
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Hamsters

a new task model for interactive systems

Ben Amor, Mohamed

Award date:
2009

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/hamsters(9dd6ae5d-7440-4056-9398-9c07e15ecd55).html

Facultés Universitaires Notre-Dame de la Paix, Namur
Faculté d'Informatique

Année académique 2008-2009

Hamsters�A New Task Model
for Interactive Systems

Author:

Mohamed Ben Amor

Supervisor:

Prof. Monique

Noirhomme

Facultés Universitaires Notre-Dame de la Paix, Namur
Institut d’Informatique

Année académique 2006-2007

Problem-Oriented Modelling
and Verification of

Software Product Lines

Andreas Classen

Mémoire présenté en vue de l’obtention
du grade de mâıtre en informatique.

Mémoire présenté en vue de l'obtention
du grade de maître en informatique.

Septembre 2009

Abstract

Task Analysis is considered to be one of the most powerful methods available
in Human-Computer Interaction discipline. To support this important method
we developed a new Task Model named Hamsters. It allows the speci�cation of
relevant information concerning di�erent tasks related to the system in a formal
way enabling analysts to use them in a systematic fashion. To achieve this
we studied existing task models, selected important and successful concepts to
preserve, and introduced various improvements at di�erent levels: meta-model,
notation, simulation and implementation. Hamsters is a very �exible model
because it was developed with two principles in mind: modularity to support
extensions; making it adaptable to various system types (critical safety systems
in our case), and openness to other models (to complement them and enable
cross-veri�cation).

Résumé

L'analyse de tâches est considérée comme l'une des activités les plus utiles dans
le domaine d'Interaction Homme-Machine. A�n de modéliser cette importante
méthode, nous avons développé notre propre modèle de tâches avec comme nom
Hamsters. Il sert à encoder des informations pertinentes aux di�érentes tâches
liées à un système d'une manière formelle permettent aux analystes de les utiliser
après d'une façon systématique. Pour y parvenir, nous avons étudié des modèles
de tâches existants, sélectionné les concepts importants à reutiliser, et introduit
des multiples améliorations aux di�érents niveaux: méta-modèle, la notation,
la simulation et l'implémentation. Hamsters est un modèle très souple grâce
à sa conception qui se base sur deux principes: la modularité a�n d'accepter
plusieurs extensions de di�érents types de systèmes (systèmes critiques dans
notre cas), et l'ouverture à d'autres modèles (pour les compléter et permettre à
les cross-véri�er).

Acknowledgment

This master thesis would not have been possible without the help of some per-
sons that I feel so grateful to them for all the contribution and support they
provided me.

In particular, I would like to thank my thesis supervisor Mrs. Monique
Noirhomme for o�ering this interesting subject of research. I am grateful to
every remark and detail she gave while reviewing my thesis.

I want to express my highest gratitude to the team of IHCS (Interacting
Humans with Computing Systems) from the IRIT, Institut de Recherche en
Informatique de Toulouse, that unless their continuous support and hospitality,
I would not be able to pursue this work. Especially I would like to thank
Mr. Philippe Palanque, the chief of IHCS team and my internship mentor,
for all the insights, ideas and references he provided me, despite his enormous
commitments and busy schedule. Similarly, I want to show high gratitude to
Mr. David Navarre who has provided assistance at almost every level of this
work with his contributions, feedback and highly constructive critical views.
Not to forget also both Mr. Eric Barboni and Mr. Jean-François Ladry for
their highly appreciated help during my stay in Toulouse and for being such an
outstanding work mates. I would like also to thank Mr. Marco Winckler for
all his help and support.

Some parts of this document were not possible without the help of three
master students from the University of Toulouse Paul Sabatier: Fabien Andre,
Yousssef Azzouzi and Raphael Hoarau. I would like to thank them so much
for their cooperation.

I am thankful also to all my professors at the University of Namur who
allowed me to get some deep insights into computer science and provided me
with fundamental knowledge that enabled me to carry this research and relate
it to the di�erent subjects we studied. In particular, I would like to thank Mr.
Vincent Englebert for his remarks about my implementation chapter.

Finally, I will never forget to mention my family which despite the distance,
has kept supporting me at all times. I dedicate my thesis to them for all what
they did for me.

i

Contents

Acknowledgement i

Context and Introduction 1

I Literature review 5

1 Towards a UCD Model-based approach 7

1.1 Introduction and Context . 7
1.2 Current approaches (mainly TCD) 8

1.2.1 Aspects . 9
1.2.2 Consequences . 11

1.3 User-Centered Design . 12
1.3.1 Principles . 13
1.3.2 Goals and e�ectiveness . 14

1.4 Model-based approach . 15
1.4.1 Models and Modeling . 15
1.4.2 Model-based approaches in HCI 17

2 Task Modeling 19

2.1 Introduction . 19
2.2 What is Task Modeling? . 20

2.2.1 Origins of Task Modeling 20
2.2.2 What is Task Modeling? 20
2.2.3 Task Analysis and Task Modeling 20

2.3 Common Task Modeling Approaches 21
2.3.1 Hierarchical Task Analysis 21
2.3.2 Cognitive Task Analysis and Modeling 22

2.4 Purpose of Task Modeling . 23
2.4.1 Introduction . 23
2.4.2 Discover, de�ne tasks and remove ambiguities 24
2.4.3 Process and check most if not all cases 25
2.4.4 Cover most or all users/roles in our system 26
2.4.5 Help design the system 27
2.4.6 Design training programs 29
2.4.7 Summary . 30

iii

CONTENTS CONTENTS

3 Analysis and Classi�cation of Task Models 33
3.1 Introduction . 33
3.2 Analysis of Task Models . 33

3.2.1 KMAD . 33
3.2.2 CTT . 37
3.2.3 AMBOSS . 42

3.3 Classi�cation of Task Models . 43
3.3.1 Feature Modeling . 45
3.3.2 Model . 46
3.3.3 Notation . 49

II Hamsters Task Model 51

4 Foundation 53
4.1 Task Structure . 53

4.1.1 Dealing with complexity 53
4.1.2 Conceptual relationships 55
4.1.3 Abstraction Levels . 56

4.2 Communicative relationships . 59
4.2.1 Introduction . 59
4.2.2 Modeling temporal operators 59
4.2.3 Tasks Flow . 62

4.3 Roles and Objects . 63
4.3.1 Roles . 63
4.3.2 Objects . 64

5 Hamsters Meta-Model 65
5.1 Introduction . 65
5.2 Hamsters Modeling Levels . 66

5.2.1 Task Model Level . 66
5.2.2 Collaborative Task Level 68
5.2.3 Task Analysis Level . 69

5.3 Hamsters Meta-Model Elements 70
5.3.1 TaskAnalysisModel and CollaborativeTask 70
5.3.2 Registries . 74
5.3.3 TaskModel . 74
5.3.4 Tasks . 75
5.3.5 Conditions . 78
5.3.6 Operators . 79
5.3.7 Objects and Communication Flows 80

5.4 Task Simulation in Hamsters . 81
5.4.1 Simulation Extensions to the Meta-Model 81
5.4.2 Principle of Hamsters Simulation 84

6 Model Notation 87
6.1 Modeling notation . 87

6.1.1 Introduction . 87
6.1.2 Graphical Notation . 88

6.2 Task Models notations . 89

iv

CONTENTS CONTENTS

6.2.1 Representing the structure of a Task Model 90
6.2.2 Hierarchical representation 90
6.2.3 Heterarchical representation 92

6.3 Hamsters Notation . 93
6.3.1 Diagram Structure and Tasks 93
6.3.2 Operators . 95
6.3.3 Objects and Information Flow 97
6.3.4 Hamsters notation reviewed 98

7 Hamsters Implementation 101
7.1 Hamsters CASE tool . 101

7.1.1 Hamsters CASE classes 101
7.1.2 Hamsters CASE architecture 102

7.2 Meta-CASE . 103
7.2.1 Concept of meta-CASE 105
7.2.2 How it works? . 105
7.2.3 Architecture . 106

7.3 Hamsters Design and Implementation 109
7.3.1 Eclipse Modeling Project (EMP) 109
7.3.2 Hamsters Cognitive Dimensions 111
7.3.3 Hamsters Application and Plugin 112

