
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

A tag-based approach to software product line implementation

Gauthier, Christophe

Award date:
2010

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/a-tagbased-approach-to-software-product-line-implementation(0ca93a3a-1876-48eb-9b52-442a598f9198).html

Facultés Universitaires Notre-Dame de la Paix, Namur

Faculté d'informatique - Faculty of Computer Science
2009-2010

Master Thesis in Computer Science, 2009-2010 at FUNDP, Namur Belgium

A thesis presented to the Faculty of Computer Science in partial fulfillment of the requirements for
the Degree Master of Computer Science.

Mémoire présenté en vue de l'obtention du grade de master et/ou licencié en informatique.

A Tag-based Approach to
Software Product Line
Implementation

Christophe Gauthier

2

A Tag-based Approach to Software
Product Line Implementation
Master Thesis in Computer Science, 2009-2010 at FUNDP, Namur Belgium

Author: Christophe GAUTHIER

Supervisor: Patrick HEYMANS

Co-Supervisor: Quentin BOUCHER

 Arnaud HUBAUX

Acknowledgment

Thanks to everyone who made this work possible. Prof Patrick Heymans and his assistants for their
help in developing XToF, writing and correcting this thesis. Prof Anne-Margaret Storey, the mem-
bers of the CHISEL team for welcoming me into their team and for their support, especially Del
Meyers, the developer of TagSEA for his help in Eclipse development, Supreetee Saddul for correct-
ing my english and my parents for everything else.

Summary

Developing a set of similar softwares separately is time and money consuming. Software Product
Line (SPL) aims at developing the set of software as a whole. It uses features as an abstraction for
functions that can be selected or not. Compositional approaches imply changes in paradigm and
language to implement SPL; annotative approaches do not. Compositional approaches implement
features in distinct modules that are composed to generate a specific product. Annotative approaches
use annotations to register which portion of source code are associated to a feature, and using this
information can generate products. Annotative approaches provide a lightweight approach to im-
plementing SPL. However, compositional approaches provide better feature traceability and safety.
Beyond the different annotative approaches, the tagging approach provides a tool independent and
syntactically safe approach while remaining a lightweight approach. It uses tags of features to asso-
ciate source code with features.

The tagging approach is tool independent, but the disadvantages when contrasted to the comparative
approaches can be reduced by using a tool to support the approach. The tool’s main requirements
are: the integration with a Feature Model (FM), the traceability function, pruning, configuration (the
selection of features) and the program understanding for SPL. The tool called XToF uses an archi-
tecture made of plugins, is extensible to new languages and provides many functions to support the
approach. Among them, visualization at source code and project levels enables the developer to un-
derstand how features are implemented.

Résumé

Pour développer un ensemble de logiciels qui répondent à des besoins similaires, les techniques d'in-
génierie du logiciel classique ne sont pas adaptées. Il est nécessaire de développer chaque logiciel
séparément. Cette manière de procéder est consommatrice de ressources. L’ingénierie en famille de
produits logiciels (SPL) propose des techniques et méthodes pour développer un ensemble de logi-
ciels similaire comme un tout. Les fonctions qui constituent les différents produits sont regroupés en
fonctionnalités (features) qui peuvent être sélectionnées ou non pour générer un produit spécifique.
Les approches par composition de cette ingénierie imposent un changement de paradigme et de lan-
gage, et imposent un type de structure pour la conception du logiciel. Dans ces approches, l'implé-
mentation de chaque fonctionnalité est réalisée dans des modules séparés qui sont composés pour
former un produit. Ces approches sont dites lourdes. A l’opposé, les approches par annotation utilise
des annotations pour associer des régions de code source à des fonctionnalités. Ce sont des appro-
ches légères. Elles ont cependant des défauts par rapport aux approches par composition qui rendent
la traçabilité de l’implémentation des fonctionnalités obscure et sont sources d’erreurs syntaxiques.
Parmi les différentes approches par annotation, l’approche par tags utilise les noms des fonctionnali-
tés comme mots-clés pour associer des régions du code source à celles-ci.

L’approche par tags est indépendante d’un outil spécifique et n’est pas source d’erreur syntaxique
lors de la génération de produits. Cependant, un support réalisé par un outil serait utile pour fournir
la traçabilité à l’implémentation des fonctionnalités. Les différents moyens de supports fournis par
l’outil sont l’élagage du code (pruning), l’intégration avec un modèle des fonctionnalités (feature mo-
del), la configuration de produits (sélection des fonctionnalités), traçabilité des fonctionnalités et
compréhension de programme adapté aux SPL. L’outil développé pour répondre à ces exigences est
appelé XToF, il possède une architecture constituée de plugins, peut-être étendu pour gérer des lan-
gages supplémentaires. Une partie de la recherche consiste en des visualisations pour comprendre
l’implémentation des fonctionnalités à deux niveaux d’abstraction, au niveau du code source et du
projet.

1. ...Introduction 1

Part 1. Background
2. ...Software Product Lines 3

2.1.What are Software Product Lines? 3
2.1.1.Examples of Success Stories 3
2.1.2. ..SPL Challenges 4
2.1.3. ..SPL Engineering 5
2.1.4.Advantage of Software Product Line 6

2.2. ...Variability and Commonality 7
2.2.1. ...Feature Modeling 7

2.3. ..SPL Implementation 9
2.3.1.Compositional Approaches 9
2.3.2. ..Annotative Approaches 10
2.3.3.Summary of approaches comparison 11

3. ...Annotative approaches 13
3.1. ..Code Annotation 13

3.1.1. ...IFDEF 13
3.1.2. ...Frames 14
3.1.3. ..Colored IDE (CIDE) 15

3.2. ...Tags 16
3.2.1. ...Where are Tags Used? 17
3.2.2.TagSEA, Tags for Software Engineering 18
3.2.3.Tags for Software Product Lines 19

3.3.Adopted SPL Tagging Approach 19

4. ...Features Visualization 25
4.1. ...MetaModel Visualization 25
4.2. ..Source Code Visualization 27
4.3. ..Integrating Source Code and MetaModel Visualizations 28
4.4. ...Summary 30

Part 2. Contribution
5. ...Tagging Approach Evaluation 33

5.1. Comparing Tagging Approaches to other Annotative Ap-
..proaches 33

5.1.1. ...IFDEF 33
5.1.2. ...Frames 33
5.1.3. ...CIDE 33
5.1.4. ...Summary 34

5.2.A Tool to Support the Approach 34
5.3. ...Requirements 35
5.4. ...Scenario 37

5.4.1. ..Pre Requisite 37
5.4.2. ..Implementation 37
5.4.3.Verification with the Minimal Set of Feature 37
5.4.4. ..Product Generation 37

5.5. ...Summary 38

6. ...Design of a tool Support 39
6.1. ..What is it? 39
6.2. ...Implementation Choices 39

6.2.1. ...Selected Backends 40
6.2.2.Solving the Scope of a Tagging 42
6.2.3.From Feature Name to Tags 45
6.2.4.Display a Feature Diagram 46
6.2.5.Project Level Visualization Techniques 46

6.3. ...Architecture 47
6.3.1. ..XToF Design 47
6.3.2. ...TagSEA Documentation 49
6.3.3.Description of Plug-ins Interactions 50
6.3.4. ...Data Persistence 51

6.4.Extendibility to New Languages and Feature Model 51
6.5. ...Summary 52

7. ...A Guided Tour through XToF 53
7.1. ...Tagging Support 53

7.1.1. ..Feature Diagram Display 53
7.1.2. ..Feature Name Checking 53
7.1.3. ..Auto-Completion 54
7.1.4. ...Scope Highlighting 54
7.1.5.Associated Features Display 55

7.2. ..Configuration Support 56
7.2.1.Feature Diagram Configuration 56

2

7.2.2. ..Select/Unselect a Feature 56
7.2.3. ...Propagation of Selection 57
7.2.4. ..Minimal Set of Features 57
7.2.5.Save the State of a Configuration 58

7.3. ...Pruning Support 58
7.3.1. ..Prune into a New Project 58
7.3.2.Pruner / Scope Resolver Selection 58
7.3.3.Adaptable to New Languages 59
7.3.4.Information about Pruning 59

7.4. ...Program Understanding 59
7.4.1. ..Source Code Level 59
7.4.2. ...Files and Folders Level 59

7.5. ..Project Level Visualizations 60
7.5.1. ...Zest View 61
7.5.2. ...Concern View 62

7.6. ...Summary 66

8. ...Illustration 67
8.1. ..SimpleEcho 67

8.1.1. ..Feature Model 67
8.1.2. ...Command Syntax 68
8.1.3. ..Implementation 68
8.1.4.Supplementary Time Needed 68

8.2. ..Lessons learned 68

9. ..Discussion 71
9.1. ..Empirical Evaluation 71
9.2. ..Missing Features 71

9.2.1.Independency from Pruning 71
9.2.2.Auto Check for Type Safety 71
9.2.3. ...Drag and Drop to Tag 71
9.2.4.Feature Diagram Creation 72
9.2.5.Class View Project Level Visualization 72

9.3. ...Tool Limitations 72
9.4. ..Future Work 73

10. ...Conclusion 75

...Bibliography 77

3

Appendix

...A. PDE Dependency View of TagSEA I

..B. Dependencies TagSEA III

..C. SimpleEcho Feature Model V

..D. SimpleEcho Source Code VII
10.1. ...Echo.java VII
10.2. ..EchoMain.java VIII
10.3.subPackage/CommandLine.java IX
10.4. ...subPackage/History.java XI

..E. Requirements of Tool Support XIII

4

1. Introduction

Software is widely used, companies using software are faced with the question of how to obtain a
software that fits its particular needs. As each company may not be able to develop their own solu-
tion, they may buy existing ones. Then the software developers are faced with the issue of how to
adapt a standard software for each user’s specific needs. In addition, each software, tough having
some differences, also have common parts that should be developed only once to reduce the time
and money needed.

Software engineering is well suited for building a software having methods and theories to support
the developer’s work. However, it is not adapted for developing a set of similar softwares. For that
reason, Software Product Line (SPL) engineering was created. SPL aims at providing a support to
the developer interested in developing a set of similar softwares. For example, a software could be
designed as an SPL. Instead of having only one software and the users that have to adapt to it, it is
possible to produce a software specific for each user. Each of these software would address different
needs and therefore propose different functions. However, each product, being softwares of the same
set, would also have some similarity and should share functions. SPL proposes to develop the whole
set of software together instead of developing each software of the set separately. It helps reduce the
cost and time needed.

SPL engineering helps model the set of software by using an abstraction for functions: features. A
feature can be selected and present in a product or absent, unselected. Selecting some features and
not selecting others enable to develop a specific software called a product. SPL engineering also pro-
vides methods and techniques to develop and implement the set of software (every possible product
for a given SPL).

However, most implementations techniques impose heavy changes. They may require changes to
paradigms and/or languages, or impose a specific structure for the design and therefore, cannot be
easily adopted without significantly changing the existing implementation process. This work in-
tends to propose a method to implement software product lines in a light way. A light way should
not impose strong requirements on the developer and should be close to the software engineering he
is familiar with. Of course, the design of the SPL in itself is a new mandatory task. For this reason,
it cannot be removed and is not part of this work. The design of the SPL comprises the modelling of
the features and their constraints (some features may be incompatible or require the use of other fea-
tures). When implementing SPL, the developer should also be able to understand how the features
are implemented, as he may not be working alone on the SPL. To reduce the weight of this task, this
work also intends to support the developer in understanding feature implementation, also known as
program understanding for SPL. This can be done by using visualizations techniques.

This works focuses on the implementation of the SPL. It analyses different methods used to imple-
ment SPL, presents and criticizes the lightest approach ‒ the tagging approach which uses tags to
annotate features in source code without requiring any other changes. To reduce the weight of the
approach and some of its disadvantages, a tool can support the approach. This will be described
through its requirements, design and a guided tour.

This work is separated into two parts, the background and the contribution. The first provides in-
formations about existing methods to implement and visualize SPL. Chapter two describes several
notions for SPL, for example what is a SPL, how is it modelled and the two main approaches to im-
plement them, the compositional and the annotative approach. Chapter three describes and com-
pares the main annotative approaches used to implement SPL. The adopted tagging approach is also
described in this chapter. Chapter 4 presents visualization techniques adapted for visualization of
features in source code and projects. The second parts contains the chapters 5 to 10. Chapter 5 com-
pares the tagging approach to the other annotative approaches and describes the requirements for a
tool support. Chapter 6 explains the architecture of the tool. Chapter 7 is a guided tour of the tool
and of its support mechanisms. Chapter 8 illustrates the approach and the tool. Future work is de-
scribed in chapter 9. This works concludes in chapter 10.

Part 1. Back-
ground

This part provides the reader with a survey of Software Product
Line implementation approaches. It then analyses existing
methods adapted to the lightweight goal. Finally visualization
techniques for features in source code and projects are re-
viewed.

2. Software Product Lines

In this chapter, the notion of software product lines will first be introduced through
examples. A description of problem will be then given which software product lines are
supposed to address. The software product line engineering with its advantages will
also be described and the following section will provide an insight of how to develop
for several needs through the use of variability, itself explained in an other part. After
this general discussion, the text will focus on the process which is the subject of this
works, the implementation of software product lines. It will describe and compare the
two main approaches used to implement the software product. The next chapter will
describe more precisely the approach chosen in the last section of this chapter.

2.1.What are Software Product Lines?
Today, software is of increasing importance. The number of places where software is
used is large, from mobile phones to cars. The former are becoming more complex and
offer increasingly more functions. Some have even transformed into mobile gaming
stations. While software brings new functions to existing products, such as fridges that
can automatically order groceries. They known what foodstuffs are inside and propose
a list for order.

Usually, there is more than one single product that will receive software. The manufac-
turers have several models. So, the developers must develop as many software. Each
software will be specific to each model. Manufacturers produce several models because
they address different needs. Developing each product separately costs time and
money. For each kind of product, for example a family of mobile phones, there is a set
of softwares to develop. The softwares will have some differences as each model is dif-
ferent. However, they have common functions. Every phone can be used to make
phone calls.

Software Product Line (SPL) engineering is aimed at developing software in this con-
text: one specific software for each need. It provides a way to realize development in
this context but also to reduce its time and cost. SPL is a paradigm created to take the
different functions, also called features, into account in the development and reduce the
time and money needed. It reduces the amount of work by using the commonality be-
tween the products and helps manage the variability and the complexity of the prod-
ucts. Software product line engineering is aimed at developing multiple similar soft-
ware systems rather than a few single systems. SPL engineering adds new processes to
the regular software engineering.

Software product line is a ‘software-intensive system that shares a common, managed set of
features satisfying a particular market segment’s specific needs or mission and that are developed
from a common set of core assets in a prescribed way’ [29].

The idea is to develop a general software and customize it for each need. It reduces the
development of a set of softwares to a single general one. SPL engineering takes into
account the differences between the softwares to provide the customization. For exam-
ple, a developer wants to develop an enterprise resource planning (ERP) software to
sell. He will have several customers, but they each have different needs. Some only buy
and sell products, while others also manufacture products. The developer can use the
SPL engineering to develop a set of software that will be adapted to each customer.
The general software could be a complete software that can do everything, from man-
aging purchases and sales to managing production. The developer customizes the soft-
ware and only keeps functions that the client needs. This can be done in several ways,
for example, by compiling or dynamically loading only the required functions.

2.1.1.Examples of Success Stories
Software product lines is used in many companies manufacturing products, such as HP,
Nokia, Ericsson and Boeing. The best example is the mobile phone. For example,

Nokia uses SPL engineering to manufacture its products. Another example is HP and
its printers. Although these two examples are referring to embedded softwares, they are
not the only application of software product lines. Software systems composed only of
software can also benefit from software product line engineering.

Mobile phones have become increasingly present. To sell to more people, manufactur-
ers have to produce more than one product. Each buyer may not have the same interest
in a phone; some want a good camera, others want to listen to music, etc. Models dif-
fers in their hardware and their functions and therefore the software that runs on them
has to be specific to each model.

One solution to have a software adapted to each product is to redevelop it each time.
However, it would cost much more time and money to proceed this way, especially
when companies are interested in reducing costs to make profits. This solution would
also have problems for example more bugs would be present in the numerous software
programs produced by the company and every process of the software development
cycle would have to be repeated several times. This is a time and money consuming
solution.

A better solution is to improve re-use. Developers have for a long time tried to reduce
the amount of code that needs to be written. They used routines, objects, etc. These
mechanisms provided only limited re-use. In this example, the mobiles have one func-
tion common to all of them: making phone calls. Planning and developing it only once,
would reduce time and costs. Some mobile phones also have a camera function. Not
every phone has one, but factorizing its development could still reduce the work that
needs to be done. This is taking into account the commonality1 of the systems to re-
duce the amount of software that needs to be developed.

The previous example placed emphasis on the significance of knowing the commonal-
ity in software engineering. However, this knowledge must also take into account the
specificity of each product. Printers were cited as an other example. There are two
main printer technologies: the inkjet and the laser. Even if every printer can print, they
do not all use the same process. As there are only two types of printers, re-using the
software enables economies. In this example, the number of possibilities are limited.
However the number of possible inputs for a printer is already larger. There is USB
(and all its variants), older ports, wi-fi, bluetooth, infrared, memory cards. All input
types are not present in every printer, different combinations are possible.

With the development of multifunctions printers, these tools are becoming more com-
plex. To provide a fax function, the printer must be able to give and receive phone calls,
which requires a phone line input. When building the software, it is necessary to con-
sider the links between those functions. The complexity of requirements on the soft-
ware may become high. As a result, it is necessary to have a mechanism that can han-
dle these combinations: managing the variability. In this example, the complexity is
low, but in real cases, the complexity may increase. Therefore, software product line
engineering provides mechanisms to model the dependencies and constraints between
the functions

2.1.2.SPL Challenges
Software product lines are designed to produce several similar software products. Their
purpose is to reduce the time, money and complexity of their development. One
method used is to take advantage of the commonality and re-use code pieces2. The
second one is to manage the variability, to understand how the software products differ,
and deal with their complexity.

Computer scientists have since 1960 understood the necessity of reducing the amount
of code written and have provided different mechanisms. These mechanisms have been
summarized by Clements et al. [5], and will be briefly explained in the next paragraphs.

4

1 Commonality only refers to features always present. Here it is used as an approxima-
tion to better understand the software product line.
2 The term code piece is used as a level independent term for modules, objects, meth-
ods...

The first practice used is called subroutines. Dahl et al. in the book ‘Structured Program-
ming’ [11] defines them by «subroutine represents a primitive action». The subroutine en-
abled developers to avoid duplicating several times the same action in the code. This
mechanism was at a low level.

Then followed the modules. They achieved a task instead of an action, they were
aimed at a higher level. Developers kept on developing different mechanisms at higher
levels, with the object oriented methods. They encapsulated an object and its methods.
They also proposed techniques to reduce the amount of code needed when an object
had to be rewritten or slightly adapted. Finally, the developer used component based
software engineering that was aimed at separating concerns in the software by being an
‘interface-based programming’ [45].

These mechanisms are, however, more ad-hoc. They enable re-use only when there is
an opportunity. They were not built for systematic re-use. After the code is imple-
mented, a developer may re-use the object or the libraries somewhere else. The libraries
are built for a specific use and may need to be adapted if the developer wants to re-use
them. Software product line engineering is aimed at providing systematic re-use. The
development of software products is done while keeping in mind how the code will be
re-used later.

On top of that, the different mechanisms used to reduce amount of code, are mainly
focused on the design and the implementation. In the software cycle development, im-
plementation is only one process amongst others. There is the documentation of the
software, the requirements, the tests units, etc. Like the source code, these documents
will be similar. And by taking the benefit of commonality and the management of the
variability, these processes will gain the same advantage of systematic re-usability.

2.1.3.SPL Engineering
In improving the re-use of software, software product line engineering emerged as a
paradigm [29]. It addresses the issue of re-use in a specific context: the development of
a set of software products that answer to similar requirements. The similarity is used in
two ways: the commonality and the variability. Software Product Line engineering goes
beyond the re-use of software elements, it also propose re-use in the documents and
non-software artifacts. This section describes Software Product Line engineering and is
inspired by a presentation made by P. Heymans et al. [14].

Software product line is a new paradigm [32], it provides new methods and techniques
in the development of multiple related software systems. It builds on the re-use meth-
ods seen earlier, but goes beyond the design and implementation. Instead of being an
opportunistic re-use, it becomes a programmed and systematic re-use.

Software product line addresses two kinds of software: individualized or mass product
customized software. The first is aimed at making one product for each specific use.
Considering a set of requirements given by a customer or a technician, the software is
specifically adapted for them. This can be, for example, a car. When choosing options,
a customer builds his own hardware and the software is adapted to that specific hard-
ware. Mass product customized software is aimed for products that are different, but
produced in large quantities. The mobile phone software is different from one model to
another, but each occurrence of the model has the same software. The individualized
software could be associated to the specific mission of one customer where the mass
product is customized to the market segment through the market specific product.

Development
Now that the goal of software product line engineering has been established: develop-
ing and maintaining a set of similar software products [24] and enabling economies of
scale in the production [29], it is necessary to learn how it is achieved. The next para-
graphs will describe the differences between the regular software engineering and soft-
ware product line engineering.

The products are similar and therefore, similarities are used to reduce the amount of
work while differences must be managed. The similarity of the products engineered is
called the commonality and the differences is named the variability. Coplien et al. [6]
defines the commonality and the variability in term of assumptions. The two differ in

5

the fact that the commonality is true for each product and the variability is true in some
of the products.

Software product line engineering aims at a systematic re-use. Therefore, the develop-
ment is remodelled with two new activities. During the first, the re-use is planned and
implemented. In the second activity, the desired product is built. These are, respectively
the domain engineering and the application engineering. The next sections will detail
these two steps. In each of these activities, the developers use artifacts. The artifacts are
all the elements necessary in the development and include software pieces, require-
ments, models and tests units.

An artifact contains variability mechanism and is associated with a set of features.
When a feature is selected for a product, the associated artifact is selected and mecha-
nisms are used to activate the features in the artifacts.

Figure 2.1: Software product line processes [32]

During the domain engineering activity, the artifacts are built for the whole set of
products. Exploiting the commonality, the number of artifacts needed for the whole
software product line is reduced and the time needed too. This activity is called the
development for re-use. The artifacts are built but not used immediately allowing a
larger number of possible products due to the postponement of product decisions..
These decision may be design decisions, requirements decisions… Each decision is
built into the artifacts as a variation point [44]. This is the development of the global
software.

The application engineering activity focuses on building one specific product. By using
the artifacts of the domain engineering activity, the developer instantiate choices and
generates the product. This is development with re-use, the customization of the global
software.

Both domain engineering and application engineering are split into the same processes:
requirements engineering, design, realization and testing. These steps are related in
each activity. The artifacts built in a process of the domain activities are used in the
corresponding process in the application engineering. The processes are similar to
those in the regular software development cycle. They add the management of variabil-
ity in the artifact produced.

2.1.4.Advantage of Software Product Line
Software product line engineering has been adopted by several companies because it
provides them with advantages compared to regular software engineering. There are
two main reasons behind the advantage of the software product line: the re-use, and the
business model.

6

• Re-use

Software product line addresses development for a set of products. It improves re-use
by aiming at a systematic re-use of source code and the documents accompanying it.
By reusing and taking advantage of the commonality, the amount of work needed for
development is reduced. This helps reduce the time needed and the cost of producing
the software products. C.W. Krueger [23] listed different sources which discuss advan-
tages that the software product line can bring in term of time to market, cost and meet-
ing deadlines.

• Business model

As C. W. Krueger says in Software Mass Customization [24] software product lines is also
a business model. The choice of customizing software is a business decision as is the
scope of the software product line. Offering customization to clients is a business deci-
sion and not a technical decision. Krueger also gives some examples «Real world success
stories of software mass customization come from diverse areas such as mobile phones, e-
commerce software, RAID storage systems, computer printers, diesel engines, telecom networks,
enterprise software, construction and mining equipment, cars, ships, and airplanes.» [24].

2.2.Variability and Commonality
Until now, the software product line has been described as taking advantage of re-use
through commonality and has also been associated to the management of variability.
This section will describe how the commonality and variability are modelled.

