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Le problème de commande optimale linéaire quadratique
pour les systèmes linéaires invariants

par Charlotte Beauthier

Résumé :Ce travail a pour objet l’étude du problème de commande optimale au sens linéaire
quadratique (LQ) pour des systèmes linéaires avec contraintes d’inégalité affines sur les
trajectoires d’état et/ou d’entrée, et en particulier pourdes systèmes linéaires entrée/état-
invariants. L’étude de ces systèmes est motivée notamment par le problème de coexistence
dans un modèle de chémostat où, pour des raisons biologiques, il est important de chercher
à forcer les trajectoires d’état et d’entrée de rester dans un cône. Des conditions nécessaires
et suffisantes d’optimalité sont établies pour le problème LQ invariant entrée/état en utilisant
le principe du maximum avec contraintes sur l’état et l’entrée et à l’aide de l’admissibilité
de la solution du problème LQ standard. Des résultats similaires et spécifiques sont obtenus
pour le problème LQ appliqué aux systèmes positifs, qui sontcaractérisés par l’invariance
de l’orthant non négatif de l’espace d’état. Les méthodes développées dans cette thèse
sont appliquées au modèle de chémostat via l’étude des systèmes non linéaires localement
entrée/état-invariants. Les principaux résultats de ce travail sont illustrés par des exemples
numériques.

The LQ-optimal control problem for invariant linear system s
by Charlotte Beauthier

Abstract : This work is concerned with the study of the linear quadratic(LQ) optimal control
problem for linear systems with affine inequality constraints on the state and/or the input tra-
jectories, and in particular for input/state-invariant linear systems. The study of such systems
is motivated notably by the coexistence problem in a chemostat model where, for biologi-
cal reasons, it is meaningful to aim at forcing the state and the input trajectories to remain
in a cone. Necessary and sufficient optimality conditions are established for the input/state-
invariant LQ problem by using the maximum principle with state and input constraints and
by using the admissibility of the solution of the standard LQproblem. Similar and specific
results are obtained for the particular LQ problem for positive systems, which are character-
ized by the invariance of the nonnegative orthant of the state space. The methods developed
in this thesis are applied to the chemostat model via the study of locally positively input/state-
invariant nonlinear systems. The main results of this work are illustrated by some numerical
examples.
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Introduction

A world involved in systems and control

Control theory is an interdisciplinary branch of science which has its origin in engineering
and mathematics and which deals with influencing the behavior of dynamical systems. It fo-
cuses on the modeling of a diverse range of dynamical systems(e.g. mechanical, biological or
economical systems) and the design of controllers that willcause these systems to behave in a
desired manner.

Let us consider, for example, a car with the system of cruise control, which is a device de-
signed to maintain the vehicle’s speed at a constant desiredvalue provided by the driver. The
control (or input) is the engine’s throttle position which determines the power of the engine
and theoutputis the car’s speed. A first way to implement cruise control is simply to lock the
engine’s throttle position when the driver engages cruise control. This is called anopen-loop
design because no measurement of theoutput(the car’s speed) is used to modify thecontrol
(or input) (the engine’s throttle position). As a result, the controller can not compensate for
changes acting on the car, like a change in the slope of the road. In a closed-loopdesign, a
sensor measures the output (the car’s speed) and transmits the data to a controller which adjusts
the input (the engine’s throttle position) as necessary to maintain the desired output (match the
car’s speed to the desired speed). Also, the (minimal or maximal) speed limit on the road can
be seen asbound constraintson astatecomponent (the car’s speed).

More formally, insystems and controltheory, one is interested in governing thestateof a
dynamical system by usingcontrol. The dynamical behavior of the system is the manner in
which the state changes under the influence of the control andis often described by an ordinary
differential equation.Optimal controldeals with the problem of finding a control law for a
given system such that a certain optimality criterion is achieved under constraints. An optimal
control problem includes a cost functional that is a function of the state and control variables :
the objective of optimal control theory is to determine a control law that will cause a process to
satisfy the physical constraints and at the same time, minimize (or maximize) a cost functional,
i.e. a performance criterion, see e.g. [HSV95]. For example, if we want to keep the car’s
speed, denoted byx(t), near a constant valueα on a time interval[0, tf ], then this question can
be formalized as the problem of finding a control (engine’s throttle position), denoted byu(t),
which minimizes the cost functional

∫ tf
0

(x(t)− α)2 dt.

1



2 Introduction

The most common optimal control problem is thelinear quadratic(LQ) optimal control
problem, see e.g. [KS72, CD91]. This problem consists of minimizing aquadraticcost func-
tional subject tolinear dynamical constraints described by a set of linear differential equations.
One of the most salient features of the LQ control is the fact that it is of state-feedbacktype.
That means that the optimal controlu can be written in terms of linear combinations of the state
componentsx, i.e. u = K x, whereK is called thefeedbackmatrix.

The principle of feedback is simple : feedback is a process that is looped back to control
a system within itself. It is the process in which part of the output of a system is returned
back to its input in order to regulate its further output. Theterm feedback can also be seen as
the situation in which two (or more) dynamical systems are connected together such that each
system influences the other and their dynamics are thus strongly coupled. A system is said to
be aclosed-loopsystem if the compound systems are interconnected in a cycle(Figure 2). If
the interconnection is broken, the system is said to be anopen-loopsystem (Figure 1).

System 1 System 2
u1 y1 = u2 y2

Figure 1: Open design.

System 1 System 2
u1 y1 = u2 y2

Figure 2: Closed-loop design.

Feedback has many interesting properties that can be exploited in designing systems : no-
tably, feedback allows a system to be insensitive both to external disturbances and to variations
in its individual elements, see [AM90]. Another use of feedback is to change the dynamics of
a system. Through feedback, one can alter the behavior of a system to meet the needs of an
application : for example, systems that are unstable can be stabilized.

Let us mention that another well-known optimal control problem deals withmodel predic-
tive control (MPC), see e.g. [Zhe10] and [AZ00]. MPC is a control strategyin which the
applied input is determined on-line at each sampling instant by the solution of an open-loop
optimal control problem using the current (estimated) state as initial state. The solution of the
optimization problem yields an optimal input signal from which only the first part is imple-
mented until the next measurement becomes available.

This thesis is devoted to the LQ-optimal control problem forlinear systems with affine
inequality constraints on the state and/or the input trajectories, and in particular forinput/state-
invariant linear systems, which are characterized by the fact that theinput and the state trajec-
tories should remain in a cone. The study of such systems is motivated notably by the problem



Introduction 3

of coexistence of speciesin a chemostat(i.e. a continuous stirred tank reactor). The concept of
coexistence of species means that the concentration of the species should remain strictly pos-
itive. From a mathematical point of view, the study of the problem of coexistence of species
can be performed by means of input/state-invariant systems. Indeed, for physical or biological
reasons, it is meaningful to aim at forcing the state and/or the input trajectories of such systems
to remain in a cone. On the other hand, dynamical models of many biological and pharmaco-
logical processes, such as metabolic systems or biochemical reactions, are derived from mass
and energy balance considerations that involve states whose values are nonnegative. Hence it
follows from physical considerations that the state trajectories of such models should remain in
the nonnegative orthant of the state space for nonnegative initial conditions. This motivates the
study of the LQ-optimal control problem for the particular class ofpositivesystems, which are
characterized by the invariance of the nonnegative orthantof the state space.

In the literature, the concept of invariance of linear systems is an important topic in systems
and control, (see e.g. [Bla99]), as well as the positivity oflinear systems, see e.g. [FR00]
and [HCH10] for an overview. This class of systems is very interesting for the study of ap-
plications, see e.g. [HCH10, God83, Van08] and there are many contributions which are de-
voted to such systems, see e.g. [BF04, HCH10]. In the framework of the LQ problem (see
[CD91, AM90]), the constrained problem has already been studied when only considering non-
negative constraints, either on the state or on the input (see e.g. [HVS98] for the LQ problem
with positive controls, [Ka 02] for the minimal energy positive control problem for positive
systems and the recent book [HCH10] and the references therein). There is also a large liter-
ature devoted to modifying the chemostat model to ensure coexistence of the organisms, see
e.g. [BHW85, Smi95, SFA79, Hsu80] and [DS03] where feedbackcontrol of the dilution rate
is studied. See [SW95] for an overview on the chemostat model. The interest of applying an
LQ control to a chemostat model is to benefit of its specific properties in order to get a model
for which the coexistence of species is guaranteed.

The contributions of this thesis with respect to the literature are summarized after the con-
cluding section.

Structure of the document

First of all, in this work, thecontinuous timecase is considered in all chapters except for
the last one, which is devoted to similar and also specific results in discrete time. This thesis is
then divided in three main parts for the continuous time case.

The first part describes properties of time-varying and time-invariant input/state-invariant
linear systems (Chapter 1), and well-known properties of positive linear systems (Chapter 2).

The second part deals with the study of the input/state-invariant linear quadratic problem,
first in finite horizon(Chapters 3 and 4), and next ininfinite horizon(Chapters 5 to 7). In
Chapter 3, optimality conditions are established for the input/state-invariant LQ problem, which
are based on the maximum principle (see [HSV95]) and on the admissibility of the solution of
the standard LQ problem. Similar results have been obtainedfor the particular LQ problem for
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positive systems, which is studied in Chapter 4. Moreover, specific results are stated in terms
of the matrix solution of the Riccati differential equation(RDE) and the particular problem
of minimal energy control with penalization of the final state is also studied. This chapter is
completed by illustrative numerical examples. In the second half of this part (Chapters 5 to 7),
the input/state-invariant LQ problem is studied for the infinite horizon case. Chapter 5 briefly
analyzes a receding horizon approach. Criteria for the existence of a solution to the positive
LQ problem are established in Chapter 6, by using a Newton-type iterative scheme. In addition,
positivity criteria are stated in terms of the solution of the algebraic Riccati equation (ARE) and
in terms of the Hamiltonian matrixH. Chapter 7 is devoted to the inverse input/state-invariant
LQ problem which consists of finding, for a fixed invariant stabilizing matrix K, weighting
matrices such that the feedback control is optimal for the resulting LQ problem.

The third part is devoted to the application of the LQ problemto locally positively invariant
nonlinear systems. First, properties of a locally positively invariant nonlinear system together
with the link with its linear approximation around an equilibrium, are described (Chapter 8).
Then, the application of the LQ problem in order to solve the problem of coexistence of species
in a chemostat model is studied (Chapter 9). In the latter, wefirst describe the framework of the
chemostat model and the problem of coexistence of species which are therein in competition
for one substrate. The theory developed so far for the input/state-invariant LQ problem is then
applied to guarantee the local positive invariance of the chemostat model, which is described
by a nonlinear system. Numerical simulations have also beenperformed to complete this study.

Finally, in the last chapter, several results are stated forpositive systems indiscrete timeand
the corresponding positive LQ problem in finite horizon is studied. These results are similar to
the ones obtained in the continuous time case. Moreover, a specific result is derived for the par-
ticular class of monomial systems, which can be seen as inverse time positive systems. At last,
an algorithm, both in a vector and a matrix form, is developedby using Hamiltonian systems.
The main results of this chapter are illustrated by some numerical examples.

We conclude this thesis by summarizing our approach and the obtained results and by sug-
gesting some perspectives for future work. A summary of our contributions and tables contain-
ing the main notations and abbreviations used in this thesiscan be found after the conclusion.

Notice that, in the sequel, definitions, theorems (including lemmas, corollaries and propo-
sitions), remarks and examples are numbered with respect tothe current section for a given
chapter. For example, Theorem 10.2.6 denotes the 6th theorem in the 2nd section of Chapter
10.
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In this first part, the theory of invariant continuous-time linear systems is presented. Condi-
tions for the invariance property are stated in terms of the matrices defining the system dynam-
ics. The concept of invariance of linear systems means that,under some conditions on the initial
state and the input trajectories, their state trajectoriesremain in a (shifted) cone. This is an im-
portant topic in system theory, see e.g. [Bla99] and [BNS89]. Furthermore, the stability and the
stabilizability of such systems are studied. Finally, similar results and some additional results
are presented for the particular class of positive systems.These systems encompass dynamical
models where all the variables should remain nonnegative for any nonnegative initial condition
and for any nonnegative input trajectory. This class of systems is much studied in the literature
and there is a large class of applications in this field. Some typical examples of positive systems
are economics models, chemical processes, compartmental systems and biological systems. A
lot of theoretic problems have already been investigated for positive systems. See e.g. [FR00]
and [HCH10] for an overview of the state of the art in this topic.
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Chapter 1

Invariant Linear Systems

Set invariance is an important and extensively studied topic in systems and control, see e.g.
[Bla99]. Invariant sets play an important role for example in constrained control, robustness
analysis, synthesis and optimization. This chapter is devoted to the study of invariant linear
systems, i.e. systems where, under some conditions on the initial state and the input trajecto-
ries, the state trajectories remain in a (shifted) cone, seee.g. [Bla99] and [BNS89, Chapter 4].
For these systems, characterization of the invariance can be described in terms of the matrices
defining the system dynamics. The stability of such systems is also studied. Moreover the prob-
lem of invariant stabilization is studied, which consists of finding a stabilizing state feedback
which ensures the invariance property for the resulting closed-loop system. The next chapter is
devoted to the particular class of positive systems.

1.1 Main concepts and results

1.1.1 Invariant LTV systems

Let X and Y be matrices in IRp×q. The property that, for alli = 1, . . . , p and for all
j = 1, . . . , q, xij ≥ yij, (xij > yij, respectively), is denoted byX ≥ Y , ( X ≫ Y , respectively).
Finally, X > Y means thatX ≥ Y andX 6= Y .

Definition 1.1.1 LetM be a matrix in IRp×q.

• M is said to benonnegativeif M ≥ 0.

• M is said to bestrictly positive if M ≫ 0.

• M is said to bepositive if M > 0.

• A square matrixM ∈ IRp×p is said to beMetzler if all its off-diagonal components are
nonnegative, i.e.

∀ i, j ∈ {1, . . . , p} such thati 6= j, mij ≥ 0,

i.e. M +α Ip is a nonnegative matrix for someα ∈ IR, (see Appendix A), whereIp denotes
the identity matrix of dimensionp.

11
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In particular, these notations and definitions obviously apply to the caseq = 1, i.e. to vectors
x ∈ IRp.

Consider the following linear time-varying (LTV) homogeneous system, fort ∈ [t0, tf ],

ẋ(t) = A(t) x(t), x(t0) = x0, (1.1)

where the statex(t) ∈ IRn, A(t) ∈ IRn×n is a piecewise continuous real matrix function,
x0 ∈ IRn denotes any fixed initial state and[t0, tf ] is an arbitrarily fixed time interval. A first
property of the fundamental matrix of such system is the equivalence between its nonnegativity
and the Metzler property of the matrixA(t).

Lemma 1.1.1 The matrixA(t) of system (1.1) is a Metzler matrix for allt ∈ [t0, tf ] if and only
if Φ(t, t0) is nonnegative for allt ∈ [t0, tf ] whereΦ(t, t0) is called thefundamental matrix
and satisfies the following homogeneous equation :

∂Φ

∂t
(t, t0) = A(t) Φ(t, t0), ∀ t ∈ [t0, tf ], (1.2)

with the initial conditionΦ(t0, t0) = In, see [CD91, pp. 10-11].

Proof :
Necessity: Considerα(t) ≤ min{aii(t)}ni=1 whereα(·) is a (piecewise) continuous function.
SetĀ(t) = A(t)− α(t) In. Then,Ā(t) ≥ 0. Consider the following differential equation :

ż(t) = Ā(t) z(t), with z(t0) = x(t0)

such that
z(t) = Φ̄(t, t0) x(t0),

whereΦ̄(t, t0) is the corresponding fundamental matrix. Therefore, one has :

Φ(t, t0) = exp

(∫ t

t0

α(τ) dτ

)
Φ̄(t, t0). (1.3)

Let
Φ̄(t, t0) = lim

m→∞
Xm(t), t ∈ [t0, tf ], (1.4)

whereXm(t), m ∈ IN, denote the Picard’s iterates, (see [CD91, p. 13 and pp. 471-475]), that
are defined, for allt ∈ [t0, tf ], by :





X0(t) = In

Xm+1 = In +

∫ t

t0

Ā(τ) Xm(τ) dτ.

Observe thatX0(t) ≥ 0 and that ifXm(t) ≥ 0 thenXm+1(t) ≥ 0. Hence,

∀ t ≥ t0, ∀m : Xm(t) ≥ 0.
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Consequently, by (1.4),̄Φ(t, t0) ≥ 0 and then by (1.3),Φ(t, t0) ≥ 0 for all t ∈ [t0, tf ].

Sufficiency: Assume that for allt ∈ [t0, tf ], Φ(t, t0) ≥ 0. Let i 6= j andh > 0. With ei

denoting theith vector of the canonical basis of IRn, one has :

0 ≤
< Φ(t + h, t) ei, ej >

h

=
< Φ(t + h, t) ei, ej > − < ei, ej >

h

=
< (Φ(t + h, t)− In) ei, ej >

h

=

<

∫ t+h

t

A(σ) Φ(σ, t) dσ ei, ej >

h

=
1

h

∫ t+h

t

< A(σ) Φ(σ, t) ei, ej > dσ

sinceΦ(t, t0) is the solution of equation (1.2). Then, by the meanvalue theorem applied to the
continuous function< A(σ) Φ(σ, t) ei, ej > on [t, t + h] for h sufficiently small, it follows
that :

0 ≤< A(t) ei, ej >= aij(t), for i 6= j.

Therefore,A(t) is a Metzler matrix for allt ∈ [t0, tf ].
2

Let x̄ ≪ 0 be a fixed state and consider an initial conditionx(t0) := x0 ≥ x̄. Such a fixed
statex̄ is used in Chapter 9, which is devoted to the chemostat model where several species
are in competition for a single nutrient. The model is described by a nonlinear system which is
studied by means of its linearization around an equilibriumxe := −x̄. This equilibrium state
xe is assumed to be strictly positive and therefore it guarantees the coexistence of species. The
results developed in the current chapter also hold forx̄ = 0, see Chapter 2 on positive systems.
Now, consider the following shifted coneCx̄ :

Cx̄ := {x ∈ IRn : x ≥ x̄} = IRn
+ + x̄. (1.5)

Definition 1.1.2 The coneCx̄ is said to beinvariant with respect to (w.r.t.) system (1.1) on
[t0, tf ] if Cx̄ is Φ(t, t0)-invariant on[t0, tf ], i.e.

∀ t ∈ [t0, tf ], Φ(t, t0) Cx̄ ⊂ Cx̄,

or equivalently
∀ t ∈ [t0, tf ], ∀ x0 ∈ Cx̄, x(t) := Φ(t, t0) x0 ∈ Cx̄.

In this case, system (1.1) is said to bestate-invariant w.r.t. Cx̄ on [t0, tf ].

Theorem 1.1.2 The coneCx̄ is invariant w.r.t. system (1.1) on[t0, tf ] if and only if the following
conditions hold :

∀ t ∈ [t0, tf ], A(t) is a Metzler matrix (1.6)

and
∀ t ∈ [t0, tf ], Φ(t, t0) x̄ ≥ x̄ (1.7)
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Remarks 1.1.1 a) Observe that condition (1.7) implies that

A(t0) x̄ ≥ 0. (1.8)

Indeed, this follows from the identity

A(t0) x̄ = lim
t→t0+

(Φ(t, t0)− In) x̄

t− t0
.

b) Condition (1.7) seems to be difficult to check. However, itis not necessary to computeΦ(t, t0)

for all time, but only the state trajectories from the initial condition x̄ and not from allx0.
Moreover, it is shown in Theorem 1.1.5 that condition (1.7) can be translated only in terms of
A for linear time-invariant systems.

Proof of Theorem 1.1.2 :
Necessity: Consider the initial statex0 := x̄. Thenx(t) = Φ(t, t0) x0 = Φ(t, t0) x̄ with
x(t) ≥ x̄ for all t ∈ [t0, tf ] by assumption. Therefore condition (1.7) holds. Now taking
x0 := αj x̄j ej ≥ x̄ for αj < 0 givesx(t) = Φ(t, t0) x0 = Φ(t, t0) αj x̄j ej. In particular, for all
t ∈ [t0, tf ] and for alli, j,

xi(t) = Φij(t, t0) αj x̄j ≥ x̄i

or equivalently

Φij(t, t0) ≥
x̄i

x̄j αj

, where αj < 0 and x̄i, x̄j < 0.

Hence lettingαj → −∞, it follows thatΦij(t, t0) ≥ 0 for all t ∈ [t0, tf ] and for alli, j. Then
by Lemma 1.1.1, condition (1.6) holds.

Sufficiency: Let t ∈ [t0, tf ] andx0 ≥ x̄ be arbitrarily fixed. Then

x(t) = Φ(t, t0) x0 ≥ Φ(t, t0)x̄ sinceΦ(t, t0) ≥ 0 by (1.6) and Lemma 1.1.1
≥ x̄ by condition (1.7).

2

Now consider the following LTV system description denoted by R = [A(·), B(·)], for
t ∈ [t0, tf ] :

ẋ(t) = A(t) x(t) + B(t) u(t), x(t0) = x0 (1.9)

where the statex(t) ∈ IRn and the controlu(t) ∈ U whereU is the set of piecewise con-
tinuous functions from[t0, tf ] to IRm, A(t) and B(t) are piecewise continuous real matrix
functions of compatible sizes andx0 ∈ IRn denotes any fixed initial state. In the sequel, un-
less otherwise stated, these conditions are assumed to holdfor such systems. Consider an
input u(t) = K(t) x(t) for t ∈ [t0, tf ], whereK(·) ∈ IRm×n is a piecewise continuous state
feedback function. Therefore we consider the following LTVclosed-loop system, denoted by
R = [A + B K(·), 0], for t ∈ [t0, tf ] :

ẋ(t) = (A + B K(t)) x(t), x(t0) = x0. (1.10)
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Let an inputū ≤ 0 be fixed. Such a fixed input̄u is also used in Chapter 9 as an equilibrium
input of the considered nonlinear system. Consider the following shifted coneCū :

Cū := {u ∈ IRm : u ≥ ū} = IRm
+ + ū. (1.11)

Definition 1.1.3 The coneCū is said to beinvariant with respect to system (1.10) on[t0, tf ]

if
∀ t ∈ [t0, tf ], ∀ x0 such thatu(t0) = K(t0) x0 ∈ Cū,

u(t) := K(t) x(t) = K(t) ΦK(t, t0) x0 ∈ Cū,

whereΦK(t, t0) is the fundamental matrix which satisfies the following differential equation

∂

∂t
ΦK(t, t0) = (A + B K(t)) ΦK(t, t0), ∀ t ∈ [t0, tf ]

with the initial conditionΦK(t0, t0) = In.
In this case, system (1.10) is said to beinput-invariant w.r.t. Cū on [t0, tf ].

Theorem 1.1.3
a) LetK(t) be a state feedback of system (1.10) of full column rank andm ≥ n. If the following
conditions hold :

∀ t ∈ [t0, tf ], K(t) ΦK(t, t0) K+
l (t0) ≥ 0 (1.12)

and
∀ t ∈ [t0, tf ], K(t) ΦK(t, t0) K+

l (t0) ū ≥ ū (1.13)

whereK+
l ∈ IRn×m denotes the left pseudo-inverse ofK, i.e. K+

l := (KT K)−1KT such that
K+

l K = In. Then the coneCū is invariant w.r.t. system (1.10) on[t0, tf ].

b) Conversely, if the coneCū is invariant w.r.t. system (1.10) on[t0, tf ], with a state feedback
K(t) of full row rank andm ≤ n. Then the following conditions hold

∀ t ∈ [t0, tf ], K(t) ΦK(t, t0) K+
r (t0) ≥ 0 (1.14)

and
∀ t ∈ [t0, tf ], K(t) ΦK(t, t0) K+

r (t0) ū ≥ ū (1.15)

whereK+
r ∈ IRn×m denotes the right pseudo-inverse ofK, i.e. K+

r := KT (K KT )−1 such that
K K+

r = Im.

Proof : a) Assume that (1.12) and (1.13) hold, i.e., withV (t, t0) := K(t) ΦK(t, t0) K+
l (t0),

∀ t ∈ [t0, tf ], V (t, t0) ≥ 0 andV (t, t0) ū ≥ ū.

Then, for allt ∈ [t0, tf ], we have, withu(t0) := K(t0) x0 ≥ ū :

u(t) = K(t) x(t) = K(t) ΦK(t, t0) x0

= K(t) ΦK(t, t0) K+
l (t0) K(t0) x0

= V (t, t0) K(t0) x0

≥ V (t, t0) ū

≥ ū
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b) Let x0 = K+
r (t0) ū such thatu(t0) = K(t0) x0 = K(t0) K+

r (t0) ū = ū. Thenu(t) =

K(t) x(t) = K(t) ΦK(t, t0) x0 = K(t) ΦK(t, t0) K+
r (t0) ū. Therefore sinceu(t) ≥ ū for all

t ∈ [t0, tf ] by assumption, condition (1.15) holds. Now takingx0 = K+
r (t0) αj ūj ej such that

u(t0) = K(t0) x0 = αj ūj ej ≥ ū for αj < 0 givesu(t) = K(t) x(t) = K(t) ΦK(t, t0) x0 =

K(t) ΦK(t, t0) K+
r (t0)︸ ︷︷ ︸

=:V (t, t0)

(αj ūj ej)︸ ︷︷ ︸
=:ε

≥ ū. In particular, for allt ∈ [t0, tf ] and for alli, j,

ui(t) = [K x]i(t) =
m∑

k=1

vik(t, t0) εk ≥ ūi

where

ǫk =

{
αj ūj if k = j

0 otherwise

that isvij(t, t0) αjūj ≥ ūi or equivalently

vij(t, t0) ≥
ūi

ūj

1

αj
, with αj < 0.

Hence lettingαj → −∞, it follows thatvij(t, t0) ≥ 0 for all i, j and for allt ∈ [t0, tf ]. Since
i andj were arbitrarily fixed, one can conclude that (1.14) holds.

2

Now the following corollary considers the case whereK(t) is of full rank with m = n (so
K(t) is invertible). Then the pseudo-inverse ofK(t) is the inverse ofK(t) :

Corollary 1.1.4 The coneCū is invariant with respect to system (1.10) on[t0, tf ], with a state
feedbackK(t) of full rank andm = n if and only if the following conditions hold :

∀ t ∈ [t0, tf ], K(t) ΦK(t, t0) K(t0)
−1 ≥ 0 (1.16)

and

∀ t ∈ [t0, tf ], K(t) ΦK(t, t0) K(t0)
−1 ū ≥ ū (1.17)

1.1.2 Invariant LTI systems

In this subsection, the particular case of state and input-invariance of linear time-invariant
(LTI) homogeneous systems is studied. First, we study separately the concept of invariance of
LTI system, on IR+, with self-contained proofs. Actually, for LTI systems, the proofs of the
conditions of invariance are more algebraic than in the caseof LTV systems. In these proofs,
a specific lemma is used, which describes the fact that the invariance implies that whenever
one component ofx(t) reaches the boundary of the cone (i.e.xi(t) = 0), it is redirected to
the interior of the cone (i.ėxi(t) > 0). Then, we compare the results with those obtained for
LTV systems by applying the conditions of Theorems 1.1.2 and1.1.3 for LTI systems on a fixed
interval[t0, tf ].
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A. State-invariance

Consider the following LTI homogeneous system, denoted byR = [A, 0], for t ∈ [t0, tf ] :

ẋ(t) = A x(t), x(0) = x0. (1.18)

Let x̄≪ 0 be a fixed state. Consider the shifted coneCx̄ defined previously, see equation (1.5).

Definition 1.1.4 The coneCx̄ is said to beinvariant with respect to system (1.18)if Cx̄ is
eA t-invariant, i.e.

∀ t ≥ 0, eA t Cx̄ ⊂ Cx̄,

or equivalently
∀ t ≥ 0, ∀ x0 ∈ Cx̄, x(t) := eA t x0 ∈ Cx̄.

In this case, system (1.18) is said to bestate-invariant w.r.t. Cx̄.

Theorem 1.1.5 The coneCx̄ is invariant with respect to system (1.18) if and only if the follow-
ing conditions hold :

A is a Metzler matrix (1.19)

and
A x̄ ≥ 0. (1.20)

Remarks 1.1.2 a) In view of the assumption thatx̄≪ 0, conditions (1.19)-(1.20) imply that

∀ i = 1, . . . , n, aii ≤ 0. (1.21)

Indeed, these conditions imply that for alli = 1, . . . , n :

(A x̄)i =
n∑

j=1

aij x̄j = aii x̄i +
∑

j 6=i

aij x̄j ≥ 0

⇔ aii x̄i ≥ −
∑

j 6=i

aij x̄j

⇔ aii ≤ −
∑

j 6=i

aij
x̄j

x̄i
≤ 0

whereaij ≥ 0 for j 6= i and wherēxi and x̄j are negative.
b) Condition (1.20) with condition (1.21) can be seen as a weighted diagonal dominance con-
dition, namely

∀ i = 1, . . . , n, |aii| ≥
∑

j 6=i

aij
x̄j

x̄i
≥ 0. (1.22)

c) The concept of state-invariance of a LTI homogeneous is also studied in [BNS89, Chapter 4].
Holdability of closed convex sets are considered by means ofsubtangentiality of control linear
systems (by using graphs and geometric considerations).
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To prove Theorem 1.1.5, the following lemma is needed :

Lemma 1.1.6 If Cx̄ is invariant with respect to system (1.18), if for allt ≥ 0, x(t) = eAtx0,

wherex0 is any initial state inCx̄ and if there existsi ∈ {1, . . . , n} such thatxi(t) = x̄i, then
ẋi(t) ≥ 0.

Proof :
For the sake of contradiction, assume that for somex0 ≥ x̄, there exists at least one coordinate
i = 1, . . . , n and a timet ≥ 0 such thatxi(t) = x̄i and ẋi(t) < 0. Now, by assumption,
for all x0 ≥ x̄, x(t) ≥ x̄ wherex(t) is solution of system (1.18). In particular,xi(t) ≥

−x̄i, ∀ t ≥ 0. Moreover,ẋ(t) = A x(t) = A eA t x0 = eA t A x0, t ≥ 0. Then since the
function ẋi(·) is continuous on IR+, ẋi(t) < 0 implies that there existst1 > t such that for
all τ ∈ [t, t1], ẋi(τ) < 0, that meansxi(·) is strictly decreasing on[t, t1] with xi(t) = x̄i.
Thereforexi(t1) < xi(t) = x̄i, for all τ ∈ [t, t1]. It follows thatx(t1) ∈\ Cx̄. On the other hand,
sincex(t) ∈ Cx̄, for all t ≥ 0, x(t1) = eA (t1−t)x(t) ∈ Cx̄. This clearly contradicts the fact that
x(t1) ∈\ Cx̄. Thusẋi(t) ≥ 0.

2

Proof of Theorem 1.1.5 :
Necessity: Since∀ x0 ≥ x̄, x(t) ≥ x̄, for all t ≥ 0, by Lemma 1.1.6,∀ i = 1, . . . , n, such that

xi(t) = x̄i, ẋi(t) =

n∑

j=1

aijxj(t) ≥ 0. First, observe thatx(0) = x0 := x̄ ∈ Cx̄. It follows from

Lemma 1.1.6 applied int = 0 that∀ i = 1, . . . , n, ẋi(0) ≥ 0, or equivalentlyẋ(0) = A x̄ ≥ 0,
i.e. condition (1.20) holds. Now remark that for anyy ∈ IRn, y ∈ Cx̄ if and only if y is on the
form

y =

n∑

j=1

αj x̄j ej := ∆ x̄ (1.23)

for some (unique) diagonal matrix∆ = diag[αi]
n
i=1 where∀ i = 1, . . . , n, αi ≤ 1.

Then considerx(0) = y of the form (1.23) whereαi = 1 andαj < 0 for some arbitrarily fixed
i, j = 1, . . . , n such thati 6= j and∀ k 6= i andk 6= j, αk = 0. Therefore,

ẋi(0) = aii x̄i + aijαj x̄j ≥ 0

or equivalently

aij ≥ −
x̄i

x̄j
aii

1

αj
, with αj < 0, i 6= j.

Hence lettingαj → −∞, it follows thataij ≥ 0. Sincei andj were arbitrarily fixed, one can
conclude that (1.19) holds.

Sufficiency: Assume that (1.19) and (1.20) hold, i.e.

∀ t ≥ 0, eA t ≥ 0 and A x̄ ≥ 0.

Then, for allt ≥ 0,

eA t x̄ = x̄ +

∫ t

0

eA τA x̄ dτ,
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where∀ τ ∈ [0, t], eA τ A x̄ ≥ 0. ThereforeeA t x̄ ≥ x̄. Hence, for allt ≥ 0 and for every
x0 ∈ IRn such thatx0 ≥ x̄,

eA tx0 ≥ eA tx̄ ≥ x̄,

that isx(t) ≥ x̄.
2

Now, in order to link the concept of state-invariance on a fixed interval [t0, tf ] with the
state-invariance (on IR+), the following proposition is useful :

Proposition 1.1.7 For a LTI systemR = [A, 0], the conditions of Theorem 1.1.2 on any interval
[t0, tf ], i.e.

∀ t ∈ [t0, tf ], A(t) is a Metzler matrix (1.6)

and
∀ t ∈ [t0, tf ], Φ(t, t0) x̄ ≥ x̄, (1.7)

are equivalent to
A is a Metzler matrix (1.24)

and
A x̄ ≥ 0. (1.25)

Proof : First condition (1.6) is clearly equivalent to (1.24) whenA is a constant matrix. Now
assume that condition (1.7) holds. Then since∀ t ∈ [t0, tf ], Φ(t, t0) = eA (t−t0), condition (1.7)
can be rewritten as(eA (t−t0) − In) x̄ ≥ 0. Now observe that

A = lim
t→t0+

eA (t−t0) − In

t− t0
.

Hence,

A x̄ = lim
t→t0+

(eA (t−t0) − In) x̄

t− t0
≥ 0

i.e. condition (1.25) holds. Conversely, assume thatA is a Metzler matrix (i.e.eA t ≥ 0 for all
t ≥ 0, see Proposition A.1.3) andA x̄ ≥ 0. Since fort ∈ [t0, tf ],

(eA (t−t0) − In) x̄ =

∫ t

t0

eA (τ−t0) A x̄ dτ ≥ 0,

it follows that condition (1.7) holds on[t0, tf ], whereΦ(t, t0) = eA (t−t0).
2

These considerations lead to the following corollary :

Corollary 1.1.8 The coneCx̄ is invariant with respect to system (1.18) if and only if for any
interval [t0, tf ] ⊆ IR+, the coneCx̄ is invariant with respect to system (1.1) on[t0, tf ].

Proof : The result follows directly from Proposition 1.1.7 and Theorems 1.1.2 and 1.1.5.
2

Therefore, for LTI systems, we obtain the equivalence of theconcepts of state-invariance on
any interval[t0, tf ] ⊆ IR+ and on IR+.
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B. Input-invariance

Consider a LTI systemR = [A, B] with an inputu(t) = K x(t) for t ∈ [t0, tf ], whereK

is a state feedback. Therefore we consider the following LTIclosed-loop system, denoted by
R = [A + B K, 0], for t ≥ 0,

ẋ(t) = (A + B K) x(t), x(0) = x0. (1.26)

Let ū ≤ 0 be a fixed input. Consider the shifted coneCū defined previously, see equation (1.11).

Definition 1.1.5 The coneCū is said to beinvariant with respect to system (1.26)if Cū is
K e(A+B K) t-invariant, i.e.

∀ t ≥ 0, K e(A+B K) t Cū ⊂ Cū,

or equivalently

∀ t ≥ 0, ∀ x0 such thatu(0) = K x0 ∈ Cū, u(t) := K x(t) = K e(A+B K) t x0 ∈ Cū.

In this case, system (1.26) is said to beinput-invariant w.r.t. Cū.

Theorem 1.1.9 The coneCū is invariant with respect to system (1.26), with a state feedbackK

of full rank andm = n if and only if the following conditions hold :

K (A + B K)K−1 is a Metzler matrix (1.27)

and
K (A + B K)K−1 ū ≥ 0 (1.28)

As for Theorem 1.1.5, an additional lemma is needed to prove this theorem.

Lemma 1.1.10 If Cū is invariant with respect to system (1.26), if for allt ≥ 0, x(t) = eA tx0,
wherex0 is any initial state such thatK x0 ∈ Cū and if there existsi ∈ {1, . . . , m} such that
ui(t) := [K x]i(t) = ūi, thenu̇i(t) = ˙[K x]i(t) ≥ 0.

Remark 1.1.3 This result holds for anyx0 ∈ IRn. Here it is not needed to assume thatx0 ≥ x̄

and that for allt ≥ 0, x(t) ∈ Cx̄.

Proof : For the sake of contradiction, assume that for somex0 such thatu(0) = K x0 ≥ ū,
there exists at least onei = 1, . . . , m and a timet ≥ 0 such thatui(t) = [K x]i(t) = ūi and

˙[K x]i(t) < 0. Then by continuity, there existst1 > t such that for allτ ∈ [t, t1], ˙[K x]i(τ) < 0,
that means that the functionui(·) = [K x]i(·) is strictly decreasing on[t, t1] with ui(t) =

[K x]i(t) = ūi. Therefore[K x]i(t1) < [K x]i(t) = ūi, for all τ ∈ [t, t1]. It follows
that u(t1) ∈\ Cū. On the other hand, sinceu(t) = K x(t) ∈ Cū, for all t ≥ 0, u(t1) =

K e(A+B K) (t1−t)x(t) ∈ Cū. This clearly contradicts the fact thatu(t1) ∈\ Cū. Thus ˙[K x]i(t) ≥ 0.
2
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Proof of Theorem 1.1.9 :
Necessity: The proof is similar to the one of Theorem 1.1.5. Since for all x0 such thatu(0) =

K x0 ≥ ū, u(t) = K x(t) ≥ ū, for all t ≥ 0, by Lemma 1.1.10,∀ i = 1, . . . , m, such that
[K x]i(t) = ūi, ˙[K x]i(t) ≥ 0. First, letx0 = K−1 ū such thatu(0) = K x0 = K K−1 ū = ū. It
follows by Lemma 1.1.10 applied at timet = 0 that∀ i = 1, . . . , m, u̇i(0) = ˙[K x]i(0) ≥ 0, or
equivalently,

K ẋ(0) = K (A + B K) x(0) = K (A + B K) K−1ū ≥ 0,

i.e. condition (1.28) holds. Now observe that for anyy ∈ IRm, y ∈ Cū if and only if y is of the
form

y =
m∑

j=1

αj ūj ej := ∆′ ū (1.29)

for some (unique) diagonal matrix∆′ = diag[αi]
m
i=1 where∀ i = 1, . . . , m, αi ≤ 1.

Then considerx0 = K−1 y such thatu(0) = K x0 = y of the form (1.29) whereαi = 1 and
αj < 0 for some arbitrarily fixedi, j = 1, . . . , m such thati 6= j and∀k 6= i andk 6= j, αk = 0.
Therefore, by Lemma 1.1.10,

u̇i(0) = ˙[K x]i(0) ≥ 0 i.e. [K (A+B K) x(0)]i = [K (A + B K) K−1

︸ ︷︷ ︸
:=V

(ūi ei + αj ūj ej)︸ ︷︷ ︸
:=ε

]i ≥ 0

or equivalently

[V ε]i =
m∑

k=1

vik εk ≥ 0

where

ǫk =






ūi if k = i

αj ūj if k = j 6= i

0 otherwise

that isvii ūi + vij αj ūj ≥ 0 or equivalently

vij ≥
ūi

ūj

vii
1

αj

, with αj < 0, i 6= j.

Hence lettingαj → −∞, it follows thatvij ≥ 0. Sincei andj were arbitrarily fixed, one can
conclude that (1.27) holds.

Sufficiency: Assume that (1.27) and (1.28) hold, i.e., withV := K (A + B K) K−1,

V ū ≥ 0 and∀ t ≥ 0, eV t ≥ 0.

Recall that, for allt ≥ 0,

eV t ū = ū +

∫ t

0

eV τ V ū dτ,

where∀ τ ∈ [0, t], eV τ V ū ≥ 0. ThereforeeV t ū ≥ ū. Hence, for allt ≥ 0 and for every
x0 ∈ IRn such thatK x0 ≥ ū, one has :

eV t K x0 ≥ eV t ū ≥ ū,
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that is, witheV t = eK (A+B K) K−1 t = K e(A+B K) tK−1,

K e(A+B K) tK−1K x0︸ ︷︷ ︸
=x(t)

≥ ū

Then the coneCū is invariant with respect to system (1.26).
2

Now, in order to link the concept of input-invariance on a fixed interval [t0, tf ] with the
input-invariance (on IR+), the following proposition is needed :

Proposition 1.1.11 For a LTI systemR = [A + B K, 0] with a state feedbackK(t) of full rank
andm = n, the conditions of Corollary 1.1.4, i.e.

∀ t ∈ [t0, tf ], K(t) ΦK(t, t0) K(t0)
−1 ≥ 0 (1.16)

and

∀ t ∈ [t0, tf ], K(t) ΦK(t, t0) K(t0)
−1 ū ≥ ū, (1.17)

are equivalent to

K (A + B K) K−1 is a Metzler matrix (1.30)

and

K (A + B K) K−1 ū ≥ 0. (1.31)

Proof :
Necessity: Assume that condition (1.16) holds, that is, withΦK(t, t0) := e(A+B K)(t−t0) for
t ∈ [t0, tf ],

K e(A+B K)(t−t0)K−1 ≥ 0

⇔ e(K (A+B K)K−1)(t−t0) ≥ 0.

ThenK (A + B K) K−1 is a Metzler matrix (by Proposition A.1.3) and condition (1.30) holds.
Moreover, if condition (1.17) holds, then fort ∈ [t0, tf ],

K e(A+B K)(t−t0)K−1ū− ū ≥ 0

⇔ (K e(A+B K)(t−t0)K−1 − Im) ū ≥ 0

⇔ (e(K (A+B K)K−1)(t−t0) − Im) ū ≥ 0.

Hence, withV := K (A + B K) K−1,

V = lim
t→t0+

eV (t−t0) − Im

t− t0
,

whence

V ū = lim
t→t0+

(eV (t−t0) − Im) ū

t− t0
≥ 0,

i.e. condition (1.31) holds.
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Sufficiency: Assume that conditions (1.30)-(1.31) hold. Condition (1.30) also reads

e(K (A+B K)K−1)(t−t0) ≥ 0 for all t ∈ [t0, tf ],

i.e.
K e(A+B K))(t−t0) K−1 ≥ 0.

Then condition (1.16) holds. Now withV := K (A + B K) K−1, conditions (1.30)-(1.31) are
equivalent toeV (t−t0) ≥ 0 for all t ∈ [t0, tf ] andV ū ≥ 0. It follows that

(eV (t−t0) − Im) ū =

∫ t

t0

eV (τ−t0) V ū dτ ≥ 0,

i.e. eV (t−t0)ū ≥ ū, or equivalently condition (1.17) holds.
2

These considerations lead to the following corollary :

Corollary 1.1.12 The coneCū is invariant with respect to system (1.26), with a state feedback
K(t) of full rank andm = n, if and only if for any interval[t0, tf ] ⊆ IR+, the coneCū is
invariant with respect to system (1.10) on[t0, tf ].

Proof : The result follows directly from Proposition 1.1.11, Corollary 1.1.4 and Theorem 1.1.9.

2

Therefore, for LTI systems, we obtain the equivalence of theconcepts of input-invariance on
any interval[t0, tf ] ⊆ IR+ and on IR+.

C. Input/state-invariance

In this part, we consider the problem of invariance of the state and the input. For this
purpose, we define a new coneCx̄,ū which joins the two previous cases as follows :

Cx̄,ū :=

{
x ∈ IRn :

[
In

K

]
x ≥

[
x̄

ū

]}
= Cx̄ ∩ Cū. (1.32)

Definition 1.1.6 The coneCx̄,ū is said to beinvariant with respect to system (1.26)if Cx̄,ū is
e(A+B K) t-invariant, i.e.

∀ t ≥ 0, e(A+B K) t Cx̄,ū ⊂ Cx̄,ū,

or equivalently
∀ t ≥ 0, ∀ x0 ∈ Cx̄,ū, x(t) = e(A+B K) t x0 ∈ Cx̄,ū.

In this case, system (1.26) is said to beinput/state-invariant w.r.t. Cx̄,ū.

So the state feedbackK is such that for allx0 ≥ x̄, the coneCx̄,ū is invariant with respect to
system (1.26), that is such that for allt ≥ 0, x(t) ≥ x̄ andu(t) = K x(t) ≥ ū. The following
result gives a characterization of such aK and is an adapted version of [CH93, Proposition 1,
p. 1681], which is summarized in Lemma 1.1.14 below.
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Theorem 1.1.13The coneCx̄,ū is invariant with respect to system (1.26) if and only if there
exists a Metzler matrixH ∈ IR(m+n)×(m+n) such that




[
−In

−K

]
(A + B K)−H

[
−In

−K

]
=

[
0n×n

0m×n

]

H

[
−x̄

−ū

]
≤ 0(m+n)×1

(1.33)

Lemma 1.1.14 The setR[Q, ρ] := {x ∈ IRn : Q x ≤ ρ}, with Q ∈ IRr×n and ρ ∈ IRr is
invariant with respect to system (1.18) if and only if there exists a Metzler matrixH ∈ IRr×r

such that
Q A−HQ = 0

H ρ ≤ 0

Proof of Theorem 1.1.13 :The result follows from Lemma 1.1.14 applied toA := A + B K

with the following identifications :Q :=

[
−In

−K

]
, ρ :=

[
−x̄

−ū

]
andr := m + n.

2

Remark 1.1.4 The invariance conditions (1.33) do not require any particular assumption on

the matrixQ :=

[
−In

−K

]
and on the vectorρ :=

[
−x̄

−ū

]
. However, ifρ ≫ 0, condition

H ρ ≤ 0 withH a Metzler matrix implies that−H is a M-matrix, see Definition A.2.1. Then
the real-parts of the eigenvalues ofH are nonpositive, see Theorem A.2.2.

Now by the previous analysis on the invariance of the coneCx̄ andCū, we obtain the fol-
lowing sufficient condition, by choosing an appropriate matrix H in Theorem 1.1.13.

Corollary 1.1.15 If there exists a state feedbackK such that the following conditions hold :




A + B K is a Metzler matrix
(A + B K) x̄ ≥ 0

K A ≥ 0

K B is a Metzler matrix
K (A x̄ + B ū) ≥ 0,

(1.34)

then the coneCx̄,ū is invariant with respect to system (1.26).

Proof : By Theorem 1.1.13, a necessary and sufficient condition of invariance of the coneCx̄, ū

is the existence of a matrixH =

[
H1 H2

H3 H4

]
with H1 ∈ IRn×n, H2 ∈ IRn×m, H3 ∈ IRm×n

andH4 ∈ IRm×m such that




−(A + B K) +H1 +H2 K = 0n×n

−K (A + B K) +H3 +H4 K = 0m×n

−H1 x̄−H2 ū ≤ 0n×1

−H3 x̄−H4 ū ≤ 0m×1

H1, H4 are Metzler matrices
H2, H3 ≥ 0.

(1.35)

ChoosingH1 = A + B K, H2 = 0n×m, H3 = K A andH4 = K B in equations (1.35) leads
easily to the sufficient conditions (1.34). 2
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1.2 Stability of invariant LTI homogeneous systems

In this section the stability of invariant LTI homogeneous system (1.18) is studied.

1.2.1 Reminders on linear systems

First recall the definition of stability for LTI homogeneoussystems and some useful results,
see e.g. [CD91].

A. Definition and characterization of stability

Definition 1.2.1

• A LTI homogeneous system (1.18) is said to beasymptotically stableif for all x0 ∈ IRn,
x(t) tends to zero ast tends to infinity.

• A LTI homogeneous system (1.18) is said to beexponentially stableif, ∃ α, β > 0 such
that for all t ≥ 0, ‖eA t‖ ≤ β e−α t.

