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Software verification is a part of computer science whose goal is to ensure that a
piece of software is correct (with respect to its specification), by testing or formally
proving the program correct.

There are two aspects in correctness: partial correctness and termination. An algo-
rithm is partially correct if it has the property of giving a correct answer (with respect
to its specification) if giving any. An algorithm is totally correct if it is partially correct
and can be shown to always terminate.

Both aspect of correctness are just as important to produce software one can really
rely on, and correctness is just as essential on every type of system. However, partial
correctness verification for software running on concurrent systems is a specific field
of study, and one which has been the object of feverish activity in the last fifteen years.
The generalisation of multicore and multiprocessor computers has led to a crucial need
to ascertain the reliability of programs developed to gain individual efficiency benefits
from concurrency.

Program verification for concurrent programming obviously encompasses all the
difficulties of sequential program verification, but it also introduces new difficulties.
Not the least of those difficulties is the management of variables shared by several
threads in a program.

In order for a program to benefit from concurrency on an individual basis, it needs
to spawn several threads to perfom separate tasks. However, since those threads will
execute in the same global memory state, it is necessary to make sure that the global
memory state remains consistent regardless of the interleaving of operations from each
thread.

In the context of this work, concurrent programming must be understood as a pro-
gramming paradigm in which different computations originating from a single run of
a program are potentially executed at the same time (concurrently) instead of one after
the other (serially). The possible interactions discussed are those that may occur solely
regarding the program variables.

Consistency can be understood as a property expressing the fact that the values
of all the variables are coherent. At the end of one logical atomic operation (regard-
less of whether it is implemented as one or several successive instructions) involving
changes to several variables, all or none of them must be updated for consistency to
be maintained by the operation. In addition, the program should not be unintentionally
non determinist, which implies that its results should not depend on thread interleaving.

Consistency violations will mostly affect partial correctness, making them twice as
hard to detect as other kinds of errors. Indeed, (partial) incorrectness is inherently more
vicious than non-termination because, while one would probably notice if a program
does not terminate, an erronerous answer may very well go unnoticed. On top of that,
an error resulting from thread interleaving will most likely be caused by specific thread
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interleavings that may occur very rarely in practice, making it extremely difficult to
detect through "regular" testing.

Because of the difficulties mentioned above and of how hard it is to reason correctly
about concurrent threads when analysing a piece of code, it is natural for programmers
to wish for concurrent software verification to be automated.

An ideal automatic checking tool would warn a programmer about every error in
his code (a quality that will be referred to as completeness) but only real errors (a qual-
ity that will be referred to as soundness). Moreover, the verification tool should not
be too "expensive" to use, which means, according to [1], that it should neither affect
the run time of the program, nor take too long to perform the analysis at compile time,
and also that it should not require the user to spend a lot of time providing program
annotations.

The inexpensiveness requirement is in direct competition with the completeness
and soundness requirements. Indeed, by ruling out the option of asking the program-
mer to document his design choices through annotations, it forces the checker to make
assumptions on what an expected behavior is instead of being able to get that informa-
tion from a reliable source. Nevertheless, the inexpensiveness is essential to achieve
widespread adoption of the checker.

Accordingly, inexpensive checkers are forced to test code for violation of general
"good practice" criteria and to report every violation found without having the possi-
bility of finding out whether the code programmer really intended to do what he did or
if he made a mistake. They are therefore very likely to report a violation in some cases
where there is no real error. Conversely, they should not report violations of proper-
ties that will very rarely be symptomatic of errors because an abundance of spurious
warnings will also discourage some users. They are hence very likely not to report a
violation when the programmer has made a mistake in an unusual way.

The need for testable and formally defined property to express scenarios that indi-
cate consistency errors "most of the time" therefore leads the checkers to be often both
too demanding (which results in false positives) and not demanding enough (which re-
sults in false negatives). In that context, a false positive occurs when a checking tool
reports a piece of code as erroneous when it cannot cause consistency violations, and a
false negative occurs when a checking tool does not report a piece of code as erroneous
despite the fact that it could cause consistency violations.

Transactional memory is an elegant and composable syncronisation mechanism to
guarantee correctness in a concurrent environment. It takes the responsibility of provid-
ing atomicity and isolation where the application programmer declares that he expects
it by identifying a group of operations as a transaction. However, it does not exempt the
application programmer from the task of synchronizing adequately. The transactional
memory mechanism may provide atomicity and isolation to transactions but it cannot
guarantee memory consistency as that characteristic depends on the correct definition
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of transactions by the programmer.

Haskell is a functional language well-suited for concurrent programming because
side effects are inherently limited through its type system. Its transactional memory
extension, STM Haskell, is the basic model of concurrent programming environment
for the remaining of this work.

The Moth tool, presented in [2], is an automatic checker for different types of con-
sistency errors in transactional memory Java programs. It is not the ideal tool dreamed
of by programmers but is very useful in eliminating some kinds of concurrency errors
at limited cost for the user, because its authors have chosen to give priority to inex-
pensiveness at the expense of soundness and completeness. This paper discusses the
adaptation of Moth to STM Haskell programs.

The first part of this work presents its context. The first chapter outlines what con-
current programing in STM Haskell is by presenting a few fundamental notions on
Haskell. The second chapter defines what transactional memory is, how it works and
how it is implemented in Haskell. The third chapter presents different types of concur-
rency related issues, defines them and analyses their possibility of occurence in STM
Haskell.

The second part presents the adaptation of Moth to STM Haskell. Moth uses a two-
step evaluation procedure: generating an abstract model of the concurrent operations
taking place in the program, and then analysing the generated model for indication of
possible concurrency errors. The fourth and fifth chapters therefore present the adap-
tation of the two steps of the analysis to Haskell. The sixth chapter then illustrates the
entire Moth analysis works on a STM Haskell program example.

The last part briefly analyses other consistency violations checkers to compare their
methodology and the range of errors they would detect in STM Haskell programs with
Moth. And finally, it also discusses how some ideas from other tools could be used to
improve the efficency of the Moth tool for STM Haskell.
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Chapter 1

Haskell: a few fundamental
notions

The present chapter is mainly adapted from [3] and [4]. It provides a few basic re-
minders on the Haskell programming language to help the reader to understand later
examples. It also expands a bit on how its purity makes it suitable for concurrent pro-
gramming and how that purity is enforced through the type system.

1.1 Haskell: a functional programming language
Functional languages such as Haskell are well-suited for concurrent programming be-
cause the parts of a program that may generate side effects (and potentially concurrency
errors) are well identified and generally limited.

1.1.1 Functional language and purity
Keeping things simple, a functional language is a language in which a program is com-
posed of expression evaluations, whereas an imperative language program is mostly
composed of actions (sequences of commands).

An expression represents a value (a typed entity often represented by an identifier).
It is either a variable (a name representing an expression), a basic value, a function call
or a combination of variables, values and operators. An expression can be reduced or
evaluated to obtain the value it represents.

A function evaluation returns a value but does not modify its arguments, so pure
functions cannot "interfere" with one another or with their environment. Thus, purely
functional programs can be relied on not to have side effects.
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A function has side effects if it has interactions with the "world" such as reading
from or modifying a global variable, or reading from or writing to a file (or even to any
input or output channel). Such a function is called impure while a pure function is a
function that never has side effects and therefore never alters the state of the program
(or the "world").

Purely functional (sub)programs are easier to reason about and compose into larger
programs because no context needs be considered when reasoning about their correct-
ness. Consequently, functional (sub)programs are well-suited for concurrent program-
ming because they don’t tamper with one another. On the contrary, impure (sub)programs
can behave differently in different environments and may alter the global state of the
program so they shouldn’t be used without considering interferences as well from than
to other (sub)programs.

1.1.2 Haskell type system
Despite being primarily a functional language, Haskell allows its users to use impure
functions but provides a way to identify and separate pure functions from impure ones
through the type system, so that the user is not personally responsible for keeping track
of which functions can cause problems because of their side effects. A specific IO a
type exists for impure functions, and Haskell guarantees that functions that are not
typed as such are all pures.

An expression in Haskell always has a type that can either be built-in or user-defined
(by renaming, enumeration, union or products of types). The most common built-in
types are the basic types such as Int, Integer, Float, Double, Bool and Char and the
standard compound types: list and tuples. A tuple is a fixed-size collection of values
where each value can have a different type and is denoted (el1,el2, . . .), and a list is a
"set" of elements of the same type and is denoted [el1,el2, . . .].

A peculiarity of Haskell is that a type can be polymorphic if it contains type param-
eters. For example, Tree a is a tree whose nodes have the type a where a is the type
parameter and can be any type. The IO a type used for impure function is such a type
because the actual return type of an impure function can be anything, including noth-
ing if the function does not return anything, which will be denoted (). We can think
of an impure function with type IO a as a function performing some impure operations
before evaluating to some value of type a.

1.1.3 Functions
In the previous subsection, we stated that a functional program is composed of func-
tion evaluations. Some functions are built-in, but most functions used in a program are
user-defined. So Haskell programs are mostly composed of function definitions and
function evaluations.

12



Program analysis for concurrent programming

Function definition

A function is a relation that associates exactly one output to each value of its domain.

The function f with parameters x1, ...,xp, p≥ 0 is defined by

f :: type1 . . . → typep→ typep+1

f x1 . . .xp

| C1 = e1

· · ·
| Ck = ek

where k≥ 1 and ∀i∈ {1, . . . , p} : xi has type typei and ∀ j ∈ {1, . . . ,k} : Cj is a condi-
tion and ej has type typep+1. The first part of the definition, f :: type1 . . .→ typep→ typep+1
is called the function signature.

The function f is called using f−→x where −→x = x1 x2 . . . xp are actual parameters.

It should be noted that the types of the parameters of a function as well as its output
type can be anything, including compound types, user-defined types, functions or type
variables.

Higher-order functions

A function of functions (or higher-order function) is a function that has a function as
at least one of its parameters.

An example of such a function in Haskell is twice, returning the composition of a
function with itself.

twice :: (Integer→ Integer) → Integer→ Integer

twicefx = f fx

Calling twice using the function square and the Integer 2 as actual parameter would
return twice square 2 = square square 2 = square 2∗2 = 2∗2∗2∗2 = 16 if

square :: Integer → Integer

squarex = x∗x
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Polymorphic functions

A function that has a type variables such as a as at least one of its parameters is called
polymorphic. Such a function doesn’t care what actual type it is called with and oper-
ates in the same way no matter what type its arguments are.

An example of of polymorphic function in Haskell is fst returning the first ele-
ment of a pair.

fst :: (a,b) → a

fst (x,y) = x

Calling fst using (1,2) as actual parameter would return 1, calling it using (True,False)
as actual parameter would return True and calling it using (1,False) as actual param-
eter would return 1.

Operators

An operator is a binary function written between its arguments.

Haskell lets users define their own operators but also provides the most common
built-in operators. For example, a comparison is made with ==(equality), /= (in-
equality) or with one of the comparison operators >=, <=, <, >. There are also the
logical or, and, ‖‖ and && operators and the basic arithmetic operators +,−,/ and ∗.

1.1.4 Control structures
Since Haskell is composed of expression evaluations and not of instruction executions,
there is no need for control structure to control program flow. However, there are a few
choice structures that can be used to define the value of an expression using multiple
alternatives.

Choice As well as the condition guarded definitions seen in the function definition,
there is an ife1 thene2 elsee3 construct to choose between two expressions where
e1is a boolean and e2 and e3 are expressions that can have any type.

Case Another way of choosing between different values for an expression is to use
the case construct. The result of that construct is the expression associated with the
first pattern to match starting from top case:

14
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case Name of

pattern1 → e1

...
patternn → en

Loops There are no built-in loop instructions in Haskell such as the f or or while
loops in most imperative languages. Repeated computations are implemented using
recursive functions and often moving through lists. However, Haskell supports user-
defined control structures so it is possible to define a loop function just as any other
function.

1.2 Haskell: an impure langage
In the previous section the purely functional, side-effect free part of Haskell, was briefly
presented. However, it is often necessary for a program to perform some "inpure" work
such as reading input data or writing output. It is of course possible to do I/O operations
in Haskell but it is done in a secure way : I/O actions are typed in a particular manner
so that impure code can only be found in functions whose signature indicates clearly
they are inpure, which ensures that side effects can only be caused by those functions,
while the pure ones are completly safe. The current section is adapted from chapter
seven of [4].

1.2.1 Actions
A function with return type IOa is an I/O action, an impure function. The a in the type
definition is the output type of the function if it returns a value, or () if it does not.

I/O actions only produce an effect when performed inside another I/O action, so the
main function of a program needs to have the type IO () (the empty tuple () indicating
there is no return value) if the program is to have any kind of interactions with the
outside world. A interesting consequence of this requirement for nested I/O types is
that if a function is not I/O-typed, there is not need to check its code for enclosed
impure functions: freedom from side-effects is guaranteed.

Classic read and write

A very common example of I/O actions are Haskell’s functions to read from the stan-
dard input and write to the standard output. They all have an IO type because the type
system only allows side effects in I/O actions.

putChar :: Char−> IO() takes a Char and returns an I/O action that prints the
Char on the standard output, putStrLn :: String−> IO() takes a string and returns
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an I/O action that prints the string on the standard output, getChar :: IOChar is an
I/O action that reads a character from the standard input and delivers it as a Char and
getLine :: IOString does the same with a string.

Mutable references

Another common impure operation is to write to or read from a global variable. Haskell
standard type for such mutable variables is IORef a and operations on IORef a also
need to have an IO type.

For example, a new global variable of type a is created using newIORef :: a−> IO (IORefa),
readIORef :: IORefa−> IOa is used to read from an IORef and
writeIORef :: IORefa−> a−> IO () to write to it.

1.2.2 Specific I/O constructs
While we said earlier that there is no need for flow control in pure functional Haskell,
it does no hold true for I/O actions, so there are a few language constructs that are
specific to actions.

For example, I/O actions can be "glued" together to define a series of consecutive
actions to perform using the bind combinator do: do{S; . . . ;S}.

Another need arising from I/O action usage is to enable pure and impure functions
to communicate with one another and to be composed. The <− operator is used to
store the result of an I/O operation in a variable (IO a→ a ) and conversely the return
operator is used to return the value of a pure computation as an I/O type (a→ IO a).

1.3 Concurrent operations in Haskell
As discussed in the first section, Haskell is well-suited to concurent programming since
most of the Haskell code will be pure, and therefore the operations executing con-
curently won’t interfere with one another.

A thread in Haskell is an I/O action that executes independently from other threads.
To create a thread, we use forkIO :: IO a−> IOThreadId. Typically, threads com-
municate through global variables typed MVar but we will see, in the following chapter,
that other types of global variables may also be used.

16



Chapter 2

Software transactional memory
in Haskell

The previous chapter presented a commonly used type for variables shared between
several threads, MVar. Mutual exclusion on those variables is traditionally enforced
using locks. However, locks-protected MVar a is not the only secure way to share vari-
ables or, for that matter, the easiest one, and we will use a Haskell polymorphic type
called TVar a instead. We will use STM Haskell as our basic model of concurrent pro-
gramming environment for the remaining of this paper.

