
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Implementation of access control using aspect-oriented programming

Montrieux, Lionel

Award date:
2009

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/326315522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/studentthesis/implementation-of-access-control-using-aspectoriented-programming(8a127a41-53c2-4a58-b0dc-69f2490e4e7f).html

Facultés Universitaires Notre-Dame de la Paix, Namur
Faculté d'Informatique

Implementation of Access Control using

Aspect-Oriented Programming

Lionel Montrieux

Mémoire présenté en vue de l'obtention du grade de Maître en Informatique
Année académique 2008-2009

2

Abstract

English

UMLsec is an extension of UML that allows one to de�ne security-related properties on a
set of UML diagrams, as well as to check whether or not the diagrams ful�l those properties.
It is a sound and e�cient way of making sure that security properties are actually enforced
during the software modelling phase.

If a model does not ful�l a UMLsec property, we propose a way of (semi-)automatically
modify it in order for the desired property to be correctly enforced.

But still, mistakes can easily arise when translating the UML diagrams to code. Therefore,
we propose a way to automatically generate code from the model that will ful�l the same
security properties as the model does. We compare the Object-Oriented and the Aspect-
Oriented approaches, and select one to be implemented.

Keywords: UML, UMLsec, Object-Oriented Programming, Aspect-Oriented Program-
ming, model transformation, security, automatic code generation, RBAC

Français

UMLsec est une extension d'UML qui permet de dé�nir des propriétés ayant trait à la
sécurité sur un ensemble de diagrammes UML, ainsi que de véri�er que le modèle respecte
e�ectivement les propriétés énoncées. Il s'agit d'une manière e�cace de s'assurer que les
propriétés de sécurité sont e�ectivement mises en application durant la phase de modélisation.

Si un modèle ne satisfait pas une propriété UMLsec, l'on propose une méthode pour le
modi�er (semi-)automatiquement a�n que la propriété désirée soit respectée par le modèle.

Toutefois, des erreurs peuvent aisément se glisser lors de la traduction des diagrammes UML
en code. Par conséquent, l'on propose une méthode permettant de générer automatiquement
le code à partir du modèle, a�n qu'il satisfasse aux mêmes propriétés de sécurité que celui-ci.
L'on compare les approches Orienté-Objet et Orienté-Aspect, et l'on en sélectionne une, qui
sera implémentée.

Mots clefs :UML, UMLsec, Programmation Orienté-Objet, Programmation Orienté-Aspect,
transformation de modèles, sécurité, génération automatique de code, RBAC

i

ii

Acknowledgements

This thesis could never have been written without the help of a lot of people. I would like
to take the opportunity to acknowledge them.

Dr. Jan Jürjens and Dr. Yijun Yu, from the Open University, Milton Keynes, UK, for their
hospitality during my stay at the Open University and for their advices and support, as well
as Prof. Bashar Nuseibeh, and everyone in the Computing department.

Prof. Pierre-Yves Schobbens and Hubert Toussaint, my supervisors at the University of
Namur,for their support and many valuable remarks during all the stages of this thesis and
the related internship at the Open University.

All the attendees of the Trento Security Workshop (January 19 - 20, 2009) that allowed we
to talk about my work at The Open University, and for their valuable comments and advices.

Finally, this thesis couldn't have been written without the help, support and countless hours
of proofreading of my family and friends.

iii

iv

Contents

1 Introduction 1

2 Aspect-Oriented programming 3

2.1 Overview . 3

2.2 The Object-Oriented approach . 3

2.3 The limits of the Object-Oriented approach . 3

2.3.1 Code tangling . 4

2.3.2 Code scattering . 4

2.4 Aspect-Oriented Programming concepts . 4

2.4.1 Aspects . 4

2.5 Aspect-Oriented languages . 7

2.5.1 AspectJ . 7

3 Access control 13

3.1 Introduction . 13

3.2 DAC: Discretionary Access Control . 13

3.2.1 Overview . 13

3.2.2 Implementations . 13

3.3 MAC: Mandatory Access Control . 14

3.3.1 Overview . 14

3.3.2 MLS: Multi-Level Security . 14

3.3.3 Implementations . 14

3.3.4 Example: SELinux . 15

3.4 DAC and MAC limitations . 16

3.5 RBAC: Role-Based Access Control . 17

3.5.1 Ferraiolo and Kuhn's RBAC model . 18

3.5.2 Sandhu, Coyne, Feinstein and Youman's RBAC framework 18

3.5.3 NIST RBAC model . 19

3.5.4 Implementations . 23

3.5.5 Limitations . 23

3.6 Other access control mechanisms . 23

3.6.1 LBAC: Lattice-Based Access Control . 24

3.6.2 OrBAC: Organization-Based Access Control 24

3.6.3 And many more... 24

v

vi CONTENTS

4 UMLsec 25

4.1 What is UMLsec . 25

4.1.1 RBAC rules using UMLsec . 25

4.1.2 � guarded � properties . 26

4.1.3 � permission � properties . 27

4.1.4 � secure links � properties . 32

4.1.5 The � critical � stereotype . 32

4.1.6 � secure dependency � properties . 34

4.2 Interactions between stereotypes . 35

4.2.1 Generation of UMLsec stereotypes from a � rbac � stereotype 35

4.3 Extending the � rbac � requirements . 43

4.3.1 Supporting hierarchical roles . 43

4.3.2 Separation of Duty . 45

4.3.3 Negative permissions . 45

4.4 Con�icts between UMLsec properties . 46

4.4.1 Con�icts between � permission � and � rbac � 46

4.4.2 Con�icts between � guarded � and � rbac � 46

4.4.3 Con�icts between � permission � and any sequence diagram 46

4.5 Automated Security Hardening for UMLsec Models 47

4.5.1 Overview . 47

4.5.2 � secure links � . 47

4.5.3 � secure dependency � . 51

4.5.4 � permission � . 52

4.5.5 Possible side e�ects . 60

5 Producing veri�ed code 61

5.1 Code generation techniques . 62

5.1.1 Generating Object-Oriented code . 62

5.1.2 Generating Aspect-Oriented code . 62

5.2 Generating code from a � permission � property 62

5.2.1 Authorization API . 62

5.2.2 Object-Oriented solution . 63

5.2.3 Aspect-Oriented solution . 68

5.3 Generating code from a � rbac � stereotype . 74

5.3.1 The JAAS framework . 74

5.3.2 Authentication . 76

5.3.3 Authorization: Object-Oriented solution 76

5.3.4 Authorization: Aspect-Oriented solution 82

6 The UMLsec tool 91

6.1 Overview . 91

6.2 UMLsec properties checking . 92

6.3 Automatic correction of unsecure models . 92

6.3.1 � secure links � property . 93

6.3.2 � secure dependency � property . 94

6.3.3 � permission � property . 94

6.4 Code generation . 94

CONTENTS vii

6.5 UML tool migration . 95
6.5.1 From Poseidon to ArgoUML . 95
6.5.2 Exporting models to ArgoUML . 96

6.6 Development process . 96
6.7 Future works . 96

7 Conclusion 99

viii CONTENTS

List of Figures

2.1 Code tangling . 4

2.2 A Java-like class illustrating the tangling problem (inspired from [Lad03]) . . . 5

2.3 Code scattering . 6

2.4 Aspect syntax in AspectJ . 7

2.5 client.java . 9

2.6 account.java . 10

2.7 logging.aj - a simple logging aspect . 11

3.1 Relationships between roles, users and permissions 18

3.2 Level hierarchy for the 1996 RBAC framework proposal 18

3.3 Summary of RBAC levels [SFK00] . 20

3.4 Flat RBAC . 20

3.5 Hierarchical RBAC . 20

4.1 A simple activity diagram with the � rbac � property 26

4.2 A simple class diagram, without access restrictions 27

4.3 The same class diagram, with � guarded � properties 28

4.4 Class diagram with the � permission � property 29

4.5 Sequence diagram with the � permission � property 31

4.6 deployment diagram with � secure links � property 33

4.7 Default adversary . 33

4.8 The � secure dependency � property . 34

4.9 Activity Diagram describing RBAC rules for a credit system 36

4.10 Class Diagram describing the credit system, without access control constraints . 37

4.11 Sequence Diagram describing the setup and approval process for a large (>¿1000)
credit . 37

4.12 The class diagram with the � guarded � property, and the statechart diagrams
describing its behaviour . 39

4.13 sequence diagram describing option 2 . 40

4.14 class diagram describing option 2 . 41

4.15 Sequence diagram describing option 3 . 42

4.16 Class diagram describing option 3 . 43

4.17 Activity diagram with a hierarchy relation between two roles 44

4.18 Default Adversary . 47

4.19 Simple web application deployment diagram . 48

ix

x LIST OF FIGURES

4.20 Deployment diagram meeting the � secure links � property with a default ad-
versary . 49

4.21 Insider Adversary . 49
4.22 Deployment diagram meeting the � secure links � requirements with an inside

adversary . 50
4.23 Insider Adversary with access to encryption keys 50
4.24 � secure dependency �property: a key generation system 51
4.25 The key generation system has been �xed to meet the �rst condition of the

� secure dependency � property . 52
4.26 The key generation system now ful�ls the � secure dependency � requirements . 52
4.27 A simple Class diagram with the � permission � property 56
4.28 A simple sequence diagram with the � permission � property 56
4.29 The correct class diagram, with the missing � permission-secured � stereotype . 57
4.30 The correct sequence diagram, with the missing � permission-secured � stereo-

type and the updated � permission � tag . 58
4.31 A less secure, but valid, version of the class diagram 58
4.32 A less secure, but valid, version of the sequence diagram 59
4.33 The updated sequence diagram, with the second permission removed 59
4.34 The �nal version of the sequence diagram . 60

5.1 The class diagram describing the system . 65
5.2 The sequence diagram . 65
5.3 client.java . 66
5.4 employee.java . 66
5.5 server.java . 67
5.6 updated client.java . 67
5.7 updated employee.java . 68
5.8 client.java . 70
5.9 employee.java . 70
5.10 server.java . 70
5.11 Aspect generated from the class diagram only 71
5.12 updated client.java . 72
5.13 updated employee.java . 72
5.14 Aspect updated with the information found in the sequence diagram 73
5.15 grant statement syntax (from [Mic01]) . 75
5.16 A sample subclass of the BasicPermission class 76
5.17 Code snippet to add at the beginning of every protected method 77
5.18 Code snippet that will call a protected method 77
5.19 A simple activity diagram with � rbac � properties 78
5.20 The class diagram corresponding to the activity diagram on �gure 5.19 79
5.21 Employee.java . 79
5.22 Account.java . 79
5.23 Credit.java . 80
5.24 Customer.java . 80
5.25 Credit.java - now with the approve() method protected 81
5.26 CreditPermission.java - the Permission that will handle permissions for the

Credit class . 81

LIST OF FIGURES xi

5.27 A sequence diagram that includes a call to a protected operation 82
5.28 Update Employee.java - now with JAAS authorization support 83
5.29 A sample around() advice that performs a call to a protected method 84
5.30 AbstractAuthAspect.aj - Abstract Authentication Aspect [Lad03] 85
5.31 A simple activity diagram with the � rbac � UMLsec property 86
5.32 The Class diagram corresponding to the activity diagram on �gure 5.31 86
5.33 A sequence diagram that performs a call to a protected operation 87
5.34 Employee.java - generated without UMLsec properties 87
5.35 Account.java - generated without UMLsec properties 87
5.36 Credit.java - generated without UMLsec properties 88
5.37 Customer.java - generated without UMLsec properties 88
5.38 CreditAuthAspect.aj - the authorization aspect for the Credit class 88
5.39 CreditPermission.java - Extends the Permission class for the Credit class access

control . 89

6.1 The UMLsec tool's GUI . 91
6.2 The UMLsec tool general architecture . 92
6.3 UMLsec tool output for an unsecure model regarding the � secure links � property 93

xii LIST OF FIGURES

Glossary

Advice (AOP) In Aspect-Oriented Programming, an advice inserts code before, after or
around a speci�ed pointcut. Advices are discussed in section 2.4.

AOP Aspect-Oriented Programming Aspect Oriented Programming is a programming paradigm
that allows one to separated crosscutting concerns from the business logic code. Chapter
2 discusses the Aspect-Oriented paradigm in more details.

AppArmor AppArmor is an open source implementation of MAC for the Linux kernel,
originally written by Novell. It claims to be easier to con�gure and cause less overhead
than SELinux.

ArgoUML ArgoUML is an Open-Source UML modelling software. It is used to create the
UML models that will be loaded inside the UMLsec tool, described in chapter 6.

AspectJ AspectJ is an Aspect-Oriented programming language that extends the Java pro-
gramming language capabilities. It is used in the UMLsec tool, both in the tool im-
plementation and in the code the tool automatically generates from UMLsec models.

DAC Discretionary Access Control Discretionary Access Control is "a means of restricting
access to objects based on the identity of subjects and/or groups to which they belong"
[oD85]

JAAS Java Authentication and Authorization Service JAAS is an authentication and autho-
rization framework that is part of the Java SDK since JDK 1.4. It allows one to use any
desired authentication or authorization mechanism by replacing the default ones with
custom developments. A more complete description of JAAS can be found on section
5.3.1.

Joinpoint (AOP) In Aspect-Oriented Programming, a joinpoint is any kind of place in the
code that can be recognised by the weaver. Joinpoints are discussed on section 2.4.

LSM Linux Security Modules The Linux Security Modules is a framework of the Linux ker-
nel that allows one to de�ne access control mechanisms. It allows users to load their
favourite access control system as a kernel module, which makes changing between dif-
ferent implementations of an access control mechanism, or even between di�erent access
control mechanisms, easier.

MAC Mandatory Access Control Mandatory Access Control is "a means of restricting access
to objects based on the sensitivity (as represented by a label) of the information con-

xiii

tained in the objects and the formal authorisation (i.e., clearance) of subjects to access
information of such sensitivity" [oD85].

MLS Multi-Level Security Multi-Level Security allows a system administrator to de�ne clear-
ance levels, and to label resources with a minimum level that a user will need in order
to access the protected resource.

NIST National Institute for Standards and Technologies The NIST is an American federal
agency within the US Department of Commerce, whose goals include the promotion of
standards.

OOP Object-Oriented Programming Object-Oriented Programming is a well-known program-
ming paradigm that has been developed since the 1960s. It allows one to decompose
code into modules and classes, which helps to achieve better modularisation of the code.

Permission A permission is an access control term that allows its holder to perform an action
on a resource (a �le, a process, . . .)

Pointcut (AOP) In Aspect-Oriented Programming, a pointcut is a pattern that matches
joinpoints. Pointcuts are discussed on section 2.4.

Poseidon Poseidon is a commercial fork of ArgoUML. It was historically used instead of
ArgoUML to create models to be checked by the UMLsec tool.

RBAC Role-Based Access Control A widely-used access control model where users are as-
signed roles, and roles are granted permissions. RBAC allows the de�nition of permis-
sions in a way that matches an organization's structure, making the access control policy
easier to create and maintain.

SELinux Security-Enhanced Linux SELinux is an open source implementation of MAC, orig-
inally developed by the NSA, and later included in the Linux kernel tree.

TrustedBSD TrustedBSD is an open source framework that provides MAC capabilities to
the BSD kernels.

UMLsec UMLsec is an extension of UML that uses the standard UML extension mechanisms,
such as stereotypes and tagged values, to model security properties on a UML model.

xiv

Chapter 1

Introduction

Access control is a major concern in modern computer systems and software. Access to
objects, data and programs needs to be restricted, either for legal reasons, like privacy pro-
tection or military secrets, or for business-related reasons, like trade secrets or other critical
information, or even simply to protect a system from unauthorised users. Lots of access con-
trol models have been proposed, but one of the most famous is probably Role-Based Access
Control (RBAC) [SFK00], that allows to set permissions in a way that matches the reality of
an organization (a company, a government agency, an education institution, . . .).

Security in general, and access control in particular, being more and more crucial for the
safety of systems and data, IT professionals started to realise that security is a problem that
should be handled as soon as possible in the software development process, instead of being
implemented in the end of the project, if there is some time left.

Consequently, several approaches have been developed to help taking security into account
as early as possible in the development cycle. One of the is UMLsec [Jür05], which proposes to
de�ne security properties on UML models, using the UML extension mechanism. Moreover,
UMLsec allows one to check his model against the desired security properties (including, but
not limited to, access control properties), in order to make sure that the model does not have
any unexpected �aw.

Although making sure that a UML model is secure regarding a set of security policies is a
great way of gaining con�dence in the security of the resulting software, problems can also,
and most probably will, arise when the developers will translate the model into code. As
perfect as the model can be, there will without any possible doubt be bugs and errors, and
those might a�ect the security of the software. Therefore, automatically generating the code
would allow one to make sure that it meets the same security standards as the model it comes
from.

This document focuses on how to generate code from a UML model with UMLsec properties
included in a way that enforces those properties exactly as in the original model. And since
models can also not enforce the required UMLsec properties, this document also gives hints
about how to automatically modify the model when the desired properties are not met, in
order to correct it from a security point of view, without changing the business logic.

1

2 CHAPTER 1. INTRODUCTION

For the code generation, we try to use Aspect-Oriented Programming techniques and see
how they can help achieving a better modularisation and more maintainable security policies.

Chapter 2 will be an introduction to Aspect-Oriented Programming, while chapter 3 will
review several access control techniques, including of course RBAC. Then chapter 4 will in-
troduce and extend UMLsec, as well and give thoughts about how to automatically modify a
model to enforce UMLsec properties. Chapter 5 will then focus on producing code that en-
forces the same UMLsec properties as the model it is derived from, and chapter 6 will present
the tool support for UMLsec.

Given the unusual presentation of this document, where my personal contributions are
sometimes mixed with description of pre-existing works, let us quickly summarise which parts
are descriptions of preexisting work, and which parts are original contributions.

Chapters 2 and 3 are purely preexisting work descriptions. They introduce the Aspect-
Oriented Programming concepts and access control concepts that will be used later.

Chapter 4 is a mix of prexisting and original work. Section 4.1 describes a subset of UMLsec
that will be used later, and is purely a summary of preexisting work. The next sections,
however, are original work: discussion about extending some UMLsec properties to other
UML diagrams on section 4.2, extension of the � rbac � property on section 4.3, con�icts
between UMLsec properties in section 4.4, and �nally, the automated hardening of unsecure
UMLsec models on section 4.5, that has been done with the help of Dr. Jan Jürjens from The
Open University.

Chapter 5 is also original work, at least for the code generation from UMLsec properties. Of
course, code generation from plain UML diagrams was preexisting, but it is barely discussed
in that chapter.

Finally, chapter 6 describes the current state of the UMLsec tool development, and therefore,
preexisting code is mixed with original contributions. Those original contributions include the
automatic correction of unsecure models (section 6.3), the code generation (section 6.4), part
of the UML modelling tool migration (section 6.5, essentially bug tracking and �xing), and
the development process improvements (section 6.6).

Chapter 2

Aspect-Oriented programming

2.1 Overview

Aspect-Oriented programming is a programming technique that has been developed since
1996 in Xerox Research Center, Palo Alto, CA. The idea behind Aspect-Oriented programming
was to address problems that could not be solved conveniently using procedural or Object-
Oriented programming paradigms. It appeared that a new way of designing code was needed
to avoid those problems, that will be discussed in section 2.3. Aspect-Oriented programming
will then be discussed in section 2.4. We will then talk about Aspect-Oriented languages in
section 2.5.

2.2 The Object-Oriented approach

The Object-Oriented paradigm was �rst introduced in the 1960, in order to help the design
process of increasingly complex software. The �rst language to introduce Object-Oriented con-
cepts (like objects, classes, superclasses, methods, . . .) was Simula [DMN], but the �rst pro-
gramming language to be called an �Object-Oriented Programming language� was Smalltalk
[Kay], developed in the 1970s at Xerox Labs.

The Object-Oriented concepts are now widely-used and well known, which is why we will
not describe objects, classes, polymorphism, inheritance or encapsulation here.

The most interesting thing about Object-Oriented programming is that it allowed one to
decompose a program into independent modules, each module implementing a functionality.

2.3 The limits of the Object-Oriented approach

Although the Object-Oriented paradigm allows one to better designed software, mainly
because the object model is closer to real-life problems than the plain old procedural paradigm,
some concerns are still really hard to model. Those concerns are called cross-cutting concerns
[IKL+97], because they can't be addressed in just one or even a few classes, but instead,
have an impact on the whole code, and therefore require one to write small pieces of code
everywhere in the code base. Typical examples on cross-cutting concerns are logging, security,
persistence, . . .

