
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

High-Level Modelling and Formal Semantics of Product-Line Behaviour

Jeanjot, Arno

Award date:
2013

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/highlevel-modelling-and-formal-semantics-of-productline-behaviour(54858f9b-dbcd-4b33-87f6-5d04c8d24dd1).html

Facultés Universitaires Notre-Dame de la Paix, Namur
Faculté d’Informatique

Année académique 2012–2013

'

&

$

%

High-Level Modelling and Formal Semantics of

Product-Line Behaviour

Arno Jeanjot

Mâıtre de stage : Mats Heimdahl

Promoteur : (Signature pour approbation du dépôt - REE art. 40)

Pierre-Yves Schobbens

Co-promoteur : Maxime Cordy

Mémoire présenté en vue de l’obtention du grade de
Master en Sciences Informatiques.

Abstract

Software Product Line (SPL) methods have become more and more popular. They
have been applied on several domains including critical systems which require qual-
ity assurance techniques in order to avoid error. An established quality assurance
technique is model checking that veri�es if a system under certain consideration
holds certain properties. However, an SPL may potentially be compound of thou-
sands of products and verify each product of a line at a time would be suboptimal.
To avoid this problem, there is a formalism called Featured Transition System
(FTS) that allows merging the behaviour of every product of a line in a single
model and verifying this model by using algorithms specially de�ned for this for-
malism. Unfortunately, model checking techniques are not popular in industry.
Indeed, FTS has its own language that requires some expertise to be fully under-
standable. This thesis aims to bridge the gap between FTS model checking and
the industry by de�ning a variability-aware extension of a state-based language
commonly used in industry. The semantics of this extension will be de�ned in
terms of FTS which allow the use FTS model checking techniques on systems
modelled in this language.

iii 2012-2013

Résumé

Les méthodes Lignes de Produits Logiciels (SPL) sont devenues de plus en plus
populaire. Elles ont été appliquées dans di�érents domaines incluant les systèmes
critiques qui nécessitent des techniques d'assurance qualité a�n d'éviter toute er-
reur. Cependant, une ligne de produits logiciels pouvant potentiellement contenir
des milliers de produits di�érents, il serait ine�cace de véri�er chaque produit un à
un. Pour éviter ce problème, il existe un formalisme nommé featured transition sys-
tem(FTS) qui permet de fusionner le comportement de chaque produit d'une ligne
dans un seul modèle et de véri�er ce modèle grâce à des algorithmes dé�nis spé-
ci�quement pour ce formalisme. Malheureusement, l'utilisation de ce formalisme,
et des techniques de véri�cations de modèles en général, n'est pas encore répandue
dans le monde industriel. En e�et, FTS possède son propre langage et demande
donc un e�ort d'apprentissage supplémentaire avant de pouvoir être utilisé. Ce
mémoire a pour but de réduire l'écart entre les techniques de FTS model checking
et l'industrie en dé�nissant une extension d'un langage de modélisation populaire
dans l'industrie permettant l'intégration de la variabilité. La sémantique de ce
langage sera dé�ni en terme de FTS ce qui permettre l'utilisation des technique
de FTS model checking sur les systèmes modélisés à l'aide de ce langage.

v 2012-2013

Acknowledgements

The work described in this thesis is the result of a three months internship at the
university of Minnesota in Minneapolis, United States, where I was part of the
Software Engineering team and was supervised by Dr. Mats Heimdahl.

I would like to thank Dr. Pierre-Yves Schobbens for giving me the opportunity of
doing this intership.

I would like to thank Maxime Cordy for his availability and his help in writing
this thesis.

I would like to thank Dr. Mats Heimdahl for his supervision and his help in ori-
enting me in the research process during the internship.

I would like to thank all the CriSys Group, and in particular, Ian De Silva, for
their help during the internship.

vii 2012-2013

Contents

Abstract iii

Acknowledgements vii

1 Introduction 1

2 State of the Art 5
2.1 Software Product Line . 5

2.1.1 Feature Diagram . 5
2.2 Model Checking . 9

2.2.1 Transition system . 11
2.2.2 Linear Temporal Logic . 15
2.2.3 LTL Model Checking . 19

2.3 Model Checking of Software Product Lines 21
2.3.1 Featured Transition System 21
2.3.2 FTS Model Checking . 23

3 Modelling SPL behaviour with fState�ow 25
3.1 Syntax . 25

3.1.1 States label . 25
3.1.2 Hierarchy . 26
3.1.3 Decomposition . 27
3.1.4 Transitions label . 29
3.1.5 Order . 30
3.1.6 Junction . 31
3.1.7 Variables . 33
3.1.8 Features . 34
3.1.9 fState�ow model de�nition 36

ix 2012-2013

3.2 Execution rules . 37
3.2.1 Activity . 37
3.2.2 Hierarchy diagram . 40
3.2.3 Validity . 41
3.2.4 Execution . 42

3.3 Semantics . 44
3.3.1 States . 44
3.3.2 Transitions . 46
3.3.3 Feature Expressions . 50

4 Case study: the PCA Infusion Pump SPL 51
4.1 Description . 51
4.2 Variability . 54

4.2.1 Top-level features . 54
4.2.2 Hazard detections . 55
4.2.3 Scanning options . 56
4.2.4 Infusion modes . 56

4.3 Behavioural modelling with State�ow 58
4.3.1 Variables . 58
4.3.2 Infusion modes . 60
4.3.3 Alarms . 66

5 Implementation 69
5.1 fState�ow model . 69

5.1.1 State . 71
5.1.2 Transition . 71
5.1.3 Variables . 71

5.2 FTS model . 72
5.2.1 States . 72
5.2.2 Transitions . 73

5.3 optimization . 73
5.4 Evaluation . 74

6 Review and Perspectives 75
6.1 Summary . 75
6.2 Critical Outlook . 75
6.3 Future Work . 76

Bibliography 77

A Models 79

x 2012-2013

List of Figures

2.1 Feature Diagram of a line of Mobile Phones 6
2.2 Notation of a root . 6
2.3 Notation of a mandatory feature . 7
2.4 Notation of an optional feature . 7
2.5 Notation of an AND-relationship 7
2.6 Notation of an OR-relationship . 7
2.7 Notation of an Alternative-relationship 8
2.8 Notation of a requires constraint . 8
2.9 Notation of an excludes constraint 8
2.10 Example of TS for semantics of LTL 20
2.11 Example of FTS modelling the mobile phone FTS 22
2.12 Projection of the FTS depicts in Figure 2.11 to the product num-

bered 1 in Table 2.1 . 22

3.1 State label example . 26
3.2 States hierarchy example . 27
3.3 Exclusive states example . 28
3.4 Parallel states example . 29
3.5 Example of a transition label . 30
3.6 Example of multiple exiting transitions 31
3.7 Example of transitions with junctions 32
3.8 Same model as depicted in Figure 3.7 where junctions have been

removed . 32
3.9 Example of an if-then-else construct 33
3.10 Example of transition with a feature expression 35
3.11 Example of a fState�ow model . 40
3.12 Hierachy diagram of the model depicted in Figure 3.11 41
3.13 States activation . 43

xi 2012-2013

3.14 Hierachy diagram, computation of the number of set of set of states
that can be active at the same time 45

4.1 Main features . 55
4.2 Hazard detections features . 55
4.3 Scanning features . 56
4.4 Infusion Modes features . 56
4.5 Feature Diagram of a PCA Infusion Pump SPL 57
4.6 Exclusive states attempt . 61
4.7 Basal mode . 62
4.8 Pause mode . 62
4.9 Square bolus mode . 63
4.10 Clinician bolus mode . 63
4.11 Patient bolus mode . 64
4.12 Umpire state for infusion modes . 66
4.13 Umpire state for alarms . 67

5.1 Class diagram of a fState�ow model 70

A.1 Top-level state . 80
A.2 System . 81
A.3 System.ON . 82
A.4 System.ON.Alarms . 83
A.5 System.ON.Alarms.AirinLine . 84
A.6 System.ON.Alarms.Emptyreservoir 85
A.7 System.ON.Alarms.Reversedelivery 86
A.8 System.ON.Alarms.Lowreservoir . 87
A.9 System.ON.Alarms.Flowrate . 88
A.10 System.ON.Alarms.VTBI . 89
A.11 System.ON.Alarms.Occlusion . 90
A.12 System.ON.Alarms.FreeFlow . 91
A.13 System.ON.Alarms.Umpire . 92
A.14 System.ON.ModesHandler . 93
A.15 System.ON.ModesHandler.Therapy 94
A.16 System.ON.ModesHandler.Therapy.Paused 95
A.17 System.ON.ModesHandler.Therapy.PatientBolus 96
A.18 System.ON.ModesHandler.Therapy.ClinicianBolus 97
A.19 System.ON.ModesHandler.Therapy.Square 98
A.20 System.ON.ModesHandler.Therapy.Basal 99
A.21 System.ON.ModesHandler.Therapy.Umpire 100
A.22 System.ON.ModesHandler.Therapy.Umpire.Paused 101

xii 2012-2013

A.23 System.ON.ModesHandler.Therapy.Umpire.PatientBolus 102
A.24 System.ON.ModesHandler.Therapy.Umpire.ClinicianBolus 103
A.25 System.ON.ModesHandler.Therapy.Umpire.Square 104
A.26 System.ON.ModesHandler.Therapy.Umpire.Basal 105

xiii 2012-2013

List of Tables

2.1 List of valid products of the Mobile Phones SPL depicts on Figure
2.1 . 9

3.1 Set of set of states that can be active at the same time 41

4.1 List of parameters to be con�gured by a clinician before any infusion 59
4.2 List of buttons used to control the infusion pump 59
4.3 List of local variables . 60

xv 2012-2013

List of De�nitions

2.1.1 Def. Feature Diagram . 8
2.2.1 Def. Transition System (TS) 11
2.2.2 Def. Direct Predecessors and Successors 12
2.2.3 Def. Terminal state . 12
2.2.4 Def. Execution Fragment . 13
2.2.5 Def. Maximal and Initial Execution Fragment 13
2.2.6 Def. Execution . 13
2.2.7 Def. Reachable state . 13
2.2.8 Def. Path Fragment . 14
2.2.9 Def. Path . 14
2.2.10 Def. Trace and Trace Fragment 14
2.2.11 Def. LT Property . 15
2.2.12 Def. Satisfaction Relation for LT Properties 15
2.2.13 Def. Syntax of LTL . 15
2.2.14 Def. Semantics of LTL over Traces 18
2.2.15 Def. Semantics of LTL over Paths and States 19
2.3.1 Def. Featured Transition System 21

3.1.1 Def. fState�ow model . 36

xvii 2012-2013

Chapter 1
Introduction

Nowadays, software takes such an important place in our daily lives that it would
be unthinkable to live without them. Indeed, software is everywhere: at work, at
school, at home, in smartphones, in cars, in airplanes, in banks, in shops ... The
majority of our tasks and actions is managed by software.

Even though computer science is a really young science compared to physics or
philosophy, its development is unparalleled. Thanks to a fast evolution of tech-
nologies, computers have become smaller, faster, more e�cient and less expensive.
This o�ers more possibilities to develop software that could achieve more complex
tasks.

As a direct consequence of these evolutions, demand in software rapidly increased
and companies had to develop more products in shorter periods of time. New
development methods were thus required in order to meet this demand. Software
reuse between products, that share common requirements, would result in saving
a considerable amount of time and thus to be a good optimisation.

The desire of a systematic, planned and controlled software reuse during each
development phase gave birth to software engineering methods called Software
Product Line (SPL). These methods consist in developing, not a single software,
but a whole set of di�erent software products that share common requirements.
Bene�ts of applying SPL methods to develop a set of products are economies of
scale and a reduced time-to-market. [CN01]

A good analogy of this is the manufactured production of a line of cars. Cars
of a same line share commonalities (such as wheels, tires, engine, etc) and each
particular car has a set of options (such as ABS, sunroof, air conditioning, etc)

1 2012-2013

that di�ers from the other cars. In practice, the commonalities is assembled �rst,
then some optional assets are added to the car in order to correspond with the set
of options.

SPL are developed in various domains including critical systems such as airplane
controls, bank transactions or pacemakers. In these kind of systems, an error may
result in a loss of money and sometimes in a loss of human lives and this must not
happen. It is thus essential to prevent these problems by using quality assurance
techniques.

Model checking is an established quality assurance technique that veri�es whether
a system under certain consideration holds certain properties [GV08]. On the one
hand, the system is modelled in a Transition System (TS) that consists of states
and transitions. On the other hand, properties are expressed in Linear Temporal
Logic (LTL) to specify the admissible behaviour of the system. Using the model
of the system and the set of properties, the model checker explores all possible
executing paths of the model in a brute-force manner and checks whether each
path satis�es the properties. This technique presents the advantage to report an
error if and only if there exists at least one in the model. Moreover, this error is
represented by a path that leads the model to the violation of the property. In
spite of its exhaustiveness, given that the model checker veri�es a model of the
system and not the system itself, it cannot guarantee the absence of errors in the
actual system if the model is incorrect.

As mentioned above, we do not have a single product to verify but a set of products
and depending on the variability, the size of this set can be huge. It would be too
tedious to verify one product at a time. Since products possess commonalities, it
is suboptimal to verify each product separately. In order to avoid model checking
of each product, the Featured Transition System (FTS) was proposed. This for-
malism is designed to model the combined behaviour of a whole SPL. Basically, an
FTS is a TS in which transitions are labelled with constraints over the features of
an SPL, that is, a transition labelled with a given feature requires the presence of
this feature to be available. Given that model checking techniques are not feature
aware, they have been adapted to FTS.

Several FTS model checkers based on di�erent languages have been implemented
in the past three years. Similarly to traditional model checker, these explore all
possible executing paths of a given model and check the satisfaction of given prop-
erties but in this case, a whole set of products is veri�ed. A given property may
be violated by only a subset of products whereas the others hold it. Therefore, in

2 2012-2013

addition to the violating path, FTS model checkers provide the subset of products
that do not satisfy the property.

Although early experiments showed that FTS-based model checking is more ef-
�cient than a product-by-product application of single-system model checking,
these techniques have not reached industry yet. Indeed, tools that implement
these techniques rely on ad-hoc speci�cation languages born from academic re-
search. An expertise is thus required to be able to use one of these languages in a
correct and e�cient way. Industries do not want to waste time and money for such
an expertise and therefore, FTS model checking is not used. This is an obstacle
to the development of the FTS formalism.