Conclusion and Prospects 117

Bibliography 121

v

List of Figures

1.1 Information Gap [Jones and Endsley 2000] 10

2.1 Goals Model of Task Analysis and Modeling 31

3.1 K-MAD Meta-Model . 35
3.2 KMAD example model . 36
3.3 Screenshot of the K-MADe tool [Baron et al. 2006] 37
3.4 CTT Meta-Model . 41
3.5 CTT example model . 42
3.6 AMBOSS Meta-Model . 44
3.7 Amboss example model . 45
3.8 Generic Feature Diagram for Task Models 47
3.9 Model Structure Notation . 50

4.1 Example task model to withdraw cash from an ATM 58
4.2 Sample model for temporal operators 60

5.1 Hamsters Higher Level Meta-Model 71
5.2 Hamsters Conceptual Meta-Model 72
5.3 Hamsters Implementation-Aware meta-model 73
5.4 Hamsters Simulation Meta-Model 82
5.5 Hamsters Simulation Basic Sequence Diagram 85
5.6 Example of using exceptional �ow 86

6.1 Make a cup of tea Task in HTA 91
6.2 Sample heterarchy using Venn diagram 92
6.3 Task Element notation . 95
6.4 Object notation . 97
6.5 ATC example model in Hamsters 99
6.6 Communication �ow notation . 100

7.1 CASE vs Meta-CASE architecture 107
7.2 UML class diagram MOF architecture 108
7.3 Hamsters and PetShop integration using OSGi 115

vi

List of Tables

1.1 Top 10 cited measures of UCD e�ectiveness. 15

3.1 Temporal operators de�ned by CTT 39

5.1 Important Simulation Methods 83

6.1 Colors properties from a western perspective 95
6.2 Icons of Task Elements . 96

7.1 Example of errors and warning checked by Hamsters 104
7.2 List of Cognitive Dimensions . 112
7.3 Cognitive Dimensions in Hamsters 113

vii

Context and Introduction

Context

The impetus for this research comes from two separate contexts. The �rst is
about a wider context which is Task Modeling for Human-Computer Interaction
and the second is a more practical one within a research project named Tortuga.

During, the last two decades, the interest in model-based approaches in
Human-Computer Interaction (HCI) has been growing. Di�erent models and
approaches were proposed to support various purposes in HCI. Among, these
models we distinguish two major types: System-Oriented and User-Oriented.
The �rst is similar to most models found in software engineering but gives
more weight to interaction and usability in its constructs. The second serves to
model everything related to the user and useful to create better designs. Those
models are essential because of the intake they provide to support User-Centered
Design. The most recognized model of the latter type is Task Modeling aiming at
supporting Task Analysis in a more systematic and formal way. Among the HCI
community, �task analysis is potentially the most powerful method available to
those working in HCI and has applications at all stages of system development,
from early requirements speci�cation through to �nal system evaluation� [Diaper
1989].

The second more practical context which is the Tortuga project. The project
is �nanced by the CNES (Centre National d'Etudes Spatiales; the French Space
Agency) and focuses on standardizing the �automation� service speci�cations
written by CCSDS (The Consultative Committee for Space Data Systems) work-
ing group. The research intends to assure an improved operability (reliability,
e�ciency, error tolerance. . .) of ground segment applications using model-based
user-centered design approaches. In particular the project aims at de�ning
various methods and models to represent the complex socio-technical system
from di�erent perspectives and more importantly to support cross-veri�cation
of these models. The cross-veri�cation assures that all models are coherent and
compatible. This coherency at the model level will guarantee in turn the system
coherency: monitoring and control interface, operator tasks, training material. . .
Our research in this thesis relates to the �rst phase: models de�nition. Precisely,
we will work on de�ning a new Task Model.

Introduction

With the help of the rapid evolution that touched every aspect of our life during
the last and current century, our life seems to become much easier especially

1

Context and Introduction

with the introduction of new solutions and technologies. However, this de-
velopment brought with it at the same time more complications to everyday
situations, especially work environments. It was clear that such complications
will have direct implications not on tools but on the human performance. Such
complications can be traced to di�erent factors of work situations from orga-
nizational hierarchies to state of the art tools employed. When it comes to
tools, the problem has its root in the way we view systems. Systems are not
only a set of technological artifacts, they have an environment and more im-
portantly a human element (people) to whom we designed the system at the
�rst place. The solution to this problem should not simply ask us to change our
views but the whole methodology we employ while designing systems. The most
known methodology that promises to o�er this prospect is User-Centered De-
sign (UCD) which as it name suggests puts the user at the heart of the system
design.

Looking at users as a central part of the design requires from us to de�ne
some formal approaches to integrate details related to them. In particular, as
stated above, we need to capture information on various factors that in�uence
their performance when interacting with the system. Therefore, we need to
develop methods and techniques which could help to understand and analyze
user situations in order to enhance Human Performance (HP). It is obvious that
the best way to have a better HP is to analyze human performance itself. Thus,
this analysis has to underlay a process of collecting, classifying and interpreting
data related to di�erent tasks he or she performs. This process is known in
the literature as Task Analysis (TA). However, how to relate this analysis to
the system design and use it in a systematic way requires de�ning a method to
model our analysis. This is the raison d'être of Task Modeling, providing formal
descriptions of user tasks for various systematic uses. Since its inception as
an important research topic in HCI, multiple model de�nitions and tools were
developed to support Task Modeling. However, these models are still seen as
research subjects and consequently do not enjoy wide adoption from the software
industry. This is due to their diversity and high level de�nitions. Actually,
their uses and applications depend on various factors mainly the foundation of
employed task analysis itself and the awaited purposes of it. So in an attempt
to solve these pitfalls, we aim in this research to de�ne a new task model that
builds on existing ones while trying to avoid past problems. The de�nition of this
task model itself will take into consideration various factors that are regularly
omitted ranging from higher-level concepts such as abstraction and modularity
to more speci�c concerns such as notation and interactivity. In addition, our
task model aims to be extensible and open. Extendability allows domain speci�c
aspects to be encoded inside the model easily (e.g. aspects related to safety
critical systems). While, openness makes our model accessible to other models
and tools, enabling complementarity (models of the same system from di�erent
perspectives) and coherency (models cross-veri�cation).

Outline

The remainder of this thesis is organized as follows:

Part 1 It gives a brief literature review on topics related to our research. The
�rst chapter shows the importance of User-Centered Design and model-

2

Context and Introduction

based approaches in developing interactive systems in particular and soft-
ware in general. The second chapter presents the state of the art in task
modeling. The third chapter attempts to extend the previous one by ana-
lyzing some selected existing models and concludes by providing taxonomy
for task modeling.

Part 2 It presents our research contributions and describes our task model�
Hamsters (stands for Human-centered Assessment and Modeling to support
Task Engineering for Resilient Systems) from various angles. The fourth
chapter discusses the foundation of our model. The �fth chapter carries
on the former one by presenting the meta-model of Hamsters in detail.
The sixth chapter presents our notation language. Finally, the seventh
chapter provides details related to our implementation.

3

Part I

Literature review

5

Chapter 1

Towards a UCD Model-based

approach

1.1 Introduction and Context

Following the famous software crisis, various e�orts were put by di�erent enti-
ties from the academic world to governments aiming to �nd a way out of this
chaos by making the Software Engineering discipline more disciplined. Most re-
searches focused on �nding the best software lifecycle or methodology that can
lead a project to success. In parallel to this research, there was also another ten-
dency to create and provide better support tools and development approaches
to deliver better software products; mainly through computer-assisted software
engineering tools (CASE tools).

Di�erent solutions were proposed but when confronted with real-life uses
they tend to continue posing problems, although mostly performing better than
former approaches. We are not going to discuss these di�erent methodologies
and approaches or evaluate them. We will focus on the major weaknesses found
to be the source of �trouble� for the software industry.

The most important factor of failure of any software products is wrong re-
quirements (the building blocks of software) [Brooks 1987; Filho and Kochan
2001] . It is logical that if they have collected wrong requirements they will not
provide the awaited product (requirements being the �rst process in software
lifecycle). The second most important factor is change. Along the software
development lifecycle, stakeholders will mostly impose or introduce changes to
the requirements or to the in-development product (even prototypes). At �rst,
wrong requirements and constant-change seem to be not connected but actu-
ally they have the same root-problem: misunderstanding. It is agreed both
in the academic and industrial world that improving understanding between
the stakeholders (including engineers) is a key-solution to major problems in
Software Engineering. We would like to make clear that by understanding we
do not mean only communication but also understanding the factors that will
surround the software usage. Among stakeholders the user is considered the
key-success factor. This claim has been demonstrated again and again by the
Standish Group reports; User involvement is the number one success factor and
reversibly lack of user involvement is the number one failure factor. These two

7

8 CHAPTER 1. TOWARDS A UCD MODEL-BASED APPROACH

major mentioned factors above (requirements and change) provide us with clues
that lead us to two important key-concepts: User and Process-automation.