3

4 CHAPTER 2. ASPECT-ORIENTED PROGRAMMING

Those modularisation problems can be classi�ed into two categories: code tangling, and
code scattering [Lad03]. They are described in the following sections.

2.3.1 Code tangling

When a module implements several concerns at the same time, we can talk about code
tangling: a piece of code is actually doing several di�erent things, which make it hard to
write, develop, understand and maintain. Figure 2.1 (inspired by a �gure from [Lad03])
illustrates code tangling: the business logic is mixed with calls to the logging API and the
persistence API.

Figure 2.1: Code tangling

Figure 2.2 is a snippet of dummy Java-like code that illustrates the same tangling phe-
nomenon in a class, where business logic code is mixed with logging API and persistence API
calls.

2.3.2 Code scattering

Code Scattering, on the other hand, appears when a concern is implemented in several
places or modules in the code. This is typically the case with cross-cutting concerns, whose
implementation is spread all over the code base [Lad03]. Figure 2.3 (also inspired by a �gure
from [Lad03]) illustrates the code scattering phenomenon for the security concern.

2.4 Aspect-Oriented Programming concepts

2.4.1 Aspects

Aspects are an answer to the code scattering and code tangling problems. Object-Oriented
Programming is a good way to model functional requirements, but it completely fails when
non-functional requirements need to be modelled, leading to scattering and tangling.

Aspects are an extension to the traditional Object-Oriented paradigm that allow one to
model cross-cutting concerns e�ciently. Instead of spreading those concerns' implementation
through the whole code, an aspect is created that will handle the cross-cutting concern.

It is important to notice that Aspect-Oriented programming does not replace Object-
Oriented programming, but instead, extends it to address problems that Object-Oriented
programming wasn't capable of dealing with in an e�cient way.

2.4. ASPECT-ORIENTED PROGRAMMING CONCEPTS 5

1 public Cl i en t () {
private St r ing name = null ;
private int number = null ;
private int balance = null ;
private Logger l o gg e r = Logger . getLogger (" C l i en t ") ;

6 private Per s i s t anc e p e r s i s t a n c e = Per s i s t anc e . getDatabase () ;

public Cl i en t (S t r ing name , int nbr) {
this . name = name ;
this . number = number ;

11 this . ba lance = 0 ;
l o gg e r . l og ("New c l i e n t c rea ted : " + name + \

"\ t with id : " + nbr) ;
p e r s i s t a n c e . saveState () ;

}
16 public bool c r e d i t (int amount) {

balance = balance + amount ;
l o gg e r . l og ("Credit added to account " + nbr + \

" : " + amount) ;
l o gg e r . l og ("New c r e d i t : " + balance) ;

21 p e r i s t an c e . saveState () ;
return true ;

}
public bool deb i t (int amount) {

i f (amount <= balance) {
26 balance = balance − amount ;

l o gg e r . l og ("Credit withdrawn from account " \
+ nbr + " : " + amount) ;

l o gg e r . l og ("New c r e d i t : " + balance) ;
p e r s i s t a n c e . saveState () ;

31 return true ;
}
else {

l ogg e r . l og ("Can ' t deb i t " + amount + \
" : i n s u f f i c i e n t balance ") ;

36 return fa l se ;
}

}
public St r ing getName () {

return name ;
41 }

public int getBalance () {
return balance ;

}
}

Figure 2.2: A Java-like class illustrating the tangling prob-
lem (inspired from [Lad03])

6 CHAPTER 2. ASPECT-ORIENTED PROGRAMMING

Figure 2.3: Code scattering

Aspect-Oriented Programming de�nes and uses four new concepts: joinpoints, pointcuts,
advices and weaving, that we will introduce shortly.

Joinpoints are points in a program execution. It can be anything: an assignation, a method
call, a constructor call, an exception, . . .

Pointcuts are used to select joinpoints in the program execution. Pointcut de�nitions are
designed to match speci�c joinpoints that will later be used to insert or replace code, using
the aspect.

Advices are pieces of code that will be executed when matching a joinpoint in the program
execution with a pointcut.

Joinpoints, pointcuts and advices are used together in Aspect-Oriented Programming: the
pointcut captures joinpoints where code de�ned in an aspect has to be executed, and the
advice is the place where the code to be executed is de�ned.

Weaving is the action of �integrating� aspects into the functional code. It is a composi-
tion mechanism that will produce executable code from the functional code and the aspects.
Weaving rules can be de�ned that will determine the �nal result, like for example, the order
in which aspects should be woven into the code.

The weaving program is called the weaver. It can be implemented in several ways. It can
perform source-to-source weaving [Lad03], which means that each aspect will be weaved into
the source code before the compilation. But it can also weave aspects into code that has
already been compiled. The second approach is more di�cult to implement, but allows one
to add and remove aspects during the execution of the program.

2.5. ASPECT-ORIENTED LANGUAGES 7

2.5 Aspect-Oriented languages

There exist several Aspect-Oriented languages, extending several Object-Oriented or non-
Object-Oriented languages. Here, we focus on one language, AspectJ, but many other lan-
guages exist.

2.5.1 AspectJ

AspectJ is an Aspect-Oriented extension to the Java programming language. The AspectJ
project started several years ago as a Xerox [xer] research project, and is now released as Open
Source software under the Eclipse Public Licence [Fouc], and hosted by the Eclipse Foundation
[Foud]. It runs on any Java2 compatible platform.

The AspectJ project includes a compiler, a debugger, a program structure browser, a doc-
umentation generator, as well as integration with Eclipse, Netbeans, GNU Emacs, JBuilder
and Ant [Cen02].

AspectJ is a widely-used Aspect-Oriented Programming language, for example in projects
like Spring [Sou] or Tomcat [Foub], as well as in the UMLsec tool [Jü04].

In the following sections, we brie�y describe how AspectJ implements the main Aspect-
Oriented Programming concepts.

Aspects

Aspects in AspectJ are a special type of classes. The syntax is described in �gure 2.4.

1 public aspect MyAspect {
// v a r i a b l e s

// po in t cu t s
5

// adv i c e s
}

Figure 2.4: Aspect syntax in AspectJ

By default, an aspect is a singleton class, but it is possible to change this and create several
instances of an aspect. Aspect inheritance follows the Java rules for classes, which means that
an aspect can only inherit from one (and no more than one) other aspect. Abstract aspects
can also be de�ned if necessary.

Pointcuts

Pointcuts in AspectJ are de�ned inside an aspect. They can match any kind of joinpoint:
method calls, method executions, objects initialisation, constructor calls, exceptions being
thrown, access to attributes, . . .

8 CHAPTER 2. ASPECT-ORIENTED PROGRAMMING

But it is also possible to restrict a pointcut pattern to match only joinpoints inside a
particular execution context (for example: only inside the execution �ow of a method) or to
avoid capturing some joinpoints.

Here is the syntax of an AspectJ pointcut [Lad03]:
[access specifier] pointcut pointcut-name ([args]) : pointcut-definition

The pointcut-definition is a pattern that will select the joinpoints during the program
execution.

Advices

There are three kinds of advices: before(), after() and around() advices. The before()
advice will execute its code before the joinpoint, the after() advice will execute its code after
the joinpoint, and the around() advice will execute its code instead of the joinpoint.

The advice syntax is as follows:

advice declaration : pointcut specification advice code

Inside an advice, it is possible to access information about the captured joinpoint. It can
be useful, for example, in order to get the name of the captured method.

Weaving

The AspectJ weaver is not a source-to-source weaver. Instead, it weaves aspects inside class
�les, which allows to add or remove aspects during the execution of the program.

When several aspects have been de�ned, the order in which they will be woven can be
important, since it can change the behaviour of the resulting program. It is therefore possible
to de�ne the weaving order inside an aspect.

Example: a simple aspect

The following example will illustrate how a simple aspect written in AspectJ works. We
will use an aspect to add logging features to a simple program. First, let's write two classes
in Java, as we can see on �gures 2.5 and 2.6. We have a Client class, and an Account class.

Now, suppose that we want to add logging to our simple program, using log4j. Speci�cally,
we want every Client or Account creation to be logged on the INFO level. For debugging
purposes, we also want every method call to be logged on the TRACE level.

2.5. ASPECT-ORIENTED LANGUAGES 9

1 import java . u t i l . ArrayList ;
import java . u t i l . I t e r a t o r ;

3
public class Cl i en t {

private ArrayList<Account> accounts = new ArrayList<Account>() ;
private St r ing name ;
private int number ;

8
public Cl i en t (S t r ing name , int number) {

this . name = name ;
this . number = number ;

}
13

public addAccount (Account account) {
accounts . add (account) ;

}

18 public Account getAccount (int number) {
I t e r a t o r i t e r = accounts . i t e r a t o r () ;
while (i t e r . hasNext ()) {

Account account = i t e r . next () ;
i f (account . getNumber == number)

23 return account ;
}

}

public St r ing getName () {
28 return name ;

}

public int getNumber () {
return number ;

33 }

}

Figure 2.5: client.java

10 CHAPTER 2. ASPECT-ORIENTED PROGRAMMING

1 public class Account {
private int number ;
private int balance ;

5 public Account (int number) {
this . number = number ;

}

public c r e d i t (int amount) {
10 balance = balance + amount ;

}

public boolean deb i t (int amount) {
i f (amount > balance)

15 return fa l se ;
ba lance = balance − amount ;
return true ;

}

20 public int getBalance () {
return balance ;

}
}

Figure 2.6: account.java

Figure 2.7 describes the logging aspect. The clientCreation() (resp. accountCreation())
pointcut captures the call to any constructor of the class Client (resp. Account), and the after
advice on line 15 (resp. 19) adds the call to the logging module, right after the constructor
has been executed. The execution of methods is captured by the last pointcut, methodCall(),
and the before advice and the after advice on lines 23 and 28 add calls to the logging API
for every method call performed.

2.5. ASPECT-ORIENTED LANGUAGES 11

1 import org . apache . l o g 4 j . ∗ ;
2

public aspect Logging {
Logger l o gg e r = Logger . getLogger (" s imple l ogg e r ") ;

po intcut c l i e n tC r e a t i o n ()
7 : execut ion (C l i en t .new (. .)) ;

po intcut accountCreat ion ()
: execut ion (Account .new (. .)) ;

12 po intcut methodCall ()
: execut ion (∗ ∗ . ∗ (. .)) && ! with in (Logging) ;

a f t e r () : c l i e n tC r e a t i o n () {
l o gg e r . i n f o ("New c l i e n t ") ;

17 }

a f t e r () : accountCreat ion () {
l o gg e r . i n f o ("New account ") ;

}
22

be f o r e () : methodCall () {
S ignature s i g = th i s Jo i nPo in tS t a t i cPa r t . ge tS ignature () ;
l o gg e r . t r a c e ("ENTERING " + s i g . getName ()) ;

}
27

a f t e r () : methodCall () {
S ignature s i g = th i s Jo i nPo in tS t a t i cPa r t . ge tS ignature () ;
l o gg e r . t r a c e ("LEAVING " + s i g . getName ()) ;

}
32 }

Figure 2.7: logging.aj - a simple logging aspect

12 CHAPTER 2. ASPECT-ORIENTED PROGRAMMING

Chapter 3

Access control

3.1 Introduction

The development of computers, and speci�cally multi-users operating systems has quickly
led to concerns about who should be able to access, create, modify or delete data and execute
programs. There was a growing need to restrict access to some data, and that's why access
control was created.

In 1985, the American Department of Defense (DoD) released the Trusted Computer System
Evaluation Criteria (TCSEC) [oD85]. The TCSEC de�nes two types of access control policies:
Discretionary Access Control and Mandatory Access Control.

Those are still widely used today, but they have also shown their limits in several scenarios.
Since then, other models have been proposed, including Role-Based Access Control[SFK00],
Organization-Based Access Control[ABB+03], . . .

This chapter describes some of those access control models, but focuses on Role-Based
Access Control that will be used in the next chapters as well.

3.2 DAC: Discretionary Access Control

3.2.1 Overview

Discretionary Access Control has been de�ned in 1985 by the Trusted Computer System
Evaluation Criteria as �a means of restricting access to objects based on the identity of subjects
and/or groups to which they belong. The controls are discretionary in the sense that a subject
with a certain access permission is capable of passing that permission (perhaps indirectly) on
to any other subject (unless restrained by mandatory access control).� [oD85]

3.2.2 Implementations

The Unix system of users, groups and read/write/execute permissions is a typical example
of DAC: each user can grant permissions to other users or groups of users on the �les he owns,
without restrictions.

13

14 CHAPTER 3. ACCESS CONTROL

On a Unix system, everything is a �le. Files are �les, but so are directories, pipes, de-
vices,. . . A �le's permissions are described like this :
-rwxrw-r�- john staff 2048 May 18 2009 some_file

where the �rst group of letters (-rwxr�-r�-) describes the permissions associated to the �le,
then the owner (john) is speci�ed, then the group (sta�), followed by the �le size (2048 bytes),
then the last modi�cation date (May 18 2009), and �nally the �le name (some_�le). In the
permissions description, the �rst three letters indicate which permissions the owner, john, has
on the �le. The next three describe the permissions for the group, staff, and the last three
ones describe the permissions for the other users. r is for the permission to read the �le, w is
for writing into it, and x is for executing it. Any - means that the permission is not granted.
In this example, the user, john, can read, write and execute some_file, while the members of
the sta� group can only read and execute it. The other users can only read the �le.

3.3 MAC: Mandatory Access Control

3.3.1 Overview

Mandatory Access Control has been de�ned by the Trusted Computer System Evaluation
Criteria as "a means of restricting access to objects based on the sensitivity (as represented
by a label) of the information contained in the objects and the formal authorisation (i.e.,
clearance) of subjects to access information of such sensitivity" [oD85].

The di�erence between DAC and MAC is that MAC allows the system administrator to
de�ne restrictions that the users will not be able to override when setting permissions on the
objects they own, while DAC allows them to do whatever they want with those objects.

For example, using MAC an administrator could forbid a user to give write permissions to
the documents he owns, for some reason. That would be impossible to enforce with DAC.

3.3.2 MLS: Multi-Level Security

Multi-Level Security (MLS) de�nes the ability for the administrator to de�ne di�erent
levels of authorisation. Each resource gets a security level, and every user gets a security level
clearance allowing him to access resource of his clearance level, or any lower level.

It is a convenient way to hide sensitive data to users that do not have the right credentials
to access it, as well as for higher level users to release sanitized versions of documents to
lower-level users.

3.3.3 Implementations

SELinux has initially been developed by the NSA, and merged into the Linux kernel in
2003. It uses a feature of the Linux 2.6 kernel, LSM (Linux Security Modules) [WCS+02].
LSM is an access control framework whose goal is to allow several access control policies to
be developed as modules. Linux is used in a variety of di�erent contexts, that have di�erent
security needs. Moreover, there is no agreement on one general access control solution that
would �t everyone's needs. Therefore, a mechanism allowing people to use whatever access

3.3. MAC: MANDATORY ACCESS CONTROL 15

control mechanism they want to use without requiring too much changes in the kernel was
needed. SELinux is used by several major Linux distributions, like Red Hat Enterprise Linux
and Fedora.

AppArmor is another MAC implementation for the Linux kernel, and also uses LSM. It
is included in distributions like Ubuntu and SUSE Linux. It is now supported by Novell.
However, it is not included in the vanilla Linux kernel tree. This is an alternative to SELinux
that has been developed with the idea of being easier to administrate and having a smaller
impact on performances [Nov].

Windows Vista and Windows Server 2008 also implement Mandatory Access Control, using
Mandatory Integrity Control.

Mac OS X also has its MAC mechanism, which is an implementation of the TrustedBSD
[Wat] framework. TrustedBSD was originally developed for the FreeBSD operating system.

3.3.4 Example: SELinux

SELinux, which stands for Security-Enhanced Linux, has been developed by the NSA,
and released as Open Source software in 2000. It has then been rewritten to use the LSM
framework.

In order to enforce access control, SELinux de�nes three types of contexts, that contain
access control information, like owner, role, type, or security level:

• contexts for �les

• contexts for processes

• contexts for users

Let's take a closer look at these contexts, and how they are de�ned.

Contexts for �les

Let's take a look at the permissions of a �le on a GNU/Linux distribution with SELinux
enabled:

ls -Z umlsec.tex

-rw-r--r--. john john unconfined_u:object_r:user_home_t:s0 umlsec.tex

The usual DAC permissions are still there, but there is also a SELinux context :
unconfined_u:object_r:user_home_t:s0. The context contains the SELinux access control
information for this �le. However, the DAC permissions still have precedence, which means
that if the DAC permissions don't allow an operation on the �le, then the SELinux con-
text won't be taken into account. In this example, we have a user (unconfined_u), a role
(object_u), a type (user_home_t), and a level (s0).

16 CHAPTER 3. ACCESS CONTROL

The user is mapped to a system user. The SELinux user contains information about its set
of roles, and its MLS (Multi-Level Security) range.

The role is an attribute of an RBAC model. Although SELinux is a MAC implementation,
it also supports RBAC, that can be described using MAC principles [Kuh98].

The type of the �le is used for type enforcement. When the type attribute is used to describe
a process instead of a �le, then it de�nes a domain instead of a type.

Finally, the level is the only optional attribute. It is an attribute of MLS and de�nes a
range of levels using the following syntax: lowestLevel-highestLevel or level if the range
only contains one level.

Contexts for processes

The process context is similar to the �le context:

ps -eZ | grep passwd

unconfined_u:unconfined_r:passwd_t:s0-s0:c0.c1023 13212 pts/1 00:00:00 passwd

We still have a user (unconfined_u), a role (unconfined_r), a type (passwd_t) and a level
range (s0-s0:c0.c1023). Remember that for a process, the type de�nes a domain.

Contexts for users

Finally, the users context appears as follows:

id -Z

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

Every user has a mapping to a SELinux user (unconfined_u), who has a role (unconfined_r),
a domain (unconfined_t) and a level range (s0-s0:c0.c1023).

3.4 DAC and MAC limitations

DAC is a widely-used access control system, probably because it is really easy to use: each
�le owner decides how he wants to protect the �le from others. The major problem is that
the administrator doesn't have any possibility to enforce access control restrictions on �les
created by users. If this is an acceptable solution for individual users or systems that do not
contain any critical information, it is however unsuitable for most organisations, particularly
when there is critical data involved.

3.5. RBAC: ROLE-BASED ACCESS CONTROL 17

On the other hand, MAC is a more powerful mechanism, that includes the ability for the
administrator to de�ne complex policies and to enforce restrictions on which permissions a
user can give to its �les. MAC is also strongly connected to MLS, allowing the administrator
to de�ne and use security levels to avoid leakage of critical information. However, a MAC
model can quickly become complex and almost impossible to manage. Also, MAC models, at
least in their �rst form as de�ned in [?], cannot handle some complex properties, like dynamic
Separation of Duty (that will be discussed in section 3.5.3).

3.5 RBAC: Role-Based Access Control

Historically, RBAC (Role-Based Access Control) came after MAC and DAC. Before that,
MAC and DAC were the only known access control models. RBAC can be used to simulate
DAC and MAC, and MAC can sometimes be used to implement RBAC [NIS].

Here, we will concentrate on three major step towards the de�nition of an RBAC standard:
the initial RBAC proposal, followed by an RBAC framework proposal, and �nally, the RBAC
standard proposal.

The initial RBAC model has been de�ned in 1992 by Ferraiolo and Kuhn [FK92], who gave
a �rst formalisation of the model. However, their proposal has been discussed and improved
a lot. In 1996, Sandhu, Coyne, Feinstein and Youman introduced a framework for RBAC
model [SCFY96]. In 2000, Sandhu, Ferraiolo and Kuhn proposed a uni�ed RBAC model as
an RBAC standard [SFK00], that was adopted in 2004 by the American National Standards
Institute, International Committee for Information Technology Standards (ANSI/INCITS) as
an industry standard (American National Standard 359-2004).

The concept of RBAC models uses three basic components: users, roles and permissions.
A user can have multiple roles, and each role is associated with a set of permissions. Roles
are supposed to match the actual organizational roles a user has. For example, in a banking
system, roles could be clerk , supervisor , director , auditor , supervisors could have
the permission to accept any kind of credit to the customers, while clerks could only approve
those under ¿1000. Figure 3.1 describes the relation between users, roles and permissions.

