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Preface		

Kivu,	the	Heart	of	the	Wonderland	of	Eastern	Congo	

When	you	think	of	Kivu,	think	of	a	vast	land	embellished	by	large	lakes,	rivers	and	streams;	

active,	sleeping	and	dead	volcanoes	(“Virunga”);	mountains	(Rwenzori	or	the	“Mountains	of	

the	Moon”,	 the	Mitumba	mountain	chains,	etc.),	cascading	hills,	plateau	and	escarpments;	

valleys	and	ravines;	 forests	and	savannahs;	unusual	high	biodiversity	density	(among	the	

highest,	 if	 not	 the	 highest	 on	 Earth)	 both	 for	 human	 (lots	 of	 tribes	 and	 clans)	 and	 non‐

human	 (plant	 and	 animal	 species),	 etc.,	 dwelling	 on	 a	 seldom	mineral‐rich	 underground.	

This	 is	 a	 land	 where	 life	 has	 learned	 to	 coexist	 with	 the	 fury	 of	 the	 Earth	 made	 of	 a	

continuously	 threatening	 and	 hazardous	 environment,	 fortunately	 softened	 by	 a	

marvellous	and	fertile	landscape.	

The	literature	is	full	of	romantic	stories	from	contemplators	and	travellers	which	illustrate	

the	wonderful	features	of	the	Kivu	highland	region	as	quoted	below:	

“From	the	southern	end	of	the	lake	a	dull‐red	glare	in	the	night	sky	became	stronger	as	they	

(Ndlr,	 Sir	 Alfred	 Sharpe	 and	 Hon.	Mountstuart	 Elphinstone)	went	 north	 and	 there	were	

dense	black	clouds	by	day	in	the	same	direction.	From	Bobandana,	at	the	north‐west	corner	

of	the	lake,	a	splendid	view	was	obtained	of	the	erupting	volcano	seven	miles	away,	[….].	A	

broad,	 swift	 river	 of	 lava	 flowing	 into	 the	 Kabino	 [Ndlr	 Kabuno	 bay]	 inlet	 of	 Lake	 Kivu,	

three	miles	 from	the	volcano	(Ndlr,	Nyamulagira).	The	water	 in	 that	part	of	 the	 lake	was	

heated	to	boiling	point….Thousands	of	dead	fish	were	floating	in	the	northern	end	of	Lake	

Kivu.	Twelve	miles	from	the	volcano	the	water	was	too	hot	to	bathe	in.	For	miles	the	land	

was	black,	with	no	green	leaf	or	blade	to	be	seen,	and	many	dead	birds	and	small	mammals	

were	found,	evidently	killed	by	the	showers	of	volcanic	material.	Hundreds	of	natives	were	

killed.	The	eruption	was	audible	at	Beni	140	miles	away	to	the	north,	and	at	Bukoba	(Ndlr,	

Tanzania),	on	the	Victoria‐Nyanza,	190	miles	East,	while	ashes	fell	heavily	for	two	days	at	

Walikali	(Ndlr,	Walikale),	in	the	Congo	forest,	100	miles	to	the	West”	(In:	A	new	volcano	in	

the	Kivu	Country,	Nature	30,	1916).	

….	



 

“I	spent	six	weeks	of	a	really	hard	work	hunting	gorillas	between	the	volcanoes	of	Mikeno	

and	 Karisimbi	 and	 chasing	 chimpanzees	 in	 the	 bamboo‐covered	 ravines	 of	 the	 Bugoie	

[Ndlr,	Bugoyi]	Forest,	after	which	I	was	glad	enough	to	rejoin	my	wife,	whom	I	had	left	at	

Kisenyies	[Ndlr,	Gisenyi].	As	this	place	is	one	of	the	loveliest	spots	in	Africa,	both	as	regards	

to	climate	and	scenery,	where	 the	 lotus	 life”	 is	 really	possible,	 I	 found	my	wife	had	been	

really	enjoying	herself	in	my	absence”	(Round	Lake	Kivu‐Rwakataraka	and	the	fairy	forest	

of	 Rugega,	 In:	 Barns,	 T.A.,	 Across	 the	 Great	 Craterland	 to	 the	 Congo,	 Salzwasser	 Verlag,	

1923).	

According	 to	 the	 local	 culture	 legend,	 the	 space	 occupied	 by	 Lake	 Kivuwas	 originally	 a	

wonderful	land	before	a	cataclism	occurred	ordered	by	God	to	punish	human	indiscretion	

[Pagès	 	 ,	 In	Ruanda,	 sur	 les	 bords	 du	 lac	Kivou	 (Congo),	 Ethnologie,	Histoire	 et	Religion,	

1933]	

That	is	a	briefing	welcome	to	the	complex	environmental	settings	of	the	lake	studied	in	this	

thesis.	

 



 

« La patience est amère mais son fruit est délicieux ». 
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Summary 

The conservation of Great Lakes for sustainable ecosystem service benefits has become an 

important research question. Lakes can be sensitive to climate variability and changes as well as 

human intervention. Perturbations of a lake’s hydrology affect the limnology and 

biogeochemical cycles and induce important consequences on the ecosystem functioning. This 

thesis analyzed the recent hydrological records of Lake Kivu in relationship to meteorological 

variation as well as the dynamics of particulate organic matter (POM) cycling with focus on 

sources, vertical export and fate, and paleolimnological significance. Lake Kivu is better known 

due to its enormous and hazardous dissolved gases (CO2 + CH4). The important CH4 resource is 

biogeochemically produced at the water-sediment interface under anoxic conditions thanks to 

methanogenic bacteria by two pathways: (1) the reduction of geogenic CO2 (~2/3) in which OM 

may serve as electron donor, and (2) by OM fermentation (~1/3). 

The water level of Lake Kivu was estimated based on an extensive precipitation dataset using a 

relatively simple water balance model for both the catchment and the lake. For the time period 

with a good availability of rainfall data, the predicted water levels as well as their seasonal 

variation agreed well with observations, indicating that the observed variations in the water level 

were mainly driven by the variation in precipitation. The lack of rainfall data after 1991 seriously 

impaired the predictive capability of the model. This highlights the importance of hydrometric 

and meteorological monitoring data for reconstructing the lake water balance of East African 

Great lakes. The construction of a hydropower dam at the outlet at the end of 1950s did not show 

any clear effect on the lake water level dynamics, whereas a modification of the outlet in 1977 

seems to have induced some interannual variability in the lake levels. 

The subaquatic groundwater system is an important hydrological component for this Rift Lake in 

terms of water, dissolved solid and heat inputs beneath the lake surface sustaining the permanent 

lake stratification and nutrient uplift to the mixolimnion from the deep waters. The nutrients 

made available by internal loading feed the phytoplankton growth. Prior to this work, little was 

known about the decaying POM, the relative importance of its export and its fate into the 

monimolimnion as well as on how the presence of organic molecules and the elemental/stable 

isotope signatures in sedimentary material can be interpreted to reconstruct the historical records 
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of the lake productivity, the origin and preservation of POM, the phytoplankton community 

structure, nutrient cycling and mixing regime. 

Organic matter (OM) in Lake Kivu is essentially autochthonous as evidenced by stable isotopes 

and molecular biomarkers. Its production and sedimentation fluxes are highly seasonal. They 

depend on the mixing status of the water column. Most of the pigment degradation occurs 

between 30 and 60 m water depth. The particulate organic carbon export to the monimolimnion 

is closer to 6% of the primary production indicating a high conversion rate of POM into 

dissolved organic matter and thus an efficient recycling of nutrients within the mixolimnion.  

Some phytoplankton pigments such as lutein, alloxanthin and zeaxanthin were preserved 

throughout the water column and within the sediment archives suggesting that they are good 

paleolimnological proxies for tracing the history of phytoplankton group distribution in the lake. 

However peridinin, fucoxanthin and diadinoxanthin were completely degraded prior to 

settlement. This study also showed that Lake Kivu underwent alternating periods of high and low 

productivity caused by nutrient availability changes forced by subaquatic groundwater dynamics. 

An intermittent dynamics of carbonate was also observed. Periods of organic carbon-rich 

sediment accumulation characterized by low carbonate concentrations alternated with periods of 

low to moderate carbon concentrations and high carbonate preservation. A high carbonate flux to 

the monimolimnion occurred during periods with strong stratification. The low carbonate content 

in organic-rich sediments was interpreted as a consequence of re-dissolution caused by 

acidogenesis during diagenetic sedimentary OM fermentation. 
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Résumé 

La conservation de grands lacs dans le but de pérenniser leurs services écologiques est devenue 

une question importante de recherche. Les lacs peuvent être sensibles aux variations et 

changements climatiques ainsi qu’aux modifications imposées par l’homme. Les perturbations 

hydrologiques d’un lac affectent sa limnologie et ses cycles biogéochimiques, pouvant conduire 

à des conséquences notables dans son fonctionnement en tant qu’écosystème. Cette thèse analyse 

les données hydrologiques récentes du lac Kivu en relation avec les variations météorologiques  

de son bassin versant. Elle étudie en plus la dynamique du cycle de la matière organique 

particulaire en se focalisant sur ses sources, son transport vertical et son devenir lors de la 

sédimentation, ainsi que son importance dans la reconstruction de l’histoire du lac Kivu. Le lac 

Kivu est mieux connu grace à son enorme contenu en gas dissous (CO2 + CH4). Cette importante 

resource en CH4 est produite biogéochimiquement par des bactéries méthanogènes en milieu 

anaerobique suivant deux voies a savoir : (1) la reduction du CO2 géogénique (~2/3) pouvant 

utiliser la matière organique comme donneur d’électron et (2) la fermentation de celle-ci (~1/3). 

Le niveau d’eau du lac Kivu a été reconstitué sur base d’une importante base de données de 

précipitations en utilisant un modèle mathématique simple de bilan d’eau aussi bien pour le 

bassin versant que pour le lac lui-même. Pour la période avec une bonne couverture par de 

données de pluies, les niveaux d’eau calculés ainsi que leur variation saisonnière ont reflété les 

observations enregistrées sur le terrain ; ce qui signifie que les variations observées dans les 

niveaux d’eau du lac étaient essentiellement liées aux variations des précipitations. Le manque 

de données pour la période d’après 1991 a sérieusement impacté la capacité du modèle à prédire 

les niveaux d’eau du lac. Ceci démontre sans équivoque la nécessité d’un monitoring 

hydrométrique et météorologique du lac et du bassin versant afin d’améliorer la précision des 

estimations de bilan hydrique des Grands lacs de l’Afrique de l’Est. La construction d’un barrage 

hydroélectrique à l’exutoire du lac à la fin des années 1950 n’a pas eu d’effet manifeste sur la 

dynamique du niveau d’eau du lac. Cependant la modification apportée à la morphologie de 

l’exutoire en 1977 semble avoir induit une certaine variabilité interannuelle des niveaux d’eau. 

Le système d’eaux souterraines subaquatiques est une composante importante de l’hydrologie de 

ce lac du Rift en termes d’apports en eau, en sels dissous et en chaleur injectés en dessous de la 

surface du lac permettant ainsi une stratification permanente du lac et un flux ascendant de 
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nutriments en provenance des eaux profondes vers le mixolimnion. Ces nutriments apportés par 

une recharge interne des eaux de surface stimulent la croissance du phytoplancton. Bien avant 

cette étude, relativement peu d’informations étaient connues à propos du devenir de la matière 

organique particulaire, ni sur l’importance de son exportation vers les eaux profondes 

comparativement à la production primaire, lors de la sédimentation dans la colonne d’eau et de la 

formation des dépôts sédimentaires. Rien n’était connu non plus sur la signification 

paléolimnologique de différentes archives sédimentaires, comme les  molécules organiques 

préservées dans les sédiments et les signatures isotopiques et élémentaires. Ces « proxies » 

peuvent donner des informations sur  les changements de productivité, de composition de la 

communauté phytoplanctonique, ainsi que sur l’origine et la préservation de la matière 

organique, le cycle des nutriments et le régime de mélange des eaux. 

Ainsi que l’indiquent des biomarqueurs isotopiques et moléculaires, la matière organique du lac 

Kivu est essentiellement d’origine autochtone . Sa production et son accumulation dans les eaux 

profondes varient en fonction des saisons, qui déterminent les alternances de périodes. de 

mélange et de stratification de la partie supérieure, oxique, de la colonne d’eau, appelée 

mixolimnion. Des mesures de pigments phytoplanctoniques, dont la chlorophylle a et ses 

dérivés,  montrent qu’une dégradation importante se produit sous la zone photique, entre 30 m et 

60 m de profondeur. L’analyse de la matière organique dans des trappes à sédiments disposés 

sous le mixolimnion suggère que le flux de carbone vers les sédiments représente environ 6% de 

la production primaire. Ceci suggère qu’une fraction majeure de la matière organique produite 

par le plancton de la zone pélagique est recyclée dans le mixolimnion par les microorganismes 

hétérotrophes.  

L’analyse de la matière particulaire accumulée dans les trappes montre une bonne préservation 

des pigments caroténoïdes du phytoplancton. Ainsi, la lutéine, l’alloxanthine et la zéaxanthine 

sont bien préservés dans la colonne d’eau et dans les sédiments, indiquant leur potentiel en tant 

qu’outils paléolimnologiques utilisables comme traceurs des modification de la composition du 

phytoplancton du lac au cours du temps. D’autres pigments comme la péridinine, la fucoxanthine 

et la diadinoxanthine, présents dans les trappes, ne sont pas retrouvés dans les sédiments, suite à 

leur dégradation au cours de la sédimentation dans les eaux profondes ou à la surface du 

sédiment. Les différents marqueurs paléolimnologiques étudiés montrent que le lac Kivu a 
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présenté, au cours de l’Holocène, des variations de  productivité, résultant de changements de 

disponibilité de nutriments. Une variation dans l’accumulation des carbonates dans les sédiments 

est  aussi observée. Des périodes d’accumulation de sédiments riches en carbone organique mais 

pauvres en carbonates alternent avec des périodes de concentrations plus faibles de carbone 

organique mais beaucoup plus riches en carbonates. Il est possible qu’une forte déposition de 

carbonates dans le monimolimnion se soit produite pendant des périodes de forte stratification. 

La faible concentration en carbonate de la strate sédimentaire tres riche en carbone organique 

était interprétée comme une conséquence de la re-dissolution provoquée par l’apparition d’une 

acidité relativement forte due à la fermentation, lors de la diagenèse, de l’abondante matière 

organique enfouie dans les sédiments. 
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Chapter 1. General introduction 

 

1.1. Overview 

The present thesis addresses recent changes in the hydrology and the biogeochemistry of Lake 

Kivu, a lake with many exceptional properties located in the East African rift. Several topical 

studies indicated significant recent changes in this lake which had been previously thought to be 

in a near-steady state, where important alterations in the biogeochemistry would occur only on 

time scales of centuries or longer. The reasons for these changes have been widely discussed, but 

the complexity of the system, concurrent alterations in different external factors such as climate, 

population growth, and the introduction of an alien fish species, as well as the lack of long-term 

data despite large efforts made in the past decades, make it difficult to draw definite conclusions 

on the causes and the extent and importance of the observed changes. The present thesis aims at 

shedding light on some aspects of these changes and their causes. In the following sections, first 

Lake Kivu and its special properties are described, followed by a general introduction on the 

hydrology of East African lakes and of the proxies used in the present to assess recent changes in 

the biogeochemistry of Lake Kivu. 