The �rst concept user represents any person who uses or can be a�ected by
the use of the system, more generally some employ the term human instead.
Consequently, if we want to have better requirements and understanding of the
system we need to understand the user. This is especially true for interactive-
systems where the user interaction plays a key-role in the software usage, nev-
ertheless remains important also for other software system types. This new
methodology or software philosophy is mostly known today under the name
User-Centered Design (UCD) and sometimes called Human-Centered Design
although some scholars such as in [Gasson 2003] emphasizes on the di�erences
between a Human-Centric perspective and that of a User-Centric one.

The second keyword process-automation is about providing better traceabil-
ity enabling an automated back and forth navigation along di�erent software
processes. Traceability is considered the viable answer to the change problem.
If we have an automated software-process, we can integrate any change that
will be re�ected in all phases from requirements to implementation. In our
case, we will discuss the most known proposed solution promising to provide
this functionality: Model-Driven Engineering.

To better understand the advantages of employing new approaches, we will
start by demonstrating the pitfalls of current, or better call them �traditional�,
ones. You will notice that our claims apply to a wider circle of systems (not only
software ones). However, sometimes we will try to be very speci�c by focusing
on a special type of software called Critical-Interactive Systems (CIS) which
forms the basis of our showcases. Next, we will talk in more details about the
User-Centered Design and later present Model-based approaches. Finally, we
will demonstrate how a hybrid design mixing both approaches is very bene�cial
mainly for interactive systems.

1.2 Current approaches (mainly TCD)

Most previous and current software approaches tend to look at the software
problem from an angle di�erent than that of the user. At �rst, the goal was
developing a product that provides a speci�c feature. Later on, we �nd out
that the product fails regardless of its relative correctness in terms of its de�ned
features or goals.

Traditionally, most systems were engineered from a self- and/or technology-
centered perspectives. The �rst type is simply a design where engineers look at
the system from their perspective. In other words, they develop a system based
on their needs and wants; even if they are not related to the system usage in
any way (i.e. they are not and will not be end-users themselves for instance).
Bruce Tognazzini pointed out that even when they tend to look for another
perspective they usually ask people like themselves[Tognazzini 1996, p. 230].
The second type is considered more dangerous than the �rst one. In this case
the human factor has almost no role in developing the system: technology is
taking the lead in the system design.

In the following sections, we will detail the aspects of current non-user fo-
cused approaches mainly the Technology-Centered one. Next, we will list the
di�erent consequences that such approaches result in.

1.2. CURRENT APPROACHES (MAINLY TCD) 9

1.2.1 Aspects

The problem of Technology-Centered Design (TCD) does not only concern Soft-
ware Engineering but all engineering disciplines providing products powered by
technology. We should note that in most cases building a system from a techno-
logical perspective is not an explicit design choice taken by the developers. The
problem of TCD is not new, di�erent scholars discussed the dangers associated
with it from early days. These views were not only discussing the implication
of TCD on its ability to deliver a successful product, but further how TCD is
a�ecting our own way of living. Particularly, Henry Dreyfuss was very critical
of how technology is starting to drive our lives in his book Designing for People.
He said that �Somehow, we must �nd again our sense of individual values, lost
in this century of enormous technological advance�. Other scholars as we will
show below were critical of how it is a primary cause of design failures, further
how it can be an ordeal rather than a source of relieve.

When we analyze most tools that were designed or built from an engineer
and/or technology perspectives, we identify various problems especially related
to the usability of the system. To be more speci�c, we can cite an example
taken from Aircraft Systems. In the beginning, engineers installed a display
for each system to tell the operator or pilot how a speci�c item is performing
(engine temperature, coordinates, altitude, speed. . .). At �rst the number of
indicators was small but with the rapid development of the aviation industry
more and more displays were added. This increase of indicators has no doubt
provided us with additional data but at the same time started to make operators
get confused as a result of the increasing number of displays they have to deal
with. To face this critical situation, multipage displays were introduced but still
not able to solve the issue. In fact, the number of pages as also the quantity
of displayed data continued to grow exponentially[Sexton 1988]. The problem
is not simply reducing the number of displays, what the operator is facing in
this kind of situations is reacting to changing environment based on information
provided by these indicators. The challenge lies on how he or she would �nd,
sort, integrate and react to this overwhelming quantity of data (especially to
identify the necessary information out of the data sea). This kind of situation is
an example of Information Gap (see �gure 1.1 on the following page). In other
words, the technology is forcing the operator to adapt to this extremely critical
situation and give him/her the whole responsibility of sorting and locating the
required information. This explains why the job of an operator requires some
special skills not only due to its criticality but also the required extra-abilities
to cope with complex technology-centered systems. Actually this pushes us to
ask an interesting question: How much time operators are spending to adapt
themselves to these systems during their studies compared to that of actual
learning?

What developers and engineers miss in this kind of situations is not taking
the limitations of the human processing system into account. Unfortunately, we
have a limited short-term memory and certain bottlenecks in our abilities of in-
formation processing. What these displays are doing is conveying scattered raw
data to operators. This type of design is not well suited for human tasks because
it shows data in a distributed often unrelated way following a technology-centric
view. In addition, it provides Information from a discipline-centric view (think

10 CHAPTER 1. TOWARDS A UCD MODEL-BASED APPROACH

Figure 1.1: Information Gap [Jones and Endsley 2000]

of using and IP address instead of a friendly easy-to-remember domain name in
Networking). As mentioned above, an extra mental processing will be needed
in order for the operator to select the relevant information, let alone taking the
right decision later. This required processing overload can be considered as a
major source of [disastrous] errors.

To demonstrate our last claim, we will present some data collected from our
main example in aviation. Most of these data were collected from reports of
past incidents which are usually considered the best source for probable causes
[C.W 2000]. These causes can either be traced to engineering faults or human-
errors. Statistics show that the percentage of accidents caused by engineering
failures was reduced signi�cantly, but on the other hand failures attributed to
humans are on the rise. In fact, the operator is considered a causal factor
in between 60% to 85% of all accidents [Nagel 1988; Sanders and McCormick
1992]. If we look beyond aviation, we would conclude that this problem can be
identi�ed in other sectors. For example, the National Academy of Science in
the United States of America has estimated over 44,000 deaths annually which
are only attributed to human-errors in the medical �eld, two thirds of which
are considered preventable [Kohn et al. 2000]. It is apparent that these errors
are human in nature but we cannot claim that humans are faulty or they are
doing this intentionally! The real cause is the technology-centered designs which
are mostly, if not always, ill-suited for humans. These designs push our human
performance beyond its capabilities increasing at the same time our confusion
and more importantly our chances of committing fatal errors. That is why the
more accurate term design-induced was coined by experts to denote this kind
of errors instead of the misleading human-error. For the rest of the document,
both terms will be used interchangeably.

Early researches that tried to �nd a solution for this problem focused on
one solution which is decreasing the human intervention. In other words de-
signing systems where humans interaction with the system is reduced to the
minimal, thus logically reducing errors. Obviously, this was mainly done by a
signi�cant increase of automation. The idea was: making most tasks automated
and ran by the system will reduce at least the workload. Unfortunately, the in-
crease of automation was not e�ective as perceived at �rst. To demonstrate
this we can analyze a use case from Boeing. In the period between 1959 and
1981, Boeing reported that in 76% of hull loss accidents, the �ight crew were
a primary factor. Between 1982 and 1991, more planes with increased automa-

1.2. CURRENT APPROACHES (MAINLY TCD) 11

tion were �ying in the skies but the percentage was reduced only to 71.1%.
Actually, while we think only of the utility that came with these automated
systems, we forget that introducing new systems means new unexpected errors.
These errors are basically induced by the increase of system complexities, loss
of situation awareness, system bitterness and workload increases at inopportune
times[Billings 1997; Parasuraman et al. 1996].

1.2.2 Consequences

In this section, we will focus on the consequences of following a technology-
and/or self-centered-design. Precisely, we will take a closer look at the major
problems that are often the result of these design approaches.

