 1.6, 2.0, 2.1, 2.2, ...) provided by Google. It is also possible to enrich soft-
wares written with the SDK with ”native” libraries, written in C and interfaced with
the Java application through Java Native Interface (JNI) calls. In order to use native
code (C/C++ code) and JNI, the Native Development Kit (NDK) is required. It’s not
possible to write an entire application with the NDK but only libraries which will have

6

CHAPTER 2. TECHNOLOGICAL CONTEXT

to be included into a SDK project.

Every application is compiled and assembled by the SDK into an Android Package,
an archive file marked with the ”.apk” suffix. This archive contains every resources
(compiled source code, images, layouts, compiled native libraries...) an application needs
(see Fig.2.1).

Figure 2.1 – Anatomy of an Android application

Applications can combine components of four different types : Activity, Service,
Broadcast Receiver and Content Provider.

Activity

An Activity presents a visual user interface for one focused endeavor the user can
undertake. For example, a text messaging application might have one activity that shows
a list of contacts to send messages to, a second activity to write the message to the
chosen contact, and other activities to review old messages or change settings. Of course,
some application will need only one single activity.

Typically, one of the activities is marked on the application’s manifest as the first one
that should be presented to the user when the application is launched. Moving from one
activity to another is accomplished by explicitly asking the system to launch the next
one.

Collet Jean Bernard 7/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

Service

A service doesn’t have a visual user interface, but rather runs in the background
for an indefinite period of time. For example, a service might play background music as
the user attends to other matters, or it might fetch data over the network or calculate
something and provide the result to activities that need it.

Broadcast Receiver

A broadcast receiver is a component that does nothing but receives and reacts to
broadcast announcements, often issued by the operating system. Many broadcasts origi-
nate in system code ; for example, announcements that the time zone has changed, that
the battery is low, that a picture has been taken, or that the user changed a language
preference. Applications can also initiate broadcasts ; for example, to let other applica-
tions know that some data has been downloaded to the device and is available for them
to use.

Content Provider

A content provider makes a specific set of the application’s data available to other
applications. The data can be stored in the file system, in a SQLite database, or in any
other manner that makes sense.

2.1.2 System’s architecture

The operating system is composed by five major layers : Applications, Application
Framework, Libraries, Android Runtime and Linux Kernel. The present work will mainly
affect the Application layer (video player application) and Libraries layer (with the video
codec libraries and secure storage). Figure 2.2 shows the Android stack with its different
layers.

Figure 2.2 and its description are based on the official documentation. (See [6]).

Applications

Android includes a set of applications like SMS, Contacts, Calendar, etc. Depending
if the Android version is delivered by Google or not (Android Open Source Project, See
[5]), Google services will be included or not (GMail, GTalk,etc).

Application Framework

By providing a software development kit (SDK), Android offers developers the ability
to build extremely rich and innovative applications. They are free to take advantage of
the device hardware such as access location information, run background services, set
alarms, add notifications to the status bar, etc.

The application architecture is designed to simplify the reuse of components ; any
application can publish its capabilities and any other application may then make use

Collet Jean Bernard 8/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

Figure 2.2 – Android’s software stack

of those capabilities (subject to security constraints enforced by the framework). This
same mechanism allows components to be replaced by the user (like the SMS Manager,
Browser, Dialer,...).

Android Runtime

Android includes a set of core libraries that provides most of the functionality avai-
lable in the core libraries of the Java programming language.

Every Android application runs in its own process, with its own instance of the Dal-
vik virtual machine. Dalvik has been written so that a device can run multiple VMs
efficiently. The Dalvik VM executes files in the Dalvik Executable (.dex) format which
is optimized for minimal memory footprint. The VM runs classes compiled by a Java
language compiler that have been transformed into the .dex format.

The Dalvik VM relies on the Linux kernel for underlying functionality such as threa-
ding and low-level memory management.

Libraries

Android includes a set of C/C++ libraries used by various components of the An-
droid system. Some of these capabilities are exposed to developers through the Android
application framework. Some of the core libraries are : System C library, Media Libraries,
3D libraries, SQLite, etc.

Collet Jean Bernard 9/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

Kernel

Android relies on Linux version 2.6 for core system services such as security, memory
management, process management, network stack, and driver model. The kernel also
acts as an abstraction layer between the hardware and the rest of the software stack.

2.1.3 Security model

Signing applications

Before any deployment, a developer has to sign its application because the opera-
ting system uses the certificate as a means of identifying the author of an application
and establishing trust between applications. The certificate is not used to control which
application a user can install. The certificate does not need to be signed by a certificate
authority : it is perfectly allowable, and typical, for Android applications to use self-signed
certificates.

During development, the SDK and the Integrated Development Environment (IDE)
Eclipse will compile your application and signed them with a ”Debug” certificate. This
certificate can be used for development purposes on an emulator, included into the SDK.
Any application signed with the ”Debug” certificate will be refused by the operating
system on a device. The SDK provides the necessary tools to signed and optimize a
compiled application.

Using Permissions

A central design point of the Android security architecture is that no application,
by default, has permission to perform any operations that would adversely impact other
applications, the operating system, or the user. This includes reading or writing the user’s
private data (such as contacts or e-mails), reading or writing another application’s files,
performing network access, keeping the device awake, etc.

While installing an application on a device, the system will assign it a UserId (This
name is really confusing. Android considers the application as a ”user” in the Unix
sense. ”AppId” or something similar would have been more clear) This value is unique
and remains constant for the duration of the applications life on that device.

Every application is running in a sandbox (one for each UserId), created by the vir-
tual machine (Dalvik Virtual Machine). If any interaction with components outside the
sandbox is needed, some explicit permission needs to be requested before (at installation
time) on the application’s manifest. This mechanism grants an application the right to
use third party elements such as software (Agenda, Contact...) or hardware (Camera,
GPS, Network...).

If the application tries to use anything under permission without declaring it, an
exception will rise. For example, if the application tries to access the Internet without
asking the permission, the system will refuse to open the necessary socket and rise an

Collet Jean Bernard 10/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

UnknownHostException.

Listing 2.1 shows a demo application’s Manifest where permission to access the In-
ternet and to write on the external storage (sd-card) are requested.

<?xml v e r s i o n=” 1 .0 ” encod ing=” ut f−8”?>
<man i f e s t xm l n s : a nd r o i d=” h t t p : // schemas . and ro i d . com/apk/ r e s / and ro i d ”

package=”be . webperso . and ro i d . a s p l a y e r ”
a n d r o i d : v e r s i o nCod e=”1”
and ro i d : v e r s i onName=” 1 .0 ”>

<a p p l i c a t i o n a n d r o i d : i c o n=”@drawable / i c on ” a n d r o i d : l a b e l=” @ s t r i n g /app name”>
<a c t i v i t y (. . .) >

</ a p p l i c a t i o n>
<uses−p e rm i s s i o n andro id :name=” and ro i d . p e rm i s s i o n . INTERNET” />
<uses−p e rm i s s i o n andro id :name=” and ro i d . p e rm i s s i o n .WRITE EXTERNAL STORAGE” />

</man i f e s t>

Listing 2.1 – Using Permission with the AndroidManifest file

Declaring Permissions

Sometimes, declaring some application’s permission may be useful. It means that the
application opens its interfaces to third party applications and control the way it is done.

Listing 2.2 shows how an application that wants to control who can start one of its
activities could declare a permission for this operation. It declares a name of the permis-
sion to refer to it. It also provides a description for the end user, permission group in
order to understand what risks may be in stake and a protection level.

<man i f e s t xm l n s : a nd r o i d=” h t t p : // schemas . and ro i d . com/apk/ r e s / and ro i d ”
package=”be . webperso . and ro i d . a s p l a y e r ”
a n d r o i d : v e r s i o nCod e=”1”
and ro i d : v e r s i onName=” 1 .0 ”>

<a p p l i c a t i o n a n d r o i d : i c o n=”@drawable / i c on ” a n d r o i d : l a b e l=” @ s t r i n g /app name”>
<a c t i v i t y (. . .) >

</ a p p l i c a t i o n>
<p e rm i s s i o n andro id :name=”be . webperso . and ro i d . a s p l a y e r . p e rm i s s i o n .

DEADLY COSTLY ACTIVITY”
a n d r o i d : l a b e l=” @ s t r i n g / p e rm l a b e l d e a d l y C o s t l y A c t i v i t y ”
a n d r o i d : d e s c r i p t i o n=” @s t r i n g / p e rm d e s c d e a d l yA c t i v i t y ”
and r o i d : p e rm i s s i o nG r oup=” and ro i d . p e rm i s s i on−group .COST MONEY”
a n d r o i d : p r o t e c t i o n L e v e l=” dangerous ” />

</man i f e s t>

Listing 2.2 – Declaring Permission with the AndroidManifest file

Permissions can be defined on the following software components.
– Activity : Activity permissions restrict who can start the associated activity. The

permission is checked during the instantiation of the targeted activity. If the caller
does not have the required permission, an exception (SecurityException) is thrown.

– Service : Service permissions restrict who can start or bind the associated service.
The permission is checked during the instantiation or the binding of the targeted
service. If the caller does not have the required permission, an exception (Securi-
tyException) is thrown.

Collet Jean Bernard 11/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

– Broadcast Receiver : Broadcast Receiver permissions restrict who can send
broadcast to the associated receiver. The permission is checked after the broad-
cast has been send, as the system tries to deliver the submitted broadcast to the
given receiver. As a result, a permission failure will not result in an exception being
thrown back to the caller ; it will just not deliver the intent.

– Content Provider : Content Provider permission restricts who can access data in
a Content Provider. The permissions are checked when you first retrieve a provider
(if you don’t have either permission, a SecurityException will be thrown), and as
you perform operations on the provider.

Protection level and User Experience

When declaring permission, a protection level has to be defined. Its purpose is to
understand how ”dangerous” this feature might be to warn the user. It is interesting
to see that Google may decide to change this politics in the next releases of Android
depending on how this security model successfully prevents attacks or not.

The following permission level exists.
– Normal : ”A lower-risk permission that gives an application access to isolated

application-level features, with minimal risk to other applications, the system, or
the user. The system automatically grants this type of permission to a requesting
application at installation, without asking for the user’s explicit approval”

– Dangerous : ”A higher-risk permission that would give a requesting application
access to private user data or control over the device that can negatively impact
the user. Because this type of permission introduces potential risk, the system may
not automatically grant it to the requesting application. (...)”

– Signature : ”A permission that the system is to grant only if the requesting ap-
plication is signed with the same certificate as the application that declared the
permission. If the certificates match, the system automatically grants the permis-
sion without notifying the user or asking for the user’s explicit approval.”

– SignatureOrSystem : ”A permission that the system is to grant only to packages
in the Android system image or that are signed with the same certificates. Please
avoid using this option, (...)”

Content Providers and URI permissions

Sometimes, very precise permissions are needed. For example, a Content Provider
may want to protect itself with read and write permissions, while its direct clients also
need to hand specific URIs to other applications for them to operate on. A typical
example is attachments in a mail application. Access to the mail should be protected by
permissions, since this is sensitive user data. However, if a URI to an image attachment
is given to an image viewer, that image viewer will not have permission to open the
attachment since it has no reason to hold a permission to access all e-mail.

Collet Jean Bernard 12/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

2.2 Digital Right Management

Digital Right Management (DRM) enables Content Providers to grant and control
permissions for media objects that define how they should be consumed. The DRM
system is independent of the media object formats and the given operating system or
run-time environment. The media objects controlled by the DRM can be a variety of
things : games, ring tones, photos, music clips, video clips, streaming media, etc. A
content provider can grant appropriate permissions to the user for each of these me-
dia objects. The content may be distributed with cryptographic protection ; hence, the
Protected Content is not usable without the associated Rights Object on a Device (See
sample on Appendix B). Given this fact, fundamentally, the users are purchasing permis-
sions embodied in Rights Objects and the Rights Objects need to be handled in a secure
and un-compromising manner.

The present work will be based on the Open Mobile Alliance Digital Right Mana-
gement Standard version 1.0 (See [21]), version 2.0 (See [22]) and version 2.1 (See
[23]).

2.2.1 General principles

The OMA DRM Standard defines three main methods to deliver DRM content :
Forward Lock, Combined Delivery and Separate Delivery. Figure 2.3 from the OMA
DRM 1.0 Specification document (See [18])shows the basic principles of every methods.