The objective of this thesis is to bridge the gap between the FTS formalism and
engineers. To achieve this, we propose a variability-aware behavioural modelling
language based on State�ow [Mat04], a state-based language commonly used in in-
dustry. We de�ne the semantics of this language in terms of FTS, which allows us
to use FTS model checking techniques on systems modelled in this language. We
implemented our approach as part of ProVeLines, the latest incarnation of FTS
model checkers. As a proof-of-concept, we modelled and checked using our method
on an infusion pump system. The speci�cation of this system was extracted from
a requirements document created by the CriSys Group of the University of Min-
nesota.

This document is composed of four chapters preceded by this introduction and
followed by a review and the perspectives of this work. First, in Chapter 2, we
give a state of the art of the covered domains such as Software Product Line (2.1),
Model Checking (2.2) and Model Checking of Software Product Lines (2.3). Then,
in Chapter 3, we present the syntax(3.1) and the execution rules (3.2) of fState�ow
followed by the de�nition of the semantics (3.3). Next, in Chapter 4, we model
from scratch the behaviour of an Infusion Pump SPL. This SPL is described in
Section (4.1) followed by a presentation of the variability (4.2) and the modelling
of its behaviour (4.3). Finally, in Chapter 5 we de�ned the implementations of
fState�ow model (5.1) and FTS model (5.2) then we describe some optimisations
(5.3) and their evaluation (5.4).

3 2012-2013

Chapter 2
State of the Art

2.1 Software Product Line

In response to the increase of demand in software, industry had to optimize its
development methods in order to produce software in a more e�cient way. A good
strategy for increasing productivity and improving quality is a systematic, planned
and controlled software reuse.

Software Product Line (SPL) is a domain of software engineering that consists in
developing a set of similar software products while maximizing reuse during each
development phase [Tri09]. These products, or variants, share a set of common
functionalities and satisfy requirements in a particular domain but they also have
some di�erences that distinguish them. These di�erences, also called variability,
can be de�ned by the features of this SPL. A feature is "a distinguishing character-
istic of a software item (e.g., performance, portability, or functionality)" [IEE08].
Each software product is identi�ed by a set of features. The main aim of this
concept is to avoid creating a whole new system for each requested product by
managing variability during the development process. This method presents the
advantages of reducing the production costs, decreasing the time-to-market and
improving the quality. However, this new approach implies an initial investment
more important than the one for a classic approach due to a bigger complexity in
developing a set of products in comparison to a single one.

2.1.1 Feature Diagram

Features of an SPL can be identi�ed by analysing the variability of the products
that compounds this SPL. However, a list of features is not enough to represent
an SPL. For example, some features cannot be present in the same product or a

5 2012-2013

given feature requires the presence of another feature. A formalism is thus needed
to express constraints over features. Several languages exist but in this thesis we
use a language called Feature Diagram (FD). An FD is a compact representation
of all the products of the SPL.

Graphically, an FD is illustrated by a tree representing the hierarchy of the fea-
tures. Every node corresponds to a feature and every edge corresponds to the
relationship parent-child between two features. Figure 2.1 depicts an example of
a Feature Diagram of a mobile phone line. In the following, we will illustrate the
syntax of FD using this example.

Mobile Phone

Call Text OS Email Internet

iOS Android 3G Wi�

Email Internet
requires

Figure 2.1: Feature Diagram of a line of Mobile Phones

The root of a tree is the only feature that does not have a parent and it is used as
the entry point of the diagram. In this example, the root is named as the name of
the SPL represented. Fig. 2.2 depicts the notation of a root.

Mobile Phone

Figure 2.2: Notation of a root

The relationships between a parent feature and its child features are categorized
as And, Or and Alternative.
The And-relationship is used between a parent feature and its child features to
signify that the child features may be present in a product if and only if the parent
feature is present in this product.

6 2012-2013

Each child feature in an And-relationship is either Mandatory or Optional. Manda-
tory means that if the parent feature is present in a speci�c product then the child
feature must be present in this speci�c product. For example, the mandatory
feature Call in Fig. 2.3 is present in each mobile phone.

Call

Figure 2.3: Notation of a mandatory feature

If a child feature is optional, this feature is not necessarily present in a product
even if its parent feature is present in this speci�c product. As Internet in Fig. 2.4
is optional, this feature may not be present in a mobile phone.

Internet

Figure 2.4: Notation of an optional feature

In Fig. 2.5, the Mobile Phone feature and its �ve child features are linked with
an And-relationship where Call, Text, and OS are mandatory, and Internet and
Email are optional.

Mobile Phone

Call Text OS Email Internet

Figure 2.5: Notation of an AND-relationship

A parent feature and its child features can be linked with an Or-relationship, that
is, if the parent feature is present in a speci�c product then at least one of its
children features must be present in this speci�c product. For example, a mobile
phone can connect to the Internet using 3G, or Wi�, or both. The notation of this
example is depicted in Fig. 2.6.

Internet

3G Wi�

Figure 2.6: Notation of an OR-relationship

7 2012-2013

In the case of an Alternative-relationship, if a parent feature is present in a speci�c
product then exactly one of its children features must be present in this speci�c
product. Fig. 2.7 shows the notation of an Alternative-relationship. In this
example, the OS of a mobile phone is either iOS or Android.

OS

iOS Android

Figure 2.7: Notation of an Alternative-relationship

The parental relationship may not be su�cient to express all the dependencies
between the features. Extensions of FDs allow one to express additional cross-tree
constraints. The most common constraints are �requires� and �excludes�, but any
constraint coming down a propositional formula can be de�ned.

The �require� constraint written A Requires B means that if the feature A is present
in a speci�c product then the feature B must be present in this speci�c product
too. For example, mobile phones need an Internet connection to send an Email,
hence Email requires Internet. Fig. 2.8 shows the notation of this constraint.

Email Internet
requires

Figure 2.8: Notation of a requires constraint

In the case of the �excludes� constraint, written A Excludes B, if the feature A
is present in a speci�c product, then the feature B must not be present in this
speci�c product and vice versa. The notation is depicted in Fig. 2.9.

Feature A Feature B
exludes

Figure 2.9: Notation of an excludes constraint

After the syntax of FD, we will now de�ne the semantic of FD as follows [SHT06]:

Def. 2.1.1 Feature Diagram :
A Feature Diagram FD is a tuple (N, px), where N is the set of features and
px ⊆ 2N is the set of products. �

8 2012-2013

From the Feature Diagram depicted in Fig. 2.1, Table 2.1 lists the valid products
(14) of the Mobile Phone line.

Call Text OS iOS Android Email Internet 3G Wi�
1 • • • •
2 • • • •
3 • • • • • •
4 • • • • • •
5 • • • • • • •
6 • • • • • • •
7 • • • • • •
8 • • • • • •
9 • • • • • • •
10 • • • • • • •
11 • • • • • • •
12 • • • • • • •
13 • • • • • • • •
14 • • • • • • • •

Table 2.1: List of valid products of the Mobile Phones SPL depicts on Figure 2.1

In single-system development, one will have to improve con�dence in the product
using appropriate Quality Assurance (QA) techniques. Two popular techniques are
model checking, presented in section 2.2, and testing which consists in determining
whether actual executions of the system behave as expected. However, testing is
applicable in late phases of lifecycle, whereas model checking can be integrated
earlier to decrease the modi�cation costs. These techniques could be used on SPL
but testing or model checking every possible software product would be a tedious
work due to a possibly huge number of di�erent combinations of features. In this
thesis, we are focusing on adapting Model Checking to Software Product Line.

2.2 Model Checking

At the emergence of Computer Science, ICT systems were only used to help, man-
age or calculate for simple and ino�ensive tasks. Now, due to the evolution and
the expansion of these technologies, we have become reliant on ICT systems (also
called software). Nowadays, it would be impossible to imagine our society with-
out computer, software or the Internet. Our money, for instance, is handled by
worldwide banks equipped with software. Some company are entirely dependant

9 2012-2013

on their ICT systems and the slightest error can compromise their �nancial situ-
ation. The consequences of software errors are not only limited to �nancial loss,
there may also be human loss. For example, our security is guaranteed by soft-
ware in airplanes. One bug can be catastrophic implying, in this situation, a loss
of money as well as a loss of human lives. We also have to keep in mind that the
sooner we catch errors the lower is the cost to repair. There are several veri�ca-
tion techniques to prevent these problems. To avoid or �nd bugs, one can use peer
reviewing, testing, emulation, simulation, etc.

In this work, we use model checking to verify systems. Basically, model check-
ing is employed to establish if a system under certain consideration holds certain
properties. This technique presents a number of advantages compared to other
veri�cation techniques: it is fast, automatic and it shows why a property is not
satis�ed by giving a counterexample [CLA08]. Moreover, this domain has been
rewarded by an A.M. Turing Award in 2007 thanks to the work of E. M. Clarke,
E. A. Emerson and J. Sifakis. Brie�y, on the one hand we have a model repre-
senting the system and on the other hand we have a set of properties formalizing
the requirements. The model checker explores all possible executing paths of this
model in a brute-force manner and veri�es if each path satis�es the properties. If
a path does not hold one of the properties, the model checker gives a counterex-
ample representing the violating path. One can then correct the model or adapt
the properties and run the model checker again until no counterexample is found.

According to [BK08, ch. 1] in practice the model checking process consists of three
phases: the Modelling phase, the Running phase and the Analysis phase. At �rst,
the system under consideration is modelled using the model description language
of the model checker at hand and the property to be checked is formalized using
the property speci�cation language. Moreover, some simulations of the model are
performed as a �rst sanity check and a quick assessment. Then, the model checker
is run to check the validity of the property in the system model. Finally, the
result is analysed. If the property is satis�ed, the following property is checked.
In case the property is falsi�ed, the model, the design or the property has to be
re�ned. Whenever the computer runs out of memory, the model has to be reduced.

Some of the strengths of model checking could be that, in comparison with testing
and simulation, it will report an error if and only if there exists at least one in
the model. It is also a general veri�cation approach applicable to a wide range of
applications. Finally, it provides diagnostic information in case a property is not
validated. However, model checking has also some weaknesses. The main problem
is that it su�ers from state-space explosion: the number of states grows exponen-

10 2012-2013

tially in the number of program variables. For example, the model of a program
with three 32-bits integers needs (232)3 = 296 states. The number of states can
exceed the amount of available computer memory and if this problem happens,
one has to reduce the model. Another weakness is that we verify a model of the
system, and not the system itself, thus if the model is not correct, or incomplete,
the results could be incorrect and useless. Finally, only stated requirements are
veri�ed and the validity of properties that are not checked cannot be judged. In
spite of its exhaustiveness, model checking cannot guarantee the absence of errors
int the actual system.

All the de�nitions de�ned later in this section come from chapters 2, 3 and 5 in
[BK08].

2.2.1 Transition system

As we do not check the system itself, we need a model of this system for model
checking. Transition systems are commonly used to represent hardware and soft-
ware system behaviours. Basically, they are directed graphs where nodes represent
states of the system under consideration and edges represent transitions between
these states. Formally, they are de�ned in [BK08, ch. 2] as follows :

Def. 2.2.1 Transition System (TS) :
A Transition System (TS) is a tuple (S,Act, trans, I, AP, L) where

• S is a set of states,

• Act is a set of actions,

• trans ⊆ S × Act× S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions, and

• L : S → 2AP is a labelling function.

In this thesis, we assume that S, Act and AP are �nite. Moreover, we also use
s

α−→ s′ to denote (s, α, s′) ∈ trans. �

The intuitive behaviour of a TS can be described as follows. It starts in a state
s0 ∈ I and it progresses according to the transition relation trans. If a state
has more than one outgoing transition, the transition to take is selected in a
non-deterministic way. Let be s the current state and s

α−→ s′ the selected tran-
sition, α is performed and the TS evolves from state s to state s′. Similarly, if

11 2012-2013

the set of initial states contains several elements, the start state is selected non-
deterministically.
The labelling function L relates a set L(s) ∈ 2AP of atomic propositions to any
states s where 2AP denotes the power set of AP . L(s) is the set of atomic propo-
sitions that are satis�ed by state s.
According to [BK08, ch. 2], we de�ned additional concepts that will be used
throughout this thesis. We �rst introduce the notions of predecessor and suc-
cessor.

Def. 2.2.2 Direct Predecessors and Successors :
Let TS = (S,Act, trans, I, AP, L) be a transition system. For s ∈ S and α ∈ Act,
the set of direct α-successors of s is de�ned as:

Post(s, α) = {s′ ∈ S|s α−→ s′}

The set of direct successors of s is de�ned by:

Post(s) =
⋃
α∈Act

Post(s, α)

Similarly, the set of α-predecessors of s is de�ned by:

Pre(s, α) = {s′ ∈ S|s′ α−→ s}

The set of direct predecessors of s is de�ned by:

Pre(s) =
⋃
α∈Act

Pre(s, α)

�

A terminal state s of a TS is a state without outgoing transition. We can formally
de�ne this concept as follows:

Def. 2.2.3 Terminal state :
State s in transition system TS is called terminal if and only if Post(s) = ∅. �

As explained above, we try to avoid terminal states that could be synonym of
deadlock in the system. In the following, we assume that a TS has no terminal
state.

Executions

We will now formalize the notion of execution that describes a possible behaviour
of a transition system. An execution is de�ned as follows.

12 2012-2013

Def. 2.2.4 Execution Fragment :
Let TS = (S,Act, trans, I, AP, L) be a transition system. A �nite execution frag-
ment % of TS is an alternating sequence of states and actions ending with a state

% = s0α1s1α2 . . . αnsn such that si
αi+1−→ si+1 for all 0 ≤ i ≤ n

n is the length of %. An in�nite execution fragment ρ of TS is an in�nite, alter-
nating sequence of states and actions:

ρ = s0α1s1α2s2α3 . . . such that si
αi+1−→ si+1 for all 0 ≤ i

�

An execution fragment is called maximal when it cannot be prolonged:

Def. 2.2.5 Maximal and Initial Execution Fragment :
A maximal execution fragment is either a �nite execution fragment that ends in a
terminal state, or an in�nite execution fragment. An execution fragment is called
initial if it starts in an initial state, i.e., is s0 ∈ I �

An execution fragment is simply called execution when it starts in an initial state
and ends in a terminal state or is in�nite.

Def. 2.2.6 Execution :
An execution of transition system TS is an initial, maximal execution fragment.