Theorem 1.2.1 (Asymptotic stability) A LTI homogeneous system (1.18) is asymptotically sta-
ble if and only ifeA t → 0 ast → ∞.

Theorem 1.2.2 (Exponential stability) A LTI homogeneous system (1.18) is exponentially sta-
ble if and only if every eigenvalue ofA has negative real part, i.e.

∀ λ ∈ σ(A) : Re(λ) < 0. (1.36)

Remark 1.2.1 These two concepts of stability are equivalent, see e.g. [CD91]. Therefore in the
sequel, the terms "asymptotic" and "exponential" are omitted. Moreover, the abuse of language
“ A is stable” is also used instead of “system (1.18) is stable” whenever the characterization
(1.36) is used to prove the stability of a system.

B. Stability and Lyapunov equation

Consider the Lyapunov equation

AT P + P A = −Q (1.37)

whereA ∈ IRn×n, Q ∈ IRn×n is a symmetric positive definite and a unique symmetric positive
definite solutionP is to be found for (1.37). The solvability of the Lyapunov equation relates
directly to the stability of system (1.18), see [CD91, pp. 186-188].

Theorem 1.2.3 A LTI homogeneous system (1.18) is stable if and only if for all symmetric pos-
itive definite matrixQ, the Lyapunov equation (1.37) has a unique symmetric positive definite
solutionP given by

P =

∫ ∞

0

eAT tQ eA t dt.
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1.2.2 Stability of invariant LTI systems

For the particular case of state-invariant LTI homogeneoussystems, we obtain the following
result which is a direct consequence of Theorem 1.2.2 together with Theorem 1.1.5 and the
spectral property of a Metzler matrix, see Theorem A.1.5 :

Theorem 1.2.4 A state-invariant LTI homogeneous system (1.18) is stable if the Frobenius
eigenvalue ofA (i.e. the dominant eigenvalue ofA, see Theorem A.1.5) is negative.

1.3 Invariant stabilizability of LTI systems

This section is devoted to the concept of invariant stabilizability which is the idea of keeping
the invariance of the system as well as stabilizing it.

1.3.1 Invariant stability of LTI systems

Definition 1.3.1 A LTI homogeneous system (1.18) is said to beinvariant stable if for all t ≥ 0

and for allx0 ≥ x̄, x(t) ≥ x̄ and x(t)→ 0 as t→∞.

By using Theorem 1.1.5, we obtain the following characterization for invariant stability :

Theorem 1.3.1 A LTI homogeneous system (1.18) is invariant stable if and only if A is a stable
Metzler matrix such thatA x̄ ≥ 0.

A characterization of invariant stability can be expressedby using the Lyapunov equation
(1.37) :

Theorem 1.3.2 A LTI homogeneous system (1.18) is invariant stable if and only if A is a Met-
zler matrix such thatA x̄ ≥ 0 and if for all symmetric positive definite matrixQ, the Lyapunov
equation (1.37) has a unique symmetric positive definite solutionP .

1.3.2 Invariant stabilizability of LTI systems

Definition 1.3.2 A LTI system[A, B] is said to beinvariant stabilizable if for all x0 ≥ x̄,
there exists an inputu(t) such that for allt ≥ 0, x(t) ≥ x̄ and x(t)→ 0 as t→∞.

The following criteria of invariant stabilizability are inspired by the particular case of positive
systems, see e.g. [BNS89, Chapter 7] and [Ava00, pp. 73-75] :

Theorem 1.3.3 If there exists a state feedback lawu(t) = K x(t) such thatA + B K is a
stable Metzler matrix and(A+B K) x̄ ≥ 0, then the resulting system[A+B K, 0] is invariant
stabilizable.

A matrix K which verifies the conditions of Theorem 1.3.3 is said to beinvariant stabiliz-
ing. Now a criterion of invariant stabilizability can also be expressed by using the Lyapunov
equation (1.37), see e.g. [BEFB94, Section 10.3, p. 144] :
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Theorem 1.3.4 A LTI system[A, B] is invariant stabilizable if there exists a state feedback law
u(t) = K x(t) such thatA + B K is a Metzler matrix such that(A + B K) x̄ ≥ 0 and if for all
symmetric positive definite matrixQ, the Lyapunov equation

P (A + B K)T + (A + B K) P = −Q (1.38)

has a unique symmetric positive definite solutionP .

Proof : The result follows from Theorem 1.3.3 which states that system (1.18) is invariant
stabilizable if there exists a state feedback lawu(t) = K x(t) such thatA + B K is a stable
Metzler matrix such that(A+B K) x̄ ≥ 0. Then from Theorem 1.2.3 applied to matrixA+B K

instead ofA, the property of stability can be translated in terms of the Lyapunov equation (1.38).
2
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Chapter 2

Positive Linear Systems

An important question in system and control theory is the invariance of the nonnegative
orthant of the state space for linear systems. When they satisfy that property, such systems
are calledpositivelinear systems. They encompass controlled dynamical models where all the
variables, i.e. the state and output variables, should remain nonnegative for any nonnegative
initial conditions and input functions. In comparison withinvariant systems which have been
studied in the previous chapter, positive systems can be considered as state-invariant systems
with respect to the nonnegative orthantCx̄ = IRn

+ (i.e. x̄ := 0 in the previous analysis).
An overview of the state of the art in positive systems theoryis given e.g. in [FR00], [Ka 02],

[Lue79], [Van07] and [HCH10]. Typical examples of positivesystems are economics models,
chemical processes or age-structured populations (see e.g. [FR00, God83, Van08, HCH10]).

Numerous system theoretic problems have already been (and are still) investigated for pos-
itive systems : for example the realization, controllability and reachability problems (see e.g.
[BF04, Van97, BCR+02] and the references therein), the positive stabilization problem (see
e.g. [BNS89]), the linear quadratic (LQ) problem (see e.g. [AM90, CD91]) for (general) linear
systems with positive controls (see e.g. [HVS98] and the references therein for the general LQ
problem with positive controls and [Ka 02] for the minimal energy positive control problem for
positive systems).

In this chapter, the main results concerning positive linear systems are described, such as
the spectral property, the stability and the stabilizability of such systems. Since the theory of
positive linear systems has been widely studied in the literature, the proofs of the results are not
provided, but only references where they can be found (see also [Bea06]).

29
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2.1 Main concepts and results

2.1.1 Positive LTV systems

Definition 2.1.1

• A LTV homogeneous systemR = [A(·), 0] is said to bepositiveon [t0, tf ] if

∀ x0 ≥ 0 : ∀ t ∈ [t0, tf ], x(t) = Φ(t, t0) x0 ≥ 0,

whereΦ(t, t0) is the fundamental matrix and satisfies the following homogeneous equa-
tion : {

∂Φ
∂t

(t, t0) = A(t) Φ(t, t0), ∀ t ∈ [t0, tf ],

Φ(t0, t0) = In.

• A LTV systemR = [A(·), B(·)] is said to bepositiveon [t0, tf ] if

∀ x0 ≥ 0, ∀ u(·) ≥ 0 : ∀ t ∈ [t0, tf ], x(t) = Φ(t, t0) x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ ≥ 0.

The following theorem gives a well-known characterizationof the positivity of linear time-
varying systems in continuous time, see [AS03, Section VIII] (see also [Ka 01, Theorem 2]
whose condition turns out to be equivalent to (2.1)).

Theorem 2.1.1
• A LTV homogeneous systemR = [A(·), 0] is positive on[t0, tf ] if and only if for all

t ∈ [t0, tf ],
A(t) is a Metzler matrix. (2.1)

• A LTV systemR = [A(·), B(·)] is positive on[t0, tf ] if and only if for all t ∈ [t0, tf ],
A(t) is a Metzler matrix andB(t) ≥ 0.

Remark 2.1.1 Condition (2.1) corresponds to conditions (1.6)-(1.7) of Theorem 1.1.2 applied
with x̄ = 0.

2.1.2 Positive LTI systems

For LTI systems, we obtain the following well-known characterization of the positivity :

Theorem 2.1.2
• A LTI homogeneous systemR = [A, 0] is positive (on IR+) if and only if

A is a Metzler matrix. (2.2)

• A LTI systemR = [A, B] is positive (on IR+) if and only if A is a Metzler matrix and
B ≥ 0.

Remark 2.1.2 Condition (2.2) corresponds to conditions (1.19)-(1.20) of Theorem 1.1.5 ap-
plied withx̄ = 0.
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2.2 Stability of positive LTI systems

Thanks to Theorem 2.1.2, we can characterize the stability of a positive LTI system by
using the properties of Metzler matrices developed in Section A.1. By using Theorem 1.2.2 on
stability of linear systems together with Theorem A.1.5 (Perron-Frobenius Theorem for Metzler
matrix), we obtain the following result on the stability of positive systems :

Theorem 2.2.1 A positive LTI systemR = [A, 0] is (exponentially) stable if and only if the
Frobenius eigenvalueλF of A is negative.

It is also interesting to study the Lyapunov equation in the case of positive systems. We obtain
the following adaptation of Theorem 1.2.3 for positive systems, see [FR00, pp. 41-42] :

Theorem 2.2.2 A positive LTI systemR = [A, 0] is stable if and only if there exists a diagonal
positive definite matrixP such that the matrixQ, defined by

−Q = AT P + P A

is positive definite.

Remark 2.2.1 Observe that, by Theorem 1.1.5, a system[A, 0] which is state-invariant w.r.t.
Cx̄ is a positive system. Then Theorem 2.2.2 also holds for state-invariant systems.

2.3 Positive stabilizability of LTI systems

2.3.1 Positive stability of LTI systems

Definition 2.3.1 A LTI systemR = [A, 0] is said to bepositively stableif for all t ≥ 0 and for
all x0 ≥ 0, x(t) ≥ 0 and x(t)→ 0 as t→∞.

By using Theorems 2.1.2 and 1.2.2, we obtain the following characterization for positive stabil-
ity :

Theorem 2.3.1 A LTI systemR = [A, 0] is positively stable if and only ifA is a stable Metzler
matrix.

Remark 2.3.1 Note that the previous theorem corresponds to Theorem 1.3.1with x̄ = 0.

Then a characterization of positive stability can be expressed by using the Lyapunov equation
(1.37), see [BEFB94] :

Theorem 2.3.2 A LTI systemR = [A, 0] is positively stable if and only ifA is a Metzler matrix
and if there exists a diagonal positive definite matrixP such thatP AT +A P is negative definite.
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2.3.2 Positive stabilizability of LTI systems

Definition 2.3.2 A LTI systemR = [A, B] is said to bepositively stabilizableif for all x0 ≥ 0,
there exists an inputu(t) such that for allt ≥ 0, the state trajectoriesx(t) is such thatx(t) ≥ 0

and x(t)→ 0 as t→∞.

The following criteria of positive stabilizability are inspired by [BNS89, Chapter 7] and [Ava00,
pp. 73-75] :

Theorem 2.3.3 A LTI system[A + B K, 0] is positively stabilizable if and only if there exists a
state feedback lawu(t) = K x(t) such thatA + B K is a stable Metzler matrix.

Remark 2.3.2 Let us notice that the previous result corresponds to Theorem 1.3.3 withx̄ = 0.

A characterization of positive stabilizability can also beexpressed by using the Lyapunov
equation (1.37)

Theorem 2.3.4 A LTI systemR = [A, B] is positively stabilizable if and only if there exist a
state feedback lawu(t) = K x(t) and a diagonal positive definite matrixP such that

P (A + B K)T + (A + B K) P

is negative definite andA + B K is a Metzler matrix.

Moreover, by applying the change of variablesY = K P suggested in [BEFB94, Section 10.3],
the previous theorem can be reformulated as follows :

Theorem 2.3.5 A LTI systemR = [A, B] is positively stabilizable if and only if there exist a
diagonal positive definite matrixP and a matrixY such that

P AT + Y T BT + A P + B Y

is negative definite withA P + B Y a Metzler matrix.

This change of variables allows us to write the problem of positive stabilization in the
form of linear matrix inequalities (LMI) that are used in theresolution of the inverse positive
LQinv

+
problem, see Section 7.2.2.

The problem of positive stabilization is studied in [RD09] where necessary and sufficient
conditions are obtained for the stabilization of positive LTI systems using a vertex algorithmic
approach.
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2.3.3 Compartmental systems

Finally a particular class of positive systems is briefly introduced in this subsection, namely
the class of compartmental systems, see e.g. [God83], [Van98], [BF02] or [HCH10]. Compart-
mental models are widely used in e.g. biology, pharmacologyand physiology to describe the
distribution of a substance (e.g. biomass, drug, ...) amongdifferent tissues of an organism.

Definition 2.3.3

• A matrixA is said to be acompartmental matrix if A is a Metzler matrix and for all

j = 1, ..., n,
n∑

i=1

aij ≤ 0.

• A positive LTI systemR = [A, B] is said to be acompartmental systemif A is a
compartmental matrix.

• A matrixA is said to bereducible if there exists a permutation matrixP such that

P A P T =

[
U 0

Q V

]
,

whereU andV are square matrices.
A matrixA is said to beirreducible if A is not reducible.

In the sequel (see Chapter 6 on the positiveLQ∞

+
problem in infinite horizon) we consider only

a compartmental matrixA such that

n∑

i=1

aij < 0 for all j = 1, ..., n. (2.3)

By [Van98, Prop. 3.2, p. 594], (2.3) is a sufficient conditionfor the stability of an irreducible
compartmental matrixA. Moreover, in many references, a compartmental system is considered
with B equal to the identity matrix (which corresponds to the case where there are external
inputs for each compartment). Here we have another result onthe stability of such systems, see
e.g. [Van98] and [BF02] :

Proposition 2.3.6 A compartmental systemR = [A, B] is stable if and only if 0 is not an
eigenvalue ofA, i.e. 0 ∈\ σ(A).

We conclude this short subsection with a result on the positive stabilizability of compartmental
systems.

Theorem 2.3.7 A compartmental systemR = [A, I] is positively stabilizable.

Proof : First assume thatA is a nonsingular matrix. Then by Proposition 2.3.6, the system
R = [A, B] is stable. Therefore by settingK = 0 the matrixA + B K is a stable Metzler
matrix (sinceA is a compartmental matrix). Hence by Theorem 2.3.3, the system is positively
stabilizable.
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Now assume thatA is a singular matrix. SetK = −σ I with σ > 0, thenA+B K = A−σ I.
So the state feedbackK will move the unstable eigenvalue0 such thatA + B K will be stable.
Moreover, sinceA is a Metzler matrix, so is the matrixA + B K = A − σ I. Hence by
Theorem 2.3.3, the system is positively stabilizable. So the property of positive stabilizability
is automatically verified for a compartmental system.

2
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The Invariant Linear Quadratic Problem
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This second part is the main part of this thesis, namely the study of the input/state-invariant
linear quadratic (LQ) problem for linear continuous time systems. First of all, the problem is
studied for a finite final time and then in infinite horizon. Themain objective of the input/state-
invariant LQ problem is to ensure constraints of lower boundtype on the state and/or on the
input trajectories. When optimal control is applied to the system, the resulting state and/or in-
put trajectories satisfy lower bound conditions.

In the first chapter, the input/state-invariant LQ problem is studied, i.e. the finite horizon
LQ-optimal control problem with affine inequality constraints on the state and/or the input tra-
jectories. Necessary and sufficient optimality conditionsare obtained by using the maximum
principle with state and input constraints (see e.g. [HSV95]). In addition, in the case of state
constraints or input constraints only, necessary and sufficient conditions are proved for the in-
variant LQ-optimal control to be given by the standard LQ-optimal state feedback law.

In the second chapter, the positive LQ problem is studied, i.e. the particular LQ problem
for nonnegative state constraints. In this case, necessaryand sufficient optimality conditions
are also established, which are based on the maximum principle and on the admissibility of the
solution of the standard LQ problem. In addition, criteria for the positivity of the standard LQ
closed-loop system are studied. Sufficient conditions are stated in terms of the matrix solution
of the Riccati differential equation. Moreover, the particular problem of minimal energy con-
trol with penalization of the final state is studied. The mainresults are illustrated by numerical
examples.

In the next chapters, the infinite horizon input/state-invariant LQ problem is studied by
means of a receding horizon approach, see e.g. [WC83]. Criteria for the existence of a solution
to the positive LQ problem in infinite horizon are established. These criteria use, respectively, a
Newton-like iterative scheme (inspired by [GL00a, GL00b]), an Hamiltonian approach and the
study of a diagonal solution of the Algebraic Riccati Equation (ARE). Finally, the last chapter
of this part is devoted to the inverse input/state-invariant LQ problem by using linear or bilinear
matrix inequalities, see e.g. [BEFB94] and [SW05]. The mainresults are also illustrated by
numerical simulations.
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Chapter 3

The Input/State-Invariant LQ Problem

This chapter is devoted to the finite horizon input/state-invariant linear quadratic (LQ) prob-
lem, i.e. the LQ-optimal control problem with affine inequality constraints on the state and on
the input trajectories. Optimality conditions are established by using the maximum principle,
see [HSV95]. These conditions characterize the solution ofthe invariant LQ problem by means
of a corresponding Hamiltonian system, both in a vector formand in a matrix form. These
Hamiltonian equations depend on the initial conditionx0 and that makes them difficult to solve.
In the discrete time case, see Chapter 10, the optimality conditions lead to a computational
method for the solution of the positive LQ problem ; algorithms are therefore developed to
compute the solution. Then the particular problems of LQ-optimal control with either state or
input constraints are studied. In these cases, optimality conditions are stated which are based
on the admissibility of the solution of the standard LQ problem, see e.g. [AM90] and [CD91].

The linear quadratic (LQ) problem with constraints has already been studied for linear sys-
tems with positive controls (see e.g. [HVS98] and the references therein for the general LQ
problem with positive controls, see [Goe10] for the infinitehorizon LQ problem with conical
control constraints ; see also [Ka 02] for the minimal energypositive control problem for posi-
tive systems). In [HCPH10], the convergence of a discretization method is established for ap-
proximating an optimal solution of LQ problem with mixed linear state-control constraints. The
theoretical results developed in this chapter are illustrated numerically in the following chapter
for the particular case of the positive LQ problem and also inChapter 9 on the application of
these results to the problem of coexistence in a chemostat model.

3.1 Problem statement

Consider the following linear time-invariant system description R = [A, B], for t ∈ [t0, tf ] :

ẋ(t) = A x(t) + B u(t), x(t0) = x0, (3.1)

where, as previously, the statex(t) and the controlu(t) are in IRn and IRm, respectively,A and
B are real matrices of compatible sizes,x0 ∈ IRn denotes any fixed initial state andx̄ is a fixed
state.

41
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The finite horizon input/state-invariant linear quadraticproblem, which is denoted byLQ
tf

ū,x̄ ,
consists of minimizing the quadratic functional :

J(x0, u, tf ) :=
1

2

(∫ tf

t0

(‖R1/2u(t)‖2 + ‖C x(t)‖2) dt + x(tf )
TS x(tf )

)
(3.2)

for a given linear system described by (3.1), where the initial statex0 is fixed such thatW x0 ≥ x̄,
under the constraint

∀ t ∈ [t0, tf ],

{
W x(t) ≥ x̄

Z u(t) ≥ ū,
(3.3)

wheretf is a fixed final time,u is any piecewise-continuous IRm-valued function,R ∈ IRm×m is
a symmetric positive definite matrix,C ∈ IRp×n, S ∈ IRn×n is a symmetric positive semidefinite
matrix,W ∈ IRn×n, Z ∈ IRm×m, x̄ ∈ IRn andū ∈ IRm are fixed state and input (respectively).
The problem can be studied with any matricesW andZ (of full rank, see below). However in
the sequel, the particular cases whereW andZ are equal to either the identity matrix or the zero
matrix are studied. Moreover, whenW andZ are equal to the zero matrix, theLQ

tf

ū,x̄ problem
corresponds to the standardLQtf problem, see Section 3.3.

The idea of studying this kind of problem comes notably from an application to the chemo-
stat model (see Chapter 9) where several species are in competition for a single nutrient. This
model involves the study of a nonlinear system for which the objective is to ensure the coex-
istence of species, i.e. to force the concentration variables to be strictly positive. The study is
done by means of the linearized system around an equilibrium(xe, ue) such thatxe := −x̄≫ 0

andue := −ū≫ 0. Thus the objective of coexistence implies inequality constraints on the state
and input trajectories of the linearized system. Then, withthe goal of being consistent with this
application,̄x andū are sometimes imposed to satisfy the inequalitiesx̄≪ 0 andū≪ 0. More-
over, the next chapter is devoted to the positiveLQ

tf

+ problem, i.e. whereW = In, Z = 0m,
and in this case we considerx̄ = 0. Thus, at the beginning of this chapter,x̄ andū are fixed in
IRn and IRm respectively but when the results of Chapter 1 are used, in Section 3.5, we assume
that x̄≪ 0 andū ≤ 0.

3.2 Optimality conditions

In this section, optimality conditions for theLQ
tf

ū,x̄ problem are established. Applying the
maximum principle with state and input constraints (see e.g. [HSV95] recalled in Appendix B)
yields a characterization, in vector and matrix forms for anLQ

tf

ū,x̄ -optimal control. In the se-
quel, unless otherwise stated, the matricesW andZ are assumed to be of full rank (assumptions
which translate the constraint qualifications (B.4) and (B.5) for the maximum principle).



3.2 Optimality conditions 43

Theorem 3.2.1 (Optimality conditions based on the maximum principle)
Consider theLQ

tf

ū,x̄ problem with cost (3.2) under the dynamics constraints (3.1) with a fixed
initial conditionx0 such thatW x0 ≥ x̄, under the inequality constraints (3.3).

a) TheLQ
tf

ū,x̄ problem has a solutionu(·) if and only if there exist piecewise continuous multi-
plier functionsλ(·) mapping[t0, tf ] into IRn andυ(·) mapping[t0, tf ] into IRm such that

u(t) = −R−1BT p(t) + R−1ZT υ(t), t ∈ [t0, tf ], (3.4)

where[x(t)T p(t)T ]T ∈ IR2n is the solution of the Hamiltonian differential equation

[
ẋ(t)

ṗ(t)

]
= H

[
x(t)

p(t)

]
+

[
B R−1ZT υ(t)

W T λ(t)

]
, t ∈ [t0, tf ] (3.5)

with {
x(t0) = x0,

p(tf ) = S x(tf)−W T λ(tf)
(3.6)

where

H =

[
A −B R−1BT

−CT C −AT

]
(3.7)

is the Hamiltonian matrix, and for allt ∈ [t0, tf ],






W x(t) ≥ x̄,

Z u(t) ≥ ū,

λ(t) ≥ 0,

υ(t) ≥ 0,

λ(t)T (W x(t)− x̄) = 0, (state complementarity conditions)
υ(t)T (Z u(t)− ū) = 0 (input complementarity conditions)

(3.8)

b) Assume that(A, B) is controllable and that̄x ≤ 0 andū ≤ 0. By using the matrix form of the
Hamiltonian differential equation (3.5), a piecewise-continuous control functionu : [t0, tf ]→

IRm is solution of theLQ
tf

ū,x̄ problem if and only if there exist piecewise continuous multiplier
matrix functionsΛ(·) mapping[t0, tf ] into IRn×n and Υ(·) mapping[t0, tf ] into IRm×m such
that for t ∈ [t0, tf ],

u(t) = K(t, x0) x(t) := (−R−1BT Y (t) + R−1ZT Υ(t)) X(t)−1x(t)

= (−R−1BT Y (t) + R−1ZT Υ(t)) X(t0)
−1x0,

(3.9)

where[X(t)T Y (t)T ]T ∈ IR2n×n is the solution of the matrix Hamiltonian differential equation

[
Ẋ(t)

Ẏ (t)

]
= H

[
X(t)

Y (t)

]
+

[
B R−1ZT Υ(t)

W T Λ(t)

]
, t ∈ [t0, tf ] (3.10)

with the final condition {
X(tf ) = In,

Y (tf) = S −W T Λ(tf)
(3.11)
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and for all t ∈ [t0, tf ],

W X(t) X(t0)
−1x0 ≥ x̄ (3.12a)

Z (−R−1 BT Y (t) + R−1ZT Υ(t)) X(t0)
−1x0 ≥ ū (3.12b)

Λ(t) X(t0)
−1x0 ≥ 0, (3.12c)

Υ(t) X(t0)
−1x0 ≥ 0, (3.12d)

xT
0 X(t0)

−T Λ(t)T (W X(t) X(t0)
−1x0 − x̄) = 0 (state complementarity condition)(3.12e)

xT
0 X(t0)

−T Υ(t)T (Z u(t)− ū) = 0 (input complementarity condition) (3.12f)

Proof of Theorem 3.2.1 a) Necessity:
First use the maximum principle with state and input constraints, see [HSV95, Theorem 4.1]
which is recalled in Appendix B, with the following identifications :

−F (x(t), u(t), t) =
1

2

(
‖R1/2u(t)‖2 + ‖C x(t)‖2

)

−S(x(T ), T ) =
1

2
x(tf )

T S x(tf )

f(x(t), u(t), t) = A x(t) + B u(t)

g(x(t), u(t), t) = Z u(t)− ū

h(x(t), t) = W x(t)− x̄

a(x(T ), T ) = 0

b(x(T ), T ) = 0.

Then, withλ(t) := p(t), λ0 := 1 (normal case),µ(t) := υ(t), υ(t) := λ(t),

H(x, u, p, t) := −
1

2

(
‖R1/2u‖2 + ‖C x‖2

)
+ pT (A x + B u)

L(x, u, p, υ, λ) := H(x, u, p, t) + υT g(x, u, t) + λT h(x, t),

conditions (B.8b)-(B.8e) become :

• −R u(t) + BT p(t) + ZT υ(t) = 0 ⇒ u(t) = R−1BT p(t) + R−1ZT υ(t)

• ṗ(t) = CT C x(t)−AT p(t)−W T λ(t)

• υ(t) ≥ 0, υ(t)T (Z u(t)− ū) = 0

and at the terminal timetf , transversality conditions (B.9a)-(B.9c) read :

• p(tf ) = −S x(tf ) + W T γ,

• γ ≥ 0

• γT (W x(tf )− x̄) = 0.

Therefore we obtain the following two-point boundary valueproblem, withp(t) replaced by
−p(t) :
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{
ẋ(t) = A x(t) + B u(t)

ṗ(t) = −AT p(t)− CT C x(t) + W Tλ(t)

with

{
x(t0) = x0

p(tf ) = S x(tf )−W T γ = S x(tf )−W T λ(tf )

where u(t) = −R−1BT p(t) + R−1ZT υ(t)

(3.13)

under the constraints




W x(t) ≥ x̄

λ(t)T (W x(t)− x̄) = 0

γT (W x(tf )− x̄) = 0, with γ = λ(tf ),

λ(t) ≥ 0

and 




Z u(t) ≥ ū

υ(t)T (Z u(t)− ū) = 0

υ(t) ≥ 0

Hence,[x(t)T p(t)T ]T ∈ IR2n is the solution of the Hamiltonian differential equation (3.5).
2

In order to prove the sufficiency, the following concepts andlemma are needed :

Definition 3.2.1

• A pair (x(t), u(t)) is said to be(dynamically) admissiblewith respect to theLQ
tf

ū,x̄

problem ifu ∈ U and ẋ(t) = A x(t) + B u(t) where the initial statex0 is fixed.

• A pair (xo(t), uo(t)) is said to beoptimal with respect to theLQ
tf

ū,x̄ problem if it is ad-
missible and minimizes the cost (3.2), whence[xo(t)T po(t)T ]T is solution of the Hamil-
tonian differential equation (3.5) and the controluo(t) is given byuo(t) = −R−1BT po(t)+

R−1ZT υ(t), for t ∈ [t0, tf ].

Lemma 3.2.2 (Evaluation Lemma) Consider an optimal pair(xo(t), uo(t)) with respect to
LQ

tf

ū,x̄ problem. Then for anyτ ∈ [t0, tf ), with λ(t) and υ(t), the multipliers associated to
xo(t) anduo(t) respectively,
a) For all admissible pair(x(t), u(t)),

∫ tf

τ

< x(t), CT C xo(t) > + < u(t), R uo(t) > dt

= −po(tf)
T x(tf ) + po(τ)T x(τ) +

∫ tf

τ

λ(t)T W x(t) dt +
∫ tf

τ

υ(t)TZ u(t) dt.
(3.14)

where< ·, · > denotes the scalar product defined as follows :

< ·, · > : IRk × IRk → IR
(a, b) ; < a, b >= bT a

for any vectorsa, b ∈ IRk wherek ∈ IN.
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b) In particular,(xo(t), uo(t)) is an admissible pair, whence
∫ tf

τ

(‖R1/2uo(t)‖2 + ‖C xo(t)‖2) dt

= −po(tf )
T xo(tf) + po(τ)T xo(τ) +

∫ tf

τ

λ(t)T W xo(t) dt +
∫ tf

τ

υ(t)TZ uo(t) dt.
(3.15)

Proof : a) Using (3.5) withuo(t) = −R−1BT po(t) + R−1ZTυ(t) gives :

< x(t), CTC xo(t) > + < u(t), R uo(t) >

= < x(t), −ATpo(t) + W T λ(t)− ṗo(t) > + < u(t), −BTpo(t) + ZT υ(t) >

= − < x(t), ṗo(t) > − < x(t), AT po(t) > − < u(t), BT po(t) > + < x(t), W T λ(t) >

+ < u(t), ZTυ(t) >

= − < x(t), ṗo(t) > − < ẋ(t), po(t) > + < x(t), W Tλ(t) > + < u(t), ZT υ(t) >

Hence
∫ tf

τ
< x(t), CT C xo(t) > + < u(t), R uo(t) > dt

= −

∫ tf

τ
(< x(t), ṗo(t) > + < ẋ(t), po(t) >) dt +

∫ tf

τ
< x(t), W T λ(t) > dt

+

∫ tf

τ
< u(t), ZT υ(t) > dt

= −

∫ tf

τ

d

dt
< x(t), po(t) > dt +

∫ tf

τ
< x(t), W Tλ(t) > dt +

∫ tf

τ
< u(t), ZTυ(t) > dt

= −[< x(t), po(t) >]
tf
τ +

∫ tf

τ
< x(t), W Tλ(t) > dt +

∫ tf

τ
< u(t), ZTυ(t) > dt

= −po(tf )T x(tf ) + po(τ)T x(τ) +

∫ tf

τ
λ(t)T W x(t) dt +

∫ tf

τ
υ(t)T Z u(t) dt.

b) Using the Hamiltonian differential equation (3.5),

ẋo(t) = A xo(t)− B R−1BT po(t) + B R−1ZT υ(t)

= A xo(t) + B uo(t) (by the expression ofuo(t))

Then(xo(t), uo(t)) is an admissible pair. Hence (3.14) is verified for(x(t), u(t)) = (xo(t), uo(t)),
that is (3.15) holds.

2

Proof of Theorem 3.2.1 a) Sufficiency:
By the fact that the functional (3.2) is convex and the dynamics and inequality constraints (3.1)
and (3.3) are defined by affine functions, see [CD91, pp. 31-32], by a comparison of costs, we
obtain the result. Indeed, let us compute the cost for any admissible controlu :

2 J(x0, u, tf ) =

∫ tf

t0

(‖R1/2u(t)‖2 + ‖C x(t)‖2) dt + x(tf )
T S x(tf︸ ︷︷ ︸

:=‖x(tf )‖2
S

)

=

∫ tf

t0

(‖R1/2u(t)− R1/2uo(t)‖2 + ‖C x(t)− C xo(t)‖2) dt
︸ ︷︷ ︸

(I)

+ ‖x(tf )− xo(tf )‖
2
S︸ ︷︷ ︸

(II)

+ 2

∫ tf

t0

(< u(t), R uo(t) > + < x(t), CT C xo(t) >) dt
︸ ︷︷ ︸

(III)
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−

∫ tf

t0

(‖R1/2uo(t)‖2 + ‖C xo(t)‖2) dt
︸ ︷︷ ︸

(IV )

+ 2 x(tf)
T S xo(tf )︸ ︷︷ ︸
(V )

−xo(tf)
T S xo(tf )︸ ︷︷ ︸

(V I)

= (I) + (II) + (III) + (IV ) + (V ) + (V I)

where

• By Lemma 3.2.2, identity (3.14) withτ = t0 reads :

(III) = −2 po(tf)
T x(tf ) + 2 po(t0)

T x0 + 2

∫ tf

t0

λ(t)T W x(t) dt+ 2

∫ tf

t0

υ(t)TZ u(t) dt

• By Lemma 3.2.2, identity (3.15) withτ = t0 reads :

(IV ) = po(tf)
T xo(tf)− po(t0)

T x0 −

∫ tf

t0

λ(t)T W xo(t) dt−
∫ tf

t0

υ(t)TZ uo(t) dt

• By the final condition (3.6),S xo(tf) = po(tf) + W T λ(tf ), whence

(V ) = 2 po(tf)
T x(tf ) + 2 x(tf )

T W Tλ(tf )

and (V I) = −po(tf)
T xo(tf )− xo(tf )

TW T λ(tf )

Therefore, after simplifications, one gets :

2 J(x0, u, tf ) = (I) + (II) + po(t0)
T x0

+ 2

∫ tf

t0

λ(t)T W x(t) dt + 2

∫ tf

t0

υ(t)TZ u(t) dt

−

∫ tf

t0

λ(t)T W xo(t) dt−
∫ tf

t0

υ(t)TZ uo(t) dt

+ 2 x(tf)
T W T λ(tf)− xo(tf)

T W T λ(tf)

On the other hand, by computing the cost for an optimal pair(xo(t), uo(t)), we obtain, by using
Lemma 3.2.2, identity (3.15) withτ = t0 and the final condition (3.6) for the adjoint state :

2 J(x0, uo, tf ) =

∫ tf

t0

(‖R1/2uo(t)‖2 + ‖C xo(t)‖2) dt + xo(tf )
T S xo(tf)

= −po(tf)
T xo(tf) + po(t0)

T x0 +

∫ tf

t0

λ(t)T W xo(t) dt +
∫ tf

t0

υ(t)TZ uo(t) dt

+ po(tf )
T xo(tf) + xo(tf )

T W Tλ(tf )

= po(t0)
T x0 + xo(tf )

T W Tλ(tf ) +

∫ tf

t0

λ(t)T W xo(t) dt +
∫ tf

t0

υ(t)TZ uo(t) dt



48 Chapter 3. The Input/State-Invariant LQ Problem

Now let us compute the difference between these two costs anduse the complementarity con-
ditions of the optimal pair(xo(t), uo(t)) :

2 (J(x0, u, tf)− J(x0, uo, tf ))

= (I) + (II) + 2

∫ tf

t0

λ(t)T (W x(t)− x̄) dt + 2

∫ tf

t0

υ(t)T (Z u(t)− ū) dt

− 2

∫ tf

t0

λ(t)T (W xo(t)− x̄)︸ ︷︷ ︸
=0

dt− 2

∫ tf

t0

υ(t)T (Z uo(t)− ū)︸ ︷︷ ︸
=0

dt

+ 2 x(tf)
T W T λ(tf )− 2 xo(tf )

T W Tλ(tf )

= (I) + (II) + 2

∫ tf

t0

λ(t)T (W x(t)− x̄) dt + 2

∫ tf

t0

υ(t)T (Z u(t)− ū) dt

+ 2 (W x(tf )− x̄)T λ(tf)− 2 (W xo(tf )− x̄)T λ(tf)︸ ︷︷ ︸
=0

(3.16)

Hence2 (J(x0, u, tf) − J(x0, uo, tf)) ≥ 0 for all admissibleu. Indeed,(I) + (II) ≥ 0,
λ(t) ≥ 0, υ(t) ≥ 0, W x(t)− x̄ ≥ 0 andZ u(t)− ū ≥ 0 for all time t ∈ [t0, tf ], then each term
of equation (3.16) is nonnegative. Thereforeuo(t) given by identity (3.4) is optimal.

2

Proof of Theorem 3.2.1 b) :
Necessity:

• Consider an initial conditionx(t0) = x0 such thatW x0 ≥ x̄. Assume that theLQ
tf

ū,x̄ has
a solutionu(·). Then by Theorem 3.2.1 a),u(t) is given by (3.4) where[x(t)T p(t)T υ(t)T

λ(t)T ]T is solution of (3.5) and satisfies (3.6) and (3.8) and where itshould be noted that
the multipliers are not necessarily unique. In particular,[x(t)T p(t)T ]T is solution of the
following two-point boundary value problem

{
ẋ(t) = A x(t) + B u(t)

ṗ(t) = −AT p(t)− CT C x(t) + W T λ(t)

with

{
x(t0) = x0

p(tf ) = S x(tf)−W T λ(tf)

where u(t) = −R−1BT p(t) + R−1ZT υ(t)

(3.17)

under the constraints 



W x(t) ≥ x̄

λ(t)T (W x(t)− x̄) = 0

λ(t) ≥ 0

and 



Z u(t) ≥ ū

υ(t)T (Z u(t)− ū) = 0

υ(t) ≥ 0
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• Observe that one can find piecewise continuous matrix functionsΥ(·) andΛ(·) such that
(3.17) holds with [

υ(t)

λ(t)

]
:=

[
Υ(t)

Λ(t)

]
ζ (3.18)

whereζ := x(tf ) ∈ IRn
0 corresponds to the final state given by (3.17).

Indeed, first consider the pair(H, B), where

B :=

[
B R−1ZT [ζ1 In . . . ζn In] 0n×n2

0n×n2 W T [ζ1 In . . . ζn In]

]
∈ IR2n×2n2

.

Observe that the pair(H,B) is controllable, since the matrix[s I2n −H B], ∀ s ∈ CI is
of full rank, which corresponds to a well-known controllability rank test.
Actually,∀ s ∈ CI ,

[s I2n−H B] =

[
s In −A B R−1BT B R−1ZT [ζ1 In . . . ζn In] 0n×n2

CTC s In + AT 0n×n2 W T [ζ1 In . . . ζn In]

]

where

⋆ [s In − A B R−1ZT [ζ1 In . . . ζn In]] is of full rank n sinceζi 6= 0 for somei ∈

{1, . . . , n} and(A, B) is assumed to be controllable, that is[s In−A B] is of full
rankn, for all s ∈ CI ;

⋆ W T [ζ1 In . . . ζn In] is of full rankn sinceW is assumed to be of full rankn.

Then, there exist two submatrices of full rankn such that[s I2n−H B] is of full rank2n.
It follows that there existsΥ(·) andΛ(·) such that the solution[x(t)T p(t)T ]T of the two-
point boundary value problem (3.17) is solution of the following controlled system, with
Υ(t) = [Υ1 . . . Υn] (t) andΛ(t) = [Λ1 . . . Λn] (t), whereAi denotes here theith column
of a matrixA :

[
ẋ(t)

ṗ(t)

]
= H

[
x(t)

p(t)

]
+

[
B R−1ZT Υ(t) ζ

W T Λ(t) ζ

]
, t ∈ [t0, tf ]

where

{
x(t0) = x0,

p(tf) = S x(tf )−W T λ(tf )
andΛ(tf) ζ = λ(tf) or equivalently,

[
ẋ(t)

ṗ(t)

]
= H

[
x(t)

p(t)

]
+ B




Υ1

...
Υn

Λ1

...
Λn




(t), t ∈ [t0, tf ].

• Then one can solve the matrix Hamiltonian differential equation (3.10) withX(tf) = In

andY (tf ) = S − W T Λ(tf) and obtain its unique solution[X(t)T Y (t)T ]T . Conse-
quently, thanks to the choice (3.18) of the multiplier matrix functionsΥ(·) andΛ(·) in
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the previous step,

[
x(t)

p(t)

]
=

[
X(t)

Y (t)

]
ζ is the solution of the two-point boundary

value problem (3.17). In fact, the matrix Hamiltonian differential equation (3.10) post-
multiplied by the vectorζ reads

[
Ẋ(t)

Ẏ (t)

]
ζ = H

[
X(t)

Y (t)

]
ζ +

[
B R−1ZT Υ(t)

W TΛ(t)

]
ζ,

i.e. [
Ẋ ζ
˙Y ζ

]
(t) =

[
ẋ(t)

ṗ(t)

]
= H

[
x(t)

p(t)

]
+

[
B R−1ZT υ(t)

W T λ(t)

]
,

with {
X(tf ) ζ = In ζ = ζ,

Y (tf) ζ = (S −W T Λ(tf)) ζ = S ζ −W T Λ(tf) ζ

i.e. {
x(tf ) = ζ,

p(tf ) = S x(tf )−W T λ(tf)

• Furthermore, the matrixX(t) is invertible for allt ∈ [t0, tf ]. Indeed, by the evaluation
Lemma 3.2.2, with(x(t), u(t)), an optimal pair, for anyτ ∈ [t0, tf ),

∫ tf

τ

(‖R1/2u(t)‖2 + ‖C x(t)‖2) dt = −p(tf )
T x(tf ) + p(τ)T x(τ) +

∫ tf

τ

λ(t)T W x(t) dt

+

∫ tf

τ

υ(t)TZ u(t) dt

= −(x(tf )
T S x(tf )− λ(tf)

T W x(tf )) + p(τ)T x(τ) +

∫ tf

τ

λ(t)T W x(t) dt +
∫ tf

τ

υ(t)T Z u(t) dt

whence
∫ tf

τ

(‖R1/2u(t)‖2 + ‖C x(t)‖2) dt + x(tf )
T S x(tf ) = p(τ)T x(τ) + λ(tf )

T W x(tf )

+

∫ tf

τ

λ(t)T W x(t) dt +
∫ tf

τ

υ(t)TZ u(t) dt

or equivalently,

∫ tf

τ

(‖R1/2u(t)‖2 + ‖C x(t)‖2) dt + x(tf )
T S x(tf ) = p(τ)T x(τ) + λ(tf )

T x̄

+

∫ tf

τ

λ(t)T x̄ dt +
∫ tf

τ

υ(t)T ū dt

(3.19)
by using the state and the input complementarity conditions: λ(t)T (W x(t)− x̄) = 0 and
υ(t)T (Z u(t)− ū) = 0, ∀ t ∈ [t0, tf ].
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Now contradiction is used to prove thatX(t) is a nonsingular matrix. SinceX(tf) = In,
assume that there exists a timeτ ∈ [t0, tf ) such thatdet X(τ) = 0. Hence, there exists a
nonzero vectorζ such thatX(τ) ζ = 0, i.e. x(τ) = 0. Using (3.19) gives

∫ tf

τ

(‖R1/2u(t)‖2 + ‖C x(t)‖2) dt + x(tf )
T S x(tf )− λ(tf)

T x̄

−

∫ tf

τ

λ(t)T x̄ dt−
∫ tf

τ

υ(t)T ū dt = 0.

Hence, since each term is nonnegative withx̄ ≤ 0 andū ≤ 0, each term of the previous
sum should be equal to zero, and in particular, one gets :

∀ t ∈ [τ, tf ] : u(t) = 0.

Therefore system (3.1) becomesẋ(t) = A x(t) on [τ, tf ] with x(τ) = 0. Hence its
solution isx(t) = 0, ∀ t ∈ [τ, tf ]. In particular,x(tf ) = 0 wherex(tf ) = X(tf) ζ = ζ ,
thenζ = 0 which is a contradiction.

• So, sincedet X(t) 6= 0, ∀ t ∈ [t0, tf ], ζ = X(t0)
−1x0 = X(t)−1x(t), ∀ t ∈ [t0, tf ].

Hence, with 


x(t)

p(t)

υ(t)

λ(t)


 =




X(t)

Y (t)

Υ(t)

Λ(t)


 ζ =




X(t)

Y (t)

Υ(t)

Λ(t)


 X(t0)

−1x0, (3.20)

one can easily verify, as previously, that conditions (3.5)and (3.6) become conditions
(3.10) and (3.11) respectively, withx(t0) = X(t0) ζ = X(t0) X(t0)

−1x0 = x0. Further-
more, the optimal control is given by

u(t) = −R−1BT p(t) + R−1ZT υ(t)

= −R−1BT Y (t) ζ + R−1ZT Υ(t) ζ

= (−R−1BT Y (t) + R−1ZT Υ(t)) X(t)−1x(t)

= (−R−1BT Y (t) + R−1ZT Υ(t)) X(t0)
−1x0.

(3.21)

Finally, let us verify that conditions (3.8) become conditions (3.12) :




W x(t) ≥ x̄ ⇔ W X(t) ζ ≥ x̄ ⇔ W X(t) X(t0)
−1x0 ≥ x̄,

Z u(t) ≥ ū ⇔ Z (−R−1BT Y (t) + R−1ZT Υ(t)) X(t0)
−1x0 ≥ ū, by using (3.21)

λ(t) ≥ 0 ⇔ Λ(t) ζ ≥ 0 ⇔ Λ(t) X(t0)
−1x0 ≥ 0,

υ(t) ≥ 0 ⇔ Υ(t) ζ ≥ 0 ⇔ Υ(t) X(t0)
−1x0 ≥ 0,

λ(t)T (W x(t)− x̄) = 0 ⇔ (Λ(t) ζ)T (W X(t) ζ − x̄) = 0 ⇔ ζT Λ(t)T (W X(t) ζ − x̄) = 0

⇔ (X(t0)
−1x0)

T Λ(t)T (W X(t) X(t0)
−1x0 − x̄) = 0

⇔ xT
0 X(t0)

−T Λ(t)T (W X(t) X(t0)
−1x0 − x̄) = 0

υ(t)T (Z u(t)− ū) = 0 ⇔ ζTΥ(t)T (Z u(t)− x̄) = 0

⇔ xT
0 X(t0)

−T Υ(t)T (Z u(t)− ū) = 0
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Sufficiency: Let [X(t)T Y (t)T ]T be the solution of the matrix Hamiltonian differential equation
(3.10) which satisfies the final conditions (3.11) and the constraints (3.12). Sincedet X(t) 6= 0,

∀ t ∈ [t0, tf ], for the given initial conditionx(t0) = x0, there exists a unique vectorζ such that
x0 = X(t0) ζ . Then by (3.9),

ẋ = A x + B u

= (A− B R−1BT Y (t) X(t)−1 − B R−1ZT Υ(t) X(t)−1) x(t).

It follows that 


x(t)

p(t)

υ(t)

λ(t)


 :=




X(t)

Y (t)

Υ(t)

Λ(t)


 ζ

is the unique solution of the Hamiltonian differential equation (3.5), whereH is given by (3.7),
such that (3.6) and (3.8) hold. The result follows by Theorem3.2.1 a).

2

Remarks 3.2.1 a) In the sequel,(A, B) will be assumed to be controllable whenever Theorem
3.2.1 b) (or its discrete-time version) is used.
b) In Theorem 3.2.1, the solution of the Hamiltonian equation, both in its vector form and its
matrix form, clearly depends on the initial conditionx0. This solution in this case is difficult
to compute whereas, as we can see in the following section, for the standardLQtf problem,
the solution can be computed a priori independently of the initial condition. Moreover, in the
discrete time case, an algorithm to compute this solution isdescribed in Subsection 10.2.5.

3.3 Standard LQ problem

The standard LQ problem, denoted byLQtf , consists of minimizing the quadratic func-
tional (3.2) for a given linear system described by (3.1) without any constraint on the state
trajectory or input trajectory, see e.g. [CD91]. This problem corresponds to theLQ

tf

ū,x̄ problem
with W = 0n andZ = 0m where, in Theorem 3.2.1 and its proof, the multipliers associated
to the state and input constraints together with the associated equations are no longer present.
Its solution is given byu(t) = K(t) x(t) = −R−1BT Y (t) X(t)−1x(t), t ∈ [t0, tf ] where
[X(t)T Y (t)T ]T ∈ IR2n×n is the solution of the matrix Hamiltonian differential equation

[
Ẋ(t)

Ẏ (t)

]
= H

[
X(t)

Y (t)

]
,

[
X(tf)

Y (tf )

]
=

[
I

S

]
. (3.22)

Moreover, in this case, the solution can be rewritten in terms of the Riccati Differential Equation
(RDE) P (·). Indeed the solution of theLQtf problem is given, for allt ∈ [t0, tf ], by u(t) =

−R−1BT P (t) x(t), whereP (·) = P (·)T is the positive semidefinite matrix solution of the
RDE, (see e.g. [CD91]) :

−Ṗ (t) = AT P (t) + P (t) A− P (t) B R−1BT P (t) + CT C, P (tf) = S. (3.23)
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Therefore, in the sequel, the following closed-loop systemis considered fort ∈ [t0, tf ] :

ẋ(t) = (A + B K(t)) x(t), x(t0) = x0, (3.24)

whereK(t) = −R−1BT P (t).