The first section of this chapter briefly discusses the issues raised by the lock-based
approach to explain why that traditional approach was not chosen. The second section
presents the idea of software transactional memory behind the STM a type, its avantages
and how it can be implemented. The last section presents the type in itself and its usage
in concurrent programs.

2.1 Lock-based synchronisation
The basic pitfall concurrent programs need to dodge is the possibility for two threads to
access a variable at the same time in such a way that the result is dependent on thread
shelduling: such a problem is called a low-level data race and is defined as follows
in [5]: "A low-level data race can occur when two concurrent threads access a shared
variable and when at least one access is a write, and the threads use no explicit mecha-
nism to prevent the accesses from being simultaneous" 1.

A classic example of low-level data race is that of two threads both attempting to
increase the value of a variable x by one: if the first thread reads the initial value x0 then

1Cyrille Artho, Klaus Havelund and Armin Biere, "High-Level Data Races" in Software Test-
ing, Verification and Reliability: Special Issue: VVEIS 2003 Workshop on Verification and Valida-
tion of Enterprise Information Systems, 13(4), December 2008, page 1, retrieved October 2012 from
http://staff.aist.go.jp/c.artho/papers/stvr03.pdf [5].
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increases x to x0 +1 before the second thread does its reading, the resulting value of x
will be x0 + 2 whereas if the second thread reads the value of x before the first thread
has updated it, both threads will read x0 and the resulting value of x will be x0 +1.

Low-level data races are traditionally avoided through usage of synchronisation
methods such as locks. A lock is a shared variable used to enforce mutual thread exclu-
sion on access to a resource: a thread can only access the ressource guarded by a lock if
no other thread has previously "locked" (and not released) it, the state of locking being
materialised by the value of the lock. The part of the code defined by a lock acquisition
and and a lock release is called a critical section.

Usage of critical sections affects a concurrent system’s performance: one thread
halted or delayed in the critical section due to page fault, preemption,. . . may cause
other, non faulty threads to be unable to progress. Therefore, in order to write pro-
grams that truly benefit from concurrency in terms of performance, it is suitable to
limit the size and number of critical sections as much as possible.

Indeed, big critical sections limit the risk of concurrency related errors but they do
so by effectively limiting concurrency in itself. Conversely, multiple small critical sec-
tions are more efficient because one thread won’t limit the action of other threads for
very long while executing but may induce subtle concurrency bugs such as those we
will discuss in chapter 3.

Nevertheless, there remains the need for shared variables to be dealt with in such
a way that memory is never inconsistent. As a consequence, concurrent programming
using critical sections gives rise to complicated design choices to guarantee both perfor-
mance and correctness and makes subprogram composability tricky because the wrong
order in lock aquisition can cause deadlocks. A deadlock occurs in a concurrent system
when all threads are blocked, each waiting for some action by one of the other threads
or a ressource held by one of the other threads so none of them can progress and the
program can’t terminate.

2.2 Software transactional memory
The objective of transactional memory is to hide synchronisation mechanisms from
the application programmer by providing him with a composable langage construct to
simply define a transaction and leave the responsibility of the transaction’s correct ex-
ecution to a a lower-level mechanism.

Accordingly, software transactional memory implementations would be expected
to assume the burden of providing correctness guarantees with regard to concurrency
so that it does not depend on each program’s locking discipline.

There are both software and hardware primitives to define a transaction but we will
only discuss the software version implemented in Haskell that will be used in the re-
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maining of the present paper.

The first part of this section will elaborate on what software transactional memory
is, the second will detail its avantages and the last part will present possible implemen-
tations.

2.2.1 Definitions of software transactional memory
Software transactional memory (STM) is a synchronisation mechanism defined in or-
der to avoid critical section usage. It is defined using the notion of transaction origi-
nating in database theory. A programer defines transactions containing operations that
his program needs to execute atomically and the STM implementation guarantees the
transactions’ atomicity.

A transaction is a finite sequence of instructions executed by a thread that has the
property of being atomic and isolated: the sequence is either completly executed (the
transaction commits) or not at all (the transaction fails). Therefore, they appear to the
external world as if they took effect instantaneously and were all executed serially.

In [6], software transactional memory is defined as "a shared object which behaves
like a memory that supports multiple changes to its addresses by means of transac-
tions".2. In [7], it is more precisely defined as "a low-level application programming
interface for synchronizing shared data without using locks. Transactional memory
supports a computational model in which each thread announces the start of a transac-
tion, executes a sequence of operations on shared objects, and then tries to commit the
transaction. If the commit succeeds, the transaction’s operations take effect; otherwise,
they are discarded" 3.

2.2.2 Advantages of software transactional memory
When programming with transactional memory, the application programmer specifies
a transaction grouping operations he wants to execute atomically, and the STM imple-
mentation has the responsibility to guarantee the transactions’ atomicity.

STM hides the complexity of the synchronisation mechanism so the programmer
does not need to care about multiple lock acquisitions, progress guarantee and such
difficulties. By taking the responsibility of providing the atomicity the programmer
declares, software transactional memory allows him to think about atomic operations
at the level of the program semantics.

2Shavit, N and Touitou, D, Software transactional memory, in Proceedings of the fourteenth annual ACM
symposium on Principles of Distributed Computing, Ottowa, ACM, 1995[6].

3Herlihy, M and Luchangco, V and Moir, M and Scherer, W, Software transactional memory for dynamic-
sized data structures, in Proceedings of the 22nd annual ACM symposium on Principles of Distributed
Computing, ACM, 2003[7].
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The optimistic execution model used by most transactional memory implementa-
tions (and specifically by Haskell stm package) is also more efficient in general. Indeed,
conflicts seldom occur in programs, and since STM provides mechanisms to deal with
them when they do, it appears to provide both performance and correctness guarantees.
The execution model is called optimistic because it does not unable concurrent access
for fear they cause conflicts as locks do, but only aborts one of the concurrent transac-
tions when it is found to have caused conflict.

Transactions are also easier to compose into bigger transactions without causing
deadlocks that lock protected accesses because the programmer does not need to worry
about lock acquisition order.

2.2.3 Implementations of software transactional memory
The current subsection provides a few basic notions on possible pratical implementa-
tions of software transactional memory ouside of Haskell. While we will use STM a as a
black box in the remaining of the present text, those implementation examples provide
an useful insight into the inner workings of software transactional memory.

In [6], the authors present an STM implementation whose idea is to perform mem-
ory changes through transactions which keep a copy of the data at the beginning of
their execution ("old"), modify another copy ("new") and commit by changing the
value in memory to "new" if they find it is still equal to "old" (using an atomic k-
word Compare&Swap) and fail and restart otherwise.

They show their implementation is non-blocking because they use a helping policy
between threads to make sure that all transactions complete (complete, not commit!)
even if its native process has been swapped out, has crashed or is delayed where "an
STM implementation is is said to be non-blocking if the repeated execution of some
transaction by a process implies that some process (not necessarily the same one and
with a possibly different transaction) will terminate successfully after a finite number
of attempts in the whole system"4.

Their implementation, however, only supports static transactions (it requires the
program to declare in advance the memory locations it will access).

The mechanism is that a transaction modifies a private copy of an object without
further synchronisation and only makes its change visible to other transactions when
it commits. If another transaction accesses the original object concurrently, the STM
resolves the conflict by aborting one of the transactions. No copy is made for a write-
only access but a transaction only commits if no concurrently executing transaction has
modified an object it has read.

4Shavit, N and Touitou, D, Software transactional memory, in Proceedings of the fourteenth annual ACM
symposium on Principles of Distributed Computing, Ottowa, ACM, 1995, page 6, retrieved November 2012
from www.cse.ohio-state.edu/ agrawal/788-su08/.../shavit95software.pdf [6].

20



Program analysis for concurrent programming

In [7], an implementation that supports dynamic transactions is presented. It uses
transactional objects with three fields: old, new and a field indicating the last transac-
tion (with a status field indicating which of old or new is the "real" object). A trans-
actional object is defined as "a container for a regular object. A transaction can access
the contained object by opening the transactional object, and then reading or modify-
ing the regular object. Changes to objects opened by a transaction are not seen outside
the transaction until the transaction commits. If the transaction commits, then these
changes take effect; otherwise, they are discarded." 5.

The implementation in [7] is only obstruction-free ("A synchronisation mechanism
will be said to be obstruction-free if any thread that runs by itself for long enough
makes progress, which implies that a thread makes progress if it runs for long enough
without encountering a synchronization conflict from a concurrent thread" 6).

The risk of a halted thread blocking others is therefore excluded, but it is possi-
ble for concurrent threads to repeatedly keep one another from committing. However,
progress is managed by an abortion mechanism supervised by a plugged-in contention
manager: a transaction can abort another but, before it does, it consults the contention
manager to know if it should proceed or give the other transaction time to complete.
Blockage is thus excluded if the manager policy ensures that a transaction that asks
"sufficiently many times" permission to abort another is eventually granted it.

The implementation also integrates different opening modes (so that read-only
transactions do not keep one another from commiting) as well as the idea of validat-
ing a transaction whenever it opens a transactional object (checking whether any object
opened by the transaction has since been opened in a conflicting mode by another trans-
action to keep a transaction from observing inconsistent states between objects already
opened and new objects it tries to open). That last feature allows a transaction to detect
that it won’t be able to commit in the future to avoid wasting time.

Another, potentially risky, particularity of the implementation is the ability to re-
lease objects from a transaction before it commits.

Even if that implementation supports a larger set of transactions than the one pre-
sented in [6], it does have troublesome limits: it does not support nested transactions
while the posibility of composing transactions neatly is normally one of their advan-
tages over locks. A nested transaction is defined in [8] as a transaction that begins and
ends within the scope of a surrounding transaction.

5Maurice Herlihy, Victor Luchangco, Mark Moir and William N. Scherer III, "Software Transac-
tional Memory for Dynamic-Sized Data Structures" in Proceedings of the 22nd annual ACM sym-
posium on Principles of Distributed Computing, 2003, page 2, retrieved November 2012 from
cs.brown.edu/courses/csci1610/papers/stm.pdf [7].

6Maurice Herlihy, Victor Luchangco, Mark Moir and William N. Scherer III, "Software Transac-
tional Memory for Dynamic-Sized Data Structures" in Proceedings of the 22nd annual ACM sym-
posium on Principles of Distributed Computing, 2003, page 2, retrieved November 2012 from
cs.brown.edu/courses/csci1610/papers/stm.pdf [7].
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In this case, the mechanism is that a transaction opens the transactional object to
access the contained object, then modifies a private copy of an object without further
synchronisation, and only makes the changes visible to other transactions when it com-
mits. Only one transaction can open a transactional object in write mode at a time,
but problematic concurrent access can occur through reads, so each time a transaction
opens an object in read mode, it checks that no object it has read before has since been
modified to avoid reading an inconsistant global state ("validating the transaction").
Therefore, commiting a transaction is only possible if no conflicting transaction has
updated an object in its read set, and simply means publishing the private copy.

2.3 Software transactional memory in Haskell
The concept of transactional memory presented in the preceding section is elegantly
adapted in Haskell by definining two new polymorphic types: STM a for memory trans-
actions, and TVara for transactional variables (memory locations shared by multiple
threads and updatable through transactions). Haskell’s type system separates transac-
tional variables from other data types and guarantees that they can only be accessed
within transactions protected with the function atomically.

An STM action is like an I/O action in that it can have side effects, but the range
of possible side effects is limited: they can’t have consequences that can’t be undone
(such as printing something for example), therefore the only kind of possible side effect
is to access transactional variables. Apart from those accesses, only pure computations
can be performed inside STM actions.

Throughout the rest of this document, a transaction will therefore mean an I/O
action executing an STM action atomically. STM actions execute tentatively and
atomically exposes the result to the rest of the system if it has been run on a consis-
tent system.

Such an action display two characteristics expected of transactions: isolation and
atomicity. Furthermore, STM actions can be composed into bigger STM actions using
do, retry and OrElse constructs, and if two STM actions working correctly are so
composed, the resulting STM action also works correctly.

2.3.1 Access to shared variables
Throughout the rest of this document, a shared variable will mean a TVar and we will
assume no MVar is used.

The operation newTVar :: a−> STM (TVara) takes a value of type a and creates
a new TVar with this value, readTVar :: TVara−> STMa takes a TVar of type a and
returns an STM action reading its value and writeTVar :: TVara−> a−> STM()
takes a TVar of type a and a value of type a and returns an STM action writing the
TVar.
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2.3.2 Atomically
STM actions record their accesses to TVars in personnal logs and perform their calcu-
lations unseen by the other STM actions. In order to make the result visible to all other
STM actions, a function atomically :: STMa−> IOa is invoked. The function takes
an STM action and delivers an I/O action that, when performed, runs the STM action
atomically as a transaction: the STM interface checks that no concurrent transaction
has committed conflicting updates on any of the TVars used by the transaction, and
if no conflict has occured, the transaction commits, otherwise no modification is per-
formed by the transaction and it is reexecuted with a fresh log.

2.3.3 Do, Retry and OrElse
STM actions are actions and can be composed using do as I/O actions.

The retry :: STM a function aborts the current STM action, rolls back and retries it.

The OrElse :: STM a−> STM a−> STM a function allows the programmer to de-
fine an alternative STM action to perform if an STM action retries.

2.3.4 Relations between I/O and STM
I/O actions and STM actions are strictly separated: it is not possible to perform I/O or
manipulate MVar inside an STM action. The article [9] explains that strictly separat-
ing STM actions and I/O actions provides valuable security guarantees: as I/O actions
cannot be performed inside a memory transaction, it is always possible to roll back a
transaction and be certain it hasn’t had any consequences.

However, it is sometimes necessary to combine I/O actions and STM actions. There
is both safe and unsafe ways to do so.

If there is a need to perform I/O actions as a result of a decision made inside an
atomic block, the decision may be made in a transaction and atomically returns it to
the I/O caller to tell him what to do. The atomic block will then remain safe to roll back.

If it is necessary to perform an I/O action within an STM action, the function
UnsafeIoToSTM :: IOa−> STMa makes it possible, but if a user chooses to use that
possibility, the type system can’t help him to make sure that all the actions performed
inside the transaction can be rolled back, so it should be avoided as much as possible.
Throughout the rest of this document, we will assume that this possibility is never used.
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Chapter 3

Concurrency-related issues in
STM Haskell

As explained in chapter 2, STM has been created to help guarantee correctness in con-
current programs without critical section usage. Whereas it does provide a sound way
to do so, it does no more solve all concurrency-related issues than critical section.
Some of those issues are presented in the present chapter. Precisely, the first two sec-
tions briefly discuss types of concurrency errors this document does not discuss further,
while the last two sections present the kind of errors the Moth tool, presented in the
next part, attempts to detect in programs: high-level data races and stale-value errors.

3.1 Termination issues
This paper exclusively concerns itself with issues regarding partial correctness and
therefore does not discuss termination-affecting issues.

However, according to [4], code that uses STM will not deadlock (which would be
yet another advantage of software transactional memory over lock-based approaches)
but livelocks are possible if all concurrent threads simultaneously decide to abort and
retry.