Systems are designed in the �rst place as tools empowered by technology to
make human tasks easier. This means that they are supposed to make our life
easier and not the opposite. Alas, reality is di�erent. In fact humans are no
longer employing technology but trying to adapt to it; if not sometimes resist
or compete with it. It is clear that a set of minimum skills and knowledge
are required to use these systems but spending most of the time adapting and
learning is a sign of bad design. Actually, users are no longer concerned about
how this system can help them perform their tasks in an easier and e�cient
way, but instead they are shifting their attention to how to use the system. So
instead of solving the existing problem, the system created a new one. This
shift can have fatal impacts especially on critical-interactive systems. Similarly,
it can a�ect other types of software such as pushing users away from a website
because they are not ready or sure of their skills to manipulate its services (this
is especially important for e-commerce websites).

Technology tools today are known to have an enormous processing and mem-
ory power. Simply integrating these tools into supporting human tasks can be
very dangerous. This processing power exceeds ours. The technology-centered
systems push our processing abilities to the extreme raising very dangerous
concerns about our decision-making process. Logically, this disturbance will
result into committing di�erent types of errors which are going to be attributed
wrongly to humans later.

Another important weakness of TCD is producing sub-optimized systems.
Delivered systems are usually complex, contain tons of data and di�cult to
interact with. All these leaks would always produce a non-user friendly and
even non-usable system. In this case, the system has two major �ows:

1. It is not optimized to perform the awaited tasks as it does not really help
us in sorting and locating the information: engineering �ows.

2. It is supposed to improve and optimize the working environment but the
opposite happens and it became a burden: impact on its external envi-
ronment.

Before closing this section, we can summarize the problem of TCD and SCD in
the following main issues:

• Tools are built from an Engineer/Designer's perspective.

• It is up to the user to adapt himself or herself to technology.

12 CHAPTER 1. TOWARDS A UCD MODEL-BASED APPROACH

• Users adapt their environment to accommodate what has been designed.

• Users are more concerned about how to use the system instead of focusing
on their tasks.

• Users alter or use the design in an unexpected or unusual ways from what
designers intended in the �rst place.

• It pushes the human processing abilities to the extreme in complex sys-
tems.

• Increase the probability of committing errors.

• The developed system is not optimized (i.e. not usable, not user-friendly).

1.3 User-Centered Design

As demonstrated above, we often create bad designs following traditional ap-
proaches. This highlights clearly the important gap that shows up later be-
tween how the developers intend for the technology to be used and its actual
use through analyzing users behaviors. Most researches knew that the miss-
ing link is the user. In other word we need to reposition our view of the user
when designing. The user shall be no longer just a client or a customer who
is involved only at the start and at the end of the development process. To
face these issues, a new design philosophy or approach emerged called the User-
Centered Design (UCD). We used the term philosophy to show that it is not a
rigid neither a mature concept ; for instance it does not have a well-de�ned and
all-agreed methodology. We can arrive to this conclusion by just looking at the
di�erent de�nitions and methods of UCD found in the literature and industry.
Despite this, practitioners and researchers continue to advocate User-Centered
Design which enables people to reach their goals while taking into account the
natural human limitations, and produces generally more intuitive, e�cient and
pleasurable to use systems [Sharp et al. 2007].

We can �nd the earliest reference to UCD in [Gould and Lewis 1983] where
they mentioned some UCD principles like continuous contact with users, usabil-
ity criteria and evaluation and iterative design. However the o�cial launch of
the term UCD is credited to the seminal work of [Norman and Draper 1986]. In
his book �The Design of Everyday Things�, Norman approached the good/bad
design problem from a psychological perspective. He coined the term User-
Centered Design to describe any design based on user needs. A good design
according to Norman should make the user (1) �gure out what to do and (2)
allow him or her to know what is going on. For him, UCD involves simplifying
di�cult tasks, making things visible, make it easy to evaluate the current state
of the system, follow a natural mapping (between intentions and actions, actions
and impact, etc.) [Norman 2002].

While the goals of UCD are clear and relevant, how to achieve these goals
remains a mystery. This is especially true when it comes to the de�nition. From
the beginning there were many essays and debates to �nd a de�nition for UCD.
The problem is particularly keen in the HCI community. No doubt that it was
an approach that everyone subscribed to, and endorsed, but for which there

1.3. USER-CENTERED DESIGN 13

seemed to be no agreed-upon de�nition. During CHI'96, the panelist Dennis
Wixon pointed out the importance of this problem. If we cannot de�ne what
UCD is, then we are faced with allowing virtually anything to be called a �UCD
Process.� Is UCD a term that describes anything that usability specialists do or
is it a speci�c set of techniques drawn from a larger set of activities that may be
a part of system design? Can (or must) we tolerate ambiguity in the de�nition,
or is a precise de�nition of UCD necessary?

The situation in practice was worse. In the industry each organization has
its own version or understanding of UCD. This �diversity� is due to the high-level
de�nitions given mostly by the academic world. As Martin Rantzer from Sony-
Ericsson suggested, these de�nitions are too high-level for many organizations.
While it is true that organizations usually appreciate this �exibility, it should
not be too high so no one can really put it into practice.

The Usability Professionals' Association [UPA 2009] de�nes UCD as �an
approach to design that grounds the process in information about the people
who will use the product. UCD processes focus on users through the planning,
design and development of a product.� We are not going to dig further into UCD
de�nitions but the previous points still highlight the important corner-stones. In
the next section, we will give an overview of some major UCD principles. Later,
we will further detail the goals of UCD and more importantly demonstrate its
e�ectiveness.

1.3.1 Principles

Since the introduction of UCD, di�erent principles and frameworks were built
for it. Among the most important we can cite the ISO Standard 13407, Human-
centered design processes for interactive systems [ISO/IEC 1999]. However, we
are going to limit this section to the Gulliksen's framework which outlines 12
principles for successful user-centered system design [Gulliksen et al. 2005]. The
reason for this limitation is the fact that all these points were based on extensive
look on existing researches (including ISO 13407) and real-world practices. We
will add additional references to original works where applicable.

User focus The user should be the major focus. User goals and the tasks
needed to rich these goals should guide early the development [Gould
et al. 1997; ISO/IEC 1999].

Active user involvement Users should be active in the development process
from early stages. Users are no longer �customers� but are involved and
participate actively in the development [Gould et al. 1997; ISO/IEC 1999;
Nielsen 1993].

Evolutionary systems development This is basically saying we should use
both an iterative and incremental development process [Boehm 1988; Gould
et al. 1997].

Simple design representations Design representations and terminology should
be simple and more importantly easy to understand and grasp by users
[Kyng 1995].

Prototyping Early use of prototypes is encouraged to visualize and analyze/e-
valuate design ideas and decisions. Prototyping here ranges from sketches

14 CHAPTER 1. TOWARDS A UCD MODEL-BASED APPROACH

to small applications; depends on the project and timing [Gould et al.
1997; Nielsen 1993].

Evaluate use in context Usability goals and speci�c design criteria should
be speci�ed so we can evaluate the design against them in cooperation
with users in context [Gould et al. 1997; Nielsen 1993].

Explicit and conscious design activities The development process should
contain dedicated design activities. For instance User Interface Design
and Interaction Design activities [Cooper 1999].

A professional attitude UCD is basically a multidisciplinary approach, thus
it should be performed by professional people from di�erent disciplines
but with a multidisciplinary cooperation [ISO/IEC 1999].

Usability champion Usability experts should be involved in the development
process since the very early stages and through the development lifecycle
with clear authority on usability issues [Kapor 1991].

Holistic design All aspects that could a�ect the future use of the system
should be developed in parallel. This resembles to the idea that software
does not exist in isolation [Gould et al. 1997].

Processes customization Every UCD process should be adapted so it has a
local implementation depending on the organization where it is employed.

A user-centered attitude should always be established The UCD atti-
tude should not be a concern for usability people only. All project mem-
bers should be committed to the importance of this attitude and the im-
portance of usability.

You might already notice that there seem to be a near consensus on the im-
portance of UCD and its major principles. However, things are not that quite
straightforward, as real-world practices pose new challenges. Despite this, UCD
has shown that it is capable to achieve most of its goals and demonstrated its
e�ectiveness.

1.3.2 Goals and e�ectiveness

The main goal of UCD is helping to create good design. A good design in turn
provides the following advantages:

1. Reduces human-error.

2. Improves productivity.

3. Wins user acceptance and satisfaction.

4. Improves overall system's usability.

By usability here, we do not mean the traditional de�nition of the term where
focus is given only to interaction but the overall usability of the system (not
only the appearance but also include other elements such as �ltering and sorting
information, in other terms provide users with information they need especially
in complex-systems where a huge amount of information is processed).