�

If it exists an execution fragment that starts in an initial state and ends in a state
s, this state s is called reachable

Def. 2.2.7 Reachable state :
Let TS = (S,Act,−→, I, AP, L) be a transition system. A state s ∈ S is called
reachable in TS if there exists an initial, �nite execution fragment

s0
α1−→ s1

α2−→ . . .
αn−→ sn = s.

Reach(TS) denotes the set of all reachable states in TS. �

Paths

In this thesis, only atomic propositions of the states are taken into consideration
in order to formulate system properties. Hence, actions of an execution can be
omitted to obtain a path de�ned as follows

13 2012-2013

Def. 2.2.8 Path Fragment :
A finite path fragment π̂ of TS is a �nite state sequence s0s1 . . . sn such that
si ∈ Post(si−1) for all 0 < i ≤ n, where n ≥ 0. An infinite path fragment π is an
in�nite state sequence s0s1s2 . . . such that si ∈ Post(si−1) for all i > 0. �

Def. 2.2.9 Path :
A path of transition system TS is an in�nite path fragment that starts in an initial
state, i.e., is s0 ∈ I.. �

Paths(s) is the set of maximal path fragments π with first(π) = s, where first(π)
denotes the initial state of π. And Paths(TS) is the set of paths of TS.

Traces

The de�nition of path allows us to describe the sequences states that the system
can visit during an execution. When verifying system behaviour, what is of interest
is not the visited states but the properties they exhibit. Hence, instead of the path
s0s1s2 . . ., we consider the trace L(s0)L(s1)L(s2) . . . that reports the set of atomic
propositions that are valid along the execution. Thus, a trace σ of a TS is an
in�nite words over the alphabet 2AP , that is, σ ∈ (2AP)ω. (2AP)ω denotes the set
of words that arise from the in�nite concatenation of words 2AP . Formally, traces
are de�ned as follows.

Def. 2.2.10 Trace and Trace Fragment :
Let TS = (S,Act, trans, I, AP, L) be a transition system without terminal states.
The trace of the in�nite path fragment π = s0s1 . . . is de�ned as trace(π) =
L(s0)L(s1) The trace of the �nite path fragment π̂ = s0s1 . . . sn is de�ned as
trace(π̂) = L(s0)L(s1) . . . L(sn). �

The set of traces of a set Π of paths is denoted by

trace(Π) = {trace(π)|π ∈ Π}

A trace of state s is the trace of an in�nite path fragment π with first(π) = s.
Let Traces(s) denotes the set of traces starting from a given state s :

Traces(s) = trace(Paths(s))

Finally, the traces of a TS designate the set of traces leaving any initial state:

Traces(TS) =
⋃
s∈I

Traces(s)

14 2012-2013

2.2.2 Linear Temporal Logic

We also need to specify the requirements which we want to verify on the TS
under consideration. In order to formalize these requirements, we use linear-time
properties to specify the admissible (or desired) behaviour of the system. More
concretely, we will express these properties in Linear Temporal Logic (LTL), a
model logic to reason on executions over time. We �rst de�ne what is a linear-
time property and their satisfaction. Then we present the syntax and semantics
of LTL. All the following de�nitions come from [BK08, ch. 3 and 5].

Def. 2.2.11 LT Property :
An LT property over the set of atomic propositions AP is a subset of (2AP)ω. �

An LT property over AP and a set of traces of a TS over AP are both sets of
words over 2AP and can be compared to determine if TS satis�es an LT property.
Intuitively, a TS satis�es an LT property P if all its observable behaviours are
admissible with respect to the property.

Def. 2.2.12 Satisfaction Relation for LT Properties :
Let P be an LT property over AP and TS = (S,Act, trans, I, AP, L) a transi-
tion system without terminal states. Then, TS satis�es P , noted TS |= P , i�
Traces(TS) ⊆ P . A state s ∈ S satis�es P , noted s |= P , i� Traces(s) ⊆ P . �

Syntax of LTL

It is obviously impractical to specify LT-properties as a set of traces. Instead, one
commonly uses a modal logic equipped with temporal operators. In this thesis, we
more particularly focus on LTL. Formally, the syntax of LTL is de�ned as follows:

Def. 2.2.13 Syntax of LTL :
LTL formulae over the set AP of atomic propositions are formed according to the
following grammar:

ϕ ::= true a ϕ1 ∧ ϕ2 ¬ϕ ©ϕ ϕ1

⋃
ϕ2

where a ∈ AP and ϕ, ϕ1 and ϕ2 are LTL formulae.
�

LTL formulae are composed of atomic propositions from AP (states labels de�ned
in De�nition 2.2.1), the Boolean connectors conjunction ∧ ("and") and negation
¬ ("not"), and two temporal operators© ("next") and

⋃
("until"). Note that

LTL formulae express properties about paths and not about states. In the follow-
ing, given a path, "the current moment" will refer to the current state of this path,

15 2012-2013

"the next step" will mean the immediate successor state visited in this path and "a
moment in the future" will refer to a further state visited in this path. Each opera-
tor will be illustrated by an example formula and a path that satis�es this formula.

The©-operator is unary and requires an LTL formula as argument. Formula©ϕ
holds at the current moment if ϕ holds in the next step. An example of path where
©ϕ is satis�ed would be :

s0

arbitrary

s1

{ϕ1}

s2

arbitrary

s3

arbitrary

s4 ...

arbitrary

In this path, the current moment is state s0 and the next step is state s1. As s1
satis�es ϕ, the formula ©ϕ is satis�ed. In this case, the properties that hold in
the following states do not matter in this case and are arbitrary.

The
⋃
-operator is binary and requires two LTL formulae as argument. This op-

erator is used to de�ne which property has to hold in a path "until" another
property holds in the future which means further in the path. ϕ1

⋃
ϕ2 holds at

the current moment if there is a future moment for which ϕ2 and ϕ1 hold at all
time before this state. ϕ1

⋃
ϕ2 holds in the next example:

s0

{ϕ1}

s1

{ϕ1}

s2

{ϕ1}

s3

{ϕ2}

s4 ...

arbitrary

In this path, s3 satis�es ϕ2 and all states before this one ful�l ϕ1. Thus, the for-
mula ϕ1

⋃
ϕ2 is satis�ed.

We can now introduce some new operators created from those de�ned above. At
�rst, common propositional logic operators derived from conjunction ∧ ("and")
and negation ¬ ("not"):
∨ ("or"), ⇒ ("implies"), ⇔ ("equivalent"), ⊕ ("xor") and false can be de-
rived as follows

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ) "or"
ϕ⇒ ψ ≡ ¬ϕ ∨ ψ "implies"
ϕ⇔ ψ ≡ (φ⇒ ψ) ∧ (ψ ⇒ ϕ) "equivalent"
ϕ⊕ ψ ≡ (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ) "xor"
false ≡ ¬true "false"

Then, we can add two temporal operators ♦ ("eventually") and � ("always")
derived as follows.

16 2012-2013

♦ϕ ≡ true
⋃
ϕ "eventually"

�ϕ ≡ ¬♦¬ϕ "always"

They are both unary operators and require a single LTL formula as argument.

The ♦-operator describes a property that must "eventually" be satis�ed in the
future, and is derived from (true

⋃
ϕ). For example, ♦ϕ means that ϕ must hold

at a moment in the future and moments coming after that one do not matter. An
example of path where ♦ϕ is satis�ed would be:

s0

arbitrary

s1

arbitrary

s2

arbitrary

s3

{ϕ}

s4 ...

arbitrary

Since s3 ful�ls ϕ, ♦ϕ is satis�ed.

The �-operator is used to de�ne a property that must be satis�ed from now on
and forever, i.e.,"always". It is derived from ¬♦¬ϕ which means that ¬ϕ will
eventually not hold in the future. For example, �ϕ means that ϕ must hold at
the current moment and at all moments in the future. �ϕ holds in the following
path:

s0

{ϕ}

s1

{ϕ}

s2

{ϕ}

s3

{ϕ}

Thanks to the edge from s3 to s0 creating a cycle, ϕ will always hold.

By combining the temporal operators ♦ and �, we obtain two new temporal opera-
tors : �♦ ("in�nitely often") and ♦� ("eventually forever"). �♦ϕ describes
the property stating that at any moment there is a moment in the future where ϕ
holds. The following is an example where �♦ϕ holds :

s0

arbitrary

s1

arbitrary

s2

arbitrary

s3

{ϕ}

Thanks to the edge from s3 to s0 creating a cycle, from now on and forever, s3
where ϕ is satis�ed will always be visited at a moment in the future.

17 2012-2013

The dual property ♦�ϕ expresses that from a moment (current or in the future),
and then all moments after this one, ϕ holds. An example of path where ♦�ϕ is
satis�ed would be:

s0

arbitrary

s1

arbitrary

s2

{ϕ}

s3

{ϕ}

s4

{ϕ}

ϕ holds from s2 and all states after this one thanks to the cycle created by the
edge from s4 to s2.

Semantics of LTL

We will now de�ne the semantics of LTL formulae with respect to a trace σ =
A0A1A2 In the following, Ai denotes the set of atomic propositions that are
valid in the ist state of the corresponding path of σ, and σ[j . . .] = AjAj+1Aj+2 . . .
is the su�x of σ starting from symbol Aj.

The satisfaction relation |= between traces and LTL formulae is de�ned as follows:

Def. 2.2.14 Semantics of LTL over Traces :
Let ϕ, ϕ1 and ϕ2 be LTL formulae over AP and let σ be a trace of a TS over AP .
|= is the satisfaction relation between traces and LTL formulae with the following
properties:

σ |= true
σ |= a i� a ∈ A0 (i.e.,A0 |= a)
σ |= ϕ1 ∧ ϕ2 i� (σ |= ϕ1) ∧ (σ |= ϕ2)
σ |= ¬ϕ i� σ 6|= ϕ
σ |= ©ϕ i� σ[1..] = A1A2A3 . . . |= ϕ
σ |= ϕ1

⋃
ϕ2 i� ∃j > 0. σ[j..] |= ϕ2 and σ[i..] |= ϕ1, for all 0 6 i < j

�

From this de�nition, we can obtain the semantics of derived operators ♦ and �
and their combinations �♦ and ♦�.
For the property ♦ϕ, as ♦ is equivalent to true

⋃
we obtain: true

⋃
ϕ. Thus, the

semantic of ♦ is

18 2012-2013

σ |= ♦ϕ ≡ σ |= true
⋃
ϕ

i� ∃j > 0. σ[j..] |= ϕ and σ[i..] |= true, for all 0 6 i < j
i� ∃j > 0. σ[j..] |= ϕ

Similarly, �ϕ being equivalent to ¬♦¬ϕ, its semantic is de�ned as follows:

σ |= �ϕ ≡ σ |= ¬♦¬ϕ
i� ¬∃j > 0. σ[j..] |= ¬ϕ
i� ¬∃j > 0. σ[j..] 6|= ϕ
i� ∀j > 0. σ[j..] |= ϕ

Now, the semantics of the combinations of �♦ and ♦� can be derived:

σ |= �♦ϕ i� ∀i > 0. σ[i..] |= ♦ϕ
i� ∀i > 0. ∃j > i. σ[j..] |= ϕ

and
σ |= ♦�ϕ i� ∃i > 0. σ[i..] |= �ϕ

i� ∃i > 0. ∀j > i. σ[j..] |= ϕ

2.2.3 LTL Model Checking

On one hand, we have a transition system TS that represents the behaviours of
the real system under consideration. On the other hand, we have a requirement
formalized as an LTL formula ϕ. We have also de�ned the satisfaction relation
between traces of TS and ϕ. However, we would like to check the validity of ϕ
against TS. In the following, we determine the semantics of LTL over paths, states
and TS.

Def. 2.2.15 Semantics of LTL over Paths and States :
Let TS = (S,Act, trans, I, AP, L) be a transition system without terminal states,
and let ϕ be an LTL formula over AP .

For path π of TS, the satisfaction relation is de�ned by

π |= ϕ i� trace(π) |= ϕ

For state s of TS, the satisfaction relation is de�ned by

s |= ϕ i� ∀π ∈ Paths(s). π |= ϕ

TS satis�es ϕ, denoted TS |= ϕ, if ∀σ ∈ Traces(TS). σ |= ϕ �

From this de�nition,

19 2012-2013

TS |= ϕ i� σ |= ϕ for all σ ∈ Traces(TS)
i� π |= ϕ for all π ∈ Paths(TS)
i� s0 |= ϕ for all s0 ∈ I

Thus, TS satis�es ϕ if, and only if, all initial states of TS satisfy ϕ.

In practice, an LTL Model Checking algorithm is a decision procedure which re-
turns "yes" if TS |= ϕ or "no" with a counterexample if TS 6|= ϕ. The counterex-
ample consists in a pre�x of an in�nite path in TS where ϕ does not hold. The
basic idea of the algorithm is to try to disprove TS |= ϕ by looking for a path π in
TS with π |= ¬ϕ. If such a path is found, a pre�x of π is returned as error trace.
If not, TS |= ϕ.

In the following, we will show the satisfaction of LTL formulae considering the TS
depicted in Figure 2.10 with the set of propositions AP = {a, b}.

TS |= �b ?
TS satis�es formula �b if and only if π |= �b for all π ∈ Paths(TS). In the path
π = s0s1s2s3s2s3..., the state s1 is not labelled with b. Hence, ∃π ∈ Paths(TS)
where π 6|= �b, and TS 6|= �b.

TS |= ♦�b ?
All paths in Paths(TS) begin with s0s1s2... or s0s2..., thus s2 is always reached.
Moreover, in all paths, s2 and all states after this one are labelled with b. Hence,
TS |= ♦�b.

s0

{b}

s1

{a}

s2

{a, b}

s3

{b}

Figure 2.10: Example of TS for semantics of LTL

20 2012-2013

2.3 Model Checking of Software Product Lines

As a quality assessment, it would be interesting to use model checking techniques
on SPL. However, as explained above, model checking su�ers from the state-space
explosion problem. When applied to SPL, this problem is more important. In-
deed, with a set ofN features, an SPL may potentially be compound of 2N di�erent
products in the worst case. Given that even one model can result in a state-space
explosion, a large set of models would worsen this problem. Since product vari-
ants share commonalities, it is also suboptimal to check each product separately.
Dedicated model checking methods aware of variability are therefore needed.