Using roles provides many advantages over the usual, DAC-like owner/group mechanism:
since it matches �real life� organizational groups, it makes adding or removing permissions
to a particular type of users really easy. Also, the permissions of a user whose status in the
organization changes (like, for example, an employee being promoted to the supervisor status)
can be updated simply by adapting the roles he is assigned to. Revoking a user's credentials
is also as easy as removing all the roles he is assigned to. So is adding a new user.

Another key concept of RBAC is sessions. A session corresponds to the use of the system
by a user at a particular time. Depending on the implementation used, users can chose which
roles they want to activate in the set of roles they are assigned to, or all their assigned roles are
activated when the session starts. When a role is activated, the user can use all the permissions
associated with the role. Some implementations only allow one role to be activated at a time,

18 CHAPTER 3. ACCESS CONTROL

but this restriction is now explicitly forbidden by the RBAC standard, as described in section
3.5.3.

Figure 3.1: Relationships between roles, users and permis-
sions

3.5.1 Ferraiolo and Kuhn's RBAC model

The �rst Role-Based Access Control proposal was Ferraiolo and Kuhn's RBAC model, pro-
posed in 1992 [FK92]. This �rst proposal introduces the key RBAC concepts: users (called
subjects), roles, permissions (called transactions, but it's essentially the same idea) and ses-
sions.

Additionally, this proposal also describes properties such as Least Privilege, Separation
of Duty (both static and dynamic) and role hierarchies, but those are not formally de�ned,
leading to various possible interpretations.

3.5.2 Sandhu, Coyne, Feinstein and Youman's RBAC framework

Figure 3.2: Level hierarchy for the 1996 RBAC framework
proposal

The RBAC framework proposed in 1996 by Sandhu, Coyne, Feinstein and Youman in
[SCFY96] introduces four levels in the RBAC model: RBAC0, RBAC1, RBAC2 and RBAC3.
RBAC0 describes the minimum requirements to support RBAC, while RBAC1 adds support
for role hierarchies on top of RBAC0. RBAC2 adds support for constraints on top of RBAC0

3.5. RBAC: ROLE-BASED ACCESS CONTROL 19

too. Finally, RBAC3 is the consolidated model, that include both RBAC1 and RBAC2.
Figure 3.2 describes the relations between the di�erent levels.

The four levels proposed in this paper will not be discussed in detail here, since the concept
of levels has been adapted in the NIST (National Institute of Standards and Technology) [oC]
RBAC standard that is described later, and where the di�erent levels are explained in detail.

3.5.3 NIST RBAC model

Over the years, several di�erent RBAC models have been proposed, including, but not
limited to, those described in sections 3.5.1 and 3.5.2. Several implementations have also been
developed.

Each of those models and implementations had their own interpretation of RBAC concepts,
resulting in a confusing set of slightly di�erent RBAC de�nitions. In order for the RBAC
technology to develop and gain broader audience, a standard de�nition was needed.

In 2000, Sandhu, Ferraiolo and Kuhn proposed the de�nition of a uni�ed RBAC model
as such a standard [SFK00]. Their proposal was accepted in 2004 by the ANSI/INCITS
(American National Standard 359-2004).

Overview

The NIST RBAC model is divided in 4 levels, similar to the ones described in section
3.5.2. Figure 3.3 summarises those levels and their functional capabilities. Those levels are
cumulative, therefore each level includes the requirements from the previous ones.

Level 1: Flat RBAC

Flat RBAC describes the basic aspects of Role-Based Access Control. Users have roles, and
those roles have permissions. Users acquire permissions by being members of roles.

The NIST RBAC model requires a many-to-many relation between users and roles, as well
as between roles and permissions. That means that a user can have many roles, and that a
role can have many users. Similarly, a role can hold many permissions, and a single permission
can be held by many roles.

Another important requirement is that users should be able to use permissions from di�erent
roles they are assigned to simultaneously.

Figure 3.4 describes the relation between users, roles and permissions.

Level 2: Hierarchical RBAC

The second level, Hierarchical RBAC, simply adds support for role hierarchies. Those are
formalised here as a partial order between parent roles and child roles, where child roles acquire
their parent's permissions. Figure 3.5 describes the role hierarchy capability added to the �at
RBAC model.

20 CHAPTER 3. ACCESS CONTROL

Level Name Capabilities

1 Flat RBAC

users acquire permissions through roles
must support many-to-many user-role assignment
must support many-to-many permission-role assignment
must support user-role assignment review
users can use permissions of multiple roles simultane-
ously

2 Hierarchical RBAC

Flat RBAC +
must support role hierarchy (partial order)
level 2a requires support for arbitrary hierarchies
level 2b denotes support for limited hierarchies

3 Constrained RBAC

Hierarchical RBAC +
must enforce Separation of Duty
level 3a requires support for arbitrary hierarchies
level 3b denotes support for limited hierarchies

4 Symmetric RBAC

Constrained RBAC +
must support permission-role review with performance
e�ectively comparable to user-role review
level 4a requires support for arbitrary hierarchies
level 4b denotes support for limited hierarchies

Figure 3.3: Summary of RBAC levels [SFK00]

Figure 3.4: Flat RBAC

Figure 3.5: Hierarchical RBAC

3.5. RBAC: ROLE-BASED ACCESS CONTROL 21

The NIST standard de�nes two sub-levels: General Hierarchical RBAC and Restricted
Hierarchical RBAC.

General Hierarchical RBAC where the role hierarchy is described by an arbitrary partial
order.

Restricted Hierarchical RBAC where the role hierarchy can be restricted to simpler struc-
tures, like, for example, trees.

Level 3: Constrained RBAC

Constrained RBAC is an hierarchical RBAC model where the designer has the ability to
add constraints, which can be either static or dynamic. Static constraints are associated with
the user-role assignment, where dynamic constraints are associated with the activation of roles
within new user sessions. A widely-used example of such a constraint is Separation of Duty.

Separation of Dutyis about making sure that a user cannot gain too much power, and that
some speci�c operations can only be done by multiple users, each of them having permission
to perform part, but not all, of the operation. In other words, Separation of Duty allows the
administrator to specify that if a user is a member of a role roleA, then he can not be a
member of another role roleB .

Separation of Duty constraints can be de�ned statically or dynamically. While a static
Separation of Duty (SSD) constraint de�nes constraints on the assignment of roles, a dynamic
Separation of Duty (DSD) constraint de�nes constraints on activated roles.

Static Separation of Duty (SSD) constraints stipulate that a user cannot be assigned two
(or more) con�icting roles. Moreover, if there's an SSD constraint between two roles, then
it also stands for roles that inherit from those roles. Imagine a SSD constraint between the
role employee and the role supervisor . If the role insurance employee inherits from
employee , then the constraint also holds between insurance employee and supervisor .

Dynamic Separation of Duty constraints, on the other hand, are not de�ned regarding the
assignment of roles, but instead, regarding the activation of roles. That means that a user
could be assigned two potentially con�icting roles, as long as he doesn't activate both of them
at the same time.

Level 4: Symmetric RBAC

The last NIST RBAC level strengthens the requirements for reviewing permission-roles
assignments. It requires a review interface that can return two types of results.

The �rst type is �the complete set of objects that are associated with the permissions
assigned to a particular user or role� [SFK00].

The second one is �the complete set of operation and object pairs that are associated with
the permissions that are assigned to a particular user or role� [SFK00].

22 CHAPTER 3. ACCESS CONTROL

There are also a few optional requirements. A �rst option is �the ability to selectively de�ne
direct and indirect permission assignment� [SFK00], where direct assignments describe �the set
of permissions that are assigned to the user and/or to the roles for which the user is assigned�
[SFK00], and indirect assignments describe �the set of permissions that are included in the
direct permission assignment in addition to the permissions that are assigned to the roles that
are inherited by the roles assigned to the user� [SFK00].

A second optional requirement is �the ability to select the target systems for which the
review will be conducted� [SFK00].

Uncovered attributes

There are a few RBAC attributes that are not discussed in the NIST RBAC proposal, some
because their nature make them unsuitable for standardization, others because a consensus
had not been reached when the proposal was written. Some of them are shortly explained
here. This section is largely inspired from [SFK00].

Authentication While it is outside the scope of the RBAC model, how the users are au-
thenticated in the system is also a crucial aspect of the system architecture

Constraints The NIST RBAC model recognises two types of Separation of Duty constraints
(static and dynamic), but they are other ways of partitioning Separation of Duty. Also,
obligation constraints aren't addressed at all in the model.

Discretionary role activation It is the ability for a user to choose which roles should be
activated during a particular session. This isn't required by the proposal, but it is not
forbidden either.

Nature of permissions The nature of permissions is not de�ned in the standard. They can
be anything: primitives, abstract operations, customised, . . .

Negative permissions The NIST RBAC model does not de�ne negative permissions (users
assigned to role A can not perform operation X), but it does not forbid it either. Thus,
vendors are welcome to implement it if they want.

RBAC administration There is no administration component in the NIST RBAC standard
because of a lack of consensus on the subject. RBAC administration is about who can
assign users or permissions to roles, and de�ne role hierarchies.

Role engineering Role engineering consist of guidelines for designing roles and assigning
users and permissions to roles.

Role revocation How (and when, especially in distributed environments) users or permis-
sions should be revoked from a particular role is a complex issue, that is not addressed
by the standard.

Scalability This is an important criteria when selecting an RBAC implementation. Scala-
bility can be understood in terms of number of roles, number of permissions, size of role
hierarchies, . . .

3.6. OTHER ACCESS CONTROL MECHANISMS 23

3.5.4 Implementations

There are several implementations of the RBAC model, some of them are Active Directory
and SELinux, that has already been described in section 3.3.4.

3.5.5 Limitations

While RBAC is a well-known and widely used access control model that allows one to easily
solve problems that were di�cult to address using MAC or DAC, it also has its weaknesses.
Some limitations of the RBAC model are discussed here.

RBAC shows its limits when access control policies are not just static properties: context
(like time, location, and a lot of other factors) can potentially a�ect a user's permissions, but
it is really hard, or even impossible to model it within an RBAC model. For example, one
might want to restrict the permissions of a user connected to a system using a wireless link,
or from his home instead of within the company walls.

Although RBAC knows about users roles, there is no way one can be more speci�c, like
di�erentiating senior developers and junior developers. Of course, one could split the
developers role in two di�erent ones, or better, specialize it using role hierarchies, but this
can lead to a fast-growing number of roles, making the access control policy harder and harder
to manage. Sometimes, one might want to �tweak� permissions for a particular user instead
of creating a new role. That's not possible with an RBAC model.

Finally, RBAC has been designed to de�ne security policies for systems that are used by
only one organisation. When a system has to be used by multiple organisations, RBAC does
not provide any way to separate their respective roles, that would otherwise probably cause
con�icts.

3.6 Other access control mechanisms

RBAC is not the ultimate access control model that solves every single problem in every
possible situation, and therefore, other access control models have been developed, to address
other needs.

There are some issues that are not addressed by RBAC, which doesn't make it the silver
bullet solution for everyone's needs. First, RBAC doesn't support multiple organizations, as
we discussed on section 3.5.5.

Another strong limitation of RBAC is its lack of support for contextual permissions, i.e.
support for permissions who change according to time, physical location, access method,. . .
For example, one might want to allow access to a patient's medical record only for the patient
himself and his GP (General Practitioner), unless the GP is on holiday, in which case access
would be granted to another GP, and �nally, grant access to all the A&E (Accident and
Emergency) doctors in case of an emergency. Or, one could want to give access to critical
data to a user, unless he's connected to the system via an unsecure connection, in which case
his set of permissions would be drastically reduced.

24 CHAPTER 3. ACCESS CONTROL

3.6.1 LBAC: Lattice-Based Access Control

Lattice-Based Access Control is another type of access control model. It has �rst been
formalised by Denning in [Den76]. The general idea is to combine objects and subjects. A
lattice describes the levels of security that an object has and that a subject can have access
to. A subject can only access an object if the subject has a security level that is equal or
greater than the object's security level.

3.6.2 OrBAC: Organization-Based Access Control

While the previous access control mechanisms can easily deal with static permissions,
they show their limits when facing dynamic permissions that are build on contextual rules.
Organization-Based Access Control was designed to address those speci�c issues. It brings
a new abstraction layer to the usual user/role/permission entities, by introducing new con-
cepts. This way, OrBAC is able to deal not only with contextual rules, but also with several
organisations whose rules would con�ict in a RBAC model.

3.6.3 And many more...

The list of access control mechanisms discussed in this chapter is not complete. Many
other models have been proposed and used, but discussing all of them is out of the scope of
this chapter. Some of those undiscussed mechanisms include Attribute-Based Access Control
(ABAC) [YT05], Task-Role Based Access Control (T-RBAC) [OP00], . . .

Chapter 4

UMLsec

4.1 What is UMLsec

UMLsec [Jür05] is an extension of UML [OMG01] that allows one to de�ne security prop-
erties and to formally check a model against those properties.

We will not describe all the UMLsec properties in this chapter, because we will not use all
of them and because UMLsec is not a limited set of properties: anyone is welcome to de�ne
new properties to address new security concerns. Instead, we will focus only on the ones that
we will use later.

The following properties have been extensively described in [Jür05], except the � permis-
sion � properties, that have been described in [JLW05]. The descriptions provided here is a
summary of what can be found there, and are therefore largely inspired by those two pub-
lications, although some personal contributions have been added to extend some UMLsec
properties.

UMLsec uses the standard UML extension mechanism, stereotypes and tagged values, to
describe security properties. It is important to note that even though some stereotypes and
tagged values have the same name, their purpose is di�erent.

4.1.1 RBAC rules using UMLsec

UMLsec includes a way to de�ne RBAC policies on activity diagrams. In order to do that,
we need three tagged values: {role}, {right} and {protected}.

{role} is a list of pairs (actor, role) that assigns a role to an actor in the activity diagram.

{right} is also a list of pairs (role, action) that gives all the actors having a role activated
the permission to perform an action.

Finally, {protected} is used to label states in the activity diagram that are protected. Only
a user that has a role that allows him to perform the action will be able to perform it.

25

26 CHAPTER 4. UMLSEC

An activity diagram S meets the RBAC requirements if and only if, for every actor A in S
and every activity a in the swim-lane of A in S, there exists a role R such that (A, R) is a
value of {role} and (R, a) is a value of {right}.

Figure 4.1 gives an example of an activity diagram with RBAC requirements.

Figure 4.1: A simple activity diagram with the � rbac �
property

Those requirements do not include some usual properties like Separation of Duty or role
hierarchies. Those will be discussed in section 4.3, as an extension to the existing RBAC rules
as de�ned in UMLsec.

4.1.2 � guarded � properties

The � guarded � requirements are used to label subsystems where access to some objects
needs to be restricted. Any object that is labelled with the � guarded � stereotype can only be
accessed through the objects speci�ed by the tag {guard} attached to the � guarded � object.

4.1. WHAT IS UMLSEC 27

The � guarded � requirements are inspired by the Java 2 Security Architecture framework
(that is part of Java since Java 1.2).

Every object whose access needs to be restricted is stereotyped with � guarded �, as well
as the {guard} tagged value indicating the name of the statechart describing an object that
takes care of the passing of references to the protected object. We assume that there is no
other way to get a reference to the protected object.

The following example (inspired by the example in [Jür05, pp.65-67]) illustrates the � guarded �
property. Figure 4.2 is a simple class diagram without any access restrictions. There are three
classes: Client, Account and ATM. We want to restrict access to the Client and the Account
classes.

Figure 4.2: A simple class diagram, without access restric-
tions

Figure 4.3 illustrates those restriction: Both the Client and the Account classes are stereo-
typed with � guarded �. They are also labelled with a {guard} tag, containing the name of the
statechart describing the behaviour of the class that handles the passing of references: CliAc-
cess for Client, and AccAccess for Account. There are also two new classes in the class diagram:
CliAccess and AccAccess, as well as a JavaSecArch class (associated with its corresponding
statechart) to describe the security architecture.

Now, every object of type Client or Account is protected, and the only way to get a reference
to them is to use the associated CliAccess and AccAccess classes.

4.1.3 � permission � properties

The � permission � properties are a more complex and �ne-grained way of restricting access
than � guarded � since it is not limited to classes, but can also de�ne permission requirements
on operations.

� permission � properties are de�ned on both a class diagram and a sequence diagram.
Consistency between those two diagrams is, of course, mandatory.

Every object can require permissions for another one to perform operations, and it can also
have permission to perform operations on other objects.

Class diagram

Each object that requires permissions or that gets permissions to perform operations on
other objects at instantiation time is stereotyped � permission-secured �.

28 CHAPTER 4. UMLSEC

Figure 4.3: The same class diagram, with � guarded � prop-
erties

4.1. WHAT IS UMLSEC 29

The {permission} tagged value, associated with a � permission-secured � class, is the set
of permissions that any object of this type gets at instantiation time. A permission is a pair
(class, permission), where class is the class on which the permission permission is granted.

Each method or attribute that needs to be protected is stereotyped � permission-check �,
and the required permissions are listed in the {permission} tagged value. Note that when the
{permission} tag contains multiple permissions, all of them are required.

In addition to the {permission} tag and the � permission-check � stereotype, one can add
the {no_permission_needed} tag, that contains a list of classes whose objects do not need to
have the required permissions to access the protected element.

Finally, permissions can also be delegated to another class, by using the {delegation} tagged
value, which contains a set of delegation rules (class, permission, role/class), where class and
permission describe the permission that can be delegated, and role/class describes the class
to which the permission can be delegated. Of course, a class can only delegate permissions
that it already has.

Figure 4.4: Class diagram with the � permission � property

Let's illustrate this with an example. Figure 4.4 is a class diagram with the � permission �
stereotypes. There are three classes: Client, Employee and Server.

The Client class doesn't require any permission on any of its attributes or operations,
but every object of type Client gets one permission at instantiation time, as listed by the
{permission} tag: the clientOrder permission on the Employee class. The {delegation} tag
also allows Client objects to delegate this permission to any object of type Employee.

30 CHAPTER 4. UMLSEC

The Employee class also gets a permission (emplOperation on the class Server). Moreover,
it also has two operations that are protected. The �rst one, sell(), requires the clientOrder
permission to be called, and the second one, buy(), also requires the clientOrder permission
to be called.

Finally, the Server class doesn't get any permission, but has two operations that require
the same set of permissions: clientOrder and emplOperation.

Sequence diagram

Like in the class diagram, each object that is protected or that gets permissions at instan-
tiation time is stereotyped � permission-secured �.

If an object gets permissions at instantiation time, it is labelled with a {permission} tag
listing those permissions. The {permission} tag's syntax is similar to the syntax of the {permis-
sion} tag used in the class diagram. If necessary, the {delegation} tag must also be speci�ed,
like in the class diagram.

Each call to a protected method needs to be stereotyped with � permission-check � and
labelled with a {permission} tag that contains the list of the necessary permissions.

The delegation process is described using the � certi�cation � stereotype, and an associated
{certi�cate} tagged value. The delegation takes place during a method call on the object to
which we want to delegate a permission. This method call is stereotyped with � certi�cation �,
and labelled with the {certi�cate} tag. The syntax of the {certi�cate} tag is a 7-uple [JLW05]:
certificate = (e, d, c, o, p, x, s), where

• e is the emitting object

• d is the delegate object

• c is the delegate class

• o and p describe the permission that is being delegated. o being the object on which the
permission can be used, and p the permission itself.

• x is a timer. Since sequence diagrams don't provide time management possibilities, this
is actually the number of messages during which the certi�cate, and thus the delegated
permission, will be valid. −1 means there's no validity limit.

• s is a sequence number that is used to make sure that the same certi�cate can not be
used several times. −1 is used for certi�cates that can be used more than once.

Here, d and c cannot be used together. Exactly one of them has to be set to null. d will be
used when the name of the object is known, and c will be used when it is not clear which
object will get the permission delegation.

Figure 4.5 shows an example of a sequence diagram with � permission � properties. It is
consistent with the example used for the class diagram.

4.1. WHAT IS UMLSEC 31

Figure 4.5: Sequence diagram with the � permission � prop-
erty

We have three objects here: Cl01, which is a Client, Em01, which is an Employee and Srv,
which is a Server.

Cl01 has the clientOrder permission that he can use on and Employee object, and can
delegate this permission to an Employee object. Em01 has the emplOperation on any Server
object, and Srv does not have any permission.

The sequence is really simple: Cl01 calls the buy operation on the Em01 object, and then
Em01 calls the buy operation on the Srv object. Each call is stereotyped with � permission-
check �, and labelled with the necessary permissions.

Additionally, Cl01 delegates a permission to Em01 during the �rst operation call, using
the {certi�cate} tag. The certi�cate speci�es that the permission is delegated to an Employee
object, without timer and without any sequence number, which means that the delegation
can be used several times.

