
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER EN SCIENCES INFORMATIQUES

Towards Security Aware Mutation Testing

Loise, Thomas

Award date:
2017

Awarding institution:
Universite de Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/fr/studentthesis/towards-security-aware-mutation-testing(74c69d3e-8e6a-4188-a8fb-d79fa9d85094).html

Université de Namur
Faculty of Computer Science

Academic Year 2016–2017

Towards Security Aware Mutation Testing

Thomas Loise

Internship mentor: Mike Papadakis

Supervisor: (Signed for Release Approval - Study Rules art. 40)

Patrick Heymans

Co-supervisor: Gilles Perrouin & Xavier Devroey

A thesis submitted in the partial fulfillment of the requirements
for the degree of Master of Computer Science at the Université of Namur

ii

ABSTRACT

LOISE, THOMAS. Towards Security-aware Mutation Testing. (Under the direction of Patrick
Heymans.)

Mutation analysis forms a popular software analysis technique that has been demonstrated

to be useful in supporting multiple software engineering activities. Yet, the use of mutation

analysis in tackling security issues has received little attention. In view of this, we design se-

curity aware mutation operators to support mutation analysis. Using a known set of common

security vulnerability patterns, we introduce 15 security-aware mutation operators for Java.

We then implement them in the PIT mutation engine and evaluate them. Our preliminary

results demonstrate that standard PIT operators are unlikely to introduce vulnerabilities sim-

ilar to ours. We also show that our security-aware mutation operators are indeed applicable

and prevalent on open source projects, providing evidence that mutation analysis can support

security testing activities.

L’analyse de mutation est une technique d’analyse de logiciel qui a déjà démontré son utilité

dans plusieurs activités d’ingénierie du logiciel. Cependant, l’analyse de mutation n’a été que

peu utilisée dans le but de faire face aux problèmes qui relèvent de la cyber-sécurité. Dans cette

optique, nous concevons des opérateurs de mutation sensibles à la cyber-sécurité, qui viendront

supporter l’analyse de mutation. En utilisant un ensemble connu de motifs de vulnérabilités,

nous présentons 15 opérateurs sensibles à la cyber-sécurité pour le langage de programmation

Java. Ensuite, nous les implémentons dans le moteur de mutation PIT et nous les évaluons. Nos

résultats préliminaires démontrent qu’il est peu probable que les opérateurs standards de PIT

introduisent des vulnérabilités similaires aux nôtres. De plus, nous montrons que nos opérateurs

cyber-sensibles sont effectivement utilisables dans des projets open-source, ce qui prouve que

l’analyse de mutation peut supporter des activités de testing pour la cyber-sécurité.

ACKNOWLEDGEMENTS

This internship gave me the opportunity to discover a very large panel of technical skills as

security testing, web application building or byte-code analysis but it also gave me the occasion

to develop some social skills that are inherent to the academic environment. However, this was

most of all the occasion to work with great people.

First, I would like to thank Professor Yves Le Traon and Professor Patrick Heymans for the

opportunity they gave me to perform this internship and for their great support towards future

directions of this work. I would also like to express my sincere gratitude to my supervisors

and internship mentor Gilles Perrouin, Xavier Devroey and Mike Papadakis for their energy

and patience during and after the internship. Moreover, I would like to thank you all for the

opportunity you gave me to attend and present our work at an international workshop (Muta-

tion2017) and meet the experts of the mutation testing domain.

I am also very grateful to those who gave me support in more subtle ways and also where

the most welcoming people I have ever met, members of the Serval Team, Ludovic Mouline,

Marinos Kintis, Thierry Titcheu, Matthieu Jimenez and Rahul Kumar Dutta. I hope to see

you again soon.

My profound appreciation goes to Anestis Taskmalis, a member of the the research center,

without who all of this would certainly not have been possible. Thank you for your friendship

and unconditional support.

Last but not least, I would like to thank my family for their patience at home and especially

my mother for her help in the redaction of this document.

i

TABLE OF CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

Chapter 1 Introduction . 1
1.1 Context . 1
1.2 Research problem . 2
1.3 Overview of the approach . 2
1.4 Thesis structure . 3

Chapter 2 Background . 4
2.1 Software Testing . 4
2.2 Mutation Testing . 7

2.2.1 Traditional Mutation Testing . 7
2.2.2 Mutation testing tool : the choice of PITest 9

2.3 Software security . 11
2.3.1 Security in the software development life-cycle 13
2.3.2 Security testing in the software development life-cycle 15
2.3.3 Used security testing tool: Findbugs-sec 19

Chapter 3 Mutation Security Testing . 22
3.1 Problem statement . 22
3.2 Related work . 23

3.2.1 Mouehli et al.: Mutating access control models 23
3.2.2 Dadeau et al.: Mutating high-level security protocols 24
3.2.3 Büchler et al.: Mutating abstract model of web applications 25
3.2.4 Mutating C programs by introducing memory manipulation issues 28
3.2.5 Conclusion . 30

Chapter 4 Security aware mutation operators . 31
4.1 Mutation operators definition procedure . 31
4.2 High level definition of the operators . 33
4.3 Implementation details . 40

Chapter 5 Experimentation & Discussion . 53
5.1 Experimentation . 53

5.1.1 Deriving research questions from the problem 53
5.1.2 Experimentation process . 54
5.1.3 Case studies . 55

5.2 Discussion . 56
5.2.1 RQ1: Are PIT’s default operators likely to produce vulnerabilities? 56
5.2.2 RQ2: Are our mutation operators likely to produce vulnerabilities? 57
5.2.3 RQ3: How prevalent are the vulnerabilities in open source projects? . . . 60

ii

5.2.4 RQ4: Ease of killing vulnerabilities introduced with fault-oriented test
suites . 63

5.2.5 Threats to validity . 64

Chapter 6 Conclusion & Perspectives . 66

References . 68

Appendix . 74
Appendix A Mutation 2017 Workshop Publication 75

iii

LIST OF TABLES

Table 4.1 Security-aware Mutation Operators . 34

Table 5.1 We mutated iTrust with PIT’s standard mutation operator set. The table
records the number of mutants and vulnerabilities that were generated for each
operator. The vulnerabilities’ presence relays on FindBugs and its security
plugin. 57

Table 5.2 Injected classes of vulnerabilities that were identified by FindBugs (with the
security plugin), in a sample project. We mutated this project and verified the
presence of vulnerabilities by comparing the static analysis reports of the mu-
tants and the original programs. YES signifies that the injected vulnerability
was identified by FindBugs. 59

Table 5.3 Injected classes of vulnerabilities that were identified by a custom-made se-
curity test-suite in a sample project. We mutated this project and verified
the presence of vulnerabilities by running a custom-made security test-suite
against the mutants. YES signifies that the injected vulnerability was identi-
fied by the suite. 60

Table 5.4 We mutated open source projects with new operators using PIT. The purpose
was to assess the prevalence of security-oriented mutants. 61

Table 5.5 Number of security-aware mutants generated on four open source projects.
The table entries record the number of mutants generated per mutation op-
erator and project. Non referenced operators did not produce any mutants. . 62

Table 5.6 We ran 62 mutants generated using our mutation operators on iTrust against
2254 (fault finding oriented) test cases available in iTrust. We achieved this
using PIT and this table details the mutation coverage report resulting the
experiment. 63

iv

LIST OF FIGURES

Figure 2.1 The relation between errors, faults, and failures [1]. 5
Figure 2.2 The traditional mutation testing process [2]. 9
Figure 2.3 Example of html report of PIT. Adapted from [3]. 11
Figure 2.4 Representation of a System’s security. The circle represents its specification.

The system as implemented is represented by the green and the orange parts.
“Most faults in security mechanisms are related to missing or incorrect func-
tionality, most vulnerabilities are related to unintended side-effect behavior”.
Adapted from [4]. 13

Figure 2.5 The software development life-cycle, aggregated with security practices ap-
plicable at each of its steps [5]. 14

Figure 2.6 The software development life-cycle, aggregated with security testing tech-
niques applicable at every step [4]. 15

Figure 2.7 The process of penetration testing [6]. 18
Figure 2.8 Findbugs eclipse plugin illustration of usage. 20
Figure 2.9 Findbugs’ GUI illustration of usage. 21

Figure 3.1 Illustrating how the concepts of Subjects, Actions and Objects are respec-
tively related to Roles, Activities and Views in order to define security rules
in ORBAC [7]. 23

Figure 3.2 Büchler et al. methodology. “Overview of the testing process” [8] 26

Figure 4.1 Process followed to design security-aware mutation operators. 32
Figure 4.2 ASM objects that are reading Foo.class’s byte-code and triggering a muta-

tion while the lecture is on going. 41
Figure 4.3 A chain of ClassVisitor’s reading Foo.class bytecode. 42
Figure 4.4 A chain of ClassVisitor’s reading Foo.class bytecode and mutating it

when reading specific byte code lines. 43

v

Chapter 1

Introduction

1.1 Context

In our world, a humongous amount of activities rely on IT. Hence, web-based services support

banks, web commerce, health organizations, and even governments activities. These web ap-

plications1 are supposed to be trustworthy. Hence, we cannot imagine to use a webapp for an

economical purpose without trust. However, studies and past exploits have demonstrated that

webapps are also prone to security issues. Therefore, security testing has been integrated in

the software development cycle, translating itself in various activities, specifically designed to

insure a given level of security for the application under development.

However, security can be viewed as a common non-functional requirement, and testing tech-

niques may be adapted in order to cover those requirements. In this context, we explore the

possibility of adapting mutation testing [9, 10], a popular fault-based testing technique, for

security requirements and at code level. As every fault-based technique, mutation testing pro-

vides guarantees that the software under analysis is free from specific types of faults [11]. Also,

the technique is known to form a flexible and effective way to perform testing, this last fact

explaining its popularity. Among others, mutation testing is used to guide test generation [12],

to perform test assessment [13] and to uncover subtle faults [14]. It works by generating syn-

tactically altered program versions of the system under test, called mutants. These alterations

substitute programmers faults [15] and therefore can be used to determine the adequacy of test

suites at detecting those faults. The method’s flexibility relies on the possibility of tuning the

introduced alterations [10] for specific kind of faults. Thus, mutation testing can be used for

almost every purpose testing aims at.

1We will use the equivalent term “webapps” for the remaining of the document.

1

This last fact enables us to use mutation testing for security, as we may design alterations

specifically designed to introduce vulnerabilities. By taking advantage of the fault-based nature

of the technique, mutation testing may ensure that security-aware faults are not present in the

core of the system under test and, through regression tests, that these will not appear in its

future evolutions.

1.2 Research problem

There is a large diversity of different mutation operators sets, each specifically designed to guide

the tester in a precise context. Hence, among others, there are mutation operators for OO-

program testing [16], SQL database queries testing [17] and integration testing [18]. However,

to the best of our knowledge, there is no mutation operator set specifically designed for security

testing at code level. Therefore, we aim at addressing this research problem: May we design

security-aware mutation operators that are helpful in security testing for web applications?

As many webapps are implemented in JAVA, we focus on this programming language in our

research. In order to answer the problem, we will need to investigate to which extent traditional

mutation operators for JAVA are already suitable for security testing.

1.3 Overview of the approach

To address the research problem, we designed ourselves security-aware mutation operators, i.e,

mutation operators specifically designed to introduce security bugs in web applications. There-

fore, we took inspiration on common security bug patterns encoded by a well-known static

analysis tool called FindBugs-sec-plugin2 [19]. The bug patterns used by the static analysis

tools aim at identifying potential issues with the code under analysis. Therefore, they point-

out the presence of potential bugs and not opportunities for injecting them as it is done by

the mutation operators. To cover this last point and design our security-aware mutations, we

manually analyzed the bug patterns, inferred the classes of faults they represent and inverted

them, i.e., we defined rules that introduce these defects. We have implemented our mutations

in PIT, a popular mutation testing tool [3] and provide initial exploratory results showing their

applicability and difference from the traditional mutation operators. Thus, we applied both the

traditional and our operators on four subject programs and validated the presence of potential

vulnerabilities using FindBugs. Our results demonstrate that traditional operators are ineffec-

tive in introducing such security-aware faults.

2Find Security Bugs is a plugin for FindBugs that aims at identifying security issues in JAVA webapps.

2

Overall, our security related faults represent simple vulnerabilities, which can form an initial

step for defining security-aware testing requirements. We believe that these requirements are

particularly useful when building regression test suites of webapps. Furthermore, our operators

can be particularly useful in evaluating and comparing fuzzing or other security testing tools.

In summary, our research makes the following contributions:

1. We design 15 security-aware mutation operators for supporting security mutation testing.

2. We extend PIT so that it applies both traditional and security-aware mutation testing.

To support future research, we make our implementation publicly available.

3. We make an initial assessment of our operators demonstrating their prevalence and the

potential weaknesses of the traditional operators using large real-world projects.

The major outcomes of the research exposed in this thesis were published [20] in Mu-

tation2017, the 12th in the series of international workshops focusing on mutation analysis

collocated with the international conference on software testing verification and validation that

was held in mid April in Tokyo this year. I had the opportunity to present these results at the

workshop. The published paper is attached to the thesis in the appendix section.

1.4 Thesis structure

The thesis is organized as follows: Chapter 2 provides the background and concepts needed for

the understanding of the thesis. Chapter 3 exposes the state of the art in the research problem

we try to address. Chapter 4 answers partly to the research problem by stating the mutation

operators we propose. Chapter 5 details the research questions we formulate in order to answer

formally the research problem risen. Then, the chapter gives details of the experimentation

process and presents the case studies we analyzed. Chapter 5 also presents and discusses the

results we obtained. Finally, chapter 6 gives a conclusion and proposes perspectives to the

thesis.

3

Chapter 2

Background

In this chapter, we present the concepts and theories needed for a good understanding of

the outcomes of this study. We begin with an introduction to testing, then follow with an

introduction to the mutation testing theory. We follow with the presentation of the mutation

testing tool that we used during our experimentation, PITest. Then, we give main concepts

of security testing also required for the understanding of the following chapters. Finally, we

present a security static analyzer that we used during our experimentation, FindBugs.

2.1 Software Testing

Software engineering, as every human activity, is prone to errors. These errors can be intro-

duced at any step of the software development life-cycle and can lead to software failures during

the operation of the system. Figure 2.1 summarizes the relations between errors, faults and

failures.Errors are made in the specification, design or coding activities. Those errors introduce

faults in the system, that can result in failures. Failures are observable wrong behaviors of the

software system. Faults are mistakes introduced in a software system.

Obviously, software should be free from faults. There are two ways to evaluate the cor-

rectness of software. One is empirical verification, which can guarantee the absence of faults

using theorem proving or model-checking techniques. Unfortunately, it is unpractical and in-

feasible for large cases to apply these methods because of the complexity of their associated

analyses. Thus, we recourse to software testing by exercising the software on finite domains of

inputs/outputs. Though non-exhaustive, software testing can flexibility accommodate limited

validation budgets.

4

Figure 2.1: The relation between errors, faults, and failures [1].

5

Undoubtedly, the goal we just described is very abstract. Indeed, there are many questions

to be answered while designing tests: Which scenarios should I cover ? When do I have enough

tests ? Therefore, this goal should be rephrased in a more concrete and understandable target:

a coverage criterion.

A coverage criterion is a rule or a collection of rules guiding the test requirements design

process. A test requirement is a specific element of a software artifact that a test case must

cover or satisfy [10]. A test suite, a set of test cases, is therefore the product of satisfying

several test requirements. The process of software testing can be summarized by the following

activities.

1. Choose a coverage criterion.

2. Derive test requirements from the coverage criterion rules.

3. Satisfy the test requirements by implementing test cases, this giving a test suite.

Many coverage criteria exist. For instance, branch coverage’s satisfaction requires to cover

all possible decisions in a program, statement coverage’s satisfaction requires to cover all the

statements of the program under test. Criteria define the efforts to be provided in order to

assess the partial absence of faults in the software. Moreover, some criteria are stronger than

others, providing more complete fault test suites, by costs of efforts in the number of test cases

to provide. Indeed, a criterion can be proven harder to satisfy than another, using the sub-

suming relation. Formally, given C1 and C2, two coverage criteria, C1 subsumes C2 if and

only if every test set that satisfies C1 also satisfies C2 [10].

Software testing is usually performed to assess the functional behavior of a system but it

can also be used for testing non functional requirements such as security or the performance of

the system under test1. Also, testing can be performed at different levels of granularity. One

can test a complete system whereas it can also test each component or class individually. In

every case, the key aspect of testing is the choice of a coverage criterion. Mutation testing,

as any testing technique, presents one of these criteria. We note that mutation testing can be

used at every level of granularity and for any requirement that can be stated for the system.

We detail this technique in the next section.

1We will use the equivalent term “SUT” for the remaining of the document)

6

2.2 Mutation Testing

This section presents traditional mutation testing, its origins but also the concepts it is based

on.

2.2.1 Traditional Mutation Testing

Mutation testing, like most testing technique, provides a coverage criterion. The mutation cri-

terion is very powerful as it subsumes several other criteria [21].

Originally, mutation testing was proposed by DeMillo et al. Let us summarize the reasoning

presented in [9, 10], the first proposition of mutation testing from DeMillo et al.

First, the authors define the coupling effect hypothesis. It is the hypothesis that, should a

test suite be capable to distinguish simple syntactical changes in a program, it would be able to

distinguish complex changes. The rationale behind this is that complex changes are composed

of simple ones. DeMillo et al. define faults as syntax differences between the working program

and the program the programmer intended to realize. Also, they state that if a test suite is ca-

pable of distinguishing simple differences in the program, it should be capable to distinguishing

all the complex differences subsumed by these slight differences. The recommendation aris-

ing from the coupling effect is to evaluate test suites using their capability of detecting slight

changes (faults) in a program, as the complex changes (complex faults) should also be unveiled

by such test suites.

The second defined principle is the competent programmer hypothesis. It states that pro-

grams created by programmers are very close to the program the programmers intend to create.

The authors do not validate this hypothesis, rather accept it as an empirical principle. The

competent programmer hypothesis states that, by modifying a program using simple changes

rules, one can simulate bug/fault introduction. This final principle was formalized by Geist et

al. [22] : “If the software contains a fault, it is likely that there is a mutant that can only be

killed by a test case that also reveals the fault”.

Finally, relying on these hypotheses, a coverage criterion is defined. To be satisfied, the mu-

tation testing criterion requires the test suite to be capable of distinguishing a set of artificially

introduced faults in the original program (i.e mutants). The mutation testing process, based

on the mutation testing criterion is described in the figure 2.2. We comment the figure bellow.

7

Given an original program P and a test suite T,

1. Introduce faults in the original program P, creating mutants of the program under test

(P’). The program under test is declined in several mutants containing one or several

faults. These faults are introduced following fault-introducing rules called mutation op-

erators.

2. Run T on P. If the test suite is already capable of identifying real faults in the program,

the program should be corrected. Then, return to (1). If not, assess the quality of the

test suite by verifying that the test suite is capable of finding the introduced faults2. A

mutant distinguised from the original program is referred to as killed whereas the opposite

behavior is referred to as lived. If a mutant LM is lived, the test suite T is incapable of

distinguishing it from P, meaning that T is unable to identify an introduced fault. The

cause can either be that

• T is incomplete, it should be completed with more test cases until it is capable of

killing the mutant LM.