Software product line engineering enables the development of several products through
delaying each decision. Van Gurp et al. [44] says: «Each decision constrains the number of
possible systems». By delaying these decisions, the number of possible products is in-
creased. A decision which is not made is kept as a variation point. In the same article,
Van Gurp et al. [44] lists the levels where a variation point can be present:

• Requirement specification

• Architecture description

• Design documentation

• Source code

• Compiled code

• Linked code

• Running code

For each of these levels, an adapted mechanism provides the management of variabil-
ity. As this work only focuses on the source code, only these mechanisms will be ex-
plained.

2.2.1.Feature Modeling
A variation point is a decision that is not made. Presenting each decision to the decider
of the product may not be suitable as they may be numerous or in a technical language
that the customer may not understand. As a result, it is necessary to have an abstrac-
tion for all the choices. The term feature is used. Kang et al. [17] describes the feature as
«A prominent or distinctive user-visible aspect, quality, or characteristic of a software system or
systems». The feature is an abstraction for the developer and for the user.

The domain can be seen as all the features possible where a product is an arrangement
of features. A product is built by selecting features wanted and unselecting the un-
wanted. A feature may be scattered among several artifacts and in the artifacts. A fea-
ture simplifies the choice for the user by reducing the number of choices he needs to
make and the work of the developer by providing an abstraction that binds several por-
tions of artifacts. A feature may be present at different levels as seen in Van Gurp lev-
els, and several times in the same level.

Features can be categorized into several kinds. A typology has been made by Van Gurp
et al. [44] and is reproduced here.

7

• Mandatory: A mandatory feature is a feature that is present in every product through
the fact that it «identifies a product» [44].

• Optional: An optional feature is a feature that is not always present. It «adds some val-
ue» [44].

• Variant: A variant is an abstraction for a set of features.

Features are not always independent. A feature may require another one. For example,
if you want a fax in your printer you also need a phone line input. Features have re-
quirements, dependencies or constraints that need to be documented as well. Knowing
these constraints and formalizing them enables tools to reason on them and reduce the
work of the user while selecting features.

The last paragraph talked about the problem of documenting the features and their
relations. A feature model(FM) describes the feature and their relations. A feature dia-
gram is the graphic representation of the feature modelling. The feature diagram needs
a semantic to enable both the users and the developers to agree on what signifies a dia-
gram. This section describes the semantic of feature diagrams that is used in this work.
To describe the feature diagram it uses a meta-model developed by Schobbens et al.
[35]. A feature diagram is a model of the software product line. It describes the fea-
tures, the relations between the features and the constraints on the selection of features.

Following is a feature diagram using this syntax. A feature diagram is a direct acyclic
graph. The root is the root feature(Software). It’s a mandatory feature. The nodes that
are linked to a feature are its children (radio, television, etc are the children of Software).
A child feature can’t be selected if the father isn’t selected. A feature that is optional is
marked with a circle on its rectangle (dualline and singleline are both optional features).

Associated to a father, the relation between its children determines the constraint of
their selection. There are three types of relations: and, or and xor (some models pro-
poses to use cardinality instead, or becomes [1-n], and [n-n], xor [1-1] or any other
value). Software has an or relation. This means that at least one of its children must be
selected. The relation can be translated into a constraint: radio or television or internet or
telephone. For a configuration to be valid, each constraint must be true when a feature is
set to true in the constraint if selected. Singleline defines an xor relation. Exactly one
child must be selected. Its constraint is: adsl1 xor adsl2 xor vdsl. The and relation is rep-
resented by default without any graphical adjunction, this is the case for internet: dual-
line and singleline.

..................
......

Software

radio internet

isdn

telephonetelevision

dualline

adsl1 adsl2 vdsl

singleline

OR

AND

XOR

Optional

Figure 2.2: Feature Diagram

In this example (cf. figure 2.2), the root is Software. At least one of the features radio,
television, internet and telephone must be selected. Every children of the root can be se-
lected. If radio is selected, then each of its children is selected too because they are in
an and relation. In the case of singleline only one child feature can be selected.

Additional constraints may be present through textual constraints (some models may
impose conjunctive normal form to ease computation) and are not represented in the
tree. For example, it can serve to express the fact that when a feature is selected another

8

must be selected too. Some of these constraints can also be represented graphically
instead. Some models propose to use requires and excludes relations. A feature A requires
feature B, if B must be selected when A is selected. A feature A excludes a feature B, if A
can’t be selected when B is selected.

However, more advanced feature diagrams have been studied by Schobbens et al. [35].
Instead of using logical relation, cardinality can be used to express the number of chil-
dren that must be selected. For example, if a feature has 3 children, then the cardinality
of an and would be [3..3]. Benavides et al. [2] introduced the notion of the attribute of a
feature.They can add values to nodes and be used for calculations (for example: the
cost of a solution associated to a product).

Each product that can be generated is based on a set of selected features (a set of func-
tionalities). Selecting and unselecting features is the configuration process. Selecting a
feature means, it will be present in the generated product, while unselecting a feature
ensures the feature will not be present. Depending on the constraints of the feature
model, selections cannot be arbitrary. In a valid configuration each feature is either
selected or unselected and they respect the feature model constraints.

2.3.SPL Implementation
Software product line engineering aims at producing several products. Using artifacts,
the specified products are generated. This is the realization process, which is not lim-
ited to the implementation. In the next section the two approaches will be described
and compared. These approaches were highlighted by Kästner et al. [18], they are the
compositional and the annotative approaches. This section now focuses on the realiza-
tion process as it is in the scope of this work. The hole section uses the ideas and com-
parison done by Kästner et al. [18].

Kästner et al. [18] have compared approaches by using a list of criteria. However, they
didn’t do it as a way to prove that any approach is better than another but as way to use
both approaches in a project.

• Feature traceability: The feature traceability is the ability for a developer to search
where each feature is present in the artifacts.

• Modularity: The modularity is the capacity to use a feature, as it is, in a different
product. For example, by being able to compile separately the feature, the developer
can re-use the feature in another context.

• Granularity: The granularity of the software product line has been widely discussed
in a paper by Kästner et al. [20]. The granularity refers to coarse-grained features im-
plementation.

• Safety: The correctness of the every products in terms of syntax and type3.

• Languages independence: The approach is independent from the language.

• Software product line adoption: Facility to adopt software product lines with existing
code.

2.3.1.Compositional Approaches
Kästner et al. [18] describe the compositional approaches as «Compositional approaches
implement features as distinct (physically separated) code units. To generate a product line mem-
ber for a feature selection, the corresponding code units are determined and composed, usually at
compile-time or deploy-time. ». In their article, they also give some examples of techniques
using this approach. Building one product is done by selecting code units needed and
then by linking them in that product.

9

3 Concerning the type safety, the authors explain that some approaches independent of
the implementation exists, however this work will also present an approach to help en-
force the type safety in the case of our proposed approach

Advantages
• Traceability: Each feature is implemented as code unit, which provides an excellent

traceability.

• Safety: This approach provides syntactically safe products, as each code unit must be
syntactically safe and their composition does not modifies this property.

Disadvantages
• Modularity: Some approaches offer a separated compilation of each feature to

modularize features.

• Granularity: The granularity is limited to the source code unit defined by the ap-
proach. A feature cannot be present at a lower level.

• Language independent: Providing a language independent compositional approach,
requires some manual effort.

• Adoption: The adoption of software product lines has a great influence on existing
code and development processes. This makes the adoption harder.

2.3.2.Annotative Approaches
Kästner et al. describe this approach as «annotative approaches implement features with
some form of explicit or implicit annotations in the source code. » [18]. The features are scat-
tered in the code. By associating features with portion of codes, it is then possible to
build a product by keeping only the associated code active.

Developers already annotated software before software product lines, i.e. to help them
understand and remember how the program works. With software product lines, anno-
tations can, of course, be used to explore and understand code [21] and how features
are implemented, but also to generate products. They annotate the artifacts with fea-
tures to enable generation of products. How the artifact is transformed into different
products is realized by using a generative approach to create products from this artifact.

For Czarnecki et al. [8] the key element of generative programming is the automation
of manufacturing software systems given requirements, using reusable components.
The generative approach is based on transformations applied to the artifact. Czarnecki
et al. [10] describe a transformation as «an automated, semantically correct (as opposed to
arbitrary) modifications of a program. It is usually specified as an application of a transforma-
tion to a program at a certain location. In other words, a transform describes a generic modifica-
tion of a program and a transformation is a specific instance of a transform.». For example, a
transformation can be used to perform dead-code elimination [10]. In the case of an
annotative approach, the transformation can be used to generate different products.
Generative programming rests on a configuration, a set of selected features, to manu-
facture a specific product. The automation can combine several features, i.e. different
portions of source code, or make inactive the unselected features. Pruning approach is
a generative approach. It removes the code instead of deactivating it [20]. The features
are associated with portions of source code. Then by removing the code of undesired
features, a new product is generated.

Advantages
• Granularity: The annotative approach enables a fine-grained implementation, as it

depends on the underlying annotation structure, it may be up to the character or the
line that is associated to a feature.

• Language independent: This approach is language independent as the underlying
structure may be language independent or requires a little modification.

• Adoption: Does Not have an impact on the language and affects in some limits the
development process which provides an easier adoption than compositional.

Disadvantages
• Traceability: Features are scattered through code, which makes traceability difficult.

However, it is possible through the use of support tools.

10

• Modularity: This approach does not provide separated compilation.

• Safety: As the granularity of this approach can be as low as a character, it may pro-
duce incorrect products. However, depending on the annotation mechanism, the
safety can be enforced.

2.3.3.Summary of approaches comparison
After learning what is SPL and main notions, this chapter studies the different ap-
proaches to implementing the SPL. The two approaches compared are summarized in
the table 1.

Compositional Annotative

Traceability

Modularity

Granularity

Safety

Language independent

Adoption

+ -

- -

- +

+ -

- +

- +

Table 1: comparing implementation approaches

The table 1 displays the disadvantages (-) versus the advantages (+). To fulfill the goal of
a lightweight approach, an approach that does not impose changes in the design of the
software, nor requires a language switch and could be easily adopted by developers.
The annotative approach fulfils these goals. Two of its three disadvantages, the trace-
ability and the safety can be improved by a tool support. The compositional approach
imposes a large change in the design of the tool and the use of another language. They
cannot be easily adopted by developers. These are the reasons why the annotative ap-
proach is adopted as a light way approach.

11

3. Annotative approaches

In the previous chapter, a quick survey of the software product line explained them. It
also explained the two approaches available to develop software product lines. The an-
notative approach was taken based on the scope of this work, implementing software
product lines in a light weight approach. It allows a fine-grained feature implementa-
tion, avoids separating feature into physically separated files, is language independent
and therefore provides a lighter approach that can be more easily adopted. This chapter
will focus on describing existing annotative approaches and different annotation
mechanisms available.

The annotative approach, as its name says, is an approach where the developer uses
annotation to implement features, the source code is annotated with features. The form
of the comment can vary and it can be explicit or implicit. The annotation contains the
information about which feature, the associated portion of source code is implement-
ing.

First the chapter will discuss on code annotation and its different uses. In the second
half, the use of tags to implement SPL will be discussed.

3.1.Code Annotation
Annotations comment the source code. They have been used for different purposes by
developers. According to Cachopo [4], they allows separation in the case of crosscut-
ting concerns. For example, they are used in the context of services architectures [31].

Pawlak in an article [31] describes how annotations can be useful for services architec-
ture in meta-programming. With SPOON, a «Compile-time Annotation Processing for
Middleware» [31], he proposes to use annotations to raise a program’s abstraction level. By
expressing intentions of a program, the developers can ensure the program follows
them while the implementation may depend on constraints, like target environment.
The user is working with abstract and declarative intentions. On top of raising the ab-
straction level, using annotations avoids redundant information. The deployment in-
formation is contained in the program instead of having a separate deployment infor-
mation that would require repeatition of objects and components signatures to link
them. Avoiding redundancy reduces the risk of errors when modifying the objects or
components. In this context, annotations can be used to optimize the program. De-
pending on the target environment, some parts of the program can be made active,
removed or modified by parameters.

Annotations explicit the intents of the source code. In the case of software product
lines, this fact can be re-used to associate the features to the source code. The develop-
ers have already used different annotative approaches to enable re-use and adaptation
of programs to different needs or target environments. These approaches are described
in the next sections.

3.1.1.IFDEF
C language is present on almost every systems. It is used to develop multi-systems
software. However, programs uses libraries and systems calls that may not be identical
on every system. To ensure the software works on different systems, developers use
#IFDEF as a portability mechanism [36]. An #IFDEF is an instrument that can be
used to include some portion of source code only when given parameters are present.
The pre-compiler uses variables defined by the target environment to activate or not the
source code contained between the two markers (#IFDEF and #ENDIF). If the condi-
tion is false, then the #ELSE portion is made active. See figure 3.1 for an example of
code using #IFDEF.

The #IFDEF could be used to implement software product lines. Instead of giving in-
formation about the target environment, the IFEDEF could be used to delimitate the

features. Using a set of selected features, a pre-compiler could generate an artifact con-
taining only the necessary code. However the #IFDEF mechanisms have some flaws
that makes this solution not ideal for implementation.

As the article is studying the issue in the context of portability, Spencer et al. [36] states
the issue of using this approach in the context of the portability. As long as there are
only a small number of target environments, #IFDEF is suitable. With the increase in
the number of systems on which the software is ported, the #IFDEF are becoming
increasingly numerous. The code becomes less and less readable and difficultly main-
tainable. The #ELSE adds to the confusion. It becomes difficult to know how the pre-
compiler is going to interpret the code if markers are used inside already marked por-
tions with different features. In some cases, the authors have found several layers of
markers embedded. Is this portion associated to this feature or will it be inactivated if
an other feature is not selected? On top of this complexity, the developer using an
opening and an ending markers, may miss-mark the source code, which would provoke
erroneous pre-compiled code. The last problem of #IFDEF mechanism is that the
markers are part of the logic of the program. They are mixed with instructions, making
it even more difficult to understand the code.

/* name of this site */
#ifdef GETHOSTNAME
#else #
#
char *hostname; undef SITENAME define SITENAME hostname /* !GETHOSTNAME */
ifdef
DOUNAME include <sys/utsname.h> struct utsname utsn; undef SITENAME define
SITENAME utsn.nodename
else /* !DOUNAME */ ifdef PHOSTNAME
char *hostname; undef SITENAME define SITENAME hostname
undef SITENAME
#endif /* GETHOSTNAME */
endif
endif /* PHOSTNAME */ /* DOUNAME */
else /* !PHOSTNAME */ ifdef WHOAMI
define SITENAME sysname endif /* WHOAMI *

Figure 3.1: IFDEF example [36]

These different problems led Krueger [24] to state that «they are not manageable beyond a
small number of product variations. Moreover they are code-level mechanisms that are ill-suited
to express product-level constraints». The #IFDEF mechanism is not an apropriate solution
for the implementation of software product lines as it provides a complex solution.
Even reflexions given by Spencer [36] trying to provide an answer to clarify #IFDEF
are unsuitable in this case. He recommends limiting the use of #IFDEF to the declara-
tions. This idea would greatly reduce the possibility of granularity. The developer
would then need to design his program methods and objects according to features. This
would strongly affect the development and would be against the light weight approach
goal.

3.1.2.Frames
Frames are an older technology (1970s) using annotation. Loughran et al. [26] describe
this as an approach transforming portions of source code into modules. Such ap-
proaches are named XVCL by Wong et al. and FPL by Sauer et al. To achieve this task,
the source code is annotated and then a pre-processor realizes the transformation. It
also uses tags to add metadata information to, for example, pinpoint location of vari-
ability mechanisms. The information can then be used to locate source code that needs
to be modified in a different context. The goal is to isolate concerns, methods and
classes in separate and hierarchical layers.

This approach is aimed at enabling re-use by identifying and separating variability loca-
tions. This approach wasn’t conceived for a systematic re-use as it allows ad-hoc reus-
ing of some portions of source code because they happened to be reusable. «The lower
order frames are the most reusable as they contain less context sensitive information» [26]. The
examples listed as reusable are not of great interest for this work as this approach is
limited to re-use of «IO routines, library functions etc...». On top of this issue, frame tech-

14

nology mixes the frame annotation to the annotation of how frames relates to each
others. This breaks the idea of separation of concerns, and the software product line
engineering processes. See figure 3.2 for an example of frame technology.

<x-frame name="x_CreateTask" language="java"> <set var="PACKAGE" value="BusinessLogic"/>
<break name="CREATETASK_NEW_PARAMETERS"/>
package <value-of expr="?@PACKAGE?"/> ...
import java.util.*;
<break name="CREATETASK_NEW_IMPORTS"/>
public class CADCreateTask { private Caller	
 aCaller; private Task	
 aTask;
<break name="CREATETASK_NEW_ATTRIBUTES"/>
public Caller GetCallerInfo() { . . .	
// code about capturing Caller’ s info
return aCaller;
} public int SaveTask() {
... . . .	
 // code about saving a task
<break name ="Validation"/> int nTaskID = aTask.Save();
return nTaskID;
}
<select option="CT-DISP"> <option value="SEPARATED">
<adapt x-frame = "InformDispatcher"/> </option>
</select>
<break name="CREATETASK_NEW_METHODS"/> } </x-frame>

Figure 3.2: Frame technology example [46]

3.1.3.Colored IDE (CIDE)
An other approach was created by Kästner et al. [21] to implement software product
lines. Their approach relies on a coloured IDE (CIDE). The developer uses the IDE to
annotate the program. The developer selects portion of source code and can annotate
them with features. This information is then displayed by the means of colours. The
use of colour for visualizing features will be described in the next chapter. There is no
information added in the source code. Therefore the information is registered inside the
IDE by modifying the abstract syntax tree of the source. The generation of the variants
is enabled by exporting the annotated portion of source code into modules which are
implemented by using a compositional approach. Their approach can be used to fill the
gap between annotative and compositional approaches by using annotation to isolate
features into modules. They also propose using the pruning of the source code to gen-
erate products. The pruning is done by removing every portion of source code that is
not necessary in the selected product. A portion is removed if it there are no features
associated that are selected.

They have studied two approaches, to save the annotation. The first was to save them
in the code and remove them when the editor opens the file and displays it. They re-
jected this idea as it is an invasive technique and would allow the user to make manual
changes to the annotation without respecting the rules. The second one is to use a
separate file to save them. It is not invasive in the code but forces the developer to use
an adapted IDE if he does not want to loose the annotation. As the code is not
changed, it provides a safe approach with legacy code which is not modified.

As Kästner et al. [21] say, the annotation are not only used to explore and understand
the source code and the implementation of features. They are also used to generate
products, or variants as they are called in the paper. The author believes that if the an-
notation activity is also used to generate products, it implicates the developer in this
activity more than when it is only used for navigation. Even if documenting software is
a best practice, some developers are not doing it thoroughly. The completeness of the
annotation is then « simply ensured by the fact that generated variants are compiled and tested
in the normal development process» [21].

While the annotative approach was described in the chapter on software product lines,
one advantage of this approach is the granularity. The developer can choose to anno-
tate only some lines or some characters and is not limited to physically separated mod-
ules. While this advantage reduces the need to rethink the program, it may be source of
errors. As it was pointed out in the #IFDEF approach, allowing the developer place
the end of the annotation in any place may itself result in incorrect annotation. There-
fore the IDE enforces «disciplined annotations» [21]. CIDE uses the «underlying code struc-

15

ture» to forbid «arbitrary annotation»: «only structural elements of the code, e.g., classes, meth-
ods, statements or even parameters». The underlying code structure is the abstract syntax
tree. Only nodes of the abstract syntax tree(AST) can be annotated. However, as for the
annotation itself, the enforcement of correct annotation relies on the tool itself. To en-
sure the safety of the approach, CIDE not only limits annotation to structural ele-
ments, the nodes of the AST, it also restrains annotation to mandatory nodes of the
abstract syntax tree. Kästner et al. describe mandatory nodes as opposed to optional
nodes that «can be removed without invalidating the syntax» [21].

This approach highlights the necessity of a non arbitrary annotation to ensure safety. It
also separates the annotation from the logic of the code to provide a clear code. There-
fore, it proposes a realistic approach to implement a software products line. However,
the necessity of a specific tool to enforce rules and to save the annotation is opposed to
the light weight approach desired, as changing from an IDE to another may not be
possible in every use case.

to isolate language constructs in separate lines. A possible prepro-
cessor implementation of our example from Figure 3 is shown in
Figure 5. Other annotation approaches allow similarly fine-grained
extensions, e.g., [19, 9].

1 c l a s s Stack {
2 void push(Object o
3 # i f d e f TXN
4 , Transaction txn
5 # e n d i f
6) {
7 i f (o== n u l l
8 # i f d e f TXN
9 || txn== n u l l

10 # e n d i f
11) re turn ;
12 # i f d e f TXN
13 Lock l=txn.lock(o);
14 # e n d i f
15 elementData[size++] = o;
16 # i f d e f TXN
17 l.unlock();
18 # e n d i f
19 fireStackChanged();
20 }}

Figure 5: Fine-grained extension with C/C++ preprocessor.

Annotations do not share the conceptual limitations regarding
ordered statements and fixed signatures because they indicate the
final position in the base code. Therefore, a method can always be
identified by its final signature and also the position of a statement
or a parameter in an ordered list can always be determined.

Still, our experience3 and reports by others, e.g., [45, 5], show
that annotations have problems as well. Firstly, annotations them-
selves obfuscate the source code as apparent in Figure 5. Secondly,
annotating arbitrary code fragments, whether they make sense or not,
is problematic. For example, it is possible to annotate an opening
bracket with one feature and the closing bracket with another. This
makes annotations error-prone and raises complexity. Thirdly, there
may be problems dealing with separating terminals like commas
between parameters. There are frequent situations when such simple
syntactic elements must be annotated for features as well.

In Figure 6 we show an example: an init method with two parame-
ters, in which the first parameter is included only if transactions are
enabled in the system, and the second is included only if logging is
enabled. However, when annotating this code fragment with C/C++
style preprocessors we have to split the method declaration into
multiple lines and even include the comma inside a nested ‘#ifdef’
statement so that all derivable variants are syntactically correct.

Despite these problems, annotative approaches support fine-grained
extensions better than compositional approaches. However, they
provide no perceptible form of modularity.

4. CIDE
4.1 Overview
Motivated by the problems of both compositional and annotative ap-
proaches, we built an Eclipse-based prototype tool for decomposing
legacy applications into features that may have a fine granularity.4
It uses the semantics of preprocessors, i.e., it can be classified as
3In the FAME-DBMS project, colleagues analyzed and decom-
posed the C version of Berkeley DB, which employs an annotation
approach (funded by the German Research Foundation, project
no. SA 465/32-1).
4The tool can be downloaded at http://wwwiti.cs.uni-magdeburg.de/
iti_db/research/cide.

1 void init(Transaction txn, LoggingLevel level){/*impl.*/}

2 void init(
3 # i f d e f TRANSACTION
4 Transaction txn
5 # i f d e f LOGGING
6 ,
7 # e n d i f
8 # e n d i f
9 # i f d e f LOGGING

10 LoggingLevel level
11 # e n d i f
12){/*impl.*/}

Figure 6: Decomposition with preprocessors.

Figure 7: CIDE Screenshot.

annotative approach, but avoids the pollution of source code. De-
velopers start with a fully composed application with all features
implemented in a single code base, typically a legacy application.
Then, they make features explicit by successively associating code
fragments with one or more features, i.e., they mark the correspond-
ing code. Alternatively, developers can also extend the application
with new features and associate all new code fragments with those
features. Just as with ‘#ifdef’ statements, code fragments are only
included when all associated features are selected in a given config-
uration.

In contrast to traditional preprocessors as in C/C++, we do not
obfuscate the source code with additional annotations. Instead, we
use the representation layer of the editor to indicate the associated
features with different background colors. Thus, developers can
directly recognize whether a code fragment is associated with a
feature. In case a code fragment is associated with multiple features,
which is traditionally done with nested preprocessor statements, we
mix the according background colors (e.g., red + blue = purple).
Feature names are shown in tool-tips on request. Note that it is
usually not possible to recognize the features of a code fragment
solely by background colors, especially when many features overlap.
However, colors are sufficient to determine the beginning and the
end of a code fragment associated with a set of features, and it is
convenient to look up the actual features using tool-tips. Because
of its colorful appearance (cf. Fig. 7) we named the tool Colored
Integrated Development Environment (CIDE).

