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Le probleme de commande optimale linéaire quadratique
pour les systemes linéaires invariants
par Charlotte Beauthier

quadratique (LQ) pour des systemes linéaires avec cotasitiinégalité affines sur I
trajectoires d’état et/ou d’entrée, et en particulier pdes systemes linéaires entrée/é
invariants. L'étude de ces systémes est motivée notamnaené probleme de coexisten
dans un modele de chémostat ou, pour des raisons biologigessimportant de cherchg
a forcer les trajectoires d’état et d’entrée de rester darHne. Des conditions nécessai
et suffisantes d’optimalité sont établies pour le problé@anvariant entrée/état en utilis

le principe du maximum avec contraintes sur I'état et I'éatet a I'aide de I'admissibilit

Résumé :Ce travail a pour objet I'étude du probléme de commande @iigu sens linéair
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entrée/état-invariants. Les principaux résultats de aeir sont illustrés par des exemp
numeriques.

The LQ-optimal control problem for invariant linear system s
by Charlotte Beauthier

Abstract : This work is concerned with the study of the linear quadr@ti@) optimal control
problem for linear systems with affine inequality consttsion the state and/or the input ti
jectories, and in particular for input/state-invarianglar systems. The study of such systg
is motivated notably by the coexistence problem in a cheata@sbdel where, for biologi
cal reasons, it is meaningful to aim at forcing the state &ednput trajectories to rema

invariant LQ problem by using the maximum principle withtstand input constraints ar
by using the admissibility of the solution of the standard p@blem. Similar and specifi
results are obtained for the particular LQ problem for pesisystems, which are characty
ized by the invariance of the nonnegative orthant of thestpice. The methods develoy

invariant nonlinear systems. The main results of this woekikustrated by some numeric
examples.
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in a cone. Necessary and sufficient optimality conditiomsemtablished for the input/stafe-

in this thesis are applied to the chemostat model via theysitidcally positively input/statef

de la solution du probleme LQ standard. Des résultats shesl@t spécifiques sont obtenus
pour le probleme LQ appliqué aux systéemes positifs, qui sardctéerisés par I'invariange
de l'orthant non négatif de I'espace d'état. Les méthode®ld@pées dans cette thgse
sont appliquées au modele de chémostat via I'étude degrsysteon linéaires localement
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Introduction

A world involved in systems and control

Control theory is an interdisciplinary branch of sciencdaihhas its origin in engineering
and mathematics and which deals with influencing the behafidynamical systems. It fo-
cuses on the modeling of a diverse range of dynamical sygtemsmechanical, biological or
economical systems) and the design of controllers thatoaillse these systems to behave in a
desired manner.

Let us consider, for example, a car with the system of cruisgrol, which is a device de-
signed to maintain the vehicle’s speed at a constant degaiee provided by the driver. The
control (or input) is the engine’s throttle position which determines the powaf the engine
and theoutputis the car’s speed. A first way to implement cruise controlngpdy to lock the
engine’s throttle position when the driver engages crugdrol. This is called ampen-loop
design because no measurement ofdhgut(the car’'s speed) is used to modify tbentrol
(or inpuf) (the engine’s throttle position). As a result, the coré&otan not compensate for
changes acting on the car, like a change in the slope of titk rimaa closed-loopdesign, a
sensor measures the output (the car’'s speed) and traneedata to a controller which adjusts
the input (the engine’s throttle position) as necessarydmtain the desired output (match the
car’s speed to the desired speed). Also, the (minimal or matyispeed limit on the road can
be seen abound constrainten astatecomponent (the car’s speed).

More formally, insystems and contréheory, one is interested in governing ttateof a
dynamical system by usingpntrol. The dynamical behavior of the system is the manner in
which the state changes under the influence of the contrakawiten described by an ordinary
differential equation.Optimal controldeals with the problem of finding a control law for a
given system such that a certain optimality criterion isi@odd under constraints. An optimal
control problem includes a cost functional that is a funtid the state and control variables :
the objective of optimal control theory is to determine atoolrlaw that will cause a process to
satisfy the physical constraints and at the same time, neifor maximize) a cost functional,
i.e. a performance criterion, see e.g. [HSV95]. For examplee want to keep the car’s
speed, denoted by(¢), near a constant valueon a time interval0, ¢, then this question can
be formalized as the problem of finding a control (enginersttte position), denoted by(¢),
which minimizes the cost functiong]’ (z(t) — a)?dt.



2 Introduction

The most common optimal control problem is tlimear quadratic(LQ) optimal control
problem, see e.g. [KS72, CD91]. This problem consists ofirmiring a quadraticcost func-
tional subject tdinear dynamical constraints described by a set of linear diffeaéaquations.
One of the most salient features of the LQ control is the flaat it is of state-feedbackype.
That means that the optimal controtan be written in terms of linear combinations of the state
components;, i.e.uw = K z, whereK is called thfeedbackmatrix.

The principle of feedback is simple : feedback is a proceasithlooped back to control
a system within itself. It is the process in which part of théput of a system is returned
back to its input in order to regulate its further output. Teen feedback can also be seen as
the situation in which two (or more) dynamical systems ameneated together such that each
system influences the other and their dynamics are thusgtyronupled. A system is said to
be aclosed-loopsystem if the compound systems are interconnected in a (fyigare 2). If
the interconnection is broken, the system is said to bep@m-loopsystem (Figure 1).

Uy Y1 = U2 Y2
—=  System1 System 2 | —»

Figure 1: Open design.

Uy Y1 = U2 Y2
System 1 System 2

Figure 2: Closed-loop design.

Feedback has many interesting properties that can be &egbloi designing systems : no-
tably, feedback allows a system to be insensitive both teraat disturbances and to variations
in its individual elements, see [AM90]. Another use of feadbis to change the dynamics of
a system. Through feedback, one can alter the behavior aftareyto meet the needs of an
application : for example, systems that are unstable catabdized.

Let us mention that another well-known optimal control geob deals withmodel predic-
tive control (MPC), see e.g. [ZhelO] and [AZ00]. MPC is a control strategyvhich the
applied input is determined on-line at each sampling indvgrthe solution of an open-loop
optimal control problem using the current (estimated)estat initial state. The solution of the
optimization problem yields an optimal input signal fromiefnonly the first part is imple-
mented until the next measurement becomes available.

This thesis is devoted to the LQ-optimal control problem lfoear systems with affine
inequality constraints on the state and/or the input ttajées, and in particular fanput/state-
invariantlinear systems, which are characterized by the fact thanih# and the state trajec-
tories should remain in a cone. The study of such systemstisaited notably by the problem
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of coexistence of speci@sachemostafi.e. a continuous stirred tank reactor). The concept of
coexistence of species means that the concentration opteees should remain strictly pos-
itive. From a mathematical point of view, the study of theljdeon of coexistence of species
can be performed by means of input/state-invariant systémiged, for physical or biological
reasons, it is meaningful to aim at forcing the state andh@iriput trajectories of such systems
to remain in a cone. On the other hand, dynamical models of/rhbemogical and pharmaco-
logical processes, such as metabolic systems or biocheraa&tions, are derived from mass
and energy balance considerations that involve statesewsdses are nonnegative. Hence it
follows from physical considerations that the state tiajges of such models should remain in
the nonnegative orthant of the state space for nonnegathie iconditions. This motivates the
study of the LQ-optimal control problem for the particuléass ofpositivesystems, which are
characterized by the invariance of the nonnegative ortbthie state space.

In the literature, the concept of invariance of linear systés an important topic in systems
and control, (see e.g. [Bla99]), as well as the positivityioéar systems, see e.g. [FROO]
and [HCH10] for an overview. This class of systems is vergresting for the study of ap-
plications, see e.g. [HCH10, God83, Van08] and there areyroantributions which are de-
voted to such systems, see e.g. [BF04, HCH10]. In the framewbthe LQ problem (see
[CD91, AM9Q]), the constrained problem has already beedistlwhen only considering non-
negative constraints, either on the state or on the inpetése [HVS98] for the LQ problem
with positive controls, [Ka 02] for the minimal energy pagi control problem for positive
systems and the recent book [HCH10] and the referencesrnefiéhere is also a large liter-
ature devoted to modifying the chemostat model to ensureisteace of the organisms, see
e.g. [BHW85, Smi95, SFA79, Hsu80] and [DS03] where feedlmmkrol of the dilution rate
is studied. See [SW95] for an overview on the chemostat mode interest of applying an
LQ control to a chemostat model is to benefit of its specifigprtes in order to get a model
for which the coexistence of species is guaranteed.

The contributions of this thesis with respect to the literatare summarized after the con-
cluding section.

Structure of the document

First of all, in this work, thecontinuous timecase is considered in all chapters except for
the last one, which is devoted to similar and also specifigltes discrete time This thesis is
then divided in three main parts for the continuous time case

The first part describes properties of time-varying and dnvariant input/state-invariant
linear systems (Chapter 1), and well-known properties sftp@ linear systems (Chapter 2).

The second part deals with the study of the input/stateri@ntlinear quadratic problem,
first in finite horizon(Chapters 3 and 4), and next imfinite horizon(Chapters 5 to 7). In
Chapter 3, optimality conditions are established for tipaitrstate-invariant LQ problem, which
are based on the maximum principle (see [HSV95]) and on thesaibility of the solution of
the standard LQ problem. Similar results have been obtdordtie particular LQ problem for
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positive systems, which is studied in Chapter 4. MoreoyecHic results are stated in terms
of the matrix solution of the Riccati differential equatiRDE) and the particular problem
of minimal energy control with penalization of the final stas also studied. This chapter is
completed by illustrative numerical examples. In the seduaf of this part (Chapters 5 to 7),
the input/state-invariant LQ problem is studied for theriité horizon case. Chapter 5 briefly
analyzes a receding horizon approach. Criteria for the@xie of a solution to the positive
LQ problem are established in Chapter 6, by using a Newtpe-tgrative scheme. In addition,
positivity criteria are stated in terms of the solution cé Hiigebraic Riccati equation (ARE) and
in terms of the Hamiltonian matrix/. Chapter 7 is devoted to the inverse input/state-invariant
LQ problem which consists of finding, for a fixed invariantlsaing matrix /&, weighting
matrices such that the feedback control is optimal for tkalteng LQ problem.

The third part is devoted to the application of the LQ probtertocally positively invariant
nonlinear systems. First, properties of a locally poskyiwevariant nonlinear system together
with the link with its linear approximation around an egiilum, are described (Chapter 8).
Then, the application of the LQ problem in order to solve trebfem of coexistence of species
in a chemostat model is studied (Chapter 9). In the lattefinstedescribe the framework of the
chemostat model and the problem of coexistence of speciehwahe therein in competition
for one substrate. The theory developed so far for the isfaig-invariant LQ problem is then
applied to guarantee the local positive invariance of thenabstat model, which is described
by a nonlinear system. Numerical simulations have also pegormed to complete this study.

Finally, in the last chapter, several results are stateddsitive systems idiscrete timeand
the corresponding positive LQ problem in finite horizon isds¢d. These results are similar to
the ones obtained in the continuous time case. Moreoveeafgpresult is derived for the par-
ticular class of monomial systems, which can be seen assevane positive systems. At last,
an algorithm, both in a vector and a matrix form, is developgdising Hamiltonian systems.
The main results of this chapter are illustrated by some migadeexamples.

We conclude this thesis by summarizing our approach andutarned results and by sug-
gesting some perspectives for future work. A summary of oatributions and tables contain-
ing the main notations and abbreviations used in this tleeside found after the conclusion.

Notice that, in the sequel, definitions, theorems (inclgdemmas, corollaries and propo-
sitions), remarks and examples are numbered with respdbetourrent section for a given
chapter. For example, Theorem 10.2.6 denotes the 6th tinearéhe 2nd section of Chapter
10.
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Invariant Linear Systems






In this first part, the theory of invariant continuous-tinreslar systems is presented. Condi-
tions for the invariance property are stated in terms of tagrices defining the system dynam-
ics. The concept of invariance of linear systems meansuhdgr some conditions on the initial
state and the input trajectories, their state trajectogesain in a (shifted) cone. This is an im-
portant topic in system theory, see e.g. [Bla99] and [BNSB8}thermore, the stability and the
stabilizability of such systems are studied. Finally, &mresults and some additional results
are presented for the particular class of positive systdingse systems encompass dynamical
models where all the variables should remain nonnegativafp nonnegative initial condition
and for any nonnegative input trajectory. This class of@ystis much studied in the literature
and there is a large class of applications in this field. Somieal examples of positive systems
are economics models, chemical processes, compartmgstahs and biological systems. A
lot of theoretic problems have already been investigategdsitive systems. See e.g. [FROO]
and [HCH210] for an overview of the state of the art in this topi
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Chapter 1

Invariant Linear Systems

Set invariance is an important and extensively studiectimpsystems and control, see e.g.
[Bla99]. Invariant sets play an important role for exampleconstrained control, robustness
analysis, synthesis and optimization. This chapter is @elto the study of invariant linear
systems, i.e. systems where, under some conditions onitla state and the input trajecto-
ries, the state trajectories remain in a (shifted) coneegsge[Bla99] and [BNS89, Chapter 4].
For these systems, characterization of the invariance eatebcribed in terms of the matrices
defining the system dynamics. The stability of such systsraksb studied. Moreover the prob-
lem of invariant stabilization is studied, which consistdinding a stabilizing state feedback
which ensures the invariance property for the resultingadibloop system. The next chapter is
devoted to the particular class of positive systems.

1.1 Main concepts and results

1.1.1 Invariant LTV systems

Let X andY be matrices in IR, The property that, for all = 1,...,p and for all
J=1,...,q,ziy > yij, (x;; > yij, respectively), is denoted by > Y, (X > Y, respectively).
Finally, X > Y meanstha > Y andX # Y.

Definition 1.1.1 Let M be a matrix in IR*4,
» M is said to benonnegativeif M > 0.
» M is said to bestrictly positive if M > 0.
» M is said to bepositiveif M > 0.

* A square matrix\/ € IRP*? is said to beMetzler if all its off-diagonal components are
nonnegative, i.e.
Vi, je{l,...,p}suchthati # j, m;; >0,

i.e. M+« I, is a nonnegative matrix for soneec IR, (see Appendix A), whefgdenotes
the identity matrix of dimensign

11
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In particular, these notations and definitions obviouslglapo the casey = 1, i.e. to vectors
r € RP.

Consider the following linear time-varying (LTV) homogenss system, fot € [to, t¢],
a(t) = A(t) z(t), (to) = o, (1.1)

where the state:(t) € R", A(t) € R"*" is a piecewise continuous real matrix function,
zo € R™ denotes any fixed initial state afid, (] is an arbitrarily fixed time interval. A first
property of the fundamental matrix of such system is thevedeince between its nonnegativity
and the Metzler property of the matri(¢).

Lemma 1.1.1 The matrixA(¢) of system (1.1) is a Metzler matrix for alE [t,, ¢/] if and only
if ®(¢, ty) is nonnegative for alt € [t,, t¢] where®(, t,) is called thefundamental matrix
and satisfies the following homogeneous equation :

%—(f(t, to) = A(t) (¢, to), V't € [to, tf], (1.2)

with the initial condition® (¢, t¢) = I,,, see [CD91, pp. 10-11].

Proof :
Necessity. Considera(t) < min{a;(t)}", wherea(-) is a (piecewise) continuous function.
SetA(t) = A(t) — a(t) I,,. Then,A(t) > 0. Consider the following differential equation :

2(t) = A(t) 2(t), with z(tg) = z(to)

such that

z(t) = (¢, to) z(to),

whered®(t, t,) is the corresponding fundamental matrix. Therefore, orse ha

O(t, ty) = exp </ a(T) dT) (1, to). (1.3)
Let
B(t, o) = lim Xn(t), € [to, t] (1.4)

whereX,,(t), m € N, denote the Picard’s iterates, (see [CD91, p. 13 and pf-4¥B]), that
are defined, for alt € [ty, t¢], by :

Xo(t) = I,
t
X1 = I, +/ A(T) Xpn(7) d7.
to
Observe thaiy(¢) > 0 and that ifX,,(¢) > 0 thenX,,.1(¢) > 0. Hence,

Vit>to, Vm : Xpn(t) > 0.
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Consequently, by (1.4%(¢, t,) > 0 and then by (1.3)p(t, to) > 0 for all ¢ € [to, t;].

Sufficiency: Assume that for alt € [to, t7], ®(¢, to) > 0. Let: # jandh > 0. Withe;
denoting the™ vector of the canonical basis oflRone has :

<O(t+h,t)e;, e >

0 < -
<P(t+h, t)e, e >—<e, e >
B h
< (P(t+h, t)—1,)e;, e >

)
t+h h
< / A(o) ®(o, t)do e;, e; >
t

1 t+h h
= E/ <A<O’)q)(0', t)ei, ej > do
t

since®(t, ty) is the solution of equation (1.2). Then, by the meanvalueréra applied to the
continuous function< A(o) ®(o, t)e;, e; > on[t, t + k] for h sufficiently small, it follows
that :

0 << A(t)e;, e; >=a;(t), forizj.

Therefore A(t) is a Metzler matrix for alt € [ty, /]. .

Let z < 0 be a fixed state and consider an initial conditign,) := xy > z. Such a fixed
statez is used in Chapter 9, which is devoted to the chemostat modeftevseveral species
are in competition for a single nutrient. The model is ddssliby a nonlinear system which is
studied by means of its linearization around an equilibrium= —z. This equilibrium state
x. IS assumed to be strictly positive and therefore it guaestiee coexistence of species. The
results developed in the current chapter also holdfer 0, see Chapter 2 on positive systems.
Now, consider the following shifted cor&; :

C;={zeR": 2>7} =R} +1. (1.5)
Definition 1.1.2 The cone’; is said to beinvariant with respect to (w.r.t.) system (1.1) on
[to, tg] if Czis O(t, to)-invariant onty, ¢y, i.e.
Vt I~ [to, tf]? q)(t, to) C{Z- C C{Z-’

or equivalently
Vite [t(], tf],VZCQ S C{Z-, ZC(t) = (I)(t, to) Ty € Cj
In this case, system (1.1) is said tostate-invariant w.r.t. Cz on [to, t¢].

Theorem 1.1.2 The cone”; is invariant w.r.t. system (1.1) dty, ¢, if and only if the following
conditions hold :
Vit [to, t], A(t)is aMetzler matrix (1.6)

and
Vtelt, tg], Pt to)z>7 (1.7)
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Remarks 1.1.1a) Observe that condition (1.7) implies that
A(to) z > 0. (1.8)
Indeed, this follows from the identity

Alty) 7 = lim 2N = 1) T

t—to+ t— to

b) Condition (1.7) seems to be difficult to check. Howevirniot necessary to compubét, t)
for all time, but only the state trajectories from the inlt@ondition z and not from allz.
Moreover, it is shown in Theorem 1.1.5 that condition (1 &%) be translated only in terms of
A for linear time-invariant systems.

Proof of Theorem 1.1.2 :
Necessity: Consider the initial state, := z. Thenz(t) = ®(¢, to) zo = P(¢, 1) T with
xz(t) > z forall t € [to, t;] by assumption. Therefore condition (1.7) holds. Now taking
xo = o T e; > x for o < 0 givesz(t) = O(t, to) xo = P(t, to) a; T; ;. In particular, for all
t € [to, ty] and for alli, 7,

zi(t) = @4;(t, to) a; T; > T

or equivalently

(I)Z'j(t, to) > = : , where a; < 0 and Ti, Tj < 0.

Ty

Hence lettingy; — —o0, it follows that®;;(t, t;) > 0 for all t € [t, ¢;] and for allz, j. Then
by Lemma 1.1.1, condition (1.6) holds.

Sufficiency: Lett € [ty, t;] andzy > = be arbitrarily fixed. Then
xz(t) = ®(t, to) zg > D(t, to)x sinced(t, to) > 0 by (1.6) and Lemma 1.1.1
> T by condition (1.7).

O

Now consider the following LTV system description denotesd® = [A(-), B(-)], for
t € [to, ty] :
B(t) = At a(t) + Bt u(t),  a(to) = a0 (1.9)

where the state(t) € R" and the controk(t) € U wherel/ is the set of piecewise con-
tinuous functions fronity, ¢;] to R™, A(t) and B(t) are piecewise continuous real matrix
functions of compatible sizes ang € IR" denotes any fixed initial state. In the sequel, un-
less otherwise stated, these conditions are assumed tofdrotdich systems. Consider an
inputu(t) = K(t)z(t) for t € [to, t¢], whereK () € R™ ™ is a piecewise continuous state
feedback function. Therefore we consider the following Ldgsed-loop system, denoted by
R=[A+BK(-), 0], fort e [ty, tf]:

#(t) = (A+ BEK®)z(t), (ty) = 0. (1.10)
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Let an inputu < 0 be fixed. Such a fixed input is also used in Chapter 9 as an equilibrium
input of the considered nonlinear system. Consider theviofig shifted con&’; :

Ci={ueR"™ :u>u} =R} +a. (1.11)

Definition 1.1.3 The cone&”}; is said to beénvariant with respect to system (1.10) orto, t¢]
if
Vte [to, tf],Va:O such thatU(to) = K(to) Xo € Cg,
u(t) == K(t)xz(t) = K(t) P (t, to) xo € Cag,
where® (¢, o) is the fundamental matrix which satisfies the followingegéhtial equation

0
a'1>K(1t, to) = (A+ BK(t)) P (t, to), VtEeE to, ty
with the initial condition® (¢, to) = I,..

In this case, system (1.10) is said toibput-invariant w.r.t. Cg on [to, tg].

Theorem 1.1.3
a) Let K (t) be a state feedback of system (1.10) of full column rankian n. If the following
conditions hold :

Vet ty], K(t)Px(t, to) K (to) >0 (1.12)

and
Vet ty], K(t) Px(t, to) K (to)u > u (1.13)

where K" € R"*™ denotes the left pseudo-inversefofi.e. K;" := (K" K) 'K such that
K" K = I,. Then the con€; is invariant w.r.t. system (1.10) dty, ¢;].

b) Conversely, if the con€j is invariant w.r.t. system (1.10) dn, t¢], with a state feedback
K(t) of full row rank andm < n. Then the following conditions hold

Vi€ lto, t], K(t) Pr(t, to) K,F (o) >0 (1.14)

and
Vi€ fto, tg], K(t) Pxl(t, to) K (to)u > u (1.15)

KT(K KT)~! such that

where K" € R™™ denotes the right pseudo-inversefofi.e. K :
KKr=1I,.

Proof : a) Assume that (1.12) and (1.13) hold, i.e., Wit ¢y) := K (t) ®x (¢, to) K, (to),

Vi e lt, ty], VI(t to) > 0andV (t, ty) u > .

ut) = K(t)z(t) = K(t) Px(t, to) zo
= K(t)®r(t, to) K;" (to) K(to) xo
= V(t, to) K(to) zo
> V(t to)u
>
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b) Letxy = K (to)u such thatu(ty) = K(to) zo = K(to) K, (to)u = u. Thenu(t) =
K(t)x(t) = K(t) P (t, to) vo = K(t) Px(t, to) K (to) u. Therefore sincex(t) > « for all
t € [to, ty] by assumption, condition (1.15) holds. Now taking= K, (to) «; u; e; such that
u(to) = K(to) To = Q; Uj €, > u for a; < 0 giveSu(t) = K(t) IE(t) = K(t) (I)K(t, to) Ty =
K(t) ®r(t, to) K, (to) (o uje;) > u. In particular, for allt € [to, t;] and for all, 7,
Y N——

=:V(t,to) =€

m

wi(t) = [Kali(t) = wva(t, to) ex > @

k=1
where
Oéj ﬂj |f ]{] Ij
€ = .
0 otherwise

that isv;;(¢, to) aju; > w,; or equivalently

u; 1
(L o) > — —, with a; < 0.
(¢, to) = i, o a;
Hence lettingy, — —oo, it follows thatv;;(t, o) > 0 for all ¢, j and for allt € [ty, t;]. Since

1 andj were arbitrarily fixed, one can conclude that (1.14) holds.
O

Now the following corollary considers the case whéfé€) is of full rank withm = n (so
K (t) is invertible). Then the pseudo-inverselft) is the inverse of< (¢) :

Corollary 1.1.4 The con&’; is invariant with respect to system (1.10) pf ¢/], with a state
feedbacli (¢) of full rank andm = n if and only if the following conditions hold :

Vi€ [t tf], K(t)Px(t, to) K(to) ' >0 (1.16)

and
Vet tr], K(t) Pxl(t, to) K(to) 'a>u (1.17)

1.1.2 Invariant LTI systems

In this subsection, the particular case of state and inpuariance of linear time-invariant
(LTT) homogeneous systems is studied. First, we study s#glgirthe concept of invariance of
LTI system, on R, with self-contained proofs. Actually, for LTI systemsgtproofs of the
conditions of invariance are more algebraic than in the ca$dV systems. In these proofs,

a specific lemma is used, which describes the fact that treiance implies that whenever
one component of(¢) reaches the boundary of the cone (i2(t) = 0), it is redirected to
the interior of the cone (i.¢;(f) > 0). Then, we compare the results with those obtained for
LTV systems by applying the conditions of Theorems 1.1.25aad3 for LTI systems on a fixed
interval[to, tf].
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A. State-invariance

Consider the following LTI homogeneous system, denote®by [A, 0], for ¢ € [to, t] :
x(t) = Ax(t), x(0)= zo. (1.18)
Letz < 0 be a fixed state. Consider the shifted céiedefined previously, see equation (1.5).

Definition 1.1.4 The coneC; is said to beinvariant with respect to system (1.18)if C; is
eAt-invariant, i.e.
Vt>0, e'C;cCCy,

or equivalently
Vit>0,Vay € Cs  ax(t) :=etlay € C;

In this case, system (1.18) is said todtate-invariant w.r.t. C3.

Theorem 1.1.5 The cone’; is invariant with respect to system (1.18) if and only if tbkofv-
ing conditions hold :
A'is a Metzler matrix (1.19)

and
Az > 0. (1.20)

Remarks 1.1.2a) In view of the assumption that< 0, conditions (1.19)-(1.20) imply that

Indeed, these conditions imply thatforak=1,..., n:

(Ai’)l = Zaijfj:aﬁii+2aiji’j20
=1

J= JF#i
o T 2 —Zaijfj
JFi _
x.
& ay < - ai; =2 <0
1) = Z % i’i =
JFi

wherea,; > 0 for j # i and wherer; andz; are negative.
b) Condition (1.20) with condition (1.21) can be seen as ayiveid diagonal dominance con-
dition, namely B
Vi=1,...n ol >> ayd >0. (1.22)

oal 2 30
c) The concept of state-invariance of a LTI homogeneousastldied in [BNS89, Chapter 4].
Holdability of closed convex sets are considered by measslitingentiality of control linear
systems (by using graphs and geometric considerations).
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To prove Theorem 1.1.5, the following lemma is needed :

Lemma 1.1.6 If C; is invariant with respect to system (1.18), if for alb> 0, z(t) = etxy,
wherez is any initial state inC; and if there exist$ € {1, ..., n} such thatz;(¢) = z;, then
x;(t) > 0.

Proof :

For the sake of contradiction, assume that for same z, there exists at least one coordinate
i =1,...,nand atimet > 0 such thatr;(t) = z; andi;(t) < 0. Now, by assumption,

for all xy > z, z(t) > = wherex(t) is solution of system (1.18). In particular;(¢) >
—;, Vt > 0. Moreover,i(t) = Axz(t) = Aetlzy = e Axg, t > 0. Then since the
function #;(-) is continuous on R, #;(t) < 0 implies that there exists > ¢ such that for
all 7 € [t, t1], #;(7) < 0, that means;(-) is strictly decreasing offY, t,] with z;(t) = z;.
Thereforer;(t1) < z;(t) = z;, forall 7 € [t, ¢,]. It follows thatz(¢,) & C5. On the other hand,
sincex(t) € Cg, forallt > 0, x(t;) = eA®=92(¢) € C,. This clearly contradicts the fact that
x(t1) & Cz. Thusi;(t) > 0. o
Proof of Theorem 1.1.5:

Necessity. SinceV xy > 7, z(t) > z,forallt > 0, by Lemma 1.1.6yi =1, ..., n, such that

xi(t) = T, #;(t) = Y _ aya;(t) > 0. First, observe that(0) = zo := = € C;. It follows from
j=1

Lemma 1.1.6 applied in=0thatvi=1,..., n, #;(0) > 0, or equivalentlyi(0) = Az > 0,
i.e. condition (1.20) holds. Now remark that for amy¥ R", y € C; if and only if y is on the
form

Y= Z a;Tieji=A%x (1.23)
j=1
for some (unique) diagonal matrix = diag[o;]?, whereVi=1,..., n, a; < 1.

Then consider:(0) = y of the form (1.23) wherey; = 1 anda; < 0 for some arbitrarily fixed
1, j=1,..., nsuchthat # j andV k # ¢ andk # j, o, = 0. Therefore,

ZL’Z(O) = Qy; ZZ‘Z‘ + a,z‘jOéj Zf‘j Z 0

or equivalently

T 1 , S
a;j > —:f— a; —, With o <0, ¢ # J.
ZL‘j Oéj
Hence lettingy; — —oo, it follows thata;; > 0. Sincei andj were arbitrarily fixed, one can
conclude that (1.19) holds.

Sufficiency: Assume that (1.19) and (1.20) hold, i.e.
Vt>0,et>0and Az > 0.

Then, for allt > 0,
t
eAti::i’+/ eATAzdr,
0
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whereV 7 € [0, t], e Az > 0. Thereforee*z > z. Hence, for allt > 0 and for every
9 € R™ such thatey, > 7,
eAtxo > Aty >,
thatisx(t) > z.
O
Now, in order to link the concept of state-invariance on adixaterval [t,, ¢;] with the
state-invariance (on R, the following proposition is useful :

Proposition 1.1.7 Fora LTI systen? = [A, 0], the conditions of Theorem 1.1.2 on any interval
[to, tf], le.

Vit [to, t], A(t)is aMetzler matrix (1.6)
and
Vi€ ft, tf], @t ty) T > 17, (1.7)
are equivalent to
A'is a Metzler matrix (1.24)
and
Az >0. (1.25)

Proof : First condition (1.6) is clearly equivalent to (1.24) wheris a constant matrix. Now
assume that condition (1.7) holds. Then sikees [to, t;], ®(t, o) = e (%), condition (1.7)
can be rewritten a4 *~%) — [, )z > 0. Now observe that
A(tfto) _ I
A= lim &———°n
t—to+ t— to
Hence,
A(t—to) _ ]’ =
Az — tim & DESS
t—to+ t— to
i.e. condition (1.25) holds. Conversely, assume tha a Metzler matrix (i.ee4t > 0 for all
t > 0, see Proposition A.1.3) andlz > 0. Since fort € [to, t/],

t
(eA(t—to) o In) T = / eA(’T'_tO) Azdr > 0’

to

it follows that condition (1.7) holds ofty, ¢;], whered(t, ty) = e (t-t0),

These considerations lead to the following corollary :

Corollary 1.1.8 The coneC’; is invariant with respect to system (1.18) if and only if farya
interval [to, t;] C Ry, the cone&’; is invariant with respect to system (1.1) @g\ ¢¢].

Proof : The result follows directly from Proposition 1.1.7 and Thesos 1.1.2 and 1.1.5. -

Therefore, for LTI systems, we obtain the equivalence ofdbwecepts of state-invariance on
any intervallt,, t/] C R, and on R..
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B. Input-invariance

Consider a LTI systent = [A, B] with an inputu(t) = K x(t) for ¢t € [to, t¢], where K
is a state feedback. Therefore we consider the followingdl®$ed-loop system, denoted by
R=[A+ BK,0],fort >0,

(t) = (A+ BK)z(t), z(0)= . (1.26)
Letu < 0 be afixed input. Consider the shifted carigdefined previously, see equation (1.11).

Definition 1.1.5 The coneC}; is said to beinvariant with respect to system (1.26)if C; is
K eUAtB Kt nvariant, i.e.

Vt>0, KeAtBEtC. -y,
or equivalently
Vit >0,V x, suchthatu(0) = Kzy € Cy, u(t) = Kx(t) = K 4T BE) 40 € .
In this case, system (1.26) is said toibput-invariant w.r.t. Cjy.

Theorem 1.1.9 The cone’; is invariant with respect to system (1.26), with a state fiee#t A
of full rank andm = n if and only if the following conditions hold :

K (A+ BK)K™!is a Metzler matrix (1.27)

and
K(A+BK)K'u>0 (1.28)

As for Theorem 1.1.5, an additional lemma is needed to progdateorem.

Lemma 1.1.101f C; is invariant with respect to system (1.26), if for alb> 0, z(t) = e?'ay,
wherez is any initial state such thaKxo € (Cy and if there exist$ € {1,..., m} such that

Remark 1.1.3 This result holds for any, € IR". Here it is not needed to assume thgt> =
and that for allt > 0, x(t) € C;.

Proof : For the sake of contradiction, assume that for samseuch that.(0) = K zy > «,
there exists at least orie= 1,..., m and a timel > 0 such thatu;(t) = [K z;(t) = u; and
[K z];(t) < 0. Then by continuity, there exists > ¢ such that for alk- € [t, ¢,], [K z];(7) < 0,
that means that the function(-) = [K «x];(-) is strictly decreasing off, ;] with u;(¢)

K z);(t) = u;. Therefore[K z|;(t1) < [Kx];(t) = u; forall 7 € [t, ¢;]. It follows
that u(t;) & Cz. On the other hand, since(t) = Kax(t) € Cg forallt > 0, u(t;) =

K eAtBE) (b=t 4(4) € C,. This clearly contradicts the fact that,) & C,. Thus[K z];(¢) > 0.
O
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Proof of Theorem 1.1.9:
Necessity. The proof is similar to the one of Theorem 1.1.5. Since foralsuch that.(0) =
Kzxy > u,u(t) = Kx(t) > u, forallt > 0, by Lemma 1.1.10Y i = 1,..., m, such that
[K x)(t) = @ [K 2],(t) > 0. First, letzg = K '@ such thatu(0) = K 2o = K K~ = a. It
follows by Lemma 1.1.10 applied at tinte= 0 thatVi = 1, ..., m, @ (0) = [K x],(0) >0, or
equivalently,

Ki(0)=K(A+BK)x(0)=K(A+BK)K 'u>0,

i.e. condition (1.28) holds. Now observe that for ang R™, y € C; if and only if y is of the
form

Yy = Zaj ujej = A'w (1.29)
j=1
for some (unique) diagonal matrix’ = diag[a;], whereVi=1,..., m, o; < 1.

Then consider, = K~y such thatu(0) = K 2, = y of the form (1.29) where;; = 1 and
a; < 0forsome arbitrarily fixed, ;7 =1, ..., msuchthat # j andvk # i andk # j, o, = 0.
Therefore, by Lemma 1.1.10,

ii(0) = [K 2],(0) > 0 i.e. [K(A+BK)z(0)]; = [K (A+ BK) K" (we; + a;u;¢))]; > 0

=V =€
or equivalently
[V&]Z = Zvikek Z 0
k=1
where
=1 aju; fk=j#i
0 otherwise
that isv;; w; + v;; o;u; > 0 or equivalently
U; 1 . ) .
Vjj > — vy —, with oy < O, 1 7£]
uj - Qj

Hence lettingy; — —oo, it follows thatv;; > 0. Since: and;j were arbitrarily fixed, one can
conclude that (1.27) holds.

Sufficiency: Assume that (1.27) and (1.28) hold, i.e., with= K (A + B K) K},
Va>0andvt >0, et >0.
Recall that, for alk > 0, .
etu= u+/ e’7Vadr,
0

whereV 7 € [0, t], "V u > 0. ThereforeeV!u > 4. Hence, for allt > 0 and for every
o € R™ such that xy > u, one has:

€VtK$C0 > thﬂzﬂ,
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that is, witheVt = X (A+BK)K=1t _ K e(A+B K)tK—l’

K eABE =1 00 >4

=x(t)

Then the con€’; is invariant with respect to system (1.26).
O

Now, in order to link the concept of input-invariance on a @ixaterval ¢, t;] with the
input-invariance (on IR), the following proposition is needed :

Proposition 1.1.11 For a LTI systenk = [A + B K, 0] with a state feedback'(¢) of full rank
andm = n, the conditions of Corollary 1.1.4, i.e.

Vet ty], K(t)Px(t, to) K(t)) ™ >0 (1.16)
and
Vet ty], K(t) Pkt to) K(to) ™ u > a, (1.17)
are equivalent to
K (A + BK) K !is aMetzler matrix (1.30)
and
K(A+BEK)K™'a>0. (1.31)
Proof :

Necessity. Assume that condition (1.16) holds, that is, wibl (¢, to) := e(ATB Kt for
t e [to, tf],

K 6(AJrB K)(tfto)Kfl

o K (A+BK)K~1)(t—to)

ARV

0

0.

ThenK (A+ B K) K~! is a Metzler matrix (by Proposition A.1.3) and condition3@) holds.
Moreover, if condition (1.17) holds, then fore [to, t¢],

K eA+BE)(t—to) =157 _ 7 > 0
& (KePROU0K1_] )5 > 0
o (G(K(A+BK)K*1)(t—to> —IL,)u > 0.

Hence, withV := K (A+ BK) K™,

V(tfto) _ ]
6 m
V=Ilim-———,
t—to+ t— to
whence Vi
t—to) __ I >
Vi= lim m@ .
t—to+ t— to

i.e. condition (1.31) holds.
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Sufficiency: Assume that conditions (1.30)-(1.31) hold. Conditior8().also reads

oK (A+B K) K1) (t—to) >0 forallt e [ty, tf],

Ke(AJrBK))(tfto) K*l > 0.
Then condition (1.16) holds. Now with := K (A + B K) K~!, conditions (1.30)-(1.31) are
equivalent teeV =) > ( for all t € [to, t;] andV @ > 0. It follows that

t
(eVitto) [ V= / eV ) Vadr >0,

to

i.e.e"t—t)g > 7, or equivalently condition (1.17) holds.

These considerations lead to the following corollary :

Corollary 1.1.12 The con&’}; is invariant with respect to system (1.26), with a state liee#
K (t) of full rank andm = n, if and only if for any intervalt,, t;] C R, the coneCj is
invariant with respect to system (1.10) Br, ¢].

Proof : The result follows directly from Proposition 1.1.11, Cdaoy 1.1.4 and Theorem 1.1.9.
O

Therefore, for LTI systems, we obtain the equivalence ofdtecepts of input-invariance on

any intervallt,, t/] C R, and on R..

C. Input/state-invariance

In this part, we consider the problem of invariance of theéestnd the input. For this
purpose, we define a new co@g ; which joins the two previous cases as follows :

Cm,uiz{xERn: {;?:|$Z[

Definition 1.1.6 The cone’; ; is said to banvariant with respect to system (1.26)f C; ; is
eAtBE) Linvariant, i.e.

I~JIn

} } = ;N Ch. (1.32)

Vit >0, eATB KL Cza C Czas
or equivalently
Vi>0,Vay € Cra, x(t)= eAFBE)t 0 € Cs.a-

In this case, system (1.26) is said toibput/state-invariant w.r.t. Cj z.

So the state feedbadK is such that for alk, > z, the cone’; ; is invariant with respect to
system (1.26), that is such that for &l 0, z(¢) > z andu(t) = K z(t) > u. The following
result gives a characterization of suclikaand is an adapted version of [CH93, Proposition 1,
p. 1681], which is summarized in Lemma 1.1.14 below.
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Theorem 1.1.13The coneC; ; is invariant with respect to system (1.26) if and only if ther
exists a Metzler matrig( ¢ R(™*+™)*(m+n) gych that

R R

. (1.33)
H |: :| < 0(m+n)><1

—U
Lemma 1.1.14The setR[Q,p] == {z € R* : Qz < p},with@ € R andp € R" is
invariant with respect to system (1.18) if and only if thexests a Metzler matrit{ € R™"
such that
QA—HQ=0
Hp<0
Proof of Theorem 1.1.13 :The result follows from Lemma 1.1.14 appliedfo:= A + BK

el 2]
RES ~ | andr :=m +n.

with the following identifications @) := { i

O

Remark 1.1.4 The invariance conditions (1.33) do not require any parftcwassumption on

. -1, . "
the matrix@ := { s } and on the vectop = { ? } However, ifp > 0, condition

—U
Hp < 0 with H a Metzler matrix implies that-H is a M-matrix, see Definition A.2.1. Then
the real-parts of the eigenvalues&fare nonpositive, see Theorem A.2.2.

Now by the previous analysis on the invariance of the a@p@ndC;, we obtain the fol-
lowing sufficient condition, by choosing an appropriate mxak{ in Theorem 1.1.13.

Corollary 1.1.15 If there exists a state feedbagksuch that the following conditions hold :

( A+ BK is a Metzler matrix
(A+ BK)z >0
KA>0 (1.34)
K B is a Metzler matrix

| K(AZ+ Bu) >0,

then the con€’; ; is invariant with respect to system (1.26).

Proof : By Theorem 1.1.13, a necessary and sufficient conditiorvafriance of the coné€’;
Hi Ho

is the existence of a matrix =
|: HB 7_(4

} with H; € R™" Hy, € R™™, Hz € R™"

andH, € R™ ™ such that
([ —(A+ BK)+Hi 4+ Ha K = 0y,
—K(A+BK)+Hs+Hs K =0pxn
—HiZ —Hau < 01
_H3f - H4a S 0m><1
‘H., H, are Metzler matrices
[ Ha, H3 > 0.
ChoosingH; = A+ BK, Hys = 0psm, H3 = K AandH, = K B in equations (1.35) leads
easily to the sufficient conditions (1.34). O

(1.35)




1.2 Stability of invariant LTI homogeneous systems 25

1.2 Stability of invariant LTI homogeneous systems

In this section the stability of invariant LTI homogeneoystem (1.18) is studied.

