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Abstract

Many approaches for testing configurable software systems start from the same assumption:
it is impossible to test all configurations. This motivated the definition of variability-aware
abstractions and sampling techniques to cope with large configuration spaces. Yet, there
is no theoretical barrier that prevents the exhaustive testing of all configurations by
simply enumerating them, if the effort required to do so remains acceptable. Not only
this: we believe there is lots to be learned by systematically and exhaustively testing a
configurable system. We report on our endeavor to test all possible configurations of an
industry-strength, open source configurable software system, JHipster, a popular code
generator for web applications. We built a testing scaffold for the 26,000+ configurations
of JHipster using a cluster of 80 machines for a total of 4376 hour-machine. We find that
34.37% configurations fail and we identify the feature interactions that cause the errors.
We show that sampling testing strategies (like dissimilarity and 2-wise) (1) are more
effective to find faults than the 12 default configurations used in the JHipster continuous
integration; (2) can be too costly and exceed the available testing budget. We cross this
quantitative analysis with the qualitative assessment of JHipster’s lead developers.

Key words: Case Study ; Web-apps; Variability-related Analyses; JHipster ; Software Product

Line; Software Product Line Testing ; t-wise criteria;

De nombreuses approches de test de systèmes logiciels configurables partent du même
postulat: il est impossible de tester toutes les configurations. Cette hypothèse a motivé
la définition de techniques d’échantillonnage et d’abstraction de la variabilité pour faire
face aux grands espaces de configuration. Il n’existe cependant pas de barrière théorique
empêchant le test exhaustif de toutes les configurations en les énumérant, pour autant
que l’effort requis reste raisonnable. Nous pensons d’ailleurs que beaucoup peut être
appris d’un test exhaustif d’un système configurable. Nous présentons notre effort pour
tester toutes les configurations de JHipster, un générateur d’applications Web. Nous
avons construit une infrastructure de test pour ses +26.000 configurations en utilisant
un cluster de 80 machines pour un total de 4376 heure-machine. Nous identifions les
interactions de fonctionnalités provoquant l’échec de 34.37% des configurations. Nous
montrons que les stratégies d’échantillonnage (dissimilarité, 2-wise) sont (1) plus efficaces
pour trouver des fautes que les 12 configurations utilisées dans l’intégration continue de
JHipster; (2) trop coûteuses et dépasser le budget de test. Nous croisons cette analyse
quantitative avec l’évaluation qualitative des développeurs principaux de JHipster.

Mots clés: Cas d’étude; Applications Web; Analyses de la varabilité logicielle; JHipster ; Lignes

de produits logiciels; Test de Lignes de Produits Logiciels; Test combinatoire d’interaction;
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Introduction
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Glossary

• Defect: A defect refers to either a fault or a failure.

• DSL (Domain Specific Language): ”DSL provides a notation tailored towards
an application domain and is based on the relevant concepts and features of that
domain. As such, a DSL is a means to describe and generate members of a family
of programs in the domain.” (Van Deursen & Klint, 2002)

• Failure: A failure is an ”undesired effect observed in the system’s delivered service”
(Mathur, 2008; IEEE Computer Society, 2014) (e.g., the JHipster configuration
fails to compile).

• Fault: We consider that a fault is a cause of failures. (e.g., as we found in our
experiments – see Section 6.3 – a single fault can explain many configuration failures
since the same feature interactions cause the failure.)

• Feature: A feature is a product characteristics that the product has or delivers
(Kyo et al., 2002). It is explained with more details in Section 1.1.

• FM (Feature Model): FM is a tree-like graph where nodes are features with
relationships among them (constraints). It is used to represent the variability of
SPL. It is presented in more details in Section 1.2.1.

• Glue (code): Specific code required to generate/compile/run a specific configura-
tion. It can be a script starting a database service or the code needed to deploy a
configuration with Docker for instance.

• SPLE (Software Product Line Engineering): Software engineering paradigm aiming
at mass producing software with possibility of tailoring it to the needs of many
users. The concept is explained in Chapter 1.
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Introduction

Inspired from David Parnas’ programs families (Parnas, 1976) and borrowing ideas from
the Ford’s product line, the Software Product Lines (SPLs) paradigm was popularized in
the 2000s. It aims at achieving mass customization, i.e. the mass production of software
while offering the capability to tailor it to the needs of many different users. With this
paradigm rose the need of (highly) configurable systems, offering numerous options (or
features) that promise to fit the needs of different users.

With configurable systems, new features can be activated or deactivated while some
technologies can be replaced by others to address a diversity of deployment contexts,
usages, etc. The engineering of highly configurable systems is a standing goal of numerous
software projects but it also has a significant cost in terms of development, maintenance
and testing.

Moreover, Software Product Lines have contributed to the spreading variability-management
ideas everywhere. These variability-intensive systems (or highly configurable systems)
include, among others, web systems such as Drupal and Wordpress.

A major challenge for developers of configurable systems is to ensure that all combinations
of options (configurations) correctly compile, build and run. The Linux kernel, for
instance, offers more than 14000 options (Gazzillo, 2015): how can we ensure that all
those configurations are correct? This correctness is even more critical when failing
configurations can impact system users, lead to missing opportunities and hinders the
success or reputation of a project.

Different testing approaches focus on this problem. Formal methods and program analysis,
for instance, which lead to variability-aware testing approaches. However, a common
practice is still to execute and test a sample of representative variants, enumerating all
configurations being perceived as impossible, unpractical or both - it is especially true
with the Linux example mentioned here-before. Despite this generally accepted idea,
we are convinced that much has to be learned from exhaustively testing a configurable
system. Indeed, knowing all failures of the configurable system would allow the assessment
of the error-detection capabilities of sampling techniques with a ground truth.

The research community is facing yet another issue: the lack of case studies. Historical
Software Product Lines contains industrial secrets their owners do not want to disclose
to a wide audience. The open source community, on the contrary, has contributed to
large-scale cases such as Eclipse or Linux.

5



Introduction

To tackle this lack of case studies, we introduce JHipster, an open source project started
in October 2013. JHipster is a popular code generator for web applications. It offers the
generation of complete technological stacks composed of Java and Spring Boot code on
the server side and Angular and Bootstrap on the front-end side.

JHipster has been found to be an interesting case study for several reasons. First, it relies
on a variety of languages and advanced technologies to scaffold web applications and so,
introduce variability at different levels. Second, JHipster offers 48 configurations options
and 15 constraints between options, leading to more than 150.000 configurations, thus
making it manageable but still of an industrial size. In comparison, Linux Kernel 2.6.28.6,
for instance, is composed of 5426 features (She et al., 2010) and up to 7000 options in
later versions (Apel et al., 2013). Finally, the variability is scattered across numerous
kinds of artefacts.

In this study, we aim at exhaustively testing JHipster configurations. To this end, we
developed a complete infrastructure including an automated derivation and testing
process, that we ran on all +26,000 configurations determined by a refinement of the
variability model. That being done, we were able to characterize the cost of such an
infrastructure.

We quantified both the engineering effort required to develop the process but also the
resources necessary to achieve the execution on all configurations.

In this work, we solely focused on functional properties of JHipster configurations (i.e,
do they generate, compile and build successfully?). Non-functional properties are outside
the scope of this study and are left for future work.

In this master thesis, we will present the results obtained in our all-configurations testing
effort and compare these results with some state of the art sampling techniques (such as
t-wise criteria or dissimilarity techniques). We found for instance that about 34.37% of
all configurations fail to build and that these failures were caused by 6 interactions of
features.

We also initiated the dialogue with the core developers of the project and formulated
recommendations regarding their testing strategies. The limited testing budget leads them
to test only 12 configurations (19 in the latest versions of the generator) selected on the
basis of most-used features. For example, MySQL-based variants are more representatives
than Oracle-based variants, while Maven is more represented in the sample than Gradle.
We summarize our exchanges and present our recommendations for the JHipster team.

6



Contributions

The main contributions and findings of this master thesis are:

• an empirical study of a configurable system based on an exhaustive testing;

• a cost assessment and qualitative insights of engineering an infrastructure able
to automatically test all configurations. This infrastructure relies on a different
configuration-specific bash scripts to initiate services, start databases and so on. This
infrastructure is itself a configurable system and requires a substantial, error-prone,
and iterative effort (8 man-month);

• a computational cost assessment of testing all configurations using a cluster of
distributed machines. Despite some optimizations, 4376 hour-machine and 5,2 Tb
are needed to execute 26000+ configurations;

• a quantitative and qualitative analysis of failures and faults. We found that 34.37%
configurations fail – they either do not compile, build or run. 6 feature interactions
(up to 4-wise) mostly explain this high percentage;

• an assessment of sampling techniques. Dissimilarity and t-wise sampling techniques
are effective to find faults that cause a lot of failures;

• a retrospective analysis of JHipster practice. The 12 configurations used in the
continuous integration for testing JHipster were not able to find the defects. It
takes several weeks for the community to discover and fix the 6 faults;

• a discussion on the future of JHipster testing based on collected evidence and
feedback from JHipster’s lead developers.

7
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State of the art
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1. Software product lines and variability

To contextualize this thesis and its objectives, we first introduce key notions used in later
parts. First, we present in Section 1.1 the notion of Software Product Lines (SPLs), their
origins and their goals. We then present in Section 1.2 an important notion in SPLs:
variability. We briefly summarize what it is and present some techniques to both model
it and concretely implement it. We conclude this Chapter, by presenting in Section 1.3
variability-intensive systems, a generalization of SPLs.

1.1. Software Product Line

Software Product Lines take their origins in Ford’s product line (Pohl et al., 2005). If the
latter came from the increasing number of buyers for various products, and with that the
need of a new way to produce for mass market more cheaply and more rapidly, the former
follows the same trend. Indeed, new software products are developed constantly and they
are often quite similar. In the transport industry, for instance, even if two companies do
not offer exactly the same services (one could provide live tracking of its packages, for
example), they might still have the same backbone (account creation and management,
online forms, and so on).

These customized products, tailored to the specific needs of the stakeholders, lead to the
apparition of a new paradigm: Software Product Line Engineering (SPLE). This new
paradigm aims at producing software products, using all kinds of reusable artefacts and
technological capabilities and mass customization (Pohl et al., 2005).

Software Product Line Engineering is composed of two main activities: domain engineering
and application engineering. The former consists in developing core assets to be configured
and combined in order to create different products of the product line, while the latter
consists in deciding, in a configuration process, which assets are selected for inclusion and
which are discarded (Hubaux et al., 2009). This framework is presented in Figure 1.1.

In their framework, Pohl et al. define the two activities as follows (Pohl et al., 2005):

Domain Engineering
The commonality and the variability of the product line, as well as its scope (Pohl et
al., 2005) are defined during this process. It also aims at defining and constructing the
different artefacts to be reused in the different products.

11



1. Software product lines and variability

Figure 1.1.: Software Product Line Engineering framework, retrieved from (Pohl et al.,
2005)

This process is further divided in 5 sub-processes. Each of them refines the variability and
provides feedback to preceding sub-processes on the possible realization of the variability
(Pohl et al., 2005):

• Product Management : defines the scope of the product line (economic aspects).

• Domain Requirements Engineering : elicits and documents common and variable
requirements.

• Domain Design: defines a common structure for all configurations of the product
line.

• Domain Realization: designs and implements reusable software artefacts.

• Domain Testing : validates the different reusable components.

Application Engineering
During this process, product line applications are derived from the reusable artefacts
defined in the domain engineering process (Pohl et al., 2006). Some key goals have been
identified by (Pohl et al., 2005):

• Reuse, if it’s possible, a maximum of the domain assets when defining and developing
a product line application.

12



1.1. Software Product Line

• Exploit the variability of the SPL during the development of a product line appli-
cation.

• Document the application artefacts (e.g. application components) and relate them
to the domain artefacts.

• Bind the variability according to the application needs.

• Estimate the impacts of the differences between application and domain.

Software Product Lines (SPLs) are then used to create large number of related products
by reusing a set of software artefacts (Siegmund et al., 2008), thus reducing development
effort and time-to-market and providing a high degree of reuse (Hetrick et al., 2006).

The products of a SPL are defined and distinguished in terms of the features they provide.
The combination of these features allow to obtain the final software products. As defined
by (Kang et al., 1990), a ”feature is a prominent or distinctive user-visible behavior,
aspect, quality, or characteristic of a software system”. Features define both common
aspects of the domain engineering as well as differences between related systems in the
domain. Features can also be used to define the domain in terms of the mandatory,
optional, or alternative characteristics of these related systems. One challenge for SPL
engineering is to ensure that all products meet their specifications without having to test
each individual product, by checking the product line itself.

Moreover, feature interaction is a well-known problem (Zave, 1993)It is quite complex to
ensure that all features will interact only in desired ways. Adding or removing a feature
to a system may also have an impact on the others (Van Gurp et al., 2001).

To illustrate SPLs, let us consider a trivial example : the vending machine case (Classen
et al., 2011). In this example, we consider a manufacturer that provides vending machines
to different places. These different customers can have different needs in term of the
machine they offer to their own clients. For instance, one provides credit-card payment
option while the others limit themselves to cash payments. Moreover, one allows the
possibility to pay with different currencies. However, one can concede that they all have
the same basic functionality: serve soda. Moreover, each vending machine must run
software adapted to the selected set of hardware features. The manufacturer will then
have some artefacts common to all products and some specific ones. He will then develop
a Software Product Line. He will still be confronted, however, to a common challenge:
how to ensure that all products are valid? This challenge is addressed in Chapter 2.

Although many companies (NASA, General Motors, etc.) rely on Software Product Line
Engineering (Thüm et al., 2012), very few real cases are openly available. This is mostly
due to the industrial secrets they contain and that their owners do not wish to disclose.
We can, nonetheless, find large-scale open source cases such as Eclipse (Greiler et al.,
2012a), Linux Kernels (She et al., 2010; Abal et al., 2014) or Web-based plugins such as

13



1. Software product lines and variability

Drupal1 (Sánchez et al., 2017) and Wordpress2 (Nguyen et al., 2014a). This variety of
case-studies offered by the open-source community also motivated our decision to work
with JHipster as presented in Chapter 3.

We know present a key aspect of the software product lines: the notion of variability.

1.2. Variability

As we previously mentioned, SPLE aims at developing software using mass customization.
In order to do so, it proposes to reuse artefacts (code, etc.) and to assemble them in a new
product. This is achieved through the identification and the management of commonalities
and variations in a set of system’s artefacts (Chen et al., 2009).

From this vision appears variability. Many definitions have been advanced for this notion,
ranging from ”the ability to change or customize a system” (Van Gurp et al., 2001) to

”the ability of a system, an asset, or a development environment to support the production
of a set of artifacts that differ from each other in a preplanned fashion” (Bachmann &
Clements, 2005). Pohl et al. define variability of a SPL as: ”variability that is modelled
to enable the development of customised applications by reusing predefined, adjustable
artefacts” (Pohl et al., 2005).

Furthermore, Pohl et al. distinguish internal variability from external variability. The
former is hidden from the customers and it often arises from a refinement of the latter.
For instance, it can be two types of communication protocol, each having their own
advantages and drawbacks. The latter, is visible to the customer and directly impacts
his satisfaction. It can be, for example, the type of authentication used (keypad, facial
recognition and so on).

From these different definitions, we can gather that variability is the ability of a system
or an asset to be customized through the use of modifiable artefacts sometimes called
variation points, or features in feature-based approaches. Variability can then be seen at
two granularity levels: the variability of the system, which is the set of reusable artefacts
and the variability of an artefact (code, etc.) having common and specific parts. In the
case of code artefacts, for instance, the variability can be the instructions shared by
all instances and instructions specific to some, and which will not be executed in other
instances (see Section 1.2.2 for some implementation mechanisms).

Moreover, and as introduced in the previous Section, SPLE can be seen as a two-step
process: domain engineering and application engineering. In this paradigm, variation
points are introduced during domain engineering while variability decreases in application
engineering through the binding of the variation points (the selection of the artefacts, ...)

1https://www.drupal.org/
2www.wordpress.com/
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1.2. Variability

(Bosch et al., 2002). Moreover, this binding can be achieved at different times (Gacek &
Anastasopoules, 2001):

• Compile-time: before the actual compilation of the program (through the use of
preprocessor directives, for instance) or at compile time;

• Link-time: during module or library linking (for example, selecting different
libraries with different versions);

• Runtime: during program execution (depending on some predicates – such as
privileges level for instance – some functionalities can be enabled or disabled);

• Update-time or post-runtime: during updates of the program or after its
execution (for instance, adding new functionalities to a module through an update
utility).

As noted by Pohl et al. , variability information must be available when deciding on
the commonality and variability of the product line (domain engineering) and when
the variability is bound to develop individual products (application engineering) (Pohl
et al., 2006). As such, the management of the variability is an essential activity to the
success of a configurable system. As (Schmid & John, 2004) report, it is also ”the key
feature that distinguishes Product Line Engineering from other approaches to software
development”.

1.2.1. Variability management

Variability management regroups many activities – the explicit representation of the
variability in software artefacts, the management of dependencies and the support of
instantiations of those variabilities (Chen et al., 2009) – to document the product line
variability (Pohl et al., 2006).

Moreover, (Schmid & John, 2004) identified 5 key challenges variability management
ought to tackle: the definition of variation points and elements potentially bound to
them; the definition of relations and constraints among variation points and a selection
mechanism to define the elements that should go into a specific product.

This variability management, however, is far from trivial and is concerned with many
issues, at different phases of the life cycle as reported by (Bosch et al., 2002). In their
article, the authors identify several issues, either general (for instance, implicit depen-
dencies between architectural elements and features), bound to the domain engineering
(stakeholder concept overlap, for example), the application engineering or the evolution
of the variability.

Furthermore, (Pohl et al., 2006) identified 4 questions the documentation of the variability
should answer:

15



1. Software product lines and variability

• What does vary? Answering this question leads to variation points. For instance,
the type of mechanism used to authenticate employees;

• How does it vary? Identifies the different instances of a variation point, i.e. the
variants. For instance, the company can use facial recognition, RFID tags and so
on;

• Why does it vary? Highlights the motivation behind a variation point or variant.
For example, some privacy laws might discourage the use of facial recognition;

• Who is it documented for? What is the target group of a variation point/variant.
For instance, the customer.

As part of variability management, variability modelling is critical to the success of a
SPL. It regroups techniques to represent the product line variability in order to provide a
better overview and understanding and to enable tools to take over some of the variability
management tasks (Classen et al., 2011).

Due to its significant importance, many approaches have been developed to assist engineers
in modelling the variability. These approaches vary in the way they represent the variability
of the Software Product Line. Orthogonal variability model (OVM) for instance, relies on
the notions of variation points and variants. The former represents an abstract property
of the considered system (e.g. Door lock) while the latter is a specialization of the
variation points (e.g. Keypad and Fingerprint Scanner). Text-based approaches are
another example of representation.

Feature modelling however, as noted by Classen et al. , is the standard to variability
modelling in Software Product Line Engineering (Classen et al., 2011). It is the most
popular formalism to both model and reason about the variability of a system (Acher,
Baudry, et al., 2013). By describing features at various levels of abstraction it can be used
”to manage variability of artifacts that are produced in different development phases”
(Acher et al., 2011).

This formalism, introduced by (Kang et al., 1990), represents ”the standard features of a
family of systems in the domain and relationships between them”. It thus represents a
set valid configurations (i.e, a set of sets of features) (Acher, Baudry, et al., 2013). To do
so, it proposes to use a directed acyclic graph, usually a tree, where nodes are features
and edges are top-down hierarchical decompositions of features (Classen et al., 2011).

The formalism, as introduced by Kang et al. , allowed the 3 different notations (Czarnecki
et al., 2004) :

• mandatory features, indicating that all instances of the SPL must implement this
feature;

• optional features, indicating that an instance of the SPL can implement this feature
(or can choose not to do so);
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Figure 1.2.: Vending machine feature diagram, retrieved from (Classen et al., 2011)

• alternate sub-features, indicating that the sub-features cannot be simultaneously
enabled. They can also be seen as a specialization of the super-feature (Kang et al.,
1990): for instance, the alternate sub-features Manual and Automatic can be seen
as specialization of the super-feature Transmission.

It was nonetheless extended later on to add, for example, inclusive-or groups allowing
any combination of sub-features (with regards to the sub-features nature – mandatory or
optional) (Czarnecki, 1998).

To illustrate feature models concepts, we use the vending machine case presented in
Section 1.1. The feature diagram is presented in Figure 1.2.

First, this model proposes both optional (CancelPurchase and FreeDrinks) and mandatory
(Beverages and Currency) features. That is, all instances of a VendingMachine offer
beverages and rely on a currency but might (or might not) allow the cancelling of a
purchase or allow free drinks.

Second, the feature model supports OR-groups and XOR-groups. For instance, a vending
machine might offer Soda only, Tea only or both Soda and Tea. However, it can only
accept Euro or Dollar but not both simultaneously.

In order to support engineers in modelling the variability, many tools have been introduced.
These tools are either presented as Eclipse plug-ins (such as FeatureIDE 3, fmp4 or
Pure::variants5 for instance) or standalone projects (e.g. FAMILIAR (Acher, Collet, et
al., 2013)). These tools offer, beside the possibility to graphically model the variability,
built-in reasoners to compute different statistics such as the number of valid configurations,
for example.

3http://wwwiti.cs.uni-magdeburg.de/iti db/research/featureide/
4http://gsd.uwaterloo.ca/fmp
5https://www.pure-systems.com/products/pure-variants-9.html
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We now discuss some forms of variability implementations at the code level.

1.2.2. Variability implementation

As we previously discussed, the variability can be bound at different time: compilation,
link, runtime or update (or post-runtime). Moreover, the implementation of the variability
can take many shapes and forms.

As presented in (Gacek & Anastasopoules, 2001) some techniques are more suitable for
compile or link time while others are difficult or plainly impossible to set up at other
binding times. Pohl et al. also argue that the choice of binding time and the modelling of
the variability are independent, and that it is rather ”a consequence of decisions made
during design and realisation” (Pohl et al., 2005). We briefly summarize some variability
implementation techniques here-after:

• Aggregation/Delegation: object-oriented technique in which an object may
reference other objects (its parents) and if it receives a message for which it has no
matching method then it forwards the message to its parents (Kniesel, 1999);

• Inheritance: concept of object-oriented programming where a class (child) can
extend another one (parent) to benefit from the same fields and methods. A
functionality assigned to the parent superclass can then be extended (modified) by
the subclass child;

• Parametrization: technique that aims at maximizing program reuse by storing
programs in a most general possible form (Goguen, 1984). The behaviour is then
bound to the value of the parameters;

• Conditional compilation: mechanism enabling (or disabling) the compilation of
code segments (Pohl et al., 2005);

• Aspect-oriented programming: technique aiming at regrouping cross-cutting
functionalities (aspects) in consistent entities, weaved together into a single piece
of code prior to the actual compilation (Pohl et al., 2005);

• Makefiles: link-time implementation mechanism relying on the use of makefiles,
executables files allowing different sets of compilations/linkages based on given
parameters (thus enabling the realisation of variation points) (Pohl et al., 2005).

