
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Crowdsourcing applied to Smartparking : challenges and prototype development

Bogaerts, Gary; Jones, François

Award date:
2017

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/crowdsourcing-applied-to-smartparking--challenges-and-prototype-development(15b0d0cb-0e5e-4b49-8d69-e6a2263525dc).html

UNIVERSITÉ DE NAMUR

Faculty of Computer Science

Academic Year 2016–2017

Crowdsourcing applied to Smartparking :
challenges and prototype development

BOGAERTS Gary JONES François

Supervisor: (Signed for Release Approval - Study Rules art. 40)
Bruno Dumas

Co-supervisor: David Gillot

A thesis submitted in the partial fulfillment of the requirements

for the degree of Master of Computer Science at the Université of Namur

iii

Acknowledgements
We first would like to thank our thesis supervisor Bruno Dumas for his excellent guid-

ance. His door was always open to us and we are grateful for the many insightful recom-

mendations he gave us during the writing of this thesis.

We also would like to express our sincere gratitude to David Gillot, the CTO of Com-

muniThings, for his help on theoretical, technical and logistical aspects, and also for all

the resources he provided us with.

We would also like to thank all members of CommuniThings that have helped us

along the way, P. Rodríguez, J. Tomero, X. Sand and L. Schmidt for sharing with us their

experience as software developers.

Finally we also would like to thank our families, friends and neighbors, for their con-

stant love and support.

v

Contents

Introduction 1

I Smartparking and Crowdsourcing
Concepts and Related Research 5

1 Related Works & Objectives 7

1.1 Overview . 7

1.2 SmartParking . 8

1.2.1 Parking Guidance and Information System (PGIS) 8

1.2.2 Transit-Based Information systems 8

1.2.3 Smart Payment systems . 9

1.2.4 E-Parking systems . 9

1.2.5 Automated Parking . 9

1.3 SmartParking applications . 10

1.3.1 CommuniThings’s StopBuy . 10

The StopBuy Platform . 11

1.3.2 SPARK: Smart PARKing management system 12

1.3.3 Reservation-Based Smart Parking Systems 13

1.3.4 Google’s Open Spot . 17

1.3.5 ParkSense . 18

1.4 Common issues between Smartparking solutions and proposed approach 20

2 Users Motivations and Commitment 23

2.1 Overview . 23

2.2 Analyzing the main factors of contribution 24

2.3 Building a community . 27

2.3.1 Identity based commitment . 27

2.3.2 Bond based commitment . 28

2.3.3 Need-based commitment . 29

2.3.4 Normative Commitments . 31

2.3.5 Overall . 32

2.4 User Reputation and punishment . 32

vi

3 Economy 35

3.1 Overview . 35

3.2 Virtual Economy . 35

3.3 Existing virtual economies in SmartParking 36

3.3.1 KurbKarma . 37

3.3.2 CrowdPark . 38

3.4 Dynamic Pricing . 39

3.4.1 SFpark . 39

3.4.2 UberX . 41

4 Security & Privacy 45

4.1 Overview . 45

4.2 Identifying security risks and mitigations 45

4.3 Testing . 48

4.4 User expectations and perceptions of privacy 50

5 Reliability 53

5.1 Overview . 53

5.2 Seller’s reliability . 53

SpotCheck . 54

ActCheck . 54

II Software Development
Prototype Application 59

6 Context & Analysis 61

6.1 Context of the application . 61

6.1.1 Parking spot exchange model . 61

6.1.2 Buyer/Seller Match algorithm . 61

6.1.3 User Experience . 62

6.1.4 Deliverables . 62

Parking Sensor Module . 62

StopBuy Mobile Application Module 62

StopBuy Web Application Module 63

6.2 Analysis of the required system . 64

6.2.1 Parking Spot Exchange Model . 64

Seller’s perspective . 64

Buyer’s perspective . 66

6.2.2 Virtual Economy . 68

Cost-Benefit analysis . 70

vii

6.2.3 User reputation score . 73

6.2.4 Matching Algorithm . 74

6.2.5 Activity Detection and Ephemeral Parking 76

7 Technologies 79

7.1 Mobile Framework . 79

7.1.1 Overview . 79

7.1.2 NativeScript . 79

7.1.3 Native . 80

7.1.4 Xamarin . 81

7.1.5 Ionic2 . 81

7.1.6 Overall . 82

7.2 FIWARE . 82

7.2.1 Publish/Subscribe Context Broker GE 83

7.2.2 Orion Context Broker . 84

7.3 Laravel . 85

7.3.1 Artisan CLI . 85

7.3.2 Eloquent ORM . 85

7.3.3 Passport . 85

7.3.4 Queues and Jobs . 86

8 Implementation 87

8.1 Overview . 87

8.2 Architecture . 87

8.2.1 Big Picture . 87

8.2.2 SQL Database . 88

8.2.3 ORION Context Broker . 88

8.2.4 Laravel Web Application . 89

8.2.5 NativeScript Client . 89

8.3 Mobile Application review . 91

8.3.1 Map Screen . 91

Buying a spot . 92

Selling a spot . 94

8.3.2 Login and Register . 94

8.3.3 Options Screen . 94

Vehicle page . 95

8.3.4 Profile page . 96

8.3.5 Account page . 97

8.4 Possible Improvements . 97

8.4.1 Occupancy and reporting . 97

8.4.2 Dynamic Pricing . 98

viii

8.4.3 Friends . 99

8.4.4 Buying a spot in advance . 100

8.4.5 Improved communications between buyers and sellers 100

Conclusion 101

Glossary 105

1

Introduction

“What is the city but the people”
William Shakespeare - The Tragedy of Coriolanus

“Please let there be a parking spot nearby”. A little prayer we all made at least once

in our life as drivers, and certainly more than once when driving in urban areas. Car

parking in cities has always been a nightmare, and the increasing amount of vehicles in

use is making the problem worse everyday. But if there is something mankind can often

relies on to make daily life easier, it is the increasing usage of technology, particularly

automation.

With the emergence of the Internet of Things since the early 2000, the huge increase

in the amount of smartphones owners, the improvement of the computational power of

those phones and associated sensors, it is then not surprising that the scientific commu-

nity has been searching for technological solutions for common issues in cities such as

parking. Improving cities as a whole through the usage of technology is the main ambi-

tion of what we call nowadays “Smartcity” projects. With Smartcities naturally came the

term “SmartParking”, a notion that encompasses many solutions to the parking issues in

urban areas, taking very different forms and integrating numerous IoT concepts.

In parallel, Crowdsourcing is also a domain related to information technologies that

has considerably grown in the recent years. With the increasing amount of data and

bandwidth handled by computers and IT systems, a large amount of information is made

available and this information may become more useful everyday. With this in mind,

asking people to provide the information can prove to be a relatively cheap approach to

many challenges, which is the definition of Crowdsourcing.

Interestingly, Smartcities and Crowdsourcing have grown alongside one another for

years now, and more than once they have been merged with the objective of creating so-

lutions improving peoples daily life. But in the more specific case of Smartparking, the

synergy of the two haven’t been applied deeply yet.

2 Introduction

This is why we wanted to explore this idea with our master thesis. Collaborating with

CommuniThings, a company already active in the SmartParking business, but less in the

crowdsourcing area, gave us insight of the current state of the field. But since we wanted

crowdsourcing to be an important part of our thesis, the idea came to try to develop a

SmartParking solution for CommuniThings that would massively rely on crowdsourced

data. But without prior extensive knowledge of the crowdsourcing domain, it became

important to identify the biggest impact crowdsourcing could have on smartparking so-

lutions. Hence our research question :

“What are the major themes to consider when relying on crowdsourcing for a

Smartparking system”

Smartparking systems can take many shapes and integrate very different concepts

from one another, even without taking crowdsourcing into account. Our objective was

then to determine which of those concepts were less useful when relying on crowdsourc-

ing, and which were even more important, in order to then be able to concentrate our

researches on those concepts and their implications, and finally find ways to use them to

develop a prototype that would efficiently apply Crowdsourcing aspects to Smartpark-

ing.

Methodology

First thing to consider is that the choice to do a single master thesis in duo was a choice we

made and was not something we were stuck with by having a similar subject. Gary and

I have been collaborating in nearly all our academic group projects and reports (meaning

all of them when groups weren’t randomized) for the last 4 years, and working along-

side one another as become really natural for us, and has proven time and time again to

be more effective for the both of us.

Thus when time came to choose a master thesis subject, doing two master’s thesis

or one combined was never really a question as long as it was authorized by the uni-

versity, which obviously was. We then had to find a subject that would keep us both

interested and kindle the interest of one of our professors to accompany us in this jour-

ney. Through contacts with CommuniThings, for whom Gary had worked previously,

and already done his bachelor graduate thesis at the Institut Paul Lambin (from where

we both graduated before coming in Namur for our Master), we established a global

theme around crowdsourced parking, a subject that happened to share common points

of interest with a subject that Professor Dumas was proposing, and after a meeting with

him and David Gillot, CommuniThings CTO, both agreed to supervize us for this thesis.

3

It was decided early that our thesis would have a theoretical approach, a state of

the art related to SmartParking, its objectives and impacts, as well as the crowdsourcing

advantages for smartparking, and a practical approach, a proof of concept of what we re-

searched, and something that could merge with the others projects CommuniThings was

working on. Those two approaches are represented by the two parts of this document.

For the theoretical approach, our methodology of work as a duo was first to identify

SmartParking solutions developed in the recent years, including or not crowdsourced

component, and then to determine the limits and issues of these solutions. Afterward,

and in collaboration with CommuniThings, we started to imagine what our ideal system

would look like, and the concepts behind it. The importants concepts we wanted to try

out led us to determine several main themes of research. Those theme would be our

biggest challenges to realise our SmartParking solution, and also compose our theoret-

ical answer to our research’s question, the application of crowdsourced concepts to the

smartparking domain.

Having our domains of research identified, we spitted up the work depending on

who was most interested by each theme. Gary being way more obsess about security

and privacy issues than myself (sometimes to an annoying extend communication-wise

), he took over those chapters, while being the more social person, I was more interested

in the community development and users motivations to participate to crowdsourced

platforms, and also in the data reliability since it was in a way related to the commu-

nity in the sense of “How can me trust our users”. The remaining chapter we wanted to

develop, about the Economic design of our application was done in collaboration by hav-

ing both of us find information on other applications economic models and then compare

them.

As for the practical work, our task was divided in several milestones. The first one

was to develop a small application to familiarize ourselves with the technologies used

by CommuniThings, and having as a purpose to register multiple sensors values such as

gyroscope and accelerometer, in save those value in CSV files that were afterwards used

by CommuniThings to generate a tree of decision able to determine if a user is walking,

driving or standing still based on his smartphone sensors. This was also the first step in

what was going to become the passive parking detection.

For that application, our tasks repartition was to have Gary work on the sensor’s data

collection, while I was developing the UI and binding it to the processes Gary was im-

plementing. All of this was done with NativeScript.

Once this task was accomplished, we were finally able to dive in the main applica-

tion itself, the SmartParking system. For that milestone, we had an enormous system to

4 Introduction

develop. On one side, the mobile application, with all its UI and inner mechanisms, and

on the other side, the server handling the requests and trades. Since these two systems

had to be done in parallel, it was rapidly clear that our best course of action was to have

one of us working on the mobile application and the other on the server. Thus it was

decided that I would be doing the mobile part, while Gary was working on the server

side of things.

For both the server and the mobile application, we were given access to Commu-

niThings GIT repositories, and created a branch of their existing systems. This meant

that we were able, thanks to CommuniThings, to rely on the work previously done by

their developer as a base for our own tasks. For example, the map module of the mobile

application was already existing in their own application, and we “simply” had to mod-

ify it and the interface to add our own business logic. Additionally, this also meant that

CommuniThings’s developer where able to guide us with the existing systems, as they

were obviously familiar, much more than we were back then, with the frameworks.

Even if we were working on systems being on appearance independent, it was nec-

essary for us to work together, in the same room. Firstly because our system had to

communicate and the chances of our communication messages working as intended on

first try was really low, and we had to make adjustments continuously to either system,

which is obviously easier when we both work in the same room. Secondly, because even

if we were working on different systems, having the other part of our duo close by was

often a big help when stuck on some bugs or unexpected behaviors.

Within our system as a whole, we also implemented features step by step, reach-

ing milestones one after each other. We first developed our users related functionalities

(user registration, login) as none of those were existing within the CommuniThings sys-

tems. The following steps were the management of the vehicle, related to the users. This

included all the features to allow an user to register its vehicle, to the management of

vehicle’s conflict of ownership.

Once we had users and vehicle all the way down to the database, we were able to

start working on the trades themselves. The firsts iterations were really basic, and we

progressively added more feature to the trades, ending with the handling of the points

used for the trades.

Globally, things went rather smoothly, as we were used to work together, and known

each other for quite some time now, which facilitates our interactions when we know the

work ethic and habits of the other.

5

Part I

Smartparking and Crowdsourcing

Concepts and Related Research

7

Chapter 1

Related Works & Objectives

1.1 Overview

The Internet of Thing is a term first used in 1999 by a British researcher named Kevin

Ashton. Even though some of the core concept pre-date 1999, the name remained and

since then it has become a constantly increasing field of research and a bigger market

every passing year.

Although it comprise many concepts and systems, the IoT field can be described as

the inter-connection between “Things”, that could either be (but not limited to), common

everyday life items, buildings and vehicles. The specificity of the IoT is to complement

these items with sensors, controllers and other led, alongside an Internet connection,

usually through WIFI. The whole item is then connected to others system such as smart-

phone for computation of the data, and to servers for the storage [10].

One of the most promising uses for emerging “Internet of Things” technologies is im-

provement in urban mobility.

Currently, a typical commuter car is parked on average 95% of the time [32]. This rep-

resents a huge burden on infrastructure as an important surface needs to be dedicated

to the task of hosting parked cars. On top of this waste of space, traffic management in

metropolitan environments is also a critical aspect of urban planning where the commute

model of today is experiencing limitations, especially when the flow of vehicles is exac-

erbated during peak hours. For example, it is estimated that around 30% of vehicles on

the road in city centers are searching for a parking spot [2]. This in turn has measurable

consequences in terms of air pollution.

Self-Driving vehicles could potentially solve these problems almost entirely by reduc-

ing the total number of vehicles in circulation, as shared self-driving cars can be much

more often on the road providing a useful transportation service. However, self-driving

vehicles are not yet widely accepted and extensive investment in infrastructure and man-

ufacturing would probably be needed before mass adoption is possible.

8 Chapter 1. Related Works & Objectives

Another possible solution to the traffic congestion issue is an ensemble of applica-

tions, system and other prototype sharing the name SmartParking. The concept isn’t

new and has been around nearly since the beginning of the IoT. A lot of Smartparking

solutions have been developed in the past years. They share in common a will to reduce

traffic congestion in urban centers through a better organization of the parking lot and

parking spots attribution.

1.2 SmartParking

First of all, it is important to define clearly what SmartParking is, as the term has been

used a lot and in multiple contexts. SmartParking systems can be very different from one

to another, as sometimes, even though the final goal of the system remains an automation

or better organization of the parking spots, the purpose of the systems differs greatly. To

get a better grasp of the differences between such systems, a study [14] has sorted Smart-

Parking solutions in five categories.

1.2.1 Parking Guidance and Information System (PGIS)

The main category, also the one that usually comes in mind first when talking about

SmartParking. The goal of PGI systems is to provide assistance to users for parking by

giving indications on the occupancy of areas that can either be cities or defined parking

lots. Such systems usually relies on vehicle detection sensors that detect when vehicles

are leaving or arriving to parking spot, in order to obtain a global view of the occupancy

situation. This information is then transmitted to the users and the system can then redi-

rect them to the areas with the lowest occupancy, improving their chances to find a spot.

1.2.2 Transit-Based Information systems

Similar to PGI systems, Transit-based systems also focuses on directing users toward ar-

eas where they will find parking spot, but those systems emphasize on park-and-ride

facilities, and also provide real-time informations about public transportations schedule,

availability and traffic conditions. Those systems are designed to have the user plan its

route in advance by knowing which means of transportation he will be able to use to

optimize his travel time.

1.2. SmartParking 9

1.2.3 Smart Payment systems

These systems aims to either improve or replace existing parking payment methods, such

as parkmeters, that can still be found in nearly all cities. The objective behind new and

technology assisted payment methods is to reduce the maintenance cost of the city in-

frastructure dedicated to parking management, and also reduce the dependance to cash

money in parking situations.

1.2.4 E-Parking systems

These systems offers the possibility to reserve parking spots within defined parking lot,

to ensure the users that they will find a spot in the parking area of their choice, with

absolute certitude, something that PGIS and TBIS cannot really offer. Such systems are

sometimes coupled to PGIS.

1.2.5 Automated Parking

This category refers to parking lots that attribute spots and place the vehicle in it auto-

matically through computer controlled mechanism. The purpose is the optimization of

the parking space. Example of such system : FATA Skyparks1

Going further

In the case of this master thesis, the most interesting systems, in conjunction with Com-

muniThings needs, are the PGI systems. Smart Payment and Automated Parking are

systems rather specific and are not really what we aimed to explore within the Smart-

Parking field. E-Parking solutions has some interesting concepts, the reservation of park-

ing spots, but mostly when coupled to other systems and are not only relying on defined

parking lots. TBI and PGI systems share common patterns, purposes and requirements

to work, and are what is commonly referred to when talking about SmartParking. We

thus have oriented our research toward such systems to discover what was already ex-

isting as SmartParking systems providing assistance to find spots in urban area, which is

one of the work field for CommuniThings. In the following section we will present some

solutions to the SmartParking question, including CommuniThings very own “StopBuy”.

1http://www.fatainc.com/product_automated_parking_systems.htm

10 Chapter 1. Related Works & Objectives

1.3 SmartParking applications

1.3.1 CommuniThings’s StopBuy

CommuniThings2 is a startup company founded in 2014 in Brussels. The company

is active in the Internet of Things and is involved with multiple SmartCity projects. The

company’s aim is to bring value to citizens, businesses and authorities alike, by provid-

ing and combining multiple services.

CommuniThings leads “Sense and the City”, a pilot project in Air Quality monitoring

in the city of Brussels. Frequent and geographically distributed measurement of various

air pollutants are taken from a mobile platform installed on city vehicles. Health and

mobility recommendations are formulated based on the data. Citizens can explore a real-

time map of polluted zones.

CommuniThings also offers “StopBuy”, a smart parking solution that is targeted at

local and small businesses. Occupancy sensors in parking spots detect the presence of

a vehicle. Users are allowed to park free of charge for a limited time in the course to

increase vehicle rotation. The system reports to city agents when a user overruns the al-

lowed parking time.

The main purpose of our collaboration with CommuniThings is to leverage their ex-

perience with Smart City applications in the aim to design a practical model for our

“Parksharing” application. Through the “StopBuy” platform, CommuniThings has gained

important knowledge on practical considerations when dealing with vehicles and park-

ing spots that we are eager to learn.

Moreover, this project is a great opportunity for us to work with a team of professional

developers and integrate a real-world development cycle. Ultimately, our hope is that

CommuniThings will be able to use the proof of concept we developed as a basis for a

future version of the “StopBuy” platform.

2http://www.communithings.com/

1.3. SmartParking applications 11

The StopBuy Platform

The platform was designed with the specific goal of enhancing the rotation rate in

parking spots situated in crowded city centers. A slow rotation rate entails that local

businesses are penalized since customers are discouraged by costly or scarce parking ac-

cess and will tend to shop in larger retail stores with dedicated parking space.

To counter this, users of the StopBuy platform can see in real-time free StopBuy park-

ing spots and their location. These spots allows free of charge short term parking, typi-

cally 20 to 40 minutes. Users are requested to choose a convenient free spot and are then

guided to it. Business partners can then offer more parking time when the user spends

money in their store through the StopBuy application. This combination of incentive is

proving to be very effective in the city of Mons where 110 StopBuy spots are currently

deployed over 21 distinct zones. While the rotation rate of those parking spots was not

quantified before the deployment of StobBuy, it was estimated, based on observation

on other parking spots, that only 1 or 2 cars occupied the spot per day (9h-18h). Now,

the rotation rate is on average between 8 and 16 cars per day, depending on the street.

Communithings has consequently received positive feedback from local business part-

ners that saw a marked increase in visitation.

The StopBuy platform also offers advantages for parking enforcement officers as cars

overrunning their allowed time are directly notified to officers through a specialized

module in the mobile application. This represents a clear efficiency gain since officers

no longer need to visually inspect numerous parking tickets and cars for overtime de-

tection. With the StopBuy platform, overtimed parking have virtually no chances to go

unnoticed.

Another module provides statistics about parking spot usage over time, in the aim to

support future urban planning decisions with quantified data. The application can also

be used to make special reservation for disabled people or deliveries.

As of today, the StopBuy platform works only with dedicated parking spots fitted

with specialized underground sensors. The sensors are the main providers of data to the

12 Chapter 1. Related Works & Objectives

platform, detecting when cars arrives on the spot and when they leave, as well as the

duration of their stay.

While the platform provides measurable benefits in favoring small business and park-

ing rotation, its reliance on sensors represent a cost in infrastructure that would be dif-

ficult to scale to an entire city. Moreover, the platform is specifically targeted at local

shoppers but other profiles such as commuters will find little value in using this plat-

form.