Figure 2.3 – DRM Delivery Methods

Forward Lock

Forward Lock is frequently used on ”classic” mobile phones (GSM’s) and can effec-
tively prevent illegal copying of files. In Forward Lock mode, the content is packaged
and sent to the mobile terminal as a DRM message (See Figure 2.4). Then the mobile
terminal can use the content, but cannot forward it to other devices or modify it. In
most handsets, the Forward Lock content is not encrypted when it is received or when
stored in phone memory.

Collet Jean Bernard 13/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

Figure 2.4 – Forward Lock Mode

Combined Delivery

Combined Delivery is an extension of Forward Lock. In Combined Delivery mode, the
digital rights are packaged with a content object in the DRM message (See Figure 2.5).
The user could use the content as defined in the rights object, but could not forward or
modify it.
Rights Objects are used to specify consumption rules for DRM content. The Rights
Expression Language (REL) defined by OMA DRM (defined as a mobile profile of
ODRL v1.1. [17]) specifies the syntax, based on XML, and semantics of permissions
and constraints governing the usage of DRM Content. [11]

Figure 2.5 – Combined Delivery Mode

Separate Delivery

In the Separate Delivery mode, the content and rights are packaged and delivered
separately (See Figure 2.5). The content is encrypted into DRM Content Format (DCF)
using a symmetric cryptography method and can be transferred in an unsafe way such
as Bluetooth, IrDA and via Email. The Rights Object and the Content Encryption Key
(CEK) are packaged and transferred in a safe way such as an unconfirmed Wireless Ap-
plication Protocol (WAP) push. The terminal is allowed to forward the content message
but not the associated Rights Object.

Figure 2.6 – Separate Delivery Mode

Collet Jean Bernard 14/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

Superdistribution is a Separate Delivery application which encourages digital content
being transferred freely and is typically distributed over public channels. But the content
recipient has to contact the retailer to get the Rights object and CEK to use or preview
the content. It is illustrated on Figure 2.7.

Figure 2.7 – Super Distribution

2.2.2 Standard differences

The first version of the protocol (OMA DRM 1.0) was designed on the assumption
that the mobile terminal is reliable. In the Forward-lock mode and the Combined Deli-
very mode, the content is not encrypted. In the Separate Delivery mode, the symmetric
encryption key is not encrypted. The media content can be stolen if the mobile terminal
is hacked or the Right Object message with the CEK is revealed.

Then, OMA DRM 2.0 was released in order to support more application scenarios
like preview, download, MMS, streaming media, unconnected device, etc. It was a more
reliable and flexible way to ensure copyright. Unfortunately, most handsets in the market
do not support this version of the standard.

OMA DRM 2.1 has been developed as a result of market feedback. The main diffe-
rences between OMA DRM v2.0 and OMA DRM v2.1 are the addition of several features
on top of OMA DRM v2.0, such as metering, content differentiation, Right Object ins-
tallation confirmation, etc.

Every new version of the standard introduce new security mechanisms, such as the
usage of a Public Key Infrastructure (introduced in OMA DRM 2.0).

Collet Jean Bernard 15/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

2.2.3 DRM content distribution overview

The first step for DRM content distribution is to package the content in a secure
content container (DCF). The DRM content is encrypted with a symmetric Content
Encryption Key (CEK). With OMA DRM, content can be pre-packaged, meaning that
it would not be necessary to do the package on the fly. (See Figure 2.8, Step 1.)

As all DRM Agent have a unique private/public key pair and a certificate containing
additional informations such as manufacturer, device type, software version, etc. It allows
the Content and Right Issuers to securely authenticate a DRM Agent. (See Figure 2.8,
Step 2.)

When the DRM Agent asks a Rights Objects for a media content, it receives an
XML document, expressing the permissions and constraints associated with the content.
The Rights Objects also contains the CEK to ensure that DRM content cannot be used
without an associated Rights Object. (See Figure 2.8, Step 3.)

Before delivering the Rights Objects, sensitive parts are encrypted (e.g. the CEK). It
results in a Rights Object bounded to a particular DRM Agent. This ensures that only
this target DRM Agent can access the Right Object and thus the DRM Content. (See
Figure 2.8, Step 4.)

Finally, the Rights Object and the associated DCF can now be delivered to the target
DRM Agent. As both objects are secure, they can be delivered using any transport me-
chanisms. They can be delivered together (Combined Delivery) or separately (Separate
Delivery). (See Figure 2.8, Step 5a and 5b.)

Collet Jean Bernard 16/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

Right Issuer Portal DRM Agent

RO

2. Authenticate

3. Rights Object
Generation

RO

4. Rights Object
Protection

5a. Delivery

getContent(ContentID)

Content Issuer Portal

1. Content
Packaging

DCF

CEK

CEK

5b. Delivery

+

Figure 2.8 – DRM Content delivery overview

Collet Jean Bernard 17/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

2.2.4 Dealing with DRM protected content

When the DRM Agent, located on the mobile device, receives the encrypted media
content, it starts with parsing the metadata of the file (the file structure is base on the
ISO Base Media File Format). Listing 2.3 from the OMA DRM 2.1 Specification (See
[13]) shows some of the header boxes provided by a OMA DRM 2.1. encrypted media
content.

a l i g n e d (8) c l a s s OMADRMCommonHeaders e x t e n d s F u l l B o x (’ ohdr ’ , v e r s i o n ,
0) {

// Enc r yp t i on method
unsigned i n t (8) Encrypt ionMethod ;
// Padding type
unsigned i n t (8) PaddingScheme ;
// P l a i n t e x t con t en t l e n g t h i n by t e s
unsigned i n t (6 4) P l a i n t e x t L e n g t h ;
// Length o f Content ID f i e l d i n by t e s
unsigned i n t (1 6) Content IDLength ;
// R i gh t s I s s u e r URL f i e l d l e n g t h i n by t e s
unsigned i n t (1 6) R i g h t s I s s u e r U R L L e n g t h ;
// Length o f the Textua lHeade r s a r r a y i n by t e s
unsigned i n t (1 6) T e x t u a l H e a d e r s L e n g t h ;
// Content ID s t r i n g
char Content ID [] ;
// R i gh t s I s s u e r URL s t r i n g
char R i g h t s I s s u e r U R L [] ;
// Add i t i o n a l h eade r s as Name : Value p a i r s
s t r i n g T e x t u a l H e a d e r s [] ;
// Extended heade r s boxes
Box ExtendedHeaders [] ;

}

Listing 2.3 – OMA DRM 2.1 Common Headers Box

With all of those information parsed, the DRM Agent has then the possibility to
check if it already has a RO associated with the Content ID of the file. It checks then
if such file exists. If the RO doesn’t exist or the user hasn’t the right to do the current
action, the DRM Agent will contact the Rights Issuer (RI) to get a correct one. When
one RO is received, the DRM Agent has to explicitly confirm the RO installation on the
secure storage.

In order to contact the RI, any OMA 2.1 compliant DRM Agent must follow a pro-
tocol called ”ROAP” (Right Object Acquisition Protocol). This protocol defines every
interaction possible between a Right Issuer and a DRM Agent. In the RI side, the exe-
cution of ROAP may involve one or more OCSP (Online Certificate Status Protocol)
responders, but this interactions are not always mandatory. The following interactions
are possible :

– The 4-pass Registration Protocol : This protocol is only executed at first contact
in order to exchange security information. It can also be executed when there is a
need to update security information or when the DRM Time is deemed inaccurate
by the RI. When this protocol is successful, it results in the establishment of

Collet Jean Bernard 18/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

an RI Context in the device, containing RI specific security informations (like its
certificate which must be saved).

– The 2-pass Identification Protocol : This protocol allows the RI and the DRM
Agent to exchange credendials. It does not include any mutual authentication or
integrity protection. Then, DRM IDs should be verified at a later point in time
using one of the variant of the protocol.

– The 2-pass and the 1-pass Rights Object Acquisition Protocol : This protocol is
used in order to get Rights Objects by the DRM Agent. This protocol assumes
the DRM Agent has a pre-established RI Context with the RI. The 1-Pass Rights
Object Acquisition Protocol is initiated unilaterally by the RI in order to meet the
messaging/push use case.

– The 4-pass and the 3-pass Confirmed Rights Object Acquisition Protocol : If the
RI requires to confirm the delivered RO’s installation, this protocol is used. Both
protocols are exactly the same as the 2-pass and 1-pass Rights Object Acquisition
Protocol, but extended with two additional messages confirming the RO installa-
tion.

– Some few other protocols are defined, but are not used in this work : the 2-pass
Join Domain Protocol, the 2-pass Leave Domain Protocol, the 2-pass Metering
Report Protocol and the 2-pass Rights Object Upload Protocol.

DRM Agent Right Issuer OCSP

Responder

DeviceHello

RIHello

RegistrationRequest

RegistrationR
esponse

OCSPRequest

OCSPRespo
nse

RORequest

ROResponse

OCSPRequest

OCSPRespo
nse

ROConfirmRequest

ROConfirmR
esponse

4-Pass

Registration

Protocol

4-Pass

Confirmed Rights

Object Acquisition

Protocol

Figure 2.9 – Example of ROAP exchanges

Figure 2.9 shows a typical RO aquisition with ROAP. Samples of every message can
be found in [17].

Collet Jean Bernard 19/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

2.3 Video Technology

Nowadays, media content on the web is delivered using three main delivery methods :
traditional streaming, progressive download and adaptive streaming.

The present description of the adaptive streaming technology is based on the Micro-
soft Smooth Streaming Specification.(see [8])

2.3.1 Traditional Streaming

Real Time Streaming Protocol (RTSP), developed by the IETF in 1998 as RFC2326,
is a good example of a traditional streaming protocol. This is a statefull protocol i.e.
it means that the server keeps tracks of the client’s state from its first connection until
its disconnection. The client communicates with the server with commands like PLAY,
PAUSE or TEARDOWN. (The last one is used to disconnect from the server)

After a session between a client and a server has been established, the server begins
sending the media as a steady stream of small packets (the format of those packet may
be then RTP or RDT). A typical packet’s size is 1452 bytes, which means that in a video
stream encoded at 1 megabits per second (Mbps), each packet carries approximately
11 milliseconds of video. RTP packets can be transmitted with either UDP or TCP ;
the latter is preferred when firewalls or proxies block UDP packets, but can also lead to
increased latency (TCP packets are re-sent until received).

Figure 2.10 – RTSP is an example of a traditionnal streaming protocol

2.3.2 Progressive Download

Another common form of media delivery on the Web today is progressive download,
which is nothing more than a simple file download from an HTTP Web server. Pro-
gressive download is supported by most media players and platforms, including Adobe
Flash, Silverlight, and Windows Media Player. The term ”progressive” stems from the
fact that most player clients allow the media file to be played back while the download
is still in progress—before the entire file has been fully written to disk (typically to the
Web browser cache). Clients that support the HTTP 1.1 specification can also seek to
positions in the media file that haven’t been downloaded yet by performing byte range

Collet Jean Bernard 20/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

requests to the Web server (assuming that it also supports HTTP 1.1).

Unlike streaming servers that rarely send more than 10 seconds of media data to
the client at a time, HTTP Web servers keep the data flowing until the download is
complete. If you pause a progressively downloaded video at the beginning of playback
and then wait, the entire video will eventually have downloaded to your browser cache,
allowing you to smoothly play the whole video without any hiccups. There is a downside
to this behavior as well—if 30 seconds into a fully downloaded 10 minute video, you
decide that you don’t like it and quit the video, both you and your content provider have
just wasted 9 minutes and 30 seconds worth of bandwidth and data.

2.3.3 Http-based Adaptive Streaming

Adaptive streaming is a hybrid delivery method that acts like streaming but is ba-
sed on HTTP progressive download. It’s an advanced concept that uses HTTP rather
than a new protocol. This technology may use different codecs, formats, and encryption
schemes, it relies on HTTP as the transport protocol and performs the media download
as a long series of very small progressive downloads, rather than one big progressive
download.

In a typical adaptive streaming implementation, the video/audio source is cut into
many short segments (”chunks”) and encoded to the desired delivery format. Chunks are
typically 2-to-4-seconds long, this length is not too short nor too long (which would in-
crease the overhead of handling the transactions). At the video codec level, this typically
means that each chunk is cut along video GOP (Group of Pictures) boundaries (each
chunk starts with a key frame) and has no dependencies on past or future chunks/GOPs.
This allows each chunk to later be decoded independently of other chunks. The encoded
chunks are hosted on a HTTP Web server. A client requests the chunks from the Web
server in a linear fashion and downloads them using plain HTTP progressive download.
As the chunks are downloaded to the client, the client plays back the sequence of chunks
in linear order. Because the chunks are carefully encoded without any gaps or overlaps
between them, the chunks play back as a seamless video.