1.3. Variability-intensive systems

Software Product Lines have disseminated variability-management ideas everywhere
leading to the dawning of variability-intensive systems or highly-configurable systems.
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Linux, with more than 14,000 features (Gazzillo, 2015), is a classic large-scale example
As are Apache web server and the GNU compiler collection. These 3 common cases all
rely on the C language.

However, C is not the only option for configurable systems. Plug-in based systems, for
example, offer other examples of variability-intensive systems. For instance, Drupal6, a
content management system developed in PHP, supports 96,768 different configurations
(Sánchez et al., 2013a). Another well known case is Wordpress7, another PHP-based blog
software offering 25,000 plugins (Nguyen et al., 2014a).

With this kind of systems, the variability is introduced at different levels and not just at
the functional one. The variability can impact non-functional properties of the products
for instance (Beuche et al., 2004).

6https://www.drupal.org/
7https://wordpress.org/
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As shown by several systematic studies – for instance (da Mota Silveira Neto et al., 2011),
(Engström & Runeson, 2011) and (Lamancha et al., 2013) – a lot of effort has been put
on SPL testing. We present in this Section the state of the art of known Software Product
Line testing techniques.

First, we explore two vertices of the Product Line Analysis cube (Von Rhein et al.,
2013). This model classifies analyses along three axes: single product, product-based and
family-based approaches. We focus on the latter two, respectively presented in Section 2.1
and in Section 2.2. Moreover, regarding the product-based vertex, we explore techniques
that tend to reduce the cost of testing in the presence of variability, and particularly
sampling techniques.

Then, we also present in Section 2.3 another key challenge of SPLs: the evolution of the
product line. This evolution can occur at different level (code, mapping, variability model
and so on) and thus requires a special attention.

2.1. Products’ analyses

Product-based analysis aims at generating and analysing each product individually, using
a standard analysis method (Thüm et al., 2012). As noted by (Von Rhein et al., 2013),
product-based analysis strategy focus on each product individually without taking into
account the variability; it has been resolved using sampling techniques or by enumerating
all products. One of the advantages of this method is that single-product analysis tools
can be reused.

One approach to product-based analysis is the use of formal methods. The idea is to
prove correctness properties in the specification at the product line level such that all
derived products satisfy the same properties, without needing to enumerate all of them
(ter Beek et al., 2015; Classen et al., 2013).

Another approach is to brute-force the generation of all products. However, product lines
usually allow large number of products and the brute-force approach is only conceivable
for smaller size SPLs. A more reasonable approach is to select and sort the fittest set of
products to test according to given criteria in order to detect as much bugs as possible.

For instance, as mentioned in (Sánchez et al., 2015) Debian Wheezy1, a Linux distribution,

1http://www.debian.org/releases/wheezy/
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provides 37,000 packages and constraints leading to billions of potential configurations.
In this context, the derivation of all products is inconceivable.

To address this problem, researchers have proposed various techniques to reduce the cost
of testing in the presence of variability.

We present in next sub-sections some of known techniques that address this challenge. First,
we present and compare sampling techniques that reduce the number of configurations to
test. Second, we present test case techniques that aim at reducing the test space and at
increasing their effectiveness. (Henard et al., 2014; Guo et al., 2011; Yoo & Harman, 2007;
Sanchez, 2012). Third, we show that unit testing is the prevalent technique used in the
testing culture. Fourth, we present the automated generation of test cases in product-level
functional testing. Finally, we introduce quality attributes prediction.

2.1.1. Configurations selection

As previously mentioned, the derivation of all products is not feasible for most industrial
size SPLs. To this end, many research effort has been put on selecting the right subset
of configurations to test. These configurations selection techniques are called sampling
techniques.

Features selection technique

As highlighted by (Deelstra et al., 2004), the derivation of individual products is costly in
time and effort. Engineers commonly use a feature model to capture and document the
commonalities and variabilities of the underlying software system in SPLs. As explained
in (Guo et al., 2011), a key challenge when using a feature model to derive a new SPL
configuration is to determine how to find an optimized feature selection that minimizes
or maximizes an objective function, such as total cost, subject to resource constraints.

This selection technique, as explained in (Jain & Zongker, 1997), can reduce the cost by
reducing the number of features and can also provide a better classification accuracy due
to finite sample size effects but the need of a true optima subset is essential. The key is
to find a performing feature selection.

Sampling techniques

To reduce the number of products to test, one popular research direction is to use
Combinatorial Interaction Testing (CIT) techniques (Cohen et al., 2008; Lopez-Herrejon
et al., 2015) and pairwise (generalized to t-wise) criteria (Lochau, Oster, et al., 2012;
Lopez-Herrejon et al., 2013; Marijan et al., 2013; Pérez Lamancha & Polo Usaola, 2010;
Perrouin et al., 2011). Over the years, several tools have been developed and support
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pairwise based selection on the feature model (Hervieu et al., 2011; Johansen, Haugen, &
Fleurey, 2012; Johansen, 2016).

In order to support larger t values, as well as larger feature models, other search-based
heuristics have been proposed (Al-Hajjaji et al., 2016; Henard et al., 2014; Ensan et al.,
2012; Sayyad et al., 2013; Sanchez et al., 2014; Parejo et al., 2016). All of those CIT,
t-wise, and other search-based techniques make the hypothesis that faults come from
interactions between few features and try to select an adequate set of products to test
in order to cover as much feature combinations as possible. They have been extensively
validated on a large number of feature models, with different sizes, and coming from
different sources. However, very few evaluation have actually included building the set of
products to test in their process.

Comparison of sampling strategies

The difficulty to assess all the possible configurations in the general case lead to the
development of various sampling techniques, differing by their coverage criteria. E.g.,
pair-wise (Yilmaz et al., 2006; Cohen et al., 2008; Perrouin et al., 2011) or dissimilarity
amongst configurations (Henard et al., 2014)), use of exact algorithms (Johansen, 2016;
Hervieu et al., 2011), or metaheuristics (Garvin et al., 2011; Sayyad et al., 2013; Parejo
et al., 2016; Henard et al., 2014).

Perrouin et al. compared two exact approaches on five feature models of the SPLOT
repository w.r.t to performance of t-wise generation and configuration diversity (Perrouin
et al., 2011). (Hervieu et al., 2011) also used models from the SPLOT repository to
produce a small number of configurations. Empirical investigations were pursued on
larger models (1,000 features and above) notably on OS kernels (e.g., (Henard et al., 2014;
Johansen, Haugen, & Fleurey, 2012)) demonstrating the relevance of metaheuristics for
large sampling tasks (Le Traon, 2015; Ochoa et al., 2017). However, these comparisons
were performed at the model level (there was no product associated to these models)
using artificial faults.

Several authors considered sampling on actual systems, thus dealing with real faults.
Johansen et al. extended his SPLCAT tool with weights and to test the Eclipse IDE and
an industrial and reverse vending machine system (Johansen, Haugen, Fleurey, Eldegard,
& Syversen, 2012). Steffens et al. applied the Moso-Polite pairwise tool ((Oster et al.,
2011a)) on an electronic module allowing 432 configurations to derive metrics regarding
the test reduction effort. Additionally, they also exhibited a few cases where an higher
interaction strength was required (3-wise). Sanchez et al. modelled a subset of the Drupal
framework and (manually) examined how faults (extracted from the Drupal’s issue
tracking system) was related to feature interactions: amongst 390 faults, 11 were related
to 2-wise interactions, 1 to 3-wise interactions, and the rest was related to single features
(Sánchez et al., 2013b). A further analysis on this case revealed that with respect to 3392
faults, 160 were related to up to 4-wise interactions (Sánchez et al., 2017). Medeiros et
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al. compared 10 sampling algorithms on a corpus of existing configurations faults taken
from a large set of configurable systems (Medeiros et al., 2016).

The authors found that 2-wise interactions covered a large subset of faults (as it is
commonly assumed) but also made the case for higher-interaction strengths (seven in
their study) and that sampling algorithms such as most-enabled-disabled are most efficient
in that case. Our study adds more empirical evidence on the fact that higher-interaction
is desirable to find all bugs. However, in our case the most-enabled-disabled strategy did
select a high number of sample which greatly reduced its efficiency.

Despite the number of empirical investigations (e.g., (Ganesan et al., 2007; Qu et al.,
2008)) and surveys (e.g., (Engström & Runeson, 2011; Thüm et al., 2014; da Mota Silveira
Neto et al., 2011)) to compare such approaches, many focused on subsets to make the
analyses traceable. Being able to execute all configurations led us to consider actual
failures and collect a ground truth. It helps to gather insights for better understanding the
interactions in large configuration spaces (Meinicke et al., 2016; Yilmaz et al., 2006).

2.1.2. Test case

As defined by (Parejo et al., 2016), ”Test case is defined as a configuration of the HCS
under test (i.e. a set of features) and a test suite is a set of test cases.” In a context of
most industrial size SPLs, test case technique faces the same problem, it is impossible to
make test cases for all configuration. Indeed, test suites tend to grow in size as software
evolve, often making it too costly to execute them entirely. To this end, and as presented
in (Yoo & Harman, 2007), different approaches have been studied to maximise the value
of the accrued test suite: minimisation, selection and prioritisation.

Test case minimisation technique

The goal of test suite minimisation technique (or test suite reduction) is to reduce the size
of a test suite by eliminating redundant test cases from the test suite. It is a reduction
technique that is used to create a temporary subset of a test suite, which can be used to
permanently eliminate test cases. (Yoo & Harman, 2007; Rothermel et al., 2002). Some
empirical studies (Rothermel et al., 1998, 2002; Wong et al., 1998) investigate the effect
of test suite minimisation on the fault-detection capability of test suites.

Test case selection technique

Test case selection aims at reducing the test space by selecting an effective and manageable
subset of configurations to be tested (according to some coverage criteria) and also seeks
to reduce the size of a test suite as the test case minimisation technique. This technique
is essentially similar to the test suite minimisation problem; both problems are about
choosing a subset of test cases from the test suite. With this technique, the selection is
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not only temporary (i.e. specific to the current version of the program), but also focused
on the identification of the modified parts of the program (e.g new releases). In this case,
test cases are selected. Indeed, it is more relevant for changed parts (which typically
involves a white-box static analysis of the program code).(Yoo & Harman, 2007) Test
suite minimisation is often based on metrics such as coverage measured from a single
version of the program under test.

Test case prioritization technique

Finally, as explained in (Yoo & Harman, 2007), ”test case prioritisation concerns ordering
test cases for early maximisation of some desirable properties, such as the rate of fault
detection. It seeks to find the optimal permutation of the sequence of test cases.”

The big difference with the other techniques is it doesn’t involve selection of test cases,
and assumes that all the test cases may be executed in the order of the permutation
it produces, but that testing may be terminated at some arbitrary point during the
testing process in an order that attempts to increase their effectiveness at meeting some
performance goal, e.g. accelerate the detection of faults.(Sánchez et al., 2015)

Test case prioritisation seeks to ”find the ideal ordering of test cases for testing, so that
the tester obtains maximum benefit, even if the testing is prematurely halted at some
arbitrary point” (e.g. computational cost).(Yoo & Harman, 2007)

Different criterion can be used for the test case prioritisation technique. For instance,
structural coverage (Rothermel et al., 1998) is a metric with the intuition that early
maximisation of structural coverage will also increase the chance of early maximisation
of fault detection. Or another example, interaction testing metric is used when there are
multiple combinations of different components. A common example would be configuration
testing, which is required to ensure that different combinations of environment, such as
different operating systems or hardware options are correctly executed.(Yoo & Harman,
2007)

2.1.3. Testing culture in configurable systems

(Greiler et al., 2012b) investigated how developers test their plug-ins in the Eclipse
framework. The prevalent technique used was unit testing of individual plug-ins without
any systematic approach to handle combination with other plugins. Interviewed people
complained about the difficulty to set up a proper integration environment, long execution
times (few minutes), and lack of best practices.
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2.1.4. Product-level functional testing

Product-level functional testing focuses on functional properties of each product individ-
ually and relies on existing single-product analysis tools to perform analysis.

Due to the usually huge numbers of products in SPLs, researchers have proposed to
derive test cases from product line scenarios and use cases (e.g., (Nebut et al., 2006;
Oster et al., 2011b)) promoting the reuse of test models, adapted to the SPL context,
with the goal to reduce testing costs.

For instance, (Nebut et al., 2006) present an approach to automate the generation of
application system tests, for any chosen product, from the system requirements (UML
use cases) of a SPL. Their idea behind this approach is to describe functional variation
points at requirement level to automatically generate the behaviours specific to any
chosen product and at the end, provide the automation of generated system test cases.

2.1.5. Feature-related quality attributes

Recent research shifts from functional properties to non-functional characteristics of
products. The goal is to predict performance – such as response time, throughput,
resources consumption and so on – of a given product. (Sarkar et al., 2015; Siegmund
et al., 2012, 2013, 2015). In these researches, as for functional testing, they also face
combinatorial explosion issues.

These analysis methods rely on statistical learning (Guo et al., 2013) and regression
methods (Valov et al., 2015), or mathematical models to predict and detect (undesired)
performance-relevant feature interactions (Zhang et al., 2016).

2.2. Family-based analyses

Model-based testing approaches use behavioural models of the product line to generate
test cases for the different products: (resp.) delta-oriented product line testing (Lochau,
Schaefer, et al., 2012; Lachmann et al., 2015) and featured transition system based
(Devroey et al., 2014, 2015, 2016) approaches use (resp.) state machines and transition
systems in order to capture the common and product specific behaviour of the product line.
At the code level, variability-aware parsers (Kästner et al., 2011), variational structures
(Walkingshaw et al., 2014) and type-checking (Kastner & Apel, 2008) are of interest. They
indeed enable variability-aware testing (Kästner et al., 2012) to, for example, evaluate a
test case against myriads of configurations in one run (Nguyen et al., 2014a).
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2.3. Product Line evolution techniques

From the evolution perspective, product lines represent an interesting challenge. Product
lines developers, architects and engineers have to manage updates at different levels: the
evolution of the variability model and the mapping to other artefacts (Dintzner et al.,
2016); the evolution of the artefacts themselves which will impact several products (Neves
et al., 2015; Sampaio et al., 2016); and the evolution of the configurator and configuration
workflow.

In order to understand how existing SPLs are updated, Passos et al. recently studied the
Linux kernel variability models and other artefact types co-evolution. They inspected
over 500 Linux kernel commits spanning almost four years of development and collected a
catalogue of evolution patterns, capturing the co-evolution of the Linux kernel variability
model, Makefiles, and C source code. They extracted general findings (e.g. most features
of Linux kernel are modular and cause little scattering when added, variability evolution
of the Linux kernel follow systematic patterns, etc) to guide further researches and tool
development.
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3. The case of JHipster

To support this study and address the research questions presented in Chapter 4 we
introduced a new case study for the research community: JHipster. This project relying
on different complex technologies, we present in Appendix B a short description of each
framework.

3.1. Project background

JHipster is an open source generator for web applications. Under Apache 2.0 license,
the source code is available at: https://github.com/jhipster/generator-jhipster.
Initiated in 2013 by Julien Dubois, it was publicly released in December of that year.
JHipster’s objective is to assist the user in all phases of web applications development:
the choice of the technologies to use, their integration in a complete and automated
building process and the management of dependencies across the offered technologies
(JHipster, 2016). It is used worldwide by large companies (such as Adobe or Google, for
instance) as well as independent developers.

3.2. Core tasks and objectives

JHipster’s web application creation process is divided in two phases: the configuration
process and the generation process (Halin et al., 2017). These two processes can be used
separately, as discussed later on.

3.2.1. Configuration process

The configuration of the web application is achieved via a command-line interface,
presented in Figure 3.1. Through this interface, the user is prompted a list of questions to
select the technologies that will be included in the configuration. The prompting of the
different questions is handled by JavaScript files: prompts.js. JHipster comprises several
of these JavaScript files and each of them handles a specific part of the configuration.
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Figure 3.1.: JHipster command line interface

For instance, client/prompts.js allows the user to include LibSass1 in its web application
while server/prompts.js handles the database selection.

Although it doesn’t provide a graphical user interface (GUI ) like most configurators, in
particular web-based configurators such as car configurators available on most constructors’
websites, JHipster share many common characteristics with typical configurators.

Like all configurators (Boucher et al., 2013), JHipster assists the user in his decision
making process by enforcing constraints, preventing conflictual decisions and propagating
the decisions. It also relies on the same principles as its web-based counterparts (Boucher
et al., 2013):

• It follows a multi-step process : options are presented in containers displayed one at
a time; each step having to be validated before the next one becomes available;

• It comprises group constraints : the group defines the option(s) that can be selected.
The group constraints can be exclusive (select only one type of database) or inclusive
(which one(s) of these testing frameworks do you want to use? if any);

• It relies on cross-cutting constraints: the choice(s) made previously can impact the
remainder of the configuration (e.g, if we configure a monolithic application then a
database must be chosen, which is not mandatory with microservices);

• Like a minority of the cases studied by Boucher et al. , JHipster doesn’t support
backward navigation: once an option selected it cannot be changed;

1A CSS stylesheet preprocessor, more information can be found on the official website: http://sass
-lang.com/libsass
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3.2. Core tasks and objectives

The list of all questions and their different answers is presented in Table A.1 of Appendix A.
As previously mentioned, a description of the different frameworks and technologies can
be found in Appendix B.

The configuration process yields a JSON file (see Listing 3.1) used in the generation
process. When calling JHipster (yo jhipster), Yeoman2 first check if a yo-rc.json file is
present. If so, this configuration process is skipped and Yeoman immediately launches
the generation process. If a file is present but erroneous then parts of the configuration
can be replayed. For instance, if in a JSON file the field ”buildTool” is present but the
value is neither ”maven” nor ”gradle”, then the question ”Would you like to use Maven
or Gradle for building the backend?” will be prompted.

Listing 3.1: .yo-rc.json example

1 {

2 "generator -jhipster": {

3 "jhipsterVersion": "3.6.1",

4 "baseName": "jhipster",

5 "packageName": "io.variability.jhipster",

6 "packageFolder": "io/variability/jhipster",

7 "serverPort": "8080",

8 "authenticationType": "session",

9 "hibernateCache": "ehcache",

10 "clusteredHttpSession": "no",

11 "websocket": "no",

12 "databaseType": "sql",

13 "devDatabaseType": "h2Disk",

14 "prodDatabaseType": "mariadb",

15 "searchEngine": "no",

16 "buildTool": "maven",

17 "enableSocialSignIn": false ,

18 "rememberMeKey":

"e248fc12e226fc8ffcd4b6170c9d48dbc3b9ed12",

19 "useSass": false ,

20 "applicationType": "monolith",

21 "testFrameworks": [

22 "gatling",

23 "cucumber",

24 "protractor"

25 ],

26 "jhiPrefix": "jhi",

27 "enableTranslation": false

28 }

29 }

2Yeoman is a generator ecosystem on which JHipster relies. More information can be found on the
official website: http://yeoman.io/
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3.2.2. Generation process

JHipster generation process follows Yeoman workflow which aims at improving both
user’s productivity and satisfaction (Osmani et al., 2012). This workflow comprises tools
to scaffold a project (yo), build and test this project (Gulp and Grunt) and to manage
dependencies (npm and Bower)(Osmani et al., 2012).

To generate the complete application, Yeoman first uses template files. These files, present
in JHipster generator, are different sorts of artefacts (XML, Java, JavaScript, CSS, ...)
holding both shared content (common dependencies, for instance) and specific one (e.g,
Java methods related to a specific database). Yeoman template files use conditional
compilation (Gacek & Anastasopoules, 2001) to include or exclude parts of the code
depending on the user’s choices. This technique allows JHipster to use the same template
for all configurations: the variability being resolved in the configuration process (the
result is stored in the .yo-rc.json file), at compile time all technologies are chosen and
the template is thus adapted. This conditional compiling is illustrated, as example, in the
pom.xml template depicted in Figure 3.2. It shows, from line 151 to 157, the dependency
metrics-ehcache which is to be included if and only if the configuration uses Ehcache as
Hibernate second level cache. The other dependencies are included in all configurations,
regardless of their content.

The generator then runs npm to retrieve needed dependencies and store them in a local
node modules folder, thus concluding the generation process.

Figure 3.2.: pom.xml template file excerpt
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3.3. JHipster sub generators

JHipster actually offers many different (sub)-generators. Regarding the classical con-
figuration/generation process, JHipster relies on 2 sub-generators, jhipster-client and
jhipster-server, handling respectively the generation of client and server standalone
applications.

JHipster Client
Accessible via the command yo jhipster:client or yo jhipster –skip-server, this sub-
generator prompts questions 2, 16 and 17 presented in Table A.1. It then generates the
AngularJS front-end code.

JHipster Server
Accessible via the command yo jhipster:server or yo jhipster –skip-client, this sub-
generator handles back-end choices. It prompts all questions presented in Table A.1
except for questions 1, 3, 6, 16 and 18. The result of this sub-generator is the Spring
Boot back-end only of a Web application.

As previously mentioned, JHipster relies on these two sub-generators to generate the
different applications. It also prompts questions not included in these two generators:
the type of the application to scaffold, the selection of the testing frameworks and the
port number and path to the UAA server (respectively in microservices applications
and UAA authentication based applications). It also uses the language sub-generator
to add language support to the application. JHipster also recognize different optional
command-line options to be used with the different generators. These options allow for
instance to skip parts of the process. More information can be found on the official
website: https://jhipster.github.io/creating-an-app/#3.

Besides these sub-generators, JHipster also offers an Entity sub-generator to generate
entities and all related artefacts, such as Spring Service Beans. It also has its own Domain
Specific Language (DSL): JHipster Domain Language3.

3.4. JHipster’s evolution

Since its beginning in 2013, JHipster has constantly grown throughout more than 100
releases. It now has 5378 stars on GitHub and can rely on a strong community and 256
contributors4.

This constant evolution allow JHipster to offer up-to-date technologies both by offering
new options (for instance, the ability to generate the infrastructure using Docker, since

3https://jhipster.github.io/jdl/
4Statistics retrieved from https://github.com/jhipster/generator-jhipster and https://www

.npmjs.com/package/generator-jhipster, on November 16, 2016.
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version 3.0.0) and by following the evolution of others (for instance, using LibSass instead
of Compass, since version 2.4.0).

We present a list of available frameworks and technologies by JHipster version on our
Github repository: https://github.com/axel-halin/Thesis-JHipster/blob/master/
Modeling/Comparatif%20JHipster.xlsx

3.5. Motivation

Several reasons motivated the use of JHipster as a case study.

For starters, the problems we aim to address with this thesis (see Section 4.1) are common
to most configurable systems. However, and although variability is everywhere, there has
always been a shortage of publicly available cases for assessing variability-aware tools
and techniques.