 

1.2. Geological settings, limnology and biogeochemistry of Lake Kivu 

1.2.1 Geology and hydrology 

The East African great lakes are located in the vast East African Rift System (EARS, ~4.5x106 

km2; Hall and Diggens, 2011) which consists of two branches, namely the Western Branch, 

known as Albertine Rift (e.g., Lakes Albert, Edward, Kivu, Tanganyika) and the Eastern Branch, 

called Gregory Rift (e.g., Lakes Victoria, Turkana and Malawi/Nyassa). In this region, intense 

tectonism and volcanism have led to land depressions, geological thrusts and terrain subsidence. 

The resulting depressions were filled by water from precipitation and runoff exceeding 

evaporation (Sene and Plinston 1994; Bergonzini, 1998; Crétaux et al., 2011). The region 

harbors the largest and deepest lakes in Africa and some of the most important in the world.  
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The hydrological regime of these lakes is determined by the local climatic conditions which are 

marked by alternating wet and dry seasons (Becker et al., 2010). Modern East African lakes are 

open lakes with considerable outflow. Fluctuations in the lake water volume reflect changes of 

precipitation to evaporation over the lakes’ surfaces and their catchments, meaning that these 

fluctuations may serve as indicators of a lake’s sensitivity to past and present climate changes at 

local and regional scales (Becker et al. 2010).  

The hydrogeology of rift lakes is often complex due to the potential influence of faults and 

porous volcanic and volcanoclastic media on groundwater (Olaka 2011). Stream flow infiltration 

is common in rift region, and other rivers in the catchment disappear and reappear along their 

course to the lakes (Olaka 2011). 

Specifically for Lake Kivu, the most elevated lake of the African rift (1460 m a.s.l.; 2370 km2 of 

area; 485 of maximum depth), the water balance components include rainfall, runoff (made of a 

hundred of small rivers and streams, Muvundja et al. 2009) and subaquatic groundwater 

discharge (SGD) as inputs, and evaporation and outflow as outputs (Bergonzini 1998; Schmid 

and Wüest 2012; this thesis, chap. 2). The Ruzizi River is the outflow (2.7 km3 yr-1; this thesis, 

chap. 2) and links the lake to Lake Tanganyika southward (~30% of the total inflow to Lake 

Tanganyika;Vandelannoote et al. 1999). Subaquatic water inputs (1.3 km3 yr-1, Schmid et al., 

2005), heat and salt inputs (Schmid et al., 2005) from groundwater sources to the 

monimolimnion play an important role in the thermohaline stratification (Damas, 1937; Degens 

et al., 1973) of this volcanic lake and therefore in its chemistry and microbiology (Schmid et al., 

2005; Pasche et al., 2009; Schmid and Wüest, 2012; Bhattarai et al., 2012; Llirós et al., 2012; 

Ross et al., 2015a) making it a unique and fascinating crenogenic lake for limnologists and 

biogeochemists. 

1.2.2. Limnology 

Lake Kivu is meromictic with a mixolimnion down to ~60 m and an anoxic monimolimnion 

(Fig. 1, Schmid et al., 2004, 2005; Sarmento et al., 2006, Isumbisho et al., 2006) rich in 

dissolved CO2 (~300 km3, STP) and CH4 (~60 km3, STP) (Schmitz and Kufferath, 1955; Capart 

and Kufferath, 1956; Tietze et al., 1980; Schmid et al., 2004, 2005; Wüest et al. 2012). As in 

other African great lakes, internal loading has been found to be the most prominent factor of the 
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nutrient fluxes sustaining primary production in the epilimnion (Hecky and Kilham, 1988; 

Kilham and Kilham, 1990; Muvundja et al., 2009; Pasche et al., 2012). In Lake Kivu, an 

important subaquatic groundwater discharge (SGD), which consists of hot and cold waters 

depending of the inflow depths (Ross et al., 2014), drives a slow upwelling which entrains 

nutrients towards the mixolimnion (Schmid et al. 2010; Schmid and Wüest, 2012; Carpenter et 

al., 2012; Ross et al., 2015a). The SGD is also the main source of salts, CO2 and heat to the deep 

waters and is the cause for the permenent thermohaline stratification in the lake. 

 

 

Figure 1. Vertical profiles of temperature (T), salinity (S), and dissolved gas concentrations in Lake Kivu 
(from Schmid et al., 2005) 

 

The permanent thermohaline stratification allowed the accumulation of the dissolved gases (CO2, 

CH4, H2S, etc.) in the monimolimnion. The residence time of methane in the lake has been 

estimated at ~800 yrs (Schmid et al., 2005). Two thirds of the methane originate from the 

microbial reduction of geogenic CO2 while the remaining part is produced from organic matter 

fermentation via acetoclastic methanogenesis (Tietze et al., 1980; Schoell et al., 1988; Pasche et 

al., 2011). Recently, Pasche et al. (2011) estimated the CH4 formation rate to 72 g C m-2 yr-1 or 
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0.27 km3 yr-1 and the net accumulation to 0.14 km3 yr-1(which represents 50% of the annually 

formed CH4), or 0.2% of the total methane reservoir of the lake (Wüest et al., 2012). The major 

sink of CH4 was found to be aerobic oxidation by methanotrophs (Jannasch et al., 1975; Pache et 

al., 2011) 

The ongoing plans for methane resource exploitation for power production are believed to be the 

most convenient way of dealing with the potential natural hazards borne by this gas 

accumulation within the lake towards saturation (Schmid et al., 2004, 2005; Tietze, 2007; Wüest 

et al., 2009, 2012) because the pending threat to human population can be avoided and wealth 

generated meanwhile, if proper extraction management practices are applied. 

Compared to other East African lakes, Lake Kivu’s flora and fauna are poorly diversified 

(Cunnington, 1920; Verbeke, 1957; Isumbisho et al., 2006; Sarmento et al., 2007, 2008; Snoeks 

et al., 2012). Massive fish extinctions are believed to have occurred in the lake several times in 

past geological times (Haberyan and Hecky, 1987; Verheyen et al., 2003). 

In total only 42 taxa of pelagic phytoplankton were recorded in the lake flora: 14 taxa for 

cyanobacteria, 3 for Cryptophyceae, 3 for Dinophyceae, 7 for Bacillariophyceae, 1 for 

Chrysophyceae, 7 for Chlorophyceae, 3 for Trebouxiophyceae and 4 for Charophyceae 

(Sarmento et al., 2008). The most common phytoplankton taxa in Lake Kivu are the pennate 

diatoms Nitzschia baccata and Fragilaria danica and the cyanobacteria Planktonlyngbya 

limnetica and Synechococcus sp. (Sarmento et al., 2008). Near the surface under stratified 

conditions, some development of the centric diatom Urosolenia sp. and the cyanobacterium 

Microcystis sp. has been reported by Sarmento et al. (2008). Vertical stratification seemed to be 

the most important factor driving taxonomic and functional diversity in the phytoplankton of 

Lake Kivu.  

The phytoplankton community in Lake Kivu is dominated by diatoms, cryptophytes, 

chrysophytes, chlorophytes, cyanophytes and dinoflagellates (Fig. 2 A&B; Sarmento et al., 2012; 

Darchambeau et al., 2014). The interannual fluctuation of the lake surface water mixing regime 

(Fig. 2C) and nutrient upwelling (Pasche et al., 2012), that of the euphotic zone (Fig. 2D) and 

light penetration (Fig. 2 E) are linked to that of the algal production (Fig. 2F). Seasonality is 

clearly expressed in algal specific dominance: Diatoms are favored by the dry season (June to 
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September) with a maximum specific photosynthetic rate of 7.21 g C g Chla−1h−1, and 

cyanobacteria by the rainy season (September to June) with a maximum specific photosynthetic 

rate of 1.13 g C g Chla−1h−1 (Darchambeau et al., 2014).  

Heterotrophic bacteria (HB) and photosynthetic picoplankton (PPP) cell numbers were found to 

be always high in the mixolimnion but PPP concentrations (105 cell. ml-1) were higher than HB 

(Sarmento et al., 2006). Stenuite et al. (2009) reported that the contribution of bacterial 

production by HB to the particulate matter in the top 60 m of Lake Tanganyika was equivalent to 

93-735 mg C m-2 day-1 compared to 150-1687 mg C m-2 day-1 for photosynthetic production. For 

Lake Kivu, the mean bacterial production was estimated to 336 mg C m-2 day-1 (Llirós et al., 

2012) against 620 mg C m-2 day-1 of photosynthesis (Sarmento et al., 2012; Darchambeau et al., 

2014). Morana et al. (2014a) estimated that in Lake Kivu, the bacterial carbon demand should 

range between 1680 mg C m-2 d-1 and 3360 mg C m-2 d-1 against 1550-3100 mg C m-2 d-1 for 

Lake Tanganyika.  

Three populations of picocyanobacteria were identified by Sarmento et al. (2006) namely: 

Synechococcus and two other colonial categories. The Synechococcus biomass in the euphotic 

zone (from the surface to 15-18 m depth) was estimated to 24.7 mg C m-3 whereas the mean HB 

biomass in the same zone was 31.5 mg C m-3 corresponding (Sarmento et al., 2006). 

Previous studies (Damas, 1937; Verbeke, 1957; Dumont, 1986; Isumbisho et al., 2006) revealed 

also a low diversity of zooplankton species. Current mesozooplankton is dominated by cyclopoid 

copepods (Thermocyclops consimilis, Mesocyclops aequatorialis and Tropocyclops confinis) but 

cladocerans and rotifers are also present (Isumbisho et al., 2006). The seasonal dynamics closely 

responds to variations of chlorophyll a concentrations and to the dry season phytoplankton peak 

(Darchambeau et al., 2012). The mean annual production rate of crustaceans was estimated to 23 

g C m-2 yr-1 which represents a trophic transfer efficiency of 6.8% between phytoplankton and 

zooplankton grazers (Darchambeau et al., 2012).  
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Figure 2. Interannual variation of phytoplankton biomass and production and of some physical parameters 
relevant for primary production in Lake Kivu (from Darchambeau et al., 2014): (A) Vertical distribution 
of phytoplankton biomass (Chlorophyll a, mg m−3), (B) areal chlorophyll a concentrations and biomass 
composition from marker pigment analysis,(C) depth of the mixed layer, (D) depth of the euphotic layer, 
(E) average light in the mixed layer, (F) daily depth-integrated primary production with photosynthetic 
parameters. The gray boxes identify the main dry season periods. 
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1.3. Geochemistry of organic matter in aquatic environments 

1.3.1. Organic matter cycling  

The distributions of major chemical elements C, N, S, P and O between living and non-living 

organic matter are linked to various inorganic reservoirs by dynamic biogeochemical cycles 

(Pantoja and Wakeham 2000). In aquatic environments, primary organic matter is biosynthesized 

from inorganic nutrients by phytoplankton, using light as the major energy source via 

photosynthesis.  

The photosynthetic reactions generating aquatic OM differ from those of terrestrial OM because 

the proportions of C, N, S and P in aquatic algae are different from those of land plants 

(Mackenzie 1999). The ratio C:N:S:P in marine algae, known as the Redfield ratio is 

106:16:1.7:1 (Redfield, 1963). In lakes, this ratio is known to vary significantly as a function of 

the nutrient status of the ecosystem (Guildford and Hecky 2000). In comparison, the C:N:S:P 

ratio for terrestrial plants averages 882:9:6:1 and is even more variable (Mackenzie, 1999). Land 

plants have higher carbon content because a larger fraction of their OM consists of carbohydrates 

rather than proteins. 

The generalized photosynthesis equation for higher plants where the electron donor is H2O is: 

CO2 + H2O+ hν => CH2O + O2   (1) 

The chemical composition of marine phytoplankton can be expressed by the formula: 

(CH2O)106(NH3)16(H3PO4). Dead phytoplankton decays by reacting with O2 in oxygenated 

environments to yield carbon dioxide, nitric acid, phosphoric acid and water: 

(CH2O)106(NH3)16(H3PO4) + 138O2 => 106CO2 + 16HNO3 + H3PO4 + 122H2O (2) 

 The respiration and decay of phytoplankton by bacteria in anoxic environments requires 

other electron acceptors such as SO4
2- . Therefore equation (2) becomes: 

(CH2O)106(NH3)16(H3PO4) + 53SO4
2- => 106CO2 + 16HNO3 + H3PO4 +53S2- + 106H2O  (3)  

Thus anoxic environments in meromictic lakes experience an accumulation of sulfide in case of 

low iron concentrations. Apart from these autochthonous sources of OM, aquatic ecosystems 
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may receive other organic inputs from their catchment (allochthonous sources). In aquatic 

ecosystems where respiration exceeds autochthonous gross primary production, net heterotrophy 

can be sustained only if aquatic respiration is subsidized by organic material from the terrestrial 

environment (Cole and Caraco, 2001). 

Allochthonous sources of OM are composed of terrestrial plant detritus, soil humic substances 

and anthropogenic inputs whereas autochthonous sources consist of algal biomass which is 

biosynthesized from inorganic nutrients using light as the major source of energy (Wetzel, 2001). 

The resulting particulate organic matter (POM) is either consumed by various consumers 

(zooplankton in lakes, as well as various grazers) or decomposed by heterotrophic bacteria, 

yielding secondary production of OM (Legendre 1999; De La Rocha and Passow, 2007). 

Grazing, excretion, cell lysis and enzymatic hydrolysis of cellular material convert an important 

fraction of POM to the dissolved organic matter (DOM) pool (Pantoja and Wakeham, 2000; 

Morana et al. 2014b).  