2.3.1 Featured Transition System

The Feature Transition System (FTS) formalism has been proposed to adapt model
checking to SPL. FTS is designed to describe the combined behaviour of a whole
SPL. FTS are transition systems in which transitions are labelled with constraints
over the features of an SPL (in addition to being labelled with actions) to restrict
the set of products able to execute a given transition. An FTS is de�ned in
[CCS+12] as follows:

Def. 2.3.1 Featured Transition System :
An FTS is a tuple (S,Act, trans, I, AP, L, d, γ), where

• S,Act, trans, I, AP, L are de�ned as in De�nition 2.2.1

• d is an FD, as de�ned in De�nition 2.1.1, used to restrict veri�cation to
valid products.

• γ : trans −→ B(F) is a total function, labelling each transition with a feature
expression, i.e., a Boolean expression over the features.

�

Figure 2.11 shows an example of an FTS of the aforementioned mobile phone
SPL with the set of features F = {Email, Internet, 3G,Wifi} and the set of ac-
tions Act = {text, send, dial, call, close, connect, email}. For instance, transitions
from state a to state e are guarded by feature expressions (Internet ∧Wifi) and
(Internet ∧ 3G), specifying that a product must possess features Internet and,
Wifi or 3G to move from a to e. Similarly, the transition from state e to state f
is guarded by the feature expression (Email). Hence, a product must have feature
Email to move from e to f .

21 2012-2013

s0

s1 s2

s3

s4 s5

dial

call

close

text send
connect/Internet ∧Wifi

connect/Internet ∧ 3G

close

email/Email

send

Figure 2.11: Example of FTS modelling the mobile phone FTS

The TS of a particular product p is obtained by removing all transitions whose
feature expression is not satis�ed by the features of p. This operation is called
projection. Figure 2.12 shows the projection of the FTS depicted in Figure 2.11 to
the product numbered 1 in Table 2.1 with features {Call, T ext, Os, iOS}.

s0

s1 s2

s3

dial

call

close

text send

Figure 2.12: Projection of the FTS depicts in Figure 2.11 to the product numbered 1

in Table 2.1

22 2012-2013

2.3.2 FTS Model Checking

We explained in section 2.2.3 that given a transition system TS and a LTL Prop-
erty ϕ, the model checker returns "yes" if TS |= ϕ or "no" with a path counterex-
ample. In FTS model checking, given that we check a set of products, and not a
single product, the result is a set of counterexamples each of which is associated to
a subset of products that can execute it. For a product to execute a transition, its
features must satisfy the feature expression labelling the transition. To produce a
whole execution, which is % = s0α1s1α2 . . . αnsn, the product must be able to exe-
cute all the transitions of this execution. Hence, the set of products that can pro-
duce the execution is encoded by γ(s0

α1−→ s1)∩γ(s1
α2−→ s2)∩ . . .∩γ(sn−1

αn−→ sn)
where γ is de�ned in 2.3.1.

In the past three years, several FTS model checkers have been implemented. A
�rst model checker is a Haskell library implementing algorithms for LTL model
checking of FTS [CHS+10]. Then, an FTS extension of the NuSMV model checker
has been developed [Cla10]. Unlike the Haskell library, NuSMV extension is based
on another logic called CTL [BK08, Ch. 6]. Next, SNIP has been proposed in 2012.
It has a speci�cation language based on Promela and it o�ers the possibility to
integrate an FD in order to restrict the veri�cation to valid products [CCH+12].
Finally, an SPL of SPL model checker called ProVeLines has been presented in
2013. Variability within ProVeLines comes from four factors such as the type of
system to verify, the type of properties to check, the complexity of features and
the used data structures [CCS+13].

For example, SNIP is a variant of ProVeLines with support for LTL veri�cation
of purely boolean, discrete software product lines, and equipped with binary deci-
sion diagrams. Some extensions are under development to introduce variability in
input languages but currently fPromela is the only available input language.

Because of its fundamental formalism, FTS is really tedious to be modelled man-
ually. Existing tools propose languages above FTS in order to ease modelling.
These languages include advance constructions such as variables, data structures
and process. Despite the better usability of these languages of behavioural mod-
elling, SPL model checking techniques will not reach the industry if an expertise is
required to use these new languages. It is therefore important to propose a more
widespread language in the industry as input language of SPL model checker.

In this thesis, we create a variability-aware extension of State�ow, a tool integrated
in the Matlab environment and used for the development and the simulation of
complex reactive systems [SP00]. It uses a variant of the �nite state machine

23 2012-2013

notation established by Harel [Har87] enabling the representation of hierarchy,
parallelism and history within a state chart. In the next chapter, we de�ne the
syntax and the execution rules of fState�ow. Then, we de�ne its semantics in
terms of FTS in order to use SPL model checking techniques on system modelled
in this language.

24 2012-2013

Chapter 3
Modelling SPL behaviour with fState�ow

As FDs do not allow behaviour expressing, a feature-aware language is needed to
model the behaviour of an SPL. In this thesis, we present the State�ow language
based on the �nite state machine notation established by Harel [Har87]. A State-
�ow model is composed of a set of states and a set of transitions. It also provides
advanced constructs such as hierarchy and parallelism. At �rst, we present the
di�erent notations used in the State�ow tool. Illustrating all the constructions
would be too tedious, thus, we only present a subset of these notations. Then, we
propose an extension of this language, called fState�ow, which permits to express
variabilities.

3.1 Syntax

In the following, we present all the notations and concepts used to model the
behaviour of an SPL in State�ow [Mat04].

3.1.1 States label

A State�ow model includes a set of states. Each state has a label which starts
with the name of the state followed by an optional set of actions. A name is valid
if (1) it is only composed of alphanumeric characters including the underscore (_)
and (2) it does not begin with a numeric character.

After the name, one can add state actions that are statements over variables writ-
ten in C or Matlab syntax. Here, we focus on C syntax. State actions are separated
by semicolons and preceded by their type. There are three types of actions which
are entry, during and exit. An empty type corresponds to entry actions. Other

25 2012-2013

types of action exist but we only use these three types.

Figure 3.1 depicts an example of a state labelled with the name "On” and a set of
actions where "i = 0;" and "j = 0;" are entry actions, "i+ +;" is a during action
and "j = i ∗ 2;" is an exit action.

Figure 3.1: State label example

Formally, let V be a set of variables and Stmnt(V) the set of statements over V .
A State�ow model includes the following:

• S is a set of states,

• entry : S −→ Stmnt(V) is a function between a state and its set of entry
statements;

• during : S −→ Stmnt(V) is a function between a state and its set of during
statements;

• exit : S −→ Stmnt(V) is a function between a state and its set of exit
statements.

3.1.2 Hierarchy

In State�ow, states are organized as a hierarchy. This allows one to represent mul-
tiple levels of subcomponents in a system. Graphically, drawing a state A within
the boundaries of another state B indicates that A is a substate of B and B is

26 2012-2013

the superstate of A. Each state, excepted from the top-level state, has exactly one
superstate and it may have several substates. Di�erent states can have the same
name. To distinguish between those, we use the so-called absolute name, which
consists in the concatenation of parents names and the state name separated by
period

Figure 3.2: States hierarchy example

For example, the list of full names of the states depicted in Figure 3.2 are "System",
"System.Fan1", "System.Fan2", "System.Fan1.On" and "System.Fan2.On".
Even if there are two states labelled with "On", as they have di�erent full names,
there is no syntax error.

3.1.3 Decomposition

Every state has a decomposition that de�nes the type of all its substates. There
are two types of decomposition: exclusive or parallel substates.

Exclusive substates are indicated by solid borders. Additionally, if a given state has
several exclusive substates, at least one of these must be targeted by a transition
without source, called Initial Transition. It means that this substate is the �rst to
be activated if the superstate becomes active (see Subsection 3.2). As illustrated
in Figure 3.3, substates B and C are exclusive and B is targeted by an initial
transition.

27 2012-2013

Figure 3.3: Exclusive states example

In the case where substates are parallel, they are represented by dashed borders.
Unlike exclusive states, a parallel state must not be the source or the target of
transitions. In addition, a total order is de�ned over parallel states. This order
in�uences the executions of the State�ow model (see Subsection 3.2). Each sub-
state has a number written at the top right corner representing its order. Figure
3.4 depicts an example where substates B and C are parallel. B is numbered 1
and C is numbered 2.

28 2012-2013

Figure 3.4: Parallel states example

Formally, hierarchy function sub is a partial function that associates a state with
(1) the set of its substates, (2) a decomposition type, (3) for exclusive decomposi-
tion the child/children that is/are initial state(s) within that decomposition, and
(4) for parallel states, the order of each substate as follows:

sub : S −→ 2S ×

 [{Excl} × (S −→ (Pred(V)× N))]
∪

[{Paral} × (S −→ N)]



3.1.4 Transitions label

Transition may be labelled with a guard and a set of actions. Labels must respect
the following syntax: [guard]?{actions}?. The guard is a predicate that de�nes if a
transition is valid or not (see Subsection 3.2). The actions are statements written
in C and performed when the transition is valid. Note that both elements are
optional. Figure 3.5 depicts an example of transition label. In this case, "i < 0"
is the guard and "i+ +;" is an action.

29 2012-2013

Figure 3.5: Example of a transition label

3.1.5 Order

In the case there are more than one exiting transition of a given state, they must
be ordered by writing an order number right at the beginning of the transition.
Similarly, an order must be de�ned between several initial transitions of a given
state. During execution, transitions are evaluated following this order to determine
their validity (see Subsection 3.2).

30 2012-2013

Figure 3.6: Example of multiple exiting transitions

In Figure 3.6, the transition labelled with the condition i < 0 from state B to C
is the �rst in the order. The transition from B to D is the second one.

Formally, transition function trans is the transition relation which notably de-
scribes the guard, the actions and the order of each transition as follows:
trans ⊆ (S × N)× Pred(V)× Stmnt(V)× S
where Pred(V) is the set of predicates over V .

3.1.6 Junction

Junctions, represented by empty circles, are syntactic sugars that allow for dividing
transitions into transition segments. Junctions permit to represent

• "if-then-else" decision construct

• transition from a common source to multiple destination (fork)

• transition from a multiple source to common destination (join)

• ...

Formally, the transition segments relation is de�ned as
transsegments : ((S ∪ J)×N)× Pred(V)× Stmnt(V)× (S ∪ J) where J is a set of
junction. From this relation we can obtain the transition relation trans as follows.

31 2012-2013

Let be j a junction, segment1 = ((s1, n1), pred1, act1, j) a transition segment that
targets j and segment2 = ((j, n2), pred2, act2, s2) a transition segment that exits j.
From segment1 and segment2 we obtain the transition transjn1 = ((s1, n2), pred1∩
pred2, act1 + act2, s2). Hence, if there are i transition segments that target j and
k transition segments that exit j, we have i× k transitions.

Figure 3.7: Example of transitions with junctions

Figure 3.8: Same model as depicted in Figure 3.7 where junctions have been removed

32 2012-2013

Following the aforementioned process, Figure 3.8 depicts a model obtained by
removing junctions from the model illustrated in Figure 3.7. Both model have the
same behaviour.

Figure 3.9: Example of an if-then-else construct

Figure 3.9 depicts an example of an if-then-else construct. In this example, the
construct represents the following instructions:

i f (i <0)
i++;

else

i−−;

3.1.7 Variables

As mentioned above, state actions and transition actions are statements over a set
of variables. Variables must have a type and a scope declared in the model explorer
of the Matlab environment. In this thesis, we only use boolean and integer of 32
bits as type of variables. Regarding scope, variable can be either constant local,
constant input or unde�ned input1. Local are variables initialized to 0 that can be
modi�ed by actions. Constant input variables are initialized apart from the model

1There is also an output scope but output variables behave the same as local variables. In
the Matlab environment, several models can sent or receive variables. Where inputs variables
are received by the model, output variables are sent by the model.

33 2012-2013

and, by de�nition, cannot not be modi�ed. Unde�ned inputs are variables which
values over time are determined before the execution of the model. For model
checking purpose, these variables are considered as unde�ned in order to check the
model in a non-deterministic way.

3.1.8 Features

These notations are the basics for modelling in State�ow but there is no concept
to express variabilities. Hence, we need to extend this language to make State�ow
aware of features. Similarly to FTS, we label transition with feature expressions.
In order to di�erentiate boolean condition and feature expression, both are sur-
rounded by parenthesis and separated by the AND connector &&. Formally, labels
must follow this syntax:
label ::= (”[”guard”]”)?(”{”actions”}”)?

guard ::= ”(”condition”)” && ”(”feature_expression”)”
| ”(”condition”)”
| ”(”feature_expression”)”

Graphically, condition and feature_expression are aggregated. In order to dis-
tinguish them during the parsing, we associate a feature diagram to this model.

Formally, let F be a set of features, γ : trans −→ B(F) is a function that associates
each transition with a feature expression over F and d is a feature diagram over
F .

Note that in the Matlab Environment, feature expression are declared as unde�ned
inputs.

34 2012-2013

Figure 3.10: Example of transition with a feature expression

Figure 3.10 depicts an example of a transition labelled with feature expression f .

35 2012-2013

3.1.9 fState�ow model de�nition

Formally, an fState�ow model is de�ned as follows

Def. 3.1.1 fState�ow model :
An fState�ow model is a tuple (S, entry, during, exit, sub, trans, d, γ) where

• S is a set of states;

• entry, during and exit are partial functions from S to Stmnt(V) that asso-
ciate a state with the statement to execute when the system enters, remains
and exit this state respectively;

• sub : S −→ 2S ×

 [{Excl} × (S −→ (Pred(V)× N))]
∪

[{Paral} × (S −→ N)]


is the hierarchy function, i.e., a partial function that associates a state with
(1) the set of its substates, (2) a decomposition type, (3) for exclusive de-
composition the child/children that is/are initial state(s) within that decom-
position, and (4) for parallel states, the order of each substate;

• trans ⊆ (S×N)×Pred(V)×Stmnt(V)×S is the transition relation which
notably describes the guard, the actions and the order of each transitions;

• d is a feature diagram over features F ;

• γ : trans −→ B(F) associates each transition with a feature expression over
F ;

where F is a set of features, V is a set of variables, Stmnt(V) is the set of state-
ments over V and Pred(V) is the set of predicates over V . �

In the following, we also use functions derived from Def. 3.1.1. These are de�ned
as follows:

• subonly : S −→ 2S is the partial function that associates a state with its
direct substates;

• super : S −→ S is the partial function that associates a state with its
superstate;

• decomp : S −→ {Excl, Paral} is the partial function that associates a state
with its decomposition type;

• sub : (S × N) −→ S is the partial function that associates a state with its
ith parallel substate;

36 2012-2013

• initsub : S −→ S is the partial function that associates a state with its
initial substate, i.e., the substate targeted by the valid initial transition;

• source : trans −→ S is the partial function that associates a transition with
its source state;

• target : trans −→ S is the partial function that associates a transition with
its target state;

• pred : trans −→ Pred(V) is the partial function that associates a transition
with its predicate over variables V ;

• act : trans −→ Stmnt(V) is the partial function that associates a transition
with its statements over variables V ;

3.2 Execution rules

The previous section presents the syntax of fState�ow. Now, we need to present
how a model expressed in fState�ow is executed step by step, i.e., how the model
evolves from state(s) to state(s). This allows us to de�ne the semantics of fState-
�ow further in this section.