The ”adaptive” part of the solution comes into play when the video/audio source is
encoded at multiple bitrates, generating multiple chunks of various sizes for each 2-to-4-
seconds of video. The client can now choose between chunks of different sizes. Because
Web servers usually deliver data as fast as network bandwidth allows, the client can
easily estimate user bandwidth and decide to download larger or smaller chunks ahead
of time. The size of the playback/download buffer is fully customizable.

Adaptive streaming, like other forms of HTTP delivery, offers the following advan-
tages over traditional streaming to the content distributor :

– It’s cheaper to deploy because adaptive streaming can use generic HTTP caches/-
proxies and doesn’t require specialized servers at each node.

– It offers better scalability and reach, reducing ”last mile” issues because it can
dynamically adapt to inferior network conditions as it gets closer to the user’s

Collet Jean Bernard 21/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

Figure 2.11 – Adaptive streaming is a hybrid media delivery method

home.
– It lets the audience adapt to the content, rather than requiring content providers

to guess which bit rates are most likely to be accessible to their audience.
It also offers the following benefits for the user :
– Fast start-up and seek times because start-up/seeking can be initiated on the

lowest bit rate before moving to a higher bit rate.
– No buffering, no disconnects, no playback stutter (as long as the user meets the

minimum bit rate requirement).
– Seamless bit rate switching based on network conditions and CPU capabilities.
– A generally consistent, smooth playback experience.

On the server : ”Disk File Format”

The MP4 specification allows various ways to organize data and metadata boxes
within a file. Most of the time, it may be useful to have the metadata written before the
data so that any client application can have more information about the media content
it’s about to work with before it effectively play. The MP4 ISO Base Media File Format
specification is designed to allow MP4 boxes to be organized in a fragmented manner,
where the file can be written ”as you go” as a series of short metadata/data box pairs,
rather than one long metadata/data pair. The adaptive streaming technology heavily
leverages this aspect of the MP4 file specification.

Figure 2.12 shows a file which starts with file-level metadata (moov) that describes
the file, but the bulk of the playload is actually contained in the fragment boxes that also
carries accurate fragment-level metadata (moof) and the media content (mdat). This
figures shows only two fragments, but usually, there is a fragment for each 2 seconds of
video or audio.

Fragment to deliver to the client : Wire File Format

When a client requests a video chunk, the server seeks to the appropriate starting
fragment in the file and then lifts the fragment out of the file and send it over the wire
to the client. Figure 2.13 shows what such file looks like.

Collet Jean Bernard 22/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

Figure 2.12 – Adaptive Streaming File Format (ISMV or ISMA file)

Figure 2.13 – Adaptive Streaming Wire Format

Other assets

A typical adaptive streaming architecture contains the following files :
– *.ismv This file is the media file itself defined as Disk File Format. There is one

of them for each encoded video bitrate.
– *.isma This file contains only audio. Sometimes, the audio track can be muxed

into an ISMV file instead of a separate ISMA file.
– *.ism This file is called ”the server manifest”. It describes the relationships between

the media tracks, bitrates and files on the disk. This file is used by the server, not
the client.

– *.ismc This file is called ”the client manifest”. Is describes the available streams
to the client ; the codecs used, bitrates encoded, video resolutions, etc. It is the
first file to be delivered to the client. A sample is available in Appendix C

Collet Jean Bernard 23/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

2.4 Security

This chapter is based on [9], [29] and [2].

2.4.1 Symmetric and Asymmetric Key Cryptography

Cryptography techniques allow a sender to disguise data so that an intruder can
gain no information from the intercepted data. Of course, the receiver (which can be
the sender himself) must be able to recover the original data from the disguised data.
Encryption enables techniques to identify and authenticate entities (persons or devices).

All cryptography algorithms involve substituting one thing for another, here, taking
a piece of plaintext and then computing and substituting the appropriate ciphertext to
create the encrypted message.

In symmetric cryptography, the same key is used to encrypt and decrypt (hence the
word “symmetric”, the same on both sides) ; if you use any other key to decrypt, the
result is gibberish. The main issue with this approach is to deal with key management
and distribution (as if the key is intercepted by a third party person it becomes then
useless). But with asymmetric cryptography (see Figure 2.14 from [2]), the key that’s
used to encrypt the data does not decrypt it ; only its partner does (hence the word
“asymmetric”, each side has a different key).

Different algorithms exists using symmetric or asymmetric cryptography. Here, Ad-
vanced Encryption Standard (AES) will be used on the secure storage and the content
encryption, for symmetric encryption with a key of 128 to 256 bits.

2.4.2 Public Key Infrastructure

Public-key cryptography offers not only a powerful mechanism for encryption but
also a way to identify and authenticate other individuals and devices. Before this tech-
nology can be used effectively, however, their is one drawback to deal with. Just as with
symmetric-key cryptography, key management and distribution are an issue with public-
key cryptography.

At the end-user and relying parties side, they have to provide their public key to third
party entities. But the problem is that if that public key is susceptible to manipulations
while transit. If an unknown person can substitute its public key for the valid one, the
attacker could forge digital signatures and allow encrypted messages to be disclosed to
unintended parties. That’s why it’s crucial to assure users that the key they receive is
authentic and that it came from the intended party.

But if some trusted entities exist, this problem can be solved easily. A user can send
his public key within a document called an ”X.509 Certificate”, which declares that key
is effectively associated with that particular user and that trusted party certifies it. Those

Collet Jean Bernard 24/71

CHAPTER 2. TECHNOLOGICAL CONTEXT

Figure 2.14 – In asymmetric crypto, the encrypting key cannot be used to decrypt ;
you must use its partner

trusted entities are called ”Certification Authorities” (CA). All of those assets and pro-
cesses compose a Public Key Infrastructure(PKI).

That security mechanism will be used with the ROAP protocol to certify data ex-
changes.

Collet Jean Bernard 25/71

Chapter 3
Protected content delivering on Android :
Solution design

3.1 Product description : Use Case scenarios

3.1.1 Diagram

Video Player

User

Browse
Content

Start
Playback

Pause
Playback

Pay Content
«extends»

Figure 3.1 – Use Case defined for this prototype

3.1.2 Scenario details

Use Case 1

Use Case Name : Browse Content
Summary : The user will browse the content available on the server and choose one.
Pre-condition(s) :

26

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

– The user has a viable internet connection.
– The server is online and ready.
Basic course of events :

1. The user starts the prototype and gets connected to the server.

2. He browses through the available content.

3. He chooses a content.

Alternative path(s) : If the chosen content has to be paid, the user is redirected
to a payment system (See use case ”Pay Content”).

Post-condition(s) :
– The user has chosen a content and paid it if necessary.
– He is redirected to the media player (See use case ”Start Playback”).

Use Case 2

Use Case Name : Start Playback
Summary : The user starts the playback of the content he chose.
Pre-condition(s) :
– The user has paid the content if necessary.
– The playback MAY have already been started and paused.
– The user has a viable internet connection.
– The server is online and ready.
Basic course of events :

1. The media player (re-)starts playing the chosen content.

Alternative path(s) : /
Post-condition(s) :
– The content has been played completely.
– The media player returns to the menu where the user can choose a new content

(See use case ”Browse Content”).

Use Case 3

Use Case Name : Pause Playback
Summary : The user pauses the playback.
Pre-condition(s) :
– A content is playing.
Basic course of events :

1. The media player pauses the current playback.

Alternative path(s) :
Post-condition(s) :
– The content’s playback is paused.
– The playback can be re-started (See use case ”Start Playback”).

Collet Jean Bernard 27/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

Use Case 4

Use Case Name : Pay Content
Summary : Once a content is chosen, if it is not free, the user has to pay for it to

play.
Pre-condition(s) :
– The user has chosen a paid content.
– Any payment mechanism is available and ready.
Basic course of events :

1. The payment methods are beyond the scope of this work and are left to the
implementer.

Alternative path(s) : /
Post-condition(s) :
– The content is paid.
– The user is redirected to the media player in order to start playback (See use case

”Start Playback”).

Collet Jean Bernard 28/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

3.2 Design and operating constraints

3.2.1 CMLA security policy

In order to use DRM mechanisms, key pairs and certificates are required in order to
encrypt data and sign requests. Content Management License Administrator (CMLA)
is an entity formed to provide commercial licenses for the OMA DRM 2.0 (and upper)
interoperability specification (See [4]). It defines a ”Client Adopter Robustness Rules”
which consists of a set of good practices and data/attributes to keep secure on the DRM
Agent in order to maintain certificates validity (See [3], page 67).

(...) Participating Product Implementations shall be manufactured in a
manner that is clearly designed to (a) effectively frustrate attempts to disco-
ver or reveal Device Private Keys and other confidential values as described
in the Confidentiality and Integrity Table in Appendix X and (b) detect unau-
thorized modifications of values identified as requiring integrity protection in
the Confidentiality and Integrity Table in Appendix X and stop the usage of
such values if such unauthorized modification is detected.

Content provider agrees to maintain confidentiality and/or integrity. If not, content
provider is exposed to prosecution which can result in fines of up to one million U.S.
dollars (US$1,000,000). The Client Adopter Agreement document (See [3]) defines dif-
ferent problematic situations with different fees.

The different data/attribute to secure are defined in Appendix A.

3.2.2 Post-Installable solution and Time to market

In order to reach new customers quickly, the present work will be ”post-installable”
i.e. an application which can be installed on the device from the market after being
purchased. Thus, no security certificates can be considered present at the first launch of
the application.

Being ”post-installable” presents many advantages like a quicker Time-to-market and
easy updates. Indeed, as the application may be installed at any time it must not rely on
any system components (which may take some time to be updated). Furthermore, any
update can be directly implemented and deployed.

This approach is also platform version independent ; it should work in the same way
from Android 1.5. to Android 2.1. and thus targets a lot more customers with the same
product and implementation. If the application, at the native layer uses standard code
(such as C ANSI), it simplifies the task to port it on other platforms such as iPhone or
Blackberry (the core of the application remains the same).

Collet Jean Bernard 29/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

3.2.3 Low computer power

Another huge operating constraint is the low CPU power. In order to play video
content smoothly on a mobile device, a video decoder has to be optimized. Furthermore,
if the video is protected with OMA DRM, it is often encrypted and then needs more
CPU power to be decrypted on the fly.

Table 4.2 shows the evolution of different milestone devices since the first Android
release. It clearly shows that it did not evolved in a significant way until begin 2010.
Even if new devices runs 1 GHz processors, most of the actual devices on the market are
still running 500 MHz processors.

Name : Power : Release :
HTC G1 Dream 528 MHz October 08
HTC G2 Magic 528 MHz February 09
HTC Hero 528 MHz July 09
Motorola Droid/Milestone 550 MHz December 09
Google Nexus One 1 GHz January 10

Table 3.1 – CPU Power Evolution

Collet Jean Bernard 30/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

3.3 Proposed architecture

Figure 3.2 shows the different components bundled with the proposed architecture
of the video player. Every component are detailed as follow.

Video Player

Native Video Player

Operating System

User Interface

Content Downloader

Adaptive Streaming Codec

Heuristic

OMA DRM Agent

Secure Storage

Renderer

Figure 3.2 – Proposed High-Level Architecture

User Interface

This component is a simple user interface to browse the available content, start/pause
playback and display the rendered content. It is also used if interactions are required (such
as payment).

Content Downloader

This component is used to download the necessary data such as media content
(chunks), files (manifest) or Rights Objects. In this work, the protocol used will be
HTTP.

Collet Jean Bernard 31/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

OMA DRM Agent

This component is responsible for decrypting protected content following the OMA
DRM 2.1 standard. It will be further detailed in section 3.5.

Secure Storage

This component will handle keys and certificates and maintain integrity and confi-
dentiality accordingly to the CMLA Security Policy (See section 3.2.1). It will only be
accessible from the embedded OMA DRM Agent for security reasons. It will be further
detailed in section 3.6.

Adaptive Streaming Codec

This component will take decrypted media content from the OMA DRM Agent and
decode it into frames. Those frames will be rendered using the available operating system
features. It will be further detailed in section 3.4.2.

Heuristic

This component is the heart of the adaptive streaming player. It decides if the strea-
ming quality have to be increased, decreased or maintained the same based on data
provided by the Content Downloader and the Adaptive Streaming Codec. It will be fur-
ther detailed in section 3.4.2.