A livelock is similar to a deadlock except that, instead of passively waiting for an-
other thread to progress, a thread takes some action to ensure progress. But it does so
in such a such a way that, while none of the threads is inactive, no progress is actually
made.
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3.2 Low-level data races
Since no STM actions can be performed outside a transaction, a programmer cannot
access a TVar without the protection of atomically. The occurence of low-level data
race on TVar in STM Haskell programs is therefore excluded.

However, usage of software transactional memory does not eliminate subtler concurrency-
related errors. If a programmer uses two separate transactions when he should have
used one, he may get a high-level data race or a stale-value error.

3.3 Stale-value errors
A stale-value is an old value of a variable that is used after the variable has been up-
dated.

When such an outdated value is used by a piece of code under the assumption that
it is still synchronized, a stale-value error may occur.

Copies of TVar are not updated when the TVar is, so a copy can end up being
inconsistent with the global memory state. For example, a stale-value error could be
caused by using a local copy (t) of a TVar x to update another variable (e) if the pro-
grammer intended that e should be divided by 2 if it was equal to x:

Example 1

do t ← atomically (readTVar x)

e ← if e == t then t/2 else t

That error could have been avoided simply by making a single transaction out of
the two operations.

3.3.1 Stale-value errors definitions in the literature
Article [10] states that a value is stale if it is used outside the critical section it was
defined in.

In [11], a stale-value is defined as a value of a register that originated from a dif-
ferent monitor block than where it is used. That definition is exactly the same that the
one in [10] even if it uses a slightly different vocabulary.

In [2], a stale-value is defined as a variable replica that no longer reflects the true
value of that variable.
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Only the definition in [2] is a definition instead of a criterion to detect stale copy in
a specific computational paradigm. However, all those definitions are sufficiently alike
to show there seems to be a general agreement on the notion of stale-value.

Article [10] states that a stale-value error is, like a low-level data race, a scenario
where a thread u reads from a shared variable l, then uses the value read, while in the
meantime another thread, u′, has updated l. That definition conveys an essential el-
ement lacking in most stale-value definitions: a stale-value error does not require an
outdated copy: it may occur every time a piece of code uses an outdated value.

It is worth remembering, however, that a stale-value can only cause a stale-value
error if the program depended in any way on the value being up to date. So, while a
stale value error is such a scenario, not all such scenarios are stale-value errors.

Stale-value errors are therefore hard to detect in an automatic way since it is really
the programmer intent that will distinguish between an error and a legitimate usage
instead of an objective criterion.

3.4 High-level data races
A high-level data race is a data race occuring within a set of related variables instead
of an unique variable.

An high level data race could be caused by updating a TVar max holding the max-
imal value of a list and a TVar posmax holding the position of that maximal value in
separate transactions.

Example 2

do atomically (writeTVar max xs!!n)
atomically (writeTVar posmax n)

The high-level data race may occur, for example, if a concurrent thread reads from
max and posmax between both atomic writes and observes a situation where posmax
does not hold the position of the value in max.

As with the stale-value error example 1, that error could have been avoided simply
by making a single transaction out of the two.

3.4.1 High-level data races definitions in the literature
High-level data races were initially defined as follows in [5]: "A high-level data race
can occur when two concurrent threads access a set V of shared variables, which should
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be accessed atomically, but at least one of the threads accesses V partially several times
such that those partial accesses diverge."1.

The notion is defined more intuitively in [11] by stating that "the notion of high-
level data races refers to sequences in a program where each access to shared data is
protected by a lock, but the program still behaves incorrectly because operations that
should be carried out atomically can be interleaved with conflicting operations"2.

In [10], it is stated that a high-level data race is a scenario where either a thread
reads separately two related variables and gets an incoherent view because, between
the two reads, another thread has updated the related variables (or only one of them) or
a thead writes two related variables separately and another thread reading the related
variables between the two writes, may observe an incoherent memory state.

In [2], a high-level data race is defined as a violation of data consistency occuring
when two synchronized blocks the programmer intended to run atomically have other
code blocks interleaved between them because he believed it was sufficient to ensure
their individual atomicity.

All four definitions are consistent if not identical, so there also seems to be a con-
sensus in the literature regarding the type of error "high-level data race" refers to.

However, the definitions in [11] and [2] are not testable without further formaliza-
tion, while the other two are less intuitive and may not cover as much cases but may
directly be used for testing.

As with stale-value errors, high-level data races are hard to detect in an automatic
way since it is the programmer’s view of the relationship between variables that distin-
guishes between an error and a legitimate usage.

1Cyrille Artho, Klaus Havelund and Armin Biere, "High-Level Data Races" in Software Test-
ing, Verification and Reliability: Special Issue: VVEIS 2003 Workshop on Verification and Valida-
tion of Enterprise Information Systems, 13(4), December 2008, page 8, retrieved October 2012 from
http://staff.aist.go.jp/c.artho/papers/stvr03.pdf [5].

2Cyrille Artho, Klaus Havelund and Armin Biere, "Using block-local atomicity to detect stale value
concurrency errors" in Proc. ATVA ’04,2004, retrieved November 2012 from ti.arc.nasa.gov/m/pub-
archive/885h/0885%20(Artho).pdfstaff.aist.go.jp/c.artho/papers/vveis03.pdf [11].
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Chapter 4

View generation

As seen in chapter 3, STM programs are not free of concurrency errors. Hence algo-
rithms that check software transactional memory-based programs for them are neces-
sary.

The tool presented in [2], Moth, answers that need for programs writen in Java and
the current part attempts to adapt it to STM Haskell programs. Ideas presented here
are therefore integrally taken from [2] but slighly adapted to the specificities of STM
Haskell.

The Moth tool unifies checkers targeting different kinds of concurrency errors by
providing an analysis which generates a common core of information about memory
access, on the basis of which plugged-in algorithms (each detecting a specific error
pattern) work.

The current chapter presents the generation of the set of memory accesses in Moth,
the view set, and the theory behind it. The first section defines the view set, the second
one presents the rules used by Moth for its generation and the last one shows an exam-
ple of application of those rules on a subset of Haskell.

The next chapter will then present the plugged-in algorithms and how they use that
view set.

4.1 View set

4.1.1 Views
A view expresses which TVars are accessed inside an atomic STM action (or transac-
tion).
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Access

Let F be the set of all TVar in a program and A be the set of all read and write accesses
to variables of F inside transactions. An access a ∈ A is a triple (α,γ,β) where α = r
if a is a read access and α = w if it is a write access, γ ∈ F is the accessed TVar and β

helps keeping a "use-define" relation for each accessed TVar as follows:

If α = r and the value of γ will later be overwritten inside the same transaction then β = •;
If α = r and the value of γ will not be overwritten later inside the same transaction then β = ◦;

If α = w and the value of γ was read before in the same transaction then β = •;
If α = w and the value of γ was not read before in the same transaction then β = ◦;

For example, (r,x,•) is a read access to the variable x inside a block in which x will
be written after it has been read.

In example 1 (presented on page 25), F = {x} and A = {(r,x,◦)} .

In example 2 (presented on page 26), F = {max, posmax} and A = {(w,max,◦),(w, posmax,◦)}
.

View

A view is a set of memory accesses made in a specific transaction. Formally, a view
v ⊆ A of a transaction is a subset of A and includes all the variable accesses made
inside that transaction. The set of all the views is denoted by V .

In example 2, v = {(w,max,◦)} for the first transaction and
v = {(w, posmax,◦)} for the second.

In example 3, v = {(w,max,◦),(w, posmax,◦)} :

Example 3

atomically (do writeTVar max xs!!n
writeTVar posmax n)

4.1.2 Set of views for a thread
The set of views of a thread characterizes the way it may interact with other threads
through shared TVars. Therefore, to detect potential concurency errors, sets of views
for each thread must be generated. Furthermore, since only specific interleaving of
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read and write may cause potential errors, read and write views need to be further dis-
tinguished.

Let B be the set of transactions, Γ : V → B be a relation returning the transac-
tion characterized by a given view and executes(t,b) be a boolean that is true when
a thread t executes a transaction b. The set of generated views of a thread t, V (t), is
the set of views of each transaction executed by t: v∈V (t)⇔ b = Γ(v)∧executes(t,b).

In example 4, the set of views of the first thread is V (t1) = {(w,max,◦)}, that of
the second V (t2) = {(w, posmax,◦)} and the set of views of the last thread is V (t3) =
{(r, posmax,◦),(r,max,◦)}.

Example 4

main = do forkIO atomically (writeTVar max xs!!n)
forkIO atomically (writeTVar posmax n)

forkIO atomically (do readTVar p posmax

readTVar m max)

Since it will be necessary to distinguish read and write accesses, the set of read
views of a thread t is denoted Vr(t): Vr(t) = {(r,γ,β)|(r,γ,β) ∈ V (t)} and the set of
write views of a thread t is denoted Vw(t): Vw(t) = {(w,γ,β)|(w,γ,β) ∈V (t)}.

Continuing example 4, Vr(t1) = /0, Vw(t1) = {(w,max,◦)}, Vr(t2) = /0, Vw(t2) =
{(w, posmax,◦)}, Vr(t3) = {(r, posmax,◦),(r,max,◦)} and Vw(t3) = /0.

4.2 View generation in Moth
The Moth tool generates the set of views of every thread in a program using static
analysis and runs different concurrency errors-detecting algorithms (called sensors) on
those views.

The view generation produces views for each transaction by starting with empty
views and adding successively each access to TVar made in the action body.

For a given transaction :

1. The view generation starts with an empty view;

2. Each time an access is made to a TVar γ, that access is added to the view. Insert-
ing a memory access (α,γ,β) into a view is defined as follows: add : A×V →
V :

add((α,γ,β),v)≡

 v\{(α,γ,δ)}∪{(α,γ,β)} if α = r∧ (α,γ,δ) ∈ v∧δ 6= β

v\{(r,γ,δ)}∪{(r,γ,•)}∪{(α,γ,•)} if α = w∧ (r,γ,δ) ∈ v
v∪{(α,γ,β)} otherwise
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If a transaction contains multiple accesses to a TVar, previously inserted accesses
may need to be updated to reflect informations that weren’t known when the access was
inserted. For example, (r,γ,◦) will be transformed into (r,γ,•) when adding (w,γ,•).

3. Each time an STM action is called inside the body of another STM action, the
callee’s views, vp, are computed in isolation then merged with the caller’s, v.

Merging views is defined as follow: mergeP : V ×V → V : mergeP(vp,v) = v′′

where

v′′ = merge({(r,γ,β)|(r,γ,β) ∈ vp},v′),
v′ = merge({(w,γ,β)|(w,γ,β) ∈ vp},v) and

merge(vP,v)≡
{

v if vp = /0

merge(vp \{a},add(a,v)) if ∃a ∈ vp.

If an STM action contains a call to another STM action, the view corresponding to
the action called will be computed separetly, using the actual parameters instead of the
formal parameters. The access in that view will then be added to those already com-
puted for the calling STM action as if they were made in that STM action. Merging
view is thus simply uniting two sets. The authors of [2] insist that all the write accesses
should be merged before the read accesses but the procedure would work either way.

For example, if an STM action transfer :: Integer−> Account−> Account−> STM()
is defined using two STM actions, credit :: Integer−> Account−> STM() and
debit :: Integer−> Account−> STM() as in example 5, the views of credit and
debit will be computed then added to the access already included in the view of
transfer.

Example 5

transfer amount from to = do fromVal <−readTVarfrom

if(fromVal−amount)>= 0 then do

debit amount from

credit amount to

else retry

4. Each time a choice instruction is used, the accesses occuring in the choice con-
dition and in both sides of the alternative are added to the view.

At the end of the view generation algorithm, the information used by the sensors
presented in the next chapter is fully computed.
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4.3 Example of view generation for a subset of Haskell
In the following example, the impact of the langage constructs in a small Haskell-like
language on the set of views is illustrated. It aims to illustrate how the rules defined in
section 4.2 translate into Haskell.

For the purpose of this illustration, the syntax is restricted to a subset of Haskell
in which neither the arguments of the functions nor the choice conditions can contain
TVar and STM actions can’t be nested but the view generation procedure itself is not
subject to those limitations.

The fact that a set of views 〈v〉 becomes 〈v′〉 after an instruction S will be noted
〈v,S〉 ⇒ 〈v′〉.

4.3.1 Language definition
In the small language considered, an instruction (S) may take three principal forms:
either S is a call to a pure function or it is a call to an action. In that second case, it may
either be a transaction or a "regular" IO action.

S ::= f
−→
x′

where f ::−→a −> b

f~x = Y

| f
−→
x′

where f :: −→a −> IOb

f~x = Z

| atomically(f
−→
x′ )

where f ::−→a −> STMb

f~x = W

where Y, Z and W represent, respectively, the body of a pure function, the body of
an IO action, and the body of a transaction as defined below.

A pure function is an expression evaluation, a call to another pure function or a
choice between two pure functions or expressions.
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Y ::= e where e is an expression
| ifethenYelseY

| f
−→
x′

where f ::−→a −> b

f~x = Y

An IO action may contain any instruction in the language or a sequence of such
instructions.

Z ::= S

| do{S; . . . ;S}

A transaction is an atomic call to a pure function or to a function writing or reading
a TVar. It may also be an atomic call to a sequence of such instructions or a choice
between such instructions.

W ::= f
−→
x′

where f ::−→a −> b

f~x = Y

| x = readTVara where a is a TVar
| writeTVarax where a is a TVar
| do{W; . . . ;W}
| ifethenWelseW

| ifethenWelseretry

4.3.2 View generation
The fact that a set of views 〈v〉 becomes 〈v′〉 after an instruction S will be noted 〈v,S〉⇒
〈v′〉.
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Impact of the fact that an instruction is a pure function, an IO action or a trans-
action

S ::= f
−→
x′

where f ::−→a −> b
f−→x = Y

〈v, f~x〉 ⇒ 〈v〉, no matter what Y is like, because IO actions can’t be found inside pure
functions. The view generation procedure therefore stop here without looking at the
body (Y) of the function f.

S ::= f
−→
x′

where f ::−→a −> IO b
f−→x = Z

If S is an IO action, the view generation procedure must look at the body (Z) of the
function for calls to transactions.

〈v,S〉 ⇒ 〈v′′〉 where the set of views of Z is denoted v′ and 〈v′′〉= merge(v,v′) using
definition of merge from 4.2. Since the arguments of f can’t be TVars, only the
accesses made in the transactions in the function body will be added to the view.

S ::= atomically (f
−→
x′ )

where f ::−→a −> STM b
f−→x = W

If S is a transaction, the view generation procedure must compute the view of that
transaction and therefore look at the body (W) of the function called atomically to
record which TVars are accessed in it.

〈v,S〉 ⇒ 〈v′′〉 where the set of views of W is denoted v′ and 〈v′′〉= merge(v,v′) using
definition of merge from 4.2. Since the arguments of f can’t be TVar, only the
accesses made in the function body will be added to the view.

35



Program analysis for concurrent programming

View generation procedure on the body of an IO action

Z ::= S

If the body of an IO action is composed of a single instruction S, the set of views of Z
is the set of views of S.