A fraction of the DOM and POM is embedded in the refractory phase depending on the 

environment but a significant fraction feeds the microbial loop involving heterotrophic bacteria 

and protozoa (Sarmento, 2012; Alcocer et al., 2014). Furthermore a fraction of POM is not 

grazed by zooplankton and is only slightly altered by chemical processes during its sinking 

process as it aggregates and coagulates (De La Rocha and Passow, 2007). Therefore OM 

undergoes other chemical reactions such as hydrolysis, rearrangement, demetalation, oxidation, 

precipitation and complexation as well as photo-oxidation (Reuss, 2005).  
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Table 1. Nutrient biogeochemical processes and involved organisms in aquatic environments (modified 
after Stolz et al., 1989) 

Nutr. Process Chemical equations (simplified) Example of organisms involved 
 CO2 fixation CO2 + H2O => CH2O + O2  Photoautotrophs: cyanobacteria, 

purple and  
green sulfur Bacteria; 
chemoautotrophs  
(S and Fe oxidizing bacteria) 
 

  Methanogenesis  CO2 + 4H2 => CH4+ 2H2O Methanogenic bacteria 
   CH3-COOH => CH4+ CO2  Methanogenic bacteria 
  Methanotrophy CH4 + 2O2 => CO2 + 2H2O  Aerobic methanotrophic bacteria
C  CH4 + SO4

2- => HCO3
- + HS- + H2O  Archaea, sulfate-reducing bacteria

   CH4 + 4Fe(OH)3 => 4Fe2+ + HCO3
- 

+3OH- +6 H2O  
Anaerobic heterotrophic bacteria

   5CH4 + 8NO3
- + 8H+ => 5CO2 + 4N2 + 

14H2O  
Crenarchaeota 

  Biodegradation 2CH2O => CO2 + CH4  Anaerobic heterotrophic bacteria
  Respiration CH2O + O2 => CO2 + H2O  Aerobic heterotrophic bacteria

  Sulfur reduction SO4
2- + 5H2 => 2HS- +4H2O  Sulfur-reducing bacteria 

S Sulfur oxidation H2S => S+ H2  Purple and green sulfur phototrophs 
   2S + 3O2 +2H2O=> 2SO4

2- + 4H+  Sulfur oxidizing bacteria 

  N2 fixation  N2 + 3H2 => 2NH3  Phototrophic bacteria,  
nitrogen-fixing heterotrophic bacteria 

 Nitrification R-NH2 + H2O => NH3 + R-OH  Nitrifying bacteria 
N  NH3+H2O => NH4

+ +OH-   
   2NH4

+ + 3O2=> 2NO2
- + 4H+ +2 H2O  Nitrifying bacteria 

   NO2
- +O2 => 2 NO3

-  Nitrifying bacteria 
   Denitrification NO2

-, NO3
- =>N2O, N2  Denitrifying bacteria 

 

These processes which are collectively known as fermentation, respiration and decomposition 

consist of different steps: hydrolysis, acidogenesis, acetogenesis and methanogenesis. These 

biodegradation processes occur throughout the water column and in the sediments.  

During the hydrolysis stage, particulates are solubilized and polymers (carbohydrates, esters, 

proteins) are split into simple molecules (monomers) which can be taken up by microbes 

(Morgenroth et al., 2002). During acidogenesis, these monomers (simple sugars, amino-acids and 

fatty acids) are converted into volatile fatty acids whereas in acetogenesis, volatile fatty acids are 

transformed into acetic acid, carbon dioxide and hydrogen (Ruel et al., 2002). Finally acetic acid 
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is converted into methane and carbon dioxide during methanogenesis, the final stage of 

anaerobic OM biodegradation (Ruel et al., 2002). These complex biochemical processes are 

mediated by a consortium of microorganisms (bacteria and archaea) specialized in transforming 

high weight organic compounds into end products of CO2 and CH4 (Table 1). 

At the water/sediment interface, OM undergoes early diagenesis during which some labile 

molecules are resuspended and redissolved into the water column where they can become subject 

to microbial uptake. Within the sediments, most OM remains associated with particles or 

adsorbed on sediment grains such as clay. Freshly deposited materials, in particular after 

sedimentation of phytoplankton blooms, often form a thin detritus layer at the water/sediment 

interface (Jorgensen, 2000). This detritus layer is a site of high microbial activity and rapid 

organic matter degradation and mineralization following a number of biogeochemical processes 

(Table 1). At the end of these processes, simple molecules, such as CO2, CH4, H2S, N2O or N2, 

etc., are formed (Table 1). CO2 is a product of various organisms which utilize fermentation, 

anaerobic or aerobic respiration to produce energy (Brock and Madigan, 1991). Methane is 

generated by methanogenic bacteria from oxidation of primary organic compounds in surface 

anoxic sediments using SO4
2-, NO3

-, FeOOH, MnO2, CO2, etc. as source of oxygen (Lovley and 

Philips, 1988; Wehrli et al., 1995; Jørgensen, 2000; Macalady and Walton-Day, 2011). It can 

also be oxidized into CO2 by methanotrophs (e.g. archaea) when it enters oxic waters. Sulfide 

[R-S-R(H), H2S, HS-, S2-] accumulation in deep stratified anoxic waters is a product of these 

degradation pathways. 

The sedimentary material remains subject to further diagenetic degradation whereas the 

refractory material is simply buried and sequestrated into the sediment mud (Alcocer et al. 2014). 

Preservation of OM in aquatic environments depends on prevailing conditions such as light 

penetration, oxic/anoxic conditions, temperature, acidity/alkalinity, salinity, mixing regime, lake 

bathymetry, etc. (Canfield, 1994; Ingalls et al., 2000; Killops and Killops, 2005; Reuss, 2005 ). 

Tropical lakes are constantly exposed to high temperatures and radiation compared to temperate 

lakes. Metabolism can be expressed in terms of metabolic potential which is regulated by 

temperature, solar irradiance and chemical reservoir (nutrients, electron acceptors, organic 

matter; Lewis, 2010). Therefore tropical lakes are considered more efficient in producing 
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phytoplankton on a similar nutrient base than temperate lakes but inefficient in cascading 

primary production to higher trophic levels (Lewis 1996). The decomposition processes such as 

microbial uptake (e.g., denitrification in deep waters) and photo-oxidation are assumed to be 

more relevant in the tropics than in the temperate regions but the scarcity of data do not allow 

any strong conclusion about any significant difference of microbial process magnitude between 

tropical and temperate lakes (Lewis, 2010; Sarmento, 2012).  

Furthermore in deep and permanently stratified tropical lakes, the rapidly sinking particulate 

matter quickly escapes aerobic mineralization due to the persistence of anoxic conditions in the 

hypolimnion (Lewis, 2010). Thus important nutrient (N and P) release occurs in deep waters 

(e.g., meromictic lakes) leading to nutrient accumulation within the hypolimnion but to less 

export to the sediments in contrast to holomictic (shallow) lakes which are easily fed in nutrients 

by seasonal complete mixing and upwelling (Bootsma and Hecky 1993; Hamblin et al. 2003). 

Internal nutrient cycling and upwelling are the main processes which supply nutrients to the 

eipilimnetic zones of most East African deep lakes such as Lakes Malawi, Tanganyika and Kivu 

(Hamblin et al. 2003; Corman et al. 2010; Pasche et al. 2012). 

1.3.2. Bulk biogeochemical proxies used in tracing organic matter dynamics in 
freshwaters 

a) Carbon, nitrogen and biogenic silica 

Different sources of organic matter have also different carbon to nitrogen ratios (Meyers, 1994; 

Meyers and Lallier-Verges, 1999). Autochthonous OM of sedimentary material in lakes are 

enriched in proteins, low molecular weight compounds rich in H and N atoms, thus, low C/N 

ratios (typically C/N<10, Meyers and Ishiwatari, 1993; Meyers, 1994; Dean, 1999). 

Allochthonous terrestrial OM is enriched in humic, high molecular weight, C-rich compounds, 

and their C/N ratios tend to be much higher with values typically comprised between 20 and 30 

(Meyers and Ishiwatari, 1993). Intermediate values of C/N may indicate either mixed sources of 

OM (Bouillon et al., 2007; Das et al., 2007; Thevenon et al., 2012) or a poor preservation due to 

advanced diagenetic degradation (authigenic C/N ratios) within the sediments (Rullkötter et al., 

1998; Das et al., 2007).  
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Furthermore, biogenic silica composition of sediment archives is an important tool to trace 

siliceous algae such as fossil diatom abundance and environmental conditions during 

sedimentation and burial of phytoplankton (Conley, 1988; Pasche et al., 2010; Berg et al., 2013). 

b) Carbon, nitrogen and oxygen stable isotopes 

Carbon has two stable isotopes, namely 12C and 13C. Their natural abundance is about 98.9% and 

1.1%, respectively (Nier, 1950). Nitrogen has also two natural stable isotopes, 14N and 15N, with 

relative abundances of 99.63% and 0.37% respectively; Nier, 1950; Rosman and Taylor, 1998). 

Oxygen has three stable isotopes, 16O, 17O, and 18O with natural abundances of 99.757%, 0.038% 

and 0.205% respectively (Hoefs, 2009). Oxygen ratios are measured relative to Vienna Standard 

Mean Ocean Water (VSMOW) or Vienna Pee Dee Belemnite (VPDB) but VPDB is preferred for 

paleoclimate and hydrological studies (Drever, 2002). 18O/16O is preferred to 17O/16O in isotope 

geochemical proxy analyses because of the higher abundances of the two isotopes compared to 
17O. 

The shifts in these isotopic ratios, noted δ13C, δ15N, and δ18O respectively, are calculated relative 

to the VPDB and N2 atmospheric compositions as standards respectively, as following: 

C ‰
⁄ sample

⁄ standard
1 x1000  (1) 

δ15N ‰
15N 14N⁄

15N 14N⁄
1 x1000   (2) 

18O	 ‰
18O 16O⁄

18O/16O
1 x1000   (2) 

The VPDB is an international standard consisting of references normalized to the original PDB 

(calcium carbonate from a Cretaceous belemnite rostrum from the Pee Dee River in South 

Carolina, USA) with a 13C/ 12C isotope ratio of 0.0112372 (Nier, 1950; Hoefs, 2009).  

Atmospheric N2 is the standard for 15N/14N analysis. 15N/14N in atmospheric air is 0.00367647 

(Ryabenko, 2013).  

Stable isotope data of OM can be used for addressing biogeochemical processes relevant to the 

carbon cycle of individual ecosystems (Meyers, 1994; Hayes et al., 1990; Leng and Marshall, 
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2004, Berg et al., 2013). Living organisms preferentially utilize lighter isotopes because of lower 

energy costs associated with breaking the chemical bonds, which results in significant isotope 

fractionations between the substrate (heavier) and the biologically mediated product (lighter) 

(Kendall and Caldwell, 1998). 13C and δ15N are also useful proxies in discriminating between 

land plants and aquatic sources of organic carbon because these two sources bear different 

isotopic signatures (Street-Perrott, 2004; Das et al., 2007; Kristen et al., 2010).  

Among land plants, C3 plants are characterized by δ13C = ~ -26‰ whereas C4 plants have δ13C 

signatures between -14 to -10‰, and CAM between -33 to -10‰ (O'Leary, 1981; Fry and Sherr, 

1984; Schidolwski, 1988). Lake sediments have δ13C values ranging from -36‰ to -16‰ (Fogel 

and Cifuentes, 1993; Goericke and Fry, 1994; Opperman, 2010). 

1.3.3. Organic molecules as paleoecological biomarkers 

Despite the various degradation pathways of sedimentary organic matter, some molecules are 

chemically stable and quite well preserved, so that they constitute valuable paleoecological 

indicators of many non-siliceous algae and other microorganims (Reuss, 2005). These molecules 

are called biological markers or biomarkers. They are either fossil molecules, meaning that they 

originated from formerly living organisms or contemporary biogenic molecules if they are 

identified in fresh organisms (Eganhouse, 1997). Thus the prevailing phototrophic community is 

reflected by the sedimentary records of pigments and lipids, which can be used to track long-

term changes in algae and bacterial populations (Leavitt and Hodgson 2001; Sinninghe-Damsté 

et al., 2002; Wright and Jeffrey, 2006; Volkman, 2006; Bechtel and Schubert, 2009a,b). 

a) Pigment biomarkers in aquatic ecosystems 

In aquatic environments, pigments are chemotaxonomically biosynthesized by phytoplankton 

(Table 2) in the euphotic layers, and therefore make an important tool for tracing phytoplankton 

organisms (Wright and Jeffrey, 2006; Schlüter et al., 2006; Descy et al., 2000, 2005, 2009). 

Pigment markers have been widely and successfully used to identify and quantify the various 

algal groups and even photosynthetic bacteria in all types of aquatic environments (e.g. marine, 

estuarine; Wright and Jeffrey 2006; freshwaters, Descy et al., 2009). In this technique, algal 

group biomass is estimated from pigment concentrations in the water column by calculations 
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based on molecular marker/Chlorophyll a ratios (e.g zeaxanthin/Chl a ratio for cyanobacteria and 

chlorophytes).  

Several methods have been developed to derive the contribution of algal “classes” to chlorophyll 

a. The most popular is CHEMTAX (Mackey et al., 1996), a computing algorithm which can 

handle the presence of some markers in different phytoplankton groups, such as fucoxanthin in 

both diatoms and freshwater chrysophytes.  

Thanks to such methods, pigment markers make it possible to distinguish a broad range of algal 

groups within a phytoplankton population, with many applications in oceanography and 

limnology (Mackey et al., 1996; Wright and Jeffrey, 2006; Descy et al., 2009; Jeffrey and 

Wright, 2006). The pigment approach has been applied to tropical lakes (e.g Lake Tanganyika; 

Descy et al., 2005; Descy and Sarmento, 2008) and elsewhere both for marine and freshwaters 

(e.g., Wilmotte et al., 2002; Rodriguez et al., 2002; Yacobi, 2003). All of these studies have 

shown strong and interesting results. However CHEMTAX is not appropriate to sediment 

pigment assemblages due to selective degradation of the pigment biomarkers (Reuss, 2005).  

Pigment biomarkers are restricted to chloropigments and carotenoids (Table 2). 

Phycobiliproteins are not used as chemical markers because algal classes that contain them are 

also easily recognized and counted by other techniques that detect biliprotein fluorescence 

directly in situ (Wright and Jeffrey, 2006; Jeffrey and Wright 2006). In addition, biliproteins are 

water soluble, and therefore are not extracted by organic solvents used in analyses of 

chlorophylls and carotenoids. 