As with preprocessors it is still possible to insert or edit code,
while the colors remain assigned to the code fragments. But even
though CIDE is based on preprocessor semantics, we do not as-
sign features to arbitrary code fragments to avoid the problems of
meaningless associations and syntactical elements illustrated in Sec-

Figure 3.3: CIDE [20]

3.2.Tags
Tags were present and used before Web2.0. However with the development of websites
like Flickr, an other form of annotation has been popularized: tags. Users uploading
photos can tag pictures to help others people search and to help remind themselves of
information about the photos. By using this context, Ryall [34] explained his research
on source code annotation. This section will describe tags, their use in both the social
and technical domains, how and why they are used. Finally the section will end with a
short description of how they can help to implement software product lines.

Tag is a keyword associated by the user. The user choose words that he finds relevant
to the annotated object. Rubbani has studied tags in the context of semantic web and
news and says that tags can be used as a classification and «Tags could be anything, like
personality names involved in news, news nature like funny, excited, sad (death, accidents, terror-
ism) etc or actions like win, loose, etc» [33]. In the context of the news, tags even emerge as
a new data type.

There are different forms of tags, depending on the context of their use. The tags are
used in several domains. The different domains were studied by Ryall [34]. They are
the social tagging and software development. Two kind of annotations can be distin-
guished: structured and unstructured comments.

Ryall identified several goals that annotation could help to achieve [34], first one is re-
minding, second one is re-finding. Annotation, in all the contexts studied, can help the
user to remember information about the annotated object shortly after writing it or
even for longer periods afterwards.. In the context of development, documentation
helps understand what it the purpose of a portion of source code, or why it has been
conceived this way. The second purpose is re-finding. Adding information on objects,
enables the user to more easily find an object that may not be explicit. It may be hard to
find a method responsible for a specific task when it only deals with variables and in-
structions without explaining its role.

16

3.2.1.Where are Tags Used?
Treude et al. [43] gives a reason for the success of tags, «The success of tags is closely related
to their bottom-up nature: tags do not have to be pre-defined, every user can choose their own tags,
and the number of tags per item is arbitrary.» They also give interest in tags «Mainly as a kind
of categorization. [...] Tags are useful for identifying crosscutting concerns like performance or
accessibility or scalability or responsiveness, things like that, or testing.» The fact that users are
free to use their own tags contributes to the success of tagging. There is no need to re-
member a specific vocabulary and nor to be consistent between tagging.

Ryall has studied social tagging [34] and according to him, users tag their photos for
two reasons. Tagging helps them find their pictures later. They can also have a more
social goal; as a way of communicating with others. The author also noted that users
are free to use their own keywords to associate with the objects, but the vocabulary
tends to converge on a common terminology. Tagging forms a bottom-up approach. As
a result, the tags define «semi-structured information spaces that are often referred to as ‘social
classifications' » [40] Tags are unstructured annotations.

Tags are also used to generate information about the source code. However, this ap-
proach is a particular case as tags are automatically generated and managed. Nonethe-
less, it indicates the interest of tagging for automation. Horwitz proposes a method to
analyze the differences between two versions of a program[15]. Each component of the
software receives a unique tag. Tags are automatically managed, a new one being cre-
ated when the developer adds a component, removed when the component disappears
and it keeps the link between the tag and the component when it is moved or modified.
By using these tags, Horwitz was able to compare each component between two ver-
sions and determine through a method, if it is a semantical change.

The advantage of this method, is that it links the tag to the element of the source code
and uses the source code to make computations. Tags no longer use a user-defined vo-
cabulary, but are automatically generated. The tags are only a way to add meta infor-
mation to the source code to help with its automation.

The developers using Java may be aware that an annotation system can be used to help
them comment their code[30]. Using structured comments and tags like @author and
@version enables automation of the creation of the documentation [25]. The developer,
as a best-practice, documents his code while writing it. He uses these tags and key-
words to add metadata. For example «@author CGauthier» could indicate that the
author of the class is named C. Gauthier. Then a tool is used to parse the Java files and
their folders. The information extracted is linked to the structure of the Java code to
produce a useful documentation. If the code is changed, as long as the comments are
still correct, it can automatically be used to create a new correct and updated documen-
tation. Developers can even use their own tags with a doclet [22], a «set of Java classes
that generates customized documentation from the Javadoc tool»

However, contrarily to the CIDE approach, the developer does not indicate a specific
range of associations with the source code for the JavaDoc. As classical comments,
that are unstructured, «the proximity between these two elements usually forms an implicit
link» [34]. It is enough to write the comment next to an element of the Java structure to
have them associated. Therefore there is no need to check if the annotation is correctly
englobing a node of the abstract syntax tree as the next node is automatically anno-
tated. Ryall by quoting Kaebling [16] highlights the fact that this link is implicit instead
of being explicit with the help of what he calls scoped comments.

Besides documenting source code, the Java annotation mechanism can also be used to
navigate through the program. By using tags to send the developer to an other part of
the code and by linking portions of source code with, respectively, @see and @link, the
developer enables a path to navigate in the source code. The navigation helps the de-
veloper to understand how the program is built. However, this activity is a supplemen-
tary activity. As it not intended a short term goal for the developer who is writing them,
he may not be motivated to write them.

Ryall also identified the possibility of using Java annotations to modify how the source
code is compiled and runt. For example, by tagging files, the developer can indicate
how the file must be handled by the source code management system [34]. In this con-
text, the developer can have a better opportunity to control how his program works.

17

3.2.2.TagSEA, Tags for Software Engineering
Ryall used a tool to study how developers used annotations to facilitate development.
This tool was developed by the CHISEL team with Storey et al. The tool is called
TagSEA. TagSEA is an Eclipse plugin to manage tags. Developers can add tags in the
source code. TagSEA parses files to manage the tags and provides the developers with
tools to find tags and their locations in the program (see figure 3.4 for a screenshot of
TagSEA).

Ryall mentioned two goals of TagSEA: «providing more structure for organizing annotations
by allowing developers to define their own vocabulary, and allowing developers to link crosscut-
ting concerns in the software» [34]. TagSEA enables the use of any keywords by the devel-
oper as opposed to the limited support of specific standard words in standard by the
IDE. TagSEA also enables use of hierarchical tags as a way to organize the keywords.

TagSEA, by providing tools to locate tags efficiently, enables the developer to link dif-
ferent locations in the source code under the same keyword. It therefore helps the de-
veloper in linking concerns that are scattered in the source code: crosscutting concerns.
TagSEA makes the annotation of source code with tags easier by providing tools to
tag, re-find and manage tags. The next paragraphs describe TagSEA and are summa-
rized from two publications by Storey et al. [40, 41].

Tags are annotations which are located in comments. They begin with a @tag and are
followed with the keywords, metadata like the author and the date and a message. In
this example, the tag is bug.

//@tag bug -author="CG" -date="enCA:18/01/07" : Crash when reset

This example of tagging is a comment (//). The tag used is named bug. The metadata
are the author name (-author=) and the date (-date) which uses the time zone. Finally a
message is added (:). Hierarchical tags have the form of system.subsystem.crash. TagSEA
provides an interface to display the hierarchy of tags, their position. The location gives
information about the line number, the file, the associated element of the source code
associated, the author and the date. It also provides a visualization under the form of a
tag clouds where tags are bigger if they are used more.

Figure 3.4: Screen capture of TagSEA from TagSEA Website

18

TagSEA uses the metaphor of waypoints. Each tag has a location which acts as a way-
point. Extracted from the navigation vocabulary, a waypoint is a point of interest. Like
navigation systems, a set of waypoints can be transformed into a route. Routes are seen
as a way of navigating through code and exploring it.

In the context of software product lines, the use of route to explore how a feature is
implemented could help the user. It prevents him from the necessity of searching and
going to each location manually. As Storey et al. [40] say: « Routes are sequences of way-
points to specific code features [...]».

As the tags are present in the source code, every developer can access them independ-
ently of any IDE. By using tags to communicate with others developers, TagSEA helps
coordination in the development team. For example, a developer can easily mark a
region he knows to be a potential source of bugs to be checked by others developers.
Tags can also be used to capture knowledge. As developers implement, they can record
information about the source code. It is quicker to use keywords to classify knowledge.
They can then use a message to give more detail. This information can then be ac-
cessed more easily as it is not necessary to search using text search tools. The develop-
ers only need to use the lists of hierarchical tags to search locations and messages.

TagSEA enable other plugins to define their own tags. Therefore it does not limit the
possibility of its use. Developers can define their own tag syntax and use it to expand
the possibility of tagging. TagSEA also allows the definition of new supported lan-
guages in the same process.

3.2.3.Tags for Software Product Lines
As stated in the introduction, the goal of this work is to provide a light weight ap-
proach to implementing software product lines. Two approaches exist for implementa-
tion: the compositional and the annotative. As the compositional requires the adapta-
tion of the software by dividing software into modules, it would have too much of an
effect on the implementation by requiring a paradigm shift. The annotative approach
provided a better solution as it is only necessary to add information about features to
the code. Although this approach can also have an impact on the implementation, it is
close to practices that are already present like documenting source code.

Different annotation systems and annotative approaches were studied. Some ap-
proaches were rejected as they were impractical if the software product line was non
trivial. Two approaches provided more interest, the CIDE and the frame technology.
Due to its conception, the frame approach mixed features and their use rules. However,
its use of tags to add metadata about features was an innovative idea. The CIDE ap-
proach provided a systematic re-use approach as it had been conceived to implement
software product lines and was a complete approach as it enabled generation of vari-
ants using the annotation. Nonetheless, it was based on a specific IDE, which would
break the light weight approach goal.

As tags are already used, they provide a better tool support and have already been ac-
cepted by the developers. They can thus provide a light weight approach to implement-
ing software product lines using an annotative approach. They also provide a separa-
tion between the code itself and the features which was lacking in Frame technology.

3.3.Adopted SPL Tagging Approach
Different authors proposed the annotative approaches but it does not fulfill the goal of
this work. Frames mix annotations and models. CIDE is dependent on an adapted
IDE, #IFDEF is the source of complex and unreadable source code and frames is not
adapted to the systematic re-use. These annotation approaches are just hiding the com-
position between annotation. There is an important necessity for tools that are specifi-
cally adapted for these approaches, like IDE or preprocessor, as they do not just gener-
ate variants, but transform the program into software modules which then need to be
composed.

The tagging approach uses tags to annotates source code. A tag represents a feature
from the feature model. As existing approaches were judged insufficient, the tags ap-
peared as an interesting opportunity. Boucher et al. [3] propose to use tags with a spe-
cific keyword followed by the name of features associated. A tag represents a feature

19

from the feature model. The specific tag can then be used by the developer as an indica-
tion of the fact that a portion of source code is annotated. By reading the names of the
features, he could then known the features associated.

To provide an approach independent of any language, they propose to put tags in
comments, as comments are present in almost every languages. This offers the advan-
tage of separating the annotation from the logic of the program while still having it in
the source code and not separated from the file. In the next example, the feature called
featureD from the FD (see figure 3.6) is tagged (see figure 3.5).

/*@feature:root.featureA.featureD@*/
Figure 3.5: Tagging of featureD

root

featureC featureA featureB

featureD featureE

Figure 3.6: Feature diagram

/*@feature:root.featureA:root.featureC@*/
/*@feature:root.featureB@*//*@!file!@*/

Figure 3.7: Two kinds of tagging

 The two comments of figure 3.7 are examples of tagging used to annotate source code
with features. It is inside a comment to be still displayed in the source code but apart
from the logic of the program. The syntax used in this example is the one used in this
work (however, it is only one of the numerous possible tag syntaxes possible). There
are two markers that indicate that this comment is used for features: @feature: and @.
The first is the begin marker and the other is the end marker of the tagging. The two
features are represented by the name of the features, which will be described in the
next chapter. They are separated by colons. To tag several features, their name can be
put in the same tagging and separated with a colon. The first tagging means that the
next element of the source code is associated with two features that have for name fea-
tureA and featureC, children of feature root. A special tags can also be used to indicate
that the entire file is associated with the feature. In the second example, the feature
called featureNameB is associated with the entire file.

The association between the tag and the portion of source code uses a similar idea as
the one in Javadoc, the proximity [34]. The closest following element of the AST is
associated to the features tagged. As one or more features can be used as tags, the por-
tion of source code can be associated with more than one feature at a time.

public static void main(String[] args) {

if(test=true) {
/*@feature:root.featureA@*/
doSomethingForCar();
doSomethingElse();

}
}

Figure 3.8 Tagging association

In this example (figure 3.8), a feature called featureA is associated with the call of a
method doSomethingForCar (dashed red box). The next element of the abstract tree is
associated with the features. Although, it may look simple, it is necessary to know ex-
actly with which portion of source code the tagging is going to be associated. The tag-
ging approach uses the idea cited by Ryall [34] of scoped comments. As comments are

20

scoped using a semantic, the developer need to mentally compute the association.
However, if the association was displayed, it would facilitate its work and reassure him.

The elements that are associated are nodes of the AST, as in the approach taken by
Kästner et al. [21]. However, this approach does not use an ending marker, but only a
tag marking the beginning of the annotated portion. The end of the annotation is
automatically the end of the associated node. The approach does not allow arbitrary
annotation as only nodes of the AST can be annotated.

The success of tags also originates from the freedom that the user has to choose for
tags. However, in the tagging approach, the developer cannot choose freely which key-
words he wants to use. He has to use names of the related features. These names come
from the feature diagram used to represent the software product line.

If their approach cannot use this advantage, there is another reason why the annotation
will be used by the developer. As Kästner et al. [21] stated, the annotation is used to
generate products. According to them, this is a sufficient reason to ensure the annota-
tion is done. On top of that, as the tagging approach does not require the use of any
tool to annotate, the developer can do it while coding, without having to use the mouse
to call for a function of annotation and select the code annotated; it reduces the weight
of such an approach.

The JavaDoc analogy was used to explain the approach because tagging features is a
closed process, the same way that the developer writes comments while writing code,
he can write tags during the same period. Like the comments, they also explicit the
intention of the code. The developer could also tag the source code after it has been
written. For example with legacy code that must be transformed into a software prod-
uct line, an existing software can be tagged.

The tagging approach is independent of any tool, as it saves the annotation in the code.
Any IDE can open the annotated files without losing the annotations. This reduces the
impact of the tagging approach compared to IDE-specific approaches. One of the rea-
sons CIDE stored annotations independently is that, their approach used rules to en-
force correct annotation, i.e. annotating only nodes of the AST. As tagging does not
need to be rule enforced to annotate only nodes of the AST, there is no need for tools
to annotate features with tags.

However, if one of the advantages of the tagging approach is to not require a tool, it
allows developers to select nodes that Kästner et al. [21] qualified as optional. Therefore
it could produce a syntactically erroneous product. The approach simply relies on the
developer to avoid such errors, like tagging only the then clause of an if statement.

In the tagging approach, tagging is only one part. Tags serve to annotate source code.
The annotation contains the features which are implemented by the annotated portion
of source code. The second part, is the generation of a product. The annotative infor-
mation can be used to generate a specific product according to given specifications. The
specification is called a configuration, it is a set of features that are selected for a prod-
uct. Only the source code that is associated with these features or that is not associated
with any feature should be active in the generated product. The solution they took in
this approach is a transformation of the code: the pruning.

To render inactive the source code only associated with non-selected features, a tool
prunes this code. This part of the approach does require a tool. The tool parses files
and searches for tags. It then associates the portion of source code with the features
named in the tags. Given a set of selected features, the portions of program that are
only associated with unselected features are pruned. In the figure 3.9, the original source
code is pruned with a configuration where the feature root.featureA is not selected.
Therefore the code associated (dashed red box) is removed in the pruned version on the
right. Technically, the node of the AST is removed.

21

public static void main(String[] args) {

if(test=true) {
doSomethingElse();

}
}

public static void main(String[] args) {

if(test=true) {
/*@feature:root.featureA@*/
doSomethingForCar();
doSomethingElse();

}
}

Figure 3.9: Code pruning

As the scope of each annotation is a node of the abstract tree, the pruning is realized
directly on the node. Modifying the abstract syntax tree instead of the source code di-
rectly has some advantages as Czarnecki et al. [10] says. One of them is that the auto-
matic refactoring or modifications are easier if the code is already as an abstract syntax
tree.

The pruning is done after the code is resolved into an abstract syntax tree by a pruner.
As nodes of the tree are removed, the abstract syntax tree is transformed by rewrite rules
back into a new source code by an unparser [10]. Then the pruned code can follow his
path through regular compilation. If the tags are annotating an entire file, then the file
itself is deleted from the generated project. The resulting product is a compiled pro-
gram containing only the code of selected features.

An advantage of not requiring any tool to annotate the feature is that, the annotated
source code could be used for other purposes than pruning. Other methods like com-
positional methods could be used to transform the source code. As long as the tool uses
the same semantic to associate tags with source code, the developer could tag once and
use the result several times.

As already mentioned, the approach is tool independent at least for annotating source
code with tags. However this requirement has a flaw with the syntactic correctness. As
seen, this translates into allowing mandatory nodes to be annotated. If these nodes are
pruned, then the resulting code is syntactically incorrect. These errors are easy to locate
by the developers who can correct them quickly. The problem is that they may only
appear when a certain set of features is not selected. This issue may be solved by using
a tool as a support to the tagging.

Boucher et al. [3] chose the pruning for their approach as it was the technique that was
best suited to the constraints given in the original issue. The company that developed
the approach, expressed the desire to switch to software product lines but couldn’t
change the language they used. On top of that, software embedded in satellites, has
strong requirements in term of space and memory allocated.

Therefore, pruning the unnecessary code lowers the size of the final program. Tagging
variables with features reduces the memory to only what is strictly necessary, as vari-
able allocation requests are pruned from the source code when they are not necessary.

Pruning can be applied to entire files. Therefore, a product could use a variable without
it being defined in the pruned product and produce a type error. The source of the error
may be easy to find, but as already noticed with the syntactic errors, they may not pro-
duce themselves before a specific configuration is pruned. The solution would be to
generate every possible product and check if they are correctly typed and do not con-
tain any syntactic errors. However the number of possible configurations may be too
large to do this way.

Boucher et al. [3] proposed to use the principal ancestors, a set of features that will always
be present with a given feature. By ensuring that «Each feature can only use variables, func-
tions and types declared by itself or by its principal dependencies. » [3], the developer can en-
sure the safety of the type. The developer only needs to prune the software once for
each feature by selecting only the features and its principal dependencies and checking
their correctness.

To compute the principal ancestors, they propose a heuristic. Given an origin feature, the
set will contain its mandatory siblings, its father and all features imposed by required
constraints. For each feature in the set, it is necessary to repeat the process iteratively.

22

When the set is stabilized, only features that will always be present in legal configura-
tion will be present1.

The advantage of the heuristic is that it does not require complex tools to resolve the
feature diagram. However, some features may be missed. It is also possible to compute
an exact computation of the features that will always be present with the origin feature
by resolving the feature model in the case where the feature is selected. This resolution
uses both the constraints of the tree, the kind of relations between nodes and the con-
straints. As this algorithm requires to use a semantic approach of the feature model, it
may take more time than the heuristic in the case of important feature models. For
clarity purposes, it will be called in the rest of the thesis the minimal set of features
(associated with a feature).

23

1 A legal configuration is a configuration which respects rules and constraints of the
feature model and where every feature is either selected or unselected

4. Features Visualization

Development is a complex cognitive task. To support it, best-practices like documenta-
tion were created. Documents produced can then help the developer to build a mental
model, to understand the software [38]. In this process visualization can help achieve
this task. Visualization are numerous and dependent on different criterions. It is not
possible to present all the different visualizations possible in a chapter and this is not
the goal of this work. Instead, a few visualizations that were adapted for this work.

4.1.MetaModel Visualization
Heidenreich et al. [13] described a visualization technique to help the developers in the
context of annotative approaches. Its goal is to link features with their implementation.
For that purpose he proposes a visualization technique based on four views and de-
scribes them in the article independently of any realization method.

• Realization View

• Variant View

• Context View

• Property-Changes View

The realization view links one features to the software elements that implement it. This
view displays only the software elements that are annotated with the feature. The pur-
pose is to help the developer to understand the complexity of a feature through the
number of elements that are linked to it. It also helps to check the nature of coarse-
grain elements that implement the feature. In figure 4.1, a model is used and its ele-
ments are greyed if they are not associated with the selected feature.

Contact
+name

Address Relationship
+ role

Person
+ forename
+ surname

Company

ContactList

Group

+contact

1

+address

1

+relationships

1..*+source1

+relationships

1..*+target
1

+list1

+contacts1..*

+source*

+target *

+source 1

+target*

Figure 2. Realisation of the feature Relation-
ships rendered by FeatureMapper’s Realisation
View in a GEF-based editor (TOPCASED).

erated by EMF [3]. That means, that the editors do not need
to be adjusted to work with our tool.

3.2.1 Realisation View

In the FeatureMapper, the Realisation View helps to under-
stand which parts of a solution model are mapped to a spe-
cific feature or feature expression. It greys out all model ele-
ments that do not participate in the realisation of the current
feature. This is depicted in Figure 2 for the feature Rela-
tionships. Since the model elements that are not associated
with the feature are still shown, the context of interaction
between the feature realisation and the rest of the system
is preserved. To use this view, the developer first enables
the Realisation View via the respective button on the Fea-
tureMapper toolbar and selects the feature of interest from
FeatureMapper’s feature model.

3.2.2 Variant View

The Variant View shows all model elements that are in-
cluded in a specific variant of the product line. This visual-
isation can be either parameterised by an existing concrete
variant configuration or interactively adjusted by selecting
features from the feature model shown in the FeatureMap-
per. Unlike the Realisation View it also includes the ele-
ments that are common to all products from the product line
and are not mapped to a specific feature. Figure 3 shows a
variant of the product line that does not include the feature
Addresses. According to our experience, the Variant View
is a visualisation that directly resembles the semantics of
the transformations used for product derivation. To use this

Figure 3. Variant of the product line without

the feature Addresses rendered by the Variant
View.

view, the developer first enables the Variant View via the
respective button on the FeatureMapper toolbar and selects
all features that should be part of the specific variant of the
SPL.

Figure 4. Colours assigned to selected fea-

tures in the feature model.

3.2.3 Context View

The Context View involves the colouring of the features in
the feature model as well as the colouring of the model ele-
ments accordingly. In Figure 4 a feature model is depicted
that has colours assigned to some features1. These colours
are used by the tool to also colour the model elements that
participate in the realisation of the features. In Figure 5 the
model elements are shown that are rendered in the colour
that is assigned to the corresponding feature. Note, that
according to our argumentation in Section 2.3, mixing of

1Note that colours in this paper are indexed in order to be readable in
black and white printouts.

Figure 4.1: Realization view on a diagram

The variant view displays the elements as they would be in a variant, a product. Using
a configuration, all the elements that won’t appear in the related product are hidden.
This view helps in analyzing if the resulting product is correct and in seeing the im-
pacts made by changes. Heidenreich et al. do not indicate if the elements that are not
linked to any feature should be displayed. The figure 4.2 shows an example of a variant
view.

Figure 2. Realisation of the feature Relation-
ships rendered by FeatureMapper’s Realisation
View in a GEF-based editor (TOPCASED).

erated by EMF [3]. That means, that the editors do not need
to be adjusted to work with our tool.

3.2.1 Realisation View

In the FeatureMapper, the Realisation View helps to under-
stand which parts of a solution model are mapped to a spe-
cific feature or feature expression. It greys out all model ele-
ments that do not participate in the realisation of the current
feature. This is depicted in Figure 2 for the feature Rela-
tionships. Since the model elements that are not associated
with the feature are still shown, the context of interaction
between the feature realisation and the rest of the system
is preserved. To use this view, the developer first enables
the Realisation View via the respective button on the Fea-
tureMapper toolbar and selects the feature of interest from
FeatureMapper’s feature model.

3.2.2 Variant View

The Variant View shows all model elements that are in-
cluded in a specific variant of the product line. This visual-
isation can be either parameterised by an existing concrete
variant configuration or interactively adjusted by selecting
features from the feature model shown in the FeatureMap-
per. Unlike the Realisation View it also includes the ele-
ments that are common to all products from the product line
and are not mapped to a specific feature. Figure 3 shows a
variant of the product line that does not include the feature
Addresses. According to our experience, the Variant View
is a visualisation that directly resembles the semantics of
the transformations used for product derivation. To use this

Contact
+name

Address Relationship
+ role

Person
+ forename
+ surname

Company

ContactList

Group

+contact

1..*

+address

1

+relationships

1..*+source1

+relationships

1..*+target
1

+list1

+contacts1..*

+source*

+target *

+source 1

+target*

Figure 3. Variant of the product line without

the feature Addresses rendered by the Variant
View.

view, the developer first enables the Variant View via the
respective button on the FeatureMapper toolbar and selects
all features that should be part of the specific variant of the
SPL.