Consistency

Since the � permission � is de�ned over two di�erent diagrams, we need to make sure that
there is no contradiction between those. A few simple rules are described in [JLW05] to help
make sure that the diagrams are consistent.

First, every object in a sequence diagram is labelled with the � permission-secured � stereo-
type if and only if it is the instance of a class that is also stereotyped � permission-secured �
in the corresponding class diagram. And, of course, the associated {permission} and {delega-
tion} tags have to be consistent: every permission or delegation in the sequence diagram has
to refer to an object whose type is the corresponding class in the class diagram's {permission}
tag.

Finally, the consistency of methods has to be checked: the needed permissions, as de�ned
in the class diagram, have to match the required permissions described in the method calls in
the sequence diagram.

32 CHAPTER 4. UMLSEC

4.1.4 � secure links � properties

� secure links � requirements can be de�ned on a deployment diagram. A deployment
diagram has nodes, that are connected using links. nodes can contain components, and those
components can be linked together using dependencies.

UMLsec de�nes several stereotypes for the deployment diagrams, that are used to describe
the links and nodes, and to de�ne requirements on the messages exchanged along dependencies.

Links can be described with one of the following stereotypes: � Internet �, � encrypted �,
� LAN �, or � wire �. nodes can be described with one of the following stereotypes: � smart
card �, � POS Device �, or � issuer node �. For the � secure links � property, only the links
stereotypes will be considered.

� secure links � requirements are always de�ned in association with an adversary. The
� secure links � stereotype labels a deployment diagram, and has an {adversary} tagged value
associated with it. The {adversary} tag de�nes an adversary, that can perform operations
on nodes and on links. For each type of link, the adversary can perform a set of actions
LA ⊆ {read, insert, delete}. And for each type of node, the adversary can perform a set of
actions NA ⊆ {access}.

Finally, three stereotypes allow one to describe properties for the messages exchanged along
dependencies on a deployment diagram S. Those properties are requirements regarding the
set of actions an adversary A can perform on a link l:

• � secrecy �: read /∈ threatsS
A(l)

• � high �: threatsS
A(l) = ∅

• � integrity �: insert /∈ threatsS
A(l)

The � secure links �property is ful�lled if and only if, for every link l in a deployment
diagram S, with an adversary A, threatsS

A(l) does not contain any action forbidden by the
stereotypes associated with l.

Figure 4.6 illustrates the � secure links � property de�ned on a deployment diagram. The
default adversary used in the example is described in �gure 4.7.

4.1.5 The � critical � stereotype

Before we can discuss the � secure dependency � property, we �rst need to introduce the
� critical � stereotype, that we will use to label objects or subsystems containing data we want
to protect. � critical � is used to label objects or subsystem instances containing critical data.
The details of what �critical� exactly means depend on the associated tagged value, which can
be either {authenticity}, {fresh}, {high}, {integrity} of {secrecy}. We will only discuss the
{high}, {integrity} and {secrecy} tagged values here, since the other ones will not be needed
for the � secure dependency � property.

4.1. WHAT IS UMLSEC 33

Figure 4.6: deployment diagram with � secure links � prop-
erty

Link type threatsSdefault

Internet {read, insert, delete}
Encrypted ∅

LAN ∅

Figure 4.7: Default adversary

34 CHAPTER 4. UMLSEC

{high}

The {high} tagged value contains the names of messages that are supposed to be protected
by the stereotypes � no down-�ow �and � no up-�ow �.

{integrity}

{integrity} is a set of pairs (v, E) where v is the name of an object that needs to be protected,
and E the set of expressions that can be assigned to v.

{secrecy}

Finally, {secrecy} contains a set of expressions, attributes or message argument variables of
the current object (actually, their name) whose secrecy should be protected.

4.1.6 � secure dependency � properties

The � secure dependency � requirements are de�ned on any kind of static structure diagram.
Its goal is to make sure that there will be no leakage of critical information occurring because
of a communication between two objects.

Critical data is labelled with the � critical � stereotype, together with one of the following
tagged values, that have been discussed in section 4.1.5: {high}, {integrity} or {secrecy}.

The formal de�nition of the � secure dependency � property is the following, as described
in [Jür05].

If there is a � call � or � send � dependency from an object or subsystem C to an interface
I of an object or subsystem D, then two conditions have to be ful�lled:

• For any message name n in I, n appears in the tag {high} (resp. {integrity} resp.
{secrecy}) in C if and only if it does so in D.

• If a message name in I appears in the tag {high} (resp. {integrity} resp. {secrecy}) in
C then the dependency is stereotyped � high � (resp. � integrity � resp. � high �).

Figure 4.8: The � secure dependency � property

4.2. INTERACTIONS BETWEEN STEREOTYPES 35

Let us illustrate this with an example, inspired from [Jür05]. Figure 4.8 describes a class
diagram containing two classes and one interface. The interface provides a random number
generator. This interface is implemented by a class, and used by the other one (through the
� secrecy � stereotyped dependency).

The �rst condition is ful�lled: the random() method, provided by the interface, is critical
in both classes, and appears in the {high} tagged value in both classes too.

The second condition is also ful�lled: the dependency between the interface and the class
using it is stereotyped with � secrecy �.

4.2 Interactions between stereotypes

UMLsec is about modelling security properties on a UML model, but each property is
independent from the others, and, most of the time, a property is de�ned on only one or two
diagrams.

However, an UML model usually contains a lot of diagrams: class diagrams, sequence
diagrams, activity diagrams, . . . All those diagrams describe the same system.

Since UMLsec properties are only de�ned on one or two diagrams, it might happen that a
property that is de�ned on a particular diagram actually has an e�ect on another one, but
without specifying it. We tried here to identify some of those properties, and to use other
existing UMLsec properties to model their impact on other diagrams.

4.2.1 Generation of UMLsec stereotypes from a � rbac � stereotype

The � rbac � stereotype can be used to specify an access control policy in an activity
diagram, as described in section 4.1.1. However, other diagrams, especially sequence diagrams
and class diagrams, might contain information that will be impacted by access control rules: in
a sequence diagram, calls to a protected method are protected by access control mechanisms,
and in a class diagram, knowing which objects or methods are protected would be a really
interesting feature for the developer.

For this purpose, we explored four di�erent solutions, that we discuss here. The �rst one
uses the � guarded � mechanism de�ned in UMLsec. The second one uses the � permis-
sion �mechanism, also de�ned in UMLsec. Finally, the third one uses the � permission �
mechanism too, but di�erently, in order to make the sequence diagrams easier to read.

In order to compare the three solutions, we will use the same, simple model each time. The
model describes a simpli�ed version of a credit system for a bank. An employee can set up a
credit for a customer, but large credits have to be approved by a supervisor. This example is
a more detailed version of the � rbac �example from [Jür05, pp. 55-56].

36 CHAPTER 4. UMLSEC

Figure 4.9: Activity Diagram describing RBAC rules for a
credit system

4.2. INTERACTIONS BETWEEN STEREOTYPES 37

Figure 4.9 is the original activity diagram describing the RBAC properties. Any employee
can set up a credit after getting the customer's details, but only a supervisor can approve
large credits of more than ¿1000.

Figure 4.10: Class Diagram describing the credit system,
without access control constraints

Figure 4.10 is the original class diagram, without access control information. Employees
can be supervisors. There are customers, that can have several bank accounts. They can also
get several credits.

Figure 4.11: Sequence Diagram describing the setup and ap-
proval process for a large (>¿1000) credit

Figure 4.11, the original sequence diagram, also without access control information, de-
scribes the sequence of actions for the creation by an employee that is not a supervisor
(Employee1) of a large credit (Cred1) for a customer (Cust1), and the following approval of
the credit by a supervisor employee (Supervisor1).

38 CHAPTER 4. UMLSEC

For each option we considered, we will show the class and sequence diagrams with the access
control stereotypes added by the process described.

Option 1

The � guarded � mechanism was de�ned in section 4.1.2. It allows one to restrict access
to protected objects. It is inspired by the Java 2 Security Architecture and its notion of
Guarded Objects, which makes it very useful for anyone who wants to use the Java 2 Security
Architecture to implement its access control policies: the model can be translated into code
easily.

However, it su�ers a major restriction: restrictions can only be de�ned on objects, and
we would like to be able to be more speci�c, and chose which restrictions to apply on each
method individually.

As we can see on �gure 4.12, the � guarded � properties have been added to the Credit
class in the original class diagram, and a few new statechart diagrams have been created. The
sequence diagram, however, has not been modi�ed: the � guarded � doesn't specify anything
for sequence diagrams. Also, note that there is no way to tell which methods should be
protected, and which ones should not.

Another problem with this option is that it is closely related to the Java 2 Security Ar-
chitecture. If it makes implementation easier when using the Java 2 Security Architecture,
it might get more complicated, or even confusing, if someone wants to use another security
architecture (possibly using another programming language).

Option 2

The second option simply adds the access control restrictions de�ned in a activity diagram
into the class diagrams and sequence diagrams, where needed. We only use the � permission �
stereotypes here.

In order to represent the access control process itself, we chose to use a model of the JAAS
architecture, which was included in Java since Java 2. Each call to a protected method is
replaced by a call to the JAAS architecture, which checks that the caller has the needed
permissions to perform the operation, performs the operation on the caller's behalf, and sends
the return value back to the caller, as we can see on �gure 4.13.

JAAS requires that each protected method should be encapsulated in an action object ,
that will check that the caller has the permission to call the method. Each time an object
wants to call a protected method, it has to create a PrivilegedAction object, and ask it to
run the protected method using the doAsPrivilieged(...) method. The PrivilegedAction
object �rst checks that the caller has the necessary permissions for the required method call
by calling the AccessController object, and then performs the method call on behalf of the
caller. After that, the return value of the method is sent back to the caller. A more detailed
description of the JAAS architecture can be found in section 5.3.1.

4.2. INTERACTIONS BETWEEN STEREOTYPES 39

Figure 4.12: The class diagram with the � guarded � prop-
erty, and the statechart diagrams describing its behaviour

40 CHAPTER 4. UMLSEC

Figure 4.13: sequence diagram describing option 2

4.2. INTERACTIONS BETWEEN STEREOTYPES 41

Figure 4.13 does not represent the authentication process, which has to be done before the
authorisation process described.

The class diagram is also updated, as shown on �gure 4.14, with the addition of � permis-
sion � stereotypes, and a few new classes for the JAAS architecture.

Figure 4.14: class diagram describing option 2

This solution has two major problems.
First, it adds quite a lot of messages exchange to the sequence diagrams, which quickly makes
those almost impossible to read, even on a really simple example like �gure 4.13. Real life
examples can get really, really hard to understand, because of all this 'noise' added to the
original diagrams, since an object has to be created for each call to a protected method.

Second, it su�ers the same limitation as the previous option: it is great for anyone who
wants to implement the solution using the JAAS architecture, but it can get confusing for
someone who would want to use another authentication and authorisation system.

Option 3

The third and last option is derived from the previous one, and is designed to address
the limits we just discussed. The idea is to de�ne a new stereotype, � auth �, to label an
authentication and authorisation object that would replace the complex JAAS architecture.
Instead of multiple calls to multiple objects for each protected method call, we just need to
call this special object, as shown on �gure 4.15.
The details of the authentication and authorisation processes can then be described in separate

42 CHAPTER 4. UMLSEC

sequence diagrams. The authorisation au authentication object will also be labelled with the
{authentication} tag and the {authorization} tag, that contain a reference to the sequence
diagram describing the authentication process (for the {authentication} tag) and a reference
to the sequence diagram describing the authorisation process (for the {authorization} tag).
Those sequence diagrams are not shown in this example, since there is no way to derive it
from the original RBAC-enabled activity diagram. This has to be added manually by the
developer.

Figure 4.15: Sequence diagram describing option 3

The class diagram has to be updated accordingly, in order to ful�l the � permission �
requirements on consistency between the class and the sequence diagrams. As we can see on
�gure 4.16, a new class has been added for the authorisation and authentication mechanisms.
That class is tagged with the two newly introduced tags, {authentication} and {authorization}.
The class also gets permissions to access all the protected methods at instantiation time

4.3. EXTENDING THE � RBAC � REQUIREMENTS 43

through the {permission} tag, and it is therefore stereotyped with � permission-secured �.

Figure 4.16: Class diagram describing option 3

Finally, all the operations whose access need to be restricted (here, the approve() operation
only) are stereotyped with � permission-check �, and labelled with a new permission. Every
class that contains such operations is also stereotyped with � permission-secured �(here, the
Credit class only).

The solution has two advantages over the previous ones: it makes the diagrams really easier
to read, but it also allows one to choose which authentication and authorisation method to
use: JAAS or any other one will do.

Con�icts with existing � permission � stereotypes

When generating � permission � stereotypes on a sequence diagram or a class from an
activity diagram with � rbac � stereotypes, con�icts can arise with existing � permission �
stereotypes on the sequence diagram. See section 4.4.1 for detecting and solving them before
the generation of the new stereotypes.

4.3 Extending the � rbac � requirements

In order to model some more advanced features of Role-Based Access Control, the � rbac �
property has to be extended. Some of the features we add to the � rbac � property exist in
the NIST RBAC standard (see section 3.5.3, and others (like negative permissions) don't.

4.3.1 Supporting hierarchical roles

We can extend the Role-Based Access Control stereotype to support hierarchical roles too.
We can do that by simply adding a new tagged value, like : {hierarchy = (parent_role,
child_role)} . This means that the parent_role role is a parent of the child_role role.

44 CHAPTER 4. UMLSEC

Figure 4.17: Activity diagram with a hierarchy relation be-
tween two roles

4.3. EXTENDING THE � RBAC � REQUIREMENTS 45

This way, we can extend the activity diagram used in section 4.2.1 to express the fact that
a supervisor is an employee that can accept or deny large credits to customers. Figure 4.17
is the updated version of the activity diagram. We just added a new tagged value describing
the relationship between Employee and Supervisor.

4.3.2 Separation of Duty

Separation of Duty is another key feature in Access Control models. This can simply be
added to the existing � rbac �speci�cation by adding a new tagged value, {sod}, with the
following syntax : {sod = (action_1, action_2)}, which means that a user cannot be granted
permissions for both action_1 and action_2.

4.3.3 Negative permissions

Negative permissions have been described in section 3.5.3. Those have not been standard-
ised in the NIST RBAC standard. Adding negative permissions support to the � rbac �
speci�cation is just about adding a new tagged value to the set of existing ones: {neg permis-
sion}. Its syntax is : {neg permissions = (role, action)}, which means that a user with the
role role activated can not perform action action .

Using negative permissions can lead to con�icts with the usual way of de�ning permissions.
One should be very careful when de�ning negative permissions, and the following rules will
apply for an � rbac � property to be de�ned correctly in UMLsec:

• if a role roleA contains a permission to perform an operation operationA, then it cannot
contain a negative permission that would deny the right to perform operationA

• if a user is granted a role roleA containing a permission to perform an operation oper-
ationA, he can't be granted another role roleB that contains a negative permission for
the same operation operationA

Extra care must be taken when using negative permissions together with role hierarchies:
not only should one deal with the permissions given by a role, but also with the inherited
permissions:

• if a role de�nition roleA grants a permission to perform operation operationA to its users,
than there cannot be another role roleB inheriting (directly or indirectly) from roleA's
permissions that de�nes or inherits of a negative permission on operationoperationA

• if a user is granted a role roleA containing or inheriting a permission to perform an
operation operationA, then the user can't be granted another role roleB containing or
inheriting a negative permission for the same operation operationA

Since the UMLsec � rbac � property only support the activation of all the roles at the
same time, there is no way to activate only a subset of a user's roles, or to deactivate and/or
reactivate roles at any time. Therefore, there is no need to handle the possibility for a user to
have two con�icting roles that would never be activated at the same time.

46 CHAPTER 4. UMLSEC

4.4 Con�icts between UMLsec properties

Usually, UMLsec properties are de�ned separately. Often, they are even de�ned on di�erent
diagrams that are part of the same model. Thus, it can be hard to identify and solve potential
con�icts between two di�erent properties.

When a model is made of several diagrams, we �rst have to make sure that there is no
con�ict between them before adding the UMLsec properties. This is out of the scope of this
thesis, but research in that �eld can be found in [ELF08].

4.4.1 Con�icts between � permission � and � rbac �

Multiple con�icts can occur between an activity diagram with � rbac � stereotype and a
class diagram and/or a sequence diagram with � permission � stereotype, because of those
properties' nature: they both aim at restricting access to authorised users or objects only.
Fortunately, those potential con�icts are relatively easy to spot, since we de�ned a way to
generate � permission � stereotypes in sequence and class diagrams from a activity diagram
with � rbac � stereotypes in section 4.2.1, options 2 and 3.

Detecting con�icts can be done when generating � permission � properties in class and
sequence diagrams from � rbac � properties in activity diagrams. A con�ict occurs when an
action that is authorised by the activity diagram turns out to be impossible when looking at
the sequence diagram, or when an action permitted by the sequence diagram is forbidden by
the activity diagram. Since the sequence diagram and the class diagram are supposed not to
con�ict (this should already have been checked when de�ning the � permission � properties),
we can safely ignore the latter, and focus on the former, which provides more information
about which methods can or cannot be called, and by which objects.

4.4.2 Con�icts between � guarded � and � rbac �

Just like the con�ict resolution strategy between � permission � and � rbac � properties,
con�icts between the � guarded �and � rbac � properties can bene�t from the generation of
� guarded � properties from � rbac �properties, described in section 4.2.1, option 1. We use
a similar approach to detect and solve con�icts.

4.4.3 Con�icts between � permission � and any sequence diagram

If the sequence diagram is tagged with � permission � stereotypes, one just has to make sure
that both the sequence diagram and the class diagram do not con�ict. If the sequence diagram
is not tagged with � permission � stereotypes but some roles involved in the diagram have
a type whose class is marked with a � permission-secured � stereotype, then � permission �
stereotypes should be added to the sequence diagram. However, if the sequence diagram is
not tagged with � permission � stereotypes, and none of the roles involved it it have a type
whose class is tagged with a � permission-secured � stereotype, then there is no con�ict.

4.5. AUTOMATED SECURITY HARDENING FOR UMLSEC MODELS 47

4.5 Automated Security Hardening for UMLsec Models

4.5.1 Overview

UMLsec allows one to de�ne security properties on a UML model, and to check that those
properties are actually enforced by the model. UMLsec can not only detect that a model does
not meet some security requirements, it can also pinpoint where the problem lies.

Once the developer knows that his model does not meet all the security requirements he
wants it to meet, we can either let him change his model manually, which can be a long and
painful process, or we can try to automatically suggest improvements that will make the model
meet the needed security requirements.

Most of the time, it will not be possible to modify the model in a completely automated way:
we will need some additional input from the developer, or we will have several possible changes
that may all solve the problem we identi�ed, but that will change the model's behaviour in
di�erent way: we will then show the possible solutions to the developer, and ask him to pick
up the one he wants to apply.

The following hardening strategies have been described in [MJY+09]. The examples illus-
trating those strategies also come from [MJY+09], although some minor changes have been
done here.

4.5.2 � secure links �

The � secure links � property has been described in section 4.1.4. As we already know, we
need two things to de�ne a � secure links � property: an adversary pro�le, and a deployment
diagram with the appropriate UMLsec stereotypes. Dependencies between components need
to be labelled with the security we want to enforce for the messages carried along them, and
links have to be labelled according to their types.

This property has to be checked against an adversaries, that we de�ne by its ability to
perform actions (read, insert and/or delete) on some link or node types. The three ad-
versaries used in this section are common types of adversaries, but it is possible to check the
� secure links � property against any type of user-de�ned adversary.

Default adversary

Link type Threatsdefault

Internet {read, insert, delete}
Encrypted {delete}

LAN ∅
wire ∅

Figure 4.18: Default Adversary

48 CHAPTER 4. UMLSEC

Figure 4.18 describes the default adversary we will use in the following example. The default
adversary comes from outside the organisation, and therefore has access to everything that
travels unencrypted over the Internet. He can delete data that goes through an encrypted link,
but he cannot read or modify it. He doesn't have access to the organisation's local network,
smart-cards and POS devices.

Figure 4.19: Simple web application deployment diagram

Our example is a simple web application deployment diagram, as shown on �gure 4.19.
Clients connect to the web server over the Internet. The organisation's local network has
three nodes: the web server, that connects to the application server, itself being connected to
the database server.
We want all communications between the components to be secret (we don't want an adversary
to be able to read the data), which is why they all have the � secrecy � stereotype.