In order to have further impact on urban mobility while leveraging the existing plat-

form, CommuniThings has expressed interest in developing a park sharing service usable

outside of dedicated StopBuy zones.

1.3.2 SPARK: Smart PARKing management system

Intelligent parking management systems are widely in use today for medium and large

scale indoor parking. Such systems vary greatly in their capabilities which might include

the display of the number of available parking spaces at the entrance 3, the use of colored

light indicators to make it visually easier to identify a free spot 4, mobile payment facili-

ties via smartphones 5 etc...

A modern parking management system named SPARK is presented in [33]. The paper

presents a feature-rich prototype that makes use of Wireless Sensor Networks or WSN in

order to reduce costs and facilitate deployment. A dedicated sensor needs to be installed

on every parking spot, however sensors are battery-powered and wireless making them

autonomous, so there is little deployment cost compared to wired sensors. Sensors used

in the SPARK prototype continuously monitoring a single parking spot by infrared light

and include colored LED indicators. Sensors detects when a car enters or leaves the spot

and generate events that are transmitted to a nearby gateway wirelessly. Sensors also

transmit health messages at regular interval. The gateway collects events from a group

of sensor and forwards them to the parking management subsystem via Internet.

The parking management subsystem acts as the heart of SPARK. This component

maintains a real-time representation of the entire parking space base on the events re-

ceived from the sensors. Information about the general availability of parking can then

be displayed at the entrance via digital signage, but SPARK also includes Automated Guid-
ance in the form of small screens installed at every turn inside the parking area. These

screens display the number of available spots on their right, left and ahead based on the

3http://www.trafficparking.com.au/vehicle-guidance-systems-signs.php
4http://indectusa.com/single-space-sensors/
5http://www.parkmobile.co.uk/how_pay_by_phone_parking_works

1.3. SmartParking applications 13

information received from the parking management subsystem, also wirelessly.

The main innovation of SPARK is a reservation system which allows clients to reserve

a spot that is currently available with a simple SMS. The parking management subsys-

tem answers with either an acknowledgement of the reservation including the expiration

time or with a message warning that all spots are currently occupied.

The SPARK system was implemented at prototype scale for 20 parking spots at the

Ubiquitous Computing Research Center (UCRC) where the authors work. It showcased

a high degree of usability and reliability in test scenarios.

While systems similar to SPARK are promising for dedicated parking areas, the sys-

tem makes no mention of user authentication and payment facilities. It is unclear how the

reservation system could be used efficiently if the system is open to the general public,

as in the case of on-street parking. Furthermore, although wireless sensors are certainly

cheaper to deploy than wired ones, they still represent a significant investment and will

inevitably require attentive maintenance. For these reasons, we argue that systems sim-

ilar to SPARK are well suited for private parking areas such as employees parking, but

would be difficult to apply to public space and even less to on-street parking.

1.3.3 Reservation-Based Smart Parking Systems

Reservation-Based models aim to eliminate the shortcomings of less involved smart park-

ing systems such as PGI. Mainly the fact that sharing of parking information among

drivers increases competition between them. Particularly during rush hours, the scarcity

of free parking implies that more drivers will go after the same spot, further increasing

congestion. This phenomenon is called multiple-car-chasing-single-space. [36] implemented

a simulator to investigate different parking strategies and their consequences on traffic

density. It compares the four following models, in simulated traffic conditions downtown

Los Angeles:

• Blind Search: is the de facto model for street parking where drivers have no in-

formation available. Drivers typically start searching nearby their destination and

extend the searching area while no free spot is found.

• Parking Information Sharing: This strategy gives approximate information of park-

ing availability to drivers, typically attributing a number of free spot to a delimited

area or street. Drivers can leverage this information to avoid areas where all park-

ing spots are occupied.

14 Chapter 1. Related Works & Objectives

• Buffered Parking Information Sharing: This is the same strategy as above with an

extra parameter to mitigate the multiple-car-chasing-single-space effect. In this strat-

egy, a limited number of free spots is intentionally hidden from drivers, thus creat-

ing a “buffer”.

• Reservation Policy: Here, drivers are allowed to make a reservation for a specific

spot in advance. The paper presents an infrastructure-based design for user authen-

tication via smartphones and bluetooth connectivity on the spot, while reservation

can be made via the Internet.

FIGURE 1.1: Distance traveled by drivers searching for parking as a func-
tion of the day hour under different strategies [36]

Figure 1.1 shows clearly that reservation policy is vastly superior to the others in

minimizing the distance traveled by drivers for parking seeking, especially during peak

hours, when it actually decreases. However, this is mainly due to the fact that, as the

reservation rate for spots in the city center rises, other drivers are forced to reserve spots

that are further away from their destination. This in turn logically reduces the driving

distance as drivers go directly to the spot they reserved but increases the walking dis-

tance. In short, Figure 1.1 shows that a reservation policy can significantly reduce traffic

congestion but not necessarily user satisfaction, as users find parking more easily but far-

ther away.

1.3. SmartParking applications 15

Furthermore, the reservation model proposed in [36] does not care for malicious users

and actually offers little guarantee that the reserved spot will actually be available when

the driver gets there. It is unclear, for example, how the system would deter an outsider

to occupy a reserved spot, either knowingly or unknowingly.

The reservation policy described in [36] allow drivers to choose which spot they re-

serve, this implies that the parking information is shared between drivers, at least before

reservation, even if a buffering is applied. But it is also feasible to completely automate

the process of reservation as suggested in [12], thus eliminating the multiple-car-chasing-
single-space phenomenon entirely. They present a smart parking system where the park-

ing information is not directly available to drivers. Instead, drivers send a Parking Request
to the system that includes constraints on cost, location and vehicle size. The system col-

lects the requests from all drivers and periodically performs a group allocation of parking

spots that maximizes benefits for all drivers and parking service providers involved.

The system suggested in [12] rely on dedicated sensors for the automatic detection

of parking space as well as status indication (i.e. free or reserved) in a manner similar

to SPARK [33]. Drivers interact with the system through a mobile application to send

parking request and receive guidance to their reserved spot.

The model describes 3 possible results to a a parking request. First, if the system, after

an allocation period, fails to find a spot the driver is notified of the failure and is provided

with a reason (constraints too tight, no parking available...). Second, if a parking space

is allocated but the driver is not satisfied with it, he can reject the allocation and wait for

the next allocation period, without guarantee to get a spot again. Third, if the allocated

space is convenient for the driver, the spot is reserved and the application provides direc-

tions. The driver may be notified on the way if a more convenient spot becomes available.

The authors of [12] recognize the need for a strong guarantee that the reserved spot

will ultimately be available for the driver. They argue that status lights on the senors

could provide indication that a car is parked in a reserved spot, prompting its driver to

move or alert parking operators to tow the car. For on-street parking, the use of “folding

barriers” seems to be the only effective solution, although prohibitively expensive.

Taking the decision of the spot’s precise location out of the user’s hands offers the

opportunity for optimizing the utilization of available parking resources. The method

suggested by [12] is based on solving a Mixed-Integer Linear Programing problem at each

allocation period. Pricing is dynamically adjusted based on offer and demand. The au-

thors implemented a simulator in order to quantify the improvements of their smart

parking approach over other approaches including Blind Search (denoted NG for Non

Guided) and Parking Information Sharing (denoted G for Guided). The simulation scope

16 Chapter 1. Related Works & Objectives

was limited to the campus of Boston University and included 679 on-street parking spots

as well as 1932 off-street ones.

FIGURE 1.2: Performance indicators of three different strategies as a func-
tion of the density of parking requests [12]

Figure 1.2 compares different performance indicators as a function of λ(i), the param-

eter of a Poisson distribution of parking requests to a destination i. u(t) is the ratio of

utilization of on-street parking spots (occupied spots). w(T) is the ratio of drivers who

have reached their destination and are actively searching for a spot because they they

didn’t get a reservation. J(T) is the average cost of a parking allocation to a user, which

includes monetary costs as well as distance, and which the system tries to minimize. Fi-

nally, tp(T) is the average time to park which is the amount of time between the parking

request is sent and the moment the user occupies a spot (for G and NG, this period starts

when the user reaches his destination). The results demonstrate better performance on

all indicators for their approach to allocation based smart parking.

As is for the system presented in [36], the most important problem in making reservation-

based parking sustainable for open-street parking is the lack of guarantee in the availabil-

ity of the reserved parking spot. In the context of public parking, it would be unwise to

rely exclusively on the general public respecting the necessary guidelines (i.e. to not park

on a reserved spot) as penalties would be difficult to enforce. This is one of the problem

we intend to solve with a crowdsourced approach to smart parking.

1.3. SmartParking applications 17

1.3.4 Google’s Open Spot

Google also experimented with SmartParking. A solution they developed, named Open

Spot [30] [16], differentiate itself from other we presented however, as it does not relies

on sensors to determine the occupancy of parking spot, but rather on something of major

importance for us : crowdsourcing.

Open Spot idea is to let user signal when they leave their parking spot, and then

display the information on the map with an icon locating the free spot, and a color as-

sociated, indicating how long the spot has been freed. Spots remains on the map for 20

minutes, after what the icon is removed. But 20 minutes is a very long time for park-

ing spot in urban areas to remain free, thus the system have a high risk of mismatching

information which will at the end frustrate users

FIGURE 1.3: Open Spot UI [30]

Open Spot possess some ideas that makes it interesting as a starting point for the

development of a crowdsourced smartparking system, but in itself the system lacks in-

centive for users to submit information about their parking spot usage. Users receives

Karma points for liberating a spot, but these points do not provide any advantage to

obtain a parking spot later, and are thus basically worthless. This led to very few user

sending data, which is critical for crowdsourced application where amount and quality

of data is a prime. Due to the drawbacks of this system it never gained popularity.

But this case raises interesting points regarding crowdsourcing, and the importance

of incentives to contribute to the application’s community. Without incentives, a crowd-

sourced application is most likely doomed.

18 Chapter 1. Related Works & Objectives

1.3.5 ParkSense

As we have seen, relying on sensors to determine the occupancy of a spot is not always

an option when it comes to on-street parking, either due to maintenance, reliability or

the large amount of sensors required. Crowdsourcing is an option to obtain the parking

spot information with less infrastructure, but relying on user behavior is not always an

effective option. It is then no surprise that researchers try to develop other methods to

obtain the information related to the parking spot availability.

One of the option explored by a team of the University of Cambrige [25] is to use

Smartphones data and sensors to detect when an user is leaving a parking spot, thus

triggering so-called “unparking event” that can then be bind to geographical position

through the GPS and WIFI of the phone.

ParkSense, the name of the application they developped, explored the usage of the

GPS, the accelerometer and the WIFI to obtain those “unparking events”. As the GPS

and accelerometer proved too unprecise to be used on their own, the team developped

and system to detect these events using the WIFI data, using particularly set of WIFI

access points. Those sets are used for two purpose : to determine the status of the user

and to know when an user comes back to his car.

Determining user’s status

The idea of ParkSense is to obtain regularly the set of WIFI access points detected by the

phone, and compare it with the previous sets, using the Jaccard Index, a method used

to determine the similarity between two ensembles. Their research showed significant

results that this index can be used to determine if a user is walking or driving, as the

index is notably lower while driving, which is logical as the sets of access points variates

more frequently when the user moves faster, which happens when the user is driving

compared to walking. The definition of “unparking events” could loosely be described

as WALK-UNPARK-DRIVE, thus by determining the status of the users, the first step of

calculating those events is feasible.

Coming back to a car

Through the usage of the access points sets, the team also developed a mean to determine

when an user comes back to his car. By detecting parking events as DRIVE-WALK occur-

rences, the application stores the set of WIFI access points in memory when the parking

event occurred. Afterwards, the current set is periodically compared to the stored set.

Should they prove to be similar using the Jaccard Index, it is likely to assume that the

user came back to his car. This could also be confirmed with the usage of the GPS data.

This information, combined with the detection of the user’s status, can then be used to

1.3. SmartParking applications 19

FIGURE 1.4: Distribution of the Jaccard index while walking and driv-
ing [25]

determine the “unparking events”, which then can be translated to parking availability

information.

Issues

With these methods, available spots can be indicated in a map, similarly to what OpenSpot

is doing, but do not require any action from the user, which was the main drawback of

Google’s application. However the system still present some issues, mainly, the event

detection is not perfect, and some situations such a parking a car, then getting in another

one (i.e. car sharing) can lead to the detection of erroneous events.

The other issue is the time required by the system to determine that the user is actually

driving and has left his spot, averaging 5.3 minutes. This means that the spots could only

be made available more than 5 minutes after having been freed, leading to a high risk of

having the spot being already occupied when someone tries to claim it. Lastly, the energy

consumption of the WIFI detection could sometimes increases a lot and become an issue,

notably inside buildings.

20 Chapter 1. Related Works & Objectives

1.4 Common issues between Smartparking solutions and pro-

posed approach

All the SmartParking systems we presented share a common pattern by design: the user

has very little active control in the data collection, with the exception of OpenSpot. Park-

ing spots are usually items automatically monitored through sensors, even if theses sen-

sors are sometimes those of an user’s phone. Depending on the solution, the parking

areas have to be perfectly defined, such as SPARK parking lots [33], or they could be on-

street parking improved with sensors. The solution can be informative only, displaying

occupancy, like StopBuy, or allowing user’s reservation, the exact reservation procedure

depending of the solution [12] [36]. Even if these solutions are feasible, the amount of

parking spots accessible through them remains low due to the deployment costs of sen-

sors at large scale.

In order to increase parking rotation rates at larger scale without having to put sensors

in every street and every parking area, it is preferable to use existing parking infrastruc-

ture, e.g. public parking spots, thus leaving open the detection issue. Google tried to

solve this simply by asking people to indicate when they leave a spot, but without real

incentive, this is not going to happen. [30], and the automatic detection solution by Park-

Sense [25] does not provide full satisfaction either.

All these solutions never put platform users in relation with each other directly. The

approach we wanted to try in order to improve these SmartParking solutions is a com-

plete, end to end exchange model where users not only signal that they are leaving but

actually wait for the other party to arrive before freeing up the spot. While this could be

seen as really inconvenient for the leaving user, we argue that the piece of mind offered to

the other party, as the parking spot availability is almost guaranteed for her/him, greatly

counterbalances any annoyance as users would assume both roles alternatively within

the community.

Such solution would have the advantage of making every parking spot usable by the

system without any modification, resulting in a higher parking availability, but presents

several points of concern that the other solutions could usually overlook.

First of all, as we seen with Open Spot, motivating the users to give information on

their parking is not easy. Additionally, with our proposed approach, we want them to

wait for someone else to park, which is even more annoying. We will have to determine

what makes users willing to give informations and participate to a community’s life in

crowdsourced application, in order to implement a solution that should convince people

to be a part of it and be willing to regularly trade spots with others members they might

1.4. Common issues between Smartparking solutions and proposed approach 21

not even know. This is the focus of the following chapter.

The other points whereas an exchange-based approach distinguish itself from those

we presented are the active trade of parking spots, meaning we have to develop an eco-

nomical ecosystem fair and balanced, and the reliability of the user selling a spot, since

if we want to advertise that our system provides a guarantee close to 100% for obtaining

a parking spot, we have to make sure that users offering a spot are really offering it and

are not some kind of Troll.

Finally, our users will have to be able to identify one to another. For this we will have

to ask for users personal vehicle’s data, and store it. This raise particular concerns about

the security and the privacy implications of our application.

Those four points of concern being the main differences between our approach and

the other SmartParking systems presented, we researched in more details existing solu-

tions and options we could use in order to make our application viable.

23

Chapter 2

Users Motivations and Commitment

2.1 Overview

Crowdsourcing applications and marketplaces for online work face a big challenge when

it comes to attractiveness and keeping users motivated to participate. Of course, some

rely on financial rewards to gain users, but it’s not always an option. A study by N. Kauf-

mann and T. Schulze [15], proceeded to determine and classify the motivations behind a

user participation in a crowdsourcing platform. In this case, they based their study on

the Amazon Mechanical Turk.

Their main choice when analyzing the different motivations is to classify them into

2 categories : Intrinsec Motivation and Extrinsec Motivation. Intrinsec motivations are

driven by internal rewards such as personal satisfaction, fun and skill learning. On the

other hand, extrinsec motivations are thus related to external reward, the most common

being money, but also positive feedback on a certain task for example.

The authors then decided to divide the most common motivations into groups. In

their study, intrinsec motivations were split in two : enjoyment based or community

based. Extrinsec motivations were split into three groups : Immediate Payoffs, Delayed

Payoffs and Social Motivation. The motivations they considered and the repartition can

be seen in the figure 2.1.

Their study shows that the main motivation on the mechanical turk is without sur-

prise the financial reward. But it’s not dominating the motivations by a large margin.

Enjoyment based motivations are also highly represented, “Skill variety”, the use of a

specific skill to solve a certain task, and “Task autonomy”, the freedom to be creative in

the accomplishment of the task, are approximatively 20% behind the payment, but above

all other extrinsec motivations. In fact, only 6 out of the 8 biggest motivations are classi-

fied as intrinsec (The only 2 extrinsec being money and what the authors called “Human

Capital advancement”, basically the opportunity to learn or improve a skill by doing the

task).

24 Chapter 2. Users Motivations and Commitment

FIGURE 2.1: Model for Worker’s Motivation in Crowdsourcing [15]

The study also shows some correlations between the motivations and the time spent

on the platforms by a user. The most remarkable relations being the “Community factor”,

the sense of belonging and “Signaling”, the willingness to be noticed by future employ-

ers increases the most in importance the more the user spends time on the application.

The diversity of the tasks also has an important influence on the motivation expressed by

users.

With this study in mind, it will be important to identify the target audience of any

crowdsourcing applications in order to adapt the presentation of the information and

crowdsourcing objectives to increase the chance of reaching the most out of the partici-

pants.

2.2 Analyzing the main factors of contribution

Now that we’ve identified the main motivation factors for a crowdsourced system, let’s

break them down a bit and analyze the pro and cons of each one. Indeed if some factors

like “Skill variety” or even the financial gain are big factors in general, or when multi-

ples tasks are available, in a system only designed to provide a specific service, like the

SmartParking application, those motivators may not apply. So breaking down each one

will allow us to determine those we need to focus on the most, since they will interact the

best with our application.

Honor to whom it’s due : money. It’s no surprise that money is the biggest motivator

in a crowdsourcing platform, however it’s not without consequences. Money does attract

people on a platform, because of all the potential rewards. It has an impact on almost ev-

eryone, even those looking for fun will not refuse a financial gain, where those looking

for it even if the task is not funny and difficult will be doing it specifically for the reward.

2.2. Analyzing the main factors of contribution 25

But on the other hand, each system using money as a reward is faced with some simple

and not so simple economical issues. Simply by considering the supply and demand law,

if the task is rather easy, a lot of people will be able to do it and thus it’s value will de-

crease a lot, meaning the potential reward will be very low as well, which in turn, might

make people lose interest. Why waste one hour of your time to gain a quarter of a dollar,

if it does not provide any fun or learning potential. Furthermore, monetary rewards may

also imply legal issues. In some cases, the legality of the transaction can be questioned.

In SmartParking, with and without a crowdsourced system, parking spot are the subject

of the trades. But those are not the property of the user currently occupying it. It could

still be the case, but it is not the primary case we envision for our application. Most of

the time people will be parked in public areas, and the rest of the time on some other

property. Thus, selling your spot, or even trading with some money involved, implies

that you are gaining money over someone else’s property, and laws in multiple countries

forbid this. For those reasons, using money as an incentive does not seems to be in the

best interest for our system.

Self-benefit is a similar motivator to money in such way that the user expects to gain

something by using the platform, but he knows that such gain won’t be financial and

might not even be material. Its attractiveness is less than money since it is not universal

and fewer people will be interested. The benefits might not be immediate to the user,

but also has advantages over money, since it can provide services that money can’t buy,

or the promise of a future reward of better quality than an immediate gain. In the case

of SmartParking, the self-benefits are a gain of time and gas to arrive to a parking spot,

with less stress. Several Smartparking applications presented in the previous chapter

had their reservation algorithm trying to optimize the time to park, meaning less gas and

more time gained to the users. Self-Benefit is thus obviously an important factor of par-

ticipation in parking applications, but also works well in conjunction with community

driven motivators. For example participation in a Wiki : improving the Wiki quality with

personal knowledge and expecting other people will follow your example and improve

pages of others, giving you the opportunity to obtain more information on certain subject

that you don’t know about.

This leads us to another incentive : participation. The study by N. Kaufmann and T.

Schulze [15] showed us then the community feeling of a platform, the sense of belong-

ing to a group a people, is a big motivational factor. According to P. Organisciak : “In

the realm of crowdsourcing, communities working on the same thing create emotional

bonds, whether of respect or hate” [26]. This is the pro as well as the cons of this factor.

On one hand, allowing people to interact with others and improving the community by

sharing informations procure a sense of belonging to the users which in turn make them

feel important inside the community, thus getting them to stay within the community and

keep using the system, and make them willing to participate even more, or make other

26 Chapter 2. Users Motivations and Commitment

people (friends, family, co-workers, etc) join the community. On the other hand, a nega-

tive interaction for example with an disrespectful user, or bad information from Internet

Trolls or simply a computation error can lead users to abandon the platform quickly since

they won’t be willing to experience this unpleasant interaction multiple times. In such

a system, “bad users” must be controlled very quickly to prevent them from doing any

long-term harm to the community.