1.2.1 Reminders on linear systems

First recall the definition of stability for LTI homogeneaosistems and some useful results,
see e.g. [CD91].

A. Definition and characterization of stability

Definition 1.2.1

* A LTI homogeneous system (1.18) is said ta®gnptotically stableif for all x5 € R,
x(t) tends to zero astends to infinity.

* A LTI homogeneous system (1.18) is said tekgonentially stableif, 3 «, 3 > 0 such
that for allt > 0, |le*!|| < Be .

Theorem 1.2.1 (Asymptotic stability) A LTI homogeneous system (1.18) is asymptotically sta-
ble if and only ifett — 0ast — oo.

Theorem 1.2.2 (Exponential stability) A LTI homogeneous system (1.18) is exponentially sta-
ble if and only if every eigenvalue df has negative real part, i.e.

VAea(A) : Re(N) <0. (1.36)

Remark 1.2.1 These two concepts of stability are equivalent, see e.g9[J.Dr herefore in the
sequel, the terms "asymptotic" and "exponential" are aditMoreover, the abuse of language
“ Ais stable” is also used instead of “system (1.18) is stabldiewever the characterization
(1.36) is used to prove the stability of a system.

B. Stability and Lyapunov equation

Consider the Lyapunov equation
ATP+PA=—-Q (1.37)

whereA € R™", () € R™ " is a symmetric positive definite and a unique symmetric p@sit
definite solutionP is to be found for (1.37). The solvability of the Lyapunov atjan relates
directly to the stability of system (1.18), see [CD91, pp6-1B8].

Theorem 1.2.3 A LTI homogeneous system (1.18) is stable if and only if f@yahmetric pos-
itive definite matrix, the Lyapunov equation (1.37) has a unique symmetric pesikefinite
solution P given by

P:/ eATthAtdt.
0
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1.2.2 Stability of invariant LTI systems

For the particular case of state-invariant LTI homogeneaysems, we obtain the following
result which is a direct consequence of Theorem 1.2.2 tegetith Theorem 1.1.5 and the
spectral property of a Metzler matrix, see Theorem A.1.5:

Theorem 1.2.4 A state-invariant LTI homogeneous system (1.18) is stdhieei Frobenius
eigenvalue ofd (i.e. the dominant eigenvalue df see Theorem A.1.5) is negative.

1.3 Invariant stabilizability of LTI systems

This section is devoted to the concept of invariant stadtilitity which is the idea of keeping
the invariance of the system as well as stabilizing it.

1.3.1 Invariant stability of LTI systems

Definition 1.3.1 A LTI homogeneous system (1.18) is said tonkariant stable if forall ¢ > 0
and forallzg > z, z(t) > z and z(t) — 0 ast — oc.

By using Theorem 1.1.5, we obtain the following charactgran for invariant stability :

Theorem 1.3.1 A LTI homogeneous system (1.18) is invariant stable if ayglibr is a stable
Metzler matrix such thatl z > 0.

A characterization of invariant stability can be expresbgdusing the Lyapunov equation
(2.37):

Theorem 1.3.2 A LTI homogeneous system (1.18) is invariant stable if aigibl is a Met-
zler matrix such thatl z > 0 and if for all symmetric positive definite matiiy, the Lyapunov
equation (1.37) has a unique symmetric positive definitetsol P.

1.3.2 Invariant stabilizability of LTI systems

Definition 1.3.2 A LTI systenA, BJ is said to beinvariant stabilizable if for all 2z > =z,
there exists an input(¢) such that for allt > 0, z(t) > z and z(t) — 0 ast — cc.

The following criteria of invariant stabilizability are spired by the particular case of positive
systems, see e.g. [BNS89, Chapter 7] and [Ava00, pp. 73-75] :

Theorem 1.3.3If there exists a state feedback laWt) = K z(t) such thatA + B K is a
stable Metzler matrix andA + B K') z > 0, then the resulting system + B K, 0] is invariant
stabilizable.

A matrix K which verifies the conditions of Theorem 1.3.3 is said tarvariant stabiliz-
ing. Now a criterion of invariant stabilizability can also bepegssed by using the Lyapunov
equation (1.37), see e.g. [BEFB94, Section 10.3, p. 144] :



1.3 Invariant stabilizability of LTI systems 27

Theorem 1.3.4 A LTI systemA, B]Jis invariant stabilizable if there exists a state feedbauk |
u(t) = K z(t) such thatd + B K is a Metzler matrix such thdtd + B K) z > 0 and if for all
symmetric positive definite matriy, the Lyapunov equation

P(A+ BK)T+(A+BK)P =-Q (1.38)
has a unique symmetric positive definite solutian

Proof : The result follows from Theorem 1.3.3 which states thatesys{1.18) is invariant
stabilizable if there exists a state feedback tat) = K z(¢) such thatd + B K is a stable
Metzler matrix such thatA+ B K) & > 0. Then from Theorem 1.2.3 applied to matrix- B K
instead of4, the property of stability can be translated in terms of th@dunov equation (1.%8).
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Chapter 2

Positive Linear Systems

An important question in system and control theory is thailiance of the nonnegative
orthant of the state space for linear systems. When thegfgdhat property, such systems
are calledpositivelinear systems. They encompass controlled dynamical modetre all the
variables, i.e. the state and output variables, should irem@negative for any nonnegative
initial conditions and input functions. In comparison witivariant systems which have been
studied in the previous chapter, positive systems can bsidered as state-invariant systems
with respect to the nonnegative orth@nt = R’ (i.e. z := 0 in the previous analysis).

An overview of the state of the art in positive systems themgyven e.g. in [FR00], [Ka 02],
[Lue79], [Van07] and [HCH10]. Typical examples of positisygstems are economics models,
chemical processes or age-structured populations (sef-@0, God83, Van08, HCH10]).

Numerous system theoretic problems have already been faril§ investigated for pos-
itive systems : for example the realization, controllapiand reachability problems (see e.g.
[BFO4, Van97, BCR02] and the references therein), the positive stabilipafimblem (see
e.g. [BNS89)), the linear quadratic (LQ) problem (see eAd90, CD91]) for (general) linear
systems with positive controls (see e.g. [HVS98] and theregfces therein for the general LQ
problem with positive controls and [Ka 02] for the minimakegy positive control problem for
positive systems).

In this chapter, the main results concerning positive lirsgatems are described, such as
the spectral property, the stability and the stabilizabihf such systems. Since the theory of
positive linear systems has been widely studied in thealitee, the proofs of the results are not
provided, but only references where they can be found (SegBka06]).
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2.1 Main concepts and results

2.1.1 Positive LTV systems

Definition 2.1.1
» ALTV homogeneous systéim= [A(-), 0] is said to bepositiveon [t,, t/] if

Voo>0:Vte [to, tf], {L‘(t) = (I)(t, to) zg > 0,

where®(t, () is the fundamental matrix and satisfies the following homeges equa-

tion :
%—f(t, to) = A(t) ®(t, to), Yt E [t tf],
O (g, to) = I.

* ALTV systenk = [A(-), B(-)] is said to bepositive on [ty, /] if
t
Vg >0, Vu(-) >0 : Vte [t ty], z(t) = ®(¢, to) zo +/ O(t, 7)B(7T)u(r)dr > 0.
to

The following theorem gives a well-known characterizatidthe positivity of linear time-
varying systems in continuous time, see [AS03, Section]\{#iée also [Ka0l, Theorem 2]
whose condition turns out to be equivalent to (2.1)).

Theorem 2.1.1
* A LTV homogeneous systein= [A(-), 0] is positive on[ty, ¢;] if and only if for all
t € [to, ty],
A(t) is a Metzler matrix. (2.1)

* ALTV systenRk = [A(-), B(-)] is positive on[ty, t;] if and only if for allt € [to, t],
A(t) is a Metzler matrix and3(t) > 0.

Remark 2.1.1 Condition (2.1) corresponds to conditions (1.6)-(1.7) beédrem 1.1.2 applied
withz = 0.
2.1.2 Positive LTI systems

For LTI systems, we obtain the following well-known chaexctation of the positivity :

Theorem 2.1.2
* A LTI homogeneous systdin= [A, 0] is positive (on R) if and only if

A'is a Metzler matrix. (2.2)

« A LTI systemR = [A, B] is positive (on R) if and only if A is a Metzler matrix and
B > 0.

Remark 2.1.2 Condition (2.2) corresponds to conditions (1.19)-(1.20)Tbeorem 1.1.5 ap-
plied withz = 0.
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2.2 Stability of positive LTI systems

Thanks to Theorem 2.1.2, we can characterize the stability positive LTI system by
using the properties of Metzler matrices developed in adk.1. By using Theorem 1.2.2 on
stability of linear systems together with Theorem A.1.5(Be-Frobenius Theorem for Metzler
matrix), we obtain the following result on the stability adtive systems :

Theorem 2.2.1 A positive LTI systenk = [A, 0] is (exponentially) stable if and only if the
Frobenius eigenvalugy of A is negative.

It is also interesting to study the Lyapunov equation in thgecof positive systems. We obtain
the following adaptation of Theorem 1.2.3 for positive syss, see [FROO, pp. 41-42] :

Theorem 2.2.2 A positive LTI system® = [A, 0] is stable if and only if there exists a diagonal
positive definite matri¥’ such that the matrix), defined by

—Q=ATP+PA
is positive definite.
Remark 2.2.1 Observe that, by Theorem 1.1.5, a systein0] which is state-invariant w.r.t.

C; is a positive system. Then Theorem 2.2.2 also holds for-ste&eiant systems.

2.3 Positive stabilizability of LTI systems

2.3.1 Positive stability of LTI systems

Definition 2.3.1 A LTI systenR? = [A, 0] is said to bepositively stableif for all ¢ > 0 and for
all zo > 0,z(t) > 0 and z(t) — 0 as t — oc.

By using Theorems 2.1.2 and 1.2.2, we obtain the followirayabterization for positive stabil-
ity :

Theorem 2.3.1 A LTI systenR = [A, 0] is positively stable if and only il is a stable Metzler
matrix.

Remark 2.3.1 Note that the previous theorem corresponds to Theorem Wighlz = 0.

Then a characterization of positive stability can be exg@ddy using the Lyapunov equation
(1.37), see [BEFB94] :

Theorem 2.3.2 A LTI systenz = [A, 0] is positively stable if and only il is a Metzler matrix
and if there exists a diagonal positive definite maffigsuch that? A7 +A P is negative definite.
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2.3.2 Positive stabilizability of LTI systems

Definition 2.3.2 A LTI systenk = [A, B] is said to beositively stabilizableif for all zy > 0,
there exists an input(¢) such that for alt > 0, the state trajectories(t) is such that:(¢) > 0
and z(t) —» 0 ast — oo.

The following criteria of positive stabilizability are ipged by [BNS89, Chapter 7] and [Ava00,
pp. 73-75] :

Theorem 2.3.3A LTI systemA + B K, 0] is positively stabilizable if and only if there exists a
state feedback law(t) = K z(t) such thatd + B K is a stable Metzler matrix.

Remark 2.3.2 Let us notice that the previous result corresponds to Thadre3.3 withz = 0.

A characterization of positive stabilizability can alsoderessed by using the Lyapunov
equation (1.37)

Theorem 2.3.4 A LTI systemR = [A, B] is positively stabilizable if and only if there exist a
state feedback law(¢) = K z(¢) and a diagonal positive definite matriX such that

P(A+BK)' +(A+BK)P
is negative definite and + B K is a Metzler matrix.

Moreover, by applying the change of variablés= K P suggested in [BEFB94, Section 10.3],
the previous theorem can be reformulated as follows :

Theorem 2.3.5A LTI systemR = [A, B] is positively stabilizable if and only if there exist a
diagonal positive definite matrik and a matrixY” such that

PAT +Y"BT + AP+ BY
is negative definite withl P + BY a Metzler matrix.

This change of variables allows us to write the problem ofitp@sstabilization in the
form of linear matrix inequalities (LMI) that are used in tresolution of the inverse positive
LQ" problem, see Section 7.2.2.

The problem of positive stabilization is studied in [RDO%eave necessary and sufficient
conditions are obtained for the stabilization of positiVié Eystems using a vertex algorithmic
approach.
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2.3.3 Compartmental systems

Finally a particular class of positive systems is brieflyadiuced in this subsection, namely
the class of compartmental systems, see e.g. [God83], Bfaf#-02] or [HCH10]. Compart-
mental models are widely used in e.g. biology, pharmacoblgy physiology to describe the
distribution of a substance (e.g. biomass, drug, ...) andiffgyent tissues of an organism.

Definition 2.3.3

* A matrix A is said to be acompartmental matrix if A is a Metzler matrix and for all
j=1,.,n > a;<0.
=1

» A positive LTI systenkz = [A, B] is said to be acompartmental systemif A is a
compartmental matrix.

» A matrix A is said to beaeducible if there exists a permutation matriX such that

PAPT:{U 0}

QV

whereU andV are square matrices.
A matrix A is said to barreducible if A is not reducible.

In the sequel (see Chapter 6 on the posifiv@3° problem in infinite horizon) we consider only
a compartmental matriXd such that

> ay < 0forall j=1,..n (2.3)
=1
By [Van98, Prop. 3.2, p. 594], (2.3) is a sufficient condition the stability of an irreducible
compartmental matrix¥d. Moreover, in many references, a compartmental systemmsidered
with B equal to the identity matrix (which corresponds to the cakere there are external
inputs for each compartment). Here we have another restltteostability of such systems, see
e.g. [Van98] and [BF02] :

Proposition 2.3.6 A compartmental systelR = [A, B] is stable if and only if 0 is not an
eigenvalue o4, i.e.0 &§ o(A).

We conclude this short subsection with a result on the pesstiabilizability of compartmental
systems.

Theorem 2.3.7 A compartmental systef = [A, ] is positively stabilizable.

Proof : First assume thatl is a nonsingular matrix. Then by Proposition 2.3.6, theeayst
R = [A, B] is stable. Therefore by setting = 0 the matrixA + B K is a stable Metzler
matrix (sinceA is a compartmental matrix). Hence by Theorem 2.3.3, theegy#t positively
stabilizable.



34 Chapter 2. Positive Linear Systems

Now assume that is a singular matrix. S&k = —o I witho > 0,thenA+B K = A—o I.
So the state feedbadk will move the unstable eigenvalliesuch thatd + B K will be stable.
Moreover, sinced is a Metzler matrix, so is the matrid + BK = A — o 1. Hence by
Theorem 2.3.3, the system is positively stabilizable. Soptoperty of positive stabilizability

is automatically verified for a compartmental system.
O
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The Invariant Linear Quadratic Problem
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This second part is the main part of this thesis, namely tysdf the input/state-invariant
linear quadratic (LQ) problem for linear continuous timetgyns. First of all, the problem is
studied for a finite final time and then in infinite horizon. Trhain objective of the input/state-
invariant LQ problem is to ensure constraints of lower botype on the state and/or on the
input trajectories. When optimal control is applied to tlgetem, the resulting state and/or in-
put trajectories satisfy lower bound conditions.

In the first chapter, the input/state-invariant LQ problenstudied, i.e. the finite horizon
LQ-optimal control problem with affine inequality constrts on the state and/or the input tra-
jectories. Necessary and sufficient optimality conditiars obtained by using the maximum
principle with state and input constraints (see e.g. [HJY9® addition, in the case of state
constraints or input constraints only, necessary and sarfticonditions are proved for the in-
variant LQ-optimal control to be given by the standard LQiojal state feedback law.

In the second chapter, the positive LQ problem is studied,the particular LQ problem
for nonnegative state constraints. In this case, necessahsufficient optimality conditions
are also established, which are based on the maximum pleraxil on the admissibility of the
solution of the standard LQ problem. In addition, critea the positivity of the standard LQ
closed-loop system are studied. Sufficient conditions &ted in terms of the matrix solution
of the Riccati differential equation. Moreover, the pastar problem of minimal energy con-
trol with penalization of the final state is studied. The nra@sults are illustrated by numerical
examples.

In the next chapters, the infinite horizon input/state-iiaret LQ problem is studied by
means of a receding horizon approach, see e.g. [WC83].riarftr the existence of a solution
to the positive LQ problem in infinite horizon are establigh€hese criteria use, respectively, a
Newton-like iterative scheme (inspired by [GLOOa, GLOQB) Hamiltonian approach and the
study of a diagonal solution of the Algebraic Riccati Eqoat{ARE). Finally, the last chapter
of this part is devoted to the inverse input/state-invardi&n problem by using linear or bilinear
matrix inequalities, see e.g. [BEFB94] and [SWO05]. The nrasults are also illustrated by
numerical simulations.
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Chapter 3

The Input/State-Invariant LQ Problem

This chapter is devoted to the finite horizon input/statedirant linear quadratic (LQ) prob-
lem, i.e. the LQ-optimal control problem with affine inegtytonstraints on the state and on
the input trajectories. Optimality conditions are estsiidid by using the maximum principle,
see [HSV95]. These conditions characterize the solutidheivariant LQ problem by means
of a corresponding Hamiltonian system, both in a vector famd in a matrix form. These
Hamiltonian equations depend on the initial conditigrand that makes them difficult to solve.
In the discrete time case, see Chapter 10, the optimalitdiions lead to a computational
method for the solution of the positive LQ problem ; algamthare therefore developed to
compute the solution. Then the particular problems of L@ro@l control with either state or
input constraints are studied. In these cases, optimalitgiitions are stated which are based
on the admissibility of the solution of the standard LQ pesb) see e.g. [AM90] and [CD91].

The linear quadratic (LQ) problem with constraints hasasebeen studied for linear sys-
tems with positive controls (see e.g. [HVS98] and the refees therein for the general LQ
problem with positive controls, see [Goel0] for the infiririzon LQ problem with conical
control constraints ; see also [Ka 02] for the minimal engyggitive control problem for posi-
tive systems). In [HCPH10], the convergence of a discretimamethod is established for ap-
proximating an optimal solution of LQ problem with mixeddiar state-control constraints. The
theoretical results developed in this chapter are illasttaumerically in the following chapter
for the particular case of the positive LQ problem and alsG@lmapter 9 on the application of
these results to the problem of coexistence in a chemost@¢imo

3.1 Problem statement
Consider the following linear time-invariant system dgsioon R = [A, B], for ¢ € [to, t/] :
i(t) = Az(t) + Bu(t), x(to) = o, (3.1)

where, as previously, the staté) and the controli(¢) are in R* and IR", respectivelyA and
B are real matrices of compatible sizeg,c IR" denotes any fixed initial state ands a fixed
state.
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The finite horizon input/state-invariant linear quadraticblem, which is denoted b&Qf{i :
consists of minimizing the quadratic functional :

/ R + |2 0)]) dt+ a(t)"S x(tf)) (3.2)

to

1
J(zo, u, ty) = 3 (

for a given linear system described by (3.1), where thealstater, is fixed such thatV =, > =z,
under the constraint

Vit € [to, t], { Zul) ; (3.3)

wheret; is a fixed final timey is any piecewise-continuousRvalued functionk € R™*™ is

a symmetric positive definite matrig; € RP*", S € R"*" is a symmetric positive semidefinite
matrix, W € R™", Z ¢ R™™, z € R" andu € R™ are fixed state and input (respectively).
The problem can be studied with any matri¢€sand 7 (of full rank, see below). However in
the sequel, the particular cases whéfendZ are equal to either the identity matrix or the zero
matrix are studied. Moreover, whéi andZ are equal to the zero matrix, tmf{@ problem
corresponds to the standakd?s problem, see Section 3.3.

The idea of studying this kind of problem comes notably fromapplication to the chemo-
stat model (see Chapter 9) where several species are in taorp®r a single nutrient. This
model involves the study of a nonlinear system for which thgctive is to ensure the coex-
istence of species, i.e. to force the concentration vaggata be strictly positive. The study is
done by means of the linearized system around an equilibfium:.) such thate, := —z > 0
andu. := —u > 0. Thus the objective of coexistence implies inequality ¢t@sts on the state
and input trajectories of the linearized system. Then, Wighgoal of being consistent with this
applicationz andu are sometimes imposed to satisfy the inequalities 0 andu < 0. More-
over, the next chapter is devoted to the posim@j{“ problem, i.e. wheréV = [,,, Z = 0,,,
and in this case we consider= 0. Thus, at the beginning of this chapterandu are fixed in
R™ and R" respectively but when the results of Chapter 1 are used,ahd®e3.5, we assume
thatz < 0 andu < 0.

3.2 Optimality conditions

In this section, optimality conditions for tthf-f@. problem are established. Applying the
maximum principle with state and input constraints (see[#1§V95] recalled in Appendix B)
yields a characterization, in vector and matrix forms for[zﬂ@f{i -optimal control. In the se-
guel, unless otherwise stated, the matridéand” are assumed to be of full rank (assumptions
which translate the constraint qualifications (B.4) andjBor the maximum principle).
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Theorem 3.2.1 (Optimality conditions based on the maximum pnciple)
Consider theLQf{@ problem with cost (3.2) under the dynamics constraints)(®&ith a fixed
initial condition x, such thati¥’ z, > z, under the inequality constraints (3.3).

a) TheLQf-{,g—c problem has a solution(-) if and only if there exist piecewise continuous multi-
plier functionsA(-) mappingto, ¢ into R* andv(-) mapping(ty, ¢;] into R™ such that

u(t) = —R'BTp(t) + R Z"v(t), t € [to, t/], (3.4)

where[z(t)T  p(t)T]T € R®" is the solution of the Hamiltonian differential equation

(1) } { z(t) ] { BRZTu(t) }
) =H + , L€ o, t 3.5
o p() W) ot &9
with
l‘(to) = Xy,
3.6
Loy 2 S -t 3o
where -
A —BR B
n=| e PR (3.7)
is the Hamiltonian matrix, and for all € [to, t¢],
( Wa(t) > z,
Zu(t) > u,
A(t) >0,
() > 0. (3.8)
AT (Wz(t)—7) =0, (state complementarity conditions)
v(t)T (Zu(t) —u) =0 (input complementarity conditions)

b) Assume thatA, B) is controllable and that < 0 andu < 0. By using the matrix form of the
Hamiltonian differential equation (3.5), a piecewise-tinnous control functiom : [to, t¢] —
IR™ is solution of theLQf-f,g-c problem if and only if there exist piecewise continuous ipligt
matrix functionsA(-) mappinglto, t;] into R**™ and Y'(-) mapping[to, t¢] into IR™*™ such
that fort e [to, tf],

u(t) = K(t, xo)z(t) == (=R'BTY (t) + R ZTT(t)) X (t) ' x(t)

(—R7IBTY (t) + R71ZTY(t)) X (to) o, (3.9)

where[ X (t)T Y (t)T]" € R*™*"is the solution of the matrix Hamiltonian differential edias

{ );Eg } - { )55((3 } " { B@vTiT(s v } £ € [to, 1] (3.10)

with the final condition

X(ty) = I,
{Y(t,{) = S—WTA(ty) (3.11)
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and for allt € [to, t/],

W X(t) X (to) tog > 7 (3.12a)
Z(—R'BTY(t) + R71ZTY (1)) X (to) oo > @ (3.12b)
A(t) X (to) o > 0, (3.12¢)

Y(t) X(to) Lz >0, (3.12d)

ol X () "TAM)T(W X (t) X (to) *zg — ) = 0 (state complementarity conditiof.12€)
oE X (to) " TY ()T (Zu(t) —u) =0 (input complementarity condition) (3.12f)

Proof of Theorem 3.2.1 a) Necessity
First use the maximum principle with state and input comstsasee [HSV95, Theorem 4.1]
which is recalled in Appendix B, with the following identiéitions :

—F(x(t), u(t), t) = % (IRY2u(t)|? + [|C x (1))
S@(T),T) = st Salty)

fz(t), u(t), t = Ax(t)+ Bu(t)

g(z(t), u(t), t) = Zu(t)—u

h(z(t), ) = Wat) -z

a(z(T), T) =0

b(z(T), T) - 0

Then, withA(t) := p(t), Ao := 1 (normal case),(t) := v(t), v(t) := A(t),

1
H(z,u,p,t) = —3 (IR2ul* + |C 2|*) + p" (Az + Bu)
L(z, u,p, v, \) = H(x,u,p,t)+ol g(x, u,t)+ A\ h(z, t),

conditions (B.8b)-(B.8e) become :
e —Ru(t)+ BTp(t)+ ZTv(t) =0 = u(t) = R'BTp(t) + R~ ZTv(t)
e p(t) = CTCx(t) — ATp(t) — WTA(L)
e v(t) >0, v(t)(Zu(t)—u) =0
and at the terminal tim&;, transversality conditions (B.9a)-(B.9c) read :
* plty) = —Sa(ty) + Wy,
*v=20
e YT (Wa(ty) —z)=0.

Therefore we obtain the following two-point boundary vapreblem, withp(¢) replaced by
—p(t) :
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{g‘c(t) = Auz(t)+ Bu(t)
p(t) = —ATpt) - CTCx(t) + WTA(t)

: z(to) = o 24
with { plty) = Sa(ty) —WTy=Sx(ty) — WIA(ty)

where u(t) = —R'BTp(t) + R~ ZTv(t)

under the constraints

W x(t) > T
AOTWa(t)—z) = 0
T (Walty) —7) = 0, withy = A(t)),
A(t) > 0
and

Z u(t) >
{ v (Zu(t)—a) = 0
v(t) > 0

Hence[z(t)T p(t)T]T € R*" is the solution of the Hamiltonian differential equation53

In order to prove the sufficiency, the following concepts &rdma are needed :

Definition 3.2.1

» Apair(x(t), u(t)) is said to bgdynamically) admissiblewith respect to theLQf{i
problem ifu € U andi(t) = Ax(t) + B u(t) where the initial state; is fixed.

» A pair (z°(t), u°(t)) is said to beoptimal with respect to theLQf{,g-c problem if it is ad-
missible and minimizes the cost (3.2), whepcé)”  p°(¢)T]* is solution of the Hamil-
tonian differential equation (3.5) and the contot) is given byu®(t) = —R™!BTp°(t)+
R ZTv(t), fort € [to, tf].

Lemma 3.2.2 (Evaluation Lemma) Consider an optimal paifz°(t), u°(t)) with respect to
LQf{@ problem. Then for any < [to, t;), with A(¢) and v(¢), the multipliers associated to
x°(t) andu’(t) respectively,

a) For all admissible paif(z(t), u(t)),

/tf < z(t), CTC2°(t) > + < u(t), Ru(t) > dt

= —p(ty)Talt) + 57 () + [

T

(3.14)

ty

AT 2(t) dt + / o Zu(t) dt

where< -, - > denotes the scalar product defined as follows :

<> R'xR' - R
(a, b) ~ <a,b>=bla

for any vectors:, b € R wherek € N.
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b) In particular, (z°(t), u°(t)) is an admissible pair, whence
ty
/ (IR 2w (@)]|* + [|C 2°(1)]|?) dt

= (e t) + (D () + [

T

(3.15)

ty ty
AW z°(t) dt + / v(t) Zul(t) dt.
Proof : a) Using (3.5) withu®(t) = —R~'BTp°(t) + R~ ZTv(t) gives :

< x(t), CTC2°(t) > + < u(t), Ru°(t) >
= <a(t), —ATp°(t) + WIA(t) — p°(t) > + < u(t), —BTp°(t) + ZTv(t) >

= —<a(t), p°t) > — < x(t), ATp°(t) > — <u(t), BTp°(t) > + < z(t), WIA(t) >
+ < u(t), ZTu(t) >
= —<a(t), p°(t) > — < 2(t), p°(t) > + < z(t), WIA(®) > + < u(t), ZTv(t) >

Hence
ty
< x(t), CTCz°(t) > + < u(t), Ru(t) > dt

ty ty
= —/ (< x(t), p°(t) > + < &(t), p°(t) >)dt+/ < x(t), WIA(t) > dt

ty
+/ <u(t), ZTo(t) > dt
- _/ - <a(t), p°(t) > dt+/ < a(t), W) > dt+/ <wu(t), Z7v(t) > dt

— < 2(t), ) S)Y + /tf < a(t), WIA@E) > dt+/tf < u(t), ZTo(t) > dt
= —p°(tp)Txty) +p° (1) () + /tf AOTW z(t) dt + /tf v(t)T Z u(t) dt.

b) Using the Hamiltonian differential equation (3.5),
w°(t) = Az°(t) — BR'BTp°(t)+ BR'ZTv(t)
= Az°(t) + Bu°(t) (bythe expression af°(t))
Then(z°(t), u°(t)) is an admissible pair. Hence (3.14) is verified(oft), u(t)) = (z°(t), u°(t)),

that is (3.15) holds. .

Proof of Theorem 3.2.1 a) Sufficiency

By the fact that the functional (3.2) is convex and the dyrmand inequality constraints (3.1)
and (3.3) are defined by affine functions, see [CD91, pp. 3182a comparison of costs, we
obtain the result. Indeed, let us compute the cost for anyisgilote controk :

ty
2 J(xo, u, y) = / (IRu(@)|> + 1IC x(0)|P) dt + a(t)7 S a(t)
to v
=l (tp)lIE

ty
= / (IR ?u(t) — R?ul(t)||* + |C x(t) — C2®(t)|*) dt+ || (ty) — 2°(tg)3
- - - (1)
1)

+2 /tf(< u(t), Ruo(t) > + < a(t), CTC2°(t) >) dt

to
N /
-~

(I11)
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- [T + 0w o

to

J/

(1v)

+ 2a(ty) S a(ty) —a’(t)" S a(ty)

7 \a

~~

V) V1)
= (OH+UD+UIH)+{IV)+(V)+(VI)

where

* By Lemma 3.2.2, identity (3.14) with = ¢, reads :

ty ty
(I11) = —2p°(ts) w(ts) + 2p°(to) 20 + 2/ AOTW 2(t) dt+ 2/ v(t)' Z u(t) dt
to to
* By Lemma 3.2.2, identity (3.15) with = ¢, reads :
ty

(IV) = p°(t5)Ta"(ts) — p°(to) 0 — / AT 2o(t) dt — / 0BT Zu(t) dt

to to
« By the final condition (3.6)S z°(t;) = p°(t;) + WTA(¢;), whence

(V) = 2p°(tp)"a(ty) +2x(ts)"WTA(ty)
and (VI) = —p°(ty)Ta(ty) — =°(t;) " WTA(ty)

Therefore, after simplifications, one gets :

2J(zo, u, ty) = (I)+ (11) + p°(to) w0 t

42 / 7 NOTW a(t) dt + 2 / o) Z u(t) dt

to to
ty ty
_ / B 22(¢) dit — / o) Z e (#) dt
to to
+2a(ty) WIA(ty) — a°(tr) " WEA(ty)
On the other hand, by computing the cost for an optimal @4ift), «°(¢)), we obtain, by using
Lemma 3.2.2, identity (3.15) with = ¢, and the final condition (3.6) for the adjoint state :

ty
2 J(xo, u®, ty) = / (IR Zuc ()] + [|[C 2(1)]1%) dt+ z°(t )" S 2°(t )

to
tr

= —p°(tp) a2 (ty) + p°(to)Tzo + t' AOTW 2°(t) dt + /t fv(t)TZuo(t) dt
+p°(tr) a0 (ty) + x”(tf)TWT)\(th t
= pO(tO)TxO+a:°(tf)TWT)\(tf)+/ )\(t)TWxO(t)dt+/ v(t)' Zul(t) dt

to to
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Now let us compute the difference between these two costsissthe complementarity con-
ditions of the optimal paitz°(t), u°(t)) :

2 (J(xo, u, ty) —tJ(:cO, u’, ty)) t
— )+ (D) + 2/f)\(t)T(Wx(t) _E)dt+ Q/fv(t)T(Zu(t) ~a)dt

to to

9 /t ' MO (W a?(t) — 7) dit - 2 / fv(t)T(Zf(t) @) dt

(. to (.
=0

F2a(t)TWIN(E) — 22°() P WTA(E)

tf

= (O)+ D)+ Z/tf)\(t)T(Wx(t)—x)dtJr 2/ o) (Z u(t) — u)dt 516
to to 3.16

+2(Wa(ty) — 2)"A(tr) — 2 (Wa®(ty) — )" A(ty)

J/

-
=0

Hence2 (J(zo, u, ty) — J(zo, u°, tg)) > 0 for all admissiblew. Indeed,(I) + (I1) > 0,
A(t) > 0,v(t) >0, Wz(t) —z > 0andZ u(t) —u > 0 for all timet € [t,, tf], then each term

of equation (3.16) is nonnegative. Therefarét) given by identity (3.4) is optimal.
0

Proof of Theorem 3.2.1 b) :
Necessity.

e Consider an initial conditiom(ty) = zo such thal?’ z, > z. Assume that thaEQf{i has
asolutionu(-). Then by Theorem 3.2.1 a)(t) is given by (3.4) wherec ()T p(H)T  o(t)T
A(t)T]T is solution of (3.5) and satisfies (3.6) and (3.8) and wheskduld be noted that

the multipliers are not necessarily unique. In particuleit)” p(¢)?]? is solution of the
following two-point boundary value problem

{ 2(t) = Ax(t)+ Bu(t)
p(t) = —ATp(t) —CTCx(t) + WTA(t)

(3.17)

: x(ty) = o
with {pw) — Sa(ty) — WALy

where u(t) = —R'BTp(t) + R~ ZTv(t)

under the constraints

W x(t) > I
{ AOTWaz(t)—z) = 0
A(t) > 0
and
Z u(t) > u
{ v (Zu(t)—u) = 0
v(t) > 0
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Observe that one can find piecewise continuous matrix fansil'(-) andA(-) such that

(3.17) holds with

o) | _ | T@)
HIEINIE (318)

where( := z(t;) € IRy corresponds to the final state given by (3.17).

Indeed, first consider the pdit/, 1), where

BR'ZT [ 1,...¢0 1] O } 2
B — n nin nxn c |R2n><2n )
[ Orxcn2 wt Kl I, .. Cn In]

Observe that the pa{iZ, B) is controllable, since the matrjx I, — H B],Vsec Cis
of full rank, which corresponds to a well-known controllidlgirank test.
Actually,V s € C,

sly,—A BR'BT BR'ZT[(1I,...¢0 1] 0,50m2

s fon=H B]:[ CTC sl + AT Oruscn? WG T Gu 1]

where

x [sl, — A BR'ZT[(11,...¢, 1] is of full rank n since(; # 0 for somei €
{1,...,n}and(A, B) is assumed to be controllable, tha{id,, — A B]is of full
rankn, forall s € C ;

* WT G I, ... ¢, 1] is of full rankn sinceW is assumed to be of full rank

Then, there exist two submatrices of full ramkuch thafs I,,— H B is of full rank 2n.
It follows that there exist¥ (-) andA(-) such that the solutiojx(¢)”  p(t)?]* of the two-
point boundary value problem (3.17) is solution of the fadilag controlled system, with
T(t) = [T ... Y] (t)andA(t) = [A' ... A"] (¢), whereA® denotes here th&' column
of a matrixA :

8- (20) e e

x(to) = o, ‘
where andA(t;) ¢ = A(tf) or equivalently,
{ p(ty) = Sa(ty) —WIA(y) (ty) ¢ = A(ty) oreq y

Tl

{g;j(t) ] g { x(t) } B XT; (t), t € [to, ty].

- An -
Then one can solve the matrix Hamiltonian differential emue(3.10) withX (t7) = 1,
andY (t;) = S — WTA(t;) and obtain its unique solutiofX (¢)” Y (¢)”]*. Conse-
quently, thanks to the choice (3.18) of the multiplier maftinctionsY (-) andA(-) in
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the previous step{

x(t) } _ { X(t)
p(t) Y(t)
value problem (3.17). In fact, the matrix Hamiltonian diéfatial equation (3.10) post-

multiplied by the vectot reads

[X(t) } (= { X(t) } 4 { BR'ZTY(t) } .

} ( is the solution of the two-point boundary

Y (t) Y (t) WTA(t)
i.e.
X¢ REGEE z(t) BRZTu(t)
ve)o=Lan = e [ e ]
with )
X(ty)¢ = L,(=¢,
{ Y(tr) = (S=WTA(ty)) (=S¢ —=WTA(ts) ¢
i.e.

¢,
Sa(ty) = WTA(ty)

—
x5
T
— ~—
1|

Furthermore, the matriX((¢) is invertible for allt € [ty, t;]. Indeed, by the evaluation
Lemma 3.2.2, with{z(¢), «(t)), an optimal pair, for any < [to, ty),

/f(IIR”QU(t)Il2+ ICa()?)dt = —p(tf)Tx(tpr(T)Tx(T)+/fA(t)Tva(t) dt
+ / tfv(t)TZ u(t) dt

tf

= —(at) S alty) — M)W a(ty)) + p(r)a(r) + / "AETW a(t) dt + / o(t)Z u(t)

T

whence
/ f(HRl/zu(lf)H2 +|Cx@®)]?) dt+ x(ty) Sa(ty) = p(r)Ta(r) + Mts)"W x(ty)
4 / T () dt+ / T Z u(t) dt

or equivalently,

Ly
/ (IR Pu@®)|* + |Ca@)|*) dt+ a(ty) Sa(ty) = p(r)"a(r) +At;)
! ty ty
+/ M)z dt+ / v(t) udt
" (3.19)
by using the state and the input complementarity conditiong)” (W z(t) — z) = 0 and
v()T(Zu(t) —u) =0,V € [to, ty].
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Now contradiction is used to prove thalt(t) is a nonsingular matrix. Sinc& (t;) = I,,,
assume that there exists a time [t,, t¢) such thatlet X (7) = 0. Hence, there exists a
nonzero vectof such thatX (7) ¢ = 0, i.e. z(7) = 0. Using (3.19) gives

/ IR + 1O ()2 dt+ wty) Salty) — Aty)'z
— /tf M)z dt— /tf v(t)'adt= 0.

Hence, since each term is nonnegative witk 0 andu < 0, each term of the previous
sum should be equal to zero, and in particular, one gets :

Vitelrty] : ult)=0.

Therefore system (3.1) become§&) = Az(t) on [r, tf] with z(7) = 0. Hence its
solutionisz(t) = 0, V't € [r, tf]. In particular,z(t;) = 0 wherex(ty) = X (t5) ¢ = ¢,
then¢ = 0 which is a contradiction.

e So, sincedet X () # 0,Vt € [to, t7], ¢ = X(to) two = X (&) 'a(t), Vt € [to, ty].

Hence, with
x(t) X(t) X(t)
pt) | _ | Y@ | _ | Y y
o) | = | e (= (1) X (to) ™ wo, (3.20)
A(t) A(t) A(t)

one can easily verify, as previously, that conditions (2B{l (3.6) become conditions
(3.10) and (3.11) respectively, withty) = X (to) ( = X (to) X (to) ‘z¢ = zo. Further-
more, the optimal control is given by

u(t) = —RBTp(t) + R Z7u(t)
= —RI'BTY()(+ R'ZTT(t)¢
= (—RBTY (t)+ R71ZTY(t)) X () ( )

| (3.21)
(—R'BTY (t) + R ZTY (1) X (to)

Finally, let us verify that conditions (3.8) become corafits (3.12) :

(Walt)>7 & WXH)(>7 & WX(t)X(t) "z > 7,

Zu(t)>u < Z(—R'BTY(t)+ R'ZTY(t)) X (to) 'zo > u, by using (3.21)

At) >0 & At)C>0 & A(t) X(to) o >0,

V() >0 & TE)C>0 < T()X(t)  ay > 0,

ABT(Wat)—2) =0 & (AQ) Q' WX(EH)¢—7) =0 & (TAHT(WX({#)(-7)=0
& (X(to)” 1a:o)TA(t() (W X(t) X(to)"'wo — ) =0

& 2g X (to)TAM)T(W X (t) X (to) 2o — 7) =0
o) (Zu(t) —a) =0 < ¢"Y()T(Zut) —2) =0
\ & 2T X (to) TTMT(Zu(t) — ) = 0
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Sufficiency: Let [X (¢)T Y (¢)T]" be the solution of the matrix Hamiltonian differential etjon

(3.10) which satisfies the final conditions (3.11) and thest@nts (3.12). Sincéet X (¢) # 0,

V't € [to, ts], for the given initial conditionz(ty) = zo, there exists a unique vectgisuch that
xo = X(to) ¢. Then by (3.9),

it = Ax+ Bu
(A= BR'BTY(#) X(#)™* = BR™1ZTY(t) X(t)~1) x(t).

It follows that

z(t) X (1)
pt) | _ | Y() ¢
v(t) T(t)
At) A(t)

is the unique solution of the Hamiltonian differential ejoa (3.5), whereH is given by (3.7),

such that (3.6) and (3.8) hold. The result follows by TheoBfl a).
O

Remarks 3.2.1a) In the sequel,A, B) will be assumed to be controllable whenever Theorem
3.2.1 b) (or its discrete-time version) is used.

b) In Theorem 3.2.1, the solution of the Hamiltonian equatiooth in its vector form and its
matrix form, clearly depends on the initial conditi@g. This solution in this case is difficult
to compute whereas, as we can see in the following sectiothdostandardLQ?*s problem,

the solution can be computed a priori independently of thtgaircondition. Moreover, in the
discrete time case, an algorithm to compute this solutiatescribed in Subsection 10.2.5.