This model does not meet the � secure links � requirements for the default adversary we
de�ned. Since the default adversary can read messages over an Internet link, he can read the
messages exchanged between Client1 and WebServer, and between Client2 and WebServer.
However, the two corresponding dependencies are labelled with the � secrecy � stereotype.
Thus, the � secure links � property is violated.

There are two possible solutions: we can either lower the security requirements, and drop
the � secrecy � stereotype on the two dependencies that cause problems, or we can make the
two links more secure by adding encryption to the communication.

The �rst solution is not an acceptable one, especially when automatically modifying the
model, because it will result in a new model that is less secure than what the developer
expected in the �rst place.

The second one enforces the � secure links � property as de�ned by the developer by
replacing the � Internet � stereotype on the links between the clients and the web server by a
� encrypted � stereotype. This way, the default adversary can not read the messages anymore,

4.5. AUTOMATED SECURITY HARDENING FOR UMLSEC MODELS 49

Figure 4.20: Deployment diagram meeting the � secure
links � property with a default adversary

and the � secrecy � properties are ful�lled by the model. This solution is described in �gure
4.20.

A stronger adversary

Our �rst adversary could not access a lot of information. It could only capture data over the
Internet, but had no access to the organisation's internal network. Let's now de�ne another
adversary (�gure 4.21) that can access information exchanged within the organisation's LAN,
and see if our example still meets the � secure links � requirements.

Link type Threatsinsider

Internet {read, insert, delete}
Encrypted {delete}

LAN {read, insert, delete}
wire ∅

Figure 4.21: Insider Adversary

The di�erence between the new adversary and the previous one is that the new one has full
access to what is exchanged over the LAN links. He can read or delete messages, and even
insert forged messages. However, he still can't read encrypted messages, nor can he insert
encrypted data in a communication.

The original model does not meet the � secure links � requirements, for the same reason it
did not meet the � secure links � requirements with the default adversary. However, the �x
proposed for the default adversary doesn't meet the � secure links � requirements either with
the inside adversary: since the new adversary is now capable of reading messages exchanged
on the � LAN � network, the model violates the � secrecy � property on the � LAN � links.

50 CHAPTER 4. UMLSEC

Figure 4.22: Deployment diagram meeting the � secure
links � requirements with an inside adversary

The solution is similar to the previous one: we just need to make sure the adversary can
not read the messages exchanged on the � LAN � links. This can be done by changing the
� LAN � links into � encrypted � links, since the adversary can't read messages exchanged
on an encrypted link. Figure 4.22 shows the transformed model that now meets the � secure
links � requirements with an inside adversary.

An even stronger adversary : the inside adversary

Let us now de�ne a last adversary (�gure 4.23). He has now access to the encryption keys,
which means that he can read, insert and delete messages even on � encrypted � links.

Link type Threatsinsider

Internet {read, insert, delete}
Encrypted {read, insert, delete}

LAN {read, insert, delete}
wire ∅

Figure 4.23: Insider Adversary with access to encryption
keys

The original model doesn't meet the � secure links � requirements, nor does any of the two
�xes proposed earlier, since this adversary can also read messages exchanged on an encrypted
link.

There is no other solution here than lowering the � secure links � requirements, which is
probably not a good option, or heavily modifying the model, which can probably not be done
automatically. This is a limitation of the proposed approach, that is not capable of converting
any model to a model that satis�es the � secure links � requirements regarding any kind of
adversary.

4.5. AUTOMATED SECURITY HARDENING FOR UMLSEC MODELS 51

4.5.3 � secure dependency �

� secure dependency � has been described in section 4.1.6. A structure diagram needs to
comply with two rules in order to ful�l the � secure dependency � requirements [Jür05]:
Given an interface I, a class C that implements I, and a class D that has a dependency link
with I, those rules are:

• For any message name n in I, n appears in the tag {high} (resp. {integrity} resp.
{secrecy}) in C if and only if it does so in D.

• If a message name in I appears in the tag {high} (resp. {integrity} resp. {secrecy}) in
C then the dependency is stereotyped � high � (resp. � integrity � resp. � high �).

Thus, an unsecured model contains a structure diagram that doesn't satisfy one, or both of
these two conditions.

If the �rst condition is violated, then one of the two classes (either the one implementing the
interface, or the one using it) has an object in a tagged value associated with the � critical �
stereotype (either {high}, {secrecy} or {integrity}), and that object is also provided by the
interface, but the other class does not have this object in the same tagged value. The solution
is simply to add the object to the tagged value of the second class. Another solution would be
to remove the � critical � stereotype and the associated tagged value, but that would lower
the security requirements, and is probably not a good idea.

If the second condition is violated, then there is a critical message in the calling class (the
one that is linked to the interface with a dependency stereotyped with � call � or � send �)
that is provided by the interface, but the dependency is not stereotyped � secrecy �. The
solution is simply to add the � secrecy � stereotype to the dependency. Again, we do not see
the second solution (removing the � critical � stereotype and its associated tagged value) as
a suitable option, since it would lower the security requirements.

Figure 4.24: � secure dependency �property: a key genera-
tion system

Let's illustrate this with a small example (taken from [Jür05]): �gure 4.24 is a class diagram
describing a key generator that uses a random number generator. We have one interface,
Random number, a class that implements this interface (Random generator), and another
class Key generator, that calls the interface. The critical data is the output of the random()
method, and the tagged value used here is {high}.

52 CHAPTER 4. UMLSEC

This example is incorrect regarding the � secure dependency � property. It violates the
�rst condition since the random() message in the interface appears in the {high} tag in Key
generator, but not in Random generator. This can easily be �xed by adding the random()
message in the {high} tag in Random generator, as illustrated on �gure 4.25.

Figure 4.25: The key generation system has been �xed to
meet the �rst condition of the � secure dependency � prop-
erty

It is better, but now, the second condition is violated: random() appears in the {high} tag in
Key generator, but the dependency is not labelled with the � high � stereotype. The solution
is to add this stereotype to the dependency, and we now have a subsystem that satis�es the
� secure dependency � property, as shown on �gure 4.26.

Figure 4.26: The key generation system now ful�ls the � se-
cure dependency � requirements

4.5.4 � permission �

The � permission � property is a complex one, since it is spread over two di�erent UML
diagrams. Therefore, there are four groups of possible violations of the property: errors in
the class diagram, static errors in the sequence diagram, consistency problems between those
two, and �nally, dynamic errors in the sequence diagram, when a sequence of operations can
never be completed due to lack of permissions.

The order in which the possible mistakes and how to �x them are described is the order
in which the � permission � checks should be performed: �rst, make sure that each diagram
is correct (which means that the �rst two steps can be swapped), then make sure that the
diagrams are consistent with each other, and �nally, make sure that each sequence of operation
can be completed. Any other ordering would not make sense: checking for consistency before
knowing that the diagrams are syntactically correct would be useless, since any subsequent

4.5. AUTOMATED SECURITY HARDENING FOR UMLSEC MODELS 53

modi�cation of any diagram would require another consistency check. Similarly, if we check
that all the sequences of operations can be completed before checking the consistency of the
diagrams is a waste of e�ort, since any modi�cation to a sequence diagram would require to
re-check for its possible completion.

Errors in the class diagram

The easiest mistakes to detect and to �x are when a class (resp. an operation) is stereo-
typed with � permission � (resp. � permission-check �) but doesn't have any {permission} tag
associated. Similarly, any class (resp. operation) having a {permission} tag, but no � permis-
sion � (resp. � permission-check �) stereotype violates the � permission � property. The �x
is straightforward: one just has to add the missing tag or stereotype. However, while adding
the stereotype can be automated, adding the tag requires a manual operation by the user: it
is impossible to guess what he wanted to put in the tag in the �rst place. The user might also
chose to remove the existing stereotype or tag instead of adding the missing information.

Permissions that are granted for a class that doesn't appear in the diagram are obvious
mistakes. The solution is either to correct the permission (by referring to an existing class)
or to remove it.

Another potential error arise when an operation requires a permission that is not granted
to any object. The consequence would be that no object would be able to call the operation,
and therefore the operation would be completely useless. There are two possible workarounds
for this problem: either remove the required permission, or grant it to at least one object.

Delegation of permissions can also lead to property violation when a class tries to delegate
a permission it doesn't have. In this case, the workaround is either to remove the delegation
capability, or add the delegated permission to the list of permissions granted to the class.

Static errors in the sequence diagram

Static errors in the sequence diagram are similar to those that one can �nd in the class
diagram. This section does not deal with mistakes that lead to the impossibility to perform
a sequence of operations completely.

As in the class diagram, the easiest type of error arises when an object has a {permission} tag
but no � permission-secured � stereotype. The solution is also to either add the � permission-
secured � stereotype, or remove the {permission} tag, as well as the {delegation} tag if it exists.
However, an object stereotyped with � permission-secured � but without any {permission}
tag attached can be valid: an object that doesn't get any permission at instantiation time can
still require permissions for one (or more) of its operations.

Again, like in a class diagram, any permission granted to an object that doesn't exist is a
mistake. The solution is also either to change the permission to match an existing object in
the diagram, or to remove it.

54 CHAPTER 4. UMLSEC

The {certi�cate} tag can lead to more complex issues. First, a method call stereotyped
with � certi�cation � but without any {certi�cate} tag attached is not valid, and a method
call with a {certi�cate} tag attached but without the � certi�cation � stereotype is not valid
either. Two possible �xes are to remove the tag (resp. the stereotype), or to ad the missing
stereotype (resp. tag). While adding the stereotype can be done automatically, adding the
certi�cate needs to be done manually.

The {certi�cate} tag also has to be well-formed. Several rules apply here, for a certi�cate
certificate = (e, d, c, o, p, x, s):

• e, the emittent, must be an existing object.

• e must name the emittent object

• at least one of d (the delegate object) or c (the delegate class) must be not null. If both
are not null, d must be an instance of c.

• d and/or c (the one that is not null, or both) must name the object (or its class) who
receives the certi�cate

• o, the object on which the permission is delegated, must exist somewhere in the diagram

• p, the permission delegated, has to be required by at least one operation in o

• x, as well as s, must be an integer > 0 or −1

If any of those rules are violated, the {certi�cate} tag has to be adapted by the user.

Consistency errors

Consistency errors happen when the class diagram and the sequence diagram are con�icting.
The rule of thumb is that there can't be more permissions in the sequence diagram than in
the class diagram: an object doesn't necessarily need to hold or delegate all the permissions
allowed by its class, but it certainly can't use permissions it doesn't hold at instantiation time
or get through the delegation mechanism.

We will not discuss here the potential consistency issues between a �regular� (without
UMLsec extensions) class diagram and a �regular� sequence diagram. Whether all the ob-
jects in the sequence diagram are instances of a class that actually exists in the class diagram,
or every operation used in the sequence diagram is actually described in the corresponding
class in the class diagram is out of the scope of this section. We assume that the diagrams
are consistent, and will focus on consistency of the � permission � UMLsec property.

The �rst, easy check to perform is making sure that every permission or delegation possibility
described in the {permission} and {delegation} tags of any object in the sequence diagram
exists in the {permission} and {delegation} tags of the corresponding class in the class diagram.
Note that if a permission (resp. a delegation) cannot exist in the object's {permission} (resp.
{delegation}) tag without also appearing in the corresponding class's {permission} (resp.
{delegation}) tag, the opposite can happen: it is possible for an object not to get all the

4.5. AUTOMATED SECURITY HARDENING FOR UMLSEC MODELS 55

permissions that its class can get. When an object gets more permissions at instantiation
time than its class allows, two strategies are available: either add the missing permission to
the class's {permission} tag in the class diagram, or remove the permission from the object's
set of permissions. The �rst approach can't be done without the user's agreement, since it
could weaken the security policy. However, the second approach requires to check the sequence
diagram for static errors again.

Finally, consistency issues can also arise on the operation level: every call to an operation
in the sequence diagram must come with the exact same set of permissions than required
in the class diagram. No more (that would be useless), no less (the operation could not be
performed). If there are too much permissions on the call, the solution is simply to remove the
surplus. However, if there are missing permissions, they need to be added. If the caller object
holds the missing permissions right before the call (because it got it either at instantiation
time or by delegation), then adding the permissions to the call is enough. If it is not the case,
then several strategies can be used, and the user has to chose one:

• add the permission to the set of permissions the object gets at instantiation time, but
only if this is allowed by the corresponding class in the class diagram

• get the permission through a delegation, if another object can delegate the missing
permission

If none of those strategies are possible, then the model needs to be changed manually by
the user. Possible solutions include adding a permission at instantiation time for both the
object and its corresponding class, or adding delegation capabilities so that another object
can delegate the missing permission.

Dynamic errors in the sequence diagram

Finally, one needs to make sure that every sequence of operation can be completed. In
other words, all the necessary permissions have been granted before being used, and all the
necessary permissions need to be used. Permissions granted at instantiation time have already
been discussed, but dynamically granted permissions (permissions granted using a certi�cate)
are a more complex issue.

First, a certi�cate used by an object to call a protected operation must have been received
by the object before being used.

Example

We will use a slightly modi�ed version of an example described in [MJY+09]. We have both
a class diagram (�gure 4.27) and a sequence diagram (�gure 4.28).

The described system is simple: a Client, an Employee and a Server interact to buy some-
thing. The Client calls the method buy() on the Employee, that then calls the buy() method
on the Server.

56 CHAPTER 4. UMLSEC

Figure 4.27: A simple Class diagram with the � permission �
property

Figure 4.28: A simple sequence diagram with the � permis-
sion � property

4.5. AUTOMATED SECURITY HARDENING FOR UMLSEC MODELS 57

Let's look at the class diagram �rst: one of the classes, Client, doesn't meet the � per-
mission � requirements: while it gets permissions and delegation capabilities at instantiation
time, the � permission-secured � stereotype is missing. The solution is either to remove the
{permission} and the {delegation} tags, or to add the missing stereotype. The two other
classes are �ne: they are both stereotyped with � permission-secured �, and all the required
tags and stereotypes are included. The corrected version of the class diagram is on �gure 4.29,
where the missing � permission-secured � stereotype has been added.

Figure 4.29: The correct class diagram, with the missing
� permission-secured � stereotype

The sequence diagram also contains a mistake: the Em01 object, of type Employee, gets
permissions at instantiation time and requires permissions for its buy() operation, but the
� permission-secured � stereotype is missing. Like in the class diagram, the solution is either
to add the missing stereotype, or to remove the permissions the object gets at instantiation
time, as well as the required permission for the buy() method.

There is a second mistake in the sequence diagram: the call to the buy() operation performed
by Em01 on Srv is protected, which means that the permissions that Em01 will use need to
appear in the {permission} tag labelling the message. Here, the {permission} is {permission
= [emplOperation]}. However, the buy() operation requires two permissions: emplOperation
and clientOrder. This is a simple syntax error that can be easily �xed by adding the missing
permission to the � permission � tag: {permission = [emplOperation, clientOrder]}. Dy-
namic checking of the sequence diagram will later make sure that those two permissions can
actually be used there. Figure 4.30 is the correct version of the sequence diagram, with the
� permission-secured � stereotype and the modi�ed � permission � tag on the second message.

There is also a second option to solve this problem: the user can chose to drop the need for
the clientOrder permission. In this case, both the class diagram and the sequence diagram
need to be updated, as shown on �gures 4.31 and 4.32. However, the user should be aware that

58 CHAPTER 4. UMLSEC

Figure 4.30: The correct sequence diagram, with the missing
� permission-secured � stereotype and the updated � permis-
sion � tag

this modi�cation will actually make his model less secure, since less permissions are needed
to perform the buy() operation on the Server objects.

Figure 4.31: A less secure, but valid, version of the class
diagram

Because both diagrams are individually correct doesn't mean there are no inconsistencies
when they are put together. Let's go back to �gures 4.29 and 4.30. As we can see here, the
Em01 object, whose type is Employee, gets two permissions at instantiation time: the �rst
allows Em01 to use the emplOperation permission on the Server class, and the second allows
it to use the clientOrder permission on the Server. However, the class diagram only grants
the permission to use the emplOperation permission on the Server class to the Employee class
at instantiation time. Since there cannot be more permissions granted at instantiation time in
the sequence diagram than in the class diagram, the � permission � property is violated by the
model. There are two candidate solutions: the �rst one is to add the missing permission to the
Employee class in the class diagram, and the second is to remove the problematic permission

4.5. AUTOMATED SECURITY HARDENING FOR UMLSEC MODELS 59

Figure 4.32: A less secure, but valid, version of the sequence
diagram

from the sequence diagram. Figure 4.33 shows the updated sequence diagram according to
the second option. There is no need to modify the class diagram now, since there are no more
inconsistencies.

Figure 4.33: The updated sequence diagram, with the second
permission removed

Finally, one need to make sure that every sequence of actions can be completed. In order
to do this, we have to �play� each sequence of actions, and make sure that each time an
object tries to use a permission, it actually holds it, either because it got the permission at
instantiation time, or because it has a valid certi�cate to use it.

Here, this is not the case: the call to the buy() method made by the Em01 object on
the Srv object uses two permissions: clientOrder and emplOperation. However, at this time
in the sequence diagram, the Em01 object holds the EmplOperation permission (that has
been granted at instantiation time), but not the clientOrder permission. The only way to
grant this permission is through the Cl01 object, that can delegate the missing clientOrder
permission to the Em01 object, using the call to the buy() method on Em01. Figure 4.34
shows the updated version of the sequence diagram. Since the class diagram already allows
Client classes to delegate the clientOrder, Server permission, there is no need to modify the
class diagram.

60 CHAPTER 4. UMLSEC

Figure 4.34: The �nal version of the sequence diagram

Another solution would have been to drop the need for the missing permission. This possi-
bility has already been discussed, and is pictured on �gure 4.32.

4.5.5 Possible side e�ects

When a model is modi�ed automatically using one of the strategies described above, we
concentrate on getting the model to meet only one property. However, most of the time, a
complete model contains several UMLsec properties. It would be unfortunate that the changes
made to ful�l one of them break another one.

Since di�erent diagrams can strongly depend on each other (for example, a sequence diagram
uses objects that are instances of classes described in a class diagram), it is also important to
make sure that any modi�cation to a diagram is spread correctly in all the other ones when
necessary. This problem, however, is not speci�c to UMLsec, since it is about the �basic�
UML model. However, we try not to modify the UML model when automatically changing a
UMLsec model. Instead, we focus on adapting the UMLsec tagged values and stereotypes.

Chapter 5

Producing veri�ed code

Having a set of UML diagrams describing the expected architecture and behaviour is great.
De�ning security properties in UMLsec and making sure that the UML model meets them
is, of course, even better. But because the model meets those properties, doesn't necessarily
means that the implementation will also meet them: there's almost no such thing as a bug-
free implementation. As soon as a developer, as careful as he might be, writes code that is
supposed to match the behaviour described by the UML diagrams, bugs will most certainly
be introduced. And, of course, some of these almost unavoidable bugs might expose the actual
application to a security threat that the developer thought was addressed, since the UMLsec
model was correct.

Automatically generating code from a UML model with UMLsec properties would be very
helpful. However, the developers will want to modify the code once it has been generated.
The main reason is that probably no one will model every single detail of a piece of software
using UML diagrams. But also, developers will want to optimise their code, to modify it, to
extend it, add features, use libraries, . . .

Therefore, a more interesting way of dealing with automatic code generation is not only to
generate code that ful�ls the UMLsec properties expressed in the UML model, but also to
determine in which circumstances modi�cations of the produced code will or will not impact
the validity of the software regarding those security properties. This way, the developers will
not only be con�dent that the produced code ful�ls the UMLsec properties, but they will also
know which changes will a�ect those properties, and which changes won't.

It this chapter, we will not cover code generation for every UMLsec property: instead, we
will focus on some of them which are related to access control. We will discuss two di�erent
techniques for generating code: the �rst one, described in section 5.1.1, generates pure-Object-
Oriented code, while the second one, described in section 5.1.2, generates Object-Oriented code
and Aspect-Oriented code.

61

62 CHAPTER 5. PRODUCING VERIFIED CODE

5.1 Code generation techniques

5.1.1 Generating Object-Oriented code

The �rst technique proposed is to generate only Object-Oriented code from UML diagrams
with UMLsec properties. The UML diagrams have to be translated into code, and in the same
time, the UMLsec properties have to be included in the code. Usually, adding the UMLsec
property is just a matter of adding some calls to security APIs.