Z ::= do{S; . . . ;S}

If the body of an IO action is composed of a sequence of instructions, the set of views
of Z is composed of the set of views of each of those instructions.

〈v,Z〉= 〈v,do{S1;S2}〉 ⇒ 〈v′′〉 with 〈v,S1〉 ⇒ 〈v′〉 and 〈v′,S2〉 ⇒ 〈v′′〉

View generation procedure on the body of a transaction

W ::= f
−→
x′

where f ::−→a −> b
f−→x = Y

〈v,W 〉 ⇒ 〈v〉 , no matter what Y is like, because actions can’t be found inside pure
functions. The view generation procedure therefore stop here without looking at the
body of the function f.

W ::= x = readTVar a where a is a TVar

〈v,W 〉 ⇒ 〈v′〉 where 〈v′〉= add((r,a,◦),v) using the definitions of access and add
from 4.2.

W ::= writeTVar a x where a is a TVar

〈v,W 〉 ⇒ 〈v′〉 where 〈v′〉= add((w,a,◦),v) using the definitions of access and add
from 4.2.

W ::= do{W; . . . ;W}

If the body of an STM action is composed of a sequence of instructions, its set of
views is composed of of the access made in each of the instructions.

〈v,W 〉= 〈v,do{W1;W2}〉 ⇒ 〈v′′〉 with 〈v,W1〉 ⇒ 〈v′〉 and 〈v′,W2〉 ⇒ 〈v′′〉
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W ::= if e then W else W

If the body of a transaction is composed of a choice between instructions, the set of
views of W is composed of the access made in each of the instructions.

〈v,W 〉= 〈v, i f e then W1 else W2〉 ⇒ 〈v′〉 with 〈v,W1〉 ⇒ 〈v′′〉, 〈v,W2〉 ⇒ 〈v′′′〉 and
〈v′〉= merge(v,v′′∪ v′′′) using definition of merge from 4.2.

W ::= if e then W else retry

If the body of a transaction is composed of a choice between a normal instruction and
a retry instruction, the set of views of W is composed of the access made in the normal
instruction because there won’t be any additional access while retrying.

〈v,W 〉= 〈v, i f e then W1 else retry〉 ⇒ 〈v′〉 with 〈v,W1〉 ⇒ 〈v′〉.
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Chapter 5

Error detection

The Moth tool consists of a view generation algorithm and an extendable number of
checking algorithms. The two checking algorithms included by default in the tool are
a checker for stale-value errors (a modified version of the algorithm presented in [12])
and one for high-level data races (an adaptation of the approach of [5] for a transac-
tional memory environment).

The previous chapter presented the view generation. The present chapter presents
the sensors using the generated views and the theory behind them. The first section
briefly discusses the Moth tool, the second presents a view-related criterion for stale-
value errors and the Moth sensor using that criterion, and the last section does the same
with high-level data races.

5.1 The Moth tool
The Moth tool, introduced in [2], is a piece of software that tests transactional memory-
based Java program for existence of potential high-level data races and stale-value er-
rors. It generates the set of views of every STM action in a program and runs different
concurrency-errors detecting algorithms (called sensors) on those views.

The original tool runs only two sensors: the view consistency sensor, targeting
high-level data races, and the single variable sensor, targeting stale-value errors, but
Moth is built to be extensible by allowing other sensors to be plugged in.

Each plugin detects a specific kind of error, but, as the sets of conflicts detected are
not necessarily disjoint, they are merged before being presented to the user to avoid
multiple reporting. An advantage in terms of performance is that the sensors are com-
pletely independent from one another, so they can be executed in parallel.

In order to make automatic detection of both kinds of errors possible, formal crite-
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ria for each error type must be defined. Those criteria have inherent limits: they will
not be able to encompass the complexity of the consistency error they target and will,
therefore, characterize some rightful usage as erroneous and fail to detect some erro-
neous usages.

The imperfection of the criteria and, therefore, of the tool is the inevitable price
to pay for not asking the programmer to document his intent, because the tool needs
to use formal rules to define what is an expected behavior and what constitutes a log-
ical mistake, while consistency errors really depends on the programmer intent. False
positive and/or false negative can consequently not be entirely avoided in tools such as
Moth.

5.2 Stale-value errors detection

5.2.1 Single-variable safety property
As seen in section 3.3, a stale-value error occurs when an outdated value of a TVar is
used under the assumption that it is still the current value.

When a TVar is used in several operations in a thread, the operations are often logi-
cally related. Since there is no way of knowing what the logical link is, or even whether
there really is one without asking the programmer, the criterion makes the conservative
assumption that operations on a TVar taking place in separate transactions are always
related in such a way that a stale-value error will occur if another thread updates the
TVar.

Conversely, that criterion narrows the definition of stale-value errors because it ex-
cludes their occurence outside transactions or logical relations between operations on
several TVars.

In the context of the sensor, that hypothesis means that a variable read (and not
overwritten) in a view of a thread and written in another view of the same thread may
generate a stale value, which narrows the range of stale-value errors by restricting
targeted errors to errors affecting a single variable.

Stale-value error

Let T be the set of threads of a given program. For t ∈ T , psv(γ, t) is a boolean that is
true when γ ∈ F has a possible stale value for t. A variable γ ∈ F has a possible stale
value if ∃v1 6= v2 ∈V (t) : (r,γ,◦) ∈ v1∧ (w,γ,β) ∈ v2.

For example, with the following piece of code in a thread t:
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Example 6

oldx ← atomically(readTVar x)

atomically(writeTVar x oldx+1),

the view of the first transaction, v1 = {(r,x,◦)}, and the view of the second transac-
tion, v2 = {(w,x,◦)}, are two different views of thread t and (r,x,◦)∈ v1∧(w,x,◦)∈ v2
so x has a possible stale value for t (psv(x, t)).

Single variable safety property

A program will be characterized as free of stale-value errors if, for any pair of threads,
none of them presents a risk of possible stale value for a TVar or, if one does, the other
thread never writes that TVar so that the risk will not materialize.

For t ∈ T , let writes(γ, t) be a boolean that is true if there is an access to γ in Vw(t).
A program is free of stale-value errors iff ∀t1 6= t2 ∈ T : pSa f e(t1, t2)∧ pSa f e(t2, t1)
where pSa f e(t1, t2)⇔∀γ ∈ F : ¬writes(γ, t1)∨¬psv(γ, t2).

Continuing the previous example, assuming F = {x}, the sensor will test each
other thread t ′ in the program against t to check pSa f e(t ′, t), namely ¬writes(x, t ′)∨
¬psv(x, t) = ¬writes(x, t ′) since we know that x has a possible stale value for t. The
program will therefore only be safe if no other thread writes x.

5.2.2 Single-variable sensor
The single-variable sensor is inspired by [12] so it targets successive transactions that
should be merged into a single one to avoid stale-value errors, and reports a warning
when the single variable safety property is violated.

The sensor analyses the views of each transaction to ensure that the program is free
of stale-value errors by checking, for each pair of threads and each variable in the pro-
gram, that either one of the thread does not write the variable, or the variable cannot
generate a possible stale value error in the other. If none of those properties is true, the
pair of transactions is reported to the programmer to suggest he makes a single trans-
action out of the two.

Like the original algorithm in [12], this sensor only targets specific patterns and is
neither sound, nor complete (though, according to [2], experimental results seem to in-
dicate that the implementation presented generates less false positives than the original
implementation).

The main problem regarding soundness is that the definition of possible stale value
does not account for whether there really is a logical link between two operations on a
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variable or what that link is.

The following piece of code would cause a possible stale value, according to the
criterion, despite the fact that the write in the second transaction is completely inde-
pendent of the read in the preceding transaction

Example 7

oldx ← atomically(readTVar x)

atomically(writeTVar x 1)

That problem could be solved by tracking the value read in the first transaction to
see if it influences the write in the second transaction or a decision leading to it, but
that analysis can’t be conducted using only the views defined in the view generation
procedure.

Most importantly, the sensor isn’t complete, firstly because it only reports possible
stale-value affecting transactional variables (an issue not present in the original tool
since there was no specific type for shared variables), and secondly because it does not
reports usage of a stale value to update another transactional variable. Neither of the
following examples would therefore be reported by the sensor.

Example 8

oldx ← atomically(readTVar x)

newcopy ← oldx

Example 9

oldx ← atomically(readTVar x)

atomically(writeTVar y oldx)

That kind of stale-value error would however be detected by the additional sensor
considered in section 8.3.3.

5.3 High-level data race detection

5.3.1 View consistency
As seen in section 3.4, a high-level data race occurs when logically related variables
are not accessed atomically.
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Since there is no way of knowing what variables are logically related and which
partial1 access to them is legitimate without asking the programmer, the tool will make
the conservative assumption that variables that are accessed atomically somewhere in
the program are logically related and that divergent partial accesses to those are erro-
neous and must be reported.

In the context of the view consistency sensor, the view notation can be shortened
by omiting the use-define relation because it is irrelevant to the identification of related
variables.

Maximal view

Maximal views are the views that are not subsets of other views of the same thread. The
maximal view of a thread t is denoted M(t). A view vm ∈M(t)⇔ vm ∈ V (t)∧ (∀v ∈
V (t) : vm ⊆ v⇒ v = vm).

The maximal view of a thread is the set of related variables infered by the view
concurrency sensor: since they are the biggest set of TVars accessed in a single trans-
action, the sensor assume they are related.

Since only specific interleaving of read and write may cause potential errors, read
and write maximal views need to be further distinguished.

The read maximal view of a thread t is denoted Mr(t) and its write maximal view
Mw(t). A view vm ∈Mα(t) where α ∈ {r,w} ⇔ vm ∈ Vα(t)∧ (∀v ∈ Vα(t) : vm ⊆ v⇒
v = vm).

When discussing read and write maximal views, it is not necessary to repeat the
access type. Therefore, the accesses in those views are reduced to the accessed TVar.

Example 10

If t1 = do atomically( writeTVar max xs!!n)
atomically( writeTVar posmax n)

and t2 = atomically(do writeTVar max xs!!n
writeTVar posmax n),

The read and write maximal views of t1 are Mr(t1)= /0 and Mw(t1)= {{max},{posmax}}
and its maximal view is M(t1)= {{(w,max)},{(w,posmax)}}. That of t2 are Mr(t2)= /0

and Mw(t2)= {{max,posmax}} and its maximal view is M(t2)= {{(w,max),(w,posmax)}}.
The sensor would therefore assume that max and posmax are related because they ap-
pear together in the maximal view of t2.

1An access to a set of variable is partial if it is an access to some variables of the set but not all of them.
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Overlapping views

Overlapping views are non-empty intersections of views. The view of a thread that can
cause concurrency-related errors are those that overlap with the views of other threads.

The read overlapping view of a thread t with a view of another thread, vm is defined
as follows: overlapr(t,vm) = {vm∩ v | (v ∈Vr(t))∧ (vm∩ v 6= /0)}.

The write overlapping view of a thread t with a view of another thread, vm is de-
fined as follows: overlapw(t,vm) = {vm∩ v | (v ∈Vw(t))∧ (vm∩ v 6= /0)}.

View compatibility

[13] defines a chain as a subset A of a partially ordered set (B,<) which is totally
ordered by <. Views are compatible if they form a chain of V using the usual set
inclusion as the partial order. If views do not form a chain, the access they contain will
be qualified as divergent.

A set of views of a thread t is read compatible with a maximal view vm of another
thread, which will be noted compr(t,vm), if and only if every read overlapping view of
t with vm form a chain.

We have compr(t,vm)⇔∀v1,v2 ∈ overlapr(t,vm) : v1 ⊆ v2∨ v2 ⊆ v1.

A set of views of a thread t is write compatible with a maximal view vm of another
thread, which will be noted compw(t,vm), if and only if every write overlapping view
of t with vm form a chain.

We have compw(t,vm)⇔∀v1,v2 ∈ overlapw(t,vm) : v1 ⊆ v2∨ v2 ⊆ v1.

Continuing example 10, overlapr(t1,Mr(t2))= /0, overlapw(t1,Mw(t2))= {{max},{posmax}},
overlapr(t2,Mr(t1)) = /0, overlapw(t2,Mw(t1)) = {{max},{posmax}}.

Accordingly compr(t1,M(t2)) is true because overlapr(t1,M(t2))= /0 but compw(t1,M(t2))
is false because {max},{posmax} ∈ overlapw(t1,M(t2)) but we have neither
{max} ⊆ {posmax} nor {posmax} ⊆ {max}

View safety property

The following property has to be verified in order to guarantee the absence of high-
level data races: ∀t1 6= t2 , mr is the maximal read view of thread t1, mw is the maximal
write view of thread t1 : compw(t2,mr)∧ compr(t2,mw)∧ compw(t2,mw).

The view of each thread needs to be write compatible with both the read and write
maximal views of every other thread and read compatible with their write maximal
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view. Indeed, if a thread is not read compatible with the write maximal view of another
thread, it may observe an incoherent state, and if a thread is not write compatible with
the maximal view of another thread, it may cause an incoherent state.

5.3.2 View consistency sensor
The view consistency sensor is inspired by [5], thus making the same assumption about
maximal views being likely candidates for sets of variables that should be accessed
atomically. Therefore, the sensor reports a warning for each violation of the view
safety property.

The sensor analyses the views of each transaction to insure the program is free of
high-level data races by checking for each pair of threads that one of them is write
compatible with both the maximal read view and the maximal write view of the other
and read compatible with its maximal write view.

The main problem regarding completeness is that it requires a correct atomic access
to a set of related variables to take place to be able to detect variables that are related
and report incorrect usage.

The main problem regarding soundness is that any usage of the variables in a single
transaction may make them appear related even if there is no logical relation between
them.

Both of those problems are related to the fact of detecting related variables automat-
ically, instead of getting the information from an exterior source. They are therefore
the inevitable price of not asking the programmer to do additional work.

5.4 Conclusion
The context of STM Haskell have both assets and drawbacks for the Moth analysis.

The peculiarities of the Haskell type system imply that low-level data races don’t
need to be detected by using another tool before running Moth, and make the pro-
cedures a lot faster because the tool can identify and target piece of code in which
transactional variables can be accessed.

However, since only TVar usage is tracked by the sensor, a broadest range of errors
will not be reported by the sensors.
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Moth analysis for STM Haskell:
an example

The current chapter presents an example of the way Moth works using an adaptation of
the STM example in [14]. It illustrates both the view generation presented in chapter 4
and the default sensor presented in chapter 5.

The analysed program is presented below. It consists of three threads: the main
thread t0, and threads t1 and t2, created on line 13 and 14 respectively.