This shortage can be explained by the industrial secrets, contained in historical Software
Product Lines, that their owners do not want to disclose to a wide audience. The open
source community has nonetheless contributed to large-scale cases such as Eclipse, Linux
Kernels or web-based plug-in systems.

To assess accuracy of sampling and prediction approaches (bugs, performance), a case
where all products can be enumerated is desirable. The aforementioned available case-
studies, however, lack this property. Wordpress, for instance, offered 25,000 different
plugins (in 2014) (Nguyen et al., 2014b) while Linux Kernel 2.6.28.6 consisted in 5426
features (She et al., 2010). JHipster presents itself as a more manageable case study with
≈ 163,000 configurations, about 50,000 more than Drupal (Sánchez et al., 2015).

Furthermore, as configuration issues do not lie within only one place but are scattered
across technologies and assets, a case exposing such diversity is highly valuable. JHipster,
as we present in Chapter 3, is diverse in term of technologies. More so than Linux, for
instance, which relies mainly on C language and where part of the variability can be
extracted with KConfig, a language used to model the variability and the dependencies
among configuration options (She et al., 2010).

Although similar studies have been conducted in the web domain (for instance, (Sanchez
et al., 2014)), JHipster offers interesting assets beyond replication studies: (a) it covers
key aspects of product line development, variability, product derivation and evolution; (b)
the number of configurations (≈ 163,000) is large enough to require automated derivation
support (on top of Yeoman) but small enough to be enumerated through distributed
computing facilities yielding exact results to assess various kinds of analyses; (c) it allows
to address variability modeling and configuration challenges across technological spaces
(Jin et al., 2014).
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Moreover, we believe JHipster is a good candidate, both to devise new techniques and
to assess existing ones (Halin et al., 2017), especially in product-based and family-based
analyses.

As noted in (Jin et al., 2014), configuration issues can happen everywhere. The variety of
technologies at work in JHipster products offers an opportunity to study such aspects and
to study different kinds of interaction bugs. As we will see in Chapter 4.3, the variability
model integrates information from different files.

Then, as opposed to plug-in-based cases, where test cases are either optional or depending
on the will of developers (Greiler et al., 2012a), each JHipster application comes with
test cases. In particular, Cucumber5 supports early testing in the form of scenarios.
Integration with code coverage tools is also available.

JHipster is also interesting for quality analyses. Web-apps are particularly interesting
cases for performance, since this quality attribute has a direct influence on Websites’
successes. Performance is not the only quality attribute that can be studied: security
is also key especially for e-commerce websites. We will not cover such quality analyses
in this master thesis but the variety of analyses possible on the JHipster case was an
enabler for the selection of this case.

Finally, with more than 140 releases since 2013, JHipster is under active development
and evolution. Therefore a challenge for researchers is to devise automated means to
update the JHipster feature model. As opposed to the Linux case, where part of the
variability model can be extracted from KConfig, several JavaScript files are necessary to
build it, pushing for more versatile variability inference techniques.

5https://cucumber.io/
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4.1. Research questions

This master thesis aims at answering 3 main research questions. First, we want to
exhaustively test a configurable system and see what lessons can be learned from such
an experiment. Then, we want to compare the results of different sampling techniques
comparatively to a ground truth. Finally, we will extract from this study the most-cost
effective sampling strategy and discuss some recommendations for the developers of the
case study.

Those questions, although centred around JHipster as a case study, are in fact common
to most configurable systems.

As previously mentioned (see Section 2), a key challenge in configurable systems is to
ensure that all products are correct (no defects). Due to the sheer number of available
products, a generally accepted idea appeared in Software Product Line Engineering
(SPLE): it is unnecessary – and often even impossible – to test each product individually
and sampling methods yields sufficient representative subsets of products.

With JHipster, the testing of the complete configuration space is within reach of current
distributed (Grid) architectures. An immediate research question is to characterize the
cost of an exhaustive and automated testing strategy:

• (RQ1.1) What is the cost of engineering an infrastructure capable of automatically
deriving and testing all configurations?

• (RQ1.2) What are the computational resources needed to test all configurations?

To address these questions we will attempt to generate and test all JHipster configurations
in order to get a ground truth to compare different sampling strategies and to answer
the general question: Is it worth testing all configurations?

A second line of research is to qualify and quantify the configuration defects:

• (RQ2.1) How many and which sorts of failures/faults can be found in all configu-
rations?

By collecting a ground truth or reference of defects, we can measure the effectiveness of
sampling techniques. For example, is a random selection of, e.g. 50, configurations as
effective to find failures/faults than an exhaustive testing? We can address this research
question:
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• (RQ2.2) How sampling techniques compare to in terms of effectiveness?

Finally, we can put in perspective the typical trade-off between the ability to find
configuration defects and the cost of testing and address our final research question:

• (RQ3) What is the most cost-effective sampling strategy?

By addressing this last research question, we can present our recommendations to the
JHipster team regarding the testing of their generator.

4.2. Methodology

In order to address the different research questions, we developed an infrastructure
capable of assessing each JHipster configuration. This development was split in several
steps, and is summarized in Figure 4.1, which we will present in this chapter.

Figure 4.1.: Complete analysis workflow

The development was structured as follows: we first modelled the variability of JHipster
in order to count the total of valid configurations (See Section 4.3), then we created an
infrastructure that automate the generation and the tests of these valid configurations
(See Section 4.4). Finally, due to the huge number of configurations, we had to scale
up the distribution of the testing effort. For that, we used a cluster of machine (See
Section 4.5).

We have developed this infrastructure capable of testing all configurations of JHipster at
full-time during 4 months (from September 15th 2016 to January 15th 2017 at INRIA
Rennes-Bretagne Atlantique, in the DiverSE team1). We used Github to track the
evolution of the testing infrastructure. We also performed numerous physical or virtual
meetings (with Slack) with our supervisors (Mathieu Acher, Gilles Perrouin and Xavier
Devroey), which have supervised our efforts and provided us guidance based on their
expertise in software testing and Software Product Line Engineering. Through frequent
exchanges, we gathered several qualitative insights throughout the development. We

1http://diverse.irisa.fr/
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also wrote in the early stages of our research internship with our supervisors an article
Yo variability! JHipster: a playground for web-apps analyses that has been published
and presented at the 11th International Workshop on Variability Modelling of Software-
intensive Systems. This article, available in Appendix H, presents our motivation to use
JHipster in the research community and has been used as a starting point to write our
master thesis. This paper presents also JHipster as a case for eduction which is not
presented in this master thesis.

Besides, we decided not to report faults whenever we found them. Indeed, we wanted
to observe whether and how fast the JHipster community would discover and correct
these faults, without interfering on the JHipster project. We monitored JHipster mailing
lists to validate our testing infrastructure and characterize the configuration failures in
a qualitative way. We have only considered Github issues since most of the JHipster
activity is there. Additionally, we used statistical tools to quantify the number of defects,
as well as to assess sampling techniques. Finally, we crossed our results with insights from
three JHipster’s lead developers (a 1,5 hour semi-structured interview with the technical
leader of JHipster by Skype and mail exchanges).

The constant evolution of JHipster, however, has lead us to restrain our study to a specific
version of the configurator: its version 3.6.1. Indeed, since the start of the study, and as
of May 2017, JHipster was already in its 4.4 version. We selected the release 3.6.1 for 2
reasons:

1. at the start of the study (i.e, September 2016), it was among the latest available
versions, thus offering the latest supported technologies;

2. by selecting a minor release we mitigated the risk of finding defects due to an early
and unstable release

The release notes regarding this version can be found on JHipster official website:
https://jhipster.github.io/2016/08/18/jhipster-release-3.6.1.html.

All resources related to this study can be found on-line: https://github.com/axel
-halin/Thesis-JHipster. This repository regroups the source code we developed but
also results files and other artefacts.

4.3. JHipster’s variability modeling

To start the development of the testing infrastructure, we first had to capture JHipster’s
variability. To do so, we used the Feature Models formalism.

The selection of this formalism allowed us to rely on existing tools such as FeatureIDE2

and FAMILIAR3. The former is an Eclipse plug-in supporting Feature-Oriented Software

2http://wwwiti.cs.uni-magdeburg.de/iti db/research/featureide/
3http://familiar-project.github.io/
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Development (FOSD) and specifically the design of Feature Models (Thüm et al., 2014).
The latter is a Domain Specific Language (DSL) also allowing the design and reasoning
on FMs (Acher, Collet, et al., 2013).

These tools offered, beyond the Graphical User Interface to draw the FM, built-in
functions to assess the validity of the model or to count the number of valid products.
Our internship mentor (Mathieu Acher, INRIA Rennes) being a part of the team which
worked on FAMILIAR, we also had access to up-to-date source-code.

After a few experiments with the command-line configurator, we quickly noticed the scal-
ability limitations of a brute force try of every possible combinations. Indeed, depending
on the answer to a question, some following answers or questions can be deactivated.

As a result we considered the generator’s source code, available on the official GitHub
repository of the project4.

JHipster being a Yeoman generator, it follows a specific structure: a package.json in the
root folder and a generators folder where the main code is located. Among the artifacts
of this folder are several index.js and prompts.js files. Each couple of these JavaScript
files handles a specific part of the generator: client handles client side choices (such as the
use of LibSass) while server handles the database selection, for instance. Furthermore,
index.js handles the generation phase (the fetching of dependencies for instance) and
prompts.js handles the configuration phase (i.e, the prompting of the questions). To
assess and model JHipster variability, the latter proved more relevant.

After a thorough analyses of the JavaScript artefacts, we identified variability points (in
the form of questions to be prompted during the configuration process) and constraints
existing between them (conditions needed to be asserted before prompting a question).

Listing 4.1 is an excerpt of server/prompts.js. It illustrates the selection of the type of
database. We can see that the user can select 3 types of database (SQL, MongoDB or
Cassandra) or not to include a database in its configuration. Moreover, this question
is only prompted if the application is a microservice (this is selected in a previous
question).

There is also a similar question in the file to be prompted in other types of configuration
(i.e, monolithic web-applications or microservice gateways).

Besides these JavaScript files, JHipster relies on conditional compilation to bind its
variability. Conditional compilation is the main implementation mechanism for realizing
variability. Developed as a Yeoman generator, JHipster relies on template files. These
files (Java, HTML, XML, etc.) include conditions surrounding specific code snippets to
be enabled depending on the considered configuration.

Listing 4.2 presents an excerpt of DatabaseConfiguration.java template file. In the case
of a MongoDB-based variant, this class will inherit from AbstractMongoConfiguration

4https://github.com/jhipster/generator-jhipster/releases/tag/v3.6.1
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Listing 4.1: server/prompt.js excerpt

1 (...)

2 when: function (response) {

3 return applicationType === ’microservice ’;

4 },

5 type: ’list’,

6 name: ’databaseType ’,

7 message: function (response) {

8 return getNumberedQuestion(’Which *type* of database would you like to

use?’, applicationType === ’microservice ’);},

9 choices: [

10 {value: ’no’, name: ’No database ’},

11 {value: ’sql’, name: ’SQL (H2, MySQL , MariaDB , PostgreSQL , Oracle)’},

12 {value: ’mongodb ’, name: ’MongoDB ’},

13 {value: ’cassandra ’,name: ’Cassandra ’}

14 ],

15 default: 1

16 (...)

(See line 9); in the case of SQL-based variants, on the other hand, some annotations
(EnableJpaRepositories for example (See line 3)) will be activated (while the class
won’t inherit from AbstractMongoConfiguration, MongoDB and SQL being two exclusive
features).

Listing 4.2: Variability in DatabaseConfiguration.java

1 (...)

2 @Configuration <% if (databaseType == ’sql’) { %>

3 @EnableJpaRepositories(" <%= packageName %>. repository")

4 @EnableJpaAuditing (...)

5 @EnableTransactionManagement <% } %>

6 (...)

7 public class DatabaseConfiguration

8 <% if (databaseType == ’mongodb ’) { %>

9 extends AbstractMongoConfiguration

10 <% } %>{

11
12 <%_ if (devDatabaseType == ’h2Disk ’ || devDatabaseType == ’h2Memory ’) { _%>

13 /**

14 * Open the TCP port for the H2 database.

15 * @return the H2 database TCP server

16 * @throws SQLException if the server failed to start

17 */

18 @Bean(initMethod = "start", destroyMethod = "stop")

19 @Profile(Constants.SPRING_PROFILE_DEVELOPMENT)

20 public Server h2TCPServer () throws SQLException {

21 return Server.createTcpServer (...);

22 }

23 <%_ } _%>

24 (...)

From all these artefacts, we manually reverse engineered the feature model presented in
Figure 4.2. We decided to model the variability as follows:
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1. each multiple choices question is model as an abstract feature. These questions
typically are ”Which of these technologies do you wish to use?”;

2. each answer is model as a concrete feature;

3. exclusive answers (select one and only one type of database, for instance) are
mapped as alternate groups (testing frameworks selection is the only question
allowing multiple answers, hence these features are represented by an OR-group);

4. yes or no questions are represented by optional features;

So, if we consider Listing 4.1 as an example we have: database as an optional abstract
feature, with SQL, Mongodb and Cassandra as concrete alternate sub-features.

We also extracted several constraints between features, when (...) return applicationType
=== ’microservice’ in Listing 4.1 is one of them. We synthesized a total of 15 constraints,
presented in Figure 4.2.

Besides these 15 constraints we identified a total of 48 features (33 of them being concerned
by constraints). We relied on FAMILIAR built-in functions to compute the total number
of valid configurations: 162,508.
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4.4. Analysis workflow

With the variability model at hand, we started the development of a process to automat-
ically generate and test all valid configurations.

During this development phase, we decided to refine the feature model presented in
Chapter 4.3. This decision was motivated by technical and practical reasons.

First, we decided to exclude client and server standalones applications from the configu-
ration space. This exclusion was motivated by a limited interest for users to consider the
server (respectively client) without a client (respectively server). Moreover, failures most
likely occur when both sides are inter-related and are then covered by monolithic web
applications.

Second, we removed Oracle-based variants from the set of tested configurations. Oracle
is a proprietary technology with technical specificities that are quite more complex to
fully automate.

Third, whenever possible, we decided to include all testing frameworks (Cucumber,
Gatling and Protractor) in each configuration. Due to some identified constraints, the
inclusion of all three testing frameworks was only possible in monolithic web applications
and microservice gateways; microservice applications only support Cucumber and Gatling.
By including these testing frameworks, we prevented the testing of similar configurations:
the inclusion of testing frameworks does not impact the configuration itself but merely
adds support for additional tests (load balancing, etc.); if we did not set those features
to mandatory, we would have had to typically handle 8 times the same configuration.

Finally, we added a new feature to the model. From JHipster 3.0.0 on, each web application
can be deployed with the build tool (Maven or Gradle) or with Docker. However, it is
not a feature like the others (Docker is not part of the configuration process) : each
configuration includes Docker but we choose to deploy the web application with it or
not.

In the rest of this thesis, we are considering the original feature model augmented with
specialized constraints that negate red features (e.g., Oracle) and that includes green
features (e.g., Docker). This update of the variability model reduced the number of
configurations to assess to 26,256. Figure 4.3 presents this updated variability model.

The development of the analysis workflow was achieved in 2 steps: the derivation, from
the feature model, of the configurations and the testing of all these configurations.
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4.4.1. Configurations derivation

This first engineering step consists in automatically deriving all valid (with regards to
the Feature Model) configurations.

Concretely, we rely on FAMILIAR capabilities to enumerate all valid configurations. Our
infrastructure then generate for each of them the matching .yo-rc.json file, each JSON
file summarizing the configuration (as presented in Section 3.2.1). Based on the analysis
of a few JSON files, we identified the specific fields the generator expects and were then
able to generate the correct .yo-rc.json files.

This correctness is further asserted in the execution of the workflow. When calling the
generator with a JSON file missing a key, the user will have to answer the relevant
question. For instance, if we specify the key DatabaseType instead of databaseType, the
generator will prompt us the database-related questions. The same will occur if we omit
to specify a key.

Our infrastructure also generate at this step the different scripts used in the analysis
workflow itself. Each script is linked to a step presented in Section 4.4.2. The scripts
comprise common (yo jhipster for instance) and specific commands (mvwn -Pprod for
example) depending on the configuration (specific commands are mostly dependent on
the build tool, the testing frameworks, the use of Docker and on the type of database).

This step yields all JHipster directory (one per configuration) with all scripts necessary
to execute the analysis workflow.

4.4.2. Variants testing

The second engineering step was the development of the analysis workflow itself which
handles the testing of each variant. This workflow is summarized in Figure 4.4.

Figure 4.4.: Modelling of oracle tasks

In this workflow, each variant goes through several sequential steps. These steps are
executed through the use of bash scripts and yield separate log files.

Besides these different steps, we developed 3 generic oracles to assess the result of the
generation, the compilation and the build. These oracles seek stacktraces, error messages
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or success messages in the log files. A failure to generate, compile or build leads to the
skipping of some following steps (no need to compile the application if it fails to generate
properly).

The workflow also comprises steps to improve the overall execution. For instance, before the
generation of each configuration we paste a folder comprising all JavaScript dependencies.
As presented in Section 3.2.2, JHipster relies on npm and Bower to retrieve dependencies.
By including the node modules folder in the working directory, this dependencies retrieving
phase is skipped. This improvement of the workflow becomes interesting when scaling up
the execution: we noticed a gain of several seconds to a few minutes (on a slow Internet
connection).

The results and metrics (see here-after) of the different configurations are stored in a
CSV-like file: a Google Sheet. This decision was motivated by limitations encountered
while distributing the testing effort (see next Chapter). Before executing this workflow on
a configuration, we assert it hasn’t already been tested by checking the CSV content.

We present here-after the different steps of the analysis workflow.

Web app generation

The first step of the workflow is to generate the web application. This generation is
based on the JSON file previously generated (Chapter 4.4.1) and consists in calling the
generator as any user would: yo jhipster.

As we mentioned in Chapter 3.2, JHipster is both a configurator and a generator where
the configuration yield a JSON file used to generate the matching application. By calling
the generator in a directory containing a .yo-rc.json file, we can skip the configuration
phase and directly scaffold the JHipster application.

This scaffolding both generates the artefacts based on the templates files and retrieve
the needed dependency (already done with our improvement of the workflow).

This step produces a log file (generate.log) containing Server app generated successfully
and/or Client app generated successfully if the generation succeeds. Our infrastructure
checks the presence of error message of stacktraces in this log and report them in the
main CSV output file if any occurs.

Our infrastructure also extracts from this step the time it took to be achieved. We
found a mean time of 29.8 seconds (with generation times comprised between 2 and 475
seconds).
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Web app compilation

With the application scaffolded we can start to assess its validity. To this end, our
infrastructure starts by compiling it. JHipster supports two different build tools: Maven5

and Gradle6. Depending on the configuration, our infrastructure then executes the
matching command (mvn compile or ./gradlew compileJava).

The log file of this step (compile.log) contains either ”BUILD FAILED” or ”BUILD
FAILURE” if this compilation fails. If it does, our infrastructure stops the treatment of
the current configuration (we can’t build it if it cannot compile).

Our infrastructure also extracts error messages and stacktraces in case of failure. No matter
the compilation result, our infrastructure extracts the time it took to be performed.

Moreover, prior to the compilation itself, our infrastructure runs database related scripts.
These scripts start the database services needed in later steps (for instance, to deploy
the web app), create tables and populate default entities (when need be). The different
services need to be started when deploying the application with Maven/Gradle (see
Section 4.4.2) and our infrastructure does so here to give it enough time to start.

Entity generation

After a successful compilation our infrastructure generates some entities to augment the
web application (i.e to improve later test results).

The creation of entities in JHipster applications can be achieved with a sub-generator
(see Section 3.3) that scaffold all necessary artifacts (including the creation of RESTful
web services). We use this sub-generator to achieve this step (which is scripted too).

The sub-generator works like the main generator: our infrastructure uses a command-line
interface to answer a few questions (name of the entity, attributes, relationships, etc.)
and it yields a JDL file used to generate all artefacts. Similarly to the generation of the
web application, our infrastructure calls the generator on a previously generated JDL file
to skip the configuration process.

JHipster has its own Domain Specific Language called JDL (JHipster Domain Language),
allowing the definition of entities, with an on-line editor7. The JHipster team provides
an example (see Figure 4.5) which we used in this study.

This template, however, doesn’t work for each database type. Indeed, NoSQL databases
(MongoDB and Cassandra) cannot have relationships between entities. Moreover, Cassan-
dra poses additional constraints. We thus use 3 different JDL scripts: one for MongoDB,
one for Cassandra and one for SQL databases. This last one is in fact only used for

5https://maven.apache.org/
6https://gradle.org/
7https://jhipster.github.io/jdl-studio/
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Figure 4.5.: JHipster JDL entities example (retrieved from the official website)

MySQL-based and PostgreSQL-based variants: MariaDB was not yet supported when we
performed our experiment (it has been added since then).

We present in more details the constraints, the scripts and the models used for the
different types of databases in Appendix C.

Common tests

Each web application, regardless of the configuration, comes with default tests which our
infrastructure runs at this point.

First, each variant supports integration testing through Spring Test Context framework.
These integration tests can be ran both with Maven (./mvnw clean test and Gradle
(./gradlew test). The tests focus on common functionalities (accounts, users, audit API,
etc.). From this execution, we extract the number of test failures, test errors and skipped
tests.

Second, each web application support U.I testing with Karma.js8. These tests assert the

8https://karma-runner.github.io/1.0/index.html
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correctness of the REST API by simulating the user interaction with the interface. It
launches the server, runs typical user interface tests such as, for instance, log in attempts
with correct and incorrect credentials and finally, kills the server. Karma.js is executed
through gulp.js9 (gulp test). Our infrastructure does not extract quantitative data from
this test and we limit it to check the success (OK) or failure (KO) of KarmaJS tests.

From this first testing step, our infrastructure also extracts (whenever possible) the
percentage of test coverage with Jacoco10 and lcov11.

Web app deployment

At this point, the web application is ready to be deployed. Two options are available
to deploy the web app: using the build tool (Maven or Gradle) or using Docker12. We
decided to use both options; each configuration is then built twice.

The main difference between building an application with Docker or with Maven/Gradle
is that, while the former take care of starting additional required services (JHipster
Registry, UAA server, etc.), the latter relies on the user to start those services. Both
alternatives require the execution of specific scripts.

Docker:

• Prior to the build itself (docker-compose) our infrastructure stops all running
database services. If the database service is running when attempting to deploy
with Docker, an error will occur (the port is already allocated);

• After the build, our infrastructure removes all Docker images (docker rmi $(docker
images -q)). This is particularly needed for database related images: 2 MySQL-based
variants, for instance, don’t share the same schemas depending on the configuration
(the authentication mechanism for example)

Maven/Gradle:

• If the configuration we are trying to build is a microservice (gateway, Application
or UAA server), our infrastructure first needs to launch the JHipster Registry13;

• If a microservice uses UAA as authentication type, our infrastructure also needs to
start the UAA server;

• Similarly to Docker build, our infrastructure removes all created databases.