3.3 Standard LQ problem

The standard LQ problem, denoted B!/, consists of minimizing the quadratic func-
tional (3.2) for a given linear system described by (3.1)hwaitt any constraint on the state
trajectory or input trajectory, see e.g. [CD91]. This peshicorresponds to tIﬁQf{@ problem
with W = 0, andZ = 0,, where, in Theorem 3.2.1 and its proof, the multipliers asded
to the state and input constraints together with the as®ateguations are no longer present.

lts solution is given byu(t) = K(t)x(t) = —R'BTY(t) X(t)*z(t), t € [to, t;] where
(X#®)T Y()T]T € R*™ " is the solution of the matrix Hamiltonian differential edjoa
X _ [ X®] [X6)] _[1
v = lvie | [ =[5 ) 522

Moreover, in this case, the solution can be rewritten in geofithe Riccati Differential Equation
(RDE) P(-). Indeed the solution of thEQ* problem is given, for alt € [to, ts], by u(t) =
—R7'BTP(t)x(t), where P(-) = P(-)T is the positive semidefinite matrix solution of the
RDE, (see e.g. [CD91]) :

—P(t) = ATP(t) + P(t)A— P(t) BR"'BTP(t) + CTC, P(t;) = S. (3.23)
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Therefore, in the sequel, the following closed-loop sysieoonsidered fot € [to, t/] :
#(t) = (A+ BK(t))z(t), x(to) = xo, (3.24)

whereK (t) = —R™'BTP(t).

3.4 Optimality conditions via admissibility

Consider theLQf-f,,i problem withWW = [, andZ = [,,,. In view of the analysis above,
conditions such that thEQf{@. problem has a solution can be obtained. These conditions are
based on the admissibility of the solution of the stand&€ds problem which was described
in the previous section. Clearly such optimality condisare only sufficient conditions of
optimality for theLQf{ﬁ problem.

Corollary 3.4.1 (Optimality conditions based on admissildity) The solution of the (standard)
LQ?r problem is solution of theLQf-f@ problem forz, > 7 if and only if the LQ* -optimal
state and input trajectories are admissible, i) > z andu(t) > @ for all ¢t € [to, t¢], or
equivalently the matrix solution of the standard matrix Hiéomian differential equation (3.22)
is such that for alk € [to, t],

and

for zo > 7.

Proof : This result follows directly from Theorem 3.2.1 b) or equeraly from the fact that,

for the LQ?s problem, we consider the minimization on a larger set.
O

3.5 State-invariant LQ problem

In this section the particular case of the state-invathI’;f problem is studied. In this
case, admissibility conditions can be obtained by usingthedardLQ?’ problem.

3.5.1 Problem statement and optimality conditions

The finite horizon state-invariant LQ problem, which is dmubbyLQ';'—cf , consists of min-
imizing the quadratic functional (3.2) for a given lineassym described by (3.1), where the
initial statex, > =z is fixed, under the constraint

Yt e [to, ty], a(t) >z (3.25)

This problem corresponds to ttlfo—f,g—c problem withiW = I,, andZ = 0,, whereX andA are
the multipliers associated to the state constraint (3.88)ra< 0 (as in Chapter 1). The input
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constraints and the associated multipliers are no longedetw As for theLQf-f@. problem,
optimality conditions can be established, using the marinminciple with state constraints
(see e.g. [HSV95]). Then we obtain a result which is simafheorem 3.2.1 and is therefore
omitted.

3.5.2 Optimality conditions via admissibility

As previously, conditions such that tIIlez.f problem has a solution can be obtained by
using the standarfiQ?*s problem.

Corollary 3.5.1 (Optimality conditions based on admissility) The solution of the (standard)
LQ?r problem is solution of thdLng problem forz, > z if and only if theL Qs -optimal state
trajectories are admissible, i.e.(t) > z for all ¢ € [¢,, t/], or equivalently one of the following
equivalent conditions holds :

a) The standard closed-loop matrix + B K(t) = A — BR'BTP(t), where P(t) is the
solution of the RDE, is a Metzler matrix for alic [to, t/], i.e.

Vi34, VtE lto, ty], [BR'BTP)];; < aij. (3.26)

and

where® (¢, o) is the fundamental matrix of the closed-loop system (3w2dich satisfies the
following homogeneous equation :

{ Ddye(t, to) = (A+ BE(L)) ®rlt, to),

3.28
Oy (to, to) = I ( )

b) The matrix solution of the standard matrix Hamiltoniaffetiential equation (3.22) is such
that for all t € [to, tf], X (t) X (to) a0 > Z.

Proof : This result follows directly from Theorem 1.1.2 and Theorg/2.1. In addition, the
solution of theLQ? problem is given as in Theorem 3.2.1 where the multipliecfiomsv ()

andY(t¢) are identically equal to zero. o

3.6 Input-invariant LQ problem

3.6.1 Problem statement and optimality conditions

The finite horizon input-invariant LQ problem, which is dée byLQf{ , consists of min-
imizing the quadratic functional (3.2) for a given inputdmiant linear system described by
(3.1), under the constraints

Vi€ [to, tf], u(t) > au. (3.29)

This problem corresponds to ttlle{g—c problem withiW = 0,, andZ = I,, wherev and
T are the multipliers associated to the input constraint9Bahdu < 0. In this subsection,
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optimality conditions for theLQf-f problem are established using the maximum principle with
input constraints (see e.g. [HSV95]). This leads to a reshith is similar to Theorem 3.2.1
and is therefore omitted.

3.6.2 Optimality conditions via admissibility

As in the previous section, conditions such that E@f—f problem has a solution can be
obtained by using the standafdQ*s problem.

Corollary 3.6.1 (Optimality conditions based on admissility) The solution of the (standard)
LQts problem withm = n is solution of theLQY problem if and only if theL Qs -optimal
control is admissible, i.ex(t) > u for all ¢t € [ty, tf], or equivalently one of the following
conditions holds :

a) The state feedbadk (t) = —R~' BT P(t), whereP(t) is the solution of the RDE, is of full
rank, such that for alt € [t, t],

K(t) ®x(t, to) K(t)™' >0
and
K(t) ®r(t, to) K(t) tu>u

where & (t, ty) is the fundamental matrix of the closed-loop system (3.2#)ch satisfies
(3.28).

b) The matrix solution of the standard matrix Hamiltoniaffeliential equation (3.22) is such
that for all ¢ € [to, t;], —R'BTY (t) X (to) 'zo > w.

Proof : This result follows directly from Corollary 1.1.4 and Thear 3.2.1.
O

Remark 3.6.1 If B is a full rank matrix, condition a) of Corollary 3.6.1 impEenotably, the
invertibility of P(¢) (and therefore also 0¥ (¢)). The inverse of°(¢) is computable as the
solution of the following Riccati differential equationitvV (t) = P(¢)~' :

V() =-V(#t)AT —AV(t)+ BR'BT — V() CTCV(t), V(t;) =S

Furthermore, let us notice that in the case of the minimakgyeontrol problem ¢' = 0), the
inverse ofP(¢) is the solution of a Lyapunov equation.
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Chapter 4

The Positive LQ Problem

In this chapter, the LQ problem is studied for positive syste This problem corresponds
to theLQ;f problem withz = 0 andWW = [,,. The main objective of this problem is to keep
the positivity property of the open loop system for the desijcontrolled system, which is
meaningful from the modeling point of view. As we have alrgaden, many theoretical prob-
lems have been studied for positive systems. Here the fioitzon positive linear quadratic
problem is studied for positive linear time systems.

As in the previous chapter, optimality conditions are dsthbd, which are based on the
maximum principle and on the admissibility of the solutidrtlee standard.Q?s problem, re-
spectively. In addition, sufficient conditions for the posty of the standardLQ?*s closed-loop
system are stated in terms of the matrix solution of the Ricltierential equation. Moreover,
the particular problem of minimal energy control with pepation of the final state is studied.
Finally, numerical examples are given in order to illusrdiese results.

4.1 Problem statement and optimality conditions

In the particular case of the LQ problem for positive systghmssame analysis as in Section
3.5 can be done by considering= 0, W = I,,. Indeed, the finite horizon positive LQ problem,
which is denoted b)Lfo , consists of minimizing the quadratic functional (3.2) &given
linear systen? = [A, B|, where the initial state(t,) = x, > 0 is fixed, under the constraint

Vte [to, tf], {L‘(t) >0, (41)

wheret; is a fixed final timey is any piecewise-continuous”Rvalued function R € R™*™
is a symmetric positive definite matrix; € R”*" andS € R"*" is a symmetric positive
semidefinite matrix.

Therefore we can obtain optimality conditions as previgisi using the maximum prin-
ciple. Applying this principle with state constraints (s&g. [HSV95]) yields a characteriza-
tion, in vector and matrix forms for aﬂQj’f -optimal control. Theorem 3.2.1 becomes, with
W=1,7Z=0,andz =0:

57
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Theorem 4.1.1 (Optimality conditions based on the maximum pnciple)

a) TheLQf,f problem has a solution(-) if and only if there exists a piecewise continuous
multiplier functionA(-) mapping(to, /] into R* such thatu(t) = —R'Bp(t), t € [to, t/],
where[z(t)T  p(t)T]T € R®" is the solution of the Hamiltonian differential equation

[igg } = { ZEQ } + { A?t) } , t € [to, ty] (4.2)

with z(ty) = wo, p(ty) = Sx(ty) — A(ty), where

_ —1 T
H:{A BRB}

e —AT
is the Hamiltonian matrix, and for all € [to, t¢], z(t) > 0, A(t) > 0 and \(t)T z(t) = 0
(complementarity condition).
b) By using the matrix form of the Hamiltonian differentigbation (4.2), a piecewise-continuous
control functionu : [to, t;] — R™ is solution of theLQ'jf problem if and only if there exists
a piecewise continuous multiplier matrix functidrt-) mapping|to, ¢¢] into IR**" such that
u(t) = K(t, zo) z(t) := —R'BTY (t) X(t)'x(t), t € [to, t;], where[X ()T Y (t)']" €
IR*™*™ s the solution of the matrix Hamiltonian differential edjiom

X _ [ X0 0
[Y(t) ] _H[Y(t) } +[A(t) ] , t € [to, t]
with the final conditionX (¢;) = I andY'(t;) = S — A(ty), and for allt € [to, t/],

A(t) X (to) "'wo > 0, (4.3)

o3 X (o) TA)T X (t) X (to) 'zo =0 (complementarity condition) (4.4)
and
X (t) X (to) 'zo > 0. (4.5)

Remark 4.1.1 A priori, in view of conditions (4.3)-(4.5), the functidki(¢, z,) in Theorem
4.1.1 (b) clearly depends upon the choice of the initialesigt Stronger conditions are needed
in order to make it independent of the initial state, i.e. Istitat the optimal control law be of
state feedback type(t) = K (t¢) z(¢). Such conditions are stated next.

Proposition 4.1.2 Conditions (4.3)-(4.5) are satisfied for all initial stateg > 0 if and only if
the following conditions hold for all € [to, #4] :

A(t) X (t) " >0, (4.6)

ABTX )+ X#®)TA() =0 (4.7)

and
X(t) X(to)~ ' >0. (4.8)
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The proof of this result is based on the following lemma.
Lemma 4.1.3 A matrix M € R"" is a skew-symmetric matrix, i.8/ = —M7 | if and only if
forallz >0, T Mz = 0. (4.9)

Proof : Firstrecall that a matri®/ is skew-symmetric if and only if, for alt € R™, 27 M x = 0.
Then the necessity of condition (4.9) is obvious. Convgrs#serve that condition (4.9) im-
plies that

Vo,y>0, y"Mr+a"My=(x+y) ' M@x+y)—2"Mz -y " My=0. (4.10)

Then observe that any € R" can be written ag = z, — z_ wherez, := max{z, 0} =
1(lz] + z) > 0andz_ := max{—=z, 0} = 3(|z| — z) > 0. By using this decomposition afin
(4.9) and the identity (4.10), it follows that, for alle R™, 27 M z = 0. -
Proof of Proposition 4.1.2 : The fact that conditions (4.3) and (4.5) hold for a}l > 0 is
obviously equivalent to conditions (4.6) and (4.8). By Leanrh1.3, condition (4.4) holds
for all x, > 0 if and only if the matrix X (¢o) " TA(#)T X (¢) X (ty) " is skew-symmetric, or
equivalentlyA(t)T X (t) is a skew-symmetric matrix, i.e. (4.7) holds. -
Remark 4.1.2 a) Conditions (4.6)-(4.8) can be hard to check in generalwideer they obvi-
ously hold withA(¢) = 0 in an important particular case. See Corollary 4.1.4 below.

b) The optimality conditions in Theorem 4.1.1 and Proposi4.1.2 also hold for linear sys-
temsR = [A, B] that are not positive. However the positivity assumptiaypla crucial role
for obtaining the criteria established in Section 4.2.

In view of the analysis above, conditions such that E@i{ problem has a solution can be
obtained by using the standafaQ?s problem as in the previous chapter, see Sections 3.3 and
3.5 and especially Corollary 3.5.1 applied with= 0.

Corollary 4.1.4 (Optimality conditions based on admissility) The solution of th&LQ*s
problem is solution of theLQﬁf problem for allzg > 0 if and only if theLQ? -optimal state
trajectories are admissible, i.e. nonnegative fortal [¢, ¢;] and for allz, > 0, or equiva-
lently one of the following equivalent conditions holds :

a) The standard closed-loop matrix + B K(t) = A — BR'BTP(t), where P(t) is the
solution of the RDE, is a Metzler matrix for alic [to, t¢], i.e.

Vi#j, YVt € [to, ty], [BR'BTP()];; < ayj. (4.11)

b) The matrix solution of the matrix Hamiltonian differealtequation (3.22) is such that for all
t € [to, ty], X(t) X(to)" ' >0.

Remark 4.1.3 The analysis and results of this section are readily extefedto the case where
the final state penalty term in the cost (3.2) is of the foutt;) — x7)"S (z(t;) — x;) where
zy € R is a fixed reference state for the final statg;).
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4.2 Positivity criteria

In this section, theLQif problem is studied with an additional assumption, nameg¢y th
positivity of the open-loop system. In other words, tbé)f[ problem consists of minimizing
a quadratic functional for a given positive system whileuigqg that the state trajectories be
nonnegative for any fixed nonnegative initial state, whetheepositivity property should be
kept for the optimal state trajectories. It is important bserve that, in this framework, it is not
required that the input function(¢) be nonnegative. The systefh= [A, B] being assumed
to be positive, the latter constraint, i.€.t € [to, ts], u(t) > 0, is clearly stronger than the
constraint (4.1). Hence, here tia)*s problem is studied with the aim of finding conditions
on the problem data such that the standard closed-looprsyisteositive, i.e. such that the
conditions of Corollary 4.1.4 hold. This can be interpredsdolving an inversEij problem.

4.2.1 Upper bound for the solution of the RDE

First, sufficient conditions are established for the puisitiof the LQ* closed-loop system
in terms of an upper bound of the solutié!t) of the RDE. We use an approach similar to the
one developed in [MPS90].

Theorem 4.2.1 Consider theL. Q*s problem (3.1)-(3.2). I3 R~' BT > 0, if the solution of the
RDE is nonnegative, i.e.
Vte lt, ty], P(t)>0, (4.12)

and if
Vi#j, Vte [t ty], [BR*lBTF(t)]ijgaij, (4.13)

whereF'(t) is the solution of the matrix Lyapunov differential equatio
F(t)y=—-ATF(t) - F(t) A—CTC, F(t;) = S, (4.14)

then theL Qs closed-loop system is positive and therefore the solutidheal Q*s problem is
solution of theLfo_“ problem.

Proof : Since condition (4.13) is equivalent to the fact that B R~!BT F(t) is a Metzler ma-
trix for all ¢ € [to, tf], and in view of Corollary 4.1.4, it suffices to show that, flrtac [to, t¢],
P(t) < F(t). Now, thanks to the assumption (4.12), the matfix) := P(t) BR™'BTP(t) is
nonnegative for alt € [to, t;]. In addition, the derivative of () := P(t) — F(t) is given by

) tr r
Z(t) = —ATZ(t) — Z(t) A+ V(t). HenceZ (t) = —/ e OV (1)e 7Y dr is a nonpos-
t

itive matrix for allt € [to, tf]. -

Remarks 4.2.1a) If (A, B) is stabilizable and C, A) is detectable, then fot; — oo, the
solution P(t) = P(t, t;, S) of the RDE tends to the unique stabilizing positive semiiefin
solution P, of the corresponding algebraic Riccati equation (ARE),

ATP,+ P, A—P,BR'B"P_+CTC =0. (4.15)
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Moreover by Proposition 6.1.1, if is a stable Metzler matrix and — B R~! BT P, is a (stable)
Metzler matrix, ther?, > 0 whenever) = CTC > 0 ; hence if in additionP, >> 0, condition
(4.12) must hold fot; sufficiently large.
b) Condition (4.13) implies that the weighting matridgsC”? C and S have to be chosen such
that(B R™'B”S);; < a;; and(B R™'BTF(t)):; < aij, for all i # j, whereF(t) is the solu-

T tfit T
tion of (4.14) which is given b (t) = e* (7= eAlts=t) 4 / e *CTCe* ds Moreover,

0

condition (4.12) implies that has to be a nonnegative matrix.

c) In view of the analysis above, assumption (4.12) can bkaced by a weaker one, viz.
Pt)BR'BTP(t) > 0forall t € [ty, t/].

Example 4.2.1 Consider an unstable positive systém- [A, B] where

-1 1
A_{ . _1],8_[2 (4.16)
and the cost (3.2) where

C=p[1 0] andR=r1. (4.17)

For all results and figures presented here, unless othestét, the initial time, is equal to
0, the final timef; is equal ta20 and the sampling step 6s5. We used MTLAB with the solver
ode23s notably to integrate the RDE (3.23) and the Lyapunov eqog#dal4).

Letp = 1 andr = 6. The eigenvalues off are —2 and0, thus the matrixA is obviously
unstable. Computing as the stabilizing positive semidefinite solutiBn of the ARE gives

_ [ 1.1372 0.7980 ] _ (4.18)

0.7980 0.7037

Condition (4.12) is clearly satisfied sind&(¢) is equal toS for all t € [0, ;] andS > 0.
Moreover, condition (4.13) is also numerically verifiedeJagure 4.1.

_ ——BRB' (1) _ ——BRB' (1)
N 1T | | = 1T
o 08 BR "B’ P(t) o o8 BR "B’ P(t)
> A 2 A
c <
Q06 906
@ @
[ c
(o] o
[o)] o))
T 04 T 04
7 7
S &
o} )
0.2 0.2
0 0
0 5 10 15 20 0 5 10 15 20
Time (sec) Time (sec)

Figure 4.1: Off-diagonal entries @8 R~'BTF(t), BR'BTP(t) and A for system (4.16)-
(4.18).
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The off-diagonal entries oB R~ BT F'(t) are clearly less than those df Now as one can
—1.18953  0.86700

0.86700 —1.11728
is clearly a Metzler matrix. See Figure 4.2 which repres#rgoptimal state trajectories at the

sampling times, for the initial stateg = [1  0]” (graphs on the left) and, = [0 1]” (graphs
on the right) respectively, i.e. the columnsedf’ at the sampling times. One can numerically
verify that the closed-loop system is positive.

expect, the closed-loop matrix + BK(t) = A— BR'BTS =

[~

% 1 20 2 4 6
Time (sec)

Figure 4.2: Optimal state trajectorieét) for system (4.16)-(4.18).

Notice that the closed-loop system is stable since the ede®s of the (constant) closed-
loop matrix are—2.0212 and —0.2857. This observation is not really surprising, since the
matrix S was selected to be the unique stabilizing solutfdnof ARE. Moreover, it could
also be interesting to observe the behavior of the optimatrobu(t¢), which is represented
in Figure 4.3 with the same initial state as above. We obstrateu(t) < 0 for all ¢ since
u(t) = —R7'BTP(t) z(t) with P(t) > 0 andB > 0. Actually, wheneve2~! > 0 the optimal
control is always nonpositive.

® 1 20 2 4 6
Time (sec)

Figure 4.3: Optimal contrak(¢) for system (4.16)-(4.18).
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Furthermore, the matri® plays a paramount role here : for a fixed horizgncondition
(4.13) holds ifr is sufficiently large ; if the horizor, is increased; has to be increased
accordingly. See Figure 4.4 which compares the results foi6 andr = 10 wheret; = 30.

1 ﬁ%‘g 1 ﬁ%‘g
—*— BR BT F(t) - R = 6*I —*— BR BT F(t) - R = 6%

R osl] ——BRBTPO-R=6%| T ogl] ——BRBTP®-R=6"
i o~
e S—BR'B'F()-R=10%| S— BRB' F(t) - R = 10
2 —1gT — 10| 2 15T — 10
= —e—BRIBTPM) -R=10%| S —e—BR BT P(t) - R = 10
S os6f T 06
= —— A @ —— A
[3+1 [3+]
f f
o o
[=>] [=>]
.© .©
T T
€= €=
[e) o

o 10 20 30 o 10 20 30
Time (sec) Time (sec)

Figure 4.4: Off-diagonal entries @8 R~'BTF(t), BR 'BTP(t) and A for system (4.16)-
(4.18) withr = 6 andr = 10 wheret; = 30.

Remark 4.2.2 The nonnegativity condition (4.12) in Theorem 4.2.1, appéabe a drawback
of that result : it is indeed not clear how to check this corditwithout having to integrate the
RDE. The following subsection is an attempt to avoid thisiagsion.

4.2.2 Minimal energy control

In this subsection, the particular problem of minimal eyargntrol with penalization of the
final state is studied. An interesting feature of this applhoia the fact that one can force the
final state to be approximately close to zero by using a peatadin term, for systems which are
not necessarily reachable. A zero final state can be (eyaetighed by means of a minimal
energy control (and therefore the state) trajectories egative for reachable systems with a
monomial gramian on a finite time interval, see [Ka 02, Sutised.4.2].

Here, sufficient conditions are established for the miniemargy control problem in terms
of the spectral radius of the penalty matfixin the sequely(A) andp(A) denote the spectrum
and the spectral radius of a matrix respectively. The matrix norm that is used here is the one
induced by the euclidean vector norm.

Theorem 4.2.2 Consider the minimal energfQ* problem (3.1)-(3.2), i.e. witld’ = 0. Let
us denote\,,;,(R) := min{\ : A € o(R)}. Assume that;; > 0 for all i # j. If the spectral
radiusp(S) of the final state penalty matrix is sufficiently small sucht th
Amin(R)
2 2 )
p(S) = max p < yi={ B

;,LiEO'(S) Amin R —2>\th If )\ > O
a2||B|2t; L=

(4.19)
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where) - denotes the Frobenius eigenvalue (see Theorem A.1.5) amdtistanty > 0 is such
that, for allt € [to, t], [le??]] < aer?, then theLQ? closed-loop system is positive and
therefore the solution of thEQ?*s problem is solution of théij{ problem.

Proof : The positivity constraint on the closed-loop matrix can b&ten in terms of the

solution P(t) of the RDE (see condition (4.11)), whefeé > 0 since[A, B] is a positive

system. In additionP(t) = Y(t) X(t)~' = A" W08 [I + Gty —t) S| eA&=1) where
F—t

t
Gty —t) = / ¢*"BR'BTe*" 7 do , and
0

Q{2 B 2 ty—t
Gt -0l < ST [ eao pts)
_ 2BIP o,
= (R e (ty—t)p(S)  (bythe mean value theorem)
o || B|I%
< )\” (HR>f 62)\F7p(s)

for somer € [0, t; — t] wheree?**™ depends on the stability of. If A is stable,\r is
negative (see Theorem 2.2.1) and therefe¥® ™ < 1. If A is unstable \r is nonnega-

tive, thene**r™ < e?r'tr. Thus, if (4.19) holds, thefiG(t; — ) S|| < @ < 1, whence

1S [+ Gty —1t) ST < ; p(Sp()S) (by applying Neumann’s Lemma). Hence, by choosing

v
p(S) sufficiently small, condition (4.11) holds, singe # j, a;; > 0 ande?’ =9 andeA (=)

are bounded oft, t¢].

O

Remarks 4.2.3 a) The constant can be interpreted as a condition number. Indeedan be
chosen to be given hy = (V') = ||[V||||V |, whereV is the (generalized) eigenvector matrix
of A. In addition, if A is a symmetric matrix, one can choase- 1.

b) For a fixed final timel;, if the entries of the penalization matr& of the final state are
increased, one has to increase the entries of the contralpetion matrixR accordingly. On
the other hand, condition (4.19) can also be written as

Amin(R) .
t E fA
f < )\maX(S)’ if A <0
Amin ( .
tpe2rrty Pz fAr>0
A W T

whereE = W is a constant depending only on the system data. Hence, tiilntieehorizon

tr is increased, the fractioé%((?) has to be increased accordingly for condition (4.19) to be
satisfied. This reveals a tradeoff between positivity aatibty of the closed-loop system in a
receding horizon approach, see e.g. [CW96]. The followixaneple is an illustration of this
tradeoff.
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Example 4.2.2 Consider the unstable positive syst&m- [A, B] described by (4.16) and the
cost (3.2) where
C = 012 and R = 1. (420)

We compute the different parameters which play a role in ttmmd(4.19). First observe that
the right-hand side of this condition is equalt®5, sinceAr = 0, t; = 20 anda = 1 and
that condition (4.19) reads(S) < 1/t;. Therefore in order to guarantee this condition, the
matrix S has to be chosen such that its spectral radius is lessithan We choose the other
eigenvalue less thap(S) and we compute random associated eigenvectors. In this weay w
obtain the following values p(S) = 0.0495, o(S) = {0.0495, 0.0300} and

0.0397  —0.0098
S —

= 421
—0.0098 0.0397 ( )

We obtain numerically that the closed-loop system is pasitince the closed-loop matrix is
a Metzler matrix for all sampling times : see Figure 4.5, espnting the off-diagonal entries
of A+ B K(t) at the sampling times and Figure 4.6, representing the apstate trajectories

for the initial statesz, = [1  0]” (graphs on the left) and, = [0 1]7 (graphs on the right)

respectively.

1.015 T 1.015

1.01¢ 1.01¢ *

"
K-

1.0051 1.0051

0.995¢

0-99:\\-2[ 0-99’N

0.985 : 0.985
0 10 20 0 10 20

Time (sec) Time (sec)

0.995¢

Off-diagonal entry (1,2) of A + B K(t)
Off-diagonal entry (2,1) of A + B K(t)

Figure 4.5: Off-diagonal entries of + B K (t) for system (4.16), (4.20)-(4.21).
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Figure 4.6: Optimal state trajectorie§) for system (4.16), (4.20)-(4.21).

Observe that one of the eigenvalues of the closed-loop xnstas near zero, e.g:(A +
BK(20)) = {—2, —0.0187}. Since condition (4.19) is given here pyS) < 1/t;, as long as
t; increasesS has to be decreased and therefore the final sdte is less penalized (in the
cost functional).

Now, as we have seen in Remark 4.2.3 b), the matradso plays an important role. For a
fixed final timet; = 20, if A\.,;,(R) is increased, for example,;,(R) = 10, thenp(S) can be
increased without violating condition (4.19). For examihe latter condition holds fg#(S) =

0.2451 —0.0825
32 _
0.3276 and 5 { 0.0825  0.2451

closed-loop matrix is even closer to O than previously, e(@l + BK (20)) = {—2, —0.0123}.
In addition, increasing the final timg will emphasize this fact since the matrix should
be modified such that condition (4.19) holds witfs) sufficiently small. For example, with
tr = 100, Amin(R) = 10, one can choose

} . However, in this case, one of the eigenvalues of the

0.0611 —0.0012

pu— . 2 pu—
pS5) = 0.0623, 5 { —0.0012  0.0611

} whenceos(A + BK(20)) = {—2, —0.0037}.

So this example reveals a tradeoff between positivity aailgty of the closed-loop systemin a
receding horizon approach. However, fogiven by (4.21), the solution of the infinite horizon
problem is not the limit, when, tends to infinity, of the solution of the finite horizon oneese
e.g. [CW95] or [WC83]. Indeed, the last assumption (5.9) bédrem 5.2.3 is not verified.
Solving theLQi_’;v problem (with techniques developed in Subsection 7.2.123ysetem (4.16),
(4.20)-(4.21) reveals that the closed-loop matrix is &abl

Remark 4.2.4 In Example 4.2.2, the solutioR(¢) of the RDE is not nonnegative for all time,
sinceP(t;) = S whereS is not nonnegative (see (4.21)). Hence Theorem 4.2.1 cabeot
applied in this case.



4.2 Positivity criteria 67

Remarks 4.2.5a) Obviously the Metzler property of a given matrxs kept under any diag-
onal perturbation. By considering thBQ*s problem (3.1)-(3.2) where the systér B] is a
positive system, if the solutidf(¢) of the RDE is such that for all € [t,, ¢;], —B R~'BT P(t)

is a diagonal matrix, then th&Q?s closed-loop system is positive and therefore the solution o
the LQ* problem is solution of thé,fo_“ problem.

b) One easy way to get this condition is to impose notably tha} is a diagonal matrix,
provided that the matrix3 R~' BT be also diagonal. Sufficient conditions for achieving this
goal are stated as follows : consider taQ?s problem (3.1)-(3.2) where the systém B] is
a positive system, witB equal to/,,. Choose a constant such thatv > max{0, Ar}. Define

Ay = AAT —(al, + A) (a1, + A)T.

Assume that
S = al,,

7 I,
CTC = a? (2 +1)1, + A,

=y
Il

with » > 0 such that
- > (4.22)

whereA i, := min{\ : X € 0(A4,)}.

Then for allt € [to, ts], P(t) = a I, and theLQ" closed-loop system is positive and therefore
the solution of theLQ?s problem is solution of tthQf{ problem.

Indeed, first observe that = R is positive definite since > 0. NowQ = CT(C is also
positive definite because it can be shown thate o(Q), 1 > 0. Indeedy = o (2 + 1) + A
where) € o(A,). Then condition (4.22) gives

1
042(; +1) > —Amin(Aa) > =N, VX eoa(A).
ThenV A € o(A,), p = (2 + 1) + A > 0 andQ is positive definite. Hencg), A) is
observable andA, B) is controllable sinceB = I,,. Now the stabilizing positive semidefinite
solution P, of the ARE, see (4.15), is given By = « [,,. Indeed,

AP +P A —2P+BR’1BTP+ +CTC
1
= aAT+aA—a—In+oz2(—+1)]n+Aa
r r
= aAT+aA+a’l, +AAT — 2], —a AT —a A+ AAT
0

Then the solutiorP(¢) of the RDE such thaP(t;) = S := «a I, is constant and is given by
P(t) = aI,. Hence the matrix-B R~ B” P(t) is diagonal and is given by- I,,. .
c) In the previous remark, the control matrix is assumed to be the identity matrix. This
assumption is verified for compartmental systems, whiclaanenportant subclass of positive
systems, see e.g. [Van98, p. 593] and Subsection 2.3.3.oMarrea stable positive system is
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equivalent to a compartmental system, modulo a positivgaial transformation matrix, see
e.g. [BF02] ; hence, in the statement of th&)ts problem, a stable matrixl can be assumed
without loss of generality to be a compartmental matrix.

Example 4.2.3 Consider the unstable positive syst&m- [A, B| described by (4.16) and the
cost (3.2). Select the following parameters- 0.5, r = 2, such that
Q=CTC =

1.1250 —1.0000} R [2 0} . {0-5 0 } (4.23)

—1.0000 1.1250 0 2 0 0.5

ThenP(t) = Sforall t andA + BK(t) is a constant Metzler matrix, given by :

At BE(t) = { —6.2500  1.0000 } .

1.0000 —6.2500

As one can expect, we can numerically verify in Figure 4.% tha closed-loop system is

positive and also stable. In this figure, the optimal stadgettories are depicted for several
values ofa.. Observe that the stability of the closed-loop system israwgd by increasing the

parametery.

Amplitude

0 5 10 0 5 10
Time (sec)

Figure 4.7: Optimal state trajectorie§t) for system (4.16),(4.23).
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4.3 Numerical examples

This section is devoted to numerical examples. First ofta#, solution of the standard
LQ?r problem is studied. The sufficient conditions of Theorem2dte checked numerically
in order to obtain an admissible solution for the positive p@blem. Then the analytical
solution of the standard.Q?s problem is computed. Finally the positi\[le{ problem is
solved, by applying the optimality conditions of Theorerh.4.

4.3.1 Standard LQ problem

Consider the unstable positive system described by

e =L o] e e (4.24)
and the minimization of the functional

T, u,t5) = 3 (/0 )2 dt+ a3 () + bxg(tf)) (4.25)

where
C= 01><2, R = ]1, S = diag(a, b)

First we compute the different parameters of conditiong¥ duch that this condition reads
Amin () —oApt el
f =

S) < e = 0.20612 10~? with t; = 10. Then we choose
P8) < bR, ¢ 7 Wi b "
0.1063 0
= dj b) =107° 4.26
§ = diag(a, b) = 10 { 0 0.0736] (4.26)

with p(S) = 0.1063 10~2. We obtain numerically that the closed-loop system is pasisince
the closed-loop matrix is a Metzler matrix for all samplingés : see Figure 4.8, which shows
the off-diagonal entries oft + B K (t) at the sampling times. As already mentioned in sub-
section 4.2.2, the matriX should be chosen sufficiently small to guarantee the pdgiavthe
expense of the final state penalization.
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Figure 4.8: Off-diagonal entries of + B K (t) for system (4.24)-(4.26).

Now for a fixedS = I, the analytical solution of th&Q*s problem is computed by solving
the Hamiltonian differential equation (3.22). The analgtiexpressions of the optimal control
and the state trajectories are given, fortadl [0, ¢¢] and forz, = [1  0]7, by

u(t) = —2¢et
(t) = et+te!
o(t) = —te?

They are drawn in Figures 4.9 and 4.10. One can observe:thitis nonpositive for all time.
Now the analytical expressions of the optimal control aredsttate trajectories fary, = [0 1]7
are given, for alt € [0, tf|, by

u(t) = —2et
r(t) = et+tet
o(t) = —tet

They are drawn in Figures 4.11 and 4.12. One can observedtetdit) is also not nonnegative
for all time. So an additional nonnegativity constraint be state trajectories is needed. The
following subsection is devoted to the positiﬂQf{ problem in order to obtain nonnegative
optimal state trajectories.
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Figure 4.9: Optimal control for system (4.24) fay = [1  0]7.

6 8 10

Figure 4.10: State trajectories for system (4.24)foe= [1  0]7.

71



72 Chapter 4. The Positive LQ Problem

Time
0 2 4 6 8 10
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[«-4

Figure 4.11: Optimal control for system (4.24) fay= [0 1]7.

8 10

4 6 8 10

Figure 4.12: State trajectories for system (4.24)fpe= [0 1]7.

4.3.2 Positive LQ problem

In this subsection, theLQi{ problem is solved, by applying the optimality conditions of
Theorem 4.1.1, for which we first compute the analytical soiuand then the numerical solu-
tion. Consider the positive system described by (4.24) hedrtinimization of the functional
(4.25) under the constraints < [0, ¢¢], z1(t) > 0 and z»(t) > 0. By applying the optimality
conditions of Theorem 4.1.1, we obtain the following twdfidooundary value problem, as
found in the proof of Theorem 3.2.1 a) (see (3.13)) adaptddd Wi = 7,,, 7 = 0,, andz = 0) :
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{ z(t) = Ax(t)+ Bu(t)
p(t) = —ATp(t) = CTCa(t) + A(t)

. .T(t()) = X
with {P(tf) = Sa(ty) — Aty)

where u(t) = —R™'BTp(t)

under the constraints

x(t) > 0
{)\(t)Tx(t) = 0
At >0

or equivalently, with

A:|:O 1:|7B:|:0:|7C:01><27R:IhS:IQ>

{:’L’l(t) = xo(t)

and
{Pl(t) = —pa(t) + Mi(?)

Pa(t) = —pi(t) + Aa(t)

where\;, \; > 0and\ z; =0, i = 1,2, 0n|0, ¢;], with the following boundary conditions :

71(0) = 7o pi(ty) = zi(ty) — Mlty)
{372(0) To2 and{pz(tf) = Za(ty) — Na(ty). (4.27)

Moreover, the optimal control is given yt) = —B R~ BTp(t) = —ps(t), t € [0, t;].

The analytical expressions can be computed by solving thisthary value problem. There
exist two similar ways to compute the state and adjoint stajectories : let us consider two
arbitrary times; andt, in the intervall0, ¢¢], then

to
x(ty) = eA(tQ_“)x(tl)—i-/ 279 By(o) do
ho (4.28)
p(t2) = €AT“2“)P(751)+/ eI\ 0) do
t1
cosh(t) sinh(?)
sinh(t) cosh(?)
or equivalently,

B R PR LY A PRI L

whereedt = { } fort € [0, ty];
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| cosh(t) sinh(t) % (t cosh(t) — sinh(t)) —%t sinh(t) 1
whereeft — | sinh(¢) cosh(t) %t sinh(t) —% (t cosh(t) + sinh(t))
0 0 cosh(t) — sinh(t)
0 0 — sinh(t) cosh(t)

fort € [0, t;].

Now let us fix the initial state to be, = [I  0]7. The numerical simulations given below
(see Figures 4.16 and 4.17) will serve as a guide for furthatyéical calculations. In these
figures, one can observe that there is one switching timer which the behavior of the state
trajectories and the multipliers changes. Therefore, engbquel, we analyze in details two
intervals|0, 7[ and[r, t¢].

1. Fort €0, 7]
o-[}]
s u(t) =—1=—po(t), l.e.pa(t) = 1;

o p1(t) = —p2(t) + A (t) = —1 such thap, (t) = —t + p;(0) by integration ;
i pg(t) = —pl(t) + )\Q(t) = (0 such thav\g(t) =M (t) =—1t+p (0)

It follows that

() = [ ! ] p(t) = { ! +1p1<0) ] (L) = [ » +0p1(0) ] cu(t) = —1fort € [0, 7|

* In order to compute the expressionsaf) and p(t), one can similarly use the
identity (4.28) or (4.29) applied with, = ¢ andt; = 7 and wherez(7), p(7) and
A(T) are given as in the previous case. These two different wagsraputing give
the following analytical expressions :

i 2 (1(0) = 7) ((t = 7) cosh(t — 7) — sinh(t — 7))
+cosh(t —7) — 1 (t — 7) sinh(¢t — 7)

% (p1(0) = 7) (t — 7) sinh(t — 7)
+sinh(t — 7) — % ((t = 7) cosh(t — 7) +sinh(t — 7)) |

" (p1(0) — 1) cosh(t — 1) — sinh(t — 7)

| —(p1(0) — 7) sinh(t — 7) + cosh(t — 7)
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- ]2
and wu(t) = sinh(t —7) (p1(0) — 7) — cosh(t — 7)

We can now summarize the analytical computations as foll@lwe optimal control is given

by
= —1 if ¢ €0, 7
u(t) = { sinh(t — 7) (p1(0) — 7) — cosh(t — 1) if t € [, t]

and the state trajectories and the adjoint states are given b

(_(1J] if t €0, 7]
[ L (91(0) — 7) ((t — 7) cosh(t — 7) — sinh(t — 7)) -
z(t) = +cosh(t —7) — 1 (t — 7) sinh(¢t — 7)
if ¢ €[, tf]
L (p1(0) = 7) (t — 7) sinh(t — 1)
( | +sinh(t—7)— 5 ((t —7) cosh(t — 7) + sinh(t — 7)) |
P! } it < [0, [
p(t) = [ (p1(0) — 7) cosh(t — 7) — sinh(t — 7) ]
if ¢ €[, t4]
[ L —(p:(0) —7) sinh(t — 7) + cosh(t — 7)

The multipliers associated to the nonnegativity constsaamne given by
0 } :
{ if ¢ €0, 7
At) = 151(0) —t
[0} iftE[T,tf]

These functions depend upon several parameters. The garamandp, (0) are obtained to

ensure the final condition (4.27) of the adjoint state, wigafiven, withA(¢;) = { 8 } , by

pi(ty) = z1(ty) (4.30)
pa(ty) = wa(ty) (4.31)

By using the expressions oft) andp(t) with ¢t = ¢;, equation (4.30) reads :

(p1(0) = 7) cosh(ty — 7) — sinh(t; — )
= 5 (11(0) = 7) ((t; — 7) cosh(t; — 7) — sinh(t; — 7))
+cosh(ty —7) — 5 (t; —7) sinh(t; —7)

& p1(0) (cosh(ty — 7) — % (ty — 7) cosh(t; — 7) + 3 sinh(t; — 7))
= 7 cosh(ty —7) +sinh(ty — 7) — 1 7 (t; — 7) cosh(t; — 7)
+3 7 sinh(ty — 7) + cosh(ty — 7) — 1 (t; — 7) sinh(t; — 7)
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Isolatingp; (0) in this equation gives :

2cosh(t; — 7) — 87 cosh(ty — 7) + 72 cosh(t; — 7) — 8sinh(¢t; — 7) + 27 sinh(¢; — 7)
pi(0) = 8cosh(ty — 7) + 7 cosh(ty — 7) + sinh(ty — 7)
(4.32)
Substitutingp, (0) in (4.31), with¢; = 10, yields the following value of the switching time
T = 9.378729150 by using MAPLE for solving the intersection of two curves,(t;) = z2(ty)).
Finally, replacingr in (4.32) givesp; (0) = 10.80878883. By using these analytical forms, the

control, state, multiplier and adjoint state trajectoaes drawn in Figures 4.13, 4.14 and 4.15.

Now the numerical solution of this problem is computed bygsiat | ab and the function
guadpr og. This function uses an active set method which is also a giojgmethod, similar
to the one described in [Bix92]. First, the continuous timalgtem is converted into a discrete
time one by sampling : foi = 0,..., N — 1, witht; = N h, u(t) = u(i h) =: u;, whereh is
the sampling time. The resulting discrete time system isrglyy :

~=0,...,N—1  (4.33)

Tit+1 =

Ry RS R

N-1
: : : : 1 : :
with the following discrete time cosée E h|ug|® + x5S 2y, (see Appendix C for details

on discretization). Consider the finallﬁormge = 10 with the sampling timéx = 0.05 and
a = b = 1. The optimization algorithm mentioned above leads to thared control depicted
in Figure 4.16. The corresponding statét) and multiplier)\;(¢) trajectories are depicted in
Figure 4.17.
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Figure 4.13: Optimal control for system (4.24).
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Figure 4.15: Adjoint states for system (4.24).
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Optimal Control

T T T T T T u ‘
-0.31 -

Figure 4.16: Optimal control for sampled data system (4.33)

State trajectories and Multipliers State trajectories and Multipliers

1.4

0.6

12r

0.8

0.6

04r

0.2

Figure 4.17: State trajectories and associated multgpfe@rsampled data system (4.33).