1.4. MODEL-BASED APPROACH 15

Measure Frequency

External (customer) satisfaction 33
Enhanced ease of use 20
Impact on sales 19
Reduced helpdesk calls 18
Prerelease user testing/feedback 16
External (customer) critical feedback 15
Error/success rate in user testing 14
Users' ability to complete required tasks 10
Internal (company) critical feedback 6
Savings in development time/costs 5

Table 1.1: Top 10 cited measures of UCD e�ectiveness.

To evaluate UCD e�ectiveness, di�erent surveys and studies were conducted.
At �rst these studies were critical and showed that many UCD-methods in the
literature were found ine�ective or impractical for a variety of reasons [Gould
et al. 1991; Vredenburg 1996]. More recent studies continue to be critical of the
current situation especially the lack of clear standards, but at the same time
proves that adopting a UCD approach can increase the project success prospects
signi�cantly.

To demonstrate the e�ectiveness we will use data from one important rela-
tively recent survey by Vredenburg et al. [2002]. According to the results of this
survey, regarding the perceived impact of UCD, 72% of the respondents reported
that UCD methods had made a signi�cant impact on product development in
their organizations, by indicating �ve or higher on a seven-point scale. The
overwhelming majority said UCD methods had improved the usefulness and us-
ability of products developed in their organizations, 79% and 82% respectively.
�Clearly, there was a consensus that UCD had made a di�erence�. When it
comes to the method of evaluation or indicators of UCD impact on the project
success, respondents gave di�erent evaluation factors. Table 1.1 lists the most
important measures cited by respondents sorted by frequency of occurring.

We will not dig further into demonstrating UCD positive impact on design.
You could refer to the cited survey above [Vredenburg et al. 2002] for additional
data and statistics related to UCD e�ectiveness. Also, a book with the title
�User-Centered Design Stories� by Righi and James [2007], presents and details
di�erent real-world case studies on the impact of UCD.

1.4 Model-based approach

1.4.1 Models and Modeling

Models were always an integral part of the human experience. May be we are
not aware of their explicit usage but we can �nd them everywhere. A model
is a re�ection of something real. For instance, the human creates models of
the world with information provided from our �ve main sensory inputs: visual,
auditory, tactile, olfactory, and taste. These models are usually not complete
and therefore do not hold a loyal representation of reality. This incomplete

16 CHAPTER 1. TOWARDS A UCD MODEL-BASED APPROACH

representation is primarily the consequence of our limited abilities to capture
every detail, and secondly to our subjective view of the world. While the second
cause remains problematic, the �rst is the power force of models: models are
not complete yet they are powerful and easy to employ for di�erent purposes.
This partial representation makes it easier for us to process and decide based on
these models. Thus, we can de�ne a model as a simpli�ed representation of a
real thing which includes only those aspects of the real-world that are relevant
to the situation at hand.

The human mind is quite talented in creating and using models. This can be
proved from our ability, as infants, to develop sophisticated models of motion,
distance, time, and cause/e�ect in an e�ort to relate to the new and confusing
world around us. Starting from a nearly clean model we try to construct an
internal understanding for every new experience. This clearly shows that the
idea of creating an abstraction of the world in an e�ort to understand complex
situations/ideas is inherent to human way of thinking and reasoning [Lieberman
2006].

What is exceptional about models is their versatility. We can use models in
various ways and we keep discovering new ones that continue to demonstrate
their usefulness. Among the most important uses of models is communication. If
we look at how we communicate we can conclude easily how models are crucial
for us. Actually one of the most sophisticated examples of human models is
the language. It allows us to express very complex ideas either by using direct
mapping (concepts) or by connecting existing abstract concepts to express new
ones. Notice by language we are not limited to the spoken one but also other
forms of languages. More generally, these internal abstract models we build
ourselves are found to be critical in communicating complex concepts and ideas
to other people [Mandel 1997; Morgan and Welton 1992]. Although we need to
be careful here, those abstractions cannot be used in a universal fashion. The
most famous constraint is cultural di�erences (using two di�erent languages for
instance). That is why models are not created in isolation but need to be aligned
to a common ground among participants. For example if we would like to explain
a new phenomenon, we need to align our model to a shared experience with the
intended audience [Schramm 1971]. Therefore, to increase understanding during
a communication we need (1) a model that has the right abstraction level and
(2) a strong shared experience and/or views on things. To express the second
factor, psychologists employ the term cognitive resonance to describe a situation
of matched views between the modeler and the audience. On the other side,
they use the term cognitive dissonance to represent a situation where the model
is foreign or not close to the audience's experiences and/or expectations.

Abstraction is may be the corner stone of models. Through abstraction we
are able to create simple models of complex situations or systems. The resulting
simpli�ed representation can be used for communication as mentioned above but
in the case of systems for the purpose of reasoning, simulation and analysis. All
these bene�ts and facilities explain why models are becoming more and more
frequent in di�erent disciplines, especially young ones. In particular, software
modeling and models were seen as a new way to develop systems. Actually
models are used both to enhance understanding between di�erent stakeholders
and to drive system development. A particular movement known for endorsing
the second use of models is the Object Management Group which promotes

1.4. MODEL-BASED APPROACH 17

the MDA (Model-Driven Architecture). Basically the idea is to make the en-
gineering process model-based. Models are no longer a simple representation
that help us understand or reason but they can be processed and formalized
in a way that they will be able to generate the system-to-be. Following this
approach, engineers need to model the system using well-de�ned models, than
rely on them to produce �nal artifacts. What is interesting about this method
is the power of automation. In traditional approaches, usually we write the
requirements than the design is followed by the implementation, testing, etc.
The transition from one software-process to the next is usually done manually.
This poses two problems: the additional manual e�orts and the lack of trace-
ability. Model-Driven approaches avoid these transitions by introducing the
concept of transformations. A transformation is usually a fully-automated op-
eration which transforms one model from one level to another (transformations
could be horizontal too; converting one model to another type of model with the
same abstraction level). This way, only �rst models are required to be designed
manually by engineers than the next processes will be automated. Not only we
achieved a simpler way to describe the system but guaranteed an almost fully
automated lifecycle.

1.4.2 Model-based approaches in HCI

In the �eld of Human-Computer Interaction models were always playing an im-
portant role although mostly used for modest purposes at �rst. In the beginning
most researches were focusing on creating models that can design User Inter-
faces (UI). This movement gave birth to a family of models called Model-Based
User Interface Development Environments (MB-UIDE). It aims to de�ne mod-
els and develop support tools that can help designing and implementing UIs
in a professional and systematic way [da Silva 2001]. It is also interesting to
note that HCI has reused many existing models from other disciplines such as
cognitive sciences and industrial-management.

When it comes to model uses, HCI was not very advanced compared to
Software Engineering (e.g. MDA). Actually most employed models are used
to help understand or evaluate the behavior of complex systems. MB-UIDE
tried to create fully generative models but in practice they failed to gain a wide
acceptance. This failure can be justi�ed by the lack of profound understanding
of user's interaction with the system and employing a limited formal declarative
languages.

Models in general are located along an axis delimited by two ends:

1.4.2.1 Predictive models

Predictive models, known also as engineering models or performance models
[Mar 1991], are widely employed in various disciplines. They tend to be math-
ematical in nature. In HCI, they allow the designers to evaluate the human-
performance analytically without undertaking resource and time-consuming ex-
periments or prototypes. These models enable us to analyze and evaluate design
scenarios without the need to implement the real system which will require addi-
tional tools to gather the usage metrics. The most famous examples of predictive
models in HCI are the Hick-Hyman Law and Keystroke-Level Model (KLM),

18 CHAPTER 1. TOWARDS A UCD MODEL-BASED APPROACH

used mainly for predicting motor-based behaviors. We will take a closer look at
the KLM model in section 2.3.2 on page 22 when discussing GOMS.

1.4.2.2 Descriptive models

Descriptive models are totally di�erent from predictive models. They tend to
be metaphorical in nature. Thus, usually they do not yield us to empirical or
quantitative measures. However they have di�erent features that make them as
powerful as predictive models. Usually this type of models provide us with a
description of relevant concepts to the modeled situation. In the case of HCI,
it can help us develop frameworks that identify categories or features related
to an interface or an interaction. At �rst, these models seem to be simplistic
and of not of direct use but they can help to better understand and design
an interaction. As an example we can cite the Key-Action Model which puts
keyboard keys into three major classes: (1) symbol keys, (2) executive keys and
(3) modi�er keys.

