
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Self-evaluation tool for Software as a Service applications

Ihorimbere, Judicaël

Award date:
2015

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository of the University of Namur

https://core.ac.uk/display/326316863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/studentthesis/selfevaluation-tool-for-software-as-a-service-applications(3f3d254d-164e-4e38-9eb7-923d41268d70).html

UNIVERSITÉ DE NAMUR
Faculty of Computer Science

Academic Year 2014–2015

Self-evaluation tool for Software as a
Service applications

Judicaël Ihorimbere

Internship mentor: Wim Codenie

Supervisor: (Signed for Release Approval - Study Rules art. 40)
Philippe Thiran

A thesis submitted in the partial fulfillment of the requirements
for the degree of Master of Computer Science at the Université of Namur

2

Abstract

Software as a Service is one of the cloud computing service models. Cloud com-
puting provides over the Internet configurable computing ressources to its users.
Those computing ressources may be software applications in case of Software as a
Service, platforms(programming environments) in case of Platform as Service and
infrastructures(Physical and virtual machines) in case of Infrastructure as a Service.
Software as a Service market just as well as cloud computing market in general is ex-
periencing a strong growth. Therefore, Software as a Service providers need tools for
self-assessement in order to measure their improvement, compare their applications
with other applications and eventually improve their applications. Hence the need
for tools of self-evaluation of Software as a Service applications.

In this thesis, an approach of self-evaluation of Software as a Service applications
that is based on a design and implementation of a self-evaluation tool for Software
as a Service applications for will be presented. More specifically we will design and
implement a questionnaire tool that can be used by Software as a Service providers.
The questionnaire will be based on a set of criteria defined from litterature review on
Self-evaluation of SaaS applications.

3

Acknowledgments

In the preamble of this thesis, I would like to express my sincere thanks to all the
people that provided their help and contributed in the development of this thesis and
during my student’s years at university.

First of all, I would like to express my sincere gratefulness to my thesis director,
M. Philippe Thiran for his personnal support during my intership and the redaction
of this thesis. He was always available during my internship and throughout the
redaction of the thesis. He provided me much help for his valuable guidance, moti-
vation and numerous corrections. This thesis would not have been possible without
his precious help.

I would like to express my gratitude to my family for the support and the multiple
contribution during the redaction of this thesis and during my student’s years.

Then I would like to express my sincere thanks to the Software Engineering and
ICT team of Sirris for the supervision during my internship. This thesis would not
been possible without the interesting three-month internship that I have had the op-
portunity to perform at Sirris.

Finally, I would like to express my thanks to all my relatives and friends that sup-
ported and encouraged me throughout the realisation of this thesis.

4

Abbreviations

• SaaS : Software as a Service

• PaaS : Platform as a Service

• IaaS : Infrastructure as a Service

• API : Application programming interface

• NIST : National Institute of Standards and Technology

• CPU : Central processing unit

• AWS : Amazon Web Services

• MSFT : Microsoft Azure

• OS : Operating System

• CRM : Customer relationship management

• MTBF : Mean Time between failure

• SLAs : Service Level Agreements

• DRP : Disaster Recovery Plan

Table of contents

1 Introduction 8

2 Software as a Service and Self-evaluation 11
2.1 Software as a Service : definition . 13
2.2 Software as a Service : actors . 15
2.3 Self-Evaluation of SaaS applications . 16
2.4 Choice of criteria . 18

3 Portability 20
3.1 Portability issues . 21
3.2 Portability management . 23
3.3 Application portability . 25
3.4 Data portability . 26

4 Availability 29
4.1 Availability level . 30
4.2 Redundancy . 31
4.3 Backup . 32
4.4 Monitoring . 34
4.5 Disaster recovery plan . 34

5 Interoperability 36
5.1 Interoperability management . 37
5.2 Interoperability scenarios . 38
5.3 Syntactic interoperability . 39
5.4 Semantic interoperability . 40
5.5 Application programming interface(API) 41

6 Tool 43
6.1 Methodology . 43
6.2 Questionnaire design and scoring . 45
6.3 Online survey tools discussion . 47
6.4 Typology and Discussion . 48

7 Conclusion 51

5

TABLE OF CONTENTS 6

Self- evaluation tool for SaaS applications 53

Bibliography 63

List of Figures

1.1 SaaS Most Highly Deployed Global Cloud Service by 2018 [10] 8

2.1 Cloud computing : models . 13
2.2 Software as a Service : overview . 15

3.1 Intermediation : Model Driven Engineering in developing cloud portable
applications[17] . 23

5.1 Cloud Orchestration [3] . 38
5.2 Interoperability and portability [22] . 39

6.1 Typology : Portability . 49
6.2 Typology : Availability . 50
6.3 Typology : Interoperability . 50

List of Tables

3.1 Standardization : Open-source libraries that support a certain degree of
application portability[12] . 24

4.1 Availability level[7] . 30
4.2 Tolerance for downtime[28] . 31

6.1 Scoring scheme : dichotomous question : Score comprised between 0 and 1 46
6.2 Scoring scheme : Matrix question : Score comprised between 0 and 4 . . . 46
6.3 Scoring scheme : Multiple choice question : Score comprised between 0

and 4 . 46
6.4 Comparison between online survey tools 47

7

Chapter 1

Introduction

Software as a Service is one of models that compounds Cloud computing. This ser-
vice model of the cloud computing offers softwares over the internet. The other main
models are Infrastructure as a Service and Platform as a Service. They offer respec-
tively infrastructures and platform over the internet. Today many companies are
using the cloud computing. The market of cloud computing is trending for years.
Among the 3 main models of cloud computing that are used, market of Software as a
Service is the one that is more evolving comparing to the other service models. [10].

Figure 1.1: SaaS Most Highly Deployed Global Cloud Service by 2018 [10]

The rationale behind that trend may be understood when whe analyse shortly the
benefits that are supplied by the use od Software as a Service applications. Software
as a Service appears to be very interesting for their users especially for small and
medium sized enterprises. Adoption of cloud computing solutions avoid them the
heavy costs that would have be invested in investement and management of own
computing ressources. The benefits are numerous : a low cost of entry, the avoidance
of the responsibility of management of the software that is on the provider, a less
risky investment, more safety for the data of the users, automatic back-up of data,

8

CHAPTER 1. INTRODUCTION 9

fast innovation of the Software as a service providers, more stability, model of offer
much simpler than on-premises solutions, etc. [13].

The use of Software as a Service application does not come only with benefits.
There are also risks. Among those many risks, we find the fact that the level of
services promised by providers can be very different from the real level of services.
There are also many risks linked to data security, business continuity in case of grave
security problems, performance of the software, risks linked to the providers, or
whether risks linked to legal aspects. Software as a service users have to balance
the benefits and the risks of adopting such solutions. For the providers part,They
sometimes do not have tools for demonstrating to the users if their applications meet
the features that are described to be supplied. On the other side, they sometimes do
not themselves have the insurance that the services they promise will be met. This
is also due to the fact that they depend themselves to other providers. Providers of
Software as a Service applications may sometimes need tools that can help them to
assess their applications themselves.

The subject of this memoir is the self-evaluation of Software as a Service applica-
tions. As Cloud applications are very much used nowadays and givent the fact that
users of Software as a Service applications are sometimes worried of the performance
and the reliability of those applications, a self-evaluation of Software as a Service
applications can be interesting for either providers or users. The self-evaluation of
Software as a Service applications may be helpful for assessing the improvement of
an application itself. Once a self-evaluation tool set up, it can be used at different mo-
ment. But firstly, the self-evaluation allow the providers to know where they stand
given the objectives they have fixed when they perform their application. The self-
evaluation tool can also help providers to compare themselves with other providers
by comparing their applications given a serie of predefined criteria. As Software as a
Service providers are plentiful and the Software as a Service applications numerous, a
self-evaluation tool can help into establishing a set of characteritics that are common
accross this plurality of applications. These characteristics, once set up, can be a basis
for a certification of Software as a Service applications.

The second chapter of this memoir talks about Software as a Service and self-
evaluation. Through this chapter, the key concepts about cloud computing are ex-
plained. The main characteristics of cloud computing are stood out in that chapter.
The three models of cloud computing(Infrastructure as a Service, Platform as a Ser-
vice and Software as a Service) are shortly described in general, before a deep defini-
tion of the Software as a Service model in the section 2.1. After defining the concept of
Software as a Service, key actors of that cloud model are described in the section 2.2.
The concept of self-evaluation of Software as a service applications is the focus of the
section 2.3. Lastly, the last part of the chapter is the choice of the criteri on the section
2.4.

CHAPTER 1. INTRODUCTION 10

The third chapter of this memoir is concerned with the portability of the Software
as a Service applications. Portability is described with a particular emphasis on the
aspects that are relevant for the self-evaluation of Software as a service applications.
Portability issues are covered on the section 3.1. Then the attempts of management
of the portability issues are presented in the section 3.2. As the Software as a service
portability cover different levels will be identified. The application portability will be
the focus of the section 3.3 and the data portability will be explained in the section 3.4.
For these two last sections, on the one hand the two notions will described and on the
other hand, an identification of what will be assessed will be carried out.

The fourth chapter talks about the the availability of the Software as a Service
applications. After a definition and a description of the availability, different facets
of availability are reviewed. The section 4.1 presents the different availability level
as providers supply their services with different level agreements. The section 4.2 is
concerned with redundancy of the Software as a Service applications. The section 4.3
covers the backup of the applications and shows the different mechanisms that are
used in order to insure availability. Monitoring of Software as a service applications
is the subject presented on the section 4.4 and the disaster recovery plan is the focus
of the section 4.5.

The concept of interoperability of Software as a Service applications is addressed
in the fifth chapter. After a description of the notion of interoperability, the section 5.1
presents theoretically the approaches of addressing interoperability. The different in-
teroperability scenarios are presented in the section 5.2. The section 5.3 is a description
of the syntactif interoperability that is a part of the components of the interoperability.
The section 5.4 talks about the other aspect of interoperability which is the semantic
interoperability. The last part of that chapter , the section 5.5 covers the the application
programming interfaces, an important point about interoperability.

The sixth chapter of this memoir presents the Self-evaluation tool for Software as
a Service applications. That chapter is explains firstly the methodology that guides
the conception of the tool in the section 6.1. The section 6.2 explains the question de-
sign and the method of scoring that is used for the questionnaire. The section 6.2 is a
short description and comparison of the tools that can be used for hosting the ques-
tionnaire. And last the section 6.4 presents a typology and a serie of hypothesis that
can be tested through the administration of the questionnaire

Chapter 2

Software as a Service and
Self-evaluation

Software as a Service(SaaS) is one of the three service models of the cloud computing.
The Cloud computing is a way of offering computing ressources over the Internet. It
is an interesting manner for start-ups and small and middle companies that are start-
ing an IT business. Indeed, using cloud computing helps to avoid onerous expenses.
The cloud computing has been popularized by Amazon. Amazon has invested a lot
in infrastructures(datacenters,...) for conducting its business. As its infrastructures
were unused the great part of time, Amazon had the idea of renting its infrastruc-
tures to other companies that need computing ressources.

The concept of cloud computing has been used during the past ten years. The
concept of cloud computing is sometimes misused. There are plenty of definitions
of cloud computing available in the scientific research. Many researchers have tried
to bring clarifications over the terms of cloud computing. Among the multiple def-
initions, we can retain this one : ” A Cloud is a type of parallel and distributed system
consisting of a collection of inter-connected and virtualized computers that are dynamically
provisioned and presented as one or more unified computing resource(s) based on service-level
agreements established through negotiation between the service provider and consumers.”
[29]

There are many characteristics of the cloud computing. the National Institute of
Standards and Technology(NIST) mentions 5 main characteristics that stand out [25]:

• On-demand self service : this is one of the basic characteristic of the coloud com-
puting. The consumers can decide themselves to increase or decrease the re-
sources supplied by cloud computing providers. This characteristic of cloud
computing corresponds with the pay-as-you grow subsription. If the needs
change within the time, the consumers is free to adjust his use of the ressource.
The users are able to buy more or less to fit his need of ressources without the
intervention of the provider. Cloud is linked with the utility computing. Com-

11

CHAPTER 2. SOFTWARE AS A SERVICE AND SELF-EVALUATION 12

puting ressources are seen as public assets like electricity, water, natural gas,
telephone network, etc.