In these figures, one can observe that the constraints aeyslsatisfied, as well as the
complementarity conditions : whenever one of the statedtayies is strictly positive, the cor-
responding multiplier is equal to zero. For example, thetipligr A, (¢) is equal to zero as long
asx(t) is strictly positive.

Now fix the initial state to be;y = [0 1]7 and perform the same analysis. The analytical
expressions of the optimal control is given by

p1(0) sinh(¢) + ug cosh(t) if £ €0, 7|
u(t) =< u if t € [m1, ]
p1(72) sinh(t — 75) + uy cosh(t — 1) if t € [, tf]
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and the state trajectories and the adjoint states are given b

T %pl(O) (t cosh(t) — sinh(t)) + sinh(¢) 4+ %uot sinh(t)

| %pl(O)t sinh(t) + cosh(t) + % ug(t cosh(t) + sinh(t)) if t €0, 7|

_gl |ft€ [Tl,TQ[

_ %pl(Tz) ((t — 1) cosh(t — 15) — sinh(t — 7))
—uy cosh(t — 72) + 3 uy (t — 72) sinh(t — )

|f t € [7’2, tf]

%P1(7'2) (t — 1) sinh(t — )

([ —wsinh(t —7) + %“1((7f — 7y) cosh(t — 7y) +sinh(t — 7)) |

( -

p1(0) cosh(t) + ug sinh(t) } if ¢ € [0, 7

| —p1(0) sinh(¢) — cosh(t) ug
[ pi(72) +un (E—72)

p(t) = o ] if t € [, 7

[ p1(72) cosh(t — 1) + uy sinh(t — 7»)
| —p1(72) sinh(t — 72) — uy cosh(t — 7)

] if ¢ € [my, tf]

\
The multipliers associated to the nonnegativity constsaamne given by

( 8] it 10,

: 0 .
A(t) = | p1(72) + uq (t — 7'2) } e [7-1’ 7—2[
8 } it ¢ € [ro, ]

\ L

where the constantg andu, are given by, = —2.6386 andu; = —0.26040. These functions
depend upon several parameters. The first parametarsdp, (7,) are obtained to ensure the

final condition (4.27) of the adjoint state, which is giventhw\(¢;) = { 8 } by

{p1(tf) = z1(ty) (4.34)

pa(ty) = walty)

By using the expressions oft) andp(t) given previously witht = ¢;, system (4.34) becomes :

(

p1(72) cosh(ty — 12) + uq sinh(t; — )
= %pl(TQ) ((t — 12) cosh(t — 1) — sinh(t — 7)) — uy cosh(t — 7o) + %ul (t — 12) sinh(t — )

—p1(72) sinh(t — 73) — uy cosh(t — 73)
| = 3p1(72) (t —72) sinh(t — 72) — uy sinh(t — 1) + 5 us((t — 72) cosh(t — 72) + sinh(t — 73))
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with ug = —2.6386 andu; = —0.26040. That is a system of two equations with two parameters
p1(m2) and7,. These equations are linearin 7). Solving the system by using MPLE, gives
Ty = 9.378729146 andp; (75) = 0.3723875346.

Now the values of; andp;(0) are obtained in order to ensure the continuity of the state
(and adjoint state) trajectories : the expressions(¢f and p(¢) on the intervalg0, ;] and
[71, T2] should coincide at = 7. By using the expressions given in the previous subseation f
x(t), one gets :

[ %pl(O) (11 cosh(7y) — sinh(7y)) + sinh(7y) — % 7 sinh(m) }

0.26040
%pl(O) 7 sinh(7y) 4 cosh(m) — %(7‘1 cosh(ry) + sinh(7y))

0
and forp(t),

p1(0) cosh(7y) — 2.6386 sinh(r) | | 0.3723875346 — 0.26040 (7, — 9.378729146)
—p1(0) sinh(7;) + 2.6386 cosh(ry) | 0.26040

Solving these four equations withA®LE givesr; = 0.8614720784 andp; (0) = 3.517682318.
By using these analytical forms, the control, state, mlgrgand adjoint state trajectories are
drawn in Figures 4.18, 4.19 and 4.20.

Now the numerical solution of this problem is computed avipresly. The optimization
algorithm mentioned above leads to the optimal control ctediin Figure 4.21. The corre-
sponding state;(¢) and multiplier);(¢) trajectories are depicted in Figure 4.22.

In these figures, as in the previous case, one can observehéhabnstraints are always
satisfied, as well as the complementarity conditions. Farmgie, the multiplien,(t) is equal
to zero as long as.(t) is strictly positive. Whenever,(t) is equal to zero (at time,), the
multiplier \(¢) becomes instantaneously strictly positive. Accordingi® terminology used
in [HSV95, p. 183], the time is called arentry timefor z,(¢) (with respect to the boundary
of the nonnegative orthant of the state space) arekénimefor \,(¢). Conversely, the time,
is called arexit timefor x,(¢) and anentry timefor \y(¢). In addition, the numerical study of
initial conditions of the formzy = [« 3|7 wherea > 0 andj3 > 0, reveals that, in general,
the solution has the same structure as the solution for ffialiconditionz, = [0 1]7 with
two switching times. Unfortunately, it is not possible taah the solution for general initial
conditionzy = [@  F]? from the study of the solutions for initial conditions = [0 1] and
ro = [0 1]T. Furthermore, since the numerical solution comes from ereliization, there is
a scaling factor between the numerical and the analytigaessions of the multipliers which
depends on the sampling timesee equation (C.6) in Appendix C. By comparing the previous
figures (Figures 4.13 with 4.16 ; 4.14 with 4.17 ; 4.18 withldahd 4.19 with 4.22), one can
observe that the two different approaches give similarltesu

Remark 4.3.1 Here, the minimal energy control problem with final state stoaints by using
nonnegative input can not be solved by the method of [Ka d&e&htion 3.4.2] since the reach-
ability gramian is not monomial. However, by increasing tradues of some entries of the
penalization matrixS, the final state:(¢,) can be made closer to 0.
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Figure 4.18: Optimal control for system (4.24).
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Figure 4.19: State trajectories and associated multgpfarsystem (4.24).

|

f\

Figure 4.20: Adjoint states for system (4.24).
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Figure 4.21: Optimal control for sampled data system (4.33)
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Figure 4.22:

State trajectories and associated multgpf@rsampled data system (4.33).
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Chapter 5

The Input/State-Invariant LQ Problem

This chapter is devoted to the input/state-invariant lirgeaadratic problem in infinite hori-
zon. Since under appropriate assumptions, the solutioheofrifinite horizon standard LQ
problem is the limit of the finite horizon one, see [WC83], thsults of Chapter 3 can be ex-
tended to the receding horizon case. These infinite horieeults are briefly described and
analyzed.

The LQ problem with input constraints in infinite horizon reseady been studied. In the
recent paper [Goel0], the infinite horizon LQ problem withical constraints on the input is
studied by means, notably, of a stationary Hamilton-Jaegbiation and by the study of the
dual problem. In [HVS98], the infinite horizon LQ problem tvitonnegative controls has been
studied by means of a receding horizon approach.

5.1 Problem statement

Consider the linear time-invariant system descriptida: [A, B] :
(t) = Ax(t) + Bu(t), z(0) = x, (5.1)

where, as previously, the staté) and the controli(¢) are in R* and IR", respectivelyA and
B are real matrices of compatible sizeg,c R™ denotes any fixed initial state ands a fixed
state.

The infinite horizon input/state-invariant linear quadrgiroblem, which is denoted by
LQZ, , consists of minimizing the quadratic functional :

San =5 ([ AR + ool o) 52)

for a given linear system described by (5.1), where theahdiater, > z is fixed, under the
constraint
Wax(t) >z

Zu(t) > a, (5-3)

Vtel0, 00), {

whereu is any piecewise-continuousRvalued function,R € R™*™ is a symmetric positive
definite matrix,C' € R?”*", W € R™", Z € R™™, andz € R" (u € R™ respectively)
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is a fixed state (input, respectively). The problem can bdistuwith any matrice$) and Z

of full rank. Recall that wheml” and Z are equal to the zero matrix, the input/state-invariant
LQZ, problem corresponds to the standdr@<° problem. For this standard problem, the
following results are well-known, see [AM90], [CD91, pp.3&339], [KS72, Theorem 3.7] and
[WC83].

Theorem 5.1.1 Assume that the paifA, B) is stabilizable and that the paifC, A) is de-
tectable. Under these conditions, the Algebraic Riccati&mpn (ARE)

ATP+ PA—-PBR'BTP+CTC =0 (5.4)

has a unique stabilizing positive semidefinite solutfén i.e. the ARE has a unique solu-
tion P, such thatP, is positive semidefinite and that the corresponding cldseg-matrix
A — BR'BTP, is stable. In addition, under these conditions, the opticwitrol for the
LQ* problem is of state feedback type and is given by

u(t) = Kz(t) = =R BT P, 2(t) (5.5)

and the optimal cost i9(zg, u) = x! P, z,. Furthermore, the matrix°, is the limit solution
of the Riccati Differential Equation (RDE), more precisdtyr any fixed € IR,
P, = lim P(t, 0, ty) (5.6)

tfﬂoo

whereP(t, 0, t;) denotes the unique solution of the RDE, given by (3.23).

5.2 Receding horizon approach

First, let us consider the following notations and conceisr a square matrixl, V' is
an A-invariant subspace iflV C V. In particular,£~(A), L°(A), LT (A), L°T(A) denote
the A-invariant subspaces spanned by the (generalized) eigemgecorresponding to eigen-
values with negative, zero, positive and nonnegative radsp respectively. In the sequel,
N (S) denotes the null space 6f NO(C, A) the unobservable subspace aid(C, A) :=
NO(C, A) N L% (A) the undetectable subspace.

Using Theorem 5.1.1 on the standaid)° problem together with the following lemmas on
the receding horizon approach, leads to appropriate dondito obtain a solution of the
input/state-invarianf.Q2°; problem in infinite horizon. A first useful result is develadpie
[WC83] :

Lemma 5.2.1 Assume that A, B) is stabilizable and that the Hamiltonian matrii (de-

scribed by (3.7)) has no eigenvalues on the imaginary axés @°(H) = {0}). Moreover,

assume thatv'(S) N ND(C, A) is A-invariant. Let us define the two following problems :
* (P): Find n{ := inf lim n(¢;) and the corresponding optimal contref(-) achieving

u(-) ty—o0

a minimum cost ;
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o () : Letn*(ty) := ir(lgn(tf) and letu*(-) denotes the corresponding optimal control.
Determinens(-) := tlim n*(ty) and, if the limit exists, find the limiting behaviog(-) of
f—00

the optimal controk:*(-) for ty — 00;

wheren(ty) := J(xo, u, t;) denotes the linear quadratic cost in finite horizon (3.2).eifh
problems(P;) and (P) yield identical solutions given by

o__ o __ T
ni =1y = o Py

and
ul(t) = uy(t) = —R BT P 2°(t).

The second result, see [CWW94], concerns the uniform cgevee between the optimal state
and control trajectories of the finite and infinite horizon p@blems :

Lemma 5.2.2 Assume thatA, B) is stabilizable£°(H) = {0} and N (S)NND(C, A) = {0}.
Let z*(-) and u*(-) be the optimal state and control trajectories @ ¢;] of LQ% . Let
eArBE) s and —B R~ P eA+B K0y be the optimal state and control trajectories of the
LQ* problem. Then

a) ||lz(-) — eATBR0 tends to zero exponentially fast whgn— oo ;
b) |lu(-) + B R7'P B K0 | tends to zero exponentially fast whign— oo ;

where|| - ||, denotes the uniform vector norm.

Remark 5.2.1 For a discussion of the assumptions (i, B) is stabilizableand’’(H) = {0}),
see e.g. [CW81], where it is stated that the requirem®Hi7) = {0} is equivalent to°(A) C
C(A, B)andNO(C, A)NnL(A) = ND(C, A)n L°(A) = {0}, i.e. all modes corresponding
to the eigenvalues of with zero real part are required to be controllable and obsasle.

Using these two lemmas, we obtain the following result fer &€ 2", problem :

Theorem 5.2.3If the solution(z*, u*) of the standardLQ* problem is admissible for the
LQf{@ problem for all sufficiently large horizorts, i.e.

3T >0 suchthatvt, > T,V €0, t], { W”ff(t’ ) 2 @
Zu*(t, ty) > a,
and if
(A, B) is stabilizable, (5.7)
H has no eigenvalues on the imaginary axis, (5.8)
and N(S)NND(C, A) ={0} (5.9)

then the solutior(z?, u°) of the LQ° problem is admissible for th&Q3°, problem and is
therefore solution of th€Q3>, problem.
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Proof : By Lemmas 5.2.1 and 5.2.2,
2O(t) = tlim z*(t, t;) and u’(t) = tlim u*(t, ty)
7 fF—00
such that, withV z*(¢, ty) > z andZ u*(¢, t;) > w and the uniform convergence of the state
and control trajectories, the inequalities are preseryetaking the limit :

Wal(t) >z and Zu'(t) > u.

Hence the solutiofz?, u°) of the LQ*° problem, is admissible for thBQj_;f’i, and is therefore

a solution of theL Q3> problem. 0

Remark 5.2.2 Note that the condition&4, B) is stabilizable andC’(H) = {0} hold if (4, B)
is stabilizable andC, A) is detectable. This yields the following corollary :

Corollary 5.2.4 Assume that A, B) is stabilizable and(C, A) is detectable. If the solu-
tion (x*, u*) of the standardLQ* problem is admissible for thEQf{ﬁ problem for all suf-
ficiently large horizons;, then the solutioriz®, «°) of the LQ>° problem is admissible for the
LQZ, problem and is therefore solution of tHeQ 2>, problem.

Therefore the optimality conditions via admissibility ééwped in Sections 3.4, 3.5.2 and
3.6.2, can be applied here. The following result is statethi@input/state-invariadt Q3> pro-

blem. However, observe that it is readily extendable tollme;f andLQf{ problems in infinite
horizon.

Theorem 5.2.5 Assume thatA, B) is stabilizable andC, A) is detectable. Considér*, u*)
the optimal solution of th&Q* problem such that*(t) = K z*(¢). Then the solution of the
LQ* problem is admissible for thIéQg‘jg_c problem if, for all sufficiently large horizonsg, the
matrix solution of the standard matrix Hamiltonian diffatal equation (3.22) is such that for
all ¢t [0, tf],

WX () X(0) oy >z

and
~Z R'BTY (t) X(0) tzo > .



Chapter 6

The Positive LQ Problem

This chapter is devoted to the positive LQ problem in infititgizon. This problem cor-
responds to theLQf_fi problem withz = 0, W = [, andu = 0, V = 0,,. Criteria for
the existence of a solution to this problem are establisimedrms of the weighting matrices
defining the quadratic cost criterion to be minimized. Thesteria are obtained by using a
Newton-type iterative scheme (known in the control litaratas the Kleinman method) con-
verging to the unique stabilizing positive semi-definitéuson of the algebraic Riccati equa-
tion, for LTI positive systems. The approach which is usee neinspired by the one developed
in [GLOOa, GLOOb]. This method was recently extended to tpesgame theory, see [JKO04].
Also, the Kronecker product is often used in this part andptaperties of M-matrices, see
Sections A.4 and A.2.

Positivity criteria are also established in terms of theiBoh of the algebraic Riccati equa-
tion (ARE) and in terms of the Hamiltonian matrik by using the characterization of positive
systems with scalar products, see [AS03] and [DL04]. Bnal$ in the finite horizon case, a
diagonal solution of the algebraic Riccati equation is sdd

The LQ problem for positive systems is studied in [HCH10, @ka13] by optimizing the
cost within a class of fixed-structure controllers satisfyinternal controller constraints that
guarantee the positivity of the closed-loop system.

6.1 Newton iterative scheme

6.1.1 Problem statement
Consider the following LTI system description :
(t) = Ax(t) + Bu(t), z(0) = xo, (6.1)

y(t) = Cua(t), (6.2)
where the state(¢), the control(¢) and the outpuy(t) are in IR*, R™ and IR, respectively,
A, B andC are real matrices of compatible sizes, agd= R" denotes any initial state.
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The infinite horizon positive LQ problem, which is denotedb§2<°, consists of minimiz-
ing the quadratic functional (5.2),

o) =5 ([T IR0 + ICstol o),

0
for a given positive system described by (6.1), where theirstatex(0) = x, > 0 is fixed,
under the constraint

Vitel0, 00), z(t) >0,

andR € R™™ andQ = CTC € R™™ are assumed to be positive-definite (pd) and positive-
semidefinite (psd), respectively, symmetric matrices.

As already studied in the previous chapters, conditionh ¢t theLQZ°, problem has a
solution can be obtained by using the standa€d> problem. Therefore, our main objective is
to find necessary and/or sufficient conditions on the wengjtnatrices)) and R in the cost/
defined by (5.2), such that there exists a state feedhaslkch that the.Q°° -optimal closed-
loop systemA + BK = A— BR'BTP,, 0] is positive, i.e. such that the closed-loop matrix
A+ BK = A— BR'BTP, is a Metzler matrix.

Therefore, by Theorem 2.3.3, the assumption of positivalgtability is a necessary condition
for the existence of a solution of theQ) 3 problem and by Theorem 5.1.1, stabilizability and
detectability are needed assumptions for @°° problem. So, from now on, conditions

[A, B] s a positive system
(Hp) (A, B) is positively stabilizable (6.3)
(C, A) isdetectable

will be assumed to hold throughout unless otherwise stated.
The following proposition highlights an important propeof the solutionP, of the ARE :

Proposition 6.1.1 If A is a stable Metzler matrix and the solutign. of the ARE, given by
(5.4), i.e.
AP, + P, A— P, BR'BTP, +CTC =0,

is suchthatd — B R~ BT P_ is a (stable) Metzler matrix, theR, > 0 whenever) > 0.

Proof : Indeed, using the Kronecker product, recalled in Appendik e Algebraic Riccati
equation (ARE) can be rewritten as

(1, ® (—A") + (=A+ BR'B"P,)" ® I,,] vect(Py) = vect(Q). (6.4)

Observe that, by Theorem A.2.2,.4 and —A + B R~'BT P, are nonsingulan/-matrices.
Indeed, sinced is a Metzler matrix,— A is a Z-matrix by definition. Then, sincel stable
means that its eigenvalues have negative real parts by dimebi2.2, the eigenvalues efA”
and(—A + B R'BTP,)T have positive real parts. Therefore, these matrices arsimguiar
M-matrices. It follows thatl, @ (—AT) + (—A+ BR'B"P,)T ® I,] is also a nonsingular
M-matrix (by Theorem A.4.2), such that its inverse is nontiggdby Theorem A.2.2). Hence,

if the matrix () is nonnegative, then so i3, by equation (6.4). .
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6.1.2 Positivity criteria for the stable case

Here sufficient conditions which guarantee the positivitthe LQ° -optimal closed-loop
system are established. First let us introduce the follgwissumptions :

(H1) The matrixA is stable.
(Hy) The weighting matrice® and R are such that

Q>0 and BR'BT > 0.
(H3) —A + B R~'BT X, is aZ-matrix, whereX; is the solution of the Lyapunov equation
ATX  + X, A+Q=0. (6.5)

Remark 6.1.1 Assumptior{ H3) can be read B R~'B” X,);; < a;;, fori # j, where—A is a
Z-matrix, B R-'BT X, > 0 by assumptioriH,) and by the fact thak’, > 0, see Lemma 6.1.2
below. Then the matrik has to be chosen sufficiently large to guarantee this assampilso
@ can be chosen such that; is sufficiently small for this assumption, see the methapolo
developed below to find the weighting matricgand R.

Observe that the matri® := —A is a nonsingulai\/-matrix, by Theorem A.2.2. Then the
algebraic Riccati equation (5.4) can be written equivéyesd :

D'P,+P,D+P,BR'B'P, = Q. (6.6)

Now let us consider the following iterative scheme :

XO = 0
(DT + X, BR'BT) X}y1 + X3p1 (D+ BRIBTX}) (6.7)
=X, BR'BTX, +Q, Vk>0

Observe that fokk = 0, equation (6.7) is equivalent to the Lyapunov equation)(6.bhe
following auxiliary result can be proved by induction.

Lemma 6.1.2 Consider a LTI systerfd, B|, described by (6.1), such that conditiofid,)—
(Hs3) hold. Then(Xy),>1, defined by (6.7), is a psd matrix sequence, which is (elenmssit
decreasing such that, for all > 1,

0< X1 <X, <X,y

and
I, ® (D" + X4)BR'B")+ (D+ BR 'B"X;)" ® I,] is a nonsingular M-matrix

Proof : Define fork > 1,

R(Xy) = D' Xy + X D+ Xy BR'BTX;, — Q.
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Letk = 01in (6.7), that gives, withX, = 0,
DT'X, + X, D= Q,

or equivalently
[I, ® DT + DT @ I,] vect(X;) = vect(Q).

Then, sinceD is a M-matrix, it is the same fol,, ® D* + D @ I,,] by Theorem A.4.2. Hence
by Proposition A.2.3, witlt) > 0, vect(X;) > 0, thatisX; > 0. Moreover,X; is a psd matrix
by Theorem 1.2.3. Now, witl® a nonsingulaf\/-matrix, X; > 0, a psd matrix() > 0 and
DTX, + X, D = Q, one has

(D" + X, BR'BNY X, + X, (D+BR'BT™X))=Q+2X, BR'B"X, >0,
or equivalently
I, ® (D" + X, BR'B") + (D + BR'B"X))" ® I,,] vect(X,)

= vect(Q +2 X, BR'BTX)) > 0.

By (Hs3), D + BR'BTX, is a Z-matrix with X, solution of DTX, + X; D = Q. Then
I, ® (DT + Xy BR™'BT) + (D + BR'BTX,)T ® I,,] is a Z-matrix and a nonsingular
M-matrix by Theorem A.2.2.

Moreover, withDT X, + X, D = Q, X, > 0andB R~'BT >0,

R(X1) =X, BR'BTX, >0.
By calculation, one has
(DT + X, BR'B") (X1 — X3) + (X1 — Xo) (D + BR'BTX,) = R(X;) >0,
which can be written equivalently as
I, ® (D" + X, BR'B") + (D + BR'B"X))" ® I,] vect(X; — X3) = vect(R(X})).

Then sincél, ® (DT + X, BR'BT)+ (D + B R~'BTX,)" @ I,,] is a nonsingular matrix, by
Theorem A.2.2, its inverse is nonnegative, and, WX, ) > 0, we havevect(X; — X5) > 0,
i.e. Xy < X7, and the recurrency is verified fér= 1.

Now assume that for a fixed> 1, the following assumptions hold :
X is a psd matrix
0< Xpp1 <X <Xy
and (6.8)
(I, ® (DT + X, BR™'BT) + (D + BR'BTX,)" ® I,]

is a nonsingulaf/-matrix.
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Let us show that these assertions hold Xgr, ; et X;.,,. As done previously fofX;, one can
show thatX,_ , is a psd matrix. Then sinc8 R~'BT > 0, X;,, > 0 andX; > 0, one has

(DT + X, BR'BY X, + X, (D+BR'B"X;, 1) > DX, + X, D =Q > 0.

Consequentlyi/,, @ (DT + X1 BR™'BT) + (D + BR'BTX;1)T ® I,,] is a nonsingular
M-matrix, by Theorem A.2.2. Hence, using the iterative sobh¢dn?) :

(I, @ (DT + X3, BR'BT) + (D+ BR'BTX;.1)" @ I,,] vect(Xy42)

= vect(Xp1 BR'BT X1 +Q) > 0.

Then, by Proposition A.2.3Y, ., > 0.
Moreover, by calculation, one has

R(Xis1) = (Xpy1 — X)) BR'BT (Xpy1 — X3) >0,

since by(H,), BR'BT > 0 and since(X;,; — Xiz) < 0. Therefore, by developing the
iterative scheme (6.7), we have :

(DT 4+ X341 BR'BT) (X2 — Xpg1) + (Xpyo — Xp1) (D+ BR'BT X))

Since[l,, ® (DT + X}, BR'BT)+ (D+ BR'B" X;,1)" ® I,,] is a nonsingulaf/-matrix
of nonnegative inverse, the matiiX;., — X1) is nonpositive and theA, ., < Xj,;.
O

It follows from this lemma that one can take the limitin (6ard that the following theorem
can then be established easily.

Theorem 6.1.3 Consider a LTI systerfi, B], described by (6.1), such that conditioff$,)—
(Hs3) hold. Then the stabilizing psd solutidgh of the algebraic Riccati equation (5.4) is such
that the corresponding Q°° -optimal closed-loop system is positive, i.e. the clogegrmatrix
(A— BR'BTP,)is a Metzler matrix.

Proof : By Lemma 6.1.2, the sequenc¢&),>, of scheme (6.7) is a decreasing sequence of
psd matrices such thaf, > 0 for £ > 1. Hence lim X, = P, > 0 exists and is equal to a

— 400

psd matrixP, . Therefore, taking the limit Witfkk—> +o00 in (6.7) gives the algebraic Riccati
equation (6.6). Hence?, > 0 is the psd solution of the ARE. Thanks to the assumption of
stabilizability and detectability, classical theory sé#yat this solution is unique and stabilizing,
see [CD91, Theorem 38, p. 348] and Theorem 5.1.1. Moreoyesisbumption H3), using
the fact that the sequen€é(;,);>, is decreasing-A + B R~ BT X, is a Z-matrix and so is
— A+ B R'BT P, by taking the limit. ThemrA — B R~*BT P, is a Metzler matrix.

0
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Remarks 6.1.2 a) By Proposition A.2.3, it can be shown thgt > 0. However, withX; > 0

or X; > 0, the limit P, is nonnegative in both cases.

b) By Theorem A.2.2, since is a nonsingularM-matrix, there exists a diagonal pd matrix
P such thatDT P + P D is a pd matrix. Therefore, by assumptioHs), with X; solution of
the Lyapunov equatioD” X, + X, D = (@, it is possible to takeX; a diagonal matrix with
diagonal elements strictly positiv,e as initial iteratessheme (6.7). In this case, the choice of
the matrix(Q is dictated byQ = DT X, + X, D.

It turns out that the assumpti@i/;) can be replaced by the following one :

(H,) There exists a symmetric matriX > 0 such that
Q+AT'Y +YA<0 and — A+ BR'B'Y is a Z-matrix.

Theorem 6.1.4 The conclusion of Theorem 6.1.3 remains valid if the assiompt/;) is re-
placed by(H,).

Remark 6.1.3 With the assumptiondd; ), (H>) and (H,), the iterative scheme (6.7) yields a
sequencéX;) such that for allk > 1,

X}, Is symmetric positive definite,< X,,; < X, <Y, and
[I, ® (D+ BR'BTX})" + (D + BR'B"X;,)" ® I,] is a M-matrix

Proof : It is clear that(H;) implies (H4). Show that H,) implies(H3). Indeed, consider the
matrixY such that-A + B R~'B"Y is aZ-matrix, then

0< (B R‘lBTY)ij < ay, fori#j. (6.9)
Now, with D = — A,
DT(X,—Y)+ (X, —-Y)D = DX, +X,D-DTY -YD
= Q-DTY -YD<0
or equivalently
[I, ® D" + D" @ I,] vect(X; —Y) = vect(Q — D'Y — Y D) <0
Hence

vect(X; —Y) = [I,® DT+ DT @ I,] " vect(Q — DTY — Y D) <0,

>0 <0

since[I, ® DT + D" © I, ] is a nonsingulan/-matrix. ThereforeX; —Y < 0, soX; < Y.
Hence, with (6.9) :

0< (BR'B'X)), < (BR'B"Y), <ay, fori#j.
Then,—A + B R7'BTX, is a Z-matrix. Now, assume that”’Y + Y A < —Q. Consider a
matrix P such thatP > () and takeY” solution of the following Lyapunov equation

ATY 4 Y A=-P < —-Q

and we obtain the condition of assumptigf).
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— Application to compartmental systems

Consider a compartmental system, (see Definition 2.3.33revthe matrix4 satisfies con-
dition (2.3), i.e.

> a;<0forall j=1,... n

=1
This condition implies thaZ A < 0, i.e.

ATZ+7ZA<0
whereZ = (z;;) € R"*" is defined as follows
\V/Z.,j:]_,...,n, Zij =1.

In this case, it turns out that the assumptiéf) can be replaced by the following one :
(Hs) The weighting matrice§ and R are such that

Q>0andBR'BT > 0.

Theorem 6.1.5 Assume thattd, B] is a compartmental system such that (2.3) holds. Then the
conclusion of Theorem 6.1.3 remains valid if the assumgtify) is replaced by H;).

Proof : The proof is similar to the one of Theorem 6.1.3 and folloveslthes of Lemma 6.1.2.
First recall the iterative scheme (6.7) used in these proofs

XQ - O
(DT + X, BR™'B”) X311 + Xps1 (D + BR'BTX},)
=X, BR'BTX, +Q, V>0

First show that X}),>1 is a decreasing sequence of psd matrices such that

VE>1:0<X,1 <X, <Xy
and
[I, ® (D" + Xy, BR'B") + (D+ BR'B"X;)" ® I,,]
is a nonsingulafn/-matrix.
Letk = 01in (6.7), that gives, withX, = 0,

DTX,+X,D=qQ,

or equivalently
[I, ® D 4+ DT @ I,] vect(X,) = vect(Q).
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Then, sinceD is a M-matrix, it is the same fofl,, ® DT + DT®,| by Theorem A.4.2. Hence
its inverse is nonnegative by Theorem A.2.2 and then

vect(X,) = [I, ® D + DT @ I,]7* vect(Q),
% T

one hasX; > 0. Moreover,X; is a psd matrix by Theorem 1.2.3. Now, witha nonsingular
M-matrix, X; > 0, a psd matrix) > 0 andD?”Z + Z D > 0, one has

(DT + X, BR'B"YZ+Z(D+BR'B™X,)>D"Z+7ZD >0,
or equivalently
I, ® (D" + X, BR'B") +(D+BR'B"X))" ® I,] vect(Z)

= vect(D"Z + Z D) > 0.

By (H3), D + BR'BTX, is a Z-matrix with X, solution of DTX, + X; D = Q. Then
I, ® (DT + X, BR™'BT)+ (D + BR'BTX,)T ® I,,] is aZ-matrix and a nonsingulay/-
matrix by Theorem A.2.2. By using the same arguments as iprbaf of Lemme 6.1.2, it can
be shown thaf; < X; and the recurrency is verified fér= 1.

Now assume that for a fixeld > 1, the following assumptions hold :
X is a psd matrix
0< X <X, <X,y
and (6.10)
I, ® (DT + X, BR™'BY) + (D + BR'BTX,)" ® I,]
is a nonsingulan/-matrix.

As done previously foX;, one can show that,_, ; is a psd matrix. Then sincg@ R~'BT > 0,
Xii1 > 0andZ > 0, one has

(D" + X, BR'B"YZ+Z(D+BR'B"X;1)>D"Z+7ZD>0.

Consequentlyl,, @ (DT + X,y BR'BT) + (D + BR'BT X, 1) ® I,] is a nonsingular
M-matrix, by Theorem A.2.2. Hence, using the iterative sob¢dn?) :

(I, ® (DT + X3, BR™'BT) + (D+ BR'BTX;.1)" @ I,,] vect(Xp42)

= vect(X 1 BR'BTX; 1 +Q) > 0.

Then,X;,» > 0since by Theorem A.2.2[,&(DT+ X1 BR'BT)+(D+B R 'BTX;,,)'®
I,,] is a nonsingula//-matrix of nonnegative inverse. Moreover, by calculatiasing the
scheme (6.7) as in the proof of Lemma 6.1.2, one Xigs, < Xi.1. The rest of the proof is

similar to the one of Theorem 6.1.3 by taking the limitin (6.7
0
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— Design methodology to find)) and R

An important question is to find suitable matrig@snd R such that the assumptio(&-)
and(H,) (or (Hs)) are satisfied. Concerning the mat€ it is not hard to choos® = CTC
such thatC' > 0 and(C, A) is detectable according to the assumptiéfy). If the system
[A, B]is compartmental, the matriX can be selected such th@t> 0 as stated in the assump-
tion (H;). For the matrixR, it is possible to choose

R: = slI,— R suchthatRT = R > 0ands > p(R). (6.11)

It is clear thatR is a nonsingular pd matrix such th&t! > 0. ConsequentlyB R~'BT > 0.
Now let P be a symmetric psd matrix such th&t > (¢ and consider the solutior of the
following Lyapunov equation :

ATY 4 Y A= —P. (6.12)

SinceA is a stable matrix, the solution of (6.12) is given by :
+00 -
Y = / et P ettdt.
0

ObviouslyY = Y7 is a psd matrix and > 0, since) > 0. Moreover
ATy + YA+ Q <.

In order to check the feasibility of the second part of assiong /,), i.e. A — BR™'BTY is
a Metzler matrix, we assume that the following conditiondsal

a:=min{a;; :4,j = 1,--- ,nsuchthat # j} > 0. (6.13)

In view of (6.11) and sincelim (s I,, — R)~! = 0, there is some sufficiently large> p(R)
such that-A + B R~!BTY is aZ-matrix. Therefore one gets the following result :

Proposition 6.1.6 If [A, B] is a positive system such that is stable and conditior{6.13)
holds, then there exist weighting matricgsand R such that(H,) and (H,) are satisfied.

Remark 6.1.4 The numerical example below reveals that it is not easy tosfiraths. In fact, it
shows that has to be chosen “sufficiently large” (i.e.sufficiently large such that > p(R))
and @) “sufficiently small” in order to satisfy assumptioft/,) which depends o) andY'.
Indeed, the conditioif/,) can be read a3 R~!B’Y be a sufficiently small perturbation to
keep the positivity property of. Then the parametex > 0 provides a degree of freedom to
disturb A in order to keep its Metzler property. Therefore, in the d&sR), the penalization

coefficient of the state is less than the weight of the cantrol

By Theorem 6.1.4, the latter result together with the paplgrabove indicate a design
methodology for choosing the weighting matricegs@nd R in order to get the positivity of the
resulting LQ° -optimal closed-loop system, see Table 6.1.
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1. Choose Q = CTC with C >0 ;

2. Choose R = s1,, — R such that R > 0 symmetric matrix

and s > p(R), sufficiently large ;
3. Choose a symmetric psd matrix P such that P > @ ;
4. Compute the solution Y of the Lyapunov equation A”Y +Y A = —P;
5. Check that o := min{a;; : i # j} > 0;

6. Choose s sufficiently large (s > p(R))
such that A — B R~!BTY is a Metzler matrix.

Table 6.1: Design methodology f¢r and R.

— Numerical example

Consider the following LTI stable positive system in ordeillustrate the design method-
ology to find@ and R,

A = [_2 1} . B = {10]. (6.14)
1 =2 0 1

The design methodology of Table 6.1 applying to this systestdg the following matrices)
andR, (detailed calculations are described here after) :

4 001 6 -2
@ = {0.01 6 ] o= [—2 5 ] (6.15)

Consequently, with these weighting matrices, we obtaitttiearesulting closed-loop system is
positive, since the closed-loop matrix is given by

A+BK =A— BRﬂBTPJr _ [—2-2692 0.7688 } .

0.7789 —2.4100

These results are obtained by applying the methodologyithesicin Table 6.1 as follows :

1. Choose Q = CTC with C > 0

2 0.022

TakeC' = Q!/? =
akeC' =Q l0.022 2.4495

} such that

o [ 4 001
Q_CC_{OM . | >0
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2. Choose R = s I,, — R such that R > 0 symmetric matrix and s > p(R), sufficiently
large

For example, leR = { ;1 g } with p(R) = 6.5616.

First, we takes as the smallest integer larger thafR?), thens = 7. Unfortunately, as
we can seen in Table 6.2, this choicesois not larger enough in order to obtain that
— A+ B R 'BTY is aZ-matrix. Therefore, we have to choose at least 10 to achieve
this condition, see below. Then

6 -2
R=
|57
is a pd matrix such that
0.1923 0.0769
-1pT _ > (.
BRE { 0.0769 0.2308 } 20

3. Choose P symmetric psd matrix such that P > @

Next, we choosé > (Q with, for example,

P=Q+5L, B=10,

that gives

p_ 14 0.01 .
0.01 10

4. Compute Y the solution of the Lyapunov equation ATY +Y A = —P
The solutionY” of the Lyapunov equation is given by

[ 4.7517 25033
- | 2.5033 5.2517

which is a psd symmetric and nonnegative matrix.

5. Check a := min{a;; : i # j} > 0

-2 1

. .
Since { 1 9

} ,a=1>0.

6. Choose s sufficiently large (s > p(R)) such that A— B R~'BTY is a Metzler matrix

As we have seen previously, the paramathas to be chosen sufficiently large to obtain
this last condition. Indeed, see Table 6.2 where severaksgabfs and the resulting
matrices—A + B R~'BTY are given. In this table, the positivity of the closed-loop
system is also checked by verifying if the closed-loop masria Metzler matrix.
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s | —A+ BR'BTY | Z-matrix | A— BR'BTP, |Metzler
Y Lyapunov solution P, Riccati solution
- {9.2550 6.7550 } " [—2.9864 —0.2193 y
7.5067 12.3808 —0.0639 —3.7515
8 {4.4077 1.2517} " [—2.4855 0.5060 | %
1.4396 5.2517 | 0.5435 —2.7888 |
9 {3.5008 0.2823} " [—2.3427 0.6851 | %
0.3762 3.9541 | 0.7026 —2.5350 |
10 [ 3.1063 —0.1146 } % [—2.2692 0.7688 | %
—0.0568 3.4045 | 0.7789 —2.4100 |

Table 6.2: Table of different values of parameter

We can observe that this methodology is only a sufficient tmmito guarantee the pos-
itivity of the closed-loop system. Since fer= 8, the last condition of the methodology
is not verified while the closed-loop system is positive.

Now Figure 6.1 represents the optimal state trajector@sth initial states;; = [1  0]7
(graphs on the left) and, = [0 1]7 (graphs on the right) respectively, i.e. the columngbf
at the sampling times. One can numerically verify that tlsetl-loop system is positive.
Notice that the closed-loop system is stable since the eddees of the (constant) closed-
loop matrix are—1.5626 and —3.1166. Moreover, it could also be interesting to observe the
behavior of the optimal contral(t), which is represented in Figure 6.2 with the same initial
states as above. We can observe tha} < 0 for all ¢ sinceu(t) = —R™'BT P, z(t) with
P, >0,B>0andR~! > 0 by construction. Then the optimal control is always nongpaesi
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Optimal state trajectories x(t)

From: In(1) From: In(2)

-

To: Out(1)
o o
o

o
~

o
N

Amplitude
o

To: Out(2)

0 1 2 3 40 1 2 3 4
Time (sec)

Figure 6.1: Optimal state trajectorie§) for system (6.14)-(6.15).

Optimal control u(t)

From: In(1) From: In(2)

To: Out(1)
I
N

Amplitude
|
o
H

To: Out(2)

0 1 2 3 4 0 1 2 3 4
Time (sec)

Figure 6.2: Optimal contrak(t) for system (6.14)-(6.15).

6.1.3 Positivity criteria for the unstable case

In this subsection, we consider the case of a positive system®] whereA is unstable, i.e.
s(A) =sup{Re(N) : Aeag(A)} > 0.

Consequently—A is no longer aZ-matrix, by Theorem A.2.2. LeD = (sI, — A) with
s > s(A) such that—D is a stable matrix. This gives a nonsinguldrmatrix such that the
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characterizations of such matrices given in Theorem A.22agplicable. Indeed, sincé a
Metzler matrix, for allt > 0, e4* > 0, so by the Laplace transform, see [Nag86] or [CD91],

Vs>s(A) (sI,— A= / e~*tettdt> 0.
0
Therefore, withs > s(A), D = (s I,, — A) is a nonsingulaf/-matrix by Theorem A.2.2. Asin
the stable case, the algebraic Riccati equation is writtéarms ofD instead ofA, that gives :
D'P, +P,D+P,BR'BT"P, =Q +2sP,. (6.16)
The following assumption is assumed to hold, similarly te stable case :

(H}) There exists > s(A) such that-4 + B R~ BT X is a Z-matrix,
andX, BR'BT —2s1, > 0, whereX, is the solution of the following Lyapunov
equation :

(A—sI)"X,+ X, (A—s1,) = —Q. (6.17)
Remark 6.1.5 Note that assumptiof¥{}) is assumptiori H3) of the stable case with= 0.

Theorem 6.1.7 Consider a positive systefd, B] where the assumptiori$/,) — (H}) hold,
then the algebraic Riccati equation (5.4) has a psd soluftan> 0 such thatd — B R~ BT P,
is a Metzler matrix.

Proof: Considers > s(A) > 0given by(H}) and defineD = (s I,,—A) which is a nonsingular
M-matrix. Introduce the following iterative scheme :

XQ — O
(DT + X, BR'B") X341 + Xps1 (D + BRBTX,) (6.18)
:Q+28Xk+XkBR_1BTXk, Vk>1.

The proof is similar to the one of Theorem 6.1.3 and followss lihes of Lemma 6.1.2. First
show that( X} ),>1 is a decreasing sequence of psd matrices such that

VE>1:0< X <X, <X,y

and
I, (D" + X4, BR'B")+ (D+ BR'B"X},)" ® I,,]
is a nonsingulan/-matrix.