Of course we also have to explore what is basically one of the most universal incen-

tive to do any task : fun. Multiple systems have proposed some sort of “game” to attract

users and by making them play, using the data of the game to accomplish some task,

sometimes hidden to the players. An exemple from the early 2000 is the ESP Game de-

signed by Luis von Ahn [35]. The principle is easy : two players are shown an identical

image, and both have to enter words to describe the image (also known as label), if they

use the same label for a picture, they win a point and proceed to the next image. The goal

is to reach 15 points in two and a half minutes. By playing the game, you also provide the

system with identifiers for each picture, which in turn serve to improve the image recog-

nition task, which by 2005 was considered a really hard task to be done automatically by

a computer. (It still is but computers have vastly improved in that regard, thanks in part

to the massive availability of images labeled in this way). Regarding pros and cons, there

is basically no cons to make a crowdsourcing platform fun, it improves the willingness of

the users base to participate and attract peoples. But the difficulty is more in making the

task fun. Indeed, some tasks are hard to translate in a game simply by nature. Even if a

game-like task is doable, it also creates a competitive environment which in community

drive systems, but can also lead to cheating or abusive behavior. In short, having a fun

to use application is basically mandatory, but using a game to make the users participate

can be dangerous and time-wasting in development if the data collection is not practical

within a game. Smartparking application specifically are designed to be usable in car,

most likely in traffic, while the user is driving. Having to play a mini game to be able to

claim a parking spot would be insanely dangerous and most likely result in a ban of the

application, or at least would make users run away from it, which is not a desirable result.

At last, the skill learning factor, it can be seen as a more specific approach to the self-

benefit factor, where the user picks tasks he does not fully master, in order to increase

his skill in such field. The gain is thus completely immaterial and is more personal than

community-driven. But such a motivator is also really specific in terms of the platform

allowing it, since it must propose a large spectrum of tasks, otherwise the user can only

improve a few skills, and if the ceiling on such skill is low, he won’t be using the platform

a long time. The tasks themselves must also be such that they require some computation

from the user, otherwise crowdsourcing wouldn’t be necessary or even recommended,

since user input always comes with an error margin that can, in some tasks, be higher

than what a computer would achieve. In such, the Amazon Mechanical Turk is a really

2.3. Building a community 27

good example of platform allowing skill learning. But in our case, there is no real skill

to be learnt in trading parking spot and the task has to be accessible to all users to allow

the application to spread easily. It’s then probably unwise to focus on this factor while

designing the application.

Having reviewed the biggest factors, we can first exclude the motivators we won’t be

using for sure : money and skill learning. Those two incentives have clear advantages in

keeping the crowd interested, but do not fit well the requirements of our system. Fun is

important, but the concept of game for data collection does not apply in this case. Thus

the two incentives we will pay the most attention to when designing the application is

the community factor and the self-benefit factors. Creating a community willing to share

parking spot combines well with the time benefit each user should gain if the system

works properly and gathers a large enough community.

2.3 Building a community

We’ve established that our biggest challenge for our system to be usable is to make many

people willing to share their spot, and thus creating a “ParkExchange Community”. We

can now then start to study the main principles we have to consider in order to develop

this community feeling.

Based on the book “Building Successful Online Communities” by R. Kraul and P.

Resnick [18], we can identify the biggest parameters to take in account. Their first claim,

in accordance with an article by N. Michinov, E. Michinov and M. Toczek-Chapelle [21]

is that adding an identity attachment to the community leads to more willingness to par-

ticipate, and also that clustering populations into groups that share a common property,

and even identify the group with a name indicated the membership of individuals to said

community increases the commitment of the members of said community.

2.3.1 Identity based commitment

This is really interesting and useful in our case, since we can already create groups with

a common property, based on their location. The application could indicate that the user

belongs to “ParkExchange Brussels” or any other city in which our system is made avail-

able. Of course this must not prevent users from other cities to use the applications in the

town, but common sense indicates that the users will use the application most of the time

in the city they visit the most. Thus, having named groups, or having the user being indi-

cated that he’s using the “Brussels” version of the application should, according to theses

informations, increases his willingness to share his spot, since it is for the improvement

28 Chapter 2. Users Motivations and Commitment

of his town on a global scale.

It is also very likely that our application would only be usable in main cities, as op-

posed to rural environments and small towns, either because there is most likely no need

for parking spot exchange in the former, and the user base might probably not be enough

to provide enough spots for the later. Thus in a way, our application is already divided

into subgroups, for each city it will be available in.

This introduces another parameter of importance for a community to strive for : mak-

ing the purpose or goal of the community clear and explicit. As we said previously, peo-

ple looking for parking spots generate up to 30% of the urban traffic [2]. By providing

a service that facilitate the parking operation, the goal is also to fluidify the traffic of the

city as a whole. Research [5] [18] indicate that having a clear goal that each member of the

community works towards is also a major factor in the increase of the sense of belonging

to the community, and thus to the willingness to participate and remain part of the group.

With this in mind, it should be clear that the goal to improve the urban circulation should

be clearly advertised within our application.

One last parameter that could be taken into account is the anonymity. For identity at-

tachment factors, anonymity is also something that improve the attachment to the group.

It may seem contradictory but de-emphasizing the individual will strengthen the group

as a whole. While this is good news, this factor is however not something we would

have worked on since our application would obviously have been anonymous either way,

since allowing people to be identified to their vehicle through our application would not

have been acceptable.

2.3.2 Bond based commitment

The next set of parameters are called “Bond-based” by the authors. This set contains

multiple affirmations that users are more likely to commit to the community when they

have or develop a connection or bond with other members. Whether friends they bring

into, colleagues that share a common interest or even people they have met through the

platform, knowing that those people are members of the community and participate in it

, as long as the system provide some way to interact with them.

But in the case of Smartparking solutions based on trade, there is some issues to use

those parameters. As said in the previous section, anonymity in our platform is not some-

thing we can, or want, to avoid, thus making it harder to provide interaction based on

people’s identity. However, one of R. Kraul and P. Resnick [18] claims can still be some-

what useful to use. According to them “Facilitating interactions with “friends of friends”

2.3. Building a community 29

FIGURE 2.2: Probability p of joining a Livejournal community as a function
of the number of friend k already in the community [3]

can enhance bonds-based commitment.”, with which we can also deduce that simply fa-

cilitating interactions with direct friends should also have the same result.

Knowing that, one option to consider for our platform is to allow people to have some

sort of friend list, or generating it from the user contact if he allows it, and give priority

to friends amongst others when offering a spot. Knowing that you might help some-

one you know personally seems to be a factor that strengthens the community and the

willingness to contribute. Another option we can consider but that would be harder to

actually realise would be to indicate, as long as the user wishes it, when a friend of his, or

even a friend of a friend, is actively looking for a spot close to him, in order to motivate

the user to share his spot. We could even go as far as designing the algorithm calculating

the costs (in points) of a parking spot exchange depending on the degree of friendship

between the seller and the buyer.

Obviously those are options to consider and not everything can be done in the time

frame we have, but it is interesting to keep those options in mind for the future.

2.3.3 Need-based commitment

The following group of claims is probably the main one we have to fulfill to achieve a

stable community with our application. Theses claims are called “Need-Based” by the

authors of the book, and are obviously related to the benefits people seek while using

our system, and the satisfaction level associated. It’s not hard to understand that the bet-

ter our application meets our community’s expectations, the more people will be willing

30 Chapter 2. Users Motivations and Commitment

to contribute in return, and the more likely they are willing to keep using it.

Thus the claim “Providing participants with experiences that meet their motivations

for participating in the community increases their need-based commitments” is in itself

quite obvious, but provides some areas of reflexion. Our application will be using an

algorithm to select buyer or buyers whom to offer a parking spot based on multiple crite-

ria, mainly the buyer reputation and credit balance, distance to offered spot and waiting

time of each users.

We can have a theoretical approach of this algorithm, and design a version where for

example we give priority to the user reputation. With such algorithm, people with a lot

of points would be given spots even if they’re far away from it and users with fewer

credits, typically new users, might have to wait a longer time to obtain a spot. On the

opposite side, an algorithm that would favor the distance to the spot could frustrate long

time users with good reputation and a lot of points, which in turn might dissuade them

from offering their spot again.

As developers, should our community successfully grow and spot exchanges be-

comes common, one of our first step would be to refine the algorithm by asking feedback

after each exchange, or when people refuse spots offered to them, in order to understand

if they were satisfied with the exchange, or why they weren’t. Was the exchanged spot

to far from their location, did they wait too long, etc... This feedback could then help us

to improve the algorithm, and hopefully have it creates a better match between parking

spots and buyer, which ultimately increases the user satisfaction and thus makes our ap-

plication respond better to their expectations.

This can also go further. Ideally, each user would be allowed to define his preferences

in term of distance, waiting time and reputation. Some people don’t mind having to wait

more, while others will be happy with a spot several hundred meters away from their se-

lected location. As for the “sellers”, they could also choose to only give their spot to users

having reach some degree of reputation, or having more points, since those people have

proven being reliable, but at the cost of gaining less points while making the exchange.

Since every user need is different, our application will have to evolve to have a better

match to the community expectations, through most likely user’s preferences and a scal-

able spot-assignment algorithm, our community would keep increasing [9].

The other claims in this category are less relevant in our study field or can be brought

down to simple marketing obvious logic, such as not advertising competitors, increase

commitment of our userbase, or rather, prevent users from leaving the community.

2.3. Building a community 31

2.3.4 Normative Commitments

Finally, the last type of commitment, called “Normative-Commitment”, is related to the

feeling of loyalty toward a community, and the need to help it to achieve it’s purpose

and is also linked to the sense of reciprocity, giving back to a community that helped you

somehow. This is also related to a claim explained earlier, mentioning that the goal of the

application, and it’s community, have to be clearly stated. Smartparking application’s

purpose is to help people to get parked and ultimately reduce traffic congestion in the

city. By indicating to the userbase that their contribution helps the city as a whole, and

that they can improve their city by contributing, or recruiting others people, it is possible

to create a feeling of reciprocity. But in the course to achieve this, some adjustments have

to be done, based once again on the claims of R. Kraul and P. Resnick [18].

The first claim indicates that in order to boost these normative commitment, it is

necessary to display the community’s purpose, as said previously, but we also have to

highlight its success to achieve said goal. In a Smartparking application’s case, it’s not

something that can be done easily, since the goal is large scale , traffic congestion won’t

be solved instantly as soon as the system is released. But after some time, making a study

to compare the situation before and after, and hope to see some improvement, that can

then be shared to the userbase, to make them realize that they are in some way helping

the city as a whole. It would also be interesting to calculate the average parking time

of the application’s users compared to the parking time of non-users, and hope that the

application allows for faster parking and then publish the result to the community, which

in turn could help recruit more users and make people more willing to contribute since

they can see they are making a difference.

The three other claims emphasize on reciprocity, and provides some interesting ideas

to improve the application and the willingness of our users to contribute. When an ap-

plication displays to the users what they gained by using the application, it should make

them contribute more. This could be done simply by indicating how many times the

users had parked thanks to the application, and the average time of his search, compared

to the average time in the city. A study [8] also recommend to indicate when they gained

an over-average benefit thanks to the community, as it can boost this user willingness to

contribute to the community.

A more direct approach would be to signal to our users when they can return the fa-

vor to someone who offered them a spot previously. For example, if a user X has offered

a spot that user Y has benefited from thanks to the application, if user X is searching for

a spot and user Y is located nearby, the application could send a notification to this user

warning that he can offer his spot (if he is parked, obviously) to the user X, without men-

tioning his name, simply by saying “A user that offered you a spot recently is looking for

32 Chapter 2. Users Motivations and Commitment

one in your area right now” and having them matched automatically if user Y accepts

offering his spot.

2.3.5 Overall

All those combined factors are designed to provide an interesting user experience while

using the application, and keep them interested in the application, while giving them

more and more reasons to contribute by offering parking spots. Each user having differ-

ent motivations, it is important to have multiple ways of encouraging our members to be

part of the community, and ultimately share spots, since it is the goal of our application.

Recruiting people looking for spot should not be hard as it is something many people

need on a daily basis. Having those people reciprocate and share their spot as a natu-

ral behavior is the real challenge of our application, and all the previous claims detailed

before are keys to achieve this.

2.4 User Reputation and punishment

In every community, there will always be abusive members, for personal interest or some-

times simply because they find it fun to annoy other people. It is important for every

community to identify these toxic members, usually called “Trolls” in the Internet slang,

and to have preventing measures in place to deter them from causing trouble as much as

possible. However, it is even more important to be able to distinguish Trolls from nor-

mal users causing trouble by mistake, as mistake is typically human. Usually, the biggest

factor between the two will be the repetitive nature of the former, thus our system has to

be able to detect when a member generates critical negative actions more often than the

average user.

In our case, we can identify five critical actions a user can cause harm to another user.

Those actions are :

• Offering a false spot

• Canceling an offer while in a trade

• Giving a false feedback as buyer

• Giving a false feedback as seller

• Claiming someone else’s car

For each action, we need to create counter-measures to prevent nefarious behavior as

much as possible.

2.4. User Reputation and punishment 33

Giving false feedback as a buyer or as a seller are problems that can be resolved thanks

to a well-though economic system, and thus we will explain how we handle these actions

in a following chapter. It is however important to introduce the notions of successful,

contested and unsuccessful trades as they will be important for the rest of the section. At

the end of a spot exchange, the seller and the buyer are asked for feedback and have to

indicate if the trade was successful or not. If both agreed that the trade was successful,

the trade itself is flagged as a success, or if both deny it, it is then flagged as unsuccessful.

If the seller and the buyer disagree, the trade is flagged as contested, meaning that one of

the parties has lied during the feedback.

With these notions in mind, we can introduce the concept of user reputation, which is

representative of how trustworthy a user is, and how well he contributes to the commu-

nity. This score starts at a default value, and increases with each successful trade, with

a bonus for selling a spot, and decreases when canceling a trade or being involved in

suspicious trades.1 This reputation would in turn be used in the matching algorithm we

described previously to increase chances to receive a spot, as users with a high reputation

level would be prioritized over those with a lower one.

Additionally to its impact in the algorithm, the reputation value is also a tool to han-

dle Trolls and dishonest users. One of the first options is to prevent users with a too low

reputation level to participate in trade, effectively banning them from the community.

This would only happen in extreme case and after several warnings, but can be seen as a

last line of defense against recurrent Trolls. However, this does not prevent the malicious

user from creating another account. Another possibility would be to create “pools” of

user depending of their reputation, and having them interact only with users of the same

pool. Thus users with good reputation would only be matched and trade spot with other

users with the same reputation level. On the other hand, members with low reputations

would be matched with one another until their reputation increases again. This creates a

so-called “Prisoner Island” where bad users are confined and prevented to interact with

others. This may appear as an interesting solution to protect most of the users from Trolls,

but has a big downside.

This solution has been tried and analyzed by Riot Games [4], developer of one of

the biggest online game “League of Legends” with a community reaching 100 millions

monthly members. Of course our community cannot hope to reach such a number easily,

but its points on users toxicity and about the "Prisoner Island" stand still. In their case,

players reputation is affected by the behavior of the player during the game, being so-

cial, polite and positive increases your score, while insults, threats to other players and

1Trades are called suspicious when they might be manipulated by two or more users in order to gain
points easily.

34 Chapter 2. Users Motivations and Commitment

misconduct such as leaving a game while it is still ongoing leads to decrease in reputa-

tion. According to them, users dropping into the island sees their probability to quit the

community increases up to 320% compared to the other users. Indeed being confronted

to toxicity nearly all time long is more likely to make you give up on the game and its

community. Instead, opting for solutions allowing users to reform gives a better overall

growth of the community.

Our case is not exactly similar, but the logic behind still exists. If we put all our bad

users together, the frequency at which they will experiment trade failing and having to

deal more frequently with dishonest users would lead them more likely to simply stop

using the application since it will often not provide them the service they expect.

Instead, the approach used by Riot Games is to allow users to reform notably by

keeping them in contact with normal, non abusive members. As for us, it is then more

productive to develop solutions to prevent the abusive behavior, by having safeguards

against these abuses, which we will talk about later. We will enter the details of our appli-

cation’s development, and in the case of users reputation dropping, not separating them

from the other users (except in extreme cases, hence the ban possibility), but showing

them the benefits of being a trustful and reputable user.

35

Chapter 3

Economy

3.1 Overview

As we have now established the foundation of our community and application, and thus

have found many ways to motivate our user-base to trade parking spot, it is time to dive

into one of the components of those trades, the point system used as economy inside our

system.

When we first started analyzing how our application would work, the parking spot

exchange was obviously our main component, but for a long time, the economics behind

it remained a huge question mark for us, as it was not clear what we were going to

implement. However, one question was cleared quickly, as we rapidly found out that

using real money for our trades was out of the question, since it could cause a lot of legal

issues as our “product”, parking spot, obviously does not belong to us, they’re most

likely public spaces. Thus engaging a financial trade over those spots could be illegal

in some countries. At the very least, the management of these spots could have already

been given contractually to another company, but even if they are managed by the city

itself, monetizing the parking spot transfer could lead to legal conflict [25].

3.2 Virtual Economy

Even without the usage of real money, we can still establish what we will call a “virtual

economy”, an economy specific to our system, that does have no connection to the real

economy and which is only used inside our system (or eventually in conjunction with

other CommuniThings applications). Each user has points, receiving a fixed value when

they register to the system, and then every time a user offers his spot, he gains points,

and in return, buying a spot cost points, meaning you can’t only buy spot without have

ever offering one. The basic idea is quite simple, but to make it work we have to consider

a lot of criteria.

36 Chapter 3. Economy

SmartParking is still a relatively small world and few applications have tried to achieve

complete trade of parking spot, with a seller and a buyer. A lot of applications, like Park-

Tag [28], tends to only detect when users leave their parking spot and notify all the other

users that a spots is available, and then these users can reserve it, but without any insur-

ance that someone else (within the community or not) will not precede them, making

the spot unavailable. Since there is no real trade between the users, no economic system

is required, and when someone fails to obtain the spot they wanted, the user have to deal

with it, the reservation is not guaranteed and no compensation is given to the user This

is only fair since he didn’t invest anything into the spot, except time and gas, but those

are not related to the spot exchange in itself.

Our application should offer a similar service, using CommuniThings data to deter-

mine the level of occupancy of a street or other parking zone within a city and then

redirect users towards the matching areas with available free parking spots. This func-

tionality does not require a functional economy to work, but does not cover entirely what

we want to achieve. Fully committed parking spot trades, with buyers and sellers match-

ing with each other’s, having the seller waiting for the buyer to arrive and give him the

spot, requires a lot more coordination and has to be rewarding to the seller, otherwise

they would simply leave the spot, but then also has to be way more reliable for the buyer,

as on the other hand they are investing in this spot, no only time and gas, but also vir-

tual currency. As such, we have to do everything in our power to ensure that a trade is

successful so as to ensure the buyer that he will get his spot, otherwise he could see the

application as a form of scam, which would be obviously rather bad for advertisement

and recruiting.

Other applications, or theoretical works have already worked on parking spot shar-

ing and trading, the most notable example being the late KurbKarma [19] application. We

will identify their trade process and the economy behind, as well as the system named

CrowdPark [38], also designed as a social parking application, but it is unclear if the the-

oretical work done by its author was evaluated in real.

3.3 Existing virtual economies in SmartParking

We are not pioneers in the creation of of an application designed to facilitate parking

through spot trading. KurbKarma and CrowdPark are two applications that share a sim-

ilar purpose to ours. Both used virtual economies that could be interesting starting points

for the development of our own economic system.

3.3. Existing virtual economies in SmartParking 37

3.3.1 KurbKarma

Kurbkarma used “KarmaKredit” [19] as currency. Its economic system was really straight-

forward : buying a spot costed 2 karmakredits, while selling the spot cost one. One of the

first implications is the symmetry of the system. The purchasing price is higher than the

selling gain. If the trades were symmetrical in cost, the amount of points into the system

would have remained the same after each trade, meaning the only reason for account

balance to disappear is when users stopped using the application. But it is also necessary

to consider that it is logical to offer credit to new users, thus creating a constant currency

input in the system. For KurbKarma, this value was set to 10, meaning that each new

account was given 10 karmakredits, enough to buy 5 spots.

If unregulated, the total value generated by the account creation mechanism could

have led to the hyperinflation of the economic system, but applying regulations goes ul-

timately against one of the major objective of the application, that is to recruit more and

more people in the community to expand the amount of available parking spots.

This problem can however be reduced, if not avoided, by using asymmetrical trade

prices, which Kurbkarma does. In short, the buying prices being higher than the selling

gain means that the seller won’t receive as many credits as the buyer is spending. This is

not uncommon with virtual economies, for example the MMORPG "World of Warcraft"

has a 5% difference between buying prices and seller’s gains while using the in-game

auction-house, meaning that buying an item 20 gold (the name of the WoW in-game cur-

rency) will only result in a 19 gold gain for the seller.

Of course, we cannot really use "World of Warcraft" as an economic model, since it

is much easier to obtain currencies through a game, as players are rewarded for doing

any action inside the game and they have much more options to spend their currencies.

In our system, users won’t be generating any credit except when trading a spot, and the

only possible expense is buying a parking spot.

Kurbkarma asymmetrical costs are rather extreme, with a 100% difference between

the buying cost and the selling gain. This is somewhat compensated with a large gen-

erosity with the free credits gained on registration, but this bonus quickly fades away.