• Broad Network access : ressources are accessed over the network and through
many types of devices and platforms.

• Ressource pooling : ressources is shared by multiple consumers using a multi-
tenant model.

• Rapid elasticity : ressources capabilities can be quickly increased at any time to
meet the needs. Scalability is one of the main assets behind cloud computing.
Users of cloud computing benefit of the fact that the ressources are very scalable.
Given the fact that users can grow very quickly, the ressources and the software
that are being runned in the cloud have to follow the increasing demand.

• Measured service : consumers pay only for the used capabilities and only for the
time duration they used the service. Services are monitored and measured to
allow quick and correct metering.

Cloud computing has mainly two deployment models [24] . There is the public
cloud that is a deployment model that allows differents organizations to use the of-
fered ressources. This deployment model is available in a pay-as-you-go manner to
the public and constitutes this way utility computing. There is also the also the private
cloud where the ressources are owned and managed in a private networks. Ressources
are used internally by a single organization. This cloud deployment model is not
opened to public.

At these two deployment models, the National Institute of Standards and Tech-
nology(NIST) adds two other deployment models of cloud computing [25] . On the
one hand, the NIST identifies Community cloud that is a cloud computing that is
shared by many organizations. Those organizations that form a community share the
infrasture offered. . On the other hand there is Hybrid cloud which is a mix up of more
than one cloud infrastructures(public cloud,private cloud, community).

Cloud computing is mainly delivered following three main models :

• Infrastructure as a service : providers supply infrastructure to consumers. The
infrastructure are essentially supplied by data centres. The consumers can then
rent servers, network, storage, processing where they can deploy their operat-
ing systems and their applications. This is made possible thanks the process
of virtualisation. For each consumer, a virtual machine is created onto the data
centre and the consumer can by this way deploy his operating system and appli-
cation without worrying about the maintenance of the infrastructure, hardware
that is in charge of the provider. Therefore, the consumer pay only for the used

CHAPTER 2. SOFTWARE AS A SERVICE AND SELF-EVALUATION 13

ressources: essentially the number of virtual CPUs, the speed of CPUs and the
random access memory available to the Virtual machine. [5]

• Platform as a service : providers supply platform and and an environment pro-
viding services and storage to consumers. This whole platform, environment
and the storage is hosted in the cloud and is made vailable via the network .
The consumers of cloud computing model are essentially developers that use
the platform to develop, test and deploy their own cloud applications. Users
are provided an environment where they can develop and run their own appli-
cations without managing the physical infrastructures and network under the
platform. The PaaS platform is managed by PaaS providers that exploit infras-
tructures provided by IaaS providers. Users are mainly developers and profit
the platform in a pay as you go billing.

• Software as a Service : providers supply application to consumers. Instead of
buying applications and licenses that can be quickly very expensive, consumers
rent service provided by SaaS providers in a on-demand pricing. By this way,
users do not need install the software on their own computing infrastructure.
The software is hosted on the cloud and is made available through the inter-
net. The consumers don’t need to manage the software, it is the task of the
SaaS providers. The SaaS providers supplie the service and manage all related
to maintenance and support. Via the chosen subscription, the consumers will
profit of the service supplied via the SaaS. The consumer then pays only for the
used capabilities.

Figure 2.1: Cloud computing : models

2.1 Software as a Service : definition
Software as a Service has been defined by many authors. The definition we are go-
ing to retain is this following : SaaS is defined as a model of software deployment via the

CHAPTER 2. SOFTWARE AS A SERVICE AND SELF-EVALUATION 14

Internet whereby the SaaS provider licenses an application to customers as a service based on
usage or periodic subscription payments. SaaS software vendors typically host the applica-
tion on their own Web servers or enable customers to download the application to consumer
devices via the Internet [33]

Actually SaaS applications and mobile applications represents the most devel-
opped applications. Cloud computing offers ease of development of new applica-
tions. From the litterature, Tuomas Mäkilä et al. [32] analyzed the definition of SaaS
applications. They reased 5 characteristics of SaaS that keep reverting :

1. SaaS applications are used through a Web browser

2. SaaS applications are not tailor made for each customer

3. SaaS applications do not include software that needs to be installed at the cus-
tomer’s location

4. SaaS applications do not require special integration and installation work

5. The pricing of the SaaS applications is based on actual usage of the software

SaaS Providers benefit from the opportunities and capabilities supplied by the
Cloud ressources to develop quickly softwares that can be deployed and used quickly.
Actually, SaaS applications are developed in a wide range of domains. There are a
great number of SaaS applications that cover many business sectors: communication,
human ressources management, company management, etc. SaaS is extending from
day to day. Beside the major companies that provide SaaS(Salesforce, Oracle, etc),
many small and medium-sized are developing their SaaS industry.

Three main actors of SaaS are identified: SaaS infrastructure providers, SaaS providers
and SaaS consumers. [9] We are going to define them below.

CHAPTER 2. SOFTWARE AS A SERVICE AND SELF-EVALUATION 15

Figure 2.2: Software as a Service : overview

2.2 Software as a Service : actors

2.2.1 SaaS infrastructure providers

SaaS infrastructure providers are typically IaaS providers. Sometimes, they are PaaS
providers. They are the owners of the computing ressources and they are responsible
of their management. They manage hardware and software platforms required by
their services. SaaS infrastructure providers are essentially great IaaS that have in-
vested in computing ressources. For years, according Gartner studies, Amazon Web
Services(AWS) and Microsoft Azure(MSFT) are the leaders among the SaaS infras-
tructure providers.

SaaS infrastructure providers bid essentially computing ressources. These providers
usually have their own data centers. They exploit virtualization and provide virtual
machine and network to their consumers(typically SaaS providers). The consumers
will rent the ressources : there is no need for consumers to have their own servers and
data center. they The consumers will just deploy their application on the virtual ma-
chines provided. Cloud infrastructures providers will invoice their consumer given
the utilized ressources.

2.2.2 SaaS providers

The SaaS providers are generally PaaS and IaaS consumers. By using the advantages
offered by the cloud computing, SaaS providers avoid by this way expensive costs

CHAPTER 2. SOFTWARE AS A SERVICE AND SELF-EVALUATION 16

linked to ownership and management via on-premises solutions. They use the ca-
pabilities supplied by PaaS and IaaS providers to build their own applications and
rent their applications. Once the applications developped they can be offered to SaaS
consumers that can use them.

The provider will operate and manage the SaaS application. As SaaS applications
are available over the internet, the SaaS providers may have to be sure that they can
be accessed via many businesses and through many devices.

SaaS providers are responsible of management of the SaaS application. The of-
fered services will be rent following a pay-as-you-go pricing model : pay per use. There
are some SaaS providers that are well know because that are leading the SaaS market
: Salesforce.com, Google Apps, Amazon EC2.

2.2.3 SaaS consumers

The SaaS consumers use the SaaS like any public utility: by this way consumers may
only for what they have used, just as well we pay for electricity, water,... SaaS allows
companies to save costs of initial investments. Delivered over the internet without
installing anything. the service is accessed via a Web browser. It avoids to companies
the expensive costs for operating and managing softwares.

SaaS consumers may choose among the packages offered by the SaaS providers
the best one that suits to their needs. As SaaS are using the principle of Self-service,
they are free to taylor the services offered. SaaS consumers are linked to SaaS providers
via a contract : the service level agreements. This contract defines how the services are
offered to SaaS consumers and shows clearly the responsibilities of SaaS providers.

2.3 Self-Evaluation of SaaS applications
Self-evaluation of SaaS applications can not be defined without defining well the con-
cepts behind. In this section we will first explain what is an evaluation. Then we will
explain the notion of self-evaluation. Lastly we will define what is Self-evaluation of
SaaS applications.

2.3.1 Evaluation

Evaluation is a systematic and objective assessment of an object, an entity. Marvin
C. Alkin defines the evaluation as the activity of systematically collecting, analyzing and
reporting information that can be used to change attitudes or to improve the operation of a
project or a program [6]. It is a process that is conducted in order to give a useful feed-
back that is used afterwards to make decisions. Evaluation is a process that is not

CHAPTER 2. SOFTWARE AS A SERVICE AND SELF-EVALUATION 17

easy to achieve. It has to follow a strong methodolody in order to give a useful feed-
back. Evaluation will be useful to assess the value of something or that is ongoing or
yet achieved. From an evaluation we can see if a set of objectives are achieved, if a
certain level of performance is reached.

Typically evaluation process can have many kind of objects as targets . The ob-
jects of an evaluation is called evaluand. Evaluands can be clustered in 6 categories:
Projects, programs, or organizations, Personnel or performance, Policies or strategies,
Products or services, Processes or systems, Proposals, contract bids, or job applications[1].
Each of these evaluands can be assessed and there exists many methods that can be
used. In our case, the evaluands are software as a service applications.

Evaluation process involves many related process as scoring, ranking and grading[1].
In effect, as evaluation to be a systematic assessment of an object, this also incorpo-
rates measurement, quantifification and caracterisation. It is a description of a situa-
tion, an entity, result, performance that provides a useful feedback. The result is usu-
ally expressed as a numeric score or a certain grading on a given range. Scoring is the
process that consists in attribution of a numerical number given that a determined
scale. One scoring achieved, ranking is possible between two or several evaluands
and grading based on the score resultant can be performed.

The evaluation process can be done by internal evaluators(participatory evalua-
tion) or external evaluators(expert-based evaluation). The internal evaluator will is
someone who knows well the environment of the evaluand. Via the closeness of the
internal evaluator, there is supposition that the evaluator has a better knowledge. But
this could lead to a bias. Contrary to the internal evaluator, the external evaluator is
someone who is supposed to be external to the environment of the evaluand. This
exteriority gives to the evaluator more objectivity.

Evaluation processes can be qualitative or quantivative. This depends on the char-
acterization of information collected during an evaluation process : wether they are
tangible, observable and measurable or not. [15]. Quantitative evaluations gives a
score while qualitative evaluations give an appreciation of the quality of the evalu-
and. Finally, evaluation processes are done via on the basis of precise criteria. As a
matter of fact, the evaluand is assessed from a certain angle.

2.3.2 Self-evaluation

Self-evaluation is an evaluation process that is applied to oneself. This is a process
of evaluation carried out by internal evaluator. Self-evaluation is a systematic assess-
ment of oneself development, performance, attitudes, achievements, progress. A self
evaluation process provides as an output, a snapshot(feedback) of the current state.
Self-evaluation is a process that is used in many domains as in companies, or in do-

CHAPTER 2. SOFTWARE AS A SERVICE AND SELF-EVALUATION 18

main of education. It is a process that is growing given its importance [19].

Selfvaluation can be a basis for a certification process. Certification is the action
of attesting for an organization, person, object that some characteristics are met. The
aim of a certification is to verify that the assessed entity meet a bunch of specified
standards. It is often executed by an external entity or organization. Certification
provides trust. Software certification is a process applied to softwares. The object of
certification is software. The process can be based on different viewpoints: Quality,
Process, usage ...

Self-evalution should be a continuous process. A self-evaluation tool for SaaS
applications is a questionnaire that has as evaluation object SaaS applications. The
evaluation target are SaaS providers. Self-evaluation of SaaS applications provides a
Snapshot of the general state about SaaS applications.

There is Few/No research in self-assessment of SaaS applications. Indeed current
researches emphasize on external viewpoints. SaaS evaluation may identify a gen-
eral identification of SaaS applications issues. SaaS Self-evaluation provides a good
snapshot of the actual situation. It can provide a good feedback of SaaS application
to SaaS providers. Based on measurement, quantification and characterisation of the
SaaS, we can identify weaknesses and strength of the SaaS providers. Classification
and comparison between providers are made possible also. A SaaS providers can
complete a self-comparison given previous snapshots.