Example 11

1 module Main where
2
3 import C o n t r o l . C o n c u r r e n t ( fo rk I O )
4 import C o n t r o l . C o n c u r r e n t .STM
5 import C o n t r o l . Monad ( f o r e v e r )
6 import System . E x i t ( e x i t S u c c e s s )
7
8 type Account = TVar I n t e g e r
9

10 main = do
11 bob <− newAccount 10000
12 j i l l <− newAccount 4000
13 fo rk I O ( a t o m i c a l l y ( t r a n s f e r 1 bob j i l l ) )
14 fo rk I O ( a t o m i c a l l y ( t r a n s f e r 1 bob j i l l ) )
15 f o r e v e r ( do
16 bobBalance <− a t o m i c a l l y ( readTVar bob )
17 j i l l B a l a n c e <− a t o m i c a l l y ( readTVar j i l l )
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18 putStrLn ( "Bob ’ s b a l a n c e : " ++ show bobBalance )
19 putStrLn ( " , J i l l ’ s b a l a n c e : " ++ show j i l l B a l a n c e )
20 i f bobBalance == 9998 then e x i t S u c c e s s
21 e l s e putStrLn " T ry in g a g a i n . " )
22
23 newAccount : : I n t e g e r −> IO Account
24 newAccount amount = newTVarIO amount
25
26 t r a n s f e r : : I n t e g e r −> Account −> Account −> STM ( )
27 t r a n s f e r amount from t o = do
28 fromVal <− readTVar from
29 i f ( f romVal − amount ) >= 0
30 then do
31 d e b i t amount from
32 c r e d i t amount t o
33 e l s e r e t r y
34
35 c r e d i t : : I n t e g e r −> Account −> STM ( )
36 c r e d i t amount a c c o u n t = do
37 c u r r e n t <− readTVar a c c o u n t
38 wr i t eTVar a c c o u n t ( c u r r e n t + amount )
39
40 d e b i t : : I n t e g e r −> Account −> STM ( )
41 d e b i t amount a c c o u n t = do
42 c u r r e n t <− readTVar a c c o u n t
43 wr i t eTVar a c c o u n t ( c u r r e n t − amount )

6.1 View generation
The first procedure executed by Moth is the view generation which generates a com-
mon core of information about memory access in the program.

6.1.1 View generation for t0
The code for t0 is:

bob <- newAccount 10000
jill <- newAccount 4000
forever(do

bobBalance <-atomically (readTVar bob)
jillBalance<-atomically(readTVar jill)
putStrLn ("Bob’s balance: " ++ show bobBalance)
putStrLn (", Jill’s balance: " ++ show jillBalance)
if bobBalance == 9998 then exitSuccess
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else putStrLn "Trying again.")

The thread executes two transactions.
The first transaction, bobBalance <−atomically(readTVar bob), makes a single
access (r,bob,◦). The second, jillBalance <−atomically(readTVar jill), also
makes a single access, (r,jill,◦).

The set of views for t0 is composed of the view of the first transaction, v1, and the
view of the second transaction, v2.

Applying the view generation step-by-step on v1, we start with v1 = /0. We then add
the single access (r,bob,◦) using the add definition add((r,bob,◦), /0)= /0∪{(r,bob,◦)}
to get v1 = {(r,bob,◦)}.

Similarly, we get v2 = {(r,jill,◦)}.

Finally, V (t0) = {{(r,bob,◦)},{(r,jill,◦)}} with set of write views Vw(t0) = /0

and set of read views Vr(t0) = {{(r,bob,◦)},{(r,jill,◦)}}.

6.1.2 View generation for t1
Intuitive idea

Using the definition of the functions transfer, credit and debit, the code for t1 could be
rewritten as follows:

atomically (
fromVal <- readTVar bob
if (fromVal - 1) >= 0

then do
current <- readTVar bob
writeTVar bob (current - 1)
current <- readTVar jill
writeTVar jill (current + 1)

else retry)

Intuitively, the access made in the single transaction executed by the thread are
(r,bob,•),(w,bob,•), (r,jill,•) and (w,jill,•) and the set of views for t1 is V (t1) =
{(r,bob,•),(w,bob,•),(r,jill,•),(w,jill,•)}.

View generation for t1

The code for t1 is atomically (transfer 1 bob jill). Applying the view genera-
tion algorithm to atomically(transfer 1 bob jill), we start with v = /0.
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Since there is a call to transfer, we need to compute v′, the view of transfer 1 bob jill,
then merge it with /0 to get the new value of v. The value of v will therefore only be
computed in paragraph "call resolution for the call to transfer" on page 52, after com-
puting v′ in isolation.

{v = /0}
atomically(transfer 1 bob jill)

{v = merge( /0,v′) = v′}

View generation for the call to transfer

v′ is the view of

do fromVal <- readTVar bob
if (fromVal - 1) >= 0

then do
debit 1 bob
credit 1 jill

else retry

We start with v′ = /0 then we add the access (r,bob,◦) using the add definition
add((r,bob,◦), /0) = /0∪{(r,bob,◦)} to get v′ = {(r,bob,◦)}.

Since the next instruction is a choice instruction, we need to add both the access in
the "then" part and the "else" part, but, since the "else" part is a retry, it won’t add any
new access and we can focus on the "then" part.

We therefore need to compute v′′, the view of the call debit 1 bob, then merge it
with {(r,bob,◦)} to get the updated value of v′. The value of v′ after the call to debit
will consequently only be computed in paragraph "call resolution for the call to debit"
on page 49, after computing v′′ in isolation.

We will then need to compute v′′′, the view of the call credit 1 jill, and merge
it with the updated value of v′ to get the final value of v′. The final value of v′ will thus
only be computed in paragraph "call resolution for the call to credit" on page 51, after
computing v′′′ in isolation.
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{v′ = /0}
do fromVal <−readTVar bob

{v′ = /0∪{(r,bob,◦)}= {(r,bob,◦)}}
if(fromVal−1)>= 0 then do

debit 1 bob

{v′ = merge(v′′,{(r,bob,◦)})} where v′′is the view of debit

credit 1 jill

{v′ = merge(v′′′,merge(v′′,{(r,bob,◦)}))} where v′′′is the view of credit

else retry

{v′ = merge(v′′′,merge(v′′,{(r,bob,◦)}))}

View generation for the call to debit

v′′ is the view of

do current <- readTVar bob
writeTVar bob (current - 1)

Using the view generation algorithm step-by-step, we start with v′′ = /0. We then
add the access (r,bob,◦) using the add definition add((r,bob,◦), /0) = /0∪{(r,bob,◦)}
to get v′′ = {(r,bob,◦)}.

Since (r,bob,◦)∈ v′′ and we now need to add the access (w,bob,•). We use the add
definition, add((w,bob,•),{(r,bob,◦)}) = {(r,bob,◦)}\{(r,bob,◦)}∪{(r,bob,•)}∪
{(w,bob,•)} to get v′′ = {(r,bob,•),(w,bob,•)}.

{v′′ = /0}
do current <−readTVar bob

{v′′ = /0∪{(r,bob,◦)}= {(r,bob,◦)}
writeTVar bob (current−1)

{v′′ = {(r,bob,◦)}\{(r,bob,◦)}∪{(r,bob,•)}∪{(w,bob,•)}= {(r,bob,•),(w,bob,•)}}

Call resolution for the call to debit

We need to merge v′′ with {(r,bob,◦)} to get the new value of v′:

49



Program analysis for concurrent programming

merge(v′′,{(r,bob,◦)}) = merge({(r,bob,•),(w,bob,•)},{(r,bob,◦)})
= merge({(r,bob,•)},merge({(w,bob,•)},{(r,bob,◦)}))
= merge({(r,bob,•)},merge( /0,add((w,bob,•),{(r,bob,◦)})))
= merge({(r,bob,•)},merge( /0,{(r,bob,◦)}\{(r,bob,◦)}∪{(r,bob,•)}∪{(w,bob,•)}))
= merge({(r,bob,•)},merge( /0,{(r,bob,•),(w,bob,•)}))
= merge({(r,bob,•)},{(r,bob,•),(w,bob,•)})
= merge( /0,add((r,bob,•),{(r,bob,•),(w,bob,•)}))
= merge( /0,{(r,bob,•),(w,bob,•)}∪{(r,bob,•)})
= merge( /0,{(r,bob,•),(w,bob,•)})
= {(r,bob,•),(w,bob,•)}

Accordingly,

{v′ = /0}
do fromVal <−readTVar bob

{v′ = /0∪{(r,bob,◦)}= {(r,bob,◦)}}
if(fromVal−1)>= 0 then do

debit 1 bob

{v′ = {(r,bob,•),(w,bob,•)}}
credit 1 jill

{v′ = merge(v′′′,{(r,bob,•),(w,bob,•)})}
else retry

{v′ = merge(v′′′,{(r,bob,•),(w,bob,•)})}
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View generation for the call to credit

v′′′ is the view of

do current <- readTVar jill
writeTVar jill (current + 1)

Using the view generation algorithm step-by-step, we start with v′′′ = /0. We then
add the access (r,jill,◦) using the add definition add((r,jill,◦), /0)= /0∪{(r,jill,◦)}
to get v′′′ = {(r,jill,◦)}.

Since (r,jill,◦) ∈ v′′′ and we now need to add the access (w,jill,•) using
the add definition add((w,jill,•),{(r,jill,◦)}) = {(r,jill,◦)} \ {(r,jill,◦)}∪
{(r,jill,•)}∪{(w,jill,•)} to get v′′′ = {(r,jill,•),(w,jill,•)}.

{v′′′ = /0}
do current <−readTVar jill

{v′′′ = /0∪{(r,jill,◦)}= {(r,jill,◦)}}
writeTVar jill (current+1)

{v′′′ = {(r,jill,◦)}\{(r,jill,◦)}∪{(r,jill,•)}∪{(w,jill,•)}= {(r,jill,•),(w,jill,•)}}

Call resolution for the call to credit

Carrying on with v′ = {(r,bob,•),(w,bob,•)}, we then need to merge it with v′′′ to
get the final value of v′:

merge(v′′′,{(r,bob,•),(w,bob,•)}) = merge({(r,jill,•),(w,jill,•)},{(r,bob,•),(w,bob,•)})
= merge({(r,jill,•)},merge({(w,jill,•)},{(r,bob,•),(w,bob,•)}))
= merge({(r,jill,•)},merge( /0,add((w,jill,•),{(r,bob,•),(w,bob,•)})))
= merge({(r,jill,•)},merge( /0,{(r,bob,•),(w,bob,•)}∪{(w,jill,•)}))
= merge({(r,jill,•)},merge( /0,{(r,bob,•),(w,bob,•),(w,jill,•)}))
= merge({(r,jill,•)},{(r,bob,•),(w,bob,•),(w,jill,•)})
= merge( /0,add((r,jill,•),{(r,bob,•),(w,bob,•),(w,jill,•)}))
= merge( /0,{(r,bob,•),(w,bob,•),(w,jill,•)}∪{(r,jill,•)})
= merge( /0,{(r,bob,•),(w,bob,•),(w,jill,•),(r,jill,•)})
= {(r,bob,•),(w,bob,•),(w,jill,•),(r,jill,•)}
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Accordingly,

{v′ = /0}
do fromVal <−readTVar bob

{v′ = /0∪{(r,bob,◦)}= {(r,bob,◦)}}
if(fromVal−1)>= 0 then do

debit 1 bob

{v′ = {(r,bob,•),(w,bob,•)}}
credit 1 jill

{v′ = {(r,bob,•),(w,bob,•),(w,jill,•),(r,jill,•)}}
else retry

{v′ = {(r,bob,•),(w,bob,•),(w,jill,•),(r,jill,•)}}

Call resolution for the call to transfer

Using v′ = {(r,jbob,•),(w,bob,•),(r,jill,•),(w,jill,•)} and merging it with /0,
we get v = merge( /0,{(r,bob,•),(w,bob,•),(w,jill,•),(r,jill,•)})
= {(r,bob,•),(w,bob,•),(w,jill,•),(r,jill,•)} .

The intuition was correct: the step-by-step application of the view generation algo-
rithm shows that the set of views for t1 is V (t1)= {(r,bob,•),(w,bob,•),(r,jill,•),(w,jill,•)}
with read and write views Vr(t1)= {(r,bob,•),(r,jill,•)} and Vw(t1)= {(w,bob,•),(w,jill,•)}.

6.1.3 View generation for t2
The code for t2 is identical to that of t1.

We have therefore V (t2)= {(r,bob,•),(w,bob,•),(r,jill,•),(w,jill,•)}, Vr(t2)=
{(r,bob,•),(r,jill,•)} and Vw(t2) = {(w,bob,•),(w,jill,•)}
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6.2 Error detection
Using the view generated in section 6.1, Moth uses the sensors to detect potential con-
currency errors.

As a reminder, the view of the three threads in the program are:

V (t0) {{(r,bob,◦)},{(r,jill,◦)}}
Vr(t0) {{(r,bob,◦)},{(r,jill,◦)}}
Vw(t0) /0

V (t1) {(r,bob,•),(w,bob,•),(r,jill,•),(w,jill,•)}
Vr(t1) {(r,bob,•),(r,jill,•)}
Vw(t1) {(w,bob,•),(w,jill,•)}
V (t2) {(r,bob,•),(w,bob,•),(r,jill,•),(w,jill,•)}
Vr(t2) {(r,bob,•),(r,jill,•)}
Vw(t2) {(w,bob,•),(w,jill,•)}

6.2.1 Single-variable sensor
The sensor attempts to detect related operations on a TVar taking place in separate
transactions by testing the single variable safety property.

The single-variable sensor assumes that a couple of thread is safe (psa f e) for a
TVar γ iff one of them does not read γ (¬writes) or the other can not cause a stale value
error for γ (¬psv) (because it does not read and update γ in separate transactions).

To check the single variable safety property for the program, we must have

[psa f e(t0, t1)∧ psa f e(t1, t0)]
∧

[psa f e(t0, t2)∧ psa f e(t2, t0)]
∧

[psa f e(t1, t2)∧ psa f e(t2, t1)] = true

which is equivalent to 

psa f e(t0, t1) = true
psa f e(t1, t0) = true
psa f e(t0, t2) = true
psa f e(t2, t0) = true
psa f e(t1, t2) = true
psa f e(t2, t1) = true

Namely,
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(∀γ ∈ F : ¬writes(γ, t0)∨¬psv(γ, t1)) = true
(∀γ ∈ F : ¬writes(γ, t1)∨¬psv(γ, t0)) = true
(∀γ ∈ F : ¬writes(γ, t0)∨¬psv(γ, t2)) = true
(∀γ ∈ F : ¬writes(γ, t2)∨¬psv(γ, t0)) = true
(∀γ ∈ F : ¬writes(γ, t1)∨¬psv(γ, t2)) = true
(∀γ ∈ F : ¬writes(γ, t2)∨¬psv(γ, t1)) = true

where F = {bob,jill}.