Having to sell two spots before buying one might prove frustrating, or requires a deeply

engaged and motivated community. To protect themselves against scams and sellers

leaving spots early, ruining the trades, Kurbkarma used a reputation system, allowing

users to rate the members of the community they traded with, and allowing the users to

check the seller’s reputation before buying his spot, thus making it engaging for people

to complete the trade in order to improve their reputation and sell spots easier and faster

in the future.

38 Chapter 3. Economy

3.3.2 CrowdPark

The other application that attempted to implement spot trading is CrowdPark [38]. De-

signed by computer science researchers at the University of Massachusetts, its concepts

are very close to our own, having an application to allow users to trade parking spots

with ultimate goal to reduce traffic congestion in the city center. However, one major

difference between their work and our is the time-line of the trade. Our objective is more

to respond to an immediate demand of users looking for a spot as they’re driving close to

their destination, while CrowPark opted for more planning, having their users indicates

several hours in advance when their current spot would be available, typically when they

leave work, and having the buyers reserve the spot before even leaving their home, and

matching their arriving time to the depart time of the seller.

CrowdPark’s economy is also asymmetrical. Sellers receives a reward D at the mo-

ment they sell their spot, even if no match is found yet, and the reward will be kept even

if nobody buys the spot. D is fixed, the seller knowing in advance how many points he

will gain. There is however a bonus X if a buyer is found and the trade accomplished

successfully. This bonus is lower than D, the authors mentioning it being approxima-

tively a quarter of the fixed reward, but it could be varying depending on the location of

the sold spot, downtown spots being more valuable than suburb spots.

On the other side of the trade, the buyer can reserve a spot, and pays N for it. The

transaction is executed instantly when the trade is registered. Other big difference be-

tween CrowdPark and our own system is that the confirmation of the trade relies only

on the buyer, while we ask confirmation and feedback to both parties of the trade (more

on this in Part 2). If the trade is successful, the sellers gets their bonus X , otherwise, the

buyer can obtain a refund R, not covering the entire cost (N) of the trade. The process

of spot reservation and currencies exchange is detailed in the following figure.

3.4. Dynamic Pricing 39

3.4 Dynamic Pricing

The two examples given above shares both a well known fixed price and gain for spots

and all spots are of equal importance (with the eventual small possibility to have a vari-

able bonus in the CrowdPark application). In reality, downtown spots, or parking spots

close to points of interests like shopping areas and cultural centers are more valuable

than spots in a suburban area. In a similar way, spots values vary during the time of the

day, more users are looking for a spot in the afternoon than at 3 A.M. , by “simple” law of

Supply and Demand. Such variations could lead to a mechanism we will call “Dynamic

Pricing”, where the cost of a spot and the gain to the seller are variable, and better reward

the users that offer a spot in highly demanded areas, during peak hours, etc. We found

two systems using dynamic pricing that looks interesting to us. First the pricing system

in place for parking in San Francisco, SFpark, and secondly the UberX system designed

to react to variations in supply and demand. Even though Uber is not a smartparking

system, it possess enough similitude in its pricing strategy to be relevant in our case.

3.4.1 SFpark

SFpark1 is the name of San Francisco parking pricing program, initiated in April 2011.

Through the usage of sensors detecting the occupancy of parking spots in San Francisco

streets, the price of parking vary, depending on the average free/occupied parking spots

ratio of a street, each one independently of the others. Before SFpark, the price of park-

ing spot in SF downtown was fixed at 3$ an hour, and some of the biggest and most busy

street were nearly constantly at full parking capacity, while some nearby streets might

1http://sfpark.org/

40 Chapter 3. Economy

have 40 or 50 percent of free spots.

The purpose of SFpark is to create a better distribution of the parked vehicles, through

variating parking prices depending on the occupancy of the street. Ultimately, the objec-

tive of the system is to have on average between 60% and 80% of the parking spot of a

street occupied [29]. If a street is above this value, the price of parking per hour in this

particular street increase. Oppositely, if the value is below 60%, the price decreases.

With this variable price system, the purpose is to lead people toward cheaper places,

even if this increase their walking distance. If all the streets have an average occupancy,

it means that every user should be able to find a spot matching his demand more easily,

as no street has a 100% occupancy.

FIGURE 3.1: San Francisco streets dynamic parking prices, May 2012 [29]

There is however some issues with the SFpark system. First of all the price of the

installation, estimated at 18 millions USD, for the 7000 parking that were fitted with sen-

sors [24]. San Francisco being a huge city it was possible to afford such investment, but

this is not the case for many cities around the world.

Additionally, the system is not flawless as two parallel streets in the targeted occu-

pancy were found to have a very large price difference on average with spots in one

street costing more than double those in the other street. Several other factors, such as

the abuse of reserved spots for disabled people, also have influence on the price and

the occupancy of streets, and as of 2013 the SFpark system was not yet taking those suf-

ficiently into account. But the idea of having the prices depending on the geographic

location of the parking spot remains sound and coherent, and is something we have to

keep in mind should we ever implement a dynamic pricing solution for our SmartPark-

ing application.

3.4. Dynamic Pricing 41

3.4.2 UberX

The system used by Uber2, named “Surge” pricing [6], has for objective to increase the

response when the demand of service increases heavily due to some events or peak hour

of transportations. Even if the service provided is not the same as us, transportation in-

stead of parking, the context is similar as our peak times and hours are similar to those of

Uber, the difference being our public target. Uber target people not willing, or not able,

to use their own vehicle to reach a destination, while we target the opposite, the one who

drives to the destinations and who will have to park their vehicle in areas where parking

is not trivial.

Uber’s "Surge pricing" is a single value that impacts all prices of the service. This

value is calculated in real-time, depending on the demand, increasing by 10% increments.

The default value, 1.0, means that the prices are in their normal state and demand and

supply are balanced. When demand starts to outmatch the supply, for example at the end

of a concert or football match, this surge value starts increasing. As long as the demand

gets higher, the surge value keeps increasing. In their article, J. Hall, C. Kendrick and C.

Nosko [13] observed the variation of the supply and demand of the UberX service dur-

ing a popular event. The following figure shows the number of users opening the Uber

application in Madison Square Garden area, during an Ariana Grande concert.

FIGURE 3.2: Demand for Uber Spikes Following SoldOut Concert on
March 21, 2015 [13]

The surge period is highlighted and we can clearly identify the moment, at the end of

the concert, when the demand starts to rise. This leads to Surge value increases, up to 1.8

for five minutes, meaning a 80% prices augmentation. During the 75 minute long surge

period, the Surge multiplicator was a 1.0 for 40 minutes, increased by one tens every 5

2https://www.uber.com

42 Chapter 3. Economy

minutes. The increase in prices was followed by a rapid increase in service suppliers

(Uber drivers), which is also clearly highlighted in the following graph, representing the

amount of Uber drivers responding to this high demand in the area of Madison Square

Garden.

FIGURE 3.3: Uber DriverPartner Supply Increases to Match Spike in De-
mand [13]

As the authors pointed out, those values by themselves cannot be claimed as proof

that the price increase led to the the supply increase, indeed Uber drivers could have

been moving to this area by themselves knowing that the concert was about to end and

more of them were ready to respond during the surge period, however the correlation

between the two graphs is too strong to be ignored.

Another situation studied by J. Hall, C. Kendrick and C. Nosko [13] reinforced their

hypothesis that the surge pricing effectively increases the supply during peak hours,

while also pointed out an issue with the system. During New Year’s Eve 2015, Uber surge

pricing was in effect, even reaching a 2.7 value (170% prices increases) until 1 A.M., when

the surge system broke down, leading to a surge value dropping to its default 1.0 . New

Year’s Eve is also a remarkable period of low supply, as many people are busy with their

own celebrations and are not willing to provide the Uber service, except when the prices

are getting really high, thanks to the surge value. But with this value dropped to 1.0 due

to a glitch, very few Driver-Partners responded to the demand, and many people where

left with their request unfulfilled. This is highlighted in the following set of graph, where

we can see the amount of requests increasing, but this time, without the surge pricing the

supply remained low, and the request completion time heavily increased. The percent-

age of request completion dropped below 25% during the period, while it stayed a 100%

during the surge period of the Madison Square Garden example.

3.4. Dynamic Pricing 43

FIGURE 3.4: Vital Signs of a Surge Pricing Disruption on New Year’s Eve
(January 1, 2015) [13]

This example leads to two reflexions. First, it is evident that surge pricing as a mecha-

nism to increase supply works, and that we could use a similar system to encourage users

to share their spots during peak hours and in heavily demanded areas. But on the other

hand, it could lead to users delaying their offer, or not offering at all, when the surge is

not in effect, either due to a problem on our side (glitch, system failure) or simply be-

cause the demand is not high enough.

In any case, it is important to evaluate the pros and cons of each pricing system, dy-

namic or static. Obviously static pricing is easier to implement and is straightforward for

the users, while dynamic pricing is a solution where architecture and algorithms, while

preferable on average, may lead to discrepancies like Uber solution, in terms of peak

hours, mobility and traffic congestion.

45

Chapter 4

Security & Privacy

4.1 Overview

Having discussed and presented options related to the Community development and

the economy behind the parking spot trades, it is important now to take some time to

introduce security and privacy concepts and measures we have to acknowledge and con-

sider in the development of our park sharing application. Indeed, contrary to many

of the SmartParking systems we presented before, our application will need to process

and store user’s private data, such has names, license plates and timestamped locations.

Storing of these informations means that we have to ensure that these data won’t be dis-

tributed freely without user consent, and that our system will have appropriate security

level to ensure that attackers won’t be able to access them.

Before we move to the implementation of the application itself, we have to look at

good security and privacy practices in the mobile development software process, with

the aim to provide some guidelines for the implementation of secure mobile applica-

tions. The field of mobile security as a whole however, is considered outside the scope of

this research, so we will not cover issues related to malware or operating system vulner-

abilities.

4.2 Identifying security risks and mitigations

The OWASP Mobile security project [27] is a collaborative research project that aims to

provide up-to-date information about security in the mobile space. In 2016, the project

published an updated list of the ten most significant mobile security risks, based on the

original list from 2014. The community-driven side of the project offers interesting in-

sights on which issues mobile developers are struggling the most.

1. Improper Platform Usage

Mobile Operating Systems offer numerous capabilities that can be leveraged in ap-

plication code through dedicated interfaces. Some features come with strict guide-

lines and security risks might arise if the application does not respect them. For

46 Chapter 4. Security & Privacy

example, an application might rely on the platform providing an interface to se-

curely store local data, such as KeyChain on iOS. If this application fails to leverage

such feature or mistakenly copies data from the secure storage to local public stor-

age, sensitive data may be leaked.

Mitigation: Make sure platform specific features are properly understood. Adhere

strictly to the documentation provided by the manufacturer.

2. Insecure Data Storage

The use of encryption for local storage of sensitive data is as mandatory for local

storage as for network communications. Local storage on mobile devices cannot

be considered trusted since the mobile aspect makes it more likely that the device

could be lost or stolen. On top of that, numerous applications typically cohabit

on the same device and some third-party application or malware could easily gain

access to the file system. Furthermore, the platform itself may leak data during

normal operations without the developer’s knowledge through internal processes

such as caching, buffering or logging.

Mitigation: Understand the implications of URL or Copy/Paste caching, applica-

tion life cycle, cookies management and logging on a platform specific basis. Use

encryption on local files and store as little information as possible.

3. Insecure Communication

This category encompass all vulnerabilities that makes possible the interception of

sensitive data while it transits over any kind of network. Mobile applications rely

almost always on a client-server communication model over the Internet that needs

to be resilient to data leakage or any kind of tempering. Specifically, risks in this

category may concern data integrity where data could be altered in transit, data con-
fidentiality where sensitive data could be obtained by observing traffic and origin
integrity where an attacker could impersonate a legitimate user.

Mitigation: Make the use of SSL/TLS encryption for all Internet communications

mandatory by default, with appropriate cyphers and key length. Use trusted cer-

tificates, never allow self-signed certificates and warn the user if there is an invalid

certificate issue. If appropriate, use a second layer of encryption on top of SSL/TLS

before transmitting sensitive data.

4. Insecure Authentication

An application might be vulnerable through a lack of trusted authentication, for

example, if it is allowed to execute a restricted API call without providing an access

token. If the server fails to properly authenticate the sender of a request it might

result in anonymous execution of restricted features. The typical consequences be-

ing exposure of private data. Denial of service attacks are also facilitated by such

vulnerabilities.

4.2. Identifying security risks and mitigations 47

Mitigation: Ensure that authentication checks are performed for all possible re-

quests on the server, and only load private data on the device after successful

authentication. Perform authentication checks more than once when processing

a request in multiple stage to avoid a single point of failure. Avoid caching of pass-

words or any other data that could be used to bypass authentication schemes. Re-

quire strong passwords. Do not rely on spoofable informations for authentication.

5. Insufficient Cryptography

Mobile applications may rely on outdated or weak encryption schemes that can

be easily broken by modern techniques. However, encryption can also be com-

promised by external factors even if a strong encryption scheme is used, if keys are

mishandled or leaked for example. Some applications try to deploy custom encryp-

tion tools but it is generally accepted as a bad practice by the community since it is

a form of security through obscurity. The OWASP authors also warn to not rely on

built-in encryption tools for the application code as they can be bypassed trivially

with jail-broken devices.

Mitigation: Use strong and up-to-date encryption standards. Try to plan for future

improvements in encryption breaking techniques that may render some encryption

algorithms obsolete sooner than later.

6. Insecure Authorization

An application exposes authorization vulnerabilities if it fails to check in a trusted

way that a particular user has the proper permissions to perform a particular action.

This category is linked to “Insecure Authentication” as authorization obviously re-

quires authentication. Risks in this category could also stem from not validating

input data from the client, which could allow an attacker to exploit legitimate re-

quests parameters in order to expose private informations.

Mitigation: Crucially, the authorization process must rely exclusively on trusted in-

formation from the backend rather than on data coming from the client themselves,

which would be trivial to manipulate for a potential attacker. It could be advisable

to perform additional checks on all requests to ensure they could reasonably have

come from the same identity.

7. Client Code Quality

This category concern all risks that directly result from an implementation error in

the client code such as buffer overflows, memory leaks or insufficient validation of

user input on the client side. Consequences may be severe as attackers can leverage

such vulnerabilities in order to compromise the entire mobile device, gain access

to large amounts of personal data not limited to that specific application. Buffer

overflows are typically used to obtain remote code execution on a targeted device.

Mitigation: Maintain consistent and healthy software development practices. Par-

ticular attention must be given in setting the size of buffers in languages that do not

48 Chapter 4. Security & Privacy

provide automatic memory management. Use static code analysis tools to detect

common buffer overflow and memory leak issues.

8. Code Tampering

By design, mobile application clients run in an environment that is in no way under

the developer’s control. Some attacks can be performed by modifying the applica-

tion code itself, either directly inside the software package (bytecode) or through

the runtime environment. This category cover risks related to memory manipula-

tion, executable modification or configuration misuse.

Mitigation: The application should be able to assess its own integrity at runtime

based on some information known at compile time. The application could also per-

form checks in order to detect if the device has been jailbroken or rooted and take

appropriate actions if so.

9. Reverse Engineering

As stated above, mobile applications are susceptible to code modification. Thor-

ough analysis of the client’s code can realistically inform attackers about data struc-

tures, algorithms and other assets contained in it. For example, String constants and

comments can be easily retrieved if no steps were taken to prevent it, which in turn

might help an attacker gain valuable insight in the inner mechanism of the applica-

tion.

Mitigation: Use code obfuscation tools to make the code less understandable from

an external point of view. Such tools will always have an impact on performance

so it is important to find a good balance.

10. Extraneous Functionality

Developers often includes hidden features in the code, in order to speed-up testing

or deployment. Such features are typically not intended to be released in produc-

tion but some artifacts are often left-over. Furthermore, mistakes do happen, the

canonical example being a commented password inside the code or worse, the en-

tire authentication process was commented out during testing and was not reacti-

vated before release.

Mitigation: Inspect the code thoroughly before release, possibly with the help of

unit testing and possibly with symbolic execution tools. Make sure there are no

deprecated or hidden endpoints on the server side that were left-over from devel-

opment.

4.3 Testing

An healthy architecture with appropriate security measures, while required for secure

mobile applications, is no guarantee for security. Some tools like static code analysis and

unit testing can contribute greatly to the detection of vulnerabilities, even early on in the

4.3. Testing 49

development process, but entire categories of software bugs only manifest themselves

depending on context: network congestion, system load etc. This is especially true for

mobile applications due to the mobile nature of the targeted device where the environ-

ment plays a greater role than in traditional applications: device location, battery charge,

network connectivity, sensor inputs are all factors that can influence mobile applications

behavior.

Another crucial aspect of mobile application testing is the large number of differ-

ent platforms, operating systems, software libraries and hardware components on the

market. Interoperability between these components relies on an increasing number of

abstraction layers that could lead to software failures rather than the mobile application

itself. This problem is exacerbated by the short update cycle adopted in mobile ecosys-

tems. Therefore, testing is required to ensure mobile applications behave as expected

when running on different devices. Unfortunately this entails a high cost for software

developers.

A study by H. Muccini, A. Di Francesco and P. Esposito [22] from the University of

L’Aquila, Italy, concluded that mobile applications are indeed sufficiently different from

traditional ones to warrant specialized testing techniques, due to their mobile and context-
aware aspects. The paper identified many challenges related to mobile apps in regards

to performance, reliability, energy usage and security. Specifically, the paper highlighted

that a typical mobile device may connect to different networks with different security

levels, such as public/private wifi networks or cellular networks. The paper argues that

dedicated testing is required to ensure applications do not transmit sensitive data in an

insecure manner over potentially compromised networks.

The comprehensive testing of mobile applications is therefore challenging. Because

the variability in context and components is so high, it is unwise to expect that manual

testing will ever be sufficient to guarantee a safe level of dependability. Automated test-

ing tools seem to be the most promising answer to many of these challenges, particularly

the notion of Testing-as-a-Service. [23] and [11] present models to perform mobile applica-

tion testing in the cloud which has numerous advantages over other models, namely:

• Cost-effectiveness: Cloud computing, in its essence, is about sharing computing

resources which brings down costs. Cloud based models can easily include a “Pay

as you Test” billing scheme as presented in [11].

• Scalability: Cloud based testing relies heavily on virtualization techniques, which

makes the daunting task of covering numerous devices much easier.

• Availability: The cloud model offers high availability by design, without the need

for dedicated hardware.

50 Chapter 4. Security & Privacy

However, the Testing-as-a-Service paradigm also entails some new concerns, notably

in terms of privacy. If the tests performed contain actual user data, they should be thor-

oughly anonymized to prevent any personally identifiable information to reach the test

environment in order to avoid any issues if the service is compromised in any way.

We expect that Testing-as-a-Service will soon become standard practice in the industry,

which would undeniably raise the level of security in the entire mobile software sphere,

granted that dominant players like Google Play Store or Apple’s AppStore enforce auto-

matic testing on their catalog.

4.4 User expectations and perceptions of privacy

Smartphones are hosting a large amount of personal information that typical users would

generally consider as private such as emails, text and voice messages, contact informa-

tions and photos. In many ways, the smartphone has replaced the personal computer

in people’s lives, but the mobile nature of the devices and the vastly different software

ecosystem and distribution model make direct comparison of privacy implications chal-

lenging. Users might focus on specific expectations in regard to the privacy of their in-

formation that they inherited from their use of desktop computers that, in reality, are not

met in the mobile computing space.

Studies have shown that average smartphone users indeed demonstrate significant

privacy expectations in regard to their smartphone usage. For example, A study by J.

King from the University of Berkeley, California [17] draws a parallel between a person

and an application accessing a mobile phone and the notion of trust level. Study partici-

pants mostly reported that they would have no issues with a person they trust accessing

their devices, but this person would still need to give a valid reason to access personal

informations. In principle, the same applies for mobile applications: users are generally

ready to share information if it is contextually relevant. However, participants expressed

discomfort when confronted with application behavior that did not met this expectation.

Applications requiring permissions to access sensitive but unrelated data are perceived

as invasive or even deceitful by users. But data collection and sharing to third parties is

often at the core of application business models.

The study also shows that users have troubles evaluating what kind of information

applications actually have access to. At the time the study was done in 2012, both An-

droid and iOS applications could access information that many users consider private

such as photos and texts under the default settings and many participants were unaware

of that. Although permission settings are more strict nowadays, usability remains an is-

sue for users with little technical knowledge.

4.4. User expectations and perceptions of privacy 51

Participants also reported feeling powerless when faced with mobile applications

Terms of Service or End User License Agreement that are both time-consuming to read and

hard to understand. These TOS represent a kind of “all or nothing” contract between the

user and the service provider in which the user has no power of negotiation, the only

alternative being to not use the app. As a result, very few users actually read TOS or EU-

LAs, leaving them exposed to unexpected or hidden data collection. For example, when

researcher guided participants during the installation of "Fruit Ninja" and clearly exposed

all the permissions the application was requesting, participants felt uneasy and deceived.

Many participants reported that they place their trust on reviews, reputation and the

distribution platform rather than on applications themselves, in the belief that such plat-

forms would not allow dishonest applications. Unfortunately the review process of such

platform is rather opaque and provides no such guarantees to the end user, at least not

in a transparent way.