• LM is actually synthetically different from the original program, but semantically

equivalent. Therefore, the tester should ignore this mutant. In traditional mutation

testing, this verification is performed manually, introducing a time consuming task.

In the process described in figure 2.2, those equivalent mutants are ignored after

being uncovered.

3. Correct/Improve the test suite and replay. If this test suite is not capable of discovering

all the introduced faults, the tester should either create new test cases or modify existing

ones. Then, he should replay the process and return to the first step (1).

The mutation testing criterion can be summarized by trying to maximize the mutation

score, defined as

MS =
mutants killed

mutants generated - equivalent mutants

.

Mutation testing has its drawbacks, too. First, it is expensive for practical use [2]. This

cost is mainly due to the number of mutants to be generated and compiled, the number of equiv-

alent ones to be assessed manually, the test execution time and to the lack of efficient mutation

tools. Also, it strongly relies on the mutation operators and on the tool used by the tester [23].

2A tool is very useful in this process by highlighting to the tester the introduced faults that were not uncovered
by his test suite.

8

Figure 2.2: The traditional mutation testing process [2].

On the other hand, although the mutation testing process is time consuming, the method

forms one of the most effiscient coverage criterion available for testing [24] [25] [26]. Also, the

technique is known to be flexible, as one can use specific mutation operators, corresponding to

the kind of faults he wants to assess his program is free from. Keeping this fact in mind, we

investigate whether mutation can be used for security testing, using security-aware mutation

operators. We explain the design process of these operators in chapter 4. We clarify in the next

section our choice of PITest as an ideal mutation tool in order to implement and experiment

our mutation operators.

2.2.2 Mutation testing tool : the choice of PITest

In order to evaluate our mutation operators, we needed to implement them in a mutation test-

ing tool. Many of these tools were provided throughout the research domain’s exploration.

For instance, considering only JAVA programs mutation, more than 8 mutation testing tools

developed both by academics and open-source enthusiasts could be cited [27].

In particular, we considered to use MuJava, Major and PIT, as these tools are the most

widely used in the state of the art [23].

• MuJava [28] was developed in a collaboration between Korea Advanced Institute of Science

and Technology (KAIST) and George Mason University, USA [28]. It is one of the oldest

JAVA mutation testing tools, as it was introduced to the academics in 2006. The tool

9

works by mutating the source code, but avoids the compilation of all the mutants using

the mutant schemata approach. Hence, it constructs the representation of the mutants by

adding conditional statements to the program under test, triggering (or not) a mutation.

Hence, every of these conditional statements depend on a different Boolean that is added

to the inputs of the program under test. The only way to describe new mutants in MuJava

is to manipulate its sources.

• Major (Mutation Analysis in a JAVA cOmpileR) [29] is more recent than MuJava (2011).

It is a mutation testing framework, integrated into the JAVA compiler (enabled with a

compiler option). The generation of mutants manipulates the Abstract Syntax Tree of

the program under test. Major relies on the compiler for the original program parsing,

avoiding a main challenge of mutation testing tools: the version compliance. The test

running phase is handled by a mutation analyzer, build on top of Apache Ant. Major

provides a DSL to describe new mutation operators.

• PIT [3] is a mutation testing tool mainly developed by open-source mutation testing

enthusiasts. However, it has also been used a lot in research. The tool performs several

optimizations, like test prioritization (also present in Major), but its main characteristic

is that it performs mutation on the program’s byte code in order to avoid the compilation

of the mutants. To keep track of the mutations at source code level, it utilizes a run-time

mapping between byte and source code and prints its results in a html (or csv) report

(see figure 2.3). PIT is easily extendible, describing a new mutation operator is achievable

by implementing a standard visitor pattern class. This last statement forms one of the

reasons for which we chose PIT.

We mainly took the tool’s popularity as a criterion of choice and chose PIT. Indeed, it has

a strong community, exchanging on a Google group3 (more than 400 subjects) and a GitHub

issues tracker4 (more than 93 issues) since 2011. It also provides support for several very im-

portant development tools, e.g an eclipse plugin, a maven plugin and an Ant custom task that

are all maintained by enthusiasts of the domain. Therefore, we strongly believe that PIT will

thrive in the future and engage the impact we seek for the development of the idea we introduce.

Also, we could note the relative easiness of describing new mutation operators in PIT, as

it relies on an intermediate level manipulation API, the ASM5 JAVA byte code manipulation

3The Google group of PIT’s users is available at https://groups.google.com/forum/#!forum/pitusers
4The GitHub issue tracker of PIT is available at https://github.com/hcoles/pitest/issues
5ASM does not stand for anything. It is a reference to the keyword in C which allows some functions to be

implemented in assembly language

10

Figure 2.3: Example of html report of PIT. Adapted from [3].

framework6. More details about the way to implement new mutation operators in PIT are

available in chapter 4.

Moreover, none of the tools we presented is known to subsume the others, meaning that

building a test suite with one will kill all the mutants generated by the other. Furthermore,

their effectiveness (their average capability at killing each others mutants) is comparable [23].

Therefore, no choice could rely on the “best tool to use”. Finally, although PIT’s effective-

ness was below the two others, the tendency could change soon, as researchers developed new

operators to improve PIT’s results [30].

2.3 Software security

Security is becoming a key aspect in software engineering mainly because of the costs uncovered

by a successful attack. Hence, attackers may outbreak down-times to the system, modify its

data, or simply get access to critical information. Whereas critical operations such as banking,

government data or healthcare are now managed by Information Systems, a single attack lead-

ing to one of the discussed leaks may be dramatic in terms of reputation and currency costs for

a company but may also result in dramatic events for people [31].

6The ASM JAVA byte code manipulation framework is detailed at http://asm.ow2.org/, the website provides
several tutorials and a user guide. In this study, we used the fourth version of the library.

11

Of course, a system may be protected by the use of firewalls, intrusion detection systems or

anti-virus, providing a cost efficient response but the experience has shown that building secure

systems is still needed because those barriers may be bypassed.

Software security is a software’s ability to resist to attacks, its ability to guarantee a func-

tional behavior when attacked [32].

Tian-yanget al. [33] define software security testing as the process of verifying the software’s

security features’ consistency with its design. The idea is to verify that the security features

are implemented and are providing an efficient protection. Hence, the authors divide security

testing into two goals.

The first is called Security functional testing. It relies on the verification and validation of

the implementation of the security requirements, meaning fault-testing applied to the system’s

security requirements. The second is Security vulnerability testing, the verification that there

are no vulnerability left in the system. A vulnerability is referred to as a flaw, relying in the

system’s design or implementation, that may be exploited by attackers. The first goal can be

seen as a developer’s vision of security testing, the second is an attacker’s.

The first goal is also referred to as positive security testing [32], the verification that security

properties are satisfied for a number of assets in the system. The second is also referred to as

negative or destructive security testing. Positive security testing will verify the security features

of a system using legal/intended inputs. Negative security testing will on the other hand test

the system with non-intended inputs. Therefore, the first technique can rely on traditional fault

testing whereas the second will require a more specific expertise from the tester. A last way to

describe the two goals is to perceive the first as the verification that the system does what it

is supposed to do, and the second is the verification that the system never does what it should

not do, referring in both cases to its security.

The complementarity of the two approaches is demonstrated in the following figure 2.4.

Hence, the first approach will stretch green area to fit to the circle and the second will prevent

the green area to exceed from this circle.

An overview of means of including security in the software development life-cycle is devel-

oped in the next section.

12

Figure 2.4: Representation of a System’s security. The circle represents its specification. The
system as implemented is represented by the green and the orange parts. “Most faults in
security mechanisms are related to missing or incorrect functionality, most vulnerabilities are
related to unintended side-effect behavior”. Adapted from [4].

2.3.1 Security in the software development life-cycle

Security concerns the whole system under construction. Usually, several barriers are imple-

mented in order to protect a system. These several protections should be designed in advance

in order to be additive/synergistic so that each protection secures a part of the system while

minimizing the breaches in between each protection.

Therefore, security, as any other non-functional requirement, must be included in the soft-

ware development life-cycle. The overview of the practices that should be applied in order to

secure a software is developed following McGraw [5] on figure 2.5. These practices are security

activities taking place in the development life-cycle. Further explanations about the proposed

techniques are detailed in section 2.3.2.

We can see that every phase of the software development cycle has several security building

activities. Usually, one considers securing its system to a certain point, using risk analysis [4].

Security requirements cover both positive and negative security views. Abuse cases may repre-

13

Figure 2.5: The software development life-cycle, aggregated with security practices applicable
at each of its steps [5].

sent the requirements for negative security. Abuse cases describe how the system reacts when

it is under attack. At every level of design, practitioners should use risk analysis. Risk analysis

is the process of ranking possible attacks on the system by their probability of appearance

but also by their cost. The design must be thought in order to mitigate and/or suppress risks

on the system. Then, it should be analyzed again to document possible attacks. External

review, performed by external experts, may also be used. At code level, static analysis and dy-

namic security testing should be performed. Static analysis focuses on the discovery of known

vulnerabilities. Security testing must, as explained before, cover both positive and negative

requirements. Then, prior to delivery, penetration testing may also be performed. Because pen-

etration testing may potentially be infinite, it should be driven via risk assessment. Penetration

testing is very valuable as it tests the system within its environment. If a vulnerability cannot

be secured, monitoring the systems’ behavior against attacks relying on this vulnerability is also

recommended. This step of mitigating impacts of those unprotectable attacks is called security

operations. Because it uses the information’s gained throughout the previous activities, this

phase is performed at the end.

In the next section, several security testing techniques ensuring this non-functional require-

ment at every phase of the development life-cycle are developed.

14

2.3.2 Security testing in the software development life-cycle

Many security testing techniques exist. As our goal is not to provide an exhaustive enumer-

ation of these techniques, we rather give a summary of the techniques that are applicable at

every phase of the development life-cycle that we could discover in [4], and that were originally

proposed in OWASP’s7 testing guide [34].

The figure 2.6 gives the families of techniques proposed by the survey and their moment of

appliance in the development life-cycle.

Figure 2.6: The software development life-cycle, aggregated with security testing techniques
applicable at every step [4].

Model Based security testing

OWASP proposes Model Based security testing as security testing activity after the analysis

phase and before the design phase. Model Based security testing consists in the following steps.

• This technique first constructs a model of the behavior of the software (and/or its envi-

ronment) in order to later derive test cases from this model. The behavior of the system

may be described in many manners including activity diagrams, sequence diagrams or

simply input/output matrices [33].

• Then, security requirements (based on the security properties of the system’s specification)

are defined using a model-dedicated syntax.

• The next step is to generate automatically test cases derived from the model. That means

execution traces of the model.

7OWASP: Open Web Application Security Project is an online community that aims at providing free resources
in the field of web application security.

15

• Finally, the last step maps test cases from the model to real tests, that is tests launchable

on the SUT.

Both positive and negative security testing may be performed at model level as one may

model the behavior of the system but also the possible behavior of an attacker in order to derive

test cases.

For instance, Model Based Security Testing has been experimented by Büchler et al. [35]

for web app security testing. They take as assumption that a model of the web application and

security properties are available. Then, they mutate this model using mutation operators in-

troducing security-flaws. Next, they generate test cases by launching the model checker on the

mutants. Model checking is a technique that consists in checking the satisfaction of a property

in all the possible states of a model. Thus, the model checkers finds all sequences of operations

that can uncover security problems in the mutants. Finally, those sequences of operations are

semi-automatically mapped on real sequences, creating a selenium test for each sequence. We

go through the details of their technique in chapter 3.

The advantage of model based security analysis is that it can be performed early in the

development cycle therefore enabling early vulnerabilities discovery.

Code-based testing and static analysis

During the development phase in the life-cycle, OWASP [4] states the possible usage of code-

based security testing and static analysis. Code-based security testing is mainly code analysis,

i.e manually using code review or automatically using static analysis or another technique. In

this section, we will concentrate on the static analysis.

Felderer et al. define static analysis as an attempt to automate code reviews. Hence, static

security analysis automatically browses through the code seeking for fault patterns. As a vul-

nerability is a specific kind of fault, and static analyzer may thus be specialized for finding

vulnerability patterns. Of course, there is an infinity of vulnerability patterns to be encoded in

the static analyzer so one cannot expect this tool to be 100% accurate. However, experience

has shown that this technique may effectively find many vulnerabilities [36]. Static analysis

can be applied at source code or byte code level, the idea is that static analysis never runs

the code. Though, the method also allows semantic checks, meaning an analysis of how the

program should run, by the lecture of its code.

16

The advantages of static analysis for security testing is that it is relatively cheap and it can

be performed quite early in the development cycle, as soon as a piece of code is available. Its

drawbacks are that it requires human intervention, as a consequence of its static nature. Hence,

because it does not run the code, uncovered vulnerabilities may not always lead to a failure.

This problem is known as the false positive problem. Moreover, as we stated before, the fact

that it does not find a vulnerability does not mean that the vulnerability is not there. This is

known as the false negative problem.

We present a vulnerability static analyzer that was very helpful in our research in section

2.3.3.

Dynamic Analysis and Penetration testing

In the previous section, we presented statical ways of evaluating a system’s security. In this

section, we will focus on dynamic security testing, running the code in order to assess its security.

OWASP proposes to perform dynamic security testing after the deployment phase. This

specification is likely due to the fact that its goal is to test security in its real environment.

Moreover, we also hypothesize that security protections are implemented in order to be ad-

ditive (minimizing the breaches in between each protection), so that there is no sense to test

dynamically the security of a system before it is deployed.

Penetration Testing is a dynamic testing technique specialized in security testing. NIST [6]

defines penetration testing as security testing the system in its environment, with the help of a

penetration tester. A penetration tester is a practitioner performing real-world attacks on the

system. Because the system is tested in its environment of deployment, one must always obtain

the approval of the organization for which the system was built before performing penetration

testing. Hence, the organization must differentiate the pen tester’s activity from a real attack.

NIST divides penetration testing in four phases.

1. Planning: The first phase is to plan how the testing will be performed and acquire the

organizations’ approval. All the tests are defined and documented, explaining which part

of the system is targeted and what is the expected behavior, for instance.

2. Discovery: The phase is divided in two parts. First, the pen tester discovers the attack

surface of the system under test. That is gathering information about the system like its

open ports, the services it runs, the versions of API’s it utilizes, the OS it runs on, etc.

The goal is to enumerate all the potential targets. Then, the pen tester compares this set

to attacks’ needs, in order to forecast what attack he will perform in the next phase.

17

3. Attack: During this phase, the pen tester simply performs the attacks he planned on

the last phase. An attack consists in sending a set of malicious payloads to the target.

If an attack succeeds, the found vulnerability is exploited in order to pursue the attack

and access to more information or privileges on the target. The idea behind this is to

understand the risks of the found vulnerability. The “expanded attack surface” is fed

back to discovery phase in order to continue the process.

4. Reporting: This phase is performed in parallel with the three other phases. This phase

consists in reporting the identified vulnerabilities, rank those in terms of severity, and

give an advice on how to mitigate the vulnerabilities that are exploitable.

The next figure illustrates the process of penetration testing 2.7.

Figure 2.7: The process of penetration testing [6].

Vulnerability scanning can be seen as automatic pen testing. Hence, it consists in using

tools called Vulnerability scanners, automatically sending malicious payloads to the SUT. Usu-

ally, vulnerability scanners are used by pen testers, benefiting of their experience in order to

use the tools effectively.

Fuzzing consists in automatically sending “random” inputs to the SUT in order to make it

crash or to launch an unintended behavior. The idea behind fuzzing is to test the behavior of

the SUT under non intended inputs. We quote random because, as the technique was originally

sending random inputs, modern techniques may also rely on the analysis of the SUT’s code

or on the smart choice of the inputs. Fuzzers may be compared in terms of effectiveness by

comparing the number of un-intended behaviors they trigger on the SUT, in a given amount of

18

time. In order to perform this comparison, one needs sets of documented vulnerable systems.

We will come back to this last technique in the next chapters.

Security Regression Testing

The technique consists in applying traditional regression testing on the security requirements

of the system. Hence, regression testing intends to create a high-coverage test suite, aiming at

giving confidence that the SUT is legit to its specification. The test suite is then used during

the maintenance phase by launching this suite after the introduction of a modification, in order

to gain confidence that the modification did not alter the system’s conformance to the original

specification.

In security testing techniques performed during the software development life-cycle, OWASP

advises to create security regression test suites to support maintenance. By this mean, it

helps the software developers not to introduce vulnerabilities while modifying the system. The

security regression test suite can take many forms, from the set of unit tests to the report of

the pen testing phase. The idea is to have, again, a coverage measure and to automate as much

as possible the testing activity.

2.3.3 Used security testing tool: Findbugs-sec

In this section, we expose a real-world static analyzer aiming at finding vulnerabilities in JAVA

code, that we utilized in our experimentation. This gives us the opportunity to illustrate the

sub-section 2.3.2, that presented static analysis and code based security testing techniques.

FindBugs [37] is an open source static analyzer for JAVA, running at byte-code level. It is

very popular as it has been downloaded more than a million times. The tool has been developed

and is currently still maintained by the University of Maryland, USA. The tool reports almost

300 different fault patterns [38] and offers the possibility to create custom plug-ins. Many fault

patterns are discovered using state machines on the class-files or by using the visitor pattern on

method byte-codes. The static analyzer is, among others, used by Google. The organization

runs it over any code being modified [38].

FindBugs is available in various forms, e.g in a maven plugin, in an eclipse plugin (figure

2.8), an IntelliJ plugin, an Android Studio plugin, a NetBeans plugin, in an Ant task, by

using the command line or by using its GUI (figure 2.9). The tool is also highly configurable,

enabling us to use filters or configure its sensitiveness to specific bug patterns. All its utilization

possibilities are documented in a user manual.

19

Figure 2.8: Findbugs eclipse plugin illustration of usage.

During our research, we used FindBugs but more specifically one of its most popular plugin,

Findbugs-sec [19]. The plugin enables Findbugs to highlight more than 110 different vulnera-

bilities. Therefore, Findbugs can, by activating this plugin, become a security static analyzer

(see sub-section 2.3.2).

The plugin is open source, and was originally developped by Philippe Arteau [19]. All the

patterns the plugin highlights are described in its documentation. A great advantage of the tool

is that every vulnerability it uncovers is justified by a CVE or NIST recommendation. This last

statement enables us to use the tool’s documented vulnerabilities in order to create real-world

mutation operators. We detail this process in chapter 4.

20

Figure 2.9: Findbugs’ GUI illustration of usage.

21

Chapter 3

Mutation Security Testing

This chapter develops the state of the art of the research problem we briefly described in the

introduction. Therefore, we begin by enunciating in details the research problem we try to

handle. Then, we supply the related work partially handling the problem or related to it.