The results of a self-evaluation can be a a basis for future certification. Given an
establishment and and a verification of standards fixed, we can easily have an ap-
proach that could allow a certification process to take place.

2.4 Choice of criteria
The subject of my research is the self-evaluation of Software-as-a-Service applications.
The idea behind the questionnaire tool is that the evaluation of the SaaS application is
going to be done by SaaS providers themselves. This is bit different from what is cur-
rently done by the major studies about evaluation of SaaS applications. The target of
the research is more emphasized on SaaS provider viewpoint while the big part of the
current studies are interested on the SaaS consumer viewpoint. The self-evaluation
will give a map of the current situation about the SaaS applications. The map will be
given by SaaS providers themselves.

Research shows that SaaS users attend many things from the SaaS applications.
They expect to have a good quality level from the SaaS applications they are paying
for. They are worry about the offered service and wish to have the best from their

CHAPTER 2. SOFTWARE AS A SERVICE AND SELF-EVALUATION 19

application. They are worry about many aspects : functionality, security, availability,
network performance, resilience, service delivery management, organizational and
financial stability, service level agreements, etc. These aspects represent risks they
are exposed too when they are using SaaS applications. Reading research about SaaS
shows quickly that some risks are recurrent.

Due to the fulness of the work, by eliminating and decreasing the area of the re-
search, 3 criteria have been determined. The 3 criteria that have been retained are
portability, availability and interoperability. These 3 criteria are one of the main con-
cerns of SaaS providers. Indeed, SaaS providers are worried about those 3 criteria
:

• portability : SaaS providers do not want to be confined within a unique SaaS
infrastructure provider; then SaaS infrastructure providers should give them
possibility to move their application and data utilized by the application an-
other infrastructure provider. SaaS consumers may need to move their data to
another SaaS provider

• availability : SaaS application need be available from anytime, anywhere and
any devices within a minimal time response through the internet. This criterion
is very important. It should be noted that a default of availability can provoke
the bankruptcy of the SaaS providers

• interoperability : SaaS applications need to allow integration with other appli-
cations, but also exchange of data within other application. SaaS industry is
based on the API economy where SaaS applica use services from existing mod-
ules from Web services, and other SaaS applications.

Chapter 3

Portability

Portability is the ability to use components or systems lying on multiple hardware
and software environments. SaaS portability is the ability to move a service includ-
ing data and application from one cloud provider to another or between public and
private environments within minimal service disruption. It is ability to move any
component of SaaS application accross different environments. Given the Cloud com-
puting, portability is compound with 3 levels of portability : Data portability, applica-
tion portability and platform portabilty. [18] The two first aspects are the interesting
kind of portability that are appliable for the SaaS model. Portability of SaaS is the
ability to move application, data and services from one cloud provider to another
one or between public and private environment. Portability of SaaS is also defined as
the ability to move any component of SaaS application across different environments.
By accross different environnements, it means different datacenters, different types of
cloud(public, private, hybrid, etc).

Portability of SaaS is an essential aspect that SaaS consumers are worried about.
As there are many SaaS providers, consumers that wish to move from on-premise
solutions have a difficulty to chose the best SaaS providers. SaaS consumers who
are yet familiar with SaaS solutions would be tempted to move towards the best
SaaS providers. However, SaaS applications are deployed in various environments.
Each environment has its own specifications. Specifications can differ tremendously
among the different SaaS. There is a lack of standardization between the different
SaaS providers which may cause vendor lock-in. Nowadays, Vendor lock-in is one of
the concerns of SaaS consumers.

From SaaS consumer viewpoint, portability is more related to data portability.
SaaS consumers concern is the possibility to extract the data from a SaaS provider and
load them to another SaaS provider. From SaaS provider viewpoint, service portabil-
ity is their concern. This mean that the two levels of portability have to be achievable
: data portability and application portability. Application portability is about moving
the entire application or some of its components from one provider to another one. It
is important for SaaS providers that data and application could be moved from one

20

CHAPTER 3. PORTABILITY 21

Cloud provider(IaaS provider or SaaS provider) to another one.

Achieving portability across the Cloud is not easy. There are many issues that
have to be tackled. In this chapter we will define the different what we understand
by SaaS portabilility. We will cover the 2 main aspects of the portability : service
portability, application portability and data portability. Then, We will see a short pre-
sentation of the issues related to SaaS portability. Finally we will present the main
approaches that come to be the main solutions proposed to resolve this issues.

Service portability is the ability to move a service including data and application
from one cloud provider to another. It may be understood by moving all the data and
application that is deployed on a cloud provider to another one. But it can be also the
move of data used by the SaaS accross equivalent SaaS applications. We may under-
stand extracting data from one platform and load them to another provider. A SaaS
application is could be ported and run on different cloud systems at an acceptable
cost.

3.1 Portability issues
SaaS portability is a risky aspect of SaaS adoption . Vendor lock-in is a real con-
cern of the adoption and the portability of SaaS application. There are risk of being
blocked by the SaaS providers. There are many questions about usability of data once
exported, functionality of application once moved to another cloud provider. As an
example, when SaaS providers use proprietary technologies , it can be very difficult to
extract the data in a usable form and load theim and application to another provider
[24]. Data lock-in tends to affects the SaaS consumers when they want to migrate
their data to another SaaS provider. But lock-in can also affect SaaS providers when
they are trying to move their application and the data from a cloud provider(IaaS,
PaaS) to another one.

The migration of SaaS application can bring many issues linked to compatibil-
ity due to heterogenous environments of SaaS providers. SaaS environments are
very differents : Programming languages, communication protocols, OS of the plat-
forms, etc. K.Bhavya et. al analyzed cloud service portabilty in order to allow secure
migration[20]. The SaaS application has to be install and run on a new environment.
Once this done, installed the new environment, the application will need to be up-
dated. The process of moving entirely a SaaS application goes by many steps. Each
step can be difficult to accomplish. Platform OS of the new environment need to be
assessed in order to see if it will be compatible. If it is not compatible, some modi-
fications will have to be done. This can be the same for the virtualization platform.
The application itself will go through adjustements in order to fit to the new platform.
There may be problem of compatibility linked to middleware and other dependen-

CHAPTER 3. PORTABILITY 22

cies. Last but not least, the user state and profile will have to be managed. All of this,
of course, will have to be done with minimal service disruption.

The specificity of the SaaS environments can be a serious issue. As a matter of
fact, an environment can use many other services. There are some import and export
of SaaS applications SaaS industry has been using strongly external services offered
through APIs. One service can be indeed a combination of two or several services.
For example, the Oracle CRM On Demand is composed by a bunch of modules [27]:
sales, marketing, service, call center, analytics, mobile, etc. These modules are us-
ing specific services from different APIs. Then, if SaaS consumers need to move to
Salesforce CRM, they have to be sure that all the services offered by the former are
present. In the case of a SaaS provider that wants to move to another cloud provider,
portability means moving the application and its data from a cloud provider to an-
other. The target provider is able to offer the same services or equivalent sustitutes.
More, applications sometimes need specific configuration files. These configuration
files vary from one provider to another. It is not always easy to accommodate this
configuration files to make them compatible with other environments.

There finally issues linked to the variety of data representations and data formats.
Data are represented in many formats within great difference of semantics from one
SaaS provider to another. While proceeding data migration, issues about data for-
mats have to be resolved before and after the migration. Finally, added to this, SLAs
between SaaS consumers and SaaS providers are sometimes not enough clear. Proce-
dures of application and data migration are not well defined. The clauses about data
portability are not well obvious.

CHAPTER 3. PORTABILITY 23

3.2 Portability management

3.2.1 Intermediation

Figure 3.1: Intermediation : Model Driven Engineering in developing cloud portable
applications[17]

The intermediation approach considers a different perspective. Instead of standard-
ization of application and data, the application is decoupled from specific APIs and
formats. An intermediate layer is introduced and this layer must be platform agnostic
and can wrap and hide proprietary APIs. Through model transformation via Model
Driven Engineering, this intermediate layer can the decoupled application to propri-
etary APIs. Utility of this intermediate layer is to map the different proprietary APIs
through model transformation. The main difficulty is here the great heterogeneity of
APIs. This is heavy to write model transformation to each API.

3.2.2 Standardization

The standardization approach consists on a definition of a common set of standards
for application and data, and then the adoption of those standards by cloud providers[16]
. A great difficulty is brought by this approach: there is no guaranty of acceptance
of this standards by the major cloud providers. Each major cloud provider hopes for
gaining more consumers on the market. Due to hard competition among the best
providers, there is less possibility to agree about a standard that will be accepted by

CHAPTER 3. PORTABILITY 24

all of the providers. Even a standard established, this is not sure that this standard
will be adopted by those providers. Cost of adoption of the same standard can be
indeed high.

Table 3.1: Standardization : Open-source libraries that support a certain degree of
application portability[12]

Acronym Link Short description

δ−Cloud deltacloud.apache.org It is REST-based API written in Ruby
necessary to connect to various Cloud
providers (Amazon EC2, Eucalytus,
SmartCloud, GoGrid, OpenNebula,
RackSpace, OpenStack and others)

Dasein Cloud
API

dasein-
cloud.sourceforge.net/

Java-based library for the access to com-
pute services such as a virtual machine
support, volume support, and other fea-
tures associated with cloud compute as a
service

fog fog.io Ruby-based library providing a high level
interface to various Clouds ’collections’
(images, servers). ’Requests’ allow to dive
in service particular features. ’Mocking’
allows simulations by an in-memory re-
source representation.

jclouds www.jclouds.org It is an open source Java library that in-
troduces abstractions aiming the portabil-
ity of applications. It support more than
thirty Cloud providers and software stacks
including AWS, GoGrid, vCloud, Open-
Stack, Azure.

libcloud libcloud.apache.org Apache Libcloud is a standard Python li-
brary abstracting the differences between
multiple Cloud provider APIs

Simple Cloud www.simplecloud.org It is a PHP library providing common in-
terfaces for file and document storage ser-
vices, queue services and infrastructure
services

CHAPTER 3. PORTABILITY 25

3.3 Application portability
To allow application portability, there are requirements that need to be met. On a
SaaS provider viewpoint, three requirements are very important for the migration of
the entire SaaS application [4] . This rely on the type of cloud provider that supplies
the SaaS provider :

• If the Cloud provider is an IaaS provider, application portability for SaaS provider
means ease of migration of Virtual machines(VM) and data from one IaaS provider
to another. This means that the displaced virtual machines should be loaded to
another IaaS provider at a minimal costs and changes.

• If the Cloud provider is an PaaS provider, this means that the application should
be movable from one platform to another with eventually a minimal changes.
These requirements need to be met to allow a SaaS provider pretend that the
SaaS application is enough portable. The last requirement is the ability to move
all the data from a cloud provider and load them fully on another cloud provider.

Application portability will depend on the specification of the environment but
also on the requirements of the new environment. The requirements of the environ-
ment where the application is initially deployed must be the most similar to those
of the environment where the application is going to be deployed. If the two envi-
ronments are quite different, valuable effort must be done to allow the application
portability. It is the same case when we are moving only some components of the
application. SaaS portability incorporates also the ability to move components of ap-
plication. An application which can be deployed on many providers, Either in private
cloud, public cloud or hybrid cloud instead of only one shows a high level of porta-
bility.

The environment where the application is going to be moved must offer an inter-
face that is enough compatible for the application which is moved. Application porta-
bility is the ability to move the entire application. This can mean to move a virtual
machine or an instance of the application is deployed. This requires the specifications
and the needs of the application have to be anough compatible with the requirements
of the environment. The solutions are mainly some applications enablers like APIs
that specify well how input and output are managed. A good description of manage-
ment of input and output is important to move the entire application.