3.4 Optimality conditions via admissibility

Consider theLQ
tf

ū,x̄ problem withW = In andZ = Im. In view of the analysis above,
conditions such that theLQ

tf

ū,x̄ problem has a solution can be obtained. These conditions are
based on the admissibility of the solution of the standardLQtf problem which was described
in the previous section. Clearly such optimality conditions are only sufficient conditions of
optimality for theLQ

tf

ū,x̄ problem.

Corollary 3.4.1 (Optimality conditions based on admissibility) The solution of the (standard)
LQtf problem is solution of theLQ

tf

ū,x̄ problem forx0 ≥ x̄ if and only if theLQtf -optimal
state and input trajectories are admissible, i.e.x(t) ≥ x̄ andu(t) ≥ ū for all t ∈ [t0, tf ], or
equivalently the matrix solution of the standard matrix Hamiltonian differential equation (3.22)
is such that for allt ∈ [t0, tf ],

X(t) X(t0)
−1x0 ≥ x̄

and
−R−1BT Y (t) X(t0)

−1x0 ≥ ū

for x0 ≥ x̄.

Proof : This result follows directly from Theorem 3.2.1 b) or equivalently from the fact that,
for theLQtf problem, we consider the minimization on a larger set.

2

3.5 State-invariant LQ problem

In this section the particular case of the state-invariantLQ
tf

x̄ problem is studied. In this
case, admissibility conditions can be obtained by using thestandardLQtf problem.

3.5.1 Problem statement and optimality conditions

The finite horizon state-invariant LQ problem, which is denoted byLQ
tf

x̄ , consists of min-
imizing the quadratic functional (3.2) for a given linear system described by (3.1), where the
initial statex0 ≥ x̄ is fixed, under the constraint

∀ t ∈ [t0, tf ], x(t) ≥ x̄. (3.25)

This problem corresponds to theLQ
tf

ū,x̄ problem withW = In andZ = 0m whereλ andΛ are
the multipliers associated to the state constraint (3.25) and x̄ ≪ 0 (as in Chapter 1). The input
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constraints and the associated multipliers are no longer needed. As for theLQ
tf

ū,x̄ problem,
optimality conditions can be established, using the maximum principle with state constraints
(see e.g. [HSV95]). Then we obtain a result which is similar to Theorem 3.2.1 and is therefore
omitted.

3.5.2 Optimality conditions via admissibility

As previously, conditions such that theLQ
tf

x̄ problem has a solution can be obtained by
using the standardLQtf problem.

Corollary 3.5.1 (Optimality conditions based on admissibility) The solution of the (standard)
LQtf problem is solution of theLQ

tf

x̄ problem forx0 ≥ x̄ if and only if theLQtf -optimal state
trajectories are admissible, i.e.x(t) ≥ x̄ for all t ∈ [t0, tf ], or equivalently one of the following
equivalent conditions holds :
a) The standard closed-loop matrixA + B K(t) = A − B R−1BT P (t), whereP (t) is the
solution of the RDE, is a Metzler matrix for allt ∈ [t0, tf ], i.e.

∀ i 6= j, ∀ t ∈ [t0, tf ], [B R−1BT P (t)]ij ≤ aij . (3.26)

and
∀ t ∈ [t0, tf ], ΦK(t, t0) x̄ ≥ x̄ (3.27)

whereΦK(t, t0) is the fundamental matrix of the closed-loop system (3.24),which satisfies the
following homogeneous equation :

{
∂
∂t

ΦK(t, t0) = (A + B K(t)) ΦK(t, t0),

ΦK(t0, t0) = In
(3.28)

b) The matrix solution of the standard matrix Hamiltonian differential equation (3.22) is such
that for all t ∈ [t0, tf ], X(t) X(t0)

−1x0 ≥ x̄.

Proof : This result follows directly from Theorem 1.1.2 and Theorem3.2.1. In addition, the
solution of theLQ

tf

x̄ problem is given as in Theorem 3.2.1 where the multiplier functionsυ(t)

andΥ(t) are identically equal to zero.
2

3.6 Input-invariant LQ problem

3.6.1 Problem statement and optimality conditions

The finite horizon input-invariant LQ problem, which is denoted byLQ
tf

ū , consists of min-
imizing the quadratic functional (3.2) for a given input-invariant linear system described by
(3.1), under the constraints

∀ t ∈ [t0, tf ], u(t) ≥ ū. (3.29)

This problem corresponds to theLQ
tf

ū,x̄ problem withW = 0n andZ = Im whereυ and
Υ are the multipliers associated to the input constraint (3.29) andū ≤ 0. In this subsection,
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optimality conditions for theLQ
tf

ū problem are established using the maximum principle with
input constraints (see e.g. [HSV95]). This leads to a resultwhich is similar to Theorem 3.2.1
and is therefore omitted.

3.6.2 Optimality conditions via admissibility

As in the previous section, conditions such that theLQ
tf

ū problem has a solution can be
obtained by using the standardLQtf problem.

Corollary 3.6.1 (Optimality conditions based on admissibility) The solution of the (standard)
LQtf problem withm = n is solution of theLQ

tf

ū problem if and only if theLQtf -optimal
control is admissible, i.e.u(t) ≥ ū for all t ∈ [t0, tf ], or equivalently one of the following
conditions holds :
a) The state feedbackK(t) = −R−1BT P (t), whereP (t) is the solution of the RDE, is of full
rank, such that for allt ∈ [t0, tf ],

K(t) ΦK(t, t0) K(t)−1 ≥ 0

and
K(t) ΦK(t, t0) K(t)−1 ū ≥ ū

whereΦK(t, t0) is the fundamental matrix of the closed-loop system (3.24),which satisfies
(3.28).
b) The matrix solution of the standard matrix Hamiltonian differential equation (3.22) is such
that for all t ∈ [t0, tf ], −R−1BT Y (t) X(t0)

−1x0 ≥ ū.

Proof : This result follows directly from Corollary 1.1.4 and Theorem 3.2.1.
2

Remark 3.6.1 If B is a full rank matrix, condition a) of Corollary 3.6.1 implies, notably, the
invertibility of P (t) (and therefore also ofY (t)). The inverse ofP (t) is computable as the
solution of the following Riccati differential equation, with V (t) = P (t)−1 :

−V̇ (t) = −V (t) AT −A V (t) + B R−1BT − V (t) CT C V (t), V (tf) = S−1.

Furthermore, let us notice that in the case of the minimal energy control problem (C = 0), the
inverse ofP (t) is the solution of a Lyapunov equation.
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Chapter 4

The Positive LQ Problem

In this chapter, the LQ problem is studied for positive systems. This problem corresponds
to theLQ

tf

x̄ problem withx̄ = 0 andW = In. The main objective of this problem is to keep
the positivity property of the open loop system for the designed controlled system, which is
meaningful from the modeling point of view. As we have already seen, many theoretical prob-
lems have been studied for positive systems. Here the finite-horizon positive linear quadratic
problem is studied for positive linear time systems.

As in the previous chapter, optimality conditions are established, which are based on the
maximum principle and on the admissibility of the solution of the standardLQtf problem, re-
spectively. In addition, sufficient conditions for the positivity of the standardLQtf closed-loop
system are stated in terms of the matrix solution of the Riccati differential equation. Moreover,
the particular problem of minimal energy control with penalization of the final state is studied.
Finally, numerical examples are given in order to illustrate these results.

4.1 Problem statement and optimality conditions

In the particular case of the LQ problem for positive systems, the same analysis as in Section
3.5 can be done by consideringx̄ = 0, W = In. Indeed, the finite horizon positive LQ problem,
which is denoted byLQ

tf

+ , consists of minimizing the quadratic functional (3.2) fora given
linear systemR = [A, B], where the initial statex(t0) = x0 ≥ 0 is fixed, under the constraint

∀ t ∈ [t0, tf ], x(t) ≥ 0, (4.1)

wheretf is a fixed final time,u is any piecewise-continuous IRm-valued function,R ∈ IRm×m

is a symmetric positive definite matrix,C ∈ IRp×n andS ∈ IRn×n is a symmetric positive
semidefinite matrix.

Therefore we can obtain optimality conditions as previously by using the maximum prin-
ciple. Applying this principle with state constraints (seee.g. [HSV95]) yields a characteriza-
tion, in vector and matrix forms for anLQ

tf

+ -optimal control. Theorem 3.2.1 becomes, with
W = In, Z = 0m andx̄ = 0 :

57
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Theorem 4.1.1 (Optimality conditions based on the maximum principle)
a) TheLQ

tf

+ problem has a solutionu(·) if and only if there exists a piecewise continuous
multiplier functionλ(·) mapping[t0, tf ] into IRn such thatu(t) = −R−1BT p(t), t ∈ [t0, tf ],
where[x(t)T p(t)T ]T ∈ IR2n is the solution of the Hamiltonian differential equation

[
ẋ(t)

ṗ(t)

]
= H

[
x(t)

p(t)

]
+

[
0

λ(t)

]
, t ∈ [t0, tf ] (4.2)

with x(t0) = x0, p(tf) = S x(tf )− λ(tf), where

H =

[
A −B R−1BT

−CT C −AT

]

is the Hamiltonian matrix, and for allt ∈ [t0, tf ], x(t) ≥ 0, λ(t) ≥ 0 and λ(t)T x(t) = 0

(complementarity condition).
b) By using the matrix form of the Hamiltonian differential equation (4.2), a piecewise-continuous
control functionu : [t0, tf ] → IRm is solution of theLQ

tf

+ problem if and only if there exists
a piecewise continuous multiplier matrix functionΛ(·) mapping[t0, tf ] into IRn×n such that
u(t) = K(t, x0) x(t) := −R−1BT Y (t) X(t)−1x(t), t ∈ [t0, tf ], where[X(t)T Y (t)T ]T ∈

IR2n×n is the solution of the matrix Hamiltonian differential equation

[
Ẋ(t)

Ẏ (t)

]
= H

[
X(t)

Y (t)

]
+

[
0

Λ(t)

]
, t ∈ [t0, tf ]

with the final conditionX(tf) = I andY (tf) = S − Λ(tf), and for all t ∈ [t0, tf ],

Λ(t) X(t0)
−1x0 ≥ 0, (4.3)

xT
0 X(t0)

−T Λ(t)T X(t) X(t0)
−1x0 = 0 (complementarity condition) (4.4)

and
X(t) X(t0)

−1x0 ≥ 0. (4.5)

Remark 4.1.1 A priori, in view of conditions (4.3)-(4.5), the functionK(t, x0) in Theorem
4.1.1 (b) clearly depends upon the choice of the initial statex0. Stronger conditions are needed
in order to make it independent of the initial state, i.e. such that the optimal control law be of
state feedback typeu(t) = K(t) x(t). Such conditions are stated next.

Proposition 4.1.2 Conditions (4.3)-(4.5) are satisfied for all initial statesx0 ≥ 0 if and only if
the following conditions hold for allt ∈ [t0, tf ] :

Λ(t) X(t0)
−1 ≥ 0, (4.6)

Λ(t)T X(t) + X(t)T Λ(t) = 0 (4.7)

and
X(t) X(t0)

−1 ≥ 0. (4.8)
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The proof of this result is based on the following lemma.

Lemma 4.1.3 A matrixM ∈ IRn×n is a skew-symmetric matrix, i.e.M = −MT , if and only if

for all x ≥ 0, xT M x = 0. (4.9)

Proof : First recall that a matrixM is skew-symmetric if and only if, for allx ∈ IRn, xT M x = 0.
Then the necessity of condition (4.9) is obvious. Conversely, observe that condition (4.9) im-
plies that

∀ x, y ≥ 0, yT M x + xT M y = (x + y)TM (x + y)− xT M x− yTM y = 0. (4.10)

Then observe that anyx ∈ IRn can be written asx = x+ − x− wherex+ := max{x, 0} =
1
2
(|x|+ x) ≥ 0 andx− := max{−x, 0} = 1

2
(|x| − x) ≥ 0. By using this decomposition ofx in

(4.9) and the identity (4.10), it follows that, for allx ∈ IRn, xT M x = 0.
2

Proof of Proposition 4.1.2 : The fact that conditions (4.3) and (4.5) hold for allx0 ≥ 0 is
obviously equivalent to conditions (4.6) and (4.8). By Lemma 4.1.3, condition (4.4) holds
for all x0 ≥ 0 if and only if the matrixX(t0)

−T Λ(t)T X(t) X(t0)
−1 is skew-symmetric, or

equivalentlyΛ(t)TX(t) is a skew-symmetric matrix, i.e. (4.7) holds.
2

Remark 4.1.2 a) Conditions (4.6)-(4.8) can be hard to check in general. However they obvi-
ously hold withΛ(t) = 0 in an important particular case. See Corollary 4.1.4 below.
b) The optimality conditions in Theorem 4.1.1 and Proposition 4.1.2 also hold for linear sys-
temsR = [A, B] that are not positive. However the positivity assumption plays a crucial role
for obtaining the criteria established in Section 4.2.

In view of the analysis above, conditions such that theLQ
tf

+ problem has a solution can be
obtained by using the standardLQtf problem as in the previous chapter, see Sections 3.3 and
3.5 and especially Corollary 3.5.1 applied withx̄ = 0.

Corollary 4.1.4 (Optimality conditions based on admissibility) The solution of theLQtf

problem is solution of theLQ
tf

+ problem for allx0 ≥ 0 if and only if theLQtf -optimal state
trajectories are admissible, i.e. nonnegative for allt ∈ [t0, tf ] and for all x0 ≥ 0, or equiva-
lently one of the following equivalent conditions holds :
a) The standard closed-loop matrixA + B K(t) = A − B R−1BT P (t), whereP (t) is the
solution of the RDE, is a Metzler matrix for allt ∈ [t0, tf ], i.e.

∀ i 6= j, ∀ t ∈ [t0, tf ], [B R−1BT P (t)]ij ≤ aij . (4.11)

b) The matrix solution of the matrix Hamiltonian differential equation (3.22) is such that for all
t ∈ [t0, tf ], X(t) X(t0)

−1 ≥ 0.

Remark 4.1.3 The analysis and results of this section are readily extendable to the case where
the final state penalty term in the cost (3.2) is of the form(x(tf ) − xf )

T S (x(tf ) − xf ) where
xf ∈ IRn

+ is a fixed reference state for the final statex(tf ).
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4.2 Positivity criteria

In this section, theLQ
tf

+ problem is studied with an additional assumption, namely the

positivity of the open-loop system. In other words, theLQ
tf

+ problem consists of minimizing
a quadratic functional for a given positive system while requiring that the state trajectories be
nonnegative for any fixed nonnegative initial state, whencethe positivity property should be
kept for the optimal state trajectories. It is important to observe that, in this framework, it is not
required that the input functionu(t) be nonnegative. The systemR = [A, B] being assumed
to be positive, the latter constraint, i.e.∀ t ∈ [t0, tf ], u(t) ≥ 0, is clearly stronger than the
constraint (4.1). Hence, here theLQtf problem is studied with the aim of finding conditions
on the problem data such that the standard closed-loop system is positive, i.e. such that the
conditions of Corollary 4.1.4 hold. This can be interpretedas solving an inverseLQ

tf

+ problem.

4.2.1 Upper bound for the solution of the RDE

First, sufficient conditions are established for the positivity of theLQtf closed-loop system
in terms of an upper bound of the solutionP (t) of the RDE. We use an approach similar to the
one developed in [MPS90].

Theorem 4.2.1 Consider theLQtf problem (3.1)-(3.2). IfB R−1BT ≥ 0, if the solution of the
RDE is nonnegative, i.e.

∀ t ∈ [t0, tf ], P (t) ≥ 0, (4.12)

and if
∀ i 6= j, ∀ t ∈ [t0, tf ],

[
B R−1BT F (t)

]
ij
≤ aij , (4.13)

whereF (t) is the solution of the matrix Lyapunov differential equation,

Ḟ (t) = −AT F (t)− F (t) A− CT C, F (tf) = S, (4.14)

then theLQtf closed-loop system is positive and therefore the solution of theLQtf problem is
solution of theLQ

tf

+ problem.

Proof : Since condition (4.13) is equivalent to the fact thatA−B R−1BT F (t) is a Metzler ma-
trix for all t ∈ [t0, tf ], and in view of Corollary 4.1.4, it suffices to show that, for all t ∈ [t0, tf ],
P (t) ≤ F (t). Now, thanks to the assumption (4.12), the matrixV (t) := P (t) B R−1BT P (t) is
nonnegative for allt ∈ [t0, tf ]. In addition, the derivative ofZ(t) := P (t) − F (t) is given by

Ż(t) = −AT Z(t)− Z(t) A + V (t). HenceZ(t) = −

∫ tf

t

eAT (τ−t)V (τ)eA (τ−t) dτ is a nonpos-

itive matrix for all t ∈ [t0, tf ].
2

Remarks 4.2.1 a) If (A, B) is stabilizable and(C, A) is detectable, then fortf → ∞, the
solutionP (t) = P (t, tf , S) of the RDE tends to the unique stabilizing positive semidefinite
solutionP+ of the corresponding algebraic Riccati equation (ARE),

AT P+ + P+ A− P+ B R−1BT P+ + CT C = 0. (4.15)
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Moreover by Proposition 6.1.1, ifA is a stable Metzler matrix andA−B R−1BT P+ is a (stable)
Metzler matrix, thenP+ ≥ 0 wheneverQ = CT C ≥ 0 ; hence if in additionP+ ≫ 0, condition
(4.12) must hold fortf sufficiently large.
b) Condition (4.13) implies that the weighting matricesR, CT C andS have to be chosen such
that (B R−1BT S)ij ≤ aij and(B R−1BT F (t0))ij ≤ aij , for all i 6= j, whereF (t) is the solu-

tion of (4.14) which is given byF (t) = eAT (tf−t)S eA(tf−t) +

∫ tf−t

0

eAT sCT CeA s ds. Moreover,

condition (4.12) implies thatS has to be a nonnegative matrix.
c) In view of the analysis above, assumption (4.12) can be replaced by a weaker one, viz.
P (t) B R−1BT P (t) ≥ 0 for all t ∈ [t0, tf ].

Example 4.2.1 Consider an unstable positive systemR = [A, B] where

A =

[
−1 1

1 −1

]
, B = I2 (4.16)

and the cost (3.2) where
C = ρ

[
1 0

]
and R = r I2. (4.17)

For all results and figures presented here, unless otherwisestated, the initial timet0 is equal to
0, the final timetf is equal to20 and the sampling step is0.5. We used MATLAB with the solver
ode23s notably to integrate the RDE (3.23) and the Lyapunov equation (4.14).
Let ρ = 1 andr = 6. The eigenvalues ofA are−2 and0, thus the matrixA is obviously
unstable. ComputingS as the stabilizing positive semidefinite solutionP+ of the ARE gives

S =

[
1.1372 0.7980

0.7980 0.7037

]
. (4.18)

Condition (4.12) is clearly satisfied sinceP (t) is equal toS for all t ∈ [0, tf ] andS ≥ 0.
Moreover, condition (4.13) is also numerically verified. See Figure 4.1.
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Figure 4.1: Off-diagonal entries ofB R−1BT F (t), B R−1BT P (t) andA for system (4.16)-
(4.18).
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The off-diagonal entries ofB R−1BT F (t) are clearly less than those ofA. Now as one can

expect, the closed-loop matrixA + B K(t) = A − B R−1BT S =

[
−1.18953 0.86700

0.86700 −1.11728

]

is clearly a Metzler matrix. See Figure 4.2 which representsthe optimal state trajectories at the
sampling times, for the initial statesx0 = [1 0]T (graphs on the left) andx0 = [0 1]T (graphs
on the right) respectively, i.e. the columns ofeA t at the sampling times. One can numerically
verify that the closed-loop system is positive.
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Figure 4.2: Optimal state trajectoriesx(t) for system (4.16)-(4.18).

Notice that the closed-loop system is stable since the eigenvalues of the (constant) closed-
loop matrix are−2.0212 and−0.2857. This observation is not really surprising, since the
matrix S was selected to be the unique stabilizing solutionP+ of ARE. Moreover, it could
also be interesting to observe the behavior of the optimal control u(t), which is represented
in Figure 4.3 with the same initial state as above. We observethat u(t) ≤ 0 for all t since
u(t) = −R−1BT P (t) x(t) with P (t) ≥ 0 andB ≥ 0. Actually, wheneverR−1 ≥ 0 the optimal
control is always nonpositive.
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Figure 4.3: Optimal controlu(t) for system (4.16)-(4.18).
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Furthermore, the matrixR plays a paramount role here : for a fixed horizontf , condition
(4.13) holds ifr is sufficiently large ; if the horizontf is increased,r has to be increased
accordingly. See Figure 4.4 which compares the results forr = 6 andr = 10 wheretf = 30.
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Figure 4.4: Off-diagonal entries ofB R−1BT F (t), B R−1BT P (t) andA for system (4.16)-
(4.18) withr = 6 andr = 10 wheretf = 30.

Remark 4.2.2 The nonnegativity condition (4.12) in Theorem 4.2.1, appears to be a drawback
of that result : it is indeed not clear how to check this condition without having to integrate the
RDE. The following subsection is an attempt to avoid this assumption.

4.2.2 Minimal energy control

In this subsection, the particular problem of minimal energy control with penalization of the
final state is studied. An interesting feature of this approach is the fact that one can force the
final state to be approximately close to zero by using a penalization term, for systems which are
not necessarily reachable. A zero final state can be (exactly) reached by means of a minimal
energy control (and therefore the state) trajectories nonnegative for reachable systems with a
monomial gramian on a finite time interval, see [Ka 02, Subsection 3.4.2].

Here, sufficient conditions are established for the minimalenergy control problem in terms
of the spectral radius of the penalty matrixS. In the sequel,σ(A) andρ(A) denote the spectrum
and the spectral radius of a matrixA, respectively. The matrix norm that is used here is the one
induced by the euclidean vector norm.

Theorem 4.2.2 Consider the minimal energyLQtf problem (3.1)-(3.2), i.e. withC = 0. Let
us denoteλmin(R) := min{λ : λ ∈ σ(R)}. Assume thataij > 0 for all i 6= j. If the spectral
radiusρ(S) of the final state penalty matrix is sufficiently small such that

ρ(S) = max
µi∈σ(S)

µi < γ :=





λmin(R)

α2‖B‖2 tf
, if λF < 0

λmin(R)

α2‖B‖2 tf
e−2λF tf , if λF ≥ 0,

(4.19)
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whereλF denotes the Frobenius eigenvalue (see Theorem A.1.5) and the constantα ≥ 0 is such
that, for all t ∈ [t0, tf ], ‖eA t‖ ≤ α eλF t, then theLQtf closed-loop system is positive and
therefore the solution of theLQtf problem is solution of theLQ

tf

+ problem.

Proof : The positivity constraint on the closed-loop matrix can be written in terms of the
solution P (t) of the RDE (see condition (4.11)), whereB ≥ 0 since [A, B] is a positive
system. In addition,P (t) = Y (t) X(t)−1 = eAT (tf−t)S [I + G(tf − t) S]−1 eA (tf−t), where

G(tf − t) =

∫ tf−t

0

eA σB R−1BT eAT σ dσ , and

‖G(tf − t) S‖ ≤
α2 ‖B‖2

λmin(R)

∫ tf−t

0

e2λF σ dσ ρ(S)

=
α2 ‖B‖2

λmin(R)
e2λF τ (tf − t) ρ(S) (by the mean value theorem)

≤
α2‖B‖2tf
λmin(R)

e2λF τ ρ(S)

for someτ ∈ [0, tf − t] wheree2λF τ depends on the stability ofA. If A is stable,λF is
negative (see Theorem 2.2.1) and thereforee2λF τ < 1. If A is unstable,λF is nonnega-

tive, thene2λF τ < e2λF tf . Thus, if (4.19) holds, then‖G(tf − t) S‖ ≤
ρ(S)

γ
< 1, whence

‖S [I + G(tf − t) S]−1 ‖ ≤
ρ(S)

1− ρ(S)
γ

(by applying Neumann’s Lemma). Hence, by choosing

ρ(S) sufficiently small, condition (4.11) holds, since∀ i 6= j, aij > 0 andeA′(tf−t) andeA (tf−t)

are bounded on[t0, tf ].
2

Remarks 4.2.3 a) The constantα can be interpreted as a condition number. Indeed,α can be
chosen to be given byα = κ(V ) = ‖V ‖‖V −1‖, whereV is the (generalized) eigenvector matrix
of A. In addition, ifA is a symmetric matrix, one can chooseα = 1.
b) For a fixed final timetf , if the entries of the penalization matrixS of the final state are
increased, one has to increase the entries of the control penalization matrixR accordingly. On
the other hand, condition (4.19) can also be written as






tf < E
λmin(R)

λmax(S)
, if λF < 0

tf e2λF tf < E
λmin(R)

λmax(S)
, if λF ≥ 0,

whereE = 1
α2‖B‖2 is a constant depending only on the system data. Hence, if thetime horizon

tf is increased, the fractionλmin(R)
λmax(S)

has to be increased accordingly for condition (4.19) to be
satisfied. This reveals a tradeoff between positivity and stability of the closed-loop system in a
receding horizon approach, see e.g. [CW96]. The following example is an illustration of this
tradeoff.
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Example 4.2.2 Consider the unstable positive systemR = [A, B] described by (4.16) and the
cost (3.2) where

C = 01×2 and R = I2. (4.20)

We compute the different parameters which play a role in condition (4.19). First observe that
the right-hand side of this condition is equal to0.05, sinceλF = 0, tf = 20 andα = 1 and
that condition (4.19) readsρ(S) < 1/tf . Therefore in order to guarantee this condition, the
matrix S has to be chosen such that its spectral radius is less than0.05. We choose the other
eigenvalue less thanρ(S) and we compute random associated eigenvectors. In this way we
obtain the following values :ρ(S) = 0.0495, σ(S) = {0.0495, 0.0300} and

S =

[
0.0397 −0.0098

−0.0098 0.0397

]
. (4.21)

We obtain numerically that the closed-loop system is positive, since the closed-loop matrix is
a Metzler matrix for all sampling times : see Figure 4.5, representing the off-diagonal entries
of A + B K(t) at the sampling times and Figure 4.6, representing the optimal state trajectories
for the initial statesx0 = [1 0]T (graphs on the left) andx0 = [0 1]T (graphs on the right)
respectively.
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Figure 4.5: Off-diagonal entries ofA + B K(t) for system (4.16), (4.20)-(4.21).
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Figure 4.6: Optimal state trajectoriesx(t) for system (4.16), (4.20)-(4.21).

Observe that one of the eigenvalues of the closed-loop matrix stays near zero, e.g.σ(A +

BK(20)) = {−2, −0.0187}. Since condition (4.19) is given here byρ(S) < 1/tf , as long as
tf increases,S has to be decreased and therefore the final statex(tf ) is less penalized (in the
cost functional).

Now, as we have seen in Remark 4.2.3 b), the matrixR also plays an important role. For a
fixed final timetf = 20, if λmin(R) is increased, for exampleλmin(R) = 10, thenρ(S) can be
increased without violating condition (4.19). For example, the latter condition holds forρ(S) =

0.3276 andS =

[
0.2451 −0.0825

−0.0825 0.2451

]
. However, in this case, one of the eigenvalues of the

closed-loop matrix is even closer to 0 than previously, e.g.σ(A+BK(20)) = {−2, −0.0123}.
In addition, increasing the final timetf will emphasize this fact since the matrixS should
be modified such that condition (4.19) holds withρ(S) sufficiently small. For example, with
tf = 100, λmin(R) = 10, one can choose

ρ(S) = 0.0623, S =

[
0.0611 −0.0012

−0.0012 0.0611

]
whenceσ(A + BK(20)) = {−2, −0.0037}.

So this example reveals a tradeoff between positivity and stability of the closed-loop system in a
receding horizon approach. However, forS given by (4.21), the solution of the infinite horizon
problem is not the limit, whentf tends to infinity, of the solution of the finite horizon one, see
e.g. [CW95] or [WC83]. Indeed, the last assumption (5.9) of Theorem 5.2.3 is not verified.
Solving theLQinv

+
problem (with techniques developed in Subsection 7.2.2) for system (4.16),

(4.20)-(4.21) reveals that the closed-loop matrix is stable.

Remark 4.2.4 In Example 4.2.2, the solutionP (t) of the RDE is not nonnegative for all time,
sinceP (tf) = S whereS is not nonnegative (see (4.21)). Hence Theorem 4.2.1 can notbe
applied in this case.
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Remarks 4.2.5 a) Obviously the Metzler property of a given matrixA is kept under any diag-
onal perturbation. By considering theLQtf problem (3.1)-(3.2) where the system[A, B] is a
positive system, if the solutionP (t) of the RDE is such that for allt ∈ [t0, tf ],−B R−1BT P (t)

is a diagonal matrix, then theLQtf closed-loop system is positive and therefore the solution of
theLQtf problem is solution of theLQ

tf

+ problem.

b) One easy way to get this condition is to impose notably thatP (t) is a diagonal matrix,
provided that the matrixB R−1BT be also diagonal. Sufficient conditions for achieving this
goal are stated as follows : consider theLQtf problem (3.1)-(3.2) where the system[A, B] is
a positive system, withB equal toIn. Choose a constantα such thatα > max{0, λF}. Define

Aα := A AT − (α In + A) (α In + A)T .

Assume that 




S = α In,

R = r Im,

CT C = α2 (1
r

+ 1) In +Aα,

with r > 0 such that
1

r
> −

λmin(Aα)

α2
− 1, (4.22)

whereλmin := min{λ : λ ∈ σ(Aα)}.
Then for allt ∈ [t0, tf ], P (t) = α In and theLQtf closed-loop system is positive and therefore
the solution of theLQtf problem is solution of theLQ

tf

+ problem.
Indeed, first observe thatR = RT is positive definite sincer > 0. NowQ = CT C is also
positive definite because it can be shown that∀ µ ∈ σ(Q), µ > 0. Indeed,µ = α2 (1

r
+ 1) + λ

whereλ ∈ σ(Aα). Then condition (4.22) gives

α2(
1

r
+ 1) > −λmin(Aα) ≥ −λ, ∀ λ ∈ σ(Aα).

Then∀ λ ∈ σ(Aα), µ = α2(1
r

+ 1) + λ > 0 and Q is positive definite. Hence(Q, A) is
observable and(A, B) is controllable sinceB = In. Now the stabilizing positive semidefinite
solutionP+ of the ARE, see (4.15), is given byP+ = α In. Indeed,

AT P+ + P+ A− P+ B R−1BT P+ + CT C

= α AT + α A−
α2

r
In + α2(

1

r
+ 1) In +Aα

= α AT + α A + α2 In + A AT − α2In − α AT − α A + A AT

= 0

Then the solutionP (t) of the RDE such thatP (tf) = S := α In is constant and is given by
P (t) = α In. Hence the matrix−B R−1BT P (t) is diagonal and is given by−α

r
In.

2

c) In the previous remark, the control matrixB is assumed to be the identity matrix. This
assumption is verified for compartmental systems, which arean important subclass of positive
systems, see e.g. [Van98, p. 593] and Subsection 2.3.3. Moreover, a stable positive system is
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equivalent to a compartmental system, modulo a positive diagonal transformation matrix, see
e.g. [BF02] ; hence, in the statement of theLQtf problem, a stable matrixA can be assumed
without loss of generality to be a compartmental matrix.

Example 4.2.3 Consider the unstable positive systemR = [A, B] described by (4.16) and the
cost (3.2). Select the following parametersα = 0.5, r = 2, such that

Q = CT C =

[
1.1250 −1.0000

−1.0000 1.1250

]
; R =

[
2 0

0 2

]
; S =

[
0.5 0

0 0.5

]
. (4.23)

ThenP (t) = S for all t andA + BK(t) is a constant Metzler matrix, given by :

A + B K(t) =

[
−6.2500 1.0000

1.0000 −6.2500

]
.

As one can expect, we can numerically verify in Figure 4.7 that the closed-loop system is
positive and also stable. In this figure, the optimal state trajectories are depicted for several
values ofα. Observe that the stability of the closed-loop system is improved by increasing the
parameterα.
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Figure 4.7: Optimal state trajectoriesx(t) for system (4.16),(4.23).
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4.3 Numerical examples

This section is devoted to numerical examples. First of all,the solution of the standard
LQtf problem is studied. The sufficient conditions of Theorem 4.2.2 are checked numerically
in order to obtain an admissible solution for the positive LQproblem. Then the analytical
solution of the standardLQtf problem is computed. Finally the positiveLQ

tf

+ problem is
solved, by applying the optimality conditions of Theorem 4.1.1.

4.3.1 Standard LQ problem

Consider the unstable positive system described by

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

1 0

] [
x1(t)

x2(t)

]
+

[
0

1

]
u(t), (4.24)

and the minimization of the functional

J(x0, u, tf) =
1

2

(∫ tf

0

‖u(t)‖2 dt + a x2
1(tf) + b x2

2(tf )

)
(4.25)

where
C = 01×2, R = I1, S = diag(a, b).

First we compute the different parameters of condition (4.19) such that this condition reads

ρ(S) <
λmin(R)

α2‖B‖2 tf
e−2λF tf =

e−2 tf

tf
= 0.20612 10−9 with tf = 10. Then we choose

S = diag(a, b) = 10−9

[
0.1063 0

0 0.0736

]
(4.26)

with ρ(S) = 0.1063 10−9. We obtain numerically that the closed-loop system is positive, since
the closed-loop matrix is a Metzler matrix for all sampling times : see Figure 4.8, which shows
the off-diagonal entries ofA + B K(t) at the sampling times. As already mentioned in sub-
section 4.2.2, the matrixS should be chosen sufficiently small to guarantee the positivity at the
expense of the final state penalization.
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Figure 4.8: Off-diagonal entries ofA + B K(t) for system (4.24)-(4.26).

Now for a fixedS = I2, the analytical solution of theLQtf problem is computed by solving
the Hamiltonian differential equation (3.22). The analytical expressions of the optimal control
and the state trajectories are given, for allt ∈ [0, tf ] and forx0 = [1 0]T , by





u(t) = −2 e−t

x1(t) = e−t + t e−t

x2(t) = −t e−t

They are drawn in Figures 4.9 and 4.10. One can observe thatx2(t) is nonpositive for all time.
Now the analytical expressions of the optimal control and the state trajectories forx0 = [0 1]T

are given, for allt ∈ [0, tf ], by





u(t) = −2 e−t

x1(t) = e−t + t e−t

x2(t) = −t e−t

They are drawn in Figures 4.11 and 4.12. One can observe that herex2(t) is also not nonnegative
for all time. So an additional nonnegativity constraint on the state trajectories is needed. The
following subsection is devoted to the positiveLQ

tf

+ problem in order to obtain nonnegative
optimal state trajectories.
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Figure 4.9: Optimal control for system (4.24) forx0 = [1 0]T .
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Figure 4.11: Optimal control for system (4.24) forx0 = [0 1]T .
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Figure 4.12: State trajectories for system (4.24) forx0 = [0 1]T .

4.3.2 Positive LQ problem

In this subsection, theLQ
tf

+ problem is solved, by applying the optimality conditions of
Theorem 4.1.1, for which we first compute the analytical solution and then the numerical solu-
tion. Consider the positive system described by (4.24) and the minimization of the functional
(4.25) under the constraints∀ t ∈ [0, tf ], x1(t) ≥ 0 and x2(t) ≥ 0. By applying the optimality
conditions of Theorem 4.1.1, we obtain the following two-point boundary value problem, as
found in the proof of Theorem 3.2.1 a) (see (3.13)) adapted with W = In, Z = 0m andx̄ = 0) :
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{
ẋ(t) = A x(t) + B u(t)

ṗ(t) = −AT p(t)− CT C x(t) + λ(t)

with

{
x(t0) = x0

p(tf ) = S x(tf )− λ(tf )

where u(t) = −R−1BT p(t)

under the constraints 



x(t) ≥ 0

λ(t)T x(t) = 0

λ(t) ≥ 0

or equivalently, with

A =

[
0 1

1 0

]
, B =

[
0

1

]
, C = 01×2, R = I1, S = I2,

{
ẋ1(t) = x2(t)

ẋ2(t) = x1(t) + u(t)

and {
ṗ1(t) = −p2(t) + λ1(t)

ṗ2(t) = −p1(t) + λ2(t)

whereλ1, λ2 ≥ 0 andλT
i xi = 0, i = 1, 2, on [0, tf ], with the following boundary conditions :

{
x1(0) = x01

x2(0) = x02
and

{
p1(tf) = x1(tf)− λ1(tf )

p2(tf) = x2(tf)− λ2(tf ).
(4.27)

Moreover, the optimal control is given byu(t) = −B R−1BT p(t) = −p2(t), t ∈ [0, tf ].

The analytical expressions can be computed by solving this boundary value problem. There
exist two similar ways to compute the state and adjoint statetrajectories : let us consider two
arbitrary timest1 andt2 in the interval[0, tf ], then






x(t2) = eA (t2−t1)x(t1) +

∫ t2

t1

eA(t2−σ)B u(σ) dσ

p(t2) = e−AT (t2−t1)p(t1) +

∫ t2

t1

e−AT (t2−σ)λ(σ) dσ

(4.28)

whereeA t =

[
cosh(t) sinh(t)

sinh(t) cosh(t)

]
for t ∈ [0, tf ] ;

or equivalently,

[
x(t2)

p(t2)

]
= eH (t2−t1)

[
x(t1)

p(t1)

]
+

∫ t2

t1

eH (t2−σ)

[
0

λ(σ)

]
dσ (4.29)
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whereeH t =




cosh(t) sinh(t)
1

2
(t cosh(t)− sinh(t)) −

1

2
t sinh(t)

sinh(t) cosh(t)
1

2
t sinh(t) −

1

2
(t cosh(t) + sinh(t))

0 0 cosh(t) − sinh(t)

0 0 − sinh(t) cosh(t)




for t ∈ [0, tf ].

Now let us fix the initial state to bex0 = [1 0]T . The numerical simulations given below
(see Figures 4.16 and 4.17) will serve as a guide for further analytical calculations. In these
figures, one can observe that there is one switching timeτ after which the behavior of the state
trajectories and the multipliers changes. Therefore, in the sequel, we analyze in details two
intervals[0, τ [ and[τ, tf ].

1. Fort ∈ [0, τ ]

• x(t) =

[
1

0

]
;

• u(t) = −1 = −p2(t), i.e. p2(t) = 1 ;

• λ1(t) = 0 ;

• ṗ1(t) = −p2(t) + λ1(t) = −1 such thatp1(t) = −t + p1(0) by integration ;

• ṗ2(t) = −p1(t) + λ2(t) = 0 such thatλ2(t) = p1(t) = −t + p1(0).

It follows that

x(t) =

[
1

0

]
; p(t) =

[
−t + p1(0)

1

]
; λ(t) =

[
0

−t + p1(0)

]
; u(t) = −1 for t ∈ [0, τ [

2. Fort ∈]τ, tf ]

• λ(t) =

[
0

0

]

• In order to compute the expressions ofx(t) and p(t), one can similarly use the
identity (4.28) or (4.29) applied witht2 = t andt1 = τ and wherex(τ), p(τ) and
λ(τ) are given as in the previous case. These two different ways ofcomputing give
the following analytical expressions :

x(t) =




1
2
(p1(0)− τ) ((t− τ) cosh(t− τ)− sinh(t− τ))

+ cosh(t− τ)− 1
2
(t− τ) sinh(t− τ)

1
2
(p1(0)− τ) (t− τ) sinh(t− τ)

+ sinh(t− τ)− 1
2
((t− τ) cosh(t− τ) + sinh(t− τ))




p(t) =




(p1(0)− τ) cosh(t− τ)− sinh(t− τ)

−(p1(0)− τ) sinh(t− τ) + cosh(t− τ)







4.3 Numerical examples 75

λ(t) =

[
0

0

]

and u(t) = sinh(t− τ) (p1(0)− τ)− cosh(t− τ)

We can now summarize the analytical computations as follows. The optimal control is given
by

u(t) =

{
−1 if t ∈ [0, τ [

sinh(t− τ) (p1(0)− τ)− cosh(t− τ) if t ∈ [τ, tf ]

and the state trajectories and the adjoint states are given by

x(t) =





[
1

0

]
if t ∈ [0, τ [




1
2
(p1(0)− τ) ((t− τ) cosh(t− τ)− sinh(t− τ))

+ cosh(t− τ)− 1
2
(t− τ) sinh(t− τ)

1
2
(p1(0)− τ) (t− τ) sinh(t− τ)

+ sinh(t− τ)− 1
2
((t− τ) cosh(t− τ) + sinh(t− τ))




if t ∈ [τ, tf ]

p(t) =





[
p1(0)− t

1

]
if t ∈ [0, τ [




(p1(0)− τ) cosh(t− τ)− sinh(t− τ)

−(p1(0)− τ) sinh(t− τ) + cosh(t− τ)


 if t ∈ [τ, tf ]

The multipliers associated to the nonnegativity constraints are given by

λ(t) =






[
0

p1(0)− t

]
if t ∈ [0, τ [

[
0

0

]
if t ∈ [τ, tf ]

These functions depend upon several parameters. The parametersτ andp1(0) are obtained to

ensure the final condition (4.27) of the adjoint state, whichis given, withλ(tf ) =

[
0

0

]
, by

p1(tf) = x1(tf ) (4.30)

p2(tf) = x2(tf ) (4.31)

By using the expressions ofx(t) andp(t) with t = tf , equation (4.30) reads :

(p1(0)− τ) cosh(tf − τ)− sinh(tf − τ)

= 1
2
(p1(0)− τ) ((tf − τ) cosh(tf − τ)− sinh(tf − τ))

+ cosh(tf − τ)− 1
2
(tf − τ) sinh(tf − τ)

⇔ p1(0) (cosh(tf − τ)− 1
2
(tf − τ) cosh(tf − τ) + 1

2
sinh(tf − τ))

= τ cosh(tf − τ) + sinh(tf − τ)− 1
2
τ (tf − τ) cosh(tf − τ)

+1
2
τ sinh(tf − τ) + cosh(tf − τ)− 1

2
(tf − τ) sinh(tf − τ)
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Isolatingp1(0) in this equation gives :

p1(0) =
2 cosh(tf − τ)− 8τ cosh(tf − τ) + τ 2 cosh(tf − τ)− 8 sinh(tf − τ) + 2τ sinh(tf − τ)

8 cosh(tf − τ) + τ cosh(tf − τ) + sinh(tf − τ)
(4.32)

Substitutingp1(0) in (4.31), with tf = 10, yields the following value of the switching time
τ = 9.378729150 by using MAPLE for solving the intersection of two curves (p2(tf) = x2(tf )).
Finally, replacingτ in (4.32) givesp1(0) = 10.80878883. By using these analytical forms, the
control, state, multiplier and adjoint state trajectoriesare drawn in Figures 4.13, 4.14 and 4.15.

Now the numerical solution of this problem is computed by usingMatlab and the function
quadprog. This function uses an active set method which is also a projection method, similar
to the one described in [Bix92]. First, the continuous time problem is converted into a discrete
time one by sampling : fori = 0, . . . , N − 1, with tf = N h, u(t) = u(i h) =: ui, whereh is
the sampling time. The resulting discrete time system is given by :

xi+1 =

[
cosh(h) sinh(h)

sinh(h) cosh(h)

]
xi +

[
cosh(h)− 1

sinh(h)

]
ui, i = 0, . . . , N − 1 (4.33)

with the following discrete time cost
1

2

N−1∑

i=0

h ‖ui‖
2 + xT

NS xN , (see Appendix C for details

on discretization). Consider the final timetf = 10 with the sampling timeh = 0.05 and
a = b = 1. The optimization algorithm mentioned above leads to the optimal control depicted
in Figure 4.16. The corresponding statexi(t) and multiplierλi(t) trajectories are depicted in
Figure 4.17.
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Figure 4.13: Optimal control for system (4.24).
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Figure 4.14: State trajectories and associated multipliers for system (4.24).
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Figure 4.15: Adjoint states for system (4.24).
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Figure 4.16: Optimal control for sampled data system (4.33).
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Figure 4.17: State trajectories and associated multipliers for sampled data system (4.33).

In these figures, one can observe that the constraints are always satisfied, as well as the
complementarity conditions : whenever one of the state trajectories is strictly positive, the cor-
responding multiplier is equal to zero. For example, the multiplier λ1(t) is equal to zero as long
asx1(t) is strictly positive.

Now fix the initial state to bex0 = [0 1]T and perform the same analysis. The analytical
expressions of the optimal control is given by

u(t) =






p1(0) sinh(t) + u0 cosh(t) if t ∈ [0, τ1[

u1 if t ∈ [τ1, τ2[

p1(τ2) sinh(t− τ2) + u1 cosh(t− τ2) if t ∈ [τ2, tf ]
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and the state trajectories and the adjoint states are given by

x(t) =






[
1
2
p1(0) (t cosh(t)− sinh(t)) + sinh(t) + 1

2
u0 t sinh(t)

1
2
p1(0) t sinh(t) + cosh(t) + 1

2
u0(t cosh(t) + sinh(t))

]
if t ∈ [0, τ1[

[
−u1

0

]
if t ∈ [τ1, τ2[




1
2
p1(τ2) ((t− τ2) cosh(t− τ2)− sinh(t− τ2))

−u1 cosh(t− τ2) + 1
2
u1 (t− τ2) sinh(t− τ2)

1
2
p1(τ2) (t− τ2) sinh(t− τ2)

−u1 sinh(t− τ2) + 1
2
u1((t− τ2) cosh(t− τ2) + sinh(t− τ2))




if t ∈ [τ2, tf ]

p(t) =





[
p1(0) cosh(t) + u0 sinh(t)

−p1(0) sinh(t)− cosh(t) u0

]
if t ∈ [0, τ1[

[
p1(τ2) + u1 (t− τ2)

−u1

]
if t ∈ [τ1, τ2[

[
p1(τ2) cosh(t− τ2) + u1 sinh(t− τ2)

−p1(τ2) sinh(t− τ2)− u1 cosh(t− τ2)

]
if t ∈ [τ2, tf ]

The multipliers associated to the nonnegativity constraints are given by

λ(t) =






[
0

0

]
if t ∈ [0, τ1[

[
0

p1(τ2) + u1 (t− τ2)

]
if t ∈ [τ1, τ2[

[
0

0

]
if t ∈ [τ2, tf ]

where the constantsu0 andu1 are given byu0 = −2.6386 andu1 = −0.26040. These functions
depend upon several parameters. The first parametersτ2 andp1(τ2) are obtained to ensure the

final condition (4.27) of the adjoint state, which is given, with λ(tf) =

[
0

0

]
, by

{
p1(tf) = x1(tf)

p2(tf) = x2(tf)
(4.34)

By using the expressions ofx(t) andp(t) given previously witht = tf , system (4.34) becomes :




p1(τ2) cosh(tf − τ2) + u1 sinh(tf − τ2)

= 1
2
p1(τ2) ((t− τ2) cosh(t− τ2)− sinh(t− τ2))− u1 cosh(t− τ2) + 1

2
u1 (t− τ2) sinh(t− τ2)

−p1(τ2) sinh(t− τ2)− u1 cosh(t− τ2)

= 1
2
p1(τ2) (t− τ2) sinh(t− τ2)− u1 sinh(t− τ2) + 1

2
u1((t− τ2) cosh(t− τ2) + sinh(t− τ2))
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with u0 = −2.6386 andu1 = −0.26040. That is a system of two equations with two parameters
p1(τ2) andτ2. These equations are linear inp1(τ2). Solving the system by using MAPLE, gives
τ2 = 9.378729146 andp1(τ2) = 0.3723875346.