Figure 4. Colours assigned to selected fea-

tures in the feature model.

3.2.3 Context View

The Context View involves the colouring of the features in
the feature model as well as the colouring of the model ele-
ments accordingly. In Figure 4 a feature model is depicted
that has colours assigned to some features1. These colours
are used by the tool to also colour the model elements that
participate in the realisation of the features. In Figure 5 the
model elements are shown that are rendered in the colour
that is assigned to the corresponding feature. Note, that
according to our argumentation in Section 2.3, mixing of

1Note that colours in this paper are indexed in order to be readable in
black and white printouts.

Figure 4.2: Variant view on a diagram

The context view reposes on a similar idea as the realization view except it addresses
the issue in the case of more than one selected features. Each feature selected is associ-
ated with a color (see Figure 4.3 for an example of color associated with features). Then
the annotated source code is colored according to its feature. For the authors, this view
enable the perception of the region where features are interlaced and of relations be-
tween features implementation.

Figure 2. Realisation of the feature Relation-
ships rendered by FeatureMapper’s Realisation
View in a GEF-based editor (TOPCASED).

erated by EMF [3]. That means, that the editors do not need
to be adjusted to work with our tool.

3.2.1 Realisation View

In the FeatureMapper, the Realisation View helps to under-
stand which parts of a solution model are mapped to a spe-
cific feature or feature expression. It greys out all model ele-
ments that do not participate in the realisation of the current
feature. This is depicted in Figure 2 for the feature Rela-
tionships. Since the model elements that are not associated
with the feature are still shown, the context of interaction
between the feature realisation and the rest of the system
is preserved. To use this view, the developer first enables
the Realisation View via the respective button on the Fea-
tureMapper toolbar and selects the feature of interest from
FeatureMapper’s feature model.

3.2.2 Variant View

The Variant View shows all model elements that are in-
cluded in a specific variant of the product line. This visual-
isation can be either parameterised by an existing concrete
variant configuration or interactively adjusted by selecting
features from the feature model shown in the FeatureMap-
per. Unlike the Realisation View it also includes the ele-
ments that are common to all products from the product line
and are not mapped to a specific feature. Figure 3 shows a
variant of the product line that does not include the feature
Addresses. According to our experience, the Variant View
is a visualisation that directly resembles the semantics of
the transformations used for product derivation. To use this

Figure 3. Variant of the product line without

the feature Addresses rendered by the Variant
View.

view, the developer first enables the Variant View via the
respective button on the FeatureMapper toolbar and selects
all features that should be part of the specific variant of the
SPL.

Figure 4. Colours assigned to selected fea-

tures in the feature model.

3.2.3 Context View

The Context View involves the colouring of the features in
the feature model as well as the colouring of the model ele-
ments accordingly. In Figure 4 a feature model is depicted
that has colours assigned to some features1. These colours
are used by the tool to also colour the model elements that
participate in the realisation of the features. In Figure 5 the
model elements are shown that are rendered in the colour
that is assigned to the corresponding feature. Note, that
according to our argumentation in Section 2.3, mixing of

1Note that colours in this paper are indexed in order to be readable in
black and white printouts.

Figure 4.3: Colors associated to the features [13]

The figure 4.3 is a feature diagram. Three features each have a different colour associ-
ated. The same colour will be used to highlight features in source code.

The last view is aimed at solving the issue of changes made to the structure and prop-
erties of an artifact. The authors propose to use an eye-catching colour to indicate the
location of these spots. The goal of this view is to help the developer to identify proper-
ties that may change depending on the features selected.

Heidenreich et al. [13] identified different questions their tool could help to answer,
they are reproduced here from their work:

• «Which elements implement a specific feature? » is answered by the Realization view.

• «Which elements are used in a specified product? » is answered by the Variant view.

• «Is the generated product valid? » is answered by the Variant view.

• «Which features are interacting with others features? » is answered by the Context view.

• «Which features make changes to properties? » is answered by the Property-Changes view.

The four views can help answer these questions at different levels. Depending on the
goal, the view can work with different elements. For example to search which files are
implementing a feature, the realization view can be used by displaying, in a list of files,
only those which implements a feature. If the developers wants to know which meth-
ods, or line of source code are implementing a feature, the realization view takes place

26

in the view of the file, and only some portions of the source code are displayed. These
views work on a decision, is this element part of the view or not? It doesn’t indicate
whether the whole file or only a few lines are dedicated to a feature.

It is necessary to contrast the advantage of the realization view, as highlighting only
one feature with color or displaying only the code of one feature works on the same
elements. However, as the realization view only displays the code of the feature, it is
separated from the surrounding code. This separation could prevent the developer from
understanding correctly or simply understanding how the feature is implemented. For
example, if the feature uses a function or a method described somewhere else in the
code, then the developer may not be able to understand how the feature is implemented
without an access to the complete source code.

However, Heidenreich proposes to apply visualization also on the software models. As
Ball et al. [1] says, there are simple representations of softwares, the graph and the hi-
erarchical representations. The graphs are used in most CASE tools. As these tools
already provide a representation of the program, adapting the model to the software
product line is logical. Heidenreich et al. [13] proposed to use this approach on models
representing artifacts. For example, the author used it for data and relations models. He
also discussed about realization models, which could be in this case the model of the
source code.

4.2.Source Code Visualization
As previously mentioned, Kästner et al. [21] have developed an annotative approach to
produce software product lines. Their approach was based on a IDE called CIDE for
Coloured IDE. To associate features with source code, the developers needs to select
the portion of source code and use the mouse to choose a feature of the FM. The an-
notation is then saved in a separate file ‒ containing feature. Their tool is an example
of the visualization technique described by Heidenreich et al. in section 4.1. They have
built two views on two levels.

The two levels are the file and project levels. The file level limits the scope of the view
on the currently opened file and uses the nodes of the abstract syntax tree as elements
to colour (or hide in some views) in their views. At the project level, the scope is no
longer limited to a specific file, but to all the files in the project, the element coloured
(or hidden) is the file. These two levels help the developer to understand how features
are implemented in the project from a high and low level approach. As Kästner et al.
[21] say: «This way the colour metaphor scales from smallest code fragments within a file up to
entire directories.». See the figure 4.4 for an example of coloured files and source code.
The lines of source code are coloured with the colour of the associated feature. The
same principle is used for the files in the project explorer.

SPL is generated by AST transformations, so developers do
not have to deal with pure syntax elements like the separating
comma between parameters [22].

In the following, we discuss four concepts used by CIDE
to support feature traceability and code exploration in SPLs
though visualization: scaling, views on the file system, and
two forms of views on file content.

3.1 Scaling

In previous work, we have only considered annotating
code fragments inside a file. Inside files, using the underly-
ing AST scales well: It is possible to annotate entire classes,
entire methods, individual statements or even parts of ex-
pressions or parameters.

However, for CIDE to scale for large SPLs, we also need
to consider coarser granularities than file fragments. Often
entire files or even packages (directories) can belong to a
feature. For example, in Berkeley DB (Java version) the
transaction functionality is already modularized to a large
degree in a package. There are still several scattered calls to
the transaction subsystem, however the core implementation
is located in few files. The traditional approach (also for
#ifdef preprocessors) would be to annotate the entire content
of all these files. However, this makes locating feature code
more difficult than necessary, because a developer first has
to look inside these files.

Instead, we add the possibility to annotate files and di-
rectories directly. To maintain the color metaphor, we also
add background colors to files and directories in Eclipse’s
standard project explorer view as shown in Figure 5. For
developers it becomes thus straightforward to recognize that
an entire directory belongs to a feature. This way the color
metaphor scales from smallest code fragments within a file
up to entire directories.

Figure 5. Colors scale from directories to
code fragments

3.2 Views on the File System

When entire files or directories are colored a user can
recognize features without looking into all files. However,
there are still two problems. First, when many files are
involved it can still be tedious to find all files in the directory
structure. Second, when only a code fragment inside a file
is annotated – instead of an entire file – the developer still
won’t find all feature code without looking into all files.

To address these problems, we introduce a filter function-
ality that creates a view on the file system. In order to use
this, the developer has to select one or more features from
the feature model (or a list of features) and press a new filter
button in the standard Eclipse project explorer. When acti-
vated only those directories or files are shown in the project
explorer which contain a file or code fragment annotated
with one of the selected features. Thus, the developer can
trace a feature to all its code fragments.

Note, to select features for a view, a simple list of fea-
tures without further dependencies is sufficient. Although
it is possible to create views on invalid configurations this
way, e.g., show two mutually exclusive features at the same
time, this flexibility might be necessary for certain tasks. For
example, it must be possible to create a view on a single
feature without first having to create a valid configuration
(which might require several other features). Dependencies
between features are only required for the derivation pro-
cess, but not necessarily to provide views for developers.
Nevertheless, CIDE shows an indicator whether the current
selection would also be a valid configuration.

In Figure 6, we show how this is implemented in CIDE:
in the upper ‘Project Explorer’ view there is a new filter
button. When activated only those files that contain code
fragments that are annotated with at least one of the selected
features are shown. Features can be selected from the lower
view (‘Feature List’); when the selection is changed the view
on the file system is updated instantly. For example, when
selecting the transaction feature for Berkeley DB SPL and
activating the filter function (as shown in Figure 6), only
those files with some transaction code are shown, all others
are hidden. It does not only show the ‘txn’ package which is
entirely colored because it contains only code of the transac-
tion feature, but it also shows files from other packages that
contain annotated calls to the transaction system.

3.3 Views on File Content

The filter function is very useful to create views on the file
system structure. However, it only shows which files contain
annotated code fragments. When opening a file in the editor,
we still have to search for all locations. Compared to the
length of the entire file, the annotated code fragment can be
relatively small, e.g., only a single statement or parameter.

Figure 4.4: CIDE

27

Both view require the selection of features to modify the views. To do that, Kästner et
al. [21] propose to use a simple list of features (« to select features for a view, a simple list of
features without further dependencies is sufficient» [21]). The authors believe that it is enough
as dependencies are not relevant here, they use instead an indicator to warn the devel-
oper if the selected set of features is a valid configuration.

CIDE provides two views. They work on a similar principle to the variant and the re-
alization views described by Heidenreich. The former only keeps the source code that
is associated with selected features. As they say, this is close to the result of generating
a product. The latter is aimed at tracing a feature. This resolves the issue resolves the
issue highlighted earlier: the absence of context if only elements implementing the fea-
tures are shown. It displays only the code associated with the feature, independently of
any annotation for other feature but with some unannotated code that may be relevant
to understanding the feature implementation.

However, just this example demonstrates the views given by Heidenreich, it helps un-
derstand the limit of these views. While Heidenreich uses this technique on models,
they are not limited to any type of model. Therefore, their approach relies on a manual
mapping of features to the elements realizing them [13], which could be done auto-
matically in the case of a model of the source code.

Kästner does not provide a solution as, in contract to what is done in a file level, there
is no relation between files. Kästner et al. just use the hierarchy of files displayed by the
IDE. The view inside a file displays the source code annotated by colours and therefore
the developer could use the context displayed to understand how a feature was imple-
mented in the program.

Kästner et al. [21] also advance the idea of editable views. The developer could use the
view discussed previously as a way to edit the source code. As the view would only
display relevant code, the developer could focus on the implementation or modification
of a set of features. To ensure the developer is aware of the modification he makes, an
indication of the annotated source code is still visible. They inform the developer that
he is modifying a portion of source code where some source code is hidden. However,
the developer is not constrained when he erases a portion of source code which contain
a hidden portion, the code not displayed will be deleted too.

Evaluation
The implementation of the views by CIDE, served as an illustration of the advantage
of the visualization techniques. It also indicated which views were most important, the
realization and the context views (which is discussed in the paper associated with the
variant view). However, the study of this implementation also showed the limits of the
approach through the absence of relations on a project level view between elements,
and the limits of not using a metric for indicating presence of features in files. As this
work agrees that there is no need to display the dependencies in the implementation,
the developer should refer to the software product line feature diagram. Non trivial
software product lines display at least 50 features, which, with a simple list, requires
time to find the wanted feature.

The use of colours is also somewhat problematic. As all developer may not be com-
pletely able to see all of them and many even see none. If the user lacks of some col-
ours recognition, he may misinterpret the annotation. On top of that, the number of
colours that the human eye can perceive is limited. Two colours that are close may be
not discerned as different. Therefore the use of colour may be incorrectly interpreted or
be missed by persons with troubled vision.. However they are an intuitive way to asso-
ciate features with source code.

4.3.Integrating Source Code and Meta-
Model Visualizations

In section 4.1 and 4.2, the visualization techniques were applied to source code and files
and elements of the meta-model. However, the visualization techniques do not provide
a mechanism to link the different levels of abstraction. This section describes another
visualization technique for source code that could help integrate the different levels of

28

abstraction. This has not been developed specifically for software product lines. Ball et
al. [1] studied different visualization techniques in the context of software visualization
as a whole. Among different visualizations, one kind of visualization is interesting in
this context. As stated earlier, there are two levels in the visualization of software
product lines: the source code and the project. The source code gives access to source
code portions while the project gives access to the file and meta-model. Between both
levels, there is a gap that needs to be filled manually by accessing at each file one at a
time. The goal of the view is to understand the location of a feature and its relative
importance through the use of the display. As this information must be calculated by
the developer in this head through out this long process, it is not efficient. By providing
a visualization that enable him to see the whole content of a file at a glance, Ball et al.
offer a way to facilitate the work of the developer. A second visualization will then be
used to extend the idea to a set of files.

The idea of the first visualization is to colour elements of the code according to a type.
Then by reducing the line to pixels, forming rows of code, the developer can have a
preview of how the code is structured. The figure 4.4 shows an example of source code
reduction.

Figure 4.4: Code Reduction [1]

Their approach can be use to represent lines (like in the figure) or to use pixels to repre-
sent the source code independently of the look of the line.

In a presentation, Stasko et al. [37] explore a visualization, SeeSoft System, that uses
the colour and the same principles but at a system level. On top of that they use a
zoom mode which enables them to see a more detailed file representation and then
accesses the source code. The goal of their view is to help track different operations in
the source code, like modifications, bug fixes… The figure 4.5 shows in the background,
every files of a project. When selecting a file, a window appears and zooming to differ-
ent levels of zooms enables the developer to read the source code.

29

!

!"#$%&'())* +!',-.) /

!""!#$% !&'%"(

0 1233456789:;'<8#'8=8>'?$4='@<'A@2#94'9@54
0 B8"'@%4'3$%4'@<'A@2#94'C@'@%4'3$%4'@<'
"$D43A
+8%'$%5$98C4'3$%4'$%54%C8C$@%;'4C9E

0 F$:4'C8"$%&'>@2#'A@2#94'9@54'C@'CG4'=833;'
=83:$%&'<8#'8=8>;'CG4%'3@@:$%&'789:'8C'$C

H$9:;'!C4<<4%'8%5'!2I%4#'
JHHH'K@!H L/(

!"#$%&'())* +!',-.) M)

!&'%"()*+",

M.;)))'3$%4A
@<'9@54'$%'
.('<$34A

N$54@

Figure 4.5: Code Reduction with zoom function [37]

4.4.Summary
This chapter highlighted the necessity of visualization for software product lines im-
plementation. It then analyzed a solution proposed by Heidenreich et al. [13] and an
example of it by Kästner et al. [21]. While some of the different views proposed were
interesting, the use of colours may be a disadvantage. Finally, the chapter explored two
others current visualization techniques used in software modelling.

30

Part 2. Contribution
This part is the contribution of this work. First, chapter 5 ana-

lyzes the tagging approach. Given its limitations, a set of goals and requirements for
a tool support is presented. Chapter 6 describes the design choices and the imple-

mentation of the tool, XToF. A guided tour of XToF is given in chapter 7 and is fol-
lowed by an example illustrating the tool in chapter 8. In chapter 9, the future work

for the tool is described. Finally, chapter 10 concludes this work.

5. Tagging Approach Evaluation

The previous part provided an overview of the different approaches available to im-
plement SPL. The first section of this chapter will describe why the tagging approach is
the lightest weight approach by comparing it to other annotative approaches. As stated
in section 2.3.3, the annotative approaches have some disadvantages that can be im-
proved by using a tool as a support to these approaches. The second section describes
these disadvantages. Section 5.3 describes the requirements of a such tool and section 5.4
contains examples of use.

5.1.Comparing Tagging Approaches to
other Annotative Approaches

Each approach has been described and analyzed in section 3.1. This section will com-
pare them to the tagging approach to justify why the tagging approach is the most ade-
quate appropriate for our light weight goal.

5.1.1.IFDEF
The #IFDEF approach uses begin and end markers associated with a parameter to
annotate portions of source code. It can be used for portability [36].

As the developer is free to insert markers, he may miss mark the code. He can annotate
a beginning bracket and close the annotation before the closing bracket. The generated
code is then invalid. The tagging approach use nodes of the abstract syntax tree, there-
fore enclosing brackets are annotated correctly. Secondly, the markers used are inte-
grated in the logic of the program1, increasing the complexity in reading the code and
in understanding it. The tagging approach uses annotations which are separated from
the text of the program being simply commentaries.

5.1.2.Frames
Frames use tags and annotations to mark portions of source code that need to be trans-
formed into modules [26]. Frames uses annotations to indicate which portion of source
code is a module. It also uses the annotations to indicate the rules for combining the
modules. In contrast, the tagging approach separates the annotations for identifying
features source code from the rules saved in the FM. Separating enables the developer
to design and structure the abstractions of features differently from their implementa-
tion [7].

5.1.3.CIDE
CIDE is an IDE which uses colour to indicate features in source code Kästner et al.
[21] claim that saving the annotation in a separate files avoids modifying the text of the
program. However, as with the tagging approach, using comments to save the annota-
tion achieves the same goal. The main issue with their approach is that it requires the
use of a specific or adapted IDE. On top of that, it is impossible to modify the source
code outside this tool without losing all the annotations, unlike the tagging approach.

CIDE enforces rules to provide a syntactically safe annotation. The tagging approach,
by construction, limits annotation to nodes of the AST, providing a syntactically non-
arbitrary annotation. However, CIDE goes further and allows only annotation of man-
datory nodes (mandatory nodes are nodes that cannot be removed without syntax er-
rors). To annotate features, CIDE requires the developer to use a specific function,
while the tagging approach allows him to just type the tags.

One issue with using annotation is, as in documenting source code, the annotation may
be incomplete. It is common to see methods in a program that don’t have any com-
ments or specifications. In CIDE and the tagging approach, as that the annotations are

1 #IFDEF markers can be considered as being instructions like if-then-else clauses.

used to generate the products and the annotated source code is compiled several times,
this ensures that the software is completely annotated [21].

Both approaches avoid obfuscating the code. The tagging approach uses tags inside
comments and CIDE entirely relies on colours. In both cases, the text of the program is
not modified. However, if the developer has some issues in identifying the colour, he
may miss some information. If no features are selected for highlight, then the devel-
oper is unaware of the portions of source code annotated with features. The tagging
approach does not always show the scope of the annotation but always indicates the
presence of an annotation. As the CIDE approach relies on a tool, it also provides
support to annotate and view annotation. The tagging approach requires a tool only to
prune. However, a tool support for this approach could be useful and will be described
later.

5.1.4.Summary
The tagging approach relies on ideas close to the CIDE approach, however it removes
the necessity of a specific tool reducing the weight of this approach and enabling mul-
tiple uses of the tagging approach. Therefore, the tagging approach is a light weight
approach to implementing software product lines.

The comparison between the three approaches highlights the necessity of having a tool
for support. Even if the tagging can be done independently of any tool, the possibility
of seeing the scope, using a feature mode and navigating through features are impor-
tant functions that could support the approach.

5.2.A Tool to Support the Approach
In the section 2.3, it was established that annotative approaches had some flaws com-
pared to the compositional approach. These are the modularity, traceability and the
safety and could be solved by use of a tool support. When comparing the tagging ap-
proach to other annotative approaches, the main issue with the tagging approach is the
lack of clarity with respect to the the scope of a tagging.

Modularity is the ability of the developer to use a feature in an other context. For ex-
ample in compositional approaches, a feature is developed into a module and this
module can, in some conditions, be used in an other context. Modularity is out of the
scope of this thesis and therefore out of the tool built to support the tagging approach.

As the compositional approaches use separated modules to realize features, the trace-
ability is immediate. One feature is in one module and no other is in it. In the annota-
tive approach, the advantage of not modifying the software for the approach also ren-
ders the task of tracing a feature more difficult. It is scattered through the software and
becomes a crosscutting concern. However, the tags contain the trace of features im-
plementation.

Therefore, the developer with a search and find function could locate every occurrence
of a feature. However, a tool specifically built for that would be more useful. By using
the feature model, a developer can select a feature, the tool then displays a list of every
location of portion of source code associated with that feature. Then the tool could
show the scope of the tags so that the developer knows exactly which part of the source
code in each files is dedicated to the selected feature.

As in the compositional approach a module is syntactically safe. However in the case of
an annotative approach, rules are needed to avoid arbitrary annotation. While this ap-
proach only enables the developer to annotate nodes of the abstract syntax tree, it also
allows him to annotate mandatory nodes (mandatory nodes are nodes of the AST that
cannot be removed without syntax errors). Therefore a tool may be used to enforce this
rule. There is also a second possibility to help the developer, the use of the minimal set
of features can be used to ensure the safety.

Tagging the source code with features requires using the exact name of the features. It
makes the task of annotating more difficult as the developer has to remember the fea-
ture name. The developer could also make errors in the name and the tags would be
ignored generating an erroneous product. A tool, which could check whether the name

34

used are correct or not and propose names of features to the developer while he is tag-
ging, would reduce the weight of this approach.

The tool should rely on the feature model, display a feature diagram to help the devel-
oper remember the location of the feature. When proposing features names to the de-
veloper, the tool should enable both use of short name and of the beginning of the path
to propose the long name of the feature.

5.3.Requirements
From the experiments carried out by Boucher et al. [3] a list of necessary functions for a
tool was developed on top. Some requirements were added later as early tests showed
their necessity. The table 1 lists them and for each requirement, the associated priority is
indicated by an X. In the rest of this work, R1 to R14 will be used to indicate the re-
quirements. The table is repeated in annex D to be used during the rest of the work.

R Function\Priority High Medium Low

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Load an FM X

Display an FD X

Create an FM X

Checks Tags X

Auto-completion for Tags X

Drag-and-drop to tag X

Display scope X

Display list of tagging location

Navigate X

Configuration X

Retain state of a configuration X

Prune X

Minimal set of features X

Project Level visualization X

Table 5.1: Requirements and their priority

1. The tool should provide a mechanism to load a feature model. Different functions of the
tool require the developer to know the name of features, such as checking the tags,
pruning, auto-completion, etc… The function configuring and minimal configura-
tion require an FM. As many function depends on it, it is assigned a high priority.

2. The tool should display the feature diagram associated to the SPL project. Displaying an
FD helps the developer remember the name of the features and how they are struc-
tured. It can also serve as an entry point for functions associated with features such
as configuring and lists of tagging. It has a high priority as it is a necessity for using
the tool and helping the developer.

3. The tool should enable the developer to create an FM. The tool already provides a
mechanism to load a feature model. A mechanism to create and modify an FM
inside the tool would prevent the developer from having to switch to another tool.
Each modification to the FM should be echoed in the tagging to maintain coher-
ence. As the create function is already sufficient for every others requirements and
modifying FM is not a necessity, it has a low priority.

35

4. The tool should check tags correspond to existing features. The tool ensures that every tag-
ging only contains existing features. The tags are compared to the names of the fea-
tures contained in the FM. If a feature name is incorrect, empty or unknown, the
developer is warned. As this function can prevent the developer from errors due to
the tagging, it has a high priority.

5. The tool should provide an auto-completion for tags. While tagging, the developer can
call for an auto-completion function. The tool should propose names and paths of
features to help him choose the correct feature name with the characters already
written. This accelerates tagging by reducing the need to write the long names. This
has a medium priority, as tag checking can already provide a way to avoid typing
errors, but accelerates the tagging.

6. The tool should provide a drag-and-drop mechanism to tag source code. The drag-and-drop
could be used to quickly tag a portion of source code. When hovering the source
code with a feature, the portion that would be associated is highlighted. This has a
low priority as it is a redundant function compared to auto-completion.