SaaS portability will strongly depend on the cloud provider(IaaS, PaaS) and the
tools the provider uses. Cloud providers offer many tools and facilities to SaaS providers
to allow them develop their applications. For example, in a case where the SaaS
provider is a customer of a PaaS provider, the latter offers a platform the former with
specific characteristics. The offered platform has its own configuration that may be
whether or not opened. That will affect strongly the compatibility of the SaaS applica-
tion with other platforms. For example a SaaS application developed on Forces.com

CHAPTER 3. PORTABILITY 26

using the programming language Apex will be hardly movable on a cloud provider
that supports application developped using .NET like MS Azure. The developping
tools can be a barrier when the SaaS provider want to export the SaaS application.

Self-evaluation of SaaS application covers 3 aspects of application portability :

• experience about application portability : 4 dimensions will be evaluated. The
self-evaluation will focus the move of the SaaS application from on-premise en-
vironment to cloud environment, the move of the SaaS application from one
cloud environment to cloud environment, the move of the SaaS application
from cloud environment to on-premise environment and finally the possibility
to add, remove and configure components dynamically on the fly.

• duration of application deployment from development environment to run-
time environment : Development environment and deployment environment
may be different. A quick and easy or a heavy migration from development en-
vironment to runtime environment indicates the level of the application porta-
bility. The duration will be graded on a scale. Self-evaluation will focus on the
ease of move of SaaS application development environment to runtime envi-
ronment

• Ease of migration of the application from the current PaaS/IaaS provider to
an other one laying on a different Operating System : OSProgramming lan-
guages need runtimes and libraries. To ease portability, developers need to use
standardized runtimes and libraries. But there can be great differences between
OS, runtimes, libraries. Self-evaluation will focus of the cost of moving the ap-
plication : will the source code need to rewritten, ease of untime libraries import
of missed or the source will just need to be recompiled.

3.4 Data portability
Data lock-in is a heavy issue that SaaS providers and SaaS consumers have to deal
with. Data portability can be indeed very difficult to achieve. Customers are afrait to
be blocked within one provider and to be in a situation they can not move from this
one to another one. The usability of exported data is linked to it, and in many situa-
tion, the SLAs are so complex so that it is not possible to the customers to understand
all the details in it. Given the data pointview, data are in high heterogenous formats
and environment, so migration is very hard to achieve.

The data lock-in is associated to data storage[17]. This is due to the fact that cloud
providers may support different types of database. Yet data migration from a SQL
database to a NoSQL database, data migration from a NoSQL database to another
different NoSQL database may be fastidious fastidious. This is due to incompatible
data structures. Another issue is linked to the query languages when we are querying

CHAPTER 3. PORTABILITY 27

data from the databases. When quering languages are different, it is more difficult to
move the data from one database to another one. Last, the export/import formats can
increase the difficulties related to data migration. To avoid these issues, data should
be in formats that are well standardized .The specification of data formats has to be
well documented. The specification should define very well the syntax and the se-
mantics of data formats.

Data portability need that the data to be platform-independant. SaaS providers
need to work on data formats to render them standardized. But if the providers who
are the market key-players have to adopt those standards, by this way, the standards
will be recognized[12]. Data migration requires a good specification of the data for-
mats. The specification of the data should be in a standardized form, in readable form
for a quick and effective migration. Process of data migration can be quickly hard in
the case where minimal effort has been done to standardize data formats. When the
data are well standardized, as an example, the data should be in a machine-readable
form, even taugh human-readable form is good start.

Self-evaluation of SaaS application will cover mainly 3 aspects of data portability
:

• likelihood of data lock-in : Cloud providers(IaaS and PaaS providers) provide
to SaaS providers multiple ways to build their applications. Data lock-in de-
pends on the level of openess of tools offered by the cloud provider. The level
of openess can be evaluated by assessment of the tools that are given to SaaS
providers in order to develop their SaaS applications. From less to more open
tools, we can mention these possibilities : Cloud providers can provide propri-
etary tools for online development via a Web browser, using visual interfaces
and design templates. Another possibility is custom functionality via native
APIs offers. They can also offer a possibility of deployment and development
of arbitrary source-code. Last, Cloud providers can offer support for standards
widely adopted and used technologies. These capabilities can be combined.

• standardization of the data formats : data formats is one of the concerns of SaaS
self-evaluation. Standardized data formats are helpful for an easy data migra-
tion from one cloud provider to other providers(IaaS,PaaS). When data formats
are standardized, data migration can facilitated by external tools. The idea here
is to detect if the SaaS providers have to modify the data formats before data
migration in order to make data suitable with the new cloud provider. We need
to indetifiy if the data formats will be less, partially or fully modified. This has
incidences on automation of the process. The automation of the process can
then be either possible or not. If it is possible, self-evaluation will try to detect
if the process is semi-automatic or fully automatic. By this way, SaaS providers
can state how their data are portable or not.

CHAPTER 3. PORTABILITY 28

• Ease of data migration between different database models : The SaaS applica-
tion can compatible with different database models(relational databases,NoSQL
databases). As there are huge differences between relational databases and
NoSQL databases and also among NoSQL databases, the issue is to identify
if the SaaS application is compatible within many database models. Ideally,
compatibility with many different database models would be an asset. Unfor-
tunately this have a heavy cost. Self-evaluation of SaaS applications will take
into consideration this aspect. On the one hand, the process of self-evaluation
will assess the ease of data migration that considering databases of the same
model, and on the other hand, the process will access the data migration where
the database models are different(either from relational databases to NoSQL
databases and vice-versa or from NoSQL database to another different NoSQL
database).

Chapter 4

Availability

Availability is the probability that a system, at a point in time, will be operational
and able to deliver the requested services [2]. Availability is the proportion of time
during which a system or a service is functional to the total time it is required. It is
the probability that a system is functional. Availality is defined by the following ratio :

Ratio = [(Totalresponsetime–downtime)/Totalservicetime]∗100 .

The ratio takes into consideration periods of reponse time, downtime and service
time. Service time is the time which is defined in the SLAs. SaaS providers agree
to guaranty availability of their SaaS application during that time. Downtime is the
time during which the SaaS application is not available. The ratio will be balanced as
a percentage. For exemple, if the availability of the SaaS application is 0.95 it means
that the application is available 95% of the time

As SaaS to be delivered over the internet, ensuring availability of SaaS applica-
tions involves availabilty at many levels. The network, the system, the application
and the application need to be available at any moment they are required. The causes
of downtime are multiples. Causes of downtime can be from the network, the system,
the data or the service itself. As a matter of fact, if there are failure due to the network,
a failure due to the platform, a database failure or the service(application) failure, this
will impact on the whole availability. SaaS availability depends on system robustness
and on the avaibility of infrastructures service providers

Availability of SaaS applications contributes to service reliability. SaaS providers
pay attention to eventual SaaS application failure and the duration of the failure. In
effect, when failure occurs and durates over a significant period, this is risky for the
sustainability of the SaaS business. Contrary to on-premises solution, availability
of SaaS applications depends strongly of the capability offered by high availability
architecture. Meanwhile, there are many precautions that need to be taken by SaaS
providers in order to ensure a good level of availability[21]. For this purpose, it is nec-
essary to implement fault avoidance, fault detection and removal and fault-tolerance

29

CHAPTER 4. AVAILABILITY 30

mechanisms. Mechanisms for avoiding single points of failure, detection of failures.
These mechanisms are also helpful for insuring security of the SaaS applications and
the data. SaaS providers need to do local storage, or a local backup of the mission-
critical data. This can help in case the cloud infrastructure provider is unable to de-
liver the service as planned.

4.1 Availability level
Self evaluation of SaaS application takes into consideration the availability level sup-
posed to be insured by the SaaS provider. SaaS Availability level is specified into
SLAs. Many SaaS providers admits that their SaaS application are high available. The
level of availability depends strongly on the availability of all the providers. There
are SaaS applications that need high availabilty more than others. That’s why SLAs
define hours during which service is normally available or not. SaaS providers do ef-
fort to specify working hours(Business hours) from non working hours in their SLAs.

Consumers of SaaS applications expect to access the service as far as possible.
SaaS providers are then pushed to improve the availability of their services to meet
the telco grade standard of 99.999%[7]. However, in order to meet this standard,
all the layers have to be capable to provide such level of availability. The cumula-
tive Mean Time Between failure(MTBF) of the hardware components should be quite
small. This will allow for the SaaS providers to meet the desired availability level.
Beside the hardware components, network hass need to be as fast as possible.

Table 4.1: Availability level[7]

Availabilty(%) Downtime Per Week Downtime Per Month Downtime Per Year

95% 8.4 hours 36 hours 18.25 days
99% 1.68 hours 7.2 hours 3.65 days
99.9% 10.1 mins 43.2 mins 8.76 hours
99.99% 1.01 mins 4.32 mins 52.6 min
99.999% 6.05 secs 25.9 sec 5.26 secs

Despite this, tolerance for downtime is different depending on the type of SaaS
application. A survey of Rackspace shows that companies that use SaaS applications
are differently sensitive for downtime. SaaS users were asked to rank their tolerance
for downtime For example, 50.38% of the interviewees said they are least tolerant
for downtime of Email and business productivity SaaS applications while only 9.42%
were ranked to be least tolerant for Human ressources applications[28]. This means
for SaaS providers, that availability level and tolerance for downtime vary with the

CHAPTER 4. AVAILABILITY 31

type of SaaS application.

Table 4.2: Tolerance for downtime[28]

Self-evaluation of SaaS applications analyses of the level of availability consider-
ing what is defined into SLAs. As levels of availability are different given the kind of
SaaS applications, different levels of availability are required. There are some appli-
cations than need more availability than others. SaaS application are then classified in
different groups given their levels of availability. SaaS providers will classify them-
selves their SaaS applications into categories of availability. The selected levels of
availability are : Less than 90%, between 90% and 95%, between 95% and 97%, be-
tween 97% and 99%, more than 99%.

4.2 Redundancy
Self evaluation of a SaaS application involves evaluation of the mechanisms of re-
dundancy linked to the hardware and software components. As a matter of fact, SaaS
providers are responsible for delivering a reliable application as it is indicated in the

CHAPTER 4. AVAILABILITY 32

SLAs. A default of availability can be caused by a mismanagement of the redundancy
of software and hardware application. That is clear that the hardware is managed by
infrastructure providers, but in the eyes of the SaaS consumers, the whole responsi-
bility of redundancy management is the responsibility of the SaaS providers. That is
why, a good approach of management of redundancy should be taken into consider-
ation.

Redundancy is defined at two levels :

• software redundancy : Major components of the software can be redundant to
ensure a high level of availability. During, times where requests are numerous,
redundancy of key components may help to support a pick of requests. A re-
dundant copy of application is useful. In effect, in case of failure of the many
instance of application, the redundant copy may be used. This is an one of the
mechanisms of faut tolerance. That is why it is important to make redundant
whole instances of the application present on the virtual machine. In effect if
one instance fails other instances could take over.

• infrastructure redundancy : infrastructures redundancy will all the mechanism
of redundancy set up to avoid failure. It is the redundancy at different infras-
tructures level : redundancy of power supplies, network connections, back-up
storage, batteries, generators, cooling system. This is the responsibility of the in-
frastructure providers to guaranty the redundancy of all these elements. Even
the entire VM in which the application is hosted can be redundant, just in case
the main virtual machine crashes.

As the infrastructure redundancy supposed to be guaranteed by cloud infrastruc-
ture providers, Self-evaluation of SaaS applications will focus on the software redun-
dancy. SaaS providers will assess the redundancy of their application components.
Redundancy of the SaaS application will grade given the number of software compo-
nents that are redundant. Ideally, all the components of the SaaS application should
be redundant. But given the cost of redundancy, SaaS providers can adopt different
options. The worst case is when the components of the SaaS application are not re-
dundant. But this is very risky for a SaaS provider. SaaS providers will rather chose
among these others options : minimal components of the SaaS application are re-
dundant, only the crucial components are redundant, Most of the components of the
application are redundant or all the components of my application are redundant.
The last option is preferable.