However, both [17] and [31] highlight that many users still use applications that they

perceive as valuable even if their expectations of privacy are not fully met. The global

feeling expressed by users is a lack of solutions to the problem. Users are generally not

inclined to search for technical solutions such as tracker blockers and simply favors the

convenience of mobile applications. It is unclear what long term consequences this dis-

trust from mobile device could have in consumers, although researchers suggest that

their could be negative psychological and health impacts through the stress resulting

from the cognitive dissonance associated with the invasion of personal space.

The main conclusion is that users are increasingly aware of the dynamics of the in-

formation economy and their role in it. People generally agree to share their data if they

agree to the purpose and have given their explicit consent. However, complicated EULAs

and TOS hardly count as informed consent, so developers should put more emphasis on

what data users are really sharing during usage. The "creepiness" induced by the discov-

ery that some applications are more than they appear (like "Fruit Ninja) can be mitigated

by making sure the user has some form of control over shared data.

More generally, we argue that application business models should not rely exclusively

on data sharing. It is much more beneficial for all parties involved to first and foremost

bring value to the user through the collected data, as it is then contextually justified to

do so. If more value can be extracted from those data by sharing them with other actors,

express individual consent is mandatory to maintain a trusted relationship with users.

53

Chapter 5

Reliability

5.1 Overview

When talking about Crowdsourcing, one of the challenges that rapidly comes to mind is

the reliability of the crowdsourced data. How trustful we can be toward our users and

mostly, how we can prevent users from submitting false data ? This is a challenge that

every crowdsourced platform faces to some extent, and with our smartparking applica-

tion, we are not exception.

However, due to the nature of the system we aim to develop, we are not as impacted

by false reports that some more traditional crowdsourced platforms, as the data we re-

quires from our user are very specific, at least for the first iteration of our prototype.

But reporting should still have its place in the future of “ParkExchange”, and it is then

important to already consider the options at hand to improve the reliability of our crowd-

sourced information.

5.2 Seller’s reliability

For the purpose of our application, the main crowdsourced information is the availability

of parking spots, when users decides to sell their spots. The obvious case of false report-

ing is user reporting an available spot when they are not actually parked. Of course,

since there is trading involved, and currencies are being exchanged when selling a spot.

We have means to dissuade users to make false sales through economic loss (even if only

virtual ones), but that does not mean we cannot try to figure out automatic ways to de-

termine a false seller, before he actively causes harm to another user by selling him a fake

spot.

We already introduced CrowdPark [38] in a previous chapter. As a spot sharing appli-

cation, or prototype, they faced similar issues, notably with the seller’s reliability. They

54 Chapter 5. Reliability

develop two solutions to handle this issues that could prove useful, that they named re-

spectively “SpotCheck” and “ActCheck” .

SpotCheck

The idea behind SpotCheck is to force the potential seller to take a picture with his phone

of his own license plate, add a geo-tag to the picture and then send it to the server, when

willing to sell a spot. This confirms that the seller is at the spot he claims to be with his

parked car. However, this solution presents several issues.

First of all, this is time-consuming for the user, requiring him to step out of his car and

to perform an additional action to simply sell his spot, which is counterproductive. When

we identified the motivation being part of a crowdsourced community in the “Commu-

nity” chapter, designing a fun system was a big part of a crowdsourced application’s

success. Even though sharing a spot is not really fun strictly speaking, and is not too

constricting to the user, as long as initiating a trade remains easy. Adding several steps to

the process in counter productive, and could dissuade users to share their spot. Indeed,

as a small example, who would really be willing to step out of his car and take a picture

of the license plate when it is pouring outside.

The other issue with such a system is the picture itself, and the license plate it contains.

Automatic Recognition of textual information in picture data is a long standing challenge

in computing. Nowadays, ANPR (Automatic number plate recognition) systems are get-

ting better and better, but leaving it fully automatic without any sort of supervision re-

mains unsafe. According to the CrowdPark developer, in 2012 the ANPR reliability was

around 10% [38], way too low to be of any use. Even if we consider that the ANPR tech-

nology has improved over the last five years, it remains too much of an uncertainty to

be used. The alternative solution proposed by CrowdPark was then to use human-based

resources, typically the Amazon Mechanical Turk, we mentioned previously. With the

AMT, they achieved a nearly perfect hit rate with their plate’s recognition, but at the cost

of lengthening the process, which is not acceptable for our concept. With their system,

users sell places several hours before actually leaving the spot, thus delaying the trade

for 5 minutes is not too problematic. Our application being much more realtime than

CrowdPark, asking our sellers to wait up to five more minutes before even confirming

that they could sell their spot would most likely be a killing blow to our application.

ActCheck

The other option proposed by the CrowdPark team is sensor based. In a way it is similar

to the first practical task we worked on in the course of this thesis, the small application

5.2. Seller’s reliability 55

collecting sensors such as accelerometer in order to determine later on if the user was

walking, driving or standing. The idea CrowdPark developed is that the user should

most likely be walking before selling his spot, and driving after the trade is over.

ActCheck requires the application to keep being active as a background process once a

seller initiate a sale. It then constantly computes the sensors data and uses an algorithm,

in the case of CrowdPark, the JigSaw algorithm [20], and determines the user’s activ-

ity. Jigsaw is based on the accelerometer and determines the user’s situation through

the vibrations detected by the device. Using mostly the accelerometer provides also the

advantage of requiring less battery usage than other sensors or even the smartphone’s

camera.

If the algorithm then detects that the seller is performing an action he should not be

doing , mostly driving before having completed his trade, he can be flagged as a dis-

honest seller, and his spot could be removed from the pool of available spots, if it had

not been purchased yet, or in the opposite case, warn the buyer in time that the spot he

bought was in fact non existing. The buyer then gets his credits back and can purchase

another spot.

ActCheck present two issues, first, when the algorithm assume that the user is driv-

ing when he is not (false positive), for example if he instead takes a subway on his way

to his parking spot, and the second with malicious sellers being aware of the ActCheck

prevention system, trying to cheat the system by simulating expected behavior.

For the malicious users, a study [34] indicates that imitating a walking pattern when

actually using some sort of vehicle is extremely hard to perform. By using mostly the

accelerometer, with the addition of GPS information to refine the data, researchers have

been able to determine with a 99.9% precision when a user is not walking, even if he pre-

tends to. The remaining issue is then the risk of false positive. In this case, there is a risk

that someone using public transportation could then be identified as a dishonest seller

when he is not. The CrowdPark team suggested but without having actually tried to im-

plement such system, that by coordinating sensor’s values, GPS information and public

transportation routes and schedules, it should be possible to even detect such situations

and thus determine with great certitude when a user is actually driving when he should

not be, and flag him as dishonest.

Since CommuniThings is working on a similar algorithm with very good results con-

cerning the activity detection accuracy, we could use it in our development, even though

it is unclear at this stage how to reliably differentiate a car driver and a bus user for

example, as both case generates similar contextual patterns. SpotCheck would be inap-

propriate for our design, as it delays the licence plate recognition process significantly

56 Chapter 5. Reliability

while sellers are expected to have a short timescale when they sell the spot. However,

ActCheck concept is a good option for our design, being very close to real-time. With

some improvements, and in conjunction with CommuniThings algorithm, a similar sys-

tem to ActCheck could then be used in our application as a measure against dishonest

sellers by checking that a seller is not currently driving for example.

57

Summary

Social and economical aspects, alongside security, privacy and reliability are the main

aspects to consider when relying on crowdsourced information. Together, they represent

our answer to our research question “What are the major themes to consider when rely-

ing on crowdsourcing for a Smartparking system ?”

Existing smartparking solutions rarely leverage the benefits of a strong user commu-

nity, these instead rely on “smart” infrastructure to provide a reliable service. Based on

the theoretical background we exposed in this first part, we will now describe in detail

the prototype of a crowdsourced smartparking solution that obviates the need for new

infrastructure by having interaction between users at the core of the system.

59

Part II

Software Development

Prototype Application

61

Chapter 6

Context & Analysis

6.1 Context of the application

Having reviewed SmartParking concepts with and without a crowdsourced method of

data collection, it is now time to take a practical approach to the parking problem by de-

veloping our own application, that will include the crowdsourced elements we explored

before. This part of our master thesis is thus dedicated to describe our though and work

process in the development of the application, based on elements we described before in

our field review.

6.1.1 Parking spot exchange model

The main objective of this project is to propose a model where users can sell and buy

parking spots to each others directly, with a high degree of confidence that the transaction

will be successful for both parties. This entails that users can be reliably located and

identified, that users have a way to plan where and how they will find parking space, and

that users cannot benefit at the expense of others. The economic aspect is not negligible

to ensure an equilibrium between offer and demand as from a practical standpoint there

can be only immaterial benefit in signaling a free spot. The model should also account

for the fact that dealing with the real world evolves uncertainties and unreliable data or

users should not result in critical failure.

6.1.2 Buyer/Seller Match algorithm

As opposed to some other proposed park sharing models like CrowdPark [38], we do

not intend to match offer and demand in a free market style but rather through the use

of algorithms to optimize the matching between sellers and buyers. We argue that it is

indeed better to restrict the user’s freedom of choice in order to lift the weight of decision

from the user as well as making it more difficult to exploit the system via collusion.

The matching algorithm needs to take into account important and simple parameters like

distance and wait time but could be enriched by using traffic data in order to predict more

accurately the estimated time of arrival of a buyer for example. More specific information

like parking spot size or some form of user reputation could be used as well. Corner cases

and abnormal situations also need to be defined.

62 Chapter 6. Context & Analysis

6.1.3 User Experience

Any crowdsourcing application relies on its user base at its core to work properly and

it is especially true in the context of park sharing. There is indeed a critical threshold of

adoption below which this application will simply be useless because of the lack of spot

offers. We should therefore strive to design the best possible user experience in order to

attract new users rapidly and crucially retain active users while the community is still

small and the benefits of using the application disputable. This is accomplished in part

through a particular focus on user interface and transparency by keeping the user aware

of possible actions and their effects.

6.1.4 Deliverables

In order to define more clearly the scope of this project, we agreed with CommuniThings

to work on three parts.

Parking Sensor Module

This module extracts data from mobile phones sensors such as accelerometer, magne-

tometer etc. Basically a logger, the main purpose is to use machine learning techniques

on the extracted data in order to determine the feasibility of the automatic parking detec-

tion feature mentioned previously.

This module should be simple in its design while being compatible with many brands

and models of phone. This is crucial because different phones have different sensors

which might affect the precision of collected data. These data should reflect the variabil-

ity in sensors to guarantee the algorithms trained on are general enough to be useful.

Usage should be manual, where the user explicitly records periods of activity in different

contexts such as walking, sitting, driving and of course parking.

Its intended user base is exclusively limited to members of CommuniThings. In the fu-

ture, its core features could be reused along trained algorithms to implement automatic

parking detection.

StopBuy Mobile Application Module

The StopBuy mobile application is currently in use by the general public in the context of

the StopBuy platform deployment in Mons. It supports important features such as a dy-

namic map with tokens, GPS guidance and connectivity with CommuniThings services.

The application is in active development.

We created a branch in the application source code to implement new features related to

parksharing such as being able to request/offer a parking spot from/to the community

as well as a complete end-to-end parking spot exchange. We also implemented dynamic

map notifications that displays a token when a newly freed parking spot is detected.

6.1. Context of the application 63

StopBuy Web Application Module

The StopBuy platform backend services are split between different processes, the main

one being a web application answering the requests from the mobile application. We also

created a branch in the web application source code to implement the necessary features

to make the mobile application module work as intended, such as new API routes and

associated controllers, database entities etc.

64 Chapter 6. Context & Analysis

6.2 Analysis of the required system

On top of usual software engineering concerns, the development of a “Smart City” ap-

plication requires careful analysis of real world considerations. In this section we present

in detail the parking spot exchange model we designed in collaboration with Commu-

niThings. We discuss practical, economical and technical aspects of the solution. Finally,

we expose our point of view regarding activity detection.

6.2.1 Parking Spot Exchange Model

Seller’s perspective

Once a user is registered, he can enter the seller role at his own discretion. Ideally, the

system should be able to confirm that the user’s vehicle is indeed parked nearby. As

soon as the sale begins, the seller’s location is continuously transmitted to the system.

The seller needs to provide the following information:

• Location of the spot

• Description of the user’s vehicle

• In how much time the spot will be free

• How long the user commits to wait for a buyer

Location The location is retrieved automatically from the phone. There is a need for

filtering the accepted spots, as the focus of the application is urban areas. The system

should reject remote locations where there is little chance to find a buyer so as to prevent

sellers gaining credits in an abusive manner.

Additionally, having a pricing strategy depending on the location of the spot is one

of the possible improvement of the prototype, and would be in line with the dynamic

pricing option explored in the first part.

Vehicle Description This description includes vehicle brand, model and exterior color

as well as an optional text description for the user’s to include distinctive traits he wants

to share. This description is needed from the buyer’s perspective to identify, hopefully

uniquely, the spot in a street or parking zone as location cannot be accurate or reliable

enough. Alternatively, a photo of the car could be used as description.

Buffer Time This parameter allows the seller to plan his departure in advance and rep-

resents valuable information for the system as the spot can then be offered immediately to

buyers who are not in the immediate vicinity but who are projected to spend that amount

6.2. Analysis of the required system 65

of time driving to the spot from their current location. This parameter can of course be

set to zero to signal that the seller is ready to leave immediately. Conversely, there is a

need for a reasonable upper limit to prevent abuse and erroneous inputs.

Wait Time This is the time the seller is willing to wait while ready to leave at a mo-

ment’s notice. This parameter will be used to calculate how far potential buyers can be:

the shorter time the seller is ready to wait, the nearer buyers need to be. The rationale be-

ing that the system does not direct buyers to sellers that are not ready to leave in order to

avoid buyers having to resort to illegal or double-parking. Sellers are incentivized to wait

longer as this parameter crucially determines the availability of parking spots within the

community. In total, the parking spot will be available to buyers at most TO = TW + TB ,

where TO is named the offer time.

After submitting these details, the user is considered as an active seller by the sys-

tem. At this time, the seller can retract without consequences. During Wait Time, as well

as during an exchange, the user is required to be geographically near the parking spot,

leaving the vicinity will trigger a cancellation of the sale at the seller’s expense.

Internally, the system will trigger a search for an active buyer located near enough to

drive to the spot within the time constraint chosen by the seller, that is buffer time plus

wait time. If no such buyer is found when sale time runs out, the seller is credited with a

certain amount of credit and then exits the seller state.

If the system finds a suitable buyer that accepts the exchange, the seller is notified

that a transaction is taking place. The seller is given information on the distance between

him and the buyer as well as the estimated time of arrival. The seller can also locate the

buyer on the map in real time.

When buyer and seller are in visual contact with each other, the seller is allowed to

vacate the spot leaving it free for the buyer. Close proximity is validated through a corre-

lation of the current location of both parties. After leaving the spot, the seller is asked for

feedback in the form of a numerical score. An optional text comment could be useful as

well if the user wants to communicate a specific opinion. The seller also has the option

to cancel the exchange at any time at his own cost. When doing so, he will be asked to

choose from a list of predefined reasons.

If the buyer cancels the exchange, the seller is notified and the system will start search-

ing for a new buyer within the new time constraints. After both users provide feedback,

the exchange is closed and the seller leaves the seller state, earning credits. The cost and

gain of credits resulting from an exchange is determined by the feedback of both parties

66 Chapter 6. Context & Analysis

and is the subject of the following section.

Buyer’s perspective

The user can enter the buyer state at any time except when in the seller state, as the roles

of buyer and seller are mutually exclusive. Again, the system should be able to confirm

the user is driving though activity detection. After a user makes the request to buy a spot,

the system will trigger a search among available sellers.

If a suitable seller is found, the buyer is notified and has access to some information

about the spot’s location in order to decide for himself if it is adequate. The buyer can

only see the distance he would have to drive as well as an estimated time of arrival. The

buyer’s acknowledgement of the proposed exchange represents a commitment to the sys-

tem since the spot cannot be offered to other buyers after this stage. Obviously, buyers

cannot have access to the precise seller’s location before making this commitment. The

buyer can cancel its request for a spot without penalties as long as he did not accept an

exchange, if he finds a parking spot independently for example.

If the buyer refuses an exchange, the system will search for another suitable seller

until the buyers accept an exchange or cancels his request. When the buyer accepts an

exchange, he is guided to the precise location of the seller.

At this point, the buyer can still cancel the exchange, but a penalty will incur as he

did not stick to his commitment to buy the spot. This is called “breaking” the exchange.

When the buyer arrives on location, buyer and seller make use of each others vehi-

cle’s description to precisely locate each other. The seller has the responsibility to only

leave the spot when reasonably sure that the buyer will be able to take it. When the buyer

signals a successful exchange, he is asked for feedback in the form of a numerical score.

If the exchange is unsuccessful, the buyer is asked to give a reason, and the system will

start searching for a new seller.

If the buyer takes too much time to arrive to the location and the seller decides to

leave, the buyer is notified that the exchange could not be completed due to seller’s de-

parture. The buyer has the option to continue following guidance to the spot, without

guarantee that the spot will still be free. The second option is to search for a new seller.

6.2. Analysis of the required system 67

FIGURE 6.1: Informal seller state diagram

FIGURE 6.2: Informal buyer state diagram

68 Chapter 6. Context & Analysis

6.2.2 Virtual Economy

Building a functional economic for our trade system is not easy, as we made clear in the

previous part of this document. Many parameters need to be taken into account, and

safeguards against scams and untrustworthy users have to be applied in every step of

the trade to ensure the satisfaction of our honest users. We will now go more into the de-

tails of how we designed our economic system, and how the amount of points required

to buy and sell spots have an impact on our users motivations and willingness to accom-

plish successful trades.

In the application, those points are called “StreetCreds”. Every purchase of a parking

spot costs a predetermined number of “StreetCreds” to the buyer, and the seller on the

other hand receives “StreetCreds” for having successfully sold his spot. We call C the

number of credits spent by the buyer, and G the number of credits received by the seller.

Having G and C, we also define N as the credits of a newly created account. We

already discover that with currency being constantly added by the creation of new ac-

counts, we have to ensure C > G most of the time. Without diving to much into the final

values, we also have to relate N to the two others parameters. We want our new users to

be able to buy a spot with their initial credits, as a mean to discover and test the service,

so we have to ensure N >= C. Since there is only one way for a user to generate currency,

we will set N up so a new user can buy two trades, and even have some “StreetCreds”

leftover. The consensus we ended up after some reflexions between ourselves and Com-

muniThings is N = 2.75 ∗ C, so the user has enough credits to purchase 2 spots before

needing to sell a spot himself, giving him the opportunity to test the service and realize

its advantages, but also isn’t left with zero points after the two trades. This is done inten-

tionally as a mean to discourage users to simply create a new account since he would be

"wasting" the remaining points on his account, that are close to allow him to buy another

spot, since he is left with 0.75 ∗ C “StreetCreds”.

There is at least one more value we need to consider. When we introduced the concept

of user’s reputation in the Community chapter, we mentioned contested trades. Those

happen when the seller and the buyer disagree about the outcome of the trade. It can

happen when one of the two tries to break out of the trade but doesn’t want to assume

the responsibility and loose its rewards, so he uses the feedback system to try to dodge

the loss, or in some cases (the Trolls we talked about in the Community chapter), simply

to annoy the other user and make him lose points. In theses scenario, we do not want the

user that stayed honest to lose all of the rewards he deserves, but we cannot always be

sure of which party lied, so we have to introduce a refund value to give to both users in

case of contested trade, when the dishonest party cannot be identified.

6.2. Analysis of the required system 69

In designing our economy, we will have to solve the issues of false sellers, or farm-

ers, i.e. people who would try to sell false spot to earn points quickly, dishonest buyers,

who would claim that the trade wasn’t successful to keep their credits and the opposite,

dishonest sellers who would try to call off the exchange to either leave sooner or simply

annoy the buyer.

Since we are not the first to develop such system, we can obviously use what our

predecessors have worked on. We already mentioned CrowdPark [38], a system similar

in many ways to what we present, also using a point-based system for trading. They

presented a system that proposes a solution to some of the issues we mentioned. For

the problem of the dishonest buyer, they propose a system where the points gained by

re-selling the spot successfully are greater than the refund obtained by being dishonest.

However, a buyer that would lie about the result of the trade and thus say that he didn’t

get the spot when in fact he did, cannot re-sell his spot since he never occupied it in the

first place according to the system.

For example, if selling a spot gives the seller 10 points, and buying a spot requires 12

points, while the refund for a contested trade is 4 points1, then by implementing a bonus

of 5 points when re-selling a spot previously bought, the user has a net gain of 1 point if

he stays honest and then re-sell the spot, which accomplishes two goals, first discourag-

ing the buyers to lie, and also encouraging the buyer to sell the spot again thus creating

more trades.

With this in mind, we also have to consider the issue of two users trading a spot back

and forth to “farm” points, since with this method in usage, the first trade would result in

a +10 points for the first user, and -12 points for the second one, this making them loose

point which makes farming not profitable. But after the second trade, if we consider that

they’re allowed to get the re-sell bonus, the gain/loss becomes -2 for the first user (+10

first trade, -12 second trade) and +3 for the second user (-12 first trade, +15 second trade

with the re-sell bonus), resulting in a +1 net point gained between the two of them. If

we keep going, after the third trade we have a +4 points gained (user 1 has gained 13

points overall, user 2 has lost 9 points overall), each consecutive trade making them earn

3 points globally, both user having a positive balance after the fourth trade.