5.1.2 Generating Aspect-Oriented code

The second technique is to generate Object-Oriented code for the UML diagrams without
taking the UMLsec properties into account, and then to generate one aspect for each UMLsec
property.

Security is a crosscutting concern, and therefore it makes sense to write aspects in order
to enforce UMLsec properties in the generated code. UMLsec properties can also be de�ned
independently, which makes using Aspect-Oriented code generation even easier: we can gen-
erate one aspect for every UMLsec property we want to enforce, and activate or deactivate
one when needed, without having an in�uence on the other ones and on the ful�lment of the
other properties.

5.2 Generating code from a � permission � property

The � permission � property is de�ned on two di�erent types of diagrams: class diagrams
and sequence diagrams, as described in section 4.1.3. Therefore, the code generation for this
property will be twofold: �rst, we generate the code from the class diagram, and then code
from the sequence diagram is added.

5.2.1 Authorization API

The � permission � property in UMLsec allows one to restrict access to operations and
attributes, but it does not model how the authorization is performed. Therefore, the code
generator can not generate code for the authorization mechanism itself. Instead, we will
assume that an authorization API is available, and the generated code will call the API when
necessary.

In this section, we will assume that the following methods are available through the API.
Those are written in pseudo-code.

• public addPermission(source,permission, target): grant to the source object per-
mission permission on object target.

• public checkPermission(source, permission, target): check that object source
has the permission permission on object target at the moment the check is performed.

• public delegate(source, permission, target, recipient, validity_nbr, validity_time):
the source object delegates permission permission on the target object to the recipient

5.2. GENERATING CODE FROM A � PERMISSION � PROPERTY 63

object. The permission can be used validity_nbr times, and its validity period is valid-
ity_time.

• public addRestriction(element, permission): permission permission is needed to
access the method or attribute element.

• public addNoPermNeeded(element, source) class source doesn't need any permission
to access the method or element element.

• public addDelegation(source, permission, target): allows the object to delegate
permission permission on object target to any other object.

The authorization code will also have to deal with certi�cates lifespan:

• Some certi�cates can't be used more than a �xed number of times. The authorization
code will make sure that the usage counter is decremented at every usage, and that
the permissions granted by the certi�cate will be removed when the certi�cate becomes
invalid.

• Other certi�cates do no have this limit. Therefore, their counter should never be decre-
mented, and the permissions granted by the certi�cate should never be removed

• Some certi�cates have a validity limited in time. They should be removed, as well as all
the permissions that come with them, as soon as they are no longer valid.

• Other certi�cates have an unlimited validity period, and should therefore never be re-
moved.

5.2.2 Object-Oriented solution

We �rst describe the plain Object-Oriented solution. We will have to generate the code
in two steps: �rst, we will generate code from the class diagram, and then code from the
sequence diagram. The order is important: we �rst generate the classes with their attributes
and method signatures from the class diagram, and then we can �ll the methods with the
sequences of operations described in the sequence diagram.

Class diagram

Generating Object-Oriented code from a Class diagram, without taking an UMLsec property
into account, is quite easy: a class is a class, an attribute is an attribute, and an operation is
a method. Things, however, get slightly more complicated when we want to introduce access
control on the methods.

In a class diagram with the � permission � property, the classes that have operations or
attributes whose access needs to be restricted are labelled with the � permission-secured �
stereotype. Therefore, any class that is not stereotyped with � permission-secured � can have
its code generated like a �plain� UML class: a class in UML becomes a class in the target
language, an attribute becomes an attribute, and an operation becomes a method. All the
other classes require a little bit more work when the code is generated.

64 CHAPTER 5. PRODUCING VERIFIED CODE

When code for a class stereotyped with � permission � is generated, permissions and dele-
gation capabilities have to be granted to the objects at instantiation time. Thus, calls to the
API need to be added as the �rst lines of the constructor's body. For every permission in
the {permission} tag, the following call will be added: addPermission(source, permission,

target). And for every delegation in the {delegation} tag, the following call will be added:
addDelegation(source, permission, target).

Each time code for an operation protected with the � permission-check � stereotype is gener-
ated, there is an API call to add as the �rst thing inside the method body: addRestriction(element,
permission), where element is the method, and permission is the permission required to call
the operation. If multiple permissions are needed to call the operation, then there will be a
similar API call for each of them.

If the operation contains a {no_permission_needed} tag, another API call has to be added:
addNoPermNeeded(element, source), with element being the operation, and source the ob-
ject that doesn't need permissions to call the operation.

For an attribute, it gets more complicated: the attribute should be made private, and a
method should be created to access it. Inside the method body, the �rst lines will be calls to
the API, similar to those described above.

Sequence diagram

Once the class diagram has been processed, it is time to process the sequence diagram. The
sequence diagram tells us which method calls will be performed during a method execution.
However, it does not model the entire method body, so the code will have to be completed by
hand, or generated using another diagram, like an activity diagram. Still, when playing the
execution sequence of the sequence diagram, every call to an operation can be translated as a
method call inside the current method. Return values are return, conditional blocks translate
into if/then/else structures, and loop blocks translate into while structures.

Every time a method call is stereotyped with � certi�cation �, a certi�cate has to be
transmitted to the callee. A call to the API should be added right before the method call:
delegate(source, permission, target, recipient, validity_nbr, validity_time), that
will delegate the permission to the callee.

Example

We will use a small example to illustrate the code generation. Let's go back to the example
we used in section 4.5.4. The class diagram (�gure 5.1) and the sequence diagram (�gure 5.2)
describe an interaction between a Client, an Employee and a Server. The Client calls the
operation buy() on the Employee, which then calls the operation buy() on the Server.

For this example, we will use the Java programming language as an example of an Object-
Oriented language. We assume that the authentication API we use matches to one described
above, and can be accessed through a static object called AuthAPI.

5.2. GENERATING CODE FROM A � PERMISSION � PROPERTY 65

Figure 5.1: The class diagram describing the system

Figure 5.2: The sequence diagram

66 CHAPTER 5. PRODUCING VERIFIED CODE

Let's start with the class diagram. Figures 5.3, 5.4 and 5.5 contain the generated code for
each of the three classes.

1 public Cl i en t {
public Cl i en t () {

3 AuthAPI . addPermission (this , Employee , Cl ientOrder) ;
AuthAPI . addDelegat ion (this , c l i entOrder , Server) ;

}
}

Figure 5.3: client.java

The Client class, on �gure 5.3, doesn't contain any method. It gets one permission at
instantiation time, and the ability to delegate it.

1 public Employee {
public Employee () {

AuthAPI . addPermission (this , emplOperation , Server) ;
4 AuthAPI . addRes t r i c t i on (this . s e l l , c l i en tOrde r) ;

AuthAPI . addRes t r i c t i on (this . buy , c l i en tOrde r) ;
}

public s e l l () {
9 AuthAPI . checkPermiss ion (c a l l e r , c l i entOrder , this . s e l l) ;

}

public buy () {
AuthAPI . addRes t r i c t i on (c a l l e r , c l i entOrder , this . buy) ;

14 }
}

Figure 5.4: employee.java

The Employee class, on �gure 5.4, gets one permission at instantiation time, and has two
methods, each requiring one permission to be called.

And �nally, the Server class, on �gure 5.5, doesn't get any permission at instantiation time,
but has two methods, each requiring two permissions to be called.

Now, we process the sequence diagram. Figures 5.6 and 5.7 show the updated code.

An Employee object, named em01, has been added to the Client class, so the the buy()
method could be called. Before calling the buy method, the delegation is performed through
the delegate(...) call to the API, so that the permission can be delegated to em01, as seen on
�gure 5.6.

5.2. GENERATING CODE FROM A � PERMISSION � PROPERTY 67

1 public Server {
public Server () {

AuthAPI . addRes t r i c t i on (this . s e l l , c l i en tOrde r) ;
AuthAPI . addRes t r i c t i on (this . s e l l , emplOperation) ;

5 AuthAPI . addRes t r i c t i on (this . buy , c l i en tOrde r) ;
AuthAPI . addRes t r i c t i on (this . buy , emplOperation) ;

}

public s e l l () {
10 AuthAPI . checkPermiss ion (c a l l e r , c l i entOrder , this . s e l l) ;

AuthAPI . checkPermiss ion (c a l l e r , emplOperation , this . s e l l) ;
}

public buy () {
15 AuthAPI . checkPermiss ion (c a l l e r , c l i entOrder , this . buy) ;

AuthAPI . checkPermiss ion (c a l l e r , emplOperation , this . buy) ;
}

}

Figure 5.5: server.java

1 public Cl i en t {
2 private Employee em01 ;

public Cl i en t () {
AuthAPI . addPermission (this , Employee , Cl ientOrder) ;
AuthAPI . addDelegat ion (this , c l i entOrder , Server) ;

7
Auth . de l e ga t e (this , permiss ion , target , r e c i p i e n t , va l id i ty_nbr ,

va l id i ty_t ime) ;
em01 . buy () ;

}
}

Figure 5.6: updated client.java

68 CHAPTER 5. PRODUCING VERIFIED CODE

1 public Employee {

Server s rv ;
4

public Employee () {
AuthAPI . addPermission (this , emplOperation , Server) ;
AuthAPI . addRes t r i c t i on (this . s e l l , c l i en tOrde r) ;
AuthAPI . addRes t r i c t i on (this . buy , c l i en tOrde r) ;

9 }

public s e l l () {
AuthAPI . checkPermiss ion (c a l l e r , c l i entOrder , this . s e l l) ;

}
14

public buy () {
AuthAPI . addRes t r i c t i on (c a l l e r , c l i entOrder , this . buy) ;

s rv . buy () ;
19 }

}

Figure 5.7: updated employee.java

As we can see on the sequence diagram, during the execution of the buy() method on em01,
a call to the buy() method of the srv object is performed. Therefore, a reference to the srv
object has been added to the Employee class, and the call to the buy() method on srv has
been added to the body of the buy() method, as illustrated on �gure 5.7.

Finally, The Server class hasn't been updated, since it wasn't necessary.

5.2.3 Aspect-Oriented solution

In the Aspect-Oriented solution, we will �rst generate code from both the class diagram
and the sequence diagram without taking the UMLsec properties into account, and then we
will create an aspect that will add the � permission � restrictions to the code.

Class diagram

Once the code has been generated from the class diagram, it is time to take care of the
UMLsec stereotypes. In the class diagram, every class that is stereotyped with � permission-
secured � has operations and/or attributes that need to be protected. Therefore, every call
to a protected operation (which is stereotyped with � permission-check �) and every access
to a protected attribute (which is also stereotyped with � permission-check �) needs to be
captured by a pointcut that will make sure that the caller has the necessary permissions to
access the operation or the attribute. Otherwise, it will throw an exception.

Permissions also need to be granted to objects at instantiation time. All the classes stereo-
typed with the � permission-secured � stereotype and labelled with the {permission} tag get
one or more permissions at instantiation time. For each of them, we add a pointcut to any of

5.2. GENERATING CODE FROM A � PERMISSION � PROPERTY 69

the class' constructors, as well as an advice that performs the following calls to the Permission
Management Module:
addPermission(this, permission, target) Where permission and target describe which
permission is granted to be used on which object. Of course, if there are several permissions
granted, there will also be several calls to the Permission Management Module (one for every
permission granted).

Within the same advice, we add another call to the Permission Management API if and
only if the class is also labelled with the {delegation} tag:
addDelegation(this, permission, target) Where permission and target describe which
permission can be delegated. Of course, there will be one API call for each delegation possi-
bility in the {delegation} tag.

Sequence diagram

Once the code from the sequence diagram has been generated, as well as the aspect from
the class diagram, it is time to use the stereotypes in the sequence diagram to enforce the
� permission � property. There is no need to create a new aspect, since we can use the one that
has been created while processing the class diagram. However, creating another one would
also be possible.

The delegation of a certi�cate has also to be done using a pointcut: we capture the method
call corresponding to the message in the sequence diagram where the certi�cate is delegated,
and, using a before advice, add a call to the permission manager, that will make sure that:

• the caller has the right to delegate the permission

• the certi�cate is well formed

• the callee's permissions are updated

Finally, the validity of the certi�cates will have to be handled by the permission manager,
which will work, since a call to the permission manager is already performed each time an
object tries to access a protected method or attribute.

Example

Let's reuse the example we used for the generation of Object-Oriented code, and see what
happens when we generate Aspect-Oriented code. We will also use Java as our Object-Oriented
language, and we will add AspectJ as our Aspect-Oriented extension.

We start with the generation of the code from the class diagram, that we can see on �gures
5.8, 5.9 and 5.10.

Now, we need to generate the aspect from the class diagram. It is shown on �gure 5.11

70 CHAPTER 5. PRODUCING VERIFIED CODE

1 public Cl i en t {
public Cl i en t () {
}

}

Figure 5.8: client.java

1 public Employee {
public Employee () {
}

public buy () {
6 }

public s e l l () {
}

}

Figure 5.9: employee.java

1 public Server {
public Server () {
}

5 public s e l l () {
}

public buy () {
}

10 }

Figure 5.10: server.java

5.2. GENERATING CODE FROM A � PERMISSION � PROPERTY 71

1 public aspect Permiss ionAspect {

po intcut employeeProtect ion ()
: c a l l (∗ Employee . s e l l ()) | | c a l l (∗ Employee . buy ()) ;

5
po intcut s e r v e rP ro t e c t i on ()

: c a l l (∗ Server . s e l l ()) | | c a l l (∗ Server . buy ()) ;

po intcut c l i e n tCon s t r ()
10 : c a l l (∗ Cl i en t .new (. .)) ;

po intcut employeeConstr ()
: c a l l (∗ Employee .new (. .)) ;

15 be f o r e () : employeeProtect ion () {
AuthAPI . checkPermiss ion (this , c l i entOrder , Employee) ;

}

be f o r e () : s e r v e rP ro t e c t i on () {
20 AuthAPI . checkPermiss ion (this , c l i entOrder , Server) ;

AuthAPI . checkPermiss ion (this , emplOperation , Server) ;
}

be f o r e () : c l i e n tCon s t r () {
25 AuthAPI . addPermission (this , Employee , c l i en tOrde r) ;

AuthAPI . addDelegat ion (this , c l i entOrder , Server) ;
}

be f o r e () : employeeConstr () {
30 AuthAPI . addPermission (this , emplOperation , Server) ;

}
}

Figure 5.11: Aspect generated from the class diagram only

72 CHAPTER 5. PRODUCING VERIFIED CODE

The �rst two pointcut capture calls to the � permission-secured � methods, and the last
two capture calls to any of the constructors of classes Client or Employee. Since the Server
class doesn't get permissions at instantiation time, there is no need to capture its constructor
calls.

The �rst advice adds a call to the checkPermission method on the Permission Management
API, in order to make sure that the caller has the permission to call the protected methods
on the Employee objects. The second advice is similar, but for the protected methods of the
Server objects.

The third one grants permission to every object of type Client when it is created, as well
as the possibility to delegate a permission, through the corresponding API calls. The last one
is similar, but for the objects of type Employee, and without the delegation capability.

Now, we update the Java code using the information provided by the sequence diagram.
The resulting code is on �gures 5.12 and 5.13. The Server class has not been updated, since
the sequence diagram doesn't provide any extra information about it.

1 public Cl i en t {

3 private Employee em01 ;

public Cl i en t () {
em01 . buy () ;

}
8 }

Figure 5.12: updated client.java

1 public Employee {
2

private Server s rv ;

public Employee () {
}

7
public buy () {

srv . buy () ;
}

12 public s e l l () {
}

}

Figure 5.13: updated employee.java

And �nally, we update the aspect with the information found in the sequence diagram, as
we can see on �gure 5.14.

5.2. GENERATING CODE FROM A � PERMISSION � PROPERTY 73

1 public aspect Permiss ionAspect {

po intcut employeeProtect ion ()
: c a l l (∗ Employee . s e l l ()) | | c a l l (∗ Employee . buy ()) ;

6 po intcut s e r v e rP ro t e c t i on ()
: c a l l (∗ Server . s e l l ()) | | c a l l (∗ Server . buy ()) ;

po intcut c l i e n tCon s t r ()
: c a l l (∗ Cl i en t .new (. .)) ;

11
po intcut employeeConstr ()

: c a l l (∗ Employee .new (. .)) ;

po intcut certFromClientToEmployee ()
16 : c a l l (∗ Employee . buy ()) ;

b e f o r e () : employeeProtect ion () {
AuthAPI . checkPermiss ion (this , c l i entOrder , Employee) ;

}
21

be f o r e () : s e r v e rP ro t e c t i on () {
AuthAPI . checkPermiss ion (this , c l i entOrder , Server) ;
AuthAPI . checkPermiss ion (this , emplOperation , Server) ;

}
26

be f o r e () : c l i e n tCon s t r () {
AuthAPI . addPermission (this , Employee , c l i en tOrde r) ;
AuthAPI . addDelegat ion (this , c l i entOrder , Server) ;

}
31

be f o r e () : employeeConstr () {
AuthAPI . addPermission (this , emplOperation , Server) ;

}

36 be f o r e () : certFromClientToEmployee () {
AuthAPI . d e l e ga t e (this , c l i entOrder , Server , Employee , −1, −1) ;

}
}

Figure 5.14: Aspect updated with the information found in
the sequence diagram

.

74 CHAPTER 5. PRODUCING VERIFIED CODE

Another pointcut has been added, that will capture every call from the Cl01 Client to the
buy() method on the EM01 Employee. A new advice adds a call to the delegate(..) method
of the Permission Management API, that will perform the permission delegation.

5.3 Generating code from a � rbac � stereotype

The second property we will focus on is the � rbac � property, that allows one to de�ne
Role-Based Access Control rules on an activity diagram. Like for the code generation from
the � permission � stereotype, we will use an external module to perform authentication and
authorization. Here, we will use the JAAS framework, that is described in details below.
Of course, any other authentication and authorization framework could be used with little
change.

5.3.1 The JAAS framework

JAAS, Java Authentication and Authorization Service, is part of the Java Security Frame-
work since Java 1.4. It is very extensible, since each of its modules' default implementation
can be replaced by custom code, in order to deal with any possible situation. It is divided in
two parts: authentication and authorization. The following description is inspired by [Mic01].

Authentication

The authentication process using JAAS has been implemented in a completely pluggable
way [Mic01], which means that every part of the authentication process can be replaced with
custom code. That makes JAAS independent from any underlying authentication technology
[Mic01].

We will cover here the basic principles of authentication using JAAS: we will describe the
concepts it introduces, and see how they work together to provide a complete authentication
mechanism.

The �rst thing that needs to be done for using JAAS-based authentication is creating a
LoginContext (javax.security.auth.login.LoginContext). The LoginContext takes two
arguments: an entry name, and a CallBackHandler.

The entry name is the name of an entry in the JAAS login con�guration �le. This �le
contains entry names describing which LoginModule should be used to perform authentication.
Each entry contains the name of a class implementing the LoginModule interface. That is
where the authorization mechanisms are implemented.

The second argument, the CallBackHandler, is used to provide the LoginModule with a
way to interact with the user, eg. to ask for a username or a password.

5.3. GENERATING CODE FROM A � RBAC � STEREOTYPE 75

One the LoginContext has be instantiated, then the login() method has to be called. It
will perform the authentication, and create a new Subject (javax.security.auth.Subject)
object. The Subject represents the user, and is populated by the login() method with a
Principal if the authentication is successful. The Principal also describes the user, but it is
di�erent from the Subject: while the Subject describes the source of a request, there might
be several Principals for a single Subject, each Principal being an identity of the user that
will be used to determine whether he has access to protected resources [Mic01].

Authorization

Once the user is authenticated, it is possible to make sure that he has the required permis-
sions to access a protected method. This is the authorization part of the JAAS framework.

Calls to protected methods can not be performed directly. Instead, each protected method
should be encapsulated in a action object , who must implement either PrivilegedAction

(java.security.PrivilegedAction) or PrivilegedExceptionAction
(java.security.PrivilegedExceptionAction). There must be a run() method that imple-
ments the protect method.

To execute the action object , the static method doAsPrivileged(Subject, PrivilegedAction,

AccessControlContext) of the Subject class has to be called. This method will try to per-
form the protected operation on behalf of the Subject in its �rst argument.

Every method that needs to have its access protected need to call the static checkPermission()
method on the AccessController class (java.security.AccessController), that will throw
an Exception if the Subject's permissions are not su�cient.

Then, the security policy must be con�gured, in order to de�ne which access rights are given
to which users, according to their Principals. This con�guration is done in a Policy �le.