Chapter 2

Task Modeling

2.1 Introduction

In the previous chapter we showed how employing a User-Centered Design can
help improve our design and thus produce a-priori successful systems. Actu-
ally, we can �nd di�erent methods and principles that were proposed to support
this approach. Similarly, multiple Model-Driven approaches were introduced.
Those models were used in various ways depending on the adopted design phi-
losophy. A Model-Driven approach in general o�ers multiple bene�ts including
better analysis of the system-to-be, improved portability through abstraction
from any implementation technology, increased productivity by enabling reuse
and computer-assisted tasks, simplify proven practices, identify reoccurring pat-
terns. . . It is interesting to note that most of these advantages have been found
to be very bene�cial in other software design philosophies such as the Model-
Driven Architecture, although not yet fully implemented.

In the case of HCI, diversity lies within almost every level of these new
approaches. Starting by the de�nition of User-Centered Design to what type
of models need to be employed. However, regardless of these pitfalls, task
analysis is widely recognized as one fundamental way and not only to ensure
some User-Centered Design [Hackos and Redish 1998]. Task Analysis helps us
to create Task Models which allow us in turn to describe users interaction with
the system in a more structured way and in an exploitable form. They capture
the necessary details about required actions needed to perform a task. The
model further more could re�ne these information by de�ning di�erent possible
relationships that relate tasks to actions. Additionally, more information and
extensions can be used according to the employed Task Model and the context
of use.

In this chapter we will try to give more details about Task Modeling. In par-
ticular, we will try to answer the following questions: What is Task Modeling?
How to perform Task Modeling? As for the question Why create Task Mod-
els? We chose to devote a larger space to the last question in 2.4 on page 23 to
demonstrate the versatility of Task Models and their fundamental role in system
design.

19

20 CHAPTER 2. TASK MODELING

2.2 What is Task Modeling?

2.2.1 Origins of Task Modeling

We can trace Task Analysis foundation or roots to the �Scienti�c Management�
movement which was concerned at the time by analyzing physical work to �nd
a better economical design for work places and methods of production [Gilbreth
and Kent 1911]. During the second-half of the last century, human and work
tasks have been shifting from an industrial physical oriented approach to an
Information-Oriented one. It is clear as we are approaching what most call
the Information Society, information processing will be present at the heart
of almost every day activity and task. Unfortunately, as easy and seamless
this transition might appear, it brings with it additional new challenges and
complications. Eventually, with this transition, human operators were and are
continuing to have an increasing number of roles with varied level of complica-
tions: controller, planner, diagnostician and problem solver in complex systems
[Annett and Stanton 2000]. However, such systems are prone to catastrophic
failure, sometimes attributed to human error, and that is why new concepts
of the limits of human performance and methods of analysis were developed
[Chapanis 1959; CRAIK 1947, 1948].

2.2.2 What is Task Modeling?

Task models describe how activities can be performed to reach the users' goals
when interacting with the application. They should incorporate the require-
ments foreseen by all those who should be taken into consideration when de-
signing an interactive application (designers, software developers, application
domain experts, end users, and managers). They are the central point where
the various perspectives to be considered in designing interactive applications
are combined.

Wide agreement on the importance of task models has been achieved because
they capture what are the possible intentions of users and describe logically the
activities that should be performed to reach their goals. These models allow
designers to develop an integrated description of both functional and interac-
tive aspects thus improving traditional software engineering approaches which
focused on functional aspects.

2.2.3 Task Analysis and Task Modeling

Task Analysis is an approach that covers a set of methods and techniques used
mainly by economists, designers, operators and assessors in order to describe
and sometime evaluate human-human and human-machine interactions. We can
de�ne TA as the study of actions and cognitive processes performed by operators
to achieve a certain goal. Thus, the primary target of TA is identifying what are
the relevant tasks. It is basically an analysis activity which needs di�erent data
collection techniques, than sorting and evaluation. Di�erent techniques can be
used to collect data which can help us later analyze and identify relevant tasks:

• Interviews.

• Questionnaires.

2.3. COMMON TASK MODELING APPROACHES 21

• Video recordings.

• Observe users while doing their work.

• Check existing training and documentation materials.

While this list contains various techniques, selecting which of them to put in use
is not simple. Actually there is some kind of dilemma here between high �delity
and cost. Techniques such as interviews, questionnaires have usually less �delity
than observing users. Video recording on the other hand has a higher �delity
than observing users (users usually do not behave naturally with the presence
of an observer). As we employ techniques with higher �delity, putting them into
practice becomes more di�cult usually due to their cost and/or ethical issues.

By the time analysts have already chosen their techniques and started col-
lecting data, they need to identify the tasks, their number (to uniquely reference
them), who will do them, and whether similar tasks are to be done more than
once and by di�erent people, for example. The �nal result is an informal list
of tasks along their goals and additional details on how to perform them (the
granularity depends largely on the goal of TA). To put this list into use, we need
to create out of it more structured representations and abstractions. Those ab-
stractions can serve us to understand better how the system as a whole works
(using mainly scenarios), or they can allow us to capture some advanced details
such as the relationships between tasks, goals, roles. . .

Task Modeling is nothing but a special type of a structured abstraction that
we can apply to the results of Task Analysis. It will allow the analyst to build
some formal models capable of capturing tasks structure, details and relation-
ships. This clearly shows the di�erence between the Task Analysis activity
which is concerned more about data collection and Task Modeling which serves
as a way to formalize our �ndings. It provides a way to model tasks collected
during Task Analysis into a formal model enabling more systematic uses.

2.3 Common Task Modeling Approaches

2.3.1 Hierarchical Task Analysis

Hierarchical Task Analysis (HTA) is a task analysis and modeling approach
that traces its roots back to the late sixties [Annett and Duncan 1967] with
the aim to evaluate an organization's training needs. This foundation of this
approach is task decomposition. Tasks are considered to be logically structured
in di�erent hierarchical levels. This is achieved by breaking tasks into subtasks
and actions. Since its inception, this founding idea has proven to be successful
as most early as late task models have based their approaches on it. HTA was
later introduced into HCI because it provides a systematic model that describes
task execution making it ideal to model user's interaction with the systems to
accomplish a speci�ed goal. However, early HTA describes how tasks are related
to each other in a rather primitive way. This is especially true for its Task Model
de�nition and the employed notation (boxes for task names with numbers to
indicate order and plans to describe the execution). Actually, HTA in its core is
focused only on the system and its properties [Shepherd 2001] making it more
system-centric. This property of HTA is a logical result given its origins and
close ties with systems engineering and ergonomics.

22 CHAPTER 2. TASK MODELING

Despite its weaknesses, HTA is considered the founding approach of various
Task Models to follow. In fact, major principles such as decomposition is present
in almost if not all task models today. When it comes to HTA plans, they were
replaced by more sophisticated representation which are easier to write and to
represent. More details about hierarchy and decomposition in Task Models will
be provided in section 3.2 on page 33 where we will take a look at three relatively
new hierarchical task models.

2.3.2 Cognitive Task Analysis and Modeling

The other major approach in Task Modeling was oriented towards cognitive
techniques. It relies on �ndings from cognitive sciences and applies them to
HCI through task modeling. This idea was motivated by the state of �natural
mappings� between cognition and interface [Norman 2002]. Among these models
we can cite the Model Human Processors (MHP) which de�nes three interacting
systems for humans: perceptual, cognitive and motor[Card et al. 1983].

To apply the MHP model to Task Analysis, Card et al. developed a Task
Model for human performance: GOMS which stands for Goals, Operators,
Methods, and Selection rules. GOMS de�nes a set of Goals, a set of Opera-
tors, a set of Methods that are used by users to achieve their goals, and a set
of Selection rules for choosing the right method among when various competing
methods are available. Operators are modeled as a group of elementary percep-
tual, cognitive and motor actions which need to be carried in order to change any
aspect of the user's mental state or its surrounding environment. The method
on the other hand gives the description of the procedure needed to accomplish
a certain goal. Selection rules are meant to determine which method to choose
among various ones depending on the current task environment, this feature can
allow us to predict which method a user will employ when confronted with a
similar environment. GOMS can be used also to evaluate the quality of existing
systems [Preece et al. 1994].

GOMS models produce a description of a task, often in the form of a hier-
archical decomposition similar to that of HTA. However, while HTA generally
describes tasks at a high-level, GOMS typically works at the keystroke level.
We need this level of details because lowest-level operators are required to have
a rigorous estimates of execution time. Thus analysts can assess system perfor-
mance without extensive user testing, lowering both the time and cost required
to develop a system.