7. The tool should display the scope of a tagging. The whole tagging approach relies on
how a tag is associated with a portion of source code. Developers may not be aware
of how the AST is structured and how the association is done. So, the tool should
display the scope of a tagging to let the developer check if it is the intended associa-
tion. As this feature is highly important, it has a high priority.

8. The tool should display a list of every tagging. One of the disadvantages of annotative
approaches is traceability. So, the tool should display a list of all tagging. Selecting a
set of features should reduce the list displayed to tagging containing at least one of
the features. As it is one of the disadvantages of the annotative approaches, it is
classed as high priority.

9. The tool should provide a mechanism to navigate through the tagging. The tool should en-
able the developer to go to the location selected in a list of tagging. As it is also part
of the traceability, it has a high priority.

10.The tool should provide a mechanism to configure feature models. As the pruning requires
a configuration to prune an artifact, the tool should provide a function to realize
configurations. While a configuration is simply a set of selected features, the com-
plexity comes from the legal criteria of the configuration. The tool should also pro-
vide a propagation mechanism to accelerate configuration. Each time a feature is
selected or unselected, given the selected features and the rules of the feature dia-
gram, features that are required are automatically selected and the features that
cannot be selected are unselected. The tool hides the complexity of feature model
constraints and accelerates the configuration by restraining the number of choices
to valid ones and by automatically making mandatory choices.

11.The tool should save the current state of a tagging. The tool should propose a function to
save the current state of a configuration and restore it later. This would enable the
developer to have a set of configurations ready to prune or to complete before
prune. This would be an important function in a test procedure by configuring and
pruning several configurations. This function is classed medium priority as the de-
veloper can use the tagging approach without it. However it could greatly reduce
time needed to configure.

12.The tool should provide a pruning mechanism based on a configuration. The tool should
provide a pruning mechanism using a configuration. As this is part of the tagging
approach, it has a high priority.

13.The tool should provide a mechanism to compute minimal sets of features associated with a
feature. When using the tagging approach, some types of errors can appear. Using in
a feature, a type, function or variable that is declared in association with a set of
features can sometimes lead to an error as the target is pruned. To prevent such er-
rors, the developers can use a design rule: «Each feature can only use variables, functions
and types declared by itself or by its principal dependencies. » [3]. The minimal set of fea-
tures is the set of features that will always be present with a selected features. It has
been classed at a medium priority.

14.The tool should provide a visualization technique at a project level. The different mecha-
nisms and functions present in the tool only provide visualization at a file level. The
visualization should help trace features implementation at a project level.

36

5.4.Scenario
5.4.1.Pre Requisite
XToF requires a Feature Model for displaying a feature diagram and for any opera-
tions. The feature model is stored in a XML file compatible with SPLOT / SPLAR file
model (as XToF does not intend to provide creations of Feature Model in the first ver-
sion, the SPLOT website can provide a Feature Model creator). XToF will provide an
explorer to select a file representing a model, it will be copied inside the project and
then used as the feature model associated to the current project. For each process, there
will be a list of sub-processes that the tool should carry out.

5.4.2.Implementation
This is the classical process from the software development. The tool should provide a
help for maintaining traceability and delimiting features insides the code. Tags are used
for both purposes. They contain the features used to tag this waypoint. During the cod-
ing, a developer can use the auto-completion to tag a block of code. He can refer to the
displayed feature diagram for more information about the features available. A line of
code that is not associated with any waypoint will be part of every generated product.
The developer should also be able to review which blocks of code are associated with a
set of features.

1. Associate a set of features with a block of code.

2. Review code associated with a set of feature and inversely.

3. Provide help for the developer when tagging blocks of code.

5.4.3.Verification with the Minimal Set of Feature
To help the developer in coding, the tool provides several mechanisms. Every mecha-
nism to display the scope and list the tagging associated with a feature are part of this
mechanism but also the minimal set of features. Considering the feature model, the
tool should generate a minimal set of features associated with a selected feature. The
developer can than use that set of features to generate a product and checks its validity.
The code of the generated product should simply be compiled to perform the verifica-
tion. By applying this test to each feature of the feature model, the developer ensures
the code is correctly tagged.

1. Display a list of every minimal set of features (i.e. display every features).

2. Select one and generate the related minimal product.

3. Provide a project associated to the generated product to help the user with the com-
pilation.

5.4.4.Product Generation
Once the process of coding is finished, the developer will use XToF to generate prod-
ucts or while he develops, to test the tagging. A product is a program generated from a
set of features. A valid product is a product whose set of features respects the model
constraints. The generation of a product prunes the code related to the set of unse-
lected features from the product.The developer configures the feature model by select-
ing or unselecting features successively. At each stage of the configuration, a sub set of
features can be automatically configured according to the constraints of the model. For
example, in an XOR group only one feature can be selected, once the user chooses one
feature of the group, the sibling features cannot also be selected and by propagation,
they are unselected. The developer should be able to see the impact of his actions
through the modification of the feature diagram.

1. Provide an environment of step by step configuration.

2. Reduce the number of steps needed by propagating choice and adapting the display.

3. Provide history of choices and a cancel option.

4. Inform when the configuration is complete.

37

5. Generate the pruned code from the set of features in a folder by using a

a. Built-in pruner.

b. Pruner provided by the user.

5.5.Summary
The tagging approach relies on features names. It associates features to nodes of the
abstract syntax tree through their tags. This annotation is tool independent. However it
could be supported by a tool to facilitate the work of the developer. Using the annota-
tion, the pruning removes the code unused for a configuration and generates a pruned
source code that can be compiled to manufacture a specified product.

This approach through the annotative approach and the use of tags, reduces the
amount of modifications that need to be made to the software and to its development.
In summary, the tool with its support to the processes, further reduces the difficulty of
using our approach to implementing software product lines. Therefore, it is a complete
and light weight approach to implementing software product lines.

38

6.Design of a tool Support

Chapter 5 established the necessity of a tool to support the tagging approach and defined the re-
quirements it should answer to. Therefore, the idea of building a tool emerged. This tool can be used
to put into practice the tagging approach described in the previous chapter.

This chapter will first give a short description of the tool developed (XToF), then describes the de-
sign solution and finally its architecture.

6.1.What is it?
XToF (Cross(X) Tagging of Feature) is the tool developed to support the tagging approach. It was
designed using the requirements of section 5.3. It is an Eclipse plugin. Eclipse is a well known IDE
used for Java, C, PHP, etc. It is open-source. XToF integrates within Eclipse to provide support. In
the current version, it supports Java and C languages to implement software product lines. However,
it is possible to use others languages by defining an extension for XToF. XToF has been published
under the form of a tool demo paper by Gauthier et al. [12] in the workshop VaMoS 20101.

It has implemented the requirements 1,2, 4,5, 7-14 of section 5.3. As a reminder, see table 6.1. In this
work R1 to R14 are used to reference a requirement. The table is repeated in annex D.

R Function\Priority Implemented

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Load an FM Yes

Display an FD Yes

Create an FM No

Checks Tags Yes

Auto-completion for Tags Yes

Drag-and-drop to tag No

Display scope Yes

Display list of tagging location Yes

Navigate Yes

Configuration Yes

Retain state of a configuration Yes

Prune Yes

Minimal set of features Yes

Project Level visualization Yes

Table 6.1: Table of requirements

6.2.Implementation Choices
During the development of XToF, several implementations decisions had to be made.
They are explained in the next subsections.

1 http://www.vamos-workshop.net/

http://www.vamos-workshop.net
http://www.vamos-workshop.net

6.2.1.Selected Backends
To accelerate the development of the tool, a search for existing tools and solutions that
could be re-used started. Two backends were needed, one for handling tags, the other
for managing FM. The two solutions selected were respectively TagSEA and SPLAR.

TagSEA
XToF needed to parse files to search for tagging, then parse the tagging for each fea-
ture. XToF should also maintain data about every tagging and their location. TagSEA
appeared as an adequate tool for such functions.

TagSEA2 is a tool described by Ryall [34] and developed with the help of Del Myers. It
originated from a research collaboration between University of Victoria's Computer
Human Interaction & Software Engineering Lab3 and the IBM Watson Research Centre4. It
is aimed at «providing more structure for organizing annotations by allowing developers to define
their own vocabulary, and allowing developers to link crosscutting concerns in the software» [34].

TagSEA enables the developer to tag the source code for locations of interest. TagSEA
uses the idea of tags in the social context. The user is free to use his own vocabulary to
add information to the source code. He can also add some metadata to the tags, like
the author and the date. The tags do not only contain keywords and metadata but also
a message. All this information is then displayed in TagSEA.

TagSEA uses the metaphor of waypoints to help navigation in the source code [41].
The waypoint is a position that is marked as interesting in navigation systems. By com-
bining the waypoints, a route is formed, a way of navigating through the code. The
developer can also make presentation of code using the routes.

TagSEA displays different views of the tags. One is a list of tags. As tags can be hierar-
chical, it helps organizing them. When a set of tags is selected, every locations is dis-
played with information such as the file name, the associated element of source code,
the date, the author and the message. This helps the developer in searching for a spe-
cific location.

On top of displaying this informations and the tags, TagSEA enables the developer to
modify them. The information associated with a specific location can be changed and
the corresponding tagging will be updated too. TagSEA also enables the tags them-
selves to be renamed and deleted. Therefore it helps the developer in the task of main-
taining the tags and avoids using a search and find function. TagSEA also displays tags
under the form of a tag cloud. The size and importance of the tags in the representa-
tion are linked to their usage.

TagSEA support out of the box the C(++) and Java languages. However, the tagging is
not limited to source code as files, breakpoints and URL can be tagged. TagSEA also
enables developers to define their own kind of tags and points of interest. This is real-
ized by using the plugin mechanism brought by Eclipse, the IDE in which TagSEA is
implemented.

As TagSEA is used, every function that TagSEA provides to the user can be used for
the benefit of the tagging approach. TagSEA can be used as a backend for the tags
parsing and management and as a front-end to access features, tags and locations. The
next list describes the reasons behind choosing TagSEA as a backend for tagging.

• TagSEA is aimed at tagging source code, it also uses comments to embed tag in the
source code. It provides tools to list tags, their locations and accesses the file and
lines where they are written. It is very close to this approach in term of how tagging
is realized.

• TagSEA is an Eclipse Plugin and using it may limit the tool to this specific IDE. How-
ever, Eclipse is a mature IDE used by many developers and provides frameworks for

40

2 http://tagsea.sourceforge.net/
3 http://www.thechiselgroup.org/
4 http://domino.research.ibm.com/cambridge/research.nsf/pages/index.html

http://tagsea.sourceforge.net
http://tagsea.sourceforge.net
http://www.thechiselgroup.org
http://www.thechiselgroup.org
http://domino.research.ibm.com/cambridge/research.nsf/pages/index.html
http://domino.research.ibm.com/cambridge/research.nsf/pages/index.html

developing plugins, working on source code, files and projects, creating views and
displays. Therefore, it would reduce the time needed to develop the tool.

• TagSEA uses the plugin mechanism of Eclipse for working, but it also enables the
extension of the languages and types of tags supported by TagSEA. Therefore, it
would reduce the time needed to implement the tags. As Eclipse provides mecha-
nisms of extension by using plugins, it enables the tool to have the capacity to be
easily extensible for other languages. As Eclipse enables the plugin developer to use
the functions provided by the IDE to support development, the tool could re-use the
functions and mechanisms known. Therefore, developers wouldn’t face unknown
mechanisms.

• TagSEA served as a tool for research. It has been validated in the context of tagging
source code for points of interest and has even been used by a developer to locate
crosscutting concerns [34].

• TagSEA uses tags to help the developer to remember and re-find locations of inter-
ests. In an other work, TagSEA was also described as a navigation mechanism in the
source code by Storey et al. [41]. The tagging approach would benefit from such
mechanisms to facilitate the work of the developer.

• The main developer, Del Myers, who worked on TagSEA could be contacted and
was ready to provide some insight of TagSEA to help develop XToF.

SPLAR
The requirements (of section 5.3) 1 and 2 (load an FM and display an FD) imposed
using an FM. Others requirements imposed realization of a configuration. FM are
complex (relation between nodes, additional constraints…), computations are done
through specific tools such as SAT Solvers. As the purpose of this master thesis is not
to develop a tool for reasoning on feature models, to make computations on an FM,
the FM is transformed into formulas solved by a SAT solver. This mechanism is used
when doing a configuration and it serves to propagate the (un)selection of features and
to ensure only valid configuration.

Mendonça has realized tools to make computations on feature models that are suitable.
Mendonça do research on large scale reasoning techniques for feature models using
SAT solvers [27]. He produced two tools, SPLAR a reasoning library and SPLOT [28]
an online tool using SPLAR as a backend. The following list describes why the tools
developed were selected as a backend for managing FM.

• The different tools were conceived to provide an efficient reasoning for large scale
FM. The methods used in the tool have been published and validated.

• The feature model is saved under a specific language. It is aimed at producing com-
pact notation while remaining legible and modifiable by humans.

• Two tools were available and offered different integration solutions possible. SPLAR
is a Java library that can be integrated in Eclipse and SPLOT is a website that could
be accessed using the Eclipse internal browser.

• The tools propose creation and modification mechanisms for SPL FM. Although it
was out of the scope of this work, the tools could be used in a future work to extend
XToF. As the current version didn’t provide any creation mechanisms, the developer
can use SPLOT or create manually a feature model for XToF.

• Mendonça agreed to help in integrating his solution in XToF. This provides an ad-
vantage to quickly integrate feature model reasoning in the tool.

There were two tools available, SPLAR and SPLOT and three solutions to integrate an
FM backend (SPLOT could be integrated in two different ways.

1. First solution is to use the browser integrated in Eclipse to access the SPLOT web
site, the developer works online and XToF loads the resulting file from the website.
This solution requires a constant Internet connection to effect any operation on the
feature model. The tool would have to re-interpret the file describing the feature
model, reducing the benefit of having a complete SPL backend. The computer of
the developer is released from the computation on feature diagrams.

2. Instead of using the website directly, an XML interface is used with questions and
answers to communicate with SPLOT. As the website is not used directly, the tasks

41

can be integrated into Eclipse. This solution also requires a constant Internet con-
nection. The computer of the developer is released from the computation on feature
diagrams. Simple questions and answers are used to describe the feature diagram.
Therefore, there is no need to parse and reinterpret a file. The developer of SPLOT
wanted to add an XML interface to SPLOT in the short term.

3. The last solution is to use SPLAR. SPLAR is a Java library used in SPLOT. XToF
would use the library to make the computations. Integrating SPLAR requires an
understanding of how it works and how it has been designed. As the configuration
system used in SPLOT is not available, it needs to be redeveloped for XToF. How-
ever as XToF already includes a feature diagram display, it can be adapted to enable
configuration. This solution permits the complete integration of the backend. There-
fore, the user is unaware of the underlying mechanism. It also enables the possibility
of using a different tool if needed. There is no Internet connection required. Though
XToF does not provide creation functions, the feature model comes from a file that
is interpreted by SPLAR and not by XToF.

The solution chosen is SPLAR as SPLOT solutions required an Internet connection for
all reasoning done on feature models. The website may be not maintained in the long
term. SPLAR provides an permanently available solution which would be fully inte-
grated in the Eclipse IDE.

6.2.2.Solving the Scope of a Tagging
The authors of the tagging approach rely on the AST to provide a syntactically pruned
code [3]. They state that the functional block of the AST is associated. However, they
don’t give a precise rule for associating nodes of the AST with a tagging. To provide a
tool independent approach, the rules of association must be fixed so that any tool using
the tagging has the same association for the tagging.

The scope of a tag is explained in the case of the Java language. However the same
principles are used for others languages such as the C language. The scope of a tag is
the node called the portion node. To find the portion node, three special nodes are re-
quired: the tag node, the comments containing the tagging, the following node and the
enclosing node, the node that contains directly the tag node as displayed in figure 6.1. The
following node is used to check if the following node is a sibling of the tag node. To un-
derstand what the following node, it is necessary to understand how the research is
done. The AST is flattened on the character axis, see figure 6.2. The reason behind flat-
tening the AST is due to the absence of direct access to the AST. Eclipse provides a
visitor pattern to access the AST. On the character axes, a node is defined by a range:
its beginning and its end. Using that notion, the following node can be defined as the
next node on the character axis. If the following node is in the enclosing node, then it is the
portion node. This is the case in the figure. All the computations are done using the
characters axis. The corresponding source code is displayed with the node designated
in the figure 6.5.

The enclosing node is used to determine if the following node is a sibling of the tag
node. If the following node is not inside the enclosing node, see figure 6.3 for the AST
and figure 6.4 for the character axis, then the following node is not the portion node. In
this case, there is no source code associated with the tagging.

Root Node

Enclosing Node

Tag Node Following Node Portion Node

Figure 6.1: AST with the following node being the portion node

42

Root Node

Characters Axis

Enclosing Node Tag Node Following Node

Portion Node
Figure 6.2: Representation of an AST on the characters axis with the following node being the
portion node.

Root Node

Enclosing Node

Tag Node

Following Node

Figure 6.3: AST with no portion node

Root Node

Characters Axe

Enclosing Node Tag Node
Following Node

Figure 6.4: Representation of an AST on the characters axis with no portion node

This rule always works except for two cases: the case when there is JavaDoc declared
and with Switch-Case statements. For the first case, when a method is declared, if any
JavaDoc is present, it is part of the method declaration. If the tagging is declared be-
tween the JavaDoc and the beginning of the actual method declaration (see figure 6.5),
the following node is the modifier node (if present or the next one). The method declara-
tion becomes the However, if there is no JavaDoc, the same tagging will be associated
with the whole method.

public static void main(String[] args) {

if(test=true) {
/*@feature:Car@*/
doSomethingForCar();
doSomethingElse();

}
}

Enclosing Node

Tag Node

Following Node

Figure 6.5: Association of tagging

Therefore, we needed to develop a solution to keep a coherent association, even if any
JavaDoc is present. When a node declaring a method is considered during the research,
its start is set at the start of the range of the modifier node (or the next present node) see
figure 6.6. Therefore if any JavaDoc is added to the method declaration, it does not
block the association.

43

/**
 * Main function
 * @param args The arguments
 */
/*@feature:Car@*/
public static void main(String[] args) {

 }

Tag Node

Following Node

Method Declaration

Figure 6.6: Association in the case of JavaDoc

In a switch-case statement, the case node is limited to the declaration of the case and
each of the instructions included in the case are sibling nodes of the case. Therefore the
association method would always limit the association to the case declaration only (see
figure 6.7). The case can be compared to the then statement of an if-then-else. By putting
a tagging before the then, the developer expects the whole then statement to be associ-
ated. It should be the same in the switch-case to keep it coherent. Otherwise, the devel-
oper would have to tag each instruction (see figure 6.8), including the break if present.
The decision that was taken to keep it coherent is to artificially treat the instructions of
the case as one node.

switch(i) {
/*@feature:Car@*/
case 0:

doSomething();
break;

case 1:
doSomethingElse();
break;

}

Figure 6.7: No specific rule for association

switch(i) {
/*@feature:Car@*/
case 0:

/*@feature:Car@*/
doSomething();
/*@feature:Car@*/
break;

case 1:
doSomethingElse();
break;

}

Figure 6.8: Manual tagging of each instruction

However in this strategy, which nodes are included? In a switch-case, the instructions
of the next case could be executed too if there is no break statement. Two choices were
available then; to use this approach for the tagging (see figure 6.9) or limit the instruc-
tions to the break included or before the next case (see figure 6.10).

switch(i) {
/*@feature:Car@*/
case 0:

doSomething();
case 1:

doSomethingElse();
break;

case 2:
doNothing();
break;

}

Figure 6.9: Association until the next break

44

switch(i) {
/*@feature:Car@*/
case 0:

doSomething();
case 1:

doSomethingElse();
break;

}

Figure 6.10: Association until case or with break

The first solution offered is not suitable in some context as the resulting pruned code
would removed the case included in the association (see figure 6.11). The second case is
rejected too. The developer cannot remove only the first case without affecting the sec-
ond one. Therefore, the scope of the tag includes all the nodes following the case node
until a break node, included in the scope, or an other case node, not included in the
scope. This choice enable the removal of only the directly annotated case as in figure
6.12.

switch(i) {
case 2:

doNothing();
break;

}

Figure 6.11: Pruned code with association until the next break

switch(i) {
case 1:

doSomethingElse();
break;

}

Figure 6.12: Pruned code with association until case or with break

6.2.3.From Feature Name to Tags

The syntax of the tags was illustrated in the example with the description of the tag-
ging approach in section 3.9. Then in section 6.4, the scope association was described.
In the tagging, the tags are the name of the feature. However, what happens if there are
two features that have the same name, but not the same parent. Is this allowed by the
FM language? How to deal in the tool given these possibilities? What is the rule for
naming the features and the associated tags?

Several options are possible. First, impose a different name on every feature and use
only the name of the feature. Second, allow features to have the same name and use as
tags the name of feature preceded by the name of the parent if a feature name is not
unique. Third option, still allow features to have the same name and use the path from
the root and the feature name as tags. The next paragraphs analyses the three options.

First, we analyzed the solution imposing the unique name of features. The main ad-
vantage of a such solution is that tags are short, they only contain the name of the fea-
ture. Therefore the taggings are easily readable. However, this solution has several dis-
advantages. It imposes a different feature name on every feature in the feature model
used. As the tagging approach is intended to be tool independent, it should not make
assumptions or impose conditions on how features are named. Using only unique
names may lead the developer to design an FM with features name like lh_thumb for
the thumb of the left hand. On top of that, having only the name of feature used make
for a more complex understanding of where the feature is located in the FD and what
is its purpose.

The second approach uses only the name of the feature if this name is unique and if
not, imposes the use of the name of the parent feature in the tag. For example, if there
are two features named thumb in two different parents, left_hand and right_hand, the
corresponding tags are left_hand.thumb and right_hand.thumb. This solution still offers
short tags (a bit longer than the first but only in some cases) and the same disadvantage
as the first solution. However a supplementary issue appears. If two features can have
the same name, why could their parents not too? Instead of talking about left_hand and

45

right_hand, the body could be first split into left_part and right_part then each has a hand
feature. The cor responding tags would be l e f t_par t .hand. thumb and
right_part.hand.thumb. Then the rule to impose the parent name becomes complex and
could in some case result in a long list of parent names before the actual name of the
feature. This solution lacks the simplicity of the first and in some cases could be as long
as the third.

As we talk about the third, imposing the path from the root to the feature name in-
cluded is always the same. There is no need to know if the parent has a unique name
and so on. The tags are however always long and provide a less readable tagging. For
example in the two examples in the previous paragraph, the tags for the thumbs would
be body.right_hand.thumb, body.left_hand.thumb, body.right_part.hand.thumb and
body.left_part.hand.thumb. The tags are long but it is easy to remember that the thumb of
the third tags is attached to a body, in the left part and is not attached to the right foot.
This solution provides meaningful tags that can be easily traced in the FD. The choice
of imposing the root name is discussed in next paragraph. Concerning the root name,
it is imposed as a way to provide a possibility to use several FM in the same project.
For example, some research by Czarnecki et al. [9] proposes to use a split FM to facili-
tate the configuration. In large projects, it may be useful to apply the same idea to the
implementation itself.

As the second solution is simply a more complex mix between the first and third ap-
proach, it could not be chosen. The choice was restrained to the first and third solu-
tions. As the first solution imposes a strong requirement and may lead to complex
names, it was eliminated and the third solution was selected. It provides a simple rule
to form tags that could provide meaningful tags as the hierarchical tags of TagSEA
[34]. It should be noted that spaces are not allowed in the tagging and therefore spaces
in feature names are replaced by an underscore.

6.2.4.Display a Feature Diagram
The requirement 2 of section 5.3, states that the tool should display an FD. The FD is
also used to access most functions related to features. However in CIDE, they relied on
a simple list. Why should XToF use an FD instead of a simple list?

Displaying a list is longer than an FD where some nodes can be closed. Therefore
when the developer is working, it is easier for him to find a feature he needs. As in sec-
tion 6.2.3, the choice was made to use path of features as tags. Therefore displaying an
FD at any time and using it as way to access functions helps the developer remember
the paths of the features. It makes the approach coherent.