9http://gulpjs.com/
10http://www.eclemma.org/jacoco/
11http://ltp.sourceforge.net/coverage/lcov.php
12https://www.docker.com/
13https://github.com/jhipster/jhipster-registry
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The execution of the build being thread blocking (the command line used to run the
build command will block until the process is killed or the build failed), our infrastructure
starts another thread to assert the success or failure of this step. This thread checks the
output log file every 2 seconds seeking either Application ’jhipster’ is running! or any
message indicating a build failure.

If the build succeeds our infrastructure executes the tests presented in Section 4.4.2 and
then kill the server, if it fails we directly kill the server. This “kill” consists in terminating
the process running on certain ports (JHipster application, JHipster Registry, etc.) to
make sure there is no remnants of the execution After the completion of the build phase
our infrastructure also drops the database so that it is re-created on the next configuration
(depending on the configuration, some tables are not the same)

Our infrastructure extracts from this phase the results (OK/KO), the time it took the
application to deploy (when building with Docker, our infrastructure takes into account
the time needed to package the application as well as the time needed to run the container)
and the stacktrace(s)/error message(s) when the build fails. When building with Docker,
our infrastructure also extract the size of the Docker image.

Entity populating

When entities are defined in JHipster web application, the default front-end (common to
all configurations) offers the possibility to populate the database.

To improve test results, we decided to use this possibility to add 10 elements per entities.
Our infrastructure rely on Selenium14 to simulate user interaction with the interface and
add those entities.

Web app testing

The final phase of the analysis workflow consists in running additional tests on the
application.

To this end, our infrastructure relies on the three different testing frameworks offered
by JHipster. As we previously discussed, and whenever possible, we include all testing
frameworks in the configurations allowing us to run additional tests.

Protractor15:
Similarly to KarmaJS tests, Protractor focus on UI testing. The tests simulate user’s
interaction with the default graphical user interface (GUI) generated by JHipster. They
typically tests the log in, the access to the different pages when authenticated, etc.

14http://www.seleniumhq.org/
15www.protractortest.org/
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Our infrastructure extracts from these tests the total number of tests ran and the number
of failures.

Cucumber16:
Cucumber offers Behaviour-driven development (Soĺıs & Wang, 2011). It consists in
assessing the correctness of user defined scenarios (some are defined by the JHipster
team). Listing 4.3 illustrate one of these scenarios.

When generating entities with JHipster sub-generator, some tests on the entities are
automatically added. These tests are common CRUD (create, read, update and delete)
operations: updateEntity, getEntity, getNonExistingEntity, deleteEntity and getAllEntity
(where Entity is the name of the selected entity). Besides these user-defined entities
related tests, JHipster provides common tests regarding the accounts and the users
(trying to access a page without being logged in, testing the registration, and so on).

Listing 4.3: Cucumber scenario example

1 Feature: User management

2
3 Scenario: Retrieve administrator user

4 When I search user ’admin’

5 Then the user is found

6 And his last name is ’Administrator ’

Gatling17:
Gatling is a Scala-based stress testing tool (Šmeral, 2014) used to evaluate the performance
of the application. It relies on scenarios and tests CRUD operations on the defined entities.
Listing 4.4 presents an example of such scenario.

Gatling outputs metrics such as the number of requests, the mean response time and so
on.

16https://cucumber.io/
17gatling.io/
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Listing 4.4: Gatling scenario excerpt

1 val scn = scenario("Test the Country entity")

2 .exec(http("First unauthenticated request")

3 .get("/api/account")

4 .headers(headers_http)

5 .check(status.is(401))

6 .check(headerRegex("Set -Cookie", "CSRF -TOKEN =(.*);[P,p]ath=/")

7 .saveAs("csrf_token"))).exitHereIfFailed

8 .pause (10)

9 .exec(http("Authentication")

10 .post("/api/authentication")

11 .headers(headers_http_authenticated)

12 .formParam("j_username", "admin")

13 .formParam("j_password", "admin")

14 .formParam("remember -me", "true")

15 .formParam("submit", "Login")).exitHereIfFailed

16 .pause (1)

17 .exec(http("Authenticated request")

18 .get("/api/account")

19 .headers(headers_http_authenticated)

20 .check(status.is(200))

Logs publishing

Before moving on to the next configuration to process, our infrastructure regroups all
the log files in a tar archive which our infrastructure then uploads to a Google Drive.

This allows us to have access to the complete logs18 of every phase and ensure traceabil-
ity.

4.5. Scalability

We initially started the execution of the analysis workflow locally, on a dedicated machine.
Although it provided direct access to the process and its output, thus allowing us to
monitor the behaviour of the workflow, it quickly became obvious this single machine
wouldn’t be sufficient to assess all configurations. Indeed, 2 to 3 days were required to
assess about 300 configurations. So, with about 100 configurations per day, it would take
8 months, 2 weeks and 5 days to test all 26,256 configurations on a single machine.

This observation, combined to the sheer number of configurations, led us to consider
options to scale up the execution. We decided to rely on Grid’500019, a large-scale testbed
offering a highly re-configurable, controllable and monitorable experimental platform
(Balouek et al., 2012).

We present the resources the Grid’5000 supercomputing infrastructure offers in Ap-
pendix E.

18These files are available at: https://drive.google.com/open?id=0B3EoDLh4drusa3hEaTlzbk5teE0
19https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
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4.5.1. All-inclusive testing environment

The distribution of the testing effort strengthened the need of a common environment.
Indeed, each JHipster configuration requires to use specific tools and pre-defined settings.
Without them, the compilation build or execution cannot be performed.

With the distribution of the testing effort on several nodes in mind, we built an integrated
environment capable of deriving any JHipster configuration.

In practice, this environment consisted of a Debian Jessie image. We installed on it each
required database (MySQL, PostgreSQL, MariaDB, MongoDB and Cassandra) and other
required tools (Maven, Gradle, Docker, etc.).

This configuration required a substantial engineering effort and was based on numerous
tries and errors: we executed the workflow with several configurations to assert the correct
configuration of the environment. If the tested variant did fail we then sought the cause
and if need be adapted the Debian image.

At the end we converged on an all-inclusive environment.

4.5.2. Distributing the execution

With this common system image, we started to experiment with Grid’5000.

Grid’5000 offers clusters of machines (or nodes) scattered across France (see Figure 4.6).
It relies on a system of reservation where we specify the number of nodes and the period
of time for which we wish to use them (in Rennes alone, 173 nodes are available for
reservation).

Before starting to use the reserved nodes, an environment image must be deployed. As
we mentioned, we chose a Debian Jessie image. Once this deployment achieved, we can
freely access each machine through ssh and start the processing of JHipster variants.

When the timer expires, each reserved node is reset and unreachable. Every data stored
locally on the machine is then lost (this specificity motivated the use of Google API to
store the results).

Although Grid’5000 allowed us to split the testing effort (thus reducing the overall testing
time) it also suffers drawbacks.

The first limitation is due to its usage policy20. The reservation of machines, for large
scale experiments (i.e requiring several machines for long period of time), is only possible
at night (between 7 PM and 9 AM, to be exact) or during the weekend. This requirement
leads to high reservation rates for weekends and some competition to book machines in
these periods.

20https://www.grid5000.fr/mediawiki/index.php/Grid5000:UsagePolicy
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Figure 4.6.: Grid’5000 overview (retrieved from the official website)

Secondly, Grid’5000 also poses network limitations. We initially considered using a
Client/Server architecture to send the results from the nodes on the Grid to a dedicated
machine at INRIA Rennes. This solution would allow us to retrieve all logs and results
from the workflow. However, we couldn’t implement this architecture: Grid’5000 nodes
were unable to reach INRIA network. To avoid losing too much time and effort on finding
a workaround to this limitation, we decided to rely on Google API as presented in
Section 4.4.2 to record our results in Google Spreadsheets.

A third limitation we faced was the low available disk space on the reserved nodes. Indeed,
the disk space is split in several partitions and depending on the directory in which we
are, we switch through these different partitions (see example in Listing 4.5). We can see
that the most a partition offers is less than 400 Gb. Although this free space is quite
reasonable, it quickly become insufficient depending on the number of variants tested
(each variant weight about 400 Mb). Moreover, we found that variants using ElasticSearch
wrote data in a folder belonging to /dev/sda3 partition which only offers 11Gb of free
disk space.
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Listing 4.5: parapide-2 partitions

root@parapide -2:~# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda3 22G 11G 11G 51% /

udev 10M 0 10M 0% /dev

tmpfs 4.8G 8.8M 4.8G 1% /run

tmpfs 12G 4.0K 12G 1% /dev/shm

tmpfs 5.0M 0 5.0M 0% /run/lock

tmpfs 12G 0 12G 0% /sys/fs/cgroup

/dev/sda5 418G 1.8G 395G 1% /tmp

Finally, the Grid’5000 being a network of machines it occasionally suffers from unavail-
ability due to maintenance, slow upload/download rate, and so on.
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We address in this Chapter the first research question (see Section 4.1): What is the cost
of testing all configurations of JHipster?

To this end, we first describe the cost of our engineering efforts in building a fully
automated testing infrastructure for all JHipster variants (RQ1.1).

We then evaluate the computational cost of such an exhaustive testing (RQ1.2) by
describing the necessary resources (man-power, time, machines) and reporting on encoun-
tered difficulties as well as lessons learned.

5.1. Engineering effort

The development of a complete derivation and testing infrastructure required a substantial
engineering effort.

As described from Chapter 4.3 to Chapter 4.5, this effort was split across several steps.
We quantify for each of them the required effort.

The first step was the modelling of JHipster variability. The elaboration of the first major
version of the feature model took us about 2 man-week based on the analysis of the
JHipster code and configurator.

Then, based on this variability model, we initiated the development of the testing workflow.
We added features and testing procedures in an incremental way. The effort spanned on
a period of 2 man-month.

In parallel of this development we built the Debian image. It also lasted a period of 2
man-month for identifying all possible tools and settings needed. It should be noted
that we performed medium-scale experiments on a local machine for prototyping and
validating our solution.

With the workflow fully implemented, we decided to deploy on Grid’5000 at the end of
November and the implementation has lasted 12 man-week.It includes a learning phase
(2 man-week), the optimization for caching dependencies, and the gathering of results in
a central place (a CSV-like table with logs).

In total, the human effort is substantial. It is mainly due to the numerous ”try and error”
iterations needed and the difficulty of validating the infrastructure with regards to all
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possible configurations. Moreover, the durations we reported concern the effort realized
in the first place. Some modifications were also made in parallel to improve different
parts of the solution – we count this duration in subsequent activities.

Obviously, this human cost is not absolute and other practitioners could have spent
more or less time. We believe, however, that the engineering effort is not anecdotal and
requires in any case a strong involvement and a multiplicity of expertises are needed
to instrument the large-scale testing. The main difficulty behind this development was
its error-proneness: we were often confronted to a try/error strategy, especially for the
oracles, where finding the right error message (stacktraces) wasn’t always so easy. We
also constantly had the same reaction when a variant failed to build or compile: is the
error coming from JHipster, is it a bug? or is our architecture causing the problem? or
the machine wrongly configured?

This cost is not simply anecdotal: similar engineering effort is necessary needed for future
versions of JHipster. We believe, however, that the human cost can decrease through the
reuse of some components of our testing architecture. In an objective to work on more
recent version of the generator, most of the current architecture is reusable. Only the vari-
ability model must be adapted, and possibly the “glue” for new technologies/frameworks
for instance. The “glue” is special instructions we have to execute for certain technologies
(the creation of some database for instance, or running specific Cassandra scripts).

RQ1.1: What is the cost of engineering an infrastructure capable of
automatically deriving and testing all configurations?

The testing infrastructure is itself a configurable system and requires a substan-
tial engineering effort (8 man-month) to cover all design, implementation and
validation activities, the latter being the most difficult.

5.2. Computational cost

As we described in Chapter 4.5, we decided to use Grid’5000 to distribute the computing
effort on multiple machines. This solution allowed us to test all 26,256 configurations in
less than a week. Specifically, we performed a reservation of 80 machines for 4 periods
(4 nights) of 13 hours.

The analysis of 6 configurations took on average about 60 minutes. This duration is
consistent with the observations on our personal machines in which the processing of a
JHipster configuration typically last 15 minutes with all the tests. The total execution
of the workflow on the +26,000 configurations can then be achieved in about 4376
hour-machine – 54.7 hours for 80 machines.
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Once again, this cost (in time and machine) is specific to our solution (see Section 4.5.2).
To reduce this overall execution time, however, we implemented few improvements such
as the caching of the dependencies (Maven, Gradle and JavaScript) for instance (see
Section 4.4.2).

Besides execution time, the processing of all variants also required a lot of disk space.
Each scaffolded Web application occupies between 400MB and 450MB, thus forming a
total of 5.2 terabytes.

We replicated three times our exhaustive analysis (with minor modifications of our testing
procedure each time); we found similar numbers for assessing the computational cost on
Grid’5000. For instance, each reserved machine in Grid’5000 offers limited disk space
preventing the treatment of a few hundreds of configurations. This limitation constrains
us to restart these configurations.

As part of our last experiment, we observed suspicious failures for 2325 configurations
with the same error message (”Communications link failure”). A new run of these
configurations using additional machines yielded consistent results.

Overall, the computational cost is far beyond the testing budget of a software system.
An exhaustive testing requires numerous individual machines with large disk space and
CPU time. Even a small testing sample requires significant resources; it motivates our
next research questions on the cost-effectiveness of sampling techniques.

RQ1.2: What are the computational resources needed to test all
configurations?

Despite some optimizations (e.g., pre-caching of dependencies), testing all configu-
rations requires a significant amount of computational resources
(4376 hour-machine and 5,2To of disk space).
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The execution of the derivation and testing workflow, presented in Chapter 4.4, yields a
large CSV file comprising qualitative and quantitative data on all considered JHipster
configurations. A refined version of this file is accessible on-line, at: https://github.com/
axel-halin/Thesis-JHipster/blob/master/Results/jhipster.csv. This file allows
to identify failing configurations, i.e., configurations that do not compile or build. In
addition, we also exploited stack traces for grouping together some failures.

This result file and the grouping of the failures allows us to address RQ2.1. Moreover, we
compare the efficiency of different sampling techniques in Section 6.4 to answer RQ2.2.
Based on this comparison we determined the most cost-effective sampling technique
(RQ3).

6.1. Preliminary failures analysis

Out of the 26,256 configurations we tested, we found that 34.37% (i.e, 9376 configura-
tions) failed. This failure occurred either at compile time (224 configurations) or during
build time (9152) although the generation was successful.

We took a look at the failing rate per feature to identify the most buggy configuration
features. We present a subset of this analysis in this section (see Figure 6.1). Namely, we
focus on the application type and the type of authentication. More details can be found
in Appendix G (e.g. failing rate per database type, docker ...).

Regarding the application type feature, we observed that microservice gateways and
microservice applications, with respectively 58.4% (4184 ) and 58.3 (532 ) failing con-
figurations, were more afflicted by failures than their counterparts, namely monolithic
applications (25.7%, 4561) and UAA servers (22.1%, 99).

This disparity is also found in the authentication mechanism feature section. Out of the
four different options, JWT and HTTP Sessions suffers from approximately the same
percentage of failures: 20.5% (2279 ) for the former; 22.3% (1586 ) for the latter. OAuth2
suffers from 39.7% failing configurations (1397 ) while UAA authentication mechanism
leads to 91.7% (4114 ) failing configurations, the highest rate among all features.

This preliminary analysis, however, don’t tell us exactly which features imply failures.
Moreover, multiple failures can share the same fault.

We then conducted a more thorough statistical analysis to address RQ 2.1.
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Figure 6.1.: Proportion of build failure by feature

6.2. Statistical analysis

Previous results, although enlightening about the most buggy features, do not show the
root causes of the configuration failures – what features or interactions between features
are involved in the failures?

6.2.1. Faults categorization

To investigate correlations between features and the failure results, we decided to use the
Association Rule learning method (Hahsler et al., 2005). This method aims at extracting
relations between variables of large data-sets and outputs a set of rules, each constituted
by:

• Left-hand side (LHS), the antecedent of the rule;

• Right-hand side (RHS), the consequent of the rule;
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• Support, the proportion of configurations where LHS holds;

• Confidence, the proportion of configurations where RHS holds.

We present, in Table 6.1, the rules extracted from the method which we parametrized as
follows.

First, and as we focused on functional properties of the configurations, we restrained
ourselves to rules where the RHS was either Build=KO or Compile=KO.

Second, we fixed the confidence to 1: if a rule has a confidence below 1 then it is not
asserted in all configurations where the LHS expression holds – the failure does not occur
in all cases.

Third, we lowered the support in order to catch all failures, even those afflicting smaller
proportion of the configurations. For instance, only 224 configurations fail due to a
compilation error; in spite a low support, we can still extract rules for which the RHS is
Compile=KO.

We computed redundant rules using facilities of the R package arules1. As some association
rules can contain already known constraints of the feature model (such as if databaseType
== MongoDB then devDatabaseType = MongoDB and prodDatabaseType = MongoDB),
we ignored some of them.

We first considered association rules for which the size of the LHS is either 1, 2 or 3.
We extracted from the results 5 different rules involving two features (see Table 6.1).
We found no rule involving 1 (all failures are then caused by an association of multiple
features) or 3 features.

We then decided to have a look at the 200 association rules for which the LHS is of size
4 and found out a sixth association rule that incidentally corresponds to one of the first
failures we encountered in the early stages of this study.

Moreover, as presented in Table 6.1, we only found one rule implicating a compilation
failure. According to this rule, all configurations in which the database is MongoDB and
social login feature is enabled (128 configurations) fail to compile. The other 5 rules are
related to a build failure.

These association rules allow us to categorize the failures in 6 fault classes. These
categories are presented in Section 6.3. The categorization explains 98.65% of all failures
(the combination of MariaDB and Gradle, alone, explains 37% of all failing configurations,
about 13% of all configurations); the remaining failures have not yet been linked to a
common fault. We do not know yet if these configurations are false-positives or are due
to a undetected combination of features.

1https://cran.r-project.org/web/packages/arules/index.html
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Left-hand side Right-hand
side

Support Confidence Github
Issue

Report/Correction
date

DatabaseType=”mongodb”,
EnableSocialSignIn=true

Compile=KO 0.488 % 1 4037 27 Aug 2016 (report
and fix for milestone
3.7.0)

prodDatabaseType=”mariadb”,
buildTool=”gradle”

Build=KO 16.179 % 1 4222 27 Sep 2016 (report
and fix for milestone
3.9.0)

Docker=true,
authenticationType=”uaa”

Build=KO 6.825 % 1 UAA is
in Beta

Not corrected

authenticationType=”uaa”,
hibernateCache = ”no”

Build=KO 2.438 % 1 4225 28 Sep 2016 (report
and fix for milestone
3.9.0)

authenticationType=”uaa”,
hibernateCache = ”ehcache”

Build=KO 2.194 % 1 4225 28 Sep 2016 (report
and fix for milestone
3.9.0)

prodDatabaseType=”mariadb”,
applicationType = ”mono-
lith”, searchEngine = ”false”,
Docker = ”true”

Build=KO 5.59% 1 4543 24 Nov 2016 (report
and fix for milestone
3.12.0)

Table 6.1.: Association rules involving compilation and build failures

6.2.2. Association rules overlapping

The Association rule learning method, however, suffers from a couple of drawbacks.

Besides the fact that it doesn’t take into account the constraints of the feature model, as
previously mentioned, we also observed an overlapping between the different rules.

Let’s consider the fault we mentioned here-before: the combination of MariaDB and
Gradle. As we mentioned, this bug covers 13% of the configuration space. However, the
association rule extracted from the method (second line of Table 6.1) specifies a support
of 16.179%.

This difference is due to a rule overlapping. As presented in the next section, we identify
2 fault classes related to the use of MariaDB: once when used with Docker and once
without it. As depicted in Table 6.2, these two configurations have different stacktraces.

The problem is that the method takes the most general rule, in our case it outputs
MariaDB and Gradle implies Build failure. This rule covers the second fault and part of
the first fault (see next section). The latter comprises configurations relying on Maven
and on Gradle (the two available build tools).

JHipsterRegister Docker prodDatabaseType buildTool Build Log-Build
jhipster68 true ”mariadb” ”gradle” KO Error parsing reference: ””jhipster

- jhipster-mariadb”” is not a valid
repository/tag

jhipster68 false ”mariadb” ”gradle” KO Failed to get driver in-
stance for jdbcUrl=
jdbc:mariadb://localhost:3306/jhipster

Table 6.2.: CSV file excerpt
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To overcome this limitation and to classify the failures in fault classes, we relied on
the stacktraces and error messages extracted during the execution of the workflow. We
identified one pattern per fault.

This stacktraces analysis allowed us to characterize the proportion of configuration
impacted by a specific fault. These proportions are presented in Figure 6.2.

Despite these drawbacks, the association rule learning method remains useful to identify
combination of features leading to a failure.

6.3. Qualitative analysis

We now summarize and characterize the 6 important faults classes we identified. These
faults are caused by the interaction of 2 or 4 features and are responsible of 34.37%
failing configurations. More details can be found in Appendix F. We present in Figure 6.2
the distribution of all failures among the different fault classes.

37%

17.8%

17.5%

15.7%

6.92%
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Unidentified
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Figure 6.2.: Proportion of failures by fault

#1 MariaDB with Docker: This fault is the only one caused by the interaction of
4 features: it concerns monolithic web-applications relying on MariaDB as production
database, where the search-engine (ElasticSearch) is disabled and built with Docker. These
variants amount to 1468 configurations and the root cause of this bug lies in the template
file src/main/docker/ app.yml where a condition (if prodDB = MariaDB) is missing.
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#2 MariaDB using Gradle: This second fault concerns variants relying on Gradle as
build tool and MariaDB as the database (3469 configurations). It is caused by a missing
dependency in template file server/template/gradle/ liquibase.gradle.

#3 UAA authentication with Docker: The third fault occurs in Microservice Gate-
ways or Microservice applications using an UAA server as authentication mechanism (1644
Web apps). This bug is encountered at build time, with Docker, and it is due to the
absence of UAA server Docker image. It is a known issue but it has not been corrected
yet, UAA servers are still in beta versions.

#4 UAA authentication with Ehcache as Hibernate 2nd level cache: This
fourth fault concerns Microservice Gateways and Microservice applications, using a UAA
authentication mechanism. When deploying manually (i.e., with Maven or Gradle), the
web application is unable to reach the deployed UAA instance. This bug seems to be
related to the selection of Hibernate cache and impacts 1667 configurations.