Letk = 0in (6.18), that givesDT X; + X; D = Q. As in the stable case, it can be shown that
X, > 0, psd matrix such thdt/,, ® (DT + X; BR™'BT) + (D + BR'BTX)T @ I,] is a
nonsingularV/-matrix. Now, by computation, it follows that :

(D" + X, BR'BT) (X, — X))+ (Xo — X1) (D+ BR'BT X))
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=(2sI,— X, BR'BT) X, <0

by assumptioriH}). Hence,X, < X, since[/,,® (DT +X,BR™'BT)+(D+BR'BTX,)T®
I,,] is a nonsingulad/-matrix with a nonnegative inverse. Then the recurrencyersfied for
k=1.

Now assume that for a fixeld > 1, the following assumptions hold :
X} is a psd matrix
0< X <X <Xy
and (6.19)
(I, ® (DT + X, BR'BT) + (D + BR'BTX},)" ® I,]
is a nonsingulaf/-matrix.

As done previously foX;, one can show thaX;, is a psd matrix. Then since
(D" + X4 BR'BY X1+ X, (D+BR'B"X,,) > D" X, + X1 D=Q >0,

one has tha{l, ® (D" + X;.1 BR'B") + (D + BR'B"X;;;)" ® I,,] is a nonsingular
M-matrix by Theorem A.2.2. Thus, by using the iterative sce€f18) and by inverting, we
haveX;,, > 0. Now let us show thak, ., < X;,;. Using the scheme (6.18), by computation,
it follows that :

(DT 4+ X341 BR™'BT) (Xjp2 — Xpq1) + (Xpyo — Xpy1) (D + BRT'BT X))
= (DT 4+ X341 BR'BT) Xps0 + Xpgo (D + BR'BT X 4y)

— (DT + X, BR'B") X1 + Xi+1 (D + BR'BTX,)

+ (Xps1 — Xi) BR'BT Xjo1 + X1 BRT'BT (X1 — X))

=Q +25Xp41 + Xpy1 BRT'BT X4

— [Q+2sX), + X, BRT'BTX,,

+ (XkJrl — Xk) B R_lBTXkJrl + XkJrl BR'BT (XkJrl — Xk)]

=25 (X1 — Xi) + Xps1 BR'BT X4

— X, BR'BTX,

— X1 BR'B" X} + Xy BR'BT X4y

—Xps1 BR'BT X4y + X1 BRTIBT X,

= 25 (Xps1 — Xi) + (X — Xpi1) BR'BT (X1 — Xi)
<0sinceXp, < Xi.

Hence,

(DT + X301 BRT'B") (Xpi2 — Xpt1) + (Xpyo — Xiy1) (D+ BR'BTX;14) <0,
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that givequJrz—XkJrl) <0 Since[[n@)(DT—i—XkH B R_lBT>+(D+B R 'BT XkJrl)T@[n]
is a nonsingulan/-matrix.

Therefore the sequen¢&(;);>; defined in (6.18) is a decreasing sequence of psd nonnegative
matrices. Hence

kEIJIrloo X, = P, > 0andP, is a psd matrix.
Thus, taking the limitin (6.18) gives (5.4). Hence the maffi > 0, psd matrix, is the solution
of the ARE. Moreover, by assumptid#/;), there exists > s(A4) suchthat-A+ B R~!BT X,
is aZ-matrix and so it is fo- A + B R~ BT X, by the decreasing of the sequeriég,);>;. It
is the same for-A + B R~ BT P, by taking the limit. That is equivalentiy — B R~!BT P,
is a Metzler matrix and the closed-loop system is positive.

O

Remark 6.1.6 It could be interesting to considet + B K instead ofD = s, — A in the
iterative scheme (6.18) and to use a matkixsuch thatd + B K is a stable Metzler matrix.
Such matrixK exists by the assumption of positive stabilizability. €fiene, using the iterative
scheme, we can obtain, as previously, a solution to theipeditQ$° problem.

6.2 Hamiltonian approach

6.2.1 Using scalar products

In this section, the positivity condition on the closedgomatrix is reinterpreted, first in
terms of the solution of the ARE (given by (5.4)) and then g of the Hamiltonian matrix
H (defined by (3.7)). In [AS03] and [DL04], characterizati@misnonotone systems with scalar
products are described, where LTI positive systems areriicpar monotone systems. Using
these characterizations, we obtain the following result :

Theorem 6.2.1 Consider theL.Q°° problem (5.1)-(5.2). Th&Q° closed-loop system is pos-
itive if and only if

z >0

vV, ¥ € R"suchthat{ P, i >0 (AP, +CTC)2 <0
(P+ ‘%)T'x = 07

e (2] 5]

Therefore the solution of thBQ°° problem is solution of th&Q3° problem.



6.2 Hamiltonian approach 105

Proof : Using the characterization of positive (monotone) systeiitis scalar products devel-
oped in [ASO03] and [DL04], the positivity of the closed-losypstem can be rewritten as :

A — B R7'BT P, Metzler matrix
& Vaz,y>0 suchthay’> =0, y"(A—BR'BTP )z >0
x>0
& Va,2e€R"suchthat P.z>0
(P 7)"2 =0,
(P, #)TAz — (P.#)"BR'BTP, 2 >0
x>0
& Vo, 2 € R"suchthat P.72>0
(P 7)"2 =0,
T (ATP,. + CTC)x <0 (by applying the ARE)

< (] ]

Then by using the Hamiltonian matrix

A ~BR BT
H=
[ -CTC —AT }
we obtain the following result :

Theorem 6.2.2 Consider theL.Q° problem (5.1)-(5.2). Th&Q° closed-loop system is pos-
itive if and only if

x>0
= I
YV, 7 € R*suchthat{ P, % >0 P, I)H { P" } x> 0. (6.20)
(P+ i‘)T'r = 07 -

Therefore the solution of thBQ®° problem is solution of th&Q3° problem.

6.2.2 lllustrations

In order to illustrate Theorem 6.2.2, let us consider sydi@i¥) with @ and R given by
(6.15). The solution of the ARE and the Hamiltonian matrie given by

-2 1 —0.1923 —0.0769
1.1731 0.5669 1 —2  —=0.0769 —0.2308
= and H =
0.5669 1.5879 —4 —0.01 2 -1
-0.01 -6 -1 2

Let us denote

T = {xl} and 7 = {‘?1}
i) )

and observe that
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. [ 1.1731 21 + 0.5669 29 ] .
° P+.:C — ’

0.5669 71 + 1.5879 7

o (Pr2)Tx =21 (1.1731 21 + 0.5669 T3) + 2 (0.5669 Z1 + 1.5879 75) ;

I
« #TP, I,|H { " } x = 11 (—5.0827 %1 — 5.604 ) + 22 (—4.5906 7, — 11.879 75).

P,
x>0

Solvingy P,z >0 in (6.20) by means of MPLE gives three solutions :
(P+ '%)T'r = 07

1. 2= {xl } and 7 = {:fl } such that
) To
_ 5669 x; + 15879 x4

T TP 1073 2 + 5669 24

with X1, To, Ty € R.
0 N I
2. ¢ = 0 andz = | _ such that

T2

1.173121 + 0.56692+
0.566921 + 1.5879Z4

i.e. 7, > —0.4832 7, with 7, € R.
0 _ T N
3.2= and 7 = wherez; > 0.
0 0
Then, for these three solutions 7 € R", one has

'[P, IL)H { Ln ] x>0
Py

such that condition (6.20) is verified. Therefore, the cosidn of Theorem 6.2.2 holds, as was
to be expected.

6.2.3 Using graphs
Now some additional notations are used to rewrite this d@rdimore briefly. LetG(X) :=

{z = { In } z : x € R"}, thegraphof P,. LetC; = R’} the nonnegative orthant of 'R

P,
Let
Po c, - R"

r ~ Pox=P.uw

+

- , n In . :
be the restriction o, on the con&”’,.. And finally let L := { (I) 0 } a permutation matrix.

n n

With these notations, we obtain the following result :
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Theorem 6.2.3 Consider theL Q°° problem (5.1)-(5.2). Th&Q°° closed-loop system is pos-
itive if and only if
VzeG(Pe,),VZe G(Py)N(R" x Cy),
(6.21)
(L2 2=0 = (L2)THz>0.

Therefore the solution of thBQ° problem is solution of th& Q3 problem.

Proof : Condition (6.21) is equivalent to, with= { é" } r, x> 0andz = { Ln } z,

+ Py
P,z> 0,
- I,
'[P, Jn]HlPszo
since
N 0, I, I, | . P, | .
L = fry
=ralln]e=ln]s
and

s () L f e o)

Finally, we can reinterpret this condition in terms of bas®onsiderL™ (H) the H-invariant
subspace spanned by the (generalized) eigenvectors atesbt the stable eigenvalues, i.e.
eigenvalues with negative real parts. Let us construct & bashis subspace :

O

Z=12z - z |,z €R™
U;
Consider the following decompositian= | --- |, u;, v; € R".
Vi

ThereforeZ = { \[i } etImzZ =L"(H). WhenceP, = VU !'andZ(R") = G(P,). In fact,

Z can be considered as a basis(of(H) but ZV also, withV a nonsingular matrix. Then
there exist an infinity of choices @f andV such that?, = V U~!. We obtain therefore the
following condition :

Theorem 6.2.4 Consider theL Q°° problem (5.1)-(5.2). Th&Q° closed-loop system is pos-
itive if and only if
V2= [ g } v, v € R" suchthat/v > 0,
. U
VZzZ= [ v
UD)"(Vo)=-(Vo)'(Uv) = 2Ud)" (-C"C(Uv)— A" (Vv)) > 0.
Therefore the solution of thBQ° problem is solution of th& Q3 problem.

} v, v € R" suchthatVo > 0,
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Proof : With the previous considerations, condition (6.21) candisterpreted in terms df
andV :

I, I, U - :
z € G(Pe,) <:>z:[P+]x:[VU1}x:[V} vwithz :=Uv>0;

zeGPON(R"x(Cy) & z2= [ ]{)” } 7 suchthatP,z = V U~z > 0. Then with
Jr

7 := U v that gives: = { v 0, wherev € R" such that’ v > 0 ;

V -

T

e (1] [4]:

T [ VT UT ] [ ‘[i :| v
— T (VTU+UTV) v
= (VO)'(Uv) + (UD)"(Vv);

=

T

(L3TH: — (l‘ﬂ g) [—;TC —B_R/;TlBT} {‘ﬂ v

vt wor g1 | AU-BR'BTV

= orfve o] { _CTCU — ATV ]”

= ' (VIAU = VTBR'B'"V —UTCTCU - UTA™V) v

U (VU NDYTA- (VU Y'BR'BTVU - CT'C - AT"VU) U
o"UT (PyA— P.BR'BTP, — CTC — ATP,) Uw

20T (-CTC — ATP,) Uw

207 (=UTCTCU - UTATV) v

= 2(U0)T (~CTC(Uv) — AT(Vv)).

6.3 Diagonal solution for the ARE

As for theLQf{ problem in finite horizon, a diagonal solution for the ARE ansidered,
in order to keep the Metzler property of the closed-loop matr

Lemma 6.3.1 Consider theLQ*° problem (5.1)-(5.2). If the solutio®, of the ARE is such
that, —-B R~'BT P, is a diagonal matrix, then th&Q>° closed-loop system is positive and
therefore the solution of thBQ°° problem is solution of th&Q° problem.

By the analysis on the Hamiltonian matrix, one can obtairféHewing result :
Theorem 6.3.2 Assume that we can find a ba:{isg } of L~ (H) such that

BR'B"V = DU
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whereD is a diagonal matrix. Then th&Q°° closed-loop system is positive and therefore the
solution of theL Q> problem is solution of th&Q 3 problem.

One easy way to get the condition of Lemma 6.3.1 is to imposaatpthat P, is a diagonal
matrix, provided that the matri8 R~' BT be also diagonal. The following result gives suf-
ficient conditions for achieving this goal ; it is a generatian of the finite horizon case, see
Remark 4.2.5 b).

Theorem 6.3.3 Consider theLQ° problem (5.1)-(5.2) wher®& is equal tol,,. Choose a con-
stanta such thaiv > max{0, Ar}. Define

Ay = AAT — (al, + A) (a1, + A)T.

Assume that
S = al,,
R = rl,,
CTC = 042 (l+1> [n+Aa7

T

with » > 0 such that
-> - 1, (6.22)

where,;, ;== min{\ : A € o(A.)}.
Then the solution of ARE is given By = « I,, and the LQ*° closed-loop system is positive
and therefore the solution of theQ°° problem is solution of th&Q° problem.

Proof : The proof follows the lines of the finite horizon case and ex¢fiore omitted.
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Chapter 7

The Inverse Input/State-Invariant LQ
Problem

In this chapter, the inverse input/state-invariant LQ jeobis studied. First, the standard
inverse LQ problem is stated. This problem consists of, fdixed matrix K, determining
weighting matrices) and R such that the contral = K x is optimal for the resulting LQ
problem, see e.g. [Loc01] and [CD91]. The problem is solvednieans of linear matrix in-
equalities, see e.g. [BEFB94] and [SWO05]. Then, the invetage-invariant LQ problem is
studied by means of the computation of an invariant stabdifeedbacki such that the re-
sulting control is optimal for the corresponding LQ problefrhe resolution of this problem
leads to linear and bilinear matrix inequalities (BMI), geg. [VBO0OQ]. Bilinear matrix inequal-
ities were popularized by Safonov and co-workers in a sefiggoceedings papers, see e.g.
[SGL94]. In particular, the inverse positive LQ problem adv&d by using LMIs. Finally, the
inverse input/state-invariant LQ problem is describediarsblved by LMI and also BMI.

7.1 The inverse standard LQ problem

7.1.1 Problem statement

Recall that the standarBQ° problem consists of, for fixed weighting matric@sand R,
finding the controlu = K x which minimizes the cost defined by these weighting matrices
The inverse LQ problem, denoted ByQ:°, is a reciprocal approach to tHeQ)>° problem.

It consists of determining weighting matricés and R such that the control given by a
fixed state-feedback’ is solution of the corresponding LQ problem. Furthermogejnathe
LQ*° problem, the assumptions of stabilizability and deteditglfor the given system have to
hold to obtain a solution, these assumptions will also hotdHe inverse problem, see [AM90,

Section 5.6] for a discussion on the general inverse optomatrol problem.

The LQ> problem can be stated as follows : given a systdmB] such that(A, B) is
stabilizable. LetX” be a fixed matrix in R*". The inverse standaiQ:° problem consists of

determining symmetric matricé€s = C7C andR, (with Q positive semidefinite an& positive

111
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definite respectively) such that
1. the pain(@, A) is detectable ;

2. the controks = K x is optimal for the corresponding LQ problem, i.e. minimizbe
following quadratic cost

o) =5 ([ AR Pl +IC a0 o). 1)

7.1.2 Matrix inequalities approach

In this section, theL.Q°° problem is stated by using linear matrix inequalities, sge e
[BEFB94].

Definition 7.1.1
a) A linear matrix inequality (LMI) is an inequation of therfo

F(z) <0 (or F(zx) > 0)

whereF' is an affine function, fror&” (a linear space of finite dimension)&b(the set of symmet-
ric matrices) and wherex 0 (> 0) means “negative definite” (“positive definite”, respeatiy).

b) A finite set of LMIsF}(x) < 0, Fy(z) < 0,..., F,(z) < 0, can be written as a single LMI

F(z) 0 - 0
0 Fz) - 0
F(r) = : o < 0.
0 0 F,(x)

In the sequel, the numerical implementation of LMIs is donthWwALMIP, which is a
modeling language for advanced modeling and solution of@oand nonconvex optimization
problems. Itis implemented as a free toolbox foxMAB. See e.g. [Yal] for details. Further-
more, this tool allows to mix LMIs of different types. Thuseonan create a LMI containing
different LMIs of type< 0, > 0, < or = 0, as for example the following single LMI :

Fi(x) <0 0 0
0 Fy(z) = 0 0
F(z) = :
0 0 Fo(z) <0

Note that equatio’(x) = 0 can be translated in two LMISE' (z) < 0 andF(x) = 0.

The conditions to guarantee the existence of a solutioned . >° problem can be written
with LMIs. However the analysis to transform these condsianto a single LMI of the same
type will not be performed since it is not necessary for thmerical solving (see [Jac09] for
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details). So consider conditions (7.1.1) and rewrite thera matrix form. First the condition
of detectability of(Q), A) can be translated as, see [BEFB94, Section 10.6],

there exists a positive definite matri% such thatA’P, + P, A < Q (7.2)

where X < Y means thatX is less thanY” in the order of symmetric matrices. Now the
fact that the control, = K x is optimal for theLQ<=° problem means that(t) = K x(t) =
—R™1BTP, x(t) thatisK = —R~!BT P, or equivalently

B'P, + RK =0. (7.3)

Condition (7.3) requires the computation of the uniqueiiafy positive semidefinite solution
P, of ARE. ThenwithA, .= A+BK=A—-BR'BTP,,ieA= A, + BR'BTP,,the
algebraic Riccati equation (5.4) becomes

(A, + BR'B™P)"P, + P, (A, + BR'B"P,) — P,BR'B"P, + Q=0
= A£P++P+A++P+BR713TP++Q:0
& (A+BK)'P, + P, (A+BK)+P,BR'RR'B"P, +Q =0.
N——— N —

_KT -K

or equivalently
(A+ BK)"P,+ P (A+ BK)+K'RK+Q =0 (7.4)

Hence, by considering conditions (7.2)-(7.4), solving Ih@°>° problem is equivalent to the
resolution of the following set of LMIs :

R>0
Q=0
P. >0
LMI 2 : P =0 (7.5)
(A+ BK)TP, + P,(A+ BK)+ KTRK+Q =0
BTP, + RK =0
ATPL+PLA<Q

In the sequel, this set of LMIs is called “LMI 2”. In the follamg sections, we study the
inverse input and state-invariant LQ problems. For solthmgse problems, we compute first
a matrix K in order to obtain the invariance (of the state and/or theitnpf the closed-loop
system before determining matric@sand R such that the resulting control is optimal (given
by LMI 2).
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7.2 The inverse state-invariant LQ problem

7.2.1 Problem statement and matrix inequalities approach

Consider an invariant stabilizable system B, see Definition 1.3.2. Lek” be an invariant
stabilizing feedback, i.e. a matriX such thatd + B K is a stable Metzler matrix and4 +
BK)z > 0, see Theorem 1.3.3. The inverse state-invariant LQ probvenich is denoted
by LQ‘;", consists of determining symmetric matriggs= C7C and R, such thatQ, A) is
detectable and such that the contuok K x is optimal for the correspondingQ°° problem.
The difference with the.Q>° problem is the determination of an invariant stabilizingdback
matrix /. This step can be stated under the form of matrix inequalitieusing Theorem 1.3.4
which gives a characterization of invariant stabilizakiby using a Lyapunov equation :

diag[(A+ B K);jlizj = 0
diag[(A+ BK)z] = 0
P>0
P(A+BK)'+(A+BK)P <0

BMI l1a: (7.6)

Then theLQigic“’ problem is solved first by computing a mati which is solution of (7.6)
and next by solving LMI 2 ; see (7.5), which gives weightingtrizes ¢ and R such that
u = K x is optimal for the correspondinfg@Q<° problem. However, in (7.6), the inequality
P(A+ BK)T + (A+ BK)P < 0is bilinear inP and K, see e.g. [VB00]. This bilinear
matrix inequality (BMI) is not easy to handle as it is writteat the solver XLMIP is able to
compute a solution, see Section 7.4 for numerical exampeseover, in the positive case,
wherez = 0, the parameterization of the matrix as K = Y P~! allows us to achieve the
following LMI, which is much easier to handle :

PAT" +Y"B" + AP+ BY <0,

see the following subsection. The second step of the melbgga@onsists of finding) and

R such thatK is an LQ-optimal feedback. The usefulness of the LQ problemotably the
stabilization of the closed-loop system together with gibass, see e.g. [AM90, Section 5.3]
and also Chapter 9 where we allude to these properties.

7.2.2 The inverse positive LQ problem

Consider the particular case whete= 0 and define the inverse positive LQ problem,
which is denoted byZQ‘i" , as follows : let a positively stabilizable systém B]. Let K be a
fixed matrix such thatl + B K is a stable Metzler matrix. The inverse positli§)"}" problem
consists of determining symmetric matri¢gs= C7'C andR such thatfQ, A) is detectable and
the controk, = K x is optimal for the corresponding LQ problem. Using TheoreBgi2which
gives LMI characterizations of the determination of thenmak’, theLQ‘i" can be summarized
as the resolution of the two following LMIs, see [Jac09] ; finst one for the computation of
the matrix /', which can be written as follows :
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diag[(A P + BY)jliz; = 0
LMl 1a: P>0 (7.7)
PA+Y"BT+ AP+ BY <0

where P is a diagonal matrix in this case, see Theorem 2.3.5, anddabend LMI for the
computation of) and R for an optimal solution of.Q°°, that is LMI 2.

7.3 The inverse input/state-invariant LQ problem

Let us define the inverse input/state-invariant LQ probletmch is denoted b;LQL_Q‘,’j, as
follows : consider a stabilizable systegm, B]. Our aim is to compute a matriX” such that
the corresponding statet) is such thate(t) > z and the controk(t) = K xz(t) is such that
u(t) > wu. Such matrixk’ exists by Theorem 1.1.13 (which gives necessary and surfican-
ditions for the input/state-invariance) and Corollary.15L(which gives sufficient conditions).
The inverse input/state-invaria 'g"i problem consists of determining symmetric matrices
Q = CTC and R such that(Q, A) is detectable and the control= K x is optimal for the
corresponding LQ problem, given by LMI 2. First, by using ®hem 1.1.13, th&. Q™. can be

summarized as the resolution of the following BMI (beforé/sw of LMI 2) : ’

diag[(H)i;]iz; = O
~I, -1, Onxn
BMI 1b ; [—K}(A+BK)_H{—K]:[Omxn] (7.8)
diag {H [ :2 ” < O(man)x1

Now, using the sufficient conditions of Corollary 1.1.15yag the following way for the reso-
lution of the first part of theZQ‘T_j‘,’i problem :

diag[(A + B K);jlizj = 0
diag[(A+ BK)z] = 0

LMI 1b : KA>0 (7.9)
diag[(K B)g;liz; = 0

diag[K (Az + Ba)] = 0

Remarks 7.3.1
a) Assume that for alt(0) = zy > z, x(t) > zforall t > 0, i.e. A+ B K is a Metzler matrix
such that’ A + B K) z > 0. Now assume that” is a nonnegative matrix. Then
u=Kx > Kz>u,
whence Kz —u > 0.

Then another alternative for LMI 1 is the following :
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diag[(A + B K)ijlizj = 0
diag[(A + BK) ] = 0
K>0
diag|[ Kz — u] = 0

LMl 1c: (7.10)

b) Assume that for alt(0) = o > z, x(t) > zforall ¢t > 0, i.e. A+ B K is a Metzler matrix
such thattA + BK)z > 0. If u(t) = Kz(t) > u for all time ¢, then the condition is also
satisfied for the initial time, i.eK o — u > 0. This condition can be seen as giving a suitable
initial condition for the input trajectories. Then we carasonably hope that this starting boost
will be sufficient to guarantee that(t) = K x(t) > u for all larger times. This necessary
condition implies the following alternative for LMI 1 :

diag[(A + B K);jlizj = 0
LMI 1d : diag[(A+ BK)z] = 0 (7.11)
diag[K 2o —u] = 0

7.4 Numerical examples

In this section, the inverse positivbQi_’;V problem and the inverse input/state-invariant
LQ‘g"’ﬁ problem are illustrated by solving the different LMIs or BMintroduced in the pre-
vious sections.

7.4.1 The inverse positive LQ problem
Consider the stable nonpositive system described by
B I e P R (712
with the initial conditionzy = [0.1  0.1]7 > 0, under the constraints

z1(t) >0

Yoo >0 Vt>0
To=5Vi=1, {xQ(t)zo

The open-loop state trajectories are drawn in Figure 7.tHe initial statesr, = [1  0]7
(graphs on the left) and, = [0 1]7 (graphs on the right) respectively, i.e. the columngbf
at the sampling times.
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Open loop state trajectories

From: In(1) From: In(2)
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Figure 7.1: Open-loop state trajectorig$) for system (7.12).

Solving LMI 1a given by (7.7) gives :

p_ 35.106 0
0 35.106
and
[ 52.659 42.127
| —28.085 52.659
and therefore, we obtain :
K_ypi_| 15 12
—-0.8 1.5
and
A+BK — —-0.5 0.2 .
0.2 —-0.5

Unfortunately, when solving LMI 2, it is not possible to findatrices@) and R such thatkK
gives an LQ-optimal control. Indeed, LMI 1a delivers onlyeanatrix X', among many others,
which may not be admissible for LMI 2. An iterative processjeh is an heuristic approach, is
introduced to compute another state-feedb®&cKT his iterative process is summarized in Table
7.1, where the maximum number of iterations is fixed to 100s Tikuristic approach has been
used on other numerical examples in [Jac09].
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1.1nit:

» ComputeP, andY; by solving LMI 1a

e LetKy =Y, P!

» Solve LMI 2 with K in order to obtain weighting matricég, and R,
such that condition (7.5) holds fak < R, and @ «— (@, for a fixed
tolerances.

2. 1 f LMI 2 has a solution( @y, Ry)
Then
uo = Koz is the optimal control corresponding t@,, Ry) — STOP.
El se
Let: = 1.
Wil e i <100, Do :
* ComputeP; andY; by solving LMI 1a
with the additional conditio®; < P,_;
x LetK; =Y, P!
* Solve LMI 2 with K; in order to obtain weighting matrices
Q; and R; such that condition (7.5) holds fét «— R;
andQ@ « @, for a fixed tolerance.
| f LMI 2 has a solution@;, R;)
Then
u; = K; x is the optimal control corresponding tQ;, R;)
— STOP.
El se
Let:; =1+ 1.
End
End
End

Table 7.1: Heuristic iterative process

Now, back to the numerical example (7.12). After solving thél 1a for the first time,
seven iterations are needed in the iterative process (Tableithe = 10~%) to obtain weighting
matrices(, R) such that condition (7.5) holds and = K x is the optimal control of the
corresponding LQ problem. Therefore, we obtain :

—0.8622 2.144
0.86229 9 (7.13)

K =
0.14491 —0.86229
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and

.62 —6.5301 2. 284
0.62003 —6.530 7673 9.2843 ] (7.14)

@= —6.5301  74.6 9.2843 40.959

The optimal control is depicted in Figure 7.2. In additiongu¥e 7.3 gives a comparison of
the state trajectories before the iterative process antd@ieptimal state trajectories after the
iterative process. As for Figure 7.1, this figure represémsstate trajectories, for the initial
stateszy = [1 0] (graphs on the left) and, = [0 1] (graphs on the right) respectively.
We can observe that the state trajectories are both nonvedait the LQ-optimal state tra-
jectories converge faster towards zero. Finally, we hase a@hecked that solving the standard
LQ*° problem with@ and R given by (7.14) leads to the matrix given by (7.13).

 war|

Optimal control

Amplitude

0 0.5 1 1.5 2 2.5 3 35
Time (sec)

Figure 7.2: Optimal contrak(t) for system (7.12) with (7.13) and (7.14).
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Impulse Response
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Figure 7.3: State trajectoriest) for system (7.12) before and after the iterative process.

7.4.2 The inverse input/state-invariant LQ problem

Consider system (7.12) under the following constraints

x(t) > x

wlt) > g (7.15)

Vay >z, ¥Vt >0, {
wherez = [-1 —1]T,a=[-0.2 —0.2]7 andzy = [0.1 0.1]7. Solving BMI 1b, given
by (7.8), with YALMIP in MATLAB, gives the following results :

—3.9320 0.046815 0.26920  0.1991

2.3942 —4.2286 0.048942 0.19385
0.055613 0.89403 —4.9881 0.010056

0 0 3.6223  —3.6223
and -
=] s | (716
Then solving LMI 2 gives directly) and R,
0= [P B wan= [ 22200 ]

such thatK is optimal for the standard.Q°° problem ; it is not needed to go through the
iterative process. In addition, one can verify that solviing standard.Q° problem withQ
andR gives the state feedbacdk given by (7.16). The optimal state trajectories and thenogtti
control are drawn in Figures 7.4 and 7.5 respectively. Omeatsserve that the constraints
(7.15) are numerically verified.
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Optimal state trajectories
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Figure 7.4: Optimal state trajectorieét) for system (7.12) with (7.16) and (7.17).

Optimal control

0.3

0.21

0.1f

To: Out(1)

-0.1
0.2

Amplitude

0.15f

0.1f

To: Out(2)

0.05F

0 0.5 1 15 2 2.5
Time (sec)

Figure 7.5: Optimal contrak(t) for system (7.12) with (7.16) and (7.17).
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This last part is devoted to the application of the LQ probtertocally positively invariant
nonlinear systems. First, properties of locally positviglvariant nonlinear systems are de-
scribed in Chapter 8. A linear approximation of such nordmsy/stems around an equilibrium
is also studied, see e.g. [CBHB09, Kha02]. Next, in Chapt¢in® problem of coexistence of
species, which are in competition for a single nutrient ih@mostat, is studied, see [SW95] for
an overview on the chemostat model. The theory developedrdorfthe input/state-invariant
LQ problem is applied to guarantee the local positive irarace of the chemostat model. The
idea is to ensure the input/state-invariance of its liresaisystem around an equilibrium, by ap-
plying an appropriate LQ-optimal control (given either bg solution of an input/state-invariant
LQf—f,g—c problem together with a receding horizon approach, or bystiistion of an inverse
input/state-invarianL Q™. problem obtained by solving LMIs and BMIs).

u,x
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Chapter 8

Locally Positively Input/State-Invariant
Nonlinear Systems

This chapter, devoted to locally positively input/stateariant nonlinear systems, is an in-
terlude between the theory developed so far and the nexterh@gvoted to the application (on
the chemostat model) which is described by a nonlinear syste this application, the objec-
tive is to guarantee the stability of the model and also a gntyf local positive input/state-
invariance (see [CBHBO09] and the references therein fosthéy of nonnegative solutions of
a nonlinear system, applied there to kinetic equations)hibichapter, we first recall the clas-
sical notions of stability of an equilibrium of a nonlinegisgem, see e.g. [Kha02]. Then the
concept of local positive invariance around an equilibrisrdeveloped. Finally, conditions for
the stability and the local positive input/state-invadarof a nonlinear system are established
in terms of the stability and the input/state-invariancéheflinearized system.

Notice that the notion of local positive nonlinear timeyiag linear systems is introduced
in [Ka03]. There, the local positiveness of nonlinear systémplies the nonnegativity of the
state trajectories in a neighborhood of an equilibrium. eHeimplies the strict positivity of
the state and the input trajectories. Moreover, the metloggas different here. First, the local
positive input/state-invariance of the nonlinear systestudied by using the linearization of the
system around an equilibrium. Then the design of a statéotesdof the linearized system is
studied such that it guarantees the local positive in@i#snvariance of the resulting nonlinear
closed-loop system.

8.1 Stability of nonlinear systems
Consider the following nonlinear system :

i=f(2), (0) =g (8.2)

wheref (z) is a continuously differentiable function, (which guased the existence and unique-
ness of the solution of (8.1), see e.g. [Kha02, Section 2&3sume that there exists an equi-

127
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librium z, for the system (8.1), i.e. such thAtzr.) = 0. The stability of a nonlinear system is
stated in terms of stability of its equilibrium, see e.g. §X2, Section 3.1] and [CBHBO09] :

Definition 8.1.1 The equilibriumz, of system (8.1) is said to be
* (Lyapunov) stableif, for everye > 0, there exist$ = 6(¢) > 0 such that

2(0) — 2] <6 = |Jz(t) — 2| <&, ¥t > 0.

» asymptotically stableif it is stable andj can be chosen such that

|x(0) — x| < = tlim x(t) = ..

The Lyapunov stability of an equilibrium means that solnfigtarting close enough to the equi-
librium (within a distance from it) remain close enough to it forever (within a distaadeom

it). Note that this must be true for amythat one may choose. Asymptotic stability means that
solutions that start close enough to the equilibrium noy eemain close enough to it but also
eventually converge to the equilibrium.

Now in a small neighborhood of the equilibrium, the nonlinear system (8.1) can be ap-
proximated by a linear one, see e.g. [Kha02, Sections 3.31&r®] and [Ka 03]. Consider
f(x) = Az + Ny(x) where

A= a_(xe)a

is the Jacobian matrix of(z) atz., N¢(x) is the nonlinear part of (z) and

N
N/ @I o Iz — ]| — 0.
[ — ]|
Then the linearized system
I= %(xe)f:/m (8.2)

wherez := z—z, is called a linear approximation of the nonlinear systerh)(8 the neighbor-
hood ofz.. The following theorem gives conditions under which thé8ity of the equilibrium
of the nonlinear system can be investigated by the studyg atatbility as an equilibrium for the
linearized system, see [Kha02, Theorem 3.7] :

Theorem 8.1.1Let z. be an equilibrium for the nonlinear system (8.1). Let= %(me) be
the Jacobian matrix off (z) at .. Thenz, is asymptotically stable iRe\; < 0 for all \;
eigenvalues of.

Theorem 8.1.1 states that the stability of the linear syg88) implies the asymptotic stability
of the equilibriumz, of system (8.1).
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8.2 Locally positively invariant nonlinear systems

In this section, the concept of locally positively inpustgt-invariant nonlinear system is
defined. Consider the following nonlinear system :

&= F(z,u) = f(x)+Gx)u, =x(0)=uz (8.3)

whereG(z) = [g1(x)...gm(z)] € R™™ and f(-) andg,(-), 7 = 1,...,m, are continuously
differentiable functions. Assume that there exists anléggim x. corresponding to an input
u. for system (8.3), i.e. such that(z., u.) = f(z.) + G(z.) ue = 0. Assume, for the context
of the application developed in Chapter 9, that> 0 andu, > 0.

Consider the linear approximation of system (8.3) in thghleorhood of z., u.) :

t=F(zr,u)=Ax+ Bu+ Np(z, u) (8.4)

where OF of 50
A= %(SCQ, ue) = %(I‘e) + %(xe) Ue,
oF

B = %(:Ee, ue) = G(xe),

andNg(x, u) is the nonlinear part of'(z, u) such that

[NF (2, u)l
I = e, u = ue)|

— 0 as ||(ZL‘ — Le, U — ue)” —0 (85)

Then one has the following linearized system
r=AZ+ B (8.6)

with 7 := x;, — . andu := u;, — u., Wherex; andu;, are called the (shifted) linearized state
and input trajectories, respectively.

Now consider the linearization of (8.3) about., u.) which results in the linear system
(8.6). Assume that the pafrd, B) is stabilizable. Let us design a matrx such that all the
eigenvalues ofl + B K have negative real parts (for stability of the linear clotmap system).
Let us apply the linear state feedback confret K 7 to the nonlinear system, i.e.

u=t+u=Ki+u =Kx—z)4+u=Kz—(Kzr.—u.)=Kzx+wv,
that is an affine feedback for the nonlinear system, whicagkie following closed-loop system
t=f(z)+Gx)u=fx)+Gx) (Kx— (Kx. —u.)) = Fle, Kz — (K z. —u.)) (8.7)

Clearly, (x., u.) is an equilibrium of the closed-loop system. The linearrabf system (8.7)
about(zx., u.) is given by :

i=(A+BK)% (8.8)
SinceK is such thatd + B K is stable, it follows by Theorem 8.1.1 that,, w.) is an asymp-

totically stable equilibrium of the closed-loop system7{8.In fact, this equilibrium is expo-
nentially stable, see [Kha02, Theorem 3.11].
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Now, let us define the concept of local positive input/siateriance of a nonlinear system.
This definition is inspired by the definition of (global) ingstate-invariance of a linear system,
see Definition 1.1.6.

Definition 8.2.1 System (8.7) is said to becally positively input/state-invariant around the
equilibrium (z., u.) whereu, = K z. + v if there exists a neighborhodd of the equilibrium
z. such that

z(t) >0

Y xo € V, such that 0,Vt>0,
o o > = {u@%:Kd®+v>0

The concept of state-invariance of nonlinear systems @bethat state trajectories starting in
a set will stay in this set for all future times) has been deped in [Kha02, Section 3.2] and
[CBHBO09]. Moreover, conditions for the local positivenegsionlinear time-varying systems
are established in [Ka 03].

Here, the aim is to find a linear feedback control lavfor the linearized system such
that the resulting closed-loop nonlinear system is locptgitively input/state-invariant and
stable. The following theorem states that it suffices thateakr feedback< for the linearized
system be a stabilizing input/state-invariant feedbacl@uarantee the stability and the local
positive input/state-invariance of the resulting nordinsystem. Recall the cor; ; used in
the definition of the input/state-invariance for linearteyss, see Definition 1.1.6 :

o frem [ ]2 2]

Theorem 8.2.11f there exists a linear feedback control lai such that the linearized closed-
loop system (8.8) is stable (i.&ReX < 0 for all A € ¢(A + B K)) and input/state-invariant
with respect tqz., u.) , i.e. such that

Vige Cra, V>0, Z(t) € Cia,

where
r=—x.+z. and u = —u, + u,

with z. > 0 andu. > 0, and wherez(¢) is the solution of system (8.8) and= K 7, then the
resulting nonlinear closed-loop system (8.7) is locallgipgely input/state-invariant, i.e. there
exists a neighborhoot, of the equilibriumz, such that

z(t) > 0

u(t) > 0 (8.9)

YV xo € V. suchthatxyg > 0, V¢ >0, {

wherezx(t) is the solution of system (8.7) an¢t) = K = — (K z. — u,).

Proof : The fact that the closed-loop system (8.8) is stable imphatz, is an asymptotically
stable equilibrium for the nonlinear system (8.7) (see Téeo8.1.1), i.e.

[o(t) = ze[| < e
lim z(t) = x,

t—o0

Ve>0,35>Osuchthaq|x(0)—xe||<5:>{ Vit>0,
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wherex(t) is the solution of system (8.7). Let us defiBéz., §) a ball centered at, of radius
d > 0. Then, since for alky € B(z., §), 2(t) — z., with z. > 0, it implies thatz(¢) > 0 for
t sufficiently large, that is :

there existsT" > 0 such that for allt > T, z(t) > 0. (8.10)
Therefore, since(t) = K z(t) + v — u. andu, > 0,
there existsT’ > 0 such that for allt > T, u(t) > 0. (8.11)

Hencez(t) > 0 andu(t) > 0 hold for ¢ sufficiently large. It remains to be shown that it also
holds fort € [0, T for all initial states in a sufficiently small neighborhoofixq. First, let
us show that the state trajectorieg) are strictly positive on0, 7] for z, sufficiently close to
the equilibriumz,.. Consider the linearized staig (¢) such thatr; (t) = Z(t) + x. with, by
assumptionz(t) > —x. + z. for all time¢. Then, in particularg(t) > 0 for all ¢t € [0, T
sincez. > 0. Letz(t) = (x — z)(t) and computing (¢) with

t = Ax+Bu+ Np(z,u)=Ax+BKzx—-BKuxz.+ Bu.+ Np(z, Kz +0)
::]G;(m)

i, = t=(A+BK)i=(A+BK)(z, —2.)=(A+BK)z, — (A+BK)ux,

leads to
z = x—p
Ax+ BKzx—BKuz.+ Bu.+ Np(z) — Az, — BKaxp+ Az, + BK z,
A(x —zp)+ BK (x —xp) + Aze + Bue + Np(x)
(A+ BK)z+ Mp(x, u,)

whereMp(z, u.) = Az, + Bu. + Np(x) such thatMp(z., u.) = F(z., u.) = 0. Therefore,
with z(0) = z(0) — x(0) = 2o — o = 0, for ¢t € [0, T, it follows that

t
2(t) = / eATBE)ET) (A g, + Bue + Np(z(7))) dr;
0

¢
()] < / M DAz, + Bu, + Np(z(r))|| dr, with M > 0ando < 0
0

T
< M /0 ¢~ || Ao + Bue + Np(z(r)| dr.