3.2.1 Activity

State�ow (and in extenso fState�ow) models evolve at discrete time steps. At a
given point of time, state can be active, which means that this state is visited at
the current step of execution. Activity is in�uenced by the state decomposition.
In the case of exclusive states, if the superstate becomes active, an initial substate
is activated. Afterwards, only one exclusive substate of a given state can be active
at a time. In the case of parallel states, if the superstate becomes active then all of
these child states are activated one after the other following the order determined
previously. We use the function in(State) to denote the activity of State

Activity of states also trigger states actions depending on their type:

• An entry action is executed when the state becomes active.

• An exit action is executed when the state becomes inactive.

• A during action is executed when the state is active and there is no valid
transitions exiting this state.

37 2012-2013

Let execute(act) be the procedure that executes the statements of act. The deac-
tivation procedure of the state s is given in Algorithm 1.

Algorithm 1 deactivate(s)

1: if in(s) == 1 then
2: sup := super(s);
3: if decomp(sup) == Paral then
4: for i = |subonly(sup)| to 1 do
5: ssub = sub(sup, i);
6: deactivate(ssub);
7: end for
8: end if
9: for all ssub ∈ sub(s) do
10: deactivate(ssub);
11: end for
12: in(s) := 0;
13: execute(exit(s));
14: deactive(sup);
15: end if

Algorithm 1 can be explained as follows:

1. If the state is already inactive, do nothing (line 1).

2. Sibling parallel states are deactivated starting with the last-entered and
progress in reverse order to the �rst-entered (lines 2-8).

3. If a state has active children, these are deactivated (lines 9-11).

4. Mark the state as inactive (lines 12).

5. Execute exit actions (lines 13).

6. Deactivate superstate (lines 14).

The activation procedure of the state s is given in Algorithm 2.

38 2012-2013

Algorithm 2 activate(s)

1: if in(s) == 0 then
2: sup := super(s);
3: if in(sup) == 0 then
4: activate(sup);
5: end if
6: in(s) := 1
7: execute(entry(s))
8: if decomp(s) == Excl then
9: activateSubExcl(s);
10: else if decomp(s) == Paral then
11: activateSubParal(s);
12: end if
13: end if

Algorithm 3 activateSubExcl(s)

1: for all ssub ∈ subonly(s) do
2: if in(ssub) == 1 then
3: active :=true;
4: break
5: end if
6: end for
7: if not active then
8: ssub = initsub(s);
9: activate(ssub);
10: end if

Algorithm 4 activateSubParal(s)

1: for i = 1 to |subonly(s)| do
2: ssub = sub(s, i);
3: activate(ssub);
4: end for

The intuitive explanation of the Algorithm 2 is the following:

1. If the state is already active, do nothing (line 1).

2. If the superstate is not active, perform all steps for the superstate �rst (lines
2-5).

39 2012-2013

3. Mark the state active (line 6).

4. Execute entry actions (line 7).

5. Activate substates, if needed:

• If this state has exclusive substates (lines 8-9):

(a) Check if there is an active substate (Algorithm 3, lines 1-5).

(b) If not, perform all steps for the valid initial state (Algorithm 3,
lines 6-9).

• If this state has parallel substates (lines 10-11):

(a) perform all steps for all substates following their order (Algorithm
4, lines 1-4).

3.2.2 Hierarchy diagram

These activation rules can be represented using the FD syntax as de�ned in 2.1.1.
The relation between a state and its substates is represented by respectively a
parent feature and its child features. The type of the relationship is Alternative
if substates are exclusive and And if substates are parallel (in this case, all child
features are mandatory). The produced diagram, called a hierarchy diagram (HD),
represents all the possible "con�gurations" which means the set of set of states that
can be active at the same time. Figure 3.11 depicts a more complex example of a
fState�ow model and Figure 3.12 illustrates the HD of the model.

Figure 3.11: Example of a fState�ow model

40 2012-2013

A

B C

D E

F G H I J

K L

Figure 3.12: Hierachy diagram of the model depicted in Figure 3.11

From this diagram, we can make the set of set of states that can be active at the
same time as illustrated in Table 3.1.

A B C D E F G H I J K L
1 • • • • • •
2 • • • • • •
3 • • • • • •
4 • • • • • •
5 • • • • • •
6 • • • • • •
7 • • •
8 • • •

Table 3.1: Set of set of states that can be active at the same time

3.2.3 Validity

From a given active state, any transition cannot be taken at any time: only a
valid transition can be performed. The validity of a given transition is de�ned by
its guard. Condition can be evaluated to true, false or unde�ned (in the case of
evaluation of unde�ned variables). If its condition is not evaluated to false, then
the transition is valid. In the case where there are more than one transition ex-
iting a given state, transitions are evaluated following their order. Hence, the ith

transition is valid i� (1) its condition is not evaluated to false and (2) the (i− 1)
�rst transitions are not valid. For example, the transition from B to D in Figure
3.6 is performed only if the condition of the �rst evaluated transition is false, i.e.,
i� i ≥ 0.

41 2012-2013

From de�nitions of activity and validity, we can use s
[gi]ai−→ s′ to denote ((s, i), predi, acti, s

′) ∈
trans, that is, the ith transition from s to s′ where

• predj and actj are respectively the predicate and the statements over V of
the jth transition from s to s′;

• actStmnt(s) is the set of statements executed when state s is activated as
de�ned in Alg. 2;

• deactStmnt(s) is the set of statements executed when state s is deactivated
as de�ned in Alg. 1;

• ai = deactStmnt(s) ∪ acti ∪ actStmnt(s′);

• gi = ¬(
∧i−1
j=1 predj)

∧
predi;

3.2.4 Execution

The execution of a fState�ow model begins by activate the top-level state. The
next steps consist in evaluate if a state has a valid transition. First the top-level
state is evaluated. If no transition is valid, its during actions are executed and
substates are evaluated afterwards. In the case of an exclusive decomposition,
only the active substate is evaluated. In the case of a parallel decomposition, each
substate is evaluated one after the other following the order. Once a valid transi-
tion is found, this transition is applied and the substates are not evaluated. The
application of a transition consists in (1) deactivate the source state, (2) execute
the transition actions and (3) activate the target state.

Let valid(s) be a function that associates a state with its valid transition. The
execution procedure applied on the top-level state s is given in Algorithm 5.

42 2012-2013

Algorithm 5 execution(s)

1: if |valid(s)| == 0 then
2: execute(during(s));
3: if decomp(s) == Excl then
4: execution(initsub(s));
5: else if decomp(s) == Paral then
6: for all ssub ∈ subonly(s) do
7: execution(ssub);
8: end for
9: end if
10: else
11: trans = valid(s);
12: deactivate(source(trans));
13: execute(act(trans));
14: activate(target(trans));
15: end if

Figure 3.13: States activation

For example, in Figure 3.13, states A, B and D are active and the transition
transDF from state D to F is the �rst valid transition found during the evaluation
described as follows:

1. Execution of the during actions of A then B;

43 2012-2013

2. Deactivation and execution of exit actions of C, B then A;

3. Execution of the actions of transDF ;

4. Activation and execution of entry actions of C, F , G, then H;

3.3 Semantics

In this section, we de�ne the semantics of fState�ow expressed in terms of FTS.
This allows us to reuse the e�cient model checking algorithms speci�cally deigned
for FTS [CHS+10], [Cla10], [CHSL11], [CCH+12] and [CCS+12]. In order to de�ne
this semantics, we systematically present how each element of an FTS is derived
from the fState�ow model.

3.3.1 States

The state space of FTS is de�ned by (1) the state space of the fState�ow model
and (2) the set of variables. In the following, we distinguish the set of states S of
the FTS model and the set of states Sf of the fState�ow model. More precisely,
a state of the FTS is a combination of states of Sf and an evaluation of the set of
variables V .

Activation rules, de�ned in Section 3.2.1, lead us to the de�nition of S: a state
si ∈ S in FTS corresponds to a set of states Sfi ∈ 2S

f
that are active at the

same time and an evaluation of the variables eval(V)i ∈ Eval(V). Formally,
S ⊆ 2S

f ×Eval(V). Not all combinations of states are allowed though. For exam-
ple, a substate cannot be active if its superstate is not. Therefore, only a substate
of 2S

f
determines the actual state space of the FTS. This substate is represented

by Comb(Sf). Hence, the size of S is the size of Comb(Sf) multiplied by the size
of Eval(V).

The size of Comb(Sf) can be computed using the hierarchy diagram depicted in
Figure 3.12 and the function active : Sf −→ N de�ned as follows:

• If a state sf ∈ Sf has no substate

active(sf) = 1

• If a state sf ∈ Sf is decomposed in n exclusive substates (sf1 , . . . , s
f
n)

active(sf) =
n∑
i=1

active(sfi)

44 2012-2013

• If a state sf ∈ Sf is decomposed in n parallel substates (sf1 , . . . , s
f
n)

active(sf) =
n∏
i=1

active(sfi)

Hence, active(sfroot), where s
f
root is the root of the HD that represents the hierarchy

of Sf , gives the size of Comb(Sf) ⊆ 2S
f
.

For example, from the HD depicted in Figure 3.12, one can compute the size of
Comb(Sf) as illustrated in Figure 3.14.

A

B C

D E

F G H I J

K L

(8)

(6) (2)

(3) (2)

(1) (1) (1) (1) (1)

(1) (1)

Figure 3.14: Hierachy diagram, computation of the number of set of set of states that

can be active at the same time

In this case, from 10 states (Sf) in fState�ow we have active(A) = 8 states (S) in
FTS. Each of state of S corresponds to a subset of Sf as follows:

Sf = {A,B,C,D,E, F,G,H, I, J,K, L}
Comb(Sf) = {sf0 , s

f
1 , s

f
2 , s

f
3 , s

f
4 , s

f
5 , s

f
6 , s

f
7}

sf0 = {A,B,D,E, F, I}
sf1 = {A,B,D,E, F, J}
sf2 = {A,B,D,E,G, I}
sf3 = {A,B,D,E,G, J}
sf4 = {A,B,D,E,H, I}
sf5 = {A,B,D,E,H, J}
sf6 = {A,C,K}
sf7 = {A,C, L}
In addition to states in fState�ow, variables also in�uence the number of states in
FTS. Indeed, from a set of n states in FTS, a given variable that has m di�erent

45 2012-2013

possible values multiplies the number of states by m. In this thesis, we only use
boolean and integer of 32 bits (232 values) as type of variables. Let b and i be be
respectively the number of boolean variables and the number of integer variables
of V . The size of Eval(V) is thus 2b × (232)i.

For instance, if the HD depicted in Figure 3.12 is accompanied by 3 boolean and
1 integer variables than we obtain 343.597.383.680 states in term of FTS as de-
scribed in the following:

|Comb(Sf)| × |Eval(V)|
= 10 combinations × 3 boolean × 1 integer
= 10 × 23 × 232

= 10 × 8 × 4.294.967.296
= 343.597.383.680 FTS states

More often than not, only a small portion of this state space will be reachable, and
thus explored by the model checking algorithms. In the above example, it may
indeed happen that the integer variable only receives a very small subset of value
during an execution. The reachable part of the state space is determined by the
transition relation.

3.3.2 Transitions

As we de�ned previously, the set of states in FTS is determined by the combi-
nations of active states and the evaluation of the variables in fState�ow. Hence,
a transition between two states in FTS consists in (1) a sequence of transitions
between a set of states to another and (2) a set of statements on the variables
in fState�ow. In the following, we distinguish the transition relation trans of the
FTS model and the transition relation transf of the fState�ow model. Regarding
the set of statements, this is only determined by transitions. Except transition
transition actions that are executed when the transition is applied, during actions
are executed when no transition is valid and entry, exit actions are respectively
executed when the state becomes active and inactive. The set of statements can
thus be derived from the set of transitions. First, we de�ne how to compute the list
of transitions that exit a given state and its substates. Then, we formally de�ne
the transition relation of an FTS.

As mentioned above, a given state si in S corresponds to a set of states Sfi in 2S
f

(and an evaluation Evali(V)). The set of transitions that exits si is thus a set of
set of transitions that exit states of Sfi where each set of transitions represents a
sequence of transitions. Recall that states of Sfi are organized following a hierar-

46 2012-2013

chy, thus if a transition of a superstate is performed, transitions of its substates
cannot be performed after that.

Let sf be an active state in fState�ow and exit(sf) be the transitions leaving sf and
during(sf) be a transition to itself. This self-transition represents the possibility
for sf to stay active. Indeed, if any exiting transition is valid, the state executes
its during actions as de�ned in Section 3.2.1 and in this case, the state is not

deactivated then activated. This self transition is thus denoted as s
[g]a−→

during
s where

g is the negation of the conjunction of all transitions exiting s and a is only the
actions of the transition.
The function Trans that associates an active state with a set of sequences of
transitions is de�ned as follows:

• If a state sf has no substate, then only its transitions can be performed

Trans(sf) = {exit(sf)} ∪ {during(sf)}

• If state sf is decomposed in n exclusive substates (sf1 , . . . , s
f
n) and s

f
i is the

active substate

Trans(sf) = {exit(sf)} ∪ ({during(sf)} × Trans(sfi))
In this case, the state or its active substate can perform a transition. This
is represented by the union of the transitions of sf and the transitions of its
active substate sf1 .

• If a state s is decomposed in n parallel substates (sf1 , . . . , s
f
n)

Trans(sf) = exit(sf) ∪ ({during(sf)} × (
n
×
i=1

Trans(sfi)))

If an active state has parallel substate then all of these substates are ac-
tive. Hence, either the state performs a transition or all substates perform a
transition in a sequence. This is represented by the union of the transitions
of sf and the Cartesian product (×) of the sets of transitions of the substates.