A bundle approach

As most of the components are either not accessible or not existing at all, a bundle
approach was chosen. It means that everything the application needs has to be integrated
into the application, such as its own video decoder, its own DRM Agent containing its
secure storage library.

This approach offers more flexibility and a quicker time to market. As it is not based
on system requirements, this application can be installed in a very large set of device
and can be updated easily. The major drawback is that the application is heavier to deploy.

Collet Jean Bernard 32/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

3.4 Adaptive Streaming architecture

3.4.1 Playback scenario

With adaptive streaming, the playback starts with the download of a manifest file,
specific to the chosen content. It contains the details about the audio and video streams,
their quality and chunk details. Once downloaded, the heuristic chooses the minimal
quality for both audio and video to start buffering.When playback, the heuristic checks
periodically the buffered stream length. If it is less than a threshold (here arbitrarily set
to 10 seconds, which may become an application parameter), it adds the next chunk to
the downloader. It also checks an heuristic’s generated value to adapt stream quality.

Before being ready to be rendered, the chunk passes through different processes. The
first one is of course the download process which query the adaptive streaming server,
cut it on the server-side and retrieve it. Figure 3.3 shows that process for protected and
unprotected content.

Server Content

Downloader

protected content

getFile(url);

cutFile(startOffset);

package();

getFile(url);

unprotected content

Figure 3.3 – File processing at server side

Once downloaded, the chunk has to be checked if it is DRM protected. If it is, this
process starts decrypting it with its associated Rights Object. Section 3.5 will detail the

Collet Jean Bernard 33/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

process to get it. When the media content is decrypted, it has to be decoded into frames
using the pool of codec. Finally, the system takes the decoded frames to render them.

All of those processes are asynchronous to handle the different processing time. Figure
3.4 shows all the interactions between the previously described components for handling
the video part (the same works in parallel for audio and must be synchronised).

Codec
Content

Downloader
UI HeuristicDRM Agent Renderer

while(playback)

setFileChosen(fileID)

download(fileID_manifest)

setManifest(manifest)

init(video_res)

download(chunkID, video_res)

play(decryptedChunk)

add(decryptedChunk)

add(encryptedChunk)

add(chunkID)

decrypt(encryptedChunk)

decode(decryptedChunk) add(decodedChunk)

Figure 3.4 – Video playback scenario

3.4.2 The video player’s core components

Heuristic

As adaptive streaming’s most interesting feature is its capability to switch video qua-
lity, a heuristic has to be implemented in order to detect if the next video chunk will
have the same resolution, a lower one or a higher one.

This component estimates if the video quality has to be changed based on data such
as the time required to download the previous video chunk and the estimated time re-
quired by the DRM Agent to decrypt a chunk. This component’s goal is to maintain a
maximum video quality and maximum buffer ready on the queue to be rendered, with
the best resolution possible.

Collet Jean Bernard 34/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

It is also important to emphasize that with the current implementation of an adap-
tive streaming server, defined by Microsoft ([28]), there is only one file per resolution.
It means that every time a chunk is asked, it has to be cut form the original complete
file and properly packed into the wire format described earlier. This operation occurs for
every chunk (a chunk is often 2 to 4 seconds long) and results in a small overhead at
the server side which has to be taken into account into the heuristic.

In order to understand exactly how the heuristic works, let’s define a couple of va-
riables, related to the different processes used :

– playbackTime : this is the playback time of a video or audio chunk, usually 2 to 4
seconds.

– downloadTime : this is the time required to download the chunk (this includes the
HTTP request, the file’s cut on the server and the effective download time)

– decryptTime : this is the time required by the DRM Agent to decrypt a given
chunk. It does not include the time required by the ROAP protocol if it has to be
used (to get the RO for example).

– decodeTime : this is the time required by the codec to decode the chunk i.e. ex-
tracting and decoding the data which will defined as frames to be rendered.

Those variables are used to calculate a ratio, called α which is used to determine
if the quality has to be adapted. α is defined as the ratio between the amount of time
required to get a chunk by its time length.

processingT ime = downloadT ime+ decryptT ime+ decodeT ime

α = processingT ime/playbackT ime

For a given chunk, if its α equals ”1”, it means that it takes the same amount of
time to get the chunk than to play it. Having an α the closest below ”1” would be the
best case scenario, because it would mean that it is not possible to download, decrypt
and decode a larger chunk without risking lags while playback.

The α is associated with a given chunk and is used in the decoded chunk FIFO queue
(where the chunks are placed after being downloaded, decrypted and decoded). For this
queue, an average α is calculated, called αdec. This average value prevents from punctual
accidents and shows how the global system behave.

If αdec is bigger than ”1”, it means that it takes longer to process a chunk than to
play it. This is a dangerous situation because it would consume the decoded buffer faster
than it can be refilled and then cause lags while playback. The heuristic switches then
the quality one step lower to get a lower αdec.

When αdec is below a specific threshold (for example 0.5), the heuristic decides to
switch the quality one step higher to try to get a better quality.

With an αdec between ”1” and the threshold, the heuristic does not change the qua-
lity, because the risk to start processing a too heavy chunk becomes too high.

Collet Jean Bernard 35/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

Figure 3.5 shows the interactions needed to download video chunks of variable bitrate.
The resolution is determined by the implemented heuristic. It also emphasize the overhead
at the server when the chunk as to be created each time.

Adaptive
Streaming
Video Player

Adaptive
Streaming
Server

getManifest(ContentID)

manifest : byte[]

parse(manifest)

getChunk(chunkID, res)

chunk : byte[]

cutChunk(chunkID, res)

while(playback)

Figure 3.5 – Adaptive Streaming download scenario

Collet Jean Bernard 36/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

Codecs

This component receives a decrypted chunk from the OMA DRM Agent and decodes
it to produce the frames to be rendered on the display.

Its main purpose is to prepare the decoded frame, encoded with the h.264 technology
and contained in a MPEG-4 container. It also has to handle properly the fact that chunks
may be encoded with various qualities. The chosen approach for this prototype is simply
to create a pool of decoders, one per available quality. Of course, only one of them is
really running at a time. The purpose of having a pool of decoders is their availability i.e.
if the video quality changes, no decoder has to be initialized, it already is. Of course, it
causes a small overhead at the initialization of the playback but offers a quicker response
when video quality changes. It is really important regarding the fact that there is not
much time to prepare the next chunk, only the time given by the decoded chunks buffer.

Changing video resolution while playback is a brand new feature offered by adaptive
streaming. It gives the end user a very smooth user experience while playback, with no
video lag at the cost of resolution changes. Furthermore, the present prototype uses
HTTP to download video chunks. It becomes then cheaper to deploy that technolo-
gies regarding such servers are widespread. The only problem is that the HTTP server
has to be capable of slicing the original video file into a chunk properly. To do that,
some proprietary and some free solutions 1 exists on the market such as Microsoft’s IIS
extension 2.

1. http://smoothstreaming.code-shop.com/trac
2. http://www.iis.net/extensions/SmoothStreaming

Collet Jean Bernard 37/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

3.5 Streaming with OMA DRM 2.1

3.5.1 Standard specifications

As this product will consume protected content, let’s look at what the OMA DRM
2.1 specification (see [20]) says about streaming media :

(...)Thus, the basic concept for the application of OMA DRM to strea-
ming services is that OMA DRM ROs, and the ROAP, are used in the same
way as for downloadable objects/DCFs. This is specified in this standard.
The exact way of protecting streams, storing streams at a streaming server,
and transporting streams to a Device (including associated signaling) are
not specified in this specification. It is the responsibility of streaming stan-
dardisation bodies to define appropriate mechanisms that work seamlessly
together with the concept laid out in the DRM specification, especially with
the RO concept and format. (...)

This can be modeled as in figure 3.6 (from [11]). First, the client browses the content
available on the server and chooses one. After any form of payment, he receives a ”Strea-
ming Token”. Then, with this token, the client has to ask the proper Rights Object related
to its token. Finally, with the associated Rights Object, he can initiate a streaming ses-
sion and will be capable of decrypting and rendering properly the content.

Figure 3.6 – Streaming with OMA DRM 2.1

Using the OMA DRM RO’s and ROAP in the same way as OMA DRM 2.1 specify
implies two main steps :

1. DRM Agent initialization

2. Rights Objects Acquisition

Collet Jean Bernard 38/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

3.5.2 DRM Agent Initialization

With the OMA DRM 2.1 standard, a DRM Agent requires certificates and key pairs
to encrypt and sign data. Those security items have to be securely stored (see section
3.6). As it is not possible to embed those elements with the application (because it is the
same application that is distributed to any customer via the existing Android Market),
the approach was thus to download all of those data at first launch via HTTPS (for
security reasons, HTTP cannot be used for sensitive data).

Of course, the necessary previous steps of the ROAP protocol have to be followed as
described in [20], such as the 4-pass Registration Protocol.

Collet Jean Bernard 39/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

3.5.3 Rights Object Acquisition

In the approach described by the standard, the Rights Object is retrieved before the
content acquisition which means that the DRM Agent knows in advance which Rights
Issuer to work with. It is also possible to retrieve directly the protected content, and using
its metadata, starting the ROAP protocol to get the RO. It’s more flexible, because any
RI can be used This second approach will be used in this work.

Here, as the DRM Agent is directly integrated into the video player processes, it will
behave as described :

– When it receives an encrypted chunk (video or audio), it reads the metadata to
get the Content ID and the Rights Issuer URL.

– With the Content ID, it checks with the secure storage (described in section 3.6)
if a Rights Object is available.
– If it exists, the DRM Agent starts to decrypt the chunk.
– Else, the DRM Agent start the ROAP protocol to retrieve the Rights Object

and save it into the secure storage. (While the ROAP protocol is executed, the
video player can fill in the downloaded chunks buffer to save some time).

Figure 3.7 shows this process :

DRM AgentDownloader Secure Storage Decoder

alt

[true]

[false]

add(chunk)

isDRMProtected()

readMetadata()

getRO(contentID)

alt

[RO == NULL]

decrypt()
add(decryptedchunk)

startROAP(RightIssuerURL, ContentID)

add(RO, ContentID)

add(decryptedchunk)

Figure 3.7 – DRM Agent Process

Collet Jean Bernard 40/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

3.6 Secure storage : a way to securely store sen-

sitive files

Storing securely Rights Objects and other certificates is a major issue in most DRM
environment. Several approaches can be used to mitigate the risk of disclosing sensitive
keys.

3.6.1 Trusted Platform Module

The first one is simply to use a dedicated Trusted Platform Module (TPM) (See
[27]). TPM is an embedded micro-chip inside the device, where an unauthorized access
to such shielded and isolated area would be practically impossible. Only applications
considered to belong to a Trusted Software Stack (TSS) would have access to such data
by a single entry point per application. Unfortunately, the Android operating system and
the devices do not embed such technology.

Figure 3.8 – Trusted Platform Module Architecture

Figure 3.9 – Data Encryption using TPM

Collet Jean Bernard 41/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

3.6.2 Encrypted data

As the operating system provides no secured file system nor Trusted Platform Mo-
dules, sensitive data would require to be encrypted then stored directly on the application
directory. RSA Laboratories designed a protocol, called Public-Key Cryptography Stan-
dards #12 (PKCS#12, See [25]) to exchange personal information data, such as keys,
certificates, etc. which will set the basements for such secure storage in this work. This
standard offers two modes called privacy mode and integrity mode.

The privacy modes are defined by RSA as :

– Public-key privacy mode : Personal information is enveloped on the source platform
using a trusted encryption public key of a known destination platform. The envelope
is opened with the corresponding private key.

– Password privacy mode : Personal information is encrypted with a symmetric key
derived from a user name and a privacy password. If password integrity mode is
used as well, the privacy password and the integrity password may or may not be
the same.

The integrity modes are defined by RSA as :

– Public-key integrity mode : Integrity is guaranteed through a digital signature on
the contents which is produced using the source platform’s private signature key.
The signature is verified on the destination platform by using the corresponding
public key.

– Password integrity mode : Integrity is guaranteed through a message authenti-
cation code (MAC) derived from a secret integrity password. If password privacy
mode is used as well, the privacy password and the integrity password may or may
not be the same.

The integrity and privacy modes perfectly meet the security requirements of CMLA
as detailed in Appendix A. In this work, unfortunately, the public-key approaches cannot
be used in this scope, because it requires a key pair to encrypt data, which must be
stored securely, which is the exact problem we are currently trying to solve. PKCS#12
is also implemented on OpenSSL as a software, and provides the tools to create files
supported by the eponym standard. Furthermore, OpenSSL is embed into Android, but
is no API to PKCS#12 are available to the developpers.