<M
Hence,
I2lloe = max [l2()]f = max max | ()
< M /Te_‘”HAxe+Bue+NF(x(T))||dT
0
< Me ' max |[Az. + Bu.+ Np(x(7))|| dr
o T€l0,T]

< MTeT max} |Aze + Bue + Np(z(7))||

T€[0, T
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where||Az. + Bu. + Np(z(7))|| tends uniformly to zero o, 7). Indeed, by the contin-
uous dependence of the state trajectories with respecetmitial conditionz, — z. (see
e.g. [Kha02, Theorem 2.6]), the state trajectory corredpanto any initial condition:, con-
verges to the state trajectory corresponding taniformly on any compact intervél), 7] as
xo tends toz.. Thenz(r) converges uniformly ta:. on [0, 7] and soNg(z(7)) converges
uniformly to N (z.). Therefore, as, tends tor., Trg(?);] |Ax.+ Bu.+ Np(z(7))|| converges

to F'(xe, ue) = 00n [0, T]. Let us denote := 1121'i<n [z1]:(t) > 0. Then, there exists a neigh-

borhoodIV, of the equilibriumz, (for example : a ball centered at of radiusy > 0), such
that, for allzy € B(z., n),

0 < max |z;(t) — [zLl;(t)] < r

1<i<n
t€[0, T

that is,

Vi, Vte |0, T], —r < z;(t) — [xL]:(t) <r
which implies that

Vi, Vte[0,T], z;(t) > [xL]:(t) —r >0
Thereforexz(t) > 0 for all ¢ € [0, T]. Now consider the input trajectoriegt) on [0, 7.
By the uniform convergence af(t) to z. on [0, T, u(t) = K z(t) + v, an affine function
of =, will uniformly converge tou.. Consider the linearized input trajectories(t) such that
ur(t) = u+ u. where by assumptioia > u. + u., with u. > 0, for all time¢ > 0. In particular
on [0, T, ur(t) > 0. Leta(t) = (u — up)(t) witha = K z,

up=uU+u. =K (rp —we) tue = Kz — Kxo + ue

and
U = UuU—ur
Ke+v—Kzop+ Kz, — u,
K(x—z)+ Kz, +v—u
N—_——

—Ue

= Kz
where||z| tends to zero. S¢il|.. also converges to zero. Defise= min [uz];(t) > 0.
<i<m

Therefore, there exists a neighborhaddof the equilibriumz, (e.g. B(z., ¢), with ¢ > 0)
such that, for alky € B(z., ¢),

0 < max fuit) — [ucli(t)] <s
t€[0, T
that is,
Vi, Vi e [0, T], —s < u(t) — [ur)i(t) < s
and implies that
Vi, Vtel0,T], u(t) > [ur]i(t) —s >0
Henceu(t) > 0forallt € [0, 7. Since we have shown that it also holdsfsufficiently large,

condition (8.9) holds for all time > 0 on the ballV, = B(z., p) wherep = min{J, 7, €}. 0
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Remark 8.2.1 a) Applying a state feedback to the linearized system K i, leads to an
invariant stabilizing feedback’ for the linearized system. Then the existence of this matrix
gives the local positive input/state-invariance and thabsity of the nonlinear system around
the equilibrium. The principle of computing a state feeddfac the linearized system such that
the resulting nonlinear closed-loop system is locally pesly input/state-invariant and stable
is applied in Chapter 9. This chapter is devoted to the studdie@ coexistence of species in a
chemostat model, which is described by a nonlinear system.

b) Note that Theorem 8.2.1 holds for any nonlinear systerareTis no assumption of positivity
on the open-loop nonlinear system (8.3). Now, if the opep-kystem is positive, if the input
trajectories are nonnegative for all time, this impliesauatically that the state trajectories are
nonnegative. However, it is not guaranteed that they aietstrpositive. But the strict positivity
of the state trajectories is essential in the applicatiomcsi the objective is the coexistence of
species in a chemostat model. We will see in this applicdbiahthe input/state-invariance of
the linearized system is also paramount since, actuallylittearized system description of the
chemostat model is not a positive system.
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Chapter 9

The Chemostat Model

The chemostat model is a perfectly mixed tank operated itirmmoous conditions and in
which (bio)chemical reactions take place. The chemostatainmay be used in particular to
describe the interaction of microbial species which are metmg for a single nutrient, see
[SW95] for a detailed survey on this topic and see e.g. [BD®0]a survey on control of
bioreactors. This model has also been used for differeriesyssuch as lakes, waste-water
treatment processes and biological reactors producingtigatly altered organisms.

A central result in microbial ecology theory is tkempetitive exclusion principlehich
states that the competition process yields at best a singleivg species in the long run,
see e.g. [SW95]. Yet, in nature, many species may coexist figeexample the paradox
of the plankton in [Hut61]). This contradiction between theory and the real world leads
to modifications of the model in order to try to bring theorydapractice in better accor-
dance. There is a large literature devoted to modifying thentstat model to ensure coex-
istence of the organisms. These studies are based on suttablipulations of the two natural
operating parameters, the dilution rate [BHW85, SFA79]h@ input nutrient concentration
[SFA79, Hsu80, Smi95, HS83, Smi81], that are taken to be-tierging rather than constant.
Also, feedback control of the dilution rate has been usedldavaoexistence in the chemostat
[DS03, DS02]. Recently, in [RDHO09], it is shown that the csgance of multiple species, with
growth functions close to each other, competing in a chea@st a single resource, can occur
in the long run. Finally, a design problem of a series of twernbstats is revisited in [RHMO7]
when more than one species are present for a single resaheegive conditions under which
coexistence of two species is possible for such configuratio

Here, an LQ-optimal control is designed for the chemostadehwith appropriate choice
of the inputs, notably the input concentrations of the sgecilt is shown that in this case,
coexistence of the species may occur. The theory of the/stpteg-invariant LQ problem (with
direct approach (see Chapter 5) or inverse approach (sgaetry) together with the properties
of local positive invariance of nonlinear systems, devetbpn Chapter 8, are applied to the
chemostat model in order to guarantee the coexistence sptes.

135
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9.1 Description of the chemostat

9.1.1 Model description

The chemostat is a well-known model which is used to des¢hbanteraction between
microbial species which are competing for a single nutriseé the scheme of a chemostat in
Figure 9.1.

Sin v Sa le X2

Sv Xl7 X2

Figure 9.1: Scheme of a chemostat

It is a continuous stirred tank reactor with, for examplehis ffigure, two specieX’; and
X5 growing on one limited substrate€. The basic assumption about the chemostat is that
it is perfectly stirred, and, as a consequence, that eadhidioadl has an equal access to the
resources. Consider a general model of a chemostatmdpiecies and a single resource :

&= f(z)+ G(x)u:= F(z, u) (9.1)
S Jo Si
wherezx = )fl , = ]il , U= Xi:n’l ,
X, i Xinsn

fole) = D5 = S K py = (u($) - D) X, i =1,

D Inxm

O(nfm) xm

G(:E):B:|: },n:1+ﬁ,m:1+mwithﬁ1§ﬁ,and

s

concentration of the specieés (gr/l)
= concentration of the nutrient (substrate) gr (/)
concentration of the nutrient in the input flow gr(/1)
concentration of the speciéi the input flow  ¢r /1)
dilution rate of the nutrient and the speciedl /)
# whereg is the input flow rate and” the volume of the tank
yield constant reflecting the conversion of nutrient to organ
l.e. species.
(constant which can be taken to one by using a suitable clobigrits)

SRR
[l

e
|
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This constant can be determined (in batch culture) by mewstire ratio
mass of the organism formed

~_mass of the substrate used
and hence is dimensionless.

wu;(S) = the growth rate of the populatian (1/t)

where the functiong;(.S) satisfy the following properties :

(H1) The functionS — p;(.S) is defined for allS > 0 and is differentiable.
(H2) 1i(S) = 0andy;(0) = 0.
(H3) The functionS — p;(.S) is increasing.

Remark 9.1.1 There exist several models for the definition of the growtl fanctiony;, see
[LHO6], [BW85] and [SW95]. In the sequel, we consider the hamsnmon growth rate model,
namely the Monod model (or Michaelis-Menten), which exggseshe dependence of with
respect to the substrate concentratiSmas follows :

S
‘ — T 2
145(S) = fmax,i Keit S (9.2)
where fim.x; = maximum growth rate of the populatiofwhenS = co) (1/t)

half-saturation constant (or Michaelis-Menten constanitich
represents the nutrient concentration such that the groatid

is half maximum (less than half its maximum),gr Al)

also known as the affinity constant (of the substrate towspesies)

Kg;

See Figure 9.2 which gives the classical graph of a growté fanction.

14

0.2

Figure 9.2: Growth rate functiom;(S)
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9.1.2 The competitive exclusion principle

Consider system (9.1) with; = 1, without loss of generality (by replacing; by X;/Y;),

Sin
, 0
and withu = .| suchthat (9.1) becomes
0 n
S = D(Sn—9)->_ m(S)X,
i=1 (9.3)
Xi = (u(S)-D)X; i=1,...,7n
S i
Let us denote by = { X } the solution of system (9.3) wheré = : and let us define
Xa

the set

Q:H;} elR"suchthangOandX>>0}.

The competitive exclusion principle (CEP)robably the most important result for chemostat
models, is now stated. Assume thatSi,) > D otherwise it would imply the extinction of the
1th organism even without competition. System (9.3) hasjuilibria, see [SW95, DS03] :

EO = (Sin, 0, ceey 0)

El = ()\17 (Sin — )\1), 0, ey 0)

Eﬁ = ()\ﬁ, 0, ceey (Sin - )\ﬁ))

where the parameters, ¢« = 1,...,n, called thebreak-even concentrationare defined as
follows :
M(D) = S such thay;(S) = D
ST 400 if ps(S) < D foranyS > 0

In fact, computing the equilibrium of second equation oftegs(9.3) gives
(11(S) = D) X1 =0

that isX; = 0 or u;(S) = D, or equivalently for Monod’s model§ = uiist = A1
In the same way, the third equation of system (9.3) gi¥gs= 0 or us(S) = D, i.e. S =
=525~ ), and it will be the same for the following equationsXj. Therefore, by the first

equation, it follows that :
e S=5SywhenX; =0, i=1,...,n;

'Xlz(Sin—)\l)WhenszklandXizoa i:27"'7ﬁ;
0X2:(Sin—)\Q)WhenS:AgandXiZO, Z:].,,'fl,l%2’

. Xﬁ:(Sm—Aﬁ)WhenS:AﬁandXi:O, i=1,...,n—1.
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In the sequel, unless otherwise stated, the following wabi¢he constants are used in the
chemostat model, as in [LHO6] :

D Hmax,1 | Hmax,2 KS,l KS,Q

02| 1.2 0.83 | 0.6 | 0.2

Table 9.1: Values of the constants used in the chemostatirtf&g

So, in general, only one species will win the competition aavive. In order to illustrate this
fact, the behavior of two species in competition for one ieatris illustrated with Figures 9.3
and 9.4, which represent, respectively, the growth cureespared to the dilution rat® and
the corresponding concentrations of the spedieand X;. One can observe that the growth
curve which crosses first the value Bfwill imply that the corresponding species will win the
competition. So one can say that the winner species is thevbiod has the best affinity with
the nutrient or equivalently the smallest break-even cotragon.

0.9

Figure 9.3: Growth rate functions, (S) andus(S) compared tdD.
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—X1| ]
—X2|

Concentrations X,

0 10 20 30 40 50 60 70 80 90 100
Time

Figure 9.4: Trajectories oX; and X.

More formally, the competitive exclusion principle (CER)ncbe stated as follows, see e.qg.
[SWO5] :

Theorem 9.1.1 (Competitive exclusion principle)Suppose thal < \; < Si; and0 < \; <

A2 < --- < \; < oo. Then the equilibriunt; is a globally asymptotically stable equilibrium
for system (9.3) with any initial condition(0) € Q. In other words, any solution of the system
(9.3) with,S(0) > 0 and X;(0) > 0 satisfies

( thm S(t) = )\1
thm X1 (t) = (S| - )\1)
lim X(t) = 0

L thm Xﬁ = 0.

The competitive exclusion principle states that, whensdepecies are competing for the same
substrate, only one of the species survives in the long em[SW95]. On the other hand, in
nature, many species seem to coexist. An example of thisddbe paradox of the plankton
to which many papers have been devoted. Notably the one a@hitision, see [Hut61], which
observed that a great number of different species of plaisktould survive on a very limited
number of resources. This contradiction between theoryrealdworld has triggered a lot of
research aimed at bringing theory and practice in bettesrdance, see e.g. [BHW85, SFA79,
Hsu80, Smi95] and the references therein. The aim of thevitig section is to find conditions
such that the coexistence of thespecies is guaranteed.
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9.2 The coexistence of species

9.2.1 Definition of coexistence

Let us define the concept of coexistence of species in a cliatm@sspired by [DAS06]
and [RHMO07]) as follows. Assume thatt) is the solution of system (9.1) with respect to the
initial conditionz(0) = z, € 2 and the corresponding inpute Y. We define the concept of
coexistence w.r.t an admissible initial stateas follows :

Definition 9.2.1 System (9.1) is said to mexistent w.r.t. x, € € if there exists an input
u € U such thaﬂi%n inf 2(t) € Q.

If the coexistence holds for every admissible initial cdiaai =, one gets the following concept
of (global) coexistence :

Definition 9.2.2 System (9.1) is said to l{globally) coexistentif

Vxo € Q, Ju € U, suchthatliminf z(t) € Q.

t—o0

Now, let(z., u.) be an equilibrium for system (9.1), i.e. such th&t:., u.) = 0.

Definition 9.2.3 System (9.1) is said to Becally coexistentaround the equilibrium{(zx., w.)
if there exists a neighbourhodd of z.., such that system (9.1) is coexistent w.r.t. every initial
statex, € QNV,,i.e.

Vaoe NV, Juel, such thatligninfx(t) € Q.

—0Q0

It is clear that coexistence implies local coexistenceti@armore, in Chapter 8, we defined the
concept of local positive input/state-invariance of a mdr system around an equilibrium.
This concept leads to the local coexistence with in additi@npositivity of the input. In fact,

it is important to remark that the input also represents entrations. So it is meaningful to

guarantee the nonnegativity of the state and the inputctajes. Furthermore, the concept
of local positive input/state-invariance system forcesgtrict positivity of the state and input
trajectories and not only their nonnegativity. The follagiresult obviously holds :

Proposition 9.2.1 Consider system (9.1). Assume that there exists a neighbod¥/, of the
equilibriumz, such that

z(t) > x>0

v V. h that 0,vt>0
To € suc atry > 0, =Y {u(t):Kx(t)+v>>0,

whence system (9.1) is locally positively input/statediiant, in the sense of Definition 8.2.1.
Then system (9.1) is locally coexistent with strictly pesiinput trajectories.
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Proof : Letzy € V, such thaty, > 0 andu(t) = K x(t) + v > 0. Since for all timet > 0,
z(t) > z., the following inequality holds inftx(f) > z.. Observe that — ingl‘(T) IS an

T> T>
increasing function. By taking its limit, witlh, > 0, it follows that

liminf x(¢) := lim inf z(7) > 2. > 0,

t—o0 t—oo 7>t

whencelim inf z(t) € Q.

t—o0

O

In the sequel, the term of coexistence is used for the spegidsthe term of input/state-
invariance is used for the system.

9.2.2 Problem statement

In this section, the coexistence problem for system (9.%jated in terms of optimal con-
trol in order to guarantee the coexistence of the speciesrand precisely the local positive
input/state-invariance of system (9.1). We define the st@feand the input.(¢) as follows :

S Sin

X1 Xin,l
x(t) = . and u(t) = .

Xﬁ Xin,ﬁz

Assume that system (9.1) has an equilibrium

Se
Xle
Te i = ) >0
Xﬁe
corresponding to an input, given by
Sin,e
Ue := Xir_]'l’e > 0.
Xin,ﬁz,e

Consider the linearized system, as studied in Chapter 8,

oF _OF _ - _
= 6—x(xe’ ue)x+%(3§e, u.)u=Az+ Bu (9.4)

e

wherez := x — x. andu := u — u. and the Jacobian matricelsand B are given by :
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r op1 (Se Opa(Se 7
—D — 2ue) - WF) KXo —p(S) .. —pa(Se)
op (Se
dfde) X1 p(Se) = D 0
A = : 0 0
Ops (Se
L %Xﬁe 0 ,U,ﬁ(Se)—D i
B _ _ N/max,lKS,l _ N/max,ZKS,2 _Mmax,lse _Nmax,ﬁse 7]
D (Ks,1+Se)? )I((le (Ks,2+Se)? X2e Ks:é1+5e T Ks,7+Se
HMmax,144 5 1 Hmax,19e
(Ks,1+5Se)? Xie Kg 1+Se D ... 0
= E O - . O
Hmax,ﬁKS,ﬁ 5 Nmax,ﬁse _
L (Ks,7+5e)? Xiie 0  KsatSe D

O(nfm) xm

Our first aim is to achieve the coexistence of system (9.1) waspect to an admissible
fixed initial statex, by solving a finite horizon input/state-invariath—ig—c problem (as studied
in Chapter 3) for the linearized system. This problem is sglas an optimization problem
(using the functiomuadpr og in MATLAB). It will be shown that the stabilization property of
the LQ problem numerically guarantees the convergenceediribar trajectories; = 7 + =,

(ur, = u + u,) to the equilibriumz, (u., respectively), which are both strictly positive. Hence,
with a receding horizon approach, i.e. withsufficiently large, we can numerically ensure the
local coexistence w.r.tz, for the resulting nonlinear system, in the sense of Defini9d.1.
This method is developed below in Section 9.3.

The second aim is to find a feedback control IA&wsuch that the resulting closed-loop system
is locally positively input/state-invariant in the sengédefinition 8.2.1. One way to study the
local positive input/state-invariance of the nonlineastsyn (9.1) is to consider its equilibrium
(z., ue) Wherez, > 0 andu, > 0 and to linearize the system around this equilibrium (since
at (z., u.), the input/state-invariance is ensured). Then one cailigtathe linearized system
(9.4) around this equilibrium with an appropriate optimahtrol law« such that the resulting
linearized closed-loop system is input/state-invarie@t,such that (see Definition 1.1.6) :

(t) > —w.
(1) > —ue.

N

VtZ(),VfoZ—%a {

~g1

As we have seen in Theorem 8.2.1, if there exists a lineabfead< such that the linearized
closed-loop system is input/state-invariant and stablken the resulting nonlinear closed-loop
system is locally positively input/state-invariant arduts stable equilibriumc.. Hence, by
Proposition 9.2.1, with:. sufficiently close tac. > 0, the local positive input/state-invariance
of the nonlinear closed-loop system ensures its local stexce around the equilibrium).
Therefore, a stabilizing input/state-invariant feedbaCks computed for the linearized system
(9.4), such thati = K7, by solving an inverse input/state-invariab@™. problem with the

u,
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aid of matrix inequalities (LMIs or BMIs), as studied in Chh@p7. Theorem 8.2.1 guarantees
that the resulting closed-loop system is locally positnaput/state-invariant and by Proposi-
tion 9.2.1, withx, sufficiently close tar., the local coexistence of the closed-loop system is
ensured. The results of this second method are developeeciin8 9.4. Notice that in this
method the optimal control of the linearized system is ofestaedback type whereas it is not
the case in the first method. Furthermore, the first methottasgly inspired by the second
one and by Theorem 8.2.1. These methods are illustratedrbg samerical simulations.

Before developing these methods, we first describe prgdiselproblem of coexistence of
two species competing for a single substrate. The calouladf the equilibria and the corre-
sponding linearized systems are described. Finally, thewer of trajectories is studied in an
open-loop design with a constant input.

9.2.3 The coexistence of two species

— The chemostat model

Consider the competition between two species for one satbstAssume that the growth
rate functiong;(.S) are given by Monod’s model (9.2). Then system (9.3) reads

S =D S = (8) X1 — p2(5) Xz
X (12(S) — D) X, '
iy = flx)z + Bu
DI Sin
whereB = P { 0 mxm } andu = | Xj,1 | orasubvector with =3 ; m < 3andP is
(n—m)xm

Xin,z
a permutation matrix. Thus the input vectocan be chosen by three different ways :

e CASE1: B=B; = 0 D 0 ;U= Xin,l ;
[0 0D X
[ D 0 g

e CASE2: B=B,=1| 0 D ;u:[X_'” };
_0 0_ in,1
[ D 0 7 g

e CASE3:B=B;=| 0 0 ;u:[X_'” }
_0 D_ in,2

For each case, the equilibriufa,, u.) is computed.
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— Computation of the equilibria

Let us compute the equilibria of system (9.5) in the thre@sa®pending on the choice of
the inputu.

Sin
CASELl: u= | X
Xin,2

The equilibrium equations in the first case are given by :

(Szne Se) ,ul(S>Xle NQ(Se)XQe = 0

DXml e (Ml( e) )Xle = 0 (96)
DXer (MQ( e) )XQe =0
whereys;(Se) = fimax.i g and
Sin.e 20
Xinl,e - 10 (97)
XinQ,e 5

is chosen such that;,, . is sufficiently large and such that the input concentratioX pis twice
the one ofX, since X, has the best affinity to win the competition, see Figures 4B %4.
Then, by using MPLE to solve this system, we obtain the following equilibrium :

Se = 0.042533882
Xi. = 16.58877203
Xy = 18.36869408.

In fact, this equilibrium can be found by isolatid§ and.X; in (9.6), which gives, after substi-
tutions, the following expression depending only.$ut

248 0.83 S
4—-028,+ - + - = 0. (9.8)
(0.6 +S.) (e —02)  (02+5,) (garey —0-2)

This expression gives a third order equationSinwhich admits three rootsS{ = 0.0425,
0.0927 and38.6355). This function ofS. is drawn in Figure 9.5 according % and in compar-
ison with S,. First of all, one can observe that one rogit & 38.6355) is larger thars;,, . = 20
and is therefore not admissible. Then, Figure 9.6 is obtainyezooming on the transient part
of the last figure in order to identify the two other roots. histfigure, the expressions of;,
and X, according taS, are also depicted. This allows us to see that even if the theraobots
of (9.8) are smaller thaf;,, ., only one is admissibleS, = 0.0425) since the roof5. = 0.0927
gives a negative value of,..
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Figure 9.5: Expression &, given by (9.8).
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Figure 9.6: Expression &, given by (9.8) in comparison with the expressionsygf and X,
solving equation (9.6).

Sin ]
CASE2: u =
l Xin,l

The equilibrium equations in the second case are given by :

D (Sin,e - Se) - ,ul(Se) Xle - MZ(Se) XQe = 0

D Xinie + (111(Se) — D) Xie - 0
</~L2<Se) - D) Xze = 0
. : , , DK,
Thereforeu,(S,) = D, which gives, with Monod’s model (9.2, = ﬁ — 0.0635.
max,2 ~
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Sin,e - 20
|: Xinl,e :| B |: 10 :| ’ (99)

which gives the following equilibrium :

Let us fix arbitrarily

( DK
S, = 2752 00635
Mmax,Q - D
_DX
X, = Nl _ 93 48314607
p— D
D(Sp — S.) — 11 X1,
X, = (Sin = Se) = i Xre _ ¢ 4sa361870
\ H2
where s
,umaxl e
S)) = maxlte (1148
:ul( ) KS,l +ége
,umax2 e
Se — - " = D = 02
M2( ) Ks,z s

Sin ]
CASE3:u=
l Xin,2

The equilibrium equations in the third case read :

D (Sin,e - Se) - Ml(Se) Xle - ,UQ(Se) XQe = 0

(11(Se) — D) Xie =0
DXin2,e + (,u2(Se> - D) X2e =0
. . . D Kg;
Thereforeu, (S.) = D, which gives, with Monod’s model (9.2}, = 7D = 0.12. Let
,umax,l -

us fix arbitrarily{ e } = { 250 },which gives the following equilibrium :

in2,e

( DK
S, = ——5% __012
Mmax,l_D
Xy = N2 _ 8988764045
p2 — D
D(Si — S.) — 115X 0e
X, = POn=S8) = mXae g5 606104
\ M1

Then it is impossible in this case, with the parameters gasem Table 9.1, to obtain an equi-
librium (z., u.) such thate, > 0. This fact is illustrated in Figure 9.7.
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Figure 9.7: Growth rate functions (.S) andu»(S) compared td for constants values of Table
9.1.

One can observe in this figure that the specigshas the best affinity. Then by the com-

petitive exclusion principle, the speciés will win the competition if we consider the case
u = Sin, see Figure 9.8.

Concentrations X,

0 10 20 30 40 50 60 70 80 90 100
Time

Figure 9.8: Trajectories ok; and X, for constants values of Table 9.1 with= Sj,.

By using the input: = [Si, Xin2|”, the species(; does not receive any “external support”
whereasX, receives some help and has initially the best affinity to Wwan¢ompetition. There-
fore in this case, it is impossible to guarantee the coaxtgtef the two species, see Figure
9.9 which represents the concentratiofisand X, obtained by solving system (9.5) with a
constant input. = [Si, Xin2]?. One can observe thaf, numerically tends to zero two times
faster than in the previous case. Then this case is not gtiegan the aim of coexistence of the
species and that is why it is no more considered in the sequel.



9.2 The coexistence of species 149

25

_ T
X foru = [Sin Xin,z]
20

- TH
- X2f0ru—[SmX 1

in,2

15

10 |

Concentrations X,

0 10 20 30 40 50 60 70 80 90 100
Time

Figure 9.9: Trajectories oX; and X, for constants values of Table 9.1 i€k 3.

Now, solving system (9.5) with a constant inpugiven by (9.7) (@ske 1) and (9.9) (@sE
2) gives the following trajectories for the concentratiafishe species over timein an open-
loop design, see Figures 9.10 and 9.11. In these casessty®a of the species may occur. In
CASE 1, X; and.X; have similar values while in £&E 2, X; numerically tends to a larger value
thanX,. Indeed, in this caseY; obtains initially some help at the expenseXof. Nevertheless,
the coexistence of the two species is ensured.

20

18

16

— T
14r 7)(1 foru= I:Sin Xin,l xin,2:I il
12 X foru=[s_X X I

in"'in,1 " in,2

101 | /

Concentrations X,

o N S (=2}
T

10 20 30 40 50 60 70 80 90 100
Time

o

Figure 9.10: Trajectories of; and X, for constants values of Table 9.1 irn€e 1.
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30

251

20l _ X foru=[s_ Xin’l]I |
_ T
sl X, foru= [Sin Xin’ ]

10

]

0 10 20 30 40 50 60 70 80 90 100
Time

Concentrations X,

Figure 9.11: Trajectories of; and X, for constants values of Table 9.1 im€k 2.

Remark 9.2.1 In CASE 1, the values ofXj,; and Xj,, have been fixed such thaf,; =

2 Xino. Conversely, let us considéeYin, = 2 Xj,1, then the equilibrium is given by, =
[0.036 7.58 27.38]T. Therefore, computing the trajectories &f and X, in open-loop as in
Figure 9.10 will also guarantee the coexistence but thergt®a larger gap between the values
of X; and X, at the equilibrium. Similarly, irCASE 2, let us fix the value oKj,; = 5 instead
of 10 and the resulting equilibrium is given hy = [0.063 11.74 13.19]7. ThenX; and X,
have similar values whereas previousk, numerically tended to a larger value that,.

Hence, as we have seen in the previous figures, coexisterthe blo species is possible
in CASE 1 and Q:sE 2. For these cases, computing the equilibria and the regulacobian
matricesA and B, which define the linearized system (9.4), gives the folfgiesults, which
are summarized in Table 9.2.
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CAsSE 1 CASE 2
U = [Sin Xin,l Xin,Z]T U = [Sin Xin,l]T
S, 0.0425 0.0635
Te = | Xie 16.5888 23.48314607
Xoe 18.3687 6.453361870
2
u 0 )
c 10
5
—80.9676 —0.0794 —0.1456 —54.0374 —-0.1148 —0.2000
A 28.9304 —0.1206 0 38.4076  —0.0852 0
51.8372 0 —0.0544 15.4298 0 0
0.2 0 0 0.2 0
B 0 02 0 0 0.2
0 0 0.2 0 0

Table 9.2: Equilibria and associated Jacobian matriced inghe linearized system (9.4).

The next two sections are devoted to the application of ispate-invariant LQ controls to
the chemostat model in order to improve the coexistenceespecies in these two cases of
choice of the input.. Indeed, Figures 9.10-9.11 have been realized with an tqmmeesign
for a constant.. Now solving anL Q%" problem allows us to deal with a stabilizing control. In
that case, the optimal control is of state feedback type andam therefore benefit of key prop-
erties of closed-loop systems, which are notably trackiligturbance and noise suppression,
sensitivity to structured plant parameter variations, sge [AM90, Section 5.3] for details.
Furthermore, it is stated in [AM90, Section 5.5] that for th@imal state feedback’ aris-
ing from an LQ-optimal design, the optimal closed-loop sysimaintains asymptotic stability
when sectorial nonlinearities are introduced. MoreoVer ronlinearities may be time-varying.
The properties of the LQ problem which are highlighted ingbgquel are robustness, desensiti-
zation due to small variations in some parameters and &aibddin. Numerical simulations that
follow are testing the effectiveness of the LQ problem in panison with the results obtained
in Figures 9.10-9.11.



152 Chapter 9. The Chemostat Model

In order to highlight the robustness of the LQ problem witbpect to pertubations of pa-
rameters, an analysis of perturbations is done in the sedpuisl shown that, despite a small
variation in some parameter at a fixed time, the LQ-optimailticd is able to reestablish the
convergence to the equilibrium in order to guarantee theistence of the species. There
are several types of perturbations, notably, those dueettatboratory conditions (e.g. on the
dilution rate D) or to the uncertainty on some biological parameters (1g<9; Or jtmax.i)-

First, let us apply a perturbation on the dilution rétdor the open-loop system (9.5) with
a constant input. given by (9.7) (@se 1). Formally, at timet = 50 (corresponding to the
time where the trajectories had numerically converge, spa€9.10), the value of the dilution
rate is changed t® = 0.7 instead ofD = 0.2. That means that, by applying the conditions
of the CEP, the winner of the competition has changed. Indsmdputing the growth curves
w1 (S) andus(S) with D = 0.7, one can observe in Figure 9.12, that the smallest break-eve
concentration is now; and no more\,. ThenX; will win the competition in the case of an
open-loop design with a constant input Sy

0.9
0.8r

07 - ——

0.6

051
04r
0.3r /

0.2k —D 4
/ 1)

H(S)| |

0.1r/

. .
0 0.5 1 15

Figure 9.12: Growth rate functions (S) anduy(S) compared td) = 0.7 for constants values
of Table 9.1.

Now, the state trajectorieX’; and X, of system (9.5) with a constant inputgiven by
(9.7) and with an instantaneous increaséadt timet = 50, such thatD = 0.7, are depicted
in Figure 9.13. By comparison with Figure 9.10, the trajeet® are numerically divergent.
Indeed, since the input is constant and in open-loop, theaaran not react to the perturbation
in order to make the state trajectories numerically corereffhe great advantage of the LQ
design is the fact that the input can react to perturbatibfareover, as we will see in Section
9.4, since in thd;Q‘q_j"’i problem, the optimal control is of state-feedback type,dlesed-loop
allows the system to better react to perturbations.
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Figure 9.13: Perturbed trajectories ®f and X, for constants values of Table 9.1 i€k 1
with D = 0.7 att = 50.

Next, let us insert a perturbation in the growth functjor{.S) for the open-loop system
(9.5) with a constant input given by (9.7) (@sE 1). Formally, at timg = 50, the value of the
maximum growth rat@,,.. ; is changed tQuy,.x1 = 1 instead 0fiu,.x1 = 1.2 while the value
of the dilution rate is kept t0.2 as initially. This can be seen as the fact that we have some
uncertainty on the nominal parameters. Here, applying BB, @e winner of the competition
has not changed. Indeed, computing the growth cupMés) and 2(S) with pax:1 = 1,
one can observe in Figure 9.14, that the smallest break-@wsrentration is\, as previously.
Then, with these values(, will win the competition in the case of an open-loop desigthvai
constant inputt = Sj,.

0.1‘4

Figure 9.14: Growth rate functions (S) andy»(S) compared td) = 0.2 for pip..1 = 1 and
constants values of Table 9.1.
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Now, the state trajectories; and X, of system (9.5) with a constant inpuigiven by (9.7)
and with an instantaneous increasg:.Qf 1 at timet = 50, such thaf:,,..1 = 1, are depicted
in Figure 9.15. By comparison with Figure 9.10, the trajee®are also numerically divergent.
Indeed, as previously, since the input is a priori fixed at @stant value, the control can not
react to the perturbation.

40

35} X foru=[s X X 1

in"in,l " in,2

X, foru=[S_X . X il

in " in,1 " in,2

251

201

15

Concentrations X.

10

Time

Figure 9.15: Perturbed trajectories ®f and.X, for constants values of Table 9.1 im€e 1
With fipmae1 = 1 att = 50.

In the following two sections, two different methods are @leped in order to compute an
appropriate (and robust) optimal control lawwhich ensures the coexistence of the species.
t i .
These methods are based on I®,/ ; problem and theZQ;_j:’g_c problem respectively.
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9.3 The input/state-invariant LQ problem

9.3.1 Problem statement

The finite horizon input/state-invariarﬂQf-f,g-c problem applied to the chemostat model
(whereWW and Z are equal to the identity matrix, see Chapter 3), consistainimizing the
guadratic functional :

sao ) =3 ([TURP0PR + [CaO ) i)TSae)  (©40)

for a given linear time-invariant systejd, B| described by (9.4)
=A%+ Ba,

which is the linearization of system (9.5) around the equilim (z., u.), with z. > 0 and
ue > 0, and with the initial conditiorx, > —x,, under the constraints

(t) > —w.
(t) Z —Ue,

N

Vielo,ty], { (9.11)

~q1

wheret, is a fixed final time,k € R™*™ is a symmetric positive definite matrix; € RP*"
andS € R™ " is a symmetric positive semidefinite matrix. Recall the hesuTheorem 3.2.1
which gives the solution of thEQf{@. problem as follows :

Theorem 9.3.1 The control functiori(-) is solution of theLQf{,,i problem< 3 A(-) andu(-)
such that
a(t)=—R'BTp(t) + R 'w(t), t €0, t{],

where , X
z(t) ] { z(t) } { B R u(t) ]
) =H + ,te|0,t 9.12
o p() \) 0t 012
with
{ 2(0) = Zo
p(ty) = Sx(ty) — Alty)
where .
A ~-BR'B
H= { -CTC —AT }
is the Hamiltonian matrix, and for all € [0, ¢/]
i‘(t> Z —Te,
u(t) > —u,,
At) = 0,
v(t) = 0,
AT (2(t) +x.) = 0 (state complementarity condition).
o) (u(t) +u.) = 0 (inputcomplementarity condition).
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In the context of coexistence of species in a chemostat mthﬂLQf{@ problem is solved
for the linearized system (9.4) as an optimization problath gtate and input constraints. This
methodology is inspired by the results of Theorem 8.2.1. &sufficiently large horizon,,
the optimal controk:;, = @ + u. can be applied to the nonlinear system (9.5). Therefore, the
strict compliance of the constraints eranda will ensure the strict positivity of the nonlinear
state and input trajectories by following the same reagpasin Theorem 8.2.1. Numerical
simulations are done to illustrate this and to ensure tbesethe local coexistence w.r.t. the
initial conditionz, (which is chosen close ta.), for a sufficiently large horizoty.

9.3.2 Numerical simulations

Consider system (9.4) witA and B given in Table 9.2, and the cost (9.10) where
C =033 and R =1, (9.13)

wherem = 3 or m = 2 depending on the choice af (CASE 1 or CASE 2 developed in
Subsection 9.2.3). The numerical solution of this problsrcamputed by usinlyat | ab and
the functionquadpr og, as in Section 4.3.2. First, the continuous time problenors/erted
into a discrete time one by using sampling : fo= 0,...,N — 1, with t; = N h, a(t) =
u(ih) =: u;, fort € [ih, (i + 1) h], whereh is the sampling time. The resulting discrete time
system is given by :

h
fiH:eAhi:i—l—(/ eATBdT) @, i=0,....,N—1 (9.14)
0

N-1
. . , . 1 . .
with the following discrete time 0052{ E h||@))* + 25 S 2, see Appendix C for details on

1=0
discretization. In the following numerical simulationsdalilgures,z;, denotes the shifted state
trajectories coming from the linearized system, k.e..= & + x. whereag S, X;, X;) denotes
the nonlinear state trajectories of system (9.5).

Consider the final time¢; = 50 with the sampling timé: = 1 and the initial condition
To = [0.1 0.1 0.1]T (which is chosen near zero singg(0) has to be close enough to the
equilibriumz,). With this sampling time, we obtain the following matricdasand B defining
the sampled data system (9.14), see Table 9.3.
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CAsel CASE 2

U:[Sin Xin,l Xin,Z]T U:[Sin Xin,l]T
—0.0012 —-0.0008 —0.0015 —0.0021 —-0.0017 -—0.0032
A 0.2808 0.8630 —0.0444 0.5703 0.8494 —0.1254
0.5392 —0.0435 0.8647 0.2506 —0.0289 0.9474

0.0022 —0.0002 —0.0003 0.0032 —0.0004

B 0.0628 0.1860 —0.0046 0.1254 0.1846

0.1163 —0.0045 0.1862 0.0526 —0.0029

Table 9.3: Matricesi and B defining the discrete-time linearized system (9.14).

—CASE 1:

First, consider the &se 1 for the choice ofu with S = I5. The optimization algorithm
mentioned above leads to the optimal contrgl, = ; + u. applied to the nonlinear system
(9.5) and depicted in Figure 9.16. The corresponding stajectories:; of the nonlinear system
(9.5) with the optimal contrak; and the state trajectories ; = 7, +z. of the linearized system
(9.4) are depicted in Figure 9.17.

20.01 10.01 5.01
Sin Xinl Xir12
20.008 s 1 10.008 1 5.008}
= Tine = "inle = ""in2,e
20.006 1 10.006 | 1 5.006
20.004 1 10.004 1 5.004f}
20.002 1 10.002 1 5.002¢}
20 10 5
19.998 1 9.998¢t 1 4.998}
19.996 1 9.996 ¢+ 1 4.996
19.994 1 9.994r1 1 4.994¢
19.992 1 9.992¢t 1 4.992t
19.99 9.99 4.99
0 50 0 50 0 50

Figure 9.16: Optimal control for sampled data system (919ASE 1 with S = I5.
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0.8f 117.2f 19| %
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0.4 1 16.8F 7
18.4,
0.2 s
18.2
— 16.4 18
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Figure 9.17: State trajectories for sampled data systetd) @ CASE 1 with S = 1.

In these figures, one can observe that the optimal contrahirestvery close to the equi-
librium. Unless otherwise stated, this behavior is alwdyseoved and is therefore not always
mentioned in the sequel. On the other hand, Figure 9.17 stimtshe substrat§ decreases
quickly to give a boost t&; and X, which numerically tend smoothly to the equilibrium before
the final fixed timet; = 50.

Now an analysis can be done on a variation of the initial siate see how the model reacts
with changes on the initial condition. First, considgr= [0.1 0.1 — 18.36]7 which is the
case where;(0) is close tar.; from below, that means that, for the nonlinear system, tiiain
conditionz3(0) is near zero. In this case, with= I3 andt; = 50, the corresponding optimal
controluy; = u; + u. applied to the nonlinear system (9.5) is close to the equilb as in the
previous case and the corresponding state trajectoyiekthe nonlinear system (9.5) with the
optimal controlu; and the state trajectories,; = z; + z. of the linearized system (9.4) are
drawn in Figure 9.18.
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Figure 9.18: State trajectories for sampled data systef)9n CAse 1 with S = I3 and
Zo=1[0.1 01 - 18.36]T.

One can observe in this case that the linear approximatitimeafionlinear system is not so
good and moreover the state trajectosyt) = X;(t) is not exactly equal to the equilibrium at
the final time. Then one can increase the final time té/be 100 for example and then the
equilibrium is reached in the long run while the linear apjomation of the chemostat model is
not so good for small time. In Figure 9.19, a comparison isedogtween the state trajectories
with penalization matrixS = I3 and withS = 50 I5 for t; = 50. Instead of increasing the
final time, one can increase the penalization of the finaéstabrder to reach almost exactly
the equilibrium at the final time. In addition, in order to neak precise comparison of these
state trajectories for different values 8f the relative error, denoted, of these two curves is
computed, which is defined by

L |zs=1 — Ts=s01l|2
T T

|zs=r1ll2

wherexs—; andxzs—_so; denote the nonlinear state trajectories o= I3 and forS = 50 I3,
respectively. It is depicted in Figure 9.20 below.
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Figure 9.19: Comparison of the state trajectories for sathghata system (9.14) inASE 1
with S = I3 andS = 50 I3 for &, = [0.1 0.1 —18.36]" and¢; = 50.
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Figure 9.20: Relative error of the state trajectories fateym (9.14) in @se 1 with S = I3
andS = 5013 forz, =[0.1 0.1 —18.36] .
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Another important question is how much can the initial ctindiz, be far from the equi-
librium while always ensuring the validity of the linearczenodel. By values from above, a
numerical analysis has been done with several values @lictbnditions and the linearized
model seems to be valid up to a valuewgf< z. + 28. Indeed, if we considet, = z. + 28,
ie.zo=1[28 28 28]7, the following state trajectories are obtained, see Figzé.

23 23 15

x 10 x 10 x 10
0.5 2.5 2.5
o X1 q S X2
Xk XL(Z) — XL(S)

Figure 9.21: State trajectories for sampled data systef)9n CAse 1 with S = I3 and
io=1[28 28 28]".

One can see that the nonlinear state trajectories nunlgraigérge and therefore the lin-
earization of the nonlinear system is no more a good appratkam whereas the one fay =
x. + 27 has a really good behavior. However, one can observe thdintheg state trajectories
xr; = Z; +z. have the right behavior since they numerically tend to thelgaium in the long
run. Moreover, increasing the penalization matfixas we have done in a previous analysis,
does not improve the results.

Finally, an analysis of perturbations can be done here ferl'l@f-f,g-c problem. As pre-
viously, consider a perturbation on the dilution rde Let us recall Figure 9.17 which de-
picts the state trajectories for the sampled data systeid)® CAse 1 with S = I3 and
o =1[0.1 0.1 0.1]7. In this figure, one could see that the state trajectariesof the non-
linear system (9.5) numerically converged to the equlitriaround time = 40. Then, at this
time, the value ofD is changed t@.7, so that the role of the species is inverted. The asso-
ciated optimal control and state trajectories are theeefomputed for the perturbed resulting
linearized system by using the optimization algorithm rreered above folS' = I3, ¢, = 40,

t; = 100 and the initial condition equal to the last value of the poersi state trajectories. Then
the optimal controk:;,;, = u; + u. is applied to the nonlinear system (9.5) and is depicted,
together with the previous control from tindgo time 100, in Figure 9.22. The corresponding
nonlinear state trajectories, from tiri¢o time 100, are drawn in Figure 9.23.
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20.001 T T 5.001
in inl in2
20.0008 | s |1 10.0008} X 41  5.0008} X. .
— Sine — Ninle — Nin2.e
20.0006 1 10.0006 | 1 5.0006 |
20.0004 | 1 10.0004 | 1 5.0004
20.0002 1 10.0002 | 1 5.0002
20 10 5

19.9998 1 9.9998 1 4.9998
19.9996 1 9.9996 1 4.9996
19.9994 1 9.9994 1 4.9994
19.9992 1 9.9992 1 4.9992

19.999 ; 9.999 ; 4.999 ;

0 50 100 ] 50 100 0 50 100

Figure 9.22: Optimal control for perturbed sampled dataesyq9.14) in QsSE 1 with S = I3
for D = 0.7 at timet = 40.
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Figure 9.23: State trajectories for perturbed sampledsiatem (9.14) in @se 1 with S = I3
for D = 0.7 at timet = 40.