Trans(s) is the set of sequences of transitions of state s and all its active sub-
states. For instance, if states A,B,D,E, F and I are active in the model depicted
in Figure 3.11 the set of sequences of transitions Trans(A) is computed as follows:

In the following A → B denotes an exit transition from state A to state B and
A 	 denotes the self transition on state A representing the execution of during
actions.

47 2012-2013

Trans(A)

=

∅︷ ︸︸ ︷
{exit(A)}∪({during(A)} × Trans(B))

= {A 	} × Trans(B)
= {A 	} × ({exit(B)} ∪ ({B 	} × Trans(D)× Trans(E)))

= {A 	} × ({B → C} ∪ ({B 	} × (

∅︷ ︸︸ ︷
{exit(D)}∪({during(D)} × Trans(F)))× (

∅︷ ︸︸ ︷
{exit(E)}∪({during(E)} × Trans(I)))))

= {A 	} × ({B → C} ∪ ({B 	} × ({D 	} × Trans(F))× ({E 	} × Trans(I))))
= {A 	} × ({B → C} ∪ ({B 	} × ({D 	} × ({exit(F)} ∪ {during(F)}))× ({E 	} × ({exit(I)} ∪ {during(I)}))))

= {A 	} × ({B → C} ∪ ({B 	} × ({D 	} × ({F → G;F → H} ∪ {F 	}))× ({E 	} × ({I → J} ∪ {I 	}))))
= {A 	} × ({B → C} ∪ ({B 	} × ({D 	} × {F 	;F → G;F → H})× ({E 	} × {I 	; I → J})))
= {A 	} × ({B → C} ∪ ({B 	} × {(D 	, F); (D 	, F → G); (D 	, F → H)} × {(E 	, I); (E 	, I → J)}))
= {A 	} × {(B → C); (B 	, D 	, F 	, E 	, I); (B 	, D 	, F 	, E 	, I → J); (B 	, D 	, F → G,E 	, I);

(B 	, D 	, F → G,E 	, I → J); (B 	, D 	, F → H,E 	, I); (B 	, D 	, F → H,E 	, I → J)}
= {(A 	, B → C);

(A 	, B 	, D 	, F 	, E 	, I);
(A 	, B 	, D 	, F 	, E 	, I → J);
(A 	, B 	, D 	, F → G,E 	, I);
(A 	, B 	, D 	, F → G,E 	, I → J);
(A 	, B 	, D 	, F → H,E 	, I);
(A 	, B 	, D 	, F → H,E 	, I → J)}

48
2012-2013

The set Trans(sf) is thus composed of all possible sequences of transitions. How-
ever, all sequences may not be valid. Indeed, this method does not take count of
the condition of each transition. Moreover, given that it is a sequence of transi-
tions, the validity of the ith transition depends on the application of the i− 1 �rst
transitions of the sequence. Recall that execution of fState�ow model modi�es
states activity and variables values. These modi�cations are de�ned as functions
as follows:

• apply : (S × trans′) −→ S is the partial function that associates (1) a state
in FTS and (2) a transition in fState�ow with the state in FTS resulting of
the application of the transition;

• execute : (Eval(V) × Stmnt(V)) −→ Eval(V) is the partial function that
associates (1) an evaluation of variables V and (2) a set of statements with
an evaluation of the variables resulting of the execution of the statements;

For a proper understanding of the transition relation, we �rst de�ne the case
where transition in FTS consists in one transition in fState�ow. Then, we de�ne
the general case where transitions in FTS are sequences of transitions in fState�ow.

A transition from a state (S, eval(V)i) to a state (S ′, eval(V)i+1) in FTS exists i�

1. there is a transition sf
[g]a−→ s′f where sf ∈ S and s′f ∈ S ′;

2. this transition is valid, i.e., the predicate g over V is not false considering
the evaluation of the variables eval(V)i, denoted by eval(V)i |= g;

3. S ′ is the resulting state of the application of the transition sf
[g]a−→ s′f on the

state S and

4. eval(V)i+1 is the resulting evaluation the variables obtained by the execution
of the statements a on eval(V)i.

Formally, in the case of single transition in fState�ow, the transition relation
trans ⊆ S × Stmnt(V)× S is the smallest relation satisfying the following

sf ∈ S
∧ sf

[g]a−−→ s′f

∧ eval(V)i |= g
∧ S ′ = apply(S, sf −→ s′f)
∧ eval(V)i+1 = execute(eval(V)i, a)

(S, eval(V)i)
a−→ (S ′, eval(V)i+1)

49 2012-2013

However, more often than not, transitions in FTS are sequences of transitions
in fState�ow. Let n be the number of transitions of a give sequence. A given
transition(S, eval(V)i)

a−→ (S ′, eval(V)i+n) in FTS exists i�, for all k : 0 ≤ k ≤ n−1
the kth transition is valid after the application of the k − 1 transitions. Similarly,
the set of states S ′ is the results of the application of the sequence of transitions.
Formally, the general transition relation trans ⊆ S×Stmnt(V)×S is the smallest
relation satisfying the following

∀k, 0 ≤ k ≤ n− 1 : sfk
[gk]ak−−−→ s′fk

∧ sfk ∈ S
∧ eval(V)i+1+k = execute(eval(V)i+k, ak)
∧ eval(V)i+k |= gk
∧ a =

⋃
k ak

∧ S ′ = apply(...(apply(apply(S, sf0 −→ s′f0), sf1 −→ s′f1), ...), sfn−1 −→ s′fn−1)

(S, eval(V)i)
a−→ (S ′, eval(V)i+n)

3.3.3 Feature Expressions

From the de�nition of transition in terms of FTS, we can de�ne the feature ex-
pression of a given transition in FTS as the conjunction of feature expressions of
corresponding transitions in fState�ow. Let (S, eval(V)i)

a−→ (S ′, eval(V)i+n) be a
transition in FTS where n is the number of corresponding transitions in fState�ow.
The derived feature expression f is

f =
n−1∧
i=0

γ(sfi −→ s′fi)

where γ : transf −→ B(F) associates each transition in fState�ow with a feature
expression over F ;

50 2012-2013

Chapter 4
Case study: the PCA Infusion Pump SPL

In this chapter, we present a case study of a Patient Controlled Analgesic (PCA) In-
fusion Pumps SPL. Speci�cation of this system was extracted from a requirements
document written by the Critical System Group of the University of Minnesota.
This document provides a detailed description of the functionalities and constraints
of PCA Infusion Pump in its intended environment of use. PCA Infusion Pump
is a type of pump used to infuse analgesic in intravenous. Several infusion modes
can be con�gured by a clinician. One of these mode allows patient to request
an extra amount of analgesic if he feels too much pain. However, some of these
modes imply the presence of extra components such as a control panel or a remote
control. In order to reduce the cost of production, these extra components can be
removed and, therefore, modes that require them. Hence, it would be interesting
to consider PCA Infusion Pump as an SPL. In addition, PCA Infusion Pumps
are considered as highly safety-critical systems and they must be veri�ed in order
to prevent error. This case-study is thus a good candidate for SPL model checking.

In the following, we do not mention the "hardware" features and we focused on
"software" features. Indeed, the purpose of this work is to model the behaviour
of this SPL and hardware di�erences are not relevant for this case study. At �rst,
we will describe what is an PCA Infusion Pump and its potential functionalities.
Then, we de�ne the variability of these pumps. Finally, we take a look on how
model the behaviour of this SPL using State�ow.

4.1 Description

A PCA Infusion Pump is a type of pumps allowing patient in pain to adminis-
ter their own painkiller by intravenous. Infusion pumps have to be con�gured by

51 2012-2013

a clinician with the patient information, the drug information and the infusion
parameters like the Volume To Be Infuse (VTBI) and the maximum duration.
Clinicians can access to a control panel thanks to which they can start or stop the
system and initiate or inhibit the infusion. During infusion, patients can partially
control the amount of analgesic that will be injected in order to suppress pain.
Infusions are ended when the con�gured duration of the infusion is exceeded or
when the volume to be infused is reached. In the following, we de�ne all the func-
tionalities.

At �rst, infusions are programmed by a clinician using modes as basal or square
bolus. Basal is the regular mode con�gured by the clinician. This mode requires
a constant �ow rate as parameter (for example, 5ml/h). Square bolus is the �uc-
tuating mode where the �ow rate rises up to a given amount for a given period
of time every x minutes or hours - a bolus denotes an extra amount of drug. For
instance, the �ow rate rises up to 10 ml/h for 15 minutes every hour.

Patients can request an extra amount of drug if he is in pain. In this mode, called
Patient Bolus, the pump infuses a bolus represented by a determined �ow rate for
a given period of time. For example, when the patient commands a bolus, the
�ow rate rises up to 20 ml/h for 10 minutes. This functionality can be restrained
by a maximum number of bolus. When a patient bolus is over, there is a lockout
period during which patients cannot request another bolus.

Clinicians can also request a bolus without restriction in the number of requests
triggering the Clinician Bolus mode. This mode requires two parameters: a �ow
rate and a period of time; e.g. 15 ml/h for 20 minutes. Clinicians are allowed to
pause the infusion if necessary, which sets the �ow rate to 0 ml/h.

In summary, that parameters that have to be initialised before any infusion are:

• Total VTBI.

• Maximum duration.

• Flow rates of modes: Basal, Square Bolus, Patient Bolus, Clinician Bolus
and Pause.

• Duration of modes: Square Bolus, Patient Bolus ans Clinician Bolus.

• Interval between Square Bolus.

• Lockout period after Patient bolus.

52 2012-2013

• Maximum number of Patient Bolus.

More than one mode can be activated at the same time. In this case, the actual �ow
rate is determined by the mode with the highest priority. For example, during the
basal mode, a patient can request a bolus and the bolus mode is selected instead
of the basal mode. The hierarchy between these modes de�nes the priority of each
mode:

Pause > Patient Bolus > Clinician Bolus > Square Bolus > Basal

Thus, if the patient requests a bolus during the square bolus mode, the infusion
pump will select the patient bolus mode and adapt the �ow rate. Then, if a clin-
ician requests a bolus during a patient bolus mode, the �ow rate will not change
until the end of the patient bolus since patient bolus has more priority than clini-
cian bolus.

Besides modes, pumps are also equipped with hazard detectors grouped in two
categories. The �rst category monitors environment parameters as temperature,
humidity or air pressure. If one of the parameters is out of a certain range, an
environment hazard is reported.

The second category controls infusion parameters. These concern the monitoring
of the pipe linking the pump to the needle in order to avoid issues such as occlusion,
air in line, free �ow or reverse delivery. A hazard is respectively reported i�

• the pipe is twisted and the infusion is blocked;

• there is an air bubble in the pipe;

• the �ow rate becomes out of control; or

• the �ow is reversed and the pump siphons blood from patient.

Additionally, pumps provide a reservoir in which the analgesic is poured. Hazards
are reported when the level of the reservoir is too low than a certain value and
when the reservoir is empty. The �ow rate and the VTBI are also controlled in
order to avoid overdose problems. That is, �ow rate cannot be higher or lower
than a certain range and VTBI cannot exceed a certain value before the end of
the infusion.

All of these detectors trigger alarms classi�ed in three levels of severity. Alarms
change the �ow rate of the infusion pump depending on their level and are deac-
tivated by resolving issues. More precisely, the consequences of these alarm levels
are the followings:

53 2012-2013

Level 1: the �ow rate is adjusted to the basal �ow rate and cannot increase or
decrease until the alarm is deactivated.

Level 2: the infusion is paused until the alarm is deactivated.

Level 3: the current infusion is cancelled and a new one has to be con�gured.

Besides modes and hazard detectors that are main components, infusion pumps
have a list of auxiliary functionalities as:

Logging: All operations and events are recorded in a log �le.

Drug Library: A set of di�erent analgesics are available for infusion.

Access control: Accesses of the pump software are protected by a code.

Print: Logs or statistics can be printed.

Scanning: Patient information, drug information and prescriptions can be scanned
to accelerate and ease the con�guration of infusions.

In a given pump, all these functionalities may not be needed. In order to reduce
de development cost, it is therefore essential to discard the unneeded ones.

All these variations lead us to the de�nition of a PCA Infusion Pump variability
model. Basically, each variation gives rise to a new feature. The following section
describes their dependencies as expressed in an FD.

4.2 Variability

First, we describe the top-level features. Then, we describe the decomposition of
each top-level features.

4.2.1 Top-level features

We can enumerate seven top-level features that can be present in a software prod-
uct of the line: Infusion Modes, Hazard Detection, Logging, Drug Library, Access
Control, Print and Scanning. The �rst two compose the basics of an Infusion
Pump and must be present in every product. On the one hand, a pump needs at
least one mode of infusion to correctly perform. On the other hand, as a critical
system, an infusion pump cannot malfunction and all issues must be avoided. The
other �ve features are considered optional because they are not crucial in the func-
tioning of a pump per se. Graphically, the root of this FD, named PCA Infusion

54 2012-2013

Pump, has an AND-relationship with its child features but only Infusion Modes
and Hazard Detection are mandatory; the rest is optional. Figure 4.1 depicts this
relationship.

PCA Infusion Pump

Infusion Modes Logging Drug Library Hazard Detection Access Control Print Scanning

Figure 4.1: Main features

4.2.2 Hazard detections

Hazard detections can be separated in two categories: environment hazards and in-
fusion hazards. The �rst category concerns issues related to temperature, humidity
and air pressure whereas the second includes issues related to the infusion param-
eters (VTBI and Flow rate), the pipe (Free �ow, Air in Line, Reverse Delivery and
Occlusion) and the reservoir (Low and Empty). Even one hazard may be fatal for
the patient, thus, every products must integrate all these detection abilities. This
requirement is materialised as an And-relationship where all features are manda-
tory. For clarity, the main feature Hazard Detection is �rstly decomposed into two
child features Environment and Infusion which are themselves decomposed into
aforementioned features. Figure 4.2 shows this relationship.

Hazard Detection

Environment Infusion

Temperature Humidity Air Pressure

Free Flow Air in Line Flow rate VTBI

Reservoir Low Reservoir Empty Reverse Delivery Occlusion

Figure 4.2: Hazard detections features

55 2012-2013

4.2.3 Scanning options

If the optional Scanning feature is selected, several type of information may be
scanned instead of being entered manually. A scanner can read patient informa-
tion, drug information or prescription details in order to accelerate the con�gura-
tion process. Figure 4.3 illustrates this OR-relation.