3.1 Problem statement

In chapter 2, we motivated the usefulness of mutation testing in the tests’ creation process

and stated several security testing techniques. Yet, the relation between security testing and

mutation analysis remains to be explored. Indeed, existing mutation operators, especially those

used by the JAVA mutation testing tools [23], are restricted to simple syntactic alterations and

faults. Because these syntactic modifications are unlikely to (effectively) introduce security

defects, we believe that mutation security testing requires the creation of specialized operators.

Thus, we formulate the following hypotheses that guided our research.

Non security-aware mutation operators are unlikely to incidentally generate vulnerable

mutants.

Although designing mutation operators that introduce vulnerabilities has been explored

before (see next section 3.2), it seems that there is no set of security-aware mutation operators

at code level.

Mutation operators specialized in introducing vulnerabilities at code level were never

experimented before.

In this thesis, we solve the issue by designing these security-aware mutation operators, intro-

ducing vulnerabilities rather than simple faults. For demonstration, we design these operators

22

for the JAVA language as this language is very popular to implement security-aware systems.

In the next section, we present the related work, the different ways of designing security

mutation operators that we could find and demonstrate, for each of them, their non applicability

in our context.

3.2 Related work

3.2.1 Mouehli et al.: Mutating access control models

In this work, the authors [39] aim at giving a criterion to test the access control policy of 3-tier

applications written in the ORBAC language (ORganisation Based Access Control). ORBAC is

a language specifically designed to write access control policies. It allows programmers to define

Permissions, Prohibitions, or Obligations. All these rules are defined as 5-uples of entities: the

organization, the role, the activity, the view and the context. Usually, rules specifying access

control policies are defined using 3-uples of Subjects, Actions and Objects. The 5-uples rules used

in ORBAC are actually these exact 3-uples to which the language concatenates an organization

and a context in which the rule is valid (see figure 3.1).

Figure 3.1: Illustrating how the concepts of Subjects, Actions and Objects are respectively
related to Roles, Activities and Views in order to define security rules in ORBAC [7].

The authors provide examples of those rules for a library management system. In this

system, an access control requirement can be Users are allowed to borrow a book only when the li-

brary is opened. The rule is defined as : Permission(Library, Borrower, BorrowerActivity,

Book, WorkingDays). The rule contains a specific library as organization entity, the role of a

borrower, the activities that a borrower may perform in the system, the view of a book and the

context of the working days.

23

Rules specifying access control policies may sometimes be conflicting, and ORBAC has the

advantage to propose a processing tool (MotOrBAC [40]) aiming at discovering those conflicts.

The authors state that there is no automatic way to generate secure code enhancing a

security policy. Therefore, programmers should implement themselves the Permissions, Pro-

hibitions and Obligations in the code of the application. They also state that because the

implementation of the access control rules is manual, it must imperatively be tested. In order

to perform this, the authors propose mutation operators, mutating the rules that compose the

access control policy. Using the generated mutants, the testers discover which abstract cases

they should cover. Mouelhi et al. state that the advantage of the method is that the faults

introduced specifically aim at testing the security of the SUT. However, the drawback of the

method is that imagining the mapping between the mutations and errors in the implementation,

a relatively hard task, is left to the tester. They mitigate this problem by proposing a mapping

tool between the ORBAC access control rules and the code implementing each rule.

The mutation operators are diverse: they can change the organization, role, activity, view

or context in a rule. They may also invert Permissions, Obligations or Prohibitions. Mouelhi

et al. also implemented a mutation-testing tool, as an additional part of MotORBAC.

The method is interesting but its objective is really different from what we would

like to achieve. Hence, we would like to generate vulnerabilities lying at code level

in order to be able to focus on concrete vulnerabilities when implementing a security

test-suite. The current method is limited to generating those vulnerabilities at model

level and lets the tester imagine what those abstract flaws would look like at code

level. Also, model-based mutation introduces different faults than those introduced a

the code-level [41].

3.2.2 Dadeau et al.: Mutating high-level security protocols

In this research, the authors investigate the possibility of verifying security properties (like

secrecy, authentication or data integrity) in the implementation of security protocols. Those

protocols are defined in the high-level security protocol language HLPSL and are specifically

aiming at establishing a trust-full communication link between actors1.

1Actors are participants in a protocol. In HLPSL, an actor is represented by a state-transition system where
transitions are triggered by received messages and where actions trigger messages being sent.

24

The approach proposes to mutate the model of the protocol-under-test, in order to gener-

ate abstract test cases, by validating automatically the generated mutants. The abstract test

cases obtained should then be followed as a criterion for implementing test cases on the imple-

mentation of the protocol. Thus, the authors introduce new mutation operators that aim at

introducing leaks in the models of the protocol and at representing real world implementation

faults.

The mutation operators introduce the following faults: replacing in a protocol specification

every encryption by a xor-encryption, decomposing information blocks in encrypted messages,

injecting the use of the same public key by two different actors, suppressing the verification

of message provenance in the behavior of an actor, omitting hash functions and permuting

the order of information blocks in a message. All the operators are justified by providing an

example of protocol where their usage leads to a security failure.

Aside from the fact that the method is applied at model level and that we are focusing

on code level, it also is not applicable in the context of our research. Hence, the authors

propose security-aware mutation operators for protocols whereas aim at introducing

security faults in webapps.

3.2.3 Büchler et al.: Mutating abstract model of web applications

In this work, the authors propose a semi-automatic testing technique for web applications [8].

Their methodology assumes that the penetration tester possesses a model of the webapp under

test and that the security properties (e.g confidentiality, authenticity, etc.) of the model under

test are available. Thus, the model satisfies its security properties.

The methodology is composed of four essential steps (see figure 3.2).

1. First, mutate the model using specific mutation operators specifically designed to in-

troduce vulnerabilities in the model. The mutation operators are associated to several

security properties that they threatened before, i.e in another insecure model, enabling the

methodology to use a mutation operator only if it is likely to introduce a vulnerability in

the SUT’s model. The authors list themselves the security properties that each mutation

operator threatens and gather those from the analysis of several vulnerable applications.

This step generates several vulnerable mutants, i.e insecure models that represent faulty

implementations of the SUT, where a fault led to the injected vulnerability.

2. Second, run a model checker on the vulnerable mutants. Each mutant is run with the

25

security properties of its original model. The model checker outputs a trace for every

mutant where a security property is violated (item 1 on the figure). Every trace is taken

as an abstract test case that should be mapped on a concrete test case. This step thus

generates a set of abstract test cases.

3. Next, translate each abstract test case in a concrete test case by using a 2-step mapping

(item 2 and 3 on the figure).

4. Finally, run the concrete test cases on the real system by using an automatic test execution

engine. This engine may ask help from a penetration tester when it cannot perform an

action. These actions are the abstract steps of an abstract test case that could not be

mapped to concrete actions.

Figure 3.2: Büchler et al. methodology. “Overview of the testing process” [8]

The model of the application is built using the abstract messages that it supports from

the user like the log in to the application, view the other users’ profile, etc. Therefore, an

attack trace generated by the model checker will consist in a sequence of abstract messages

sent by the user to the server. Both the model and the properties are defined in AVANTSSAR

Specification Language (ASLan++), an input language for model checkers that is dedicated to

security analysis. The 2-step mapping first consists in the translation of the message-sequence

26

attacks into an intermediate language (called WAAL: Web Application Abstract Language2)

that is independent from the webapp under test. Then, the WAAL attack trace is mapped to

a concrete sequence of actions that are described using the Selenium framework3. The help of

the penetration tester will be needed for actions that are not supported by the framework, that

fact leading to the semi-automatic nature of the methodology.

The authors explain that their mutation operators are related to real vulnerabilities that

they found in unsecured webapps. Hence they were built by the following steps:

1. First, analyze a set of vulnerable web applications and gather their vulnerabilities.

2. Next, build or obtain a secured model of these web applications, i.e the model of the web

application as it should have been implemented. Build and obtain the security properties

of the models.

3. Then, link each real world vulnerability to the security properties that it violates.

4. Finally, build a mutation operator working at model level that introduces, at model

level, an equivalent to each real world vulnerability considered. Then, verify that every

mutation operator is actually capable of generating a vulnerable mutant. That step is

realized by generating a mutant in order to run it on the model checker and verify that the

security properties it should violate are indeed violated. The whole process furnishes to

the authors a set of t-uples (mutation operator, security property violated by the operator).

The authors evaluate their operators on a case study. Hence, they state that the appli-

ance of their operators helped them at finding vulnerabilities in an unsecured web application,

WebGoat4.

2WAAL is an abstract language that enables the specification of actions that a user must perform using the
browser and the specification of verifications to be performed on the server’s response. WAAL is used here to
describe a set of actions to perform by using the browser. Its interest as a layer between the trace given by the
model checker and the concrete test is to define the exact actions and verifications to perform in order to conduct
the test. This enables the penetration tester to perform the test himself by using the WAAL specification of the
test.

3Selenium is an open source portable testing framework for web applications. It provides support in several
programming languages including C#, JAVA, PHP, Python and Scala. The tests consist in actions performed
at browser level and in the analysis of the browser’s responses.

4WebGoat is an intentionally vulnerable web application developed by OWASP.
https://www.owasp.org/index.php/Category:OWASP WebGoat Project

27

Again, the method relies on operators working at model level. However, the authors

explain that they possess a mapping between real world vulnerabilities and vulner-

abilities at model level. This mapping could be interesting to analyze, in order to

inject those real world vulnerabilities. Unfortunately, Büchler et al. do not detail

their operators.

3.2.4 Mutating C programs by introducing memory manipulation issues

Memory faults may lead to a large diversity of vulnerabilities. Nanavati et al. state that mem-

ory faults have led before to vulnerabilities such as uninitialized memory access, buffer overruns,

invalid pointer access, beyond stack access, free memory access or memory leaks in C appli-

cations. Moreover the authors add that these memory faults have been ranked in the top 25

most dangerous programming errors by CWE SANS. Therefore, the authors introduce Memory

Mutation Operators (MeMOs) capable of injecting common memory faults in C programs in

order to enable mutation testing for security. Thus, Nanavati et al. focus on one specific class

of vulnerabilities when testing the security of an application. Moreover, the authors prove the

applicability of their mutation operators by killing the mutants they generate on 16 subject

C programs. Their operators are composed of three categories: uninitialized memory access,

faulty memory allocation and faulty heap management.

This approach towards security-aware mutation operators in C has also been experienced

by Shahriar and Zulkernine [42]. Hence, Shariar and Zulhernine propose 12 mutation oper-

ators that mutate ANSI C standard library functions, modify buffer size arguments in ANSI

C standard library functions, mutate format strings, increase buffer variable sizes and remove

null character assignment statements. These operators are designed for their capacity in in-

troducing vulnerabilities that are potentially exploitable to perform a Buffer Overflow5 attack.

The authors demonstrate the applicability of their mutation operators on four case studies, by

killing most of the mutants they generate using their operators.

Ghosh et al. [43] also mutate C programs in order to identify software chunks that may

threaten security properties when mutated (altered). The idea is to leverage those code snip-

pets to the programmer in order to raise its awareness about those locations where a security

property violation is possible. Moreover, their goal is to show the programmer or analyst how

badly the software could behave at specific locations, if it was altered. The authors justify their

approach by stating that rather than searching for flaws in software, they simulate the effects

5A Buffer Overflow is an overflow in data buffers that might lead to the corruption of neighboring variables [42].

28

of flaws in software and leverage locations where fault-tolerant mechanisms might be needed.

Their methodology has been implemented in a tool named the Fault Injection Security Tool

(FIST). It performs white-box dynamic security analysis of the SUT using program inputs, fault

injection and security assertion verification for programs written in C and C++. Hence, it con-

sists in running the mutants with legal, random, and illegal inputs and controlling their state for

violations of security assertions that are a priori provided by the analyst. If a security assertion

is violated, the fault and the input that triggered the violation are recorded for further analysis.

In their study, Ghosh et al. propose several types of mutation operators. They name their

types of operators buffer overflow, data corruption, string manipulation and fault composition.

The buffer overflow operator overwrite the return address of the stack frame in which the buffer

is allocated with the address of the buffer itself. Also, the buffer is filled with machine in-

structions by the operator. These machine instructions will thus be run whenever the program

reaches the return point that was modified, resulting in the corruption of the program state and

the possible violation of a security assertion. The data corruption operators consist in simple

syntactic changes in booleans, characters, strings, integers and doubles. For instance, these

operators apply a negation to a boolean value or substitute a character with a random other,

randomly chosen in the ASCII table. The string manipulation operators also consist in some

rather simple syntactic changes. For instance, these operators truncate strings or substitute a

string with a randomly generated other. The last type of operator consists in the possibility to

compose faults, by composing the previously introduced mutation operators.

The data corruption operators are very close to standard mutation operators, and we thus

will not need to re-implement those in our study. Moreover, in all the operators they introduce,

only the buffer overflow operator seems to specifically aim at introducing vulnerabilities.

In every explored method, the authors have found an effective set of mutation op-

erators that is actually capable of injecting vulnerabilities at code level. However,

the vulnerabilities they inject are not applicable in our context. Hence, all of their

mutation operators consist in the introduction of memory manipulation faults in C

programs. As all these memory manipulations make use of memory functions that

are specific to C, these operators are not applicable in our context of JAVA Web

Applications.

In the next section, we summarize the state-of-the-art that we just explored in the sections

3.2.1 to 3.2.4.

29

3.2.5 Conclusion

Using mutation for security purposes was explored at the model-level by Mouehli et al. [39]

where the authors mutate access control models to qualify security test suites. Operators

change user roles and allow actions, deleting policy rules or modify their application context.

Dadeau et al. defined operators that introduce leaks in a high-level security protocol [44].

Büchler et al. considered mutating the abstract model of a web application by removing au-

thorization checks and un-sanitizing data [8], but they do not detail the operators. Though

such operators also take inspiration from actual vulnerabilities, model-based and code-based

mutation exercise different faults [41], these works are thus not directly applicable to ours.

To the best of our knowledge, there is no set of security-aware mutation operators at code

level that suits our context. Perhaps the closest related work is that of Nanavati et al. [45],

Shahriar and Zulkernine [42] and Ghosh et al. [43] that defined mutation operators related to

the memory related faults. As explained in section 3.2.4, all these operators introduce memory

manipulation issues in C programs (such buffer overflows, uninitialized memory allocations,

etc.), which may be exploited by security attacks. As these operators make heavy use of

memory allocation primitives, specific to the C language, they are not applicable to our context

(JAVA webapps) and are not targeted at generating a wide range of security issues.

30

Chapter 4

Security aware mutation operators

In this chapter, we address our research problem by stating possible security-oriented mutation

operators. First, we present the procedure we followed to shape the operators in section 4.1.

Then, we articulate the abstract definition of these operators in section 4.2. Finally, we also

give technical details about their implementation in section 4.3.

4.1 Mutation operators definition procedure

This section presents the process we followed to design our mutation operators.

Security related issues have received little attention by the mutation testing literature. As

a result, it lacks operators that introduce security bugs. While security bugs are more or less

well studied, there is no clear definition that we could use. Therefore, for the purposes of this

study we will use the following definition: a security bug is a piece of code that can lead to one

or several vulnerabilities in an application.

Research on software security developed a number of techniques to identify vulnerabilities

in source code. We have seen such a (effective) technique, static analysis in chapter 3. As we

explained, static analyzers aim at identifying occurrences of problematic code patterns. Such

tools applied to security detect security bugs by highlighting potentially vulnerable code pat-

terns based on common vulnerability patterns. In view of this, we propose to leverage their

knowledge and gather a set of common security bugs, which we can turn into injectable faults.

These faults can form our mutants and support security testing.

By gathering the security patterns supported by known static analysis tools, we can identify

certain types of security related faults. Unfortunately, these patterns only detect the presence

31

of a potentially vulnerable code and not the needed transformation to inject a vulnerability.

Indeed, a security mutation operator identifies a non-vulnerable code pattern and turns it into

a vulnerable one.

Therefore, in order to define our operators, we transformed every occurrence of a vulnerable

pattern we could gather in its non-vulnerable functional equivalent version. This was not a

trivial task as it required manual analysis and comprehension of the vulnerability classes.

Figure 4.1: Process followed to design security-aware mutation operators.

provides

Vulnerable code pattern

Non vulnerable pattern

Manually revert Mutation operator

For the purposes of the present study, we used the security patterns of a well-known static

security bug analyzer, named FindBugs-sec plugin. All the patterns we used are described

in the plugin’s documentation [19]. We believe that these patterns are suitable for our pur-

32

poses as most of them form real-world security bugs, this being shown with CVE1 and NIST2

references. We detail our operators in the next section. We illustrate our process with figure 4.1.

The next step was to implement those operators in a JAVA mutation tool. After investigat-

ing which tool to use (see chapter 2), we implemented our operators in a popular open source

mutation tool called PITest [3]. We explain briefly the implementation of our operators in PIT

and, more generally, how mutation operators are implemented and used in the tool in section 4.3.

While implementing our operators, we manually reviewed them. In order to check the

viability and the correct implementation of our operators, we generated by their use several

vulnerable sample programs. By viability checking, we mean verifying that the vulnerabilities

did not compromise the class in which they were introduced.

4.2 High level definition of the operators

Table 4.1 couples acronyms to a short description for each of the security-aware mutation op-

erators we propose.

In this section, we will give for every operator its application Context, the vulnerability it

is trying to generate in the Goal section, and a short specification of its implementation in the

Specification section. Table 4.1 also sorts the different operators by their nature and by their

implementation design. We present the operators in the next sections.

Replacing secured objects with unsecured:

In this section, we present the mutation operators that replace secured objects with unsecured.

Use predictable pseudo random number generator (UPPNRG).

Context: In secure-aware contexts and more specifically in encryption, developers need Pseudo

Random Number Generators for features like salts and keys generation. In order to avoid

prediction easing an undesired decryption, the PNRGs used in this context should be

unpredictable.

1CVE: Common Vulnerabilities and Exposures : is a database of known information-security vulnerabilities
and exposures maintained by the MITRE corporation.

2NIST: The National Institute of Standards and Technology publish technical reports about many subjects
in IT. Moreover, they often publish reports regarding common vulnerabilities and good practices for security
engineers.

33

Table 4.1: Security-aware Mutation Operators

Acronym Name

Replacing secured objects with unsecured:
UPPRNG USE PREDICTABLE PSEUDO RAND NUM GEN
UWMD USE WEAK MESSAGE DIGEST
REIS REMOVE ENCRYPTION IN SOCKET
PSQLI PERMIT SQL INJECTION

Removing security features on java objects:
XMLPVXEE XML PARSER VULNERABLE TO XEE
XMLPVXXE XML PARSER VULNERABLE TO XXE
UC UNSECURE COOKIE
RHTTPOFC REMOVE HTTPONLY FROM COOKIE

Weakening encryption algorithms:
URSAWSK USE RSA WITH SHORT KEY
UBFWSK USE BLOWFISH WITH SHORT KEY

Removing standard sanitization functions:
RPTS REMOVE PATH TRAVERSAL SANITIZATION
RRS REMOVE REGEX SANITIZATION

Replacing strong with weak encryption algorithms:
UDESISE USE DES IN SYMMETRIC ENCRYPTION
UECBISE USE ECB IN SYMMETRIC ENCRYPTION

Removing authentication mechanisms:
RHNV REMOVE HOST NAME VERIFICATION

Goal: The UPPNRG operator’s goal is to make the application vulnerable to predictable random

number generator exploiting attacks. The success of these attacks can lead to various

security leaks regarding the confidentiality, authorization, etc. of the application.