1Reminder : we call a trade contested when during feedback either the seller or the buyer claims that the
trade was unsuccessful while the other party claims it was successful.

70 Chapter 6. Context & Analysis

Exchange # User A balance User B balance Net gain

0 0 0 0

1 10 -12 -2

2 -2 3 1

3 13 -9 4

4 1 6 7

5 16 -6 10

Therefore, with this system in place, farming point can effectively be done, the rate

and effectiveness depending on the spot trading value. But it is a very repetitive process

which can either be slowed down and/or detected. One easy way to reduce the farming

efficiency would be to set a time limit between two trade a user can do. If we set a 15

minutes period during which a user cannot start another trade, since we consider that

most of the time a user leaving his place won’t park that soon, and a user getting the

place will be using it for at least that time, getting to the fourth trade takes 45 minutes,

making it a lengthy process. The other option to slow it down would be to reduce the

re-sell bonus, but in turn we would also have to reduce the refund for contested trade,

making it really low and giving more power of annoyance to dishonest seller or buyers.

But we can also detect it, since it takes 4 trades to obtain a result that is productive for

both users, we can implement a safeguard in our system that detect if two users engages

more than two trades in a certain timeframe, they could get a warning and ultimately

a ban if they persist trying to abuse the system. The way the community and the trade

algorithm works, it is indeed very unlikely for two persons to be matched two times in a

trade naturally (as of without manipulation from either side) within the same hour.

Cost-Benefit analysis

In total, we distinguish between 7 possible outcomes to a parking spot offer:

1. No exchange took place: the seller waited but no buyer was found.

2. Unsuccessful exchange: The seller broke the contract and left early.

3. Unsuccessful exchange: The buyer broke the contract and never arrived.

4. Unsuccessful exchange: Both parties report a failure.

5. Contested exchange: The buyer reports success while the seller reports failure.

6. Contested exchange: The seller reports success while the buyer reports failure

7. Successful exchange: Both parties report the exchange as successful.

6.2. Analysis of the required system 71

No Exchange took place: The most straightforward possibility, but also the less desir-

able, is that the system could not find a suitable buyer for the parking spot. In this case,

the seller is credited with an amount of creditG based on the duration of the offer, specif-

ically on active time and inactive time:

G(Tb, Tw) = K1.Tb +K2.Tw

where K1 and K2 are positive constants such that K2 > K1. While the buffer time could

be considered "dead time" as no exchange can take place during that time, it still brings

valuable knowledge into the system and as such, sellers should be incentivized accord-

ingly to sell their spots in advance. While no exchange is taking place, the seller can

cancel his offer at any time without penalties, gaining G credits according to the total

time the seller actually waited, as opposed to the time the seller originally set. Specifi-

cally, the seller will gain 0 “StreetCreds” if he cancels his offer while still in buffer time

and G(Tb, T(now)) “StreetCreds” if in wait time.

From the buyer’s perspective, there is no cost or gain associated with canceling a

request if no exchange is engaged. To terminate a request in the absence of sellers, the

buyer has to cancel it manually or it will eventually timeout.

This model could be expanded to take into account dynamic parameters such as the

demand for parking at this location at this time in the similar manner to Uber’s surge

pricing.

The seller broke the exchange: If the seller chooses to break an active exchange, he

will be credited with either 0 or G(Tb, T(now)) “StreetCreds” where T(now) is the time

the seller waited, ready to leave, until he broke the exchange. But the seller will also suf-

fer a penalty of P (D) = K4.D credits where D is the distance between the seller and the

buyer’s current location. Therefore, the seller is encouraged not to break the exchange

when the buyer is nearby.

If the exchange exceeds the seller’s offer time, the seller has the opportunity to break

the exchange at no cost, then gaining G(Tb, Tw) credits without penalties. Alternatively,

the seller can set a new wait time of N minutes at his own discretion. At the end of this

period, the seller will gain G(0, N) “StreetCreds” and will be asked to continue again if

the exchange is still not fulfilled. However, if the seller breaks the exchange before the

new wait time runs out, he will suffer a penalty of P (D).

On the other hand, the buyer does not lose any credits if this occurs, he will simply

be notified and the system will suggest another seller. However, if the buyer decides to

cancel his request for parking, he will still lose the credits he invested when he made the

request in the first place.

72 Chapter 6. Context & Analysis

The buyer broke the exchange: When the buyer breaks an active exchange, he loses all

the credits he invested. The next time the buyer wants to use the system to find a parking

spot, he will have to spend C credits again.

The seller is notified that the exchange is canceled but does not suffer any conse-

quences. If the seller’s offer time allows it, the system will search for a new buyer.

The Exchange is contested by the seller: If the buyer reports the exchange as a success,

then the system fulfilled its main mission. Therefore, the buyer should not suffer neg-

ative consequences in the event he found a free parking spot on his way to the seller’s

location for example. Furthermore, we have to take into account the possibility that a

seller gives negative feedback with malicious intent. The cost C paid by the buyer is still

debited from his account.

The seller continues to offer his spot unless his offer period is too short, in which case

the offer is closed and the seller gains G credit.

The Exchange is contested by the buyer: In this case, the seller reports a successful

trade while the buyer disagrees. This combination can be interpreted in multiple ways.

Maybe the seller left early but did not want to endorse his responsibility by breaking the

exchange or the buyer wants to cause harm to the seller. In this situation we decide to

penalize both users: The seller will gain G/3 “StreetCreds” while the buyer loses 2 ∗ C/3
“StreetCreds”. While it may seem advantageous for the buyer to systematically report a

failed exchange as it costs less, the buyer will not be able to benefit from the resale bonus.

It is then necessary to ensure that the resale bonus R is greater than C/3.

Both users report a failure In case both users report a failed exchange, we can rea-

sonably infer that the exchange effectively could not be completed, unless the 2 users

collaborating in the aim to exploit the system. Therefore, this situation should cost both

users as well. With this logic in mind, we apply the same parameters as for the previous

case.

The Exchange was successful: In the case of a successful exchange, the seller gains the

same amount of credit G(Tb, Tw) as if no exchange took place regardless of the time at

which the exchange is done. This way, while there is no explicit bonus for completing an

exchange for the seller, he is rewarded gaining the full amount for which he committed.

The buyer spends a fixed amount of creditC = K3 whereK3 is a constant, when he sends

the request for a parking spot to the system. This value C must be carefully chosen in

regards to various parameters of the virtual economy such as the total amount of credits

in circulation and inflation.

6.2. Analysis of the required system 73

It would also be possible to integrate dynamic pricing onC in regards to the particular

location and time of day.

In summary:

Seller (gain) Buyer (cost)

Request canceled or timed out ∅ 0

Offer canceled 0 | G(Tb, Tnow) ∅
Offer timed out G(Tb, Tw) ∅
Exchange broken by Seller G(Tb, Tnow) 0

Exchange broken by Buyer 0 C

Exchange contested by Seller 0 0

Exchange contested by Buyer 2 ∗G(Tb, Tw)/3 2 ∗ C/3
Exchange unsuccessful 2 ∗G(Tb, Tw)/3 2 ∗ C/3
Exchange successful G(Tb, Tw) C

6.2.3 User reputation score

We introduced in the first part the notion of user reputation, as a tool used by games and

communities to handle Trolls and untruthful users. For example, in League of Legends

(the game we spoke about in the part one), there is a clear benefit for being of good

reputation such as in game rewards, and there also is a broader range of sanctions Riot

Games can inflict on their players without having to apply a ban. In our case, the sanc-

tions we can inflict are rather limited. We have of course the option to ban a user, but it

would be best to apply this only on extreme cases. Another option would be penalties on

user’s points if his reputation score drops below a certain threshold, and lastly we could

forbid him from buying spot, only making him able to sell his spot. This solution could

however prove to be dangerous as it could tempt the user to simply “troll” again, out of

frustration, and lower even more his reputation score.

Our best course of action is then to have the user’s reputation impact what they

mostly want, their ability to find a parking spot. What we implemented is to have a

reputation score, an integer value, that start with a default value D. During the matching

algorithm, the user reputation is then taken into account to determine which user in the

area gets the parking spot sold, a higher reputation leading to better chances of getting

the spot. This is advertised frequently, most notably when the feedback and score of a

trade is asked to the owner.

We also decided not to use a “Box” system, where users only interact and trade with

users of similar reputation, as this has been proven in multiple cases to be great for high

reputation users, but ultimately extremely negative for users dropping in a lower class of

74 Chapter 6. Context & Analysis

users and trading more frequently to unreliable users, leading to a negative spiral.

The factors influencing the reputation of a user are limited. We determined that the

reputation had to increase when the user was completing a trade successfully, or in the

case of failed trade declared such by both parties, and breaking a trade. Those cases dis-

tinguish themselves of the others possibilities (the trade outcomes specified right above

this section), as they are situations where our user, most likely, both tell the truth, and

thus are in a way awarded for this, even if the trade failed. Also when breaking a trade,

you lose your points but are rewarded for your honesty.

The other two outcomes are the contested trades. We already detailed them in the

economic section. Without certain knowledge of the lying user, we choose the option to

lower the reputation of both. This makes the contested trade the least desirable outcome

in terms of reputation, giving our users more incentives to not trigger them.

Each time a user is about to perform an action possibly lowering or increasing his

reputation, a warning message announces him the amount of points won or loss by the

action, and that could impact his priority getting spots. When dropping below a certain

threshold, he is notified that his reputation has gone too low, and that he should try to

become a more reliable member of the community. If the users drops below a critical

threshold, his account is suspended.

6.2.4 Matching Algorithm

As presented in the previous section, buyers and sellers are matched by the system. From

the buyer’s perspective, the choice of the best parking available is realized as a series of

exchange proposal that the user can either accept or deny. This automatic matching frees

the user of having to consider multiple options at once and answering the proposal is

straightforward. As the buyer could be on the road driving, it seems appropriate to ask

for as little attention from the user as possible. Buyers can refuse as many proposal as

they want without penalties, but the offers that were denied will not be suggested again

for the entire duration of the buyer’s request. This way, users are motivated to accept

proposals sooner instead of gambling on the next proposal to be better than the current

one, which would slow down the matching rate between sellers and buyers in the system

as a whole. It is indeed desirable that an exchange can be created as soon as possible as

both request and offer are short-lived.

When the system receives a parking request from a buyer, there is no particular pro-

cess started by the system. The request is simply registered in a pool holding all the

requests in a particular region. The match algorithm is initiated when a parking offer is

6.2. Analysis of the required system 75

received from a seller. The system will then query the request pool for the most appro-

priate parking request. The matching criteria for a suitable request are the following:

• Vehicle size : The seller’s vehicle must be at least as large as the buyer’s vehicle, in

order to avoid the situation where the buyer cannot physically park on the seller’s

spot. A buyer driving a small city car could match with a seller driving a big SUV

for example, but not the opposite since the vehicle size is the only reliable way for

the system to estimate the size of the parking spot.

• Distance : Obviously, buyer and seller have to be near each other for the exchange

to be of interest. Requests and offers registered in the system have joined GPS

coordinates, on which the distance computation is based on. Shortest distances are

prioritized, with a hard ceiling based on the seller’s offer time. The offer time may be

translated to distance in various ways, the most basic being a simple multiplication

by an estimated average vehicle speed in the city: D = TO ∗Savg. More complicated

models may be used to take traffic into account, either by the use of statistics or real-

time data. It is interesting to note that this park sharing application combined with

activity detection could be used to crowdsource traffic data in a very streamlined

fashion, however we consider this being outside the scope of this master’s thesis.

• User Reputation : Finally, the user’s reputation is also a parameter in the match

algorithm. While there should be no "boxing" of users as mentioned in chapter

1, reputation may be used as a final selection to pick one request among all the

requests that matched the 2 previous criteria: the request from the buyer with the

highest reputation will be selected first.

If a suitable request is found by the match algorithm, a notification is sent to the buyer.

The seller is notified when and only if the buyer accepts the exchange. If the buyer re-

fuses, the system flags this particular couple of requests as prohibited and cannot be

matched again.

If no suitable request could be found due to a lack of demand, the process will pause

for a short time then starts again, in the hope that the request pool now contains at least

one suitable request.

Algorithm 1 shows a description of the algorithm in pseudo-code, assuming that the

properties of offers and requests are updated in real-time by another process in parallel.

As time moves forward, the value of d_min and d_max will change. Figure 6.3 shows

the pattern of concentric circles that appears if we assume that the algorithm waits 4 times

in the while loop.

76 Chapter 6. Context & Analysis

Algorithm 1 Request-Offer match algorithm

1: function THRESHOLD(latitude,longitude,time)
2: speed_avg← CONSTANT
3: traffic_factor← Traffic_Estimator(latitude,longitude,now)
4: return speed_avg * traffic_factor * time
5: function MATCH(seller,offer,retry_timeout)
6: request← NULL
7: while request is NULL && offer.canceled is FALSE do
8: distance_min← THRESHOLD(offer.latitute, offer.longitute, offer.buffer_time)
9: distance_max← THRESHOLD(offer.latitute, offer.longitute, offer.buffer_time+offer.wait_time)

10: M ← query_pool(d_min,d_max,offer.vehicle_size)
11: if M is not empty then
12: request← highest_reputation(M)
13: else
14: wait(retry_timeout)
15: return request

FIGURE 6.3: Maximum and minimum search radii as time evolves

6.2.5 Activity Detection and Ephemeral Parking

The model presented so far relies almost exclusively on economic incentives and user

honesty to deter nefarious behaviors. For example, a user could decide to illegitimately

sell a parking spot that he does not occupy then accept an exchange with a buyer in the

intention to waste the buyer’s time. While this behavior will result in the seller losing

“StreetCreds” and reputation, if the seller does not care about those things, the only so-

lution would be to ban him after a number of offenses. It would be highly desirable to

put in place some other counter measures that would substantiate the user’s claims at

the beginning, rather than having no other choices but to trust the user, let the exchange

proceed and witness a failure afterwards.

There are two key points to consider. The first is for a user to endorse the role of

buyer, he must be actively driving, or the request for parking would not make sense. The

6.2. Analysis of the required system 77

second key point is that the seller’s car must have been parked recently and the seller

is currently not driving. Both of these conditions could be checked through activity de-

tection techniques. If the system can enforce that users are performing a certain activity

before accepting a request/offer, a whole category of toxic behaviors can be avoided as a

result.

This is not the only benefit of activity detection however. As mentioned in section

"parksharing at larger scales", an activity monitor module could also be used to detect

when a user leaves a parking spot without the need for user interaction. Combined with

a park sharing model similar to the one adopted by ParkTag [28], it could prove to be

a powerful tool in smoothing traffic in urban centers. While we believe the complete,

end-to-end, exchange model we discuss here has numerous advantages over this kind of

"first come first served" approach, it is a heavy process whose benefits can only outweigh

the inconvenience in high demand situations. Therefore, we also believe a combination

of the two would be the most effective solution.

Fortunately, our exchange model lends itself well to this combination. As selling a

spot requires user initiative, we naturally assume that some users will forget to initiate

the process or deliberately avoid to because they are in a hurry. In this situation, potential

buyers would still have a benefit in being informed of the spot’s location, even if there is

no guarantee about its availability when they get there.

With this in mind, we suggest the concept of “Ephemeral Parking”. When a free spot

is detected through activity detection, without user involvement, the system will create a

temporary free spot that is visible to all members of the community for a limited period.

This adds a second layer to our park-sharing application: Buyers have the option to wait

on their own until a nearby ephemeral parking spot appears on their map.

79

Chapter 7

Technologies

7.1 Mobile Framework

7.1.1 Overview

Choosing the right framework is a critical decision in the application requirement analy-

sis and planning. In recent years, multiples mobile framework have emerged on the mar-

ket, providing support for the development of cross-platforms applications. Amongst

theses frameworks, two of the most prominent are Ionic, developed by Drifty, Native-

Script, developped by Telerik and Xamarin, recently acquired by Microsoft. Of course,

there is also an argument regarding the use or not of such framework, as developing

applications directly with Native code is always an option that presents some specific

advantages.

In a normal situation, we would have assessed the performances, perks and issues

with each framework before starting our work, most likely by doing an easy test applica-

tion to compare each one. But in our case, since we worked with CommuniThings, who

was already developing applications that we had to interact with, if not for a complete

merge in the end, at least for some conjunction between them, the choice was not ours,

we had to work with NativeScript. But this does not prevent us from comparing and

judging the option in order to determine if this was the optimal framework for us, or if,

in other circumstances, we would have chosen another one.

7.1.2 NativeScript

First, let’s start with NativeScript then [1]. It is an opensource hybrid framework. Native-

Script primary goal is to be perfectly hybrid between iOS and Android, meaning having

your code to be exactly identical when switching platforms. On the code side, it allows

either JavaScript or TypeScript. While using Javascript, the UI pages has to be written in

XML, while the usage of HTML is required when using Typescript. TypeScript uses the

AngularJS framework which simplify the links between UI components and their pro-

grammatic behavior. With the use of XML or HTML tags for the UI, it calls the correspond

component when compiling the code. So for example if you use a “NativeScript-button”

80 Chapter 7. Technologies

in your UI page, compiling the code on Android will translate in a Android Button, while

compiling on iOS will translate to a iOS UIButton.

NativeScript also let you access the natives API of both operating systems, which

means that even if some components (sensors like the accelerometer for example) are not

reachable through the standard NativeScript API, you can access them directly through

the Android API, but losing some adaptability in the process. Telerik is reactive and

the framework is regularly being updated, with a community publishing a lot of mod-

ule offering more functionality that are initially available. But as it offers an interesting

diversity, it is also one of the framework drawback, since you have to search for, and

install every module independently and manually, and add them yourself in the depen-

dency list of the application. Another issue with NativeScript is the application size,

quite higher than its concurrent. We also have to mention the documentation, rather un-

clear and sometimes incomplete. Being allowed to code in either Typescript or Javascript

causes some annoying situations, some modules are clearly not designed to be used in

either TS or JS and the examples given by Telerik sometimes lack one of the programming

language. In terms of performances, it also causes some loss compared to direct native

call when using plugins.

In term of speed of development, NativeScript allows for a fast development cycle,

changes applied to the code do not require the applications to be rebuild and thus can be

applied, tested and debugged instantly on either a physical or virtual device.

7.1.3 Native

Of course it is also possible to write your code directly using the natives Android and

iOS APIs, respectively using Java and Swift. Doing so, you have access to basically ev-

erything directly, without the use of modules or dependencies, but you’ll have to code

the application twice, if you want to make it available on both operating systems. So basi-

cally, in comparison when not using a framework, you gain control over the code and the

exact implementation of the application and the UI design, but you loose in adaptability

and efficiency, since you will be doing the same work multiple time to adapt your system

to different APIs, with an additional risk of having some options available on some OS

but not on the other one.

By going purely native, performance is the biggest advantage, as you can access every

component directly through the corresponding API when other frameworks requires the

usage of plugins, that might not always be perfectly optimized. One of the other advan-

tages is that you have access to very complete documentations from Google and Apple

and multiples examples of applications from people having developed apps natively,

7.1. Mobile Framework 81

while some framework, being younger, might sometimes lacks examples and online sup-

port.

7.1.4 Xamarin

Xamarin is a framework initally developped by Ximian, and was acquired by Microsoft

in February 2016. Since the acquisition, Xamarin has been made open-source and free

to use, as it is now included in the Community Edition of Visual Studio. However, the

Professional License for Visual Studio, that is recommended for building large scale ap-

plications is still requiring a license. Xamarin is based on the .NET framework, and uses

C#. It is close to being hybrid, but not totally, meaning some of the code will need alter-

ation if the developer wants to create both an iOS and an Android application. This is the

consequence of Xamarin code being really close to native code in regard of component

access, when NativeScript and Ionic often requires plugins for such functionalities. This

also means that performance-wise, Xamarin is way ahead of the hybrid frameworks and

is close to what a pure native application could offer.

The portability issue is also quite important for the UI, as its code will have to be

mostly platform dependent. This can cause complications and a lot of additional work

for applications where the UI part is critical and a big part of the application. It is also

important to note that Xamarin development is slower than for the Hybrid frameworks,

as every changes in the code means that you have to completely re-build the application.

Regarding the documentation and support, having Microsoft behind is obviously

making everything safe, even if the documentation for Xamarin in itself is sometimes

lacking some informations.

7.1.5 Ionic2

Ionic2 is really similar to NativeScript. They are both opensource and hybrid. It allows

the usage of TypeScript and Javascript, even though the framework clearly encourage

the usage of the former and with it the AngularJS framework. It relies also on plugins to

access the native Android or iOS functionalities. However, it seems every plugins wraps

callbacks in Promise or Observable, making the usage of such plugins really heavy if the

developer happen to require a lot of them, and a plugin is needed for each native func-

tionality the programmer wants to use.

This is the main difference between NativeScript and Ionic. As said previously, Na-

tivescript allows for direct access to the Android and iOS API, while Ionic will require

82 Chapter 7. Technologies

plugins, and thus a Promise callback most of the time. Other than that, the difference be-

tween the 2 frameworks are really marginal, beside documentations, Ionic being mostly

TypeScript nearly all the documentations is oriented with this langage in mind, while

NativeScript plugins are mixed, having some plugins written for JavaScript while others

are in TypeScript, knowing that conversion from one language to the other is not always

straightforward.