Now the values ofτ1 andp1(0) are obtained in order to ensure the continuity of the state
(and adjoint state) trajectories : the expressions ofx(t) andp(t) on the intervals[0, τ1] and
[τ1, τ2] should coincide att = τ1. By using the expressions given in the previous subsection for
x(t), one gets :

[
1
2
p1(0) (τ1 cosh(τ1)− sinh(τ1)) + sinh(τ1)−

2.63861
2

τ1 sinh(τ1)
1
2
p1(0) τ1 sinh(τ1) + cosh(τ1)−

2.63861
2

(τ1 cosh(τ1) + sinh(τ1))

]
=

[
0.26040

0

]

and forp(t),
[

p1(0) cosh(τ1)− 2.6386 sinh(τ1)

−p1(0) sinh(τ1) + 2.6386 cosh(τ1)

]
=

[
0.3723875346− 0.26040 (τ1 − 9.378729146)

0.26040

]

Solving these four equations with MAPLE givesτ1 = 0.8614720784 andp1(0) = 3.517682318.
By using these analytical forms, the control, state, multiplier and adjoint state trajectories are
drawn in Figures 4.18, 4.19 and 4.20.

Now the numerical solution of this problem is computed as previously. The optimization
algorithm mentioned above leads to the optimal control depicted in Figure 4.21. The corre-
sponding statexi(t) and multiplierλi(t) trajectories are depicted in Figure 4.22.

In these figures, as in the previous case, one can observe thatthe constraints are always
satisfied, as well as the complementarity conditions. For example, the multiplierλ2(t) is equal
to zero as long asx2(t) is strictly positive. Wheneverx2(t) is equal to zero (at timeτ1), the
multiplier λ2(t) becomes instantaneously strictly positive. According to the terminology used
in [HSV95, p. 183], the timeτ1 is called anentry timefor x2(t) (with respect to the boundary
of the nonnegative orthant of the state space) and anexit timefor λ2(t). Conversely, the timeτ2

is called anexit timefor x2(t) and anentry timefor λ2(t). In addition, the numerical study of
initial conditions of the formx0 = [α β]T whereα ≥ 0 andβ > 0, reveals that, in general,
the solution has the same structure as the solution for the initial conditionx0 = [0 1]T with
two switching times. Unfortunately, it is not possible to obtain the solution for general initial
conditionx0 = [α β]T from the study of the solutions for initial conditionsx0 = [0 1]T and
x0 = [0 1]T . Furthermore, since the numerical solution comes from a discretization, there is
a scaling factor between the numerical and the analytical expressions of the multipliers which
depends on the sampling timeh, see equation (C.6) in Appendix C. By comparing the previous
figures (Figures 4.13 with 4.16 ; 4.14 with 4.17 ; 4.18 with 4.21 and 4.19 with 4.22), one can
observe that the two different approaches give similar results.

Remark 4.3.1 Here, the minimal energy control problem with final state constraints by using
nonnegative input can not be solved by the method of [Ka 02, Subsection 3.4.2] since the reach-
ability gramian is not monomial. However, by increasing thevalues of some entries of the
penalization matrixS, the final statex(tf ) can be made closer to 0.
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Figure 4.18: Optimal control for system (4.24).
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Figure 4.19: State trajectories and associated multipliers for system (4.24).
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Figure 4.20: Adjoint states for system (4.24).
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Figure 4.21: Optimal control for sampled data system (4.33).
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Figure 4.22: State trajectories and associated multipliers for sampled data system (4.33).
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Chapter 5

The Input/State-Invariant LQ Problem

This chapter is devoted to the input/state-invariant linear quadratic problem in infinite hori-
zon. Since under appropriate assumptions, the solution of the infinite horizon standard LQ
problem is the limit of the finite horizon one, see [WC83], theresults of Chapter 3 can be ex-
tended to the receding horizon case. These infinite horizon results are briefly described and
analyzed.

The LQ problem with input constraints in infinite horizon hasalready been studied. In the
recent paper [Goe10], the infinite horizon LQ problem with conical constraints on the input is
studied by means, notably, of a stationary Hamilton-Jacobiequation and by the study of the
dual problem. In [HVS98], the infinite horizon LQ problem with nonnegative controls has been
studied by means of a receding horizon approach.

5.1 Problem statement

Consider the linear time-invariant system descriptionR = [A, B] :

ẋ(t) = A x(t) + B u(t), x(0) = x0, (5.1)

where, as previously, the statex(t) and the controlu(t) are in IRn and IRm, respectively,A and
B are real matrices of compatible sizes,x0 ∈ IRn denotes any fixed initial state andx̄ is a fixed
state.

The infinite horizon input/state-invariant linear quadratic problem, which is denoted by
LQ∞

ū,x̄
, consists of minimizing the quadratic functional :

J(x0, u) :=
1

2

(∫ ∞

0

(‖R1/2u(t)‖2 + ‖C x(t)‖2) dt

)
(5.2)

for a given linear system described by (5.1), where the initial statex0 ≥ x̄ is fixed, under the
constraint

∀ t ∈ [0, ∞),

{
W x(t) ≥ x̄

Z u(t) ≥ ū,
(5.3)

whereu is any piecewise-continuous IRm-valued function,R ∈ IRm×m is a symmetric positive
definite matrix,C ∈ IRp×n, W ∈ IRn×n, Z ∈ IRm×m, and x̄ ∈ IRn (ū ∈ IRm respectively)
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is a fixed state (input, respectively). The problem can be studied with any matricesW andZ

of full rank. Recall that whenW andZ are equal to the zero matrix, the input/state-invariant
LQ∞

ū,x̄
problem corresponds to the standardLQ∞ problem. For this standard problem, the

following results are well-known, see [AM90], [CD91, pp. 333-339], [KS72, Theorem 3.7] and
[WC83].

Theorem 5.1.1 Assume that the pair(A, B) is stabilizable and that the pair(C, A) is de-
tectable. Under these conditions, the Algebraic Riccati Equation (ARE)

AT P + P A− P B R−1BT P + CT C = 0 (5.4)

has a unique stabilizing positive semidefinite solutionP+, i.e. the ARE has a unique solu-
tion P+ such thatP+ is positive semidefinite and that the corresponding closed-loop matrix
A − B R−1BT P+ is stable. In addition, under these conditions, the optimalcontrol for the
LQ∞ problem is of state feedback type and is given by

u(t) = K x(t) = −R−1BT P+ x(t) (5.5)

and the optimal cost isJ(x0, u) = xT
0 P+ x0. Furthermore, the matrixP+ is the limit solution

of the Riccati Differential Equation (RDE), more precisely, for any fixedt ∈ IR,

P+ = lim
tf→∞

P (t, 0, tf ) (5.6)

whereP (t, 0, tf ) denotes the unique solution of the RDE, given by (3.23).

5.2 Receding horizon approach

First, let us consider the following notations and concepts. For a square matrixA, V is
an A-invariant subspace ifA V ⊂ V . In particular,L−(A), L0(A), L+(A), L0+(A) denote
the A-invariant subspaces spanned by the (generalized) eigenvectors corresponding to eigen-
values with negative, zero, positive and nonnegative real parts, respectively. In the sequel,
N (S) denotes the null space ofS, NO(C, A) the unobservable subspace andND(C, A) :=

NO(C, A) ∩ L0+(A) the undetectable subspace.

Using Theorem 5.1.1 on the standardLQ∞ problem together with the following lemmas on
the receding horizon approach, leads to appropriate conditions to obtain a solution of the
input/state-invariantLQ∞

ū,x̄
problem in infinite horizon. A first useful result is developed in

[WC83] :

Lemma 5.2.1 Assume that(A, B) is stabilizable and that the Hamiltonian matrixH (de-
scribed by (3.7)) has no eigenvalues on the imaginary axis (i.e. L0(H) = {0}). Moreover,
assume thatN (S) ∩ND(C, A) is A-invariant. Let us define the two following problems :

• (P1) : Find ηo
1 := inf

u(·)
lim

tf→∞
η(tf) and the corresponding optimal controluo

1(·) achieving

a minimum cost ;
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• (P2) : Let η∗(tf) := inf
u(·)

η(tf) and letu∗(·) denotes the corresponding optimal control.

Determineηo
2(·) := lim

tf→∞
η∗(tf) and, if the limit exists, find the limiting behavioruo

2(·) of

the optimal controlu∗(·) for tf →∞ ;

whereη(tf ) := J(x0, u, tf ) denotes the linear quadratic cost in finite horizon (3.2). Then
problems(P1) and(P2) yield identical solutions given by

ηo
1 = ηo

2 = xT
0 P+x0

and
uo

1(t) = uo
2(t) = −R−1BT P+xo(t).

The second result, see [CWW94], concerns the uniform convergence between the optimal state
and control trajectories of the finite and infinite horizon LQproblems :

Lemma 5.2.2 Assume that(A, B) is stabilizable,L0(H) = {0} andN (S)∩ND(C, A) = {0}.
Let x∗(·) and u∗(·) be the optimal state and control trajectories on[0, tf ] of LQtf . Let
e(A+B K)(·)x0 and−B R−1P+e(A+B K)(·)x0 be the optimal state and control trajectories of the
LQ∞ problem. Then

a) ‖x(·)− e(A+B K)(·)x0‖∞ tends to zero exponentially fast whentf →∞ ;

b) ‖u(·) + B R−1P+e(A+B K)(·)x0‖∞ tends to zero exponentially fast whentf →∞ ;

where‖ · ‖∞ denotes the uniform vector norm.

Remark 5.2.1 For a discussion of the assumptions (i.e.(A, B) is stabilizable andL0(H) = {0}),
see e.g. [CW81], where it is stated that the requirementL0(H) = {0} is equivalent toL0(A) ⊂

C(A, B) andNO(C, A)∩L0(A) = ND(C, A)∩L0(A) = {0}, i.e. all modes corresponding
to the eigenvalues ofA with zero real part are required to be controllable and observable.

Using these two lemmas, we obtain the following result for theLQ∞

ū,x̄
problem :

Theorem 5.2.3 If the solution(x∗, u∗) of the standardLQtf problem is admissible for the
LQ

tf

ū,x̄ problem for all sufficiently large horizonstf , i.e.

∃ T ≥ 0 such that∀ tf ≥ T, ∀ t ∈ [0, tf ],

{
W x∗(t, tf ) ≥ x̄

Z u∗(t, tf ) ≥ ū,

and if

(A, B) is stabilizable, (5.7)

H has no eigenvalues on the imaginary axis, (5.8)

and N (S) ∩ND(C, A) = {0} (5.9)

then the solution(xo, uo) of theLQ∞ problem is admissible for theLQ∞

ū,x̄ problem and is
therefore solution of theLQ∞

ū,x̄
problem.
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Proof : By Lemmas 5.2.1 and 5.2.2,

x0(t) = lim
tf→∞

x∗(t, tf) and u0(t) = lim
tf→∞

u∗(t, tf)

such that, withW x∗(t, tf) ≥ x̄ andZ u∗(t, tf) ≥ ū and the uniform convergence of the state
and control trajectories, the inequalities are preserved by taking the limit :

W x0(t) ≥ x̄ and Z u0(t) ≥ ū.

Hence the solution(xo, uo) of theLQ∞ problem, is admissible for theLQ∞

ū,x̄
and is therefore

a solution of theLQ∞

ū,x̄
problem.

2

Remark 5.2.2 Note that the conditions(A, B) is stabilizable andL0(H) = {0} hold if (A, B)

is stabilizable and(C, A) is detectable. This yields the following corollary :

Corollary 5.2.4 Assume that(A, B) is stabilizable and(C, A) is detectable. If the solu-
tion (x∗, u∗) of the standardLQtf problem is admissible for theLQ

tf

ū,x̄ problem for all suf-
ficiently large horizonstf , then the solution(xo, uo) of theLQ∞ problem is admissible for the
LQ∞

ū,x̄ problem and is therefore solution of theLQ∞

ū,x̄ problem.

Therefore the optimality conditions via admissibility developed in Sections 3.4, 3.5.2 and
3.6.2, can be applied here. The following result is stated for the input/state-invariantLQ∞

ū,x̄
pro-

blem. However, observe that it is readily extendable to theLQ
tf

x̄ andLQ
tf

ū problems in infinite
horizon.

Theorem 5.2.5 Assume that(A, B) is stabilizable and(C, A) is detectable. Consider(x∗, u∗)

the optimal solution of theLQtf problem such thatu∗(t) = K x∗(t). Then the solution of the
LQ∞ problem is admissible for theLQ∞

ū,x̄
problem if, for all sufficiently large horizonstf , the

matrix solution of the standard matrix Hamiltonian differential equation (3.22) is such that for
all t ∈ [0, tf ],

W X(t) X(0)−1x0 ≥ x̄

and
−Z R−1BT Y (t) X(0)−1x0 ≥ ū.



Chapter 6

The Positive LQ Problem

This chapter is devoted to the positive LQ problem in infinitehorizon. This problem cor-
responds to theLQ∞

ū,x̄
problem with x̄ = 0, W = In and ū = 0, V = 0m. Criteria for

the existence of a solution to this problem are established,in terms of the weighting matrices
defining the quadratic cost criterion to be minimized. Thesecriteria are obtained by using a
Newton-type iterative scheme (known in the control literature as the Kleinman method) con-
verging to the unique stabilizing positive semi-definite solution of the algebraic Riccati equa-
tion, for LTI positive systems. The approach which is used here is inspired by the one developed
in [GL00a, GL00b]. This method was recently extended to positive game theory, see [JK04].
Also, the Kronecker product is often used in this part and theproperties of M-matrices, see
Sections A.4 and A.2.

Positivity criteria are also established in terms of the solution of the algebraic Riccati equa-
tion (ARE) and in terms of the Hamiltonian matrixH by using the characterization of positive
systems with scalar products, see [AS03] and [DL04]. Finally, as in the finite horizon case, a
diagonal solution of the algebraic Riccati equation is studied.

The LQ problem for positive systems is studied in [HCH10, Chapter 13] by optimizing the
cost within a class of fixed-structure controllers satisfying internal controller constraints that
guarantee the positivity of the closed-loop system.

6.1 Newton iterative scheme

6.1.1 Problem statement

Consider the following LTI system description :

ẋ(t) = A x(t) + B u(t), x(0) = x0, (6.1)

y(t) = C x(t), (6.2)

where the statex(t), the controlu(t) and the outputy(t) are in IRn, IRm and IRp, respectively,
A, B andC are real matrices of compatible sizes, andx0 ∈ IRn denotes any initial state.
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The infinite horizon positive LQ problem, which is denoted byLQ∞

+
, consists of minimiz-

ing the quadratic functional (5.2),

J(x0, u) =
1

2

(∫ ∞

0

‖R1/2u(t)‖2 + ‖C x(t)‖2 dt

)
,

for a given positive system described by (6.1), where the initial statex(0) = x0 ≥ 0 is fixed,
under the constraint

∀ t ∈ [0, ∞), x(t) ≥ 0,

andR ∈ IRm×m andQ = CT C ∈ IRn×n are assumed to be positive-definite (pd) and positive-
semidefinite (psd), respectively, symmetric matrices.

As already studied in the previous chapters, conditions such that theLQ∞

ū,x̄ problem has a
solution can be obtained by using the standardLQ∞ problem. Therefore, our main objective is
to find necessary and/or sufficient conditions on the weighting matricesQ andR in the costJ
defined by (5.2), such that there exists a state feedbackK such that theLQ∞ -optimal closed-
loop system[A + B K = A−B R−1BT P+, 0] is positive, i.e. such that the closed-loop matrix
A + B K = A− B R−1BT P+ is a Metzler matrix.
Therefore, by Theorem 2.3.3, the assumption of positive stabilizability is a necessary condition
for the existence of a solution of theLQ∞

+
problem and by Theorem 5.1.1, stabilizability and

detectability are needed assumptions for theLQ∞ problem. So, from now on, conditions

(H0)





[A, B] is a positive system
(A, B) is positively stabilizable
(C, A) is detectable

(6.3)

will be assumed to hold throughout unless otherwise stated.
The following proposition highlights an important property of the solutionP+ of the ARE :

Proposition 6.1.1 If A is a stable Metzler matrix and the solutionP+ of the ARE, given by
(5.4), i.e.

AT P+ + P+ A− P+ B R−1BT P+ + CT C = 0,

is such thatA− B R−1BT P+ is a (stable) Metzler matrix, thenP+ ≥ 0 wheneverQ ≥ 0.

Proof : Indeed, using the Kronecker product, recalled in Appendix A.4, the Algebraic Riccati
equation (ARE) can be rewritten as

[
In ⊗ (−AT ) + (−A + B R−1BT P+)T ⊗ In

]
vect(P+) = vect(Q). (6.4)

Observe that, by Theorem A.2.2,−A and−A + B R−1BT P+ are nonsingularM-matrices.
Indeed, sinceA is a Metzler matrix,−A is a Z-matrix by definition. Then, sinceA stable
means that its eigenvalues have negative real parts by Theorem 1.2.2, the eigenvalues of−AT

and(−A + B R−1BT P+)T have positive real parts. Therefore, these matrices are nonsingular
M-matrices. It follows that[In ⊗ (−AT ) + (−A + B R−1BT P+)T ⊗ In] is also a nonsingular
M-matrix (by Theorem A.4.2), such that its inverse is nonnegative (by Theorem A.2.2). Hence,
if the matrixQ is nonnegative, then so isP+, by equation (6.4).

2
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6.1.2 Positivity criteria for the stable case

Here sufficient conditions which guarantee the positivity of theLQ∞ -optimal closed-loop
system are established. First let us introduce the following assumptions :

(H1) The matrixA is stable.
(H2) The weighting matricesQ andR are such that

Q≫ 0 and B R−1BT ≥ 0.

(H3) −A + B R−1BT X1 is aZ-matrix, whereX1 is the solution of the Lyapunov equation

AT X1 + X1 A + Q = 0. (6.5)

Remark 6.1.1 Assumption(H3) can be read(B R−1BT X1)ij ≤ aij , for i 6= j, where−A is a
Z-matrix,B R−1BT X1 ≥ 0 by assumption(H2) and by the fact thatX1 ≥ 0, see Lemma 6.1.2
below. Then the matrixR has to be chosen sufficiently large to guarantee this assumption. Also
Q can be chosen such thatX1 is sufficiently small for this assumption, see the methodology
developed below to find the weighting matricesQ andR.

Observe that the matrixD := −A is a nonsingularM-matrix, by Theorem A.2.2. Then the
algebraic Riccati equation (5.4) can be written equivalently as :

DT P+ + P+D + P+B R−1BT P+ = Q. (6.6)

Now let us consider the following iterative scheme :






X0 = 0

(DT + Xk B R−1BT ) Xk+1 + Xk+1 (D + B R−1BT Xk)

= Xk B R−1BT Xk + Q, ∀ k ≥ 0

(6.7)

Observe that fork = 0, equation (6.7) is equivalent to the Lyapunov equation (6.5). The
following auxiliary result can be proved by induction.

Lemma 6.1.2 Consider a LTI system[A, B], described by (6.1), such that conditions(H0)–
(H3) hold. Then(Xk)k≥1, defined by (6.7), is a psd matrix sequence, which is (elementwise)
decreasing such that, for allk ≥ 1,

0 ≤ Xk+1 ≤ Xk ≤ X1

and[
In ⊗ (DT + XkB R−1BT ) + (D + B R−1BT Xk)

T ⊗ In

]
is a nonsingular M-matrix.

Proof : Define fork ≥ 1,

R(Xk) := DT Xk + Xk D + Xk B R−1BT Xk −Q.
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Let k = 0 in (6.7), that gives, withX0 = 0,

DT X1 + X1 D = Q,

or equivalently
[In ⊗DT + DT ⊗ In] vect(X1) = vect(Q).

Then, sinceD is aM-matrix, it is the same for[In⊗DT + DT ⊗ In] by Theorem A.4.2. Hence
by Proposition A.2.3, withQ≫ 0, vect(X1) ≥ 0, that isX1 ≥ 0. Moreover,X1 is a psd matrix
by Theorem 1.2.3. Now, withD a nonsingularM-matrix, X1 ≥ 0, a psd matrix,Q ≫ 0 and
DT X1 + X1 D = Q, one has

(DT + X1 B R−1BT ) X1 + X1 (D + B R−1BT X1) = Q + 2 X1 B R−1BT X1 ≫ 0,

or equivalently

[In ⊗ (DT + X1 B R−1BT ) + (D + B R−1BT X1)
T ⊗ In] vect(X1)

= vect(Q + 2 X1 B R−1BT X1)≫ 0.

By (H3), D + B R−1BT X1 is a Z-matrix with X1 solution of DTX1 + X1 D = Q. Then
[In ⊗ (DT + X1 B R−1BT ) + (D + B R−1BT X1)

T ⊗ In] is a Z-matrix and a nonsingular
M-matrix by Theorem A.2.2.
Moreover, withDT X1 + X1 D = Q, X1 ≥ 0 andB R−1BT ≥ 0,

R(X1) = X1 B R−1BT X1 ≥ 0.

By calculation, one has

(DT + X1 B R−1BT ) (X1 −X2) + (X1 −X2) (D + B R−1BT X1) = R(X1) ≥ 0,

which can be written equivalently as

[In ⊗ (DT + X1 B R−1BT ) + (D + B R−1BT X1)
T ⊗ In] vect(X1 −X2) = vect(R(X1)).

Then since[In⊗ (DT +X1 B R−1BT )+(D +B R−1BT X1)
T ⊗ In] is a nonsingular matrix, by

Theorem A.2.2, its inverse is nonnegative, and, withR(X1) ≥ 0, we havevect(X1 −X2) ≥ 0,
i.e. X2 ≤ X1, and the recurrency is verified fork = 1.

Now assume that for a fixedk ≥ 1, the following assumptions hold :

Xk is a psd matrix

0 ≤ Xk+1 ≤ Xk ≤ X1

and
[
In ⊗ (DT + Xk B R−1BT ) + (D + B R−1BT Xk)

T ⊗ In

]

is a nonsingularM-matrix.

(6.8)
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Let us show that these assertions hold forXk+1 et Xk+2. As done previously forX1, one can
show thatXk+1 is a psd matrix. Then sinceB R−1BT ≥ 0, Xk+1 ≥ 0 andX1 ≥ 0, one has

(DT + Xk+1 B R−1BT ) X1 + X1 (D + B R−1BT Xk+1) ≥ DT X1 + X1 D = Q≫ 0.

Consequently,[In ⊗ (DT + Xk+1 B R−1BT ) + (D + B R−1BT Xk+1)
T ⊗ In] is a nonsingular

M-matrix, by Theorem A.2.2. Hence, using the iterative scheme (6.7) :

[In ⊗ (DT + Xk+1 B R−1BT ) + (D + B R−1BT Xk+1)
T ⊗ In] vect(Xk+2)

= vect(Xk+1 B R−1BT Xk+1 + Q)≫ 0.

Then, by Proposition A.2.3,Xk+2 ≥ 0.
Moreover, by calculation, one has

R(Xk+1) = (Xk+1 −Xk) B R−1BT (Xk+1 −Xk) ≥ 0,

since by(H2), B R−1BT ≥ 0 and since(Xk+1 − Xk) ≤ 0. Therefore, by developing the
iterative scheme (6.7), we have :

(DT + Xk+1 B R−1BT ) (Xk+2 −Xk+1) + (Xk+2 −Xk+1) (D + B R−1BT Xk+1)

= −R(Xk+1) ≤ 0.

Since[In⊗ (DT +Xk+1 B R−1BT )+ (D +B R−1BT Xk+1)
T ⊗ In] is a nonsingularM-matrix

of nonnegative inverse, the matrix(Xk+2 −Xk+1) is nonpositive and thenXk+2 ≤ Xk+1.
2

It follows from this lemma that one can take the limit in (6.7)and that the following theorem
can then be established easily.

Theorem 6.1.3 Consider a LTI system[A, B], described by (6.1), such that conditions(H0)–
(H3) hold. Then the stabilizing psd solutionP+ of the algebraic Riccati equation (5.4) is such
that the correspondingLQ∞ -optimal closed-loop system is positive, i.e. the closed-loop matrix
(A− B R−1BT P+) is a Metzler matrix.

Proof : By Lemma 6.1.2, the sequence(Xk)k≥1 of scheme (6.7) is a decreasing sequence of
psd matrices such thatXk ≥ 0 for k ≥ 1. Hence lim

k→+∞
Xk = P+ ≥ 0 exists and is equal to a

psd matrixP+. Therefore, taking the limit withk → +∞ in (6.7) gives the algebraic Riccati
equation (6.6). Hence,P+ ≥ 0 is the psd solution of the ARE. Thanks to the assumption of
stabilizability and detectability, classical theory saysthat this solution is unique and stabilizing,
see [CD91, Theorem 38, p. 348] and Theorem 5.1.1. Moreover, by assumption(H3), using
the fact that the sequence(Xk)k≥1 is decreasing,−A + B R−1BT Xk is aZ-matrix and so is
−A + B R−1BT P+ by taking the limit. ThenA− B R−1BT P+ is a Metzler matrix.

2
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Remarks 6.1.2 a) By Proposition A.2.3, it can be shown thatXk ≫ 0. However, withXk ≥ 0

or Xk ≫ 0, the limitP+ is nonnegative in both cases.
b) By Theorem A.2.2, sinceD is a nonsingularM-matrix, there exists a diagonal pd matrix
P such thatDT P + P D is a pd matrix. Therefore, by assumption(H3), with X1 solution of
the Lyapunov equationDT X1 + X1 D = Q, it is possible to takeX1 a diagonal matrix with
diagonal elements strictly positiv,e as initial iterate ofscheme (6.7). In this case, the choice of
the matrixQ is dictated byQ = DT X1 + X1 D.

It turns out that the assumption(H3) can be replaced by the following one :

(H4) There exists a symmetric matrixY ≫ 0 such that

Q + AT Y + Y A ≤ 0 and −A + BR−1BT Y is a Z-matrix.

Theorem 6.1.4 The conclusion of Theorem 6.1.3 remains valid if the assumption (H3) is re-
placed by(H4).

Remark 6.1.3 With the assumptions(H1), (H2) and (H4), the iterative scheme (6.7) yields a
sequence(Xk) such that for allk ≥ 1,

{
Xk is symmetric positive definite,0 ≤ Xk+1 ≤ Xk ≤ Y, and[

In ⊗ (D + BR−1BT Xk)
T + (D + BR−1BT Xk)

T ⊗ In

]
is aM-matrix.

Proof : It is clear that(H3) implies(H4). Show that(H4) implies(H3). Indeed, consider the
matrixY such that−A + B R−1BT Y is aZ-matrix, then

0 ≤
(
B R−1BT Y

)
ij
≤ aij, for i 6= j. (6.9)

Now, with D = −A,

DT (X1 − Y ) + (X1 − Y ) D = DT X1 + X1 D −DT Y − Y D

= Q−DT Y − Y D ≤ 0

or equivalently
[
In ⊗DT + DT ⊗ In

]
vect(X1 − Y ) = vect(Q−DT Y − Y D) ≤ 0

Hence

vect(X1 − Y ) =
[
In ⊗DT + DT ⊗ In

]−1

︸ ︷︷ ︸
≥ 0

vect(Q−DT Y − Y D)︸ ︷︷ ︸
≤ 0

≤ 0,

since
[
In ⊗DT + DT ⊗ In

]
is a nonsingularM-matrix. ThereforeX1 − Y ≤ 0, soX1 ≤ Y.

Hence, with (6.9) :

0 ≤
(
B R−1BT X1

)
ij
≤
(
B R−1BT Y

)
ij
≤ aij , for i 6= j.

Then,−A + B R−1BT X1 is aZ-matrix. Now, assume thatAT Y + Y A ≤ −Q. Consider a
matrixP such thatP ≥ Q and takeY solution of the following Lyapunov equation

AT Y + Y A = −P ≤ −Q

and we obtain the condition of assumption(H3).
2
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– Application to compartmental systems

Consider a compartmental system, (see Definition 2.3.3), where the matrixA satisfies con-
dition (2.3), i.e.

n∑

i=1

aij < 0 for all j = 1, . . . , n.

This condition implies thatZ A≪ 0, i.e.

AT Z + Z A≪ 0

whereZ = (zij) ∈ IRn×n is defined as follows

∀ i, j = 1, ..., n, zij = 1.

In this case, it turns out that the assumption(H2) can be replaced by the following one :

(H5) The weighting matricesQ andR are such that

Q ≥ 0 andB R−1BT ≥ 0.

Theorem 6.1.5 Assume that[A, B] is a compartmental system such that (2.3) holds. Then the
conclusion of Theorem 6.1.3 remains valid if the assumption(H2) is replaced by(H5).

Proof : The proof is similar to the one of Theorem 6.1.3 and follows the lines of Lemma 6.1.2.
First recall the iterative scheme (6.7) used in these proofs:





X0 = 0

(DT + Xk B R−1BT ) Xk+1 + Xk+1 (D + B R−1BT Xk)

= Xk B R−1BT Xk + Q, ∀ k ≥ 0

First show that(Xk)k≥1 is a decreasing sequence of psd matrices such that

∀ k ≥ 1 : 0 ≤ Xk+1 ≤ Xk ≤ X1

and
[
In ⊗ (DT + Xk B R−1BT ) + (D + B R−1BT Xk)

T ⊗ In

]

is a nonsingularM-matrix.

Let k = 0 in (6.7), that gives, withX0 = 0,

DT X1 + X1 D = Q,

or equivalently

[In ⊗DT + DT ⊗ In] vect(X1) = vect(Q).
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Then, sinceD is aM-matrix, it is the same for[In ⊗DT + DT⊗n] by Theorem A.4.2. Hence
its inverse is nonnegative by Theorem A.2.2 and then

vect(X1) = [In ⊗DT + DT ⊗ In]−1

︸ ︷︷ ︸
≥0

vect(Q)︸ ︷︷ ︸
≥0

,

one hasX1 ≥ 0. Moreover,X1 is a psd matrix by Theorem 1.2.3. Now, withD a nonsingular
M-matrix,X1 ≥ 0, a psd matrix,Q ≥ 0 andDT Z + Z D ≫ 0, one has

(DT + X1 B R−1BT ) Z + Z (D + B R−1BT X1) ≥ DT Z + Z D ≫ 0,

or equivalently

[In ⊗ (DT + X1 B R−1BT ) + (D + B R−1BT X1)
T ⊗ In] vect(Z)

= vect(DTZ + Z D)≫ 0.

By (H3), D + B R−1BT X1 is a Z-matrix with X1 solution of DTX1 + X1 D = Q. Then
[In ⊗ (DT + X1 B R−1BT ) + (D + B R−1BT X1)

T ⊗ In] is aZ-matrix and a nonsingularM-
matrix by Theorem A.2.2. By using the same arguments as in theproof of Lemme 6.1.2, it can
be shown thatX2 ≤ X1 and the recurrency is verified fork = 1.

Now assume that for a fixedk ≥ 1, the following assumptions hold :

Xk is a psd matrix

0 ≤ Xk+1 ≤ Xk ≤ X1

and
[
In ⊗ (DT + Xk B R−1BT ) + (D + B R−1BT Xk)

T ⊗ In

]

is a nonsingularM-matrix.

(6.10)

As done previously forX1, one can show thatXk+1 is a psd matrix. Then sinceB R−1BT ≥ 0,
Xk+1 ≥ 0 andZ ≫ 0, one has

(DT + Xk+1 B R−1BT ) Z + Z (D + B R−1BT Xk+1) ≥ DT Z + Z D ≫ 0.

Consequently,[In ⊗ (DT + Xk+1 B R−1BT ) + (D + B R−1BT Xk+1)
T ⊗ In] is a nonsingular

M-matrix, by Theorem A.2.2. Hence, using the iterative scheme (6.7) :

[In ⊗ (DT + Xk+1 B R−1BT ) + (D + B R−1BT Xk+1)
T ⊗ In] vect(Xk+2)

= vect(Xk+1 B R−1BT Xk+1 + Q) ≥ 0.

Then,Xk+2 ≥ 0 since by Theorem A.2.2,[In⊗(DT +Xk+1 B R−1BT )+(D+B R−1BT Xk+1)
T⊗

In] is a nonsingularM-matrix of nonnegative inverse. Moreover, by calculation,using the
scheme (6.7) as in the proof of Lemma 6.1.2, one hasXk+2 ≤ Xk+1. The rest of the proof is
similar to the one of Theorem 6.1.3 by taking the limit in (6.7).

2
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– Design methodology to findQ and R

An important question is to find suitable matricesQ andR such that the assumptions(H2)

and(H4) (or (H3)) are satisfied. Concerning the matrixQ, it is not hard to chooseQ = CT C

such thatC ≫ 0 and (C, A) is detectable according to the assumption(H0). If the system
[A, B] is compartmental, the matrixC can be selected such thatC ≥ 0 as stated in the assump-
tion (H5). For the matrixR, it is possible to choose

R : = s Im − R̃ such thatR̃T = R̃ ≥ 0 ands > ρ(R̃). (6.11)

It is clear thatR is a nonsingular pd matrix such thatR−1 ≥ 0. Consequently,B R−1BT ≥ 0.
Now let P be a symmetric psd matrix such thatP ≥ Q and consider the solutionY of the
following Lyapunov equation :

AT Y + Y A = −P. (6.12)

SinceA is a stable matrix, the solution of (6.12) is given by :

Y =

∫ +∞

0

eAT tP eAtdt.

ObviouslyY = Y T is a psd matrix andY ≥ 0 , sinceQ≫ 0. Moreover

AT Y + Y A + Q ≤ 0.

In order to check the feasibility of the second part of assumption (H4), i.e. A− B R−1BT Y is
a Metzler matrix, we assume that the following condition holds :

α := min{aij : i, j = 1, · · · , n such thati 6= j} > 0. (6.13)

In view of (6.11) and sincelim
s→+∞

(s Im − R̃)−1 = 0, there is some sufficiently larges > ρ(R̃)

such that−A + B R−1BT Y is aZ-matrix. Therefore one gets the following result :

Proposition 6.1.6 If [A, B] is a positive system such thatA is stable and condition(6.13)

holds, then there exist weighting matricesQ andR such that(H2) and(H4) are satisfied.

Remark 6.1.4 The numerical example below reveals that it is not easy to findsuchs. In fact, it
shows thatR has to be chosen “sufficiently large” (i.e.s sufficiently large such thats > ρ(R̃))
and Q “sufficiently small” in order to satisfy assumption(H4) which depends onQ and Y .
Indeed, the condition(H4) can be read asB R−1BT Y be a sufficiently small perturbation to
keep the positivity property ofA. Then the parameterα > 0 provides a degree of freedom to
disturbA in order to keep its Metzler property. Therefore, in the cost(5.2), the penalization
coefficient of the state is less than the weight of the control.

By Theorem 6.1.4, the latter result together with the paragraph above indicate a design
methodology for choosing the weighting matricesQ andR in order to get the positivity of the
resultingLQ∞ -optimal closed-loop system, see Table 6.1.
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1. Choose Q = CT C with C ≫ 0 ;

2. Choose R = s Im − R̃ such that R̃ ≥ 0 symmetric matrix
and s > ρ(R̃), sufficiently large ;

3. Choose a symmetric psd matrix P such that P ≥ Q ;

4. Compute the solution Y of the Lyapunov equation AT Y + Y A = −P ;

5. Check that α := min{aij : i 6= j} > 0 ;

6. Choose s sufficiently large (s > ρ(R̃))
such that A−B R−1BT Y is a Metzler matrix.

Table 6.1: Design methodology forQ andR.

– Numerical example

Consider the following LTI stable positive system in order to illustrate the design method-
ology to findQ andR,

A =

[
−2 1

1 −2

]
; B =

[
1 0

0 1

]
. (6.14)

The design methodology of Table 6.1 applying to this system yields the following matricesQ
andR, (detailed calculations are described here after) :

Q =

[
4 0.01

0.01 6

]
; R =

[
6 −2

−2 5

]
. (6.15)

Consequently, with these weighting matrices, we obtain that the resulting closed-loop system is
positive, since the closed-loop matrix is given by

A + B K = A− B R−1BT P+ =

[
−2.2692 0.7688

0.7789 −2.4100

]
.

These results are obtained by applying the methodology described in Table 6.1 as follows :

1. Choose Q = CT C with C ≫ 0

TakeC = Q1/2 =

[
2 0.022

0.022 2.4495

]
such that

Q = CT C =

[
4 0.01

0.01 6

]
≫ 0.
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2. Choose R = s Im− R̃ such that R̃ ≥ 0 symmetric matrix and s > ρ(R̃), sufficiently
large

For example, let̃R =

[
4 2

2 5

]
with ρ(R̃) = 6.5616.

First, we takes as the smallest integer larger thanρ(R̃), thens = 7. Unfortunately, as
we can seen in Table 6.2, this choice ofs is not larger enough in order to obtain that
−A + B R−1BT Y is aZ-matrix. Therefore, we have to choose at leasts = 10 to achieve
this condition, see below. Then

R =

[
6 −2

−2 5

]

is a pd matrix such that

B R−1BT =

[
0.1923 0.0769

0.0769 0.2308

]
≥ 0.

3. Choose P symmetric psd matrix such that P ≥ Q

Next, we chooseP ≥ Q with, for example,

P = Q + β In, β = 10,

that gives

P =

[
14 0.01

0.01 10

]
.

4. Compute Y the solution of the Lyapunov equation AT Y + Y A = −P

The solutionY of the Lyapunov equation is given by

Y =

[
4.7517 2.5033

2.5033 5.2517

]

which is a psd symmetric and nonnegative matrix.

5. Check α := min{aij : i 6= j} > 0

Since A =

[
−2 1

1 −2

]
, α = 1 > 0.

6. Choose s sufficiently large (s > ρ(R̃)) such that A−B R−1BT Y is a Metzler matrix

As we have seen previously, the parameters has to be chosen sufficiently large to obtain
this last condition. Indeed, see Table 6.2 where several values ofs and the resulting
matrices−A + B R−1BT Y are given. In this table, the positivity of the closed-loop
system is also checked by verifying if the closed-loop matrix is a Metzler matrix.
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s −A + B R−1BTY Z-matrix A − B R−1BTP+ Metzler
Y Lyapunov solution P+ Riccati solution

7

[
9.2550 6.7550

7.5067 12.3808

]
×

[
−2.9864 −0.2193

−0.0639 −3.7515

]
×

8

[
4.4077 1.2517

1.4396 5.2517

]
×

[
−2.4855 0.5060

0.5435 −2.7888

]
X

9

[
3.5008 0.2823

0.3762 3.9541

]
×

[
−2.3427 0.6851

0.7026 −2.5350

]
X

10

[
3.1063 −0.1146

−0.0568 3.4045

]
X

[
−2.2692 0.7688

0.7789 −2.4100

]
X

Table 6.2: Table of different values of parameters.

We can observe that this methodology is only a sufficient condition to guarantee the pos-
itivity of the closed-loop system. Since fors = 8, the last condition of the methodology
is not verified while the closed-loop system is positive.

Now Figure 6.1 represents the optimal state trajectories, for the initial statesx0 = [1 0]T

(graphs on the left) andx0 = [0 1]T (graphs on the right) respectively, i.e. the columns ofeA t

at the sampling times. One can numerically verify that the closed-loop system is positive.
Notice that the closed-loop system is stable since the eigenvalues of the (constant) closed-

loop matrix are−1.5626 and−3.1166. Moreover, it could also be interesting to observe the
behavior of the optimal controlu(t), which is represented in Figure 6.2 with the same initial
states as above. We can observe thatu(t) ≤ 0 for all t sinceu(t) = −R−1BT P+ x(t) with
P+ ≥ 0, B ≥ 0 andR−1 ≥ 0 by construction. Then the optimal control is always nonpositive.
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Figure 6.1: Optimal state trajectoriesx(t) for system (6.14)-(6.15).
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Figure 6.2: Optimal controlu(t) for system (6.14)-(6.15).

6.1.3 Positivity criteria for the unstable case

In this subsection, we consider the case of a positive system[A, B] whereA is unstable, i.e.

s(A) = sup{Re(λ) : λ ∈ σ(A)} ≥ 0.

Consequently,−A is no longer aZ-matrix, by Theorem A.2.2. LetD = (s In − A) with
s > s(A) such that−D is a stable matrix. This gives a nonsingularM-matrix such that the
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characterizations of such matrices given in Theorem A.2.2 are applicable. Indeed, sinceA a
Metzler matrix, for allt ≥ 0, eA t ≥ 0, so by the Laplace transform, see [Nag86] or [CD91],

∀ s > s(A) (s In − A)−1 =

∫ ∞

0

e−s t eA t dt≥ 0.

Therefore, withs > s(A), D = (s In−A) is a nonsingularM-matrix by Theorem A.2.2. As in
the stable case, the algebraic Riccati equation is written in terms ofD instead ofA, that gives :

DT P+ + P+ D + P+ B R−1BT P+ = Q + 2 s P+. (6.16)

The following assumption is assumed to hold, similarly to the stable case :

(H ′
3) There existss > s(A) such that−A + B R−1BT X1 is aZ-matrix,

andX1 B R−1BT − 2 s In ≥ 0, whereX1 is the solution of the following Lyapunov
equation :

(A− s In)
T X1 + X1 (A− s In) = −Q. (6.17)

Remark 6.1.5 Note that assumption(H ′
3) is assumption(H3) of the stable case withs = 0.

Theorem 6.1.7 Consider a positive system[A, B] where the assumptions(H2) − (H ′
3) hold,

then the algebraic Riccati equation (5.4) has a psd solutionP+ ≥ 0 such thatA−B R−1BT P+

is a Metzler matrix.

Proof : Considers > s(A) ≥ 0 given by(H ′
3) and defineD = (s In−A) which is a nonsingular

M-matrix. Introduce the following iterative scheme :





X0 = 0

(DT + Xk B R−1BT ) Xk+1 + Xk+1 (D + B R−1BT Xk)

= Q + 2sXk + Xk B R−1BT Xk, ∀ k ≥ 1.

(6.18)

The proof is similar to the one of Theorem 6.1.3 and follows the lines of Lemma 6.1.2. First
show that(Xk)k≥1 is a decreasing sequence of psd matrices such that

∀ k ≥ 1 : 0 ≤ Xk+1 ≤ Xk ≤ X1

and
[
In ⊗ (DT + Xk B R−1BT ) + (D + B R−1BT Xk)

T ⊗ In

]

is a nonsingularM-matrix.

Let k = 0 in (6.18), that gives,DT X1 + X1 D = Q. As in the stable case, it can be shown that
X1 ≥ 0, psd matrix such that[In ⊗ (DT + X1 B R−1BT ) + (D + B R−1BT X1)

T ⊗ In] is a
nonsingularM-matrix. Now, by computation, it follows that :

(DT + X1 B R−1BT ) (X2 −X1) + (X2 −X1) (D + B R−1BT X1)
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= (2s In −X1 B R−1BT ) X1 ≤ 0

by assumption(H ′
3). Hence,X2 ≤ X1 since[In⊗(DT +X1BR−1BT )+(D+BR−1BT X1)

T⊗

In] is a nonsingularM-matrix with a nonnegative inverse. Then the recurrency is verified for
k = 1.

Now assume that for a fixedk ≥ 1, the following assumptions hold :

Xk is a psd matrix

0 ≤ Xk+1 ≤ Xk ≤ X1

and
[
In ⊗ (DT + Xk B R−1BT ) + (D + B R−1BT Xk)

T ⊗ In

]

is a nonsingularM-matrix.

(6.19)

As done previously forX1, one can show thatXk+1 is a psd matrix. Then since

(DT + Xk+1 B R−1BT ) X1 + X1 (D + B R−1BT Xk+1) ≥ DT X1 + X1 D = Q≫ 0,

one has that
[
In ⊗ (DT + Xk+1 B R−1BT ) + (D + B R−1BT Xk+1)

T ⊗ In

]
is a nonsingular

M-matrix by Theorem A.2.2. Thus, by using the iterative scheme (6.18) and by inverting, we
haveXk+2 ≥ 0. Now let us show thatXk+2 ≤ Xk+1. Using the scheme (6.18), by computation,
it follows that :

(DT + Xk+1 B R−1BT ) (Xk+2 −Xk+1) + (Xk+2 −Xk+1) (D + B R−1BT Xk+1)

= (DT + Xk+1 B R−1BT ) Xk+2 + Xk+2 (D + B R−1BT Xk+1)

−
[
(DT + Xk B R−1BT ) Xk+1 + Xk+1 (D + B R−1BT Xk)

+ (Xk+1 −Xk) B R−1BT Xk+1 + Xk+1 B R−1BT (Xk+1 −Xk)
]

= Q + 2sXk+1 + Xk+1 B R−1BT Xk+1

−
[
Q + 2sXk + Xk B R−1BT Xk

+ (Xk+1 −Xk) B R−1BT Xk+1 + Xk+1 B R−1BT (Xk+1 −Xk)
]

= 2s (Xk+1 −Xk) + Xk+1 B R−1BT Xk+1

−Xk B R−1BT Xk

−Xk+1 B R−1BT Xk+1 + Xk B R−1BT Xk+1

−Xk+1 B R−1BT Xk+1 + Xk+1 B R−1BT Xk

= 2s (Xk+1 −Xk) + (Xk −Xk+1) B R−1BT (Xk+1 −Xk)

≤ 0 sinceXk+1 ≤ Xk.

Hence,

(DT + Xk+1 B R−1BT ) (Xk+2 −Xk+1) + (Xk+2 −Xk+1) (D + B R−1BT Xk+1) ≤ 0,
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that gives(Xk+2−Xk+1) ≤ 0 since[In⊗(DT +Xk+1 B R−1BT )+(D+B R−1BT Xk+1)
T⊗In]

is a nonsingularM-matrix.

Therefore the sequence(Xk)k≥1 defined in (6.18) is a decreasing sequence of psd nonnegative
matrices. Hence

lim
k→+∞

Xk = P+ ≥ 0 andP+ is a psd matrix.

Thus, taking the limit in (6.18) gives (5.4). Hence the matrix P+ ≥ 0, psd matrix, is the solution
of the ARE. Moreover, by assumption(H ′

3), there existss > s(A) such that−A+B R−1BT X1

is aZ-matrix and so it is for−A + B R−1BT Xk by the decreasing of the sequence(Xk)k≥1. It
is the same for−A + B R−1BT P+ by taking the limit. That is equivalentlyA− B R−1BT P+

is a Metzler matrix and the closed-loop system is positive.

2

Remark 6.1.6 It could be interesting to considerA + B K instead ofD = s In − A in the
iterative scheme (6.18) and to use a matrixK such thatA + B K is a stable Metzler matrix.
Such matrixK exists by the assumption of positive stabilizability. Therefore, using the iterative
scheme, we can obtain, as previously, a solution to the positiveLQ∞

+
problem.

6.2 Hamiltonian approach

6.2.1 Using scalar products

In this section, the positivity condition on the closed-loop matrix is reinterpreted, first in
terms of the solution of the ARE (given by (5.4)) and then in terms of the Hamiltonian matrix
H (defined by (3.7)). In [AS03] and [DL04], characterizationsof monotone systems with scalar
products are described, where LTI positive systems are in particular monotone systems. Using
these characterizations, we obtain the following result :

Theorem 6.2.1 Consider theLQ∞ problem (5.1)-(5.2). TheLQ∞ closed-loop system is pos-
itive if and only if

∀ x, x̃ ∈ IRn such that





x ≥ 0

P+ x̃ ≥ 0

(P+ x̃)T x = 0,

x̃T (AT P+ + CT C) x ≤ 0

i.e.

([
A

C

]
x̃

)T [
P+

C

]
x ≤ 0.

Therefore the solution of theLQ∞ problem is solution of theLQ∞

+
problem.
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Proof : Using the characterization of positive (monotone) systemswith scalar products devel-
oped in [AS03] and [DL04], the positivity of the closed-loopsystem can be rewritten as :

A−B R−1BT P+ Metzler matrix
⇔ ∀ x, y ≥ 0 such thatyTx = 0, yT (A−B R−1BT P+) x ≥ 0

⇔ ∀ x, x̃ ∈ IRn such that





x ≥ 0

P+ x̃ ≥ 0

(P+ x̃)T x = 0,

(P+ x̃)T A x− (P+ x̃)T B R−1BT P+ x ≥ 0

⇔ ∀ x, x̃ ∈ IRn such that






x ≥ 0

P+ x̃ ≥ 0

(P+ x̃)T x = 0,

x̃T (AT P+ + CT C) x ≤ 0 (by applying the ARE)

i.e.