4.3 Backup
SaaS providers must ensure data backup in order to set up a quick recovery just in
case of devastation. This is a a good way for guaranteeing availablity of the SaaS ap-

CHAPTER 4. AVAILABILITY 33

plication. However data need to be well encrypted for safety reasons. As a matter of
fact, data must be protected from leakage and unauthorized access[8]. SaaS backup
is the responsibility of SaaS providers even the data are stored in cloud infractrutes
supplied by Cloud infrastructure providers. As a precaution, SaaS providers could
have local backups for key data just in case their infrastructure providers are out of
service. In case of downtimes from infrastructure providers, they could then continue
to supply their service to the SaaS consumers.

Self-evaluation of SaaS application covers 3 main dimensions of backup.

• backup model: backup can be done following 3 models: Hot standby, warm
standby and cold standby. Each backup model offers a different level of avail-
ability. In Hot standby model, standby servers are available every to run the
application in case of disaster. Replication is synchronous so that the data are
directly available on hot back up site. The secundary site can provide availabil-
ity within seconds or minutes. In Cold standby model, data replication is done
on a periodically(asynchronous). Recovery may take hours or days and may re-
quire hardware, operating system and application installation for restarting the
whole service. Warm standby model is a tradeoff between a hot standby and
cold standby. Replication is at the same time synchronous and asynchronous,
and recovery may take a little more time comparing to hot standby[14].A SaaS
application that uses hot standby model will be better assed that the one using
warm standby model. The latter will be better assessed than another that use
cold standy model.

• geographical dispersion of backup sites: It is necessary to separate geograph-
ically the backup sites. In case of natural disaster(fires, floods, earthquakes,
hurricanes,...),, having geographically separated backup sites protects against
outages. Even though a great geographical dispersion increases cost of data du-
plication, it is better for protecting data availability in case of a disaster. Then
SaaS applications would be better assessed in this ascending order: backup sites
located at the same place - backup sites located in the same region - backup sites
located in different regions - backup sites located in different countries - backup
sites are located in different continents

• backup frequency: Backup frequency will strongly depends on the backup
model. Critical applications will need continous backup. Then, backup fre-
quency indicates level of availability of SaaS applications. SaaS providers will
evaluate their backup frequency of their SaaS applications on a scale from months
to seconds. SaaS applications with a short time between backups will be better
assessed.

CHAPTER 4. AVAILABILITY 34

4.4 Monitoring
Monitoring is the ability to examine the health of the whole sytem. It is helpful in
for quick detection of issues about the SaaS application and their addressing. Many
things can be monitored : software, Service, ... SaaS providers are worry about the
availity of their services. In order to ensure compliance with their SLAs they need to
test the offers of their infrastructure providers. In order to achieve their level of avail-
ability, infrastructure providers need to give tools for monitoring their infrastructure.
Many things can be monitored : software components, load balancers, power sys-
tems, network systems, etc

Monitoring is useful to SaaS clients and providers. So that they can verify if the
service is their SLAs. Level of availability must meet what is specified in the SLAs.
This issue is only feasible if there are mechanisms of monitoring that are set up. SaaS
providers monitors their system, by monitoring also the system of their providers.
This is one of the detection of faults or failure. The capability of monitoring is also
given to SaaS consumers so that they can assess if the SLAs are conform within the
level of availability. Monitoring involves oversight of the SaaS system itself but also
oversight of cloud providers. The two levels must be monitored by the SaaS provider
in order to find quickly solution in case of any matter.

Self-evaluation of SaaS application will be interested in evaluating the monitoring
system. The evaluation will be checking of the presence or not of fault end failure de-
tection mechanisms. Those mechanisms should be implemented at at different levels:
application level, virtual machines level and infrastructure level. Another aspect that
will be assed will be the fact the SaaS providers offer monitoring capabilities to SaaS
consumers.

4.5 Disaster recovery plan
Disaster recovery plan(DRP) is an interesting aspect for Self-evaluation of SaaS appli-
cation. The assessment of the DRP will consist in evaluating or not if it has been yet
tested or not. It will focus on the experience of SaaS provider in testing failover and
failback mechanisms related to the SaaS application. Failover is defined as the swith
when active processing of incoming transactions is switched from the failed primary to the
backup site while failback is defined as the switch when the causes of the primary failure
have been addressed and the switch is made back to the primary [26].

SaaS providers will themselves assess the experience they have about the testing
of their DRP. Just in case the SaaS providers have been yet exposed to disaster, they
will assess the process of addressing the problem. This means from SaaS providers
an evaluation of failback and failover mechanisms. SaaS providers will assess that

CHAPTER 4. AVAILABILITY 35

their recovery time is compliant with SLAs. If recovery time is small, then the SaaS
application will be better better assessed following this scale : Recovery time is guar-
anteed in more than 24hours - Recovery time guaranteed between 12 and 24hours -
Recovery time is guaranteed between 1 and 12hours - Recovery time is estimated in
less than 1 hour.

Chapter 5

Interoperability

According to the ISO/IEC 2382-01 norm, interoperability is defined as ”the capability
to communicate, execute programs, or transfer data among various functional units in a man-
ner that requires the user to have little or no knowledge of the unique characteristics of those
units”. This definition, although generic, provides a strong basis for defining SaaS in-
teroperability. The functional units represent SaaS applications. SaaS applications in
effect communicates within other systems. Those other systems can be SaaS apppli-
cations or whether on premise systems. SaaS applications exchange constantly infor-
mation and data with other systems and run disparate modules from other systems.
The important progress in the domain of cloud computing and a better coordination
of Web services allow SaaS systems interoperability.

As cloud computing to be a specific way of computing, cloud interoperability is
more precisely defined as the ability of cloud services to be able to work together with
both different cloud services and providers, and other applications or platforms that are not
cloud dependant[23]. Through this definition, it is possible to bring to light the char-
acteristics of SaaS interoperability. SaaS interoperabilility involves the ability of SaaS
applications from differents SaaS providers to work together. SaaS interoperability
involves also the ability of communication betwwen SaaS applications and differents
platforms and infrastructures including on premise platfomrs. SaaS Interoperability
means a collaboration between SaaS applications that run on different environments.

Rashidi et. al. defined Cloud interoperatibility as the ability of interaction of a ser-
vice with other homogeneous or heterogeneous services to improve its service which may be
implemented under one domain or different domains[30]. On the one hand, homogeneous
services mean that here interoperability is between the same cloud computing ser-
vice model. As the concern is about SaaS interoperability, homogeneous services will
appoint interoperability between two SaaS applications. On the other hand, hetero-
geneous services mean interoperability between different cloud computing service
models. Here, it will be interoperability between SaaS applications and either PaaS
or IaaS.

36

CHAPTER 5. INTEROPERABILITY 37

Based on the cloud interoperability definition, SaaS interoperability will be the
ability of interaction of SaaS applications with other SaaS applications or other cloud
service models(PaaS and IaaS) providers. The aim of this interaction is mainly to im-
prove the services offered by the SaaS applications. Interoperability of SaaS applica-
tions involves their interconnectabity with other systems, their interaction and com-
munication with others SaaS applications. SaaS interoperability can involve also in-
tegration into SaaS application, services from other SaaS applications and vice-versa.

Technically, in order to achieve SaaS interopabilility, many prerequisites have to be
fulfilled. These prerequisites involve mechanisms that insure compatibility of differ-
ent processes, used protocols and data exchange formats. Achieving SaaS interoper-
abilitity meets many issues. There are issues related to syntax(naming conflicts, data
representation conflicts,etc) referred to syntactic interoperability on the one hand, and
on the other hand there are issues related to semantics(data semantics, Logic and pro-
cess semantics, etc) referred to semantic interoperability.

5.1 Interoperability management
There are many approaches that are used in order to manage interoperability. Those
approaches are most of time theoretical. A significant concern about those approaches
is the fast increase of SaaS applications. This renders the task of interoperability
management complicated. SaaS providers can explore many interoperability mod-
els / frameworks as orchestration layer approach and adapters approach. These ap-
proaches once set up, are key sets not only in interoperabity management but also are
advantageous in portability management of SaaS applications. SaaS providers may
be encouraged examine the different approaches.

Magdalena Kostoska et al. [23] compare different approaches for management of
Cloud computing interoperability. Among the approaches ascertained, two may suit
the SaaS model :

• orchestration layer: This approach consists in insertion of platform layers where
SaaS providers can register their services. It would be then possible to invoke
directly the services offered by the SaaS applications by using the orchestration
layer. This approach may be applicable to the other models(IaaS and PaaS).

• adapters : This approach consists in frameworks that provide interoperability
between incompatible SaaS providers. Those frameworks may be set up either-
for SaaS applications that are generally used or for specific SaaS applications.
This approach is application for the SaaS model.

CHAPTER 5. INTEROPERABILITY 38

Figure 5.1: Cloud Orchestration [3]

5.2 Interoperability scenarios
SaaS Interoperability covers scenarios or categories [23] :

• Interoperability of SaaS applications inside a single cloud : SaaS applications
exchange data inside the same cloud. The environment is homegeneous.

• Interoperability of SaaS systems across different cloud environnements : SaaS
applications exchange information across different cloud environments. The ex-
changed pieces of information cause operations from one cloud to another to
start. The environments are heterogeneous.

• Use of SaaS application through a unified manner : SaaS applications from dif-
ferent environments interoperate together and are accessed via a unique man-
agement system. The environments are heterogenous, and even the SaaS appli-
cations are different, they are managed through a unified manner.

• Migration of a cloud application from one environment to another one : SaaS
applications and their data are moved from one cloud environment to another
one. This category is in fact currently called SaaS portability. This has been de-
veloped in the chapter about portability

CHAPTER 5. INTEROPERABILITY 39

Figure 5.2: Interoperability and portability [22]

Self evaluation of SaaS application explores the different scenarios of SaaS interop-
erability. As SaaS interoperability means that SaaS applications can interoperate with
other applications from different environments, Self evaluation surveys how many
scenarios are covered. SaaS providers have the interest in the fact that the applications
cover up the major part of the 4 scenarios. A SaaS application that interoperates or
homogenous environments either in heterogenous clouds is more interoperable than
an other one that can only interoperate inside the single cloud. Then if the SaaS ap-
plication is able to interoperate with on-premise systems, with other SaaS application
inside the same cloud, with other SaaS applications in heterogenous cloud providers,
this will be advantageous for the SaaS interoperability.

When adressing SaaS interoperability, SaaS providers have to deal with standard-
ization of data exchange formats. The ultimate aim is achievement of dynamic in-
teroperability with random SaaS provider. Data formats have to be standardized in
order to perform easily a dynamic exchange of data between different SaaS providers.
Self evaluation of SaaS applications will assess how easy is exchange of data by as-
sessing the eventual difficulties to achieve interoperabily. SaaS providers assesses the
ease of interoperability in the case of achieving interoperabilityin. The following lev-
els represent the degree of difficulty: Data formats have to be fully modified - Data
formats have to be partially modified - Semi automatic data exchange is possible -
fully automatic data exchange is possible

5.3 Syntactic interoperability
Syntactic interoperability is the the ability to exchange data. In practice, this is lim-
ited on the 3 following points : First the description of what a SaaS application is
able to do, then the description of where the SaaS application resides, and finally a
description of how to invoke the SaaS application [31]. Pushing syntactic interop-
erability far will include service discovery issues, service description , management
of heterogeneities at message level, management of discovery and invocation of the
SaaS application at runtime, management of dynamic service discovery and dynamic

CHAPTER 5. INTEROPERABILITY 40

service invocation.

There are many issues to resolve in order to achieve interoperability of SaaS ap-
plications. Those syntactic issues are:

• Naming conflicts: SaaS providers and differents cloud providers do not have
the same level of naming. A concept can be defined differently given the SaaS
application. The great number of SaaS providers do not ease the uniformity of
naming.

• Data representation conflicts : SaaS providers define their data in accordance
to their needs. For each and many SaaS providers, even they are in the same
business domain, have differents data representations.