Scanning

Patient Info Drug Prescription

Figure 4.3: Scanning features

4.2.4 Infusion modes

The most important variabilities lie in the di�erent infusion modes. Only two
modes are mandatory: Basal and Pause. Basal is the basic mode con�gured for
each infusion with a determined �ow rate. In addition, clinicians need a mode
to set the �ow rate at 0 ml/h in order to inhibit infusion in case of problem.
Besides these basic modes, there are three optional modes that infuse bolus of
analgesic: Patient Bolus, Clinician Bolus or Square Bolus. These are grouped into
an OR-relationship with bolus feature. Patient Bolus may also be restricted by
a lockout period represented by an optional child feature. Figure 4.4 depicts this
relationship.

Infusion Modes

Basal Requests Square Pause

Patient Clinician

Lockout

Figure 4.4: Infusion Modes features

By assembling all features together, we obtain the Feature Diagram in Figure 4.5
representing the variability model of the PCA Infusion Pump SPL.

56 2012-2013

PCA Infusion Pump

Infusion Modes Logging Drug Library Hazard Detection Access Control Print Scanning

Basal Requests Square Pause

Patient Clinician

Lockout

Environment Infusion

Temperature Humidity Air Pressure

Free Flow Air in Line Flow rate VTBI

Reservoir Low Reservoir Empty Reverse Delivery Occlusion

Patient Info Drug Prescription

Figure 4.5: Feature Diagram of a PCA Infusion Pump SPL

57
2012-2013

4.3 Behavioural modelling with State�ow

We now model the behaviour of the infusion pump SPL using the fState�ow lan-
guage. Since the model is too large to be fully described, we focus on the modelling
of the infusion modes. There are �ve di�erent modes (see Section 4.2.4) such as
pause, basal, patient bolus, clinician bolus and square bolus. Pause and basal
are mandatory whereas the others are optional. At the beginning of an infusion,
the active mode is basal. Then, depending on the con�guration of the pump and
the requests of the patient and clinicians, the active mode will switch from basal
to another mode and so on until the end of the infusion. For recall, more than
one mode can be active at the same time and, in this case, the actual �ow rate
is determined by the mode with the highest priority. This priority is de�ned as
follows:

Pause > Patient Bolus > Clinician Bolus > Square Bolus > Basal

4.3.1 Variables

Before describing modes, we de�ne the list of variables used in this model and
their meaning in the system. We can separate the variables in four di�erent cat-
egories such as con�gured parameters, buttons, counters and additional variables
that represent features.

The �rst category groups all the parameters that clinicians must con�gure before
any infusion like the duration and the �ow rate of each mode. These parameters
are de�ned in Table 4.1.

58 2012-2013

Name Description
FlowRate_pause �ow rate of the pause mode
FlowRate_cbolus �ow rate during the clinician bolus mode
FlowRate_sbolus �ow rate during the square bolus mode
FlowRate_pbolus �ow rate during the patient bolus mode
Duration_cbolus maximum period of time of a bolus requested by a clin-

ician
Duration_sbolus maximum period of time of a bolus during the square

bolus mode
Duration_pbolus maximum period of time of a bolus requested by the

patient
sbolus_interval period of time between two square bolus
NumberMax_pbolus maximum number of bolus that a patient can request
LockOutPeriod_pbolus minimum period of time between two occurrences of the

patient bolus mode
Duration_total maximum total duration of an infusion
VTBI_total maximum volume to be infused during an infusion

Table 4.1: List of parameters to be con�gured by a clinician before any infusion

The second category represents the di�erent buttons used to control the pump.
Basically, the value of a given button in set to 1 when this button is pushed on
and 0 otherwise. Buttons are listed in Table 4.2.

Name Description
Infusion_initiate starts the infusion after con�guration or releases pauses
Infusion_inhibit pauses the infusion.
cbolus_req requests a clinician bolus
pbolus_req requests a patient bolus

Table 4.2: List of buttons used to control the infusion pump

The third category are local variables handling parameters and timers. Table 4.3
lists all these variables.

59 2012-2013

Name Description
Actual_Infusion_Duration period of time elapsed from the start of the infusion
Actual_Volume_Infused amount of drug infused since the start of the infusion
�ow current �ow of the infusion
number_pbolus number of requests of patient bolus executed
cbolus_dur_timer period of time elapsed from the start of the clinician

bolus mode
sbolus_dur_timer period of time elapsed from the start of the square bolus

mode
pbolus_dur_timer period of time elapsed from the start of the patient bolus

mode
lock_timer period of time elapsed from the start of the lock out

period

Table 4.3: List of local variables

Finally, the fourth category is composed of a list of boolean variables. Each of
which corresponds to a feature. They are used to form feature expressions. Each
boolean has the name in upper case of the feature that it represents such as :
SQUARE, CLINICIAN_BOLUS, PATIENT_BOLUS and LOCKOUT.

4.3.2 Infusion modes

We followed two systematic procedures to model the behaviour of the infusion
modes: one based on exclusives states and the other based on parallel states..
As a �rst attempt, exclusive states have been used to represent each mode with
transition from each state to all the other states. As they are exclusive, there is
only one state active at a time which represents the active mode. However, this
representation becomes more and more complex with the number of states (i.e.
modes). Formally, with n states we have n×(n−1) transitions. Figure 4.6 depicts
this attempt with n = 5 states and n× (n− 1) = 20 transitions. If a new mode is
created, adding a new state to this model would be very tedious.

60 2012-2013

Figure 4.6: Exclusive states attempt

For scalability reasons, we came up with the second alternative based on parallel
states. In this case, each mode has a corresponding parallel state containing two
exclusive states, On and Off , that represent the activity of the mode. An ad-
ditional state, called Umpire1, sets the �ow rate depending on the active modes
and their priority. This state is decomposed in substates where each of these rep-
resents an infusion mode. Even if there are more states in the model, there are
much less transition to handle which makes this model less complex. All these
parallel states are substates of the state labelled Therapy which is activated when
the infusion is initiated. In the following, each substate representing an infusion
mode is described separately by de�ning transitions between On and Off states.

Basal is the �rst mandatory mode. This mode is active from the beginning of
the infusion, thus On is directly activated. This mode remains active until the
maximum duration is reached, that is, when variables Actual_Infusion_Duration
and Duration_total are equal (see Figure 4.7).

1In American Football, the umpire is the referee behind the defensive line and linebackers
that observes the scrimmage.

61 2012-2013

Figure 4.7: Basal mode

The second mandatory mode is the pause mode depicted in Figure 4.8. Initially,
this mode is set on Off . The �rst transition from Off to On is labelled with
the condition Infusion_inhibit > 0. The variable Infusion_inhibit represents
the pause button that a clinician can push on. This variable is set to 1 if the
clinician pushes on the button and it is set to 0 otherwise. The second transition
represents alarm triggers (see section 4.3.3). Basically, this transition becomes
valid i� an alarm of level 2 is triggered. The state Off becomes active again i�,
(1) similarly to inhibition button, the clinician pushes on the button to initiate
the infusion (Infusion_initiate > 0) and, (2) the total infusion duration has not
been reached (Actual_Infusion_Duration < Duration_total).

Figure 4.8: Pause mode

The square bolus mode is initialised on Off where the corresponding timer is
set to 0. As an optional feature, this mode can become active i� the square
feature is present, i.e. i� the feature expression SQUARE is satis�ed. In the
boolean condition, the modulo operator %% is used to satisfy the minimum period
of time between two square bolus. For example, if sbolus_interval = 10, this
transition becomes valid every 10 minutes. Then, the variable sbolus_dur_timer
is incremented as long as state On remains active, that is, no alarm of level one
is triggered in the mean time. Once the variable Duration_sbolus is equal to
sbolus_dur_timer, On becomes inactive and square bolus mode comes back to
Off . Figure 4.9 illustrates this behaviour.

62 2012-2013

Figure 4.9: Square bolus mode

Clinician bolus mode is very similar to square bolus in its modelling. The initial
state is also Off and the two transition from On to Off are the same except for
variables sbolus_dur_timer and Duration_sbolus that are respectively replaced by
cbolus_dur_timer and Duration_cbolus. The condition and the feature expres-
sion of the transition from Off to On is also di�erent. In this case, the feature
expression refers to the clinician bolus mode CLINICIAN_BOLUS and the con-
dition is satis�ed if cbolus_req > 0 which means that the clinician has pushed on
its request button. Figure 4.10 depicts this mode.

Figure 4.10: Clinician bolus mode

The last mode is the patient bolus. This mode is exactly the same as the clinician
bolus mode with an additional optional feature: the lockout period of time between
two occurrences of this mode. This feature is represented by another substate
called Lockout. The behaviour of this mode is the following. Initially, the Off
state is active and pbolus_dur_timer is initialised to 0. Then, the transition from
Off to On is valid i� (1) its feature expression, PATIENT_BOLUS, is satis�ed
and (2) its condition is evaluated to true. It means that the patient has to make
a request (pbolus_req > 0) and the maximum number of patient bolus has not
yet been reached (number_pbolus < NumberMax_pbolus). When On becomes
active, the number of patient bolus is incremented (entry : number_pbolus + +)
and the patient bolus timer increases as long as On remains active. There are
two pairs of transitions exiting On that have exactly the same condition but their

63 2012-2013

feature expression are opposed. The pair of transitions with LOCKOUT as feature
expression targets the state Lockout and the other pair targets the Off state.
Hence, if the timer reaches its limit (pbolus_dur_timer == Duration_pbolus)
or if an alarm of level 1 is triggered, the execution leaves state On to move to
Lockout or Off depending on the presence of absence of feature Lockout. If
Lockout state is activated, the lockout timer is initialised to 0 and it will increase
until it reaches its limit (LockOutPeriod_pbolus). Then, this mode goes back to
state Off .

Figure 4.11: Patient bolus mode

We have described all the di�erent modes that can be active at a time. As men-
tioned before, we need an additional state that analyses which modes are active
and set the �ow rate depending on the active mode with the highest priority. This
state, called Umpire, is the last parallel substate in the order of execution. Hence,
at each step, all modes �rst update their activity before the Umpire checks which
mode is active. The behaviour of this state is modelled as an "if-then-else-if-then-
else-..." construct using junctions and each mode is represented by an exclusive
state in which the �ow is adjusted. At �rst, the umpire checks if the pause mode
is active, i.e., if the active substate of Pause is On (in(Paused.On) == 1). If not,
it checks the activity of the Patient_Bolus mode (and the feature expression), and
so on from the mode with the highest priority to the one with the lowest. If a mode
is active, then its corresponding state is activated and the �ow rate is adjusted for
this mode. The �rst step ends here. The second step begins by increase the actual
volume infused by the mode �ow rate as an exit action. Then, the actual infusion
duration is incremented as a transition action. Finally, the state checks again the

64 2012-2013

activity of the modes and the process starts again. This state is illustrated in
Figure 4.12.

For instance, let us assume that patient bolus and square bolus ate the only active
modes, and that features PATIENT_BOLUS and SQUARE are enabled. The
execution steps of the Umpire state are the following:

Initialisation

1. The initial transition is taken to reach the biggest junction.

2. The �rst exiting transition is not valid because pause mode is not active.

3. The second exiting transition is valid as there is no condition.

4. This transition is performed to reach another junction.

5. The �rst exiting transition is valid since (1) patient bolus mode is active and
(2) feature PATIENT_BOLUS is enabled.

6. This transition is performed, and the system reaches stateUmpire.Patient_Bolus.

7. The entry action is executed and the �ow rate is adjusted to FlowRate_pbolus.

Execution step

1. Umpire.Patient_Bolus is deactivated.

2. The exit action is executed and the actual infused volume is increased by the
�ow rate of the mode.

3. The four next exiting transitions are performed to reach the biggest junction
and the actual infusion duration is incremented by one as the transition
action.

4. Repeat steps 2 to 7 in the initialisation.

65 2012-2013

Figure 4.12: Umpire state for infusion modes

4.3.3 Alarms

As described in Section 4.2.2, an infusion pump is equipped with hazard detection
capabilities, which can trigger di�erent alarms. These alarms are classi�ed in three
levels of severity as follows

Level 1: Low reservoir

Level 2: Empty reservoir, Flow rate and VTBI

Level 3: Air in line, Reverse delivery, Occlusion and Free �ow

The modelling of the alarms is very similar to the infusion modes. For each hazard
detection, there is a state composed of two substates representing whether the
hazard is detected (On) or not (Off). In addition to detectors, there is also an
Umpire that activates the right level of alarms represented by four states such
as Level1, Level2, Level3 and Ok if there is no problem. The Umpire state is
illustrated in Figure 4.3.3.

66 2012-2013

Figure 4.13: Umpire state for alarms

67 2012-2013

Chapter 5
Implementation

In this chapter, we describe how FTS states and transitions are derived from the
fState�ow model. Then, we provide some optimizations of computations and their
evaluation.

5.1 fState�ow model

Each fState�ow project is saved in an .mdl �le that can be parsed to extract the
model. The parsing of a .mdl �le consists in three phases. First, the �le is �ltered
to remove useless data such as parts of data that do not concern the fState�ow
model or graphics coordinates of states, etc. Then, the �ltered �le is parsed to
obtain a list of states, a list of transitions and a list of variables. Finally, from
states list and transitions list, the hierarchy of states is built and states are linked
together following transitions. The implemented fState�ow model is represented
by the class diagram depicted in Figure 5.1.

69 2012-2013

Figure 5.1: Class diagram of a fState�ow model

70
2012-2013

In the following, we describe the implementation in C of each fState�ow elements
such as states, transitions and variables.

5.1.1 State

A state is implemented as a structure with 5 attributes and 5 pointers. State
attributes are the following:

• id of the state,

• name of the state,

• decomposition of the state: either Exclusive or Parallel,

• order of the state in the case where it belongs to a parallel decomposition
(otherwise its order is set to 0) and

• o�set of the state used for FTS states de�ned later.

Each state has also �ve pointers to (1) a list of states that represents its substates,
(2) a state that represents the superstate, (3) a list of exiting transitions, (4) a
during transition and (5) a syntax tree that represents its sets of actions.

5.1.2 Transition

A transition is a structure with three attributes de�ning its id, its type (initial,
during or exit) and its order. In addition, transition has pointers to its source
state, its target state and a syntax tree that represents its condition, its feature
expression and its set of actions.