Specification: The operator trades unpredictable PRNGs’ usages for predictable PRNGs’ us-

ages.

Use weak message digest (UWMD).

Context: Message digests, or hashing functions, are very often used to assure the integrity

of received data. They may also be used in authentication mechanisms. However, some

hash functions are weak because of their high collision degree: in this case, for a hashed

34

string, a malicious user can easily craft another string producing the same hash.

Goal: The UWMD operator introduces a vulnerability in integrity checking of received data or in

authentication mechanisms by replacing a secured hash function (i.e, SHA-256) use with

a unsecured hash function (MD5).

Specification: It recognizes hash function utilization and replaces those by MD5 usage.

Remove encryption in socket (REIS).

Context: Web applications very often need to communicate with users using a encrypted

channel. Indeed, confidential data such as passwords or e-mail addresses should never be

exchanged unencrypted. A safe channel is commonly implemented using SSL on HTTP.

Goal: The REIS operator weakens the confidentiality of exchanged data, exposing the appli-

cation to a confidentiality leak.

Specification: It removes the use of SSL in https sockets.

Permit SQL injection (PSQLI).

Context: SQL injections exploit the fact that the web application uses input(s) from the

user to build an SQL query that will be executed by a Data Base Management System

(DBMS). The idea of the SQL injection is to inject SQL code in the inputs that are used

to build the query, in order to maliciously alter the database and/or get access to private

information. To prevent these attacks, JAVA APIs provide methods to prepare/encode

queries and send them without their external inputs to the DBMS, requiring these inputs

separately from the user. The DBMS that received the encoded query waits for the arrival

of the inputs in order to finalize the construction of the query and execute it. Using this

solution, it is not possible anymore for an attacker to play with the SQL-syntax to create

tainted queries as the semantic of the query is computed without taking account of the

inputs values.

Goal: The PSQLI operator tries to weaken the web application’s protection against SQL-

injection attacks to expose it to various security leaks potentially threatening its confi-

dentiality, integrity, and authentication mechanisms.

Specification: It detects usages of SQL injection-proof APIs for query executions and replaces

such usages by unsecured APIs query executions.

35

Removing security features on JAVA objects:

In this section, we detail the mutation operators that remove security features on JAVA objects.

Make XML parser vulnerable to XML external entity expansion attack (XMLPVXEE).

Context: Web services often parse XML documents, to communicate with other web services

in a standardized way. A known attack is the billion laughs attack which is an instance

of a denial of service attack on XML parsers that require them to exponentially expand

the tree with dummy text (“LOL”). However, one can prevent this attack by enabling a

standard security option on the XML parser.

Goal: The XMLPVXXE operator introduces a vulnerability in external XML parsers to expose

the application to DOS attacks.

Specification: The operator disables standard security options of the XML parsers just before

the XML parser begins parsing. It performs this task by identifying methods used on

standard XML Java parsers, like XMLReader or SAXParser instances.

Make XML parser vulnerable to XML external entity attack (XMLPVXXE).

Context: For this operator, we add to XMLPVXEE’s context that the attacker has access to

the XML document parsing result. The hypothesis we added enables XXE attacks to be

performed on the XML parser. Indeed, the attack’s goal is to access to confidential (or

unauthorized) files. Thankfully, XML parsers provide standard options restricting usage

of commonly used XML tags in XXE attacks.

Goal: The XMLPVXXE operator aims at introducing a vulnerability to XXE attacks on XML

parsers that are used by the application under test.

Specification: In a similar way as the XMLPVXEE operator, the XMLPVXXE operator disables XXE

security options on XML parser objects. It disables this options just before a parsing

begins, in the code of the application.

Unsecure cookie (UC).

Context: Cookies are defined by the HTTP protocol as pieces of information sent by the

server to the client’s browser. Some cookies can store secret values that prove a client’s

authentication and must therefore be encrypted using SSL during communication. Cook-

ies are meant to be sent by the browser with each request from the client, disregarding the

36

secured-nature of the communication. To make sure that a browser will not send a sensi-

tive cookie in an unsecured HTTP communication by mistake, a secure flag can be set on

the cookie, asking the browser to send this cookie only during HTTPS communications.

Goal: The UC operator allows to send sensitive cookies during unsecured HTTP communica-

tion. The mutation can lead to authentication leaks. Confidentiality and authorization

leaks can also potentially be introduced by the operator.

Specification: It removes the call to standard methods setting the secure flag on cookies.

Remove HTTP-only flag from cookie (RHTTPOFC).

Context: Even if a cookie was sent using an HTTPS communication, web pages’ scripts can

access it on the client-side by asking the browser concrete access to the sessions’ cookies.

An attacker may get access to those cookies on the client-side by using a cross-site scripting

(XSS) attack. To prevent this, cookies have an HttpOnly flag asking the client’s browser

to not share this cookie with scripts. Of course, the flag mitigates the risk and does not

remove it, since it relies on the trust in the browser.

Goal: The RHTTPOFC operator exposes the web pages to such cookies confidentiality leaks.

Specification: It removes the call to the methods setting the http-only flag on cookies.

Weakening encryption algorithms:

In this section, we present the mutation operators that are weakening encryption algorithms.

Use RSA with short key (URSAWSK).

Context: RSA is an asymmetric encryption algorithm used in web applications to exchange

confidential data. Over time, with the improvement of computation power, the RSA

algorithm needs longer keys to keep the exchange secured and to resist to brute force

attacks. NIST3 recommends the RSA keys to be at least 2048 bits long.

Goal: The URSAWSK operator tries to weaken RSA encryption so that brute force attacks are

possible, allowing confidential data to leak.

Specification: It detects the use of RSA encryption with a sufficient key size and sets its to

512 bits.

3http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf

37

Use Blowfish with short key (UBFWSK).

Context: Blowfish is a variable key size symmetric encryption algorithm five times faster than

triple DES. Just like RSA, Blowfish could also be used with a insufficient key size (less

than 128 bits).

Goal: The UBFWSK operator tries to weaken Blowfish encryption to expose the application to

brute force attacks, thus allowing data to confidentiality leaks.

Specification: When the operator detects the usage of Blowfish with a sufficient key size, it

sets the key size to 64 bits.

Removing standard sanitization functions:

In this section, we present the mutation operator that remove standard ways of sanitizing inputs

coming from an external user.

Remove path traversal sanitization (RPTS).

Context: Web applications may often provide internal file access to external users. This feature

is commonly designed by asking the user the name of the file he wants access to.

Goal: The RPTS operator introduces a vulnerability which allows a malicious user to enter a

path where a file name was required. This attack may give him access to directories or

files regardless of the webapp’s file access policy.

Specification: The operator simply removes (input) file names sanitization functions, generally

used to avoid this vulnerability.

Remove regex sanitization (RRS).

Context: Modern websites are following the idea of WEB 2.0, enabling the participation of

external users to the content of a web page. Thus, web applications can store a lot of

content coming from external users. To prevent storing malicious users’ content, web

applications commonly validate the inputs coming from external sources using regular

expressions.

Goal: The RRS operator tries to introduce vulnerabilities in external input filters of a web

application.

Specification: It detects regular expressions usages and replace them by a dummy expression,

which is always true.

38

Replacing strong with weak encryption algorithms:

In this section, we explain the mutation operators that replace strong encryption algorithms

usages with weak encryption algorithms usages.

Use DES in symmetric encryption (UDESISE).

Context: In secured web applications, symmetric encryption is often very valuable to exchange

sensitive data with external users. Data Encryption Standard (DES) was a popular

symmetric encryption algorithm that became nowadays sensitive to brute force attacks

due to the great advances in computer performances. Therefore, web applications should

prefer other symmetric encryption algorithms, like AES.

Goal: The idea of the UDESISE operator is to weaken the confidentiality of symmetrically

encrypted data, exposing it to leaks.

Specification: It detects the usage of a symmetric encryption algorithm and replaces it with

DES encryption. This operator requires to modify several JAVA code lines. Though,

PIT’s architecture wasn’t designed for this kind of modifications. Therefore, UDESISE is

still under review but our initial implementation provides promising results.

Use ECB in symmetric encryption (UECBISE).

Context: Symmetric encryption may be done using different modes, describing how the al-

gorithm should encrypt a message, that is split in blocks of fixed size. The Electronic

CodeBook (ECB) mode encrypts two identical blocks into two identical ciphered blocks,

introducing redundancy in the encrypted message, which makes it easier for an attacker

to decrypt the message.

Goal: The UECBISE operator tries to weaken the confidentiality of symmetrically encrypted

data by easing its decryption using ECB mode.

Specification: It detects the usage of a symmetric encryption algorithm and replaces its mode

by ECB.

39

Removing authentication mechanisms:

In this section, we present an operator removing authentication mechanisms that are present

in the code of a Web Service for instance.

Remove host name verification (RHNV).

Context: A web application needing to authenticate its clients may verify their host names,

usually after a successful SSL handshake.

Goal: The RHNV operator removes this authentication, making the application vulnerable to

man-in-the-middle attacks.

Specification: It removes standard methods used to authenticate clients using their host names.

4.3 Implementation details

In this section, we give implementation details about PIT in order to support future research

using the tool. Hence, PIT’s mutation operators’ design was not imagined to be able to perform

complex mutations and we hope that this contribution will help those that are reluctant to use

the tool at first glance. We also give more details about the precise behavior of our mutation

operators, in order to support future improvements of our work.

PIT is a JAVA mutation testing tool working at byte-code level, i.e it does not have to com-

pile its mutants but rather mutates the code of the program under test at byte-code level. The

tool relies strongly on a byte-code manipulation library named ASM for its mutation operators’

implementation. Hence, the library proposes JAVA objects that read a class byte-code and

write what they have read in a buffer. However, these objects may be tuned in order to modify

what they write on specific byte-code lecture. This enables to create mutation operators, that

trigger mutations simultaneously while the reading a class and writing a mutant (see figure 4.2).

In PIT, the library was used to go through the byte-code of a class under test, identify

method declaration parts of the class, and read line by line the code of the identified methods

while triggering mutations on the go.

40

Figure 4.2: ASM objects that are reading Foo.class’s byte-code and triggering a mutation
while the lecture is ongoing.

Foo.class

Byte code lecture

Byte code lecture

Byte code lecture

Byte code lecture

Byte code lecture

Foo.class
Mutant

ASM objects specifically tuned in order to
represent a Mutation Operator

Should I mutate this? … no

Mutation writing

Byte code writing

Byte code writing

Byte code writing

Byte code writing

Should I mutate this? … no

Should I mutate this? … no

Should I mutate this? … no

Should I mutate this? … yes ! Mutated byte code

ASM4 implements the features we just described in the following way.

First, it proposes to use a ClassReader, a class to which a programmer can pass byte-code by

using the constructors of the class, e.g ClassReader(byte[] b) or ClassReader(InputStream

is). In PIT, the ClassReader is used to read the byte-code of the program under test.

The ClassReader extends the ClassVisitor class which follows the visitor design pattern,

and that is used to visit byte-code JAVA classes. Moreover, the ClassVisitor owns some meth-

ods like visit(int version, int access, String name, String signature, String su

perName, String[] interfaces) to visit the header of a class, visitAnnotation(String

desc, boolean visible) to visit the annotation of a class, or visitMethod(int access,

String name, String desc, String signature, String[] exceptions) to visit a method

of a class. The visit methods can be very fine grained. Hence, there is a visit method for almost

any byte-code instruction composing a JAVA class. The attributes passed to a visit method

are filled during the lecture of the byte-code of a class.

4The ASM JAVA byte code manipulation framework is detailed at http://asm.ow2.org/, the website provides
several tutorials and a user guide. In this work, we used the fourth version of the library.

41

Next, it offers the possibility to connect a ClassVisitor to another one by providing the

first with the reference of the other. In this case, whenever the first ClassVisitor visits some

code by calling one of its visit method, it also calls the same visit method of the other. The

real benefit of connecting ClassVisitor’s is to create a chain of visitors by the following way

(see figure 4.3).

1. First, create a ClassReader. Then, connect one ClassVisitor to this ClassReader.

Hence, while the ClassReader reads the class under test, the visitX methods of its parent

are called. Therefore, the ClassReader sends anything it visits to the ClassVisitor to

which it is connected.

2. Then, create a specific ClassVisitor named ClassWriter that aims at writing anything

it visits in a byte-code array. Finally, connect the ClassWriter to the ClassVisitor.

Figure 4.3: A chain of ClassVisitor’s reading Foo.class bytecode.

ClassVisitor ClassWriterClassReaderFoo.class

I saw this byte code line I saw this byte code line

Foo.class

This gives us a chain of ClassVisitors and anything being read by the ClassReader is

writen by the ClassWriter. Should we modify the ClassVisitor lying between the ClassReader

and the ClassWriter, we could make the ClassWriter write alterated versions of the class being

read. The default behavior of a ClassVisitor is to send anything it visits to the ClassWriter,

42

as we explained before. Hence, it calls the visit method of the ClassReader after visiting him-

self the code that the ClassReader orders him to visit. By creating a child of a ClassVisitor

and by overriding one of the inherited visit methods, one can create a stop point in the lecture

of the class that is triggered by the overidden visit method. Thus, this stop point is triggered

by a specific byte-code instruction being read. In the core of the overriden visit method, a

programmer may define additionnal byte-code instructions to send to the ClassWriter. Or, a

programmer may also suppress the call to the ClassWriter in order to delete instructions that

the ClassWriter should write. Henry Coles [3] exploits this idea by extending a ClassVisitor

class for each mutation operator he created. Hence, in the core of the overriden methods, he

states the byte-code to be added or to be removed, his custom class forming a ready-to-go

mutation operator (see figure 4.4).

Figure 4.4: A chain of ClassVisitor’s reading Foo.class bytecode and mutating it when
reading specific byte code lines.

ClassVisitor’s
child

=
mutation operator

ClassWriterClassReaderFoo.class

I saw this byte code line
Yes, I send this

mutated byte code line

Foo.class

Should I
mutate this
byte code

line?
No, I send this non modified

byte code line

MutantOf
Foo.class

Moreover, the ClassVisitor’s lying between the ClassReader and the ClassWriter are

very specific in PIT as those are MethodVisitor’s. A MethodVisitor is a class that works

in the same way as ClassVisitor’s, but is specifically designed to read byte-code instructions

lying in methods. Therefore, PIT’s mutation operators are restrained to modifications of in-

43

structions lying inside methods of the class-under-test.

Although ASM is very powerful, it was engineered focusing on performance. Therefore, the

library is usually used by performing a single reading of a class and triggering the modifications

on the go. This has a serious impact on the mutation operators’ implementation possibilities.

Hence, one cannot perform very complex changes using the library. For instance, the removal

of a code pattern conditioned by another code pattern that must appear later in the class under

lecture is impossible to describe.

In the next sub-sections, we state the implementation of each of our mutation operators.

Note that in 4.2, for each abstract mutation operator, we supplied one specification. However,

this specification could be satisfied in many ways. Hence, for instance, there are many ways to

use Message Digests in JAVA but we limited ourselves to the standard java.util.Digest to

replace secured digests with MD5 (UWMD). In our research, we usually limited ourselves to

one implementation supplied for each specification but many others should be considered for

the future work.

Replacing secured objects with unsecured

UPPRNG: Use Predictable Pseudo Random Number Generator

The mutation operator replaces any call of secureRandom.nextBytes(byteArray) by

(new Random).nextBytes(byteArray) where secureRandom is an instanciated SecureRandom

object.

The use of Random instead of SecureRandom injects a predictable pseudo random number gen-

erator use. This mutation operator can therefore lead to weaknesses in secure communications

or encryption. Thus, it facilitates the work of the attacker.

UWMD: Use Weak Message Digest

This mutation operator replaces any call to new MessageDigest("X") constructor by new

MessageDigest("MD5"). The java.security.MessageDigest class provides the functional-

ity of a message digest algorithm, such as SHA-1, SHA-256 or MD5. One specifies the desired

algorithm with the String X passed to the constructor. In the implementation of our opera-

tor, X represents any string. Therefore, the operator may lead to equivalent mutants when X

is already MD5. This operator can introduce weaknesses in hashes because of high collision

inherent to the MD5 hashing function.

44

REIS: Remove Encryption In Socket

Operator that replaces an instance of (Socket) SSLSocketFactory.getDefault().create

Socket("address", portNumber) by (Socket) SocketFactory.getDefault().createSocke

t("address", 80). This operator will create a Socket that uses HTTP instead of HTTPS.

It can lead to unencrypted communications that can be read by an attacker intercepting the

network traffic.

PSQLI: Permit Sql Injection

Mutation operator that replaces the initialization and the execution of a PreparedStatement

by the initialization and execution of a Statement, thus enabling SQL injection.

For the operator to be applied, the following pattern must be found in one method:

PreparedStatement preparedStatement =

connection.prepareStatement("querryContainingOneOrSeveral’?’");

preparedStatement.setX1(1, value_1);

.

.

.

preparedStatement.setXn(n, value_n);

// where Xi are in {Float, Double, Boolean, Long, String, Int}

preparedStatement.execute() or executeQuerry() or executeUpdate();

The operator will only change the last line of the pattern to

connection.createStatement().execute("querry where ’?’ are replaced by the val

ues set before").

Hence, the operator keeps the assignments of each input value in the PreparedStatement

e.g when it recognizes a updateSales.setString or a updateSales.setInt, etc.

45

For instance,

PreparedStatement updateSales = conn.prepareStatement("update COFFEES set SALES = ?

where COF_NAME = ?");

updateSales.setInt(1, nbSales);

updateSales.setString(2, coffeeName);

updateSales.execute();

will be mutated to

PreparedStatement updateSales = conn.prepareStatement("update COFFEES set SALES = ?

where COF_NAME = ?");

updateSales.setInt(1, nbSales);

updateSales.setString(2, coffeeName);

conn.createStatement().execute("update COFFEES set SALES = ’"+nbSales+"’ where

COF_NAME = ’"+coffeeName+"’");

This mutation operator can lead to SQL injections because of the security a PreparedState

ment proposes and that a Statement does not support. Hence, a PreparedStatement sends

the precomputed query without its inputs (coffeeName and nbSales) to the DBMS. Then, the

DBMS waits for the inputs that are sent in a second step in order to finalize the construction of

the query and execute it. In a Statement, the query is built with its inputs before sending it as a

String to the DBMS. Thus, an attacker may insert SQL code in the inputs in order to modify

the result of the query. For instance, giving the following character sequence coffeeName

= "randomName’ or ’a’=’a"; for the coffeeName input will update all the SALES of the

COFFEES.

Removing security features on JAVA objects

XMLPVXXE : Make XML parser vulnerable to XML eXternal Entity attack

This operator has two different implementations. Hence, there are several ways to create XML

parsers’. In our research, we considered two different implementations for this operator. One

implementation removes a DDOS sanitizing feature on org.xml.sax.XMLReader, the second

achieves the same operation on a javax.xml.parsers.SAXParserFactory that is used to create

a javax.xml.parsers.SAXParser.