6.2.5.Project Level Visualization Techniques
One of the requirements is to provide a project level visualization to help in traceabil-
ity. If there is a project level, it has also a lower level. The different visualizations tech-
niques had to be separated into these two categories. The level of abstraction was used
to define them. Before discussing the project visualization, the lower level should be
explained. This is the file level and aims at providing visualizations that help the devel-
oper understand how the features are implemented in a file or a set of files. Different
mechanisms are used and are explained in several sections of the chapter 7. They are
the scope highlighting (displays the associated source code of a tagging), the associated
feature (displays the feature associated to a line of source code), the file labelling (a label
precedes file names that contains selected features), filters (hides files that do not con-
tain any selected feature) and file selection (displays the feature contained in the selected
files).

This mechanisms are useful to analyze how a few features are implemented in a few
files. However, if the number of features selected is growing, then more and more files
are displayed, until every file may be displayed, and vice-versa. The project visualiza-
tion also aims at providing information to the developer of how the features are im-
plemented. It is designed to fit every features and every files of the project.

46

6.3.Architecture
This section provides first a description of the architecture of XToF, then describes the
architecture of TagSEA.

6.3.1.XToF Design
The diagram of component (figure 6.13) describes the architecture of XToF and will be
completed by a more complete description in section 6.3.1. There are five components.
The core component is VFD which contains the FM and can be used to access others
functions. The component Parsing provides highlight and the parsing and pruning in-
dependent of any language, while the actual parsing is realized by Java Parsing (or C
Parsing, not represented, for C). When the selection is modified, the Filters can ask to be
notified. Filters and Project Visualization provide visualization techniques using the in-
formation about tagging of Parsing. The next paragraphs will describe why this design
was selected.

Figure 6.13: Diagram of component

When designing XToF, choices had to be done. They are described here and why they
have been selected. As TagSEA was chosen for, amongst many reasons, its compatibil-
ity with our tagging, its implementation in Eclipse, see section 6.2.1 for more details, it
imposed the choice of Eclipse. Therefore, the implementation of XToF had to been
done as an Eclipse Plugin. An Eclipse plugin can be composed of several plugins. Each
plugin can describe extensions points, others plugins can use them to extend the func-
tions of the plugin. It can also provide an API. TagSEA can be extended to new lan-
guages and tagging by using extension points. A plugin using this extension, must pro-
vide some informations and can re-use the scanners TagSEA provides. The plugin then
only has to scan each tagging that TagSEA finds and sends back the tags found. It does
not have to handle anything else, not even the data persistence.

XToF provides many different functions. As implementing it in one single plugin
would be complex and difficultly maintainable, these functions should be regrouped
into separated plugins. How many plugin should it have, how to regroup their func-
tions? First, the reflexion can be done on the core function of XToF. The main function
of XToF is the SPL and the FM. Loading a feature model and handling the request
(configuring included) to the FM are the main functions. The others functions can be
regrouped into three coherent categories: the parsing of tagging, the handling of an
FM (as a point of access to functions too), traceability mechanisms and project level
visualization. Regrouping the functions into these categories provides coherency to
each plugin.

As the FM is the core of XToF, should the FD display be included? Displaying the FD
in a separate plugin would allow the possibility of using a different type of FD display
or more than one. However, as there would be many accesses to the core for informa-
tion on the FM and as it will serve as the main point of access to functions, it should be
regrouped with the core.

Concerning the functions that are specific to languages, like the parsing of tagging and
the traceability mechanisms, there should be one for each language. To reduce the
amount of work needed to extend XToF to new functions, a plugin should provide
classes that could be extended and tools ready to re-use. This creates a plugin that does
not do any parsing but furnishes tools. Parsing of tagging is close to scope highlighting

47

and can regrouped. Traceability mechanisms are the filters and labelling of file names.
They could be integrated with the parsing plugin for the same language, but as func-
tions are distinct, providing a different plugin maintains a higher coherency in each
plugin. The project visualization is intended to be language independent, for the first
version at least. Therefore, it is not regrouped with the two previous plugins but rather
as a new plugin.

Originally the plugin was called VFD as visual feature diagram. Therefore the name
was kept for the view name and the artifacts names.

Plugins
• VFD

• Parsing

• Java/C

• Filters Java/C

• HighLevelView (Concern/Zest)

The two next graphs represent the dependency between plugins. The second is a sim-
plified schema. To make the description simpler, only the types of plugins are repre-
sented. For example Java/C are two separate plugins but as they are independent and
provide the same functions but for a different language, they are grouped.

VFD is the core plugin. Parsing defines the parsing of tags at a high level and Java/C
does it at a low level. Filters Java/C is called by parsed in case of modifications to the
set of features to highlight. High level view requires parsing to link features and files.

VFD is the core of the plugin XToF, it contains SPLAR and the main view. Most func-
tions can be accessed from this view. This plugin does not do the tagging nor the pars-
ing. This role is delegated to the plugin called parsing. However, this plugin is respon-
sible for mapping tags to the features.

This plugin creates a new waypoint in TagSEA: features. In the TagSEA view, it is pos-
sible from the tags to access the location of the waypoints in the source code but also to
the features in the VFD Viewer. The only data that VFD memorizes are the state of a
configuration. The feature model file is saved by using its path and is saved into the
project property. The display of the feature diagram is used to access most functions of
XToF; they are located in the same Plugin. Others functions like pruning, parsing files,
highlighting tags and are delegated to the parsing plugin.

The parsing plugin takes care linking TagSEA tags and the features for language inde-
pendent parts and provides reusable tools for the specific language plugin. It is respon-
sible for highlighting a given range of characters. It also provides tools that can be used
by language specific tools like solving interior of tags, generating parsers, pruning,
auto-completion. For anything specific to a language (for example defining parsers for
files), the plugins delegates it to the plugins Java/C. It is responsible for associating
features tagged to the waypoints, the source code and highlighting scope of tags.

The plugins Java/C two plugins are responsible for language specific functions. These
plugin only contain specific and restrained tasks. They are called by Parsing.

• Defining file parser

• Defining tags syntax

• Resolving associations between a waypoint and a portion of source code with the use
of the abstract syntax tree.

• Autocompletion

• Link between files and tags

The plugins Filters Java/C add functions to create a filtered view of files which contains
features selected. They can also annotate the names of the files instead of hiding them.
These plugins are also specific to languages because they are adapted to the types of
files and elements that depend on the language.

48

XToF provides two views to help the developer in better understanding how the code
has been tagged and how features are scattered through the code. This section will be
discussed at length in the guided tour of section 7.

6.3.2.TagSEA Documentation
This section will now describe the architecture of TagSEA, as desired by its developers.
As previously cited, TagSEA uses the mechanisms of plugins provided by Eclipse.
Each plugin can declare an interface that can be called. It can also provide extensions
points that other plugins can use to extend TagSEA.

The better way to understand how TagSEA works, is to analyze the dependencies be-
tween plugins. A plugin depends on another if it needs to call its interface and meth-
ods. A plugin which extends another one is called by the plugin defining the extension
(almost everything in Eclipse is a plugin5, see Eclipse website6 for documentation on
Eclipse plugins). To analyze dependency, a tool was used, PDE Dependency View de-
veloped by Ian Bull7 from CHISEL. The figure created by the tool is put into annex B.
Understanding how TagSEA works with plugins, helped in designing XToF for
Eclipse.

There are two sets of plugins, the core plugins, that are needed for TagSEA to work
and extra functions. The extra functions are presented as they enabled us to understand
how TagSEA could be extended and how XToF could use the same mechanism. The
two next graphics represent the dependency. These figures are available in larger format
in Annex C. The first drawing (figure 6.14) contains the core function of TagSEA.

net.sourceforge.tagsea

net.sourceforge.tagsea.parsed

net.sourceforge.tagsea.resources

net.sourceforge.tagsea.java

Figure 6.14: Graph of dependencies of TagSEA

• net.sourceforge.tagsea is the core of TagSEA, it provides the management of the data
model, it links the data to the main views and provides extensions points.

‣ It contains the data model. The data model consists of three objects: the tags, the
waypoints and their relations. Tags are simple words or hierarchical words. Hi-
erarchical tags are regular tags, but they are interpreted differently and displayed
hierarchically. Waypoint is a location where a tag exists and has a location and
metadata. Main metadata are the author, the date, the message and attributes.
Attributes are fixed by the plugin using the waypoint extension. Concerning the
relations, a tag registers every waypoints where it appears and a waypoint regis-
ters every tag that it contains. Therefore the developer can navigate from tags to
waypoints and vice-versa. TagSEA use events to notify others plugins of modifi-
cation to the data model. Any plugin defining a new kind of tags is aware of the
modification and can adapt the tagging in its function. TagSEA core does not
record Waypoints and Tags. They are added by the plug-in providing waypoints
during loading. ParsedWaypoint plug in records in a XML file to avoid loosing
time. If Eclipse crashed, it would re-parse the source code.

‣ Links the data model to the views. The views are the lists of tags and the lists of
waypoints. It also propagate modifications using the event mechanism.

49

5 http://en.wikipedia.org/wiki/Eclipse_(software)
6 http://www.eclipse.org/documentation/
7 http://blog.ianbull.com/2007/08/pde-dependency-view-soc.html

http://en.wikipedia.org/wiki/Eclipse_(software
http://en.wikipedia.org/wiki/Eclipse_(software
http://www.eclipse.org/documentation/
http://www.eclipse.org/documentation/
http://blog.ianbull.com/2007/08/pde-dependency-view-soc.html
http://blog.ianbull.com/2007/08/pde-dependency-view-soc.html

‣ This plugin also declares some extension points: waypoints, filters and starts.
Filter provide a way of displaying only waypoints answering a criteria. The start
is a method to allow others plugins to start before TagSEA. Finally waypoint is
the extension point to declare a new kind of waypoints. The plugin filling an
extension point of type waypoint, must define some parameters regarding the
waypoint, such as the waypoint is modifiable. The plugin can thus be called to
realize the operations. For example if a tag is modified in TagSEA, the plugin is
responsible for providing a propagation mechanism.

• The plugin net.sourceforge.tagsea.resources defines a type of waypoint for any resource
located in the workspace, as defined in the previous paragraph. This waypoint has
two attributes: the beginning of the waypoint and its end. It is the waypoint as used
in tagging.

• The plugin net.sourceforge.tagsea.parsed extends the previous by defining other attrib-
utes. It contains all elements of waypoints that are parsed. A parsed waypoint is a
waypoint located in a text file, in the source code. It realizes parsing at project level
and provides tools to be re-used by actual parsers.

• The plugin net.sourceforge.tagsea.Java realizes the parsing for the Java language, sepa-
rates comments and analyzes them. It uses resources given by the parsed plugin. It is
also responsible for the auto completion in Java.

The others plugins are extra functions that are not installed by default. The graph in
figure 6.15 describes their dependencies.

• The plugin net.sourceforge.tagsea.tasks provides integration to Eclipse Tasks

• The plugin net.sourceforge.tagsea.url defines a new kind of waypoint for URL.

• The plugin net.sourceforge.tagsea.breakpoint defines breakpoints when debugging a new
kind of waypoints.

• The plugin net.sourceforge.tagsea.c is similar to net.sourceforge.tagsea.Java but for C
code source.

net.sourceforge.tagsea

net.sourceforge.tagsea.parsed

net.sourceforge.tagsea.resources

net.sourceforge.tagsea.java

net.sourceforge.tagsea.url

net.sourceforge.tagsea.breakpoint

net.sourceforge.tagsea.c

net.sourceforge.tagsea.tasks

Figure 6.15 Graph of dependencies of TagSEA with extras (see annex B for full size)

TagSEA also provides extension points to allow new plugins to extend its functions.

• The first extension point is called net.sourceforge.tagsea.waypoint. It has already been
discussed before, it enables new kind of waypoint. It provides information on the
information to display to the user, and to which classes must be used for the user in-
terface and for the Waypoint.

• The second extension point is called net.sourceforge.tagsea.parsed.parsedWaypoint and
provides waypoint for parsed files. Parser provides default implementation for immu-
table waypoints. It uses a Waypoint descriptor to create the waypoint.

6.3.3.Description of Plug-ins Interactions
This section describes how the plugin interacts betweenTagSEA When a tagging is
added in the source code, TagSEA analyses the files

The advantage of presenting the pruning is that, the same plugins are used in the prun-
ing as when the scope is highlighted.The next graph describes the roles in the case of

50

associating the portion of source code to a tag and the source code. The visitor pattern
must be used to go through the abstract syntax tree.

To highlight the portion of source code associated, the user must select it from the fea-
ture diagram (plugin VFD). Then VFD asks for every tagging containing the specific
tags. Using the list, the Parsing plugin interrogates the language specific plugin based on
the file extension. The Java/C plugin interrogates the Eclipse Framework to get the
AST of the source code and using the imposed visitor pattern, it searches for the asso-
ciated node (see figure 6.16). If found, it is sent back and is used by the Parsing plugin to
highlight the associated source code.

Java
code

Java parser

AST

Visitor

Portion

Eclipse
Framework

VFD Plug-in

Tag

Figure 6.16: Plugin interaction for pruning

When pruning a project, XToF asks TagSEA for all taggings present. For each of
them, it uses the associated tag to determine if the associated source code must be
erased. If yes, the node is erased from the AST. The AST is provided by the Eclipse
Framework that also parses the Java source code.

6.3.4.Data Persistence
TagSEA saves tagging and tags. XToF does not save the tagging. It only keeps in cache
the scope of the tagging. The feature model is partially under an XML format and is
handled by SPLAR. XToF also caches data to accelerate treatment like opening chil-
dren of a node. However no informations is saved persistently by XToF. The file is im-
ported into the folder and its name and path are registered into the project properties of
Eclipse. Therefore when closing this information is kept.

When configuring a feature diagram, the configuration can be saved in the current
state. These states are saved to be restored later when asked by the developer. This in-
formation is stored, by using the Eclipse framework, in the hidden folder reserved for
the plugin in the workspace. This information is private to the developer.

6.4.Extendibility to New Languages and
Feature Model

XToF provides a mechanism to use tags in other languages. It requires the creation of a
plugin that uses extensions points defined by TagSEA and XToF. XToF provides pre-
configured classes to facilitate the adaptation for others languages. XToF allows the
developer to use a different plugin for Java and C than the two provided, as a configu-
ration panel lets the user choose which plugin to use to realize the tagging and the
pruning for each file extension.

XToF uses Java interfaces to get access to feature models. Therefore, it is possible to
use another feature model system. However, this requires modifications to the plugin in
itself. The reason for this is that the way Eclipse framework works, the display needs to
be adapted if a new feature model is displayed. This tasks would however only take a
short amount of time.

51

6.5.Summary
This chapter first quickly described what is XToF. Then it explained the different deci-
sions made before implementing the tool. They were about the backends used to facili-
tate the implementation, the scope of tags, the names of features used in the tagging.
Then the architecture of the tool was described. It also provided a description of
TagSEA architecture.

52

7. A Guided Tour through XToF

This chapter is a guided tour through XToF. The functions presented here are imple-
mentation of the requirements found in section 5.3. The processes covered by XToF are
the tagging, program understanding, configuring, and pruning. They have been de-
scribed in section 5.4.2. For each of the functions, the mechanisms implemented are
described.

When developing the tool and its support mechanisms, the decision was taken to re-use
most of the existing mechanism of Eclipse. The goal was to reduce the time needed to
develop the tool and to reduce the work needed by the developer to learn how to use
the tool by using mechanisms he might already be using in his IDE.

7.1.Tagging Support
To achieve its support goal, XToF has different functions available. Some of the func-
tions described here have already been presented but are reproduced here as their pres-
ence makes sense in the guided tour.

7.1.1.Feature Diagram Display
XToF displays a feature diagram as a way to help the developer remember the software
product line. It is not displayed as graph, but as a hierarchical list like those already in
use in mosts IDE (see figure 7.1). First, by using a similar feature diagram, the approach
offers a consistent information through all the processes of software product line in-
formation. Instead of having to remember the name of each feature, the developer can
concentrate only on the group in which the feature should be, which would be facili-
tated by adequately naming the features, and avoid having to read a complete list. A
feature diagram can be loaded to associate it with a project (R1 and R2).

As the developer never works on all features at all time, the choice of opening and clos-
ing elements of the hierarchy helps him to focus on a few features and not be distracted
by a long list of features irrelevant to his current tasks. The other advantage of using a
hierarchy instead of a graph, is that it takes less room. Therefore the developer can
keep it open while developing and thus have constant access to all XToF functions.

Figure 7.1: VFD Viewer: display of the feature diagram

7.1.2.Feature Name Checking
When typing the name of a feature, it is easy to misspell it. Therefore, the tagging
won’t be correct, and the feature won’t be associated with the portion of source code. It
would result in an incorrect pruning. Each tag name is checked and compared to the
list of features (R4). If a tag name doesn’t represent a feature name, or the feature name

is incorrectly written (by example, it contains a space) then an error is displayed. An
evolution of the approach would be to provide a list of errors in feature names such as
already exists in Eclipse for standards errors.

7.1.3.Auto-Completion
When tagging a portion of source code, it may be hard to remember the complete
name of a feature. To help the developer in remembering and reducing the causes of
errors, XToF suggests the name of the features (R5). When the developer calls the func-
tion, a list of every feature is displayed by their short name and can be added to the
current tag by selecting. If the developer has already typed some characters or the be-
ginning of a long name, XToF proposes a list of features, or groups, that correspond.

7.1.4.Scope Highlighting
For any tag, the developer must be aware of how it is associated with source code as it
will have an influence on the pruning. The tool can display the source code associated
with a given tag (see figure 7.3). Eclipse provides mechanism to see where a variable is
used: it highlights each occurrence of a selected variable. XToF uses the highlighting to
display the associated source code (R7). As Eclipse does with a variable, XToF enables
the developer to select a feature in the feature diagram and each portion of source code
associated will be highlighted in the open editor. Eclipse provides some options to en-
able the user to adapt the highlight (see figure 7.2). Section 7.6 will compare the scope
highlighting and other visualization mechanisms with the view presented in section 4.1.

Figure 7.2: Options to change the highlight

54

Figure 7.3: Scope highlighting

7.1.5.Associated Features Display
The previous function enables the developer to see which portion of source code is
associated with a feature (R7-R8). Sometimes as, it may be difficult to understand how
the association is made, this can be done in reverse. By putting the cursor in the source
code, XToF highlights the features which are associated with the source code at that
position and then the scope highlighting is done for these features. The scope highlighting
(figure 7.4) and the associated features (figure 7.5) enable the developer to check for the
tagging of source code in both directions.

Figure 7.4: Associated feature given the cursor

55

Figure 7.5: Highlighting the feature(s) associated

7.2.Configuration Support
During the configuration process (see figure 7.6), the developer must select or unselect
features. A valid configuration is a set of selected features and a set of unselected fea-
tures where each feature is either selected or unselected and all the conditions in the
feature model are respected. This section covers requirement R10.

Figure 7.6: Configuration mode in the feature diagram

7.2.1.Feature Diagram Configuration
XToF uses the same feature diagram displayed as a quick and unified point of access to
both program understanding methods and configuration mechanisms. Therefore, the
developer has no difficulty in finding the name of the feature he wants to select or un-
select. While configuring, a bar indicates the percentage of features already selected/
unselected.

7.2.2.Select/Unselect a Feature
Once in the configuration mode, the developer can access some buttons to select or
unselect the features (see figure 7.7). If a feature is already selected (or unselected) it is
displayed. If the choice has already been done, the developer can toggle the choice (see
figure 7.8). For example, if a feature was selected it can now be unselected. SPLAR then
makes the corrections to other features to keep a valid configuration.

Figure 7.7: Selecting or unselecting a feature

56

Figure 7.8: Toggling a choice

7.2.3.Propagation of Selection
At each step of the configuration, XToF propagates the choice using SPLAR. SPLAR
computes the required (un)selection given the new choice, i.e. if a feature is selected in
an xor group, then as one and only one feature can be selected, its siblings must be un-
selected. Then XToF display the features in the new state. This mechanism forces only
valid configurations and reduces the number of steps needed to realize a valid configu-
ration.

7.2.4.Minimal Set of Features
As Boucher et al. [3] stated, one possible source of error is tagging the declaration vari-
able, type, class or function with a feature and using it with another feature or no fea-
ture tagged. When pruned, if the feature containing the declaration is not selected, the
declaration is removed from the source code but some instructions may still use it as
they have not been correctly tagged and pruned. This results in errors. To prevent such
issues, Boucher et al. [3] have developed a design rule: «Each feature can only use variables,
functions and types declared by itself or by its principal dependencies. » where principal de-
pendencies are the features that must always be present with a given feature (also called
the minimal set of features associated with a feature). The developer then has only to gener-
ate the pruned project with the minimal set of features for each feature of the feature
diagram. The developer can right click on a feature, in configuration mode, to prune
the project using only the minimal set of features associated with the right-clicked fea-
ture (R13).

XToF can compute the minimal set of features that are always present with a selected
features using the heuristics given in the same article. As this is a heuristic, it is not
proven that it will always select every feature and may miss some features that may
always be present with the selected features. Therefore, XToF also implements this re-
search by using the feature model in SPLAR. SPLAR can provide every feature that
will be always present with the selected features. The disadvantage of SPLAR is that it
requires multiple computations that in the case of large feature models may require
some time. XToF provides the developer with the choice of using one or the other (see
figure 7.9).

Figure 7.9: Choosing the computing mechanism

57

7.2.5.Save the State of a Configuration
Early testers of XToF, proposed implementing a mechanism to save the current state of
a configuration (see figure 7.10) in order to avoid having to reconfigure the same set of
features several times when doing series of tests. Therefore, the state in which the con-
figuration is done can be saved and recovered later (R11). This is kept in the workspace,
so that the next time the IDE is restarted, the states are still saved. On top of this
mechanism, classical functions like undo last step and reset configuration are imple-
mented.

Figure 7.10: Saving the state in the configuration mode

7.3.Pruning Support
Pruning is integrated into XToF and avoids the necessity to use an external module.
This section covers the requirement R12.

7.3.1.Prune into a New Project
When a configuration is complete, XToF enables the pruning. The developer must then
choose a name for the pruned project. Therefore, the whole pruning approach is inte-
grated into the IDE.

7.3.2.Pruner / Scope Resolver Selection
XToF contains a pruner and a system to resolve scope. However, sometimes, due to
some constraints, the developer may have to use a different pruner, for instance an ex-
ternal pruner. XToF provides options to choose another plugin to prune (see figure
7.11). The same approach can be used with the scope resolution, i.e., the association
between a tag and the source code.

Figure 7.11: Options to choose which plug-ins to use.

58

7.3.3.Adaptable to New Languages
As XToF already provides two languages, C and Java, other developers may want to
use the tagging approach in other languages. Therefore, every operation that is specific
to a language is repeated in a specific plugin. Developers can create plugins for new
languages. In the case of the C language, it only took a few days to develop a plugin,
include the time to understand the IDE frameworks for C.

7.3.4.Information about Pruning
Using the recommendation of the IDE, a windows displays the percentage of files al-
ready pruned. It also allows the developer to cancel pruning before it is finished.

7.4.Program Understanding
Tagging is limited to one file at a time. Program understanding (also called program
comprehension) is a task aimed at helping the developer to understand a software. In
this context, the program understanding is limited to understanding of how a program
is featured, i.e. how a programmed is tagged with features. As Storey [38] describes, the
program is understood by building a model at different levels of abstraction. XToF
provides three levels, one inside a file, another at files-folders levels and the last, aiming
at a project level, which will be seen in Chapter 8.

7.4.1.Source Code Level
The file level is done by the scope highlighting and the associated features. It provides a
way to understand how a file is tagged with features by displaying the source code as-
sociated with features and vice-versa.

7.4.2.Files and Folders Level
The files and folders level is aimed at enabling the developer to understand which fea-
tures files are tagged with and vice-versa. Three mechanisms are implemented.

File name labeling
By selecting a set of features in the feature diagram, every files that contains at least
one of these features in a tag is labeled. In the file explorer, a tag is followed by the
name of the file indicating that the file is tagged. This enables the user to know where a
feature is present (see figure 7.12).

Figure 7.12: Labeling of file name

Hide files
This function uses the same principle of feature selection but instead of labeling, it
hides files that do not contain any tag with a selected feature (see figure7.13). Thus, it
enables the user to focus only on files implementing the set of features. It reflects the
views of Kästner et al. [21] showing only artifacts related to the features, the realization
view and the context view (see chapter 4 for visualizations). The realization view fo-
cuses on only one feature while the context can deal with more than one feature by
coloring them. The hide file mechanism doesn’t use the color metaphor.