([
A

C

]
x̃

)T [
P+

C

]
x ≤ 0.

2

Then by using the Hamiltonian matrix

H =

[
A −B R−1BT

−CT C −AT

]

we obtain the following result :

Theorem 6.2.2 Consider theLQ∞ problem (5.1)-(5.2). TheLQ∞ closed-loop system is pos-
itive if and only if

∀ x, x̃ ∈ IRn such that





x ≥ 0

P+ x̃ ≥ 0

(P+ x̃)T x = 0,

x̃T [P+ In] H

[
In

P+

]
x ≥ 0. (6.20)

Therefore the solution of theLQ∞ problem is solution of theLQ∞

+
problem.

6.2.2 Illustrations

In order to illustrate Theorem 6.2.2, let us consider system(6.14) withQ andR given by
(6.15). The solution of the ARE and the Hamiltonian matrix are given by

P+ =

[
1.1731 0.5669

0.5669 1.5879

]
and H =




−2 1 −0.1923 −0.0769

1 −2 −0.0769 −0.2308

−4 −0.01 2 −1

−0.01 −6 −1 2


 .

Let us denote

x =

[
x1

x2

]
and x̃ =

[
x̃1

x̃2

]

and observe that
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• P+ x̃ =

[
1.1731 x̃1 + 0.5669 x̃2

0.5669 x̃1 + 1.5879 x̃2

]
;

• (P+ x̃)T x = x1 (1.1731 x̃1 + 0.5669 x̃2) + x2 (0.5669 x̃1 + 1.5879 x̃2) ;

• x̃T [P+ In] H

[
In

P+

]
x = x1 (−5.0827 x̃1 − 5.694 x̃2) + x2 (−4.5906 x̃1 − 11.879 x̃2).

Solving






x ≥ 0

P+ x̃ ≥ 0

(P+ x̃)T x = 0,

in (6.20) by means of MAPLE gives three solutions :

1. x =

[
x1

x2

]
and x̃ =

[
x̃1

x̃2

]
such that

x̃1 = −x̃2
5669 x1 + 15879 x2

11731 x1 + 5669 x2

with x1, x2, x̃2 ∈ IR.

2. x =

[
0

0

]
and x̃ =

[
x̃1

x̃2

]
such that

{
1.1731x̃1 + 0.5669x̃2 ≥ 0

0.5669x̃1 + 1.5879x̃2 ≥ 0

i.e. x̃1 ≥ −0.4832 x̃2 with x̃2 ∈ IR.

3. x =

[
0

0

]
and x̃ =

[
x̃1

0

]
wherex̃1 ≥ 0.

Then, for these three solutionsx, x̃ ∈ IRn, one has

x̃T [P+ In] H

[
In

P+

]
x ≥ 0

such that condition (6.20) is verified. Therefore, the conclusion of Theorem 6.2.2 holds, as was
to be expected.

6.2.3 Using graphs

Now some additional notations are used to rewrite this condition more briefly. LetG(X) :=

{ z =

[
In

P+

]
x : x ∈ IRn}, thegraphof P+. Let C+ = IRn

+ the nonnegative orthant of IRn.

Let
PC+

: C+ → IRn

x ; PC+
x := P+ x

be the restriction ofP+ on the coneC+. And finally letL :=

[
0n In

In 0n

]
a permutation matrix.

With these notations, we obtain the following result :
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Theorem 6.2.3 Consider theLQ∞ problem (5.1)-(5.2). TheLQ∞ closed-loop system is pos-
itive if and only if

∀ z ∈ G(PC+
), ∀ z̃ ∈ G(P+) ∩ (IRn × C+),

(L z̃)T z = 0 ⇒ (L z̃)T H z ≥ 0.
(6.21)

Therefore the solution of theLQ∞ problem is solution of theLQ∞

+
problem.

Proof : Condition (6.21) is equivalent to, withz =

[
In

P+

]
x, x ≥ 0 andz̃ =

[
In

P+

]
x̃,

P+ x̃ ≥ 0,

x̃T [P+ In] H

[
In

P+

]
x ≥ 0

since

L z̃ =

[
0n In

In 0n

] [
In

P+

]
x̃ =

[
P+

In

]
x̃

and

(L z̃)T z =

([
P+

In

]
x̃

)T [
In

P+

]
x =

[
x̃T P+x

x̃T P+x

]
.

2

Finally, we can reinterpret this condition in terms of basis. ConsiderL−(H) theH-invariant
subspace spanned by the (generalized) eigenvectors associated to the stable eigenvalues, i.e.
eigenvalues with negative real parts. Let us construct a basis of this subspace :

Z =




...
...

z1 · · · zn

...
...


 , zi ∈ IR2n.

Consider the following decompositionzi =




ui

· · ·

vi



 , ui, vi ∈ IRn.

ThereforeZ =

[
U

V

]
et ImZ = L−(H). WhenceP+ = V U−1 andZ(IRn) = G(P+). In fact,

Z can be considered as a basis ofL−(H) butZ V also, withV a nonsingular matrix. Then
there exist an infinity of choices ofU andV such thatP+ = V U−1. We obtain therefore the
following condition :

Theorem 6.2.4 Consider theLQ∞ problem (5.1)-(5.2). TheLQ∞ closed-loop system is pos-
itive if and only if

∀ z =

[
U

V

]
v, v ∈ IRn such thatU v ≥ 0,

∀ z̃ =

[
U

V

]
ṽ, ṽ ∈ IRn such thatV ṽ ≥ 0,

(U ṽ)T (V v) = −(V ṽ)T (U v) ⇒ 2 (U ṽ)T
(
−CT C (U v)− AT (V v)

)
≥ 0.

Therefore the solution of theLQ∞ problem is solution of theLQ∞

+
problem.
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Proof : With the previous considerations, condition (6.21) can be reinterpreted in terms ofU
andV :

• z ∈ G(PC+
) ⇔ z =

[
In

P+

]
x =

[
In

V U−1

]
x =

[
U

V

]
v with x := U v ≥ 0 ;

• z̃ ∈ G(P+) ∩ (IRn × C+) ⇔ z̃ =

[
In

P+

]
x̃ such thatP+x̃ = V U−1x̃ ≥ 0. Then with

x̃ := U ṽ that gives̃z =

[
U

V

]
ṽ, whereṽ ∈ IRn such thatV ṽ ≥ 0 ;

• (L z̃)T z =

([
V

U

]
ṽ

)T [
U

V

]
v

= ṽT
[

V T UT
] [ U

V

]
v

= ṽT
(
V T U + UT V

)
v

= (V ṽ)T (U v) + (Uṽ)T (V v) ;

• (L z̃)T H z =

([
V

U

]
ṽ

)T [
A −B R−1BT

−CT C −AT

] [
U

V

]
v

= ṽT
[

V T UT
] [ A U −B R−1BT V

−CT C U − AT V

]
v

= ṽT
(
V T A U − V T B R−1BT V − UT CT C U − UT AT V

)
v

= ṽT UT
(
(V U−1)T A− (V U−1)T B R−1BT V U−1 − CT C − AT V U−1

)
U v

= ṽT UT
(
P+A− P+B R−1BT P+ − CT C −AT P+

)
U v

= ṽT 2 UT
(
−CT C −AT P+

)
U v

= 2 ṽT
(
−UT CT C U − UT AT V

)
v

= 2 (U ṽ)T
(
−CT C (U v)−AT (V v)

)
.

2

6.3 Diagonal solution for the ARE

As for theLQ
tf

+ problem in finite horizon, a diagonal solution for the ARE is considered,
in order to keep the Metzler property of the closed-loop matrix.

Lemma 6.3.1 Consider theLQ∞ problem (5.1)-(5.2). If the solutionP+ of the ARE is such
that,−B R−1BT P+ is a diagonal matrix, then theLQ∞ closed-loop system is positive and
therefore the solution of theLQ∞ problem is solution of theLQ∞

+
problem.

By the analysis on the Hamiltonian matrix, one can obtain thefollowing result :

Theorem 6.3.2 Assume that we can find a basis

[
U

V

]
ofL−(H) such that

B R−1BT V = D U
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whereD is a diagonal matrix. Then theLQ∞ closed-loop system is positive and therefore the
solution of theLQ∞ problem is solution of theLQ∞

+
problem.

One easy way to get the condition of Lemma 6.3.1 is to impose notably thatP+ is a diagonal
matrix, provided that the matrixB R−1BT be also diagonal. The following result gives suf-
ficient conditions for achieving this goal ; it is a generalization of the finite horizon case, see
Remark 4.2.5 b).

Theorem 6.3.3 Consider theLQ∞ problem (5.1)-(5.2) whereB is equal toIn. Choose a con-
stantα such thatα > max{0, λF}. Define

Aα := A AT − (α In + A) (α In + A)T .

Assume that 




S = α In,

R = r Im,

CT C = α2 (1
r

+ 1) In +Aα,

with r > 0 such that
1

r
> −

λmin(Aα)

α2
− 1, (6.22)

whereλmin := min{λ : λ ∈ σ(Aα)}.
Then the solution of ARE is given byP+ = α In and theLQ∞ closed-loop system is positive
and therefore the solution of theLQ∞ problem is solution of theLQ∞

+
problem.

Proof : The proof follows the lines of the finite horizon case and is therefore omitted.
2



110 Chapter 6. The Positive LQ Problem



Chapter 7

The Inverse Input/State-Invariant LQ
Problem

In this chapter, the inverse input/state-invariant LQ problem is studied. First, the standard
inverse LQ problem is stated. This problem consists of, for afixed matrixK, determining
weighting matricesQ andR such that the controlu = K x is optimal for the resulting LQ
problem, see e.g. [Loc01] and [CD91]. The problem is solved by means of linear matrix in-
equalities, see e.g. [BEFB94] and [SW05]. Then, the inversestate-invariant LQ problem is
studied by means of the computation of an invariant stabilizing feedbackK such that the re-
sulting control is optimal for the corresponding LQ problem. The resolution of this problem
leads to linear and bilinear matrix inequalities (BMI), seee.g. [VB00]. Bilinear matrix inequal-
ities were popularized by Safonov and co-workers in a seriesof proceedings papers, see e.g.
[SGL94]. In particular, the inverse positive LQ problem is solved by using LMIs. Finally, the
inverse input/state-invariant LQ problem is described andis solved by LMI and also BMI.

7.1 The inverse standard LQ problem

7.1.1 Problem statement

Recall that the standardLQ∞ problem consists of, for fixed weighting matricesQ andR,
finding the controlu = K x which minimizes the cost defined by these weighting matrices.
The inverse LQ problem, denoted byLQ∞

inv , is a reciprocal approach to theLQ∞ problem.
It consists of determining weighting matricesQ and R such that the controlu given by a
fixed state-feedbackK is solution of the corresponding LQ problem. Furthermore, as in the
LQ∞ problem, the assumptions of stabilizability and detectability for the given system have to
hold to obtain a solution, these assumptions will also hold for the inverse problem, see [AM90,
Section 5.6] for a discussion on the general inverse optimalcontrol problem.

The LQ∞ problem can be stated as follows : given a system[A, B] such that(A, B) is
stabilizable. LetK be a fixed matrix in IRm×n. The inverse standardLQ∞

inv problem consists of
determining symmetric matricesQ = CT C andR, (with Q positive semidefinite andR positive

111
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definite respectively) such that

1. the pair(Q, A) is detectable ;

2. the controlu = K x is optimal for the corresponding LQ problem, i.e. minimizesthe
following quadratic cost

J(x0, u) =
1

2

(∫ ∞

0

(‖R1/2u(t)‖2 + ‖C x(t)‖2) dt

)
. (7.1)

7.1.2 Matrix inequalities approach

In this section, theLQ∞

inv problem is stated by using linear matrix inequalities, see e.g.
[BEFB94].

Definition 7.1.1
a) A linear matrix inequality (LMI) is an inequation of the form

F (x) ≺ 0 ( or F (x) ≻ 0)

whereF is an affine function, fromX (a linear space of finite dimension) toS (the set of symmet-
ric matrices) and where≺ 0 (≻ 0) means “negative definite” (“positive definite”, respectively).

b) A finite set of LMIs,F1(x) ≺ 0, F2(x) ≺ 0, . . . , Fn(x) ≺ 0, can be written as a single LMI

F (x) =




F1(x) 0 · · · 0

0 F2(x) · · · 0
...

...
. . .

...
0 0 · · · Fn(x)


 ≺ 0.

In the sequel, the numerical implementation of LMIs is done with YALMIP , which is a
modeling language for advanced modeling and solution of convex and nonconvex optimization
problems. It is implemented as a free toolbox for MATLAB . See e.g. [Yal] for details. Further-
more, this tool allows to mix LMIs of different types. Thus one can create a LMI containing
different LMIs of type≺ 0,≻ 0,� or� 0, as for example the following single LMI :

F (x) =




F1(x) ≺ 0 0 · · · 0

0 F2(x) ≻ 0 · · · 0
...

...
. . .

...
0 0 · · · Fn(x) � 0


 .

Note that equationF (x) = 0 can be translated in two LMIs :F (x) � 0 andF (x) � 0.
The conditions to guarantee the existence of a solution to the LQ∞

inv problem can be written
with LMIs. However the analysis to transform these conditions into a single LMI of the same
type will not be performed since it is not necessary for the numerical solving (see [Jac09] for
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details). So consider conditions (7.1.1) and rewrite them in a matrix form. First the condition
of detectability of(Q, A) can be translated as, see [BEFB94, Section 10.6],

there exists a positive definite matrixP1 such thatAT P1 + P1 A ≺ Q (7.2)

whereX ≺ Y means thatX is less thanY in the order of symmetric matrices. Now the
fact that the controlu = K x is optimal for theLQ∞ problem means thatu(t) = K x(t) =

−R−1BT P+x(t) that isK = −R−1BT P+ or equivalently

BT P+ + R K = 0. (7.3)

Condition (7.3) requires the computation of the unique stabilizing positive semidefinite solution
P+ of ARE. Then withA+ := A + B K = A− B R−1BT P+, i.eA = A+ + B R−1BT P+, the
algebraic Riccati equation (5.4) becomes

(A+ + B R−1BT P+)T P+ + P+ (A+ + B R−1BT P+)− P+B R−1BT P+ + Q = 0

⇔ AT
+P+ + P+A+ + P+B R−1BT P+ + Q = 0

⇔ (A + B K)T P+ + P+(A + B K) + P+B R−1

︸ ︷︷ ︸
−KT

R R−1BT P+︸ ︷︷ ︸
−K

+Q = 0.

or equivalently
(A + B K)T P+ + P+(A + B K) + KT R K + Q = 0 (7.4)

Hence, by considering conditions (7.2)-(7.4), solving theLQ∞

inv problem is equivalent to the
resolution of the following set of LMIs :

LMI 2 :

R ≻ 0

Q � 0

P+ � 0

P1 ≻ 0

(A + B K)T P+ + P+(A + B K) + KT R K + Q = 0

BT P+ + R K = 0

AT P1 + P1 A ≺ Q

(7.5)

In the sequel, this set of LMIs is called “LMI 2”. In the following sections, we study the
inverse input and state-invariant LQ problems. For solvingthese problems, we compute first
a matrixK in order to obtain the invariance (of the state and/or the input) of the closed-loop
system before determining matricesQ andR such that the resulting control is optimal (given
by LMI 2).
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7.2 The inverse state-invariant LQ problem

7.2.1 Problem statement and matrix inequalities approach

Consider an invariant stabilizable system[A, B], see Definition 1.3.2. LetK be an invariant
stabilizing feedback, i.e. a matrixK such thatA + B K is a stable Metzler matrix and(A +

B K) x̄ ≥ 0, see Theorem 1.3.3. The inverse state-invariant LQ problem, which is denoted
by LQinv

x̄ , consists of determining symmetric matricesQ = CT C andR, such that(Q, A) is
detectable and such that the controlu = K x is optimal for the correspondingLQ∞ problem.
The difference with theLQ∞

inv problem is the determination of an invariant stabilizing feedback
matrixK. This step can be stated under the form of matrix inequalities by using Theorem 1.3.4
which gives a characterization of invariant stabilizability by using a Lyapunov equation :

BMI 1a :

diag[(A + B K)ij ]i6=j � 0

diag[(A + B K) x̄] � 0

P ≻ 0

P (A + B K)T + (A + B K) P ≺ 0

(7.6)

Then theLQinv
x̄

problem is solved first by computing a matrixK which is solution of (7.6)
and next by solving LMI 2 ; see (7.5), which gives weighting matricesQ and R such that
u = K x is optimal for the correspondingLQ∞ problem. However, in (7.6), the inequality
P (A + B K)T + (A + B K) P ≺ 0 is bilinear inP andK, see e.g. [VB00]. This bilinear
matrix inequality (BMI) is not easy to handle as it is writtenbut the solver YALMIP is able to
compute a solution, see Section 7.4 for numerical examples.Moreover, in the positive case,
wherex̄ = 0, the parameterization of the matrixK asK = Y P−1 allows us to achieve the
following LMI, which is much easier to handle :

P AT + Y T BT + A P + B Y ≺ 0,

see the following subsection. The second step of the methodology consists of findingQ and
R such thatK is an LQ-optimal feedback. The usefulness of the LQ problem is notably the
stabilization of the closed-loop system together with robustness, see e.g. [AM90, Section 5.3]
and also Chapter 9 where we allude to these properties.

7.2.2 The inverse positive LQ problem

Consider the particular case wherex̄ = 0 and define the inverse positive LQ problem,
which is denoted byLQinv

+
, as follows : let a positively stabilizable system[A, B]. Let K be a

fixed matrix such thatA + B K is a stable Metzler matrix. The inverse positiveLQinv
+

problem
consists of determining symmetric matricesQ = CT C andR such that(Q, A) is detectable and
the controlu = K x is optimal for the corresponding LQ problem. Using Theorem 2.3.5 which
gives LMI characterizations of the determination of the matrix K, theLQinv

+
can be summarized

as the resolution of the two following LMIs, see [Jac09] ; thefirst one for the computation of
the matrixK, which can be written as follows :
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LMI 1a :
diag[(A P + B Y )ij ]i6=j � 0

P ≻ 0

P A + Y T BT + A P + B Y ≺ 0

(7.7)

whereP is a diagonal matrix in this case, see Theorem 2.3.5, and the second LMI for the
computation ofQ andR for an optimal solution ofLQ∞ , that is LMI 2.

7.3 The inverse input/state-invariant LQ problem

Let us define the inverse input/state-invariant LQ problem,which is denoted byLQinv
ū,x̄

, as
follows : consider a stabilizable system[A, B]. Our aim is to compute a matrixK such that
the corresponding statex(t) is such thatx(t) ≥ x̄ and the controlu(t) = K x(t) is such that
u(t) ≥ ū. Such matrixK exists by Theorem 1.1.13 (which gives necessary and sufficient con-
ditions for the input/state-invariance) and Corollary 1.1.15 (which gives sufficient conditions).
The inverse input/state-invariantLQinv

ū,x̄
problem consists of determining symmetric matrices

Q = CT C andR such that(Q, A) is detectable and the controlu = K x is optimal for the
corresponding LQ problem, given by LMI 2. First, by using Theorem 1.1.13, theLQinv

ū,x̄
can be

summarized as the resolution of the following BMI (before solving of LMI 2) :

BMI 1b :

diag[(H)ij ]i6=j � 0[
−In

−K

]
(A + B K)−H

[
−In

−K

]
=

[
0n×n

0m×n

]

diag

[
H

[
−x̄

−ū

]]
≤ 0(m+n)×1

(7.8)

Now, using the sufficient conditions of Corollary 1.1.15, gives the following way for the reso-
lution of the first part of theLQinv

ū,x̄
problem :

LMI 1b :

diag[(A + B K)ij ]i6=j � 0

diag[(A + B K) x̄] � 0

K A ≥ 0

diag[(K B)ij]i6=j � 0

diag[K (A x̄ + B ū)] � 0

(7.9)

Remarks 7.3.1
a) Assume that for allx(0) = x0 ≥ x̄, x(t) ≥ x̄ for all t ≥ 0, i.e. A + B K is a Metzler matrix
such that(A + B K) x̄ ≥ 0. Now assume thatK is a nonnegative matrix. Then

u = K x ≥ K x̄ ≥ ū,

whence K x̄− ū ≥ 0.

Then another alternative for LMI 1 is the following :
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LMI 1c :

diag[(A + B K)ij ]i6=j � 0

diag[(A + B K) x̄] � 0

K ≥ 0

diag[K x̄− ū] � 0

(7.10)

b) Assume that for allx(0) = x0 ≥ x̄, x(t) ≥ x̄ for all t ≥ 0, i.e. A + B K is a Metzler matrix
such that(A + B K) x̄ ≥ 0. If u(t) = K x(t) ≥ ū for all time t, then the condition is also
satisfied for the initial time, i.e.K x0 − ū ≥ 0. This condition can be seen as giving a suitable
initial condition for the input trajectories. Then we can reasonably hope that this starting boost
will be sufficient to guarantee thatu(t) = K x(t) ≥ ū for all larger times. This necessary
condition implies the following alternative for LMI 1 :

LMI 1d :
diag[(A + B K)ij]i6=j � 0

diag[(A + B K) x̄] � 0

diag[K x0 − ū] � 0

(7.11)

7.4 Numerical examples

In this section, the inverse positiveLQinv
+

problem and the inverse input/state-invariant
LQinv

ū,x̄
problem are illustrated by solving the different LMIs or BMIs introduced in the pre-

vious sections.

7.4.1 The inverse positive LQ problem

Consider the stable nonpositive system described by

[
ẋ1(t)

ẋ2(t)

]
=

[
−2 −1

1 −2

] [
x1(t)

x2(t)

]
+

[
1 0

0 1

]
u(t), (7.12)

with the initial conditionx0 = [0.1 0.1]T ≥ 0, under the constraints

∀ x0 ≥ 0, ∀ t ≥ 0,

{
x1(t) ≥ 0

x2(t) ≥ 0

The open-loop state trajectories are drawn in Figure 7.1, for the initial statesx0 = [1 0]T

(graphs on the left) andx0 = [0 1]T (graphs on the right) respectively, i.e. the columns ofeA t

at the sampling times.
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Figure 7.1: Open-loop state trajectoriesx(t) for system (7.12).

Solving LMI 1a given by (7.7) gives :

P =

[
35.106 0

0 35.106

]

and

Y =

[
52.659 42.127

−28.085 52.659

]

and therefore, we obtain :

K = Y P−1 =

[
1.5 1.2

−0.8 1.5

]

and

A + B K =

[
−0.5 0.2

0.2 −0.5

]
.

Unfortunately, when solving LMI 2, it is not possible to find matricesQ andR such thatK
gives an LQ-optimal control. Indeed, LMI 1a delivers only one matrixK, among many others,
which may not be admissible for LMI 2. An iterative process, which is an heuristic approach, is
introduced to compute another state-feedbackK. This iterative process is summarized in Table
7.1, where the maximum number of iterations is fixed to 100. This heuristic approach has been
used on other numerical examples in [Jac09].
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1. Init :

• ComputeP0 andY0 by solving LMI 1a

• Let K0 = Y0 P−1
0

• Solve LMI 2 withK0 in order to obtain weighting matricesQ0 andR0

such that condition (7.5) holds forR ← R0 and Q ← Q0 for a fixed
toleranceε.

2. If LMI 2 has a solution(Q0, R0)

Then

u0 = K0 x is the optimal control corresponding to(Q0, R0) → STOP.
Else

Let i = 1.

While i < 100, Do :

⋆ ComputePi andYi by solving LMI 1a
with the additional conditionPi ≺ Pi−1

⋆ Let Ki = Yi P
−1
i

⋆ Solve LMI 2 withKi in order to obtain weighting matrices
Qi andRi such that condition (7.5) holds forR← Ri

andQ← Qi for a fixed toleranceε.

If LMI 2 has a solution(Qi, Ri)

Then

ui = Ki x is the optimal control corresponding to(Qi, Ri)

→ STOP.
Else

Let i = i + 1.
End

End

End

Table 7.1: Heuristic iterative process

Now, back to the numerical example (7.12). After solving theLMI 1a for the first time,
seven iterations are needed in the iterative process (Table7.1 withε = 10−8) to obtain weighting
matrices(Q, R) such that condition (7.5) holds andu = K x is the optimal control of the
corresponding LQ problem. Therefore, we obtain :

K =

[
−0.86229 2.1449

0.14491 −0.86229

]
(7.13)
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and

Q =

[
0.62003 −6.5301

−6.5301 74.6

]
and R =

[
2.7673 9.2843

9.2843 40.959

]
. (7.14)

The optimal control is depicted in Figure 7.2. In addition, Figure 7.3 gives a comparison of
the state trajectories before the iterative process and theLQ-optimal state trajectories after the
iterative process. As for Figure 7.1, this figure representsthe state trajectories, for the initial
statesx0 = [1 0]T (graphs on the left) andx0 = [0 1]T (graphs on the right) respectively.
We can observe that the state trajectories are both nonnegative but the LQ-optimal state tra-
jectories converge faster towards zero. Finally, we have also checked that solving the standard
LQ∞ problem withQ andR given by (7.14) leads to the matrixK given by (7.13).
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Figure 7.2: Optimal controlu(t) for system (7.12) with (7.13) and (7.14).
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Figure 7.3: State trajectoriesx(t) for system (7.12) before and after the iterative process.

7.4.2 The inverse input/state-invariant LQ problem

Consider system (7.12) under the following constraints

∀ x0 ≥ x̄, ∀ t ≥ 0,

{
x(t) ≥ x̄

u(t) ≥ ū
(7.15)

wherex̄ = [−1 − 1]T , ū = [−0.2 − 0.2]T andx0 = [0.1 0.1]T . Solving BMI 1b, given
by (7.8), with YALMIP in MATLAB , gives the following results :

H =




−3.9320 0.046815 0.26920 0.1991

2.3942 −4.2286 0.048942 0.19385

0.055613 0.89403 −4.9881 0.010056

0 0 3.6223 −3.6223




and

K =

[
−2.2090 0.69072

1.5953 −2.7225

]
. (7.16)

Then solving LMI 2 gives directlyQ andR,

Q =

[
2648.4 −423

−423 1197.4

]
and R =

[
202.12 31.776

31.776 77.286

]
, (7.17)

such thatK is optimal for the standardLQ∞ problem ; it is not needed to go through the
iterative process. In addition, one can verify that solvingthe standardLQ∞ problem withQ

andR gives the state feedbackK given by (7.16). The optimal state trajectories and the optimal
control are drawn in Figures 7.4 and 7.5 respectively. One can observe that the constraints
(7.15) are numerically verified.
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Figure 7.4: Optimal state trajectoriesx(t) for system (7.12) with (7.16) and (7.17).
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Figure 7.5: Optimal controlu(t) for system (7.12) with (7.16) and (7.17).
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Part III

Application To Invariant Nonlinear
Systems
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This last part is devoted to the application of the LQ problemto locally positively invariant
nonlinear systems. First, properties of locally positively invariant nonlinear systems are de-
scribed in Chapter 8. A linear approximation of such nonlinear systems around an equilibrium
is also studied, see e.g. [CBHB09, Kha02]. Next, in Chapter 9, the problem of coexistence of
species, which are in competition for a single nutrient in a chemostat, is studied, see [SW95] for
an overview on the chemostat model. The theory developed so far for the input/state-invariant
LQ problem is applied to guarantee the local positive invariance of the chemostat model. The
idea is to ensure the input/state-invariance of its linearized system around an equilibrium, by ap-
plying an appropriate LQ-optimal control (given either by the solution of an input/state-invariant
LQ

tf

ū,x̄ problem together with a receding horizon approach, or by thesolution of an inverse
input/state-invariantLQinv

ū,x̄
problem obtained by solving LMIs and BMIs).
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Chapter 8

Locally Positively Input/State-Invariant
Nonlinear Systems

This chapter, devoted to locally positively input/state-invariant nonlinear systems, is an in-
terlude between the theory developed so far and the next chapter devoted to the application (on
the chemostat model) which is described by a nonlinear system. In this application, the objec-
tive is to guarantee the stability of the model and also a property of local positive input/state-
invariance (see [CBHB09] and the references therein for thestudy of nonnegative solutions of
a nonlinear system, applied there to kinetic equations). Inthis chapter, we first recall the clas-
sical notions of stability of an equilibrium of a nonlinear system, see e.g. [Kha02]. Then the
concept of local positive invariance around an equilibriumis developed. Finally, conditions for
the stability and the local positive input/state-invariance of a nonlinear system are established
in terms of the stability and the input/state-invariance ofthe linearized system.

Notice that the notion of local positive nonlinear time-varying linear systems is introduced
in [Ka 03]. There, the local positiveness of nonlinear systems implies the nonnegativity of the
state trajectories in a neighborhood of an equilibrium. Here it implies the strict positivity of
the state and the input trajectories. Moreover, the methodology is different here. First, the local
positive input/state-invariance of the nonlinear system is studied by using the linearization of the
system around an equilibrium. Then the design of a state feedback of the linearized system is
studied such that it guarantees the local positive input/state-invariance of the resulting nonlinear
closed-loop system.

8.1 Stability of nonlinear systems

Consider the following nonlinear system :

ẋ = f(x), x(0) = x0 (8.1)

wheref(x) is a continuously differentiable function, (which guarantees the existence and unique-
ness of the solution of (8.1), see e.g. [Kha02, Section 2.2]). Assume that there exists an equi-
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librium xe for the system (8.1), i.e. such thatf(xe) = 0. The stability of a nonlinear system is
stated in terms of stability of its equilibrium, see e.g. [Kha02, Section 3.1] and [CBHB09] :

Definition 8.1.1 The equilibriumxe of system (8.1) is said to be

• (Lyapunov) stable if, for everyε > 0, there existsδ = δ(ε) > 0 such that

‖x(0)− xe‖ < δ ⇒ ‖x(t)− xe‖ < ε, ∀ t ≥ 0.

• asymptotically stableif it is stable andδ can be chosen such that

‖x(0)− xe‖ < δ ⇒ lim
t→∞

x(t) = xe.

The Lyapunov stability of an equilibrium means that solutions starting close enough to the equi-
librium (within a distanceδ from it) remain close enough to it forever (within a distanceε from
it). Note that this must be true for anyε that one may choose. Asymptotic stability means that
solutions that start close enough to the equilibrium not only remain close enough to it but also
eventually converge to the equilibrium.

Now in a small neighborhood of the equilibriumxe, the nonlinear system (8.1) can be ap-
proximated by a linear one, see e.g. [Kha02, Sections 3.3 and11.2] and [Ka 03]. Consider
f(x) = A x + Nf(x) where

A =
∂f

∂x
(xe),

is the Jacobian matrix off(x) atxe, Nf(x) is the nonlinear part off(x) and

‖Nf(x)‖

‖x− xe‖
→ 0 as ‖x− xe‖ → 0.

Then the linearized system

˙̃x =
∂f

∂x
(xe) x̃ = A x̃ (8.2)

wherex̃ := x−xe is called a linear approximation of the nonlinear system (8.1) in the neighbor-
hood ofxe. The following theorem gives conditions under which the stability of the equilibrium
of the nonlinear system can be investigated by the study of its stability as an equilibrium for the
linearized system, see [Kha02, Theorem 3.7] :

Theorem 8.1.1 Let xe be an equilibrium for the nonlinear system (8.1). LetA = ∂f
∂x

(xe) be
the Jacobian matrix off(x) at xe. Thenxe is asymptotically stable ifReλi < 0 for all λi

eigenvalues ofA.

Theorem 8.1.1 states that the stability of the linear system(8.2) implies the asymptotic stability
of the equilibriumxe of system (8.1).
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8.2 Locally positively invariant nonlinear systems

In this section, the concept of locally positively input/state-invariant nonlinear system is
defined. Consider the following nonlinear system :

ẋ = F (x, u) := f(x) + G(x) u, x(0) = x0 (8.3)

whereG(x) = [g1(x) . . . gm(x)] ∈ IRn×m andf(·) andgi(·), i = 1, . . . , m, are continuously
differentiable functions. Assume that there exists an equilibrium xe corresponding to an input
ue for system (8.3), i.e. such thatF (xe, ue) = f(xe) + G(xe) ue = 0. Assume, for the context
of the application developed in Chapter 9, thatxe ≫ 0 andue ≫ 0.

Consider the linear approximation of system (8.3) in the neighborhood of(xe, ue) :

ẋ = F (x, u) = A x + B u + NF (x, u) (8.4)

where

A =
∂F

∂x
(xe, ue) =

∂f

∂x
(xe) +

∂G

∂x
(xe) ue,

B =
∂F

∂u
(xe, ue) = G(xe),

andNF (x, u) is the nonlinear part ofF (x, u) such that

‖NF (x, u)‖

‖(x− xe, u− ue)‖
→ 0 as ‖(x− xe, u− ue)‖ → 0 (8.5)

Then one has the following linearized system

˙̃x = A x̃ + B ũ (8.6)

with x̃ := xL − xe andũ := uL − ue wherexL anduL are called the (shifted) linearized state
and input trajectories, respectively.

Now consider the linearization of (8.3) about(xe, ue) which results in the linear system
(8.6). Assume that the pair(A, B) is stabilizable. Let us design a matrixK such that all the
eigenvalues ofA+B K have negative real parts (for stability of the linear closed-loop system).
Let us apply the linear state feedback controlũ = K x̃ to the nonlinear system, i.e.

u = ũ + ue = K x̃ + ue = K(x− xe) + ue = K x− (K xe − ue) = K x + v,

that is an affine feedback for the nonlinear system, which gives the following closed-loop system

ẋ = f(x) + G(x) u = f(x) + G(x) (K x− (K xe − ue)) = F (x, K x− (K xe − ue)) (8.7)

Clearly,(xe, ue) is an equilibrium of the closed-loop system. The linearization of system (8.7)
about(xe, ue) is given by :

˙̃x = (A + B K) x̃ (8.8)

SinceK is such thatA + B K is stable, it follows by Theorem 8.1.1 that(xe, ue) is an asymp-
totically stable equilibrium of the closed-loop system (8.7). In fact, this equilibrium is expo-
nentially stable, see [Kha02, Theorem 3.11].
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Now, let us define the concept of local positive input/state-invariance of a nonlinear system.
This definition is inspired by the definition of (global) input/state-invariance of a linear system,
see Definition 1.1.6.

Definition 8.2.1 System (8.7) is said to belocally positively input/state-invariant around the
equilibrium(xe, ue) whereue = K xe + v if there exists a neighborhoodVe of the equilibrium
xe such that

∀ x0 ∈ Ve such thatx0 ≫ 0, ∀ t ≥ 0,

{
x(t)≫ 0

u(t) = K x(t) + v ≫ 0

The concept of state-invariance of nonlinear systems (the fact that state trajectories starting in
a set will stay in this set for all future times) has been developed in [Kha02, Section 3.2] and
[CBHB09]. Moreover, conditions for the local positivenessof nonlinear time-varying systems
are established in [Ka 03].

Here, the aim is to find a linear feedback control lawK for the linearized system such
that the resulting closed-loop nonlinear system is locallypositively input/state-invariant and
stable. The following theorem states that it suffices that a linear feedbackK for the linearized
system be a stabilizing input/state-invariant feedback toguarantee the stability and the local
positive input/state-invariance of the resulting nonlinear system. Recall the coneCx̄,ū used in
the definition of the input/state-invariance for linear systems, see Definition 1.1.6 :

Cx̄,ū :=

{
x ∈ IRn :

[
In

K

]
x ≥

[
x̄

ū

]}
.

Theorem 8.2.1 If there exists a linear feedback control lawK such that the linearized closed-
loop system (8.8) is stable (i.e.Reλ < 0 for all λ ∈ σ(A + B K)) and input/state-invariant
with respect to(xe, ue) , i.e. such that

∀ x̃0 ∈ Cx̄,ū, ∀ t ≥ 0, x̃(t) ∈ Cx̄,ū,

where
x̄ = −xe + xε and ū = −ue + uε

with xε ≫ 0 anduε ≫ 0, and wherẽx(t) is the solution of system (8.8) andũ = K x̃, then the
resulting nonlinear closed-loop system (8.7) is locally positively input/state-invariant, i.e. there
exists a neighborhoodVe of the equilibriumxe such that

∀ x0 ∈ Ve such thatx0 ≫ 0, ∀ t ≥ 0,

{
x(t) ≫ 0

u(t) ≫ 0
(8.9)

wherex(t) is the solution of system (8.7) andu(t) = K x− (K xe − ue).

Proof : The fact that the closed-loop system (8.8) is stable impliesthatxe is an asymptotically
stable equilibrium for the nonlinear system (8.7) (see Theorem 8.1.1), i.e.

∀ ǫ > 0, ∃ δ > 0 such that‖x(0)− xe‖ < δ ⇒

{
‖x(t)− xe‖ < ǫ

lim
t→∞

x(t) = xe
∀ t ≥ 0,
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wherex(t) is the solution of system (8.7). Let us defineB(xe, δ) a ball centered atxe of radius
δ > 0. Then, since for allx0 ∈ B(xe, δ), x(t) → xe, with xe ≫ 0, it implies thatx(t) ≫ 0 for
t sufficiently large, that is :

there existsT > 0 such that for allt > T, x(t)≫ 0. (8.10)

Therefore, sinceu(t) = K x(t) + v → ue andue ≫ 0,

there existsT > 0 such that for allt > T, u(t)≫ 0. (8.11)

Hencex(t) ≫ 0 andu(t) ≫ 0 hold for t sufficiently large. It remains to be shown that it also
holds fort ∈ [0, T ] for all initial states in a sufficiently small neighborhood of xe. First, let
us show that the state trajectoriesx(t) are strictly positive on[0, T ] for x0 sufficiently close to
the equilibriumxe. Consider the linearized statexL(t) such thatxL(t) = x̃(t) + xe with, by
assumption,̃x(t) ≥ −xe + xε for all time t. Then, in particular,xL(t) ≫ 0 for all t ∈ [0, T ]

sincexε ≫ 0. Let z(t) = (x− xL)(t) and computinġz(t) with

ẋ = A x + B u + NF (x, u) = A x + B K x−B K xe + B ue + NF (x, K x + v)︸ ︷︷ ︸
:=NF (x)

ẋL = ˙̃x = (A + B K) x̃ = (A + B K) (xL − xe) = (A + B K) xL − (A + B K) xe

leads to

ż = ẋ− ẋL

= A x + B K x− B K xe + B ue + NF (x)− A xL − B K xL + A xe + B K xe

= A (x− xL) + B K (x− xL) + A xe + B ue + NF (x)

= (A + B K) z + MF (x, ue)

whereMF (x, ue) = A xe + B ue + NF (x) such thatMF (xe, ue) = F (xe, ue) = 0. Therefore,
with z(0) = x(0)− xL(0) = x0 − x0 = 0, for t ∈ [0, T ], it follows that

z(t) =

∫ t

0

e(A+B K)(t−τ)(A xe + B ue + NF (x(τ))) dτ ;

‖z(t)‖ ≤

∫ t

0

M eσ(t−τ)‖A xe + B ue + NF (x(τ))‖ dτ, with M > 0 andσ < 0

≤ M eσt
︸ ︷︷ ︸
≤M

∫ T

0

e−στ‖A xe + B ue + NF (x(τ))‖ dτ.

Hence,
‖z‖∞ := max

t∈[0, T ]
‖z(t)‖ = max

t∈[0, T ]
max
1≤i≤n

|zi(t)|

≤ M

∫ T

0

e−στ‖A xe + B ue + NF (x(τ))‖ dτ

≤ M e−σT

∫ T

0

max
τ∈[0, T ]

‖A xe + B ue + NF (x(τ))‖ dτ

≤ M T e−σT max
τ∈[0, T ]

‖A xe + B ue + NF (x(τ))‖
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where‖A xe + B ue + NF (x(τ))‖ tends uniformly to zero on[0, T ]. Indeed, by the contin-
uous dependence of the state trajectories with respect to the initial conditionx0 → xe (see
e.g. [Kha02, Theorem 2.6]), the state trajectory corresponding to any initial conditionx0 con-
verges to the state trajectory corresponding toxe uniformly on any compact interval[0, T ] as
x0 tends toxe. Thenx(τ) converges uniformly toxe on [0, T ] and soNF (x(τ)) converges
uniformly toNF (xe). Therefore, asx0 tends toxe, max

τ∈[0, T ]
‖A xe +B ue +NF (x(τ))‖ converges

to F (xe, ue) = 0 on [0, T ]. Let us denoter := min
1≤i≤n

[xL]i(t) > 0. Then, there exists a neigh-

borhoodWe of the equilibriumxe (for example : a ball centered atxe of radiusη > 0), such
that, for allx0 ∈ B(xe, η),

0 ≤ max
1≤i≤n
t∈[0, T ]

|xi(t)− [xL]i(t)| < r

that is,
∀ i, ∀ t ∈ [0, T ], −r < xi(t)− [xL]i(t) < r

which implies that
∀ i, ∀ t ∈ [0, T ], xi(t) > [xL]i(t)− r ≥ 0

Thereforex(t) ≫ 0 for all t ∈ [0, T ]. Now consider the input trajectoriesu(t) on [0, T ].
By the uniform convergence ofx(t) to xe on [0, T ], u(t) = K x(t) + v, an affine function
of x, will uniformly converge toue. Consider the linearized input trajectoriesuL(t) such that
uL(t) = ũ+ue where by assumptioñu ≥ ue +uε, with uε ≫ 0, for all timet ≥ 0. In particular
on [0, T ], uL(t)≫ 0. Let ǔ(t) = (u− uL)(t) with ũ = K x̃,

uL = ũ + ue = K (xL − xe) + ue = K xL −K xe + ue

and
ǔ = u− uL

= K x + v −K xL + K xe − ue

= K (x− xL) + K xe + v︸ ︷︷ ︸
=ue

−ue

= K z

where‖z‖∞ tends to zero. So‖ǔ‖∞ also converges to zero. Defines := min
1≤i≤m

[uL]i(t) > 0.

Therefore, there exists a neighborhoodZe of the equilibriumxe (e.g. B(xe, ε), with ε > 0)
such that, for allx0 ∈ B(xe, ε),

0 ≤ max
1≤i≤m
t∈[0, T ]

|ui(t)− [uL]i(t)| < s

that is,
∀ i, ∀ t ∈ [0, T ], −s < ui(t)− [uL]i(t) < s

and implies that
∀ i, ∀ t ∈ [0, T ], ui(t) > [uL]i(t)− s ≥ 0

Henceu(t)≫ 0 for all t ∈ [0, T ]. Since we have shown that it also holds fort sufficiently large,
condition (8.9) holds for all timet ≥ 0 on the ballVe = B(xe, ρ) whereρ = min{δ, η, ε}.

2
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Remark 8.2.1 a) Applying a state feedback to the linearized systemũ = K x̃, leads to an
invariant stabilizing feedbackK for the linearized system. Then the existence of this matrixK

gives the local positive input/state-invariance and the stability of the nonlinear system around
the equilibrium. The principle of computing a state feedback for the linearized system such that
the resulting nonlinear closed-loop system is locally positively input/state-invariant and stable
is applied in Chapter 9. This chapter is devoted to the study of the coexistence of species in a
chemostat model, which is described by a nonlinear system.
b) Note that Theorem 8.2.1 holds for any nonlinear system. There is no assumption of positivity
on the open-loop nonlinear system (8.3). Now, if the open-loop system is positive, if the input
trajectories are nonnegative for all time, this implies automatically that the state trajectories are
nonnegative. However, it is not guaranteed that they are strictly positive. But the strict positivity
of the state trajectories is essential in the application since the objective is the coexistence of
species in a chemostat model. We will see in this applicationthat the input/state-invariance of
the linearized system is also paramount since, actually, the linearized system description of the
chemostat model is not a positive system.



134 Chapter 8. Locally Positively Input/State-Invariant Nonlinear Systems



Chapter 9

The Chemostat Model

The chemostat model is a perfectly mixed tank operated in continuous conditions and in
which (bio)chemical reactions take place. The chemostat model may be used in particular to
describe the interaction of microbial species which are competing for a single nutrient, see
[SW95] for a detailed survey on this topic and see e.g. [BD90]for a survey on control of
bioreactors. This model has also been used for different systems such as lakes, waste-water
treatment processes and biological reactors producing genetically altered organisms.

A central result in microbial ecology theory is thecompetitive exclusion principlewhich
states that the competition process yields at best a single winning species in the long run,
see e.g. [SW95]. Yet, in nature, many species may coexist (see for example the paradox
of the plankton in [Hut61]). This contradiction between thetheory and the real world leads
to modifications of the model in order to try to bring theory and practice in better accor-
dance. There is a large literature devoted to modifying the chemostat model to ensure coex-
istence of the organisms. These studies are based on suitable manipulations of the two natural
operating parameters, the dilution rate [BHW85, SFA79] or the input nutrient concentration
[SFA79, Hsu80, Smi95, HS83, Smi81], that are taken to be time-varying rather than constant.
Also, feedback control of the dilution rate has been used to allow coexistence in the chemostat
[DS03, DS02]. Recently, in [RDH09], it is shown that the coexistence of multiple species, with
growth functions close to each other, competing in a chemostat for a single resource, can occur
in the long run. Finally, a design problem of a series of two chemostats is revisited in [RHM07]
when more than one species are present for a single resource :they give conditions under which
coexistence of two species is possible for such configurations.

Here, an LQ-optimal control is designed for the chemostat model with appropriate choice
of the inputs, notably the input concentrations of the species. It is shown that in this case,
coexistence of the species may occur. The theory of the input/state-invariant LQ problem (with
direct approach (see Chapter 5) or inverse approach (see Chapter 7)) together with the properties
of local positive invariance of nonlinear systems, developed in Chapter 8, are applied to the
chemostat model in order to guarantee the coexistence of thespecies.
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9.1 Description of the chemostat

9.1.1 Model description

The chemostat is a well-known model which is used to describethe interaction between
microbial species which are competing for a single nutrient, see the scheme of a chemostat in
Figure 9.1.

Sin S, X1, X2

S, X1, X2

q

V

q

Figure 9.1: Scheme of a chemostat

It is a continuous stirred tank reactor with, for example in this figure, two speciesX1 and
X2 growing on one limited substrateS. The basic assumption about the chemostat is that
it is perfectly stirred, and, as a consequence, that each individual has an equal access to the
resources. Consider a general model of a chemostat withñ species and a single resource :

ẋ = f(x) + G(x) u := F (x, u) (9.1)

wherex =




S

X1

...
Xñ


 , f =




f0

f1

...
fñ


 , u =




Sin

Xin,1
...

Xin,m̃


 ,

f0(x) = −D S −
ñ∑

i=1

µi(S) Xi

Yi
, fi(x) = (µi(S)−D) Xi, i = 1, . . . , ñ

G(x) = B =

[
D Im×m

0(n−m)×m

]
, n = 1 + ñ, m = 1 + m̃ with m̃ ≤ ñ, and

Xi = concentration of the speciesi (gr/l)
S = concentration of the nutrient (substrate) (gr/l)
Sin = concentration of the nutrient in the input flow (gr/l)
Xin, i = concentration of the speciesi in the input flow (gr/l)
D = dilution rate of the nutrient and the species (1/t)

= q
V

whereq is the input flow rate andV the volume of the tank
Yi = yield constant reflecting the conversion of nutrient to organism

i.e. speciesi.
(constant which can be taken to one by using a suitable choiceof units)
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This constant can be determined (in batch culture) by measuring the ratio
mass of the organism formed

mass of the substrate used
and hence is dimensionless.

µi(S) = the growth rate of the populationi (1/t)

where the functionsµi(S) satisfy the following properties :

(H1) The functionS 7→ µi(S) is defined for allS ≥ 0 and is differentiable.
(H2) µi(S) ≥ 0 andµi(0) = 0.