XMLReader’s implementation : The mutation operator injects XMLReader.setFeature("

http://apache.org/xml/features/disallow-doctype-decl", false); before any call of

XMLReader.parse(InputSource). This operator will make the XMLReader vulnerable to XXE

attacks if it parses input from an external source.

46

SAXParser’s implementation : The mutation operator injects saxParserFactory.set

Feature("http://apache.org/xml/features/disallow-doctype-decl", false); before any

call of saxParserFactory.newSAXParser().

This operator will make any SAXParser created by saxParserFactory vulnerable to XXE

attacks.

XMLPVXEE : Make XML parser vulnerable to XML eXternal Entity Expansion

attack

Similarly to XMLPXXE, this operator has two different implementations.

XMLReader’s implementation : The mutation operator injects xmlReader.setFeature(

XMLConstants.FEATURE SECURE PROCESSING, false); before any call of xmlReader.parse(

InputSource);.

The call of xmlReader.setFeature(XMLConstants.FEATURE SECURE PROCESSING, false); will

disable the checking for DOS attacks before parsing. Therefore, the operator will make an

XMLReader vulnerable to DOS attacks.

SAXParser’s implementation : The mutation operator injects saxParserFactory.setF

eature(XMLConstants.FEATURE SECURE PROCESSING, false); before any call of saxParserF

actory.newSAXParser().

The call of saxParserFactory.setFeature(XMLConstants.FEATURE SECURE PROCESSING, false)

will disable the checking for DOS attacks before the SAXParser created parses. This mutation

operator will make any SAXParser created by the saxParserFactory vulnerable to DOS at-

tacks.

UC : Unsecure Cookie

This operator specifically aims at creating unsecured cookies in a server’s code. The operator re-

moves any call of cookie.setSecure(true); wherecookie is a javax.servlet.http.Cookie.

The instruction cookie.setSecure(true) orders to add a flag to the cookie disallowing a

browser that receives it to send it back in an insecure communication. This mutation operator

can thus enable attackers to read private information stocked in cookies, if they intercept the

communication.

47

RHTTPOFC : Remove HTTP-Only Flag from Cookie

This operator specifically aims at creating unsecured cookies in a server’s code. This mutation

operator removes any call of cookie.setHttpOnly(true); where cookie is a javax.servlet.

http.Cookie. The method cookie.setHttpOnly(true); adds a flag to the cookie sent by the

server to the browser, ordering the browser to make sure that the cookie can not be read by a

malicious script. This mutation operator can lead to session hijackings using cross-site scripting.

Weakening encryption algorithms

URSAWSK : Use RSA With Short Key

This mutation operator makes the program use a small key for RSA encryption (512bits) where

a secured-size (>=2048bits) key was used.

First, the operator mutates the initialization of the key. Moreover, it replaces any call to

keyPairGenerator.initialize(X); where X>=2048 by keyPairGenerator.initialize(512);.

Here, keyPairGenerator is a java.security.KeyPairGenerator.

In a MethodVisitor, the only way to know that the KeyPairGenerator is for RSA-use

is to have the creation of the KeyPairGenerator in the same method as its initialization.

Hence, KeyPairGenerator’s declare the algorithm they are used for at construction, e.g by

using keyPairGenerator = KeyPairGenerator.getInstance("RSA");. Therefore, the muta-

tion operator is applied only if it can find the construction keyPairGenerator = KeyPairGener

ator.getInstance("RSA") in the same method and before the initialization.

As explained before, this mutation operator can lead to weaknesses in RSA-secured communi-

cations. For instance, it facilitates a brute force attack.

UBFWSK : Use Blowfish With Short Key

This mutation operator makes the program use a small key for BLOWFISH encryption (64bits)

where a secured-size key (>=128bits) was used.

It replaces an initialization keyGenerator.init(X); where X>=128 by keyGenerator.init(64).

In a MethodVisitor, the only way to know that the KeyGenerator is for BLOWFISH-use is to

have the construction of the javax.crypto.KeyGenerator in the same method as its initial-

ization. Hence, KeyGenerator’s declare the algorithm they are used for at construction, e.g by

using keyGenerator = KeyGenerator.getInstance("BLOWFISH");.

Therefore ,the mutation operator is applied only if it can find the construction keyGenerator =

KeyGenerator.getInstance("BLOWFISH"); in the same method and before its initialization.

As stated before, this operator can lead to weaknesses in BLOWFISH-secured communications,

48

it facilitates a brute force attack for instance.

Removing standard sanitization functions

RPTS : Remove Path Traversal Sanitization

The operator removes any call to the user-input-sanitization method org.apache.commons.

io.FilenameUtils.getName(name);.

Hence, FilenameUtils.getName(name) method works in the following way:

if name = "a/b/c.txt",

FilenameUtils.getName(name) will return "c.txt".

The sanitization method prevents an attacker from accessing to the folders inside the one to

which a simple user has access. This mutation operator can therefore lead to path traversal

vulnerabilities.

RRS : Remove Regex Sanitization

For this mutation operator, we provide two implementations. The first mutates Pattern’s, the

second mutates calls to the String.matches(String regex) method.

Implementation using Patterns : One way to use regex’s in JAVA is to use the java.util

.regex.Pattern class. It is used in the following way:

Pattern p = Pattern.compile("a*b");

Matcher m = p.matcher("aaaaab");

boolean b = m.matches(); // b contains true

The Pattern defines the regular expression to be matched by using Pattern.compile(String

regex). Then, a matcher is created by using p.matcher(CharSequence input), the input con-

taining a CharSequence that should be verified against the regex. Finally, a boolean stocks

the check that the CharSequence matches the regex.

We designed a mutation operator that replaces any call to p.matches(regex) by p.matches

(dummyRegex). The regex dummyRegex is designed to let anything pass except from one rare

unicode character.

The result is that the mutation operator can suppress input sanitization and facilitate an attack.

Implementation using String.matches method : Another way to use regex’s in JAVA

is to use the java.lang.String.matches(String regex) method. It is used in the following

way:

49

String expression = "aaaaaab";

boolean b = expression.matches("a*b"); // b contains true

The input to verify is stocked in expression. Then, the method matches is used to check

whether the expression matches a regex.

We design a mutation operator that replaces any call of String.matches("aProperRegex")

by String.matches("dummyRegex"). The dummy regex is the same as in the previous imple-

mentation.

The result is thus the same as in the previous implementation, the mutation operator can

suppress input sanitization and therefore, facilitate an attack.

Replacing strong with weak encryption algorithms:

UDESISE : Use DES In Symmetric Encryption

The mutation operator’s implementation replaces the creation and initialization of a secure

symmetric encryption object (javax.crypto.Cipher) by the creation and initialization of the

object, modified to use Data Encryption Standard (DES). Hence, javax.crypto.Cipher may

be used in the following way:

// creation of the Cipher

Cipher c = Cipher.getInstance("SECUREALGORITHM/MODE/PADDING");

// initialization of the Cipher

c.init(Cipher.ENCRYPT_MODE or Cipher.DECRYPT_MODE, key);

// use of the Cipher

c.doFinal(...) or c.update(...);

First, the Cipher is created by using getInstance method. getInstance takes as a String

parameter the specification of algorithm that the Cipher should encompass. When this method

is called, the Security Provider of the application’s JAVA runtime environment is called to pro-

vide a correct implementation of the specified encryption algorithm. We do not aim in this work

at explaining how these mechanisms work in JAVA but we rather refer to the interested reader

to a JAVA security guide5. Next, the Cipher is initialized for encryption or decryption by using

init(Cipher.ENCRYPT MODE,key) or init(Cipher.DECRYPT MODE,key), respectively. Finally,

5ORACLE provides a guide that documents how the security providers are used in JAVA on the following
web-page http://docs.oracle.com/javase/7/docs/technotes/guides/security/overview/jsoverview.html

50

the Cipher is used to encrypt or decrypt text by using doFinal(...) or update(...). We do

not give the parameters of the last two methods as their different implementations are numerous.

As all our mutation operators are MethodVisitor’s, the following pattern that is found in

the core of a method triggers the mutation:

// creation of the Cipher

Cipher c = Cipher.getInstance("SECUREALGORITHM/MODE/PADDING");

// initialization of the Cipher

c.init(Cipher.ENCRYPT_MODE or Cipher.DECRYPT_MODE, key);

Thus, the operator mutates both lines by the following code:

// creation of a DES/ECB/PKCS5Padding Cipher

Cipher c = Cipher.getInstance("DES/ECB/PKCS5Padding");

// initialization of the Cipher with a DES specific key that is 64 bits long

c.init(Cipher.ENCRYPT_MODE,new SecretKeySpec(key.getEncoded()\allowbreak,0,8,"DES"));

The method key.getEncoded() returns the byte array of the key. The call to new SecretKeySpec

(key.getEncoded(),0,8,"DES") creates a javax.crypto.spec.SecretKeySpec, a key spec-

ified for DES use. The SecretKeySpec is created by truncating the previously used key to 64

bits, a standard size for a DES key. Thus, the Cipher is mutated to encrypt or decrypt DES

text’s and its initialization is in accordance with its usage. Hence, if we do not mutate the

second line, the usage of the Cipher could throw an Exception at run-time, because the key

in parameter could have a inappropriate size for DES use.

Because DES is known to be insecure, this mutation operator can lead to weaknesses in

symmetric encryption.

Unfortunately, we could not find a way to implement this operator correctly in PIT without

modifying significantly the tool’s implementation. As such a modification could lead to errors

in other parts of the tool, we tested our implementation’s draft in another project and it gave

us promising results. Therefore, we left the operator in the core of this thesis, as it highlights

the issue in PIT and to introduce its specification in the security-aware mutation operators.

51

UECBISE : Use ECB In Symmetric Encryption

Again, this mutation operator mutates Cipher objects. Hence, it replaces any initialization of a

Cipher, Cipher.getInstance("X/Y/Z") where Y is not "ECB" by Cipher.getInstance("X/ECB/Z").

If Y and Z are empty, the operator replaces the initialization by Cipher.getInstance("X/ECB/P

KCS5Padding).

The ECB mode means that if two plain-text blocks are identical, the obtained cipher-text blocks

will also be identical. The padding is a default padding.

This mutation operator can thus lead to weaknesses in encryption. Therefore, it facilitates

the decryption of a ciphered-text by an attacker by introducind a pattern redundancy in the

encrypted messages.

Removing authentication mechanisms:

RHNV : Remove Host Name Verification

This mutation operator replaces any verification of a HostName using (boolean) HostnameVe

rifier.verify(String hostname, SSLSession session) by true.

Hence, to use javax.net.ssl.HostNameVerifier.verify is a standard way to “verify that

the host name is an acceptable match with the server’s authentication scheme” [46].

HostNameVerifier is an Interface and, usually, the method HostNameVerifier.verify’s

implementation verifies the certificate of the host specified by its host-name in the SSLSession

before returning true or false.

This operator can thus lead to vulnerabilities in the authentication process of a program since

the mutant accepts any host.

52

Chapter 5

Experimentation & Discussion

In this chapter, we describe our experimentation in section 5.1 and discuss the results in section

5.2.

5.1 Experimentation

In this section, we first derive the problem discussed in chapter 3 into four formal research

questions. Then, we state the experimentation process we followed to answer these questions

in section 5.1.2. Finally, in the sub-section 5.1.3, we present the case studies we experimented

on.

5.1.1 Deriving research questions from the problem

In chapter 3, we stated the following problems :

1. Non security-aware mutation operators are unlikely to incidentally generate vulnerable

mutants.

2. Mutation operators specialized in introducing vulnerabilities at code level were never

experimented before.

In this thesis, we aim at resolving these problems. Therefore, we verify the relevance of a

new set of security-aware mutation operators, specifically tuned for introducing vulnerabilities.

For demonstrability, we focus on the JAVA language, which is very popular in web development

and other security-sensible areas of development. Nevertheless, the first step is to validate our

intuition, check that standard mutation operators are indeed unlikely to generate vulnerable

mutants. Here, we chose to focus on the mutation operators implemented in a very popular

mutation tool named PITest. This interrogation leads us to state the first research question

(RQ):

53

(RQ1) Are the standard operators of PIT likely to introduce vulnerabilities?

Next, we explore potential operators, inspiring ourselves on the expertise of a security static

analyzer (Findbugs-sec). Then, we implement those operators in PITest. The next step is to

verify our operators’ ability to introduce real vulnerabilities in real projects. This leads us to

state our second research question:

(RQ2) Does our mutation operators introduce detectable vulnerabilities?

Then, as one of the major problems in mutation testing is the number of mutants generated

but is also the main guarantee of generating quality test-suites, we explore the prevalence

of our mutation operators in open source projects. This indeed aims at assessing operators

applicability and can help prioritizing their application. Resuming our idea leads us to the

RQ3.

(RQ3) How prevalent are these types of faults on open source projects?

Finally, we explore a last but not the less important question. What if the vulnerabilities

our operators introduce were actually redundant with the faults standard mutation operators

introduce? This fact could limit our operators’ value compared to the standard ones. Therefore,

we investigate this potential threat in our last research question, RQ4.

(RQ4) Are the vulnerabilities introduced easily killed by fault oriented test suites?

In the next section, we detail the experimentation process that we followed in order to

answer our four research questions.

5.1.2 Experimentation process

During our experimentation, we first began by investigating the possibility of creating the

security-aware mutation operators. After the exploration of the state of the art summarized in

chapter 2, we took inspiration on security static analyzers, tools capable of highlighting vulner-

able patterns in the code of an application (see chapter 2). Indeed, if we are provided with both

a vulnerability pattern at the code level and its fix, we are able to design a mutation operator

introducing the vulnerable code. In this thesis, we focused on the vulnerable code patterns

that FindBugs-sec was able to identify and reverted those manually in order to construct our

mutation operators that introduce the vulnerable code patterns.

54

Then, we implemented those operators in the PITest mutation tool. We detailed our oper-

ators definition and implementation in chapter 4.

Next, we wanted to verify our operators and in a reproducible and automatic way. Also, we

wanted to evaluate our operators’ usage in real world applications. Therefore, we found four

open-source projects, two web applications and two bit-torrent clients (applications that should

be concerned with security) and generated their mutants according to our mutation operators.

More details about the case studies will be given in the next section 5.1.3. Then, we launched

FindBugs on each mutated class and on its mutants to generate FinbBugs standard reports.

The final step was to compare the report of the class to the reports of its mutant in order to

verify the correct introduction of the vulnerabilities in the mutants. This part of the process

gave us the opportunity to answer to RQ2 and RQ3.

Using the same automated process but using PIT’s original set of operators to generate the

mutants, we could answer RQ1. Hence, we generated the mutants of one of our open source

applications then assessed the number of vulnerabilities introduced in the application using

FindBugs, again.

Finally, we focused on our last research question. We could find a high coverage test suite

for one of our open source web applications. By using PIT mutation tool restricted to our

mutation operators and allowing it to run this test suite, we could answer RQ4.

5.1.3 Case studies

iTrust

iTrust1 is a web application developed and maintained by the students of NCState University

and consists of 24,785 lines of code. It provides a platform accessible to patients and doctors,

to keep track of the patient’s medical history. The project available to the public insuring its

accessibility by providing instructions for its installation2.

Vuze Azureus

Vuze3 is a popular open-source Bittorrent client, consisting of 186,247 lines of code.

1https://sourceforge.net/projects/itrust/ (version 21.0.01)
2http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=home_deployment_instructions
3https://sourceforge.net/projects/azureus/ (version 5.7.40)

55

Open-Legislation

OpenLegislation4 is an open source web application developed and maintained by the New York

State Senate. The goal of this application is to give access to several NYS’s data including bills,

resolutions and laws. It consists of 912 classes and is 33,819 lines of code

Ants Peer-to-Peer

Ant’s Peer-to-Peer is an open-source Bittorrent client5 (consisting of 19,399 lines of code), like

Vuze.

5.2 Discussion

This section discusses the results we obtained by following the process detailed in section 5.1.2.

In order to organize the discussion, we go through the results by answering every research

questions that we stated in section 5.1.1.

5.2.1 RQ1: Are PIT’s default operators likely to produce vulnerabilities?

For the exploration of this research question, we generated iTrust’s mutants using PIT, re-

stricted to its default set of mutation operators. Then, we ran FindBugs coupled to its sec-plugin

to investigate the presence of vulnerabilities in the mutants. We specifically tuned FindBugs to

check every potential issue, even those of low confidence, at the cost of performance. Because

of the high number of mutants generated for iTrust’s project (more than 44000) and the time

required to analyze one mutant (on average two minutes), we restricted the set of classes to

mutate to 33 classes.

As shown in table 5.1, PIT generated a set of 5486 mutants containing only two vulnerabil-

ities. Both vulnerabilities were related to SQL injection, and were detected on a mutant where

the mutation removed a method call and on another mutant where the mutation removed a

conditional execution. Although PIT’s standard set of operators was indeed able to introduce

vulnerabilities, their number appears to be low considering the required generation and run

time of the mutants. We therefore conclude that PIT’s standard mutation operator set doesn’t

suit security test suites evaluation, the efforts required to generate and evaluate the mutants

largely outweigh the meagre benefits in terms of introduced vulnerabilities.

4https://github.com/nysenate/OpenLegislation (version 2.2)
5https://sourceforge.net/projects/antsp2p/ (version beta1.6.0)

56

Table 5.1: We mutated iTrust with PIT’s standard mutation operator set. The table records
the number of mutants and vulnerabilities that were generated for each operator. The vulner-
abilities’ presence relays on FindBugs and its security plugin.

Operator name #mutants #Vulnerabilities

ArgumentPropagationMutator 42 0
ConditionalsBoundaryMutator 48 0
ConstructorCallMutator 431 0
IncrementsMutator 12 0
InlineConstantMutator 696 0
MathMutator 41 0
MemberVariableMutator 83 0
NegateConditionalsMutator 368 0
NonVoidMethodCallMutator 1539 1
RemoveConditionalMutator EQUAL ELSE 320 0
RemoveConditionalMutator EQUAL IF 320 0
RemoveConditionalMutator ORDER ELSE 48 0
RemoveConditionalMutator ORDER IF 48 1
RemoveIncrementsMutator 12 0
RemoveSwitchMutator 15 0
ReturnValsMutator 289 0
SwitchMutator 2 0
VoidMethodCallMutator 1172 0

Total 5486 2

5.2.2 RQ2: Are our mutation operators likely to produce vulnerabilities?

Now that we know that PIT’s standard set of mutation operators is not suitable for security

testing, our next research question investigates the extend to which our set of operators can do

better, i.e introduce more vulnerabilities. The first step required by this task is to verify our

mutations operators’ capability in introducing vulnerabilities.

To assess this problem, we first used the same generation and checking technique as in 5.2.1:

we generated the mutants using PIT and evaluated the number of vulnerabilities introduced

with FindBugs. PIT’s engine was this time restricted to our set of mutation operators. To per-

form the experiment, we manually created a sample project containing several classes, each one

implemented to trigger one specific mutation, accordingly to our set of security aware operators.