• Standardization : Use of different standards may increase the level syntactic
interoperability. When services are defined using SOAP, it is not easy to SaaS
providers that use WS-* or EbXML to easily discover and invoke them

Self-evaluation of SaaS applications involves that SaaS providers assess if the dif-
ferent levels of syntactic interoperability are covered. This is the first step of achieving
SaaS interoperability. SaaS providers will the assess if their SaaS application can eas-
ily exchange information with other SaaS applications. Use of many different interop-
erability protocols and programming languages by SaaS providers implies that SaaS
providers specify very well their SaaS applications and data using different syntaxes.
This is characterestic of a good management of SaaS applications. SaaS providers will
analyze also if their SaaS applications offer an application programming interface for
an ease of integration of their SaaS applications in different systems.

5.4 Semantic interoperability
Semantic interoperability is the ability to operate on the exhanged data. Semantic
interoperability involves the description of what a SaaS application can do, the de-
scription of where the SaaS application resides, the description of and how to invoke
the SaaS application with meaning and interpretation of the data and operations at
runtime [31]. Beside issues linked to syntax, effort about semantics need to be done.
Nagarajan et al., 2006 identify 4 types of semantics for any application description.
Those types are system semantics(deployment, Load balancin), data semantics(Typ-
ing, Storage, manipulation restrictions), non-functional semantics (performance, se-
curity) and logic and process semantics(Programming language, Runtime, Exception
handling). A management of the 4 types of semanctics is required, if SaaS providers
need to improve the SaaS application interoperability.

CHAPTER 5. INTEROPERABILITY 41

Self-evaluation for SaaS-applications analyzes ease of substitution of a service
used by the by the SaaS application. At most of time, as SaaS applications use dif-
ferent services. Most of SaaS applications offer their functionalities via a combination
of different services. Unfortunately, services provided can be unvailable for many
reasons : Network unavailability, Failure of the provider of the service,etc. It is im-
portant that SaaS providers prevail other options just in case of unavailability of a
used service. For high interoperable SaaS applications, the substitution can be auto-
mated. Ability of easy substitution of services by invoking similar services from other
providers demonstrates a high level of interoperability. In order to evaluate their SaaS
application, the SaaS providers assess that ease on the following scale : impossibility
of substitution - Not all easy - Slightly easy - Moderately easy - Very easy.

Another interesting aspect of self-evaluation of SaaS application is the ability of
SaaS applications to run on different cloud systems and use different ressources from
many providers. Self-evaluation of SaaS applications analyzes those 2 different as-
pects. The ability of a SaaS application to be run on multiple disparate cloud providers
involves a great capability of interoperability between the SaaS application and cloup
systems.This means simply that components are deployed on different systems. In-
deed, components will interoperate in order to achieve their tasks. Self-evaluation
process assess at the same time the two aspect and classifies SaaS applications from
those that can can only run on only one cloud provider and uses resources from
one cloud provider to those that can multiple disparate cloud providers and uses
resources from heterogenous cloud providers.

5.5 Application programming interface(API)
Used APIs should be compatible with multiple environments, or should have multi-
ple independent implementations. The programming languages and the frameworks
used to develop the application have to be enough flexible. Runtime-libraries could
be available and compatible to the destination environment. SaaS providers should
pay a special attention to the used technologies if they want their application the most
interoperable as possible.

The openess of APIs that are used is very important in order to achieve SaaS
interoperability. SaaS providers have to care about the degree of openess of the
APIs they use. The choice for an open API will influent strongly interoperability
of the SaaS applications within other systems. Open APIs are publicly available
while closed(proprietary) APIs are private that implies that interfaces are only ex-
posed to internal developers. Use of open APIs increases level of interoperability.
Self-evaluation for SaaS applications includes the assessment of this scope. When
SaaS applications use only proprietary APIs, they are less interoperable that those
that use only open APIs. SaaS providers can chose to use both open APIs and propri-

CHAPTER 5. INTEROPERABILITY 42

etary APIs. In that case, the degree of interoperability of their SaaS applications will
depend on the degree of the open APIs comparing to the degree of closed APIs.

The assessment of the degree of standardization of APIs used by the SaaS appli-
cations is an important aspect of self-evaluation of SaaS applications. Standardized
APIs allow easy integration of the SaaS application in third applications. A high in-
teroperability level needs that the SaaS application offers a high standardized API.
The API specifies how data are exchanged and how services are invoked. The degree
of standardization of the APIs shows how interoperabble is the SaaS applications.
An API will be highly standardized if it can allow dynamic service discovery and
dynamic service invocation. The standardization effort and the probable automation
of interoperability resulting from standardization are part of self-evaluation of SaaS
applications.

Following openess and standardization of used APIs, substitution of APIs is a di-
mension characterising interoperability of SaaS applications. Self evaluation of SaaS
application assesses the ease of substitution of APIs. If the used APIs are easily substi-
tuable without bad side effects on interoperability of the SaaS application, that shows
a good management of SaaS interoperability. A SaaS application that covers that point
is better assessed.

Chapter 6

Tool

6.1 Methodology
The aim of this tool is the self-evaluation of SaaS applications. SaaS providers are the
target of this self-evaluation. The main idea behind this effort is to examine the self-
evaluation of SaaS applications. As the SaaS applications are wide, the tool goes be-
yond this multiplicity of SaaS applications, and attempts to focus on aspects that cross
the diversity SaaS applications. The objective of the tool is to allow SaaS providers
the ability to evaluate their applications, comparison between SaaS applications and
aggregation of SaaS applications in clusters.

This approach includes two main parts : a state of the art about the self-evaluation
of SaaS applications and the implementation of a tool for self-evaluation of SaaS ap-
plications. State of the art is based on litterature review. The litterature review shows
that many approaches for evaluation of SaaS applications chose SaaS consumers as
the target, we chose to adress this tool to SaaS providers. What is important is that
through analysis of their SaaS applications, SaaS providers analyze indirectly them-
selves. By this way, the tool is very important at for the SaaS providers.

Research about methodology shows that there are mainly 3 great types of ap-
proaches : qualitative approach, quantitative approach and mixed approach. Qualita-
tive approach uses open-ended questions. This is an emerging approach which deals
with text or image data. Quantitative approach uses closed-ended questions. This is
a predetermined approaches that processes with numeric data. And mixed approach
uses both open and closed ended questions This approach is both an emerging and
predetermined approach and deals with both qualitative and a quantitative data and
analysis [11]. A quick view of the different approaches suggests the use of a quan-
titative approach. In effect, the aims the the self-evaluation incorporates measuring,
scoring, ranking, comparison, aggregation. These tasks are feasible when we use nu-
meric data.

43

CHAPTER 6. TOOL 44

As the the target of this self-evaluation involves the SaaS providers and given the
fact that SaaS applications are numerous and cover many domains, the idea of using a
survey covers many aspects. The questionnaire allow a good coverage of transverse
aspects. The questionnaire are much used in the domain of evaluation, especially
when this involves people. Moreover, the covered aspects may vary a lot from one
SaaS provider to another. At one point one can imagine an automated tool, but , as
some aspects are not not automatically auditable, the questionnaire seems to be an
appropriate method.

The questionnaire is a self-administered questionnaire. For this purpose, the man-
ner of distribution of the questionnaire is in the form of an online survey. By this way,
questions are distributed at a minimal cost and it takes a few time rather than us-
ing paper-based questionnaire. There many steps in the building of the tool. The
questionnaire is made of a set of technical questions. Even if it the target is the SaaS
providers, technical skills are needed in order to answer well the questions provided
through the questionnaire.

In order of giving a meaningful sense, a choice of precise criteria has been done.
To identify the criteria, the first step was the identification of the relevant aspects of
the Self-evaluation for SaaS applications. This identification has been made based on
the litterature review about SaaS evaluations. The litterature review shows mainly
the needs of users when they use SaaS applications. Thus, portability, availability
and interoperability have been selected. Many users of SaaS applications are worried
about those 3 when they start using the SaaS applications. This is also a challenge
for SaaS providers to guarantee that their SaaS applications have acceptable levels of
portability, availability and interoperabilty.

For each criterion, the first step was to define it well. For this purpose, a review
of litterature about the criteria showed the main chararacteristics that are concerned.
There the main points that are covered by the criterion have been set up. The second
step was to find how to find properly how to design the questions in a way that
achieves the fixed objectives. The different aspects retained for the differents criteria
are :

1. Portability of SaaS applications :

• Application portability

• Ease of the application deployment from development environment to run-
time environment

• Ease of migration of the application from a cloud provider to another lay-
ing on a different Operating System

• Likelihood of data-lock-in

• Standardization of data format

CHAPTER 6. TOOL 45

• Ease of data migration(same database models)

• Ease of data migration(different database models)

• Data portability

2. Availability of SaaS applications :

• Level of availability

• Redundancy of the components of the SaaS application

• Model of backup

• Frequency of backup

• Recovery time guaranty

• Geographical dispersion of backup sites

• Failure detections mechanisms

• Monitoring, failover

• availability experience

3. Interoperability of SaaS applications :

• Coverage of the different scenarios of interoperability

• Openess of the used APIs

• Standardization of the used APIs

• Ease of substitution of used APIs

• Capability of running the SaaS application on disparate cloud providers

• Ease of substitution of services invoked by the SaaS application

• Data exchange formats

• Interoperability level

• Interoperability experience

6.2 Questionnaire design and scoring
The questionnaire is built in order to allow SaaS providers to evaluate themselves
their SaaS applications. For this purpose, a serie of questions have been designed.
The questions are subdivided into 3 types :

• There are dichotomous questions, where the respondents answer Yes/No given
the fact that the desired characteristic is present or not. Dichotomous questions
are ranked 0 or 1 given the fact that the SaaS providers meet or not the required
aspect.

CHAPTER 6. TOOL 46

• There are matrix questions, where dichotomous questions(Yes/No) are clustered
into a matrix. Each matrix holds 4 dichotomous questions. The aim of matrix
questions is the verification of a set of characteristics that form a specific aspect.
Matrix questions are ranked as follow : the score varies between 0 and 4. The 4
questions of a matrix question are characteristics of a precise aspect. The answers
show how the the aspect is covered.

• There are also multiple choice questions where the respondents answer by chos-
ing an option among 5 proposed options. The chosen option is the one that
matches their situation. The benefit of using these 3 types of questions is the
facility of counting scores and ranking the answers of the respondents. Multiple
choice questions have 5 options. The options are ordered by their importance.
Multiple choice questions are ranked between 0 and 4. Options are ranked from
the worst to the best.

Table 6.1: Scoring scheme : dichotomous question : Score comprised between 0 and 1

Answer No Yes

Score 0 1

Table 6.2: Scoring scheme : Matrix question : Score comprised between 0 and 4

Answer No Yes

Score 1 0 1
Score 2 0 1
Score 3 0 1
Score 4 0 1

Table 6.3: Scoring scheme : Multiple choice question : Score comprised between 0 and
4

Answer Score

Option 1 0
Option 2 1
Option 3 2
Option 4 3
Option 5 4

The questionnaire is subdivided into 2 main parts :

• the first part is a short is about characterizing the SaaS providers. The main
concern in this part is the identification of general information about the SaaS

CHAPTER 6. TOOL 47

provider and the SaaS application. The question ask about the experience of the
SaaS provider, the number of employees, the number of users of the SaaS appli-
cation, the business domain, etc. The questions are not scored. These questions
are interesting for the aggregation.

• the second part is about the questions about the criteria. The different criteria
interoperability, availability and portability are covered. Each criterion has a to-
tal of 10 questions. There are 1 question for height determination. In effect, SaaS
providers do not give the same importance to a given criterion. Then there are
and 9 questions that are ranked. The overall score is calculated by weighting the
different given the chosen weight per criterion. For each criterion, the possible
biggest score is 33 .

Once the scores related to criteria weighted, we can then compute a global score
as the result of the addition of the scores obtained for the each of the 3 criteria.