A study of pigment geochemistry in East-African lakes has shown a large variability in some 

pigment ratios with depth in deep stratifying lakes as well as seasonal variation relating to 

changes in water column structure (Descy et al., 2005, 2009). Pigment ratios correlated well with 

indicators of nutrient availability and light penetration (Descy et al., 2009). Chlorophyll a 

concentrations decreased with depth whereas its degradation products (phaeophytins and 

phaeophorbides) show an increasing trend (Descy et al., 2005).  
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Table 2. Main phytoplankton pigments and distribution among taxonomic groups  

Pigment marker  Phytoplankton group Reference 

Alloxanthin 

Chryptophyta, Dinophyta 
Type 4, Haptophyta Type 8, 
Chrysophyta Type 3 Descy et al. 2000; Schlüter et al. 2006 

Antheraxanthin Chlorophyta Descy et al. 2000; Schlüter et al. 2006 

Canthaxanthin Euglenophyta Descy et al. 2000; Schlüter et al. 2006 

Chl a all phytoplankton Hurley and Armstrong 1990; Jeffrey et al. 1997 

Chl b Euglenophyta, Chlorophyta Descy et al. 2000; Wright and Jeffrey 2006 

Chl c1 
Bacillariophyta Type 1, 
Dinophyta Type 1-4 Strain et al. 1971; Wright and Jeffrey 2006 

Chl c2 Haptophyta Type 1,6-8 Strain et al. 1971; Wright and Jeffrey 2006 

Crocoxanthin 
Chlorophyta, Cryptophyta, 
Dinophyta Type 1-4 Jeffrey et al. 1997; Wright and Jeffrey 2006 

Diadinoxanthin 

Haptophyta Type 1,6-8, 
Bacillariophyta Type 1, 
Cryptophyta Type 3, 
Euglenophyta Hurley and Armstrong 1990; Descy et al. 2000 

Diatoxanthin Bacillariophyta Schlüter et al. 2006; Wright et al. 2006  

Divinyl Chl a &b  Prochlorophyta Jeffrey et al. 1997; Wright and Jeffrey 2006  

Echinenone Cyanophyta Type 2 Descy et al. 2000; Schlüter et al. 2006 

Fucoxanthin 

Bacillariophyta Type 1, 
Dinophyta Type 2&3, 
Haptophyta Type 1,6-8, 
Chrysophyta Type 3 Hurley and Armstrong 1990; Descy et al. 2000 

Isorenieratene Green sulphur bacteria Koopmans et al. 1996; Dieser et al. 2010 

Lutein 
Chlorophyta, Prasinophyta 
Type 1 Descy et al. 2000; Wright and Jeffrey 2006 

Myxoxanthophyll Cyanophyta Type 1 Descy et al. 2000;Wright and Jeffrey 2006 

Oscillaxanthin Cyanophyta Jeffrey et al. 1997; Schlüter et al. 2006 

Peridinin Dinophyta Type 1 Descy et al. 2000;Yacobi 2003 

Violaxanthin 
Chlorophyta, Chrysophyta, 
Bacillariophyta Descy et al. 2000; Schlüter et al. 2006 

Zeaxanthin 
Cyanophyta Type 1&2, 
Chlorophyta Jeffrey et al. 1997; Wright and Jeffrey 2006 

β-carotene 
Bacillariophyta,Chlorophyta, 
Prochlorophyta, Cryptophyta Descy et al. 2000; Schlüter et al. 2006 
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In Lake Tanganyika, most pigments were located at 0-60 m with depth-integrated concentrations 

ranging from 36.4-41.3 mg m-2 (representing concentrations 0.3-3.4 mg m-3), and decreased 

sharply downward while chlorophyll a degradation products were only detected at 100 m among 

0-100 m sample sets (Descy et al., 2005). In Lake Kivu, Chl a concentrations in the mixolimnion 

were estimated at 2.2 mg m-3 (Sarmento et al., 2006; Darchambeau et al., 2014) indicating a 

higher Chl a concentration for Lake Kivu than in Lakes Tanganyika and Malawi (Sarmento et 

al., 2008 and references therein). In a preliminary study, the analysis of pigments showed a 

dominance of cyanobacteria pigments throughout the water column as well as a significant 

presence of bacteriochlochlorophyll and bacterial carotenoids in sediments, indicators of strong 

stratification conditions during the last 40 years (Knops, 2010). 

b) Lipid biomarkers 

Lipids are biochemical compounds soluble in organic solvents but insoluble in water. In contrast 

to carbohydrates and proteins which undergo hydrolysis to yield water soluble products of low 

molecular weight, chemically or biochemically degradable, lipids are preserved intact or 

converted into stable products (Breger, 1963). Lipids are major components of OM as energy 

storage (triacylglycerol esters of fatty acids) and/or membrane structural molecules 

(phospholipids and sterols). 

The class of lipids can be divided into a variety of functional groups such as fatty acids esters, 

isoprenoids and terpenoids, alcohols and sterols, fatty acids and esters, hydrocarbons (n-alkanes, 

n-alkenes and cyclic compounds), etc. 

 

 

Fatty acids and esters 

Fatty acids are an important class of lipid tracers (Table 3) and exist in the nature mostly as 

esters. The specificity of some fatty acids has been used to assess the origins of organic matter in 

natural water samples (Saliot et al., 1991; Volkman et al., 1989; Bechtel and Schubert 2009a,b). 

For example, it is known that plankton derived OM inputs to POM lead to a mixture of 14:0, 
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16:0, 16:1w7, 18:1w9, 18:0, 20:5w3 and 22:6w3 (Saliot et al., 1991). In addition, high values of 

C16/	 C18 ( : sum of saturated and unsaturated fatty acids) and C16:1/C16:0 ratios are 

characteristic of diatoms (Claustre et al., 1988). Branched 15:0 and 17:0 iso- and anteiso-fatty 

acids as well as 18:1w7 are commonly used as bacterial biomarkers because of their strong 

predominance in microorganisms (Volkman et al., 1980; Bechtel and Schubert, 2009a,b). 

Table 3. Selected lipid biomarkers used in tracing sedimentary organic matter sources 

Lipid biomarker Sedimentary OM sources References 

Phytol, n-alknols (nC14 to nC16), 
Campesterol,stigmasterol, 
sitosterol 

Phototrophic organisms 
(algae) 

Baker and Louda 
1983; Tolossa et al. 
2003; Rontani and 
Volkman 2003 

Iso and anteiso C15:0 to C17:0 
FAs 

Heterotrophic bacteria (e.g. 
SRB) 

Kaneda 1991 

nC16:0 FA, Dinosterol and 
Dinostanol 

Diatoms Robinson et al. 1984, 
Bechtel and Schubert 
2009a 

C18:0 and C18:1 FAs Cyanobacteria and bacteria Tolosa et al. 
2003&2008 

Cholesterol, dehydrocholesterol, 
24-methyl and 24-ethylcholesterol, 
cholestenol 

Algal grazing/zooplankton Bechtel and Schubert 
2009b; Kristen et al. 
2010 

Tetrahymanol Anoxia, Ciliates or 
phtosynthetic sulfur bacteria 

Naeher et al. 2012 

Hopanoids, hopanoic acid, 
diplopterol 

Methanetrophic bacteria Kristen et al. 2010 

Alkylthiopene Intense diagenesis under 
anoxic conditions 

Marlow et al. 2001 

Archaeol Archaea Zhang et al. 2003 

 

 

Isoprenoids, terpenoids and steroids 

Isoprene (2-methylbuta-1, 3-diene), a branched diunsaturated C5 hydrocarbon, is the building 

unit of a large family of open-chain and cyclic isoprenoids and terpenoids. Phytol, an acyclic 

diterpene, is probably the most abundant isoprenoid on Earth. It occurs as an esterified 
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isoprenoid to Chl a and to some bacteriochlorophylls, and thus, it is widely distributed in the 

green pigments of aquatic plants (Rullkötter, 2000). 

Sesterpenes (C25) are of relatively minor importance except in some methanogenic bacteria 

(Volkman and Mawell, 1986). The geochemically most important and widespread triterpenes are 

form the hopane series (hopanoids) like diploptene which occurs in cyanobacteria and other 

bacteria (Rullkötter, 2000; Saito and Suzuki, 2007). Hopanoids are mainly from bacterial 

membranes and can be divided into two groups namely biohopanoids and geohopanoids (Saito 

and Suzuki, 2007). Biohopanoids such as bacteriohopanetetrol (BHT) are pentacyclic 

triterpenoids synthetisized by a diverse range of bacteria as cell membrane rigidifiers (Ourisson 

et al., 1987; Rullkötter, 2000). Geohopanoids, including hopanols, hopanoic acids, most hopenes 

and hopanoidal aldehydes and ketones, are products of diagenetic processes which modify the 

side chain structure of biohopanoids after the death of bacteria (Saito and Suzuki, 2007). 

Steroids are tetracyclic compounds that are also biochemically derived from squalene epoxide 

cyclization but have lost in most cases three methyl groups. Cholesterol (C27) is the most 

important sterol in animals and of some plants as well (Table 3). Higher plants frequently contain 

C29 sterols, for example sitosterols, as the most abundant compound of this group. Steroid 

together with terpenoids are typical examples of lipid biomarkers (Table 3). 

 

1.4. Research problem 

Lake Kivu is most famous for its methane reservoir (Schmitz and Kufferath, 1955; Tietze et al., 

1980; Schmid et al., 2004, 2005). It is also known to have a poor (faunal and floral) biodiversity, 

and a simple pelagic foodweb without a predatory fish. These features led it to attract more and 

more attention of researchers during the past decades (Descy et al., 2012). Recent biological 

investigations dealt mainly with the investigation of the dynamics of the introduced Tanganyika 

sardine (Capart 1959; Kaningini, 1995), Limnothrissa miodon, and that of its preys and diet 

(Isumbisho, 2006; Masilya, 2011) as well as the ecology of phytoplankton of Lake Kivu 

(Sarmento, 2006; Darchambeau et al., 2014) in order to better understand the sustainability of the 

fisheries of the lake and its functioning. 
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Recently many authors reported that the lake was undergoing several environmental changes 

evidenced by the alteration of the foodweb due to the impact of the introduced Limnothrissa 

miodon (Capart, 1959) on the zooplankton abundance and diversity (Dumont, 1986; Isumbisho et 

al., 2006; Darchambeau et al., 2012), the recent increase in methane gas accumulation into the 

deep waters (Schmid et al. 2004, 2005), the abrupt resumption of carbonate precipitation in the 

lake (Pasche et al., 2010) and the high lake water level stands since the 1960s (this thesis, chap. 

2) under an increase of human population and urbanization conditons in the basin (Muvundja et 

al. 2009). Yet further potential changes are predicted regarding the soaring demography in the 

catchment (Muvundja et al. 2009), the development of the methane exploitation industry (Wüest 

et al. 2012), and the recent introduction of Lamprichtys tanganicanus which shows an overlap in 

diet and habitat with the previously introduced L. miodon (Masilya et al. 2011). 

Although the fish resources of Lake Kivu are not as large as in other East African lakes, Lake 

Kivu fisheries still play an important role in ensuring food security to more than a million of 

riparian population (Guillard et al. 2012) which mostly live under poverty and rely exclusively 

on natural resources for their livelihoods. Therefore, particular attention should be given to the 

sustainability of the fisheries by monitoring the foodweb dynamics and by determining the 

sensitivity of the lake to environmental changes. Another important issue is the extraction of the 

methane gas resource which has to be performed in a manner that complies with environmental 

and safety requirements. 

Therefore many aspects of the lake functioning still need to be examined in order to solve the 

Lake Kivu puzzle. They comprise - but are not restricted to - the dynamics of the hydrological 

system, the microbial pool and its contribution to the foodweb, the biogeochemical cycles of 

dissolved and particulate organic matter, the historical records of the lake mixing processes, 

nutrient supply, productivity and producer community structure (Descy et al., 2012). 

A hydrological model of the lake is needed for the assessment of the lake basin water budget as 

well the establishment of the lake response to climatic and anthropogenic stressors. The use of 

some biogeochemical tools such as elemental and stable isotope, pigment and lipid marker 

composition samples from different lake compartments (suspended, sinking, settled and buried 

sediments) can provide useful information on how these changes may have impacted the lake 
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functioning. Such information will allow interpreting future limnological pattern changes of the 

lake as well as drawing the attention of stakeholders and policy-makers for a sustainable 

management of the ecosystem. 

Briefly, in this study we explored the following research questions: What are the causes of 

modern Lake Kivu water level variability? What are the current patterns of the biogeochemistry 

of POM in Lake Kivu? Which lessons can be learned from the history of the lake to understand 

better the present and envisage the future of the functioning of Lake Kivu’s ecosystem? What are 

the links between the limnology of Lake Kivu and some external stressors at the catchment 

level?  

 

1.5. Objectives and thesis structure 

In this work, we aimed to study the recent hydrological variability, the sources and fate of 

particulate organic matter in Lake Kivu as well as to address their recent history in relation to 

environmental changes within the lake system. This study specifically aims at determining 

(i) the factors which underpinned the lake hydrological variability during the last century; 

(ii) the fluxes and the fate of particulate organic matter in the lake; 

(iii) the lake response to environmental changes with reference to water chemistry, the lake 

productivity and organic matter cycling. 

Beside the general introduction (Chapter 1) and the general conclusion (Chapter 5), this thesis 

consists of three main chapters and three appendices. In Chapter 2, «Modelling Lake Kivu water 

level variations over the last seven decades», a simple mathematical model was used to 

reconstruct the history of the lake water levels and address the contribution of each hydrological 

component to the lake water budget as well as to explain the causes of the lake level variability 

since 1941. Chapter 3: «Fate and downward fluxes of phytoplankton pigments in a deep tropical 

lake (Lake Kivu, East Africa) », examines the fluxes and preservation of the particulate organic 

matter during its export from the productive layers to the sediments using pigment biomarkers. 
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Chapter 4, « Biogeochemical proxies indicating the response of a tropical crenogenic and 

meromictic large lake (Lake Kivu, East Africa) to recent environmental changes», infers from 

paleolimnological records the biogeochemical status of nutrients and the lake productivity as 

well as the phytoplankton assemblages which prevailed within the lake during the last 700-1000 

yrs. 

The appendices to this dissertation are published or accepted papers from companion studies in 

which I was involved as collaborator. They include:  

(i) Chapter 6, «Biogeochemistry of a large and deep tropical lake (Lake Kivu, East Africa): 

insights from a stable isotope study covering an annual cycle» by Morana et al. (2014b), presents 

data and interprets the OM cycling in the water column with regard to the seasonal variability of 

the (C, N) concentration and stable isotope composition in several inorganic and organic matter 

reservoirs (DIC-, POC- and zooplankton-pools);  

(ii) Chapter 7, « The history and the role of the subaquatic volcanism recorded in the sediments 

of Lake Kivu; East Africa» by Ross et al. (2015a), where seismic stratigraphy and sediment core 

geochemistry were used to track the history of subaquatic groundwater discharge and volcanism 

in the basin and make implications on how they affected the geochemistry of the lake; 

(iii) Chapter 8, «Abrupt onset of carbonate deposition in Lake Kivu during the 1960s: 

response to recent environmental changes» by Pasche et al. (2010) which discusses the 

recent changes in carbonate geochemistry of Lake Kivu. 
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1.6. Contributions from different authors 

Chapter 2: Modelling Lake Kivu water levels variations over the last seven decades: 

Muvundja F.A.: Data collection and analysis, model application, result interpretation, 

writing and publication process. 

Wüest A., Result interpretation and writing supervision, manuscript reviews 

Isumbisho M.: Data collection, supervision and manuscript review  

Kaningini M. B.: Data collection and manuscript review 

Pasche N.: Data collection and analysis (partially), manuscript review. 

Rinta P.: Data collection and analysis (partially) 

Schmid M.: Data analysis, supervision, model set up and validation, and manuscript 

reviews. 

Chapter 3 Fate and downward fluxes of phytoplankton pigments in a deep tropical lake (Lake 

Kivu, East Africa): 

Muvundja F.A.: Data analysis (partially), result interpretation, writing. 