57

Due to the possibility of false positives inherent to static analyzers, we also manually imple-

mented a security test suite able to kill every (non equivalent) mutant we introduce. Overall,

we exploited an hybrid analysis composed of a static and a dynamic analysis to verify the in-

troduction of vulnerabilities. The static and dynamic analysis combined can be seen as a sanity

check. The dynamic analysis also assessed the fact that the mutation operators introduced

useable (killable) mutants.

Static analysis:

Table 5.2 reports FindBugs’ results on our sample project. RRS and UDESISE were not evalu-

ated. We chose not to evaluate RRS because it was not inspired by a FindBugs pattern, and

could therefore not be found by FindBugs. Regarding UDESISE, the operator’s implementation

is currently experimental in PIT, as the tool wasn’t designed to perform higher order mutation.

Overall, we can see that 9/13 (nearly 70%) operators generated a vulnerability that could

be found by FindBugs. We list the non-recognition causes of the 30% remaining.

• Remove Certificate Verification (RCV) The vulnerability is actually well intro-

duced. Hence, HostNameVerifier.verify(...)’s result was replaced by true in the

mutant. The vulnerability was not recognized because FindBugs identified a vulnerable

HostNameVerifier based on the HostNameVerifier’s code, not it’s usage. Indeed, for Find-

Bugs, a vulnerable HostNameVerifier is identified by a constant return true; in all its

.verify(...) methods.

• Xml Parser Vunerable to XXE/XEE (XMLPVXXE/XMLPVXEE) The vulner-

ability is also well introduced because the operator removed a secure parsing feature on

an XML reader. However, the secure original program contained the line:

XMLReader.setFeature(SecurizingFeature, true)

preceding a parsing. Thus, the mutant contained the following code:

XMLReader.setFeature(SecurizingFeature, true);

XMLReader.setFeature(SecurizingFeature, false);

XMLReader.parse(input);

Our hypothesis is that FindBugs analysed the first line to directly return that the vul-

nerability was handled by the programmer.

58

• Remove Encryption In Socket (REIS) The manual verification of the vulnerability’s

introduction led us to conclude that FindBugs’ identification pattern is limited to the

following one:

Socket s = new Socket(address,port);

The problem is that we introduced an equivalent code using a different pattern.

Socket s = SocketFactory.getDefault().createSocket(address,port);

We assume that the two manners of creating an unsecured socket are equivalent after

inspection of createSocket(...) method’s specification.

Table 5.2: Injected classes of vulnerabilities that were identified by FindBugs (with the security
plugin), in a sample project. We mutated this project and verified the presence of vulnerabilities
by comparing the static analysis reports of the mutants and the original programs. YES signifies
that the injected vulnerability was identified by FindBugs.

UPPNRG RPTSF UWMD RCV XMLPVXXE
Recognized? YES YES YES NO NO

XMLPVXEE REIS UC RHTTPOFC URSAWSK
Recognized? NO NO YES YES YES

UBFWSK PSQLI UDESISE UECBISE RRS
Recognized? YES YES / YES /

Dynamic analysis:

After designing and writing our test suite, we used PIT’s entire mutation tool, to generate the

mutants with respect to our operators and ran those against a custom-made security test suite.

The table 5.3 subsumes our results.

First, it is noteworthy that all the analysis-considered mutants were killed by the security

test suite. This is a very good result as we dreaded the difficulty of finding the introduced

security faults. We prove that killing the mutants introduced is actually feasible. Therefore,

this experience insures that the mutants introduced are actually usable in the improvement

process of a test-suite.

59

Table 5.3: Injected classes of vulnerabilities that were identified by a custom-made security
test-suite in a sample project. We mutated this project and verified the presence of vulnerabil-
ities by running a custom-made security test-suite against the mutants. YES signifies that the
injected vulnerability was identified by the suite.

UPPNRG RPTSF UWMD RCV XMLPVXXE
Recognized? YES YES YES YES YES

XMLPVXEE REIS UC RHTTPOFC URSAWSK
Recognized? YES YES YES YES YES

UBFWSK PSQLI UDESISE UECBISE RRS
Recognized? YES YES / YES YES

Although it is not reported in the tables, the operators also generated (living) equivalent

mutants. However, this fact does not affect the results since equivalent mutants are a problem

inherent to mutation testing.

Conclusion:

With regards to the previous sub sections’ results, we are now able to answer our second re-

search question. We show that we were able to introduce vulnerabilities with our mutation

operators with a double check, a static analysis that could find 70% of the vulnerabilities and

a dynamic analysis that could identify all the generated vulnerabilities. The dynamic analy-

sis eliminates the static analyzer’s false positives and eliminates its false negatives for REIS,

XMLPVXEE, XMLPVXEE and RCV. The false negatives either come from the static analyzer’s in-

completeness (REIS) or optimisations (XMLPVXXE/XMLPVXEE). Although our mutation operators

were inspired by FindBugs patterns, the vulnerabilities they produced were not all found by

the tool. Therefore, it suggests that our operators could have another applicability in static

analysis tools’ validation.

5.2.3 RQ3: How prevalent are the vulnerabilities in open source projects?

The last research question responds partly to the effectiveness comparison between our muta-

tion operators and PIT’s standard set in the goal of generating vulnerabilities. After answering

RQ1 and RQ2, we state that PIT’s set of operator is not suitable for security testing improve-

ment and that our mutation operators introduce real vulnerabilities. To end with this point,

we now would like to assess the vulnerabilities’ prevalence in real projects.

60

In the next experiment, we use PIT, restricted to our mutation operators, on four open

source projects. Table 5.4 displays the results obtained.

Table 5.4: We mutated open source projects with new operators using PIT. The purpose was
to assess the prevalence of security-oriented mutants.

iTrust VUZE OPENLEGISLATION ANTSP2P

#classes in input 405 4669 912 406
#lines in input 24,785 186,247 33,819 19,399
#classes mutated 33 30 57 9
#mutants generated 62 57 154 18

First, we notice that the number of vulnerabilities introduced does not depend on the size of

the considered project. Hence, iTrust and Vuze have a comparable number of security oriented

mutants whereas their size is significantly different. This is an interesting result since tradi-

tional mutation operators are known to exponentially generate mutants while increasing the

size of the projects on which they are applied. The fact that we do not have the same behavior

highlights the nature of our security-aware mutation operators. Hence, our operators aim at

testing security, which is a non-functional requirement whereas traditional mutation operators

aim at testing functional requirements. Therefore, the number of mutants that will be gener-

ated using our operators will increase only if the security of the SUT increases, disregarding all

the functional increments that could be made to the SUT.

While we used manual code review, we also noted that since iTrust followed the same de-

sign for a large amount of its database interaction, the feature-corresponding mutation pattern

(PSQLI) was triggered in a significant proportion. This is an interesting result if it is general-

izable. Hence, if developers tend to develop pieces of code having a similar purpose in a similar

way, the tester can be confident to have tested a large amount of security feature instances in

the project under test by using our mutation operators.

More generally, we observe the relative generated vulnerabilities’ prevalence. Hence, vul-

nerabilities are hard to find in real world projects, giving the tester too few examples to get

experience with. Having these amounts, 62, 57, 154 and 18 of vulnerabilities available in an

61

acceptable time (the generation never took more than 10 minutes) can be estimated valuable

for security testers.

To compare the prevalence of vulnerabilities generated with our mutation operators to

PIT’s standard set, let us state that every vulnerability we generate was detected by FindBugs,

whereas it took the generation of more than 5000 mutants to generate two vulnerabilities for

iTrust, using PIT’s standard operators (see RQ2). Therefore, we are confident for the appli-

cability and the scalability of the security aware operators we propose, in comparison to what

was available before.

Table 5.5 details the mutation operators generating the set of mutants which we just have

been discussing for each open source project.

Table 5.5: Number of security-aware mutants generated on four open source projects. The
table entries record the number of mutants generated per mutation operator and project. Non
referenced operators did not produce any mutants.

UPPNRG UWMD PSQLI UECBISE RRS TOTAL

ITRUST 1 0 39 0 22 62
VUZE 8 2 0 9 38 57
OPENLEGISLATION 0 0 0 0 154 154
ANTSP2P 2 4 0 11 1 18

First, we can observe that there are disparities in the mutants’ frequencies, classified by the

mutation operator applied. Hence, RSS seems to find applications easily while UPPNRG hardly

finds an application in every project. We also note that only four mutation operators were

useful in four open source projects’ review. However, as PSQLI demonstrates, an operator can

be useless in several projects and highly demonstrate its value in another.

Yet, we assume that RSS’s “popularity” is also understandable regarding its frequency in

web applications. A regex sanitization, is understandably more common than a Blowfish usage,

for instance.

We therefore conclude that many security-aware faults appear in the selected projects.

Though, we note that further case studies are required to certify these first results on the

prevalence of our operators.

62

5.2.4 RQ4: Ease of killing vulnerabilities introduced with fault-oriented test

suites

The previous research questions assess the usability of the new mutation operators in order to

improve security test suites. As we know, vulnerabilities form a subset of the possible faults in

a program. If existing fault-oriented test suites can kill the mutants generated accordingly to

security operators, there is no real need to use these operators.

To assess the research question following this interrogation, we used iTrust’s test suite com-

posed of more than 2200 tests cases and ran those (using PIT) against the 62 mutants we

generated, accordingly to our mutation operators. The mutation coverage report is detailed in

the following table.

Table 5.6: We ran 62 mutants generated using our mutation operators on iTrust against 2254
(fault finding oriented) test cases available in iTrust. We achieved this using PIT and this table
details the mutation coverage report resulting the experiment.

Mutation operator number of mutants

no coverage (total) 5
RRS 1

PSQLI 4

survived (total) 44
RRS 8

PSQLI 35
UPPNRG 1

killed (total) 13
RRS 13

Total 62

A first observation is that a minority of mutants where killed (≈21%). Although the exper-

iment should be repeated on other projects to assess the result’s representativeness, we believe

it indicates that fault-oriented test suites cannot find easily the vulnerabilities we introduce.

Therefore, we conclude that the set of mutation operators we propose suits its purpose to in-

troduce new types of faults, killable by specialized (security) test suites only.

63

We remark that, after manual reviewing the killed mutants, we found that those were killed

by regex testing suites. However, the suites did not seem to follow defined rules of design, and

did not appear being desingned to assess application’s security.

5.2.5 Threats to validity

Internal validity

Our conclusions may be threatened by the used tools. The mutation operators we proposed

were implemented in PIT mutation tool, in which all the mutation operators rely on bytecode

manipulation. Hence, PIT articulates the ASM JAVA bytecode framework as an abstraction

layer for the mutant generation, forcing the developer to follow this line while designing their

new mutation operators. The byte code manipulation being an extra difficulty to manage while

implementing the mutation operators, potential defects might influence our results. However,

we used code review on the operators’ implementation and manually inspected the generated

mutants during every experiment. Furthermore, the static and dynamic analysis we performed

in RQ2 on the generated mutants also reassures us about the correct implementation of our

operators. Hence, in RQ2, FindBugs could identify 70% of the vulnerabilities generated and a

custom-made security test-suite was able to kill all the (non equivalent) mutants.

Construct validity

In RQ1, we choose iTrust to perform the experiment because of the high diversity of security

concerns that the application should consider, inherently to its web application nature. This

feeling is also confirmed in table 5.4 as a higher percentage of classes (8%) are mutated in

iTrust, compared to the other considered projects. RQ2 ’s only purpose was to verify our

operators’ implementation. Following this idea, we mutated on average one custom-made class

per operator, specifically implemented to trigger a corresponding mutation operator. We defend

that this validation is sufficient for RQ2’s goal. For RQ3, we performed our experimentation on

2 web applications and 2 Bit torrent clients. In future work, we aim at repeating the experiment,

and increase the diversity and the number of projects to confirm the results we obtained. In

RQ4, we chose iTrust because of the availability and the high coverage of its test cases (≈94%).

The coverage was calculated using EclEmma’s coverage plugin6 for eclipse.

6http://www.eclemma.org

64

External validity

We took inspiration on patterns identified and documented by FindBugs sec plugin. It could

be questionable whether the proposed patterns could be found in practice. Nevertheless, every

pattern defined in the plugin relies on real vulnerability occurrences described in well-known

reporting authorities (NIST, CVE), as stated in the plugin’s documentation7. However, a high

percentage of cyber-security incidents are caused by the exploitation of known vulnerabilities

[47]. In our evaluations, we selected four open source projects that should be highly concerned

by security issues, inherently to their nature (Web Applications and Bit torrent clients).

7http://find-sec-bugs.github.io/bugs.htm

65

Chapter 6

Conclusion & Perspectives

This thesis introduces security-aware mutation testing operators. Inspired by common vulnera-

bility patterns, we have designed 15 new mutation operators for JAVA, which we implement in

the mutation testing engine of PIT. We used FindBugs and its security plugin to assess whether

standard PIT mutation operators are likely to introduce vulnerabilities, like those supported

by our operators, and demonstrated that they fail to do so. Our case studies validated the

purposes of our operators and revealed that certain types of vulnerabilities are prevalent in

open source projects.

This work constitutes the first step towards a relatively new direction of mutation testing

research which is the mutation-based security testing. Moreover, the major conclusions of the

work we present in this thesis were published [20] in Mutation2017, an international workshop

that aims at discussing new and emerging trends in mutation analysis. With the use of our

mutants, security related test suites can be designed and documented. Other potential uses of

our mutation operators are in education and in the systematic evaluation and comparison of

fuzzing and other security testing tools. Overall, our goal is to use mutation to define adequacy

criteria for security testing. Moreover, in the next lines, we state the potential benefits of our

approach in the security testing techniques that we presented in chapter 2.

Code based techniques and static analysis: First, the potential of our technique may

be easily highlighted in the education of security testers. Hence, our technique, in the way

of the Metasploit framework1, gathers a database of real-world vulnerabilities. Therefore, our

mutation operators may be valuable in educating the security testers by providing potential

vulnerability patterns but also by providing a correction for each of these patterns. Following

1Metasploit Pen Testing Tool is an open-source project that gathers information’s on vulnerabilities that may
be found in real-world projects. Doing so, it aims at helping penetration testing.

66

the same idea, the patterns we collect, considering future improvement, may form an effective

database to include in the Code-Based security testing techniques.

Dynamic security testing tools and techniques: Next, the operators may also be used

for generating vulnerabilities in real world projects. Here, the benefits we imagine lie in the

evaluation of security tools and/or techniques. Hence, one could compare vulnerability scan-

ners, fuzzers, or other dynamic security testing techniques by using our operators to generate

vulnerable versions of a software and see which technique is capable of discovering the most

vulnerabilities.

Regression security testing: Finally, we also consider the applicability of the new opera-

tors but also of the extended tool in the creation of security regression test suites. Hence, each

operator illustrates the usage of a secured feature in the current code of the application and

forces the tester to cover the case where the secured feature would be missing. Therefore, if one

removes one of these secured features during the maintenance phase, the regression test suite

will immediately alert the mistaking programmer. We strongly believe that this statement

forms the major impact of our research as we could not find, to the best of our knowledge,

another mutation based security testing technique covering this issue.

In the future, we plan to extend our work towards the following directions: First, we plan

to consider a much larger set of security patterns that we will mine from open source projects.

Second, we will assess our research questions on more subjects and confirm our observations

with actual tests from fuzzing tools. Third, we would like thoroughly assess the practical

benefits of our security testing metrics.

67

REFERENCES

[1] I. Gilchrist, “Software quality engineering: Testing, quality assurance, and quantifiable

improvement. by jeff tian. published jointly by john wiley & sons, inc., hoboken, nj, u.s.a.

and ieee computer society press, los alamitos, ca, u.s.a., 2005. isbn: 0-471-71345-7, pp

412: Book reviews,” Softw. Test. Verif. Reliab., vol. 16, no. 2, pp. 124–125, Jun. 2006.

[Online]. Available: http://dx.doi.org/10.1002/stvr.v16:2

[2] Y. Jia and M. Harman, “An Analysis and Survey of the Development of Mutation Testing,”

IEEE Transactions on Software Engineering, vol. 37, no. 5, pp. 649–678, Sep. 2011.

[3] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “PIT: a practical

mutation testing tool for java (demo),” in Proceedings of the 25th International Symposium

on Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016,

2016, pp. 449–452.

[4] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, and A. Pretschner, “Chapter

one-security testing: A survey,” Advances in Computers, vol. 101, pp. 1–51, 2016.

[5] G. McGraw, Software security: building security in. Addison-Wesley Professional, 2006,

vol. 1.

[6] K. Scarfone, M. Souppaya, A. Cody, and A. Orebaugh, “Technical guide to information

security testing and assessment,” NIST Special Publication, vol. 800, p. 115, 2008.

[7] C. P. . B. S. . B. F. ORBAC’s authors, “Orbac: Organization based access control http:

//orbac.org/?page id=21.”

[8] M. Büchler, J. Oudinet, and A. Pretschner, “Semi-automatic security testing of web appli-

cations from a secure model,” in 2012 IEEE Sixth International Conference on Software

Security and Reliability, June 2012, pp. 253–262.

68

[9] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on Test Data Selection: Help for

the Practicing Programmer,” Computer, vol. 11, no. 4, pp. 34–41, 1978.

[10] P. Ammann and J. Offutt, Introduction to software testing. Cambridge University Press,

2008.

[11] J. Voas and G. McGraw, Software Fault Injection: Inoculating Programs Against Errors.

John Wiley & Sons, 1997.

[12] M. Papadakis and N. Malevris, “Automatic mutation test case generation via dynamic

symbolic execution,” in IEEE 21st International Symposium on Software Reliability Engi-

neering, ISSRE 2010, San Jose, CA, USA, 1-4 November 2010, 2010, pp. 121–130.

[13] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. L. Traon, “Threats to the validity

of mutation-based test assessment,” in Proceedings of the 25th International Symposium

on Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July 18-20, 2016,

2016, pp. 354–365.

[14] T. C. Thierry, M. Papadakis, Y. L. Traon, and M. Harman, “Empirical study on mutation,

statement and branch coverage fault revelation that avoids the unreliable clean program

assumption,” in ICSE, 2017.

[15] R. Just, M. D. Ernst, and G. Fraser, “Efficient mutation analysis by propagating and

partitioning infected execution states,” in ISSTA. ACM, 2014, pp. 315–326.

[16] S. Kim, J. A. Clark, and J. A. McDermid, “Class mutation: Mutation testing for object-

oriented programs,” in Proceedings of the Net. ObjectDays Conference on Object-Oriented

Software Systems. Citeseer, 2000, pp. 9–12.

[17] C. Zhou and P. Frankl, “Mutation testing for java database applications,” in Software

Testing Verification and Validation, 2009. ICST’09. International Conference on. IEEE,

2009, pp. 396–405.

69

[18] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Integration testing using interface

mutation,” in Software Reliability Engineering, 1996. Proceedings., Seventh International

Symposium on. IEEE, 1996, pp. 112–121.