#5 OAuth2 authentication with SQL database: This defect is faced 649 times,
when trying to deploy a web-app, using a SQL database (Mysql, PostgreSQL or MariaDB)
and an OAuth2 authentication, with Docker. It was reported on August 20th, 2016 but
the JHipster team was unable to reproduce it on their end.

#6 Social Login with MongoDB: This sixth fault is the only one occurring at compile
time. Combining MongoDB and social login leads to 128 configurations that fail. The
source of this issue is a missing import in class SocialUserConnection.java. This import
is not in a conditional compilation condition in the template file while it should be.

#7 Unidentified failures: We also found 351 failures for which a common fault was
not identified. After a more thorough analysis, we found that these were mostly false-
positives and that the failures were caused by several different faults among which failure
of dependencies fetching due to connection issues, database related scripts issues (in
Cassandra configurations) or trouble in the workflow execution (server not killed, database
still running, etc.)

RQ2.1: How many and what kinds of failures/faults can be found in
all configurations?

Exhaustive testing shows that 34.37% of the configurations fail. Our analysis
identifies 6 interaction faults (caused by the interaction of 2 or 4 features)
as the root cause for this high percentage.

6.4. Sampling techniques comparison

As we have previously shown (see Section 5.2) the testing of all configurations is very
costly. Sampling techniques thus remain of interest. Ideally, we would like to find a
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maximum of failures and faults with a minimum of configurations in the sampling.

We selected and applied numerous sampling techniques considered in the literature. For
each technique, we report on the number of faults and failures identified (we consider,
here, that it is sufficient to find one failure for identifying the associated fault). We then
compare their effectiveness to address RQ2.2. We summarize our results in Table 6.3.

6.4.1. Sampling techniques

Combinatorial Interaction Testing

The first sampling technique we considered is based on combinatorial interaction testing
(Cohen et al., 2008; Mathur, 2008). We focused on the t-wise criteria. This sampling
technique selects a subset of the configuration space such as each interaction of T features
is covered (e.g., (Perrouin et al., 2010; Cohen et al., 2008; Yilmaz et al., 2006)). We
selected 4 variations of the criteria: 1-wise, 2-wise, 3-wise and 4-wise. We generated
the matching samples with SPLCAT (Johansen, Haugen, & Fleurey, 2012).

The 4 variations yield samples of respectively 8, 41, 126 and 374 configurations. 1-wise
only finds 2 faults; 2-wise discovers 5 out of 6 faults; 3-wise and 4-wise find all of
them. Regarding the proportion of failures, the more the sample size, the more failures we
found (from 2 failures among 8 configurations for 1-wise to 161 on 374 configurations
for 4-wise).

Sampling technique Sample
size

Failures σ of
Failures

Failures
efficiency

Faults σ of
Faults

Fault
efficiency

Random(8) 8 2.8568 1.3133 34.37% 2.18 0.9784 27.25%
PLEDGE(8) 8 3.16 1.2303 39.50% 2.14 0.8245 26.75%
1-wise 8 2 / 25.00% 2 / 25.00%
Random(12) 12 4.2852 1.7895 34.37% 2.7 1.0396 22.5%
PLEDGE(12) 12 4.92 1.2303 41.00% 2.82 0.9087 23.50%
2-wise 41 14 / 34.15% 5 / 12.20%
Random(41) 41 14.6411 3.1823 34.37% 4.49 0.7177 10.95%
PLEDGE(41) 41 17.64 2.5041 43.02% 4.70 0.8306 11.46%
3-wise 126 52 / 41.27% 6 / 4.76%
Random(126) 126 44.9946 4.9114 34.37% 5.28 0.5333 4.19%
PLEDGE(126) 126 49.08 11.5807 38.95% 4.66 0.6977 3.70%
Random(374) 374 133.5554 8.4064 34.37% 5.58 0.4960 1.49%
PLEDGE(374) 374 139.20 31.7975 37.17% 4.62 1.1814 1.24%
4-wise 374 161 / 43.05% 6 / 1.60%
Most-enabled-disabled 574 190 / 33.10% 2 / 0.35%
One-disabled 922 253 / 27.44% 5 / 0.54%
One-enabled 2,340 872 / 37.26% 6 / 0.26%
ALL 26,256 9,376 / 34.37% 6 / 0.02%

Table 6.3.: Efficiency of different sampling techniques
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One-disabled

The second sampling technique we implemented is based on the so-called one-disabled
algorithm (Abal et al., 2014). The idea of this algorithm is to deactivate all features
except one, and this for all features.

Specifically, in our implementation, we consider all optional features that are direct
children of the root and those that do not have sub-features (ElasticSearch) in the feature
model of Figure 4.3. Other optional features (such as HibernateCache) that are included
under more complex conditions (e.g., the inclusion of parent features that are also
optional) are not taken into account.

Moreover, by selecting only a subset of all features we are confronted to many suitable
configurations (i.e, sharing the same subset of features) and thus many optimal2 solutions.
When confronted to several optimal solutions we select all of them rather the first one,
as it is proposed in (Medeiros et al., 2016).

The selected features are involved in the top questions of the JHipster configurator; the
hope is to find numerous defects with their inclusions. Technically, we retain all valid
configurations where one optional feature is disabled and the other optionals are enabled.
(there are 8 possible combinations).

For instance, we can select each configuration where Docker is disabled and Spring-
WebSockets, InternationalizationSupport, SocialLogin, Libsass and ClusteredSession are
enabled; the process is then repeated for all other combinations of optional features.

Practically, we select the configurations of the samples on the basis of the CSV results
file. Hence, all selected configurations are valid with regards to the constraints of the
feature model.

This sampling technique yields a total sample of 922 configurations among which 253
failures (22.44% of the sample). This technique identifies all major faults but one.

One-enabled and Most-enabled-disabled

Third, we implemented two variations of the previous algorithm: one-enabled and
most-enabled-disabled algorithms (Abal et al., 2014; Medeiros et al., 2016).

The former mirrors one-disabled and consists in enabling each optional feature one at
a time. The latter selects all configurations where (1) most of the optional features are
selected and (2) most of the optional features are deselected.

The samples generation was similar to the one of one-disabled algorithm: the configurations
are then valid with regards to the feature model.

2The optimality of a configuration in this context is based on the number of enabled features. The
configuration having the largest set of enabled features is the optimal solution.

72



6.4. Sampling techniques comparison

One-enabled extracts a sample of 2340 configurations with 872 failures (37.26%) and
identifies every major fault. Most-enabled-disabled gives a sample of 574 configurations
comprising 190 failures (33.10%) and only identifies 2 faults.

Dissimilarity

Fourth, we also considered dissimilarity testing for Software Product Lines (Henard et
al., 2014; Al-Hajjaji et al., 2016), using a tool called PLEDGE (Henard et al., 2013).

This technique approximates t-wise coverage by generating dissimilar configurations (in
terms of shared features amongst these configurations). From a set of random configu-
rations of a specified cardinality, an evolutionary algorithm evolves this set such that
the distances amongst configuration are maximal – by replacing a configuration at each
iteration – within a certain amount of time. We retained this technique because it can
afford any testing budget (sample size and generation time).

For each sample size, we report the average failures and faults for 100 PLEDGE executions
with the Greedy method in 60 secs (Henard et al., 2013). In Table 6.3, we present results
for key size samples (respectively 8, 12, 41, 126 and 374 configurations) for comparing
with other sampling techniques. We find, on average, respectively 2, 3, 5 and 5 faults.

Random

Finally, we considered random samples from size 1 to 2500.

The random samples exhibit, by construction, 34.37% of failures (the same percentage
that is in the whole dataset). To compute the number of unique faults, we simulated
100 random selections. Along with the mean of defects found we present the standard
deviation value (σ).

We find, on average, respectively 2.18, 2.7, 4.49, 5.28 and 5.58 faults for respectively
8, 12, 41, 126 and 374 configurations.

As we can see in Figure 6.4, we need to run ≈ 2000 configurations to find all the faults.
It’s due to the sixth fault (Social Login with MongoDB) which is hard to find with the
random technique due to the less representation of this fault (1.37 %).

6.4.2. Sampling techniques comparison

In order to compare the efficiency of the different sampling techniques (i.e, their ability to
find fault and failures), we considered two main metrics taking into account the sample
size.

Failure efficiency is the ratio of failures to sample size; similarly, Fault efficiency is
the ratio of faults to sample size.
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Figure 6.3.: Failures found by sampling techniques

The results are presented in Table 6.3. Figure 6.3 (respectively, Figure 6.4) presents the
evolution of failures (respectively, faults) with regards to the sample size. We consider
on these figures the sampling techniques presented in Table 6.3 and random sample of
size 1 to 2500.

A first observation is that random is a strong baseline for both failures and faults. It is,
however, more efficient to discover failures than faults. Indeed, and quite logically, the
more the configurations, the more failures are found. Nonetheless, it takes a random set
of 2500 configurations to get a mean value of 6 detected faults. 2-wise or 3-wise sampling
techniques are slightly more efficient to identify faults than random. The significant
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difference between these two t-wise variation is explained by the sample size: although the
latter finds all the bugs (one more than 2-wise) its sample size is triple (126 configurations
against 41 for 2-wise). 1-wise has the best fault efficiency: in ensuring that each feature
is present at least once in the sample, it selected 2 combinations of features leading to a
fault. On the contrary, one-enabled, one-disabled and most-enabled-disabled identify less
faults than random samples of the same size. PLEDGE is superior to random for small
sample sizes. In general, a relatively small sample is sufficient to quickly identify the 5 or
6 most important faults – there is no need to cover the whole configuration space.

A second observation is that there is no correlation between failure efficiency and fault
efficiency. For example, one-enabled has a failure efficiency of 37.26% (better than Random
and many techniques) but is one of the worst technique in terms of fault rate due of
its high sample size. In addition, some techniques, like most-enable-disabled, can find
numerous failures that in fact correspond to the same fault.

Moreover, our results show that the choice of a metric (failure-detection or fault-detection
capability) can largely influence the choice of a sampling technique.

Our initial assumption was that the detection of one failure leads to the finding of the
associated fault. It is the case in JHipster: contributors can easily find the root causes
based on a manual analysis of a failure. On our side, we can group together failures
having the same stacktraces.

However, this assumption may not hold in other contexts. That is, finding the feature
interaction faults can be much more difficult and less immediate. In this case, it is
beneficial to replicate a fault with many failures. We can use statistical methods and
augment the support of failed configurations to identify feature interaction faults. As a
result, the ability of finding failures may be quite important. A tradeoff between failure
and fault efficiency can certainly be considered.

In our case study, 3-wise is a good candidate since all faults are found and its failure
efficiency is superior to most of the techniques.

RQ2.2: How effective are sampling techniques comparatively?

• random is a strong baseline for both failures and faults;

• one-enabled, one-disabled and most-enabled-disabled identify less faults than
random samples of the same size;

• PLEDGE is superior to random for small sample sizes;

• 2-wise or 3-wise sampling techniques are slightly more efficient to identify
faults than random;

• 1-wise has the best fault efficiency.
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Figure 6.4.: Faults found by sampling techniques
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7. Practitioners viewpoint

At the end of January, we interviewed the JHipster lead developer, Julien Dubois, during
1.5 hour. We prepared a set of questions and performed a semi-structured interview on
Skype for allowing new ideas during the meeting. We then exchanged emails with two
core developers of JHipster, Deepu K. Sasidharan and Pascal Grimaud.

Based on an early draft of a second paper we submitted, they clarified some points
and freely reacted to some of our recommendations. We wanted to get insights on how
JHipster was developed, used, and tested. Our goal was to validate some assumptions of
our work and to confront our empirical results with their current practice.

7.1. Jhipster’s testing strategy

To test their generator, the JHipster team relies on a continuous integration platform,
Travis1, integrated into GitHub.

At the time of the release 3.6.1, the free installation of Travis allowed to perform 5
different builds in parallel, at each commit. The team decided to use this feature on only
12 different configurations.

During our discussion they provided the following explanations: ”The only limit was that
you can only run 5 concurrent jobs so having more options would take more time to run
the CI and hence affect our turn around hence we decided on a practical limit on the
number [...] We only test the 12 combinations because we focus on most popular options
and leave the less popular options out.”

Besides this facility, Julien Dubois also mentioned that his company (Ippon Technologies)
provides some machines used to perform additional tests. We can consider that the testing
budget of JHipster 3.6.1 was limited to 12 configurations.

This has a strong implication on our empirical results: despite their effectiveness, some
sampling strategies we have considered exceed the available testing budget of the project.
For example, a 2-wise sample has 41 configurations and is not adequate. A remaining
solution is dissimilarity sampling (PLEDGE) of 12 configurations, capable of finding 5
failures and 3 faults.

Moreover, the selection of these 12 configurations is also interesting.

1https://travis-ci.org/
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According to Julien Dubois, it is both based on (1) intimate technical knowledge of
the technologies and (2) a statistical prioritization approach. Specifically, when a given
JHipster installation is configured, the user can send anonymous data to the the JHipster
team so that it is possible to obtain a partial view on the configurations installed. The
most popular features have been retained to choose the 12 configurations.

For example, this may partly explain that configurations with Gradle are more buggy
than those with Maven – we learned that Gradle is used in less than 20% of installations.
There were also some discussions about improving the maintenance of Gradle, due to its
popularity within a subset of contributors.

The prioritization of popular configurations is perfectly understandable. Such a sample
has the merit of ensuring that, at each commit, popular combinations of features are still
valid (acting as non-regression tests). However, corner cases and some feature interactions
are not covered, possibly leading to high percentage of failures.

Julien Dubois also noted that many developers fix configurations themselves without
always filling them in the bug tracker. The generator is also used by many companies
who probably also fix bugs by themselves without necessarily reporting the issues.

7.2. Merits and limits of exhaustive testing

Julien Dubois welcomed the initiative and was seriously impressed by the unprecedented
engineering effort and the 34.37% failures. We asked whether the version 3.6.1 had special
properties, perhaps explaining the 34.37% of failures but he refuted this assumption and
rather stated that the JHipster version was a major and stable release.

We explained that most of the defects we found were reported by the JHipster community.
The lead developer was aware of some interactions that caused problems in JHipster.
These are known mostly from experience and not via the application of a systematic
process. However, he ignored the significance of the failures.

The high percentage of failures we found should be seriously considered since a significant
number of users may be impacted given the popularity of the project. Even if faults
involve rarely used configurations, he considered that the strength of JHipster is precisely
to offer a diverse set of technologies.

The effort of finding many failures and faults is therefore highly valuable.

We then discussed the limits of testing all configurations. The cost of building a grid/cluster
infrastructure is currently out of reach for the JHipster open-source project, due to the
current lack of investments.

JHipster developers stated that ”even if we have limitless testing infrastructure, I do not
think we will ever test out all possible options due to the time it would take.”
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This observation is not in contradiction with our research method. Our goal was not
to promote an exhaustive testing of JHipster but rather to investigate a cost-effective
strategy based on collected evidence.

Another important insight is that ”the testing budget was more based on the time it would
take and the resource it would use on a free infrastructure. If we let each continuous
integration build to run for few hours then we would have to wait that long to merge
pull request and to make releases etc. So it adds up lag affecting our ability to release
quickly and add features and fixes quickly. So turn around IMO is something you need to
consider for continuous integration.”

Finally, Julien Dubois mentioned an initiative2 to build an all-inclusive environment
capable of hosting any configuration. It is for JHipster developers and aims to ease the
testing of a JHipster configuration on a local machine. In our case, we have build a similar
environment with the additional objective of automating the test of configurations. We
have also validated this environment on a large scale.

7.3. Discussion

On the basis of multiple collected insights, we emitted several recommendations regarding
the testing of the configurator. We discuss here-after the different trade-offs to consider
when testing JHipster and address RQ3.

The first recommendation we made regarded the sampling strategy.

Our empirical results suggest to use a dissimilarity sampling strategy in replacement to
the current sampling based on statistical prioritization. It is one of the most effective
strategy for finding failures and faults and it does not exceed the budget. In general,
the focus should be on covering as much as possible feature interactions. If the testing
budget can be sufficiently increased, t-wise strategies can be considered as well. Random
strategies are less effective both in terms of faults and failures efficiency contrarily to
the study of Medeiros et al (Medeiros et al., 2016). Thus the efficiency debate between
random sampling and combinatorial interaction testing is not over (e.g., (Arcuri & Briand,
2012)). Random, nevertheless, has the advantage of not requiring a Feature model to be
deployed.

However, developers remind us that ”from a practical standpoint, a random sampling
has possibility of us missing an issue in a very popular option thus causing huge impact,
forcing us to make emergency releases etc, where as missing issues in a rarely used option
does not have that implication”. This applies to t-wise and dissimilarity techniques as
well. Hence, one should find a trade-off between cost, popularity, and effectiveness of
sampling techniques (for instance, a mix of random and popular configurations can be

2https://github.com/jhipster/jhipster-devbox
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a strategy). We see this as an opportunity to further experiment with multi-objective
techniques (Sayyad et al., 2013; Parejo et al., 2016; Le Traon, 2015).

The second recommendation regarded the size of the considered sample.

Our empirical results and discussions with JHipster developers suggest that the testing
budget was simply too low for JHipster 3.6.1, especially when popular configurations
are included in the sampling. According to JHipster developers, the testing budget ”has
increased to 19 now with JHipster 4, and we also have additional batch jobs running daily
tripling the number of combinations [...] We settled on 19 configurations to keep build
times within acceptable limits. Discussions are here https: / / github .com/ jhipster/

generator -jhipster/ issues/ 4301 ”

An ambitious and long-term objective is to crowdsource the testing effort with contributors.
Users can lend their machines for testing some JHipster configurations while a subset of
developers could also be involved with the help of dedicated machines. In complement to
continuous testing of some popular configurations, a parallel effort could be made to seek
failures (if any) on a diversified set of configurations, possibly less popular.

Finally, the last recommendation we emitted concerned the development and maintenance
of a configuration-aware testing infrastructure. Without a ready-to-use environment,
contributors will not be able to help in testing configurations. It is also pointless to increase
the sample if there is no automated procedure capable of processing the constituted
configurations.

The major challenge will be to follow the evolution of JHipster and make the testing
tractable. A formal model of the configurator should be extracted for logically reasoning
and implementing random or t-wise sampling. New or modified features of JHipster
should be handled in the testing workflow; they can also have an impact on the tools
and packages needed to instrument the process.

RQ3: What is the most cost-effective sampling strategy?

Dissimilarity and t-wise sampling are the most effective but there is no correlation
between failure and fault efficiencies. However, only one variation of t-wise (1-wise)
and dissimilarity are within reach of JHipster testing budget
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8. Threats to validity

We however identified several threats to the validity of our study which we regroup in
two categories: external validity and internal validity.

External validity

Our engineering effort has focused on a single but industrial-strength and complex system.
We expect more insights into characteristics of real-world systems than using diverse but
smaller or synthetic benchmarks.

The JHipster case allows us to envision, for the first time, the exhaustive testing of a
large configurable system. With a ground truth, we can assess sampling techniques with
a high confidence. The multiple collected evidence contributes to the body of knowledge
established on other configurable systems.

For increasing external validity, we hope to replicate our work on new versions of JHipster.
This, however, will require substantial resources and engineering effort.

Internal validity

Threats to internal validity are mainly related to the quality of our testing infrastructure.

An error in the feature model or in the configuration-aware testing workflow can typically
produce wrong failures. As reported, the validation of our solution has been a major
concern during 8 man-month of development. We have used several strategies, from
statistical computations to manual reviews of individual failures to mitigate this threat.
We found all faults reported by the JHipster community and new failures.

For the other remaining 351 failures, there might be false positives (as explained in
Section 6.3) since we have not looked at each individual failure. It only represents 1.33%
(See unidentified failures in Figure 6.2) of JHipster configurations and would have a
marginal incidence on the results.
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9. Conclusion and perspectives

We now conclude this thesis by summarizing the different contributions and results and
by presenting a few perspectives and future work possibilities.

9.1. Conclusion

In this thesis, we first contextualized our study by presenting the notions of Software
Product Line, which aims at achieving mass customization, and variability. We also
introduced the concept of variability-intensive systems.

We briefly reviewed the state of the art regarding the testing of such systems and in
particular the use of sampling techniques.

We then introduced our case-study: JHipster, an open-source Yeoman generator of Web-
applications. We argued it presented itself as an interesting case study due to its diversity
in term of technologies and its manageability in term of configurations (162,508). This
reasonable number allow us to exhaustively testing Jhipster and create a ground truth
with which we can assess the error-detection capabilities of sampling techniques. Then,
we briefly described its internal and external behaviour.

We argued that JHipster is an interesting case studies for many research directions and
that the problems we address here (See the following research questions) are common to
most configurable systems.

We then formalized the following research questions:

• (RQ1.1) What is the cost of engineering an infrastructure capable of automatically
deriving and testing all configurations?

• (RQ1.2) What are the computational resources needed to test all configurations?

• (RQ2.1) How many and what kinds of failures/faults can be found in all configu-
rations?

• (RQ2.2) How effective are sampling techniques comparatively?

• (RQ3) What is the most cost-effective sampling strategy?
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Next, we described the engineering effort necessary to address RQ1. This engineering
effort consists in 4 steps: the modelling of JHipster variability, the enumeration of all
valid configurations (with regard to the variability model), the development of the testing
infrastructure and the development of a testing environment. We characterized for each
step its cost (RQ1.1) for a total of (8 man-month) engineering efforts. We elicited the
resources needed to run the workflow on all configurations (RQ1.2) with a significant
amount of computational resources (4376 hour-machine and 5,2To of disk space),
despite some optimizations.

We then presented our analysis of the data extracted from this workflow execution. We
found that about 34.37% of the configurations failed to deploy and that some features
were more afflicted by faults than others (for instance, UAA-based microservices show a
failure rate of 91.66%). Going further we found that most of the failures were caused by
6 faults, due to a combination of 2 or 4 features (RQ2.1).

Finally, we compare the efficiency of an ALL-testing strategy to different, state of
the art, sampling techniques (RQ2.2). We selected 4 variations of the t-wise criteria,
random samples and 3 other sampling technique (namely, One-Enabled, One-Disabled
and Most-Enabled-Disabled). We also compare these results with sample obtained with
prioritization algorithm (with PLEDGE). On the basis of this comparison we concluded
that the most cost-effective sampling strategies were dissimilarity and t-wise (RQ3).

We also confronted our results with some core developers of JHipster. We conducted
a 1,5h semi-structured interview with Julien Dubois, lead developer of JHipster, and
exchanged several emails with Deepu Sasidharan and Pascal Grimaud. We presented
them a few recommendation and discussed their feasibility.

Beyond this study, JHipster can prove to be an interesting case study for different research
directions. We present some of them in the following Section.

9.2. Perspectives

This work (and especially the result files) may also be the basis on which other studies
could be performed. In (Halin et al., 2017), we offered several research directions for
which we believe JHipster can be a good case-study. We present in this Chapter only a
few possibilities to extend this study, for the sake of conciseness.