Since there is only one view for both t1 and t2, ¬psv(γ, t1) and ¬psv(γ, t2)) are both
trivially true ∀γ ∈ F , and the previous system becomes:

true = true
(∀γ ∈ F : ¬writes(γ, t1)∨¬psv(γ, t0)) = true

true = true
(∀γ ∈ F : ¬writes(γ, t2)∨¬psv(γ, t0)) = true

true = true
true = true

Using the value of F , we get:

true = true
(¬writes(bob, t1)∨¬psv(bob, t0))∧ (¬writes(jill, t1)∨¬psv(jill, t0)) = true

true = true
(¬writes(bob, t2)∨¬psv(bob, t0))∧ (¬writes(jill, t2)∨¬psv(jill, t0)) = true

true = true
true = true

Since V (t1) = {(r,bob,•),(w,bob,•),(r,jill,•),(w,jill,•)}
and V (t2) = {(r,bob,•),(w,bob,•),(r,jill,•),(w,jill,•)}, the previous system be-
comes: 

true = true
( f alse∨¬psv(bob, t0))∧ ( f alse∨¬psv(jill, t0)) = true

true = true
( f alse∨¬psv(bob, t0))∧ ( f alse∨¬psv(jill, t0)) = true

true = true
true = true

The single variable safety property is therefore reduced to¬psv(bob, t0)∧¬psv(jill, t0)=
true, which is true since neither bob, nor jill, appear in both views of t0.

Hence, the single variable safety property is verified for the program in example
11, and the single-variable sensor won’t report a warning.
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6.2.2 View consistency sensor
The sensor attempts to detect sets of related TVars and to detect problematic cases of
partial access to variables of such sets by testing the view consistency property.

Two threads are deemed compatible by the view consistency sensor if each of them
is read compatible (compr) with the write maximal view of the others and write com-
patible (compw) with both the read and write maximal view of the other.

As a reminder, overlapr(t,v) is the non-empty intersection of the read view of a
thread t with another view sv and compr(t,v)⇔∀v1,v2 ∈ overlapr(t,v) : v1⊆ v2∨v2⊆
v1 (v1 and v2 form a chain).

Similarly, overlapw(t,v) is the non-empty intersection of the write view of t with v
and compw(t,v)⇔∀v1,v2 ∈ overlapw(t,v) : v1 ⊆ v2∨ v2 ⊆ v1.

We therefore need to compute the maximal views of each thread. Since only t0
is composed of several transactions and even those don’t access the same TVars, the
maximal view are identical to the views generated in section 6.1.

Using the shortened notation, we have:

M(t0) {{(r,bob)},{(r,jill)}}
Mr(t0) {{bob},{jill}}
Mw(t0) /0

M(t1) {(r,bob),(w,bob),(r,jill),(w,jill)}
Mr(t1) {bob,jill}
Mw(t1) {bob,jill}
M(t2) {(r,bob),(w,bob),(r,jill),(w,jill)}
Mr(t2) {bob,jill}
Mw(t2) {bob,jill}
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To check the view safety property for the program in example 11, we must have

[compw(t2,Mr(t0))∧ compw(t2,Mw(t0))∧ compr(t2,Mw(t0))∧
compw(t1,Mr(t0))∧ compw(t1,Mw(t0))∧ compr(t1,Mw(t0))∧
compw(t1,Mr(t2))∧ compw(t1,Mw(t2))∧ compr(t1,Mw(t2))]

which is equivalent to



compw(t2,Mr(t0)) = true
compw(t2,Mw(t0)) = true
compr(t2,Mw(t0)) = true
compw(t1,Mr(t0)) = true
compw(t1,Mw(t0)) = true
compr(t1,Mw(t0)) = true
compw(t1,Mr(t2)) = true
compw(t1,Mw(t2)) = true
compr(t1,Mw(t2)) = true

Namely,

(∀v1,v2 ∈ overlapw(t2,Mr(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
(∀v1,v2 ∈ overlapw(t2,Mw(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
(∀v1,v2 ∈ overlapr(t2,Mw(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
(∀v1,v2 ∈ overlapw(t1,Mr(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
(∀v1,v2 ∈ overlapw(t1,Mw(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
(∀v1,v2 ∈ overlapr(t1,Mw(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
(∀v1,v2 ∈ overlapw(t1,Mr(t2)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
(∀v1,v2 ∈ overlapw(t1,Mw(t2)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
(∀v1,v2 ∈ overlapr(t1,Mw(t2)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true

Since there is only one view in both t1 and t2, the condition is true for each
intersection of views of those threads, and the system becomes:

(∀v1,v2 ∈ overlapw(t2,Mr(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
(∀v1,v2 ∈ overlapw(t2,Mw(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
(∀v1,v2 ∈ overlapr(t2,Mw(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
(∀v1,v2 ∈ overlapw(t1,Mr(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
(∀v1,v2 ∈ overlapw(t1,Mw(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
(∀v1,v2 ∈ overlapr(t1,Mw(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true

true = true
true = true
true = true
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Since Mw(t0) = /0, any intersection with it would also be empty and each of the
corresponding condition is trivially true. The previous system can be rewritten:

(∀v1,v2 ∈ overlapw(t2,Mr(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
true = true
true = true

(∀v1,v2 ∈ overlapw(t1,Mr(t0)) : (v1 ⊆ v2)∨ (v2 ⊆ v1)) = true
true = true
true = true
true = true
true = true
true = true

overlapw(t2,Mr(t0)) = {Mr(t0)∩ v | (v ∈Vw(t2))∧ (v∩Mr(t0) 6= /0}= {bob,jill}
since Mr(t0) = {{bob},{jill}} and Vw(t2) = {bob,jill}.

Similarly, overlapw(t1,Mr(t0)) = {bob,jill}.

The view safety property is therefore reduced to ∀v1,v2 ∈ {bob,jill} : (v1 ⊆
v2)∨ (v2 ⊆ v1), which is true since there is a single view in {bob,jill} .

Hence, the view safety property is verified for the program in example 11, and the
view consistency sensor won’t report a warning.
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Chapter 7

Problematic access patterns
classification

Concurrency errors-related literature contains a few attempts at a (more or less) exhaus-
tive classification of problematic scenarios in concurrent programs. Related detection-
approaches search for occurences of those scenarios instead of testing a criterion as
Moth sensors do. The present chapter presents examples of such approaches and ex-
amines if the scenarios are detected by Moth sensors.

7.1 Common transactional memory anomalies on re-
lated set of variables

The authors of [12] recommend to look for two kinds of occurence: cases of non-
atomic global reads (reading two related variables in separate transactions) and cases
of non-atomic global writes (writing two related variable in separate transactions) and
to report them if another thread in the program may conflict with them. Another thread
is said to be in potential conflict if it writes, reads or writes and reads the same variables
in a transaction and could therefore either observe or cause a memory inconsistency.

The authors do not claim their classification covers the whole range of possible
concurrency errors. Stale-value errors, for example, are not integrated in their clas-
sification. They only profess that most of the bugs encountered in programs can be
classified as either non-atomic global writes or non-atomic global reads. Their classifi-
cation of major causes does not exclude the use of complementary approaches for what
they deem to be less common bug classes.

The theory behind [12] is part of Moth’s groundwork and it is clear that those sce-
narios are targeted by the view consistency sensor. The detection of related variables
and accordingly the potential for both false positive and false negative due to this de-
tection approach is similar to that of the related Moth sensor.
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7.2 Common concurrency anomalies on single variables
The authors of [15] identify three common causes of concurrency error involving a
single shared variable: non atomic successive reads, non atomic successive writes and
non atomic successive reads and writes. Their tool, AVIO, reports an error if another
thread in the program sometimes conflicts with one of those scenarios. Another thread
is said to be in potential conflict if it writes, reads or writes or reads the same variable
in a transaction in such a way that it could observe or cause a memory inconsistency.

The four scenario listed in [15] can be expressed in STM Haskell as follows, as-
suming a is a TVar accessed in two threads (Thread 1 and Thread 2).

As a reminder, writes(γ, t) means that thread t writes TVar γ and psv(γ, t) means
that ∃v1 6= v2 ∈V (t) : (r,γ,◦)∈ v1∧(w,γ,β)∈ v2 where β ∈ {◦,•}. The single-variable
sensor in Moth checks that for each pair of threads, t1 and t2, and each Tvar γ, that
(¬writes(γ, t1)∨¬psv(γ, t2))∧ (¬writes(γ, t2)∨¬psv(γ, t1)) and reports an error if the
condition is false.

Thread 1 Thread 2

1
atomically(readTVar a)
atomically(readTVar a) atomically(writeTVar a)

Not detected because ¬writes(a,T hread 1)∧¬psv(a,T hread 1)

2
atomically(writeTVar a)
atomically(readTVar a) atomically(writeTVar a)

Detected by the single-variable sensor because writes(a,T hread 2)∧ psv(a,T hread 1)

3
atomically(writeTVar a)
atomically(writeTVar a) atomically(readTVar a)

Not detected because ¬writes(a,T hread 2)∧¬psv(a,T hread 1)

4
atomically(readTVar a)
atomically(writeTVar a) atomically(writeTVar a)

Identical to 2 as far as Moth is concerned

Moth’s single value sensor does not detect scenario 1 as problematic because the
fact that successive reads yield different values in the same thread does not indicate
that a stale value is being used.

Scenario 1 is not detected either because the fact that a value is read before it is up-
dated in another thread does not indicate that a stale value is being used in the reading
thread.

The authors do not claim their classification covers the whole range of possible
concurrency errors. Errors involving several variables, for example are neither inte-
grated in their classification nor reported by their tool.
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7.3 Problematic interleaving scenarios in concurrent pro-
grams

The authors of [10] identify 11 problematic interleaving scenarios (later incorporated
in other articles such as [16] and [17]).

The authors of [10] claim that their classification is exhaustive and that if a program
displays none of those 11 scenarios, it is atomic-set serializable, which means that all
of the functions in the program run exactly as if there was no concurrent execution with
regard to the shared variable they work with. Moth detects some of those patterns as
problematic but not all of them because some can’t possibly cause concurrency errors
in STM Haskell programs and some others do not directly cause memory inconsis-
tency, so reporting them would cause false warnings more than help find bugs in the
code.

The 11 original scenarios cover both cases of stale-value errors and high-level data
races.

7.3.1 Stale-value errors
The first five scenarios of [10] target concurrency errors relating to a single shared vari-
able and can be expressed in STM Haskell as follows, assuming a is a TVar accessed
in two threads (Thread 1 and Thread 2).

As a reminder, the single-variable sensor assumes that a couple of threads is safe
for a TVar γ iff one of them does not read γ (¬writes) or the other cannot cause a stale-
value error for γ (¬psv) (because it does not read and update γ in separate transactions).

Scenario Thread 1 Thread 2

1 Ru(l)Wu′(l)Wu(l)
atomically(readTVar a)
atomically(writeTVar a) atomically(writeTVar a)

Detected by the single-variable sensor because writes(a,T hread 2) ∧ psv(a,T hread 1)

2 Ru(l)Wu′(l)Ru(l)
atomically(readTVar a)
atomically(readTVar a) atomically(writeTVar a)

Not detected because ¬writes(a,T hread 1) ∧ ¬psv(a,T hread 1)

3 Wu(l)Ru′(l)Wu(l)
atomically(writeTVar a)
atomically(writeTVar a) atomically(readTVar a)

Not detected because ¬writes(a,T hread 1) ∧ ¬psv(a,T hread 1)

4 Wu(l)Wu′(l)Ru(l)
atomically(writeTVar a)
atomically(readTVar a) atomically(writeTVar a)

Detected by the single-variable sensor because writes(a,T hread2)∧ psv(a,T hread1)

5 Wu(l)Wu′(l)Wu(l)
atomically(writeTVar a)
atomically(writeTVar a) atomically(writeTVar a)

Not detected but the lost update problem can’t happen in STM Haskell
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Cases that are detected by the Moth single-value sensor are those where a write to
a TVar may rely on a previously read value or the contrary without any guarantee the
value is still accurate.

Scenario 2 is not detected by the sensor because successive reads yielding different
values in the same thread will not affect the value of the TVar. Unless a is also writen
inside the transaction, the memory coherency will not be affected by the fact that in-
side the transaction the value read will depend on thread interleaving and there is no
indication that the second read depends on the value returned by the first read.

Similarly, scenario 3 is not detected because there is no indication that the second
write relies on the value that was previously written or that thread 2 needs to read the
"final" value of a. However, such interleaving may cause concurrency errors if the pro-
grammer has erronously made such assumptions.

As a consequence, the single-variable sensor avoids some likely false positive
caused by detection approaches based on the classification of [10] but may generate
false negatives in cases correctly detected in [10].

The single-variable sensor also leaves out the fifth pattern because it is spurious for
STM Haskell: low-level data-races are excluded by the STM interface.

The Moth single-variable sensor seems to produce less spurious warnings than a
brute transposition of the detection of the problematic scenario classification of [10] in
STM Haskell would. However, those scenario were not developed in a context where
atomicity and isolation are already guaranteed, which complicates any comparison be-
tween the two approaches.

Finally, both the approach in [10] and Moth’s single-variable sensor are underre-
porting because neither considers cases where a stale value is used to update another
shared variable than the one its value is derived from.

7.3.2 High-level data races
The last six scenarios of [10] target concurrency errors relating to coherency within a
related set of shared variables can be expressed in STM Haskell as follows assuming a
and b are related TVars accessed in two threads (Thread 1 and Thread 2).

A major difference between Moth and the senario-based approaches is that these
rely on a external information to know that a and b are related while Moth will have to
get that information from the source code alone, which biases any comparison between
the two kinds of approaches.

As a reminder, overlapr(t,v) is the non-empty intersection of the read view of a
thread t with another view sv, overlapw(t,v) is the non-empty intersection of the write
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view of t with v, compr(t,v)⇔ ∀v1,v2 ∈ overlapr(t,v) : v1 ⊆ v2 ∨ v2 ⊆ v1 (v1 and v2
form a chain) and compw(t,v)⇔ ∀v1,v2 ∈ overlapw(t,v) : v1 ⊆ v2 ∨ v2 ⊆ v1. Two
threads are deemed compatible by the view consistency sensor if each of them is read
compatible with the write maximal view of the other and write compatible with both
the read and write maximal views of the other.

Scenario Thread 1 Thread 2

6 Wu(l1)Wu′(l)Wu′(L− l)Wu(l2)
atomically(writeTVar a)
atomically(writeTVar b)

atomically(writeTVar a
writeTVar b)

atomically(writeTVar a)
atomically(writeTVar b)

atomically(writeTVar b
writeTVar a)

Detected by the view consistency sensor because ¬compw(T hread 1,Mw(T hread 2))

7 Wu(l1)Wu′(l2)Wu(l2)Wu′(l1)
atomically(writeTVar a)
atomically(writeTVar b)

atomically(writeTVar a)
atomically(writeTVar b)

Not detected because a and b are not detected as related variables

8 Wu(l1)Ru′(l)Ru′(L− l)Wu(l2)
atomically(writeTVar a)
atomically(writeTVar b)

atomically(readTVar a
readTVar b)

atomically(writeTVar a)
atomically(writeTVar b)

atomically(readTVar b
readTVar a)

Detected by the view consistency sensor because ¬compw(T hread 1,Mr(T hread 2))

9 Ru(l1)Wu′(l)Wu′(L− l)Ru(l2)
atomically(readTVar a)
atomically(readTVar b)

atomically(writeTVar a
writeTVar b)

atomically(readTVar a)
atomically(readTVar b)

atomically(writeTVar b
writeTVar a)

Detected by the view consistency sensor because ¬compr(T hread 1,Mw(T hread 2))

10 Ru(l1)Wu′(l2)Ru(l2)Wu′(l1)
atomically(readTVar a)
atomically(readTVar b)

atomically(writeTVar a)
atomically(writeTVar b)

Not detected because a and b are not detected as related variables

11 Wu(l1)Ru′(l2)Wu(l2)Ru′(l1)
atomically(writeTVar a)
atomically(writeTVar b)

atomically(readTVar b)
atomically(readTVar a)

Not detected because a and b are not detected as related variables
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Scenarios 7, 10 and 11 are not detected: Moth doesn’t know that a and b are logi-
cally related because they are never accessed atomically in a single transaction.