59

Figure 7.13: Filter on files, hiding files not tagged

File selection
The file selection provides the opposite mechanism. By selecting a few files (inside the
same project) in the file explorer, XToF can highlight the set of features that are tagged
in at least one of the selected files. It is founded on the same principle as the associated
feature function.

TagSEA
As XToF works as a plug-in of TagSEA, it can use its function to improve the support
to the user. This includes displaying all features as tags, and for selected tags, the list of
every file and location of the tagging (see figure 7.14) (R8 and R9). Therefore, it is an-
other way to understand how multiple files are tagged. Selecting one of the taggings or
the features can then start the scope highlighting in XToF. The developer can, by select-
ing the features from TagSEA, display a list of all tagging locations and highlight them.

Figure 7.14: TagSEA in conjunction with XToF

7.5.Project Level Visualizations
Heidenreich et al. [13] presented four views as visualization techniques which were
described in section 4.1. This section will explain how XToF uses their ideas. The
fourth, the property-changes view is not presented as it is out of scope. This section
covers the requirement R14.

• The Realization View displays only the source code associated with a feature. XToF
provides the scope highlighting to underline source code that is associated with a
feature. As it highlights the associated source code instead of hiding the rest, it en-
ables the developer to understand how this code relates to the rest. The labelling and
the filters extends this function to more than one file.

• The Variant View displays only the source code which will be part of a specified
product. To achieve this task in XToF, the developer must make the configuration
and prune the project. The pruned project will provide the same information as the
variant view. The future version proposes to use the folding mechanism of Eclipse
that hides parts of the code. The developer would have the same information without
having to prune.

• The Context View is the realization view extended to more than one feature. XToF
provides the same function for one or several features. The scope highlighting, label-
ling and filters can be used for one or more features. However, XToF does not use
colours as some peoples can’t see them correctly and if features overlap then mixing
colours is problematic [13]. A portion of source code is highlighted if any of its as-

60

sociated features is selected for scope highlighting. The same idea is used for the oth-
ers mechanisms. Future versions of XToF should provide the choice for the devel-
oper to highlight only portion of source code associated with every selected feature
and similarly for each mechanism.

As a way to support the developer in his task of understanding feature implementation
at a project level and feature interaction, a project level visualization was developed. Its
purpose is to help the developer in understanding how features are implemented given
a set of feature which files are tagged with these features and vice versa. It also aims at
displaying the interaction between features, i.e. which features are tagged in the same
files. It helps the developer identify these files and allows him to check how exactly the
features interact inside the file.

Two project level visualizations were developed. The first is based on a graph linking
features and files implementing them. The second, uses a matrix to represent features
and files. They are presented in the two next sections.

7.5.1.Zest View
The first visualization that was designed was called Zest view, from the name of the
library used to draw it. It was based on the use of a diagram showing the relations be-
tween features and files. The advantage of using graphs is that many developers are
familiar with them. They are effective in showing relations.

There are two kind of nodes, the feature node and the file node. A file node is a node
corresponding to a file; each file has one and only one node; and a feature node repre-
sents one and only one node. A feature can only be linked to a file and vice versa. A file
is linked to a feature if the file is tagged with the feature. The graph enables developer
to see features interacting through the file nodes that are linked to both features.

Ec h

count_wordsdisplay_number_of_use

command_line

keep_historydisplay_number_words

e

Figure 7.15: Mockup of Zest View

The example displayed uses the data from an example (cf. chapter 8). To provide a
clearer diagram, the file nodes are coloured in a different colour and their name ap-
pears only when the mouse hovers them (see figure 7.15). Zest provides different layout
to arrange the nodes (the mockup display does not use Zest). The goal was to obtain
features nodes scattered throughout the graph with file nodes gravitating around the
features nodes to which they are linked thus making for a clearer picture. However, due
to the complexity of arranging edges, no satisfactory result was obtained.

The issue comes from the fact that Zest uses directed edges and was not conceived for
multiple roots (features nodes). Several attempts to choose a unique root and organize
the edges based on this while keeping their logical meaning were made but didn’t
achieve a satisfactory result. On top of that layout question, other issues (see Evalua-
tion) pertaining to this visualization rendered it inadequate for the goal and another
visualization was developed.

The developer can consult the graph to search for interaction between features by
searching for file nodes that are common to more than one feature node. For example,
in figure 7.15, the feature display_number_of_use interacts with the feature display_num-
ber_words through the file c.

For a given feature node, the number of links indicates how much the feature is scat-
tered. This can help the developer locate a high complexity. The feature command_line
is linked to four file nodes (each file in this example), which could be an indication that
this feature implementation may be too complex.

61

Some disadvantages of this visualization is that the information given is binary (yes/no
the feature is implemented in this file), large graphs are difficult to read and do not
provide any mechanism to search for specific elements.

Given theses disadvantages and the layout issue, this visualization was not included in
the final version. Instead, another visualization was first drafted, then developed and
included in the final version, the concern view.

7.5.2.Concern View
Concern View originates from a visualization called ConcernLines by Treude et al. [42].
Its purpose is to help the developer understand co-occurring concerns, «the evolution of a
software system requires understanding how information about the release history, nonfunctional
requirements and project milestones relates to functional requirements on the software
components.». It displays each concern on a timeline and uses colour intensity to indi-
cate the relevance of the concern. ConcernLines takes a CSV file in input, i.e. a matrix
of numbers, which enabled a fast mockup of the Concern View for XToF.

Concern View displays a table where each row is a feature and each column is a file
(see figure 7.16). A given cell indicates the number of times the feature (the line) is
tagged in the file (the row). The colour intensity varies from the lightest (the smallest
number of tagging) and the darkest (the biggest number of tagging) (see figure 7.17).
The colour scheme is mapped according to the minimum and maximum of the matrix
then displayed. To complete the information given by the colour, the number of tagging
is displayed in each cell. If this number is null, then the colour is white. Figure 7.16 is
the initial concern view when a project is selected. It shows the main folder (here src/).
As feature is selected, it is in blue (count_words). Figure 7.17 is the concern view for the
src/simpleEchoSPL folder. The blue cell is due to selection. Its information is displayed
under the view.

Figure 7.16: Concern View - Home of a project

Figure 7.17: Concern View - Inside the folder src

For each feature, a special cell is added. It is not linked to a specific file or folder, but to
the project in itself. It indicates how many time this feature has been tagged in all files.
The same idea is repeated with the files or folders. These two sets of special cells pro-
vide informations independently of the row or the column and do not influence the
colours.

62

When clicking on a cell, line or row, different information is displayed, like the long
name of the feature, the name of the file and its path if it can be applied, the number of
taggings, the number of files tagged and the average tagging per file. This information
can help the developer understand how a feature is scattered through out the software
and through out a file. For a resource, only the name of the resource, the number of
taggings, features and average tagging per features are displayed. For a cell which is at
the intersection of a feature and a file, the display adds the number of taggings of the
feature in the file and the name of the feature (see figure 7.18). For a feature, it displays,
its name, the number of taggings and files tagged and the average tagging per file (see
figure 7.19).

Figure 7.18: Information associated to a cell.

Figure 7.19: Information associated to a feature.

The Concern View only display the files and folders of the current folder. It helps reduce
the number of elements displayed at any time. If there are sub-folders, then the sub-
folders are displayed instead of theirs files and the numbers correspond to the agglom-
eration of files numbers. A navigating mechanism is available to switch to a sub-folder
and vice-versa. In figure 7.20, the subPackage folder is displayed. The feature and file cell
always display the same values to enable comparing a cell to all taggings of the feature
and file.

Figure 7.20: Concern View in the subPackage folder.

Concern View also provides other mechanisms to help the developer in finding the de-
sired information. First a limit, enable the developer to limit the number of features or
files displayed. Second, columns and rows can be sorted. With these two mechanisms,
the user can search for a specific information like the ten features that are the most
tagged. The filters and orderers are described later.

How to Interpret the Concern View?
Concern View is a matrix, it can be read in different ways, by reading information from
a specific cell, from a column, from a row or by colour. Each provides different infor-
mation to the developer. The information displayed by a cell was described before and
won’t be repeated. The visualization can help the developer understand how the fea-
tures are implemented at a project abstraction level but can also be specifically used to
search for potentially complex feature implementation.

When reading the Concern View one row at a time, the developer focuses on a feature.
He can understand how the feature is implemented from a project level abstraction. For
each feature, the files that contains the feature are coloured. The view also displays
how many times it is tagged in each file. It is then possible to see how scattered the fea-
ture is.

63

The last row which contains the special cell containing the number of taggings for each
file or folder can be used to pinpoint files that have a potentially complex feature im-
plementation or feature interaction. Then the developer can check the reason. It may
be due to only one feature, in which case this feature is tagged a number of times in the
files and may require a review of its implementation in this file and factorization, or if
it may be due to a set of features.

By column, the developer focuses on a specific file or folder, so he can understand fea-
ture interlacing. It displays which features are tagged in a given file. Not only can he
see which but also the number of taggings, which is a supplementary information
compared to the Zest View.

By searching for columns that contain more than one coloured cell, i.e. not white, the
developer can understand how features are interlacing. However this research may take
long if it is done manually, particularly in the case of very large software.

A special column contains the number of tagging for each feature. It can be used to
search for complex feature implementation. The developer can then check the line for
the reason and pinpoint the localization of eventual improvements, that may be neces-
sary.

As the colour of a cell indicates the relative number of taggings compared to other fea-
ture and file couples, the developer can search for particular values. By searching the
set of dark cells, he can find the couples of files and features that have a larger number
of taggings than other couples. Within the set of light cells, the couples with a low
number of taggings can be found. These are the extremities of tagging numbers.

An other use of the colour is to make a relative comparison. If the developer searches
line by line or row by row and only the numbers are displayed, he may miss the fact
that the number displayed is comparatively normal and not the largest. The colour
helps to visually compare features and files taggings.

One advantage of using a table to display the information is that it can fit larger cases
than graphs. As the scope of this work limits software to a reasonable size, it provides a
readable visualization. However achieving a specific task, like finding the features
which most scattered, could only result from a mechanism to reduce the number of
features and files displayed to a smaller set. Concern View then provides two mecha-
nisms to help the developer in displaying only the information he want; these are the
limit and sort mechanisms (see figure 7.21).

Figure 7.21: options of ConcernView

Option window for sort and limit.

Limits enables the user to display only a limited number of features or files, for exam-
ple only ten files. While the sort provides different algorithm to order features or files in
ascending or descending order. Together, they can be used to display only the ten most
scattered features for example. These mechanisms have an impact on the number of
and order in which the features and the files are displayed, but not the number of tag-
ging and colour. Next the different sort options and their purpose are explained.

64

• The name sort provides a simple (anti-)alphabetic sort, it can be used from a global
perspective or to search for a specific file or feature.

• The number of tagging option sorts according to the number of times the feature has
been tagged or the number of taggings in the file. This can be used to pinpoint fea-
tures that have a complex implementation, or files that have a complex feature im-
plementation. It doesn’t take into account if it is in different file or by different fea-
tures.

• The number of element sorts the feature by the number of files in which they are
tagged. This is very useful to search for scattered features. In the case of the sorting
applied to the files, it sorts by the number of different features tagged in it. This pro-
vides a range of complex feature interactions in each files. Similarly to the number of
taggings, it doesn’t take into account the number of taggings by feature or file, i.e.
several features may be tagged only once in a file or several times.

• The average number of tagging sort option orders the feature by the average number of
tagging per file and the files by the average number of taggings per feature. This can
be used to locate complex feature implementations or interactions by taking into
consideration both the number of element and the number of taggings sort options.
It can avoid intermingling cases where the scattering is due to an obligation to tag the
feature in several files, since it marginally touches several aspects of the software, for
example in a case where several files are tagged with several features.

The Zest view was not included in the final version because of some of its disadvan-
tages. The Concern View replaced it and was more suitable for the following reasons.

• Concern View not only immediately states if a feature is tagged in a file without the
need to follow several edges, but it also provides a numerical information directly
instead of through binary. Zest View could however use the same colour techniques
but would loose in visibility because of the two kinds of nodes.

• In Zest View, the colour is only used to distinguish feature nodes from files nodes
and can be replaced by the form of the node, in Concern View, it displays supple-
mentary information: the relative range of the number of taggings. However using
colour has some limitations. First the number of colours that the human eye can dis-
tinguish is limited. However in this visualization, it doesn’t have much impact as two
close colours that may be interpreted as the same would not result in a major error in
the user mind as by definition, the two cells are close. The second is that colour may
not be seen correctly by all users. In Concern View, it is not the colour that matters,
but its intensity, therefore, not seeing colours correctly or at all has a reduced risk of
affecting the visualization. On top of that, the colour is only there to support the
number that are displayed and serves as a means to make comparison easier.

• For the same display contents, the Concern View is more easily readable. Zest View
adds complexity with edges. For both views, the sort and navigation mechanisms can
reduce the number of elements displayed at any time, rendering it more easy to read.
Using a hierarchical file explorer provides a visualization closer to the project instead
of nodes that are randomly positioned. It helps the user more easily in understanding
the software tagging.

• Find complex feature implementation and interaction: Concern View helps achieve
some precise tasks through the possibility of computing requests like «display the ten
most scattered features». This can be useful when trying to optimize feature imple-
mentation. The Zest View could also implement such a mechanism, but Concern View
is more appropriate as it already displays the value used to sort and limit.

• Concern View in the final version of XToF provides only a small number of metrics to
display and sort, however it could be easily adapted to use new metrics like the per-
centage of tagged source code in a file. With a more complex implementation, it
could use the percentage of code common to more than one feature. In a different
perspective, the Concern View could instead of comparing feature to files, compare
features together and compute the number of taggings, percentage of code source,
etc., that are common to the two features. These possible evolutions would be par-
ticularly suited to the task of understanding feature interaction at a project level of
abstraction. Zest View does not display values, it could do so by clicking on one node,
so understanding the sorted graph may be more complex as the values used to sort
are hidden.

65

For these reasons, the Concern View is better at a project level visualization, to an under-
standing of how features are implemented.

7.6.Summary
When comparing the annotative approaches with the compositional approaches, some
disadvantages had to be noted for the former. These were the traceability and the safety.
While the second is widely covered by the approach, the first is the one that fully re-
quires the tool support.

On top of helping the developer find the portion of source code associated with a set of
features, XToF also supports the configuration, the pruning and the program under-
standing for features implementation. However in the last one, it is limited and will be
improved in the next chapter.

The different support functions help solve the disadvantages and contribute to the
lightness of the approach by reducing the work of the developer.

66

8. Illustration

This section provides two examples. The first refers to the tagging and pruning ap-
proach only. The second concerns the support brought by XToF. Their purpose is to
demonstrate how the approach fulfills its goal and how XToF can effectively provide
support for the approach.

The tagging approach was initially developed in a project at SPACEBEL. This has
been described in a paper by Boucher et al. [3]. The tagging approach is a method that
was successfully used to implement a project. With the pruning, they were able to re-
move dead code. Tagging enables a fine-grained feature implementation without ren-
dering the code difficult to read. However, a small amount of supplementary time was
needed to tag, due to the fact it was applied to an existing project. This example also
showed the need for the support brought by a tool, which XToF aims to fulfil.

8.1.SimpleEcho
Once XToF implemented enough functions, an example was developed to test and
demonstrate its viability. The name of the example project is SimpleEcho. The small
software repeats in output what was written in input. It provides also functions like a
command line mechanism that can be use to enter command such as displaying some
statistics and the history of the outputs.

8.1.1.Feature Model
The feature model has eight features. The root is simple_echo. It has three children, one
is optional, command_line. The two others are OR groups additional_features and display.
First has two children, count_words and keep_history. Display has also two children, dis-
play_number_of_use and display_number_words. There are six constraints in the feature
model.

Display_number_of_use and display_number_words require command_line. Display_num-
ber_words requires count_words. Command_line, display_number_of_use and count_words
requires keep_history.

Feature model source code is in the annex D.

Feature diagram of SimpleEcho

Children of display are features used to display information like the number of times
the software has echoed or the total number of words echoed. Command_line is the fea-
ture enabling the user to enter commands like displaying information and using the
history.

The feature model is a small example but complete enough to test functions of XToF. It
features children features, mandatory and optional nodes and constraints to test the
propagation and the pruning with minimal sets of features. For example the feature

count_words can be unselected and renders the selection of display_number_of_use im-
possible and reduces the number of commands that the user can enter.

8.1.2.Command Syntax
This section briefly describes the syntax to enter commands to provide the reader an
explanation of how to use the example. To make the commands available, the feature
command_line must be selected.

Commands have a general syntax of a two letters word and some of them are followed
by a number. There are four commands. Two display information, the others are pre-
sent to use the history.

SU: Show number of Use. Displays the number of times the software has displayed
something. It requires feature display_number_of_use.

SW: Show number of Words. Displays the number of words that have been displayed
since the software started. It requires feature display_number_words.

RI i: Repeat at Index i. Repeats what the software outputted the i-1 time. The index
starts at 0. The index i must be equal to or bigger than zero. If there is no correspond-
ing display, it warns the user.

RL: Repeat Last. Repeats the last output of the software.

8.1.3.Implementation
The implementation is rather simple and is done in four files in two packages. Main
package contains the Echo.java and EchoMain.java. The sub-package is called sub-
Package with CommandLine.java and History.java. Source code of files is given in an-
nex E.

EchoMain.java: Contains the main function and the call to command line, the
history and the echo function.

Echo.java: Does a simple echo.

CommandLine.java: Does the command analysis and displays results.

History.java: Records the history and provides access to it.

8.1.4.Supplementary Time Needed
Tagging while coding the echo doesn’t add a noticeable supplementary time. As the
tagging is done while coding, it only takes the time to use the autocompletion to tag the
source code as desired.

The use of the different support mechanisms was useful to provide information on how
the software is tagged. It even highlighted a difficulty with the way the cases were
tagged and was resolved in XToF. As for the switch-cases statement in languages, the
instructions may depend on a break to be runt or not and the abstract syntax tree nodes
associated to the instructions in the cases are not children of the case node. This was
shown by the highlighted feature.

8.2.Lessons learned
Even if the example was small, it was useful to put in practice the support XToF
brings. Here are some lessons learned.

The example showed that using tags to implement software product lines is a light
weight approach. It doesn’t require a complex software adaptation. It can be done
without a large background in software product line and can be accessed by any devel-
oper. Having the possibility to never leave the keyboard when coding to tag a feature
enables saving of time. Integrating XToF through a feature diagram is a convenient

68

way to access the features. It integrates well in the IDE and can be used to give support
without leaving the current layout.

However, the approach is not a weightless method. It doesn’t require the modification
of the software and implementation of each feature in separate modules as composi-
tional approaches do, but enables using fine coarse-grained feature implementation.
However, locations of source code that are tagged must take into account the fact that
the code is erased in some cases and not in others.

For example, it is interesting to see how the simpleEcho example implements the
command line option in the instruction flow. First it checks if the input can be inter-
preted as a command. If yes, then the command is executed. If not, the input is trans-
ferred to echo which displays the output. This choice of implementation enabled sepa-
ration of the implementation of the echo from the command line. That way, the echo
function could be replaced by a more interesting feature like a logged echo without
having any impact on the command line implementation. Thus if the feature com-
mand line is removed, the call to echo is unmodified. If the command line feature is
selected, the same call to echo is never run.

In summary this approach avoids the need to adapt the software at a high level, but the
source code may be adapted at a coarse-grained level to take the pruning into account.

Integrating XToF through a feature diagram is a convenient way to access the features.
It integrates well in the IDE and can be used to give support without leaving the cur-
rent layout. Concern View showed interesting results and fulfilled its promises. How-
ever due to the small size of the example, its full benefits could not be demonstrated.

Tagging with keyboard

Not needing to leave the keyboard to tag a feature is quick when it is done at the same
time as developing. However, if the tagging is done on an existing code, a drag and
drop approach to tag source code may be quicker. Combined with the scope highlight-
ing it would be closer to the process of retrofitting an existing software to software
product line, as it requires that many files be checked, which is usually done with the
mouse.

To facilitate the tagging with the drag and drop, the scope highlighting would be used.
Using the position of the cursor, XToF could highlight the source code that would be
tagged if the button was released. XToF would then place the tagging where it needs to
be put, to tag only the highlighted source code. If the developer wants to tag an other
portion of source code, he just needs to move the mouse cursor somewhere else.

Minimal Set of Feature

Using the pruning according to a minimal set of features is a useful method of prevent-
ing errors in generated product. In the example, it enabled the detection of an error in
an import. As the example is coded, Eclipse can automatically add the import of
needed classes. The source code that requires the class is tagged as the developer is
aware of it, but can miss the import that is automatically added. In some cases it may
not cause any error, but in this case the file that was imported was tagged with the file
tag. Therefore the file would be deleted in some cases and the import would provoke
an error in the resulting pruned project.

In the case of the example, it didn’t require too much time to prune for each feature.
However if there are more features, an automation could be a lot more quicker. Click-
ing on a button, the developer can automatically apply the pruning minimal for each
feature, XToF could check if the resulting pruned project contains any errors. If any
are present, the developer is warned and searches for the source. If there is no error,
XToF just displays that the operation is successful.

It could ensure the type safety and call correctness of every possible generated project
as stated in chapter three. However, if the original project contains errors, XToF may
not be able to distinguish them from the error arising from the pruning.

69

Size Limit

As the main point of access to the features and the function is a feature diagram, it
may become slower to access them if the feature diagram is large. However, Concern
View is already capable of handling such sizes through the use of limits and sorts.

Concerning the display of a feature diagram, much research are already done. For ex-
ample Czarnecki et al. [9] propose to use a multi-level configuration for large size fea-
ture models. They use a different feature model, part of the global one, for each step of
the configuration. XToF could use the same principle to reduce the number of features
displayed at any time.

70

9.Discussion

This work was limited by the time allowed to develop XToF and the time allocated for
writing the thesis. Therefore, some points were not included in it. This chapter pro-
poses to explain what could be done as future work. There are two main themes: the
methodology and the approach in itself.

This work is not interested in trivial cases, such as feature models where features are all
selected or not at all. It also excludes large feature models. As a simple method to cir-
cumvent the size, the metric of the hierarchical display of the feature model is used. If
the feature model displayed this way becomes too large to be used easily without re-
quiring filtering, searching, etc., then it is not part of the scope.

9.1.Empirical Evaluation
The tool XToF is aimed at supporting the implementation of Software Product Lines.
Once developed, it was tested first with developers new to the software product line
engineering. Their comments enabled a check of wheter the approach could be light
enough to be used by such developers.

Then, the tool was reviewed by developers and researchers in software product line
engineering through a tool demonstration paper [12] published at the workshop Va-
mos’10 (Variability Modelling of Software-intensive Systems). While the paper already de-
scribed most support features of XToF, the published version did not include the pro-
ject level visualization. It would also be necessary to validate the interest of the Con-
cern View through a user study.

An empirical evaluation should be done to analyze what are the needs of the developer
used to SPL and how XToF fulfils them. The user study could also help validate the
light weight of the approach by comparing the supplementary time needed to imple-
ment an SPL with the tagging approach as opposed to other annotative approaches.

9.2.Missing Features
9.2.1.Independency from Pruning
The tagging approach is, in this work, used in conjunction with the pruning. However,
it could be used with other techniques to generate products. The current version of
XToF proposes a limited method of using a different module to prune. It should be
improved and made completely independent of any reference to a pruning method to
enable the export of functions to compositional methods like the export function from
Kästner et al. [20]. As the author says, it can be used to optimize and fine tune.

9.2.2.Auto Check for Type Safety
One of the issue of the tagging approach is the fact that a typing error can easily arise.
They can be also corrected easily but need first to be detected. To help in their detec-
tion, the idea of minimal sets of features associated with a feature was implemented
from the idea developed by Boucher et al. [3]. However, it requires pruning and compi-
lation for each feature of the FM.

As this is a time consuming approach, Kästner et al. [19] proposes a formal type-
checking of SPL. Their approach intends to detect immediately the possible errors.
XToF could reinforce the safety objective by implementing a mechanism that can de-
tect possible errors.

9.2.3.Drag and Drop to Tag
Using only keyboard to tag features while implementing is a quick method. In the case
of existing source code, it may be time consuming to have to switch from the mouse to

the keyboard. Instead, a drag and drop method to tag portions of source code should
be provided to the developer.