As the public-key approaches are not available for the reasons explained earlier, the
password approaches have to be taken. Once more, the question of how to securely store
a password is asked. A easy way to mitigate that problem is to generate the password
instead of saving it. This password could be a hash of several device or user specific
values, such as its own MSISDN, the MEDI, the device version, the operating system
version, a hash of a specific part of the memory, etc.

This approach seems to be the best trade-off between security, low computer power,

Collet Jean Bernard 42/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

no secure storage available and no possibilities to modify the operating system.

Data storage scenario

The secure storage will use the API as described in Listing 3.1.

#i f n d e f INCLUDE SECURE STORAGE API 1 1
#d e f i n e INCLUDE SECURE STORAGE API 1 1

/∗∗
∗ −−
∗ Secure Sto rage API
∗ −−
∗ @ve r s i o n 1 .1
∗ @author Jb C o l l e t
∗ @date 04−01−10
∗ −−
∗/

#d e f i n e FALSE 0
#d e f i n e TRUE 1

#d e f i n e MODE INTEGRITY 0
#d e f i n e MODE INTEGRITY CONF 1

#d e f i n e STATUS OK 0
#d e f i n e STATUS ATT NOT FOUND 1
#d e f i n e STATUS ATT NOT MUTABLE 2
#d e f i n e STATUS ID ALREADY USED 3
#d e f i n e STATUS UNKNOWN ERROR 4
#d e f i n e STATUS STORAGE CORRUPTED 5
#d e f i n e STATUS WRONG PARAMS 6
#d e f i n e STATUS STORAGE NOT FOUND 7

#d e f i n e ITEM SECRET 0
#d e f i n e ITEM KEY 1
#d e f i n e ITEM CERTIFICATE 2
#d e f i n e ITEM CRL 3

/∗∗
∗ −−
∗ This method i s used i n o r d e r to add an a t t r i b u t e i n t o the s e c u r e
∗ s t o r a g e
∗ −−
∗ @param a t t r I d
∗ The a t t r i b u t e ’ s i d e n t i f i e r to f i n d i t back l a t e r (w i th the ge t
∗ method)
∗ @param i sMutab l e
∗ TRUE i f the a t t r i b u t e can be mod i f i e d l a t e r (w i th the e d i t method) , e l s e

FALSE
∗ @param mode
∗ MODE INTEGRITY i f the a t t r i b u t e has to ma in ta i n i n t e g r i t y on l y
∗ MODE INTEGRITY CONF i f the a t t r i b u t e has to ma in ta i n i n t e g r i t y and

c o n f i d e n t i a l i t y
∗ @param data
∗ An a r r a y o f b y t e s c o n t a i n i n g the a t t r i b u t e ’ s v a l u e to be s t o r e d
∗ @param i t em t yp e
∗ ITEM SECRET i f the a t t r i b u t e i s a ” s e c r e t ”
∗ ITEM KEY i f the a t t r i b u t e i s a key
∗ ITEM CERTIFICATE i f the a t t r i b u t e i s a c e r t i f i c a t e
∗ ITEM CRL i f the a t t r i b u t e i s a CRL
∗ @re tu rn
∗ STATUS OK i f the a t t r i b u t e has been s t o r e d s u c c e s s f u l l y
∗ STATUS ID ALREADY USED i f the a t t r i b u t e ’ s i d e n t i f i e r i s a l r e a d y used , then

the a t t r i b u t e i s not s t o r e d
∗ STATUS STORAGE CORRUPTED i f the s t o r a g e has been co r rup ted , then the

a t t r i b u t e i s not s t o r e d
∗ STATUS WRONG PARAMS i f a wrong paramete r has been g i v en to the method

Collet Jean Bernard 43/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

∗ STATUS UNKNOWN ERROR i f an unknown e r r o r occu r r ed , then the a t t r i b u t e i s
not s t o r e d

∗ −−
∗/

i n t s e c u r e s t o r a g e a d d (char ∗ a t t r I d , i n t i sMutab l e , i n t mode , i n t i t em type , char ∗
data) ;

/∗∗
∗ −−
∗ This method i s used i n o r d e r to r e t r i e v e an a t t r i b u t e from the s e c u r e s t o r a g e
∗ −−
∗ @param a t t r I d
∗ The a t t r i b u t e ’ s i d e n t i f i e r to f i n d i t back l a t e r (w i th the ge t method)
∗ @param data
∗ An a r r a y o f b y t e s c o n t a i n i n g the a t t r i b u t e ’ s v a l u e to be s t o r e d
∗ @re tu rn
∗ STATUS OK i f the a t t r i b u t e has been r e t r i e v e d s u c c e s s f u l l y
∗ STATUS ATT NOT FOUND i f the a t t r i b u t e i s not found on the s e c u r e s t o r a g e
∗ STATUS STORAGE NOT FOUND i f the s e c u r e s t o r a g e f i l e has not been found
∗ STATUS STORAGE CORRUPTED i f the s t o r a g e has been co r rup ted , then the

a t t r i b u t e i s not r e t r i e v e d
∗ STATUS UNKNOWN ERROR i f an unknown e r r o r occu r r ed , then the a t t r i b u t e i s

not r e t r i e v e d
∗ −−
∗/

i n t s e c u r e s t o r a g e g e t (char ∗ a t t r I d , char ∗ data) ;

/∗∗
∗ −−
∗ This method i s used i n o r d e r to e d i t an a t t r i b u t e on the s e c u r e s t o r a g e
∗ −−
∗ @param a t t r I d
∗ The a t t r i b u t e ’ s i d e n t i f i e r to f i n d i t back l a t e r (w i th the ge t method)
∗ @param data
∗ An a r r a y o f b y t e s c o n t a i n i n g the a t t r i b u t e ’ s v a l u e to be s t o r e d
∗ @re tu rn
∗ STATUS OK i f the a t t r i b u t e has been e d i t e d s u c c e s s f u l l y
∗ STATUS ATT NOT FOUND i f the a t t r i b u t e i s not found on the s e c u r e s t o r a g e
∗ STATUS ATT NOT MUTABLE i f the a t t r i b u t e has been s t o r e d as a non−e d i t a b l e

a t t r i b u t e , then the a t t r i b u t e i s not e d i t e d
∗ STATUS STORAGE NOT FOUND i f the s e c u r e s t o r a g e f i l e has not been found
∗ STATUS STORAGE CORRUPTED i f the s t o r a g e has been co r rup ted , then the

a t t r i b u t e i s not e d i t e d
∗ STATUS UNKNOWN ERROR i f an unknown e r r o r occu r r ed , then the a t t r i b u t e i s

not e d i t e d
∗ −−
∗/

i n t s e c u r e s t o r a g e e d i t (char ∗ a t t r I d , char ∗ data) ;

/∗∗
∗ −−
∗ This method i s used i n o r d e r to d e l e t e an a t t r i b u t e from the s e c u r e s t o r a g e
∗ −−
∗ @param a t t r I d
∗ The a t t r i b u t e ’ s i d e n t i f i e r to f i n d i t back l a t e r (w i th the ge t method)
∗ @param data
∗ An a r r a y o f b y t e s c o n t a i n i n g the a t t r i b u t e ’ s v a l u e to be s t o r e d
∗ @re tu rn
∗ STATUS OK i f the a t t r i b u t e has been d e l e t e d s u c c e s s f u l l y
∗ STATUS ATT NOT FOUND i f the a t t r i b u t e i s not found on the s e c u r e s t o r a g e
∗ STATUS STORAGE NOT FOUND i f the s e c u r e s t o r a g e f i l e has not been found
∗ STATUS STORAGE CORRUPTED i f the s t o r a g e has been co r rup ted , then the

a t t r i b u t e i s not d e l e t e d
∗ STATUS UNKNOWN ERROR i f an unknown e r r o r occu r r ed , then the a t t r i b u t e i s

not d e l e t e d
∗ −−
∗/

i n t s e c u r e s t o r a g e d e l e t e (char ∗ a t t r I d) ;

/∗∗

Collet Jean Bernard 44/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

∗ −−
∗ This method i s used i n o r d e r to ge t the name o f a s t a t u s
∗ −−
∗ @param s ta tu sNb r
∗ The number o f a s t a t u s r e c e i v e d a f t e r the e x e c u t i o n o f a method
∗ @re tu rn
∗ The human−r e a d ab l e name o f a s t a t u s
∗ −−
∗/

char ∗ s e c u r e s t o r a g e p s t a t u s (i n t s t a tu sNb r) ;

#e n d i f

Listing 3.1 – Secure Storage API

Figure 3.10 demonstrate the internal processes running behind the ”Add” method
available with the API.

Secure StorageDRM Agent

add (attrId ,isMutable ,mode ,item_type ,data)

STATUS_OK

openOrCreateFile();

checkIntegrity();

alt

[false] STATUS STORAGE CORRUPTED

isIDAvailable();

alt

[false] STATUS ID ALREADY USED

areParamsConsistent();

alt

[false] STATUS WRONG PARAMS

addAndCloseFile();

alt

[false] STATUSUNKNOWNERROR

Figure 3.10 – Data storage using the secure storage API

Collet Jean Bernard 45/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

Standard adaptation

Given the previously described API and the context restrictions, we can define the
secure storage structure as in Figure 3.11. This also includes definitions from PKCS#7
(See [24]).

INTEGER

version
ContentInfo MacData

ContentType AuthenticatedSafe

ID

(data)

Content

Type
EncryptedData

EncryptedContentInfo
INTEGER

version

ID

(encryptedData)

ContentType ContentEncryptionAlgorithmIdentifier EncryptedContent

ID
AlgorithmIdentifier

(See X.509)

OCTET STRING

encryptedcontent

PDU

DigestInfo
OCTET STRING

macsalt

INTEGER

iterations

default 1

DigestAlgo

rithmIdent

ifier

OCTET STRING

digest

AlgorithmIdentifier

(See X.509)

<<sequence of ContentInfo>>

Figure 3.11 – Secure Storage structure, based on PKCS#12

Here, the header of the file, the Protocol Data Unit (PDU) represents a sequence of
bits in machine-independent format constituting the secure storage file. It contains three
fields, an integer for the version (mandatory set to ”3” with PKCS#12), a ContentInfo
box and a MacData.

Collet Jean Bernard 46/71

CHAPTER 3. PROTECTED CONTENT DELIVERING ON ANDROID :
SOLUTION DESIGN

Here the MacData is mandatory (it is an optional field in PKCS#12) due to the fact
that only password integrity and privacy modes are used. This MacData box contains
again three boxes : DigestInfo, the macsalt (as a String) and an iteration counter (as an
integer). The DigestInfo box contains informations about the digest algorithm used (the
AlgorithmIdentifier defined by the X.509 specification) and the digest itself(as a String).

About the ContentInfo, it contains the data. It is composed of two boxes, the Content-
Type (which contains an identifier related to the content, here ”data”), and a box called
AuthenticatedSafe.

The AuthenticatedSafe is a sequence of ContentInfo’s. Each ContentInfo has a
ContentType set as ”encryptedData”. The second box, called EncryptedData, contains
the encrypted content and the encryption information. The EncryptedData contains the
EncryptedContentInfo, which describes the content with a ContentType (set according
to the content), a ContentEncryptionAlgorithmIdentifier (which identifies an algorithm
as defined by the X.509 specification) and the encrypted content itself (as a String).

Collet Jean Bernard 47/71

Chapter 4
Implementation and experiments

The prototype described in the document is composed of different parts : the video
player, the server which includes the media content and the DRM Server which delivers
Rights Objects related to protected content.

Unfortunately, this prototype does not support audio. It may be supported in further
releases. Its main purpose was to demonstrate the feasibility of rendering DRM protected
video at variable bitrate on Android.

4.1 The video player

4.1.1 The Android Application

The proof of concept described in this document was implemented using the Android
Software Development Kit (SDK) and Native Development Kit (NDK).

The NDK was used to build and compile the core of the application into a shared
library, here called ”libasplayer.so”. It includes the video player and the used third party
libraries except TinyXML.

This core library was wrapped into a Java application written with the SDK and used
through a Java Native Interface (JNI) glue. It is composed of two activities : ListActi-
vity.java and PlayerActivity.java.

The first activity showed, ListingActivity.java (See Figure 4.1) propose a set of movie
to the user with their names, their descriptions (replaced by the url on the screenshot)
and their prices. The user has the possibility to choose one media content which triggers
the start of the second activity.