Replicating the study

The first study that could be performed is the replication of the experiment presented in
this thesis on other JHipster version. This replication would be relevant for both previous
versions but also more recent ones.
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For starter, it could help detect potential faults in the latest version of the generator and
offer the JHipster community a gain of several weeks or month in the fixing of deviant
configurations (as mentioned in Section 6.3, a bug afflicting JHipster 3.6.1 was corrected
2 months after the release).

Furthermore, the replication of the study on several versions of the generator could provide
an overview of its evolution and more specifically the correction of faults. Depending on
the results it could strengthen our observations regarding JHipster testing strategy (in
early stages of JHipster development, how long did it take to find and correct faults?).

The method and source code used to assess JHipster 3.6.1 can be reused on other
versions (previous and later). A few adaptations might be necessary depending on new
frameworks/technologies. First, the modelling of the variability should be updated. New
added frameworks might require some ”glue”, quite similarly to the database related
one (starting services and so on). Last but not least, the Debian image might need some
updates for the configurations to execute correctly. These two last points would be more
difficult than the first to set up as it might require try/error strategy (e.g., executing one
configuration and seeing if any package that should be installed is missing).

Community-driven configuration testing

Another motivation is to maintain and develop the current testing infrastructure. Our
goal would be to delegate the maintenance effort to the JHipster community.

This, however, would require two steps:

• the development (and maintenance) of an all-inclusive testing infrastructure (similar
to ours);

• the delegation of the testing effort across several nodes.

A step has already been made in that direction with the development of the JHipster
DevBox1 (this concurrent project currently serves as a testing environment for the core
developers to run tests locally and assess some configurations).

An alternative could be to rely on configuration management tools such as Ansible2.

Furthermore, as we previously showed, the thorough testing of all configurations is
infeasible on a unique machine. One could then imagine a crowd-sourcing initiative to
evaluate JHipster variants and alleviate the core JHipster team of the testing phase.

1https://github.com/jhipster/jhipster-devbox
2https://www.ansible.com/
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Non-functional analysis

In this study, we focused on functional properties of JHipster variants (generation,
compilation, build). Nevertheless, in the development of the analysis workflow, we have
included several steps yielding qualitative data regarding, for instance, the performance
of a web application. Although we didn’t have the time to analyse these data, there are
still present in the CSV file.

A future work would then be to take advantage of the data to draw conclusions of
non-functional properties of JHipster variants and extend our notion of deviant behaviour
to more than just functional properties.

Extend to other case studies

Finally, we mentioned in Section 3.5 that the issues considered here (the testing of all
configurations, finding the most adapted sampling techniques, etc.) are common to most
configurable systems.

A future work could be to replicate this study on other real-life case studies to compare
the results and recommendations regarding the testing strategy to adopt.

Variability-aware static analysis

In this study, we decided to automatically derived all configuration in order to assess
them one at a time. Another research direction, common in the state of the art, would
be to rely on variability-aware static analysis to detect faults.

This would reduce the overall cost of testing but it is also not so trivial to set up due to
the variety of technologies at hand in JHipster (Java, XML, JavaScript, etc.)

One-enabled, one-disabled, most-enabled-disabled

Part of what is presented in this master thesis (other than what was presented in
VaMoS’17) has been the subject of a submission to an international conference. The
feedbacks about our methodology and results were received too late to all be included
here. We however discuss one update we propose to work on soon.

As presented in Section 6.4.1, our implementation of one-enabled, one-disabled and
most-enabled-disabled vary from the one offered by the authors themselves. Due to some
remarks we received, we propose to implement these sampling algorithm as it is specified
in (Medeiros et al., 2016).
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9.2. Perspectives

This new implementation would be added next to the one we already have (and that
is relevant) and would not aim at replacing it. This would then leave our results and
observations untouched.
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Al-Hajjaji, M., Krieter, S., Thüm, T., Lochau, M., & Saake, G. (2016). IncLing: efficient
product-line testing using incremental pairwise sampling. In Gpce ’16 (pp. 144–155).
ACM.
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Meinicke, J., Wong, C.-P., Kästner, C., Thüm, T., & Saake, G. (2016, 9). On essential
configuration complexity: Measuring interactions in highly-configurable systems.
In Proceedings of the 31st ieee/acm international conference on automated software
engineering (ase). New York, NY: ACM Press.
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Thüm, T., Apel, S., Kästner, C., Kuhlemann, M., Schaefer, I., & Saake, G. (2012). Analysis
Strategies for Software Product Lines. , 35. Retrieved from http://citeseerx.ist

.psu.edu/viewdoc/download?doi=10.1.1.366.3306{&}rep=rep1{&}type=pdf
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A. List of JHipster questions

We present in this appendix the different questions prompted to the user during the
configuration phase of JHipster 3.6.1. The number in front of each question doesn’t
represent its place in all configuration process. If it is true to say that question 1 will
always be asked before question 2, question 3 won’t always be prompted (if the answer
to question 1 is ’Monolithic Application’, for instance). This list can also be found on
JHipster website: https://jhipster.github.io/creating-an-app/#2.

We also present the different constraints we identified between the different technologies.
A description of these frameworks can be found in Appendix B.

These questions along, with the constraints, are the implementation of JHipster variability
and were extracted from the JavaScript files (as presented in Chapter 4.3).
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A. List of JHipster questions

Questions Possible Answers

1) Which *type* of application would you like to create?

Monolithic
Microservice Application

Microservice Gateway
Uaa Server

2) What is the base name of your application? String input

3) As you are running in a microservice architecture, on which port would
you like your server to run?

Integer

4) What is your default Java package name? String input

5) Which *type* of authentication would you like to use?

HTTP Session Authentication
OAuth2 Authentication

JWT Authentication
UAA Authentication

6) What is the folder path of your UAA application? String input

7) Do you want to use social login (Google, Facebook, Twitter)?
No
Yes

8) Which *type* of database would you like to use?

SQL
MongoDB
Cassandra

No database

9) Which *production* database would you like to use?

MySQL
PostgreSQL

Oracle
MariaDB

10) Which *development* database would you like to use?

H2 disk-based persistence
H2 in-memory persistence

MySQL
PostgreSQL
Oracle 12c
MariaDB

11) Do you want to use Hibernate 2nd level cache?
No

Yes, with ehcache
Yes, with HazelCast

12) Do you ant to use a search engine in your application?
No

Yes, ElasticSearch

13) Do you want to use clustered HTTP sessions?
No

Yes, HazelCast

14) Do you want to use WebSockets?
No

Yes, with Spring Websocket

15) Would you like to use Maven or Gradle for building the backend?
Maven
Gradle

16) Would you like to use the LibSass stylesheet pre-processor for your css?
Yes
No

17) Would you like to enable internationalization support?
- Please choose the native language of the application
- Please choose additional languages to install

Yes
No

18) Which testing frameworks would you like to use?
Gatling

Cucumber
Protractor

No

Table A.1.: List of questions and answers for yo jhipster command
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B. Technologies description

We briefly present in this Appendix the different technologies/frameworks JHipster offers.
We aim at summarizing these technologies rather than giving a complete overview of all
possibilities they offer. All information presented here can be found on JHipster official
website1 and on the respective websites of the frameworks.

B.1. Application Type

We present hereafter the different application types one can produce with JHipster. These
4 types of application are the ones available at question 1. Besides these 4 types, we can
also generate client or server standalones using JHipster sub-generators. Microservice
applications, gateways and UAA servers are all parts of the microservice architecture
which separates client and server parts to ease the scaling.

Application Type Description

Microservice Application Microservices are applications managing REST
requests. They are stateless and several instances
of these can be run in parallel to handle heavy
traffic.

Microservice Gateway A gateway is an application that manages web
traffic and serves an AngularJS application.
There may be several different gateways, to follow
Backends for Frontends pattern for example.

Monolithic Application A Monolithic Application is a classical web appli-
cation relying on Spring Boot on the server side
and AngularJS on the client side. The JHipster
Team recommend this option if there aren’t any
specific requirements.

UAA Server An User Account and Authentication (UAA)
server is used in microservice architectures to
offer OAuth2 authentication to the gateway.

Table B.1.: Application types description

1https://jhipster.github.io/creating-an-app

103

https://jhipster.github.io/creating-an-app


B. Technologies description

B.2. Authentication Type

JHipster offers 4 different kind of authentication. HTTP Session and OAuth2 available in
Monolithic Applications; JSON Web Token (JWT) for both Monolithic and Microservice
applications; and UAA available only in Microservice architectures.

Authentication Type Description

HTTP Session Classic statefull authentication mechanism based
on HTTP sessions.

OAuth2 Stateless security mechanism using a secret
key. JHipster generate an Authentication Server,
based on Spring Security, which delivers tokens.

JWT Stateless security mechanism similar to OAuth2.
It doesn’t require a persistence mechanism and
can then work on all SQL and NoSQL databases.
It uses a signed secure token holding the user’s
login name and authorities.

UAA Server OAuth2 authentication for microservices.

Table B.2.: Authentication types description

B.3. Databases

JHipster supports 8 different databases: six SQL and two NOSQL. Among these databases,
2 (H2 disk-based and H2 in-memory) are only available as development databases. JHipster
also offers the possibility to create microservices without any database. More information
on the different databases can be found on their respective websites.
SQL databases

• MySQL

• PostgreSQL

• MariaDB

• H2 (in-memory and disk-based)

• Oracle
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B.4. Testing frameworks

NoSQL databases

• MongoDB

• Cassandra

B.4. Testing frameworks

All JHipster variants come with Java unit tests (Spring Test Context framework) and
JavaScript unit tests (using Karma.js). Besides these tests, JHipster offers 3 additional
frameworks to its users, each of which focuses on a specific aspect of the web application.
These frameworks can’t, however, be selected in all configurations. See Appendix A for
more information.

Testing Framework Description

Cucumber Cucumber is a framework for behaviour-driven
development. It is used to assert the validity
of certain scenarios, among which, for instance,
CRUD operations on the database.

Gatling Gatling is a load testing framework used for
performance testing.

Protractor Protractor is an UI integration testing framework.
It simulates users interaction with the applica-
tion by launching a web browser and interacting
with the interface (for instance, it tries to log
in by clicking the log-in button and entering
credentials).

Table B.3.: Testing frameworks description

B.5. Others

We present in this section frameworks which didn’t find a place in previous section.
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Framework Description

Social Login Offers the possibility to log into a JHipster application using major social
networks (Google, Facebook and Twitter) accounts.

ElasticSearch RESTful distributed search engine adding search capabilities on top of
the database. It is currently only available with SQL databases.

EhCache Local Hibernate (Java Persistence API provider) cache aiming at im-
proving performance and simplifying scaling.

Hazelcast Used as Hibernate cache, it is similar to EhCache although it is a
distributed cache more adapted to clustered environment. It can also be
used for clustered HTTP sessions which allow to replicate sessions in a
cluster to prevent loss of sessions (for applications using web sessions) in
case the server goes down.

WebSockets WebSockets specification defines an API that allows web pages to use the
WebSocket protocol for two-way communication with a remote host. It
presents the WebSocket interface and defines a full-duplex communication
channel that operates through a single socket over the Web. WebSockets
offer a huge reduction of the traffic network and the latency.

LibSass Style-sheet pre-processor to simplify the design of CSS and to treat
conditional styling (for instance, if the condition is true use this font,
else use this one).

Maven Apache Maven is a software project management and comprehension
tool, based on the concept of Project Object Model (POM). It is one of
the two options to handle the complete building process of a JHipster
app (dependencies management, building process, etc.).

Gradle Similar to Maven, Gradle is a modern open source polyglot build au-
tomation system. Whereas Maven is seen as more stable and mature,
Gradle is deemed more flexible and easier to extend.

Table B.4.: Other frameworks description
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C. Entities JDL scripts

C.1. Base model

As we presented in Section 4.4.2, the base model we used to generate entities is the one
the JHipster team present as an example:

Figure C.1.: JHipster JDL entities example

C.2. MySQL and PostgreSQL databases JDL

The JDL script for MySQL and PostgreSQL databases, both SQL databases, is directly
derived from Figure C.1. It is also available on JHipster Domain Language Studio web
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C. Entities JDL scripts

page: https://jhipster.github.io/jdl-studio/. For conciseness sake, we removed
comments from the script below.

Listing C.1: SQL databases JDL script

1 entity Region { regionName String}

2
3 entity Country { countryName String}

4
5 entity Location {

6 streetAddress String ,

7 postalCode String ,

8 city String ,

9 stateProvince String

10 }

11
12 entity Department { departmentName String required}

13
14 entity Task {

15 title String ,

16 description String

17 }

18
19 entity Employee {

20 firstName String ,

21 lastName String ,

22 email String ,

23 phoneNumber String ,

24 hireDate ZonedDateTime ,

25 salary Long ,

26 commissionPct Long

27 }

28
29 entity Job {

30 jobTitle String ,

31 minSalary Long ,

32 maxSalary Long

33 }

34
35 entity JobHistory {

36 startDate ZonedDateTime ,

37 endDate ZonedDateTime ,

38 language Language

39 }

40
41 enum Language { FRENCH , ENGLISH , SPANISH}

42
43 relationship OneToOne { Country{region} to Region}

44 relationship OneToOne {Location{country} to Country}

45 relationship OneToOne {Department{location} to Location}

46 relationship ManyToMany {Job{task(title)} to Task{job}}

47 relationship OneToMany {

48 Employee{job} to Job ,

49 Department{employee} to Employee

50 }

51 relationship ManyToOne {Employee{manager} to Employee}

52 relationship OneToOne {

53 JobHistory{job} to Job ,

54 JobHistory{department} to Department ,

55 JobHistory{employee} to Employee

56 }

57
58 paginate JobHistory , Employee with infinite -scroll

59 paginate Job with pagination

60 dto * with mapstruct

61 service all with serviceImpl except Employee , Job

62 angularSuffix * with mySuffix

C.3. MongoDB database JDL

MongoDB being a NoSQL database, relationships are not allowed in the JDL script.
We adapted the previous script by simply removing those relationships declaration. The
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C.4. Cassandra database JDL

remainder of the code is exactly the same, as presented in Listing C.2.

Listing C.2: MongoDB JDL script

1 entity Region { regionName String}

2
3 entity Country { countryName String}

4
5 entity Location {

6 streetAddress String ,

7 postalCode String ,

8 city String ,

9 stateProvince String

10 }

11
12 entity Department { departmentName String required}

13
14 entity Task {

15 title String ,

16 description String

17 }

18
19 entity Employee {

20 firstName String ,

21 lastName String ,

22 email String ,

23 phoneNumber String ,

24 hireDate ZonedDateTime ,

25 salary Long ,

26 commissionPct Long

27 }

28
29 entity Job {

30 jobTitle String ,

31 minSalary Long ,

32 maxSalary Long

33 }

34
35 entity JobHistory {

36 startDate ZonedDateTime ,

37 endDate ZonedDateTime ,

38 language Language

39 }

40
41 enum Language { FRENCH , ENGLISH , SPANISH}

42
43 paginate JobHistory , Employee with infinite -scroll

44 paginate Job with pagination

45 dto * with mapstruct

46 service all with serviceImpl except Employee , Job

47 angularSuffix * with mySuffix

C.4. Cassandra database JDL

Cassandra posed more constraints regarding the JDL. Indeed, being a NoSQL database
like MongoDB, we first needed to remove the relationships declaration. Beside this
common constraints, we also had trouble with the type ZonedDateTime which is not
supported with Cassandra. We also had an issue with the enumeration Language, which
we transformed in a String attribute. Finally, we also had to remove the paginate options,
resulting in Listing C.3.
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Listing C.3: Cassandra JDL script

1 entity Region { regionName String}

2
3 entity Country { countryName String}

4
5 entity Location {

6 streetAddress String ,

7 postalCode String ,

8 city String ,

9 stateProvince String

10 }

11
12 entity Department { departmentName String required}

13
14 entity Task {

15 title String ,

16 description String

17 }

18
19 entity Employee {

20 firstName String ,

21 lastName String ,

22 email String ,

23 phoneNumber String ,

24 hireDate Date ,

25 salary Long ,

26 commissionPct Long

27 }

28
29 entity Job {

30 jobTitle String ,

31 minSalary Long ,

32 maxSalary Long

33 }

34
35 entity JobHistory {

36 startDate Date ,

37 endDate Date ,

38 language String

39 }

40
41 dto * with mapstruct

42 service all with serviceImpl except Employee , Job

43 angularSuffix * with mySuffix
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D. Possibilities on the JHipster data-set

As introduced in the Section 4.4.2, we decide to use a CSV file to store all data con-
cerning functional analyses. The execution of the testing workflow yielded a large file
comprising numerous results for each configuration. This file available at https://

github.com/axel-halin/Thesis-JHipster/blob/master/Results/jhipster.csv al-
lows to identify failing configurations, i.e., configurations that do not generate, compile
or build. An excerpt of this file is presented in Table D.1. In addition of these results, we
also extracted and exploited stack traces for each variants (when it doesn’t generate/-
compile/build) allowing us to find the cause of the failure. This section presents, first, all
the types of the data-set which is stored in a CSV file format. Then, we provide with
the data-set presented in Section D.2 a ground truth for various testing techniques and
methodologies. We will present some possibilities that can be achieved with this data-set
using R1 which is a free software environment for statistical computing and graphics.
We will present successively the use of association rules and the creation of each figures
presented in this master thesis. We also provide R scripts to illustrate the possibilities
and to give the opportunity to use them to replicate the study.

JHipster
Register

Docker application
Type

authentication
Type

(...) Compile Log-
Compile

Build Log-Build

jhipster1 true ”monolith” ”session” (...) OK KO Failed to get driver
instance for jd-
bcUrl=jdbc:mariadb:
//mari-
adb:3306/jhipster

jhipster1 false ”monolith” ”session” (...) OK KO Failed to get driver
instance for jd-
bcUrl=jdbc:mariadb:
//local-
host:3306/jhipster

(...) (...) (...) (...) (...) (...) (...) (...) (...)
jhipster13128 true ”monolith” ”session” (...) OK OK ND
jhipster13128 false ”monolith” ”session” (...) OK OK ND

Table D.1.: CSV file excerpt

D.1. Data-set content

Table D.2 describes headers and entities from the data-set. All descriptions of the features
are explained in Appendix B. Some cells from the CSV file are ”ND” values (”ND” is

1https://www.r-project.org/
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D. Possibilities on the JHipster data-set

an acronym for ”Not Defined”). These values may happen in some configurations. For
instance, when a developer choose to work on a micro-service application then features
clusteredHttpSession, websocket, enableSocialSignIn and useSass will imply a ”ND” value
because questions about these technologies will be not prompted to the developer (See
details on the configuration process in Section 3.2.1). Non-functional analyses are not
available for the moment but it’s in order to have it in future works.

Headers Entities
JHipsterRegister Number of the folder where the web-app is generated/compiled/build and

tested.
Docker Boolean value which is true when Docker is used to deploy the web-app, false

otherwise
applicationType monolith,gateway,microservice and uaa are the possible type of application

provided by JHipster.
authenticationType session,jwt,uaa,oauth2 are the possibilities for the type of authentication
hibernateCache hazelcast,ehcache are the type of hibernateCache. The developer has the pos-

sibility to not have hibernateCache (no value).
clusteredHttpSession hazelcast is the value for clusteredHttpSession if the developer want it, other-

wise it’s a no value.
websocket spring-websocket is the value for websocket if the developer want it, otherwise

it’s a no value.
databaseType SQL database (sql) or NoSQL databases (mongodb and cassandra)
devDatabaseType SQL databases (mysql, mariadb or postgresql) or NoSQL databases (mongodb

or cassandra) or H2 databases (DiskBased, inMemory).
prodDatabaseType The same from devDatabaseType but no H2 database.
buildTool maven and gradle are the two build tool provided by JHipster.
searchEngine elasticsearch or no if the developer doesn’t want a search engine in his web-

app.
enableSocialSignIn Boolean value which is true when the developer want a Social SignIn in his

web-app, false otherwise.
useSass Boolean value which is true when the developer uses useSass in his web-app,

false otherwise.
enableTranslation Boolean value which is true when the developer uses any translations in his

web-app, false otherwise.
testFrameworks List of activated framework testing : cucumber, protractor and gatling.
Generate OK value if the generation succeed else KO.
Log-Generate Logs that we extract if the web-app fail to generate.
Compile OK value if the compilation succeed else KO.
Log-Compile Logs that we extract if the web-app fail to compile.
Build OK value if the build succeed else KO.
Log-Build Logs that we extract if the app fail to deploy.

Table D.2.: jhipster.csv file description

D.2. Association Rule learning method

As explained in Section 6.2, we used Association Rule learning method (Hahsler et al.,
2005) in the focus to investigate correlations between features and the failure results.
This method aims at extracting relations between variables of large data-sets and outputs
a set of rules.
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D.2. Association Rule learning method

To extract the rules presented in Table 6.1 from the method, we used a R package:
arules2 which provides the infrastructure for representing, manipulating and analysing
transaction data and patterns (frequent itemsets and association rules).

We focused ourselves to rules where the RHS was Compile=KO and because there are
no failure at the generation phase. Listing D.1 gives us rules for the compilation phase.
Then, we were interested in rules where the RHS was Build=KO. Listing D.2 presents
the code we made.

See Section 6.2 for more details on the choices we did (for instance, length of the rules
we fixed, etc).