Darchambeau F.: Experimental design, field sampling (partially), chemical analyses 

(partially) and data analysis (partially). 

Rugema E.: Field sampling and sample treatment 

Leporcq B.: Field sampling (partially), HPLC pigment analysis 

Morana C.: Field sampling (partially), elemental and isotope analyses 

Schmid M.: Data interpretation and writing supervision, manuscript reviews. 

Descy J.P.: Experimental design, field sampling (partially), CHEMTAX processing, data 

interpretation and writing supervision, manuscript reviews. 



Hydrological variability and biogeochemistry of particulate organic matter, Lake Kivu (East Africa)  31 
 

Chapter 4 Biogeochemical proxies indicating the response of a tropical crenogenic and 

meromictic large lake (Lake Kivu, East Africa) to recent environmental changes  

Muvundja F.A.: GIS-KV10-3 coring, sample treatment and chemical analyses, both studied 

core data analysis and result interpretation, writing. 

Herman M.: GIS-KV11-4 core sample preparation and chemical analyses (partially) 

Morana C.: GIS-KV11-4 core sampling, treatment and chemical analyses, manuscript review 

Schmidt S.: Core 210Pb dating 

Ssemanda I.: Core pollen dating 

Steigüber C.G.: GIS-KV11-4 sample preparation for dating, data analysis (partially) and 

manuscript review. 

Verleyen E.: Data analysis (partially) and manuscript review 

Anselmetti F.: GIS-KV10-3 coring, Inorganic carbon analysis supervision, manuscript review 

Isumbisho M: Fieldwork supervision, manuscript review 

Darchambeau: GIS-KV11-4 coring, chemical analyses 

André L.: Lithological analyses 

Bouillon S.: Chemical analysis supervision, data interpretation, manuscript review 

Schubert C.: Chemical analysis supervision of GIS-KV10-3 core, data interpretation, manuscript 

review. 

Descy J.P.: Pigment analysis and data interpretation supervision, manuscript reviews. 

Schmid M.: data processing and interpretation superivision, manuscript reviews 
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My contributions to the chapters in appendices: 

Chapter 6. Biogeochemistry of a large and deep tropical lake (Lake Kivu, East Africa): insights 

from a stable isotope study covering an annual cycle : 

Fieldwork, sample pre-treatment, conditioning, and expedition, chemical treatment prior to EA-

IRMS analyses (partial), manuscript review. 

Chapter 7. The history and the role of the subaquatic volcanism recorded in the sediments of 

Lake Kivu; East Africa: 

Core sampling, sample preparation and chemical analyses (partial), manuscript review. 

Chapter 8. Abrupt onset of carbonate deposition in Lake Kivu during the 1960s: response 

to recent environmental changes: 

Field work, sample pre-treatment, conditioning and expedition, manuscript review. 
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2.1. Abstract 

This study aimed at analysing the hydrological changes in the Lake Kivu Basin over the last 

seven decades with focus on the response of the lake water level to meteorological factors and 

hydropower dam construction. Historical precipitation and lake water levels were acquired from 

literature, local agencies and from global databases in order to compile a coherent dataset. The 

net lake inflow was modelled using a soil water balance model and the water levels were 

reconstructed using a parsimonious lake water balance model. The soil water balance shows that 

370 mm yr-1 (25%) of the precipitation in the catchment contributes to the runoff and baseflow 

whereas 1100 mm yr-1 (75%) contributes to the evapotranspiration. A review of the lake water 
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balance resulted in the following estimates of hydrological contributions: 55%, 25%, and 20% of 

the overall inputs from precipitation, surface inflows, and subaquatic groundwater discharge, 

respectively. The overall losses were 58% and 42% for lake surface evaporation and outflow 

discharge, respectively. The hydrological model used indicated a remakable sensitivity of the 

lake water levels to hydrometeorological variability up to 1977, when the outflow bed was 

artificially widened.  

 

2.2. Introduction  

The variations of water level of natural (unregulated) lakes are an indicator of changes in the 

hydrological budget of the lake catchment. Such changes may be caused by climatic variations 

(precipitation, evapotranspiration and other meteorological components) or by changes in the 

runoff characteristics (such as land-use changes) in the catchment (Vuglinskiy et al. 2009). 

Depending on the ratio of the catchment area per lake surface area, lake levels change within 

time scales ranging from hours to years (Mason et al. 1994). Also the sensitivity of lake water 

levels to rainfall evidently depends on the catchment to lake surface ratio (Vuglinskiy et al. 

2009). For example, a significant relationship has been observed between rainfall variability and 

lake water level in the Lake Victoria Basin (Mistry and Conway 2003). The sensitivity of lake 

water levels to rainfall changes depends on the catchment-to-lake surface ratios (Vuglinskiy et al. 

2009). 

The seasonal rainfall distribution in the East-African region is bimodal due to the twice-annual 

passage of the Intertropical Convergence Zone (Verschuren et al. 2009). A recent study suggests 

that long-term variations in East-African rainfall are mainly driven by sea surface temperatures 

in the Indian Ocean (Tierney et al. 2013). East-African lakes experienced a rise in their water 

levels, the so-called “Centennial rising of River Congo and Nile water levels” during the course 

of 1961 to 1964 due to an increase in rainfall (Lake Victoria: 2.25 m; Mistry and Conway 2003; 

Lake Tanganyika: ~3 m; Kite 1981; Bergonzini 2002; Lake Kivu: 0.97 m, Pasche et al. 2010, 

2012). Confusingly, for Lake Kivu, this period of higher rainfall coincided with the construction 

of a hydropower dam (1958/59) at the Ruzizi outflow, 3 km downstream of the lake (SINELAC 

1989) as well as with the beginning of increased human activities in the catchment (Muvundja et 
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al. 2009). Unfortunately continuous hydrological data of this basin are lacking as the catchment 

remains ungauged except for the lake level. In addition, records from most rain gauge stations in 

the catchment are discontinuous.  

For Lake Kivu, in addition subaquatic groundwater discharge (SGD) that enters the lake below 

100 m is of high relevance. The SGD drives a slow upwards advective transport within the lake 

that is the main source of nutrients for primary production in the lake surface layer (Pasche et al. 

2012; Schmid and Wüest 2012). An increase in precipitation may be expected to also lead to an 

increase of the SGD and thus an increase in the availability of nutrients for primary production. 

The hydrological modelling of the lake water levels has already been identified as a relevant 

information because the lake serves as the principal reservoir for the downstream hydropower 

dam cascade. In addition, lake level variability has an impact on fisheries, especially the littoral 

zone ecological functions such as fish breeding and feeding. In the case of Lake Kivu, the littoral 

zone plays an important role as it is the permanent habitat for 27 of the only 29 fish species of 

this lake (Snoeks et al. 2012). The littoral zone is the breeding and growing area of Limnothrissa 

miodon on which the fisheries resource is largely based (Isumbisho et al. 2004; Masilya et al. 

2011).  

This study aimed to evaluate the lake level response to the hydrological variability in the 

catchment and to dam operation. The importance of Lake Kivu as a source of water resources, in 

the context of increasing demography and demand, is expected to increase in the forthcoming 

decades for further electricity production, irrigation as well as domestic and industrial uses. 

Thus, the assessment of the hydrological patterns and their effect on the water resource is crucial 

for monitoring and predicting the evolution of the water level of Lake Kivu and the discharge of 

the Ruzizi River (Vodacek et al. 2010). This analysis will contribute in providing the information 

needed to allow policy-making for an integrated water resource management in the lake 

catchment. 
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2.3. Study site 

 

Figure 1. Map of Lake Kivu and its catchment. The numbers indicate the locations of the meteorological 
stations used in this study as listed in Table 1. The hatched area represents the river-free catchment area to 
the North of the lake. The large grey squares and the small black squares indicates the grid cells of the 
GPCC and the TRMM data, respectively, that were used to calculate average precipitation in the 
catchment. 
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Lake Kivu is one of the equatorial East-African rift lakes (Fig. 1). The lake is situated at the feet 

of the volcanically active region of Nyiragongo between the Democratic Republic of the Congo 

and Rwanda. The lake surface is 2370 km2 with a drainage basin of 4940 km2 (excluding the 

lake, Ballatore 2012). Most of the drainage basin consists of a river-active area (4255 km2) 

dominated by Haplic Acrisols (clay-rich but nutrient- and mineral-deficient acidic soils) in the 

Northwest and Southeast, by Humic Ferralsols (lateritic soils rich in iron, low clay soils; IUSS 

Working Group WRB 2007) in the Southwest and by Humic Acrisols in the East. A river-free 

area (685 km2) is situated in the North of the lake and dominated by Mollic Andosols (Muvundja 

et al. 2009) which are black volcanic ash soils and consist of a mixture of volcanic ashes, stones 

and gases (Driessen et al. 2001). The SGD into the lake is most probably at least partially fed by 

infiltration in this river-free area. The land-use in the catchment is currently dominated by 

Dryland Cropland and Pasture (65%) whereas Evergreen Broadleaf Forest accounts for only 

17%, Shrubland for 11% and other land-uses for 7% (Muvundja et al. 2009).  

The climate is humid with a bimodal precipitation regime (~1400 mm yr-1 over the lake 

catchment; Muvundja et al. 2009). The rainy season spans from September to May and the dry 

season from June to August (Bultot 1971; Fehr 1984; Bergonzini 1998). The evaporation over 

the lake surface was estimated to ~1530 mm yr-1 (CGIAR-CSI, http://www.cgiar-

csi.org/data/global-aridity-and-pet-database). For comparison, Bultot (1971) estimated 

evaporation to ~1410 mm yr-1, while estimates from other sources ranged from 800 to 1800 mm 

yr-1 (Tractionel and Rhein-Ruhr-Ingenieur (RRI) 1980). The potential evapotranspiration in the 

catchment estimated by different authors ranges from 900 to 1500 mm yr-1 (Kilauli 1976; Vangu 

1981; Bigororande 1982; Kombi 1982; CGIAR-CSI, http://www.cgiar-csi.org/data/global-

aridity-and-pet-database). An increase in evaporation and evapotranspiration is expected as a 

response to global warming (Verburg et al. 2003; Taylor et al. 2006). The surface runoff 

coefficient for this region is ~0.3 according to Shahin (2002) which contributes to feed the more 

than 100 rivers and streams that flow into the lake (Muvundja et al. 2009; Schmid and Wüest 

2012). 

In previous studies, the water balance of Lake Kivu was estimated to be composed of inputs of 

3.3 km3 yr-1 by precipitation, 2.0 km3 yr-1 by river inflows, 1.3 km3 yr-1 by SGD and outputs of 

3.6 km3 yr-1 by lake surface evaporation and 3.0 km3 yr-1 by the Ruzizi River outflow (Muvundja 
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et al. 2009; Schmid and Wüest 2012). The SGD are permanent underground water springs with 

most of the discharge attributed to cool and fresh SGD that mainly drive the upwelling in the 

lake, and a smaller contribution of hydrothermal sources that maintain the permanent 

stratification of the lake (Degens et al. 1973; Schmid et al. 2005; Ross et al. 2014, 2015a, b).  

Regarding the outlet, it is important to consider the construction and the operation of the Ruzizi I 

Hydropower Dam since 1959, located 3 km downstream of the lake (Tractionel and RRI 1980, 

Fichtner 2008). In 1977, dredging and widening operations were conducted, and a by-pass was 

erected at the lake outlet to regulate the amount of water in the river channel (Fitchner 2008). 

However the by-pass did not work properly and was decommissioned shortly afterwards. All 

these operations may have induced some bias to the “natural” lake level versus discharge 

relationship (Bergonzini 1998; Tractionel and RRI 1980; Fichtner 2008) and sometimes to an 

unknown extent. 

 

2.4. Data 

Rain data from 34 meteorological stations (1928 to 1993; Fig. 1 and Table 1) were compiled 

from the literature (Bultot 1954, 1971; INEAC 1960; Kilauli 1976; Bitacibera and Gasimbanyi 

1978; Vangu 1981; Bigorarande 1982; Bikoba 1984) and local meteorological services (Météo-

Rwanda as well as Division Provinciale de Météorologie and Division Provinciale d’Agriculture, 

Pêche et Elevage in D.R. Congo; Fig. 1). Arithmetic means were used as the variation between 

the individual stations was comparably small (coefficient of variation: 17.8%).  

Furthermore, two global precipitation databases were used for the analysis: the Global 

Precipitation Climatology Centre database (GPCC; Rudolf and Schneider 2005; Rudolf et al. 

2010; http://gpcc.dwd.de) and the satellite-based Tropical Rainfall Measuring Mission 3B43 

product (TRMM; Jiang et al. 2011 and references therein; http://trmm.gsfc.nasa.gov/) which 

combines estimates generated by the TRMM and other satellite products as well as available 

rainfall gauge data from various sources available at: 

http://disc.sci.gsfc.nasa.gov/precipitation/documentation/TRMM_README/TRMM_3B43_read

me.shtml  
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Table 1. Meteorological stations used in this study as located in Fig.1 

Station No. Station name Altitude (m asl) Rainfall (mm yr-1) # of years  

1 Tamira 2300 1196 9 

2 Kora 2500 1272 11 

3 Goma 1493 1196 44 

4 Gisenyi –Airport 1554 1164 23 

5 Prefecture 1540 1185 67 

6 Pfunda 1480 1326 21 

7 Kanama 1900 1477 8 

8 Murunda 1875 1348 49 

9 Rutsiro 2300 1482 13 

10 Crête Congo-Nil 2300 1231 3 

11 Mushumbati 1800 1197 3 

12 Kibuye 1470 1259 32 

13 Rubengera 1700 1200 44 

14 Nyamishaba 1470 1100 18 

15 Kalehe 1500 1728 19 

16 Mubuga 1650 1361 53 

17 Mugonero 1600 1406 51 

18 Gatare 1800 1511 7 

19 Maseka 1465 1221 49 

20 Mushweshwe 1700 1270 19 

21 Nyamunyunye 1746 1548 32 

22 Tshibinda 2070 1860 21 

23 Mulungu 1715 1607 21 

24 Nyamasheke 1500 1209 62 

25 Shangi 1600 1418 27 

26 Kamatsira 1500 1729 12 

27 Bumazi 1600 1621 29 

28 Mwaga 1850 1877 11 

29 Gisakura 1946 2191 16 

30 Kamembe- Airport 1591 1390 42 

31 Cyangugu 1525 1411 49 

32 Shagasha 1700 1612 14 

33 Bugutu 2025 1846 31 

34 Bukavu 1635 1317 50 
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Figure 2. Time series of annual precipitation for the basins of Lake Victoria (blue line; calculated back 
using lake surface precipitation data and relationship provided by Nicholson and Yin (2002)) and of Lake 
Kivu (different sources indicated by the other lines). For other data sources, see text. TRMM data are 
corrected by a factor of 1.2. 