On the other hand, Moth’s view consistency sensor correctly detects all the scenar-
ios where a legitimate usage can be observed.

As stated above, the fact that Moth detects the set of related variables automatically
biases comparisons against it. Indeed, it is more vulnerable to underreporting if the
erroneous usage of transactions is consistent than tools relying on user-provided infor-
mations. That weakness should however be weighed against the interest of a tool that
doesn’t provoke any extra workload.
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Chapter 8

Concurrency anomaly detection

Different approaches aimed at detecting potential concurrency anomalies in the code
of a program exist in the literature. They differ on the type of anomaly they target, the
language of the programs they test and of course their methodology and more specifi-
cally how much user input they require.

The current chapter briefly discusses examples of such approaches and the possi-
bility of adapting them or some of their ideas as aditionnal sensors for Moth in Haskell.
Not all existing concurrency anomaly-related articles are discussed here: we focused
on a few articles that are representatives of a "family" of approaches.

8.1 Concurrency anomaly detection not applicable to
STM Haskell

Most of the concurrency anomaly-related literature focuses on error types that are not
applicable in the context of STM Haskell because Haskell type systems and/or the STM
interface make their occurence impossible.

For example, low-level data race detection ([18], [19], [20], [21]) and checking if
sections defined as atomic by the programmer truly are ([19],[39],[40]) are useless for
STM Haskell because the Haskell type system already guarantees that no unprotected
access to STM variable is possible. Similarly, deadlock detection is useless in the con-
text of STM.

8.2 Approaches based on user-provided annotations and
invariants

The last section briefly addressed the subject of branches of the concurrency error de-
tection that hold no interest in the contect of the transposition of Moth to STM Haskell.
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Some other approaches found in the literature are more subtly incompatible with that
of Moth because the major difference rests on the fundamental choice whether or not
to make the detection fully automated (by not asking the user to document his design
choices). Some such approaches will be discussed in the current section.

Lots of the work that has taken place in recent years in concurency anomalies de-
tection for STM Haskell precisely aim to allow the programmer to define what it means
for its data to be consistent.

For example, [22] asks the programmer to define a set of invariants and provides a
framework using a theorem prover to check, for each atomic section, that if the set of in-
variant holds at the beginning of the atomic section, it still does at its end. It thus proves
that none of the atomic sections exposes the variable in an inconsistent state, making
undetected memory incoherency impossible if the set of invariant is adequately defined.

Similarly, [23] defines a framework checking what it calls "contracts" for pure cal-
culations and [24] extends that approach to a concurrent environment. The extension is
achieved by asking programmers to write boolean functions expressing what a consis-
tent state is for their TVars and defining a procedure that transforms the STM Haskell
program into a completely pure Haskell program whose contract can be checked using
the framework of [23].

Other approaches using user-provided annotations exist both in Haskell and in other
languages. However, while such approaches are far more precise and efficient than the
purely automatic detection approach chosen by Moth authors, they require additional
input from the programmer and therefore more work from him.

The authors of [25] go farther and extend STM Haskell with a check function,
check :: STMa−> STM () that takes an STM computation testing an invariant (to be
defined by the programmer as a concurrency property relating several variables) and
adds it to a global set of invariants for the program. The global set of invariant for the
program must hold at the end of each transaction (even if for efficacity sake only those
invariants using variable written inside the transaction will actually be checked) or the
transaction won’t be allowed to commit. That approach is similar to the ones in [22]
and [24] but makes the invariant checker a part of the language instead of a separate
tool.

Since the programmer defines what it means for its variables to be consistent, as
long as the invariants are adequately defined, such tools or language extensions cause
few false negatives and no false positive. Indeed, they will report all invariant violations
but only actual invariant violations at the end of a transaction instead of violations of
"general good practices criteria" as Moth does. However, since not all programmers can
be bothered with the work overload that comes with providing invariants, automated
tools such as Moth are useful despite being unable to compete with the superiority of
the annotation approach in terms of precision.
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8.3 Approaches requiring no user input
The preceding section presented detection approaches using user-provided annotations
or invariants. The current section present some examples of approaches similar to Moth
in the sense that they are based on the idea of a fully automated tool that detects anoma-
lies from the source code alone. Their methodology is analysed to consider whether it
could be used in Moth sensors.

An approach requiring no addition to the source code must necessarily define gen-
eral safety rules in the context of concurrency, then express this criterion as a testable
property. Such an approach does not, of course allow as many nuances as user-provided
annotations: quite often the testable property will be too demanding in some cases and
not demanding enough in others, resulting in both false positives and false negatives.

8.3.1 Run-time error detection
The tool presented in [41] aims at detecting logically atomic sections that are not prop-
erly synchronized when an particular execution causes a violation of the expected
atomicity and to roll back the code parts involved in the problem to rerun them se-
rially.

The tool identifies logically atomic sections without analysing existing synchroni-
sation by making two assumptions: all the operations in a logically atomic section are
interrelated and a variable written inside an atomic section is never read again inside
that atomic section because if the programmer decides to read a variable it means that
he expects its value may have been modified by a concurrent thread.

Run-time error detection approaches such as the one presented in [41] are funda-
mentally incompatible with that of Moth. Indeed, they only aim at controlling damage
caused by errors remaining in programs when they are run by end users while Moth
attempts to help the programmer find logical mistakes in its code so that he can correct
them.

8.3.2 Dynamic detection
The tool presented in [15] detects potential concurency anomalies similar to those tar-
geted by the single value sensor. Specifically, it aims at detecting successive operations
on a single shared value that the programmer wrongly assumes to run without interfer-
ence from other threads but hasn’t synchronised properly.

The four scenarios the tool targets are discussed in section 7.2. The first basic as-
sumption behind the methodology is that most wrongly applied synchronizations take
one of these four forms. The second is that groups of poorly synchronised operations
will execute atomically in most runs of the program (since concurrency errors only
manifest themselves in specific thread interleaving) but not all of them. Therefore, a
high number of runs of a program will enable to dectect both the expected behaviour
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(as the statically probable case) and the faulty synchronization through the occurence
of abnormal cases.

Dynamic approaches such as the one presented in [15] aren’t compatible with the
approach chosen in Moth because Moth doesn’t run the programs it examines and does
not rely on probabilistic occurence of thread interleaving.

Aside from that incompatible "statistical approach", we saw in section 7.2 that
the tool targets either scenarios that are already detected by the single-value sensor or
scenarios that are not likely to cause memory incoherency in STM Haskell programs.

8.3.3 Static error detection
The tool presented in [1] reports stale-value usage if a local value is initialized in an
atomic section and used in another atomic section. It does so by adding a boolean vari-
able γIsStale to each local copy γ of a shared variable. Each time an atomic section
starts, all IsStale variables become true and γIsStale only becomes false when the γ is
initialized or updated inside the atomic section. The tool then reports a warning each
time a variable is used and the corresponding IsStale is true.

That tool targets stale-value errors that are not detected by the single -variable sen-
sor such as usage of a stale value to update another TVar than the one the local copy
originates from. Accordingly, a sensor based on that idea should be added to Moth
to detect such stale value errors. That sensor should incorporate a test to check that
another thread writes the TVar the local variable value originates from to filter out spu-
rious warnings.

To add such a sensor, the view generation procedure and the existing sensors need
to be modified. The notion of access should be adapted to consider local copies of TVar
and the single value and view consistency sensors should be adapted to exclude such
accesses when analysing a view.

The extension of the notion of access could be done simply by defining an access
a ∈ A as (α,γ,β,λ) where

• α = r if a is a read access to a TVAr γ;

• α = w if it is a write access to a TVAr γ,

• α = c if it is a copy from a TVar λ into a local value γ

• α = u if γ is used as an argument in a write to a TVar λ (where λ needs not be
the TVar the value of γ originates from).

γ is the accessed variable (TVar or not) and β helps keep a "use-define" relation for
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each accessed variable as follows:

If α = r and the value of γ will later be overwritten inside the same transaction then β = •;
If α = r and the value of γ will not be overwritten later inside the same transaction then β = ◦;

If α = w and the value of γ was read before in the same transaction then β = •;
If α = w and the value of γ was not read before in the same transaction then β = ◦;

If α = c and the value of γ will later be overwritten inside the same transaction then β = •;
If α = c and the value of γ will not be overwritten later inside the same transaction then β = ◦;

If α = u and the value of γ was written before in the same transaction then β = •;
If α = u and the value of γ was not written before in the same transaction then β = ◦;

The additional sensor would then report a warning if for a pair of threads t1 and t2
and a TVar λ, ∃v1 6= v2 ∈V (t1) : (u,γ,◦,µ) ∈ v1∧ (c,γ,◦,λ) ∈ v2 and writes(λ, t2) .

The tool presented in [11] targets local copies of shared variables made in an atomic
section and used in another. It proceeds by giving id numbers to each atomic section
in the program and by keeping track of the id of the section from which the value of a
copy originates to compare it with the current section id when the copy is read.

Despite the fact that Moth does not use id numbers for transactions, the same kind
of test could be used in a sensor to track propagation of stale-values undetected by the
single-value sensor. However the sensor should incorporate a test to check that another
thread writes the TVar the local variable value originates from, to avoid some of the
spurious warnings the original tool produces.

However, since the idea behind the criterion is the same that the one in [1] despite
the differences in the way it is expressed and tested, if a sensor based on that article is
added as discussed above, there is no need to add another one based on [11].

The tools found in the literature that are compatible with the approach chosen in
Moth only seem to target stale-value errors. That limitation is not, however, really
problematic because the single-variable sensor was found to leave out whole classes
of bugs while the limits of the view coherency sensor are mostly due to the choice of
making the detection of related variables purely automated.
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We have have analysed how the Moth tool, developed for Java programs, could be
adapted to STM Haskell. Moth is an automatic detector for consistency problems em-
anating from internal concurrency between threads interacting in a single process.

The Moth tool is automatic and requires no user input in addition to the source
code: it works by infering logical relationship between variables and operations. It
infers which shared variables are logically related based on which shared variables are
accessed together in some part of the code, then reports potentially problematic partial
access to those variables. It also infers which operations are logically related, based
on usage of the same shared variable in successive operations, and reports potentially
problematic lack of atomicity between those operations.

The context of STM Haskell have both assets and drawbacks for the Moth analysis:
the peculiarities of the Haskell type system make Moth self-sufficient and faster, but it
increases the number of false negative.

Finally, we have proposed an extension of Moth by adding another sensor to broaden
the range of relationships between operations detected by Moth, thus limiting the num-
ber of false negative regarding stale-value errors.

However, regardless of how much such a tool could be enhanced, it can never claim
the soundness and completeness of a tool checking for high-level data races based on
user-provided invariants.

Moth is nonetheless a very useful tool because it can find a lot of concurrency
errors at limited cost for the user, and not all programmers would agree to spend time
provinding formal invariants for all their TVars. Much in the same way that formal
proof of programs has not made testing obsolete, the existence of a superior technique
therefore does not detract in any way from the usefulness of the Moth tool in the context
of STM Haskell.

71



Bibliography

[1] M. Burrows and L. K, “Finding stale-value errors in concurrent programs,”
Tech. Rep., May 2002, retrieved (November 2012). [Online]. Available:
research.microsoft.com/en-us/um/people/leino/papers/krml107.pdf

[2] V. Pessanha, R. J. Dias, J. M. Lourenço, E. Farchi, and D. Sousa, “Practical
verification of high-level dataraces in transactional memory programs,” in
Proceedings of 9th the Workshop on Parallel and Distributed Systems: Testing,
Analysis, and Debugging, New York, NY, USA, July 2011, pp. 26–34, retrieved
(October 2012). [Online]. Available: www.research.ibm.com/haifa/Workshops/..
./p26-pessanha.pdf

[3] W. Vanhoof, “2013-pfl,” retrieved (February 2013). [Online]. Avail-
able: http://webcampus.fundp.ac.be/claroline/document/document.php?
cmd=exChDir&file=L3N5bGxhYnVzL1BhcnRpZV9QRkw$%$3D&cidReset=
true&cidReq=INFOB316

[4] B. O’Sullivan, J. Goerzen, and D. Stewart, Real World Haskell, 1st ed. O’Reilly
Media, Inc., 2009.

[5] C. Artho, K. Havelund, and A. Biere, “High-level data races,” in Journal
on software testing, verification and reliability: Special Issue: VVEIS
2003—Workshop on Verification and Validation of Enterprise Information
Systems, vol. 13(4), December 2003, p. 207–227, retrieved (October 2012).
[Online]. Available: http://staff.aist.go.jp/c.artho/papers/stvr03.pdf

[6] N. Shavit and D. Touitou, “Software transactional memory,” in Proceedings
of the fourteenth annual ACM symposium on Principles of distributed
computing, ser. PODC ’95. New York, NY, USA: ACM, 1995, pp. 204–
213, retrieved (November 2012). [Online]. Available: www.cse.ohiostate.edu/
~agrawal/788-su08/.../shavit95software.pdf

[7] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer, “Software transactional
memory for dynamic-sized data structures,” in Proceedings of the 22nd annual
ACM symposium on Principles of distributed computing, 2003, retrieved
(November 2012). [Online]. Available: cs.brown.edu/courses/csci1610/papers/
stm.pdf

72

research.microsoft.com/en-us/um/people/leino/papers/krml107.pdf
www.research.ibm.com/haifa/Workshops/.../p26-pessanha.pdf
www.research.ibm.com/haifa/Workshops/.../p26-pessanha.pdf
http://webcampus.fundp.ac.be/claroline/document/document.php?cmd=exChDir&file=L3N5bGxhYnVzL1BhcnRpZV9QRkw$%$3D&cidReset=true&cidReq=INFOB316
http://webcampus.fundp.ac.be/claroline/document/document.php?cmd=exChDir&file=L3N5bGxhYnVzL1BhcnRpZV9QRkw$%$3D&cidReset=true&cidReq=INFOB316
http://webcampus.fundp.ac.be/claroline/document/document.php?cmd=exChDir&file=L3N5bGxhYnVzL1BhcnRpZV9QRkw$%$3D&cidReset=true&cidReq=INFOB316
http://staff.aist.go.jp/c.artho/papers/stvr03.pdf
www.cse.ohiostate.edu/~agrawal/788-su08/.../shavit95software.pdf
www.cse.ohiostate.edu/~agrawal/788-su08/.../shavit95software.pdf
cs.brown.edu/courses/csci1610/papers/stm.pdf
cs.brown.edu/courses/csci1610/papers/stm.pdf


Program analysis for concurrent programming

[8] T. Harris, A. Cristal, O. Unsal, E. Ayguade, F. Gagliardi, B. Smith, and
M. Valero, “Transactional memory: An overview,” IEEE Micro, vol. 27,
no. 3, pp. 8–29, May 2007, retrieved (April 2013). [Online]. Available:
http://dx.doi.org/10.1109/MM.2007.63

[9] A. Discolo, T. Harris, S. Marlow, S. Peyton Jones, and S. Singh, “Lock -Free
Data Structures using STMs in Haskell,” in Eighth International Symposium on
Functional and Logic Programming, 2006, retrieved (February 2013). [Online].
Available: http://research.microsoft.com/~{}simonpj/papers/stm/lock-free.htm

[10] M. Vaziri, F. Tip, and J. Dolby, “Associating synchronization constraints
with data in an object-oriented language,” in Conference record of the
33rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, ser. POPL ’06, vol. 41, no. 1. New York, NY, USA:
ACM, 2006, pp. 334–345, retrieved (January 2013). [Online]. Available:
http://doi.acm.org/10.1145/1111037.1111067

[11] C. Artho, K. Havelund, and A. Biere, “Using block-local atomicity to detect stale
value concurrency errors,” in Proc. ATVA ’04. Springer, 2004.