Listing D.1: Arules Compilation R Script

1 data <-read.csv(file="jhipster.csv", na.strings = c("", "NA"), head=TRUE , sep=’,’)

2
3 library(arules)

4
5 subData <- data.frame(data$Docker ,data$applicationType ,data$authenticationType ,

6 data$hibernateCache ,data$clusteredHttpSession ,data$websocket ,data$devDatabaseType ,

7 data$prodDatabaseType ,data$buildTool ,data$searchEngine ,data$enableSocialSignIn ,

8 data$useSass ,data$Build)

9
10 rules <- apriori(subData , parameter = list(minlen=2,

maxlen=4, confidence =1,support =0.0001 , target =

’rules’),appearance=list(rhs=c(’data.Compile=OK’),default=’lhs’))

11 rules <- sort(rules , by = ’support ’)

12
13 ## redundant rules non redondunt

14 inspect(rules[!is.redundant(rules)])

Listing D.2: Arules Build R Script

1 data <-read.csv(file="results3.csv", na.strings = c("", "NA"), head=TRUE , sep=’,’)

2
3 library(arules)

4
5 subData <- data.frame(data$Docker ,data$applicationType ,data$authenticationType ,

6 data$hibernateCache ,data$clusteredHttpSession ,data$websocket ,data$devDatabaseType ,

7 data$prodDatabaseType ,data$buildTool ,data$searchEngine ,data$enableSocialSignIn ,

8 data$useSass ,data$Build)

9
10 rules <- apriori(subData , parameter = list(minlen=2,

maxlen=4, confidence =1,support =0.0001 , target =

’rules’),appearance=list(rhs=c(’data.Build=OK’),default=’lhs’))

11 rules <- sort(rules , by = ’support ’)

12
13 ## redundant rules non redondunt

14 inspect(rules[!is.redundant(rules)])

2https://cran.r-project.org/web/packages/arules/index.html
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D. Possibilities on the JHipster data-set

Listing D.3: Proportion of build failure by feature: figure R script

1 data <-read.csv(file="jhipster.csv", na.strings = c("", "NA"), head=TRUE , sep=’,’)

2
3 data1 <- data.frame(table(data$Build ,data$applicationType))

4 data2 <- data.frame(table(data$Build ,data$authenticationType))

5
6 library(plyr)

7 library(scales)

8
9 names(data1)[names(data1)=="Var1"] <- "Build"

10 names(data1)[names(data1)=="Var2"] <- "Feature"

11 names(data2)[names(data2)=="Var1"] <- "Build"

12 names(data2)[names(data2)=="Var2"] <- "Feature"

13
14 data1 <- ddply(data1 , "Feature", transform ,Percentage = Freq / sum(Freq) * 100)

15 data2 <- ddply(data2 , "Feature", transform ,Percentage = Freq / sum(Freq) * 100)

16
17 data1$Feature <-

as.data.frame(sapply(data1$Feature ,gsub ,pattern="uaa",replacement="uaaApp"))

18 data1$Feature <- unlist(data1$Feature)

19
20 data2$Feature <-

as.data.frame(sapply(data2$Feature ,gsub ,pattern="uaa",replacement="uaaAuth"))

21 data2$Feature <- unlist(data2$Feature)

22
23 library(plyr)

24 dataAll <- rbind.fill(data1 , data2)

25 print(dataAll)

26
27 library(ggplot2)

28
29 ggplot(dataAll , aes(x=Feature , y=Percentage , fill=Build ,

order=desc(Feature)),xlab=’’) +

30 geom_bar(stat="identity",colour="black") +

31 theme(axis.title.x=element_blank()) +

32 guides(fill=guide_legend(reverse=TRUE)) +

33 geom_text(aes(label = percent(Percentage/ 100), x =

Feature),position=position_stack(vjust = 0.5), size = 2,colour = "black")

34
35 ggsave("bugsFeatures.pdf",height = 7, width = 9)

D.3. Figures

We present here the code created for the different plots of our thesis. Respectively,
Listing D.3 and Listing D.4 are the codes we achieved to create Figure 6.1 and Figure 6.2.

D.3.1. Faults and failures detection efficiency of sampling techniques

We present in this Section the script used to generate Figure 6.3 and Figure 6.4 (List-
ing D.5).

To generate this Figure, we first ran simulations on random sets of size 1 to 2500. We
simulated 100 random selections to determine the point where all faults were discovered.
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D.3. Figures

Listing D.4: Proportion of failures by fault: figure R script

1 data <-read.csv(file="results3.csv", na.strings = c("", "NA"), head=TRUE , sep=’,’)

2
3 library(plyr)

4 library(scales)

5
6 data <- ddply(data , "Bugs", transform ,Percentage = percent ((( Failures / 9376) *

100) / 100))

7
8 library(ggplot2)

9
10 data <- data[order(data$Failures , decreasing = TRUE),]

11
12 print(data)

13
14 ggplot(data ,aes(reorder(Bugs , Failures), Failures),aes(x=Bugs ,

y=Failures),xlab=’’,label = Percentage) +

15 geom_bar(stat="identity",fill = "#56 B4E9") +

16 theme(

17 axis.title.y=element_blank()) +

18 geom_text(aes(label = Percentage , y = Failures/2), size = 3,colour = "black") +

coord_flip()

19
20 ggsave("barplot.pdf",width=8,height = 4.5)

We computed the percentage of failures on the basis of the total failure percentage (≈
34.37%). We then generated the plot with the library ggplot.
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D. Possibilities on the JHipster data-set

Listing D.5: Faults and Failures found by sampling techniques - R script

1 library(ggplot2)

2 library(plyr)

3
4 file <- "/home/axel/samplingComparison3.csv"

5
6 df <- read.csv2(file , header = TRUE , sep = ";", quote = "\"", dec = ".", fill =

TRUE)

7 df$Sampling.technique <- "Random"

8
9 for(sampleSize in 401:2500){

10 de <- data.frame("Random", sampleSize , floor ((35.71*sampleSize)/100),

floor ((35.71*sampleSize)/100))

11 names(de) <- c("Sampling.technique","Sample.size","Failures","Failures.mean")

12 df <- rbind.fill(df,de)

13 }

14
15 df["Failures.mean"] <- NA

16 for(sampleSize in 1:2500){df[df$Sample.size==sampleSize ,]$Failures.mean <-

summary(df[df$Sample.size==sampleSize ,]$Failures)[4]}

17
18 Sampling.technique <- c("1-wise", "2-wise", "3-wise", "4-wise",

"Most -enabled -disabled", "One -disabled",

"One -enabled","PLEDGE (8)","PLEDGE (12)",

19 "PLEDGE (41)","PLEDGE (126)","PLEDGE (374)")

20 Sample.size <- c(8, 41, 126, 374, 574, 922, 2340 ,8 ,12 ,41 ,126 ,374)

21 Bugs.mean <- c(2, 5, 6, 6, 2, 5, 6 ,2.14 ,2.82 ,4.70 ,4.66 ,4.62)

22 Failures.mean <- c(2, 14, 52, 161, 190, 253, 872 ,3.16 ,4.92 ,17.64 ,49.08 ,139.20)

23
24 df <- rbind.fill(df, data.frame(Sampling.technique , Sample.size , Bugs.mean ,

Failures.mean))

25
26
27 ggplot(df, aes(x=Sample.size , y=Bugs.mean , shape=Sampling.technique ,

color=Sampling.technique)) +

28 geom_point(size =4) +

29 scale_shape_manual(values=c(15 ,16,17,18 ,19,20 ,21,9,10,11 ,12,13,46))+

30 geom_smooth(method=loess ,se=FALSE) +

31 xlab("Configurations") + ylab("Faults found") + labs(shape="Sampling",

colour="Sampling")

32
33 ggplot(df, aes(x=Sample.size , y=Failures.mean , shape=Sampling.technique ,

color=Sampling.technique)) +

34 geom_point(size =4) +

35 scale_shape_manual(values=c(15 ,16,17,18 ,19,20 ,21,9,10,11 ,12,13,46))+

36 geom_smooth(method=loess ,se=FALSE) +

37 xlab("Configurations") + ylab("Failures found") + labs(shape="Sampling",

colour="Sampling")

116



E. Grid’5000 resources overview

To run our experiments on Grid’5000, we mainly relied on one site: Rennes. We ran
several small scale experiments in Lille’s site, when Rennes was unavailable (due to lack
of available machines or maintenance).

With transparency in mind, we present here the different machine used to run, and
distribute the execution of, the workflow. More details can be found on Grid’5000 official
website: https://www.grid5000.fr/mediawiki/index.php/Rennes:Home.

Rennes offers 173 different machines scattered across 5 clusters:

Parapluie Cluster

• Introduction date: 2010

• Number of nodes: 40

• CPUs: (2x) AMD Opteron 6164 HE – 12 cores/CPU

• Memory: 48GB RAM

• Disk space: 232GB HDD

• 10Gbps ethernet: no

Parapide Cluster

• Introduction date: 2010

• Number of nodes: 25

• CPUs: (2x) Intel Xeon X5570 – 4 cores/CPU

• Memory: 24GB RAM

• Disk space: 465GB HDD

• 10Gbps ethernet: no
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E. Grid’5000 resources overview

Paranoia Cluster

• Introduction date: 2014

• Number of nodes: 8

• CPUs: (2x) Intel Xeon E5-2660 v2 – 10 cores/CPU

• Memory: 128GB RAM

• Disk space: (5x) 558GB HDD

• 10Gbps ethernet: yes

Parsilo Cluster

• Introduction date: 2015

• Number of nodes: 28

• CPUs: (2x) Intel Xeon E5-2630 v3 – 8 cores/CPU

• Memory: 128GB RAM

• Disk space: (5x) 558GB HDD + 186GB SSD

• 10Gbps ethernet: yes

Paravance Cluster

• Introduction date: 2015

• Number of nodes: 72

• CPUs: (2x) Intel Xeon E5-2630 v3 – 8 cores/CPU

• Memory: 128GB RAM

• Disk space: (2x) 558GB HDD

• 10Gbps ethernet: yes
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F. Faults listing

During the course of this study, and as one of the objectives, we identified and classified
the different faults we encountered. We present them in this Appendix.

The faults we found mostly occurred because of a combination of features related to the
authentication type or the database type. These faults being due to a combination of
features, we choose to present them in the same order as in Section 6.3.

F.1. MariaDB with Docker

This first fault is related to the use of MariaDB in the variant. This fault appears
when trying to build the variant with Docker, regardless of the build tool used in the
configuration.

It is however not found in all MariaDB variants. Indeed, the root cause of this issue is a
missing line in the file src/main/docker/app.yml (see Listing F.1 and Listing F.2). This
missing line causes Docker to look for a wrong repository/tag, one that doesn’t exist.
This fault manifests itself with a error message in the build log: Error parsing reference:
”jhipster - jhipster-mariadb” is not a valid repository/tag or Error parsing reference:
”jhipster - jhipster-mariadb:mariadb - jhipster-registry” is not a valid repository/tag.

When inspecting the template, we can see that the line ”external links:” is only activated
if:

• The production database is MySQL, PostgreSQL, MongoDB or Cassandra;

• The application is a Microservice Application or Gateway;

• ElasticSearch is enabled

This fault was fixed1 on November 24th 2016.

Listing F.1: Erroneous app.yml

1 image: jhipster

2 - jhipster -mariadb:mariadb

Listing F.2: Valid app.yml

1 image: jhipster

2 external_links:

3 - jhipster -mariadb:mariadb

1https://github.com/jhipster/generator-jhipster/commit/9f320bc86ab6209585e24b4db8abecd3ecf29ba2
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F. Faults listing

F.2. MariaDB using Gradle

This issue concerns variants relying on Gradle as the build tool and MariaDB as the
database. It is due to a missing dependency in the generator Gradle template. When
attempting to build such a variant, the console will prompt one of the following exceptions:
java.lang.RuntimeException:Failed to get driver instance for
jdbcUrl=jdbc:mariadb://localhost:3306/jhipster or
java.lang.RuntimeException: Failed to get driver instance for
jdbcUrl=jdbc:mariadb://mariadb:3306/jhipster

We checked the same variant using Maven as build tool instead of Gradle and it passed
both the compilation and the build. The fault is then depending on the build tool rather
than the database itself.

This issue was corrected by ”ruddel” in pull request 42222, by updating generators/server/tem-
plates/gradle/ liquibase.gradle template file. Since then we have tested the configuration
on a more recent version of JHipster and the configuration ran well.

F.3. UAA authentication with Docker

This fault concerns the use of UAA as authentication type while building with Docker. This
authentication mechanism is only available in Microservice applications and Microservice
Gateways. It is also the default (and only) option for UAA server (UAA as application
type), but the it doesn’t seem to affect these variants.

This issue occurs when we try to deploy the application (the Microservice) with Docker.
When executing the docker-compose command, the console will prompt a stacktrace
in which we can find nested exception is java.lang.IllegalStateException: No instances
available for uaa.

When deploying a JHipster app with Docker, and as mentioned on JHipster official
website, Docker will launch everything needed (database service, JHipster Registry for
microservices, etc.). The cause of this issue is that there are currently no ready-to-use
UAA Docker image leaving Docker unable to start the server. In its defence, the JHipster
team does notify the user (during the configuration process and on their website) that
UAA is still in ”Beta” and to ”Use it at your own risk!”.

To the best of our knowledge this issue still occurs in more recent JHipster version since
no UAA Docker image is available.

2https://github.com/jhipster/generator-jhipster/pull/4222
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F.4. UAA authentication with Ehcache as Hibernate 2nd level cache

F.4. UAA authentication with Ehcache as Hibernate 2nd level
cache

Some variants (Microservice applications and Microservice Gateways) using an UAA
server as authentication also experience another issue.

When building the variant ”manually” (with Maven or Gradle), the variant is unable to
reach the deployed UAA server. This fault seems to be directly linked to the Hibernate
2nd level cache value. Listing F.3 and Listing F.4 show, respectively, a configuration in
which this fault occurs and a configuration without fault. We can see in these listing that
the two configurations are the same except one uses EhCache and the other HazelCast
as Hibernate 2nd level cache.

We weren’t the only one to experience this fault, as attests this issue: https://github
.com/jhipster/generator-jhipster/issues/4005. It also seems to have been solved
in commits on September 28, 2016. The changes can be found here: https://github.com/
jhipster/generator-jhipster/pull/4225/commits.

Listing F.3: yo-rc.json of a failing
variant

1 {

2 "generator -jhipster": {

3 "jhipsterVersion": "3.6.1",

4 "baseName": "gateway2",

5 "packageName":

"io.variability.jhipster",

6 "packageFolder":

"io/variability/jhipster",

7 "serverPort": "8080",

8 "authenticationType": "uaa",

9 "uaaBaseName": "uaa",

10 "hibernateCache": "ehcache",

11 "clusteredHttpSession":

"hazelcast",

12 "websocket": "no",

13 "databaseType": "sql",

14 "devDatabaseType": "mysql",

15 "prodDatabaseType": "mysql",

16 "searchEngine": "no",

17 "buildTool": "gradle",

18 "useSass": true ,

19 "applicationType": "gateway",

20 "testFrameworks": [

21 "gatling",

22 "cucumber",

23 "protractor"

24 ],

25 "jhiPrefix": "jhi",

26 "enableTranslation": false

27 }

28 }

Listing F.4: yo-rc.json of a working
variant

1 {

2 "generator -jhipster": {

3 "jhipsterVersion": "3.6.1",

4 "baseName": "gateway2",

5 "packageName":

"io.variability.jhipster",

6 "packageFolder":

"io/variability/jhipster",

7 "serverPort": "8080",

8 "authenticationType": "uaa",

9 "uaaBaseName": "uaa",

10 "hibernateCache": "hazelcast",

11 "clusteredHttpSession":

"hazelcast",

12 "websocket": "no",

13 "databaseType": "sql",

14 "devDatabaseType": "mysql",

15 "prodDatabaseType": "mysql",

16 "searchEngine": "no",

17 "buildTool": "gradle",

18 "useSass": true ,

19 "applicationType": "gateway",

20 "testFrameworks": [

21 "gatling",

22 "cucumber",

23 "protractor"

24 ],

25 "jhiPrefix": "jhi",

26 "enableTranslation": false

27 }

28 }
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F. Faults listing

F.5. OAuth2 authentication with SQL database

This issue is faced when trying to deploy an application using a SQL database (with
Mysql, PostgreSQL or MariaDB) and an OAuth2 authentication with Docker. It manifests
itself with the following exception in the output log:
No qualifying bean of type [org.springframework.security.oauth2.provider.token.store.JdbcTokenStore]
found for dependency [org.springframework.security.oauth2.provider.token.store.JdbcTokenStore]:
expected at least 1 bean which qualifies as autowire candidate for this dependency. Depen-
dency annotations: @javax.inject.Inject()

This problem was reported by ”tsaqova” in issue #4009 (https://github.com/jhipster/generator-
jhipster/issues/4009). The solution proposed by the poster is to modify the file ”/genera-
tors/server/templates/src/main/java/package/config/ OAuth2ServerConfiguration.java”
to add the following bean declaration:

@Bean

public JdbcTokenStore jdbcTokenStore () {

return (JdbcTokenStore) tokenStore ();

}

As mentioned in the post, JHipster’s team was unable to reproduce the error and so to
find the source of this issue. We do not know either the root cause, but we still experienced
the fault in version 3.9.1 of JHipster. The proposed solution, however, seemed to indeed
fix the problem.

F.6. Social Login with MongoDB

This issue occurs in MongoDB variants with social sign-in enabled. When we try to compile
such variants, we get the following error message: ”SocialUserConnection.java:3: error:
package org.hibernate.annotations does not exist import org.hibernate.annotations.Cache;.

The issue lies within a template file: generators/server/templates/src/main/java/pack-
age/domain/ SocialUserConnection.java. The import of hibernate package isn’t under
conditional pre-processing but it should. Indeed, when scaffolding a JHipster app with
MongoDB, the dependency for hibernate annotations is not added, thus leading to a
compile exception. This missing dependency occurs both with Maven and Gradle.

It has been fixed in version 3.7.0 of JHipster, by ”ruddell”, in pull request 40373.

3https://github.com/jhipster/generator-jhipster/pull/4037
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G. Failures per individual feature

In section 6.1 we present a Figure 6.1 that summarizes the proportion of failures per
individual feature. For the sake of conciseness, we focus on a feature subset of the feature
model presented in Figure 4.3).

In this Appendix, we present the others proportions of failures per individual feature not
presented in Figure 6.1. We only show the database type, the use of Docker and the choice
of the build tool as other features because other features, for instance Internationalization
or Hibernate Cache, show approximately a same ratio of failures per feature. Therefore,
we are not able to conclude anything on these results for these features.
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Figure G.1.: Proportion of build failure by database type
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G. Failures per individual feature

G.1. Database type

This difference among features is also noticeable in the database selection: MariaDB,
Cassandra and MongoDB related variants show respectively 67.18% (5708 web-apps),
62.85% (174 configs) and 42.37% (200 configs), while MySQL-based and PostgreSQL-
based web-applications have an inferior failing percentage of 19.54% (1660 configs) and
19.11% (1624 configs). Figure G.1 shows failures for production databases but also
presents results for development databases: MariaDB, Cassandra, MongoDB, MySQL
and PostgreSQL related variants have the same percentage of failures from production
databases. DiskBased and InMemory are special H2-based variants if the developer
choose the development database profile, with respectively and approximately the same
percentage of failures: 35.15% (2986 ) and 35.12% (2984 ) failing configurations. Specific
micro-service-based configurations (16) allow to the user to not have database, with a
failing percentage of 50% (8 configurations).

G.2. Docker

Regarding the figure G.2 we observe that there are more failures web-applications when
Docker is used than when it is not. There are 41.9% (5485 ) failing configurations when
we use Docker and 29.6% (3891 ) failing configurations when we don’t use Docker, but a
standard build tool Maven or Gradle.

G.3. BuildTool

This disparity is also found in the choice of the build tool. Gadle and HTTP Sessions
suffers from 46.5% (6105 ) failing configurations, more than Maven with respectively
24.91% (3271 ) failing configurations.
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H. VaMoS’17

In the early stages of our research internship, we also participated with our supervisors
and research mentor to the drafting of a scientific article which aimed to introduce our
work to the research community.

At the time of writing this article, our derivation and testing infrastructure was almost
complete (it was updated later on to mitigate threats such as the presence of false-
positives) and we already had some preliminary results (the workflow was ran across ≈
300 configurations).

The article was submitted, and accepted, at the 11th International Workshop on Vari-
ability Modelling of Software-intensive Systems. We thus went to Eindhoven with Gilles
Perrouin and Xavier Devroey to present it to the research community. It was overall well
received and it allowed us to get some feedbacks which lead us to improve and continue
the study.

We present here-after the paper as it was submitted and published.
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ABSTRACT
Though variability is everywhere, there has always been a
shortage of publicly available cases for assessing variability-
aware tools and techniques as well as supports for teach-
ing variability-related concepts. Historical software product
lines contains industrial secrets their owners do not want
to disclose to a wide audience. The open source commu-
nity contributed to large-scale cases such as Eclipse, Linux
kernels, or web-based plugin systems (Drupal, WordPress).
To assess accuracy of sampling and prediction approaches
(bugs, performance), a case where all products can be enu-
merated is desirable. As configuration issues do not lie
within only one place but are scattered across technologies
and assets, a case exposing such diversity is an additional as-
set. To this end, we present in this paper our efforts in build-
ing an explicit product line on top of JHipster, an industrial
open-source Web-app configurator that is both manageable
in terms of configurations (≈ 163,000) and diverse in terms
of technologies used. We present our efforts in building a
variability-aware chain on top of JHipster’s configurator and
lessons learned using it as a teaching case at the University
of Rennes. We also sketch the diversity of analyses that
can be performed with our infrastructure as well as early
issues found using it. Our long term goal is both to sup-
port students and researchers studying variability analysis
and JHipster developers in the maintenance and evolution
of their tools.
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Software product lines; •Social and professional topics
→ Software engineering education;
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1. INTRODUCTION
JHipster [20] is an open-source generator for Web applica-

tions (Web-apps). Started in 2013 by Julien Dubois, JHip-
ster aims at supporting all cumbersome aspects of Web ap-
plications development: choice of technologies on the client
and server sides as well as integrating them in a complete
building process. On the server side, JHipster relies on a
Java stack (with Spring Boot). On the client side Angu-
larJS and Bootstrap (a HTML/CSS and JavaScript frame-
work) are used. Finally, Yeoman, Bower, Gulp and Maven
automate the building process, including the management of
dependencies across the offered technologies [20]. JHipster
is used all over the world both by independent developers
and large companies1 such as Adobe, Google, HBO, etc..

The setup of a Web-app with JHipster is performed in two
phases: configuration and generation. The configuration is
done via a command-line interface (see Figure 1) through
which the user can select the technologies that will be in-
cluded. The result of this configuration is a yo-rc.json file
(see Listing 1) used for the generation phase. To achieve
this generation, JHipster relies on Yeoman2 using npm and
Bower tools to manage dependencies, and yo tool to scaf-
fold projects or useful pieces of an application [41]. Based
on the content of the yo-rc.json file, JHipster’s generator
produces relevant artefacts (Java classes and so on). Beyond
this generator – the main focus of this paper – JHipster of-
fers multiple sub-generators and even has its own language,
JHipster Domain Language, to easily generate entities and
all related artefacts (e.g., Spring Service Beans).

From its inception to this day, JHipster has constantly
grown throughout 146 releases. It now has more than 5000
stars on GitHub and can count on a community of 250 con-
tributors. In October 2016, it has been downloaded 22739
times3. This constant evolution allows JHipster to offer
up-to-date frameworks and technologies to its users (for in-
stance, the infrastructure can be generated using Docker
since release 3.0.0).