One can see that the optimal control has to be adapted intrtdeng the state trajectories
to the equilibrium. As a result, the linearized shifted stimajectories, together with the non-
linear state trajectories, numerically converge withawt difficulty to a new equilibrium, the
one which corresponds to system (9.5) with= 0.7. Anyway, the coexistence of the species
is guaranteed.
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Let us perform a similar analysis by considering a pertuobadn the growth curve (.S).

At time ¢t = 40, the value ofuax 1 IS changed td (instead of1.2). The associated optimal

control and state trajectories are computed as previouslyage depicted in Figures 9.24 and

9.25 respectively.

20.001 ‘ ‘ 5.001 ‘
—k— n —k— inl — in2
20.0008 | 1 10.0008 | 5.0008 b
—_— e —_— Nnle —_— Ninze
20.0006 | 1 10.0006 | 5.0006 | R
20.0004 | 1 10.0004 | 5.0004 | I b
#*
20.0002 | i 1 10.0002 | 5.0002 ‘i
20%—“ 10 5;
19.9998 1 9.9998} 4.9998
19.9996 9.9996 | 4.9996 b
19.9994 9.9994 4.9994 b
19.9992 9.9992 4.9992 b
19.999 ; 9.999 ; 4.999 ;
0] 50 100 0] 50 100 0 50 100

0.16 : 17 : 19.8
—o—S = X1
1
4 ——x (D) 16.8 x 2|1 196}
0.14F g W
19.4+1
0.12} g 19.21
19t
01} g
18.81
0.08} g 18.6
18.4[%
0.06 | g
| 18.2f
0.o4~ : : 18
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Figure 9.24: Optimal control for perturbed sampled dataesyq9.14) in QsSeE 1 with S = I3
for fimax1 = 1 attimet = 40.

Figure 9.25: State trajectories for perturbed sampledsiai®m (9.14) in @se 1 with S = I3
for pimax1 = 1 attimet = 40.



164 Chapter 9. The Chemostat Model

Again, one can observe that the optimal control has to betadap order to bring the
state trajectories to the new equilibrium, correspondmtipé equilibrium of system (9.5) with
Imax,1 = 1. As in the previous perturbation, the linearized stateett@ries, together with the
nonlinear one, numerically converge fast to this new elguidim. And the coexistence of the
species is still guaranteed.

—CASE 2:

Let us consider the £k 2 for the choice of with S = I3, 7 = [0.1 0.1 0.1]7 andt; =
200. The optimization algorithm mentioned above leads to thev controluy, ; = u; + u.
applied to the nonlinear system (9.5) and depicted in FiQu2é. The corresponding state
trajectoriesr; of the nonlinear system (9.5) with the optimal contzplnd the state trajectories
zr,; = Z; + z. of the linearized system (9.4) are depicted in Figure 9.27.

20.01 T T T 10.01
) X
in inl
20.008 IS b 10.008 |
in,e inl,e
20.006 | b 10.006 |
20.004 | b 10.004 |
20.002 b 10.002 |
20 10
19.998 b 9.998 |
19.996 b 9.996
19.994 b 9.994
19.992 b 9.992
19.99 - - - 9.99 : - :
0] 50 100 150 200 0] 50 100 150 200

Figure 9.26: Optimal control for sampled data system (919DASE 2 with S = I5.
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S —— ¢
4| x (1) 23.6}
0.16F S, | é
23.58
0.14} { 2356
R
23.54
0.12f b
23.52
R
o.1f 23.5§
23.48
o.08f
23.46
0.06 ‘ 23.44 : 6.44 :
0 100 200 0 100 200 0 100 200

Figure 9.27: State trajectories for sampled data systetd) @ CASE 2 with S = 1.

As in CasE 1, simulations have been done fgr= 50 and¢; = 100. However, the final
time has to be more increased (ug fo= 200) in order to reach more precisely the equilibrium
in the long run. As already mentioned, the increasing of #reafization matrixS can also help
the state trajectories to come closer to the equilibriumadtesh with a smaller time. See Figure
9.28, which shows a comparison between the behavior of #te shjectories fof = I3 and
for S = 50 I3 with t; = 200. As previously, the relative error is also drawn to give a enor
precise comparison, see Figure 9.29. In this case, thisasorg of the penalization matrix
has less impact than in the previous case since the two cargadose to each other.
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0.18 23.62 6.5
S for S=I e Xl for S=I X2 for S=I
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23.54 ] 6.52F
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Figure 9.28: Comparison of the state trajectories for sathphata system (9.14) inASE 2
with S = I3 andS = 50 I3 for &, = [0.1 0.1 0.1]" andt; = 200.

error on Xl — ETTOI ON X2

erroron S

0 100 200 0 100 200 0 100 200

Figure 9.29: Relative error of the state trajectories fateymn (9.14) in @SE 2 with S = I3
andS =501 for 7o = [0.1 0.1 0.1]7.

In general, one can observe that in<E 2, it is more difficult or it takes more time to reach
exactly the equilibrium in comparison withaASE 1. It can be explained by the fact that one has
less direct action (“practical control”) in this case tharthe previous one. Indeed, imGE 2,
there is no control oX; while in CASE 1, there is a control on every variablés, X; and Xs.
Therefore, the &sE 2 is no more studied in the following section (for physicasens but also
for numerical reasons since it appears to react less eftfigjen
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9.4 The inverse input/state-invariant LQ problem

9.4.1 Problem statement

The objective in this method is to find an LQ-optimal contridtate feedback type = K =
such that the linearized closed-loop system (A + B K) i is stable and input/state-invariant.
By Theorem 8.2.1, this guarantees the strict positivityhef state and input trajectories of the
nonlinear system (9.5) in a neighbourhood of the equilibriu., «.) and this implies the local
coexistence of the resulting closed-loop system, by Pitbpn®.2.1, withz, sufficiently close
to the equilibriumz,.. As in the previous section, the initial statg is chosen neat, while
Ty is close to zero. To determine an appropriate state feedack the linearized system, an
inverse input/state-invariarﬂQL_j"’ﬁ problem is solved by using several LMIs and/or BMIs as

developed in Section 7.3. Ttmgvﬁ problem can be summarized in two steps :

> —x,

1. Find a matrixK such that for alt > 0 and for allzg > —x., { N -
uw=Kz> —u,

2. Determine the existence@f= C7C andR such that@, A) is detectable and the control
u = K 7 is optimal for the corresponding LQ problem, i.e. minimizke following
guadratic cost

sao 1) =5 ([ AR + joa0)) o) (9.15)

For the first step, the matrik’ is obtained by solving BMI 1b or LMI 1d (see Table 9.4 below).
For the second step, solving LMI 2 gives appropriate matrigand i, see Chapter 7.
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BMI and LMI used for the computation df’

diag[(H)ijliz; = 0

e v R el

[ ]

diag[(A + B K)jjliz; = 0
LMI 1d : diag[(A + BK)z.,] < 0
diag[K xo + ue] = 0

BMI 1b:

LMI used for the computation @ and R for the LQ problem

R0

Q=0

P, =0

LMI 2: P =0

(A+ BK)'P, + P,(A+ BK)+ K"TRK +Q =0
BTP, + RK =0
ATP L+ PLA<Q

Table 9.4: LMIs and BMI used in the resolution of th&'™_ problem.

3L

9.4.2 Numerical simulations

As already mentioned, theASE 2 for the choice of: is not studied for this methodology.
The implementation of the previous method has revealedti@has less possible action in the
CASE 2 than in the @sE 1. The latter is a better choice for the input to control therabstat
model and to ensure the coexistence of the species. ThusideortAsSE 1. First, determine
the matrix X' by solving BMI 1b with YALMIP in MATLAB. That gives matrice¢/; and K.
Unfortunately, when solving LMI 2, it is not possible to findreesponding matriceQ and R
such that(; gives an LQ-optimal control. As we have seen in Chapter 7ntagix K solving
the BMI 1b is not unique and may not be admissible for LMI 2. fEfiere, another matrix_,
is computed by solving again BMI 1b with an additional coimit A+ B Ky, < A+ B K; (by
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the same idea of the heuristic iterative process describ&dble 7.1, by creating a decreasing
sequence of matrices). This gives the following results :

—80.815 0.020441 0.033481  0.078248 0.022940 0.044187
28.661 —0.91434  0.022320 1.772410~* 1.6114 1073 0
Hy— H— 50.809 477361073 —1.6606  0.012093 1.31231072 3.749910°8
4.2681 107° 0.10419 1.6110 —1.6001  4.6925107° 0.13610
0.061421 0.061039  0.44864 3.341410~* —0.92796 3.338110°3
0.093693 0.34155 0.19632  0.020567 4.9874107°  —1.9375 |
and
—0.89593  0.067073  —1.4548
Ky=K=| —1.3595 —4.0011 0.111211 (9.16)
—5.2064 1.67011073 —8.1182
such that

* [ is a Metzler matrix ;

. {‘]3} (A+BK)—H{_I3 } = 10715 [gy3 ~ {03”’ } :

-K -K 033
—0.46802
—13.519
T —28.008
o = < .
T { U ] _8.924010-4 | =V
—3.1225 10716
| —6.024410°8 |

Then solving the LMI 2 gives the following weighting matrgceuch thati = K 7 is optimal
for the LQ problem with cost (9.15),

[ 1.5971107% 5.1037107° 2.6478 103

Q = | 5.1037107° 3.6534107° 6.6413107° | ;
| 2.6478 1073 6.6413107° 4.4001 107

[ 1.9001107° 2.7891 1077  2.9418107°
R = | 278911077 1.7648107% —5.4882107"
| 2.9418107° —5.48821077 4.6255107°

These results lead to the following optimal control layw = K = + u., which is depicted in
Figure 9.30, with initial conditiom, = [0.1 0.1 0.1]. This control, applied to system (9.5),
gives the following closed-loop system

(9.17)

t=f(x)+ B(Kz— (Kz.—u)). (9.18)

and the associated state trajectorigs = 7 + x. compared to the state trajectories of the
nonlinear closed-loop system (9.18) are drawn in Figur&.9.3
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In the sequel, unless otherwise stated, the behavior ofatal control lawu,;, = K 7+u.
is similar to the one depicted in Figure 9.30. Now, it is ie&ting to compare the results
which are obtained witlk;, a stabilizing input/state-invariant feedback which is amissible
for the resulting LQ problem, with the results which are ate¢d with K5, the optimal state
feedback, solution of th&Q'"; problem. See Figure 9.32 which gives a comparison between
the nonlinear state trajectories for a first solving of BMI (Wth @ = K ¥), represented in
the caption by 5, X, X, - LMI1", together with the optimal state trajectories aftalving
BMI 1b and LMI 2 (with @ = K, ), represented in the caption by." X, X5 - LMI2".
Furthermore, for a more precise comparison, Figure 9.3@&septs the relative error between

these two curves, defined as follows

||$LMI1 - !ELM12||2

Ep i =
||$LMH||2

wherez, v (zra12) denotes the state trajectories obtained after solving BMI(BMI 1b
and LMI 2, respectively). One can numerically observe is ttase that solving an inverse
LQL_Q"’E problem stabilizes faster the resulting closed-loop sysiEhe optimal state trajectories
numerically tend toward, in a shorter time than the nonlinear state trajectories ogrfrom
the linearized system = (A + B K;) 7.
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Figure 9.31: State trajectories for system (9.18) witlgiven by (9.16).
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Figure 9.32: State trajectories for system (9.18) withand /5.
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Figure 9.33: Relative error of the state trajectories ofeays(9.18) withK; and K.
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Solving LMI 1d yields a state-feedbadkK such that the resulting closed-loop system is
state-invariant and such that the input trajectories hastarding boost at the initial condition

which can be seen as a help to guarantee the input-invararibe closed-loop system. We
obtain the following state feedbadk :

—52.44 0.71008 1.0321
K= 30297 —124.55 106.7 (9.19)
39.966 119.09 —113.82

(which givesu = K 7 directly optimal for the resulting LQ problem) such that thesed-loop
matrix

—91.456 0.062579 0.060861
A+BK = 34.99 —25.031 21.34
59.83 23.818 —22.819
is a Metzler matrix with
—1.7339
(A+ BK)x.= | —21.745 | <0
—21.499
and
14.9302
KZo+u.= | 11.2447 | > 0.
9.5236

Then, solving the LMI 2 gives the following weighting maggsuch that = K 7 is optimal
for the LQ problem of cost (9.15) :

1034.6  138.79 —T74.251
Q = 138.79 240.3  —214.15
| —T74.251 —214.15 195.52
[ 0.094638 00.050527 0.050030
R = 0.050527 0.03.8781 0.030199
| 0.050030 0.03.0199 0.037606

?

(9.20)

These results give the following optimal control lawy = K z + u., which is depicted in
Figure 9.34 in comparison with the optimal control obtaimath BMI 1b (drawn in Figure
9.30). The application of this optimal control to systenbj@ives the resulting state trajectories
for the nonlinear closed-loop system (9.18) drawn in FiguB5, in comparison with the state
trajectories computed with BMI 1b (drawn in Figure 9.31). fdaver, the relative error between

these two curves is depicted in Figure 9.36. One can obskateBMI 1b and LMI 1d give
similar results.
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Figure 9.34: Optimal contral;, = K &+ u, with K given by (9.19) in comparison with (9.16).
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Figure 9.35: State trajectories for system (9.18) withgiven by (9.19) in comparison with
(9.16).
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1.2 1.2 1.2
g onsS € on X € on X
r T 1 T 2

Figure 9.36: Relative error of the state trajectories fatam (9.18) with/' given by (9.19) in
comparison with (9.16).

Solving BMI 1b or LMI 1d gives a good matri¥X” which guarantees the coexistence of
the species and the admissibility of the input trajectordsw using for example BMI 1b, an
analysis can be realized on the variation of the initialestd done in the previous method.
Consider the limit case of the previous methagl,= [28 28 28]7. Recall that in this case
the nonlinear state trajectories numerically diverge wéaiing a directLQf-f,,i problem with
a receding horizon approach. Here, using the state feediagiken by (9.16), with the res-
olution of BMI 1b, leads to state trajectories which reaatyweell. Therefore, by solving the
LQL—T,'@- problem with different choices of,, the linear approximation of system (9.5) seems
to be valid forz, < [101 101 101]" which corresponds te, < x. + [101 101 101)7.
See the corresponding state trajectoriesifpr= [101 101 101]7 in Figure 9.37. One can
observe the numerical divergence of the nonlinear stgeetaies forz, = [101 101 101]7
whereas the ones fap = [100 100 100]” have a really good behavior.
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Figure 9.37: State trajectories for system (9.18) withgiven by BMI 1b withz, =
(101 101 101]7.

Finally, the robustness of thEQL_Q:’g_c problem is numerically tested by applying perturbed
values of the parameters (e.g. on the dilution rate and om&x@mum growth rate value). First,
we have observed in Figure 9.31, that by using BMI 1b togeiliger LMI 2, the nonlinear state
trajectories numerically converge to the equilibriumafter time6. So, at this timef = 6,

a perturbation on the dilution rate or on the maximum growth rate,,.. ; is introduced as
previously. The resulting state and input trajectoriescamputed by using the same optimal
state feedback’ given by (9.16). Figures 9.38 and 9.39 represent the inpistate trajectories
where at timeg = 6, the dilution rate value has been changedte- 0.7 instead o0f0.2. One
can see that the optimal control has to be adapted in ordeirtg the state trajectories to the
new equilibrium (corresponding to the equilibrium of syst€.18) withD = 0.7).
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Figure 9.38: Perturbed optimal contrgl = K 7 + u, with K given by (9.16).
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Figure 9.39: Perturbed state trajectories for system [Wit8 K given by (9.16).

A similar analysis can be done by considering a small peatish on the maximum growth
rateumax 1. Figures 9.40 and 9.41 represent the input and state waeswhere at time = 6,
the maximum growth rate,,.. ; has been changed g,.. 1 = 1 instead ofl .2.
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Figure 9.40: Perturbed optimal contrgl = K 7 + u, with K given by (9.16).
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Figure 9.41: Perturbed state trajectories for system Jit8 /& given by (9.16).

Again, one can observe that the optimal control numeriaa§cts to the perturbation in
order to bring the state trajectories to the new equilibr{gorresponding to the equilibrium of
system (9.18) withu,.x 1 = 1) while always ensuring the coexistence of the species.
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As a conclusion of this chapter, after all these numericaleolmations, we would like to
make a comparison between the two methods used to guaraeteedxistence of the species.
We tend to say that thEQ‘g‘,’g_c problem seems to be more adapted to the problem of coexéstenc
of species in a chemostat, for several reasons :

« the LQ™. problem is in infinite horizon while for the other methodojp@ receding

u,T

horizon approach is needed ;

* the LQL_Q"’G_J problem can deal with nonlinear systems, more specificalllly the property
of local positive input/state-invariance (by using Theor@.2.1) while ensures the local
coexistence (by Proposition 9.2.1) ;

» the numerical simulations show that the neighborhood eiitial conditions for which
the linear approximation of the chemostat model has thd bghavior is larger in the
LQ™_problem than in theLQf-ig-c problem.

» the numerical results also show that the coexistence afbeies and the admissibility
of the input trajectories are obtained for a smaller timémwiliie LQ';"; problem whereas

for theLQf{@ problem a receding horizon approach is needed which imahemnalysis
for a large final time.

However, numerical simulations for the resolution of I@’"; problem with the choice of
CASE 2 for the input reveal that this case is harder to solve andr@e difficulties to give
good results than the resolution of tﬂi@f{ﬁ problem. Furthermore, in the two methods, the

robustness of the LQ problem has been numerically illustrat

Finally, whatever the method used, we have shown in thistehépat it is possible to solve
the problem of coexistence of species in a chemostat whethdwey (with the competitive
exclusion principle, see Theorem 9.1.1) states that tisayaly one winner in the competition.
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Chapter 10

The Positive LQ Problem

In this last chapter, the finite-horizon linear quadratitiropl control problem with non-
negative state constraints is studied for positive lingatesns in discrete time. Necessary and
sufficient optimality conditions are obtained by using thaximum principle. These condi-
tions lead to a computational method for the solution of thsifive LQ problem by means
of the corresponding Hamiltonian system. In addition, ssaey and sufficient conditions are
proved for the positive LQ-optimal control to be given by 8tandard LQ-optimal state feed-
back law. In particular, such conditions are obtained ferghoblem of minimal energy control
with penalization of the final state. Some results are diagetptations of similar results for
the continuous time case (see Chapter 4). Moreover, a yabsitriterion for the LQ-optimal
closed-loop system is derived specifically for positivetise-time systems with a positively in-
vertible (dynamics) generator which can be seen as an mveng positive system. Monomial
systems include the great class of compartmental systemeh(\are significant in applications,
see e.g. [HCH10]). An algorithm is derived from the Hamilansystem in order to compute
a solution. Then the main results are illustrated by nuraéexamples.

The LQ problem with constraints has already been studieghdaitive linear systems in
[CJ89] by using a controllable block companion transfororat Sufficient conditions on the
weighting matrices of a quadratic cost criterion are derieeensure that the closed-loop system
is positive. This idea was generalized in [Joh94] in orderetmove the restrictive positivity
assumption that was required on such transformation.

10.1 Positive linear systems

First, let us recall some important results on positivedmgystems in discrete time, see
e.g. [FROO], [Ava00] or [HCH10] and the references there@onsider the following linear
time-invariant system description in discrete time, deddiy[A, B] :

I‘Z‘+1:AZL‘Z‘+BUZ‘,iZO,...,N—l, l‘ozi‘o, (101)

where the state; and the control;; are in R* and R", respectivelyA and B are real matrices
of compatible sizes, antl) € R" denotes any fixed initial state.

183
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Definition 10.1.1 The systemA, B] given by (10.1) is said to bpositive if, for all initial
conditionsz, > 0 and for all controls(ui)figl > 0, the state trajectories are nonnegative, i.e.
foralli=0,..., N,z; > 0.

The following characterization of the positivity of diste¢ime systems is well-known (see e.qg.
[FROO], [Ka 02]).

Proposition 10.1.1 The systemA, B] is positive if and only ifA and B are nonnegative ma-
trices.

Now consider the following LTI homogeneous discrete timgtem
l‘i_,_l:AIL'Z‘,Z.:O,...,N—l, l‘ozi‘o, (102)
and recall the definition of stability for such systems anshiswseful results, see e.g. [CD91].

Definition 10.1.2

* A LTI homogeneous system (10.2) is said ta®gnptotically stableif for all =, € R,
x; tends to zero astends to infinity.

* A LTI homogeneous system (10.2) is said tekgonentially stableif there exists €
[0, 1[andm > 0 such that for ali > 0, || A’|| < m 3.

Remark 10.1.1 Recall that in the particular case of homogeneous timesiava system, these
two concepts of stability are equivalent, see [CD91]. Thaein the sequel, the terms "asymp-
totic" and "exponential” are omitted.

Theorem 10.1.2 (Stability) A LTI homogeneous system (10.2) is stable if and only if all th
eigenvalues ofl have a modulus strictly less than one, i.e.

YAeo(A) : [\ <L

By using this result together with Theorem A.1.4 (PerrooHenius for nonnegative matrix),
we obtain the following result on the stability of positiwesgem :

Theorem 10.1.3A positive LTI system (10.2) is stable if and only if its Froins eigenvalue
p(A) is less than one.

Now, consider the following Lyapunov equation
ATPA—P=—-Q (10.3)

whereA € R™", @Q € R™" is symmetric positive definite and a unique symmetric pesiti
definite solutionP has to be found for (10.3). The solvability of the Lyapunouaiipn relates
directly to the exponential stability of system (10.2), §gB91, pp. 214-216].
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Theorem 10.1.4A LTI homogeneous system (10.2) is stable if and only if fosyahmetric
positive definite matrice§), the Lyapunov equation (10.3) has a unique symmetric pesiti
definite solutionP.

In the case of positive systems, a stronger condition ondhgisn P of the Lyapunov equation
can be derived, namely the fact thfais a diagonal matrix, see e.g. [FROO, p.41].

Theorem 10.1.5A positive LTI system (10.2) is stable if and only if theresesxa diagonal
positive definite matri¥’ such that the matrix), defined by

—-Q=ATPA-P

is positive definite.

10.2 The positive LQ problem

This section is devoted to the LQ-optimal control problem gositive linear systems in
discrete time. Some results are direct adaptations ofaimgkults of the continuous time case
and therefore their proofs will be omitted.

10.2.1 Problem statement

The finite horizon positive LQ problem in discrete time, whis denoted byLQ% , consists
of minimizing the quadratic functional :

N-1
R _ 1
J (o, (wi)iy") = 5 (Z(”RWWHQ +|Cail?) + 23S 417N> (10.4)
=0
for a given positive linear system described by (10.1), whbe initial stater, > 0 is fixed,
under the constraints
Vie{0,..., N}, z; >0, (10.5)

whereN is a fixed final time,R € R™ ™ is a symmetric positive definite matrig; € RP*"
andsS € R™ " is a symmetric positive semidefinite matrix.

In other words, theLQf problem consists of minimizing a quadratic functional fa@ieen
positive system while requiring that the state trajectbie nonnegative for any fixed nonnega-
tive initial state, whence the positivity property shouklkept for the optimal state trajectories.
In this framework, it is not required that the input functign)Y ;' be nonnegative.

10.2.2 Optimality conditions

Assume that the inverse of exists. This assumption holds for exampleditomes from
a discretization of a continuous-time system since= e“<", where A, denotes the matrix
defining the continuous time system, see Appendix C. By applthe maximum principle
in discrete time to this problem (see e.g. [HSV95]), i.e. Kaush-Kuhn-Tucker optimality
conditions, the following discrete time version of Theordrii.1 can be established for the
LQY -optimal control problem.
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Theorem 10.2.1 (Optimality conditions based on the Maximun®Principle)
a) TheLQf problem has a solutiofu;)Y " if and only if there exist multipliers; such that

u; = —R'BTp;,i=0,..., N —1,where[z] pl]" € R* is the solution of the recurrent
Hamiltonian equation
{xi}:H{xi“}—{o],z’:N—l,...,O (10.6)
Di Pit1 Ai

with Ty = Ii’o, PN = STy — AN, where

i A1 A'BR BT
| T At AT+ CTCA'BR BT

is the Hamiltonian matrix, and forall=0, ..., N,
z; > 0, (10.7)
A >0 (10.8)
and
M z; =0 (complementarity condition). (10.9)

b) By using the matrix form of the recurrent Hamiltonian etjoi, ()" is solution of the
LQﬂ:’ problem if and only if there exist multiplier matricés such thatu, = K;(Zo) z; =
—R'BYY; X'z, i=0,..., N— 1, where

Xi Xig1 0 .
IR R P B

with the final conditionXy = I andYy =S — Ay,andforalli =0,..., N

A Xytag >0, (10.10)
2 Xy TATX; X520 =0  (complementarity condition) (10.11)

and
X, X5 tag > 0. (10.12)

Proof : a) This result follows directly from the Karush-Kuhn-Tuck&ptimality conditions
with state constraints (by using the discrete-time anaazgfie.g. [HSV95, Theorem 4.1]), for
necessity, and from the fact that the functional (10.4) is/e@ and the dynamics and inequality
constraints (10.1) and (10.5) are defined by linear funstifor sufficiency.

b) This proof is a straightforward extension of the one of f2DTheorem 167, pp. 63-66].
The main fact is the invertibility of the matrices;, which can be proved by using an evaluation
lemma, as in [CD91, Corollary 134, p. 61]. See also [BeaO&pdir 5]. -
Remark 10.2.1 A priori, in view of conditions (10.10)-(10.12), the furmeti/;(z,) in Theorem
10.2.1 (b) clearly depends upon the choice of the initiakstg. Stronger conditions are needed
in order to make it independent of the initial state, i.e. tstitat the optimal control law is of
the state feedback type = K; x;. Such conditions are reported next.
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The following result follows easily from Lemma 4.1.3 (see throof of Proposition 4.1.2).

Proposition 10.2.2 Conditions (10.10)-(10.12) are satisfied for all initiabgtsz, > 0 if and

only if the following conditions hold for all=0,..., N :
A Xyt >0, (10.13)
ATX; + XA =0 (10.14)
and
X; Xyt >o. (10.15)

Remarks 10.2.2a) Conditions (10.13)-(10.15) can be hard to check in gelsnae the knowl-
edge ofX, is needed to check these conditions. However they obvibaklywithA; = 0 in an
important particular case. See Corollary 10.2.3 below. Btwrer, an algorithm is developed in
Subsection 10.2.5 in order to make these conditions morgutaile.

b) The optimality conditions in Theorem 10.2.1 and PropositLl0.2.2 also hold for linear
systems (10.1) that are not positive. However the positagsumption plays a crucial role to
obtain the criteria reported in Section 10.2.3.

As in the continuous time problem, conditions can be obthsueh that theLQf problem has
a solution. Such conditions are based on the standard jpnoflee latter problem, denoted by
LQY , consists of minimizing the quadratic functional (10.4) dagiven positive linear system
described by (10.1) (without any nonnegativity constramthe state trajectory). Its solution is
givenbyu; = K;2; = —R'BTY; X; 'z;, i =0,..., N — 1where[X] Y ]T € R*™"is
the solution of the matrix recurrent Hamiltonian equatio#,0,..., N — 1,

[ﬂ:HH/:] [ffﬂz[é] (10.16)

Equivalently the solution of thE Q™ problem is given, forall =0,..., N — 1, by
u;=—R'B"P [l + BR'B"P| " ay, (10.17)

where P; is the solution of the Recurrent Riccati Equation (RRE): N, ..., 1, (see e.g.
[CD91)):

~P=CTC+ATPA—-ATPB(I+ R 'B"P,B) 'R'B"PA, Py=S. (10.18)

Corollary 10.2.3 (Optimality conditions based on admissibity) The solution of the (stan-
dard) LQ™ problem is solution of th&€Q? problem for allz, > 0 if and only if theLQ™ -
optimal state trajectories are admissible, i.e. nonnegatfor all z, > 0, or equivalently, one
of the following equivalent conditions holds :

a) The standard closed-loop matrik+ B K; is nonnegative forall =0,..., N — 1, i.e.

Vk,I,Vi=0,...,N—1, [BR'BTP]y < au. (10.19)

b) The matrix solution of the matrix recurrent Hamiltoniaguation (10.16) is such that for all
i=0,...,N, X;X;'>0.
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Proof : Corollary 10.2.3 follows from Theorem 10.2.1 and Propositll0.2.2 by applying
the discrete time version of Theorem 2.1.1 (see also [Bgal6pddition, the solution of the
LQN problem is given as in Theorem 10.2.1 where the multiplietrites A; are identically

equal to zero. See the proof of Corollary 4.1.4.
O

10.2.3 Positivity Criteria

In this subsection, th&Q™ problem is studied with the aim of finding conditions on the
problem data such that the standard closed-loop systensitveoi.e. such that the conditions
of Corollary 10.2.3 hold. This can be interpreted as sol\zing'nverseLQﬂ:’ problem. The
criteria that are obtained here are specific to the discireee ¢ase, except for Theorem 10.2.4,
which is the discrete time version of Theorem 4.2.2.

- Minimal energy control

Consider the particular problem of minimal energy contrahwenalization of the final
state, i.e. the&LQ™ problem (10.1)-(10.4) wher€ is equal to zero. By computing the expres-
sion of P; in terms of the matrix solution of the recurrent Hamiltonegquation, we obtain the
following result, which is a direct adaptation of the contius case, see Theorem 4.2.2.

Theorem 10.2.4Consider the minimal energﬂQﬂ:’ problem (10.1), (10.4)-(10.5), i.e. with
C' = 0. Let us denot@\,;j,(R) := min{\ : X € o(R)}. Assume thatl > 0. If the spectral
radiusp(S) of the final state penalty matrix is sufficiently small sucht th

([ Auin(R) (1—0) .
, Ifo<1
A (|1|3£)3|2 1)
. o —
S)= max pu; < v:= — , Ifo>1 10.20
p(S) nax v HAB”Q(%])V ( )
min\22 ifo=1
( |B|[*N

whereo := oyin(A) omax(A), With oin(A) (omax(A) respectively) denoting the smallest (the
largest respectively) singular value of, then theLQ® closed-loop system is positive and
therefore the solution of thEQ* problem is solution of th(LQf problem.

Proof : The positivity constraint on the closed-loop matrix can béten in terms of the so-
lution P; of the RRE (see condition (10.19)), wheke > 0. In addition, P, = Y; X, ' =
(ATYN=iS [T + G(N,4) S] ' AN~ where

N—i—1

G(N, i) = Z (A~L)i=N+ktlp p=1 BT (AT)N=i=k=1
k=0
and, foro # 1,
. BJ?
|G(N, i) S| < 1Bl p(S) Q2

)\min(R)
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where

Thus, if (10.20) holds, then

and

IS+ G, i) s < -2

Hence, by choosing(S) sufficiently small, condition (10.19) will hold, sin¢eék, !, ax > 0
and the sequencégA”)N =) and(AN~H)N  are bounded.
O

Remarks 10.2.3a) If o > 1 and if the time horizorV is increasedp(S) has to be decreased
accordingly for condition (10.20) to be satisfied with a fixadtrix 2. As in the continuous
time case, this reveals a tradeoff between positivity aadiksty of the closed-loop system in a
receding horizon approach.

b) The minimal energy control problem with nonnegative mstand with a final state equality
constraint is solved in [Ka02, Subsection 3.4.1] for redaleasystems. Here we use a penal-
ization term in the cost instead of a final state constrainis not assumed that the system is
reachable and it is not required that the input functien)X ;! be nonnegative.

- Nonnegative Hamiltonian matrix

A positivity criterion based on the Hamiltonian matrix isitgd. This result will be used in the
next subsection.

Theorem 10.2.51f the Hamiltonian matrix/{ and the penalty matri are nonnegative and
if the solution of the matrix recurrent Hamiltonian equatics such thath1 > 0, then the
LQN closed-loop system is positive and therefore the solutidieal Q” problem is solution
of the LQ?Y problem.

Proof : Multiplying the matrix recurrent Hamiltonian equation (16) on the right byX, !

gives
X; [ X;
[ YZ :| Xal _ H YZ+1 :| X(;l
% i+1
with
][
Yy X! L SX, !t

It follows by induction that, forali = 0,..., N, X; X;* > 0. Then, by using Corollary 10.2.3

(b), one gets the conclusion.
O
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- Monomial systems

Definition 10.2.1 A positive systerd, B|, described by (10.1), is said to b@nomial if A is
diag[bi]}Z, ]

a monomial matrix (see Appendix A.3) aRds of the formB = [
O(nfm)xm

For this particular class of systems, Theorem 10.2.5 lenapositivity criteria for theLQﬂ:’ closed-
loop system.

Theorem 10.2.6 Consider a monomial system described by (10.1) and the qtiadost (10.4)
whereC, R and S are diagonal matrices. Then thBQ® closed-loop system is positive and
therefore the solution of thEQ* problem is solution of th(LQf problem.

Proof : Let A = D P with D a positive definite diagonal matrix arféla permutation matrix
such thatP” = P~!. Using Lemma A.3.1 witltC? C' a diagonal matrix and®~! a permutation
matrix, one hag?”C P~! = P~1CTC which implies that, by Definition A.3.2 and Remark
A.3.1,

ctcpt=p'C'CD
where D is a positive definite diagonal matrix. Now by using the esiplform of H with
A= D P,onegets:

0o [ ptp-t P 1D 'BR BT
| P'c"CDD' P'D+P'CT"CDD'BR BT
_[ptoo D! D 'BR!BT
0 P! CcTCDD™' D+CTCDD'BR'BT
. W 0 D; Dy
N 0 P! Dy Dy |’

ThereforeH is nonnegative since each term of the second mal¥jxi= 1, .. .4) is a diagonal
and nonnegative matrix. Now, by using the matrix recurreammitonian equation with this
expression of/, it can be shown by inductionthat, forak=0,..., N—1, X; = (P~")" "Dy,
andY; = (P~YN~'Dy; where Dy ; and Dy; are positive definite diagonal matrices. Indeed,
by inverse induction, first show thafy_; andYy_; have this structure :

R
- [ Al e o] s]
Feirae
Then

XNfl — (Pfl)Nf(Nfl) (Dl + D2 S) — (Pfl)Nf(Nfl) DX,Nfl
YN*l - (P_l)N_(N_l) (Dg + D4 S) = (P_l)N_(N_l) DY,N*l-
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Now assume that _
Xipn = (PHNUHU Dy iy
Yig. = (P_l)N_(iH) Dy, it1.

And show thatX; = (P~)" "Dy, andY; = (P~")¥~"Dy,,;. Observe that
Xi | _ I Xy | _ I (P_l)N_i‘_lDX,Z‘H
Y; Yin (Pil)Nﬂ*l Dy, i1
o p-t 0 D; Do (Pil)Niiil DX,i+1
B 0o P! D3 Dy (P YN=1 Dy
[ Pt 0 ] l Dy (PYN=1 Dy 41+ Dy (PTHYN=71 Dy i1y }

0o p-l Dy (P~YN=i=1 Dy i1 + Dy (P~HN="1 Dy 11

with D; (P~Y)N==1 2 (p~Y)N=—1 p. for i = 1,...,4 by Lemma A.3.1. Then, applying
Remark A.3.1 gives
Di (P—l)N—i—l — (P—l)N—i—l DZD

whereD is a positive definite diagonal matrix. Defining

l?x = l? DX, i+15
Dy = D DY, i+1s
leads to the following identity :
;] [P oo (P~1)N-i-1 0 Dy Dx + Dy Dy
Y; - 0 p1 0 (Pil)Niiil Ds EX + Dy ﬁy
_ (P~hN— 0 Dy Dx + Dy Dy
- 0 (PN D3 Dx + Dy Dy
Then _
Xz' — (P—l)N—z DX,z‘
Y, = (PN Dy,
where

Dx,; = D15X+D25Y
Dy, = D3sDx + DyDy

are positive definite diagonal matrices. In particuldy, = (P~ Dy o where Dx , is a
positive definite diagonal matrix. Hencg, is a monomial matrix and(;* > 0. It follows by

Theorem 10.2.5 that thBQ™ closed-loop system is positive.
O

Note thatifA is a diagonal matrix, Theorem 10.2.6 obviously holds. MeezpTheorem 10.2.6
can be readily extended to the infinite horizon problem, Bea6].
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10.2.4 Numerical examples

Consider theLQﬂ:’ problem for the positive system described by

1 1

N—-1
. 1 .
with the cost/ (&, (u;)N,") = 3 [ > luwl* + :cﬁS:cN] , under the constraints = 0,..., N,
=0

z! > 0.andz? > 0, wherez? denotes thg™ component of:;. Notice that the matrices defin-
ing the system (10.21) are the same as those used for the isahretample of the positive
LQf{ problem in continuous time, see Section 4.3. Here, the nigcalezxample is treated in
its discrete time version. Let the final state penalty mdigxgiven by

11
S = { X J (10.22)

and N = 20. By computing the solution of th&Q?™ problem by means of the recurrent
Hamiltonian equation, we obtain that the optimal statestri@ries are not nonnegative. This
means that the solution of thBQ® problem is not admissible for thEQf problem. See
Figure 10.1 where the optimal state trajectories are drawthe initial conditioni, = [1 0]”.

1 2
I\

T T T T T T T
Trr,, N
I\ I 1 4
aua L 2
“‘ ““\ “‘\ I\ I T s
R RRTATRTAYRVAY I
osel LV VY A
LYYV
01 UV YA |
* \/ \| | | |/ |
4 | \/ \/ |/ |
* | \/ |/ |/
* )i \ \f
*
~05 I L L L L L L L *
o > 4 6 8 12 14 16 18 20

_10
Time

Figure 10.1: State trajectories for system (10.21) Withiven by (10.22).

The numerical solution of thEQf problem has been computed for the fixed initial condition
T = [1 O]T by usingMat | ab and the particular functiogquadpr og. This optimization
algorithm leads to the optimal control depicted in Figure210rhe corresponding staig(t)
and multiplier);(t) trajectories are depicted in Figure 10.3.
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0.02

-0.02|

-0.04

-0.06

-0.08

Time

Figure 10.2: Optimal control for system (10.21) wihgiven by (10.22).

X X
0.9 | 0.9F ——"2

0.8 g 0.8 —*—"2 4

0.7r q 0.7+
0.6 q 0.6
05r 1 05fF
04r B 041
031 4 0.3F
0.2r 4 0.2

0.1} | 0.1

Figure 10.3: State trajectories and associated multgpfar system (10.21) witty given by
(10.22).

As was to be expected, the optimal state trajectories areencatly verified to be nonneg-
ative for all time. In this case, we obtain a solution for adixeitial condition.
To get the solution of theLQf problem for any initial condition, with an appropriate ctei
of the penalty matrixS, we can use the positivity criterion of Subsection 10.2.&wiGusly,
system (10.21) is monomial and the cost verifies the conditiof Theorem 10.2.6 witly
equal to any diagonal matrix. Henc&,can be chosen in order to improve the stability of the
closed-loop system while ensuring its positivity and théropl control is of state-feedback
form. Let us considef = I, and compute the matrix solutig®’!  Y;*]” of the Hamiltonian
equation (10.16). Then, computing the optimal contro:= K; x; (given by (10.17)) and the
state trajectories; = X; Xgl Zo, leads to Figures 10.4 and 10.5, respectively, with théainit
conditioni, = [1 0]".
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Time

Optimal control for system (10.21) wih= 1.

1

0.9 I

osf [ [ || T

0.7F
060\ | |/ |
05
0.4r| | |

|

|
o3r | [ ][] ]
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: \ | | I L S A R | D O SRR VAR WA
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Figure 10.5: State trajectories for system (10.21) Witk 1.

Let us mention that the feedbaék is given as follows :

Ky

K, Ky Kig

[0

~0.09]

0

~0.09 |0 —01]|---|[0 —0.333]|[0

Table 10.1: Feedback'; of system (10.21) witly = I,.

Other illustrative examples on the discrete time probleweleeen done in [Bea06], wherein
a receding approach is also studied for the infinite horizmsitive LQ problem.
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10.2.5 Computational method

— MATRIX ALGORITHM

This subsection is devoted to the design of an algorithm lwiziemputes the solution
(XI vT AIT of the recurrent Hamiltonian equation satisfying conditig10.13)-(10.15)
by using the solution computed at the previous step onlyjsha’’., Y., A7 ,]". Oneway
to proceed is to rewrite conditions (10.13) and (10.15). édiesthat (10.15) can be developed
as:

Xy XA X X Xan o XX XG>0

v~

If it is assumed that
X; X, >0 foralli=0,...,N (10.23)

instead ofX; X, > 0), then
0o =
Xi XA X X X XX X > 0.

—_— ~——
>0 >0 >0

Now condition (10.13) can be written as

A XD X X7 X o Xl‘lej X;t>o.