6.3 Online survey tools discussion
Once the decision to set up the questionnaire online, the next step was to find a service
that allows to design online surveys. The researched features of that service were
mainly the following :

• Possibility of automatic score calculation : as the respondent are answering to
the questions, score may be computed at the same time

• Possibility of giving individual feedbacks to respondents : respondents should
be given a score and a feedback based on the score

• Possibility of comparison between respondents : respondents should be given
an indication about the ranking of the SaaS application

• Possibility of customization : configuration of CSS style, custom logos, colors,
etc.

Among the tools available online, 5 have been are potential candidates :

Table 6.4: Comparison between online survey tools

Tool auto scoring individual feedback comparison customization

Google forms KO KO OK KO
Kwiksurveys KO OK OK OK
SurveyMonkey OK KO OK OK
QuestionPro OK OK OK OK
Fluidsurveys OK OK OK OK

After an analysis of the different features offered by the online tools described
above, the choice has been raised to the google forms tool. Even if it seems to have

CHAPTER 6. TOOL 48

less features, the tools is free for use and there is no limitation in terms of number of
questions. The other tools have yet included more advanced features. Despite the fact
that google forms have less features, there are extensions that can be used to improve
the tool.

6.4 Typology and Discussion
For the sake of a meaningful comparison between SaaS applications and SaaS providers,
they are clustered in different groups. By clustering the SaaS applications in different
groups, the process of Self-evaluation provides more information and has more sig-
nificance. in the interest of comparison. For this purpose, 3 main characteristics have
been retained :

1. the number of employees that work for the SaaS provider : SaaS providers are clustered
following 4 groups given these levels.

• Less than 10 employees
• Between 10 and 50 employees
• Between 50 and 250 employees
• More than 250 employees

2. the number of customers of the SaaS provider : SaaS providers are clustered follow-
ing 4 groups given these levels.

• Less than 10 customers
• Between 10 and 50 customers
• Between 50 and 250 customers
• More than 250 customers

3. the experience of the SaaS provider : SaaS providers are clustered following 4 groups
given these levels.

• Less than 1 year
• Between 1 year and 5 years
• Between 5 years and 10 years
• More than 10 years

SaaS applications can also be clustered by business sector. Meanwhile, this aspect
can vary a lot as SaaS providers given that there are many SaaS application developed
for many business sectors.

The tool would allow to answer this serie of hypothesis:

• Size of a SaaS providers affects the self-evaluation of the SaaS application : Does the
number of employees working for the SaaS providers improve or not the score
of the SaaS application given the 3 criteria? We assume that more the size is,
more the 3 criteria are covered.

CHAPTER 6. TOOL 49

• Experience of a SaaS providers varies with self-evaluation of the SaaS application : A
great experience of SaaS providers allow them to be very specialized on a do-
main. Thus, we assume that more experienced SaaS providers will be interested
in ensuring the respect of less criteria while the youngest SaaS providers will
want to cover the 3 criteria.

• Number of users of a SaaS providers varies with self-evaluation of the SaaS application
: A large number of users may indicate that the SaaS application have success
with the users. However this does not mean that the 3 criteria have the same im-
portance for different SaaS providers. We assume more we have a large number
of users, more the 3 criteria will be covered.

The following charts represent a typology of a SaaS application. For each criterion,
the chosen weight is 8 on the scale 0−10. The criteria have the same weight.

Figure 6.1: Typology : Portability

CHAPTER 6. TOOL 50

Figure 6.2: Typology : Availability

Figure 6.3: Typology : Interoperability

Chapter 7

Conclusion

This memoir was about the self-evaluation for Software as a Service applications.
The idea behind was the implementation of a self-evaluation tool for Software as a
Service applications. Our approach has followed different steps and has started by a
state of the art about self-evaluation. In the first instance we have defined what is self-
evaluation, and we have analyzed what is done in the domain of the Software as a
Service. This part has been achieved through a deep litterature review more generally
about self-evaluation and more generally about Self-evaluation of SaaS applications.

On the basis of that litterature review, we have then set up a methodology for
implementing a tool for self evaluation of SaaS applications. Through the differ-
ent methods of self-evaluation we choose to address a questionnaire to the SaaS
Providers. By using a questionnaire, SaaS providers can see the improvement of their
SaaS applications. They can themselves identify where they have to do improvement.
As the questionnaire to be distributed as an online Survey the SaaS providers can also
compare their applications with applications from other SaaS providers. Then they
compare indirectly themselves with other SaaS providers.

Our litterature review has led us to establishment of a set of 3 criteria that are the
portability, the availability and the interoperability of SaaS applications. The 3 have
been defined and described and for each criterion we have chosen interesting aspect
that need to be the baselines of the self-evaluation. Every aspect has been scanned in
order to find the main characteristics that allow to self-assess the SaaS applications.
The analyzes of each characteristic has been the basis of implementing the system of
scoring that enabling ranking and comparison between SaaS applications and SaaS
providers.

Besided those foregoing aspects, the self-evaluation tool for SaaS application al-
lows us to depict a typology of SaaS application. Following the weight chosen by
SaaS providers themselves, a landscape of SaaS applications can be painted. The 3
chosen criteria are weighted differently following the needs of each SaaS provider.
The Self-evaluation tool can help us to see if the importance attached to each criterion

51

CHAPTER 7. CONCLUSION 52

is consistent with the score obtained by a SaaS provider.

A possible improvement of the tool could be an addition of other criteria. By this
way, the tool would cover many different aspects of the SaaS applications. Another
aspect would be an introduction of qualitative aspects in order to supplement the
quantitative aspect. Thus, it would give much more information about the SaaS ap-
plications landscape. This would open an opportunity for setting up the basis of a
certification for SaaS applications and SaaS providers.

Appendix

Self- evaluation tool for SaaS
applications

Questionnaire

Welcome Dear respondent,

This questionnaire is made for Self evaluate your SaaS application. The question-
naire is organised as followiwng:

1. The first part is a series of general questions about the SaaS provider and the
provided SaaS application

2. The second, third and forth parts are questions related to criteria. The criteria
used for this questionnaire are portability, availability and interoperability of
SaaS applications. You will have to indicate for each criterion the level of impor-
tance accorded to it. These levels will be used as weights and will be helpful to
compute the score.

Thank you in advance.

About you

1. Name of the company*:

2. Location of the company*:

3. Your email *:

53

APPENDIX . SELF- EVALUATION TOOL FOR SAAS APPLICATIONS 54

4. How many employees work for the company?*
Less than 10 employees.

Between 10 and 50 employees.

Between 50 and 250 employees.

More than 250 employees.

5. Before the company begins its activities as a SaaS provider, was it yet work-
ing in the software sector?*
No.

Yes.
6. How many customers the company has?*

Less than 10 customers.

Between 10 and 50 customers.

Between 50 and 250 customers.

More than 250 customers.
7. What is the name of the SaaS application?*:

8. What is the business sector?*
Customer Relationship Management.

Human ressources.

Procurement.

Communication.

Other :
9. How long the SaaS application has been used?*

Less than 1 year.

Between 1 year and 5 years.

Between 5 years and 10 years.

More than 10 years

Portability

10. May you indicate on this scale how impor-
tant is the portability of the SaaS application?*:
1 #—#—#—#—#—#—#—#—#—# 10

Application portability*

11a. The application has yet been moved from on-premise environment to cloud
environment # No # Yes

APPENDIX . SELF- EVALUATION TOOL FOR SAAS APPLICATIONS 55

11b. The application has yet been moved from cloud environment to cloud en-
vironment # No # Yes

11c. The application has yet been moved from cloud environment to on-premise
environment # No # Yes

11d. It is possible to add, remove and configure components dynamically on the
fly # No # Yes

12. How long did the application deployment from development environment
to runtime environment take?*
Development environment and deployment environment may be different.
A quick and easy or a heavy migration from development environment to
runtime environment indicates the level of the application portability.
More than a day

Between 12 hours and a day

Between 6 hours and 12 hours

Between 1 hour and 6 hours

Less than 1 hour
13. How light would be the move of the application from the current PaaS/IaaS

provider to an other one laying on a different OS?*
Programming languages need some runtimes and libraries. To ease porta-
bility, developers need to use standardized runtimes and libraries. But
there can be great differences between OS, runtimes, libraries.
Major part of the sources would have to be rewritten and missed runtime

libraries be imported

Minor part of the sources would have to be rewrittenand missed runtime
libraries be imported

The code source would have to be recompiled and missed runtime li-
braries must be imported

The code source would have only to be recompiled

The code source is runnable immediately without any modification, re-
compiling or importing runtime libraries

APPENDIX . SELF- EVALUATION TOOL FOR SAAS APPLICATIONS 56

14. How likely is data-lock-in?*
Cloud providers(IaaS,PaaS,...) can provide to SaaS providers multiple ways
to build their applications. Data lock-in depends on the level of openess of
tools offered by the provider.
My provider(s) only provide(s) proprietary tools for online development

via a Web browser, using visual interfaces and design templates

My cloud provider(s) offer(s) more custom functionality via native APIs
than the possibility of deployment and development of arbitrary source-
code

My cloud provider(s) offer(s) custom functionality via native APIs as the
possibility of deployment and development of arbitrary source-code

My cloud provider(s) offer(s) less custom functionality via native APIs
than the possibility of deployment and development of arbitrary source-
code

My cloud provider(s) only adopt(s) or provide(s) support for standards
widely adopted and used technologies

15. How standardized are the data formats used by the SaaS applicaton?* To
ease data migration to other providers(IaaS,PaaS), data must be in standard-
ized formats.
Cloud providers(IaaS,PaaS,...) can provide to SaaS providers multiple ways
to build their applications. Data lock-in depends on the level of openess of
tools offered by the provider.
Data formats have to be fully modified and automatic migration is impos-

sible to achieve

Data formats have to be partially modified and automatic migration is
hard to achieve

Data formats have to be less modified to allow semi-automatic migration

Data formats do not need to be modified and semi-automatic is possible

Data formats do not need to be modified and fully automatic migration is
possible

16. How easy is for a customer to migrate data used by your SaaS application
to another one(same database models)?*
Such case has never been met

Not all easy

Slightly easy

Moderately easy

Very easy

APPENDIX . SELF- EVALUATION TOOL FOR SAAS APPLICATIONS 57

17. How easy is for a customer to migrate data used by your SaaS application
to another one(different database models)?*
Such case has never been met

Not all easy

Slightly easy

Moderately easy

Very easy
Data portability*

18a. The cloud provider(IaaS, PaaS) offers capabilities of moving easily data #
No # Yes

18b. The data formats are standardized # No # Yes
18c. The application is compatible with different database models(relational

databases,NoSQL databases,...) # No # Yes
18d. The data have been yet moved from one environment to another one #

No # Yes
19. Have you already experimented portability by moving the entire applica-

tion, some of its components or data from one cloud provider to another
one?*
Yes

No

Availability

20. May you indicate on this scale how impor-
tant is the availability of the SaaS application?*:
1 #—#—#—#—#—#—#—#—#—# 10

21. What is the level of availability do you guaranty in your SLA?*
Given the kind of SaaS applications, different levels of availability can be
required. There are some applications than need more availability than oth-
ers.
Less than 90%

Between 90% and 95%

Between 95% and 97%

Between 97% and 99%

More than 99%

APPENDIX . SELF- EVALUATION TOOL FOR SAAS APPLICATIONS 58

22. Are the components of your SaaS application redundant?*
To meet the level of availability, SaaS applications or some of their compo-
nents may need to be redundant.
The components of my application are not redundant

Minimal components are redundant

Only the crucial components are redundant

Most of the components of the application are redundant

All the components of my application are redundant

23. In order to ensure your availability and the redundancy, what is the model
of backup are you using?*
It is needed to replicate data to assure availability of an application. For
that, many backup models exist, each backup model offering a different
level of availability. Hot standby, requires a second data center that can
provide availability within seconds or minutes, Cold standby, recovery re-
quires hardware, operating system and application installation and Warm
standby is a tradeoff between a hot and cold site
No secundary node

Hot standby

Warm standby

Cold standby

Active-Active (Load Balanced)
24. How oftendo you organize complete backup?*

Backup frequency is important for assuring availability. For example, criti-
cal applications need continous backup. Then, backup frequency indicates
level of availability of SaaS applications.
Monthly

Weekly

Daily

Hourly

Continuously

25. How quick do you guaranty your recovery time?*
Never tested that

Recovery time is guaranteed in more than 24hours

Recovery time is guaranteed in 12-24hours

Recovery time is guaranteed in 1-12hours

Recovery time is estimated in less than 1 hour

APPENDIX . SELF- EVALUATION TOOL FOR SAAS APPLICATIONS 59

26. How far are the different backup sites?*
It is necessary to separate geographically your backup sites. In case of dis-
aster, having separated backup sites protects against outages
The backup sites are located at the same place

The backup sites are located at different places in the same region

The backup sites are located in different region

The backup sites are located in different countries

The backup sites are located in different continents
Failure detection mechanisms*

Having fault and failure detection at different levels of the cloud stack increase time
for detecting failure. Quick you detect failures, quick you can resolve outages.