[12] B. Teixeira, J. Louren, E. Farchi, R. Dias, and D. Sousa, “Detection
of transactional memory anomalies using static analysis,” in Proceedings
of the 8th Workshop on Parallel and Distributed Systems: Testing,
Analysis, and Debugging, ser. PADTAD ’10. New York, NY, USA:
ACM, 2010, pp. 26–36, retrieved (November 2012). [Online]. Available:
http://docentes.fct.unl.pt/sites/default/files/joao-lourenco/files/p3-teixeira.pdf

[13] A. Levy, Basic Set Theory. Dover Publications, 2002.

[14] Retrieved (April 2014). [Online]. Available: http://en.wikipedia.org/wiki/
Concurrent_Haskell

[15] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “Avio: detecting atomicity violations
via access interleaving invariants,” in ACM SIGOPS Operating Systems
Review, vol. 40, no. 5. ACM, 2006, pp. 37–48. [Online]. Available:
http://planetlab-opera-1.ucsd.edu/paper/asplos062-lu.pdf

[16] C. Hammer, J. Dolby, M. Vaziri, and F. Tip, “Dynamic detection of atomic-set-
serializability violations,” in Software Engineering, 2008. ICSE’08. ACM/IEEE
30th International Conference on. IEEE, 2008, pp. 231–240.

[17] Z. Lai, S.-C. Cheung, and W. K. Chan, “Detecting atomic-set serializability viola-
tions in multithreaded programs through active randomized testing,” in Proceed-
ings of the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1. ACM, 2010, pp. 235–244.

[18] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded programs,” ACM
Transactions on Computer Systems (TOCS), vol. 15, no. 4, pp. 391–411,

73

http://dx.doi.org/10.1109/MM.2007.63
http://research.microsoft.com/~{}simonpj/papers/stm/lock-free.htm
http://doi.acm.org/10.1145/1111037.1111067
http://docentes.fct.unl.pt/sites/default/files/joao-lourenco/files/p3-teixeira.pdf
http://en.wikipedia.org/wiki/Concurrent_Haskell
http://en.wikipedia.org/wiki/Concurrent_Haskell
http://planetlab-opera-1.ucsd.edu/paper/asplos062-lu.pdf


Program analysis for concurrent programming

1997. [Online]. Available: http://cse.iitd.ac.in/~sbansal/os/previous_years/2011/
bib/savage97eraser.pdf

[19] Z. Letko, T. Vojnar, and B. Křena, “Atomrace: data race and atomicity
violation detector and healer,” in Proceedings of the 6th workshop on Parallel
and distributed systems: testing, analysis, and debugging. ACM, 2008,
p. 7. [Online]. Available: http://www.cs.umd.edu/~pugh/ISSTA08/padtad2008/
papers/a9-letko.pdf

[20] B. Krena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar, “Healing data races
on-the-fly,” in Proceedings of the 2007 ACM workshop on Parallel and
distributed systems: testing and debugging. ACM, 2007, pp. 54–64. [Online].
Available: http://www.fit.vutbr.cz/~vojnar/Publications/kltuv-padtad-07.pdf

[21] R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race detection,” ACM
SIGPLAN Notices, vol. 38, no. 10, pp. 167–178, 2003. [Online]. Available:
http://web5.cs.columbia.edu/~junfeng/09fa-e6998/papers/hybrid.pdf

[22] R. Demeyer and W. Vanhoof, “A framework for verifying the application-level
race-freeness of concurrent programs,” in 22nd Workshop on Logic-based
Programming Environments (WLPE 2012), 2012, p. 10, retrieved (April 2013).
[Online]. Available: http://www.sics.se/~matsc/ICLP2012/WLPE-proceedings.
pdf#page=15

[23] D. N. Xu, S. P. Jones, and K. Claessen, “Static contract checking for haskell.”

[24] R. Demeyer and W. Vanhoof, “Verification of transactions in stm haskell
using contracts and program transformation,” 2013, p. 47, retrieved (April
2013). [Online]. Available: http://plone.di.fc.ul.pt/places13/Members/Members/
proceedings-PLACES13.pdf#page=51

[25] T. Harris and S. Peyton Jones, “Transactional memory with data invariants,” in
TRANSACT ’06: 1st Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing, jun 2006, retrieved (February 2013). [Online].
Available: http://research.microsoft.com/en-us/um/people/simonpj/papers/stm/
index.htm

[26] Subtleties of Transactional Memory Atomicity Semantics, vol. 5, no. 2, November
2006, retrieved (December 2012). [Online]. Available: acg.cis.upenn.edu/papers/
cal06_atomic_semantics.pdf

[27] M. Herlihy and J. Moss, “Transactional memory: architectural support for
lock-free data structures,” in Proceedings of the 20th annual international
symposium on computer architecture, ser. ISCA ’93. New York, NY, USA:
ACM, 1993, pp. 289–300, retrieved (December 2012). [Online]. Available:
www.cs.utexas.edu/~pingali/CS395T/.../herlihy93transactional.pdf

[28] J. Larus and C. Kozyrakis, “Transactional memory,” Commun. ACM, vol. 51,
no. 7, pp. 80–88, Jul. 2008, retrieved (March 2013). [Online]. Available:
http://csl.stanford.edu/~christos/publications/2008.tm.cacm.pdf

74

http://cse.iitd.ac.in/~sbansal/os/previous_years/2011/bib/savage97eraser.pdf
http://cse.iitd.ac.in/~sbansal/os/previous_years/2011/bib/savage97eraser.pdf
http://www.cs.umd.edu/~pugh/ISSTA08/padtad2008/papers/a9-letko.pdf
http://www.cs.umd.edu/~pugh/ISSTA08/padtad2008/papers/a9-letko.pdf
http://www.fit.vutbr.cz/~vojnar/Publications/kltuv-padtad-07.pdf
http://web5.cs.columbia.edu/~junfeng/09fa-e6998/papers/hybrid.pdf
http://www.sics.se/~matsc/ICLP2012/WLPE-proceedings.pdf#page=15
http://www.sics.se/~matsc/ICLP2012/WLPE-proceedings.pdf#page=15
http://plone.di.fc.ul.pt/places13/Members/Members/proceedings-PLACES13.pdf#page=51
http://plone.di.fc.ul.pt/places13/Members/Members/proceedings-PLACES13.pdf#page=51
http://research.microsoft.com/en-us/um/people/simonpj/papers/stm/index.htm
http://research.microsoft.com/en-us/um/people/simonpj/papers/stm/index.htm
acg.cis.upenn.edu/papers/cal06_atomic_semantics.pdf
acg.cis.upenn.edu/papers/cal06_atomic_semantics.pdf
www.cs.utexas.edu/~pingali/CS395T/.../herlihy93transactional.pdf
http://csl.stanford.edu/~christos/publications/2008.tm.cacm.pdf


Program analysis for concurrent programming

[29] A. Tanenbaum, Operating Systems Design and Implementation, 3rd ed., P. Hall,
Ed., Amsterdam, 2006.

[30] C. Flanagan and S. Qadeer, “Types for atomicity,” in Proceedings of the
2003 ACM SIGPLAN international workshop on Types in languages design
and implementation, ser. TLDI ’03, 2003, pp. 1–12, retrieved (January 2013).
[Online]. Available: www.soe.ucsc.edu/~cormac/papers/tldi03.pdf-UnitedStates

[31] C. Flanagan, K. Leino, M. Rustan, M. Lillibridge, G. Nelson, J. Saxe,
and R. Stata, “Extended static checking for java,” in Proceedings of the
ACM SIGPLAN 2002 Conference on Programming language design and
implementation, ser. PLDI ’02. New York, NY, USA: ACM, 2002, pp. 234–245,
retrieved (November 2012). [Online]. Available: www.cs.cornell.edu/courses/
cs711/2005fa/papers/esc-pldi02.pdf

[32] N. Beckman, K. Bierhoff, and J. Aldrich, “Verifying correct usage of atomic
blocks and typestate,” in Proceedings of the 23rd ACM SIGPLAN conference
on Object-oriented programming systems languages and applications, ser.
OOPSLA ’08. ACM, 2008, pp. 227–244, retrieved (November 2012). [Online].
Available: http://doi.acm.org/10.1145/1449764.1449783

[33] C. Von Praun and Gross, “Static detection of atomicity violations in
object-oriented programs,” 2003, retrieved (January 2013). [Online]. Available:
www.lst.inf.ethz.ch/research/publications/FTFJP.../FTFJP_2003.pdf

[34] L. Wang and S. Stoller, “Runtime analysis of atomicity for multi-threaded
programs,” IEEE Transactions on Software Engineering, vol. 32, 2006,
retrieved (January 2013). [Online]. Available: ftp://ftp.cis.upenn.edu/pub/papers/
lee/entcs-89-2/89.2.012.pdf

[35] M. Herlihy and J. Wing, “Linearizability: a correctness condition for concurrent
objects,” pp. 463–492, July 1990, retrieved (January 2013). [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.142.5315

[36] S. Peyton Jones, Beautiful Concurrency. O’Reilly Media, Inc., 2007,
retrieved (February 2013). [Online]. Available: http://research.microsoft.com/
Users/simonpj/papers/stm/index.htm

[37] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable memory
transactions,” in Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming, ser. PPoPP ’05. New York,
NY, USA: ACM, 2005, pp. 48–60, retrieved (February 2013). [Online]. Available:
http://research.microsoft.com/en-us/um/people/simonpj/papers/stm/index.htm

[38] R. Demeyer and W. Vanhoof, “Proper granularity for atomic sections in
concurrent programs,” 2011, p. 244, retrieved (April 2013). [Online]. Avail-
able: http://users.dsic.upv.es/~gvidal/german/informal_proceedings_lopstr2011.
pdf#page=252

75

www.soe.ucsc.edu/~cormac/papers/tldi03.pdf - United States
www.cs.cornell.edu/courses/cs711/2005fa/papers/esc-pldi02.pdf
www.cs.cornell.edu/courses/cs711/2005fa/papers/esc-pldi02.pdf
http://doi.acm.org/10.1145/1449764.1449783
www.lst.inf.ethz.ch/research/publications/FTFJP.../FTFJP_2003.pdf
ftp://ftp.cis.upenn.edu/pub/papers/lee/entcs-89-2/89.2.012.pdf
ftp://ftp.cis.upenn.edu/pub/papers/lee/entcs-89-2/89.2.012.pdf
http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.142.5315
http://research.microsoft.com/Users/simonpj/papers/stm/index.htm
http://research.microsoft.com/Users/simonpj/papers/stm/index.htm
http://research.microsoft.com/en-us/um/people/simonpj/papers/stm/index.htm
http://users.dsic.upv.es/~gvidal/german/informal_proceedings_lopstr2011.pdf#page=252
http://users.dsic.upv.es/~gvidal/german/informal_proceedings_lopstr2011.pdf#page=252


Program analysis for concurrent programming

[39] C. Flanagan and S. Qadeer, “A type and effect system for atomicity,” in
ACM SIGPLAN Notices, vol. 38, no. 5. ACM, 2003, pp. 338–349. [Online].
Available: http://slang.soe.ucsc.edu/cormac/papers/pldi03.pdf

[40] C. Flanagan and S. N. Freund, “Atomizer: a dynamic atomicity checker for
multithreaded programs,” ACM SIGPLAN Notices, vol. 39, no. 1, pp. 256–267,
2004. [Online]. Available: http://www.cis.upenn.edu/~lee/04cis700/papers/FF04.
pdf

[41] M. Xu, R. Bodík, and M. D. Hill, “A serializability violation detector for
shared-memory server programs,” in ACM SIGPLAN Notices, vol. 40, no. 6.
ACM, 2005, pp. 1–14. [Online]. Available: http://www.cs.berkeley.edu/~bodik/
research/pldi05-svd.pdf

76

http://slang.soe.ucsc.edu/cormac/papers/pldi03.pdf
http://www.cis.upenn.edu/~lee/04cis700/papers/FF04.pdf
http://www.cis.upenn.edu/~lee/04cis700/papers/FF04.pdf
http://www.cs.berkeley.edu/~bodik/research/pldi05-svd.pdf
http://www.cs.berkeley.edu/~bodik/research/pldi05-svd.pdf

	I Concurrent programming in STM Haskell
	Haskell: a few fundamental notions
	Haskell: a functional programming language
	Functional language and purity
	Haskell type system
	Functions
	Control structures

	Haskell: an impure langage
	Actions
	Specific I/O constructs

	Concurrent operations in Haskell

	Software transactional memory in Haskell
	Lock-based synchronisation
	Software transactional memory
	Definitions of software transactional memory
	Advantages of software transactional memory
	Implementations of software transactional memory

	Software transactional memory in Haskell
	Access to shared variables
	Atomically
	Do, Retry and OrElse
	Relations between I/O and STM


	Concurrency-related issues in STM Haskell
	Termination issues
	Low-level data races
	Stale-value errors
	Stale-value errors definitions in the literature

	High-level data races
	High-level data races definitions in the literature



	II Consistency verification for Haskell Transactional Memory Programs using Moth
	View generation
	View set
	Views
	Set of views for a thread

	View generation in Moth
	Example of view generation for a subset of Haskell
	Language definition
	View generation


	Error detection
	The Moth tool
	Stale-value errors detection
	Single-variable safety property
	Single-variable sensor

	High-level data race detection
	View consistency
	View consistency sensor

	Conclusion

	Moth analysis for STM Haskell: an example
	View generation
	View generation for t0
	View generation for t1
	View generation for t2

	Error detection
	Single-variable sensor
	View consistency sensor



	III Related works
	Problematic access patterns classification
	Common transactional memory anomalies on related set of variables
	Common concurrency anomalies on single variables
	Problematic interleaving scenarios in concurrent programs
	Stale-value errors
	High-level data races


	Concurrency anomaly detection
	Concurrency anomaly detection not applicable to STM Haskell
	Approaches based on user-provided annotations and invariants
	Approaches requiring no user input
	Run-time error detection
	Dynamic detection
	Static error detection