[19] P. Arteau, “Bug patterns - find security bugs http://find-sec-bugs.github.io/bugs.htm.”

[20] T. Loise, X. Devroey, G. Perrouin, M. Papadakis, and P. Heymans, “Towards security-

aware mutation testing,” in Software Testing, Verification and Validation Workshops

(ICSTW), 2017 IEEE International Conference on. IEEE, 2017, pp. 97–102.

[21] A. J. Offutt and J. M. Voas, “Subsumption of condition coverage techniques by mutation

testing,” 1996.

[22] R. Geist, A. J. Offutt, and F. C. Harris, Jr., “Estimation and enhancement of real-time

software reliability through mutation analysis,” IEEE Trans. Comput., vol. 41, no. 5, pp.

550–558, May 1992. [Online]. Available: http://dx.doi.org/10.1109/12.142681

[23] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, and N. Malevris, “Analysing and

comparing the effectiveness of mutation testing tools: A manual study,” in International

Working Conference on Source Code Analysis and Manipulation, 2016.

[24] N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison of four unit

test criteria: Mutation, edge-pair, all-uses and prime path coverage,” in Software Testing,

Verification and Validation Workshops, 2009. ICSTW’09. International Conference on.

IEEE, 2009, pp. 220–229.

[25] A. P. Mathur and W. E. Wong, “An empirical comparison of data flow and mutation-

based test adequacy criteria,” Software Testing, Verification and Reliability, vol. 4, no. 1,

pp. 9–31, 1994.

[26] T. Chekam, M. Papadakis, Y. Traon, and M. Harman, “Empirical study on mutation,

statement and branch coverage fault revelation that avoids the unreliable clean program

assumption.” ICSE, 2017.

70

[27] M. Delahaye and L. du Bousquet, “A comparison of mutation analysis tools for java,” in

Proceedings of the 2013 13th International Conference on Quality Software, ser. QSIC ’13.

Washington, DC, USA: IEEE Computer Society, 2013, pp. 187–195. [Online]. Available:

http://dx.doi.org/10.1109/QSIC.2013.47

[28] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “Mujava: A mutation system for java,”

in Proceedings of the 28th International Conference on Software Engineering, ser.

ICSE ’06. New York, NY, USA: ACM, 2006, pp. 827–830. [Online]. Available:

http://doi.acm.org/10.1145/1134285.1134425

[29] R. Just, “The Major mutation framework: Efficient and scalable mutation analysis for

Java,” in Proceedings of the International Symposium on Software Testing and Analysis

(ISSTA), San Jose, CA, USA, July 23–25 2014, pp. 433–436.

[30] T. Laurent, A. Ventresque, M. Papadakis, C. Henard, and Y. L. Traon, “Assessing and

improving the mutation testing practice of pit,” arXiv preprint arXiv:1601.02351, 2016.

[31] A. Garg, J. Curtis, and H. Halper, “Quantifying the financial impact of it security

breaches,” Information Management & Computer Security, vol. 11, no. 2, pp. 74–83, 2003.

[32] G. McGraw, “Software security,” IEEE Security & Privacy, vol. 2, no. 2, pp. 80–83, 2004.

[33] G. Tian-yang, S. Yin-Sheng, and F. You-yuan, “Research on software security testing,”

World Academy of science, engineering and Technology, vol. 70, pp. 647–651, 2010.

[34] M. Meucci, E. Keary, D. Cuthbert et al., “Owasp testing guide v4,” OWASP Foundation,

vol. 4, 2015.

[35] M. Büchler, J. Oudinet, and A. Pretschner, “Semi-automatic security testing of web ap-

plications from a secure model,” in Software Security and Reliability (SERE), 2012 IEEE

Sixth International Conference on. IEEE, 2012, pp. 253–262.

71

[36] R. Scandariato, J. Walden, and W. Joosen, “Static analysis versus penetration testing:

A controlled experiment,” in Software Reliability Engineering (ISSRE), 2013 IEEE 24th

International Symposium on. IEEE, 2013, pp. 451–460.

[37] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM Sigplan Notices, vol. 39, no. 12,

pp. 92–106, 2004.

[38] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou, “Using

findbugs on production software,” in Companion to the 22Nd ACM SIGPLAN

Conference on Object-oriented Programming Systems and Applications Companion, ser.

OOPSLA ’07. New York, NY, USA: ACM, 2007, pp. 805–806. [Online]. Available:

http://doi.acm.org/10.1145/1297846.1297897

[39] T. Mouelhi, Y. L. Traon, and B. Baudry, “Mutation analysis for security tests qualifica-

tion,” in Testing: Academic and Industrial Conference Practice and Research Techniques

- MUTATION (TAICPART-MUTATION 2007), Sept 2007, pp. 233–242.

[40] F. Autrel, F. Cuppens, N. Cuppens-Boulahia, and C. Coma, “Motorbac 2: a security policy

tool,” in 3rd Conference on Security in Network Architectures and Information Systems

(SAR-SSI 2008), Loctudy, France, 2008, pp. 273–288.

[41] B. K. Aichernig, J. Auer, E. Jöbstl, R. Korosec, W. Krenn, R. Schlick, and B. V. Schmidt,

“Model-based mutation testing of an industrial measurement device,” in Tests and Proofs,

ser. LNCS, vol. 8570. Springer, 2014, pp. 1–19.

[42] H. Shahriar and M. Zulkernine, “Mutation-based testing of buffer overflow vulnerabilities,”

in Proceedings of the 32nd Annual IEEE International Computer Software and Applications

Conference, COMPSAC 2008, 28 July - 1 August 2008, Turku, Finland, 2008, pp. 979–984.

[43] A. K. Ghosh, T. O’Connor, and G. McGraw, “An automated approach for identifying

potential vulnerabilities in software,” in Security and Privacy - 1998 IEEE Symposium on

Security and Privacy, Oakland, CA, USA, May 3-6, 1998, Proceedings, 1998, pp. 104–114.

72

[44] F. Dadeau, P.-C. Héam, R. Kheddam, G. Maatoug, and M. Rusinowitch, “Model-based

mutation testing from security protocols in hlpsl,” Software Testing, Verification and Re-

liability, vol. 25, no. 5-7, pp. 684–711, 2015.

[45] J. Nanavati, F. Wu, M. Harman, Y. Jia, and J. Krinke, “Mutation testing of memory-

related operators,” in Software testing, verification and validation workshops (ICSTW),

2015 IEEE eighth international conference on. IEEE, 2015, pp. 1–10.

[46] ORACLE, “Hostnameverifier (java platform se 7) https://docs.oracle.com/javase/7/docs/

api/javax/net/ssl/HostnameVerifier.html.”

[47] I. Schieferdecker, J. Grossmann, and M. Schneider, “Model-based security testing,” arXiv

preprint arXiv:1202.6118, 2012.

73

APPENDIX

74

Appendix A

Mutation 2017 Workshop

Publication

75

Towards Security-aware Mutation Testing
Thomas Loise∗†, Xavier Devroey∗, Gilles Perrouin∗, Mike Papadakis†, and Patrick Heymans∗

∗PReCISE Research Center,University of Namur, Belgium, Emails: thomas.loise@student.unamur.be,
xavier.devroey@unamur.be, gilles.perrouin@unamur.be, patrick.heymans@unamur.be
†SnT, SERVAL Team, University of Luxembourg, Email: michail.papadakis@uni.lu

Abstract—Mutation analysis forms a popular software analysis
technique that has been demonstrated to be useful in supporting
multiple software engineering activities. Yet, the use of mutation
analysis in tackling security issues has received little attention.
In view of this, we design security aware mutation operators to
support mutation analysis. Using a known set of common security
vulnerability patterns, we introduce 15 security-aware mutation
operators for Java. We then implement them in the PIT mutation
engine and evaluate them. Our preliminary results demonstrate
that standard PIT operators are unlikely to introduce vulner-
abilities similar to ours. We also show that our security-aware
mutation operators are indeed applicable and prevalent on open
source projects, providing evidence that mutation analysis can
support security testing activities.

Keywords-Mutation analysis; Mutation operators; Security
Testing; PIT; FindBugs

I. INTRODUCTION

Mutation testing is a popular fault-based testing technique
[1], [2]. As every fault-based technique, it provides guarantees
that the software under analysis is free from specific types
of faults [3]. The technique has attracted a lot of interest
because it forms a flexible and effective way to perform
testing. Thus, it is used to guide test generation [4], to
perform test assessment [5] and to uncover subtle faults [6].
It works by making syntactically altered program versions of
the system under test. These alterations are designed to reflect
the faults that our testing seeks for and are used for assessing
the adequacy of testing. The approach is flexible because it
relies on the introduced alterations [2]. Thus, by designing
appropriate mutations it is possible to test all structures of
a given language and almost everything that testing process
seeks for. In view of this, we design security aware mutations
that can be used to guide the testing of security related issues.
Taking advantage of the fault-based nature of the technique,
our mutations ensure that security-aware faults are not present
and through regression tests that these will not appear in
the future when the software will evolve. Existing mutation
operators, especially those used by the Java mutation testing
tools [7] are restricted to simple syntactic alterations and faults.
Hence, it is unlikely that they can lead to tests that effectively
exercise security related aspects of the applications. To deal
with this issue, we design security-aware mutations based on
common security bug patterns encoded by a well-known static
analysis tool called FindBugs-sec-plugin1 [8]. The bug patterns

1Find Security Bugs is a plugin for FindBugs and aims at identifying
security issues in Java web applications.

used by the static analysis tools aim at identifying potential
issues with the code under analysis. Therefore, they point-
out the presence of potential bugs and not opportunities for
injecting them as it is done by the mutation operators. To
cover this last point and design our security-aware mutations,
we manually analyzed the bug patterns, inferred the classes
of faults they represent and inverted them, i.e., we defined
rules that introduce these defects. We have implemented our
mutations on PIT mutation testing engine [9] and provide ini-
tial exploratory results showing its applicability and difference
from the traditional mutation operators. Thus, we applied both
the traditional and our operators on four subject programs
and validated the presence of potential vulnerabilities using
FindBugs. Our results demonstrate that traditional operators
are ineffective in introducing such security-aware faults.

Overall, our security related faults represent simple vulner-
abilities, which can form an initial step for defining security-
aware testing requirements. We believe that these require-
ments are particularly useful when building regression test
suites of web application. Furthermore, our operators can be
particularly useful in evaluating and comparing fuzzing or
other security testing tools. In summary, our paper makes the
following contributions:

1) We design 15 security-aware mutation operators for sup-
porting security mutation testing.

2) We extend PIT so that it applies both traditional and
security-aware mutation testing. To support future re-
search, we make our implementation publicly available.

3) We make an initial assessment of our operators demon-
strating their prevalence and potential weaknesses of the
traditional operators using large real-world projects.

The rest of the paper is organized as follows: Sections II
and III presents operator definition process and detail our
security-aware operators. Section IV describes our assessment
and results. Sections V and VI discus threats to validity and
related work. Finally Section VII concludes the paper.

II. MUTATION OPERATORS DEFINITION PROCEDURE

Security related issues have received little attention by the
mutation testing literature. As a result, it lacks operators that
introduce security bugs. While security bugs are more or less
well understood, there is no clear definition that we could use.
Therefore, for the purposes of this study we use the following
definition: a security bug is a piece of code that can lead to
one or several vulnerabilities in an application.

TABLE I: Security-aware Mutation Operators

Acronym Name

UPPRNG USE PREDICTABLE PSEUDO RAND NUM GEN
RPTS REMOVE PATH TRAVERSAL SANITIZATION
UWMD USE WEAK MESSAGE DIGEST
RHNV REMOVE HOST NAME VERIFICATION
XMLPVXXE XML PARSER VULNERABLE TO XXE
XMLPVXEE XML PARSER VULNERABLE TO XEE
REIS REMOVE ENCRYPTION IN SOCKET
UC UNSECURE COOKIE
RHTTPOFC REMOVE HTTPONLY FROM COOKIE
URSAWSK USE RSA WITH SHORT KEY
UBFWSK USE BLOWFISH WITH SHORT KEY
PSQLI PERMIT SQL INJECTION
UDESISE USE DES IN SYMMETRIC ENCRYPTION
UECBISE USE ECB IN SYMMETRIC ENCRYPTION
RRS REMOVE REGEX SANITIZATION

Research on software security developed a number of tech-
niques to identify vulnerabilities in source code. One such
(effective) technique is based on static analysis and seeks to
identify occurrences of problematic code patterns. Such tools
detect security bugs by highlighting potentially vulnerable
code based on common vulnerability patterns. In view of
this, we propose to leverage their knowledge and gather a set
of common security bugs, which we can turn into injectable
faults. These faults can form our mutants and support security
testing.

By gathering the security patterns supported by known static
analysis tools we can identify certain types of security related
faults. Unfortunately, these patterns only detect the presence
of a potentially vulnerable code and not the transformation
needed to inject a vulnerability. Indeed, a security mutation
operator can identify a non-vulnerable code pattern and turn
it into a vulnerable one. We transformed every occurrence
of the vulnerability patterns in its non-vulnerable functional
equivalent one in order to define our mutation operators. This
was not a trivial task as it required manual analysis and
comprehension of the vulnerability classes.

For the purposes of the present study, we used the security
patterns of a well-known static security bug analyzer, named
FindBugs-sec plugin. All the patterns we used are described in
the plugin documentation [8]. We believe that these patterns
are suitable for our purposes as most of them form real-world
security bugs that are well justified by Findbugs-sec, with CVE
and NIST references. We detail our operators in the following
Section.

III. SECURITY-AWARE MUTATION OPERATORS

Table I presents the acronyms and a short description
of our mutation operators. For each operator, we provide
its application context, its goal, and some implementation
details, i.e., how it proceeds to introduce a vulnerability in
the application under test.

Use predictable pseudo random number generator
(UPPRNG). Context: Pseudo Random Number Generators
(PRNGs) are widely used in secure-aware contexts and es-

pecially in cryptography to avoid prediction that could ease
undesired decryption. Goal: the UPPRNG operator tries to
make the application vulnerable to predictable random num-
ber generator attacks potentially leading to various security
leaks (authentication, authorization, etc.). Implementation: this
operator replaces the unpredictable pseudo random generators
from the SecureRandom class by predictable ones using the
Random class.

Remove path traversal sanitization (RPTS). Context: web
applications often provide internal file access functionalities
to their external users by requiring them to provide the
desired file’s name. Goal: the RPTS operator introduces a
vulnerability which allows a malicious user to enter a path to
access directories or files regardless of the file access policy
defined by the web application. Implementation: the operator
simply removes calls to input file names sanitization functions,
generally used to avoid this vulnerability.

Use weak message digest (UWMD). Context: message
digests, or hashing functions, are very often used to assure the
integrity of received data. However, some hash functions are
weak because of their high collision degree: in this case, for a
hashed string, a malicious user can easily craft another string
producing the same hash. Goal: the UWMD operator introduces
a vulnerability in integrity checking of received data by using
a weak hash function (i.e., MD5). Implementation: it identifies
hash function calls and replaces them by MD5 hashing.

Remove host name verification (RHNV). Context: a web
application needing to authenticate its clients may verify their
host names, usually after a successful SSL handshake. Goal:
the RHNV operator removes this authentication, making the
application vulnerable to man-in-the-middle attacks. Imple-
mentation: it removes standard methods used to authenticate
clients using their host names.

Make XML parser vulnerable to XML Entity Expansion
attack (XMLPVXEE). Context: web services often parse
XML documents, to communicate with other web services in a
standardized way. A known attack is the billion laughs attack
which is an instance of a denial of service attack on XML
parsers that require them to exponentially expand the tree with
dummy text (“LOL”). However, one can prevent this attack
by enabling a standard security option on the XML parser.
Goal: the XMLPVXEE operator introduces a vulnerability in
external XML parsers to expose the application to DOS at-
tacks. Implementation: the operator disables standard security
options of the XML parsers just before the XML parser begins
parsing. It performs this task by identifying methods used on
standard XML Java parsers, like XMLReader or SAXParser
instances.

Make XML parser vulnerable to XML eXternal Entity
attack (XMLPVXXE). Context: for this operator, in addition
to the XML document parsing feature, we also assume that
the attacker has a way to access the result of the parsing.
In this context, an XML eXternal Entity (XXE) attack can
lead to a confidentiality leak by accessing unauthorized files.
To prevent this attack, developers have to enable a standard
security option on their XML parsers. Goal: the XMLPVXXE

operator introduces a vulnerability in external XML parsers
to expose the application to XXE attacks. Implementation: it
disables standard XXE security option of the XML parsers
before an XML parsing. Like the XMLPVXEE operator, the
XMLPVXXE operator performs this by identifying methods
used on standard XML Java parsers.

Remove encryption in socket (REIS). Context: it is
very usual in web applications to exchange encrypted data
(i.e, passwords, e-mail addresses, etc.) with a user. This is
commonly done by using sockets encrypting data with SSL on
HTTP. Goal: the REIS operator tries to weaken the applica-
tion’s sent data to expose it to a confidentiality leak. Implemen-
tation: it removes the SSL encryption in sockets by identifying
and removing standard Java SSL-encryption. For instance, it
can replace sockets created with a SSLSocketFactory by
sockets created with a SocketFactory.

Unsecure cookie (UC). Context: cookies are defined by
the HTTP protocol as pieces of information sent by the server
to the client’s browser. Some cookies can store secret values
proving the authentication of the client and must therefore
be encrypted using SSL during communication. Cookies are
meant to be sent by the browser with each request from the
client, disregarding the secured-nature of the communication.
To make sure that a browser will not make the mistake of send-
ing a sensitive cookie in an unsecured HTTP communication, a
secure flag can be set on the cookie, asking the browser to send
this cookie only during HTTPS communications. Goal: the
UC operator allows to send sensitive cookies during unsecured
HTTP communication. Implementation: it removes the call to
the methods setting the secure flag on cookies.

Remove HTTP-only flag from cookie (RHTTPOFC).
Context: even if a cookie was sent using an HTTPS commu-
nication, web pages’ scripts can access it on the client-side by
asking the browser concrete access to the session’s cookies. An
attacker may access those cookies on the client-side by using
a cross-site scripting (XSS) attack. To prevent this, cookies
have an HttpOnly flag asking the client’s browser to not share
this cookie with scripts. Of course, the flag is just mitigating
the risk, since it relies on the trust in the browser. Goal: The
RHTTPOFC operator exposes the web pages to such session’s
cookies confidentiality leaks. Implementation: It removes the
call of standard methods setting the httpOnly flag on cookies,
allowing to share the cookie with client-side scripts.

Use RSA with short key (URSAWSK). Context: RSA is an
asymmetric encryption algorithm used in web applications to
exchange confidential data. Over time, with the improvement
of computation power, the RSA algorithm needs longer keys to
keep the exchange secured and to resist to brute force attacks.
NIST2 recommends the RSA keys to be at least 2048 bits long.
Goal: the URSAWSK operator tries to weaken RSA encryption
to make brute force attacks possible, allowing confidential data
to leak. Implementation: it detects the use of RSA encryption
with a sufficient key size and sets its to 512 bits.