(H3) The functionS 7→ µi(S) is increasing.

Remark 9.1.1 There exist several models for the definition of the growth rate functionµi, see
[LH06], [BW85] and [SW95]. In the sequel, we consider the most common growth rate model,
namely the Monod model (or Michaelis-Menten), which expresses the dependence ofµi with
respect to the substrate concentrationS as follows :

µi(S) = µmax,i
S

KS,i + S
(9.2)

where µmax,i = maximum growth rate of the populationi (whenS =∞) (1/t)
KS,i = half-saturation constant (or Michaelis-Menten constant), which

represents the nutrient concentration such that the growthrate
is half maximum (less than half its maximum), (gr/l)
also known as the affinity constant (of the substrate towardsspecies)

See Figure 9.2 which gives the classical graph of a growth rate function.
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Figure 9.2: Growth rate functionµi(S)
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9.1.2 The competitive exclusion principle

Consider system (9.1) withYi = 1, without loss of generality (by replacingXi by Xi/Yi),

and withu =




Sin

0
...
0


 such that (9.1) becomes





Ṡ = D (Sin − S)−
ñ∑

i=1

µi(S) Xi

Ẋi = (µi(S)−D) Xi i = 1, . . . , ñ

(9.3)

Let us denote byx =

[
S

X

]
the solution of system (9.3) whereX =




X1

...
Xñ


 and let us define

the set

Ω :=

{[
S

X

]
∈ IRn such thatS ≥ 0 andX ≫ 0

}
.

The competitive exclusion principle (CEP), probably the most important result for chemostat
models, is now stated. Assume thatµi(Sin) > D otherwise it would imply the extinction of the
ith organism even without competition. System (9.3) hasn equilibria, see [SW95, DS03] :





E0 := (Sin, 0, . . . , 0)

E1 := (λ1, (Sin − λ1), 0, . . . , 0)
...

Eñ := (λñ, 0, . . . , (Sin − λñ))

where the parametersλi, i = 1, . . . , ñ, called thebreak-even concentrations, are defined as
follows :

λi(D) =

{
S such thatµi(S) = D

+∞ if µi(S) < D for anyS ≥ 0

In fact, computing the equilibrium of second equation of system (9.3) gives

(µ1(S)−D) X1 = 0

that isX1 = 0 or µ1(S) = D, or equivalently for Monod’s model,S =
D KS,1

µmax,1−D
:= λ1.

In the same way, the third equation of system (9.3) givesX2 = 0 or µ2(S) = D, i.e. S =
D KS,2

µmax,2−D
:= λ2 and it will be the same for the following equations inXi. Therefore, by the first

equation, it follows that :

• S = Sin whenXi = 0, i = 1, . . . , ñ ;

• X1 = (Sin − λ1) whenS = λ1 andXi = 0, i = 2, . . . , ñ ;

• X2 = (Sin − λ2) whenS = λ2 andXi = 0, i = 1, . . . , ñ, i 6= 2 ;...
• Xñ = (Sin − λñ) whenS = λñ andXi = 0, i = 1, . . . , ñ− 1.
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In the sequel, unless otherwise stated, the following values of the constants are used in the
chemostat model, as in [LH06] :

D µmax,1 µmax,2 KS,1 KS,2

0.2 1.2 0.83 0.6 0.2

Table 9.1: Values of the constants used in the chemostat model (9.5).

So, in general, only one species will win the competition andsurvive. In order to illustrate this
fact, the behavior of two species in competition for one nutrient is illustrated with Figures 9.3
and 9.4, which represent, respectively, the growth curves compared to the dilution rateD and
the corresponding concentrations of the speciesX1 andX2. One can observe that the growth
curve which crosses first the value ofD will imply that the corresponding species will win the
competition. So one can say that the winner species is the onewhich has the best affinity with
the nutrient or equivalently the smallest break-even concentration.
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Figure 9.4: Trajectories ofX1 andX2.

More formally, the competitive exclusion principle (CEP) can be stated as follows, see e.g.
[SW95] :

Theorem 9.1.1 (Competitive exclusion principle)Suppose that0 < λ1 < Sin and0 < λ1 <

λ2 ≤ · · · ≤ λñ ≤ ∞. Then the equilibriumE1 is a globally asymptotically stable equilibrium
for system (9.3) with any initial conditionx(0) ∈ Ω. In other words, any solution of the system
(9.3) withS(0) ≥ 0 andXi(0) > 0 satisfies





lim
t→∞

S(t) = λ1

lim
t→∞

X1(t) = (Sin − λ1)

lim
t→∞

X2(t) = 0

...
lim
t→∞

Xñ = 0.

The competitive exclusion principle states that, when several species are competing for the same
substrate, only one of the species survives in the long run, see [SW95]. On the other hand, in
nature, many species seem to coexist. An example of this factis the paradox of the plankton
to which many papers have been devoted. Notably the one of Hutchinson, see [Hut61], which
observed that a great number of different species of planktons could survive on a very limited
number of resources. This contradiction between theory andreal world has triggered a lot of
research aimed at bringing theory and practice in better accordance, see e.g. [BHW85, SFA79,
Hsu80, Smi95] and the references therein. The aim of the following section is to find conditions
such that the coexistence of theñ species is guaranteed.
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9.2 The coexistence of species

9.2.1 Definition of coexistence

Let us define the concept of coexistence of species in a chemostat (inspired by [DAS06]
and [RHM07]) as follows. Assume thatx(t) is the solution of system (9.1) with respect to the
initial conditionx(0) = x0 ∈ Ω and the corresponding inputu ∈ U . We define the concept of
coexistence w.r.t an admissible initial statex0 as follows :

Definition 9.2.1 System (9.1) is said to becoexistent w.r.t. x0 ∈ Ω if there exists an input
u ∈ U such thatlim inf

t→∞
x(t) ∈ Ω.

If the coexistence holds for every admissible initial conditionx0, one gets the following concept
of (global) coexistence :

Definition 9.2.2 System (9.1) is said to be(globally) coexistentif

∀ x0 ∈ Ω, ∃ u ∈ U , such that lim inf
t→∞

x(t) ∈ Ω.

Now, let(xe, ue) be an equilibrium for system (9.1), i.e. such thatF (xe, ue) = 0.

Definition 9.2.3 System (9.1) is said to belocally coexistentaround the equilibrium(xe, ue)

if there exists a neighbourhoodVe of xe, such that system (9.1) is coexistent w.r.t. every initial
statex0 ∈ Ω ∩ Ve, i.e.

∀ x0 ∈ Ω ∩ Ve, ∃ u ∈ U , such that lim inf
t→∞

x(t) ∈ Ω.

It is clear that coexistence implies local coexistence. Furthermore, in Chapter 8, we defined the
concept of local positive input/state-invariance of a nonlinear system around an equilibrium.
This concept leads to the local coexistence with in additionthe positivity of the input. In fact,
it is important to remark that the input also represents concentrations. So it is meaningful to
guarantee the nonnegativity of the state and the input trajectories. Furthermore, the concept
of local positive input/state-invariance system forces the strict positivity of the state and input
trajectories and not only their nonnegativity. The following result obviously holds :

Proposition 9.2.1 Consider system (9.1). Assume that there exists a neighbourhoodVe of the
equilibriumxe such that

∀ x0 ∈ Ve such thatx0 ≫ 0, ∀ t ≥ 0,

{
x(t) ≥ xε ≫ 0

u(t) = K x(t) + v ≫ 0,

whence system (9.1) is locally positively input/state-invariant, in the sense of Definition 8.2.1.
Then system (9.1) is locally coexistent with strictly positive input trajectories.
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Proof : Let x0 ∈ Ve such thatx0 ≫ 0 andu(t) = K x(t) + v ≫ 0. Since for all timet ≥ 0,
x(t) ≫ xε, the following inequality holds :inf

τ>t
x(τ) ≥ xε. Observe thatt 7→ inf

τ>t
x(τ) is an

increasing function. By taking its limit, withxε ≫ 0, it follows that

lim inf
t→∞

x(t) := lim
t→∞

inf
τ>t

x(τ) ≥ xε ≫ 0,

whencelim inf
t→∞

x(t) ∈ Ω.

2

In the sequel, the term of coexistence is used for the speciesand the term of input/state-
invariance is used for the system.

9.2.2 Problem statement

In this section, the coexistence problem for system (9.1) isstated in terms of optimal con-
trol in order to guarantee the coexistence of the species andmore precisely the local positive
input/state-invariance of system (9.1). We define the statex(t) and the inputu(t) as follows :

x(t) =




S

X1

...
Xñ


 and u(t) =




Sin

Xin,1
...

Xin,m̃


 .

Assume that system (9.1) has an equilibrium

xe :=




Se

X1e

...
Xñe


≫ 0

corresponding to an inputue given by

ue :=




Sin,e

Xin,1,e
...

Xin,m̃,e


≫ 0.

Consider the linearized system, as studied in Chapter 8,

˙̃x =
∂F

∂x
(xe, ue) x̃ +

∂F

∂u
(xe, ue) ũ = A x̃ + B ũ (9.4)

wherex̃ := x− xe andũ := u− ue and the Jacobian matricesA andB are given by :
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A =




−D − ∂µ1(Se)
∂S X1e −

∂µ2(Se)
∂S X2e −µ1(Se) . . . −µñ(Se)

∂µ1(Se)
∂S X1e µ1(Se)−D . . . 0

... 0
.. . 0

...
...

...
∂µñ(Se)

∂S Xñe 0 . . . µñ(Se)−D




=




−D −
µmax,1KS,1

(KS,1+Se)2
X1e −

µmax,2KS,2

(KS,2+Se)2
X2e −

µmax,1Se

KS,1+Se
. . . −

µmax,ñSe

KS,ñ+Se

µmax,1KS,1

(KS,1+Se)2
X1e

µmax,1Se

KS,1+Se
−D . . . 0

... 0
.. . 0

...
...

...
µmax,ñKS,ñ

(KS,ñ+Se)2
Xñe 0 . . .

µmax,ñSe

KS,ñ+Se
−D




B =

[
D Im×m

0(n−m)×m

]
.

Our first aim is to achieve the coexistence of system (9.1) with respect to an admissible
fixed initial statex0 by solving a finite horizon input/state-invariantLQ

tf

ū,x̄ problem (as studied
in Chapter 3) for the linearized system. This problem is solved as an optimization problem
(using the functionquadprog in MATLAB ). It will be shown that the stabilization property of
the LQ problem numerically guarantees the convergence of the linear trajectoriesxL = x̃ + xe

(uL = ũ + ue) to the equilibriumxe (ue, respectively), which are both strictly positive. Hence,
with a receding horizon approach, i.e. withtf sufficiently large, we can numerically ensure the
local coexistence w.r.t.x0 for the resulting nonlinear system, in the sense of Definition 9.2.1.
This method is developed below in Section 9.3.

The second aim is to find a feedback control lawK such that the resulting closed-loop system
is locally positively input/state-invariant in the sense of Definition 8.2.1. One way to study the
local positive input/state-invariance of the nonlinear system (9.1) is to consider its equilibrium
(xe, ue) wherexe ≫ 0 andue ≫ 0 and to linearize the system around this equilibrium (since
at (xe, ue), the input/state-invariance is ensured). Then one can stabilize the linearized system
(9.4) around this equilibrium with an appropriate optimal control law ũ such that the resulting
linearized closed-loop system is input/state-invariant,i.e. such that (see Definition 1.1.6) :

∀ t ≥ 0, ∀ x̃0 ≥ −xe,

{
x̃(t) ≥ −xe

ũ(t) ≥ −ue.

As we have seen in Theorem 8.2.1, if there exists a linear feedbackK such that the linearized
closed-loop system is input/state-invariant and stable, then the resulting nonlinear closed-loop
system is locally positively input/state-invariant around its stable equilibriumxe. Hence, by
Proposition 9.2.1, withxε sufficiently close toxe ≫ 0, the local positive input/state-invariance
of the nonlinear closed-loop system ensures its local coexistence around the equilibriumxe.
Therefore, a stabilizing input/state-invariant feedbackK is computed for the linearized system
(9.4), such that̃u = Kx̃, by solving an inverse input/state-invariantLQinv

ū,x̄
problem with the
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aid of matrix inequalities (LMIs or BMIs), as studied in Chapter 7. Theorem 8.2.1 guarantees
that the resulting closed-loop system is locally positively input/state-invariant and by Proposi-
tion 9.2.1, withxε sufficiently close toxe, the local coexistence of the closed-loop system is
ensured. The results of this second method are developed in Section 9.4. Notice that in this
method the optimal control of the linearized system is of state-feedback type whereas it is not
the case in the first method. Furthermore, the first method is strongly inspired by the second
one and by Theorem 8.2.1. These methods are illustrated by some numerical simulations.

Before developing these methods, we first describe precisely the problem of coexistence of
two species competing for a single substrate. The calculation of the equilibria and the corre-
sponding linearized systems are described. Finally, the behavior of trajectories is studied in an
open-loop design with a constant input.

9.2.3 The coexistence of two species

– The chemostat model

Consider the competition between two species for one substrate. Assume that the growth
rate functionsµi(S) are given by Monod’s model (9.2). Then system (9.3) reads




Ṡ

Ẋ1

Ẋ2


 =



−D S − µ1(S) X1 − µ2(S) X2

(µ1(S)−D) X1

(µ2(S)−D) X2


 + B u

ẋ = f(x) x + B u

(9.5)

whereB = P

[
D Im×m

0(n−m)×m

]
andu =




Sin

Xin,1

Xin,2



 or a subvector withn = 3 ; m ≤ 3 andP is

a permutation matrix. Thus the input vectoru can be chosen by three different ways :

• CASE 1 : B = B1 =




D 0 0

0 D 0

0 0 D


 ; u =




Sin

Xin,1

Xin,2


 ;

• CASE 2 : B = B2 =




D 0

0 D

0 0



 ; u =

[
Sin

Xin,1

]
;

• CASE 3 : B = B3 =




D 0

0 0

0 D


 ; u =

[
Sin

Xin,2

]
.

For each case, the equilibrium(xe, ue) is computed.
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– Computation of the equilibria

Let us compute the equilibria of system (9.5) in the three cases depending on the choice of
the inputu.

CASE 1 : u =




Sin

Xin,1

Xin,2





The equilibrium equations in the first case are given by :





D (Sin,e − Se)− µ1(Se) X1e − µ2(Se) X2e = 0

D Xin1,e + (µ1(Se)−D) X1e = 0

D Xin2,e + (µ2(Se)−D) X2e = 0

(9.6)

whereµi(Se) = µmax,i
Se

KS,i+Se
and




Sin,e

Xin1,e

Xin2,e


 =




20

10

5


 (9.7)

is chosen such thatSin,e is sufficiently large and such that the input concentration of X1 is twice
the one ofX2 sinceX2 has the best affinity to win the competition, see Figures 9.3 and 9.4.
Then, by using MAPLE to solve this system, we obtain the following equilibrium :






Se = 0.042533882

X1e = 16.58877203

X2e = 18.36869408.

In fact, this equilibrium can be found by isolatingX1 andX2 in (9.6), which gives, after substi-
tutions, the following expression depending only onSe :

4− 0.2 Se +
2.4 Se

(0.6 + Se) ( 1.2 Se

0.6+Se
− 0.2)

+
0.83 Se

(0.2 + Se) ( 0.83 Se

(0.2+Se)
− 0.2)

= 0. (9.8)

This expression gives a third order equation inSe which admits three roots (Se = 0.0425,
0.0927 and38.6355). This function ofSe is drawn in Figure 9.5 according toSe and in compar-
ison withSin. First of all, one can observe that one root (Se = 38.6355) is larger thanSin,e = 20

and is therefore not admissible. Then, Figure 9.6 is obtained by zooming on the transient part
of the last figure in order to identify the two other roots. In this figure, the expressions ofX1e

andX2e according toSe are also depicted. This allows us to see that even if the two other roots
of (9.8) are smaller thanSin,e, only one is admissible (Se = 0.0425) since the rootSe = 0.0927

gives a negative value ofX2e.
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solving equation (9.6).

CASE 2 : u =

[
Sin

Xin,1

]

The equilibrium equations in the second case are given by :





D (Sin,e − Se)− µ1(Se) X1e − µ2(Se) X2e = 0

D Xin1,e + (µ1(Se)−D) X1e = 0

(µ2(Se)−D) X2e = 0

Thereforeµ2(Se) = D, which gives, with Monod’s model (9.2),Se =
D KS,2

µmax,2 −D
= 0.0635.
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Let us fix arbitrarily [
Sin,e

Xin1,e

]
=

[
20

10

]
, (9.9)

which gives the following equilibrium :





Se =
D KS,2

µmax,2 −D
= 0.0635

X1e =
−DXin,1

µ1 −D
= 23.48314607

X2e =
D(Sin − Se)− µ1X1e

µ2
= 6.453361870

where 




µ1(Se) =
µmax,1Se

KS,1 + Se
= 0.1148

µ2(Se) =
µmax,2Se

KS,2 + Se

= D = 0.2

CASE 3 : u =

[
Sin

Xin,2

]

The equilibrium equations in the third case read :






D (Sin,e − Se)− µ1(Se) X1e − µ2(Se) X2e = 0

(µ1(Se)−D) X1e = 0

D Xin2,e + (µ2(Se)−D) X2e = 0

Thereforeµ1(Se) = D, which gives, with Monod’s model (9.2),Se =
D KS,1

µmax,1 −D
= 0.12. Let

us fix arbitrarily

[
Sin,e

Xin2,e

]
=

[
20

5

]
, which gives the following equilibrium :






Se =
D KS,1

µmax,1 −D
= 0.12

X2e =
−DXin,2

µ2 −D
= −8.988764045

X1e =
D(Sin − Se)− µ2X2e

µ1
= 33.86876404

Then it is impossible in this case, with the parameters givenas in Table 9.1, to obtain an equi-
librium (xe, ue) such thatxe ≫ 0. This fact is illustrated in Figure 9.7.
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Figure 9.7: Growth rate functionsµ1(S) andµ2(S) compared toD for constants values of Table
9.1.

One can observe in this figure that the speciesX2 has the best affinity. Then by the com-
petitive exclusion principle, the speciesX2 will win the competition if we consider the case
u = Sin, see Figure 9.8.
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Figure 9.8: Trajectories ofX1 andX2 for constants values of Table 9.1 withu = Sin.

By using the inputu = [Sin Xin,2]
T , the speciesX1 does not receive any “external support”

whereasX2 receives some help and has initially the best affinity to win the competition. There-
fore in this case, it is impossible to guarantee the coexistence of the two species, see Figure
9.9 which represents the concentrationsX1 andX2, obtained by solving system (9.5) with a
constant inputu = [Sin Xin,2]

T . One can observe thatX1 numerically tends to zero two times
faster than in the previous case. Then this case is not interesting in the aim of coexistence of the
species and that is why it is no more considered in the sequel.
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Figure 9.9: Trajectories ofX1 andX2 for constants values of Table 9.1 in CASE 3.

Now, solving system (9.5) with a constant inputu given by (9.7) (CASE 1) and (9.9) (CASE

2) gives the following trajectories for the concentrationsof the species over timet in an open-
loop design, see Figures 9.10 and 9.11. In these cases, coexistence of the species may occur. In
CASE 1,X1 andX2 have similar values while in CASE 2,X1 numerically tends to a larger value
thanX2. Indeed, in this case,X1 obtains initially some help at the expense ofX2. Nevertheless,
the coexistence of the two species is ensured.
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Figure 9.10: Trajectories ofX1 andX2 for constants values of Table 9.1 in CASE 1.
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Figure 9.11: Trajectories ofX1 andX2 for constants values of Table 9.1 in CASE 2.

Remark 9.2.1 In CASE 1, the values ofXin,1 and Xin,2 have been fixed such thatXin,1 =

2 Xin,2. Conversely, let us considerXin,2 = 2 Xin,1, then the equilibrium is given byxe =

[0.036 7.58 27.38]T . Therefore, computing the trajectories ofX1 andX2 in open-loop as in
Figure 9.10 will also guarantee the coexistence but there exists a larger gap between the values
of X1 andX2 at the equilibrium. Similarly, inCASE 2, let us fix the value ofXin,1 = 5 instead
of 10 and the resulting equilibrium is given byxe = [0.063 11.74 13.19]T . ThenX1 andX2

have similar values whereas previously,X1 numerically tended to a larger value thanX2.

Hence, as we have seen in the previous figures, coexistence ofthe two species is possible
in CASE 1 and CASE 2. For these cases, computing the equilibria and the resulting Jacobian
matricesA andB, which define the linearized system (9.4), gives the following results, which
are summarized in Table 9.2.
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CASE 1 CASE 2
u = [Sin Xin,1 Xin,2]

T u = [Sin Xin,1]
T

xe =




Se

X1e

X2e








0.0425

16.5888

18.3687








0.0635

23.48314607

6.453361870





ue




20

10

5




[
20

10

]

A




−80.9676 −0.0794 −0.1456

28.9304 −0.1206 0

51.8372 0 −0.0544








−54.0374 −0.1148 −0.2000

38.4076 −0.0852 0

15.4298 0 0





B




0.2 0 0

0 0.2 0

0 0 0.2







0.2 0

0 0.2

0 0




Table 9.2: Equilibria and associated Jacobian matrices used in the linearized system (9.4).

The next two sections are devoted to the application of input/state-invariant LQ controls to
the chemostat model in order to improve the coexistence of the species in these two cases of
choice of the inputu. Indeed, Figures 9.10-9.11 have been realized with an open-loop design
for a constantu. Now solving anLQinv

ū,x̄
problem allows us to deal with a stabilizing control. In

that case, the optimal control is of state feedback type and we can therefore benefit of key prop-
erties of closed-loop systems, which are notably tracking,disturbance and noise suppression,
sensitivity to structured plant parameter variations, seee.g. [AM90, Section 5.3] for details.
Furthermore, it is stated in [AM90, Section 5.5] that for theoptimal state feedbackK aris-
ing from an LQ-optimal design, the optimal closed-loop system maintains asymptotic stability
when sectorial nonlinearities are introduced. Moreover, the nonlinearities may be time-varying.
The properties of the LQ problem which are highlighted in thesequel are robustness, desensiti-
zation due to small variations in some parameters and stabilization. Numerical simulations that
follow are testing the effectiveness of the LQ problem in comparison with the results obtained
in Figures 9.10-9.11.
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In order to highlight the robustness of the LQ problem with respect to pertubations of pa-
rameters, an analysis of perturbations is done in the sequel. It is shown that, despite a small
variation in some parameter at a fixed time, the LQ-optimal control is able to reestablish the
convergence to the equilibrium in order to guarantee the coexistence of the species. There
are several types of perturbations, notably, those due to the laboratory conditions (e.g. on the
dilution rateD) or to the uncertainty on some biological parameters (e.g. on KS,i or µmax,i).

First, let us apply a perturbation on the dilution rateD for the open-loop system (9.5) with
a constant inputu given by (9.7) (CASE 1). Formally, at timet = 50 (corresponding to the
time where the trajectories had numerically converge, see Figure 9.10), the value of the dilution
rate is changed toD = 0.7 instead ofD = 0.2. That means that, by applying the conditions
of the CEP, the winner of the competition has changed. Indeed, computing the growth curves
µ1(S) andµ2(S) with D = 0.7, one can observe in Figure 9.12, that the smallest break-even
concentration is nowλ1 and no moreλ2. ThenX1 will win the competition in the case of an
open-loop design with a constant inputu = Sin.
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Figure 9.12: Growth rate functionsµ1(S) andµ2(S) compared toD = 0.7 for constants values
of Table 9.1.

Now, the state trajectoriesX1 and X2 of system (9.5) with a constant inputu given by
(9.7) and with an instantaneous increase ofD at timet = 50, such thatD = 0.7, are depicted
in Figure 9.13. By comparison with Figure 9.10, the trajectories are numerically divergent.
Indeed, since the input is constant and in open-loop, the control can not react to the perturbation
in order to make the state trajectories numerically converge. The great advantage of the LQ
design is the fact that the input can react to perturbations.Moreover, as we will see in Section
9.4, since in theLQinv

ū,x̄
problem, the optimal control is of state-feedback type, theclosed-loop

allows the system to better react to perturbations.
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Figure 9.13: Perturbed trajectories ofX1 andX2 for constants values of Table 9.1 in CASE 1
with D = 0.7 at t = 50.

Next, let us insert a perturbation in the growth functionµ1(S) for the open-loop system
(9.5) with a constant inputu given by (9.7) (CASE 1). Formally, at timet = 50, the value of the
maximum growth rateµmax,1 is changed toµmax,1 = 1 instead ofµmax,1 = 1.2 while the value
of the dilution rate is kept to0.2 as initially. This can be seen as the fact that we have some
uncertainty on the nominal parameters. Here, applying the CEP, the winner of the competition
has not changed. Indeed, computing the growth curvesµ1(S) andµ2(S) with µmax,1 = 1,
one can observe in Figure 9.14, that the smallest break-evenconcentration isλ2 as previously.
Then, with these values,X2 will win the competition in the case of an open-loop design with a
constant inputu = Sin.
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Figure 9.14: Growth rate functionsµ1(S) andµ2(S) compared toD = 0.2 for µmax,1 = 1 and
constants values of Table 9.1.
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Now, the state trajectoriesX1 andX2 of system (9.5) with a constant inputu given by (9.7)
and with an instantaneous increase ofµmax,1 at timet = 50, such thatµmax,1 = 1, are depicted
in Figure 9.15. By comparison with Figure 9.10, the trajectories are also numerically divergent.
Indeed, as previously, since the input is a priori fixed at a constant value, the control can not
react to the perturbation.
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Figure 9.15: Perturbed trajectories ofX1 andX2 for constants values of Table 9.1 in CASE 1
with µmax,1 = 1 at t = 50.

In the following two sections, two different methods are developed in order to compute an
appropriate (and robust) optimal control law̃u which ensures the coexistence of the species.
These methods are based on theLQ

tf

ū,x̄ problem and theLQinv
ū,x̄

problem respectively.
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9.3 The input/state-invariant LQ problem

9.3.1 Problem statement

The finite horizon input/state-invariantLQ
tf

ū,x̄ problem applied to the chemostat model
(whereW andZ are equal to the identity matrix, see Chapter 3), consists ofminimizing the
quadratic functional :

J(x̃0, ũ) =
1

2

(∫ tf

0

(‖R1/2ũ(t)‖2 + ‖C x̃(t)‖2) dt + x̃(tf )
T S x̃(tf)

)
(9.10)

for a given linear time-invariant system[A, B] described by (9.4)

˙̃x = A x̃ + B ũ,

which is the linearization of system (9.5) around the equilibrium (xe, ue), with xe ≫ 0 and
ue ≫ 0, and with the initial conditioñx0 ≥ −xe, under the constraints

∀ t ∈ [0, tf ],

{
x̃(t) ≥ −xe

ũ(t) ≥ −ue,
(9.11)

wheretf is a fixed final time,R ∈ IRm×m is a symmetric positive definite matrix,C ∈ IRp×n

andS ∈ IRn×n is a symmetric positive semidefinite matrix. Recall the result of Theorem 3.2.1
which gives the solution of theLQ

tf

ū,x̄ problem as follows :

Theorem 9.3.1 The control functioñu(·) is solution of theLQ
tf

ū,x̄ problem⇔ ∃ λ(·) andυ(·)

such that
ũ(t) = −R−1BT p(t) + R−1υ(t), t ∈ [0, tf ],

where [
˙̃x(t)

ṗ(t)

]
= H

[
x̃(t)

p(t)

]
+

[
B R−1υ(t)

λ(t)

]
, t ∈ [0, tf ] (9.12)

with {
x̃(0) = x̃0

p(tf ) = S x̃(tf)− λ(tf)

where

H =

[
A −B R−1BT

−CT C −AT

]

is the Hamiltonian matrix, and for allt ∈ [0, tf ]

x̃(t) ≥ −xe,

ũ(t) ≥ −ue,

λ(t) ≥ 0,

υ(t) ≥ 0,

λ(t)T (x̃(t) + xe) = 0 (state complementarity condition).
υ(t)T (ũ(t) + ue) = 0 (input complementarity condition).
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In the context of coexistence of species in a chemostat model, theLQ
tf

ū,x̄ problem is solved
for the linearized system (9.4) as an optimization problem with state and input constraints. This
methodology is inspired by the results of Theorem 8.2.1. Fora sufficiently large horizontf ,
the optimal controluL = ũ + ue can be applied to the nonlinear system (9.5). Therefore, the
strict compliance of the constraints onx̃ andũ will ensure the strict positivity of the nonlinear
state and input trajectories by following the same reasoning as in Theorem 8.2.1. Numerical
simulations are done to illustrate this and to ensure therefore the local coexistence w.r.t. the
initial conditionx0 (which is chosen close toxe), for a sufficiently large horizontf .

9.3.2 Numerical simulations

Consider system (9.4) withA andB given in Table 9.2, and the cost (9.10) where

C = 03×3 and R = Im (9.13)

wherem = 3 or m = 2 depending on the choice ofu (CASE 1 or CASE 2 developed in
Subsection 9.2.3). The numerical solution of this problem is computed by usingMatlab and
the functionquadprog, as in Section 4.3.2. First, the continuous time problem is converted
into a discrete time one by using sampling : fori = 0, . . . , N − 1, with tf = N h, ũ(t) =

ũ(i h) =: ũi, for t ∈ [ih, (i + 1) h], whereh is the sampling time. The resulting discrete time
system is given by :

x̃i+1 = eA h x̃i +

(∫ h

0

eAτB dτ

)
ũi, i = 0, . . . , N − 1 (9.14)

with the following discrete time cost
1

2

N−1∑

i=0

h ‖ũi‖
2 + x̃T

NS x̃N , see Appendix C for details on

discretization. In the following numerical simulations and figures,xL denotes the shifted state
trajectories coming from the linearized system, i.e.xL := x̃ + xe whereas(S, X1, X2) denotes
the nonlinear state trajectories of system (9.5).

Consider the final timetf = 50 with the sampling timeh = 1 and the initial condition
x̃0 = [0.1 0.1 0.1]T (which is chosen near zero sincexL(0) has to be close enough to the
equilibriumxe). With this sampling time, we obtain the following matricesA andB defining
the sampled data system (9.14), see Table 9.3.



9.3 The input/state-invariant LQ problem 157

CASE 1 CASE 2
u = [Sin Xin,1 Xin,2]

T u = [Sin Xin,1]
T

A



−0.0012 −0.0008 −0.0015

0.2808 0.8630 −0.0444

0.5392 −0.0435 0.8647





−0.0021 −0.0017 −0.0032

0.5703 0.8494 −0.1254

0.2506 −0.0289 0.9474




B




0.0022 −0.0002 −0.0003

0.0628 0.1860 −0.0046

0.1163 −0.0045 0.1862







0.0032 −0.0004

0.1254 0.1846

0.0526 −0.0029




Table 9.3: MatricesA andB defining the discrete-time linearized system (9.14).

– CASE 1 :

First, consider the CASE 1 for the choice ofu with S = I3. The optimization algorithm
mentioned above leads to the optimal controluL,i = ũi + ue applied to the nonlinear system
(9.5) and depicted in Figure 9.16. The corresponding state trajectoriesxi of the nonlinear system
(9.5) with the optimal controlui and the state trajectoriesxL,i = x̃i+xe of the linearized system
(9.4) are depicted in Figure 9.17.
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Figure 9.16: Optimal control for sampled data system (9.14)in CASE 1 with S = I3.
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Figure 9.17: State trajectories for sampled data system (9.14) in CASE 1 with S = I3.

In these figures, one can observe that the optimal control remains very close to the equi-
librium. Unless otherwise stated, this behavior is always observed and is therefore not always
mentioned in the sequel. On the other hand, Figure 9.17 showsthat the substrateS decreases
quickly to give a boost toX1 andX2 which numerically tend smoothly to the equilibrium before
the final fixed timetf = 50.

Now an analysis can be done on a variation of the initial statex̃0 to see how the model reacts
with changes on the initial condition. First, considerx̃0 = [0.1 0.1 − 18.36]T which is the
case wherẽx3(0) is close toxe3 from below, that means that, for the nonlinear system, the initial
conditionx3(0) is near zero. In this case, withS = I3 andtf = 50, the corresponding optimal
controluL,i = ũi + ue applied to the nonlinear system (9.5) is close to the equilibrium as in the
previous case and the corresponding state trajectoriesxi of the nonlinear system (9.5) with the
optimal controlui and the state trajectoriesxL,i = x̃i + xe of the linearized system (9.4) are
drawn in Figure 9.18.
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Figure 9.18: State trajectories for sampled data system (9.14) in CASE 1 with S = I3 and
x̃0 = [0.1 0.1 − 18.36]T .

One can observe in this case that the linear approximation ofthe nonlinear system is not so
good and moreover the state trajectoryx2(t) = X1(t) is not exactly equal to the equilibrium at
the final time. Then one can increase the final time to betf = 100 for example and then the
equilibrium is reached in the long run while the linear approximation of the chemostat model is
not so good for small time. In Figure 9.19, a comparison is done between the state trajectories
with penalization matrixS = I3 and withS = 50 I3 for tf = 50. Instead of increasing the
final time, one can increase the penalization of the final state in order to reach almost exactly
the equilibrium at the final time. In addition, in order to make a precise comparison of these
state trajectories for different values ofS, the relative error, denotedεr, of these two curves is
computed, which is defined by

εr :=
‖xS=I − xS=50I‖2
‖xS=I‖2

wherexS=I andxS=50I denote the nonlinear state trajectories forS = I3 and forS = 50 I3,
respectively. It is depicted in Figure 9.20 below.
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Figure 9.19: Comparison of the state trajectories for sampled data system (9.14) in CASE 1
with S = I3 andS = 50 I3 for x̃0 = [0.1 0.1 − 18.36]T andtf = 50.
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Figure 9.20: Relative error of the state trajectories for system (9.14) in CASE 1 with S = I3

andS = 50 I3 for x̃0 = [0.1 0.1 − 18.36]T .
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Another important question is how much can the initial condition x0 be far from the equi-
librium while always ensuring the validity of the linearized model. By values from above, a
numerical analysis has been done with several values of initial conditions and the linearized
model seems to be valid up to a value ofx0 < xe + 28. Indeed, if we considerx0 = xe + 28,
i.e. x̃0 = [28 28 28]T , the following state trajectories are obtained, see Figure9.21.
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Figure 9.21: State trajectories for sampled data system (9.14) in CASE 1 with S = I3 and
x̃0 = [28 28 28]T .

One can see that the nonlinear state trajectories numerically diverge and therefore the lin-
earization of the nonlinear system is no more a good approximation whereas the one forx0 =

xe + 27 has a really good behavior. However, one can observe that thelinear state trajectories
xL,i = x̃i +xe have the right behavior since they numerically tend to the equilibrium in the long
run. Moreover, increasing the penalization matrixS, as we have done in a previous analysis,
does not improve the results.

Finally, an analysis of perturbations can be done here for the LQ
tf

ū,x̄ problem. As pre-
viously, consider a perturbation on the dilution rateD. Let us recall Figure 9.17 which de-
picts the state trajectories for the sampled data system (9.14) in CASE 1 with S = I3 and
x̃0 = [0.1 0.1 0.1]T . In this figure, one could see that the state trajectoriesx(t) of the non-
linear system (9.5) numerically converged to the equilibrium around timet = 40. Then, at this
time, the value ofD is changed to0.7, so that the role of the species is inverted. The asso-
ciated optimal control and state trajectories are therefore computed for the perturbed resulting
linearized system by using the optimization algorithm mentioned above forS = I3, t0 = 40,
tf = 100 and the initial condition equal to the last value of the previous state trajectories. Then
the optimal controluL,i = ũi + ue is applied to the nonlinear system (9.5) and is depicted,
together with the previous control from time0 to time100, in Figure 9.22. The corresponding
nonlinear state trajectories, from time0 to time100, are drawn in Figure 9.23.
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Figure 9.22: Optimal control for perturbed sampled data system (9.14) in CASE 1 with S = I3

for D = 0.7 at timet = 40.
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Figure 9.23: State trajectories for perturbed sampled datasystem (9.14) in CASE 1 with S = I3

for D = 0.7 at timet = 40.

One can see that the optimal control has to be adapted in orderto bring the state trajectories
to the equilibrium. As a result, the linearized shifted state trajectories, together with the non-
linear state trajectories, numerically converge without any difficulty to a new equilibrium, the
one which corresponds to system (9.5) withD = 0.7. Anyway, the coexistence of the species
is guaranteed.
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Let us perform a similar analysis by considering a perturbation on the growth curveµ1(S).
At time t = 40, the value ofµmax,1 is changed to1 (instead of1.2). The associated optimal
control and state trajectories are computed as previously and are depicted in Figures 9.24 and
9.25 respectively.
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Figure 9.24: Optimal control for perturbed sampled data system (9.14) in CASE 1 with S = I3

for µmax,1 = 1 at timet = 40.
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Figure 9.25: State trajectories for perturbed sampled datasystem (9.14) in CASE 1 with S = I3

for µmax,1 = 1 at timet = 40.
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Again, one can observe that the optimal control has to be adapted in order to bring the
state trajectories to the new equilibrium, corresponding to the equilibrium of system (9.5) with
µmax,1 = 1. As in the previous perturbation, the linearized state trajectories, together with the
nonlinear one, numerically converge fast to this new equilibrium. And the coexistence of the
species is still guaranteed.

– CASE 2 :

Let us consider the CASE 2 for the choice ofu with S = I3, x̃0 = [0.1 0.1 0.1]T andtf =

200. The optimization algorithm mentioned above leads to the optimal controluL,i = ũi + ue

applied to the nonlinear system (9.5) and depicted in Figure9.26. The corresponding state
trajectoriesxi of the nonlinear system (9.5) with the optimal controlui and the state trajectories
xL,i = x̃i + xe of the linearized system (9.4) are depicted in Figure 9.27.
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Figure 9.26: Optimal control for sampled data system (9.14)in CASE 2 with S = I3.
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Figure 9.27: State trajectories for sampled data system (9.14) in CASE 2 with S = I3.

As in CASE 1, simulations have been done fortf = 50 andtf = 100. However, the final
time has to be more increased (up totf = 200) in order to reach more precisely the equilibrium
in the long run. As already mentioned, the increasing of the penalization matrixS can also help
the state trajectories to come closer to the equilibrium andoften with a smaller time. See Figure
9.28, which shows a comparison between the behavior of the state trajectories forS = I3 and
for S = 50 I3 with tf = 200. As previously, the relative error is also drawn to give a more
precise comparison, see Figure 9.29. In this case, this increasing of the penalization matrixS
has less impact than in the previous case since the two curvesare close to each other.
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Figure 9.28: Comparison of the state trajectories for sampled data system (9.14) in CASE 2
with S = I3 andS = 50 I3 for x̃0 = [0.1 0.1 0.1]T andtf = 200.
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Figure 9.29: Relative error of the state trajectories for system (9.14) in CASE 2 with S = I3

andS = 50 I3 for x̃0 = [0.1 0.1 0.1]T .

In general, one can observe that in CASE 2, it is more difficult or it takes more time to reach
exactly the equilibrium in comparison with CASE 1. It can be explained by the fact that one has
less direct action (“practical control”) in this case than in the previous one. Indeed, in CASE 2,
there is no control onX2 while in CASE 1, there is a control on every variables,S, X1 andX2.
Therefore, the CASE 2 is no more studied in the following section (for physical reasons but also
for numerical reasons since it appears to react less efficiently).
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9.4 The inverse input/state-invariant LQ problem

9.4.1 Problem statement

The objective in this method is to find an LQ-optimal control of state feedback typẽu = K x̃

such that the linearized closed-loop system˙̃x = (A+B K) x̃ is stable and input/state-invariant.
By Theorem 8.2.1, this guarantees the strict positivity of the state and input trajectories of the
nonlinear system (9.5) in a neighbourhood of the equilibrium (xe, ue) and this implies the local
coexistence of the resulting closed-loop system, by Proposition 9.2.1, withxε sufficiently close
to the equilibriumxe. As in the previous section, the initial statex0 is chosen nearxe while
x̃0 is close to zero. To determine an appropriate state feedbackK for the linearized system, an
inverse input/state-invariantLQinv

ū,x̄
problem is solved by using several LMIs and/or BMIs as

developed in Section 7.3. TheLQinv
ū,x̄ problem can be summarized in two steps :

1. Find a matrixK such that for allt ≥ 0 and for allx̃0 ≫ −xe,

{
x̃≫ −xe

ũ = K x̃≫ −ue

2. Determine the existence ofQ = CT C andR such that(Q, A) is detectable and the control
ũ = K x̃ is optimal for the corresponding LQ problem, i.e. minimizesthe following
quadratic cost

J(x̃0, ũ) =
1

2

(∫ ∞

0

(‖R1/2ũ(t)‖2 + ‖C x̃(t)‖2) dt

)
(9.15)

For the first step, the matrixK is obtained by solving BMI 1b or LMI 1d (see Table 9.4 below).
For the second step, solving LMI 2 gives appropriate matricesQ andR, see Chapter 7.
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BMI and LMI used for the computation ofK

BMI 1b :

diag[(H)ij ]i6=j � 0[
−In

−K

]
(A + B K)−H

[
−In

−K

]
=

[
0n×n

0m×n

]

diag

[
H

[
xe

ue

]]
� 0

LMI 1d :
diag[(A + B K)ij ]i6=j � 0

diag[(A + B K) xe] � 0

diag[K x0 + ue] � 0

LMI used for the computation ofQ andR for the LQ problem

LMI 2 :

R ≻ 0

Q � 0

P+ � 0

P1 ≻ 0

(A + B K)T P+ + P+(A + B K) + KT R K + Q = 0

BT P+ + R K = 0

AT P1 + P1 A ≺ Q

Table 9.4: LMIs and BMI used in the resolution of theLQinv
ū,x̄

problem.

9.4.2 Numerical simulations

As already mentioned, the CASE 2 for the choice ofu is not studied for this methodology.
The implementation of the previous method has revealed thatone has less possible action in the
CASE 2 than in the CASE 1. The latter is a better choice for the input to control the chemostat
model and to ensure the coexistence of the species. Thus, consider CASE 1. First, determine
the matrixK by solving BMI 1b with YALMIP in MATLAB . That gives matricesH1 andK1.
Unfortunately, when solving LMI 2, it is not possible to find corresponding matricesQ andR

such thatK1 gives an LQ-optimal control. As we have seen in Chapter 7, thematrixK solving
the BMI 1b is not unique and may not be admissible for LMI 2. Therefore, another matrixK2

is computed by solving again BMI 1b with an additional condition : A+B K2 ≺ A+B K1 (by
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the same idea of the heuristic iterative process described in Table 7.1, by creating a decreasing
sequence of matrices). This gives the following results :

H2 = H =




−80.815 0.020441 0.033481 0.078248 0.022940 0.044187

28.661 −0.91434 0.022320 1.7724 10−4 1.6114 10−3 0

50.809 4.7736 10−3 −1.6606 0.012093 1.3123 10−3 3.7499 10−8

4.2681 10−5 0.10419 1.6110 −1.6001 4.6925 10−5 0.13610

0.061421 0.061039 0.44864 3.3414 10−4 −0.92796 3.3381 10−3

0.093693 0.34155 0.19632 0.020567 4.9874 10−5 −1.9375




and

K2 = K =



−0.89593 0.067073 −1.4548

−1.3595 −4.0011 0.111211

−5.2064 1.6701 10−3 −8.1182


 (9.16)

such that

• H is a Metzler matrix ;

•

[
−I3

−K

]
(A + B K)−H

[
−I3

−K

]
= 10−15 I6×3 ≃

[
03×3

03×3

]
;

• H

[
xe

ue

]
=




−0.46802

−13.519

−28.008

−8.9240 10−4

−3.1225 10−16

−6.0244 10−8




≤ 06×1.

Then solving the LMI 2 gives the following weighting matrices such that̃u = K x̃ is optimal
for the LQ problem with cost (9.15),

Q =




1.5971 10−3 5.1037 10−5 2.6478 10−3

5.1037 10−5 3.6534 10−5 6.6413 10−5

2.6478 10−3 6.6413 10−5 4.4001 10−3


 ;

R =




1.9001 10−5 2.7891 10−7 2.9418 10−5

2.7891 10−7 1.7648 10−6 −5.4882 10−7

2.9418 10−5 −5.4882 10−7 4.6255 10−5



 .

(9.17)

These results lead to the following optimal control lawuL = K x̃ + ue, which is depicted in
Figure 9.30, with initial conditioñx0 = [0.1 0.1 0.1]T . This control, applied to system (9.5),
gives the following closed-loop system

ẋ = f(x) + B (K x− (K xe − ue)). (9.18)

and the associated state trajectoriesxL = x̃ + xe compared to the state trajectories of the
nonlinear closed-loop system (9.18) are drawn in Figure 9.31.
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In the sequel, unless otherwise stated, the behavior of the optimal control lawuL = K x̃+ue

is similar to the one depicted in Figure 9.30. Now, it is interesting to compare the results
which are obtained withK1, a stabilizing input/state-invariant feedback which is not admissible
for the resulting LQ problem, with the results which are obtained with K2, the optimal state
feedback, solution of theLQinv

ū,x̄
problem. See Figure 9.32 which gives a comparison between

the nonlinear state trajectories for a first solving of BMI 1b(with ũ = K1 x̃), represented in
the caption by “S, X1, X2 - LMI1”, together with the optimal state trajectories aftersolving
BMI 1b and LMI 2 (with ũ = K2 x̃), represented in the caption by “S, X1, X2 - LMI2”.
Furthermore, for a more precise comparison, Figure 9.33 represents the relative error between
these two curves, defined as follows

εr :=
‖xLMI1 − xLMI2‖2
‖xLMI1‖2

wherexLMI1 (xLMI2) denotes the state trajectories obtained after solving BMI1b (BMI 1b
and LMI 2, respectively). One can numerically observe in this case that solving an inverse
LQinv

ū,x̄
problem stabilizes faster the resulting closed-loop system. The optimal state trajectories

numerically tend towardxe in a shorter time than the nonlinear state trajectories coming from
the linearized system̃̇x = (A + B K1) x̃.
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Figure 9.30: Optimal controluL = K x̃ + ue with K given by (9.16).
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Figure 9.31: State trajectories for system (9.18) withK given by (9.16).
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Figure 9.32: State trajectories for system (9.18) withK1 andK2.
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Figure 9.33: Relative error of the state trajectories of system (9.18) withK1 andK2.



9.4 The inverse input/state-invariant LQ problem 173

Solving LMI 1d yields a state-feedbackK such that the resulting closed-loop system is
state-invariant and such that the input trajectories have astarting boost at the initial condition
which can be seen as a help to guarantee the input-invarianceof the closed-loop system. We
obtain the following state feedbackK :

K =



−52.44 0.71008 1.0321

30.297 −124.55 106.7

39.966 119.09 −113.82


 (9.19)

(which givesũ = K x̃ directly optimal for the resulting LQ problem) such that theclosed-loop
matrix

A + B K =



−91.456 0.062579 0.060861

34.99 −25.031 21.34

59.83 23.818 −22.819




is a Metzler matrix with

(A + B K) xe =




−1.7339

−21.745

−21.499



 ≤ 0

and

K x̃0 + ue =




14.9302

11.2447

9.5236


 ≥ 0.

Then, solving the LMI 2 gives the following weighting matrices such that̃u = K x̃ is optimal
for the LQ problem of cost (9.15) :

Q =




1034.6 138.79 −74.251

138.79 240.3 −214.15

−74.251 −214.15 195.52



 ;

R =




0.094638 00.050527 0.050030

0.050527 0.03.8781 0.030199

0.050030 0.03.0199 0.037606


 .