9.2.4.Feature Diagram Creation
XToF does not provide any feature model creation functions. The user has to create a
feature model separately and load it. XToF in a future version should propose feature
model functions to allow the developer to work only in the IDE. It would make the use
of the approach easier by integrating the feature model. The developer would not have
to switch to another tool to create the FM.

If XToF provides creation functions, it should also enable their modification. Nonethe-
less, modifying a feature diagram that has already been used for tagging can decrease
coherency between the feature model and the tagging. Therefore, it should also pro-
vides a mechanism to propagate modifications to the tagging already made in the
source code.

9.2.5.Class View Project Level Visualization
Class View is a continued effort on project level visualization. It uses the class structure
as a model for the visualization. The idea is to adapt the existing class diagram to the
tagging.

Class diagram with dependencies generation
Existing tools can generate a class diagram from a project source code. They can then
display the relations between classes. This information can not only help the developer
understand how the software is structured but also the interaction between software
classes.

Shrimp1 is a tool by Storey et al. [39] that can be used to visualize software. By parsing
the source code of a software, it can generate a set of visualizations. With such a tool
the developer can understand how software is implemented.

This idea has already been discussed in section 4.1. Heidenreich et al. [13] proposed to
apply the views to the model themselves. Therefore, when selecting a feature only some
elements of the models would be displayed, depending on the kind of view.

The advantages of a such visualization would be that it uses a class diagram as a base
model. It helps the developer in understanding more easily how the software is tagged
as it is closer to a model he already knows. By hiding classes and dependencies that are
not associated with a set of features, the visualization enables the user to better under-
stand software tagging. It helps him focus on some features or classes only. The disad-
vantages are that it is separate from the source code. It should provide a zooming
mechanism as seen in section 4.3 to link classes to their source code.

9.3.Tool Limitations
The tool provided to support the approach has some limitations.

• The FM associated to a project, can be changed. A new version can be associated.
However, XToF only changes the saved FM. The FM may have some features re-
moved or their name modified but these changes are not taken into account. There-
fore, XToF will warn the developer if existing taggings are no longer associated with
an existing feature, but if the name of the feature is re-used by a new feature (the use
of the path should restrict this possibility), the tagging will be considered as correct
by the tool. Changing the associated FM is done at the risk of the developer.

• To compute the associated portion of source code, XToF uses the AST provided by
Eclipse framework. XToF relies entirely on this. It cannot ensure that the same AST
would be provided by other tools using the same approach and a one hundred per-
cent identical association.

72

1 A Java Applet enables testing Shrimp online http://www.thechiselgroup.org/projects
Package dependencies features a visualization similar to what is proposed to use.

http://www.thechiselgroup.org/projects
http://www.thechiselgroup.org/projects

9.4.Future Work
• When several features are tagged in one tagging, the relation between them is an OR.

This means, that if at least one of the features is selected, then the portion of source
code is kept in the pruned product. To provide an AND for several features, the only
possibility is to use one tagging per feature. As long as the same portion of source
code is associated, the portion will be kept only if each tagging contains at least one
feature selected. The tagging approach does not provide for a more complex condi-
tion. As there is not a negative option to prune when a feature is selected, there is no
possibility of making any proposition. Research should be undertaken to provide
more complex and complete conditions to prune a portion of source code. This
would be useful when features have different codes that must be performed depend-
ing on the combination of features selected. For example, if feature A and feature B
are present then a specific code must be kept as opposed to if only feature A or fea-
ture B was present.

• Documenting is an important activity in software development. As the tagging ap-
proach enables a tool to know how features are implemented, and as the tagging
process is close to a JavaDoc process, the tagging information could be extracted to
provide documentation on feature implementation. Research could be done on how
this information should be extracted and presented and how useful it could be to the
developers.

• One missing functionality in XToF is the creation and modification of FM. If an FM
can be modified, the tool should provide propagation mechanisms to the tagging.
Research should be carried out to identify under which conditions a modification
could be accepted and propagated to prevent loss of tagging.

73

10. Conclusion

Software product lines proposes to automatically generate several softwares products
according to different specifications. To achieve this goal, it must use features as a way
to choose whether function are to be included or not. As software product line engi-
neering adds processes to the development, it is important to reduce the unnecessary
weight. The goal of the work was to search for a light weight approach to implement-
ing the software product line.

There are two methods of implementing software product lines: the compositional and
the annotative. As the first implies modification of the languages used and modifica-
tion of the solution design it has a larger weight than the annotative approach that uses
annotations to designate features without separating them. After comparing both ap-
proaches, two conclusions were drawn, the annotative approach is a lighter approach
and most of its disadvantages can be compensated with a tool support.

Once the annotative approach was selected, a comparison of the different annotation
methods was made. While some techniques were not adapted to software product lines,
two were suitable. The first being CIDE, colouring features in the source code, and the
tagging approach, using tags to annotate features.

Then the two methods were compared. For several reasons including the fact that
CIDE uses a specific IDE to save and load annotations in contrast to the tagging ap-
proach that can be done manually, the second one was selected.

The tagging approach was then described in more detail and a tool support was speci-
fied as requested when comparing with the compositional approach. Using these re-
quirements, a tool was built, XToF. First its architecture, backends and principles were
described. The support brought by XToF aims at four processes, the tagging, configur-
ing, pruning and finally, program understanding.

XToF provides different functions to support the developers in using the tagging ap-
proach to implement software product lines. As tests were done, they showed the need
to improve the tagging support to achieve program understanding in the context of
feature tagging, through the visualization.

In the background part, different visualizations were studied to help in software prod-
uct line and program understanding. They helped develop two visualizations to sup-
port feature implementation understanding. Concern View emerged as the most ade-
quate, by displaying a coloured matrix of numbers of taggings per file and feature. A
third design, using class diagrams, was then compared.

Finally, two examples were described and helped extract lessons from the approach and
from XToF. They presented in a practical context, the approach and the benefit of
XToF to the developer to assist him in implementing and understanding feature im-
plementation using tags.

The tagging approach and the support of XToF to the tagging approach (excluding the
feature implementation understanding) were published in a tool demonstration paper
at VaMOS [12]. The tagging approach supported by XToF can help developers imple-
ment software product line in a light weight.

Bibliography

1 Ball, T. and S. Eick, Software Visualization in the Large. IEEE computer, 1996.
29(4): p. 33-43.

2 Benavides, D., P. Trinidad, and A. Ruiz-CortÈs. Automated Reasoning on Feature
Models. 2005: Springer.

3 Boucher, Q., et al., Tag and Prune : A Pragmatic Approach to Software Product Line
Implementation, in Technical Report, P.C. Research, Editor. 2009, University of
Namur.

4 Cachopo, J. Separation of Concerns through Semantic Annotations. 2002: ACM.

5 Clements, P. and L. Northrop, Software Product Lines.

6 Coplien, J., D. Hoffman, and D. Weiss, Commonality and Variability in Software
Engineering. Software, IEEE, 1998. 15(6): p. 37-45.

7 Czarnecki, K., Overview of Generative Software Development. Lecture Notes in
Computer Science, 2005. 3566: p. 326.

8 Czarnecki, K., et al., Generative Programming and Active Libraries (Extended Ab-
stract). 1998.

9 Czarnecki, K., S. Helsen, and U. Eisenecker, Staged Configuration through Spe-
cialization and Multilevel Configuration of Feature Models. Software Process: Im-
provement and Practice, 2005. 10(2): p. 143-169.

10 Czarnecki, K., K. ÿsterbye, and M. Vˆlter. Generative Programming: Springer.

11 Dahl, O.J., E.W. Dijkstra, and C.A.R. Hoare, eds. Structured Programming.
1972, Academic Press Ltd. 234.

12 Gauthier, C., et al., Xtofña Tool for Tag-Based Product Line Implementation.

13 Heidenreich, F., I. Savga, and C. Wende. On Controlled Visualisations in Software
Product Line Engineering. 2008.

14 Heymans, P., et al., Requirements Engineering for Software Product Lines with Fea-
ture Diagrams. 2008.

15 Horwitz, S., Identifying the Semantic and Textual Differences between Two Versions
of a Program, in Proceedings of the ACM SIGPLAN 1990 conference on Programming
language design and implementation. 1990, ACM: White Plains, New York,
United States.

16 Kaelbling, M., Programming Languages Should Not Have Comment Statements.
ACM Sigplan Notices, 1988. 23(10): p. 60.

17 Kang, K., et al., Feature-Oriented Domain Analysis (Foda) Feasibility Study. 1990,
Citeseer.

18 Kastner, C. and S. Apel. Integrating Compositional and Annotative Approaches for
Product Line Engineering. 2008: Citeseer.

19 Kastner, C. and S. Apel. Type-Checking Software Product Lines-a Formal Approach.
2008.

20 Kastner, C., S. Apel, and M. Kuhlemann. Granularity in Software Product Lines.
2008: ACM New York, NY, USA.

21 Kastner, C., S. Trujillo, and S. Apel. Visualizing Software Product Line Variabili-
ties in Source Code. 2008.

22 Kramer, D., Api Documentation from Source Code Comments: A Case Study of
Javadoc, in Proceedings of the 17th annual international conference on Computer
documentation. 1999, ACM: New Orleans, Louisiana, United States.

23 Krueger, C., Easing the Transition to Software Mass Customization. Lecture Notes
in Computer Science, 2002: p. 282-293.

24 Krueger, C., Software Mass Customization. BigLever Software, Inc, 2005.

25 Leslie, D.M., Using Javadoc and Xml to Produce Api Reference Documentation, in
Proceedings of the 20th annual international conference on Computer documentation.
2002, ACM: Toronto, Ontario, Canada.

26 Loughran, N. and A. Rashid. Supporting Evolution in Software Using Frame Tech-
nology and Aspect Orientation. 2003: Citeseer.

27 Mendonca, M., Efficient Reasoning Techniques for Large Scale Feature Models.
2009.

28 Mendonca, M., M. Branco, and D. Cowan. Splot: Software Product Lines Online
Tools. 2009: ACM.

29 Northrop, L., Sei's Software Product Line Tenets. IEEE software, 2002. 19(4): p.
32-40.

30 Oracle and Corporation. Javadoc Tool Homepage. Available from:
http://java.sun.com/j2se/javadoc/.

31 Pawlak, R., Spoon: Compile-Time Annotation Processing for Middleware. IEEE Dis-
tributed Systems Online, 2006. 7(11): p. 1-1.

32 Pohl, K., G. Bˆckle, and F. Van Der Linden, Software Product Line Engineering:
Foundations, Principles, and Techniques. 2005: Springer-Verlag New York Inc.

33 Rubbani, H.H., Semantic Web Solutions, in IT. 2007, IT - University of Copen-
hagen.

34 Ryall, J., Reminding and Refinding: Examining How Software Developers Use Anno-
tations. 2008, University of Victoria.

35 Schobbens, P., et al., Generic Semantics of Feature Diagrams. Computer Net-
works, 2007. 51(2): p. 456-479.

36 Spencer, H. and G. Collyer. \# Ifdef Considered Harmful or Portability Experience
with {C} News. 1992: Citeseer.

37 Stasko, J., et al., Software Visualization. 1998: Citeseer.

38 Storey, M., Theories, Tools and Research Methods in Program Comprehension: Past,
Present and Future. Software Quality Journal, 2006. 14(3): p. 187-208.

39 Storey, M., et al. Shrimp Views: An Interactive Environment for Information Visuali-
zation and Navigation. 2002: ACM.

40 Storey, M., et al. Shared Waypoints and Social Tagging to Support Collaboration in
Software Development. 2006: ACM.

41 Storey, M., et al. How Programmers Can Turn Comments into Waypoints for Code
Navigation. 2007: Citeseer.

42 Treude, C. and M. Storey. Concernlines: A Timeline View of Co-Occurring Con-
cerns. 2009: IEEE Computer Society Washington, DC, USA.

43 Treude, C. and M. Storey. How Tagging Helps Bridge the Gap between Social and
Technical Aspects in Software Development. 2009: IEEE Computer Society Wash-
ington, DC, USA.

44 Van Gurp, J., J. Bosch, and M. Svahnberg. On the Notion of Variability in Soft-
ware Product Lines. 2001: IEEE Computer Society Washington, DC, USA.

45 Wang, A. and K. Qian, Component-Oriented Programming. 2005: Wiley-
Interscience.

46 Zhang, H. and S. Jarzabek, Xvcl: A Mechanism for Handling Variants in Software
Product Lines. Science of Computer Programming, 2004. 53(3): p. 381-407.

78

Appendix

I

A. PDE Dependency View of TagSEA
Graph of dependency of plugins from TagSEA done with PDE dependency view tool.

I

B. Dependencies TagSEA
Graph of plugin-dependencies of TagSEA. Core contains only plugin that are always installed. Ex-
tra also contain optional plugins.

ne
t.s
ou
rc
ef
or
ge
.ta
gs
ea

ne
t.s
ou
rc
ef
or
ge
.ta
gs
ea
.p
ar
se
d

ne
t.s
ou
rc
ef
or
ge
.ta
gs
ea
.re
so
ur
ce
s

ne
t.s
ou
rc
ef
or
ge
.ta
gs
ea
.ja
va

Core

III

ne
t.s
ou
rc
ef
or
ge
.ta
gs
ea

ne
t.s
ou
rc
ef
or
ge
.ta
gs
ea
.p
ar
se
d

ne
t.s
ou
rc
ef
or
ge
.ta
gs
ea
.re
so
ur
ce
s

ne
t.s
ou
rc
ef
or
ge
.ta
gs
ea
.ja
va

ne
t.s
ou
rc
ef
or
ge
.ta
gs
ea
.u
rl

ne
t.s
ou
rc
ef
or
ge
.ta
gs
ea
.b
re
ak
po
in
t

ne
t.s
ou
rc
ef
or
ge
.ta
gs
ea
.c

ne
t.s
ou
rc
ef
or
ge
.ta
gs
ea
.ta
sk
s

Extra

IV

C. SimpleEcho Feature Model
Source code of the feature model file from the SimpleEcho example

1. <feature_model name="Simple Echo">
2. <meta>
3. <data name="description">A simple echo test</data>
4. <data name="creator">Christophe Gauthier</data>
5. <data name="address"/>
6. <data name="email"/>
7. <data name="phone"/>
8. <data name="website"/>
9. <data name="organization"/>
10. <data name="department"/>
11. <data name="date"/>
12. <data name="reference"/>
13. </meta>
14. <feature_tree>
15. :r Simple Echo(_r)
16. 	 :m display(_r_3)
17. 	 	 :o display number words(_r_3_4)
18. 	 	 :o display number of use(_r_3_5)
19. 	 :m additional features(_r_6)
20. 	 	 :o keep history(_r_6_7)
21. 	 	 :o count words(_r_6_8)
22. 	 :o command line(_r_9)
23. </feature_tree>
24. <constraints>
25. constraint_1:~_r_3_4 or _r_6_8
26. constraint_4:_r_6_7 or ~_r_9
27. constraint_3:~_r_3_5 or _r_6_7
28. constraint_5:~_r_3_4 or _r_9
29. constraint_6:~_r_3_5 or _r_9
30. constraint_2:~_r_6_8 or _r_6_7
31. </constraints>
32. </feature_model>

V

D. SimpleEcho Source Code
Source code of the files from the SimpleEcho Java project example.

I.Echo.java
1. package simpleEchoSPL;
2.
3. public class Echo {
4.
5.
6. 	 public String echo(String msg) {
7. 	 	 String display = "I have been told that : "+msg;
8. 	 	 System.out.println(display);
9. 	 	 return display;
10. 	 	
11. 	 }
12. 	
13. 	 /*@feature:simple_echo.command_line@*/
14. 	 public String echoCommandResult(String msg) {
15. 	
16. 	 	 String display = "Comand Result : "+msg;
17. 	 	 System.out.println(display);
18. 	 	 return display;
19. 	 }
20.
21. }

VII

II.EchoMain.java
1. package simpleEchoSPL;
2.
3. import java.io.BufferedReader;
4. import java.io.IOException;
5. import java.io.InputStreamReader;
6.
7. /*@feature:simple_echo.command_line@*/
8. import simpleEchoSPL.subPackage.CommandLine;
9. import simpleEchoSPL.subPackage.History;
10.
11. public class EchoMain {
12.
13. 	 /**
14. 	 * @param args
15. 	 */
16.
17. 	 public static void main(String[] args) {
18. 	 	 Echo echo = new Echo();
19. 	 	 /*@feature:simple_echo.additional_features.keep_history@*/	 	

20. 	 	 boolean hasHistory = true;
21. 	 	 /*@feature:simple_echo.additional_features.keep_history@*/
22. 	 	 History history = new History();
23. 	 	 /*@feature:simple_echo.command_line@*/
24. 	 	 CommandLine commandline = new CommandLine(history, echo);
25. 	 	
26. 	 	 InputStreamReader iSR = new InputStreamReader(System.in);
27. 	 	 BufferedReader reader = new BufferedReader(iSR);
28. 	 	 String line;
29. 	 	 try {
30. 	 	 	 line = reader.readLine();
31. 	 	 	 boolean echoDone = false;
32. 	 	 	 while(!line.equals(""))
33. 	 	 	 {
34. 	 	 	 	 String echoed = "";
35. 	 	 	 	 /*@feature:simple_echo.command_line@*/
36. 	 	 	 	 echoDone = commandline.executeCommand(line);
37. 	 	 	 	 if(!echoDone) {
38. 	 	 	 	 	 echoed = echo.echo(line);
39. 	 	 	 	 }
40. 	 	 	 	

/*@feature:simple_echo.additional_features.keep_history@*/
41. 	 	 	 	 if(hasHistory && !echoDone)
42. 	 	 	 	 	 history.addEcho(echoed);
43. 	 	 	 	 line = reader.readLine();
44. 	 	 	 	 echoDone = false;
45. 	 	 	 }
46. 	 	 } catch (IOException e) {
47. 	 	 	 e.printStackTrace();
48. 	 	 }
49.
50. 	 }
51.
52. }

VIII

III.subPackage/CommandLine.java
1. package simpleEchoSPL.subPackage;
2.
3. import simpleEchoSPL.Echo;
4.
5. /**
6. * A command is the format "command" ou "command i" where i is an integer
7. * @author christophe
8. *
9. */
10. /*@feature:simple_echo.command_line@*//*@!file!@*/
11. public class CommandLine {
12. 	 private static final int CMD_UKNOWN = 0;
13. 	 private static final int REPEAT_LAST = 1;
14. 	 private static final int REPEAT_ID = 2;
15. 	 /*@feature:simple_echo.display.display_number_words@*/
16. 	 private static final int SHOW_WORD_COUNT = 3;
17. 	 /*@feature:simple_echo.display.display_number_of_use@*/
18. 	 private static final int SHOW_USE_COUNT = 4;
19. 	 private History history;
20. 	 private Echo echo;
21.
22. 	 public CommandLine(History history,Echo echo) {
23. 	 	 assert(history!=null);
24. 	 	 assert(echo!=null);
25. 	 	 this.history = history;
26. 	 	 this.echo = echo;
27. 	 }
28.
29.
30. 	 /**
31. 	 * Checks if the string is a command and then execute it
32. 	 * @param command The comand to execute
33. 	 * @return True iff the command has been executed
34. 	 */
35. 	 public boolean executeCommand(String command) {
36. 	 	 assert(command!=null);
37. 	 	 int commandId = getCommandId(command);
38. 	 	 String msg;
39. 	 	 switch(commandId) {
40. 	 	 /*@feature:simple_echo.display.display_number_of_use@*/
41. 	 	 case SHOW_USE_COUNT:
42. 	 	 	 msg = "Use Count = "+history.getUseCount();
43. 	 	 	 break;
44. 	 	 /*@feature:simple_echo.display.display_number_words@*/	
45. 	 	 case SHOW_WORD_COUNT:
46. 	 	 	 msg = "Word Count = "+history.getWordCount();
47. 	 	 	 break;
48. 	 	 case REPEAT_ID:
49. 	 	 	 msg = history.getByID(getParamater(command));
50. 	 	 	 break;
51. 	 	 case REPEAT_LAST:
52. 	 	 	 msg = history.getLast();
53. 	 	 	 break;
54. 	 	 default:
55. 	 	 	 return false;
56. 	 	 }
57. 	 	 msg = echo.echoCommandResult(msg);
58. 	 	 history.addEcho(msg);
59. 	 	 return true;
60. 	 }
61.
62. 	 //Must be a valid command (getCommandId<>0)
63. 	 private int getParamater(String command) {
64. 	 	 int index = command.indexOf(" ");

IX

65. 	 	 if(index<command.length()) {
66. 	 	 	 try {
67. 	 	 	 	 return

Integer.parseInt(command.substring(index+1));
68. 	 	 	 } catch (NumberFormatException e) {
69. 	 	 	 	 return -1;
70. 	 	 	 }
71. 	 	 } else
72. 	 	 	 return -1;
73. 	 }
74.
75.
76. 	 private int getCommandId(String command) {
77. 	 	 boolean matches = command.matches("([a-zA-Z]+)|([a-zA-Z]+ [0-

9]+)");
78. 	 	 if(matches) {
79. 	 	 	 String[] cmd = command.split(" ");
80. 	 	 	 if(cmd.length>0) {
81. 	 	 	 	 String cmdMatch = cmd[0];
82. 	 	 	 	 if(cmdMatch.equalsIgnoreCase("RL"))
83. 	 	 	 	 	 return REPEAT_LAST;
84. 	 	 	 	 else if (cmdMatch.equalsIgnoreCase("RI"))
85. 	 	 	 	 	 return REPEAT_ID;
86. 	 	 	 	

/*@feature:simple_echo.display.display_number_words@*/
87. 	 	 	 	 if (cmdMatch.equalsIgnoreCase("SW")) {
88. 	 	 	 	 	 return SHOW_WORD_COUNT;
89. 	 	 	 	 }
90. 	 	 	 	

/*@feature:simple_echo.display.display_number_of_use@*/
91. 	 	 	 	 if (cmdMatch.equalsIgnoreCase("SU"))
92. 	 	 	 	 	 return SHOW_USE_COUNT;
93. 	 	 	 }	
94. 	 	 }
95. 	 	 return CMD_UKNOWN;
96. 	 }
97.
98. }

X

IV.subPackage/History.java
1. package simpleEchoSPL.subPackage;
2.
3. import java.util.NoSuchElementException;
4. import java.util.Vector;
5. /*@feature:simple_echo.additional_features.keep_history@*//*@!file!@*/
6. public class History {
7. 	
8. 	 private Vector<String> history;
9. 	 /*@feature:simple_echo.additional_features.count_words@*/
10. 	 private int word_count;
11.
12. 	
13. 	 public History() {
14. 	 	 history = new Vector<String>();
15. 	 }
16. 	
17. 	 /*@feature:simple_echo.additional_features.count_words@*/
18. 	 public void computeWordsCount(String echo) {
19. 	 	 String[] words_msg = echo.split(" ");
20. 	 	 word_count = words_msg.length + word_count;
21. 	 }
22.
23. 	
24. 	 public void addEcho(String echo) {
25. 	 	 /*@feature:simple_echo.additional_features.count_words@*/
26. 	 	 computeWordsCount(echo);
27. 	 	 history.add(echo);
28. 	 }
29.
30. 	 /*@feature:simple_echo.command_line@*/
31. 	 public String getLast() {
32. 	 	 try {
33. 	 	 	 return history.lastElement();
34. 	 	 } catch (NoSuchElementException e) {
35. 	 	 	 return "No Such element";
36. 	 	 }
37. 	 }
38.
39. 	 public String getByID(int paramater) {
40. 	 	 try {
41. 	 	 	 return history.get(paramater);
42. 	 	 } catch(ArrayIndexOutOfBoundsException e) {
43. 	 	 	 return "No Such Index";
44. 	 	 }
45. 	 }
46.
47. 	 /*@feature:simple_echo.additional_features.count_words@*/
48. 	 public int getWordCount() {
49. 	 	 return word_count;
50. 	 }
51.
52.
53. 	 public int getUseCount() {
54. 	 	 return history.size();
55. 	 }
56.
57. }

XI

E. Requirements of Tool Support

This table list all the requirements for the tool support and for each the associated priority. R1 to R14
are used in the work to reference them.

R Function\Priority High Medium Low

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Load an FM X

Display an FD X

Create an FM X

Checks Tags X

Auto-completion for Tags X

Drag-and-drop to tag X

Display scope X

Display list of tagging location

Navigate X

Configuration X

Retain state of a configuration X

Prune X

Minimal set of features X

Project Level visualization X

XIII