 

The monthly GPCC data were averaged for the three grid cells covering most of the catchment 

area of the lake and compared to the average of the rain gauge measurements for the years 1941 

to 1993 (Fig. 2). The correlation between the two time series is excellent (R2 = 0.94; Fig. 3), with 

the GPCC data being on average ~7% higher. After 1993, both the rain gauge and the GPCC 

data cannot be considered reliable due to the absence of a sufficiently dense local in-situ 

measurement network. For the water balance calculations, the GPCC data were used until 1997, 

while for the years 1998 to 2012 the average values of the TRMM 3B43 products for the grid 

cells shown in Fig. 1 were used. However, the TRMM data had to be multiplied by a constant 

factor of 1.2 to maintain the agreement with the mean lake levels. 
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Figure 3. Correlation between monthly rainfalls calculated from the rain gauge data (Table 1) and average 
rainfall in the GPCC dataset for the three grid cells marked in Fig. 1. The regression line is defined by the 
equation	 1.01	 	 7	 	 ; 	 0.94. 

 

In fact, TRMM’s performance and uncertainties for Africa (e.g., Nicholson et al. 2003; Beighley 

et al. 2011; Liechti et al. 2012; Sylla et al. 2013) and elsewhere (Wolf et al. 2005; Franchito et al. 

2009; Javanmard et al. 2010; Cheema and Bastiaanssen 2012) have been widely discussed, and 

its uncertainties were estimated to reach up to 30% and more in some cases. Topography has 

been found to be a major source of error for TRMM data which has been shown to moderately 

underestimate rainfall over highland regions compared to gauged data in East Africa and abroad 

(e.g., Ebert et al. 2007; Asadullah et al. 2008; Dinku et al. 2011, Ward et al. 2011). The reason 

given is the failure of the satellite to pick up the orographic enhancement of rainfall (Ebert et al. 

2007). An underestimation of rainfall by TRMM in the mountainous region of Lake Kivu is in 

agreement with these findings. Nevertheless, the TRMM dataset is one of most reliable satellite 

products in the tropics, and even ground gauged meteorological data have similar uncertainties 

(of up to ~30%; WMO 2006). 



Hydrological variability and biogeochemistry of particulate organic matter, Lake Kivu (East Africa)  60 
 

Table 2. Parameter values used for the runoff model and the lake water balance model 

Model parameter Symbol Value Unit Comment / Reference 
Lake surface area AL 2370 km2   
Lake basin area AB 7310 km2 Ballatore (2012) 
Catchment area (without lake) AC (= AB-A) 4940 km2 
Volcanic area without rivers AV 685 km2 Ballatore (2012) 
River-active area Ar (= AC-AV) 4255 km2 
Subaquatic spring inflow Qsp 1.3 km3 yr-1 Schmid et al. (2005) 
Soil storage capacity Smax 300 mm Bultot (1971) 
Coefficient 1 in runoff model α1 2.2 Model calibration 
Coefficient 2 in runoff model α2 2.0 Wang et al. (2011) 
groundwater storage parameter β 0.6 Model calibration 
groundwater residence time k 5 months Model calibration 
Rating curve slope 1941-1976 a1 78.9 m2 s-1 SNEL (pers. comm.) 
Rating curve intercept 1941-1976 b1 124.6 m3 s-1 SNEL (pers. comm.) 
Rating curve slope 1977-2011 a2 82.3 m2 s-1 SNEL (pers. comm.) 
Rating curve intercept 1977-2011 b2 131.7 m3 s-1 SNEL (pers. comm.) 

 

Catchment potential evapotranspiration (PET) data as well as lake surface evaporation data were 

downloaded from the Consortium of Spatial Information (CGIAR-CSI) Database of the CGIAR-

Global Research Partnership for a Food Secure Future (Zomer et al. 2008; http://www.cgiar-

csi.org/data/global-aridity-and-pet-database). These data had been generated by Zomer et al. 

(2008) using the data available from the WorldClim Global Climate data (Hijmans et al. 2005) as 

input parameters. WorldClim is based on a high number of climate observations and the NASA 

Shuttle Radar Topography Mission which is a 90 m resolution digital elevation database and 

provides a major advance in the accessibility of high quality elevation data for tropical regions 

(FAO 2004). Monthly potential evapotranspiration (PET) data have been characterized and 

tested for Africa and South America using different temperature-based methods applied to the 

WorldClim Global Climate data (available at http://worldclim.org; Zomer et al. 2008). The 

Hargreaves model (Hargreaves et al. 1985) yielded the best agreement and was applied (Zomer 

et al. 2008). The model was validated by these authors using PET measurements calculated from 

direct observations provided by the FAOCLIM 2 Climate station dataset (Allen et al. 1998) 

available on the FAO website. Many other studies have successfully used these global PET data 

(e.g., Trabucco et al. 2008; MacDonald et al. 2013; Metzger et al. 2013). 
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Historical records of lake water levels (1941- 1993) and the outflow discharge calibration curves 

were collected from the Ruzizi I Hydropower Dam Company in Bukavu-Mururu (Société 

Nationale d’Electricité, SNEL). Furthermore, lake levels determined by remote sensing 

measurements were retrieved from the global hydrological database HYDROWEB (Crétaux et al. 

2011) and compared to ground measurements. Discharges of the Ruzizi outflow were calculated 

from the lake water level using the calibration curves provided by Tractionel and RRI (1980) and 

by Bergonzini (1998) as summarized in Table 2. 

 

2.5. Model description 

2.5.1. Runoff model 

The water balance of Lake Kivu and its catchment was calculated with a monthly time step t 

based on the meteorological data described above. Since only few actual discharge 

measurements from the tributaries of Lake Kivu were available (Bergonzini 1998; Muvundja et 

al. 2009), we used a runoff model for estimating the monthly runoff from the catchment as an 

input to the lake water balance model.  

Many authors have used hydrological models based on the Budyko framework (Budyko 1958) in 

their studies for various purposes. For example, Zhang et al. (2008) applied the Budyko 

framework to develop and test a water balance model over variable time scales which allows 

predicting streamflow for ungauged catchments. Donohue et al. (2010) studied the importance of 

vegetation dynamics to improve Budyko’s model. Chen et al. (2013) used modified Budyko-type 

equations to estimate the seasonal evaporation and annual water storage in catchments. Van der 

Velde et al. (2013) used Budyko’s framework to identify regions with contrasting hydroclimatic 

change during the past 50 years in Sweden. In this study, we estimated the runoff of the Lake 

Kivu catchment by applying a monthly hydrological model based on the Budyko framework, the 

water partition and balance (WAPABA) model developed for diverse ungauged catchments by 

Wang et al. (2011). 

The model comprises five steps summarized as below: 
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1. Rainfall, P(t) (mm month-1), is partitioned into the catchment water yield, Y(t) (mm month-1) 

and the catchment water consumption, X(t) (mm month-1):  

 (1) 

Y(t) comprises surface runoff, Qs(t) (mm month-1) and groundwater recharge, R(t) (mm month-1) 

such as:  

 (2) 

A supply-demand-consumption equation is applied to calculate X(t) from rainfall: 

1 1
α1 α1 	  (3) 

Here, α1 is the catchment consumption curve coefficient; X0(t) (mm month-1) is the potential 

catchment water consumption or water demand limit given by: 

∆
 (4) 

where ET0(t) (mm month-1) is the catchment potential evapotranspiration; Smax (mm) is the 

maximum water holding capacity of the soil in the catchment; S(t-1) is the amount of water held in 

the soil for the prior time step t-1; and ∆t = 1 month is the simulation time step.  

2. The amount of water available for evapotranspiration, W(t) (mm month-1), is then given by: 

∆
 (5) 

The actual evapotranspiration is calculated from: 

1 ∆ 1 ∆

α2 α2

 (6) 

where  is the catchment evapotranspiration curve coefficient. The soil water storage at the end 

of the time t, S(t) is: 
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1 ∆           (7) 

3. The catchment water yield at time step t, Y(t) is partitioned into R(t) (mm month-1) and Qs(t) 

(mm month-1) by: 

 (8) 

where β is the proportion of the water yield and the groundwater recharge rate ,G(t).  

The rest of Y(t) contributes to the surface runoff, Qs(t) given by :	

Q 	 	Y t 		x	 1‐β    (9) 

4. The groundwater storage is drained to generate a baseflow Qb(t) (mm month-1) given by: 

 (10) 

where G(t) (mm) is the groundwater storage and k (months) the groundwater residence time. The 

baseflow here indicates the amount of infiltrated groundwater which returns to the surface. Given 

the steepness of the basin topography, the residence time of the groundwater should be 

comparably short. However, we have no concrete observational evidence for the residence time. 

We therefore chose to estimate this parameter during the model calibration (see section 4.3). 

Thus the remaining water in the groundwater storage at the end of time t is: 

1 ∆ 	 (11) 

5. The sum of surface runoff and the baseflow results in the total flow, Q(t) , during the time step 

∆t and closes the hydrological cycle by: 

 (12) 

The catchment runoff coefficient, kr is calculated by: 

 (13) 

Finally, the inflow into the lake, Qr (t) (m3 s-1), is calculated from Q (t) by 
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 (14) 

Here Ar (m2) is the river-active area of the catchment, and c is a conversion factor to convert 

from mm month-1 to m s-1. The procedures for estimating or calibrating the five model 

parameters α1, α1, β, k, and S are described in Section 4.3 below and the values of the parameters 

are given in Table 2.  

2.5.2. Lake water balance model 

A parsimonious water balance model was used to reconstruct the lake level dynamics from the 

knowledge on lake hydrological and morphological parameters (Table 2). The calculations of the 

hydrological inputs to the model were made from January 1941 to December 2011. 

The model used is based on the following equation:  

∆ 	  (15) 

where ∆Q (m3 s-1) is the net water inflow to the lake; AL is the lake surface area (m2), P (t) is the 

rainfall (m s-1) on the lake surface at time t (s), and E(t) is the evaporation rate (m s-1) from the 

lake surface. 

Qr (t) (m3 s-1) is the total catchment flow to the lake (except SGD) calculated from the sum of 

catchment runoff and baseflow as given by Equations 12 and 14.  

The long-term mean total discharge of the SGD, QSGD (t), is relatively well constrained by the 

salt balance of the lake (Schmid and Wüest 2012), but nothing is known about the residence time 

of the water before entering the lake or the temporal dynamics of the SGD. We therefore used 

two different approaches for estimating QSGD, either as constant:	

Q t Q 41.2	m s‐ 	 1.3	km yr‐  (16) 

or as variable in time as a function of the precipitation previous during the previous year:	

Q t Q γ 1
‐

 (17) 
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where Pn is the mean precipitation during the past year, and, 	is the average long-term 

precipitation;  is a non-dimensional fit parameter describing the extent to which the SGD 

discharge varies with precipitation.  

Qout (t) (m3 s-1) is the discharge of the outflow given by: 

 (18) 

where H(t) is the lake water level gauged at the outflow (m, above 1460 m asl); a (m2 s-1) and b 

(m3 s-1) are the slope and the intercept of the rating curve, respectively (Table 2). Two different 

rating curves were used for the periods before and after the year 1977 when the outflow was 

modified by dredging and widening. 

The lake water level was then calculated from the net water inflow by:  

∆ ∆ 	 (19) 

Where Hi is the simulated water level for the month i; Hi-1 is the simulated water level for the 

previous month i-1; (∆Q)i-1 the net inflow of the previous month calculated using Equation (14), 

∆t the time elapsed from the first day of the previous month to the first day of the month under 

consideration.  

2.5.3. Model parameterization and calibration 

The model parameters were defined or calibrated as follows: For the soil water holding capacity, 

Smax, a value of 300 mm was used, which is the value given for the region by Bultot (1971) and 

agrees with average values around Lake Kivu in the FAO Soil Map of the World. Of the two 

parameters α1 and α2 only one could be used for model calibration, as their effects on the total 

runoff from the catchment are qualitatively very similar. Therefore parameter α2 was arbitrarily 

set to 2.0, a typical value observed in 331 test catchments by Wang et al. (2011). Then, α1 was 

optimized to set the mean difference between observed and calculated lake levels for the entire 

time series to zero. This resulted in α1 = 2.2.  

Finally, the parameters β and k were calibrated to reduce the difference between the observed 

and simulated seasonality of the lake level. Here, seasonality is defined as the difference between 
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the monthly lake levels and their 12-months running mean, averaged for the period 1942 to 1997, 

i.e. not including the years for which the TRMM data were used. The best fit between observed 

and simulated seasonality was achieved with β = 0.6 and k = 5 months, meaning that 60% of the 

water yield is contributed by the baseflow, which resides on average 5 months in the catchment 

(the value of 5 months was chosen to optimize the model but we have no concrete observational 

evidence). 

2.5.4. Model evaluation 

The predictive power of the model was assessed using the Nash-Sutcliffe efficiency (NSE) index 

(Nash and Sutcliffe 1970) as well as the ratio of the root mean square error and the standard 

deviation of the observations (RSR) as described by Moriasi et al. (2007).  

 

2.6. Observations and results 

2.6.1. Precipitation  

The precipitation record for Lake Kivu shows a shift towards wetter conditions around 1961. 

Similar observations were made for the Lake Victoria Basin (Nicholson and Yin, 2002; Kizza et 

al., 2009; Fig. 2) indicating that rainfall in the catchment of Lake Kivu is driven by the same 

regional meteorological patters as for Lake Victoria. In order to support this, we give in the 

following the respective values for Lake Kivu (in italics) and Lake Victoria (in parentheses, data 

are from Nicholson and Yin 2002. The annual mean precipitation (± standard deviation) in the 

rain gauge data for the period 1941-1960 was 1417 ± 112 mm yr-1 for the Lake Kivu Basin (1244 

± 129 mm yr-1). The minimum precipitation of 1090 mm yr-1 (1070 mm yr-1) was observed in 

1952 (1943), the maximum of 1500 mm yr-1 (1640 mm yr-1) occurred in 1951 (Fig. 2). 

Subsequently, the mean rainfall rose to 1415 ± 118 mm yr-1 (1367 ± 167 mm yr-1), in the period 

1961 to 1993, corresponding to an increase by 8% (10%) compared to the average before 1961. 

The minimum values for this period were 1140 mm yr-1 (1110 mm yr-1) in 1993 (1984), whereas 

the maxima were 1590 mm yr-1 in 1963 and 1680 mm yr-1 in 1988 (1870 mm yr-1 in 1961 and 

1640 mm yr-1 in 1963). 
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Figure 4. Monthly components of the soil water balance (precipitation, potential evapotranspiration, 
surface runoff and baseflow) calculated with the runoff model for the catchment of Lake Kivu for the 
period 1941 to 1991 (the period with reliable precipitation data). 