7.1.6 Overall

In our case, having prior knowledge of C#, Java and Javascript, but no extended expe-

rience with any of these languages except Java, going fully native would have been the

safest choice in term of time invested in learning the technology or framework. But being

also limited in manpower, going native alongside a goal of developing for both iOS and

Android would have been to much of an issue for us, if the choice of the framework had

been ours.

Xamarin would also probably not been wise, as our application has some complex UI

components, and combined to the learning we would have been required to use Xam-

arin, loosing probably lot of time. Additionally, the cost for the professional license itself

makes it difficult to consider Xamarin seriously, in our case.

With this is mind, using a hybrid JavaScript/TypeScript framework seems the right

option. Javascript does not require a lot of learning, the UI components being HTML

or XML means we can handle them easily. The fast development cycle is also beneficial

since the application we are developing is not, as of now, a long term project and had to

be operational as fast as possible.

We can say that having to work with NativeScript is not a bad choice, and is most

likely our safest bet for the applications we had to develop. We could have used Ionic2,

but the differences between the two seems so marginal that it basically comes down to a

choice with no real impact on the application development.

7.2 FIWARE

The FIWARE community is a European based open community that aims to accelerate the

development and deployment of innovative applications, with a focus on Smart City ser-

vices, Media and content as well as E-Learning. The community supports various active

programs to achieve its stated goal “To build an open sustainable ecosystem around pub-

lic, royalty-free and implementation-driven software platform standards that will ease

7.2. FIWARE 83

the development of new Smart Applications in multiple sectors.”1 The three main pro-

grams:

FIWARE Platform

The FIWARE Platform is a set of open-source specifications for API’s that are called

Generic Enablers, or GE within the community. These GE are designed to be general

purpose, hence the term, with each GE offering a set of functionality to address common

tasks in large-scale application. FIWARE also specifies how these GE interact with one an-

other so they can be easily combined. An implementation of a GE is referred as a Generic

Enable Implementation or GEi. Multiple GEi in various development stage might exists

for a single GE, they are made available openly through the FIWARE Catalog.

FIWARE Lab

FIWARE Lab is a sandbox environment in which users can experiment with FIWARE

technologies at very little or no cost. Users can book instances of several GEi’s to integrate

with their existing infrastructure and evaluate how they can be leveraged. FIWARE Lab

also publishes Open Data from cities and other organizations for users to experiment

with.

FIWARE Accelerate

The Accelerate program aims to promote the adoption of FIWARE technologies. The

program focuses primarily on small business and start-ups, to which it grants funding

through an EU campaign for innovation called "Horizon 2020".

7.2.1 Publish/Subscribe Context Broker GE

The FIWARE Publish/Subscribe Context Broker General Enabler is a specification for a

specialized database called a Context Broker. This GE acts as a repository for contextual

data produced by entities referred to as Context Producers. Contextual data may then be

processed by other entities called Context Consumers. Both producers and consumers

may be applications or other FIWARE GE. Change in contextual data is encapsulated in

events that are notified to subscribed context consumers. The interface supports both

push and pull models from/to both producers and consumers.

The fundamental principle at play for this GE is the maximum decoupling of produc-

ers and consumers, with the context broker acting as a middle layer. This model makes it

simpler to deploy data collecting devices at large scales since they do not need to be di-

rectly connected to the services that need the data they generate. Context producers can

1https://www.fiware.org/about-us/

84 Chapter 7. Technologies

publish their data using simple logic, knowing that the context broker will reflect their

past and current state independently. Context consumers can then use the context broker

as a centralized access point to numerous and various IoT devices. Crucially, contextual

data generated by the producers is query-able using a custom "Simple Query Language",

allowing consumer applications to aggregate data in a transparent way, completely ab-

stracting away the data source.

7.2.2 Orion Context Broker

CommuniThings uses an implementation of the Publish/Subscribe Context Broker GE

named Orion as a component in one of their application. Consequently, we conducted

a review of this GE and concluded that it could be useful for the ParkExchange project

as well. Particularly, the ability to perform geolocation based filtering on queries to the

context broker is a very desirable feature, as the application will have to match users with

other nearby users. Performing this match with Orion is simple and efficient according

to the specifications 2.

Moreover, the ability to distribute context producers and consumers across multiple

independent services could prove to be a straightforward way to extend the ParkEx-

change service to multiple cities in the future 3.

2http://fiware-orion.readthedocs.io/en/master/user/geolocation/
3http://fiware-orion.readthedocs.io/en/master/user/service_path/

7.3. Laravel 85

7.3 Laravel

Building a codebase from scratch, while offering greater flexibility, would require exhaus-

tive efforts and is certainly not recommended for a proof of concept. Thus, in order to

speed up development time and maintainability, using an efficient framework is crucial.

At Communithings, all backend development is done in php and, more recently, is

powered by Laravel. Since the main goal of our proof of concept is to reuse some com-

ponents from CommuniThings, we chose to use Laravel as well in order to facilitate the

integration of ParkExchange in the existing codebase of CommuniThings. This way, we

also hope to make it easier for CommuniThings developers to actually use the code we

developed in the future as a base for a full-fledged park sharing application.

Fortunately, Laravel offers interesting features for our case study and does not inder

productivity or pose any particular challenge.

7.3.1 Artisan CLI

Laravel ships with a command line interface named Artisan. This tool is very useful for

developers, it can notably be used to deploy the application on a lightweight local server,

manage the database in conjunction with Eloquent models and interact directly with the

application at runtime by inspecting or updating php objects.

Artisan dramatically speeds up development by making deployment and testing really

fast.

7.3.2 Eloquent ORM

Eloquent ORM makes it easy to implement a data access layer. Eloquent bridges the gap

between database and runtime application. Every database entity is encapsulated in an

Eloquent Model that can then be used in code to query and update the database. The

main advantage of Eloquent is that it eliminates entirely the need to write SQL code,

as everything is specified in php. Writing out the database schema is then trivial using

Artisan.

7.3.3 Passport

Laravel Passport is an integrated OAuth2 server that is included in the framework. It

makes it easy to secure web applications and APIs using the OAuth protocol. Token

Management is mainly automatic. The main task left to the developer is to configure

which urls require authentication.

86 Chapter 7. Technologies

7.3.4 Queues and Jobs

Queues and Jobs are a simple mechanic to handle asynchronous or time-consuming

tasks in Laravel. It follows a standard delayed execution model where Queues repre-

sent threads that executes jobs according to some scheduling strategy. Particularly, it

allows the implementation of "long lasting requests", requests made of a sequence of http

requests, or that still need some form of active processing after the response is sent to the

client.

87

Chapter 8

Implementation

8.1 Overview

Now that everything theoretical has been set in place, in is time to dive in the implemen-

tation of the prototype itself, and of all its components. In this chapter will we describe

the architecture of the system we developed, give more insight on the interactions be-

tween those components, and explain in more details the work process of the mobile

application prototype.

We will also explore several possibilities of improvement of the prototype, that usu-

ally refers to concepts explore in the first part, and that would increases the probability

of such application to go mainstream on day.

8.2 Architecture

8.2.1 Big Picture

The solution involves 4 co-dependent components, communicating with each other through

the web via the https protocol. The NativeScript clients can communicate with the Lar-

avel web application through an API dedicated to the ParkExchange service. Client and

server exchange messages in the JSON format. The dialogue is secured by the OAUTH2

protocol.

As previously explained, The ORION Context Broker is used mainly for its geo-based

querying capabilities. Orion endorses the role of "request pool" mentioned in section

6.2.4: it holds entities that represent parking requests from buyers, updated in real-time

by the client through the Laravel web application. The client first sends the request to

Laravel in JSON format, then Laravel forwards the requests to ORION as a compatible

NGSIv2 entity. When a parking offer is received by Laravel, it will perform successive

geo-based queries to ORION in order to find a suitable request.

88 Chapter 8. Implementation

FIGURE 8.1: Simplified view of high-level architecture

The last component is a standard PostGreSQL Database that is the central data repos-

itory for the whole system. Entities inside ORION are transient, they are always assem-

bled from Eloquent models who are saved in the SQL database.

8.2.2 SQL Database

The SQL Database is driven transparently from Laravel’s built-in ORM: Eloquent. Every

table in the database has a corresponding Eloquent Model that is used to interact with

the database without the need for custom sql queries.

8.2.3 ORION Context Broker

There is no need for any custom development on the ORION side. Being a FIWARE

Generic Enabler, the purpose of the context broker is to be usable as is by different ap-

plications for various purposes, and the ORION implementation certainly achieves this

goal. We only need to define the properties of the entities we want to store in an ORION

context, the rest of the mechanics involved is already built-in. We ave defined the parking

request with the following attributes:

• id : a unique id for each entity is required by the NGSI standard. The id in SQL

database is used as value.

• type : The NGSI standard also requires a type attribute. We set it to “ParkingRe-

quest”.

• reputation : the reputation of the user that sent this parking request.

8.2. Architecture 89

• vehicle_size : an integer between 0 and 3 that represents the user’s vehicle overall

size. 0 denotes a small city car while 3 is used for large vans and minibus.

• match : the id of the offer that matched this request, or 0 if the request is not yet

matched.

• banned : an array containing the idea of all offers that were denied by the buyer.

• location : an array that contains the current latitude and longitude of the buyer. It

is updated continuously for the entire request life.

This set of attributes allows us to drive the search for a matching offer from the Lar-

avel side, by using the Simplified Query Language of ORION.

8.2.4 Laravel Web Application

The web application we developed sits on top of the Laravel 5.4 Framework. We primar-

ily followed the guidelines provided in Laravel’s extensive documentation in terms of

architecture.

We configured the Passport module in order to use the OAUTH2 protocol. A unique

and secured API route group contains all the URLs necessary for the mobile applica-

tion. The major part of the code sits in the controllers that process the HTTP requests

coming from those URLs. We implemented two dedicated controllers to handle CRUD

operations on users and vehicles respectively, and a third, larger, controller to handle all

requests related to a parking exchange. The Exchange controller invokes static methods

from a dedicated class to communicate with ORION, whose purpose is to encapsulate all

NGSIv2 specific code in one module.

The Buyer/Seller Match algorithm presented in section 6.2.4 is implemented using

Laravel’s Queue mechanism. Every parking offer received results in the creation of a

corresponding job that performs queries to ORION in order to find a matching request. If

a match is found, the job will make appropriate changes in ORION and the SQL database

so that users can be notified of the match when the Exchange controller answers the

following requests, then gracefully exits. If no match can be found, the job will create a

copy of itself and set it to fire with a delay, effectively doing the “wait” step of the match

algorithm. Jobs are executed in parallel inside a separate process (the queue worker) so

the web application itself remains responsive when the match algorithm is running.

8.2.5 NativeScript Client

NativeScript implements the MVVM pattern (Model – View – ViewController). For each

page of the application, we created a HTML file serving as View, and a TypeScript file as-

sociated to the page for the ViewController. The model within the application is also done

90 Chapter 8. Implementation

in TypeScript. NativeScript provides the necessary module to easily binds each View to

its ViewController, making the implementation of the pattern easier to neophytes. Each

page, and modal view, is then a pair HTML-TypeScript, allowing to call function within

the HTML page that are defined in the TS page, and the TS page contains a reference to

the HTML page it is bound to.

We also defined a Singleton class “Global” containing our global variables, namely

the current logged in user and with it the list of his available vehicle, and the address

of the back-end server. Within this class are also defined several access functions to the

global values.

Additionally, we also had to use what NativeScript calls a module page, that define

every component available in the applications. Those can either be pages of the applica-

tion, for which the component is then the ViewModel part (the typescript page) or plu-

gins created by other members of the NativeScript community, documented online, that

we decided to use for our application. This page is needed to be able to use major com-

ponent in the other part of the application without having to declare them again. For ex-

ample, by importing “NativeScriptHttpModule” of the “nativescript-angular/http” plu-

gin, the application will automatically calls the NativeScript version of the HTTP request

when such request are called in other components. Lastly, this page binds the page of the

applications to their component name, allowing the routing based on said component

name.

The routing itself is defined in another page, that simply binds a path name to compo-

nent, for example linking the path “Login” to the component “LoginComponent”, that

was itself bind to the corresponding page and script in the module page. Thus when

calling the function NavigateTo(“Login”) defined by NativeScript, or by calling links by

their name in the HTML pages, the application can select which screen the user has to be

send to.

Since we did not start from scratch but where we allowed to branch onto the existing

project of CommuniThings, the application architecture, module and routing files were

already existing and our task was then to understand their concept and utility, and to

modify them to our own needs.

8.3. Mobile Application review 91

8.3 Mobile Application review

8.3.1 Map Screen

The first major screen of the application is the map. Most of it was designed by devel-

opers from CommuniThings, using MapBox and the corresponding NativeScript plugin.

This screen is the main one of the application, it provides the users with the available

spots of the Parking-Minute of the CT’s application.

FIGURE 8.2: Prototype main screen

Our biggest contribution to this screen is the two button nicknamed “Sell” and “Buy”

(respectively "I’m Offering a spot" and "I’m looking for a spot" on the UI). As their name

indicates, their purpose is to initiate a trade by either selling a spot, or buying one. Both

buttons trigger a modal view allowing the user to enter the options of the trade. For

selling a spot, the user enters his buffer time and wait time, additionally to the car he is

currently using. Depending of the input, the amount of StreetCreds gained by the user

92 Chapter 8. Implementation

is calculated. To buy a spot, the buyer simply has to indicate the car he is currently us-

ing. Both modals have a confirm button, needed to initiate the sell/buy (which is grayed

if the buyer does not have enough points to buy a spot). When the search for a trade

starts, the “Sell” and “Buy” button are modified. One is made inactive and displays an

activity notifier, simply a looping symbol indicating that the application is still working,

and the other button becomes the “Cancel” button, allowing the user to cancel the search.

FIGURE 8.3: Sell and Buy modals

Buying a spot

When buying a spot, the application send a message to the backend containing the OAUTH

token authenticated the user, his GPS data and his selected vehicle’s ID. It then starts an

interval which is triggered every 5 second and send a new message to the server, with the

updated GPS informations of the user. The response of this message, from the backend to

the application, contains a “Match” field that can either be empty if not match is found, or

filled with the informations of the spot and car the buyer was matched with. If this field

is not empty, meaning a possible trade has been found, a new modal view is displayed

to the buyer, containing the information of the spot and asking for confirmation.

FIGURE 8.4: Spot found modal

The buyer can then either refuses the spot, which puts him back on search, or accept

it, which initiates the trade. If he does, the location of the parking spot is registered inter-

nally by the application and displayed on the map. During his trip toward the spot, the

interval keeps triggering, updating his GPS data in the backend, in order for the seller to

see his spot’s buyer location. During this phase, the two buttons becomes “Cancel” and

8.3. Mobile Application review 93

“Validate”.

If he breaks the trade, by using the corresponding button, he faces the consequences

we explained earlier, a loss of points (but a gain in reputation for being honest), the appli-

cation then send a message to the backend indicating that the exchange has been broken,

and the screen goes back to its default state.

The “Validate” button serve to notify that a trade a ended, and triggers a modal view

allowing the user to give feedback on the spot exchange, which is send to the backend.

The application then returns to its default state.

FIGURE 8.5: Screen during a trade

94 Chapter 8. Implementation

Selling a spot

If the user is selling his spot, the process behind it does not differ much. As soon as the

confirmation is made by the user (hitting the “Confirm” button of the modal contain-

ing the sale’s parameter), a message is send to the backend, containing the GPS datas

of the spot, the time limit of the trade, and the vehicle’s ID. Once again all messages are

authentified thanks to an OAUTH token. An interval is also initiated, pinging the server

every 5 seconds, updating GPS informations even though those should not be varying

much, and similarly to the buying process, receives in the response either a match has

been found or not. If no match is found during the time limit specified by the user, the

trade offer is simply canceled, the user receives his StreetCreds and the map screen goes

back to default.

If a match is found however, the seller gets notified and the location and description

of the buyer’s vehicle appears on his screen. He does not get the option to refuse the

buyer. At that point, the buttons becomes “Cancel” and “Validate”, and the process is

nearly identical to the buying process. The applications keeps pinging the server, and re-

ceives in response, amongst other information about the trade, the location of the buyer,

in order to update his position on the map for the seller, and also update his estimated

time of arrival.

The “Cancel” and “Validate” buttons serves the same purpose as for a buyer. Once

the trade is over, the screen goes back to its default state.

8.3.2 Login and Register

Those two screen serves the purpose expected of registration and login screens, without

fanciness. The new account data are sent to the backend through simple POST request.

If the registration is successful, the user is redirected to the login page, otherwise the reg-

istration page is reloaded and indicates the invalid fields.

As for the login screen, the only notable action other than the login itself his that

the informations about the user’s vehicle are fetch from the database once the login is

confirmed and stored locally, in order to be avalaible immediately from the application

without database access for the other pages and modal views of the application.

8.3.3 Options Screen

The options screen are splitted in 3 major pages : the vehicles page, the profile page, and

the account management page.

8.3. Mobile Application review 95

Vehicle page

This page allows for the user to manage the vehicle he owns. It is presented in the form of

a list containing the different vehicles the user has registered to his account, the list being

obviously empty for new accounts. The button “Register” opens a modal view in which

the user can indicate the informations about his car he agrees to show while trading spot.

The license plate is required to register the car, but its visibility can be set to “Hidden”,

meaning that it won’t show during a trade.

The list of car’s brand is generated from the database. Once the user select a brand,

the model’s list become active and is filled with the differents models for the selected

brand. This automation allows us to categorize the cars by their size, without having

the user the estimate it himself, which in turn we use to ensure that people’s with bigger

cars are not match with spot too small for their vehicle. The remaining fields (year of

manufacture, description and color) are freely filled by the user depending on the infor-

mations he agrees to give.

FIGURE 8.6: Vehicles list and details

96 Chapter 8. Implementation

Once the user validates the informations (by pressing the “Register Vehicle” button

of the modal view), a POST request containing the vehicle’s data is send to the server.

If it is the first occurrence of the vehicle in the database (identified by the license plate),

the vehicle is registered and linked to the user as the owner of the vehicle, and himself is

redirect to the option page containing his vehicles list, where he now can see at least the

vehicle he just added. In this page, by selecting a vehicle on the list, he opens the same

modal view used for the vehicle registration, but this time with the fields pre-filled with

the cars data, allowing him to modify it if he made a mistake, wants to add or remove

some informations or edit the visibility of certain fields.

After the registration, the user can also send an invitation link for each car he owns (

being the owner of a vehicle is defined by being the first person to register said vehicle

in our database), allowing the invited users, identified by their email address, to also

use the car. These users are notified when they log in for the first time after receiving the

invitation, and if they accept, the vehicle also appears in their vehicle list, but they are

not considered the owner and thus cannot share it with others. This system allows for a

vehicle to be share between users, for example in the case of a family.

However, if during the registration, the vehicle already exists in our database, a pop-

up window opens indicating that the vehicle has already being registered by another

user, and that it is up to the owner to send the link allowing for the usage of the indicated

vehicle. If the user is the real owner of the car and is the victim of prank or troll by an-

other user that registered his car for him, he can then contact the support to restore his

right to use the vehicle, if he is able to prove his ownership via legal documents.

8.3.4 Profile page

This page gives access to the user profile data, namely his current StreetCreds balance

and a button allowing him to offer some of his StreetCreds to another user, an access to

his trade history, and also some more technical informations, the display language of the

application (the default language being the language of his smartphone operating sys-

tem) and the option to activate or disable sound and notifications.

Trading StreetCreds only requires the email address of the receiver, and obviously

having a positive amount of Creds, as there is some rare cases where a user account could

be negative, (through breaking trades), and obviously, the user cannot gives more than

he has. The gift take the form of a POST request to the server containing the receiver’s

data and the amount offered. The receiver’s StreetCreds are then updated accordingly.

8.4. Possible Improvements 97

8.3.5 Account page

This page provides the standard services for a account management page, and allows for

the user to update his account information, and modify his password.

8.4 Possible Improvements

8.4.1 Occupancy and reporting

At multiples occasions, we spoke about one of the main improvement to the applica-

tion. The very first practical task we accomplish for CommuniThings was a small app

designed to log and then save in CSV files the data of several sensors. The purpose of

this application was to collect enough sensor’s data to then be able to generate a decision

tree, in order to determine if someone was walking, standing still, driving, or even using

public transportations such a train, depending on the smartphones data.

This decision tree was done by a developer at CommuniThings, and one of the pro-

posed usage of the tree was to implement it within a NativeScript module or a Java li-

brary, that we could then use within our own application. With such process in the ap-

plication, we would be able to determine the status of the user, as long as he allows us

to use the sensors. With those data, we could then determine when an user is leaving

a parking spot, for example when his data indicates WALK-STAND-DRIVE on a short

period of time, creating the Ephemeral parking spot we mentioned previously. This is a

similar idea to what ParkSense has developed [25], that we presented in the first part.

But this remains a small scale solution to parking requests, only providing a marginal

amount of parking spots, with a low chance of availability. A better solution would also

to determine the parking events, when someone parks his car (typically DRIVE-STAND-

WALK sequence of status), and on parallel obtain an estimation of the amount of places

available in a specific geographic area (city district, large street, known parking lot). By

having both the amount of places available and the park-unpark events, we could then

produce an estimation of the occupancy of the area, and we could display this informa-

tion on the map to redirect our users towards the place with the lowest occupancy close

to them, improving their chances to find a spot. This idea was explored by a team of the

University of British Columbia [7]. Displaying only the occupancy of the street and not

the precise spots also help against the multiple-car-chasing-single-space syndrome, a com-

mon issue with in-spot sensors based SmartParking solutions.