These representations of states and transitions allow us to keep only a pointer to
a state (initially the top-level state) and move from state to state following the
hierarchy of the transitions.

5.1.3 Variables

Regarding variables, these are organized in a list where each variable is a structure
with six attributes de�ned as follows:

• id of the variable,

71 2012-2013

• name of the variable,

• scope of the variable: either Constant, Unde�ned or Local,

• type of the variable: either boolean or integer,

• value of the variable if its scope is Constant, 0 otherwise and

• o�set of the variable used for FTS states de�ned later.

5.2 FTS model

5.2.1 States

As we de�ned in Section 3.3, a state in terms of FTS corresponds to a set of states
that are active at the same time in fState�ow and an evaluation of the variables.
From this de�nition, we can represent a state of FTS by a chunk of adjacent
memory space, called payload, representing the concatenation of the activity of
each state and the value of the variables. The size and the value of the memory
allocated for of each state and each variables are the follows:

• One byte for each state. This byte is set to 1 if the state is active and 0
otherwise.

• One byte for each boolean variable. This byte is set to 1 if the value of the
variable is true and 0 otherwise.

• Four bytes for each integer variable. These bytes are set to the value of the
variable.

The position of each states and variables in the payload are saved into their re-
spective o�set attribute. Let n be the number of states, b and i be the numbers
of boolean and integer variables. The total size of allocated memory for each FTS
state is thus (n+ b+ 4i) bytes. This representation allow us to optimize the com-
parison of two states. Instead of comparing each state activity and each value of
variable, we use the C function memcmp that compares directly adjacent bytes in
the memory.

Once the payload size calculated, and the memory allocated, the initial FTS state
can be created. The top-level state of the fState�ow model is activated and,
depending on its decomposition, one or all substates are activated in turn, etc.
Every time a state becomes active, its corresponding byte in the payload is up-
dated. Activation of a state may trigger some entry actions that also update value

72 2012-2013

of variables directly in the payload. Once this �rst activation process is over, the
initial state of FTS is created and the set of transitions can be computed.

5.2.2 Transitions

The set of transitions in FTS, that is, the set of sequences of transitions in fS-
tate�ow, is derived from the set of active states as de�ned in 3.3.2. However, all
sequences of transitions are not valid and these have to be checked separately.
For each sequence, a copy of the current FTS state is created. Then, the �rst
transition of the �rst sequence is evaluated: if it is false, the checking process for
this sequence is stopped and the next one is checked. Otherwise, the transition is
applied on the copy of the FTS state and the next transition is evaluated, and so
on until the end of the sequence. I� all transitions have been evaluated to true or
unde�ned, this sequence is added to the set of sequences that could be applied on
the current FTS state. In the case where all transitions of a sequence are evaluated
to true, following the semantics of fState�ow, next sequences cannot be applied
and therefore, they are not checked. Otherwise, it at least one transition of the
sequence is unde�ned, the next sequence is checked.

5.3 optimization

A �rst space optimization is to take only local variables into consideration to com-
pute the payload size. Constants, by de�nition, are never modi�ed and inputs are
always unde�ned, therefore, their value are the same in all FTS states.

A second optimization concerns the validity checking of sequence of transitions.
Let (t1, t2, . . . , tn−1, tn) be a sequence of n transitions. As mentioned above, if the
transition ti with 1 ≤ i ≤ n is evaluated to false, this sequence is not a possible
transition in terms of FTS. Hence, if another sequence begins with the subsequence
(t1, t2, . . . , ti), ti will be evaluated to false again. Therefore, all sequences that be-
gin with the subsequence (t1, t2, . . . , ti) are not possible sequences of transitions.

For example, let us consider the following set of sequences computed at the end of
Section 3.3.2:
{(A 	, B → C);
(A 	, B 	, D 	, F 	, E 	, I);
(A 	, B 	, D 	, F 	, E 	, I → J);
(A 	, B 	, D 	, F → G,E 	, I);
(A 	, B 	, D 	, F → G,E 	, I → J);
(A 	, B 	, D 	, F → H,E 	, I);

73 2012-2013

(A 	, B 	, D 	, F → H,E 	, I → J)}

If the second transition of the second sequence is evaluated to false, other sequences
beginning with (A 	, B) will evaluate the second transition to false. Therefore,
we do not need to check the other sequences and only the �rst one is possible.

5.4 Evaluation

To evaluate the impact of the aforementioned optimizations, we veri�ed the model
described in Chapter 4. This model is composed of 28 states and 14 integers. The
characteristics of the computer on which the model checker is executed are the
following:

OS Ubuntu 11.10
CPU Intel Core I3 2.13GHz

Quad core
64-bit

RAM 6 Go

Executions of the model checker are described by the number of explored states,
the number of re-explored states, and two types of execution time: Real and User.
Real refers to wall clock time, i.e. time from start to �nish of the call and user
refers to the amount of CPU time spent in user-mode code within the process.

The �rst table represents the results of three executions without optimizations.
Explored states 45298 45298 45298
Re-explored states 15634 15634 15634
Real time 2′15′′.424 2′14′′, 706 2′24′′, 580
User time 1′1′′.164 1′0′′, 692 1′0′′, 972

The second table represents the results of three executions with optimizations.
Explored states 45298 45298 45298
Re-explored states 15634 15634 15634
Real time 1′59′′.247 1′53′′, 429 1′53′′, 713
User time 36′′.154 35′′, 874 36′′, 546

As we can see, the number of explored/re-explored states are not modi�ed by op-
timizations. However, execution times are di�erent. In average, the real execution
time without optimization is 2′18′′ whereas it takes only 1′55′′ with optimizations.
The di�erence is bigger for user time with 1′1′′ without optimizations and only 36′′

when optimizations are applied which represents a decrease of 40%.

74 2012-2013

Chapter 6
Review and Perspectives

6.1 Summary

We demonstrated by this thesis the possibility to adapt high level language for
the modelling of SPL behaviour. First, we created a variability-aware extension
of State�ow by integrating feature expressions on transitions. Then, we de�ned
the semantics of this language in terms of FTS which permits to use FTS model
checking techniques on fState�ow models. Finally, we modelled from scratch the
behaviour of a PCA Infusion Pump SPL showing that fState�ow is applicable on
real system. FTS seems thus to be enough �exible to act as a uni�ed semantics
for any SPL behavioural model.

During the implementation, we also faced di�culties such as handling of paral-
lelism and hierarchy in fState�ow. Indeed, these concepts involve major syntactic
and semantic di�erences between fState�ow and FTS. For example, parallelism is
the reason that a transition in FTS consists in a sequence of transitions in fState-
�ow. Hierarchy and parallelism also imply that several states can be active at a
time. Then, State�ow has also some particular semantics rules that di�er from
other state-based languages such as the order of evaluation of exiting transitions
and the di�erent types of actions. Finally, some optimizations were required in
order to reduced execution time and used memory space.

6.2 Critical Outlook

We present in this section, the strengths and the weaknesses of the fState�ow
language.

75 2012-2013

Strengths

First, it is an extension of a popular language which could bridge the gap between
SPL model checking and industry. Then, as a high level language, fState�ow
allows to verify model of complex systems using constructs such as hierarchy or
parallelism. Finally, integration of variability in fState�ow model by labelling
transitions with feature expression is very easy.

Weaknesses

In spite of its popularity in the industry, fState�ow requires some expertise to be
fully understood which could discourage its use. Another weakness is the possibil-
ity to have an extremely long execution time. This can be caused by a too large set
of variables that implies a larger state space. In addition, variability integration
in fState�ow model may alter its execution in the Matlab Environment given that
they are declared as unde�ned inputs. Moreover, this annotative style of variabil-
ity speci�cation could not scale with the number of features. A too large set of
feature could make the model too complex for engineers.

6.3 Future Work

In this work, we integrated only a small subset of the functionalities of the State�ow
environment. Such concepts as events or transition tables could be useful and
interesting. We also described the weakness of an annotative speci�cation of the
variability, therefore, we could consider a compositional method. This method
consists in de�ning a basic model and, for each feature, a module that describes
its e�ects on the basic model. Finally, some optimizations are always possible in
order to decrease execution time.

76 2012-2013

Bibliography

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, 2008.

[CCH+12] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and
Pierre-Yves Schobbens. Model checking software product lines with
SNIP. International Journal on Software Tools for Technology Transfer
(STTT), Springer-Verlag, 14(5):589�612, 2012. DOI 10.1007/s10009-
012-0234-1.

[CCS+12] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Hey-
mans, Axel Legay, and Jean-François Raskin. Featured transition sys-
tems: Foundations for verifying variability-intensive systems and their
application to ltl model checking (to appear). IEEE Trans Software
Eng (TSE), 2012.

[CCS+13] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Hey-
mans, Axel Legay, and Jean-François Raskin. Fts � featured tran-
sition systems: Provelines. http://www.info.fundp.ac.be/fts/

provelines/, 2013.

[CHS+10] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel
Legay, and Jean-François Raskin. Model checking lots of systems: Ef-
�cient veri�cation of temporal properties in software product lines. In
32nd International Conference on Software Engineering, ICSE 2010,
May 2-8, 2010, Cape Town, South Africa, Proceedings, pages 335�344.
ACM, 2010. Acceptance rate: 13.7

[CHSL11] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel
Legay. Symbolic model checking of software product lines. In 33rd
International Conference on Software Engineering, ICSE 2011, May

77 2012-2013

http://www.info.fundp.ac.be/fts/provelines/
http://www.info.fundp.ac.be/fts/provelines/

21-28, 2011, Waikiki, Honolulu, Hawaii, Proceedings, pages 321�330.
ACM, 2011. Acceptance rate: 14

[CLA08] Edmund CLARKE. 25 Years of Model Checking, chapter The Birth of
Model Checking. In Grumberg and Veith [GV08], 2008.

[Cla10] Andreas Classen. CTL model checking for software product lines in
NuSMV. Technical Report P-CS-TR SPLMC-00000002, PReCISE Re-
search Center, University of Namur, 2010.

[CN01] Paul C. Clements and Linda Northrop. Software Product Lines: Prac-
tices and Patterns. SEI Series in Software Engineering. Addison-Wesley,
August 2001.

[GV08] Orna Grumberg and Helmut Veith, editors. 25 Years of Model Check-
ing. Springer Berlin Heidelberg, 2008.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Sci.
Comput. Program., 8(3):231�274, June 1987.

[IEE08] IEEE. Standard for software and system test documentation. 2008.

[Mat04] MathWorks. State�ow - model and simulate decision logic using state
machines and �ow charts. http://www.mathworks.nl/products/

stateflow/, 2004.

[SHT06] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Tri-
gaux. Feature diagrams: A survey and a formal semantics. In RE,
pages 136�145. IEEE Computer Society, 2006.

[SP00] A. Sahbani and J.C Pascal. Simulation of hybrid systems using state-
�ow. In In 14th European Simulation Multiconference (ESM'2000),
pages 271�275, Ghent, Belgique, 2000.

[Tri09] Jean-Christophe Trigaux. Smals, techno 35 : Les lignes de produits
logiciels, 2009.

78 2012-2013

http://www.mathworks.nl/products/stateflow/
http://www.mathworks.nl/products/stateflow/

Appendix A
Models

The following �gures depict all the behavioural model de�ned in Chapter 4. Gray
states are de�ned further in the document.

79 2012-2013

Figure A.1: Top-level state

80
2012-2013

Figure A.2: System

81
2012-2013

Figure A.3: System.ON

82
2012-2013

Figure A.4: System.ON.Alarms

83
2012-2013

Figure A.5: System.ON.Alarms.AirinLine

84
2012-2013

Figure A.6: System.ON.Alarms.Emptyreservoir

85
2012-2013

Figure A.7: System.ON.Alarms.Reversedelivery

86
2012-2013

Figure A.8: System.ON.Alarms.Lowreservoir

87
2012-2013

Figure A.9: System.ON.Alarms.Flowrate

88
2012-2013

Figure A.10: System.ON.Alarms.VTBI

89
2012-2013

Figure A.11: System.ON.Alarms.Occlusion

90
2012-2013

Figure A.12: System.ON.Alarms.FreeFlow

91
2012-2013

Figure A.13: System.ON.Alarms.Umpire

92
2012-2013

Figure A.14: System.ON.ModesHandler

93
2012-2013

Figure A.15: System.ON.ModesHandler.Therapy

94
2012-2013

Figure A.16: System.ON.ModesHandler.Therapy.Paused

95
2012-2013

Figure A.17: System.ON.ModesHandler.Therapy.PatientBolus

96
2012-2013

Figure A.18: System.ON.ModesHandler.Therapy.ClinicianBolus

97
2012-2013

Figure A.19: System.ON.ModesHandler.Therapy.Square

98
2012-2013

Figure A.20: System.ON.ModesHandler.Therapy.Basal

99
2012-2013

Figure A.21: System.ON.ModesHandler.Therapy.Umpire

100
2012-2013

Figure A.22: System.ON.ModesHandler.Therapy.Umpire.Paused

101
2012-2013

Figure A.23: System.ON.ModesHandler.Therapy.Umpire.PatientBolus

102
2012-2013

Figure A.24: System.ON.ModesHandler.Therapy.Umpire.ClinicianBolus

103
2012-2013

Figure A.25: System.ON.ModesHandler.Therapy.Umpire.Square

104
2012-2013

Figure A.26: System.ON.ModesHandler.Therapy.Umpire.Basal

105
2012-2013

	Abstract
	Acknowledgements
	Introduction
	State of the Art
	Software Product Line
	Feature Diagram

	Model Checking
	Transition system
	Linear Temporal Logic
	LTL Model Checking

	Model Checking of Software Product Lines
	Featured Transition System
	FTS Model Checking

	Modelling SPL behaviour with fStateflow
	Syntax
	States label
	Hierarchy
	Decomposition
	Transitions label
	Order
	Junction
	Variables
	Features
	fStateflow model definition

	Execution rules
	Activity
	Hierarchy diagram
	Validity
	Execution

	Semantics
	States
	Transitions
	Feature Expressions

	Case study: the PCA Infusion Pump SPL
	Description
	Variability
	Top-level features
	Hazard detections
	Scanning options
	Infusion modes

	Behavioural modelling with Stateflow
	Variables
	Infusion modes
	Alarms

	Implementation
	fStateflow model
	State
	Transition
	Variables

	FTS model
	States
	Transitions

	optimization
	Evaluation

	Review and Perspectives
	Summary
	Critical Outlook
	Future Work

	Bibliography
	Models