 

Based on the classification of Fehr (1984), the long-term series indicate that June to August are 

dry months with 46, 29 and 57 mm month-1 respectively whereas the months from September to 

May are wet with precipitation ranging between 121 and 199 mm month-1 (Fig. 4). Among the 

wet months, September and January are the least wet with 121 and 128 mm month-1, 

respectively, while November and April are the wettest with 171 and 199 mm month-1, 

respectively, according to a bimodal rainfall regime (Fig. 4).  

2.6.2. Runoff  

The runoff model indicated an annual mean land potential evapotranspiration rate of 1100 mm 

yr-1 and mean baseflow of 220 mm yr-1 (Table 3; Fig. 4). The surface runoff was 150 mm yr-1 

(Table 3; Fig. 4). Except for the baseflow, all soil water balance components showed lower 

values in the dry season (Fig. 4). The average runoff coefficient for the entire basin was 

estimated at kr = 0.25 (Table 3). The runoff was estimated to have increased by 19% in the 

period 1961- 1993 compared to 1941- 1960. 
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Table 3. Soil water balance in the catchment of Lake Kivu for the years 1941 to 1991 

Soil water balance Value (mm yr-1)
Precipitation 1470
Evapotranspiration 1100
Surface runoff 150
Baseflow 220

 

2.6.3. Lake water levels 

A comparison of lake levels observed in-situ and with remote sensing confirmed that both time 

series are accurate within a few cm (Fig. 5). Remotely sensed lake levels for neighbouring Lakes 

Edward and Victoria show very similar temporal dynamics as for Lake Kivu, indicating that the 

lake level fluctuations are driven mainly by regional meteorological variations. This is also 

supported by a comparison of historical trends of lake levels and rainfall in the drainage area 

(Fig. 6). 

 

Figure 5. Comparison of satellite (Crétaux et al. 2011) water level variation (relative to an arbitrary 
average level) of selected East-African great lakes with the levels observed in-situ for Lake Kivu. “Kivu” 
indicates the satellite-based data and “Kivu ground” the in situ gauged data. 
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Figure 6. Annual mean Lake Kivu water level (grey line with circles; data from SNEL) and precipitation 
(black bold line, data from GPCC until 1997 and TRMM multiplied with a factor 1.2 afterwards). The 
lake water levels are relative to a height of 1460 m asl. Note that the lower number of precipitation data 
(Fig. 7) affected the quality of the agreement after 1993. 

 

Periods of high annual precipitation matched with high lake water levels and vice versa both 

before and after the dam construction of 1959 (Fig. 6). Both curves indicate higher water levels 

for the period after 1960 with a maximum peak in 1963. The average lake levels increased from 

1462.40 m asl for 1941 to 1960 to 1462.86 m for 1961 to 1993, and fell back to 1462.41 m in the 

years 1994 to 2011, albeit with a twice as large interannual variability than before. 

2.6.4. Lake water balance  

Observed and simulated lake levels are compared in Fig. 7. The absolute difference between 

observed and simulated monthly lake levels in the model with constant SGD inflow was 0.17 m. 

Adding a variable SGD inflow depending on the precipitation of the previous years (Eq. 17), 

improved the agreement extreme (maximum and minimum) lake levels between observations 

and simulations, but did not remarkably decrease the mean absolute differences or strongly 

modify the their relationship. We therefore do not see sufficient justification in the observed data 

to support or reject the hypothesis of a variable SGD inflow depending on precipitation. For the 

study analysis we used the results of the model with constant SGD inflow, but none of the 

conclusions would have been different using the model with variable SGD inflow.  
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Figure 7. Comparison between observed and simulated (model output) lake water levels generated by 
assuming a constant subaquatic groundwater discharge to the lake. The calculated and measured curves 
are compared with their 12 months running average curves (see curves (see legend). The shaded curve 
indicates the number of rain gauges used in this study. 

 

The model evaluation suggested that its performance was satisfactory (NSE = 0.60 and RSR = 

0.64) for 1941 to 1958 and good (NSE = 0.72 and RSR = 0.53) for 1959 to 1976. However for 

the period after 1977, the predictive power of the model was lower (NSE = 0.34 and RSR = 0.81) 

most likely due to turbine operating problems (Tractionel and RRI 1980; Fichtner 2008) which 

induced large uncertainties in the lake discharge. 

The correlation between mean annual observed and simulated water levels was good before the 

outlet of the river was modified in 1977, for both periods before and after the dam construction 

(Fig. 8). The same was true for the correlations between observed and simulated lake level 

increase during the rainy season from October to May (Fig. 9). Correlations for the lake level 

decrease during the dry season were weaker, and the slope was only 0.42 before dam 

construction and 0.34 thereafter (Fig. 10).  
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Figure 8. Correlations between predicted and observed lake levels for different periods. The black dots 
indicate the years where the TRMM data was used. 
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Figure 9. Comparison of simulated and observed lake level differences between 1 October and 1 May 
next year (Wet Season) 

 

After the modification of the outlet, the predictive capability of the model for all three quantities 

(mean annual level, increase during the wet and decrease during the dry season) became 

consistently weaker, both for the period 1977- 1991 when still sufficient precipitation data was 

available, and for the period after 1992 for which almost no rain gauge data was available (Figs. 

9 and 10). 
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Figure 10. Comparison of simulated and observed lake level differences between 1 June and 1 September 
(Dry Season) 

 

The observed and simulated lake levels show a consistent seasonality. Maximum lake levels are 

reached in May (0.16 m above annual average) and minimum lake levels in September (0.10 m 

below annual average; Fig. 11). Interestingly, the reproduction of the mean seasonal lake water 

level was equally good (with residuals generally lower than 0.02 m) for all periods, independent 

of dam construction or modification of the river outlet (Fig. 11). It is only somewhat worse for 

the period where TRMM data was used for driving the model, which might indicate a seasonal 

bias in the TRMM data. The mean annual flows of the calculated lake water balance are 

summarized in Table 4 and their seasonal variability is shown in Fig. 12. Table 4 highlights the 

importance of direct precipitation on the lake surface and evaporation (3.5 and 3.6 km3 yr-1, 

respectively), which contribute more than half to the total inputs and outputs.  
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Figure 11. Above: Monthly deviation from the annual mean of the observed and simulated lake levels, 
averaged for the periods where the GPCC (1942-1997) and the TRMM data (1998-2011) were used, 
respectively. Below: Monthly residuals (differences between calculated and observed lake levels) for 
different past periods. 
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Table 4. Lake Kivu water balance as calculated with the model for the years 1941 to 1991 

Lake water balance m3 s-1 km3 yr-1 mm yr-1 a) Contribution (%)
Precipitation 111 3.5 1470 55
Inflows 50 1.6 670 25
Subaquatic springs 41 1.3 550 20
Evaporation 115 3.6 1530 57
Discharge 86 2.7 1150 43

a) related to the lake surface area. 

The estimated surface inflows (1.6 km3 yr-1) are lower than the previous estimates of 2.4 km3 yr-1 

(Muvundja et al. 2009) and of 1.6 to 2.4 km3 yr-1 (Schmid and Wüest 2012), but similar to the 1.8 

km3 yr-1 proposed by Rinta (2009) from the application of the Soil and Water Assessment Tool 

(SWAT) model. However the SWAT estimates for evaporation (2.2 km3 yr-1) and precipitation 

(2.8 km3 yr-1) were lower than the estimates found in the literature (Bultot 1971; Bergonzini 

1998; Muvundja et al. 2009) probably due to large uncertainties in the data sources and 

comparably low precipitation during the study period (1998 to 2008) of the SWAT model. 

Precipitation and its seasonal variability are the same as for the runoff model (Fig. 4), while the 

river inflows correspond to the sum of the surface runoff and the baseflow. The SGD inflows 

were estimated in previous studies to close the salt balance of the lake (Schmid et al. 2005). 

 

Figure 12. Seasonal contribution of the different inputs and outputs to the lake water balance averaged for 
the period from 1941 to 1991. Precipitation and evaporation refer to the lake surface precipitation and 
evaporation, respectively, whereas subaquatic inflows represent the SGD and outflow indicates the lake 
discharge. 
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They are assumed to be constant in the model, and their small apparent temporal variability in 

Fig. 12 is due to the different number of days per month. The seasonal variation of the water 

balance is mainly due to the variation in precipitation and the resulting seasonality. The total 

output is almost constant throughout the year, as the seasonal variation of the outflow that results 

from water level variations is almost exactly compensated by the seasonal variation of 

evaporation from the lake surface. 

 

2.7. Discussion 

The hydro-meteorological features of the Lake Kivu Basin are in accordance with the regional 

climate (Fig. 4) where the altitude-moderated equatorial climate is bimodal with rainy months 

(September to May) interrupted by dry months (June to August) because of the twice-annual 

passage of the Intertropical Convergence Zone (Verschuren et al. 2009). Less seasonal variation 

is noticed in evaporation and potential evapotranspiration (Figs. 4 and 10) due mostly to low 

variation in air temperatures near the equator. Evaporation rates of East-African lakes are similar 

to the precipitation they receive: 1537 mm yr-1 for Lake Victoria (Nicholson and Yin 2002, 

2004), and 1695 mm yr-1 for Lake Tanganyika (Bultot 1962, 1971). 

This study shows a strong similarity of the dynamics of precipitation and lake levels between the 

basins of Lakes Kivu and Victoria (Fig. 3). Results in Fig. 12 indicate that the Lake Kivu level 

takes about two months lag to react from precipitation inputs and one month from catchment 

runoff. The Lake Victoria Basin experienced drought conditions in the 1930s, 1950s, 1970s and 

1980s (Nicholson and Yin 2002; Mbungu et al. 2012). Corresponding low precipitation (Mbungu 

et al. 2012) was observed in the Lake Kivu Basin (Fig. 2) and led to lake water level low stands 

(Fig. 6). However the two basins underwent remarkable increasing and decreasing hydrological 

trends since the 1960s and the 1990s, respectively (Fig. 6), as also reported by Mbungu et al. 

(2012). The increase in rainfall for the period from 1961 (which was an extreme rainfall year for 

Lake Victoria; Conway 2002) until 1993 compared to 1941-1960 is very similar in both basins 

(Fig. 2). These observations are in agreement with those of Hulme et al. (2001) who estimated 

that there was a wetting trend over the East-African region, as a part of a more coherent zone of 

wetting across most of the equatorial Africa where some areas experienced increasing rainfall 
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trends of up to 10% or more per century. Meanwhile, an increasing trend in natural hazards 

mostly due to hydro-meteorological events from the 1960s has recently been reported by 

Vandecasteele et al. (2010) for the African Great Lakes region (Kivu, Rwanda and Burundi). 

IPCC (2007) also forecasts a rainfall increase of ~10 to ~20% for East Africa for the next 

century, which has been confirmed by a more recent simulation project (Bony et al. 2013). 

The low lake levels of East-African lakes during the period of 2005/2006 which were felt as an 

emergency case by the hydropower companies on Ruzizi River (SNEL and SINELAC 2006), 

were related to the El-Niño Southern Oscillation cycle and a forcing by the 2006 Indian Ocean 

dipole (Becker et al. 2010). The response of Lake Kivu to these events was similar to those of 

Lakes Victoria and Edward (Fig. 5). Bergonzini (2002) discussed the interannual variation of the 

water balance of Lake Tanganyika and found that its current status is related to precipitation 

variability. However he argued that the change in runoff conditions due to human activities 

might also have led to a change in the runoff coefficient relatively to the period before 1960. 

The similarity of the agreement before and after dam construction indicates that the dam had no 

significant influence on the lake level (Figs. 7-10 ). The correlations for the rainy season are 

better than those for the dry season indicating that our predictions for runoff (which characterise 

the rainy season) are better than those for evaporation. This is probably caused by the lack of 

information on the interannual variation of lake surface evaporation as well as the overall 

uncertainties of this parameter on the basin scale. Another major source of uncertainty in the lake 

level model might be the quality of the outflow rating curves. 

After 1977, when the hydropower bypass was set up at the Ruzizi outlet together with the Ruzizi 

channel dredging and widening, the lake level regime seems to have been disturbed considerably 

as the model is much less successful in predicting the lake levels. Tractionel and RRI (1980) 

reported that the dam has occasionally operated inadequately during this period causing a 

slowing down of the river flow. In contrast, the average seasonal variation of the lake level was 

still perfectly reproduced by the model. The average absolute residuals between the calculated 

and the observed seasonality were 0.01 m for all periods studied until 1998 (Fig. 11) and only 

increased to 0.03 m for the period where the TRMM data were used. This confirms that the 

modification on the Ruzizi outlet did not modify the seasonality of the outflow, but induced 
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some interannual variability in the outlet rating curve. Possible causes might be that the outlet 

was further modified by changes in flow conditions after the construction work made in 1977, 

that the modification of the outlet allowed the dam operations to take some influence on the 

mean annual water level, e.g. in cases of malfunctioning of the turbines as reported above, or that 

the outflow of the lake was to some extent managed. 

Despite of the uncertainties in the raw data and the model setup, the water balance devised in this 

study matches well with the ranges provided by previous studies (Schmid and Wüest 2012). The 

long-term average precipitation estimate used in this study (1470 mm yr-1) is very close to the 

estimate of 1497 mm yr-1 used by Bergonzini (1998), while he used 8% lower lake surface 

evaporation (1412 mm yr-1 from Bultot 1971). However, previous evaporation estimates range 

from 1060 mm yr-1 (Verbeke 1957) to 1690 mm yr-1 (UNESCO 1978). 

The model estimated average baseflow and surface runoff to 220 mm yr-1 and 150 mm yr-1, 

respectively. Together they yield 370 mm yr-1, which corresponds to a runoff coefficient of 0.25. 

Similar values have been predicted in several studies for this region (Shahin 2002). The baseflow 

is estimated to be more important than surface runoff, which may be due to the volcanic soils 

which retain much water (Driessen et al. 2001; IUSS 2007). The subaquatic groundwater 

discharge (SGD) is an important component of lake water balance (Schmid et al. 2005; Schmid 

and Wüest 2012). The inflow by SGD is assumed to be at least partially derived from infiltration 

in the volcanic soils on the river-free area of 685 km2 in the North of the lake. However, the 

estimated SGD of 1.3 km3 yr-1 would correspond to 1900 mm yr-1 relative to this sub-catchment 

area, which is higher than the precipitation received. Further investigations are therefore required 

to determine the origin of these water masses as well as their residence time. Recent findings 

revealed that groundwater resources in East Africa are dependent on extreme rainfall rather than 

average rains (Taylor et al. 2013).  