=1,

If, in addition, it is assumed that
A XL >0 foralli=0,...,N (10.24)
(instead ofA; X, ' > 0), then

ANXU X XX XTP X X >0
——— ~——
>0 >0 >0
An algorithm using conditions (10.23) and (10.24) instef(ll6.13) and (10.15) can then
be described. See Algorithm 1, where the Hamiltonian mairis decomposed as follows

H

1 -1 -1 RT
A A"BR B ] _ [HH Hys ] (10.25)

| CTC A AT £ CTCA'BR'BT Hy, Hy
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ALGORITHM 1

1.1lnit:

Let Xy =1,

SolveA%; + Ay = O such thatXy_, = Hy; + Hy (S — Ay) and
(@) Xyl >0

(b) Ay Xyt >0

ComputeYy = S — Ay

2. For 1=N-—-1,...,1:

ComputeX; = Hy X1 + Hi2 i

ComputeM; = Hyy X; + Hig (Hoy Xip1 + Hop Yiga)
Solve AT X; + XTA; = 0 such that

(@) Xi[M;— HpA) >0 ~ X, X1 >0

(b) Ai[M; — Hip AP >0 ~ A XL >0
ComputeY; = Hyy X1 + Hao Yipr — Ay

3. End :
M ComputeX(] = Hll X1 + H12 Y1
* SolveAT Xy + XT'Ay = 0 such that\g X; ' >0
b Compute}/@ = H21 X1 + H22 Y1 — AO

To illustrate this algorithm, consider the following pagit system described by
01 1
R 4 , 10.2
Tig1 (1()):1:24—(0)% (10.26)

and the cost (10.4) where

Assume thatV = 4. The successive steps of Algorithm 1 can be summarized lasviglwith
the Hamiltonian matrix given by

{H“ — } = (10.28)

H21 H22

o O = O
S O O =
_ O = O
o = O O
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1.lnit:

b X4I[2.

» SolveAT + Ay =0.
ThenA, is a skew-symmetric matrix of the form :

0 «
—
=]
with an arbitrarily parameter € R such that

0 1
X3 =Hj Xy+ Hio(—A\y) = < )

2 —«a
verifies :
1, 1
(a)Xglz{Ql 8}20 & a>0
(b) Ay X' = { P } >0with X;' >0 & a=0.
—EO[ —§0z
These conditions implies that the parametes equal to zero and thek, = 0, and
0 1
X3 = :
=12 o]
e ComputeYy; =5 — Ay, = 5.
2. For i1=3:
0 1
e X3 = :
=12 0]
2 0
» ComputeMs = Hyy X3+ Hig (Hoy Xy + Hp Yy) = [ 0 92 }
e Leths— | @ © | SoeATX, + XTA,— | 1% @F20 | a
as a4 a; +2ay 2as

is a, = —2ay4, a0 =0,a3=0 with as € R such that
_1 1
(a)Xs[M?,—HmA?,]l:[ ‘i% 8]20 ~ oay <0

_1
(b)A?,[Ms—HmAs]l:[ i 0 }zo s =0
2%4

a ay

N[

ThenAg = 0.

1
'ComputeY},:Hng4+H22Y4—A3:[(1) 0}
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3. For 1=2:

2 0
ComputeX, = {0 5 }

0 2
» ComputeM, = Hyy Xo + Hip (Ho X5+ Hap Ys) = [ 30 }

by by 4by 253+sz] y

e Let A2 = |: :| . SolveA2TX2 +X2TA2 = |:

by by 2bs +2by 4b,
thatisb, = 0, by = —bs3, by = 0 with b3 € R such that
_1p. 2
(@) Xo [My — Hip A = { s } 50~ by <0
—% bs 0

(b) Ay [My — Hip Ao] ™t = { _1p2 Lpo | &
63 3

ThenA2 - 02.
b ComputeY2 = H21 X3 + H22 }/3 — A2 = [2.

4. For i=1:

0 2
ComputeX; = {3 0}

3 0
» ComputeM; = Hyy Xq + Hig (Hyy Xy + Hpp Y3) = [O 3 }
6C3 2C1—|—3C4 -0
C3 (4 201+3C4 402 I

thatisc; = —3 ¢4, o = 0, c3 = 0 with ¢4 € R such that

C1 C2

i LetA1 = [ :| SOlveA{Xl +X1TA1 = |:

_1 2
(a)Xl[Ml—HmAl]_l:[ ?1’04 8}20 ~ ¢4 <0
—104 0
(b) Al [Ml—ngAl]_lz % 2 1 20 ~> C4:0
_604 §C4

ThenA1 - 02.
01
o ComputeY; = Hyy Xo + Hys Yo — Ay = { Lo }
5. End:
30
ComputeX, = { 0 3 }

d dy 6d,  3ds+3ds
. LetA, = . SolveAT X, + XT Ay —
et [d?, d4] Solvelg Xo + Xy Ao [3d3+3d2 6d,

thatisd, = 0, dy = —d3, dy = 0 with d; € R such that

1

AN Xt = 0 3% 50 Uy dy>0
0 ldg 0 sl 2, W3 Z
3

=0,
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ThenAy = { a? Céz } with d, d3 € R such thatd,, dsz > 0.
3
« ComputeYy = Hy; — A = [ L —d }
—ds 1

Now letz, = [1 0] and compute the state trajectoriesand the associated optimal
controlu; by using the link between the vector and matrix form of theureent Hamiltonian
equation (obtained as in the continuous time case, seeieqat20) in the proof of Theorem
3.2.1h)):

X X
pi | =1 Y X&lxo. (10.29)
i A;

and
U; = —RilBTpl'.

The resulting solutions;, \;, p; andu; are given in Table 10.2 :

“| o]

v L] | DI B] ]G]
dIERIHININ

Table 10.2: Solutions of system (10.26) with (10.27) by gjog Algorithm 1.

This example shows how the algorithm can be applied in omebtain the optimal state
and input trajectories. However, the algorithm is appliedehwith a very small value a¥.
In fact, increasing the final horizoN gives, either calculations which are quickly very com-
plicated to solve, or conditions which are incompatibletabty conditions (a) and (b) in the
loop. Another algorithm is developed below by using the ¢omas of Theorem 10.2.1 and the
vector recurrent Hamiltonian equation (10.6).
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Remark 10.2.4 In order to check the results of Table 10.2, the solution eﬂtﬁ)ﬂ:’ problem is
computed by using the optimization algoritigmadpr og in Mat | ab with N = 4. Moreover,

let us remark that system (10.26), with S and R given by (10.27), is the monomial system
(20.21) which is studied in Subsection 10.2.4. Therefbresblution can be computed by solv-
ing the standard solution of the Hamiltonian equation (B).With N = 4. This two different
ways to compute the solution lead to results given in Tabl2,1Gth the multipliers\; = 0 for

all 7.

—VECTOR ALGORITHM :

Here, the solution of thEQﬂ:’ problem is computed by means of the vector recurrent Hamil-
tonian equation (10.6). An algorithm can be described devisl See Algorithm 2, with the
decomposition off as in (10.25).
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ALGORITHM 2

1.lnit:

* Fix the final time/N

* Choosery > 0
o Compute\y = : such that

(a) )\%ZL‘N =0
(b) Av >0
 Computepy = Sy — Ay

2.For 1=N—-1,...,1:

» Computer; = Hyy 211 + Hia pia
» Compute); such that

@ Mz, =0

(b) Ai >0

(c) x; >0

» Computep; = Hoy zip1 + Haopis1 — A
3. End :

» Computery = Hyy 21 + Hiapy
» Compute), such that
@ Mzo=0
(b) Ao >0
(€) w0 >0
« Computepy = Hoy 21 + Hoa p1 — No
» Check thaty; and)\; are such that

(@ Ma; =0

(b) ;>0 fori=0,...,N

(c) z; >0

with a good choice of parametem{ fori = 0,...,N and

7=1,...,n.
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Consider again system (10.26) to illustrate this algorithen
AU A
i+1 — 1 0 7 0 iy

0202,3:1,52{1 1} (10.30)

and the cost (10.4) where

11
Let us apply Algorithm 2 to system (10.26), (10.30) :

1.1nit:

e Let N =4 withn = 2.

¢ Chooser, = { (1) }

1
ay

2
ay

» Compute\, = { } such that

@ Mzy,=0& al=0

oy

. Computep4:S:c4—>\4:{ 1 2}

2. For 1=3:

0
» Computers = Hyy x4+ Hiopy = { 0 }

1
« Compute\; = { Z; } such that
3

@ Mz3=0& a2=0
1

() A3 >0 @agzm.e.xgz{oﬂ

<c>x3:[g]zo

1—a?2—al
e Computeps = Hoy vy + Haopy — A3 = { i‘ ’ }
3. For 1=2:
2
* Computery = Hyy 23 + Hiaps = { 1 2 1 ]
—ay—ag

1
« Compute), = { Zg } such that

2
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(@) Mz,=0 < o) =3(-1+af+aj}) i
(b) Xy > 0 with z, > 0 givesa? = 0. Then)\, = [8}
€ >0 1—af—ai >0

1
o Computepy = Hoy x5+ Hoaps — Ao = [ 1 2 1 ]
—ay — Qg

4, For 1=1:

2 _ 1
1—044—043]

e Computer; = Hyy 2o+ Hiaps = [ 3

1
« Compute); = { Og } such that
a3

Oé2
@ Mz, =0 < a%zﬁﬁlaé
(b) Ay > 0 with z; > 0 givesa? = 0. Then), = { 8 ]

€ >0 < 1—0&—04%20
1—0&—0@1}]

L Computep1 = Hgl Tro + H22p2 - >‘1 = |: 1

5. End :

3
e Computery, = H H = .
p 0 nx+Hip {2_20&_2&%}

» Compute)\ = { zg } such that
@ Nzo=0 & af =2(-1+0oi+aj) o]
(b) Ao > 0 with 2, > 0 givesaZ — 0. Then), — { 8 ]
€ >0 1—ai—al>0

e Computepy = Hyy x1 + Haop1 — Ao = [ 1 i 1 }
—Qy — Q3
Finally, the resulting solutions;, \;, p; andu; = —R~*B*p; are summarized in Table 10.3,
wherea, € R such thaty, 5 > 0 andl — a — § > 0. These results have been numerically
verified with several values af and by using the optimization algorithopuadpr og with z
given as in Table 10.3.
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| L

2T 1 i 11 P 11 R | PO

U; —1 —1+a+p —1 —1+a+p -1

Table 10.3: Solutions of system (10.26) with (10.30) by gy the Algorithm 2.

This example shows that the conditions of Theorem 10.2.t@rgutable. However, these
two algorithms also reveal that they can be applied easitit wismall final timeN. Obvi-
ously using a larger final time increases the difficulty of thé&ulations. A lot of studies have
been done on several algorithms but currently, we have nolged to create a systematic
algorithm for computing solutions of thEQf problem by using the recurrent Hamiltonian
equation (under its vector form or matrix form). The ideadisise, if it is possible, conditions
(10.13)-(10.15) of Proposition 10.2.2 to find a solutionhﬂLQf problem for any nonneg-
ative initial condition. If it is not possible, the class aiitial conditions for which it works
should be found as well as an (matrix) algorithm for this lasinitial conditions.



Conclusions and Further Research
Perspectives

The purpose of the research work described in this thesigheatudy of the linear quadratic
optimal control problem for input/state-invariant linegstems and its application to the partic-
ular locally positively invariant nonlinear system debed by the chemostat model. We have
developed theoretical results and numerical methodaddgierder to solve the problem of co-
existence of species in a chemostat. In the following paiats, we summarize our results and
suggest some possible directions for future research.

In the first part of this thesis, important results have besebbped to describe the input/state-
invariance of time-varying and time-invariant linear gmss. This input and/or state-invariance
has been characterized by the matrices which describe tredygs. The well-known particu-
lar case of positive systems has also been briefly descritere, the input-invariance has been
studied in the particular case of state-feedback controbuld be interesting to develop similar
results for the general case of systgmé) B(-)] or [A, B] with any inputu.

The main part of this thesis was devoted to the study of thealiquadratic problem in
finite and infinite horizon, for input/state-invariant systs and for positive systems. In both
cases, in finite horizon, necessary and sufficient optignabnditions were obtained by using
the maximum principle with state and input constraints. &bmer, optimality conditions were
established which were based on the admissibility of thetswl of the standard Qs problem.

In addition, for the positiveLQi{ problem, sufficient conditions were stated in terms of the ma
trix solution of the RDE and the particular problem of minireaergy control with penalization
of the final state was studied. Moreover, analytical and migakstudies of trajectories were
performed on examples.

The LQ problem with constraints has already been studigdnofith nonnegative con-
straints only, either on the state or on the input. The smef@ature of the approach that is
followed here is to describe the LQ problem for general saatkinput constraints, by using the
admissibility of the solution of the standafdQ?s problem, with the objective of applying the
results and the methodologies to a biological applicati@oviously, another research possibil-
ity is to solve the input/state-invariant or the positive p€@blem for itself, by computing the
multipliers associated to the constraints and by computiegmatrix solutions of the Hamil-
tonian differential equation. In the numerical examplestaadard optimization algorithm was
used in order to solve the problems. It would be interestnfgd an ad hoc control algorithm
adapted to this problem.
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A receding horizon approach was developed in order to olatasolution of the infinite
horizon input/state-invarianlSQ;‘jg_c problem. For the positivdlQ 3 problem, criteria were
established, by using a Newton-like iterative scheme, anilfanian approach and the study of
a diagonal solution of the ARE. For the unstable case, thatite scheme was revealed hard to
implement. Thus a perspective for this work is to analyzeutistable case either with another
iterative scheme or with another methodology that would beenadapted to this special case.
Finally, in the last chapter of this part, the inverse ingtatte-invariantL 'g"g_c problem was
described and solved by using LMIs or BMIs. Further studyhef tMIs and BMIs would be
attractive in order to implement a systematic method toestihe inverse input/state-invariant
or the inverse positive LQ problem. In addition, it would beeresting to study the proof of the
convergence of the heuristic iterative process describ&hapter 7.

The last part was devoted to the application of the inpu#stavariant LQ problem in order
to solve the problem of coexistence of species in compatiti@ chemostat. The methodology
that was used is to guarantee the local positive input/tategiance of the nonlinear system
(which describes the chemostat model) by ensuring the /staitg-invariance of its linear ap-
proximation around an equilibrium, with the applicationaof appropriate LQ-optimal control.
An interesting perspective in this framework can be, of seuthe study of the input/state-
invariance of nonlinear systems. An advanced study of neali systems can also be relevant
in order to obtain a global coexistence of species. The mgactive of this study was to apply
the theory of the input/state-invariant LQ problem on araatitve biological application. Other
methodologies could be more adapted to solve the problermexistence by considering the
nonlinear model itself, instead of performing the analgsighe linearized system.

Finally, the last chapter was devoted to the discrete tinse,céor which the well-known
results on positive systems have been recalled before denmgj the positiveLQﬂ:’ problem
in finite horizon. The analysis was similar to the one of thatowous time case and there-
fore most of the results were merely adaptations of the oaatis time problem. Furthermore,
the study of monomial systems (which include the well-kn@ass of compartmental systems,
which are significant in applications) was really specifiti®@discrete time case. By describing
a new concept for monomial matrices (namely structurallanity), we have proved that the
positiveLQf problem had a solution for this particular class of posiyivavertible systems.
Future possible work in this framework is to adapt the rasoltinput/state-invariant continu-
ous time systems in order to obtain similar results for thpuifstate-invariant LQ problem in
discrete time. A receding horizon approach can also be dpegdlfor the infinite horizon LQ
problem. It was briefly described in [Bea06] for the positiv@ problem, notably with some
numerical examples. Another perspective for the discigte tase is to develop an adapted
iterative scheme which converges to the solution of therreati Riccati equation, as in the
continuous time positivé&Q<° problem. Finally, an inverse LQ problem can also be desdribe
for discrete time systems.

In conclusion, the research work reported in this thesislgisome methods for solving the
LQ-optimal control problem for input/state-invariantéiar systems. Several perspectives have
been proposed in order to improve them. Finally, we hopettigtvork will be useful, in some
way, for further research.



Summary of Contributions

Our main contribution is the study of the LQ-optimal confpobblem with state and input
constraints and the application to the problem of coexcsarf species in a chemostat model.
Our contributions are summarized as follows :

* characterizations of input and/or state-invariant twaeying systems in terms of the ma-
trices defining the dynamics (Chapter 1) ;

 a proof of optimality conditions for the input/state-imizthQgﬁ problem based on the
maximum principle (Theorem 3.2.1) ;

* positivity criteria for the positiveLQi{ problem in finite horizon (in terms of an upper
bound of the solution of the RDE (Theorem 4.2.1), via the wtofdthe minimal energy
control problem (Theorems 4.2.2 and 10.2.4) ;

 adefinition and a characterization of an equivalenceiogigstructural similarity) for the
set of monomial matrices (Definition A.3.2 and Lemma A.3.1) ;

* apositivity criterion for the positivé,Qf problem in discrete time for monomial systems
(Theorem 10.2.6) ;

* the study of the infinite horizon positieQ<” problem by means of a Newton type iter-
ative scheme (Section 6.1) ;

* the study of the inverse input/state-invarimi_j"’ﬁ problem by means of LMIs and BMIs
(Chapter 7) ;

* a criterion of local positive invariance of a nonlineartgys by means of the input/state-
invariance of its linear approximation around an equilibni(Theorem 8.2.1) ;

* the resolution of the problem of coexistence of speciesdneanostat model by applying
an appropriate LQ-optimal control (Chapter 9, Sectionsa9@39.4) ;

* the development of specific numerical examples.

Up to our knowledge, the proofs which are detailed in thisihare part of its contributions.
If a cited result is already available in the literature, vsyanention a reference without giving
a proof. Finally, part of this thesis (especially Chapteré 4nd 10) is based on the following
publications :
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208 Summary of Contributions

Journal paper

[BW10] - 2010 : Ch. Beauthier and J. J. WinkirQ-optimal control of positive linear systems
Optimal control : Applications and Methods, Vol. 31, No. @, p47-566, 2010.

Conference proceedings (with review process)

* [LWBO06] — 2006 : M. Laabissi and J. J. Winkin and Ch. Beauth@n the positive LQ-
problem for linear continuous-time syster®soceedings of the second Multidisciplinary
International Symposium on Positive Systems : Theory angliéations (POSTA 2006),
Grenoble, France, in Lecture Notes in Control and Infororatciences, Vol. 341, pp.
295-302, 2006.

« [BWO08] — 2008 : Ch. Beauthier and J. J. WinkiRinite horizon LQ-optimal control
for continuous time positive systentroceedings of the Eighteenth International sym-
posium on Mathematical Theory of Networks and Systems (MAD08), Virginia Tech,
Blacksburg, Virginia, USA, CD-ROM Paper Nr 054, 2008.

* [BW09] — 2009 : Ch. Beauthier and J. J. Wink{Dn the positive LQ-problem for linear
discrete time systemProceedings of the Third Multidisciplinary Internatiér@ympo-
sium on Positive Systems: Theory and Applications (POSTBO20n Positive Systems,
pp. 45-53, 2009.

Master’s thesis (DEA)

[Bea06] — 2006 : Ch. Beauthidre probléme linéaire quadratique posjtMémoire de DEA,
Facultés Universitaires Notre-Dame de la Paix (FUNDP), Na2006.



Main Notations and Abbreviations

General Abbreviations

e.g. for example

le. that is

viz. namely

w.r.t  with respect to

w.l.g. without loss of generality
psd positive semidefinite

pd positive definite

LTI linear time invariant
LTV linear time varying

LQ linear quadratic

LMI  linear matrix inequality

BMI  bilinear matrix inequality
LMIs linear matrix inequalities
BMIs bilinear matrix inequalities

Riccati equation

RDE Riccati differential equation
ARE algebraic Riccati equation
RRE recurrent Riccati equation
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210 Main Notations and Abbreviations

Linear Quadratic problem

Finite horizon

LQ*  standard LQ problem

Lfo positive LQ problem

LQ;’“ state-invariant LQ problem

LQf—f input-invariant LQ problem

LQf—f,i input/state-invariant LQ problem

LQYN standard LQ problem (in discrete time)

LQf positive LQ problem (in discrete time)
Infinite horizon

L@ standard LQ problem

LQ%  positive LQ problem

oz Input/state-invariant LQ problem

LQ2>  inverse standard LQ problem

LQY  inverse positive LQ problem

LQY inverse state-invariant LQ problem

LQ™_ inverse input/state-invariant LQ problem

u,x
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Algebra

R set of real numbers

C set of complex numbers

R, nonnegative orthant

Re(z)  real part of a complex

|- | absolute value of a scalar

|- |l vector or matrix norm (Euclidean unless otherwise speqgified

e; i" vector of the canonical basis

I, identity matrix of dimensiomn

0, zero matrix of dimensiom

o(A) set of eigenvalues ot

p(A) spectral radius oft

N(A)  the null space off

Amin(A4)  minimum eigenvalue oft

L~ (A) stable subspace, i.g-invariant subspace spanned by the (generalized)
eigenvectors corresponding to eigenvalues with negataignarts

L°(A)  critical subspace, i.ed-invariant subspace spanned by the (generalized)
eigenvectors corresponding to eigenvalues with zero @ p

LT (A) unstable subspace, i.d-invariant subspace spanned by the (generalized)
eigenvectors corresponding to eigenvalues with nonnegegal parts

Ap Frobenius eigenvalue of

A >0  Aisanonnegative matrix, i.e. every entries/oire nonnegative

A>0  Aisapositive matrix, i.e. every entries dfare nonnegative
and at least one entry is (strictly) positive

A> 0 Aisastrictly positive matrix, i.e. every entries dfare (strictly) positive

A= B AandB are structurally similar

Af left pseudo-inverse ofl

At right pseudo-inverse ot
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Main Notations and Abbreviations

System theory

[
S~—

q)K (t7 tO)

NO(C, A)
ND(C, A)

state trajectory
input trajectory
set of piecewise continuous input functions
system description(t) = A(t) z(t) + B(t) u(t)
denoted byR = [A, B] in the time-invariant case
system description(t) = A(t) x(t)
denoted byR = [A, 0] in the time-invariant case
fundamental matrix of systefal(-), 0] which satisfies
{ Ge(t, to) = A(t) @(t, to), Yt € [to, ty]
O(tg, to) = I,
fundamental matrix of systeil + B K (-), 0] which satisfies
{ GPr(t, to) = (A+ BE(t) Px(t, to), Y€ [t, ty]
Qg (to, to) = In,
unobservable subspace
undetectable subspace
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Appendix A

Particular Matrices

This appendix is devoted to particular matrices as nonhagand Metzler matrices which
play an important role in system theory. There exist a latgesoof references devoted to these
particular matrices, e.g. those used here are the follonjB&97, Chapter 1], [HI85, Chapter
8], [Ava00, Chapters 2-3], [LT85, Chapter 15], [BP94, Cleayi], [Min88, Chapters 1 and 4],
[BNS89, Chapter 2] and [HCH10, Chapter 2]. Definitions andmpaioperties (as the spectral
properties) are given for such matrices.

Then the general theory of Z-matrices and M-matrices isflgraescribed, based on the
following references : [BR97, Chapter 1], [BP94, Chapter[]in88, Chapter 6], [Guo01]
and [BNS89, Chapter 2]. In thEQﬂ:’ problem in discrete time, see Chapter 10.2, we use the
class of monomial matrices or positively invertible magsc Their properties are studied in this
chapter, based on [PC72], [BP74] and [BP94, Chapter 5]. Mae an equivalence relation on
the set of such matrices is defined.

Finally, at the end of the chapter, the definition of the Kk product and its use for the
Lyapunov equation are recalled, see [HJ91, Chapter 4] ah@9LChapter 12]. It is used in
Chapter 6 for the study of the positiveQ S problem in infinite horizon.

A.1 Nonnegative and Metzler matrices

A.1.1 Definitions
Definition A.1.1

» A matrixA € R™" is said to benonnegative denotedAd > 0, ifforall i, 7 =1,..., n,
a;; > 0, 1.e. every entries ofl are nonnegative.

* A matrix A € R™*" is said to bepositive, denotedA > 0, if A > 0 and there exist
i,j=1,...,n,a; > 0, i.e. every entries ofl are nonnegative and at least one entry is
(strictly) positive.

* A matrix A € IR*" is said to bestrictly positive, denotedA > 0, if for all i, j =
1,...,n,a; > 0, i.e. every entries ofl are (strictly) positive.
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216 Chapter A. Particular Matrices

In particular, these notations and definitions obviouslplgpo vectors: € IR”. However
for the scalar case, “strictly positive” coincides with “mitive”.

* A matrix A € R"™" is said to be aMetzler matrix, if forall i, j = 1,..., n, i # 7,
a;; > 0, i.e. every off-diagonal entries of are nonnegative.

The following result obviously holds :

Proposition A.1.1 A matrix A is a Metzler matrix if and only if there exisése R, a > 0 such
thatA + a1, > 0.

Therefore we can move easily from nonnegative matrices ttzletematrices and conversely.
By applying the definition of a nonnegative matrix, one hasftilowing result :

Proposition A.1.2 A is a nonnegative matrix if and only if the positive orthant B A-
invariant, i.e.
Ve eR}, Ar e R.

One has a similar result for Metzler matrix :
Proposition A.1.3 A is a Metzler matrix if and only if
Vi>0: et >0, (A1)
or equivalentlyy ¢ > 0, the positive orthant Ris e !-invariant, i.e.
Vt>0,Vz e R}, e’z € RL.

Proof :
Necessity. Since A is a Metzler matrix, by Proposition A.1.1, there exists> 0 such that
A+«al, > 0. Then

(A+al,)k
\v/t Z 0’ 6A+Oéln — Z%tk Z 0.
k=0 )

Hence, withe(Ata Dt — eAt et > () one has/ t > 0, et > 0 sincee®! is a positive scalar.

- . d et — 1 . ‘
Sufficiency: SinceA = &(e“”)’ = lim T", we obtain, withe; denoted thg™ vector
—_— —0+

. . . . =0
of the canonical basis, far# j 3
At
. <etltei—e;, e >
aw = fm
— lim {<€At€j, ei>  <ej 6 >}
t—0+ t t
~ i S etle;, e; > >0
t—0+ t -

Hencea,;; > 0 fori # j.
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Remarks A.1.1
« The A-invariance of IR implies thee*‘-invariance of R
Indeed, ifYz € R}, Az € R, then, withz > 0 andt¢ > 0, one has :

Then sinced = > 0, by recurrency for alk, A* x > 0. Henceet z > 0.

« Conversely, the*‘-invariance of IR does not imply necessarily its-invariance.

Indeed, consider the case where= 1. Then R. is e4*-invariant since for allt > 0,
et > 0. However R_is not A-invariant if A < 0.

A.1.2 Spectral properties

First we recall the definitions of spectrum and spectralusdind the concept of dominant
eigenvalue and eigenvector associated to nonnegative atdavimatrix.

Definition A.1.2

» Thespectrum of a matrixA, denotedr(A), is the set of its eigenvalues, i.e.

o(A)={ eC : Ax = Az, x #0}.

Thespectral radius of a matrix A, denotedy(A), is defined as :

p(A) :=max{|\| : A€ a(A)}.

A dominant eigenvalue )\,, of a nonnegative matrix A, is defined as follows :

YA€ a(A) A = A, ie. A = p(A).

A dominant eigenvalue \,, of a Metzler matrix A, is defined as follows :

VA€Eo(A) : Re(Ag) > Re(N).

A dominant eigenvector vy, of a matrix A is an eigenvector associated to a dominant
eigenvalue, i.eA vy = A vy.

We also use the notatiods (A), L£°(A), LT (A) which denote thel-invariant subspaces spanned
by a basis of (generalized) eigenvectors correspondinggenealues with negative, zero and
positive real parts. For a matrix, N'(A) denotes the null space.
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The following results on the spectral properties of nontieggand Metzler matrices are well-
known, see e.g. [Ava00, Chapter 3], [HI85, Chapter 8] andHHT Chapter 2].

Theorem A.1.4 (Perron-Frobenius for nonnegative matrices Let A be a nonnegative ma-
trix. Thenp(A) is an eigenvalue ofd, called the Frobenius eigenvalue, and there exists a
positive eigenvectar, associated t@(A), which is called the Frobenius eigenvector, such that
Az =p(A)zandvV X € a(A), |A] < p(A4).

Theorem A.1.5 (Perron-Frobenius for Metzler matrices) Let A be a Metzler matrix. Then
there exists a real eigenvalug- of A, which is called the Frobenius eigenvalue, such that there
exists a positive eigenvectoyassociated to r, which is called the Frobenius eigenvector, such
that Az = ApzandV X € 0(A), Re(A) < Ap.

A.2 Z-matrices and M-matrices

Definition A.2.1

* Arealn x n-matrix D is said to be aZ-matrix if —D is a Metzler matrix.

o Arealn x n-matrix D is said to be a\/-matrix if D = s I,, — D for some matrixD > 0

and for some real number> p(D).

It can be easily seen that agfmatrix D is of the formD = s I,, — D for some real number
s and some matri) > 0, and that anyM/-matrix is aZ-matrix. Moreover, by the Perron-
Frobenius theorem, one has the following result :

Proposition A.2.1 A M-matrix D = s I,, — D is nonsingular if and only if > p(D).

The following result can be found e.g. in [BP94] and [HJ91edtem 2.5.3, pp. 114-115] ; see
also [GLOOb]. Observe that, in those references/-anatrix is assumed to be nonsingular by
definition. In the present context, it is useful to considématrices which might possibly be

singular. See also [HCH10, Chapter 2].

Theorem A.2.2 For any Z-matrix D, the following assertions are equivalent :

(i) D is nonsingular and>~! > 0.

(i) Dx > 0 for some vector > 0.

(iii) All eigenvalues ofD have positive real parts.

Moreover any of these assertions characterizes the fatt/thia a nonsingular)/-matrix, i.e.
such thatD = s I,, — D, whereD > 0 ands > p(D).

Another useful result is the following proposition :

Proposition A.2.3 If A is a nonsingular}/-matrix, then the solutiom of Az = g withg > 0
is such thatr > 0.
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Proof : SinceA is a nonsingulaf/-matrix, A= > 0 andz = A~'¢ > 0, by Theorem A.2.2.
Thenz > 0. By contradiction, if there exists; = 0, then, withA~! := B, one has

x; = Z bijq]' =0
j=1

with ¢; > 0 andb;; > 0. That isb;; = 0, for all j which is in contradiction with the fact that
is nonsingular. Then is strictly positive.
O

Finally, the following proposition gives a criterion on teebility of aA/-matrix, see [HCH10,
Theorem 2.10] :

Proposition A.2.4 If A is a nonsingular\/-matrix, then— A is asymptotically stable, i.&/\
o(—A), Re(\) <D0.

A.3 Monomial matrices

Definition A.3.1 A nonnegative matrid/ is said to bemonomial if M is a diagonal matrix
up to a permutation, i.eM = D P = diag[m;]?_, P, whereD is a positive definite diagonal
matrix andP is a permutation matrix, or equivalentiy ! > 0, see e.g. [BP74] and [PC72].

Definition A.3.2 Let L and M be monomial matricesL and M are said to bestructurally
similar, denoted by. = M, if and only if there exist positive definite diagonal mags®; and
D, such thatl, = Dy M D,.

It is easy to check that2” is an equivalence relation on the set of monomial matrises,
[Bea06, Theorem 5.2.6].

Remark A.3.1 In Definition A.3.2, one of the diagonal matricBs can be chosen as the iden-
tity matrix, such that one has = M with L = D; M or with L = M Ds.

The following straightforward result is needed in the stuﬁ;heLQf problem for positive
discrete time systems, see Subsection 10.2.3.

Lemma A.3.1 Let L and M be monomial matrices. L&t be a permutation matrix such that
L =Dy PandM = P D, whereD; and D, are positive definite diagonal matrices. Thén
and M are structurally similar.

Proof : By assumptior. = P andM = P. Then, by the transitivity and symmetry properties
of the equivalence relatio#, it follows thatL = M.
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A.4 Kronecker product

We also need the Kronecker product defined as follows :

Definition A.4.1 TheKronecker product of matricesC' = (¢;;) € R**' and D € R™*" of
any size, is the matrixC ® D € R*!" given by :

CllD CllD
ceD:=1| . .. . |. (A.2)
Cle Cle

The stack operator maps an x n-matrix into anmn-vector. More precisely, the stack of an
m x n-matrix C, denoted byect(C), is themn-vector formed by stacking the columns©f

With the definition of the Kronecker product and the veatert(C') defined for a matrix
C, well-known matrix equations can be rewritten, as the Sstlweequation and the Lyapunov
equation, see e.g. [HJ91, Chapter 4] :

Proposition A.4.1 For given matricesC, D, ) and X with compatible sizes, the Sylvester
equation
CX+XD=qQ

is equivalent to the linear algebraic equation
(I®C+DV®I) vect(X) = vect(Q),

and the Lyapunov equation
CTX+XC=-Q

is equivalent to
(I®CT +CT@1) vect(X) = — vect(Q).

In addition, the following result can be easily shown, se@JH pp. 268-269] or [LT85, pp. 411-
412],

Proposition A.4.2 If C and D are M-matrices, then sois fail @ C' + DT @ I).



Appendix B

Maximum Principle with State and Input
Constraints

In this chapter, the maximum principle with state and inpristraints is presented, as it is
developed in [HSV95], with the same notations. These reswé used in Part Il and Subsection
9.4.2.

B.1 Problem statement
Consider the following optimal control problem : maximibetfollowing cost
T
J = / F(z(t), u(t), t)dt+ S(x(T), T) (B.1)
0

for the following system dynamics

&(t) = flz(t), u(t), t), z(0) = xo (B.2)
under the constraints
g(z(t), u(t),t) > 0 (B.3a)
h(z(t),t) > 0 (B.3b)
a(lz(T), T) > 0 (B.3c)
b(z(T), T) = 0 (B.3d)

Assume that the functions from R" x R™ x R into R, S from R" x R into R, f from
R™ x R™ x R into R", g from R” x R™ x R into R?, A from R"” x R into R?, anda, b
from R” x R into R’ and IR’ respectively, are continuous differentiable with respee! their
arguments.
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In the sequel, the following constraint qualification iswasgd to hold for all possible values
of x(T) andT :

da :

24 diag(a
rank [ % 0( )
oz

} =1+ (B.4)
wherediag(a) := diag([a;(z(T), T),...,a(xz(T), T)]) denotes the diagonal matrix contain-
ing the components af(z(7"), 7)) on its diagonal. This full rank condition means that the
gradients w.r.t.z of the equality constraints and of the active inequalitystoaints must be
linearly independent. In order to distinguish between tlrephconstraints (B.3a) and the pure
state constraints (B.3b), we assume that each componeiné¢ dfimctiong depends explicitly

on the controk.. More precisely, we impose the following full rank conditio

9]
rank L‘a_i diag(g)} =3 (B.5)
for all arguments:(t), u(t), ¢ that could arise along an optimal solution. Tdwnstraint qualifi-
cation(B.5) means that the gradients w.i:tof all the active constraintg > 0 must be linearly
independent.

B.2 Direct adjoining approach

In this method, the HamiltoniafAl and Lagrangiari. are defined as follows :
H(l‘, u, )‘07 /\7 t) = A0 F(l’, u, t) + Af([[’, U, t) (BG)

L(z, u, Mo, A\, p, v, t) = H(z, u, Xo, A\, t) + pg(z, u, t) +vh(z, t), (B.7)

where )y > 0 is a constant\ € IR" is the adjoint variable, and € R® andv € R? are
multipliers.

Theorem B.2.1 Let (z*(-), u*(-)) be an optimal pair for the problem over a fixed interval
[to, T'] (i.e. (z*(-), u*(-)) globally maximizes (B.1) where'(-) is the state trajectory corre-
sponding tou*(-) and conditions (B.3) are satisfied), such that-) is right-continuous with
left-hand limits and the constraint qualification (B.5) tslfor every triple{t, z*(t), u}, t €
[to, T] withu € Q(z*(t), t) := {u € R™| g(x, u, t) > 0} C R™.

Assume that*(-) has only finitely many junction (i.e. switching) times.

Then there exist a constah} > 0, a piecewise absolutely continudusstate trajectory(-)
mapping[ty, 7] into IR*, a piecewise continuous multiplier functions) and v(-) mapping
[to, T'] into IR° and IR, respectively, a vectaf(r;) € IR? for each pointr; of discontinuity of
A-),anda € R, B € R, v € R?suchthat A\, A(t), u(t), v(t), o, B, v, n(1), n(1),...) # 0

A piecewise absolutely continuous function is a piecewisetiouous function whose continuous segments
are absolutely continuous
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for everyt and the following conditions hold almost everywhere :

u*(t) = arg max H(x*(t), u, Ao, A(t), t) (B.8a)
Ly(t) = Hyt)+pg,(t) =0 (B.8b)

At) = —LX(t) (B.8c)

pt) = 0, p(t)g(t)=0 (B.8d)

v(t) > 0, v(t)h*(t)=0 (B.8e)
dH*(t)/dt = dL*(t)/dt= L;(t) = OL*(t)/0t. (B.8f)

At the terminal timd’, the following transversality conditions hold :

AT) = Ao S(T) + aay(T) + BUL(T) + v hi(T) (B.9a)
a > 0,v>0, (B.9b)
aa (T) = ~vh"(T)=0. (B.9c)

For any timer in a boundary interval and for any contact timethe costate trajectoryx may
have a discontinuity given by the following jump conditions

A7) = MN1T) + () hi(r) (B.10a)
H(17) = H*(t") —n(7) hi (1) (B.10b)
n(r) >0, n(t) h*(1) =0, (B.10c)

wherer™ and 7~ denote the left-hand side and the right-hand side limitspegtively.
Remark B.2.1 The condition

(No, A(E), u(t), v(t), a, B, v, n(m1), n(2),...) # 0 for everyt

can play an important role in distinguishing the normal cgsg = 1) from the abnormal case
(Ao = 0). In fact, this condition implies that, = 1 in the examples analyzed in [HSV95,
Section 9].
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Appendix C

Discretization of a Linear Continuous
Time System

In this chapter, the discretization of a linear continuaosetsystem is described, and the
associated discrete cost is also given.

C.1 Discretization of a linear continuous time system

Consider the following LTI continuous time system
(t) = Ax(t) + Bu(t), z(0) =z, t € [to, tf] (C.1)

In order to transform this system into a discrete time systnsidert, = iy h, t; = N h,
x(t) = x(ih) =: z;, u(t) = u(i h) =: u;, whereh is the sampling time ante [i h, (i + 1) h],
fori =1,..., N — 1. We are looking for

Tip1 = f(ﬂfz‘, Uz)

First integrate the homogeneous part of (C.1),#(@) = A x(t), that givese(t) = e o, where
a is a constant vector. Now by applying the constant variati@thoda ~ «(t), we look for
a solution of the forme(t) = e a(t). Then

B(t) = Aella(t)+ela(t)
= Ae'ta(t) + Bult)
& a(t) = e ABu(t)

ty
Integrating fromy, to ¢, gives :a(t;) = a(ty) +/ e " Bu(t)dr. Then

to
ty
x(ty) = et alty) = et a(ty) +/ A= Bu(r)dr
to
Hence, witht; = (i + 1) h andt, = ¢ h, we obtain
(+Dh
2((i +1)h) = 24 = Moy + / AV I=T) B gy,
ih
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Therefore
Tir1 = Aﬂfz —+ Buz
with
h
A=¢ and B = / e**Bds
0

C.2 Discretization of a linear quadratic cost

Consider the following linear quadratic continuous cost

3 ([ R+ jeal) e ooy s () ©2)

Considering, foi = ig,...,N—1,2(t) = z(i h) =: x;, u(t) = u(i h) =:w;, t € [i h, (i+1) A,
the cost (C.2) becomes :

=10

1 -« (rn 1/2,.112 2 T
(2 [ R P+ 10 al) bt S e
-1

N
1
=3 (Z(”R”zuil\z +|C @i |?) (i + 1)h — ih) + :cgst>

=10
Then we obtain the following discrete time cost :

N-1
1
2 <Z B (IRl + 1€ i]?) + ks l‘N) (C3)

=10

C.3 Discretization of the adjoint equation and associated m-
tipliers

Consider the following adjoint equation associated to ammathenergy problem :
pt) = —ATp(t) + A(t) (C.4)

In order to transform this system into a discrete time syswmnsidert, = ioh, t; = N h,

p(t) = p(i h) =: p;, \(t) = A(i h) =: \;, whereh is the sampling time ande [i h, (i + 1) h[,
for i = 4,..., N — 1. First integrate the homogeneous part of (C.4), i) = —AT p(t),
that givesp(t) = e~A"t 3, whereg is a constant vector. Now by applying the constant variation
methods ~ J3(t), p(t) is of the formp(t) = e=4"  5(t), such that

pt) = —ATe A1 3(t) +e A B(t)
= AT B 4+ A1)
s Bt) = eI
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ty .
Integrating fromv, to ¢, gives : 3(t;) = 5(to) +/ e "\(7) dr. Then

to

T T tr T
plty) = e Blty) = e Blt) + / e~ TIN(T) dr
——

to
=Po

Hence, witht; = (i + 1) h andt, = ¢ h, we obtain
; i+
p((i +1)h) =pi1=e 4 Ip, +/ e~ A (DTN (1) dr
ih
Therefore ,
pis1 = e A p + / e ds,
0

and X
pi=ATpi1 — / e sds);  with A = e,
0
Now, the adjoint equation in discrete time is given by usimgitecurrent Hamiltonian equation

(10.6), see Section 10.2,
Pl = AT X
Hence

h
N = / e AT ds \¢ (C.5)
0

where\¢ and \¢ denote the multiplien; in discrete time and the multiplier coming from the
discretization, respectively.

C.4 Application to the numerical example of Section 4.3

Consider the numerical example of subsection 4.3.2 wyith 0, and

A=l o] o= [0 ]

Hence, one has

A [ cosh(h) sinh(h)

sinh(h) cosh(h) } and B = { cosh(h) —1 }

sinh(h)

and (C.5) becomes :

W= [T O ] e

Tt ) L]
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where)é = [0 X5]T, forzg = [1 0]T andzy = [0 1]7, whatever the interval considered.

Then Mg (1 — cosh(h)) XS 0
R R R PV

with 1 — cosh(h) ~ 0 andsinh(h) ~ h. Therefore,
M~ p ) (C.6)

Hence, one can compare the discrete time multipliers wighdilcretized multipliers by con-
sidering the scaling factdr between them.
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