(9.20)

These results give the following optimal control lawuL = K x̃ + ue, which is depicted in
Figure 9.34 in comparison with the optimal control obtainedwith BMI 1b (drawn in Figure
9.30). The application of this optimal control to system (9.5) gives the resulting state trajectories
for the nonlinear closed-loop system (9.18) drawn in Figure9.35, in comparison with the state
trajectories computed with BMI 1b (drawn in Figure 9.31). Moreover, the relative error between
these two curves is depicted in Figure 9.36. One can observe that BMI 1b and LMI 1d give
similar results.
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Figure 9.34: Optimal controluL = K x̃+ue with K given by (9.19) in comparison with (9.16).
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Figure 9.35: State trajectories for system (9.18) withK given by (9.19) in comparison with
(9.16).
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Figure 9.36: Relative error of the state trajectories for system (9.18) withK given by (9.19) in
comparison with (9.16).

Solving BMI 1b or LMI 1d gives a good matrixK which guarantees the coexistence of
the species and the admissibility of the input trajectories. Now using for example BMI 1b, an
analysis can be realized on the variation of the initial state as done in the previous method.
Consider the limit case of the previous method,x̃0 = [28 28 28]T . Recall that in this case
the nonlinear state trajectories numerically diverge whensolving a directLQ

tf

ū,x̄ problem with
a receding horizon approach. Here, using the state feedbackK given by (9.16), with the res-
olution of BMI 1b, leads to state trajectories which react very well. Therefore, by solving the
LQinv

ū,x̄
problem with different choices of̃x0, the linear approximation of system (9.5) seems

to be valid forx̃0 < [101 101 101]T which corresponds tox0 < xe + [101 101 101]T .
See the corresponding state trajectories forx̃0 = [101 101 101]T in Figure 9.37. One can
observe the numerical divergence of the nonlinear state trajectories for̃x0 = [101 101 101]T

whereas the ones for̃x0 = [100 100 100]T have a really good behavior.
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Figure 9.37: State trajectories for system (9.18) withK given by BMI 1b with x̃0 =

[101 101 101]T .

Finally, the robustness of theLQinv
ū,x̄

problem is numerically tested by applying perturbed
values of the parameters (e.g. on the dilution rate and on themaximum growth rate value). First,
we have observed in Figure 9.31, that by using BMI 1b togetherwith LMI 2, the nonlinear state
trajectories numerically converge to the equilibriumxe after time6. So, at this time,t = 6,
a perturbation on the dilution rateD or on the maximum growth rateµmax,1 is introduced as
previously. The resulting state and input trajectories arecomputed by using the same optimal
state feedbackK given by (9.16). Figures 9.38 and 9.39 represent the input and state trajectories
where at timet = 6, the dilution rate value has been changed toD = 0.7 instead of0.2. One
can see that the optimal control has to be adapted in order to bring the state trajectories to the
new equilibrium (corresponding to the equilibrium of system (9.18) withD = 0.7).
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Figure 9.38: Perturbed optimal controluL = K x̃ + ue with K given by (9.16).
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Figure 9.39: Perturbed state trajectories for system (9.18) with K given by (9.16).

A similar analysis can be done by considering a small perturbation on the maximum growth
rateµmax,1. Figures 9.40 and 9.41 represent the input and state trajectories where at timet = 6,
the maximum growth rateµmax,1 has been changed toµmax,1 = 1 instead of1.2.
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Figure 9.40: Perturbed optimal controluL = K x̃ + ue with K given by (9.16).
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Figure 9.41: Perturbed state trajectories for system (9.18) with K given by (9.16).

Again, one can observe that the optimal control numericallyreacts to the perturbation in
order to bring the state trajectories to the new equilibrium(corresponding to the equilibrium of
system (9.18) withµmax,1 = 1) while always ensuring the coexistence of the species.
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As a conclusion of this chapter, after all these numerical observations, we would like to
make a comparison between the two methods used to guarantee the coexistence of the species.
We tend to say that theLQinv

ū,x̄
problem seems to be more adapted to the problem of coexistence

of species in a chemostat, for several reasons :

• the LQinv
ū,x̄

problem is in infinite horizon while for the other methodology, a receding
horizon approach is needed ;

• theLQinv
ū,x̄ problem can deal with nonlinear systems, more specifically with the property

of local positive input/state-invariance (by using Theorem 8.2.1) while ensures the local
coexistence (by Proposition 9.2.1) ;

• the numerical simulations show that the neighborhood of the initial conditions for which
the linear approximation of the chemostat model has the right behavior is larger in the
LQinv

ū,x̄
problem than in theLQ

tf

ū,x̄ problem.

• the numerical results also show that the coexistence of thespecies and the admissibility
of the input trajectories are obtained for a smaller time with theLQinv

ū,x̄ problem whereas

for theLQ
tf

ū,x̄ problem a receding horizon approach is needed which impliesan analysis
for a large final time.

However, numerical simulations for the resolution of theLQinv
ū,x̄

problem with the choice of
CASE 2 for the input reveal that this case is harder to solve and hasmore difficulties to give
good results than the resolution of theLQ

tf

ū,x̄ problem. Furthermore, in the two methods, the
robustness of the LQ problem has been numerically illustrated.

Finally, whatever the method used, we have shown in this chapter that it is possible to solve
the problem of coexistence of species in a chemostat when thetheory (with the competitive
exclusion principle, see Theorem 9.1.1) states that there is only one winner in the competition.
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Chapter 10

The Positive LQ Problem

In this last chapter, the finite-horizon linear quadratic optimal control problem with non-
negative state constraints is studied for positive linear systems in discrete time. Necessary and
sufficient optimality conditions are obtained by using the maximum principle. These condi-
tions lead to a computational method for the solution of the positive LQ problem by means
of the corresponding Hamiltonian system. In addition, necessary and sufficient conditions are
proved for the positive LQ-optimal control to be given by thestandard LQ-optimal state feed-
back law. In particular, such conditions are obtained for the problem of minimal energy control
with penalization of the final state. Some results are directadaptations of similar results for
the continuous time case (see Chapter 4). Moreover, a positivity criterion for the LQ-optimal
closed-loop system is derived specifically for positive discrete-time systems with a positively in-
vertible (dynamics) generator which can be seen as an inverse time positive system. Monomial
systems include the great class of compartmental systems (which are significant in applications,
see e.g. [HCH10]). An algorithm is derived from the Hamiltonian system in order to compute
a solution. Then the main results are illustrated by numerical examples.

The LQ problem with constraints has already been studied forpositive linear systems in
[CJ89] by using a controllable block companion transformation. Sufficient conditions on the
weighting matrices of a quadratic cost criterion are derived to ensure that the closed-loop system
is positive. This idea was generalized in [Joh94] in order toremove the restrictive positivity
assumption that was required on such transformation.

10.1 Positive linear systems

First, let us recall some important results on positive linear systems in discrete time, see
e.g. [FR00], [Ava00] or [HCH10] and the references therein.Consider the following linear
time-invariant system description in discrete time, denoted by[A, B] :

xi+1 = A xi + B ui, i = 0, . . . , N − 1, x0 = x̂0, (10.1)

where the statexi and the controlui are in IRn and IRm, respectively,A andB are real matrices
of compatible sizes, and̂x0 ∈ IRn denotes any fixed initial state.
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Definition 10.1.1 The system[A, B] given by (10.1) is said to bepositive if, for all initial
conditionsx̂0 ≥ 0 and for all controls(ui)

N−1
i=0 ≥ 0, the state trajectories are nonnegative, i.e.

for all i = 0, . . . , N , xi ≥ 0.

The following characterization of the positivity of discrete time systems is well-known (see e.g.
[FR00], [Ka 02]).

Proposition 10.1.1 The system[A, B] is positive if and only ifA andB are nonnegative ma-
trices.

Now consider the following LTI homogeneous discrete time system

xi+1 = A xi, i = 0, . . . , N − 1, x0 = x̂0, (10.2)

and recall the definition of stability for such systems and some useful results, see e.g. [CD91].

Definition 10.1.2

• A LTI homogeneous system (10.2) is said to beasymptotically stableif for all x0 ∈ IRn,
xi tends to zero asi tends to infinity.

• A LTI homogeneous system (10.2) is said to beexponentially stableif there existβ ∈
[0, 1[ andm > 0 such that for alli ≥ 0, ‖Ai‖ ≤ m βi.

Remark 10.1.1 Recall that in the particular case of homogeneous time-invariant system, these
two concepts of stability are equivalent, see [CD91]. Therefore in the sequel, the terms "asymp-
totic" and "exponential" are omitted.

Theorem 10.1.2 (Stability) A LTI homogeneous system (10.2) is stable if and only if all the
eigenvalues ofA have a modulus strictly less than one, i.e.

∀ λ ∈ σ(A) : |λ| < 1.

By using this result together with Theorem A.1.4 (Perron-Frobenius for nonnegative matrix),
we obtain the following result on the stability of positive system :

Theorem 10.1.3A positive LTI system (10.2) is stable if and only if its Frobenius eigenvalue
ρ(A) is less than one.

Now, consider the following Lyapunov equation

AT P A− P = −Q (10.3)

whereA ∈ IRn×n, Q ∈ IRn×n is symmetric positive definite and a unique symmetric positive
definite solutionP has to be found for (10.3). The solvability of the Lyapunov equation relates
directly to the exponential stability of system (10.2), see[CD91, pp. 214-216].
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Theorem 10.1.4A LTI homogeneous system (10.2) is stable if and only if for all symmetric
positive definite matricesQ, the Lyapunov equation (10.3) has a unique symmetric positive
definite solutionP .

In the case of positive systems, a stronger condition on the solutionP of the Lyapunov equation
can be derived, namely the fact thatP is a diagonal matrix, see e.g. [FR00, p.41].

Theorem 10.1.5A positive LTI system (10.2) is stable if and only if there exists a diagonal
positive definite matrixP such that the matrixQ, defined by

−Q = AT P A− P

is positive definite.

10.2 The positive LQ problem

This section is devoted to the LQ-optimal control problem for positive linear systems in
discrete time. Some results are direct adaptations of similar results of the continuous time case
and therefore their proofs will be omitted.

10.2.1 Problem statement

The finite horizon positive LQ problem in discrete time, which is denoted byLQN
+

, consists
of minimizing the quadratic functional :

J(x̂0, (ui)
N−1
i=1 ) :=

1

2

(
N−1∑

i=0

(‖R1/2ui‖
2 + ‖C xi‖

2) + xT
NS xN

)
(10.4)

for a given positive linear system described by (10.1), where the initial statêx0 ≥ 0 is fixed,
under the constraints

∀ i ∈ {0, . . . , N}, xi ≥ 0, (10.5)

whereN is a fixed final time,R ∈ IRm×m is a symmetric positive definite matrix,C ∈ IRp×n

andS ∈ IRn×n is a symmetric positive semidefinite matrix.
In other words, theLQN

+
problem consists of minimizing a quadratic functional for agiven

positive system while requiring that the state trajectories be nonnegative for any fixed nonnega-
tive initial state, whence the positivity property should be kept for the optimal state trajectories.
In this framework, it is not required that the input function(ui)

N−1
i=0 be nonnegative.

10.2.2 Optimality conditions

Assume that the inverse ofA exists. This assumption holds for example ifA comes from
a discretization of a continuous-time system sinceA = eAch, whereAc denotes the matrix
defining the continuous time system, see Appendix C. By applying the maximum principle
in discrete time to this problem (see e.g. [HSV95]), i.e. theKarush-Kuhn-Tucker optimality
conditions, the following discrete time version of Theorem4.1.1 can be established for the
LQN

+
-optimal control problem.



186 Chapter 10. The Positive LQ Problem

Theorem 10.2.1 (Optimality conditions based on the MaximumPrinciple)
a) TheLQN

+
problem has a solution(ui)

N−1
i=0 if and only if there exist multipliersλi such that

ui = −R−1BT pi, i = 0, . . . , N − 1, where[xT
i pT

i ]T ∈ IR2n is the solution of the recurrent
Hamiltonian equation

[
xi

pi

]
= H

[
xi+1

pi+1

]
−

[
0

λi

]
, i = N − 1, . . . , 0 (10.6)

with x0 = x̂0, pN = S xN − λN , where

H =

[
A−1 A−1B R−1BT

CT C A−1 AT + CT CA−1B R−1BT

]

is the Hamiltonian matrix, and for alli = 0, . . . , N ,

xi ≥ 0, (10.7)

λi ≥ 0 (10.8)

and
λT

i xi = 0 (complementarity condition). (10.9)

b) By using the matrix form of the recurrent Hamiltonian equation, (ui)
N−1
i=0 is solution of the

LQN
+

problem if and only if there exist multiplier matricesΛi such thatui = Ki(x̂0) xi :=

−R−1BT Yi X
−1
i xi, i = 0, . . . , N − 1, where

[
Xi

Yi

]
= H

[
Xi+1

Yi+1

]
−

[
0

Λi

]
, i = N − 1, . . . , 0

with the final conditionXN = I andYN = S − ΛN , and for all i = 0, . . . , N

Λi X
−1
0 x̂0 ≥ 0, (10.10)

x̂T
0 X−T

0 ΛT
i Xi X

−1
0 x̂0 = 0 (complementarity condition) (10.11)

and
Xi X

−1
0 x̂0 ≥ 0. (10.12)

Proof : a) This result follows directly from the Karush-Kuhn-Tucker optimality conditions
with state constraints (by using the discrete-time analogue of e.g. [HSV95, Theorem 4.1]), for
necessity, and from the fact that the functional (10.4) is convex and the dynamics and inequality
constraints (10.1) and (10.5) are defined by linear functions, for sufficiency.
b) This proof is a straightforward extension of the one of [CD91, Theorem 167, pp. 63-66].
The main fact is the invertibility of the matricesXi, which can be proved by using an evaluation
lemma, as in [CD91, Corollary 134, p. 61]. See also [Bea06, Chapter 5].

2

Remark 10.2.1 A priori, in view of conditions (10.10)-(10.12), the functionKi(x̂0) in Theorem
10.2.1 (b) clearly depends upon the choice of the initial state x̂0. Stronger conditions are needed
in order to make it independent of the initial state, i.e. such that the optimal control law is of
the state feedback typeui = Ki xi. Such conditions are reported next.
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The following result follows easily from Lemma 4.1.3 (see the proof of Proposition 4.1.2).

Proposition 10.2.2 Conditions (10.10)-(10.12) are satisfied for all initial statesx̂0 ≥ 0 if and
only if the following conditions hold for alli = 0, . . . , N :

Λi X
−1
0 ≥ 0, (10.13)

ΛT
i Xi + XT

i Λi = 0 (10.14)

and
Xi X

−1
0 ≥ 0. (10.15)

Remarks 10.2.2a) Conditions (10.13)-(10.15) can be hard to check in general since the knowl-
edge ofX0 is needed to check these conditions. However they obviouslyhold withΛi = 0 in an
important particular case. See Corollary 10.2.3 below. Moreover, an algorithm is developed in
Subsection 10.2.5 in order to make these conditions more computable.
b) The optimality conditions in Theorem 10.2.1 and Proposition 10.2.2 also hold for linear
systems (10.1) that are not positive. However the positivity assumption plays a crucial role to
obtain the criteria reported in Section 10.2.3.

As in the continuous time problem, conditions can be obtained such that theLQN
+

problem has
a solution. Such conditions are based on the standard problem. The latter problem, denoted by
LQN , consists of minimizing the quadratic functional (10.4) for a given positive linear system
described by (10.1) (without any nonnegativity constrainton the state trajectory). Its solution is
given byui = Ki xi = −R−1BT Yi X

−1
i xi, i = 0, . . . , N − 1 where[XT

i Y T
i ]T ∈ IR2n×n is

the solution of the matrix recurrent Hamiltonian equation,i = 0, . . . , N − 1,
[

Xi

Yi

]
= H

[
Xi+1

Yi+1

]
,

[
XN

YN

]
=

[
I

S

]
. (10.16)

Equivalently the solution of theLQN problem is given, for alli = 0, . . . , N − 1, by

ui = −R−1BT Pi+1[I + B R−1BT Pi+1]
−1 xi, (10.17)

wherePi is the solution of the Recurrent Riccati Equation (RRE),i = N, . . . , 1, (see e.g.
[CD91]) :

−Pi−1 = CT C + AT Pi A− AT PiB(I + R−1BT PiB)−1R−1BT PiA, PN = S. (10.18)

Corollary 10.2.3 (Optimality conditions based on admissibility) The solution of the (stan-
dard) LQN problem is solution of theLQN

+
problem for allx̂0 ≥ 0 if and only if theLQN -

optimal state trajectories are admissible, i.e. nonnegative for all x̂0 ≥ 0, or equivalently, one
of the following equivalent conditions holds :
a) The standard closed-loop matrixA + B Ki is nonnegative for alli = 0, . . . , N − 1, i.e.

∀ k, l, ∀ i = 0, . . . , N − 1, [B R−1BT Pi]kl ≤ akl. (10.19)

b) The matrix solution of the matrix recurrent Hamiltonian equation (10.16) is such that for all
i = 0, . . . , N, Xi X

−1
0 ≥ 0.
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Proof : Corollary 10.2.3 follows from Theorem 10.2.1 and Proposition 10.2.2 by applying
the discrete time version of Theorem 2.1.1 (see also [Bea06]). In addition, the solution of the
LQN problem is given as in Theorem 10.2.1 where the multiplier matricesΛi are identically
equal to zero. See the proof of Corollary 4.1.4.

2

10.2.3 Positivity Criteria

In this subsection, theLQN problem is studied with the aim of finding conditions on the
problem data such that the standard closed-loop system is positive, i.e. such that the conditions
of Corollary 10.2.3 hold. This can be interpreted as solvingan inverseLQN

+
problem. The

criteria that are obtained here are specific to the discrete time case, except for Theorem 10.2.4,
which is the discrete time version of Theorem 4.2.2.

- Minimal energy control

Consider the particular problem of minimal energy control with penalization of the final
state, i.e. theLQN problem (10.1)-(10.4) whereC is equal to zero. By computing the expres-
sion ofPi in terms of the matrix solution of the recurrent Hamiltonianequation, we obtain the
following result, which is a direct adaptation of the continuous case, see Theorem 4.2.2.

Theorem 10.2.4Consider the minimal energyLQN
+

problem (10.1), (10.4)-(10.5), i.e. with
C = 0. Let us denoteλmin(R) := min{λ : λ ∈ σ(R)}. Assume thatA ≫ 0. If the spectral
radiusρ(S) of the final state penalty matrix is sufficiently small such that

ρ(S) = max
µi∈σ(S)

µi < γ :=





λmin(R) (1− σ)

‖B‖2
, if σ < 1

λmin(R) (σ − 1)

‖B‖2 σN
, if σ > 1

λmin(R)

‖B‖2N
, if σ = 1

(10.20)

whereσ := σmin(A) σmax(A), with σmin(A) (σmax(A) respectively) denoting the smallest (the
largest respectively) singular value ofA, then theLQN closed-loop system is positive and
therefore the solution of theLQN problem is solution of theLQN

+
problem.

Proof : The positivity constraint on the closed-loop matrix can be written in terms of the so-
lution Pi of the RRE (see condition (10.19)), whereB ≥ 0. In addition,Pi = Yi X

−1
i =

(AT )N−iS [I + G(N, i) S]−1 AN−i, where

G(N, i) :=

N−i−1∑

k=0

(A−1)i−N+k+1B R−1BT (AT )N−i−k−1,

and, forσ 6= 1,

‖G(N, i) S‖ ≤
‖B‖2

λmin(R)
ρ(S) Ω
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where

Ω :=

N−i−1∑

k=0

σN−i−k−1 =
1− σN−i

1− σ
.

Thus, if (10.20) holds, then

‖G(N, i) S‖ ≤
ρ(S)

γ

and

‖S [I + G(N, i) S]−1‖ ≤
ρ(S)

1− ρ(S)
γ

.

Hence, by choosingρ(S) sufficiently small, condition (10.19) will hold, since∀ k, l, akl > 0

and the sequences((AT )N−i)N
i=0 and(AN−i)N

i=0 are bounded.
2

Remarks 10.2.3a) If σ ≥ 1 and if the time horizonN is increased,ρ(S) has to be decreased
accordingly for condition (10.20) to be satisfied with a fixedmatrix R. As in the continuous
time case, this reveals a tradeoff between positivity and stability of the closed-loop system in a
receding horizon approach.
b) The minimal energy control problem with nonnegative controls and with a final state equality
constraint is solved in [Ka 02, Subsection 3.4.1] for reachable systems. Here we use a penal-
ization term in the cost instead of a final state constraint, it is not assumed that the system is
reachable and it is not required that the input function(ui)

N−1
i=0 be nonnegative.

- Nonnegative Hamiltonian matrix

A positivity criterion based on the Hamiltonian matrix is stated. This result will be used in the
next subsection.

Theorem 10.2.5If the Hamiltonian matrixH and the penalty matrixS are nonnegative and
if the solution of the matrix recurrent Hamiltonian equation is such thatX−1

0 ≥ 0, then the
LQN closed-loop system is positive and therefore the solution of theLQN problem is solution
of theLQN

+
problem.

Proof : Multiplying the matrix recurrent Hamiltonian equation (10.16) on the right byX−1
0

gives [
Xi

Yi

]
X−1

0 = H

[
Xi+1

Yi+1

]
X−1

0

with [
XN X−1

0

YNX−1
0

]
=

[
X−1

0

S X−1
0

]
.

It follows by induction that, for alli = 0, . . . , N, Xi X
−1
0 ≥ 0. Then, by using Corollary 10.2.3

(b), one gets the conclusion.
2
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- Monomial systems

Definition 10.2.1 A positive system[A, B], described by (10.1), is said to bemonomial if A is

a monomial matrix (see Appendix A.3) andB is of the formB =

[
diag[bi]

m
i=1

0(n−m)×m

]
.

For this particular class of systems, Theorem 10.2.5 leads to a positivity criteria for theLQN
+

closed-
loop system.

Theorem 10.2.6Consider a monomial system described by (10.1) and the quadratic cost (10.4)
whereC, R and S are diagonal matrices. Then theLQN closed-loop system is positive and
therefore the solution of theLQN problem is solution of theLQN

+
problem.

Proof : Let A = D P with D a positive definite diagonal matrix andP a permutation matrix
such thatP T = P−1. Using Lemma A.3.1 withCTC a diagonal matrix andP−1 a permutation
matrix, one hasCTC P−1 s

= P−1CT C which implies that, by Definition A.3.2 and Remark
A.3.1,

CT C P−1 = P−1CT CD̄

whereD̄ is a positive definite diagonal matrix. Now by using the explicit form of H with
A = D P , one gets :

H =

[
P−1 D−1 P−1 D−1 B R−1 BT

P−1 CT C D̄D−1 P−1 D + P−1 CT C D̄ D−1 B R−1 BT

]

=

[
P−1 0

0 P−1

] [
D−1 D−1 B R−1 BT

CT C D̄D−1 D + CT C D̄ D−1 B R−1 BT

]

=

[
P−1 0

0 P−1

] [
D1 D2

D3 D4

]
.

ThereforeH is nonnegative since each term of the second matrix (Di, i = 1, . . . 4) is a diagonal
and nonnegative matrix. Now, by using the matrix recurrent Hamiltonian equation with this
expression ofH, it can be shown by induction that, for alli = 0, . . . , N−1, Xi = (P−1)N−iDX,i

andYi = (P−1)N−iDY,i whereDX,i andDY,i are positive definite diagonal matrices. Indeed,
by inverse induction, first show thatXN−1 andYN−1 have this structure :

[
XN−1

YN−1

]
= H

[
XN

YN

]
= H

[
I

S

]

=

[
P−1 0

0 P−1

] [
D1 D2

D3 D4

] [
I

S

]

=

[
P−1 (D1 + D2 S)

P−1 (D3 + D4 S)

]
.

Then {
XN−1 = (P−1)N−(N−1) (D1 + D2 S) = (P−1)N−(N−1) DX,N−1

YN−1 = (P−1)N−(N−1) (D3 + D4 S) = (P−1)N−(N−1) DY,N−1.
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Now assume that {
Xi+1 = (P−1)N−(i+1) DX, i+1

Yi+1 = (P−1)N−(i+1) DY, i+1.

And show thatXi = (P−1)N−iDX,i andYi = (P−1)N−iDY,i. Observe that

[
Xi

Yi

]
= H

[
Xi+1

Yi+1

]
= H

[
(P−1)N−i−1 DX, i+1

(P−1)N−i−1 DY, i+1

]

=

[
P−1 0

0 P−1

] [
D1 D2

D3 D4

] [
(P−1)N−i−1 DX, i+1

(P−1)N−i−1 DY, i+1

]

=

[
P−1 0

0 P−1

] [
D1 (P−1)N−i−1 DX, i+1 + D2 (P−1)N−i−1 DY, i+1

D3 (P−1)N−i−1 DX, i+1 + D4 (P−1)N−i−1 DY, i+1

]

with Di (P
−1)N−i−1 s

= (P−1)N−i−1 Di for i = 1, . . . , 4 by Lemma A.3.1. Then, applying
Remark A.3.1 gives

Di (P
−1)N−i−1 = (P−1)N−i−1 Di D̄

whereD̄ is a positive definite diagonal matrix. Defining
{

D̃X := D̄ DX, i+1,

D̃Y := D̄ DY, i+1,

leads to the following identity :

[
Xi

Yi

]
=

[
P−1 0

0 P−1

] [
(P−1)N−i−1 0

0 (P−1)N−i−1

] [
D1 D̃X + D2 D̃Y

D3 D̃X + D4 D̃Y

]

=

[
(P−1)N−i 0

0 (P−1)N−i

] [
D1 D̃X + D2 D̃Y

D3 D̃X + D4 D̃Y

]

Then {
Xi = (P−1)N−i DX, i

Yi = (P−1)N−i DY, i

where {
DX, i = D1 D̃X + D2 D̃Y

DY, i = D3 D̃X + D4 D̃Y

are positive definite diagonal matrices. In particular,X0 = (P−1)N DX, 0 whereDX, 0 is a
positive definite diagonal matrix. HenceX0 is a monomial matrix andX−1

0 ≥ 0. It follows by
Theorem 10.2.5 that theLQN closed-loop system is positive.

2

Note that ifA is a diagonal matrix, Theorem 10.2.6 obviously holds. Moreover, Theorem 10.2.6
can be readily extended to the infinite horizon problem, see [Bea06].
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10.2.4 Numerical examples

Consider theLQN
+

problem for the positive system described by

xi+1 =

[
0 1

1 0

]
xi +

[
1

0

]
ui, i = 0, . . . , N − 1. (10.21)

with the costJ(x̂0, (ui)
N−1
i=0 ) =

1

2

[
N−1∑

i=0

‖ui‖
2 + xT

NS xN

]
, under the constraints∀i = 0, . . . , N,

x1
i ≥ 0 andx2

i ≥ 0, wherexj
i denotes thej th component ofxi. Notice that the matrices defin-

ing the system (10.21) are the same as those used for the numerical example of the positive
LQ

tf

+ problem in continuous time, see Section 4.3. Here, the numerical example is treated in
its discrete time version. Let the final state penalty matrixbe given by

S =

[
1 1

1 1

]
(10.22)

and N = 20. By computing the solution of theLQN problem by means of the recurrent
Hamiltonian equation, we obtain that the optimal state trajectories are not nonnegative. This
means that the solution of theLQN problem is not admissible for theLQN

+
problem. See

Figure 10.1 where the optimal state trajectories are drawn for the initial condition̂x0 = [1 0]T .

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

Time
 

 
x

1

x
2

Figure 10.1: State trajectories for system (10.21) withS given by (10.22).

The numerical solution of theLQN
+

problem has been computed for the fixed initial condition

x̂0 = [1 0]T by usingMatlab and the particular functionquadprog. This optimization
algorithm leads to the optimal control depicted in Figure 10.2. The corresponding statexi(t)

and multiplierλi(t) trajectories are depicted in Figure 10.3.
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Figure 10.2: Optimal control for system (10.21) withS given by (10.22).
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Figure 10.3: State trajectories and associated multipliers for system (10.21) withS given by
(10.22).

As was to be expected, the optimal state trajectories are numerically verified to be nonneg-
ative for all time. In this case, we obtain a solution for a fixed initial condition.
To get the solution of theLQN

+
problem for any initial condition, with an appropriate choice

of the penalty matrixS, we can use the positivity criterion of Subsection 10.2.3. Obviously,
system (10.21) is monomial and the cost verifies the conditions of Theorem 10.2.6 withS
equal to any diagonal matrix. Hence,S can be chosen in order to improve the stability of the
closed-loop system while ensuring its positivity and the optimal control is of state-feedback
form. Let us considerS = I2 and compute the matrix solution[XT

i Y T
i ]T of the Hamiltonian

equation (10.16). Then, computing the optimal controlui = Ki xi (given by (10.17)) and the
state trajectoriesxi = Xi X

−1
0 x̂0, leads to Figures 10.4 and 10.5, respectively, with the initial

conditionx̂0 = [1 0]T .
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Figure 10.4: Optimal control for system (10.21) withS = I.
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Figure 10.5: State trajectories for system (10.21) withS = I.

Let us mention that the feedbackKi is given as follows :

K0 K1 K2 · · · K18 K19 K20

[0 − 0.09] [0 − 0.09] [0 − 0.1] · · · [0 − 0.333] [0 − 0.5] [0 − 0.5]

Table 10.1: FeedbackKi of system (10.21) withS = I2.

Other illustrative examples on the discrete time problem have been done in [Bea06], wherein
a receding approach is also studied for the infinite horizon positive LQ problem.
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10.2.5 Computational method

– MATRIX ALGORITHM :

This subsection is devoted to the design of an algorithm which computes the solution
[XT

i Y T
i ΛT

i ]T of the recurrent Hamiltonian equation satisfying conditions (10.13)-(10.15)
by using the solution computed at the previous step only, that is [XT

i+1 Y T
i+1 ΛT

i+1]
T . One way

to proceed is to rewrite conditions (10.13) and (10.15). Observe that (10.15) can be developed
as :

Xi X−1
i−1 Xi−1 X−1

i−2 Xi−2 . . . X−1
1 X1︸ ︷︷ ︸

= In

X−1
0 ≥ 0

If it is assumed that
Xi X

−1
i−1 ≥ 0 for all i = 0, . . . , N (10.23)

(instead ofXi X
−1
0 ≥ 0), then

Xi X
−1
i−1︸ ︷︷ ︸

≥ 0

Xi−1 X−1
i−2︸ ︷︷ ︸

≥ 0

Xi−2 . . . X−1
1 X1 X−1

0︸ ︷︷ ︸
≥ 0

≥ 0.

Now condition (10.13) can be written as

Λi X−1
i−1 Xi−1 X−1

i−2 Xi−2 . . . X−1
1 X1︸ ︷︷ ︸

= In

X−1
0 ≥ 0.

If, in addition, it is assumed that

Λi X
−1
i−1 ≥ 0 for all i = 0, . . . , N (10.24)

(instead ofΛi X
−1
0 ≥ 0), then

Λi X
−1
i−1︸ ︷︷ ︸

≥ 0

Xi−1 X−1
i−2︸ ︷︷ ︸

≥ 0

Xi−2 . . . X−1
1 X1 X−1

0︸ ︷︷ ︸
≥ 0

≥ 0.

An algorithm using conditions (10.23) and (10.24) instead of (10.13) and (10.15) can then
be described. See Algorithm 1, where the Hamiltonian matrixH is decomposed as follows

H =

[
A−1 A−1B R−1BT

CT C A−1 AT + CT CA−1B R−1BT

]
=

[
H11 H12

H21 H22

]
(10.25)
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ALGORITHM 1

1. Init :

• Let XN = In

• SolveΛT
N + ΛN = 0 such thatXN−1 = H11 + H12 (S − ΛN) and

(a) X−1
N−1 ≥ 0

(b) ΛN X−1
N−1 ≥ 0

• ComputeYN = S − ΛN

2. For i = N − 1, . . . , 1 :

• ComputeXi = H11 Xi+1 + H12 Yi+1

• ComputeMi = H11 Xi + H12 (H21 Xi+1 + H22 Yi+1)

• SolveΛT
i Xi + XT

i Λi = 0 such that

(a) Xi [Mi −H12 Λi]
−1 ≥ 0 ; Xi X

−1
i−1 ≥ 0

(b) Λi [Mi −H12 Λi]
−1 ≥ 0 ; Λi X

−1
i−1 ≥ 0

• ComputeYi = H21 Xi+1 + H22 Yi+1 − Λi

3. End :

• ComputeX0 = H11 X1 + H12 Y1

• SolveΛT
0 X0 + XT

0 Λ0 = 0 such thatΛ0 X−1
0 ≥ 0

• ComputeY0 = H21 X1 + H22 Y1 − Λ0

To illustrate this algorithm, consider the following positive system described by

xi+1 =

(
0 1

1 0

)
xi +

(
1

0

)
ui (10.26)

and the cost (10.4) where
C = 02 ; S = I2 and R = 1. (10.27)

Assume thatN = 4. The successive steps of Algorithm 1 can be summarized as follows, with
the Hamiltonian matrix given by

H =

[
H11 H12

H21 H22

]
=




0 1 0 0

1 0 1 0

0 0 0 1

0 0 1 0


 (10.28)
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1. Init :

• X4 = I2.

• SolveΛT
4 + Λ4 = 0.

ThenΛ4 is a skew-symmetric matrix of the form :

Λ4 =

[
0 α

−α 0

]

with an arbitrarily parameterα ∈ IR such that

X3 = H11 X4 + H12(−Λ4) =

(
0 1

2 −α

)

verifies :

(a) X−1
3 =

[
1
2
α 1

2

1 0

]
≥ 0 ⇔ α ≥ 0

(b) Λ4 X−1
3 =

[
α 0

−1
2
α2 −1

2
α

]
≥ 0 with X−1

3 ≥ 0 ⇔ α = 0.

These conditions implies that the parameterα is equal to zero and thenΛ4 = 02 and

X3 =

[
0 1

2 0

]
.

• ComputeY4 = S − Λ4 = I2.

2. For i = 3 :

• X3 =

[
0 1

2 0

]
.

• ComputeM3 = H11 X3 + H12 (H21 X4 + H22 Y4) =

[
2 0

0 2

]
.

• Let Λ3 =

[
a1 a2

a3 a4

]
. SolveΛT

3 X3 + XT
3 Λ3 =

[
4 a3 a1 + 2 a4

a1 + 2 a4 2 a2

]
= 0, that

is a1 = −2 a4, a2 = 0, a3 = 0 with a4 ∈ IR such that

(a) X3 [M3 −H12 Λ3]
−1 =

[
−1

4
a4

1
2

1 0

]
≥ 0 ; a4 ≤ 0

(b) Λ3 [M3 −H12 Λ3]
−1 =

[
−1

2
a4 0

−1
4
a2

4
1
2
a4

]
≥ 0 ; a4 = 0

ThenΛ3 = 02.

• ComputeY3 = H21 X4 + H22 Y4 − Λ3 =

[
0 1

1 0

]
.



198 Chapter 10. The Positive LQ Problem

3. For i = 2 :

• ComputeX2 =

[
2 0

0 2

]
.

• ComputeM2 = H11 X2 + H12 (H21 X3 + H22 Y3) =

[
0 2

3 0

]
.

• Let Λ2 =

[
b1 b2

b3 b4

]
. SolveΛT

2 X2 + XT
2 Λ2 =

[
4 b1 2 b3 + 2 b2

2 b3 + 2 b2 4 b4

]
= 0,

that isb1 = 0, b2 = −b3, b4 = 0 with b3 ∈ IR such that

(a) X2 [M2 −H12 Λ2]
−1 =

[
−1

3
b3

2
3

1 0

]
≥ 0 ; b3 ≤ 0

(b) Λ2 [M2 −H12 Λ2]
−1 =

[
−1

2
b3 0

−1
6
b2
3

1
3
b3

]
≥ 0 ; b3 = 0

ThenΛ2 = 02.

• ComputeY2 = H21 X3 + H22 Y3 − Λ2 = I2.

4. For i = 1 :

• ComputeX1 =

[
0 2

3 0

]
.

• ComputeM1 = H11 X1 + H12 (H21 X2 + H22 Y2) =

[
3 0

0 3

]
.

• Let Λ1 =

[
c1 c2

c3 c4

]
. SolveΛT

1 X1 + XT
1 Λ1 =

[
6 c3 2 c1 + 3 c4

2 c1 + 3 c4 4 c2

]
= 02,

that isc1 = −3
2
c4, c2 = 0, c3 = 0 with c4 ∈ IR such that

(a) X1 [M1 −H12 Λ1]
−1 =

[
−1

3
c4

2
3

1 0

]
≥ 0 ; c4 ≤ 0

(b) Λ1 [M1 −H12 Λ1]
−1 =

[
−1

2
c4 0

−1
6
c2
4

1
3
c4

]
≥ 0 ; c4 = 0

ThenΛ1 = 02.

• ComputeY1 = H21 X2 + H22 Y2 − Λ1 =

[
0 1

1 0

]
.

5. End :

• ComputeX0 =

[
3 0

0 3

]
.

• Let Λ0 =

[
d1 d2

d3 d4

]
. SolveΛT

0 X0 + XT
0 Λ0 =

[
6 d1 3 d3 + 3 d2

3 d3 + 3 d2 6 d4

]
= 02

that isd1 = 0, d2 = −d3, d4 = 0 with d3 ∈ IR such that

Λ0 X−1
0 =

[
0 1

3
d2

1
3
d3 0

]
≥ 0 ; d2, d3 ≥ 0
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ThenΛ0 =

[
0 d2

d3 0

]
with d2, d3 ∈ IR such thatd2, d3 ≥ 0.

• ComputeY0 = H21 − Λ0 =

[
1 −d2

−d3 1

]
.

Now let x0 = [1 0]T and compute the state trajectoriesxi and the associated optimal
controlui by using the link between the vector and matrix form of the recurrent Hamiltonian
equation (obtained as in the continuous time case, see equation (3.20) in the proof of Theorem
3.2.1 b)) : 


xi

pi

λi



 :=




Xi

Yi

Λi



 X−1
0 x0. (10.29)

and
ui = −R−1BT pi.

The resulting solutionsxi, λi, pi andui are given in Table 10.2 :

i = 0 i = 1 i = 2 i = 3 i = 4

xi

[
1

0

] [
0

1

] [
2
3

0

] [
0
2
3

] [
1
3

0

]

λi

[
0

1
3
d3

] [
0

0

] [
0

0

] [
0

0

] [
0

0

]

pi

[
1
3

−1
3
d3

] [
0
1
3

] [
1
3

0

] [
0
1
3

] [
1
3

0

]

ui −1
3

0 −1
3

0 −1
3

Table 10.2: Solutions of system (10.26) with (10.27) by applying Algorithm 1.

This example shows how the algorithm can be applied in order to obtain the optimal state
and input trajectories. However, the algorithm is applied here with a very small value ofN .
In fact, increasing the final horizonN gives, either calculations which are quickly very com-
plicated to solve, or conditions which are incompatible, notably conditions (a) and (b) in the
loop. Another algorithm is developed below by using the conditions of Theorem 10.2.1 and the
vector recurrent Hamiltonian equation (10.6).
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Remark 10.2.4 In order to check the results of Table 10.2, the solution of theLQN
+

problem is
computed by using the optimization algorithmquadprog in Matlab with N = 4. Moreover,
let us remark that system (10.26), withC, S andR given by (10.27), is the monomial system
(10.21) which is studied in Subsection 10.2.4. Therefore, the solution can be computed by solv-
ing the standard solution of the Hamiltonian equation (10.16) with N = 4. This two different
ways to compute the solution lead to results given in Table 10.2, with the multipliersλi = 0 for
all i.

– VECTOR ALGORITHM :

Here, the solution of theLQN
+

problem is computed by means of the vector recurrent Hamil-
tonian equation (10.6). An algorithm can be described as follows. See Algorithm 2, with the
decomposition ofH as in (10.25).
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ALGORITHM 2

1. Init :

• Fix the final timeN

• ChoosexN ≥ 0

• ComputeλN =




α1
N
...

αn
N


 such that

(a) λT
NxN = 0

(b) λN ≥ 0

• ComputepN = SxN − λN

2. For i = N − 1, . . . , 1 :

• Computexi = H11 xi+1 + H12 pi+1

• Computeλi such that

(a) λT
i xi = 0

(b) λi ≥ 0

(c) xi ≥ 0

• Computepi = H21 xi+1 + H22 pi+1 − λi

3. End :

• Computex0 = H11 x1 + H12 p1

• Computeλ0 such that

(a) λT
0 x0 = 0

(b) λ0 ≥ 0

(c) x0 ≥ 0

• Computep0 = H21 x1 + H22 p1 − λ0

• Check thatxi andλi are such that

(a) λT
i xi = 0

(b) λi ≥ 0 for i = 0, . . . , N

(c) xi ≥ 0

with a good choice of parametersαj
i for i = 0, . . . , N and

j = 1, . . . , n.
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Consider again system (10.26) to illustrate this algorithm, i.e.

xi+1 =

(
0 1

1 0

)
xi +

(
1

0

)
ui,

and the cost (10.4) where

C = 02, R = 1, S =

[
1 1

1 1

]
. (10.30)

Let us apply Algorithm 2 to system (10.26), (10.30) :

1. Init :

• Let N = 4 with n = 2.

• Choosex4 =

[
1

0

]
.

• Computeλ4 =

[
α1

4

α2
4

]
such that

(a) λT
4 x4 = 0 ⇔ α1

4 = 0

(b) λ4 ≥ 0 ⇔ λ4 =

[
0

α2
4

]
≥ 0 with α2

4 ≥ 0.

• Computep4 = Sx4 − λ4 =

[
1

1− α2
4

]
.

2. For i = 3 :

• Computex3 = H11 x4 + H12 p4 =

[
0

2

]
.

• Computeλ3 =

[
α1

3

α2
3

]
such that

(a) λT
3 x3 = 0 ⇔ α2

3 = 0

(b) λ3 ≥ 0 ⇔ α1
3 ≥ 0 i.e. λ3 =

[
α1

3

0

]

(c) x3 =

[
0

2

]
≥ 0

• Computep3 = H21 x4 + H22 p4 − λ3 =

[
1− α2

4 − α1
3

1

]
.

3. For i = 2 :

• Computex2 = H11 x3 + H12 p3 =

[
2

1− α2
4 − α1

3

]
.

• Computeλ2 =

[
α1

2

α2
2

]
such that
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(a) λT
2 x2 = 0 ⇔ α1

2 = 1
2
(−1 + α2

4 + α1
3) α2

2

(b) λ2 ≥ 0 with x2 ≥ 0 givesα2
2 = 0. Thenλ2 =

[
0

0

]

(c) x2 ≥ 0 ⇔ 1− α2
4 − α1

3 ≥ 0

• Computep2 = H21 x3 + H22 p3 − λ2 =

[
1

1− α2
4 − α1

3

]
.

4. For i = 1 :

• Computex1 = H11 x2 + H12 p2 =

[
1− α2

4 − α1
3

3

]
.

• Computeλ1 =

[
α1

1

α2
1

]
such that

(a) λT
1 x1 = 0 ⇔ α1

1 =
3 α2

1

−1+α2
4
+α1

3

(b) λ1 ≥ 0 with x1 ≥ 0 givesα2
1 = 0. Thenλ1 =

[
0

0

]
.

(c) x1 ≥ 0 ⇔ 1− α2
4 − α1

3 ≥ 0

• Computep1 = H21 x2 + H22 p2 − λ1 =

[
1− α2

4 − α1
3

1

]
.

5. End :

• Computex0 = H11 x1 + H12 p1 =

[
3

2− 2 α2
4 − 2 α1

3

]
.

• Computeλ0 =

[
α1

0

α2
0

]
such that

(a) λT
0 x0 = 0 ⇔ α1

0 = 2
3
(−1 + α2

4 + α1
3) α2

0

(b) λ0 ≥ 0 with x0 ≥ 0 givesα2
0 = 0. Thenλ0 =

[
0

0

]
.

(c) x0 ≥ 0 ⇔ 1− α2
4 − α1

3 ≥ 0

• Computep0 = H21 x1 + H22 p1 − λ0 =

[
1

1− α2
4 − α1

3

]
.

Finally, the resulting solutionsxi, λi, pi andui = −R−1BT pi are summarized in Table 10.3,
whereα, β ∈ IR such thatα, β ≥ 0 and1− α − β ≥ 0. These results have been numerically
verified with several values ofα andβ by using the optimization algorithmquadprogwith x0

given as in Table 10.3.
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i = 4 i = 3 i = 2 i = 1 i = 0

xi

[
1

0

] [
0

2

] [
2

1− α− β

] [
1− α− β

3

] [
3

2− 2 α− 2 β

]

λi

[
0

α

] [
β

0

] [
0

0

] [
0

0

] [
0

0

]

pi

[
1

1− α

] [
1− α− β

1

] [
1

1− α− β

] [
1− α− β

1

] [
1

1− α− β

]

ui −1 −1 + α + β −1 −1 + α + β −1

Table 10.3: Solutions of system (10.26) with (10.30) by applying the Algorithm 2.

This example shows that the conditions of Theorem 10.2.1 arecomputable. However, these
two algorithms also reveal that they can be applied easily with a small final timeN . Obvi-
ously using a larger final time increases the difficulty of thecalculations. A lot of studies have
been done on several algorithms but currently, we have not managed to create a systematic
algorithm for computing solutions of theLQN

+
problem by using the recurrent Hamiltonian

equation (under its vector form or matrix form). The idea is to use, if it is possible, conditions
(10.13)-(10.15) of Proposition 10.2.2 to find a solution of theLQN

+
problem for any nonneg-

ative initial condition. If it is not possible, the class of initial conditions for which it works
should be found as well as an (matrix) algorithm for this class of initial conditions.



Conclusions and Further Research
Perspectives

The purpose of the research work described in this thesis wasthe study of the linear quadratic
optimal control problem for input/state-invariant linearsystems and its application to the partic-
ular locally positively invariant nonlinear system described by the chemostat model. We have
developed theoretical results and numerical methodologies in order to solve the problem of co-
existence of species in a chemostat. In the following paragraphs, we summarize our results and
suggest some possible directions for future research.

In the first part of this thesis, important results have been developed to describe the input/state-
invariance of time-varying and time-invariant linear systems. This input and/or state-invariance
has been characterized by the matrices which describe the dynamics. The well-known particu-
lar case of positive systems has also been briefly described.Here, the input-invariance has been
studied in the particular case of state-feedback control. It could be interesting to develop similar
results for the general case of systems[A(·) B(·)] or [A, B] with any inputu.

The main part of this thesis was devoted to the study of the linear quadratic problem in
finite and infinite horizon, for input/state-invariant systems and for positive systems. In both
cases, in finite horizon, necessary and sufficient optimality conditions were obtained by using
the maximum principle with state and input constraints. Moreover, optimality conditions were
established which were based on the admissibility of the solution of the standardLQtf problem.
In addition, for the positiveLQ

tf

+ problem, sufficient conditions were stated in terms of the ma-
trix solution of the RDE and the particular problem of minimal energy control with penalization
of the final state was studied. Moreover, analytical and numerical studies of trajectories were
performed on examples.

The LQ problem with constraints has already been studied, often with nonnegative con-
straints only, either on the state or on the input. The specific feature of the approach that is
followed here is to describe the LQ problem for general stateand input constraints, by using the
admissibility of the solution of the standardLQtf problem, with the objective of applying the
results and the methodologies to a biological application.Obviously, another research possibil-
ity is to solve the input/state-invariant or the positive LQproblem for itself, by computing the
multipliers associated to the constraints and by computingthe matrix solutions of the Hamil-
tonian differential equation. In the numerical examples, astandard optimization algorithm was
used in order to solve the problems. It would be interesting to find an ad hoc control algorithm
adapted to this problem.
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A receding horizon approach was developed in order to obtaina solution of the infinite
horizon input/state-invariantLQ∞

ū,x̄
problem. For the positiveLQ∞

+
problem, criteria were

established, by using a Newton-like iterative scheme, an Hamiltonian approach and the study of
a diagonal solution of the ARE. For the unstable case, the iterative scheme was revealed hard to
implement. Thus a perspective for this work is to analyze theunstable case either with another
iterative scheme or with another methodology that would be more adapted to this special case.
Finally, in the last chapter of this part, the inverse input/state-invariantLQinv

ū,x̄
problem was

described and solved by using LMIs or BMIs. Further study of the LMIs and BMIs would be
attractive in order to implement a systematic method to solve the inverse input/state-invariant
or the inverse positive LQ problem. In addition, it would be interesting to study the proof of the
convergence of the heuristic iterative process described in Chapter 7.