The second activity, PlayerActivity.java (See Figure 4.2) initiate the adaptive strea-
ming video player. When the player estimates enough data has been buffered (value
defined of 3 chunks), the play button is enabled, enabling the user to start the playback.
He also has the possibility to press again the play button to pause, or to click on the

48

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS

fullscreen button to remove the control bar (this control bar comes back when the user
clicks somewhere on the screen).

Figure 4.1 – ListingActivity (Screen-
shot from the 13-08-2010)

Figure 4.2 – PlayerActivity (Screen-
shot from the 13-08-2010)

The application does not offer any permission for third party software, but uses the
following permissions :

– android.permission.INTERNET : This permission is required to access the In-
ternet (here to download the available movie list, the manifests and media chunks).

– android.permission.WRITE EXTERNAL STORAGE : This permission is re-
quired to store data on the external SD-Card. It was not a mandatory one, but
used only for development purpose (when a chunk does not work, it is stored to
be analyzed later).

Collet Jean Bernard 49/71

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS

4.1.2 Implementation

General idea

Figure 4.3 illustrate the general idea behind the prototype, a pipeline architecture.

Downloader DRMDecryptor MediaParser VideoOutput
ParsedChunkListDecryptedListDownloadedListDownloadList

Figure 4.3 – General idea Diagram

High Level Class Diagram

ListingActivity

PlayerActivity

NativeVideoPlayerLib

VideoPlayer

Manifest

DownloadList

Downloader

DRMDecryptor

DownloadedList

DecryptedList

MediaParser

ParsedChunkList

VideoOutput

StreamIndexList

StreamIndex

ChunkList

QualityLevelList

Chunk

QualityLevel

1

1

1

1

1

1

11

1

1

11

11

11

11

11

11
1

1

111111

1 1

1

1

1
1

1

1

1
1

11

1 *

**

1 1

1

*

Figure 4.4 – High Level Class Diagram

Collet Jean Bernard 50/71

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS

ListingActivity and PlayerActivity

ListingActivity and PlayerActivity are the user interface parts of the application writ-
ten with the SDK. Those parts are the only ones written in Java. They propose content
to the final user and display the playback. They are detailed in section 4.1.1.

NativeVideoPlayerLib

NativeVideoPlayerLib is a JNI file which handles every call from the Java code (here
from PlayerActivity). It initiates the video player, forward the different methods such as
play/pause. This file and the next described ones are compiled into a shared library called
”libasplayer.so” by the Android NDK. It also describes the interface which every Java
software must use in order to use the compiled library ”libasplayer.so” (the whole native
video player).

Those interfaces are :

p u b l i c s t a t i c n a t i v e i n t n a t i v e i n i t (i n t s c r e en w i d t h , i n t s c r e e n h e i g h t , S t r i n g
c o n t e n t u r l , S t r i n g con t en t po r t , S t r i n g con t en t pa t h) ;

p u b l i c s t a t i c n a t i v e i n t n a t i v e s t e p () ;
p u b l i c s t a t i c n a t i v e v o i d n a t i v e p l a y () ;
p u b l i c s t a t i c n a t i v e v o i d n a t i v e p a u s e () ;
p u b l i c s t a t i c n a t i v e boolean n a t i v e i s P l a y i n g () ;
p u b l i c s t a t i c n a t i v e i n t n a t i v e g e tDu r a t i o n () ;
p u b l i c s t a t i c n a t i v e i n t n a t i v e g e t C u r r e n t P o s i t i o n () ;
p u b l i c s t a t i c n a t i v e i n t n a t i v e g e t C u r r e n t B i t r a t e () ;
p u b l i c s t a t i c n a t i v e i n t n a t i v e g e tBu f f e r P e r c e n t a g e () ;
p u b l i c s t a t i c n a t i v e v o i d na t i v e s e e kTo (i n t i) ;
p u b l i c s t a t i c n a t i v e v o i d na t i v e s e tMu t e (boolean b) ;
p u b l i c s t a t i c n a t i v e v o i d n a t i v e d e s t r o y () ;

Listing 4.1 – Java Native Interfaces of libasplayer.so

VideoPlayer

This class is the native adaptive streaming for protected content video player itself. It
manages the download, parsing of manifests and data, decryption of protected content,
rendering... It is initialized, handled and destroy by the NativeVideoPlayerLib component.

Manifest, StreamIndexList and StreamIndex

While the VideoPlayer is initialized, the content’s path is set, resulting in the down-
load by the Downloader of the client manifest. (See Appendix C for a sample of such
manifest).

When the manifest is downloaded, it is parsed in order to retrieve information such as
the available audio and video streams. The Manifest contains one StreamIndexList which
contains every StreamIndex described while parsing the downloaded file. A StreamIndex
contains one QualityLevelList and one ChunkList.

Collet Jean Bernard 51/71

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS

QualityLevelList and QualityLevel

A QualityLevelList contains every available stream quality, called QualityLevel, for a
given content. A QualityLevel is defined by the following, extracted from the downloaded
manifest :

1. a bitrate (ex : 363000 kbps)

2. a fourCC code designing a codec (ex : H264, WVC1)

3. a width (ex : 336 px)

4. a height (ex : 192 px)

5. a codec private data to initiate the codec while rendering (used every time a new
chunk is rendered)

Example :

<Qua l i t y L e v e l B i t r a t e=”363000” FourCC=”H264” Width=”336” He ight=”192”
CodecPr iva teData=”000000016764000
DAC2CC505466840000003004000000CA3C50A65800000000168EEB2C8B0” />

Listing 4.2 – QualityLevel Sample

ChunkList and Chunk

A ChunkList contains a set of Chunk, which is a fragment of stream. The content is
divided in parts of an equal size for every available quality, it enables the possibility of
switching between quality without any loss. A chunk is defined by the following, extracted
from the downloaded manifest :

1. a chunk identification number (ex : 0, 1, 2, ...)

2. a chunk duration in 10−7s (ex : 41600000)

Example :

<c n=”1” d=”41600000” />

Listing 4.3 – Chunk Sample

DownloadList, Downloader and DownloadedList

The Downloader is the component which handles the download of the manifest and
the chunks. It uses LibCurl to manage the downloads. It works as a thread which looks
into the DownloadList if something has to be downloaded. If so, do the download,
calculate the time it took and place the result into the DownloadedList. Else, the thread
sleeps for a little while (333333 msec).

Collet Jean Bernard 52/71

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS

DRMDecryptor and DecryptedList

The DRMDecryptor component handles downloaded content from the DownloadList.
If the content is DRM protected, it looks into the secure storage to get the key, or retrieve
it from the server (via the Downloader). Once the content is decrypted, it is placed into
the DecryptedList component. DRMDecryptor also behave as a thread which looks into
the DownloadedList and work, or sleep a short time (333333 msec).

MediaParser and ParsedChunkList

Another working thread is the MediaParser component. It takes a content from the
DecryptedList, parse it to get the chunks metadata required for the rendering and store
it into the ParsedChunkList. Again, if no content is available on the DecryptedList, this
thread sleeps for 333333msec.

VideoOutput

The VideoOutput component create an OpenGL context to render properly down-
loaded content. It takes a content from the ParsedChunkList and for each frame (also
called ”sample”) contained in the chunk, decode it with the FFMpeg library an push it
on the buffer which is read by OpenGL as a texture.

Furthermore, every time VideoOutput get a new content from the ParsedChunkList,
it start a new thread to complete the download buffer to reach a total of 3chunks.

Collet Jean Bernard 53/71

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS

4.1.3 Third-party libraries bundled with the application

FFMpeg

FFMpeg is used to decode buffered frames. As the downloaded content is encoded
with h.264, it was the only decoder embed within the compiled static library. All the other
encoders and decoders were removed to get a more lightweight library. This compilation
was made with the NDK compiler for ARM (arm-eabi).

Configure command :

SDK=$NDK/ b u i l d / p l a t f o rm s / andro id −3/arch−arm
TOOLCHAIN=‘echo $NDK/ b u i l d / p r e b u i l t /∗/arm−eab i −4 .4 .0 ‘
e xpo r t PATH=$TOOLCHAIN/ b in :$PATH

EXTRA CFLAGS=”−I$SDK/ u s r / i n c l u d e − f p i c −mthumb−i n t e rwo r k − f f u n c t i o n−s e c t i o n s −
funwind−t a b l e s −f s t a c k−p r o t e c t o r −fno−sho r t−enums −march=armv5te −mtune=x s c a l e
−msoft− f l o a t ”

EXTRA LDFLAGS=”−n o s t d l i b $SDK/ u s r / l i b / l i b c . so $SDK/ u s r / l i b / l i bm . so −Wl,− rpath− l i n k=
$SDK/ u s r / l i b −L$TOOLCHAIN/ l i b / gcc /arm−e ab i / 4 . 4 . 0 ”

EXTRA EXE LDFLAGS=”−Wl,−dynamic− l i n k e r , / system/ b in / l i n k e r $SDK/ u s r / l i b /
c r t b e g i n d ynam i c . o $SDK/ u s r / l i b / c r t e n d a n d r o i d . o”

EXTRA LIBS=”− l g c c ”

FLAGS=”−−t a r g e t−os=l i n u x −−c r o s s−p r e f i x=arm−eab i− −−a rch=arm −−d i s a b l e−armvfp ”
FLAGS=”$FLAGS −−p r e f i x =. ./ b u i l d / f fmpeg ”
FLAGS=”$FLAGS −−enab le−sha r ed ”
FLAGS=”$FLAGS −−enab le−sma l l −−op t im i z a t i o n− f l a g s=−O2”
FLAGS=”$FLAGS −−d i s a b l e−encode r s −−d i s a b l e−decode r s −−d i s a b l e−p r o t o c o l s −−d i s a b l e−

muxers −−d i s a b l e−demuxers −−d i s a b l e−p a r s e r s −−d i s a b l e−d e v i c e s −−d i s a b l e− f i l t e r s
−−d i s a b l e−b s f s ”

FLAGS=”$FLAGS −−enab le−decode r=h264”

cd ffmpeg
rm − r f . . / b u i l d / f fmpeg
mkdir −p . . / b u i l d / f fmpeg
echo $FLAGS −−ex t r a−c f l a g s=”$EXTRA CFLAGS” −−ex t r a− l d f l a g s=”$EXTRA LDFLAGS” −−ex t r a

−exe− l d f l a g s=”$EXTRA EXE LDFLAGS” −−ex t r a− l i b s=”$EXTRA LIBS” > . . / b u i l d / f fmpeg /
i n f o . t x t

. / c o n f i g u r e $FLAGS −−ex t r a−c f l a g s=”$EXTRA CFLAGS” −−ex t r a− l d f l a g s=”$EXTRA LDFLAGS”
−−ex t r a−exe− l d f l a g s=”$EXTRA EXE LDFLAGS” −−ex t r a− l i b s=”$EXTRA LIBS” | t e e . . /
b u i l d / f fmpeg / c o n f i g u r a t i o n . t x t

[$PIPESTATUS == 0] | | e x i t 1
make c l e a n
make − j 4 | | e x i t 1
make i n s t a l l | | e x i t 1

Listing 4.4 – FFMpeg Configure Command

Once the static libraries available, they have to be defined on the Makefile (An-
droid.mk) in order to be used. The following sample demonstrate how to do it.

LOCAL LDLIBS := \
(. . .)
. / e x t e r n a l l i b s / l i b a v c o d e c . a \
. / e x t e r n a l l i b s / l i b a v d e v i c e . a \
. / e x t e r n a l l i b s / l i b a v f i l t e r . a \
. / e x t e r n a l l i b s / l i b a v f o rma t . a \
. / e x t e r n a l l i b s / l i b a v u t i l . a \
. / e x t e r n a l l i b s / l i b s w s c a l e . a \
. / e x t e r n a l l i b s / l i b c u r l . a \
. / e x t e r n a l l i b s / l i b t i n y xm l . a \
. / e x t e r n a l l i b s / l i b g c c . a

Listing 4.5 – FFMpeg on the application Makefile

Collet Jean Bernard 54/71

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS

OpenGL

Several ways to render video were studied. The first one was to try to use the exis-
ting code used by the operating system on its multimedia framework. This approach’s
main issue was that this code does not belong to the NDK and thus is not supported.
Furthermore, it is strongly discouraged to try to use it, due to its instability through next
Android version.

As the NDK natively support OpenGL E.S., this approach was selected and imple-
mented. Unfortunately, this approach is not the more efficient way about memory and
CPU usage.

The last possibility, which was not studied deep on this work, is to use the brand new
NDK feature about bitmaps. Basically, it is a buffer on which developers can push data
which will be rendered.