The biggest issue for such system to work is that it requires a lot of people using the

application, as the more parking events are detected, the better the estimation of the oc-

cupancy become. This means that such feature is virtually unusable at the launch of a

98 Chapter 8. Implementation

product such as our ParkExchange application. This feature is also vulnerable to exter-

nal events lowering the amount of places available in an area, for example due to public

works, flawing our estimation. This could however be prevented through user’s report-

ing, for example using the model Waze1 has developed. This would allow our users to

send a message or a picture indicating that some actual event is reducing available spots

quantity in this specific area. By increasing the precision of the information, our estima-

tion of the occupancy in the area would then become more and more accurate leaving the

error margin of spots used by normal drivers outside the community.

The large scale requirement was however to much of a constraint to really be mean-

ingful to implement the system in the base version we developed. But should such ap-

plication becomes popular, at least within a specific city, such system would definitely

provide a huge boost of attractiveness to the application.

8.4.2 Dynamic Pricing

This is something we describe in the field review and thus we won’t re-explain it exten-

sively. Uber’s model of pricing contains interesting elements that could prove useful to

boost the willingness of our user base to share a spot. In our case, the geographical pa-

rameter would be a big part in a spot value, thus not only having a surge system in order

to respond to increases of demand during peak hours, but to also respond to demands

in more specific, well-known or busy areas through a parallel system should be consider,

similar to what SFpark [29] is achieving, but without the need for sensors.

One of the options would be to determine a spot’s value compared to another simply

by obtaining the average amount of buyer’s in a close range of the spot. The more buyers

in the area, the more this specific spot gains value, independently of other spots sold at

the same time. We would then have two values multiplying a spot’s cost and gain, a

surge value similar to Uber to increases our general prices during peak hours, and that

would be variating quickly, depending on the Supply/Demand of the previous minutes,

and another value being less volatile and calculated day after day to determine the pop-

ularity of certain areas in term of parking, and adjusting the prices of the parking spots

in said areas accordingly.

Once again however, such system is hard to put in motion without large amount of

data and a large user-base already established. This is why we focused on a simple, more

straightforward static economic system in our prototype.

1https://www.waze.com/

8.4. Possible Improvements 99

8.4.3 Friends

A recurring feature in any application with a social aspect, which our certainly has, is

the Friends List. Either by importing your contacts, or by adding people in it manually,

having a list of people you know and trust, that also use the application is beneficial for

the community as a whole.

We pointed this in the Community chapter, users are more willing to share a spot

with users they know, and already knowing members of the community increases the

probability that another user joins it. The friends list could then serve two purpose :

• Encouraging the recruitment of a contact, eventually gaining bonuses at the same

time

• Encouraging sharing a spot when friends are looking for one nearby

The former could be similar in what World of WarCraft, that we mentioned before,

does to expand its community. The basic idea behind the “Recruit-a-friend” [37] program

is that you can send an invitation to a person you know that is not yet a member of the

community (based on email message). If they join and becomes active members, you and

your friend gains bonuses. In our case, this could lead to free “StreetCreds”, and reduced

spot costs for a month. This program, in conjunction with the claim established before

that members join a community more easily when they know someone already inside,

should increase our user-base.

The second idea is the more practical one in order to increase the amount of spots

shared through the application. Once again, this is in accordance with a claim made

previously, peoples are more willing to help users they know well. Thus designing a

notification indicating to users when one of their friends is looking for a parking spot

nearby, and that should they share their spot, their friend would automatically receives

it, it should improves their willingness to trade a spot, knowing that it would benefit a

friend immediately.

100 Chapter 8. Implementation

8.4.4 Buying a spot in advance

Contrary to the seller’s ability to plan his offer in advance by setting a buffer time that

delays the exchange, the buyer has no similar capability. When a user press the button

to buy a spot, the system assumes that the buyer is looking for a spot near his current

location. It would be interesting to allow the buyer to request a spot at a remote location

in the future, or even allow a user to sell the spot he currently occupies while simultane-

ously requesting a spot at a different location in the future. This possibility could further

incentivize users to shop in downtown area, where it is often needed to take short trips

between shops, by allowing them to plan their next stop more easily. It would also open

up new opportunities to incentivize users to participate more actively, perhaps by prior-

itizing parking requests coming from users who are also selling a spot at that same time.

However, the implementation of this capability would require the reworking of the

exchange flow and associated assumptions. Furthermore, the location of the parking

request would need to be logically separated from the buyer’s current location.

8.4.5 Improved communications between buyers and sellers

Buyer stuck in traffic, seller having a sudden emergency and having to know precisely

when the buyer will arrive, lack of communications during a trade, those are issues that

could lead to failed or contested trade. In order to solve some of those, Originally we

wanted to use VoxBone 2 within our application. Due to a lack of time we ultimately

decided that it was not a priority but this remains a possible improvement of the appli-

cation.

VoxBone offers a VoIP service, alongside DID 3 numbers. With it, we could have im-

plemented an option to call or send a message the other party of a trade, without using

your real phone number, thus keeping anonymity and personal information safe. With

such system in place, should an issue arise during a trade, the affected user could inform

the other party and possibly negociate a solution that satisfies both parties.

2https://www.voxbone.com/about-voxbone/overview
3https://www.voxbone.com/services/did-numbers

101

Conclusion

Mobility, pollution and urbanization have been three major concerns for cities since many

years, and the constant increase in the amount of vehicle contributes to the worsening of

the situation. It is thus logical that with the apparition of SmartCities projects, the park-

ing issue in downtown areas would be the focus of a lot of research. Many smartparkings

systems have been developed in the recent years, but it is clear that this technology is still

in its infancy and large-scale deployment is not yet achieved.

From SPARK reliance on sensors, to Open Spot lack of incentive, those solutions

would have problems to cope with large scale, on-street usage. But it does not mean

they are without merits. The reservation method for example, used in several prototype,

improved greatly the probability of a user getting a parking spot faster, compared to

other method that often lead multiple drivers to the same spot, a recurrent issue with

Parking Guidance Information systems. Open Spot also opened the way of the usage of

public parking spot without the use of sensors, making the system considerably cheaper

than systems relying on extensive infrastructure such as SFpark.

Taking into account crowdsourced possibilities, and making people interacting di-

rectly with one another while looking for a parking spot is a direction that is not com-

monly explored in research. Although, such model could benefit from the same advan-

tages as reservation-based systems, but without the need of dedicated sensors, as the

parking informations are provided through crowdsourcing. It is not without a cost how-

ever. Using crowdsourced information and relying on people selling spots and waiting

for strangers to come and take their parking spot requires a lot of consideration towards

the inner mechanisms of online communities, and what make people willing to be part

of them.

Indeed, a crowdsourced application with a too small community is doomed to fail,

but options exists to create such a community. The parking facilities provided by the ap-

plication is its most attractive incentive, and in itself could already attract a lot of mem-

bers. Creating a sense of community, that improves the quality of life in the user’s city,

is also a direction to consider when designing crowdsourced systems. And of course, a

factor to consider when talking about crowdsourcing is the friends and related impact

on the willingness of others to be part of a community. Implementing tools that give an

importance to those relations is a safe way to encourage mass adoption.

102 Conclusion

Another aspect that is usually not considered by smartparking systems, and rightfully

so, is the development of a virtual economy alongside the community. But with complete

end-to-end trade of parking spot, it has to be taken into account. How much does buying a
spot cost ? How much do I gain by selling my spot ? Those questions have to be resolved for

a reservation and trade based system to work. On that matter, dynamic pricing which

take into account the location of the spot and the time of day are most likely the way to

go for crowdsourcing models, as more rewarding trades should lead to more offers.

And of course, when talking about mobile application, security and privacy should al-

ways be a concern, even more when the system has to store personal information, which

the exchange-based application we presented has to do. Particularly, the system has to

know the position of both users during the entire duration of the exchange, as well as

sensitive information on their identity and vehicle. We thus reviewed the most common

security risks in the mobile application space and identified mitigation strategies. We

also explored the impact privacy concerns may have on user satisfaction.

All those themes are important to consider for the development of a crowdsourced

smartparking application. Such system still has to go mainstream, but it is more than

likely coming. Alongside smarticities project, solutions to parking issues will keep get-

ting developed, and crowdsourcing is certainly an interesting direction to try out.

The prototype developed during this thesis can be seen as a first iteration of a crowd-

sourced smartparking application, embedded in the StopBuy application developed by

CommuniThings. The complete exchange process is implemented, allowing users to of-

fer and buy spots. Some elements are not implemented however, mostly related to the

community aspect of the application, and are the main future improvements that would

change the prototype into a real application.

The “Crowdsourced smartparking” model presented in this thesis is inspired in large

parts by reservation-based systems but crucially, it solves the important issue of the guar-

anteed availability of the reserved spot. However, there are a lot of opportunities to im-

prove the practicality of such system, and to ensure its future. As pointed out several

time, an issue with crowdsourcing and social applications as a whole is to reach a critical

mass of users using the system and participating in it. The options presented to increase

commitment and the userbase are a start, but questions about sustainability remain, es-

pecially at launch. Research on techniques to recruit the very first users and how to make

the service sustainable even with a low amount of user could be an interesting follow up

to this thesis.

Another aspect worth looking into would be the usage of privately owned parking

103

spots that the owners could offer through the system when they are not using it, for ex-

ample the space in front of a garage door on a street. It could be an option to increase the

amount of spots available to the community, but also causes additional concerns such as

ensuring that the buyer does leave the spot in time.

Finally, another direction that such application could take in the future would be to

be merged with other driving related applications and system such a GPS guidance. For

example, having a GPS and parking application combined that would recommend small

variation in the user’s destination to redirect him nearby people offering spots, eventu-

ally start the exchange process automatically, and finally guide the driver directly to the

spot trade’s location. Such a combination could be a good way to attract more user, and

to make the application adopted by a large amount of users quickly.

Even though it is not up to us whether our prototype is further developed some day,

or if some component of the system can be reused, it was an exciting journey. In the

future, we will keep looking at emerging Smartparking solutions as they become more

and more mainstream, with the hope that we can, some day, identify some system that

contains concepts we explored and be able to tell ourselves that we were going in the

right direction. In any case, this thesis has been a huge opportunity for us to discover

and explore modern application of information technologies that were truly new to us,

and will without a doubt have an important impact on our future careers.

Gary BOGAERTS & François JONES

104 Conclusion

105

Glossary

Buffer Time the Buffer Time is the period during which the seller is not ready to leave

immediately during an offer.

Parking Buyer a user is referred to as a Parking Buyer or simply buyer when this user

has an active parking request registered.

Parking Seller a user is referred to as a Parking Seller or simply buyer when this user

has an active parking request registered.

StreetCred StreetCreds are the currency used to trade parking spots inside the ParkEx-

change system.

Time of sale The Time of sale is the sum of Buffer Time and Wait Time and is equal to

the total duration of the offer.

Wait Time the Wait Time is the period during which the seller is ready to realize an

exchange with a buyer at a moment’s notice.

107

Bibliography

[1] About NativeScript. https://www.nativescript.org/about. Accessed: 2017-

08-13.

[2] Richard Arnott, Tilmann Rave, Ronnie Schöb, et al. “Alleviating urban traffic con-

gestion”. In: MIT Press Books 1 (2005).

[3] Lars Backstrom et al. “Group formation in large social networks: membership,

growth, and evolution”. In: Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining. ACM. 2006, pp. 44–54.

[4] Banished to prisoner’s island. http://nexus.leagueoflegends.com/2017/

01/ask-riot-banished-to-prisoners-island/. Accessed: 2017-08-13.

[5] Susan L Bryant, Andrea Forte, and Amy Bruckman. “Becoming Wikipedian: trans-

formation of participation in a collaborative online encyclopedia”. In: Proceedings
of the 2005 international ACM SIGGROUP conference on Supporting group work. ACM.

2005, pp. 1–10.

[6] M Keith Chen and Michael Sheldon. “Dynamic Pricing in a Labor Market: Surge

Pricing and Flexible Work on the Uber Platform.” In: EC. 2016, p. 455.

[7] Xiao Chen, Elizeu Santos-Neto, and Matei Ripeanu. “Crowdsourcing for on-street

smart parking”. In: Proceedings of the second ACM international symposium on Design
and analysis of intelligent vehicular networks and applications. ACM. 2012, pp. 1–8.

[8] Yan Chen et al. “Social comparisons and contributions to online communities: A

field experiment on movielens”. In: The American economic review 100.4 (2010), pp. 1358–

1398.

[9] AL Crain, AM Omoto, and M Snyder. “What if you can’t always get what you

want? Testing a functional approach to volunteerism”. In: annual meetings of the
Midwestern Psychological Association, Chicago, IL. 1998.

[10] B. Dumas. INFOM450: Internet of Things : 1 – Introduction. Slides for the INFOM450

courses. Feb. 2017.

[11] Jerry Gao et al. “Mobile Testing-as-a-Service (MTaaS)–Infrastructures, Issues, Solu-

tions and Needs”. In: High-Assurance Systems Engineering (HASE), 2014 IEEE 15th
International Symposium on. IEEE. 2014, pp. 158–167.

[12] Yanfeng Geng and Christos G Cassandras. “New “smart parking” system based on

resource allocation and reservations”. In: IEEE Transactions on Intelligent Transporta-
tion Systems 14.3 (2013), pp. 1129–1139.

https://www.nativescript.org/about
http://nexus.leagueoflegends.com/2017/01/ask-riot-banished-to-prisoners-island/
http://nexus.leagueoflegends.com/2017/01/ask-riot-banished-to-prisoners-island/

108 BIBLIOGRAPHY

[13] Jonathan Hall, Cory Kendrick, and Chris Nosko. “The effects of Uber’s surge pric-

ing: A case study”. In: The University of Chicago Booth School of Business (2015).

[14] MYI Idris et al. Car park system: a review of smart parking system and its technology.

2009.

[15] Nicolas Kaufmann, Thimo Schulze, and Daniel Veit. “More than fun and money.

Worker Motivation in Crowdsourcing-A Study on Mechanical Turk.” In: AMCIS.

Vol. 11. 2011. 2011, pp. 1–11.

[16] J Kincaid. Googles open spot makes parking a breeze, assuming everyone turns into a good
samaritan. 2010.

[17] Jennifer King. “How Come I’m Allowing Strangers to Go Through My Phone?

Smartphones and Privacy Expectations.” In: (2012).

[18] Robert E Kraut et al. Building successful online communities: Evidence-based social de-
sign. Mit Press, 2012.

[19] KurbKarma: A Social Network, And App, To Find Parking Where And When You Need
It. https://techcrunch.com/2012/05/21/kurbkarma- a- social-
network-and-app-to-find-parking-where-and-when-you-need-it/.

Accessed: 2017-08-13.

[20] Hong Lu et al. “The Jigsaw continuous sensing engine for mobile phone applica-

tions”. In: Proceedings of the 8th ACM conference on embedded networked sensor systems.

ACM. 2010, pp. 71–84.

[21] Nicolas Michinov, Estelle Michinov, and Marie-Christine Toczek-Capelle. “Social

identity, group processes, and performance in synchronous computer-mediated

communication.” In: Group Dynamics: Theory, Research, and Practice 8.1 (2004), p. 27.

[22] Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. “Software testing

of mobile applications: Challenges and future research directions”. In: Proceedings
of the 7th International Workshop on Automation of Software Test. IEEE Press. 2012,

pp. 29–35.

[23] Logeshwaran Murugesan and Prakash Balasubramanian. “Cloud based mobile ap-

plication testing”. In: Computer and Information Science (ICIS), 2014 IEEE/ACIS 13th
International Conference on. IEEE. 2014, pp. 287–289.

[24] Anandatirtha Nandugudi et al. “Pocketparker: Pocketsourcing parking lot avail-

ability”. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing. ACM. 2014, pp. 963–973.

[25] Sarfraz Nawaz, Christos Efstratiou, and Cecilia Mascolo. “Parksense: A smartphone

based sensing system for on-street parking”. In: Proceedings of the 19th annual inter-
national conference on Mobile computing & networking. ACM. 2013, pp. 75–86.

[26] Peter Organisciak. Motivation of Crowds: The Incentives That Make Crowdsourcing
Work «Crowdstorming. 2008.

https://techcrunch.com/2012/05/21/kurbkarma-a-social-network-and-app-to-find-parking-where-and-when-you-need-it/
https://techcrunch.com/2012/05/21/kurbkarma-a-social-network-and-app-to-find-parking-where-and-when-you-need-it/

BIBLIOGRAPHY 109

[27] OWASP homepage. https://www.owasp.org/index.php/OWASP_Mobile_

Security_Project. Accessed: 2017-08-13.

[28] ParkTag | Free Social Parking App. http://parktag.mobi/. Accessed: 2017-08-19.

[29] Gregory Pierce and Donald Shoup. “Sfpark: Pricing parking by demand”. In: Access
Magazine (2013).

[30] I Sherwin. “Google Labs’ open spot: A useful application that no one uses”. In:

URL: http://www.androidauthority.com/google-labs-open-spot-a-useful-application-that-no-
one-uses-15186/, Visited in August (2014).

[31] Irina Shklovski et al. “Leakiness and creepiness in app space: Perceptions of pri-

vacy and mobile app use”. In: Proceedings of the 32nd annual ACM conference on
Human factors in computing systems. ACM. 2014, pp. 2347–2356.

[32] Donald C Shoup et al. The high cost of free parking. Vol. 206. Planners Press Chicago,

2005.

[33] SV Srikanth et al. “Design and implementation of a prototype smart PARKing

(SPARK) system using wireless sensor networks”. In: Advanced Information Net-
working and Applications Workshops, 2009. WAINA’09. International Conference on.

IEEE. 2009, pp. 401–406.

[34] Arvind Thiagarajan et al. “Cooperative transit tracking using smart-phones”. In:

Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems. ACM.

2010, pp. 85–98.

[35] Luis Von Ahn. “Games with a purpose”. In: Computer 39.6 (2006), pp. 92–94.

[36] Hongwei Wang and Wenbo He. “A reservation-based smart parking system”. In:

Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference
on. IEEE. 2011, pp. 690–695.

[37] World of Wacraft - Recruit a Friend. http://eu.battle.net/wow/en/game/

recruit-a-friend/. Accessed: 2017-08-13.

[38] Tingxin Yan et al. “CrowdPark: A crowdsourcing-based parking reservation sys-

tem for mobile phones”. In: University of Massachusetts at Amherst Tech. Report (2011).

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
http://parktag.mobi/
http://eu.battle.net/wow/en/game/recruit-a-friend/
http://eu.battle.net/wow/en/game/recruit-a-friend/

	Introduction
	I Smartparking and Crowdsourcing 0.5cm Concepts and Related Research
	Related Works & Objectives
	Overview
	SmartParking
	Parking Guidance and Information System (PGIS)
	Transit-Based Information systems
	Smart Payment systems
	E-Parking systems
	Automated Parking

	SmartParking applications
	CommuniThings's StopBuy
	The StopBuy Platform

	SPARK: Smart PARKing management system
	Reservation-Based Smart Parking Systems
	Google's Open Spot
	ParkSense

	Common issues between Smartparking solutions and proposed approach

	Users Motivations and Commitment
	Overview
	Analyzing the main factors of contribution
	Building a community
	Identity based commitment
	Bond based commitment
	Need-based commitment
	Normative Commitments
	Overall

	User Reputation and punishment

	Economy
	Overview
	Virtual Economy
	Existing virtual economies in SmartParking
	KurbKarma
	CrowdPark

	Dynamic Pricing
	SFpark
	UberX

	Security & Privacy
	Overview
	Identifying security risks and mitigations
	Testing
	User expectations and perceptions of privacy

	Reliability
	Overview
	Seller's reliability
	SpotCheck
	ActCheck

	II Software Development 0.5cm Prototype Application
	Context & Analysis
	Context of the application
	Parking spot exchange model
	Buyer/Seller Match algorithm
	User Experience
	Deliverables
	Parking Sensor Module
	StopBuy Mobile Application Module
	StopBuy Web Application Module

	Analysis of the required system
	Parking Spot Exchange Model
	Seller's perspective
	Buyer's perspective

	Virtual Economy
	Cost-Benefit analysis

	User reputation score
	Matching Algorithm
	Activity Detection and Ephemeral Parking

	Technologies
	Mobile Framework
	Overview
	NativeScript
	Native
	Xamarin
	Ionic2
	Overall

	FIWARE
	Publish/Subscribe Context Broker GE
	Orion Context Broker

	Laravel
	Artisan CLI
	Eloquent ORM
	Passport
	Queues and Jobs

	Implementation
	Overview
	Architecture
	Big Picture
	SQL Database
	ORION Context Broker
	Laravel Web Application
	NativeScript Client

	Mobile Application review
	Map Screen
	Buying a spot
	Selling a spot

	Login and Register
	Options Screen
	Vehicle page

	Profile page
	Account page

	Possible Improvements
	Occupancy and reporting
	Dynamic Pricing
	Friends
	Buying a spot in advance
	Improved communications between buyers and sellers

	Conclusion
	Glossary