1https://jhipster.github.io/companies-using-jhipster/
2http://yeoman.io/
3https://www.npmjs.com/package/generator-jhipster



Listing 1: _yo-rc.json excerpt
{

"generator -jhipster": {
(...)
"useSass": false ,
"applicationType": "monolith",
"testFrameworks": [],
"jhiPrefix": "jhi",
"enableTranslation": false

}
}

Figure 1: JHipster command line interface

By combining configuration and generation in a constantly
evolving stack of technologies, JHipster is akin to Mr Jour-
dain’s prose: a software product line initiative without nam-
ing it as such. In this paper, we describe our efforts in build-
ing an explicit product line on top of JHipster to expose it as
a case for research, education and to ease the development
of JHipster itself. Our preliminary infrastructure applied on
only 300 variants (out of ≈ 160,000) already disclosed some
unreported issues, which we perceive as an incentive to pur-
sue in this direction. Though “lifting” such infrastructure in
the web domain is not new (e.g., [43, 36]), JHipster offers
interesting assets beyond replication studies: (a) it covers
key aspects of product line development, variability, product
derivation and evolution; (b) the number of variants is large
enough to require automated derivation support (on top of
Yeoman) but small enough to be enumerated through dis-
tributed computing facilities yielding exact results to assess
various kinds of analyses; (c) it allows to address variability
modelling and configuration challenges across technological
spaces [21]. All sources of our preliminary infrastructure can
be found at https://github.com/axel-halin/Thesis-JHipster.

In the remainder, we present our efforts to manually re-
verse engineer variability from JHipster artefacts and de-
fine a Web-app software product line (Section 2). We anal-
yse current state of the art for products’ analyses, family-
based analyses, and product line evolution in Section 3, and
presents the JHipster’s potential for each of those research
fields. Section 4 reports our experiences in using JHipster as
an education case study for software product line teaching.
Finally, Section 5 concludes this paper and presents future
works using JHipster.

2. JHIPSTER AS A PRODUCT LINE
Although never explicitly acknowledged by the JHipster

developer, it is straightforward to think JHipster supported
technologies4 (microservice architecture, authentication, etc.)
as variation points to be resolved during product line appli-
cation engineering.

Based on this vision, we decided to model the system in a
feature model using FAMILIAR[1]. This decision was moti-

4The complete list is available on https://jhipster.github.io/

Listing 2: server/prompt.js excerpt
(...)
when: function (response) {

return applicationType === ’microservice ’;
},
type: ’list ’,
name: ’databaseType ’,
message: function (response) {

return getNumberedQuestion(’Which *type* of
database would you like to use?’,
applicationType === ’microservice ’);},

choices: [
{value: ’no’, name: ’No database ’},
{value: ’sql ’, name: ’SQL (H2, MySQL , MariaDB ,

PostgreSQL , Oracle)’},
{value: ’mongodb ’, name: ’MongoDB ’},
{value: ’cassandra ’,name: ’Cassandra ’}

],
default: 1

(...)

vated by our will to assess automatically a maximum of con-
figurations authorized by the JHipster generators. The first
step was to identify the variability. To do so, we retrieved the
publicly available source code5 and analysed it. We quickly
identified interesting artefacts: prompts.js files. JHipster’s
Yeoman generator is divided in multiple prompts.js files,
each of which handles specific parts of the configuration pro-
cess. For instance, client/prompts.js offers the possibility
to use LibSass, while, as illustrated in Listing 2, the type of
database is selected in server/prompts.js.

From these artefacts, we derived the feature model pre-
sented in Figure 2. In this model, the abstract features
represent the multiple choices questions (typically, which
of these technologies do you wish to use?) while the con-
crete features are the different choice(s) available to the user.
Except for the testing frameworks, all of these multiple-
choice questions are exclusive (choose only one production
database, for instance), mapped as alternate groups. Yes or
no questions are represented by optional features. So, if we
consider Listing 2 as an example we have: database as an op-
tional abstract feature, with SQL, Mongodb and Cassandra
as concrete alternate sub-features. We also identified several
constraints in the JavaScript files (when (...) return ap-

plicationType === ’microservice’, in Listing 2, is one of
them) which we synthesized in 15 constraints. For the sake
of conciseness, we only present few of them in Figure 2.

At the variability realization level, JHipster relies on Yeo-
man template files (JavaScript, Java, HTML, XML, ...) for
holding common parts but also properties specific to some
variants. Conditional compilation is the main implemen-
tation mechanism for realizing variability. With Yeoman
templates, some specific code in the different artefacts is ac-
tivated depending on user’s configuration. A first example is
given in Listing 3 for Maven files: hikaricp.version Maven
property is defined only if the configuration includes an SQL
database. A second example in given in Listing 4 for Java
files. The method h2TCPServer is only used in configura-
tions relying on H2 databases (either h2Disk or h2Memory).
The inheritance of AbstractMongoConfiguration depends on
the activation of mongodb. Java annotations are also subject
to variations. Thus, variability information is scattered in

5For this study, we use JHipster v3.6.1: https://github.com/
jhipster/generator-jhipster/releases/tag/v3.6.1



Figure 2: JHipster reverse engineered feature model

Listing 3: _pom.xml excerpt
<?xml version="1.0" encoding="UTF-8"?>
(...)
<properties>

<% if (databaseType === ’sql’) { %>
<hikaricp.version>2.4.6</hikaricp.version>
<% } %>
<awaitility.version>1.7.0</awaitility.version>
(...)

<properties>
(...)

different artefacts (e.g., Maven, Java, JavaScript, etc.).

2.1 Analysis Workflow
From the feature model, we devised an automated way

to generate JHipster’s variants in order to check their valid-
ity (are the variants correctly generated? do the Web-apps
compile? Can we build them?). This was done by build-
ing for each variant the matching .yo-rc.json file and then
calling the generator (yo jhipster) on each of them. The
keys Yeoman expects to find in the .yo-rc.json file can
be found in the function saveConfig of JHipster’s index.js
files. From there we can then run variant dependent com-
mands (Maven or Gradle, Docker, ...) to compile, build and
test them (see Figure 4). For each variant, we store some
interesting information in a CSV file to analyse later on.
Currently, this information is the result of the generation/-
compilation/build processes; the logs from each process if
there is a problem; the duration of the generation, compi-
lation, and build phases; the size of the Docker image; and
the results from the unit tests. This analysis workflow cur-
rently runs on a subset of JHipster’s variants: we do not,
yet, generate client or server standalone application vari-
ants (which may be obtained using JHipster sub-generator);
we exclude variants with an external databases (Oracle or
H2); and we include all test frameworks in each variant (if
the constraints allow it), as it prevents the generation of
similar variants with only different test frameworks. These
choices were motivated both by technical reasons (Oracle
being a proprietary database additional work is needed to
use it properly) and practical reasons (What can we test
with client only app? Are client/server parts not tested in
the other types of application?). This selection decreased
the total number of variants to about 4600.

Listing 4: DatabaseConfiguration.java Excerpt
(...)
@Configuration <% if (databaseType == ’sql’) { %>
@EnableJpaRepositories(" <%= packageName %>. repository")
@EnableJpaAuditing (...)
@EnableTransactionManagement <% } %>
(...)
public class DatabaseConfiguration
<% if (databaseType == ’mongodb ’) { %>

extends AbstractMongoConfiguration
<% } %>{

<%_ if (devDatabaseType == ’h2Disk ’ ||
devDatabaseType == ’h2Memory ’) { _%>

/**
* Open the TCP port for the H2 database.
* @return the H2 database TCP server
* @throws SQLException if the server failed to

start
*/
@Bean(initMethod = "start", destroyMethod =

"stop")
@Profile(Constants.SPRING_PROFILE_DEVELOPMENT)
public Server h2TCPServer () throws SQLException {

return Server.createTcpServer (...);
}

<%_ } _%>
(...)

2.2 Preliminary Analyses
With the analysis workflow presented in Figure 4, we

have already tested the validity (generation, compilation,
build) of about 300 variants and found unreported bugs (i.e.,
anything that would prevent the generation, compilation,
or execution of a variant of JHipster, or lead to deviant
behaviour) in a few of them. For example, the first bug
we found is related to the Docker image of the MariaDB
database, in monolithic applications, and it is encountered
while trying to deploy the application via Docker. Basically,
Docker is looking for the wrong repository/tag, one that
doesn’t exist. The cause of this error is a missing line in the
file /src/main/docker/app.yml: a condition prodDatabase-
Type == ’mariadb’ on line 5. This issue is still found in
JHipster 3.9.1 and doesn’t seem to have been detected (cur-
rently no related issue post mention it). We will extend
the number of tested variants to possibly all of them. We
will also use the 3 supported testing frameworks (Cucumber,
Protractor and Gatling) to evaluate beyond the correctness
of the applications their non-functional properties (perfor-
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Figure 3: Distribution of generation time by appli-
cation type boxplot

mance testing, UI testing, etc. see Section 3).
We started investigating preliminary results. For instance,

the correlation between generation time and the type of
the application (see Figure 3). We observe on this box-
plot that micro-service applications and UAA servers re-
quire shorter generation times than monolithic applications
or micro-service gateways. Indeed, micro-service applica-
tions and UAA servers do not need the client part of JHip-
ster’s applications. We hope to extract information regard-
ing non-functional properties of the generated Web-apps.

3. A CASE FOR RESEARCHERS
In the previous section, we presented our derivation infras-

tructure as well as a few statistics on the generated products
and issues found. In this section, we explore two vertices of
the “PLA cube” [51]: product-based and family-based anal-
yses. We explain why JHipster is a good candidate to devise
new techniques and perform additional empirical assessment
of existing ones.

3.1 Products’ Analyses
Product lines usually allow a large number of products.

Two approaches are possible to validate them. The use of
formal methods which prove correctness properties in the
specification at the product line level such that all derived
products satisfy the same properties, without needing to
enumerate all of them [49, 5]. Another approach is to rely
on testing, which main goal is to select and sort the fittest
set of products to test according to given criteria in order to
detect as much bugs as possible. Systematic studies show
that a lot of effort has been put on SPL testing [8, 13, 32].

3.1.1 Structural Sampling
Sampling techniques. To reduce the number of prod-

ucts to test, one popular research direction is to use Com-
binatorial Interaction Testing (CIT) techniques [6, 31] and
pairwise (generalized to t-wise) criteria [28, 30, 33, 40]. Over
the years, several tools have been developed and support
pairwise based selection on the feature model, e.g., [18, 22].
In order to support larger t values, as well as larger feature

models, other search-based heuristics have been proposed [3,
17, 45, 37]. All of those CIT, t-wise, and other search-based
techniques make the hypothesis that bugs come from inter-
actions between few features and try to select an adequate
set of products to test in order to cover as much feature
combinations as possible. They have been extensively val-
idated on a large number of feature models, with different
sizes, and coming from different sources. However, very few
evaluations have actually built the set of products to test in
their process.

JHipster potential for Sampling. With ≈ 163,000
possible products, JHipster is both non-trivial (as opposed
to some academic models in the SPLOT repository) with-
out being as large a Linux, WordPress or Drupal cases. This
particularity makes accessible the generation of all the vari-
ants. The idea is to be able to obtain a ground truth to
compare the efficiency of sampling algorithms. By being
able to compute absolute values for the numbers and types
of interaction bugs, biases when assessing techniques can
be reduced. As noted by Jin et al. [21], configuration is-
sues can happen everywhere: we believe that the variety of
technologies at work in a JHipster derived product is also an
opportunity to study such aspects. As seen in Section 2, our
feature model integrates variability information from differ-
ent files and will lead researchers to study different kinds of
interaction bugs.

3.1.2 Functional Testing
Product-level functional testing. As noted by Von

Rhein et al. [51], product-based analysis strategy is simple:
we analyse each product individually without taking into ac-
count variability (it has been resolved using sampling or enu-
merating all products). The benefit is that single-product
analysis tools can be used. Researchers have proposed to
derive test cases from product line scenarios and use cases
(e.g., [34]) promoting the reuse of test models and artefacts.

JHipster’s potential. As opposed to Drupal or Word-
press cases, where test cases are either optional or solely de-
pending on the will of plugin developers [43, 36, 15], JHipster
comes with a systematic testing infrastructure and test cases
are deployed for every Web-app deployed. In particular, Cu-
cumber [7] supports early testing in the form of scenarios.
Integration with code coverage tools is also available. How-
ever our preliminary analyses shown that the provided tests
were quite simple, product-agnostic (based on a generic ap-
plication that is the root of all products) and code coverage
was quite low. Thus, we should derive test cases that take
into account the specificities of each product, to get a better
base coverage prior to the development of a richer Web-app
on top of the derived product.

3.1.3 Non-Functional Analyses
Feature-related quality attributes. Recent research

shifts from functional validation using testing to detect un-
desired feature interactions to non-functional analyses in or-
der to predict performance of a given product [44, 47, 48,
46]. Using statistical learning [16] and regression methods
[50], or mathematical models to predict and detect (unde-
sired) performance-relevant feature interactions [53].

JHipster potential for quality analyses. Web-apps
are particularly interesting cases for performance, since this
quality attribute has a direct influence on Websites’ suc-



Figure 4: Complete Analysis Workflow

cesses. To this end, JHipster comes with Gatling6, a load
testing tool. It is possible to experiment with feature-related
performance techniques in order to assess the proposed the-
ories and calibrate statistical learning. Note that perfor-
mance is not the only quality attribute that can be stud-
ied: security is also key especially for e-commerce websites.
While the JHipster infrastructure does not currently offer
any security-dedicated analysis toolset, the diversity of tech-
nologies used in a JHipster application and our automated
derivation approach allow to focus on a given technology in
various security scenarios.

3.2 Family-based Analyses
Variability-aware techniques. So far, our infrastruc-

ture focuses on the product level by sampling products of
interest and analysing them individually using provided vali-
dation environments (Protactor, Karma.js, Cucumber, etc.).
While our goal is to obtain a ground truth by analysing
all the variants [14], exploiting variability to reuse analy-
ses (e.g. tests, proofs, etc.) in order to reduce the overall
analysis effort and better scale large cases is relevant [27].
Model-based testing approaches use behavioural models of
the product line to generate test cases for the different prod-
ucts: (resp.) delta-oriented product line testing [29, 26] and
featured transition system based [10, 9, 11] approaches use
(resp.) state machines and transition systems in order to
capture the common and product specific behaviour of the
product line. At the code level, variability-aware parsers
[24], variational structures [52] and type-checking [23] are of
interest. They enable variability-aware testing [25] to, for
example, evaluate a test case against myriads of configura-
tions in one run [36].

JHipster potential. JHipster offers an interesting play-
ground for the aforementioned analyses. The difficulty for
model-based approaches is to obtain accurate models of the
case study when the implementation already exists. To this
end, server execution logs of different variants can be used
to extract part of the system behaviour [9]. At the code
level, the challenge is to specify annotations across multi-
ple technological spaces, while performing commonality and
variability analysis. JHipster provides a generic customis-
able Web-app for each variant, enabling a user to log in and
to create entities, as a starting point. JHipster also includes
a configurator, allowing to consider the interaction between

6http://gatling.io/

configuration workflows [19] and derived products [39].

3.3 Product Line Evolution
Evolution techniques. From the evolution perspective,

product lines represent an interesting challenge. Product
lines developers have to manage updates at different levels:
the evolution of the variability model and the mapping to
other artefacts [12]; the evolution of the artefacts themselves
which will impact several products [35, 42]; and the evolu-
tion of the configurator and configuration workflow. To un-
derstand how existing SPL are updated, Passos et al. [38] re-
cently studied the Linux kernel variability models and other
artefact types co-evolution.

JHipster potential. With 146 releases since 2013, JHip-
ster is under active development and evolution. Therefore
a challenge for researchers is to devise automated means
to update the JHipster feature model. As opposed to the
Linux case, where part of the variability model can be ex-
tracted from KConfig, several JavaScript files are necessary
to build it, pushing for more versatile variability inference
techniques.

4. A CASE FOR EDUCATION
JHipster has been used as part of different teaching courses.

In this section, we report on such an experience and then
argue that JHipster is a relevant case for education and in
particular for SPL teaching.

4.1 Experiences
Experience #1. Our first teaching experience with JHip-

ster started in 2015 at University of Rennes 1. The audi-
ence was 40+ MSc students with a speciality in software
engineering or in software management. As part of a model-
driven engineering course, we used to teach variability mod-
elling and implementation techniques. In 2015, we decided
to slightly change the way variability is explained and we
notably introduced JHipster, for the following reasons.

First, students used JHipster in another course dedicated
to Web development. Therefore students could reuse JHip-
ster for building a quite complex Web application in the
model-driven engineering course: a Web generator of video
variants called VideoGen. VideoGen is a software applica-
tion that builds video variants by assembling different video
sequences; it is a generalization of a real-world Web genera-
tor [4]. Video variants can be randomly chosen or users can
configure their videos through a Web interface. A textual



specification, written in a domain-specific language, docu-
ments what video sequences are mandatory, optional, or al-
ternatives. Frequencies and constraints can also be speci-
fied7. VideoGen challenges students to master Web devel-
opment as well as variability modelling and implementation
techniques: they should build a Web configurator, imple-
ment algorithms for randomly choosing and building a video
variant, etc. The video generator was the running example
of the course and was used in the lab sessions and in the
project for evaluating students. JHipster was used all along
to implement the Web application, including a Web config-
urator. In summary, JHipster was used as a relevant tech-
nology for showing the relations with other courses (Web
development) and for implementing a non-trivial variability
system (a video generator) based on modelling technologies.

The second reason is that we took the opportunity to
explain how JHipster is implemented and more precisely
how variability concepts and techniques are applied in prac-
tice. During the course, we used JHipster to define what a
software product line is, making the correspondences with
other well-known configurable systems like Linux, Firefox,
or ffmpeg. We explained variability implementation tech-
niques and in particular conditional compilation, templates
and annotative-based approaches with the use of JHipster.
From a variability modelling perspective, we introduced fea-
ture models by using the configurator of JHipster. In the
lab sessions, students used the JHipster generator to obtain
a Web stack and develop the video generator. They had
to make the Web video generator configurable, for instance,
they had to implement the ability to save or not a video
variant. We have also proposed different exercises related to
feature modelling. Along the way, students could exercise
on variability concepts that were also found in JHipster.

Our experience was mostly positive. The evaluation of
the students’ projects on the Web video generator gives high
marks. Interactions with students during the courses show
that JHipster helps to understand more concretely variabil-
ity concepts. However we noticed two limitations. First,
students manipulated variability concepts at two levels and
for two different purposes. The first level was for creat-
ing from scratch a configurable video generator, involving
skills in domain-specific languages, model transformations,
and variability modeling. The second level was for under-
standing and reusing the JHipster generator. There was
some confusions between the two levels. The explanations
on JHipster certainly deserve more time and a specific at-
tention – perhaps a dedicated exercise, see hereafter. Sec-
ond, the technology behind JHipster is quite advanced and
requires numerous skills. Some students have technical dif-
ficulties to connect the dots and transfer their conceptual
knowledge into concrete terms. We had to postpone the
deadline for project delivery to let students enough time to
master the Web stacks.

For mitigating the two weaknesses, we have decided in
2016 to play the full course on Web development before the
model-driven engineering and variability courses. We expect
that students can, prior to the course, master JHipster for
(1) better understanding its internals; (2) better implement-
ing the variability concepts.

Experience #2. Our second teaching experience with

7More details can be found online: https://github.com/
FAMILIAR-project/teaching/tree/gh-pages/resources/
Rennes2015MDECourse

JHipster was in late 2015 at University of Rennes 1. This
time the audience was MSc students with a strong interest
in research. We reused almost the same material as previ-
ously but we also addressed more advanced topics like au-
tomated reasoning with solvers, software product line veri-
fication and validation, etc.. We used JHipster for the same
previous reasons. Compared to the first experience, JHip-
ster was the sole focus of this course and there was no video
generator to develop. It simplified how variability concepts
were introduced and explained. The project aimed at eval-
uating students and was oriented for addressing some open
research questions: How to elaborate and reverse engineer
a feature model of the JHipster generator? What are the
configuration bugs of JHipster? How to automatically find
those bugs?

With the JHipster case, students could elaborate a fea-
ture model based on a static analysis of several artefacts.
They could apprehend the combinatorial explosion inher-
ent to variability-intensive systems. Overall students could
revisit the variability techniques of the course with a realis-
tic and complex example. The JHipster case also shows to
students the connection with other research works, mainly
what we have described in the previous section. Some ques-
tions were voluntary open like the proposal of “a strategy
for testing the configurations of JHipster at each commit or
release”.

Another motivation for us was to use JHipster to explore
some research directions and make some progress with stu-
dents. We asked them to collect and classify configuration
bugs on GitHub. We also gathered several feature models
based on their analysis. Such works help us to re-engineer
JHipster as a software product line: we reused such feature
models to initiate the work exposed in Section 2. Students
of the course did not design or develop the workflow analysis
of Figure 4. Discussions and insights, however, motivate the
need to build such a testing infrastructure for JHipster.

Overall, the work of students was evaluated in a positive
way. They demonstrated their abilities to understand and
use variability concepts. It was also useful for our own re-
search work.

Other experiences. We have used JHipster in other ed-
ucating settings in 2015: (a) at University of Montpellier for
MSc students; (b) within the DiverSE Inria team for forming
PhD students to variability. Such experiences deserve less
comments since the duration of the courses was one full-day.
Yet the JHipster case was again useful to us, educators and
researchers, to both illustrate the variability concepts and
exchange on open issues.

4.2 JHipster for Education
A survey on teaching of software product lines showed

that two recurring issues for educators are the absence of
case studies and the difficulty to integrate product lines
within a curriculum [2]. Similar concerns have been raised
at SPLTea’14 and SPLTea’15 workshops (see http://spltea.
irisa.fr). JHipster acts as an interesting and useful case for
addressing these issues. Specifically, JHipster can be used
for: (i) illustrating a product line course and for describing
variability modelling and implementation techniques with a
real-world case over different technologies; (ii) conducting
lab sessions in relation with variability; (iii) connecting or
better integrating product line courses to other courses (e.g.,
Web development, model-driven engineering); (iv) exploring



open research directions with students.
In conclusion, our experiences with JHipster were mostly

positive, though some improvements can be made. All mate-
rial (slides, instructions of lab sessions) can be found online:
http://teaching.variability.io/. We are reusing the same case
and material in 2016 at the University of Rennes 1.

5. CONCLUSION AND FUTURE WORK
In this paper, we described JHipster as a case for exper-

imenting with various kinds of variability-related analyses
and teaching software product lines. We introduced an anal-
ysis workflow that automates the derivation of JHipster vari-
ants (Web-apps) on the basis of a feature model manually
extracted from Jhipster questionnaire’s files. As the num-
ber of possibilities is within reach of current (distributed)
computing facilities, some“all-products” information may be
obtained, which is useful to assess some specific techniques
such as sampling. Our analysis workflow is also relevant for
education to understand and explore product line derivation
testing and analysis concepts. Our analysis infrastructure is
only in its premises and naturally calls for future develop-
ments. At the research level, we would like of course to share
the results obtained on running analyses on the whole prod-
uct line. This requires running our workflow on distributed
infrastructure like Grid5000 (https://www.grid5000.fr/), an
option that we are currently studying. We also want to share
our results (bugs, performance issues) with the JHipster de-
velopers so that they can take advantage of them in their
fixes and releases. We finally would like to introduce this
workflow in our SPL teaching curriculum and continue to
share it openly with the community.
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