27a. Failure detection mechanisms are implemented at the application level #
No # Yes

27b. Failure detection mechanisms are implemented at the virtual machines
level # No # Yes

27c. Failure detection mechanisms are implemented at the infrastructure level
No # Yes

27d. The disaster recovery plan has been yet tested # No # Yes

Monitoring and Failover*

28a. The application users are offered monitoring capabilities # No # Yes

28b. The current state of the IaaS/PaaS provider are constantly monitored #
No # Yes

28c. The Disaster Recovery Plan has been yet tested # No # Yes

28d. The failover mechanism has been yet tested # No # Yes

29. Has the application experienced yet outages or downtimes?*
No

Yes

Interoperability

30. May you indicate on this scale how important
is the interoperability of the SaaS application?*:
1 #—#—#—#—#—#—#—#—#—# 10

Scenarios of interoperability*
SaaS applications can interoperate with other applications. These can be deployed in

APPENDIX . SELF- EVALUATION TOOL FOR SAAS APPLICATIONS 60

the same cloud provider, in different providers but the same kind(homogenous) or
in different providers of different kind (heterogenous). More scenarios you support,
high is your level of interoperability

31a. The SaaS application can interoperate with other on-premise systems #
No # Yes

31b. The SaaS application can interoperate with other SaaS systems within a
cloud provider # No # Yes

31c. The SaaS application can interoperate with other SaaS systems in homoge-
neous cloud providers # No # Yes

31d. The SaaS application can interoperate with other SaaS systems in heteroge-
neous clouds # No # Yes

32. How open are the APIs used to develop the application?*
Open APIs are publicly available while closed(proprietary) APIs are private
that implies that interfaces are only exposed to internal developers. Using
open APIs increases level of interoperability.
The application only uses proprietary APIs

The application uses more proprietary APIs than open APIs

The application uses proprietary APIs as open APIs

The application uses more open APIs than proprietary APIs

The application only uses open APIs

33. Does the SaaS application any standardized APIs to allow its integration in
third applications?*
A high interoperability level needs that the SaaS application offers a high
standardized API. The API shoud specify how data are exchanged and how
services are invoked. An API will be highly standardized if it can allow
dynamic service discovery and dynamic service invocation.
The application doesn’t offer any API and can only be used by the final

users

The application offers APIs which are not standardized

The application offers APIs which are slightly standardized application
offers standardized APIs that allows semi-automatic interoperability

The application offers highly standardized APIs that allows automatic in-
teroperability

APPENDIX . SELF- EVALUATION TOOL FOR SAAS APPLICATIONS 61

34. How easy is the substitution of the used APIs by other APIs?*
Easy substitution of used APIs shows how interoperable is an application.
Not all easy

Slightly easy

Moderately easy

Very easy

Extremely easy

35. Does the SaaS application capable to be run on multiple disparate cloud
providers?*
A SaaS application that can run on multiple cloud providers need a high
level of interoperability. Indeed, components need to interoperate to
achieve their tasks. This indicates the degree of internal interoperability.
My application can only run on only one cloud provider and uses re-

sources from one cloud provider

My application can only run on only one cloud provider and uses re-
sources from heterogenous cloud providers

My application can run on multiple disparate cloud providers but uses
resources from one cloud provider

My application can run on multiple disparate cloud providers but uses
resources from homogenous cloud providers

My application can run on multiple disparate cloud providers and uses
resources from heterogenous cloud providers

36. How is it easy to subsitute a service needed by the SaaS application by an-
other one from another SaaS provider?*
SaaS applications offers their functionalities by combining services. As a
SaaS provider, you can support yourself all the services needed by your ap-
plication or you can invoke services from other SaaS providers. To be able
to substitute easily each service by using services from other SaaS providers
demonstrates a high level of interoperability.
Such case has never been met

Not all easy

Slightly easy

Moderately easy

Very easy

APPENDIX . SELF- EVALUATION TOOL FOR SAAS APPLICATIONS 62

37. How standardized are data exchange formats to allow dynamic interoper-
ability with random SaaS provider?*
To ease dynamic interoperability between SaaS providers, data must be in
standardized formats.
Data formats have to be fully modified and automatic data exchange is

impossible to achieve

Data formats have to be partially modified and automatic data exchange
is hard to achieve

Data formats have to be less modified to allow semi-automatic data ex-
change

Data formats do not need to be modified and semi-automatic data ex-
change is possible

Data formats do not need to be modified and fully automatic data ex-
change is possible

Interoperability level*

38a. The SaaS application can easily exchange information with other SaaS ap-
plications # No # Yes

38b. The SaaS application supports many interoperability protocols and pro-
gramming languages # No # Yes

38c. The SaaS application offers a well standardized API to allow integration in
different systems # No # Yes

38d. The SaaS application only uses standardized and open APIs # No #
Yes

39. Does the SaaS application offer APIs for allowing easy integration into
third applications?*
No

Yes

Bibliography

[1] Evaluation Thesaurus. SAGE Publications, 1991.

[2] Software engineering. Pearson, March 2010.

[3] Asheesh Chaddha A V Parameswaran. Cloud interoperability and standardiza-
tion. SETLabs Briefings, 7(7), 2009.

[4] Marjan Gusev Aleksandar Bahtovski. Analysis of cloud portability. The 10th
Conference for Informatics and Information Technology (CIIT 2013), 2013.

[5] Johannes Lipsky Stefan Tai Philipp Offermann Alexander Lenk, Michael Menzel.
What are you paying for? performance benchmarking for infrastructure-as-a-
service offerings. Conference paper, January 2011.

[6] Marvin C. Alkin. Debates on evaluation. Newbury Park, Sage publications, 1990.

[7] Robert Benefield. Agile deployment: Lean service management and deployment
strategies for the saas enterprise. Proceedings of the 42nd Hawaii International Con-
ference on System Sciences, 2009.

[8] Robert Benefield. Aized amin soofi, m. irfan khan, ramzan talib, umer sarwar.
International Journal of Computer Science and Mobile Computing, March 2014.

[9] Lily Sun Chekfoung Tan, Kecheng Liu1. A design of evaluation method for saas
in cloud computing. OmniaScience Journal of Industrial Engineering and manage-
ment, February 2013.

[10] VNI Cisco. Forecast and methodology, 2013–2018.(2014).

[11] John W Creswell. Research design : Qualitative, quantitative, and mixed methods
approaches. Sage publication, 2013.

[12] Athanasios V. Vasilakos Dana Petcu. Portability in clouds : Approaches and
research opportunities. Scalable computing : practice and experience, 2014.

[13] DOINA DANAIATA and CALIN HURBEAN. Saas–better solution for small and
medium-sized enterprises. Environment, 15(8.03):6–16, 2010.

[14] Plamena Zlateva Dimiter Velev. A feasibility analysis of emergency management
with cloud computing integration. International Journal of Innovation, Management
and Technology, April 2012.

63

BIBLIOGRAPHY 64

[15] Mohammad Douglah. Developing a concept of extension program evaluation.
Series G3658-7. University of Wisconsin-Extension, 1998.

[16] Dimitrios Kourtesis Fotis Gonidis, Iraklis Paraskakis. Addressing the challenge
of application portability in cloud platforms. 7th South-East European Doctoral
Student Conference, 2012.

[17] Dimitrios Kourtesis Anthony J. H. Simons Fotis Gonidis, Iraklis Paraskakis.
Cloud application portability: An initial view. Proceedings of the 6th Balkan Con-
ference in Informatics, ser. BCI ’13, 2013.

[18] P.JhansiRani Gangalam Swathi, M Vamshi Krishna. Survey on cloud computing
services and portability. IPASJ International Journal of Computer Science (IIJCS),
May 2014.

[19] Joe O’Hara Gerry McNamara. The importance of the concept of self-evaluation
in the changing landscape of education policy. Studies in Educational Evaluation,
2008.

[20] V.Sreenivas K.Bhavya, K.Yamini. Cloud services portability for secure migration.
International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4,
April 2013.

[21] Won Kim. Cloud computing: Today and tomorrow. Journal of object technology,
January-February 2009.

[22] Cheng J. C. McGibbney L. Kumar, B. Cloud computing and its implications for
construction it. Proceedings of the international conference in computing in civil and
building engineering, 2010.

[23] Sasko Ristov Kiril Kiroski Magdalena Kostoska, Marjan Gusev. Cloud com-
puting interoperability approaches – possibilities and challenges. In BCI(Local),
2012.

[24] Rean Griffith Anthony D. Joseph Randy Katz Andy Konwinski Gunho Lee
David Patterson Ariel Rabkin Ion Stoica Michael Armbrust, Armando Fox and
Matei Zaharia. Above the clouds: A berkeley view of cloud computing. UC
Berkeley Reliable Adaptive Distributed Systems Laboratory, February 10, 2009.

[25] National Institute of Standards and Technology. Nist cloud computing standards
roadmap. Technical report, U. S. Department of Commerce, July 2013.

[26] Yashwant K. Malaiya Omar H. Alhazmi. Evaluating disaster recovery plans us-
ing the cloud. IEEE, 2013.

[27] Oracle. Oracle crm on demand. available on
http://www.oracle.com/us/products/applications/crmondemand/index.html.

[28] INC RACKSPACE US. Software as a service perceptions survey. Available on
http://c1776742.cdn.cloudfiles.rackspacecloud.com/downloads/surveys/SaaSSurvey.pdf,
March 2007.

BIBLIOGRAPHY 65

[29] Srikumar Venugopal James Broberg Ivona Brandic Rajkumar Buyya, Chee
Shin Yeo. Cloud computing and emerging it platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation Computer Systems,
December 2008.

[30] Bahman Rashidi, Mohsen Sharifi, and Talieh Jafari. A survey on interoperability
in the cloud computing environments. International Journal of Modern Education
and Computer Science (IJMECS), 5(6):17, 2013.

[31] Sai Peck Lee Zeinab Shams Aliee Reza Rezaei, Thiam Kian Chiew. A semantic
interoperability framework for software as a service systems in cloud computing
environments. Expert Systems with Applications 41 (2014) 5751–5770, 2014.

[32] Mikko Rönkkö Tuomas Mäkilä, Antero Järvi and Jussi Nissilä. How to define
software-as-a-service – an empirical study of finnish saas providers. First Inter-
national Conference, ICSOB 2010, June 2010.

[33] O. Williamson. The economic institutions of capitalism: firms, markets, rela-
tional contracting. Free Press, New York, 1998.

	Introduction
	Software as a Service and Self-evaluation
	Software as a Service : definition
	Software as a Service : actors
	Self-Evaluation of SaaS applications
	Choice of criteria

	Portability
	Portability issues
	Portability management
	Application portability
	Data portability

	Availability
	Availability level
	Redundancy
	Backup
	Monitoring
	Disaster recovery plan

	Interoperability
	Interoperability management
	Interoperability scenarios
	Syntactic interoperability
	Semantic interoperability
	Application programming interface(API)

	Tool
	Methodology
	Questionnaire design and scoring
	Online survey tools discussion
	Typology and Discussion

	Conclusion
	Self- evaluation tool for SaaS applications
	Bibliography