2http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
131Ar1.pdf

Use Blowfish with short key (UBFWSK). Context: Blow-
fish is a variable key size symmetric encryption algorithm five
times faster than triple DES. Just like RSA, Blowfish could
also be used with a short key (less than 128 bits). Goal:
The UBFWSK operator tries to weaken Blowfish encryption to
expose the application to brute force attacks, also allowing data
to confidentiality leaks. Implementation: When the operator
detects the usage of Blowfish with a sufficient key size, it sets
the key size to 64 bits.

Permit SQL injection (PSQLI). Context: SQL injections
exploit the fact that the web application uses input(s) from
the user to build an SQL query that will be executed by a
Data Base Management System (DBMS). The idea for an
attacker is to inject SQL code in the input used to build the
query in order to maliciously alter the database and or get
access to private information. To prevent these attacks, Java
APIs provide methods to prepare/encode queries and send
them without their external inputs to the DBMS, requiring
these inputs separately from the user. Inputs are then used
to finalize construction of the query and execute it. Hence,
it is not possible anymore for an attacker to play with
the SQL-syntax to create tainted queries. Goal: the PSQLI
operator tries to weaken the web application’s protection
against SQL-injection attacks to expose it to various security
leaks potentially threatening its confidentiality, integrity, and
authentication mechanisms. Implementation: it detects usages
of SQL injection-proof APIs and replaces such usages by
unsecured APIs in order to execute SQL queries.

Use DES in symmetric encryption (UDESISE). Context:
in secured web applications, symmetric encryption is often
very valuable to exchange sensitive data with external users.
Data Encryption Standard (DES) was a popular symmetric en-
cryption algorithm recognized as now sensitive to brute force
attacks due to the great advances in computer performances.
Therefore, web applications should prefer other symmetric en-
cryption algorithms, like AES. Goal: the idea of the UDESISE
operator is to weaken the confidentiality of symmetrically
encrypted data, exposing it to leaks. Implementation: it detects
the usage of a symmetric encryption algorithm and replaces
it with DES encryption. This operator requires to modify
several Java code lines. Though, PIT’s architecture wasn’t
designed for this kind of modifications. Therefore, UDESISE
is still under review but our initial implementation provides
promising results.

Use ECB in symmetric encryption (UECBISE). Context:
symmetric encryption may be done using different modes,
describing how the algorithm should encrypt a message, which
is split into blocks of fixed size. The Electronic CodeBook
(ECB) mode encrypts two identical blocks into two identical
ciphered blocks, introducing redundancy in the encrypted
message, which makes it easier for an attacker to decrypt the
message. Goal: the UECBISE operator tries to weaken the
confidentiality of symmetrically encrypted data by easing its
decryption using ECB mode. Implementation: it detects the
usage of a symmetric encryption algorithm and replaces its
mode by ECB.

Remove regex sanitization (RRS). Context: modern web-
sites are following the idea of WEB 2.0, enabling the participa-
tion of external users to the content of a web page. Thus, web
applications can have a lot of stored data coming from external
users. To prevent malicious users’ content, web applications
commonly validate the inputs coming from external sources
using regular expressions. Goal: the RRS operator tries to
introduce vulnerabilities in external input filters of a web
application. Implementation: it detects regular expressions
usages and replace them by a dummy expression, which is
always true.

IV. EVALUATION

In this section, we report on our preliminary efforts to assess
the relevance our set of security-aware mutation operators. To
this end, we state three research questions: (RQ1) Are the
standard operators of PIT likely to introduce vulnerabilities?
(RQ2) Does our mutation operators introduce vulnerabilities
that are detectable by the FindBugs’ static analysis? (RQ3)
How prevalent is the application of our mutation operators on
open source projects?

Case Studies

In order to answer the different research questions, we
considered the following case studies:

1) iTrust: iTrust3 is a web application developed and main-
tained by the students of NCState University and consists of
24,785 lines of code. It provides a platform accessible to
patients and doctors, to keep track of the patient’s medical
history.

2) Vuze-Azureus: Vuze4 is a popular open-source Bittorrent
client, consisting of 186,247 lines of code.

3) OpenLegislation: OpenLegislation5 is an open source
web application developed and maintained by the New York
State Senate. The goal of this application is to give access
to several NYS’s data including bills, resolutions and laws. It
consists of 912 classes and is 33,819 lines of code.

4) AntsP2P: Ant’s Peer-to-Peer is an open-source Bittor-
rent client6 (consisting of 19,399 lines of code), like Vuze.

RQ1: PIT Operators and Vulnerabilities

To investigate this question, we generate mutants using
PIT’s standard mutation operators and use FindBugs to count
the vulnerabilities found. This metric gives an indication of
the suitability of such operators to cover vulnerabilities even
if they are not designed for that. We selected the iTrust case for
this assessment: we elicited a sample of 33 classes, for which
our security-aware operators yielded vulnerabilities found by
FindBugs, and applied PIT on those classes. Table II records
our results.

Overall, PIT generated 5486 mutants and introduced only
two vulnerabilities (see Table II). The introduced vulnerabili-
ties relate to potential SQL injection attacks that can occur by

3https://sourceforge.net/projects/itrust/ (version 21.0.01)
4https://sourceforge.net/projects/azureus/ (version 5.7.40)
5https://github.com/nysenate/OpenLegislation (version 2.2)
6https://sourceforge.net/projects/antsp2p/ (version beta1.6.0)

TABLE II: Mutating iTrust with PIT’s standart operator set.
The table records the number of mutants and vulnerabilities
that were generated per used operator.

Operator name #mutants #Vulnerabilities

ArgumentPropagationMutator 42 0
ConditionalsBoundaryMutator 48 0
ConstructorCallMutator 431 0
IncrementsMutator 12 0
InlineConstantMutator 696 0
MathMutator 41 0
MemberVariableMutator 83 0
NegateConditionalsMutator 368 0
NonVoidMethodCallMutator 1539 1
RemoveConditionalMutator EQUAL ELSE 320 0
RemoveConditionalMutator EQUAL IF 320 0
RemoveConditionalMutator ORDER ELSE 48 0
RemoveConditionalMutator ORDER IF 48 1
RemoveIncrementsMutator 12 0
RemoveSwitchMutator 15 0
ReturnValsMutator 289 0
SwitchMutator 2 0
VoidMethodCallMutator 1172 0

Total 5486 2

inserting dynamically generated strings in a query (SQL_-
NONCONSTANT_STRING_PASSED_TO_EXECUTE) or by
removing a conditional execution (SQL_INJECTION_-
JDBC). Though these are genuine security issues, this harvest
with standard operators appears to be mediocre. As we will see
in the following sections, our operators are able to introduce
a much larger number of vulnerabilities (62 for iTrust).

RQ2: Static detection of Vulnerabilities

Our second research question investigates the extend to
which our security-aware operators introduce vulnerabilities
and if they are always detectable statically with FindBugs. This
process can be seen as a sanity check of the function of the
implemented operators. To perform this check, we manually
created a sample project containing on average one class that
contains one application instance of the mutation operators
we implemented. Each class was implemented so that it can
trigger one specific mutation. We used PIT’s mutation engine
to generate the mutants with respect to our operators. We
wrote scripts to keep track of the applied mutations and results
obtained via FindBugs. We specifically tuned FindBugs to
check every potential issue, even those of low confidence, at
the cost of performance.

The analysis results are reported in Table III. RRS and
UDESISE were not evaluated. RRS was not inspired by a
FindBugs pattern. Regarding UDESISE, it requires higher or-
der mutation and its correct operation is currently experimental
in PIT. Overall, we can see that 9/13 (nearly 70%) operators
generated a vulnerability that could be found by FindBugs.
For the four remaining ones, non-recognition causes are:

a) Remove Host Name Verification (RHNV): the vul-
nerability is actually introduced, because the replacement
of HostNameVerifier.verify(...)’s result by true
was present in the mutant. It is not recognized be-
cause FindBugs identifies a vulnerable HostNameVerifier by

TABLE III: Injected classes of vulnerabilities that were iden-
tified by FindBugs (with the security plugin), in a sample
project. We mutated this project and verified the presence of
vulnerabilities by comparing the static analysis reports of the
mutants and the original programs. Y signifies that the injected
vulnerability was identified by FindBugs.

UPPRNG RPTS UWMD RHNV XMLPVXXE
Recognized? Y Y Y N N

XMLPVXEE REIS UC RHTTPOFC URSAWSK
Recognized? N N Y Y Y

UBFWSK PSQLI UDESISE UECBISE RRS
Recognized? Y Y / Y /

looking at its code. Indeed, for FindBugs, a vulnerable
HostNameVerifier is identified by a constant return
true; in all its .verify(...) methods. Because we
didn’t mutate the HostNameVerifier.verify(...)
method but its calls, FindBugs could thus not recognize it.

b) Xml Parser Vunerable to XXE/XEE (XMLPVXXE/
XMLPVXEE): the vulnerability is also present as we remove
a secure parsing feature of the XML reader. However, we
mutated a secure original program that had the following line:
XMLReader.setFeature(SecurizingFeature,
true) prior to parsing. Therefore, the mutant had the
following code:

XMLReader . s e t F e a t u r e (S e c u r i z i n g F e a t u r e ,
t rue) ;

XMLReader . s e t F e a t u r e (S e c u r i z i n g F e a t u r e ,
f a l s e) ;

XMLReader . p a r s e (i n p u t) ;

We hypothesize that when FindBugs analysed the first line, it
directly returned that the vulnerability was eliminated.

c) Remove Encryption In Socket (REIS): here, after per-
forming several tests, we supposed that FindBugs identifies
unsecured sockets only by the following pattern:

So ck e t s = new S o c k e t (a d d r e s s , p o r t) ;

However, since we created a unsecured socket in the mutant
with the following method:

So ck e t s = S o c k e t F a c t o r y . g e t D e f a u l t () .
c r e a t e S o c k e t (a d d r e s s , p o r t) ;

and upon manual inspection of createSocket(...)
method’s specification, we certify that the two manners of
creating an unsecured socket are equivalent.

Regarding the results of this section, we can answer RQ2
by stating that all vulnerabilities were actually introduced
though only 70% were found by FindBugs. Missed vulner-
abilities either stem from the static analyzer’s incomplete-
ness (REIS) or optimisations (XMLPVXXE/XMLPVXEE).
Regarding RHNV, this vulnerability requires a global (e.g.,
analysing the call graph) or a dynamic reasoning, techniques
that are out of reach for FindBugs. Although we took inspi-
ration on FindBugs patterns to create our mutation operators,
they can trick FindBugs. Therefore, our operators might be
used to validate static analysis tools as well.

TABLE IV: Mutating projects with new operators

iTrust VUZE OPENLEGISLATION ANTSP2P

#classes in input 405 4669 912 406
#classes mutated 33 30 57 9
#mutants generated 62 57 154 18

TABLE V: Number of security-aware mutants generated on
4 open source projects. The table entries record the number
of mutants generated per mutation operator and project. Non
referenced operators did not produce any mutants.

UPPRNG UWMD PSQLI UECBISE RRS TOTAL

iTrust 1 0 39 0 22 62
VUZE 8 2 0 9 38 57
OPENLEGISLATION 0 0 0 0 154 154
ANTSP2P 2 4 0 11 1 18

RQ3: Prevalence of Security-aware Operators’ application

The preceding research questions were meant to assess the
relevance of our security-aware operators. However, the ques-
tion that it is raised here is how numerous these vulnerabilities
are. In practice, it is hard to trigger and secure vulnerabilities
and thus, it is possible that injecting a large number of them
may be excessively expensive. To assess this point, we simply
generated mutants with our operators for the four projects we
considered. Table IV records the results provided by our 15
operators.

A first observation is that five of our operators are prevalent
in practice. Interestingly, these operators are not numerous
indicating that mutation-based security testing is feasible. Ten
operators were not applicable in the selected projects.

Another interesting point is that the injected faults only
concern a fraction of the project’s classes (e.g., 0.67% for
VUZE). Table V shows the repartition of applied operators
for each project. There are disparities, PSQLI that accounts
for 61% of the mutants in iTrust and does not appear in other
projects, while RRS appears in all projects. RRS “popularity”
is also quite understandable as a regex-sanitization function
can be assumed to be more common to web applications than
the use of Blowfish, for instance. We therefore conclude
that many security-aware faults appear in the selected projects.
Though, we note that further case studies are required to gain
confidence on the prevalence of our operators.

V. THREATS TO VALIDITY

Internal validity. One possible threat of our study is due to
the used tools. We implemented our operators in PIT, which re-
lies on Java bytecode manipulation (using ASM Java bytecode
framework as an abstraction layer) to perform mutations. Thus,
potential defects may influence our results. To verify that our
operators were correctly implemented, we used code review
on the operators’ implementation, and, for each experiment,
we manually inspected the generated mutants. Moreover, we
checked in RQ2 that the vulnerabilities from the generated
mutants are detected by FindBugs: it is the case for nine of
them, explanations for the four remaining ones are given in
Section IV.

Construct validity. We chose to use iTrust to answer RQ1,
because of the high number of security concerns that the
application has to take into account. This tends to be confirmed
by the higher percentage (8%) of classes mutated by our new
operators in Table IV. RQ2’s only goal was to validate our
operators’ implementation. Therefore, we used ad hoc classes,
one per operator, which is enough for this purpose. For RQ3,
we took 4 open source projects: 2 web applications and 2
Bittorrent clients. We plan to extend the number as well as
the diversity of the considered projects in our future work.

External validity. We designed our mutation operators,
based on patterns defined in FindBugs sec plugin. Therefore,
it is questionable whether these are usually met in practice.
However, each of these patterns introduces one or more
vulnerabilities described in well-known vulnerability reporting
authorities (like NIST and CVE), as referenced in FindBugs
documentation7. To perform our evaluation, we selected 4
open source projects in which security is a key concern.

VI. RELATED WORK

Using mutation for security purposes was explored at the
model-level by Mouehli et al. [10] where the authors mutate
access control models to qualify security test suites. Operators
change user roles and allowed actions, deleting policy rules
or modify their application context. Dadeau et al. defined
operators that introduce leaks in a high-level security procotol
[11]. Büchler et al. considered mutating the abstract model
of a web application by removing authorization checks and
un-sanitizing data [12], but they do not detail the operators.
Although, these operators are inspired from actual vulnerabil-
ities, as being model-based they model different defects from
our code-based ones.

To the best of our knowledge, there is no set of security-
aware mutation operators for Java. Perhaps the closest related
work is that of Nanavati et al. [13], Shahriar and Zulkernine
[14] and Ghosh et al. [15] that defined mutation operators
related to the memory related faults. All these operators
introduces memory manipulation issues in C programs (such
buffer overflows, uninitialized memory allocations and etc.),
which may be exploited by security attacks. As these operators
make heavy use of memory allocation primitives, specific to
the C language, they are rather different from ours.

VII. CONCLUSION

This paper introduces security-aware mutation testing op-
erators. Inspired by common vulnerability patterns, we have
designed 15 new mutation operators for Java, which we
implement in the mutation testing engine of PIT. We used
FindBugs and its security plugin to assess whether standard
PIT mutation operators are likely to introduce vulnerabilities,
like those supported by our operators, and demonstrated that
they fail to do so. Our case studies validated the purposes of
our operators and revealed that certain types of vulnerabilities
are prevalent in open source projects.

7http://find-sec-bugs.github.io/bugs.htm

This work constitutes the first step towards a relatively new
direction of mutation testing research which is the mutation-
based security testing. With the use of our mutants, security
related test suites can be designed and documented. Other
potential uses of our mutation operators are in education and in
the systematic evaluation and comparison of fuzzing and other
security testing tools. Overall, our goal is to use mutation to
define adequacy criteria for security testing.

In the future, we plan to extend our work towards the
following directions: First, we plan to consider a much larger
set of security patterns that we will mine from open source
projects. Second, we will assess our research questions on
more subjects and confirm our observations with actual tests
from fuzzing tools. Third, we would like thoroughly assess
the practical benefits of our security testing metrics.

REFERENCES

[1] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on Test Data
Selection: Help for the Practicing Programmer,” Computer, vol. 11,
no. 4, pp. 34–41, 1978.

[2] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2008.

[3] J. Voas and G. McGraw, Software Fault Injection: Inoculating Programs
Against Errors. John Wiley & Sons, 1997.

[4] M. Papadakis and N. Malevris, “Automatic mutation test case generation
via dynamic symbolic execution,” in IEEE 21st International Symposium
on Software Reliability Engineering, ISSRE 2010, San Jose, CA, USA,
1-4 November 2010, 2010, pp. 121–130.

[5] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. L. Traon, “Threats
to the validity of mutation-based test assessment,” in Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA
2016, Saarbrücken, Germany, July 18-20, 2016, 2016, pp. 354–365.

[6] T. C. Thierry, M. Papadakis, Y. L. Traon, and M. Harman, “Empirical
study on mutation, statement and branch coverage fault revelation that
avoids the unreliable clean program assumption,” in ICSE, 2017.

[7] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis, and N. Malevris,
“Analysing and comparing the effectiveness of mutation testing tools:
A manual study,” in International Working Conference on Source Code
Analysis and Manipulation, 2016.

[8] P. Arteau, “Bug patterns - find security bugs http://find-sec-bugs.github.
io/bugs.htm.”

[9] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “PIT:
a practical mutation testing tool for java (demo),” in Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA
2016, Saarbrücken, Germany, July 18-20, 2016, 2016, pp. 449–452.

[10] T. Mouelhi, Y. L. Traon, and B. Baudry, “Mutation analysis for se-
curity tests qualification,” in Testing: Academic and Industrial Con-
ference Practice and Research Techniques - MUTATION (TAICPART-
MUTATION 2007), Sept 2007, pp. 233–242.

[11] F. Dadeau, P.-C. Héam, R. Kheddam, G. Maatoug, and M. Rusinowitch,
“Model-based mutation testing from security protocols in hlpsl,” Soft-
ware Testing, Verification and Reliability, vol. 25, no. 5-7, pp. 684–711,
2015.

[12] M. Büchler, J. Oudinet, and A. Pretschner, “Semi-automatic security
testing of web applications from a secure model,” in 2012 IEEE Sixth
International Conference on Software Security and Reliability, June
2012, pp. 253–262.

[13] J. Nanavati, F. Wu, M. Harman, Y. Jia, and J. Krinke, “Mutation
testing of memory-related operators,” in Software testing, verification
and validation workshops (ICSTW), 2015 IEEE eighth international
conference on. IEEE, 2015, pp. 1–10.

[14] H. Shahriar and M. Zulkernine, “Mutation-based testing of buffer
overflow vulnerabilities,” in Proceedings of the 32nd Annual IEEE Inter-
national Computer Software and Applications Conference, COMPSAC
2008, 28 July - 1 August 2008, Turku, Finland, 2008, pp. 979–984.

[15] A. K. Ghosh, T. O’Connor, and G. McGraw, “An automated approach for
identifying potential vulnerabilities in software,” in Security and Privacy
- 1998 IEEE Symposium on Security and Privacy, Oakland, CA, USA,
May 3-6, 1998, Proceedings, 1998, pp. 104–114.

	PageDeGardeMemoire_EN
	Thomas-thesis