Various Task Models were derived from GOMS basically to enrich it with ad-
ditional features such as task parallelism and task-errors. Among these models
we can cite NGOMSL [Kieras 1994] which is represented using a formal-language
adding additional information to the model such as quantitative estimates of
learning, CPM-GOMS (CognitivePerceptualMotor GOMS) which essentially en-
rich GOMS by supporting parallel execution of operators.

Except when we have already established empirical estimates for interaction
(for example Keystroke Level Modeling), analysts who employ GOMS need
to have a deep understanding of the foundations of GOMS mainly knowledge
rooted into cognitive sciences. This makes it di�cult to evaluate and create
estimates that can be used later inside GOMS-based models.

2.4. PURPOSE OF TASK MODELING 23

2.4 Purpose of Task Modeling

2.4.1 Introduction

When we discuss what is the purpose of Task Modeling we will �nd a wide
diverse objectives. These purposes di�er according to the discipline and thus
its background and goals. Among these disciplines that have special interest in
Task Modeling we can cite [Limbourg and Vanderdonckt 2003]:

Scienti�c Management As mentioned in 2.2.1 on page 20, the Scienti�c
Management movement was the �rst discipline to introduce the concept
of Task Analysis and Modeling. The purpose was to have a deeper under-
standing of how tasks were performed and introduce various enhancements
to improve the work and identify roles.

Cognitive psychology It focuses more on how the users use and interact with
the system. Instead of focusing on all tasks, cognitive psychology puts
tasks involving the user and the system ahead (Interactive Task). The
analysis can help cognitive scientists to identify involved cognitive pro-
cesses to perform a speci�c task, or evaluate needed cognitive work.

Software Engineering Task models can capture relevant task information in
a formal description which allows automated processing and generation.
These models can be used statically (help develop the �nal system) or
dynamically such as to enable adaptation to variations in the context of
use for the modeled tasks (Lewis & Rieman, 1994; Smith & O'Neill, 1996).

Ethnography Task models are used mainly to capture and analyze how hu-
mans communicate and interact with the system or other users probably
in a speci�c context of use.

While Task Models are employed by di�erent disciplines as shown above, we can
�nd some common goals shared among them, mainly[Bomsdorf and Szwillus
1999, 1998]:

• Inform designers about potential usability problems.

• Evaluate human performance to carry a task.

• Support system design by providing a structured description of tasks and
their relationships to other system constituents such as users and objects.

• Generate artifacts that can accelerate development and increase automa-
tion. For example documentation, primitive user interface (although this
kind of use starts to fade) . . .

Within the context of systems that are meant to be used by humans, the long-
term objective of Task Modeling is de�nitely improving working condition (i.e.
the interaction with the system) by taking into consideration Human Factors.
Nevertheless, we need to be more speci�c on what are the short-term goals
(a.k.a. sub-goals) or artifacts that we can produce out of a Task Model which
in turns are going to help us achieve our long-term goal. We think that keeping
the purpose clear is very important for any solution. Consequently, we will
devote a larger part to discuss the purpose of Task Modeling in this chapter.

24 CHAPTER 2. TASK MODELING

In fact, it is rare to �nd in the literature today researches or publications
which discuss in details and in a concise manner the purpose of Task Modeling
contributing more to the widespread ambiguity of implementing and adapting
it in real-life situations [Jonassen et al. 1999; Dittmar et al. 2005]. By this
statement, we are not disputing or underestimating the power of Task Modeling
but highlighting how �confusion [still] reigns� and how the concept is not mature
enough among specialists which is an old problem in TA for HCI [Anderson et al.
1990]. We can compare the situation to that of UML where every organization
has its own way of using di�erent diagrams from fully-formal use to simply a
mere tool of communication. We should be clear that we do not mean multiple-
purposes uses but divergent uses. To make our point clear we can talk about the
high expectations that accompanied Task Modeling for a long time such as its
complete generative power. It is very clear that a model has to be a generative
somehow which is true for Task Modeling. Many early researches claimed that
it has a complete generative power that could allow us to generate a complete
interactive system out of a Task Model. Later this optimism was reduced to
generating User Interfaces. These attitudes started to receive some resistance
lately and new studies claim that using only Task Modeling is not su�cient for
interactive systems [Navarre et al. 2009]. In particular Task Models need to be
complemented with other models (mainly system ones). We will demonstrate
how our Task Model can be used by other models, mainly to complement the
PetShop CASE tool for system modeling of interactive systems (in section 7.3
on page 115).

Anderson et al.were critical of the situation in 1990, today, the scienti�c
community agrees on a set of standard or basic purposes that any Task Model
should ful�ll, but we keep discovering everyday new ways of exploiting and using
this knowledge accumulated into task models in various ways. Most of these uses
are always related directly or indirectly with achieving our major goal mentioned
above. In order to avoid much confusion as possible, we wanted to discuss the
possible uses of Task Modeling in details. Before proceeding to detailing the set
of goals we collected mainly from scarce literature sources and mainly industry
practices, we want to underline that this is not a binding neither meant to be
complete, we can always �nd a new way to make use of an existing model and
that is one of the most powerful features of Task Modeling.

2.4.2 Discover, de�ne tasks and remove ambiguities

The �rst goal of Task Modeling is identifying tasks that evolve around the
system. It resembles to a greater degree to requirements elicitation where the
analyst tries to discover and de�ne the tasks of various users (stakeholders).
What task modeling adds to the equation is taking into consideration the human
factors and the environment in which the system will be used implying a User-
Centered Design. From the last statement we can conclude that Task Modeling
is not concerned by the internals of the system, it focuses on how users achieve
their tasks. Thus, tasks performed by other parties, mainly the system, will be
seen as black boxes and are usually analyzed in details using system models.

Along the task modeling process, the analyst will start from a high-level of
abstraction down to a �ne-grained description of each task, using for instance a
hierarchical analysis. The extent to which the analyst should continue detailing
tasks depends on various factors but in most cases ideally it needs at least a level

2.4. PURPOSE OF TASK MODELING 25

in which all possible ambiguities are removed [Paternò 2000]. Actually the depth
of analysis is may be the most important factor that separates di�erent uses
and purposes of Task Modeling. We consider this as the axis of model analysis,
starting from a descriptive start to a predictive end (see 1.4.2 on page 17).

In Software Engineering, the analysis process of any methodology was always
very vulnerable to various weaknesses mainly the misunderstanding between
stakeholders caused mainly by ambiguities. Task Modeling help in removing
them by following a well-de�ned analysis to identify clearly:

• What is the goal of the user (the main goal which can have itself a set of
sub-goals).

• Which role (i.e. user) performs which task.

• The logical activities �ow that should support users in reaching their goals.

2.4.3 Process and check most if not all cases

The strength of Task Modeling is its ability to check most if not all cases of the
system use. It provides us with the required data to process and test tasks in a
completely virtual environment; when referring to tools we call this operation
Task Simulation. It is like a meta-scenario description that allows us to check
all possible scenarios and alternatives that the task can follow. Thus, TM can
be used to check all possible alternate paths. It is important to note that
the checking is not concerned with the possible routes for a system to perform
an action. The last issue is more system-oriented and depends closely on the
system-design and employed algorithms. What TM allows us to check is all
possible routes that could be taken by the user. This is possible thanks to the
expressiveness power of TM to identify what are all the possible cases.

This property of TM is very valuable especially for critical systems. In
these systems covering all possible cases is a requirement but at the same time
represents a big challenge especially following traditional approaches. As we
stated in previous sections, technology continues to evolve and new methods/-
tools (tests and validation) are put in place to check all possible cases when
executing a program. On the other hand, methods or tools to check the other
important failure-factor human-error were scarce until the introduction of TM
which promises to resolve this important feature.

When performing a task, the user can follow two di�erent types of routes:

Normal route Following this case the user is performing according to the de-
signer expectations. Sometimes this situation is called �best-case� route
where no errors will be raised (error-free scenario).

Exceptional route The user gets into this type of routes when an exceptional
event occurs (either from the user or an external factor).

We will discuss Task Flows in more details when presenting our own Task Model
in 4.2.3 on page 62. For now, we will demonstrate how TM helps us identify
and hence check these cases.