The last part was devoted to the application of the input/state-invariant LQ problem in order
to solve the problem of coexistence of species in competition in a chemostat. The methodology
that was used is to guarantee the local positive input/state-invariance of the nonlinear system
(which describes the chemostat model) by ensuring the input/state-invariance of its linear ap-
proximation around an equilibrium, with the application ofan appropriate LQ-optimal control.
An interesting perspective in this framework can be, of course, the study of the input/state-
invariance of nonlinear systems. An advanced study of nonlinear systems can also be relevant
in order to obtain a global coexistence of species. The main objective of this study was to apply
the theory of the input/state-invariant LQ problem on an attractive biological application. Other
methodologies could be more adapted to solve the problem of coexistence by considering the
nonlinear model itself, instead of performing the analysison the linearized system.

Finally, the last chapter was devoted to the discrete time case, for which the well-known
results on positive systems have been recalled before considering the positiveLQN

+
problem

in finite horizon. The analysis was similar to the one of the continuous time case and there-
fore most of the results were merely adaptations of the continuous time problem. Furthermore,
the study of monomial systems (which include the well-knownclass of compartmental systems,
which are significant in applications) was really specific tothe discrete time case. By describing
a new concept for monomial matrices (namely structural similarity), we have proved that the
positiveLQN

+
problem had a solution for this particular class of positively invertible systems.

Future possible work in this framework is to adapt the results of input/state-invariant continu-
ous time systems in order to obtain similar results for the input/state-invariant LQ problem in
discrete time. A receding horizon approach can also be developed for the infinite horizon LQ
problem. It was briefly described in [Bea06] for the positiveLQ problem, notably with some
numerical examples. Another perspective for the discrete time case is to develop an adapted
iterative scheme which converges to the solution of the recurrent Riccati equation, as in the
continuous time positiveLQ∞

+
problem. Finally, an inverse LQ problem can also be described

for discrete time systems.

In conclusion, the research work reported in this thesis yields some methods for solving the
LQ-optimal control problem for input/state-invariant linear systems. Several perspectives have
been proposed in order to improve them. Finally, we hope thatthis work will be useful, in some
way, for further research.



Summary of Contributions

Our main contribution is the study of the LQ-optimal controlproblem with state and input
constraints and the application to the problem of coexistence of species in a chemostat model.
Our contributions are summarized as follows :

• characterizations of input and/or state-invariant time-varying systems in terms of the ma-
trices defining the dynamics (Chapter 1) ;

• a proof of optimality conditions for the input/state-invariantLQ
tf

ū,x̄ problem based on the
maximum principle (Theorem 3.2.1) ;

• positivity criteria for the positiveLQ
tf

+ problem in finite horizon (in terms of an upper
bound of the solution of the RDE (Theorem 4.2.1), via the study of the minimal energy
control problem (Theorems 4.2.2 and 10.2.4) ;

• a definition and a characterization of an equivalence relation (structural similarity) for the
set of monomial matrices (Definition A.3.2 and Lemma A.3.1) ;

• a positivity criterion for the positiveLQN
+

problem in discrete time for monomial systems
(Theorem 10.2.6) ;

• the study of the infinite horizon positiveLQ∞

+
problem by means of a Newton type iter-

ative scheme (Section 6.1) ;

• the study of the inverse input/state-invariantLQinv
ū,x̄

problem by means of LMIs and BMIs
(Chapter 7) ;

• a criterion of local positive invariance of a nonlinear system by means of the input/state-
invariance of its linear approximation around an equilibrium (Theorem 8.2.1) ;

• the resolution of the problem of coexistence of species in achemostat model by applying
an appropriate LQ-optimal control (Chapter 9, Sections 9.3and 9.4) ;

• the development of specific numerical examples.

Up to our knowledge, the proofs which are detailed in this thesis are part of its contributions.
If a cited result is already available in the literature, we only mention a reference without giving
a proof. Finally, part of this thesis (especially Chapters 4, 6 and 10) is based on the following
publications :
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208 Summary of Contributions

Journal paper

[BW10] – 2010 : Ch. Beauthier and J. J. Winkin,LQ-optimal control of positive linear systems,
Optimal control : Applications and Methods, Vol. 31, No. 6, pp. 547-566, 2010.

Conference proceedings (with review process)

• [LWB06] – 2006 : M. Laabissi and J. J. Winkin and Ch. Beauthier, On the positive LQ-
problem for linear continuous-time systems, Proceedings of the second Multidisciplinary
International Symposium on Positive Systems : Theory and Applications (POSTA 2006),
Grenoble, France, in Lecture Notes in Control and Information Sciences, Vol. 341, pp.
295-302, 2006.

• [BW08] – 2008 : Ch. Beauthier and J. J. Winkin,Finite horizon LQ-optimal control
for continuous time positive systems, Proceedings of the Eighteenth International sym-
posium on Mathematical Theory of Networks and Systems (MTNS2008), Virginia Tech,
Blacksburg, Virginia, USA, CD-ROM Paper Nr 054, 2008.

• [BW09] – 2009 : Ch. Beauthier and J. J. Winkin,On the positive LQ-problem for linear
discrete time systems, Proceedings of the Third Multidisciplinary International Sympo-
sium on Positive Systems: Theory and Applications (POSTA 2009), in Positive Systems,
pp. 45-53, 2009.

Master’s thesis (DEA)

[Bea06] – 2006 : Ch. Beauthier,Le problème linéaire quadratique positif, Mémoire de DEA,
Facultés Universitaires Notre-Dame de la Paix (FUNDP), Namur, 2006.



Main Notations and Abbreviations

General Abbreviations

e.g. for example
i.e. that is
viz. namely
w.r.t with respect to
w.l.g. without loss of generality
psd positive semidefinite
pd positive definite
LTI linear time invariant
LTV linear time varying
LQ linear quadratic
LMI linear matrix inequality
BMI bilinear matrix inequality
LMIs linear matrix inequalities
BMIs bilinear matrix inequalities

Riccati equation

RDE Riccati differential equation
ARE algebraic Riccati equation
RRE recurrent Riccati equation
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210 Main Notations and Abbreviations

Linear Quadratic problem

Finite horizon
LQtf standard LQ problem
LQ

tf

+ positive LQ problem
LQ

tf

x̄ state-invariant LQ problem
LQ

tf

ū input-invariant LQ problem
LQ

tf

ū,x̄ input/state-invariant LQ problem
LQN standard LQ problem (in discrete time)
LQN

+
positive LQ problem (in discrete time)

Infinite horizon
LQ∞ standard LQ problem
LQ∞

+
positive LQ problem

LQ∞

ū,x̄
input/state-invariant LQ problem

LQ∞

inv inverse standard LQ problem
LQinv

+
inverse positive LQ problem

LQinv
x̄

inverse state-invariant LQ problem
LQinv

ū,x̄ inverse input/state-invariant LQ problem
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Algebra

IR set of real numbers
CI set of complex numbers
IR+ nonnegative orthant
Re(z) real part of a complexz
| · | absolute value of a scalar
‖ · ‖ vector or matrix norm (Euclidean unless otherwise specified)
ei ith vector of the canonical basis
Im identity matrix of dimensionm
0m zero matrix of dimensionm
σ(A) set of eigenvalues ofA
ρ(A) spectral radius ofA
N (A) the null space ofA
λmin(A) minimum eigenvalue ofA
L−(A) stable subspace, i.e.A-invariant subspace spanned by the (generalized)

eigenvectors corresponding to eigenvalues with negative real parts
L0(A) critical subspace, i.e.A-invariant subspace spanned by the (generalized)

eigenvectors corresponding to eigenvalues with zero real parts
L0+(A) unstable subspace, i.e.A-invariant subspace spanned by the (generalized)

eigenvectors corresponding to eigenvalues with nonnegative real parts
λF Frobenius eigenvalue ofA
A ≥ 0 A is a nonnegative matrix, i.e. every entries ofA are nonnegative
A > 0 A is a positive matrix, i.e. every entries ofA are nonnegative

and at least one entry is (strictly) positive
A≫ 0 A is a strictly positive matrix, i.e. every entries ofA are (strictly) positive
A

s
= B A andB are structurally similar

A+
l left pseudo-inverse ofA

A+
r right pseudo-inverse ofA
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System theory

x(t) state trajectory
u(t) input trajectory
U set of piecewise continuous input functions
R = [A(·), B(·)] system descriptioṅx(t) = A(t) x(t) + B(t) u(t)

denoted byR = [A, B] in the time-invariant case
R = [A(·), 0] system descriptioṅx(t) = A(t) x(t)

denoted byR = [A, 0] in the time-invariant case
Φ(t, t0) fundamental matrix of system[A(·), 0] which satisfies{

∂Φ
∂t

(t, t0) = A(t) Φ(t, t0), ∀ t ∈ [t0, tf ]

Φ(t0, t0) = In

ΦK(t, t0) fundamental matrix of system[A + B K(·), 0] which satisfies{
∂
∂t

ΦK(t, t0) = (A + B K(t)) ΦK(t, t0), ∀ t ∈ [t0, tf ]

ΦK(t0, t0) = In

NO(C, A) unobservable subspace
ND(C, A) undetectable subspace
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Appendix A

Particular Matrices

This appendix is devoted to particular matrices as nonnegative and Metzler matrices which
play an important role in system theory. There exist a large class of references devoted to these
particular matrices, e.g. those used here are the following: [BR97, Chapter 1], [HJ85, Chapter
8], [Ava00, Chapters 2-3], [LT85, Chapter 15], [BP94, Chapter 2], [Min88, Chapters 1 and 4],
[BNS89, Chapter 2] and [HCH10, Chapter 2]. Definitions and main properties (as the spectral
properties) are given for such matrices.

Then the general theory of Z-matrices and M-matrices is briefly described, based on the
following references : [BR97, Chapter 1], [BP94, Chapter 6], [Min88, Chapter 6], [Guo01]
and [BNS89, Chapter 2]. In theLQN

+
problem in discrete time, see Chapter 10.2, we use the

class of monomial matrices or positively invertible matrices. Their properties are studied in this
chapter, based on [PC72], [BP74] and [BP94, Chapter 5]. Moreover, an equivalence relation on
the set of such matrices is defined.

Finally, at the end of the chapter, the definition of the Kronecker product and its use for the
Lyapunov equation are recalled, see [HJ91, Chapter 4] and [LT85, Chapter 12]. It is used in
Chapter 6 for the study of the positiveLQ∞

+
problem in infinite horizon.

A.1 Nonnegative and Metzler matrices

A.1.1 Definitions

Definition A.1.1

• A matrixA ∈ IRn×n is said to benonnegative, denotedA ≥ 0, if for all i, j = 1, . . . , n,

aij ≥ 0, i.e. every entries ofA are nonnegative.

• A matrix A ∈ IRn×n is said to bepositive, denotedA > 0, if A ≥ 0 and there exist
i, j = 1, . . . , n, aij > 0, i.e. every entries ofA are nonnegative and at least one entry is
(strictly) positive.

• A matrix A ∈ IRn×n is said to bestrictly positive, denotedA ≫ 0, if for all i, j =

1, . . . , n, aij > 0, i.e. every entries ofA are (strictly) positive.
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216 Chapter A. Particular Matrices

In particular, these notations and definitions obviously apply to vectorsx ∈ IRn. However
for the scalar case, “strictly positive” coincides with “positive”.

• A matrixA ∈ IRn×n is said to be aMetzler matrix , if for all i, j = 1, . . . , n, i 6= j,

aij ≥ 0, i.e. every off-diagonal entries ofA are nonnegative.

The following result obviously holds :

Proposition A.1.1 A matrixA is a Metzler matrix if and only if there existsα ∈ IR, α > 0 such
thatA + α In ≥ 0.

Therefore we can move easily from nonnegative matrices to Metzler matrices and conversely.
By applying the definition of a nonnegative matrix, one has the following result :

Proposition A.1.2 A is a nonnegative matrix if and only if the positive orthant IRn
+ is A-

invariant, i.e.
∀ x ∈ IRn

+, A x ∈ IRn
+.

One has a similar result for Metzler matrix :

Proposition A.1.3 A is a Metzler matrix if and only if

∀ t ≥ 0 : eA t ≥ 0, (A.1)

or equivalently,∀ t ≥ 0, the positive orthant IRn+ is eA t-invariant, i.e.

∀ t ≥ 0, ∀ x ∈ IRn
+, eA tx ∈ IRn

+.

Proof :
Necessity: SinceA is a Metzler matrix, by Proposition A.1.1, there existsα > 0 such that
A + α In ≥ 0. Then

∀ t ≥ 0, eA+α In =

∞∑

k=0

(A + α In)k

k!
tk ≥ 0.

Hence, withe(A+α I) t = eA t eα t ≥ 0, one has∀ t ≥ 0, eA t ≥ 0 sinceeα t is a positive scalar.

Sufficiency: SinceA =
d

dt
(eA t)∣∣

t=0

= lim
t→0+

eA t − In

t
, we obtain, withej denoted thej th vector

of the canonical basis, fori 6= j :

aij = lim
t→0+

< eA t ej − ej , ei >

t

= lim
t→0+

{
< eA t ej, ei >

t
−

< ej , ei >

t

}

= lim
t→0+

< eA t ej , ei >

t
≥ 0.

Henceaij ≥ 0 for i 6= j.
2
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Remarks A.1.1

• TheA-invariance of IRn+ implies theeA t-invariance of IRn+.

Indeed, if∀ x ∈ IRn
+, A x ∈ IRn

+, then, withx ≥ 0 andt ≥ 0, one has :

eA t x =
∞∑

k=0

(A t)k

k!
x =

∞∑

k=0

Ak x

k!
tk.

Then sinceA x ≥ 0, by recurrency for allk, Ak x ≥ 0. HenceeA t x ≥ 0.

• Conversely, theeA t-invariance of IRn+ does not imply necessarily itsA-invariance.

Indeed, consider the case wheren = 1. Then IR+ is eA t-invariant since for allt ≥ 0,
eA t > 0. However IR+ is notA-invariant if A < 0.

A.1.2 Spectral properties

First we recall the definitions of spectrum and spectral radius and the concept of dominant
eigenvalue and eigenvector associated to nonnegative and Metzler matrix.

Definition A.1.2

• Thespectrum of a matrixA, denotedσ(A), is the set of its eigenvalues, i.e.

σ(A) := {λ ∈ CI : A x = λ x, x 6= 0}.

• Thespectral radius of a matrixA, denotedρ(A), is defined as :

ρ(A) := max{|λ| : λ ∈ σ(A)}.

• A dominant eigenvalue, λd, of a nonnegative matrixA, is defined as follows :

∀ λ ∈ σ(A) : |λd| ≥ |λ|, i.e. |λd| = ρ(A).

• A dominant eigenvalue, λd, of a Metzler matrix A, is defined as follows :

∀ λ ∈ σ(A) : Re(λd) ≥ Re(λ).

• A dominant eigenvector, vd, of a matrixA is an eigenvector associated to a dominant
eigenvalue, i.e.A vd = λ vd.

We also use the notationsL−(A), L0(A), L+(A) which denote theA-invariant subspaces spanned
by a basis of (generalized) eigenvectors corresponding to eigenvalues with negative, zero and
positive real parts. For a matrixA,N (A) denotes the null space.
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The following results on the spectral properties of nonnegative and Metzler matrices are well-
known, see e.g. [Ava00, Chapter 3], [HJ85, Chapter 8] and [HCH10, Chapter 2].

Theorem A.1.4 (Perron-Frobenius for nonnegative matrices) Let A be a nonnegative ma-
trix. Thenρ(A) is an eigenvalue ofA, called the Frobenius eigenvalue, and there exists a
positive eigenvectorx, associated toρ(A), which is called the Frobenius eigenvector, such that
A x = ρ(A) x and∀ λ ∈ σ(A), |λ| ≤ ρ(A).

Theorem A.1.5 (Perron-Frobenius for Metzler matrices) Let A be a Metzler matrix. Then
there exists a real eigenvalueλF of A, which is called the Frobenius eigenvalue, such that there
exists a positive eigenvectorx, associated toλF , which is called the Frobenius eigenvector, such
thatA x = λF x and∀ λ ∈ σ(A), Re(λ) ≤ λF .

A.2 Z-matrices and M-matrices

Definition A.2.1

• A realn× n-matrixD is said to be aZ-matrix if −D is a Metzler matrix.

• A realn× n-matrixD is said to be aM-matrix if D = s In− D̃ for some matrixD̃ ≥ 0

and for some real numbers ≥ ρ(D̃).

It can be easily seen that anyZ-matrix D is of the formD = s In − D̃ for some real number
s and some matrix̃D ≥ 0, and that anyM-matrix is aZ-matrix. Moreover, by the Perron-
Frobenius theorem, one has the following result :

Proposition A.2.1 A M-matrixD = s In − D̃ is nonsingular if and only ifs > ρ(D̃).

The following result can be found e.g. in [BP94] and [HJ91, Theorem 2.5.3, pp. 114-115] ; see
also [GL00b]. Observe that, in those references, aM-matrix is assumed to be nonsingular by
definition. In the present context, it is useful to considerM-matrices which might possibly be
singular. See also [HCH10, Chapter 2].

Theorem A.2.2 For anyZ-matrixD, the following assertions are equivalent :
(i) D is nonsingular andD−1 ≥ 0.
(ii) Dx≫ 0 for some vectorx≫ 0.
(iii) All eigenvalues ofD have positive real parts.
Moreover any of these assertions characterizes the fact that D is a nonsingularM-matrix, i.e.
such thatD = s In − D̃, whereD̃ ≥ 0 ands > ρ(D̃).

Another useful result is the following proposition :

Proposition A.2.3 If A is a nonsingularM-matrix, then the solutionx of A x = q with q ≫ 0

is such thatx≫ 0.
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Proof : SinceA is a nonsingularM-matrix,A−1 ≥ 0 andx = A−1q ≥ 0, by Theorem A.2.2.
Thenx≫ 0. By contradiction, if there existsxi = 0, then, withA−1 := B, one has

xi =

n∑

j=1

bijqj = 0

with qj ≫ 0 andbij ≥ 0. That isbij = 0, for all j which is in contradiction with the fact thatA

is nonsingular. Thenx is strictly positive.
2

Finally, the following proposition gives a criterion on thestability of aM-matrix, see [HCH10,
Theorem 2.10] :

Proposition A.2.4 If A is a nonsingularM-matrix, then−A is asymptotically stable, i.e.∀λ ∈
σ(−A), Re(λ) < 0.

A.3 Monomial matrices

Definition A.3.1 A nonnegative matrixM is said to bemonomial if M is a diagonal matrix
up to a permutation, i.e.M = D P = diag[mi]

n
i=1 P , whereD is a positive definite diagonal

matrix andP is a permutation matrix, or equivalentlyM−1 ≥ 0, see e.g. [BP74] and [PC72].

Definition A.3.2 Let L andM be monomial matrices.L andM are said to bestructurally
similar , denoted byL

s
= M , if and only if there exist positive definite diagonal matricesD1 and

D2 such thatL = D1 M D2.

It is easy to check that “
s
=” is an equivalence relation on the set of monomial matrices,see

[Bea06, Theorem 5.2.6].

Remark A.3.1 In Definition A.3.2, one of the diagonal matricesDi can be chosen as the iden-
tity matrix, such that one hasL

s
= M with L = D1 M or with L = M D2.

The following straightforward result is needed in the studyof theLQN
+

problem for positive
discrete time systems, see Subsection 10.2.3.

Lemma A.3.1 Let L andM be monomial matrices. LetP be a permutation matrix such that
L = D1 P andM = P D2 whereD1 andD2 are positive definite diagonal matrices. ThenL

andM are structurally similar.

Proof : By assumptionL
s
= P andM

s
= P . Then, by the transitivity and symmetry properties

of the equivalence relation
s
=, it follows thatL

s
= M .
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A.4 Kronecker product

We also need the Kronecker product defined as follows :

Definition A.4.1 TheKronecker product of matricesC = (cij) ∈ IRk×l andD ∈ IRm×n of
any size, is the matrixC ⊗D ∈ IRkm×ln given by :

C ⊗D :=




c11D ... c1lD

. ... .

ck1D ... cklD



 . (A.2)

The stack operator maps anm × n-matrix into anmn-vector. More precisely, the stack of an
m× n-matrixC, denoted byvect(C), is themn-vector formed by stacking the columns ofC.

With the definition of the Kronecker product and the vectorvect(C) defined for a matrix
C, well-known matrix equations can be rewritten, as the Sylvester equation and the Lyapunov
equation, see e.g. [HJ91, Chapter 4] :

Proposition A.4.1 For given matricesC, D, Q and X with compatible sizes, the Sylvester
equation

C X + X D = Q

is equivalent to the linear algebraic equation

(I ⊗ C + DT ⊗ I) vect(X) = vect(Q),

and the Lyapunov equation
CTX + X C = −Q

is equivalent to
(I ⊗ CT + CT ⊗ I) vect(X) = − vect(Q).

In addition, the following result can be easily shown, see [HJ91, pp. 268-269] or [LT85, pp. 411-
412],

Proposition A.4.2 If C andD areM-matrices, then so is for(I ⊗ C + DT ⊗ I).



Appendix B

Maximum Principle with State and Input
Constraints

In this chapter, the maximum principle with state and input constraints is presented, as it is
developed in [HSV95], with the same notations. These results are used in Part II and Subsection
9.4.2.

B.1 Problem statement

Consider the following optimal control problem : maximize the following cost

J =

∫ T

0

F (x(t), u(t), t) dt + S(x(T ), T ) (B.1)

for the following system dynamics

ẋ(t) = f(x(t), u(t), t), x(0) = x0 (B.2)

under the constraints

g(x(t), u(t), t) ≥ 0 (B.3a)

h(x(t), t) ≥ 0 (B.3b)

a(x(T ), T ) ≥ 0 (B.3c)

b(x(T ), T ) = 0 (B.3d)

Assume that the functionsF from IRn × IRm × IR into IR, S from IRn × IR into IR, f from
IRn × IRm × IR into IRn, g from IRn × IRm × IR into IRs, h from IRn × IR into IRq, anda, b

from IRn× IR into IRl and IRl′ respectively, are continuous differentiable with respectto all their
arguments.
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222 Chapter B. Maximum Principle with State and Input Constraints

In the sequel, the following constraint qualification is assumed to hold for all possible values
of x(T ) andT :

rank

[
∂a
∂x

diag(a)
∂b
∂x

0

]
= l + l′ (B.4)

wherediag(a) := diag([a1(x(T ), T ), . . . , al(x(T ), T )]) denotes the diagonal matrix contain-
ing the components ofa(x(T ), T )) on its diagonal. This full rank condition means that the
gradients w.r.t.x of the equality constraints and of the active inequality constraints must be
linearly independent. In order to distinguish between the mixed constraints (B.3a) and the pure
state constraints (B.3b), we assume that each component of the functiong depends explicitly
on the controlu. More precisely, we impose the following full rank condition :

rank

[
∂g

∂u
diag(g)

]
= s (B.5)

for all argumentsx(t), u(t), t that could arise along an optimal solution. Theconstraint qualifi-
cation(B.5) means that the gradients w.r.t.u of all the active constraintsg ≥ 0 must be linearly
independent.

B.2 Direct adjoining approach

In this method, the HamiltonianH and LagrangianL are defined as follows :

H(x, u, λ0, λ, t) = λ0 F (x, u, t) + λ f(x, u, t) (B.6)

L(x, u, λ0, λ, µ, ν, t) = H(x, u, λ0, λ, t) + µ g(x, u, t) + ν h(x, t), (B.7)

whereλ0 ≥ 0 is a constant,λ ∈ IRn is the adjoint variable, andµ ∈ IRs andν ∈ IRq are
multipliers.

Theorem B.2.1 Let (x∗(·), u∗(·)) be an optimal pair for the problem over a fixed interval
[t0, T ] (i.e. (x∗(·), u∗(·)) globally maximizes (B.1) wherex∗(·) is the state trajectory corre-
sponding tou∗(·) and conditions (B.3) are satisfied), such thatu∗(·) is right-continuous with
left-hand limits and the constraint qualification (B.5) holds for every triple{t, x∗(t), u}, t ∈

[t0, T ] with u ∈ Ω(x∗(t), t) := {u ∈ IRm | g(x, u, t) ≥ 0} ⊂ IRm.
Assume thatx∗(·) has only finitely many junction (i.e. switching) times.
Then there exist a constantλ0 ≥ 0, a piecewise absolutely continuous1 costate trajectoryλ(·)

mapping[t0, T ] into IRn, a piecewise continuous multiplier functionsµ(·) and ν(·) mapping
[t0, T ] into IRs and IRq, respectively, a vectorη(τi) ∈ IRq for each pointτi of discontinuity of
λ(·), andα ∈ IRl, β ∈ IRl′, γ ∈ IRq such that(λ0, λ(t), µ(t), ν(t), α, β, γ, η(τ1), η(τ2), . . . ) 6= 0

1A piecewise absolutely continuous function is a piecewise continuous function whose continuous segments
are absolutely continuous
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for everyt and the following conditions hold almost everywhere :

u∗(t) = arg max
u∈Ω

H(x∗(t), u, λ0, λ(t), t) (B.8a)

L∗
u(t) = H∗

u(t) + µ g∗
u(t) = 0 (B.8b)

λ̇(t) = −L∗
x(t) (B.8c)

µ(t) ≥ 0, µ(t) g∗(t) = 0 (B.8d)

ν(t) ≥ 0, ν(t) h∗(t) = 0 (B.8e)

dH∗(t)/ dt = dL∗(t)/ dt = L∗
t (t) = ∂L∗(t)/∂t. (B.8f)

At the terminal timeT , the following transversality conditions hold :

λ(T ) = λ0 S∗
x(T ) + α a∗

x(T ) + β b∗x(T ) + γ h∗
x(T ) (B.9a)

α ≥ 0, γ ≥ 0, (B.9b)

α a∗(T ) = γ h∗(T ) = 0. (B.9c)

For any timeτ in a boundary interval and for any contact timeτ , the costate trajectoryλ may
have a discontinuity given by the following jump conditions:

λ(τ−) = λ(τ+) + η(τ) h∗
x(τ) (B.10a)

H∗(τ−) = H∗(τ+)− η(τ) h∗
t (τ) (B.10b)

η(τ) ≥ 0, η(τ) h∗(τ) = 0, (B.10c)

whereτ+ andτ− denote the left-hand side and the right-hand side limits, respectively.

Remark B.2.1 The condition

(λ0, λ(t), µ(t), ν(t), α, β, γ, η(τ1), η(τ2), . . . ) 6= 0 for everyt

can play an important role in distinguishing the normal case(λ0 = 1) from the abnormal case
(λ0 = 0). In fact, this condition implies thatλ0 = 1 in the examples analyzed in [HSV95,
Section 9].



224 Chapter B. Maximum Principle with State and Input Constraints



Appendix C

Discretization of a Linear Continuous
Time System

In this chapter, the discretization of a linear continuous time system is described, and the
associated discrete cost is also given.

C.1 Discretization of a linear continuous time system

Consider the following LTI continuous time system

ẋ(t) = A x(t) + B u(t), x(0) = x0, t ∈ [t0, tf ] (C.1)

In order to transform this system into a discrete time system, considert0 = i0 h, tf = N h,
x(t) = x(i h) =: xi, u(t) = u(i h) =: ui, whereh is the sampling time andt ∈ [i h, (i + 1) h[,
for i = i0, . . . , N − 1. We are looking for

xi+1 = f(xi, ui).

First integrate the homogeneous part of (C.1), i.e.ẋ(t) = A x(t), that givesx(t) = eA t α, where
α is a constant vector. Now by applying the constant variationmethodα ; α(t), we look for
a solution of the formx(t) = eA t α(t). Then

ẋ(t) = A eA t α(t) + eA t α̇(t)

= A eA t α(t) + B u(t)

⇔ α̇(t) = e−A tB u(t)

Integrating fromt0 to tf gives :α(tf) = α(t0) +

∫ tf

t0

e−AτB u(τ) dτ . Then

x(tf ) = eA tf α(tf) = eA tf α(t0) +

∫ tf

t0

eA(tf−τ)B u(τ) dτ

Hence, withtf = (i + 1) h andt0 = i h, we obtain

x((i + 1) h) = xi+1 = eA hxi +

∫ (i+1)h

ih

eA((i+1) h−τ)B dτ ui

225
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Therefore

xi+1 = Axi + Bui

with

A = eAh and B =

∫ h

0

eA sB ds

C.2 Discretization of a linear quadratic cost

Consider the following linear quadratic continuous cost

1

2

(∫ tf

0

(‖R1/2u‖2 + ‖C x‖2) dt + x(tf )
T S x(tf )

)
(C.2)

Considering, fori = i0, . . . , N−1, x(t) = x(i h) =: xi, u(t) = u(i h) =: ui, t ∈ [i h, (i+1) h[,
the cost (C.2) becomes :

1

2

(
N−1∑

i=i0

∫ (i+1) h

ih

(‖R1/2u‖2 + ‖C x‖2) dt + xT
(i+1)hS x(i+1)h

)

=
1

2

(
N−1∑

i=i0

(‖R1/2ui‖
2 + ‖C xi‖

2) ((i + 1)h− ih) + xT
NS xN

)

Then we obtain the following discrete time cost :

1

2

(
N−1∑

i=i0

h (‖R1/2ui‖
2 + ‖C xi‖

2) + xT
NS xN

)
(C.3)

C.3 Discretization of the adjoint equation and associated mul-
tipliers

Consider the following adjoint equation associated to a minimal energy problem :

ṗ(t) = −AT p(t) + λ(t) (C.4)

In order to transform this system into a discrete time system, considert0 = i0 h, tf = N h,
p(t) = p(i h) =: pi, λ(t) = λ(i h) =: λi, whereh is the sampling time andt ∈ [i h, (i + 1) h[,
for i = i0, . . . , N − 1. First integrate the homogeneous part of (C.4), i.e.ṗ(t) = −AT p(t),
that givesp(t) = e−AT t β, whereβ is a constant vector. Now by applying the constant variation
methodβ ; β(t), p(t) is of the formp(t) = e−AT t β(t), such that

ṗ(t) = −AT e−AT t β(t) + e−AT t β̇(t)

= −AT e−AT t β(t) + λ(t)

⇔ β̇(t) = eAT tλ(t)
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Integrating fromt0 to tf gives :β(tf) = β(t0) +

∫ tf

t0

eAT τλ(τ) dτ . Then

p(tf ) = e−AT tf β(tf) = e−AT tf β(t0)︸ ︷︷ ︸
=p0

+

∫ tf

t0

e−AT (tf−τ)λ(τ) dτ

Hence, withtf = (i + 1) h andt0 = i h, we obtain

p((i + 1) h) = pi+1 = e−AT hpi +

∫ (i+1)h

ih

e−AT ((i+1) h−τ)λ(τ) dτ

Therefore

pi+1 = e−AT hpi +

∫ h

0

e−AT s dsλi

and

pi = ATpi+1 −

∫ h

0

e−AT s dsλi with A = eAh.

Now, the adjoint equation in discrete time is given by using the recurrent Hamiltonian equation
(10.6), see Section 10.2,

pd
i = AT pd

i+1 − λd
i

Hence

λd
i =

∫ h

0

e−AT s dsλc
i (C.5)

whereλd
i andλc

i denote the multiplierλi in discrete time and the multiplier coming from the
discretization, respectively.

C.4 Application to the numerical example of Section 4.3

Consider the numerical example of subsection 4.3.2 witht0 = 0, and

A =

[
0 1

1 0

]
i.e. eAt =

[
cosh(t) sinh(t)

sinh(t) cosh(t)

]
.

Hence, one has

A =

[
cosh(h) sinh(h)

sinh(h) cosh(h)

]
and B =

[
cosh(h)− 1

sinh(h)

]

and (C.5) becomes :

λd
i =

∫ h

0

[
cosh(s) − sinh(s)

− sinh(s) cosh(s)

]
dsλc

i

=

[
sinh(s) 1− cosh(s)

1− cosh(s) sinh(s)

] [
0

λc
2

]
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whereλc
i = [0 λc

2]
T , for x0 = [1 0]T andx0 = [0 1]T , whatever the interval considered.

Then [
λd

1

λd
2

]
=

[
(1− cosh(h)) λc

2

sinh(h) λc
2

]
≃

[
0

h λc
2

]

with 1− cosh(h) ≃ 0 andsinh(h) ≃ h. Therefore,

λd ≃ h λc (C.6)

Hence, one can compare the discrete time multipliers with the discretized multipliers by con-
sidering the scaling factorh between them.



Bibliography

[AM90] B. D. O. ANDERSON and J. B. MOORE. Optimal Control - Linear Quadratics
Methods. Prentice Hall, 1990.

[AS03] D. ANGELI and E. D. SONTAG. Monotone control systems. IEEE Transactions on
Automatic Control, vol. 48, no. 10, pp. 1684–1698, 2003.

[Ava00] N. AVAERT. Système dynamique linéaire non négatif. Master’s thesis, Mémoire de
deuxième licence en sciences mathématiques, Facultés Universitaires Notre-Dame
de la Paix, Namur, 1999-2000.

[AZ00] F. ALLGÖWER and T. ZHENG, editors. Nonlinear Model Predictive Control.
Birkhäuser Verlag, 2000.

[BCR+02] R. BRU, L. CACCETTA, S. ROMERO, V. RUMCHEV and E. SANCHEZ. Recent
development in reachability and controllability of positive linear systems. In Pro-
ceedings of the 15th IFAC World Congress, Barcelona, Spain. 2002.

[BD90] G. BASTIN and D. DOCHAIN. On-Line Estimation and Adaptive Control of Biore-
actors. Elsevier, 1990.

[Bea06] C. BEAUTHIER. Le problème linéaire quadratique positif. Master’s thesis, Mémoire
de DEA, FUNDP, Namur, 2006.

[BEFB94] S. BOYD, L. EL GHAOUI, E. FERON and V. BALAKRISHNAN . Linear Matrix In-
equalities in System and Control Theory. Society for Industrial and Applied Math-
ematics, Philadelphia, 1994.

[BF02] L. BENVENUTI and L. FARINA . Positive and compartmental systems. IEEE Trans-
actions on Automatic Control, vol. 47, no. 2, 2002.

[BF04] L. BENVENUTI and L. FARINA . A tutorial on the positive realization problem.
IEEE Transactions on Automatic Control, vol. 49, pp. 651–664, 2004.

[BHW85] G. BUTLER, S. HSU and P. WALTMAN . A mathematical model of the chemostat
with periodic washout rate. SIAM Journal on applied mathematics, vol. 45, pp.
435–449, 1985.

[Bix92] R. E. BIXBY . Implementation of the simplex method : the initial basis. ORSA
Journal on Computing, vol. 4, no. 3, 1992.

229



230 BIBLIOGRAPHY

[Bla99] F. BLANCHINI . Set invariance in control – a survey. Automatica, vol. 35, no. 11,
pp. 1747–1768, 1999.

[BNS89] A. BERMAN, N. NEUMANN and R. J. STERN. Nonnegative Matrices in Dynamic
Systems. J. Wiley and Sons, 1989.

[BP74] A. BERMAN and R. J. PLEMMONS. Inverses of nonnegative matrices. Linear and
Multilinear Algebra, vol. 2, pp. 161–172, 1974.

[BP94] A. BERMAN and R. J. PLEMMONS. Nonnegative matrices in the mathematical
sciences. SIAM Classics in applied mathematics, vol. 9, 1994.

[BR97] R. B. BAPAT and T. E. S. RAGHAVAN . Nonnegative Matrices and Applications.
Encyclopedia of mathematics and its applications 64, Cambridge, 1997.

[BW85] G. J. BUTLER and G. S. K. WOLKOWICZ. A mathematical model of the chemostat
with a general class of functions describing nutrient uptake. SIAM Journal on
applied mathematics, vol. 45, pp. 138–151, 1985.

[BW08] C. BEAUTHIER and J. J. WINKIN . Finite horizon LQ-optimal control for contin-
uous time positive systems. In Proceedings of the Eighteenth International sym-
posium on Mathematical Theory of Networks and Systems (MTNS2008), Virginia
Tech, Blacksburg, Virginia, USA, CD-ROM Paper Nr 054. 2008.

[BW09] C. BEAUTHIER and J. J. WINKIN . On the positive LQ-problem for linear discrete
time systems. In Positive Systems, Proceedings of the Third Multidisciplinary Inter-
national Symposium on Positive Systems: Theory and Applications (POSTA 2009),
pp. 45–53. 2009.

[BW10] C. BEAUTHIER and J. J. WINKIN . LQ-optimal control of positive linear systems.
Optimal control : Applications and Methods, vol. 31, no. 6, pp. 547–566, 2010.

[CBHB09] V. CHELLABOINA , S. BHAT, W. M. HADDAD and D. S. BERNSTEIN. Modeling
and analysis of mass-action kinetics. IEEE Control Systems Magazine, vol. 29,
no. 4, pp. 60–78, 2009.

[CD91] F. M. CALLIER and C. A. DESOER. Linear System Theory. Springer-Verlag, New
York, 1991.

[CH93] E. B. CASTELAN and J. C. HENNET. On invariant polyhedra of continuous-time
linear systems. IEEE Transactions on Automatic Control, vol. 38, no. 11, pp. 1680–
1685, 1993.

[CJ89] R. CASTELEIN and A. JOHNSON. Constrained optimal control. IEEE Transactions
on Automatic Control, vol. 34, no. 1, pp. 122–126, 1989.



BIBLIOGRAPHY 231

[CW81] F. M. CALLIER and J. L. WILLEMS. Criterion for the convergence of the solution of
the Riccati differential equation. IEEE Transactions on Automatic Control, vol. 26,
no. 6, pp. 1232–1242, 1981.

[CW95] F. M. CALLIER and J. J. WINKIN . Convergence of the time-invariant Riccati dif-
ferential equation towards its strong solution for stabilizable systems. Journal of
mathematical analysis and applications, vol. 192, pp. 230–257, 1995.

[CW96] F. M. CALLIER and J. J. WINKIN . Asymptotic behavior of the solution of the projec-
tion Riccati differential equation. IEEE Transactions on Automatic Control, vol. 41,
no. 5, pp. 646–659, 1996.

[CWW94] F. M. CALLIER , J. J. WINKIN and J. L. WILLEMS. Convergence of the time-
invariant Riccati differential equation and LQ-problem : mechanisms of attraction.
International journal of control, vol. 59, no. 4, pp. 983–1000, 1994.

[DAS06] P. DE LEENHEER, D. ANGELI and E. D. SONTAG. Crowding effects promote co-
existence in the chemostat. J. Math. Anal. Appl., vol. 319, pp. 48–60, 2006.

[DL04] P. DE LEENHEER. Notes on monotone systems, Oct. 2004. Course whithin the
framework of the Graduate School in systems and control, Louvain-la-neuve, UCL.

[DS02] P. DE LEENHEER and H. SMITH . Feedback control for a chemostat with two or-
ganisms. Cédérom proceedings of the Symposium on Mathematical Theory of Net-
works and Systems (MTNS), University of Notre-Dame, 2002.

[DS03] P. DE LEENHEERand H. SMITH . Feedback control for chemostat models. Journal
of Mathematical Biology, vol. 46, pp. 48–70, 2003.

[FR00] L. FARINA and S. RINALDI . Positive Linear Systems : Theory and Applications.
John Wiley, New-York, 2000.

[GL00a] C. GUO and A. J. LAUB. On a Newton-like method for solving algebraic Riccati
equations. SIAM J. Matrix Anal. Appl., vol. 21, no. 2, pp. 694–698, 2000.

[GL00b] C. GUO and A. J. LAUB. On the iterative solution of a class of nonsymmetric
algebraic Riccati equations. SIAM J. Matrix Anal. Appl., vol. 22, no. 2, pp. 376–
391, 2000.

[God83] K. GODFREY. Compartmental Models and Their Applications. Academic Press,
London, 1983.

[Goe10] R. GOEBEL. The value function for the linear-quadratic regulator withconical
control constraints. In Proceedings of the 49th IEEE Conference on Decision and
Control, Atlanta, USA. December 2010.

[Guo01] C. GUO. Nonsymmetric algebraic Riccati equations and Wiener-Hopffactorization
for M-matrices. SIAM J. Matrix Anal. Appl., vol. 23, no. 1, pp. 225–242, 2001.



232 BIBLIOGRAPHY

[HCH10] W. M. HADDAD , V. CHELLABOINA and Q. HUI. Nonnegative and Compartmental
Dynamical Systems. Princeton University Press, 2010.

[HCPH10] L. HAN, M. K. CAMLIBEL , J. S. PANG and W. P. M. H. HEEMELS. Convergence of
discrete-time approximations of constrained linear-quadratic optimal control prob-
lems. In Proceedings of the 49th IEEE Conference on Decision and Control, At-
lanta, USA. December 2010.

[HJ85] R. A. HORN and C. R. JOHNSON. Matrix Analysis. Cambridge University Press,
1985.

[HJ91] R. A. HORN and C. R. JOHNSON. Topics in Matrix Analysis. Cambridge University
Press, 1991.

[HS83] J. HALE and A. S. SOMOLINAS. Competition for fluctuating nutrient. J. Math.
Biol., vol. 18, 1983.

[Hsu80] S. B. HSU. A competition model for a seasonally fluctuating nutrient. J. Math.
Biol., vol. 9, pp. 115–132, 1980.

[HSV95] R. F. HARTL, S. P. SETHI and R. G. VICKSON. A survey of the maximum principles
for optimal control problems with state constraints. SIAM Review, vol. 37, no. 2,
pp. 181–218, 1995.

[Hut61] G. E. HUTCHINSON. The paradox of the plankton. The American Naturalist,
vol. 95, no. 882, pp. 137–145, 1961.

[HVS98] W. P. M. H. HEEMELS, S. J. L. VAN EIJNDHOVEN and A. A. STOORVOGEL. Linear
quadratic regulator problem with positive controls. Int. J. Control, vol. 70, no. 4,
pp. 551–578, 1998.

[Jac09] A. C. JACQUES. Le problème linéaire-quadratique positif inverse : analyse et ré-
solution par les inéquations matricielles linéaires. Master’s thesis, Mémoire de
deuxième master en sciences mathématiques, Facultés Universitaires Notre-Dame
de la Paix, Namur, 2008-2009.

[JK04] G. JANK and D. KREMER. Open loop nash games and positive systems - solvabil-
ity conditions for nonsymmetric Riccati equations. Lehrstuhl II für Mathematik,
RWTH Aachen, Germany, 2004.

[Joh94] A. JOHNSON. LQ state-constrained control. In Proceedings of the IEEE/IFAC Joint
Symposium on Computer-Aided Control System Design, Tucson, Arizon, USA, pp.
423–428. 1994.
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[Ka 03] T. KAČZOREK. Locally positive nonlinear systems. Int. J. Appl. Math. Comput.
Sci., vol. 13, no. 4, pp. 505–509, 2003.

[Kha02] H. K. KHALIL . Nonlinear Systems, Third Edition. Prentice Hall, 2002.

[KS72] H. KWAKERNAAK and P. SIVAN . Linear Optimal Control Systems. Wiley-
Interscience, New-York, 1972.

[LH06] C. LOBRY and J. HARMAND . A new hypothesis to explain the coexistence ofn

species in the presence of a single resource. C. R. Biologies, vol. 329, pp. 40–46,
2006.

[Loc01] A. LOCATELLI. Optimal Control : An Introduction. Birkhäuser Verlag, Basel,
2001.

[LT85] P. LANCASTER and M. TISMENETSKY. The Theory of Matrices. Second edition
with applications, Computer Science and Applied Mathematics, Academic Press,
1985.

[Lue79] D. G. LUENBERG. Introduction to Dynamic Systems : Theory, Models and Appli-
cations. John Wiley and Sons, Inc. New York, 1979.

[LWB06] M. L AABISSI, J. J. WINKIN and C. BEAUTHIER. On the positive LQ-problem
for linear continuous-time systems. In Lecture Notes in Control and Information
Sciences, Proceedings of the second Multidisciplinary International Symposium on
Positive Systems : Theory and Applications (POSTA 06), Grenoble, France, vol.
341, pp. 295–302. 2006.

[Min88] H. M INC. Nonnegative Matrices. Wiley Interscience Series in Discrete Time Math-
ematics and Optimization, John Wiley and Sons, 1988.

[MPS90] K. N. MURTY, K. R. PRASAD and M. A. S. SRINIVAS. Upper and lower bounds
for the solution of the general matrix Riccati differentialequation. Journal of math-
ematical analysis and applications, vol. 147, pp. 12–21, 1990.

[Nag86] R. NAGEL (ED.). One-parameter Semigroups of Positive Operators, vol. 1184.
Lecture Notes in Mathematics, 1986.

[PC72] R. J. PLEMMONS and R. E. CLINE. The generalized inverse of a nonnegative ma-
trix. In Proceedings of the american mathematical society, vol. 31. 1972.

[RD09] B. ROSZAK and E. J. DAVISON. Necessary and sufficient conditions for stabiliz-
ability of positive LTI systems. Systems and Control Letters, vol. 58, pp. 474–481,
2009.

[RDH09] A. RAPAPORT, D. DOCHAIN and J. HARMAND . Long run coexistence in the
chemostat with multiple species. Journal of Theoritical Biology, vol. 257, pp. 252–
259, 2009.



234 BIBLIOGRAPHY

[RHM07] A. RAPAPORT, J. HARMAND and F. MAZENC. Coexistence in the design of a series
of two chemostats. Nonlinear Analysis : Real World Applications, 2007.

[SFA79] G. STEPHANOPOULOS, A. G. FREDRICKSONand R. ASIS. The growth of compet-
ing microbial populations in CSTR with periodically varying inputs. Amer. Instit.
Chem. Eng. J., vol. 25, pp. 863–872, 1979.

[SGL94] M. G. SAFONOV, K. C. GOH and J. LY. Control system synthesis via bilinear matrix
inequalities. In I. PRESS, editor,Proceedings of the American Control Conference,
Baltimore, pp. 45–49. 1994.

[Smi81] H. L. SMITH . Competitive coexistence in an oscillating chemostat. SIAM J. Appl.
Math, vol. 40, pp. 498–522, 1981.

[Smi95] H. L. SMITH . Monotone Dynamical Systems : An Introduction to the Theory of
Competitive and Cooperative Systems. American Mathematical Society, Provi-
dence, 1995.

[SW95] H. L. SMITH and P. WALTMAN . The Theory of the Chemostat : Dynamics of
Microbial Competition, Cambridge Studies in Mathematical Biology, vol. 13. 1995.

[SW05] C. SCHERER and S. WEILAND . Linear matrix inequalities in control. Delft Uni-
versity of Technology, Netherlands, 2005.

[Van97] J. M. VAN DEN HOF. Realization of continuous-time positive linear systems. Sys-
tems and control letters, vol. 31, pp. 243–253, 1997.

[Van98] J. M. VAN DEN HOF. Positive linear observers for linear compartmental systems.
SIAM J. Control Optimization, vol. 36, no. 2, 1998.

[Van07] J. H. VAN SCHUPPEN. Control and System Theory of Positive Systems. Lecture
Notes, 2007.

[Van08] J. H. VAN SCHUPPEN. Problems of control and system theory of biochemical reac-
tion systems. In Proceedings of the Eighteenth International symposium on Math-
ematical Theory of Networks and Systems (MTNS2008), Virginia Tech, Blacksburg,
Virginia, USA. 2008.

[VB00] J. G. VANANTWERP and R. D. BRAATZ. A tutorial on linear and bilinear matrix
inequalities. Journal of Process Control, vol. 10, pp. 363–385, 2000.

[WC83] J. L. WILLEMS and F. M. CALLIER . Large finite horizon and infinite horizon LQ-
optimal control problems. Optimal control : Applications and Methods, vol. 4,
no. 1, pp. 31–45, 1983.

[Yal] http://users.isy.liu.se/johanl/yalmip/.

[Zhe10] T. ZHENG, editor.Model Predictive Control. Sciyo, 2010.