The Policy �le grants permissions to Principals. The syntax for a grant statement is
described in �gure 5.15.

1 grant <s i gn e r (s) f i e l d >, <codeBase URL>
<Pr in c i pa l f i e l d (s)> {

permis s ion perm_class_name "target_name" , " ac t i on " ;
. . . .
pe rmis s ion perm_class_name "target_name" , " ac t i on " ;

6 } ;

Figure 5.15: grant statement syntax (from [Mic01])

The signer field, the codeBase URL and the Principal field are all optional. Here, we
will only focus on the Principal field, sine we won't use the other ones.

The Principal field's syntax is simple:

76 CHAPTER 5. PRODUCING VERIFIED CODE

Principal Principal_class �principal_name �.

Principal_class is the fully quali�ed name of the Principal class, that implements the
java.security.Principal interface, and the second �eld is the Principal name.

If a grant statement has several principal �elds, then all of them are required for a Subject

to be granted access to the protected resource.

An example of a JAAS program using authentication and authorization will be given in the
next sections, both using Object-Oriented programming and Aspect-Oriented programming.

5.3.2 Authentication

Similarly to the � permission � property, the � rbac � property does not model how the
authentication process is handled. When generating code, we will then have to assume that
the authentication has already been done. It will be the developer's responsibility to create
an authentication module, or to use an existing one.

5.3.3 Authorization: Object-Oriented solution

First, we need to create a Permission for every operation that needs to be protected. Since
we only need the name of the Permission, we can use the BasicPermission class, which
is a simple subclass of Permission that does everything we need. In order to make things
easier to read, we can even subclass the BasicPermission class, for every class that has
protected methods. This will also avoid any name con�ict problem. Figure 5.16 shows a
sample BasicPermission subclass.

1 import java . s e c u r i t y . ∗ ;

public f ina l class MyNewClassPermission extends Bas icPermiss ion {
4 public MyNewClassPermission (S t r ing name) {

super (name) ;
}

public MyNewClassPermission (S t r ing name , S t r ing a c t i on s) {
9 super (name , a c t i on s) ;

}
}

Figure 5.16: A sample subclass of the BasicPermission class

Once each BasicPermission subclass has been created, we can start generating the code.
A single activity diagram, like required for the � rbac � stereotype de�nition, is not su�cient
to generate the code. We need at least a class diagram, but it doesn't have to come with any
UMLsec stereotype or tagged value.

5.3. GENERATING CODE FROM A � RBAC � STEREOTYPE 77

The generation of the classes from the class diagram has already been described in section
5.2. Once the classes have been generated, let's take a look at the activity diagram. Each
protected action has to have a corresponding operation that will allow us to link the action
to an operation in the class diagram. For every protected action, we add to the method
implementing the corresponding operation a call to the AccessController class at the very
beginning of the method body, as we can see on �gure 5.17.

1 Acce s sCont ro l l e r . checkPermiss ion (
new MyNewClassPermission ("methodName")) ;

Figure 5.17: Code snippet to add at the beginning of every
protected method

Once the access restricted methods have been protected, it is time to take care of the calls
to the protected methods. Provided that the authentication process has been made, we need
to:

• get the Subject from the LoginContext

• Create a PrivilegedAction object to run the protected method

• Call the static doAsPrivileged(...) method on the Subject class, with the Subject

and the PrivilegedAction as parameters.

Therefore, every call to a protected method will be replaced by those steps. Figure 5.18
shows a simple call to a protected method. The code snippet uses the lc attribute, which
is of type LoginContext. It tries to run the protected credit(int amount) method on the
account object.

1 Subject mySubject = l c . ge tSub jec t () ;

3 Subject . doAsPr iv i l eged (authent i catedSubjec t ,
new Pr iv i l e g edAct i on () {

public Object run () {
account . c r e d i t (1000) ;
return null ;

8 }} , null) ;

Figure 5.18: Code snippet that will call a protected method

Example

We illustrate this solution with a simple example that produces Java code, inspired by an
example from [Lad03]. Figure 5.19 is a simple activity diagram with � rbac � properties
included.

78 CHAPTER 5. PRODUCING VERIFIED CODE

Figure 5.19: A simple activity diagram with � rbac � prop-
erties

5.3. GENERATING CODE FROM A � RBAC � STEREOTYPE 79

The authorize credit activity is protected. The role credit approver has the right to
perform it, and the user Supervisor has that role.

But we also need a class diagram to generate the code. We can �nd it on �gure 5.20.

Figure 5.20: The class diagram corresponding to the activity
diagram on �gure 5.19

The �rst thing we do is processing the class diagram in order to produce Java classes. The
result of this operation can be seen on �gures 5.21, 5.22, 5.23 and 5.24.

1 public class Employee {
2

private St r ing name ;
private Boolean supe rv i s o r ;

public Employee () {
7 }

}

Figure 5.21: Employee.java

Once the classes have been generated, it is now time to add access control information that
we will extract from the activity diagram. The activity diagram shows that the authorize

credit action state is protected. Since it contains in its actions list the approve() operation
of the Credit class, we deduce that the approve() operation needs to be protected.

Figure 5.25 shows the updated Credit class, with the necessary JAAS access control calls.
We also had to create a new class that extends BasicPermission, as we can see on �gure
5.26.

Now that all the methods requiring access control have been protected, it is time to make
sure that all the calls to those methods include the necessary code for being authorized to

80 CHAPTER 5. PRODUCING VERIFIED CODE

1 public class Account {
2 private I n t eg e r number ;

private I n t eg e r balance ;

public Account () {
}

7
public void c r e d i t (In t eg e r amount) {
}

public void deb i t (In t eg e r amount) {
12 }

}

Figure 5.22: Account.java

1 public class Credit {
2 private I n t eg e r amount ;

private Boolean approved ;

public Credit () {
}

7
public boolean setup (In t eg e r amount) {
}

public void approve () {
12 }

public void r e j e c t () {
}

}

Figure 5.23: Credit.java

1 public class Customer {
private St r ing name ;
private St r ing address ;

4 private St r ing phone ;

public Customer () {
}

}

Figure 5.24: Customer.java

5.3. GENERATING CODE FROM A � RBAC � STEREOTYPE 81

1 import permi s s i ons . Cred i tPermiss ion ;
2

public class Credit {
private I n t eg e r amount ;
private Boolean approved ;

7 public Credit () {
}

public boolean setup (In t eg e r amount) {
}

12
public void approve () {

Acce s sCont ro l l e r . checkPermiss ion (new Cred i tPermiss ion ("approve") ;
}

17 public void r e j e c t () {
}

}

Figure 5.25: Credit.java - now with the approve() method
protected

1 import java . s e c u r i t y . ∗ ;

public f ina l class Cred i tPermiss ion extends Bas icPermiss ion {
public Cred i tPermiss ion (St r ing name) {

super (name) ;
6 }

public Cred i tPermiss ion (St r ing name , S t r ing a c t i on s) {
super (name , a c t i on s) ;

}
11 }

Figure 5.26: CreditPermission.java - the Permission that will
handle permissions for the Credit class

82 CHAPTER 5. PRODUCING VERIFIED CODE

perform the code. Unfortunately, the current model does not provide any sequence diagram
that would allow us to generate method calls.

Let's add a sequence diagram to our model so that we can illustrate the addition of code
for calls to protected methods. Figure 5.27 shows a simple sequence diagram that describes a
sequence of actions performed by an Employee on a Credit.

Figure 5.27: A sequence diagram that includes a call to a
protected operation

When we generate the code from that diagram, it is the Employee class that is updated, as
we can see on �gure 5.28.

This, of course, will have to be repeated for every call to a protected method. Now, if for
some reason, once we already have a large codebase, someone wants to add access restrictions
to a method or wants to remove access restrictions from another one, changes will have to be
made through the whole code, and it is very likely that some errors will arise.

5.3.4 Authorization: Aspect-Oriented solution

As we can see in the previous section, the Object-Oriented solution produces a lot of addi-
tional code: for each call to a protected method, we need to create a new PrivilegedAction

object, call the doAsPrivileged method with the Subject, and also handle the exceptions
that could be thrown. Also, every method that needs to be protected also requires some code
to be added at the beginning of its body. It is always the same code that is reused everywhere,
leading to typical tangling and scattering problems. Using Aspect-Oriented programming will
allow us to regroup the access control related code in one place only.

The code we need to add can be divided in two parts: the code that protects a method, and
the one that allows to call a protected method. Therefore, we will have to create two advices
in our aspect, each one adding code to a di�erent pointcut.

5.3. GENERATING CODE FROM A � RBAC � STEREOTYPE 83

1 import java . s e c u r i t y . ∗ ;
import javax . s e c u r i t y . auth . Subject ;
import javax . s e c u r i t y . auth . l o g i n . LoginContext ;

4
public class Employee {

private St r ing name ;
private Boolean supe rv i s o r ;

9 private Credit Cred01 ;
LoginContext l c ;

Subject authent i ca t edSub jec t = l c . ge tSub jec t () ;

14 public Employee () {
Cred01 . getAmount () ;
Subject . doAsPr iv i l eged (authent i catedSubjec t ,

new Pr iv i l e g edAct i on () {
public Object run () {

19 Cred01 . approve () ;
return null ;

}} , null) ;
}

}

Figure 5.28: Update Employee.java - now with JAAS autho-
rization support

We start with the protection of methods: each time a method needs to be protected, we
want to add a call to

AccessController.checkPermission(Permission perm)

for each permission needed to access the method. This means that we will have to capture
those method's execution, and then write a before() advice that will add the calls to the
AccessController.

Then, each call to any of those protected method will have to be captured in another
pointcut. The corresponding advice will be an around() advice, that will call the necessary
methods, as shown on �gure 5.29, where authenticatedSubject is the Subject on behalf of
which the method will be called, and authOperation() the pointcut that captures the call to
the protected method.

De�ning an abstract aspect

We can make this solution even more elegant if we use an Aspect-Oriented Programming
language that supports abstract aspects. Actually, we can reuse the same advices every time,
with abstract pointcuts that we will re-implement each time. Figure 5.30 shows such an
abstract aspect written in AspectJ, following the solution proposed by [Lad03].

As we can see, the two advices are already implemented, and can be reused. Only the
pointcuts need to be generated, as well as the getPermission method. We only have to

84 CHAPTER 5. PRODUCING VERIFIED CODE

1 Object around ()
2 : authOperation () && ! cf lowbelow (authOperation ()) {

try {
return Subject . doAsPr iv i l eged (authent i catedSubjec t ,

new Pr iv i l egedExcept ionAct ion () {
public Object run () throws

Exception {
7 return proceed () ;

}} , null) ;
} catch (Pr iv i l egedAct ionExcept ion ex) {

throw new Author i sat ionExcept ion (ex . getExcept ion ()) ;
}

12 }

Figure 5.29: A sample around() advice that performs a call
to a protected method

generate one aspect for each class, and most of the code will be inherited from the abstract
aspect.

Example

Finally, we illustrate the Aspect-Oriented Programming approach using an example. Let
us reuse the example we used for the Object-Oriented Programming approach: it will make
it easier to compare the two proposed solutions.

We have �gure 5.31, an activity diagram with UMLsec properties. Figure 5.32 is the corre-
sponding class diagram, and �gure 5.33 is the dummy Sequence diagram we introduced later
in the Object-Oriented Programming approach example.

When processing those diagrams without taking the UMLsec properties into account, we
get four classes, as we can see on �gures 5.34, 5.35, 5.36 and 5.37.

It is now time to process the UMLsec properties in order to create the aspect that will
enforce the authorization properties. We will reuse the abstract aspect de�ned above on
�gure 5.30.

We then create the pointcuts for this particular example in an aspect that extends the
abstract aspect, as we can see on �gure 5.38.

We just had to implement the authOperations() pointcut and the getPermission method
to add JAAS authorization support to the code. We also had to create a new class extending
Permission, like in the Object-Oriented Programming example. This class is shown on �gure
5.39.

5.3. GENERATING CODE FROM A � RBAC � STEREOTYPE 85

1 import org . a s p e c t j . long . Jo inPoint ;

3 import java . s e c u r i t y . ∗ ;
import javax . s e c u r i t y . auth . Subject ;
import javax . s e c u r i t y . auth . l o g i n . ∗ ;

import com . sun . s e c u r i t y . auth . c a l l b a ck . TextCallbackHandler ;
8

public abstract aspect AbstractAuthAspect {
private Subject _authent icatedSubject ;

public abstract po intcut authOperat ions () ;
13

public abstract Permiss ion getPermiss ion (JoinPoint . S ta t i cPar t
j o i nPo in tS t a t i cPa r t) ;

Object around ()
: authOperat ions () && ! cf lowbelow (authOperat ions ()) {

18 try {
return Subject . doAsPr iv i l eged (_authent icatedSubject ,

new Pr iv i l egedExcept ionAct ion () {
public Object run () throws

Exception {
return proceed () ;

23 }} , null) ;
} catch (Pr iv i l egedAct ionExcept ion ex) {

throw new Author izat ionExcept ion (ex . getExcept ion ()) ;
}

}
28

be f o r e () : authOperat ions () {
Acce s sCont ro l l e r . checkPermiss ion (getPermiss ion (th i s Jo i nPo in tS t a t i cPa r t)

) ;
}

}

Figure 5.30: AbstractAuthAspect.aj - Abstract Authentica-
tion Aspect [Lad03]

86 CHAPTER 5. PRODUCING VERIFIED CODE

Figure 5.31: A simple activity diagram with the � rbac �
UMLsec property

Figure 5.32: The Class diagram corresponding to the activity
diagram on �gure 5.31

5.3. GENERATING CODE FROM A � RBAC � STEREOTYPE 87

Figure 5.33: A sequence diagram that performs a call to a
protected operation

1 opub l i c class Employee {

3 private St r ing name ;
private Boolean supe rv i s o r ;
private Credit Cred01 ;

public Employee () {
8 Cred01 . getAmount () ;

Cred01 . approve () ;
}

}

Figure 5.34: Employee.java - generated without UMLsec
properties

1 public class Account {
private I n t eg e r number ;
private I n t eg e r balance ;

4
public Account () {
}

public void c r e d i t (In t eg e r amount) {
9 }

public void deb i t (In t eg e r amount) {
}

}

Figure 5.35: Account.java - generated without UMLsec prop-
erties

88 CHAPTER 5. PRODUCING VERIFIED CODE

1 public class Credit {
2 private I n t eg e r amount ;

private Boolean approved ;

public Credit () {
}

7
public boolean setup (In t eg e r amount) {
}

public void approve () {
12 }

public void r e j e c t () {
}

}

Figure 5.36: Credit.java - generated without UMLsec prop-
erties

1 public class Customer {
private St r ing name ;
private St r ing address ;

4 private St r ing phone ;

public Customer () {
}

}

Figure 5.37: Customer.java - generated without UMLsec
properties

1 import org . a s p e c t j . lang . Jo inPoint ;
2

import java . s e c u r i t y . Permiss ion ;

import auth . AbstractAuthAspect ;

7 public aspect CreditAuthAspect extends AbstractAuthAspect {
public po intcut authOperat ions ()

: execut ion (public void Credit . approve ()) ;

public Permiss ion getPermiss ion (
12 JoinPoint . S ta t i cPar t j o i nPo in tS t a t i cPa r t) {

return new Cred i tPermiss ion (
j o i nPo in tS t a t i cPa r t . ge tS ignature () . getName

()) ;
}

}

Figure 5.38: CreditAuthAspect.aj - the authorization aspect
for the Credit class

5.3. GENERATING CODE FROM A � RBAC � STEREOTYPE 89

1 import java . s e c u r i t y . ∗ ;

public f ina l class Cred i tPermiss ion extends Bas icPermiss ion {
4 public Cred i tPermiss ion (St r ing name) {

super (name) ;
}

public Cred i tPermiss ion (St r ing name , S t r ing a c t i on s) {
9 super (name , a c t i on s) ;

}
}

Figure 5.39: CreditPermission.java - Extends the Permission
class for the Credit class access control

This solution has a lot of advantages over the Object-Oriented approach. If someone wants
to change which methods are protected, then changes only have to be done in one place: the
aspect. Moreover, every call to a protected method is handled without having to add any
additional code, which makes evolution of the code much, much easier.

90 CHAPTER 5. PRODUCING VERIFIED CODE

Chapter 6

The UMLsec tool

6.1 Overview

The UMLsec tool helps the UMLsec developer designing secure models, by allowing him to
check that the desired UMLsec properties are actually enforced by the model. When the tool
detects a �aw in the model regarding a particular property, it can tell the developer where the
problem is. The UMLsec tool can also automatically suggest corrections for models that do
not meet some UMLsec properties. Finally, it can generate Java code with AspectJ aspects
from an UMLsec model.

The UMLsec tool is not an UML modelling tool, and it is not capable of displaying a graphic
representation of UML models. Instead, it uses models produced by ArgoUML, which is an
Open Source, GPL-licenced tool, written in Java and available on Windows, GNU/Linux and
Mac OS X.

Figure 6.1: The UMLsec tool's GUI

91

92 CHAPTER 6. THE UMLSEC TOOL

The UMLsec tool can be used in three di�erent ways : as an interactive console application,
as a batch console application, or using a GUI, as shown on �gure 6.1. A web interface also
used to be available, but this feature is no longer maintained.

Figure 6.2: The UMLsec tool general architecture

Figure 6.2 depicts the general architecture of the tool. The tool receives UMLsec models
that are produced by ArgoUML as an input, and produces code, text reports, UMLsec models
or attack traces, depending on the property that is being checked. It is written in Java and
AspectJ and works on all major platforms: Windows, GNU/Linux and Mac OS X. It can use
Automated Theorem Provers and Prolog to detect and generate possible attack traces.

6.2 UMLsec properties checking

The main feature of the UMLsec tool is to check whether or not a model satis�es a particular
UMLsec property. Doing it is really simple: �rst, a model has to be loaded in the tool. Using
the GUI, this is done by selecting File then Load in the menu. The text zone at the bottom of
the tool GUI indicates whether the model has been loaded successfully after a moment. Then,
the user can select a check to perform from the list. The check is then performed, sometimes
using external tools like a Prolog engine or an Automated Theorem Prover. Finally, when the
user clicks on the tab corresponding to the check he just run, he can see the output, that will
tell him if the model violates the UMLsec property or not.

6.3 Automatic correction of unsecure models

Automatic or semi-automatic correction of unsecure UMLsec models has been described in
details in section 4.5. When a model is proven insecure, instead of letting the developer adapt

6.3. AUTOMATIC CORRECTION OF UNSECURE MODELS 93

it manually, we would like to correct it automatically, or at least partially automatically, using
developer input when needed.

The UMLsec tool implements such mechanism for a few UMLsec properties. It is, of course,
possible to extend it in the future in order to handle more UMLsec properties and more
problem resolution scenarios.

6.3.1 � secure links � property

The � secure links � property is the �rst one for which automated hardening has been
implemented in the UMLsec tool. Whenever a � secure links � check is performed on a model
using the tool, if it appears that the model doesn't ful�l the � secure links � property for a
given attacker, then it is automatically modi�ed, according to the hardening strategy described
in section 4.5.2.

Once the model has been modi�ed, a new version of the model can be exported by the user
in a ArgoUML-readable format (a .zargo �le, which is simply a zip archive containing an .xmi
�le describing the model, as well as a �le describing the picture of every diagram).

For this particular property, the model can be modi�ed in a completely automated way:
there is no need for user input, and since there is only one possible solution that leads to
a model ful�lling the � secure links � property without lowering the security mechanisms in
place, there is also no need to ask the user to chose a solution in a set of possible ones.

However, some models can never ful�l the � secure links � property for a given attacker.
There is no way to modify the model to make it secure with regard to the � secure links �
property. In this case, the user is warned that the model is insecure and that the tool couldn't
�nd any way to correct it.

Figure 6.3: UMLsec tool output for an unsecure model re-
garding the � secure links � property

Figure 6.3 shows the output produced by the UMLsec tool for a model that doesn't ful�l
the � secure links � requirements with regard to the default attacker.

94 CHAPTER 6. THE UMLSEC TOOL

6.3.2 � secure dependency � property

Models that do not satisfy the � secure dependency � requirements can also be automatically
modi�ed, as explained in section 4.5.3. Exactly like for the � secure links � property, any model
that is proven incorrect is modi�ed. But here, the good thing is that there is always a way
to get the model to be valid regarding the � secure dependency � property, without lowering
any security mechanism already in place.

Like the � secure links � property, modi�cation of a model in order to ful�l the � secure
dependency � is completely automatic, and doesn't require any user choice or additional input.