Previous lake discharge estimates of 3.2 km3 yr-1 (Degens et al. 1973) and 3.6 km3 yr-1 

(Muvundja et al. 2009) were rather applicable to a certain period of the time series or 

overestimates. However our estimate of 2.7 km3 yr-1 is close to the value of 2.8 km3 yr-1 

suggested by Bergonzini (1998) despite of the difference in the method he used to establish the 

outflow data for the period of 1951 to 1973. Although Bergonzini (1998) accorded low 
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confidence to the lake level records up to 1950, our compilation showed only a slight difference 

of +5% between the lake discharge (1.9 km3 yr-1) for the period of 1941 to 1950 and that of 1951 

to 1959 (2.0 km3 yr-1). In addition, Bultot (1962) estimated the lake discharge to be 2.1 km3 yr-1 

for the period of 1951 to 1973, which is similar to our estimations. From the early 1960s, the 

lake level (Fig. 8) as well as the discharge significantly increased with the latter rising to 2.9 km3 

yr-1 for the period 1961 to 1993 due to an increase in rainfall. Recently, the mean lake level has 

fallen back to the level before 1961, but with a twice as high interannual variability than before 

(Fig. 7). 

Precipitation and net inflow (runoff + SGD) represent 55% and 45% of the overall inputs (Table 

4) in agreement with estimates (54 vs. 46%) of Bergonzini (1998). Evaporation and outflow 

represented 57 and 43 % (Table 4) of the total water losses, respectively, indicating a high lake 

level sensitivity to hydro-meteorological changes (Russell and Johnson 2006). By reducing the 

precipitation values in the model input, we can roughly estimate at which average of long-term 

precipitation the lake would get closed, assuming that evaporation from the lake surface as well 

as the SGD remain unchanged. This would be the case if the precipitation in the basin were 

reduced to~60% of its current value or ~900 mm yr-1 

The results of the present study and the discussion of the uncertainties involved highlight the 

necessity to better monitor the hydrology of Lake Kivu and its basin. Continuous time series of 

quality-assured data of precipitation and other meteorological observations on the lake and in the 

catchment, as well as of the discharge of selected tributaries to the lake would help to better 

constrain the water balance of the lake. This will be necessary in order to be able to observe and 

quantify potential effects of climate change on the water level and the hydrological balance of 

the lake in the future.  
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Chapter 5. General conclusion and perspectives 

 

5.1. General discussion 

Lake Kivu lies in a complex geological basin characterized by intense tectonism and volcanism 

which led to a faulty relief communicating subaquatically with the lake in the northern basin 

(Ross et al. 2014, 2015a, b). These faults act as conduits for water infiltrating within the river-

free catchment area of Goma-Gisenyi (Muvundja et al. 2009, this thesis, chap. 2). These conduits 

feed at least partially the several subaquatic springs (1.3 km3 yr-1, i.e., 20% of the total inputs, 

Schmid et al. 2005), some being warm (hydrothermal) sources and others cold (Ross et al. 

2015a,b). The release of salty hydrothermal groundwaters into the lake deep waters has led to a 

strong and permanent stratification of the lake (Schmid et al. 2005; Schmid and Wüest 2012) 

characterized by a thermohaline structure consisting of alternating small-scale mixed and high-

gradient layers in staircases (Sommer et al. 2013). 

The subaquatic groundwater discharge creates a slow uplift of nutrient-rich deep waters towards 

the surface (Pasche et al. 2009) resulting in an internal nutrient loading (80-85% of the total 

supply of nitrogen and phosphorus, Pasche et al. 2012) to the mixolimnion by upwelling that 

contributes 80-85% to the total supply of nitrogen and phosphorus (Pasche et al. 2012). In turn 

the nutrient availability stimulates the phytoplankton growth as primary production (1440-1600 

mg C m-2 d-1, this thesis, chap 3). The primary production estimates in this study were higher 

than the previously published data for the Southern (Ishungu) basin (Sarmento et al. 2012; 

Darchambeau et al. 2014). According to previous studies which covered the period of 2002-2006 

(Isumbisho et al. 2006; Darchambeau et al. 2012), a fraction of the primary production is grazed 

by zooplankton, with a carbon transfer efficiency of 6.8% between the two trophic levels, to 

sustain the 63 mg C m-2 d-1 of zooplankton production (Darchambeau et al. 2012). The remaining 

decaying phytoplankton together with phytoplankton excretion sustain the heterotrophic bacterial 

production of 336 mg C m-2 d-1 (data of 2008; Llirós et al. 2012), and hence supply to the high 

bacterial carbon demand (Morana et al. 2014a). The more refractory POM sinks and settles down 

on the lake floor where it undergoes further degradation by methanogens and supports ~40% of 

methane formation in the lake (Schoell et al. 1988; Pasche et al. 2011). Finally the most 
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refractory material (partially transformed and some intact POM) is buried, archived and finally 

fossilized within the sedimentary rock. 

The main purposes of this study consisted of assessing the recent variability observed in lake 

water levels as well as tracing the dynamics of particulate organic matter cycling in Lake Kivu, 

in order to contribute to the knowledge of the functioning of Lake Kivu in particular, and of the 

African large lakes in general. Under conditions of global warming and anthropogenic pressure 

on natural ecosystems, it becomes more and more important to evaluate ecosystem sensitivity to 

environmental changes. However modeling Lake Kivu is not an easy way to go due to long-term 

data scarcity. Excluding the exploration by naturalists and European travelers, scientific research 

itself on Lake Kivu started in 1920 (Descy et al. 2012a) with the expedition of Cunnington 

(1920). Thereafter various other studies were conducted but Lake Kivu remains understudied 

compared to other Great lakes of the world and even those of East-Africa (Descy et al. 2012b). 

Although a considerable effort has been made in knowledge acquisition about Lake Kivu during 

the last two decades, there are still many gaps regarding the hydrological patterns and the 

biogeochemical processes governing the lake functioning. The first comprehensive work on the 

hydrology of Lake Kivu has only been conducted in 1998 by Bergonzini (1998). It is curious that 

Lake Kivu’s hydrology escaped from the attention of scientists for such a while. Nevertheless it 

is obvious that hydrological studies are long-time data demanding, and this is a serious constraint 

for this lake hidden in the Kivu highlands where the catchments of the numerous tributaries of 

the lake are small and poorly developed and consequently remain largely ungauged. The lack of 

long-time data series makes the hydrological modeling difficult to handle. Bergonzini (1998) 

was the first author to estimate the water balance of the lake and its sensitivity to local climate 

but he did not have enough information on the river inflow network nor did he take into account 

the subaquatic groundwater discharge, or assessed the potential effect on the lake water levels of 

the Ruzizi I HP dam construction at the outflow.  

In this thesis, we collected and analyzed data from various sources covering 70 years of records, 

and we applied a simple mathematical model to elucidate the importance of each hydrological 

component to the lake water level dynamics. The examination of the Lake Kivu water level 

dynamics during the last seven decades allowed concluding that the recent variability of modern 
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Lake Kivu hydrology was caused by inter-annual variability of meteorological factors (mainly 

precipitation) rather than the hydropower operation. This was the first hydrological study on 

Lake Kivu to comprehensively address the lake response to actual and potential changes of any 

hydrological component linking the lake water levels to the catchment hydrology. No evidence 

was found about the effect of the hydropower dam construction and operation. 

Furthermore this thesis intended to contribute to the knowledge of the biogeochemistry and 

paleolimnology of Lake Kivu by tracing the sources, the export and the fate of particulate 

organic matter in Lake Kivu as well as its historical records. 

Cycling of OM is an important biogeochemical process because it allows the regeneration of 

nutrients, and in the case of a permanently stratified lake with an anoxic monimolimnion like 

Kivu, it is important in feeding methanogenesis (Schoell et al. 1988; Pasche et al. 2011). Chapter 

4 aimed to evaluate the distribution and fluxes of particulate organic matter (POM) in different 

compartments of the water column and surface sediments in order to determine the export regime 

from oxic to anoxic zones, the degradation within the water column, the sinking rates and the 

burial of POM. 

Lake Kivu organic matter was identified as deriving mostly from autochthonous sources. Large 

seasonal variations were found in export fluxes of seston and POM into the deep waters 

depending on the mixing status of the mixolimnion and on phytoplankton community 

composition. Higher chlorophyll degradation (~ up to 75%) was observed in the water column 

from 30 m to 60 m depth and in the sediment traps (settling POM) than in the euphotic zone 

(floating POM) where photooxidation, bacterial degradation and grazing occur. The distribution 

of phaeophytins a compared to that of phaeophorbide a among the water compartments was an 

evidence that microbial processes dominate the pigment degradation in Lake Kivu compared to 

zooplankton grazing. The POC export to the monimolimnion was estimated at 6% of primary 

production indicating that the largest fraction of primary production becomes available to 

bacterial production in the water column as dissolved organic matter (Llirós et al. 2010, 2012; 

Morana et al. 2014a). At an annual scale, the PIC fluxes were occasional and peaks were 

observed at the culmination of rainy season when the lake mixolimnion reaches the maximum 

stratification. The exported POM contributes to the enrichment of the deep water nutrient pool 
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(5.9-7.7 mg N m-2 d-1 and 0.33-0.5 mg P m-2 d-1, this thesis, chap 3) and methanogenis. Some 

phytoplankton groups such as diatoms + cryptophytes and cyanobacteria are likely to contribute 

more than other groups to the sinking POM. Thus, given that methane production in the deep 

waters and the sediment relies also on organic matter availability (Pasche et al. 2011; Wüest et 

al. 2012), it can be assumed that a change in phytoplankton production and community structure 

may affect the methane production. Some carotenoid pigments such as alloxanthin and 

zeaxanthin were found to be more useful as paleolimnological proxies than others like 

fucoxanthin and diadinoxanthin which were completely lost during their transport to deep waters 

and/or on sediment surface due to their high vulnerability to degradation. 

Previous paleolimnological studies (Pasche et al. 2010; Ross et al. 2014; Votava 2014) reported 

an alternating carbonate precipitation in the sediments of Lake Kivu but the geochemical process 

governing it remained unclear. In this chapter we discussed several scenarios based on carbonate 

concentration in relationship to other geochemical proxies. The outcome was that carbonate 

precipitation as CaCO3 has probably been a permanent inter-annual phenomenon in Lake Kivu in 

the time period covered by the study but high variability in CaCO3 precipitation may occur on 

seasonal time scales, depending on phytoplankton biomass, photosynthesis and depth of the 

mixed layer. Nevertheless, there have been periods of poor preservation of the precipitates in the 

sediments due to re-dissolution caused by acidic conditions generated by the diagenesis (aceto-

clastic fermentation) of organic-rich sedimentary material.  

Nutrient cycling in Lake Kivu paleolimnology was found to be regularly changing. In modern 

Lake Kivu, nutrient sources to the productive layers are dominated by internal processes 

(upwelling, Muvundja et al. 2009; Pasche et al. 2012), and the latter is subject to variation in the 

mixing regime induced by climatic patterns (Thiery et al. 2014; Katsev et al. 2014) and SGD 

fluctuations conditioned at least by hydrothermalism and meteoric precipitation (Ross et al. 

2014, 2015a). We used nutrient elemental and stable isotope proxies to track the history of 

nutrient supply and cycling into the productive layers. Episodic changes in nutrient limitation 

and utilization were recorded in the sediments.  

The lake evolved from (N, P) co-limitation conditions to strong P limitation before shifting to N-

deficient conditions due to stronger stratification. These nutrient conditions were also 
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corroborated by phytoplankton pigment markers. During low OM accumulation cyanobacteria 

(indicated by zeaxanthin, myxoxanthophyll and echinenone) and chlorophytes (indicated by 

lutein) were among the dominant phytoplankton groups under a weak mixing regime as indicated 

by the presence of isorenieratene. However during high OM accumulation in the sediment 

archives, diatom blooms were obvious as evidenced by peaks of biogenic silica, which were 

related to strong mixing conditions in the mixolimnion. During such events, episodic changes in 

elemental stoichiometry evidenced by peaks of BSi/TOC, BSi/TN and BSi/TP, were recorded 

and interpreted as an ephemeral change in diatom community (Kilham et al. 1986). 

In the topmost core, a change in the ratio of phaeophorbide a to the sum of chlorophyll a and 

derivatives coupled with an increase of phaeophytin a may be interpreted as an effect of intense 

microbial activity taking place at the water/sediment interface and/or the effect of diagenesis. 

The origin of sedimentary OM was also identified as typically autochthonous as indicated by (C, 

N) stable isotopes and organic molecular markers. Paleoenvironmental data showed that OM in 

Lake Kivu is poorly preserved due to relatively high heterotrophic microbial uptake (Morana et 

al. 2014b) in the water column and intense diagenesis in the sediments. Sedimentary pigment 

preservation in the sediments of Lake Kivu was assessed and results indicated that specific 

markers of cyanobacteria, chlorophytes and cryptophytes were preserved in the sedimentary 

material. However no diatom, chrysophyte or dinoflagellate pigments were detected in the 

sediments which suggested that the labile diatom pigments were totally degraded. The absence of 

chrysophyte and dinoflagellate pigments in Lake Kivu sediments can also be related to their 

weak presence in the mixolimnion (Sarmento et al. 2012; Darchambeau et al. 2014). 

 

5.2. Perspectives 

Lake Kivu is a fascinating ecosystem to study yet to be further explored. It is an interesting 

natural laboratory for research and education in all field studies of natural sciences. The 

hydrological features of the subaquatic sources such as the amount of water in the reservoir, its 

residence time as well as its underground circulation and the infiltration processes are still 

challenging and should be tackled because some of these hydrothermal springs which may be 

important as geothermal energy production, are also vital for the stability of the lake.  
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Organic matter fermentation sustains an important fraction of CH4 production but nothing is yet 

known on how much the change in phytoplankton community structure and/or POC export to 

sediments can affect the methane production. In the present study we focused on pigment 

geochemistry. Future research could explore the geochemistry of other OM classes such as 

lipids, carbohydrates amino-acids, and humic substances (Arndt et al. 2013) which would 

contribute to elucidate the mechanisms governing the POM losses in the water column during the 

downward fluxes. The use of labile organic molecules in experimental studies with cultured 

microorganisms from Lake Kivu may help understanding the mechanisms and active organisms 

responsible of key biogeochemical processes because OM degradation processes result from the 

combined effort of billions of individual microorganisms (Arndt et al. 2013). Furthermore the 

application of molecular biology tools to the paleolimnology of Lake Kivu will help tracking the 

evolution of the microbial community and the history of biogeochemical processes sustaining the 

lake functioning. 

Finally, the expected development of industrial methane exploitation is intended to “kill two 

birds with one stone” by cutting off the natural hazard of gas eruption threatening the riparian 

populations and at the same time by producing energy for the development of the riparian 

countries (Wüest et al. 2012). However cautious and wise measures are required to avoid the 

disruption of the lake stratification as well as to avoid eutrophication. Given that a zero-risk zero 

method does not exist, the monitoring of biogeochemical processes (e.g, N-fixation, CH4, CO2 

concentrations, primary productivity, OM sedimentation rates, etc.) is necessary for early 

detection of any unexpected change in the lake functioning. Although the reservoir of the 

methane resource in the water column is well known, there is still a gap about the amounts of 

methane trapped within the large sediment layers. The catchment hydrology and mass fluxes to 

the lake should also be monitored as a base for assessing management options to preserve the 

water quality of the lake. 
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