Using OpenGL E.S. 1.0 on the application is done through this command on the
Makefile (it is also possible to use OpenGL E.S. 2.0, but only on Android above version
2.0)

LOCAL LDLIBS := \
−lGLESv1 CM \
(. . .)

Listing 4.6 – OpenGL on the application Makefile

LibCurl

As downloading content from the web is a very well known use case, we used LibCurl
in order to do that and handle every exception that might rise.

It was compiled using the Android Source Tree compiler (the operating system
sources), but it should also be possible to do it with the NDK. Here, it was then consi-
dered as a system static library.

Configure command :

e xpo r t A=/home/ j b / sdk / and ro i d /mydroid
e xpo r t CC=$A/ p r e b u i l t / l i n u x−x86/ t o o l c h a i n /arm−eab i −4.2.1/ b i n /arm−eab i−gcc
e xpo r t SYSROOT=$A/ndk/ b u i l d / p l a t f o rm s / andro id −4/arch−arm
expo r t LDFLAGS=”−L$SYSROOT/ us r / l i b −Wl,−−gc−s e c t i o n s −n o s t d l i b − l c −lm − l d l − l l o g

− l g c c −Wl,−−no−unde f i ned ,−z , n o copy r e l o c −Wl,−dynamic− l i n k e r , / system/ b in / l i n k e r
”

e xpo r t CFLAGS=”−march=armv5te −mtune=x s c a l e −msoft− f l o a t −mandroid −fPIC −mthumb−
i n t e rwo r k −mthumb −mlong−c a l l s − f f u n c t i o n−s e c t i o n s −f s t a c k−p r o t e c t o r −fno−sho r t
−enums −fomit−frame−p o i n t e r −fno−s t r i c t −a l i a s i n g − f i n l i n e − l i m i t =64 −
D ARM ARCH 5 −D ARM ARCH 5T −D ARM ARCH 5E −D ARM ARCH 5TE −
DANDROID −DOS ANDROID −D NEW −D SGI STL INTERNAL PAIR H −I$SYSROOT/ us r /
i n c l u d e ”

. / c o n f i g u r e −−hos t=arm−e ab i −−without−z l i b −−d i s a b l e−manual

Listing 4.7 – LibCurl Configure Command

Usage on the Application Native Makefile (Android.mk)

LOCAL LDLIBS := \
(. . .)

Collet Jean Bernard 55/71

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS

. / e x t e r n a l l i b s / l i b c u r l . a \

Listing 4.8 – LibCurl on the application Makefile

TinyXML

TinyXML was used in order to parse downloaded XML document such as the ma-
nifest. It was compiled from the Android Source Tree (the operating system sources)
instead of the NDK. This library is already existing on the system as a shared library,
but for more compatibility, portability and maintainability, it was recompiled as a static
library in order to be embeded with the application. (The existing Makefile from the
operating system was modified in such way)

The following sample shows how to integrate that library on the application on its
Makefile.

LOCAL LDLIBS := \
(. . .)
. / e x t e r n a l l i b s / l i b t i n y xm l . a \

Listing 4.9 – TinyXML on the application Makefile

Collet Jean Bernard 56/71

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS

4.2 The video samples and the server

The video sample used for this prototype is the movie trailer of ”Oceans” of Jacques
Perrin. It was ingested using FFMpeg (not the library, but the software), patched with
the video encoder x.264 from VLC and the audio encoder faac.

Given the movie ”oceans.mp4”, the following command was used to generate a pro-
per MP4 file encoded with h.264 and faac. It starts with a first pass to create ”Groups
of Pictures” (GOP) in order to be able to switch from one resolution to another without
loosing any frame. The second pass encodes the file itself given the constraints defined
earlier. The third step consists of creating the ISMV file to be used by the adaptive
streaming server. Finally, when every file from every resolution is ready, the manifests
(ISMC and ISM files) are created.

Command lines :

This s t e p must be done one t ime on l y !
f fmpeg −y − i oceans .mp4 −an −pas s 1 −t h r e a d s 4 −vcodec l i b x 2 6 4 − f l a g s +loop+mv4 −

cmp 256 −p a r t i t i o n s +pa r t i 4 x 4+pa r t i 8 x 8+par tp4x4+par tp8x8+par tb8x8 −me method
umh −subq 7 − t r e l l i s 1 − r e f s 4 −b f 3 −d i r e c t p r e d 1 −b s t r a t e g y 1 −mbtree 0 −
f l a g s 2 +bpyramid+wpred+m i x e d r e f s+dct8x8 −code r 1 −me range 16 −g 100 −
k e y i n t m i n 50 −s c t h r e s h o l d 40 − i q f a c t o r 0 .71 −qcomp 0 .6 −qmin 10 −qmax 51 −
q d i f f 4 −p a s s l o g f i l e pass1−oceans .mp4−oceans . l o g −r 25 p a s s f i l e −oceans .mp4

The f o l l o w i n g s t e p s must be done f o r e v e r y d e s i r e d r e s o l u t i o n
f fmpeg −y − i oceans .mp4 −an −pas s 2 −t h r e a d s 4 −vcodec l i b x 2 6 4 − f l a g s +loop+mv4 −

cmp 256 −p a r t i t i o n s +pa r t i 4 x 4+pa r t i 8 x 8+par tp4x4+par tp8x8+par tb8x8 −me method
umh −subq 7 − t r e l l i s 1 − r e f s 4 −b f 3 −d i r e c t p r e d 1 −b s t r a t e g y 1 −mbtree 0 −
f l a g s 2 +bpyramid+wpred+m i x e d r e f s+dct8x8 −code r 1 −me range 16 −g 100 −
k e y i n t m i n 50 −s c t h r e s h o l d 40 − i q f a c t o r 0 .71 −qcomp 0 .6 −qmin 10 −qmax 51 −
q d i f f 4 −p a s s l o g f i l e pass1−oceans .mp4−oceans . l o g −b 79k −r 25 −s 112 x64
oceans 79 .mp4

mp4sp l i t −o oceans−79k . i smv oceans 79 .mp4

(. . .)

Those s t e p s c r e a t e the ISMC and ISM man i f e s t s
mp4sp l i t −o oceans . ism oceans−384k . i smv oceans−257k . i smv oceans−174k . i smv oceans

−147k . i smv oceans−79k . i smv
mp4sp l i t −o oceans . i smc oceans−384k . i smv oceans−257k . i smv oceans−174k . i smv oceans

−147k . i smv oceans−79k . i smv

Listing 4.10 – Content encoding commands

Available bitrates and resolutions : for the demo content.

Bitrate (kbps) : Width (px) : Height (px) : FPS :
363000 336 192 24
228000 256 144 24
135000 192 112 24
103000 176 96 24
85000 112 64 24

Table 4.1 – Demo content available

Collet Jean Bernard 57/71

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS

4.3 Results diagrams

The following section shows the diagrams resulting from the playback of the demo
video. A bandwidth drop was simulated before the download of the chunk 16. Figure 4.5
shows the duration for each chunk (which impact on its data size and thus on its process
time). Figure 4.6 shows the video quality evolution while playback. Figure 4.7 shows the
download time variation, it variates due to the chunk’s size and the bandwidth. Figure
4.8 shows the alpha evolution, which impacts on the next chunk’s download.

Figure 4.5 – Duration of the demo chunks

Figure 4.6 – Bitrate variation during a demo playback

Collet Jean Bernard 58/71

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS

Figure 4.7 – Download Time during a demo playback

Figure 4.8 – Alpha variation during a demo playback

Collet Jean Bernard 59/71

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS

4.4 Conclusions of the experiments

The experiments showed that the solution described in this work works. Unfortuna-
tely, the used compiled version of FFMpeg is not optimized for a low CPU power usage
and does not use hardware acceleration. It results in a too long frame decoding compared
to the frame playback length.

It also showed that the partial implementation of a DRM Agent could be used for
demonstration, but further tests should be done in order to evaluate the security level
of such solution. Unfortunately, regarding the bad reputation of DRM systems, it seems
unlikely that open-source or free post-installable DRM Agents could be available on the
market.

Regarding the implementation itself, it seems that the heuristic is properly calibrated.
On Figure 4.6, we can see that the bitrate increases until maximum quality. Figure 4.8
shows the Alpha variation. It progressively increases until reaching more than ”1” on
chunk 21. With this event, it starts lowering the video quality, which is visible on the
scheme. After the crash, it starts again to increase quality which unfortunately causes
another ”too high” alpha, resulting in quality decrease.

Collet Jean Bernard 60/71

Chapter 5
Conclusion

The purpose of this work was to design and implement a proof of concept for a
new way of delivering protected content on mobile devices. The chosen target platform
was Android which evolved a lot during all of this work (with five major releases). The
technique to consume the media content was adaptive streaming and the protection
mechanism was the OMA DRM 2.1.

All of those aspects were deeply studied through reading and understanding their
documentation, meeting people working with them, building some proof of concepts,
etc. In the end, a prototype was produced using lots of different technologies and tools
widely available on the market such as FFMpeg, libCurl and OpenGL E.S. Yet, those
tools are not optimized (except OpenGL E.S.) to run on a low power device as a mobile
phone. But even then, the prototype was working and proved that it can successfully be
implemented to create a commercial product with very few more efforts.

This work also emphasized a couple of weakness and strength of the used tools.
First, Android is a very nice platform to develop for thanks to the power of Java. But
unfortunately, when it’s about to make some native development in order to use existing
component, the provided tool, the NDK, is very poor which leads to a lot of problem
when trying to compile and use existing libraries implemented for a desktop computer.
In fact, compiling third-party libraries was the main issue when implementing the proof
of concept, taking a lot of effort and time.

Another weakness revealed during this work was the general problem of a very poor
documentation. For example, the FFMpeg documentation is, when existing, often in-
complete or not clear at all.

The results of the prototype showed that the heuristic was working fine and switch
quality when it is necessary, depending on the available bandwidth. It does not react too
quickly when an accident occurs, but is still able to react on time. Unfortunately, as used
libraries, here FFMpeg, are not optimized for mobile usage, it does not work (yet) quick
enough to have a really ”smooth” playback.

61

CHAPTER 5. CONCLUSION

5.1 Further work

Even if the prototype is working, lots of work remains to do.

First of all, as the h.264 decoding is clearly too slow even with a pool of decoders
ready all the time (to remove the latency caused by an initialization). Three approaches
can be studied. The first one consist in re-compiling FFMpeg with only the necessary
decoder, and optimize every possible parameter. The other approach would be to use
more efficient codecs, such as CoreAVC 1, which seems to be more adapted to the mobile
context. The last one would be to look into how to use the existing OpenCore framework
on Android. Unfortunately, this framework is not available to developers but it is possible
to natively use the installed OpenCore library (libopencore.so). This approach has the
major drawback of being less portable as different versions of OpenCore may be installed
on different devices.

Another interesting work would be to implement a fully OMA DRM 2.1 Agent for
Android. This is a huge work due to the fact the platform does not support any me-
chanisms to do so (no secure file-system, very few cryptographic tools, etc.). Nowadays,
there is no fully post-installable OMA DRM 2.1 Agent available for free or demonstration.

The existing code of the proof of concept probably require some optimizations regar-
ding memory management, threads management and processes. It’s probably possible to
optimize the existing code in such a way that it would run faster.

The last big topic for further work would be to build a server software to do adaptive
streaming for DRM protected content. To do that, two approaches are available. First,
the server cuts the video chunks and protect it with DRM on the fly. It would probably
lead to a serious overhead. The second approach would be to have a server which handles
”pre-packaged” chunks. Those chunks would have been sliced and DRM protected once
and for all. This approach seems to be the most efficient one.

1. http://corecodec.com/

Collet Jean Bernard 62/71

Bibliography

[1] Ableson, F., Collins, C., and Sen, R. Unlocking Android : A Developer’s
Guide. Manning, 2009.

[2] Burnett, S., and Paine, S. RSA Security’s Official Guide to Cryptography.
RSA Press, 2001.

[3] CMLA Founders. CMLA Client Adopter Agreement. CMLA, 12 2009.

[4] Content Management License Administrator. About CMLA. http:
//www.cm-la.com/Default.aspx.

[5] Google Inc. Android Open Source Project. http://source.android.com/.

[6] Google Inc. What is Android ? http://developer.android.com/guide/basics/
what-is-android.html.

[7] Haseman, C. Android Essentials. firstPress, 2008.

[8] Internet Information Service. Smooth Streaming Technical Overview. http:
//learn.iis.net/page.aspx/626/smooth-streaming-technical-overview.