6.3.3 � permission � property

Finally, implementation of automated hardening of the � permission � property is almost
completed, following the transformation strategies described in 4.5.4. Some problems still
arise due to the fact that ArgoUML's support of sequence diagrams is incomplete.

Here, user input might be requested when a model is found to be incorrect regarding the
� permission � property. Most of the time, several choices will be available, and the user will
be prompted to choose one of them.

6.4 Code generation

Code generation from models with selected UMLsec properties has also been implemented
in the UMLsec tools. Code generation from UMLsec enabled models has been discussed in
chapter 5, where two possible approaches were described: the �rst was a strict Object-Oriented
Programming approach, and the second was using Aspect-Oriented Programming on top of
Object-Oriented Programming.

The chosen approach is Aspect-Oriented Programming, because of its ability to put the
security-related code out of the way of the developer. Since the UML diagrams without the
UMLsec extensions are �rst processed in order to produce plain Object-Oriented code, and the
UMLsec properties are enforced using aspects, the developer has the opportunity to extend
its business logic code without worrying about the security code. And since every UMLsec
property is implemented in one aspect, he can easily chose which ones he wants to activate or
not. That is a great advantage for code readability, and to avoid code tangling and security
code scattering.

Keeping a traceability link between the model and the code is also a lot easier with this
Aspect-Oriented approach: since every UMLsec property is implemented in one aspect, it is
possible to derive the property from the code just by examining the aspect.

The Object-Oriented language that has been chosen is Java, together with is widely-used
Aspect-Oriented extension AspectJ.

6.5. UML TOOL MIGRATION 95

But we also chose to use Aspect-Oriented Programming for the implementation of the
code generator itself, where it provides several advantages over the classical Object-Oriented
Programming approach.

Using Aspect-Oriented Programming allows to write the code that generates code from
UML diagrams (without the UMLsec extensions) only once, and then to plug one aspects
for every UMLsec property we want to support. That is a huge advantage over the Object-
Oriented Programming approach, that requires a more complicated and less modular way
of generating the code, since the generation of code from pure UML diagrams and UMLsec
extensions were mixed. This way, when we want to add support for generating code for a new
UMLsec property, we only have to write an aspect that will enforce it by generating. . . an
aspect.

This solution even allows us to provide several implementations of the code generator for
one speci�c UMLsec property. Let's take the � permission � property, for example. Section
5.2 described the code generation mechanism extensively, using an authorisation API. But one
might want to use another authorisation API for some reason. Well, he would just have to
write an aspect for that, and replace the existing one with his own, without having to touch
the Object-Oriented code.

Currently, only the code generation from a � rbac � property is implemented completely.
Support for the � permission � property is being implemented, but again, the poor support
of sequence diagrams by ArgoUML makes it hard to complete. A previous implementation of
code generation from a � permission � property already exists, but it seens that the switch
from Poseidon to ArgoUML (that will be discussed in section 6.5.1) made it obsolete and
buggy. It has been decided to rewrite this code completely, this time using Aspect-Oriented
Programming.

6.5 UML tool migration

6.5.1 From Poseidon to ArgoUML

Initially, the UMLsec tool was designed to accept models created by Poseidon as an input.
Poseidon [pos09] was a commercial fork of ArgoUML, an open source (BSD licence) UML
modelling tool. Although Poseidon was a commercial tool, its editor, Gentleware [?], was
giving away a Community Edition of Poseidon free of charge. This was of great interest
since Poseidon was more complete than ArgoUML, especially for the implementation of the
sequence diagrams.

However, someday Gentleware decided to stop giving away the Community Edition of Po-
seidon for free, and it was decided to switch to ArgoUML as the modelling tool used to write
models that would then be loaded into the UMLsec tool. The problem is that, even though
both Poseidon and ArgoUML come from the same codebase, they both evolved in di�erent
directions. So switching from one tool to another lead to quite a lot of bugs. As today, some
of them have already been solved, but some are unfortunately still there.

96 CHAPTER 6. THE UMLSEC TOOL

6.5.2 Exporting models to ArgoUML

Since the automated hardening of some UMLsec properties has been implemented in the
UMLsec tool, the model, once modi�ed by the tool, needed to be readable by the developer.
Therefore, a function allowing one to export the loaded model back to a ArgoUML-readable
format was needed. This function has been implemented, and it is now possible to save
the current model either in xmi format or in .zargo format, both of them being readable by
ArgoUML.

In order to do this, the version of MDR used by the UMLsec tool had to be updated so
that it would match the one used by ArgoUML. MDR (MetaData Repository) [Mic] is an
implementation of the OMG's MOF [OMG] that used to be part of the Netbeans IDE. It
has now been abandoned and it isn't supported anymore. ArgoUML developers are slowly
considering the possibility of moving to another MOF implementation. If this happens, then
maybe a similar move will have to be considered for the UMLsec tool.

6.6 Development process

Improvements have also been accomplished not in the tool itself, but in the software engi-
neering approach for it development.

First, Unit tests have been introduced, using the JUnit 4 framework [jun]. This allow the
UMLsec tool developers to be more con�dent in the quality of the code, and helps to make
sure that no regressions arise from code modi�cation.

Logs have also been introduced. The log4j [Foua] logging framework has been used in order
to provide traces when a bug is spotted, or when a problem arises. Using log4j allowed the
UMLsec tool developers to work more e�ciently on solving problems.

Finally, a continuous integration server has been set up, that automatically makes sure that
the last svn version of the tool compiles and passes all the tests.

6.7 Future works

The UMLsec tool is a great way of working with UMLsec, allowing one to automatically
ensure that the models he writes are correct regarding the UMLsec properties he wants to
enforce. However, there is more work to be done in order to make it even better.

A �rst thing would of course be to extend the number of UMLsec properties that can bene�t
from automated hardening. Also, the properties that already have automated hardening
support could see it getting even better with the addition of new problem resolution strategies.

It would be even better if the user could de�ne its own resolution strategies using a special-
ized high-level programming language. This would allow him to easily extend the possibilities
of the UMLsec tool without having to modify its code, and to share and reuse his own strate-
gies.

6.7. FUTURE WORKS 97

Automated code generation could also be spread to the remaining UMLsec properties, and
special care should be taken in order to make sure that properties do not cause security
problems when interacting. Since aspects are used to implement the UMLsec properties, this
problem can be seen as an aspect composition problem.

There are still some bugs left from the switch from Poseidon to ArgoUML that need to be
�xed. Also, generalisation of log4j and JUnit test cases would help a lot in making the code
more reliable.

Also, e�orts have already been made in order to ease the installation and compilation of the
tool, by writing ant scripts that automatically build and run the tool, and are able to detect
the necessary third-party software, like Prolog for example. Those e�orts should be continued
in order to make the build and run processes even easier.

Finally, one of the weaknesses of the UMLsec tool is its lack of possibility to visualise
the UMLsec models. People need to see the UML diagrams. This is especially true for the
automated modi�cation of models: when the user is asked to chose one solution in a set of
possible ones, not being able to see what the result of each solution would be is a big handicap.

98 CHAPTER 6. THE UMLSEC TOOL

Chapter 7

Conclusion

UMLsec is a strong, formally-de�ned way of dealing with security requirements early during
the development cycle, since it is used during the modelling phase. Moreover, the fact that it
is de�ned using the UML extension mechanism makes it easy to use and to learn.

The automated correction of incorrect UMLsec models, although still incomplete, seems
very promising in helping the developer to design secure software and have a formal proof of
the security requirements it actually enforces.

Automatic code generation addresses one of the weakest points of this approach: the likeli-
hood of human error during the translation of the UMLsec model into code. By generating the
code automatically, the UMLsec tool produces a secure code base that can then be adapted to
�t the developer's needs. Of course, bugs and problems could still arise during that adaptation
phase, but having a secure code in which the developer can be con�dent at the start is an
interesting �rst step.

Finally, Aspect-Oriented Programming allowed us to completely separate security concerns
from the functional code, and even to separate the security concerns themselves, achieving a
far better modularisation than with a classical Object-Oriented Programming approach, and
avoiding the code scattering and code tangling problems. Of course, Aspect-Oriented Pro-
gramming brings its own potential problems, especially when it comes to aspects composition,
but we believe that the gain in clarity an adaptability outweighs those drawbacks.

The original contributions submitted in this thesis include work on extending UMLsec, on
better integration of UMLsec properties into all the UML diagrams of a model, and on con�icts
identi�cation and resolution between UMLsec properties.

Another important contribution is the automated correction of unsecure UMLsec models.
Also, the production of veri�ed code can lead to interesting developments, especially since the
Aspect-Oriented approach has been introduced in order to facilitate manual evolution of the
generated code as well as traceability links.

99

100 CHAPTER 7. CONCLUSION

But the orginial contributions discussed here and not only theorical, but also more concrete,
with the development of the UMLsec tool, as well as the de�nition and set up of several
development processes, like unit tests, continuous integration, versionning, . . .

There is still lots of work to be done in the �eld of UMLsec, automated correction of
models and Aspect-Oriented Programming-based code generation, but hopefully the elements
described in this document are a �rst useful step.

The automated hardening of UMLsec models could be improved a lot by de�ning new
solutions to common problems and by extending the set of UMLsec properties for whose a
model can be automatically modi�ed. But also, one should take care of which transformations
will alter other UMLsec properties, and which won't. This way, the user could be warned that
using a speci�c resolution strategy might lead to the violation of another UMLsec property
he wants to enforce on the model.

UMLsec in itself can always be extended to match everyone's needs. However, the access
control related stereotypes could be improved, for example by extending the RBAC stereotype.
It has already been extended in this document, but other useful extensions, like the ability to
model the activation and deactivation of roles during the execution, would be interesting.

The potential con�icts between UMLsec properties should also be studied more extensively.
So far, UMLsec properties can be checked independently, but in practice, one will want to
enforce several of them at the same time. We need to make sure that the addition of one
property won't violate the existing ones.

This is also true when generating code from the UMLsec models using Aspect-Oriented Pro-
gramming. When multiple UMLsec properties need to be enforced, the proposed generation
strategy will generate at least one aspect for each property. Those could potentially interact
in an undesired way, producing side e�ects that would jeopardise the safety of the resulting
software regarding the UMLsec properties it is supposed to enforce. Therefore, questions like
aspects precedence and aspects composition should be further discussed.

Bibliography

[ABB+03] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miège, C. Saurel, and G. Trouessin. Organization Based Access
Control, June 2003.

[Cen02] Palo Alto Research Center. Frequently asked questions about aspectj,
2002. http://dev.eclipse.org/viewcvs/indextech.cgi/aspectj-home/doc/faq.html
(Accessed August 2009).

[Den76] Dorothy Denning. A lattice model of secure information �ow. Communications of
the ACM, 19 (5):236�243, 1976.

[DMN] Ole-Johan Dahl, BjørmMyhrhaug, and Kristen Nygaard. The simula programming
language. http://www.edelweb.fr/Simula/ (Accessed August 2009).

[ELF08] Alexander Egyed, Emmanuel Letier, and Anthony Finkelstein. Generating and
evaluating choices for �xing inconsistencies in uml design models. In ASE, pages
99�108. IEEE, 2008.

[FK92] D.F. Ferraiolo and D.R. Kuhn. Role based access control. 1992.

[Foua] Apache Software Foundation. Log4j logging framework,
http://logging.apache.org/log4j/1.2/index.html. (Accessed Sept. 2008).

[Foub] The Apache Foundation. Apache tomcat. http://tomcat.apache.org/ (Accessed
August 2009).

[Fouc] The Eclipse Foundation. Eclipse public licence - v1.0.
http://www.eclipse.org/org/documents/epl-v10.php (Accessed August 2009).

[Foud] The Eclipse Foundation. Eclipse.org. http://www.eclipse.org (Accessed August
2009).

[IKL+97] John Irwin, Gregor Kiczales, John Lamping, Jean-Marc Loingtier, Chris Maeda,
Anurag Mendhekar, and Cristina Videira Lopes. Aspect-oriented program-
ming. proceedings of the European Conference on Object-Oriented Programming
(ECOOP), June 1997.

[JLW05] Jan Jürjens, Markus Lehrhuber, and Guido Wimmel. Model-based design and
analysis of permission-based security. In ICECCS, pages 224�233. IEEE Computer
Society, 2005.

101

102 BIBLIOGRAPHY

[jun] Junit framework, http://www.junit.org/. (Accessed Sept. 2008).

[Jür05] Jan Jürjens. Secure Systems Development with UML. Springer-Verlag, 2005.

[Jü04] Jan Jürjens. Umlsec tool, 2004. Published at
http://mcs.open.ac.uk/jj2924/umlsectool/index.html (Accessed Sept. 2008).

[Kay] Alan C. Kay. The early history of smalltalk. http://gagne.homedns.org/ tgagne/-
contrib/EarlyHistoryST.html (Access August 2009).

[Kuh98] D.R. Kuhn. Role based access control on mls systems without kernel changes. In
Third ACM Workshop on Role Based Access Control, pages 25�32, 1998.

[Lad03] Ramnivas Laddad. AspectJ in action: Practical Aspect-Oriented Programming.
Manning, 2003.

[Mic] Sun Microsystems. Metadata repository - mdr. http://mdr.netbeans.org/ (Ac-
cessed September 2008).

[Mic01] SUNMicrosystems. Jaas tutorials, 2001. http://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/tutorials/index.html
(Accessed December 2008).

[MJY+09] Lionel Montrieux, Jan Jürjens, Yijun Yu, Jörg Schreck, and Pierre-Yves Schobbens.
Automated security hardening for umlsec models, January 2009. Software Engi-
neering Workshop, Trento.

[NIS] NIST. Role based access control - frequently asked questions.
http://csrc.nist.gov/groups/SNS/rbac/faq.html (Accessed October 2008).

[Nov] Novell. Apparmor. http://forge.novell.com/modules/xfmod/project/?apparmor
(Accessed August 2009).

[oC] U.S. Department of Commerce. National institute of standards and technology -
nist. http://www.nist.gov/index.html (Accessed November 2008).

[oD85] Department of Defense. Trusted computer system evaluation criteria, December
1985. http://nsi.org/Library/Compsec/orangebo.txt.

[OMG] Object Management Group OMG. Mof 2.0 formal speci�cation.
http://www.omg.org/spec/MOF/2.0/ (Accessed August 2009).

[OMG01] Object Management Group OMG. Uml 1.4 formal speci�cation, 2001.
http://www.omg.org/spec/UML/1.4/ (Accessed August 2009).

[OP00] S. Oh and S. Park. Task-role based access control (T-RBAC): An improved access
control model for enterprise environment. Lecture Notes in Computer Science,
1873:264�273, 2000.

[pos09] Poseidon website, February 2009. http://www.gentleware.com/.

[SCFY96] R. S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access
control models. IEEE Computer, 29(2):38�47, 1996.

BIBLIOGRAPHY 103

[SFK00] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for role-based access
control: towards a uni�ed standard. In Proceedings of the �fth ACM workshop on
Role-based access control, pages 47�63, 2000.

[Sou] Spring Source. Spring j2ee framework. http://www.springsource.org/about (Ac-
cessed August 2009).

[Wat] Robert Watson. The trustedbsd project. http://www.trustedbsd.org/ (Accessed
August 2009).

[WCS+02] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-
Hartman. Linux security modules: General security support for the linux kernel.
In Dan Boneh, editor, USENIX Security Symposium, pages 17�31. USENIX, 2002.

[xer] Xerox parc (now parc). http://www.parc.com (Accessed August 2009).

[YT05] E. Yuan and J. Tong. Attribute based access control (ABAC): a new access control
approach for service oriented architectures. In Ottawa New Challenges for Access
Control Workshop, volume 27, 2005.

104 BIBLIOGRAPHY

Index

activity diagram, 25, 26, 35, 37, 38, 42, 43, 46,
64, 74, 76�79, 81, 84, 86

AOP
advice, 6, 8, 69, 72, 74, 82�84
aspect, 4, 6�8, 10, 11, 62, 68, 69, 71�73,

82�84, 88, 89, 97
joinpoint, 6�8
pointcut, 6�8, 10, 68, 69, 72, 74, 82�84
weaving, 6, 8

AppArmor, 15
ArgoUML, 91�97
Aspect-Oriented Programming, i, 2�4, 6, 7,

76, 82�84, 94, 95, 99, 100
AspectJ, 7, 8, 69, 83, 91, 92, 94

class, 27, 35, 38, 46, 51, 53�55, 57�60, 63, 64,
76, 81

class diagram, 27, 29�31, 35, 37�39, 41�43,
46, 52�55, 57�60, 62�66, 68, 69, 71,
76, 77, 79, 84, 86

component, 32

dependency, 32
deployment diagram, 32, 33, 47, 48
Discretionary Access Control, 13�17, 23

Guarded Object, 38

interface, 51

JAAS
AccessController, 38, 75, 77
BasicPermission, 76
CallbackHandler, 74
LoginContext, 74, 75, 77
LoginModule, 74
Permission, 76
Policiy, 75
Subject, 75�77, 82
action object, 38, 75

doAsPrivileged(...), 38
Principal, 75, 76
PrivilegedAction, 38, 75, 77, 82
PrivilegedExceptionAction, 75

Java Authentication and Authorization Ser-
vice, 38, 41, 43, 74�76, 81, 83, 84

JDK2 Security Architecture, 27, 38

Lattice-Based Access Control, 24
Least Privilege, 18
link, 32
LSM, 14, 15

Mandatory Access Control, 13�17, 23
Mandatory Integrity Control, 15
MetaData Repository (MDR), 96
Multi-Level Security, 14, 16
Mutli-Level Security, 14

NIST, 19, 21, 22, 43
node, 32

Object-Oriented Programming, i, 3, 4, 7, 61�
64, 69, 76, 82, 84, 89, 94, 95, 99

operation, 27, 53, 55
Organization-Based Access Control, 13, 24

Poseidon, 95, 97

RBAC
Permission, 17, 18, 23, 24
Role, 17, 18, 23, 24, 45
Role Hierarchies, 18, 23
Session, 17, 18
Subject, 18
Transaction, 18
User, 17, 18, 23, 24

role, 46
Role-Based Access Control, i, 1, 2, 13, 16�26,

36, 37, 42, 43, 45, 74, 100

105

106 INDEX

SELinux, 14�16, 23
Separation of Duty, 17, 18, 20�22, 26
sequence diagram, 27, 30, 31, 35, 37, 38, 40�

43, 46, 52�55, 57�60, 62�66, 68, 69,
72, 73, 82, 84, 87, 94, 95

statechart, 27, 38, 39
stereotype

� Internet �, 32, 48
� LAN �, 32, 49, 50
� POS Device �, 32
� auth �, 41
� call �, 34, 51
� certi�cation �, 30, 54, 64
� critical �, 32, 34, 51
� encrypted �, 32, 48, 50
� guarded �, 26�28, 35, 38, 39, 46
� high �, 32, 34, 51, 52
� integrity �, 32, 34, 51
� issuer node �, 32
� no down-�ow �, 34
� no up-�ow �, 34
� permission-check �, 29�31, 43, 53, 64,

68
� permission-secured �, 27, 29�31, 43, 46,

53, 57, 58, 63, 68, 72
� permission �, 25, 27, 29�31, 35, 38, 41�

43, 46, 52�54, 56�58, 62�64, 68, 69,
74, 76, 94, 95

� rbac �, 2, 26, 35, 43, 45, 46, 74, 76�78,
86, 95

� secrecy �, 32, 35, 48, 49, 51
� secure dependency �, 32, 34, 51, 52, 94
� secure links �, 32, 33, 47�50, 93, 94
� send �, 34, 51
� smart card �, 32
� wire �, 32

tagged value
{adversary}, 32
{authentication}, 42
{authenticity}, 32
{authorization}, 42
{certi�cate}, 30, 31, 54
{delegation}, 29�31, 53, 54, 57, 64, 69
{fresh}, 32
{guard}, 26, 27
{high}, 32, 34, 35, 51, 52

{integrity}, 32, 34, 51
{neg permission}, 45
{no_permission_needed}, 29, 64
{permission}, 29�31, 43, 53�55, 57, 64, 68
{protected}, 25
{right}, 25, 26
{role}, 25, 26
{secrecy}, 32, 34, 51
{sod}, 45

TrustedBSD, 15

UML, i, 1, 2, 25, 35, 47, 52, 60�63, 91, 94, 95,
97, 99

UMLsec, i, 1, 2, 7, 25, 26, 32, 35, 45�47, 54,
60�63, 68, 76, 84, 86�88, 91�97, 99,
100