[9] James, F. K., and Keith, W. R. Computer Networking, a top-down approach.
Pearson Addison Wesley, 2008.

[10] Open Mobile Alliance. OMA DRM Architecture Version 2.0.

[11] Open Mobile Alliance. OMA DRM Architecture Version 2.1.

[12] Open Mobile Alliance. OMA DRM Content Format Version 2.0.

[13] Open Mobile Alliance. OMA DRM Content Format Version 2.1.

[14] Open Mobile Alliance. OMA DRM Requirements Version 2.0.

[15] Open Mobile Alliance. OMA DRM Requirements Version 2.1.

[16] Open Mobile Alliance. OMA DRM Rights Expression Language Version 2.0.

[17] Open Mobile Alliance. OMA DRM Rights Expression Language Version 2.1.

[18] Open Mobile Alliance. OMA DRM Specification Version 1.0.

[19] Open Mobile Alliance. OMA DRM Specification Version 2.0.

[20] Open Mobile Alliance. OMA DRM Specification Version 2.1.

[21] Open Mobile Alliance. Open Mobile Alliance Digital Right Management
Version 1.0. http://www.openmobilealliance.org/technical/release program/drm
v1 0.aspx.

63

BIBLIOGRAPHY

[22] Open Mobile Alliance. Open Mobile Alliance Digital Right Management
Version 2.0. http://www.openmobilealliance.org/technical/release program/drm
v2 0.aspx.

[23] Open Mobile Alliance. Open Mobile Alliance Digital Right Management
Version 2.1. http://www.openmobilealliance.org/technical/release program/drm
v2 1.aspx.

[24] RSA Laboratories. PKCS #7 : Cryptographic Message Syntax Standard. http:
//www.rsa.com/rsalabs/node.asp?id=2129.

[25] RSA Laboratories. Public Key Cryptography Standards #12 : Personal In-
formation Exchange Syntax Standard. http://www.rsa.com/rsalabs/node.asp?id=
2138.

[26] Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., and Dolev, S.
Google android : A state-of-the-art review of security mechanisms.

[27] Vila, E., and Borovka, P. Data protection utilizing trusted platform module.
ACM International Conference Proceeding Series Vol. 374 (2008).

[28] Zambelli, A. IIS Smooth Streaming Technical Overview. Microsoft Corporation,
03 2009.

[29] Zeng, W., Yu, H., and Lin, C.-Y. Multimedia Security Technologies for
Digital Rights Management. Academic Press, 2006.

Collet Jean Bernard 64/71

Annexe A
CMLA : Confidentiality and Integrity
Table

Value Confidentiality Integrity Consideration
Required ? Required ? (Informative)

Device Private Key
(DRM Agent Private
Key)

Yes Yes Device Private Key (DRM Agent Private Key)
is issued by CMLA and is implemented securely
into a Device at its manufacturing time. Device
must keep its confidentiality and integrity at all
times.

Device Certificate
(Chain) (DRM
Agent Certificate
(Chain))

No No Device certificate (DRM Agent Certificate) is is-
sued by CMLA and is implemented into a Device
at its manufacturing time.

Device Details No Yes Device Details are manufacturer, model, and ver-
sion information implemented in a Device at its
manufacturing time. They are sent to RI in De-
vice Registration Request within 4-pass Regis-
tration protocol. Device must keep its integrity
at all times.

Trusted RI Authori-
ties Certificate

No Yes Trusted RI Authorities Certificate (a.k.a. CMLA
Root CA Certificate as defined in the CMLA
Technical Specification) is issued by CMLA and
is implemented into a Device at its manufactu-
ring time. Device must keep its integrity at least
until its expiry time.

Domain Context - - RI sends Domain Context to a Device during 2-
pass Join Domain Protocol. Device should keep
this information at least until it leaves the do-
main. Device must keep confidentiality and inte-
grity of the component information for the Do-
main.

65

ANNEXE A. CMLA : CONFIDENTIALITY AND INTEGRITY TABLE

Domain ID No Yes Domain ID is sent to a Device by ROAP- JoinDo-
mainResponse message. Device must keep inte-
grity of the association between Domain ID and
Domain Context information.

Domain Key Yes Yes Domain Key is sent to a Device in Join Domain
Response. Device must keep its confidentiality
and integrity at all times.

Expiry Time No Yes Expiry Time is sent to a Device in Join Domain
Response.

RI public Key No Yes Domain Context shall contain the RI public key
for the case when the Domain Context Expiry
Time extends beyond the RI Context Expiry
Time. (DRM spec, 5.4.2.2.1)

RI Context - - Device establishes RI Context with an RI through
4-pass Registration protocol. Device should keep
this information at least until its expiry time.
Device must keep confidentiality and integrity
of the component information for the RI.

riURL No Yes riURL is sent to a Device via ROAP- Registra-
tionResponse message.

Agreed protocol pa-
rameters

No Yes Agreed protocol parameters are shared between
a Device and an RI by ROAP-DeviceHello and
ROAP-RIHello sequence.

Protocol version No Yes Protocol version is shared between a Device and
an RI by ROAP-DeviceHello and ROAP-RIHello
sequence.

Trusted Device Au-
thorities

No Yes Trusted Device Authorities are sent to a Device
by ROAP-RIHello message.

RI ID No Yes RI ID is sent to a Device by ROAP-RIHello mes-
sage.

Information whether
an RI has stored De-
vice Certificate

No Yes

OCSP Responder
Certificate Chain
(Public Key)

No Yes OCSP Responder Certificate is sent to a Device
by RI’s responses during 4-pass, 2-pass, 1-pass
ROAP protocol.

Current (valid)
OCSP response

No Yes OCSP response is sent to a Device by RI’s res-
ponses during 4-pass, 2-pass, and 1-pass ROAP
protocol.

RI Certificate Chain
(Public Key)

No Yes RI Certificate Chain is sent to a Device by
RI’s responses during 4-pass, 2-pass, and 1-pass
ROAP protocol.

RI certificate valida-
tion data

No Yes

Domain Name Whi-
telist

No Yes Domain Name Whitelist is sent to a Device by
ROAP-RegistrationResponse message.

Expiry Time No Yes
Replay Protection
Cache

- - Device must have two kinds of replay protection
caches and keep their integrity at all times.

Collet Jean Bernard 66/71

ANNEXE A. CMLA : CONFIDENTIALITY AND INTEGRITY TABLE

with ¡GUID, RITS¿
entries

No Yes

with only ¡GUID¿
entries

No Yes

Device RO / Do-
main - RO

- - RI sends Device RO /Domain RO to a Device
by ROAP-ROResponse. Domain RO may also be
received by other methods.

Permission /
Constraint

No Yes

Content Encryption
Key

Yes Yes

Z Yes Yes
Key Encryption Key Yes Yes
Rights Encryption
Key

Yes Yes

MAC Key Yes Yes
Status information
for Stateful Rights

No Yes Device must keep status information for each
stateful RO and keep updating it when the as-
sociated content is consumed. Device must keep
its integrity as long as RO is usable.

Transaction ID No No
GroupKey Yes Yes The GroupKey is included in the extended hea-

ders of a DCF within an OMADRMGroupID box.

Collet Jean Bernard 67/71

Annexe B
Rights Object Sample

The rights depicted in this example grant unconstrained permission to play the cor-
responding DRM Content.

<o−e x : r i g h t s
xmlns :o−ex=” h t t p : // o d r l . ne t /1 .1/ODRL−EX”
xmlns :o−dd=” h t t p : // o d r l . ne t /1 .1/ODRL−DD”
xmlns:oma−dd=” h t t p : //www. o p e nmob i l e a l l i a n c e . com/oma−dd”
xm ln s : d s=” h t t p : //www.w3 . org /2000/09/ xm ld s i g#”
xmln s : x enc=” h t t p : //www.w3 . org /2001/04/ xmlenc#”
o−e x : i d=”C. 1 ”>

<o−e x : c o n t e x t>
<o−d d : v e r s i o n>2 .1</o−d d : v e r s i o n>
<o−dd : u i d>Righ t sOb j e c t ID</o−dd : u i d>

</o−e x : c o n t e x t>
<o−ex : ag r eement>

<o−e x : a s s e t>
<o−e x : c o n t e x t>

<o−dd : u i d>Content ID</o−dd : u i d>
</o−e x : c o n t e x t>
<o−e x : d i g e s t>

<ds :D iges tMethod A lgo r i thm=” h t t p : //www.w3 . org
/2000/09/ xm ld s i g#sha1 ”/>

<d s :D i g e s tVa l u e>DCFHash</ d s :D i g e s tVa l u e>
</o−e x : d i g e s t>
<d s :K e y I n f o>

<xenc :Enc ryp tedKey>
<xenc :Enc rypt i onMethod A lgo r i thm=” h t t p : //

www.w3 . org /2001/04/ xmlenc#kw−aes128 ”/>
<d s :K e y I n f o>

<d s :R e t r i e v a lMe t hod URI=”
REKReference ”/>

</ d s :K e y I n f o>
<xenc :C iphe rDa ta>

<x en c :C i ph e rVa l u e>EncryptedCEK</
x en c :C i ph e rVa l u e>

</ xenc :C iphe rDa ta>
</ xenc :Enc ryptedKey>

</ d s :K e y I n f o>
</o−e x : a s s e t>
<o−e x : p e rm i s s i o n>

<o−dd : p l a y />
</o−e x : p e rm i s s i o n>

</o−ex : ag r eement>
</o−e x : r i g h t s>

Listing B.1 – Rights Object Sample

68

Annexe C
Adaptive Streaming Client Manifest
Sample

The following ISMC file is the one used with the demo content.

<?xml v e r s i o n=” 1 .0 ” encod ing=” ut f−8”?>
<!−−Created wi th mod smooth st reaming (v e r s i o n =1.0 .8)−−>
<SmoothStreamingMedia Ma jo rVe r s i on=”1” Mino rVe r s i on=”0” Durat i on=”1191200000”>

<StreamIndex Type=” v i d eo ” Subtype=”H264” Chunks=”38” Ur l=” Qu a l i t y L e v e l s ({
b i t r a t e }) /Fragments (v i d eo={ s t a r t t ime }) ”>

<Qua l i t y L e v e l B i t r a t e=”363000” FourCC=”H264” Width=”336” He ight=”
192” CodecPr ivateData=”000000016764000
DAC2CC505466840000003004000000CA3C50A65800000000168EEB2C8B0” />

<Qua l i t y L e v e l B i t r a t e=”228000” FourCC=”H264” Width=”256” He ight=”
144” CodecPr ivateData=”000000016764000
DAC2CC50404E840000003004000000CA3C50A65800000000168EEB2C8B0” />

<Qua l i t y L e v e l B i t r a t e=”135000” FourCC=”H264” Width=”192” He ight=”
112” CodecPr ivateData=”000000016764000
CAC2CC50C3E84000003000400000300CA3C50A6580000000168EEB2C8B0” />

<Qua l i t y L e v e l B i t r a t e=”103000” FourCC=”H264” Width=”176” He ight=”96
” CodecPr ivateData=”000000016764000
CAC2CC50B3684000003000400000300CA3C50A6580000000168EEB2C8B0” />

<Qua l i t y L e v e l B i t r a t e=”85000” FourCC=”H264” Width=”112” He ight=”64”
CodecPr iva teData=”000000016764000

BAC2CC51C9A1000000300100000030328F14299600000000168EEB2C8B0” />
<c n=”0” d=”40000000” />
<c n=”1” d=”41600000” />
<c n=”2” d=”28400000” />
<c n=”3” d=”37200000” />

(. . .)
<c n=”36” d=”40400000” />
<c n=”37” d=”28000000” />

</ StreamIndex>
<StreamIndex Type=” aud io ” Subtype=”mp4a” Chunks=”38” Ur l=” Qu a l i t y L e v e l s ({

b i t r a t e }) /Fragments (aud io={ s t a r t t ime }) ”>
<Qua l i t y L e v e l B i t r a t e=”95000” FourCC=”mp4a” WaveFormatEx=”

FF00020044AC0000E02E00000100100002001210” />
<c n=”0” d=”40170521” />
<c n=”1” d=”41563719” />
<c n=”2” d=”28328345” />
<c n=”3” d=”37151927” />

(. . .)
<c n=”36” d=”40402721” />
<c n=”37” d=”27631746” />

</ StreamIndex>
</SmoothStreamingMedia>

Listing C.1 – Adaptive Streaming Client Manifest Sample

69