For the �rst type, TM can help us check the possible multiple normal routes
that a user can follow to achieve his or her goal. To be more practical, users
usually have their own method of performing the same task in the same system

26 CHAPTER 2. TASK MODELING

(for example adding a Table of Content in an o�ce suite). Sometimes identifying
and checking these alternate routes is very important. When these routes were
not explicitly mentioned by the designer and after checking and identifying these
cases, the designer can respond by:

• avoiding routes with side-e�ects (easy but can impact usability),

• allowing them but o�er advice or redirect if possible, or

• verifying alternate routes and analyzing their criticality with the possible-
errors that came along new routes (usually the most expensive but best
solution).

The second type of routes usually is the most di�cult to deal with. It is true
that identifying and checking all possible exceptions is virtually impossible as
both users and systems keep surprising their designers and users all the time.
What TM can o�er is allowing the task analyst to check all possible exceptional
�ows that could take place. As we will see in the second part, the success
depends on providing well-de�ned �ows and task conditions.

This purpose is well suited for most cases but it shows a particular high-
advantage for �innovative� systems [Ozkan et al. 1998]. In this case, Task Models
are used in a predictive way. They enable us to run the system from the user's
perspective without any real implementation.

2.4.4 Cover most or all users/roles in our system

In the previous section we were concerned by all the possible cases that a task
can go through. Task Modeling is a process which aims mainly to detail a
task and at the same time associate it (and its description) to a speci�c role or
user. Analysts will work on de�ning all the relevant tasks related to the system.
During this process, they associate these tasks with a set of roles. This activity
could be a progressive process where we keep discovering and identifying our
users by de�ning their activities in our system . The Task Modeling goes further
and allows us to catch more complex information mainly di�erent relationships
that can exist between those users by extending our model to Collaborative
Task Modeling.

Task models are used also to assess task workload, plan and allocate tasks to
users in a particular organization, and to provide indicators to redesign work al-
location to �t time, space, and other available resources [Kirwan and Ainsworth
1992].

At �rst this relationship between Tasks and Roles seems to be simplistic but
it is a very powerful feature of TM. To show the utility of it we can look how we
will be able to analyze roles through their tasks. This relationship enables us to
query the model in di�erent ways in order to locate and further analyze a role
and its tasks and goals. For instance, we can evaluate the role performance by
de�ning di�erent scopes. An example could be looking at the tasks performed by
a role in a subsystem and later in the whole system. By having this �exibility
we can analyze the role tasks under di�erent situations and detect con�icts
and/or anomalies. This feature can be very useful if supported with a Query
Language. In Hamsters development plan, we wanted to de�ne and implement
a fully featured query language named Hamsters Task Query Language but due

2.4. PURPOSE OF TASK MODELING 27

to time constraints our implementation remains very primitive and it requires
further testing and reviewing.

In summary, this purpose is very well suited for planning and allocating
tasks. Organizations can use Task Models to allocate tasks to users with a
particular role. More precisely, TMs provide us with the needed indicators that
can help us reallocate tasks to (1) rede�ne existing roles (2) identify new roles (3)
avoid clashes and (4) �t to time, working place and available resources [Kirwan
and Ainsworth 1992].

2.4.5 Help design the system

2.4.5.1 Evaluate the design of the system

We discussed in section 1.2 how existing design approaches tend to be technology-
centered and ignore the actual user of the �nal system. Task Modeling can help
us avoid such pitfalls by enabling the evaluation and design of a system by
integrating the human element into the system design and operations more ef-
fectively. System design must consider the human as a constituent element of
the system to ensure e�cient and safe operation. The entire system in this case
is thought of as being comprised of the following components: human operator,
equipment (hardware and software), and environment.

Specifying a task model documents the order of and the logic behind the
planning and organization of the tasks to be performed. This is useful for
analyzing an existing the socio-technical aspects that can a�ect the system.
In addition to determining the socio-technical aspects, the task model can be
helpful in evaluating our design by allowing us to detect potential problems
created by, for example, inadequate task order, disproportionate distribution of
workloads between actors, or lack of time in critical phases of task execution
(see 2.4.5.3 for more details speci�c to safety and critical-systems).

2.4.5.2 Help design interfaces and equipments

Task Models were used for a long time to support the design of User Interfaces
and equipments (including input and output devices). There are even some
studies which tried to develop tools that can generate a full UI out of a Task
Model, tough most of these trials had several limitations and started to be
reconsidered lately. It is true that Task Models are not able per se to design a
complete UI, but they can be of a great help to UI and equipments designer.

The �rst advantage that Task Modeling o�ers is that the activity of UI design
is now inherently Task-Oriented. The designer will build the interface based on
the actions and especially �ows that are de�ned in the model. For instance,
developing a friendly assistant (popularized under the name UI Wizard) can be
a snap with the assistance of information provided by TM.

In addition to this Task-Oriented UI design, Task Models by nature identify
and show clearly the di�erent stages of interaction that the user carries when
using the system. Through a deeper understanding of the user reactions (mostly
to system tasks or system output), the UI can better design his or her interface
to be adapted to that particular situation. We can see the importance of this
by analyzing the Classical UI design where we were limited to applying some
usability guidelines. Two major things were lacking: (1) going beyond interface

28 CHAPTER 2. TASK MODELING

to interaction, (2) taking the context of use into consideration. Task Models
simplify the �rst by making User Tasks �rst-class citizens and more precisely
highlighting all possible interactions. Moreover, tasks are always presented in
the context of a role, a goal, and a wider task. All these three help the designer
put the task into context in an easy and straight-forward way.

Another interesting feature of Task Modeling is their ability to help the
designer to determine accurately which elements are frequently and infrequently
used and to what degree. The idea is to approach the user Mental Model as
much as possible [Carroll and Olson 1987]. Having these elements in hand
is considered the �rst key-solution to reduce clutter and cognitive overhead;
taking Human Factors into consideration. This is done by hiding less frequently
used elements behind some avenue of accessing those elements (like a keyboard
shortcut). This process makes the UI more adapted and closer to the user's
Mental Model. Actually, TM has its power in expressing things from a Task
perspective but in a User-Centered fashion. Two aspects of TM make this
possible: (1) TM is interested in User Tasks and include other tasks usually as
black boxes, (2) TM de�nes task �ows and especially the information �ow. We
will detail only point (2) as point (1) was discussed in di�erent places above.
Mental Models are usually related to how we model information in our mind.
Mapping this representation to UI can reduce signi�cantly complexity. A bad
design will map directly the system variables to the UI, the reason is of course
relying on system models as a source of inspiration. However, in task modeling,
information is usually modeled from the user's perspective creating interfaces
better aligned with the user's mental model. The �ows on the other hand help
the designer create interactions that are better aligned with the user's Process
Mental Model (i.e. how he models di�erent logical steps to achieve a goal).

2.4.5.3 Assess users and system safety

In critical systems, the safety of users and the system are considered the most
important goals. Unfortunately, producing a safe system is also considered to be
the most challenging task for the system designers. We can identify two major
causes behind this di�culty:

Designing safe system The �rst challenge is about the method and the pro-
cess we should follow in developing critical systems. This is mainly a
development challenge. In this step, designers need to analyze the system
and identify the risks and take them into consideration. We can say, most
of the di�culties here are related to the system design. In other word it is
more about technology and system functioning. Nevertheless, in design-
ing all artifacts that are related to the user, a special attention should be
given to eliminate design-induced errors.

Assessing safety The second challenge is assessing or determining how safe
is the system. We cannot risk lives or major losses to carry this activity.
Thus, we need a way that can help us test and validate the safety of the
system.

Task Modeling cannot answer all of these needs but its contribution can be of
a major importance. For the �rst challenge, designing the system, TM allows
us to carry a systematic analysis of the tasks required by the user resulting in

2.4. PURPOSE OF TASK MODELING 29

equipment that is safer to use, easier to maintain, and operated using e�ective
procedures. Task Modeling makes it possible to capture our tasks with a �exible
granularity. The details we can append to the task description can be of a
various types allowing us to attach additional information related to safety and
criticality in the case of critical systems. Later, using a formal analysis which
takes into consideration: the user (role or agent), system and situation (context
of use). In particular each element provide the system with its factors that can
impact safety:

1. User: cognitive overhead, motor skills, multiple tasks, interruption, task
criticality. . .

2. System: input, output, responsiveness. . .

3. Situation: depends on the application domain; generally, it takes the con-
text of use into account.

We showed above how task models could help design better critical systems by
taking into account factors that are related mainly to the user. When it comes
to the second challenge, TM provides even better services to the designers.
Actually this mainly where Task Models came to use in these kinds of systems.
They allow us to describe the user tasks and then check them against our design
and/or use them to contribute to the design in an automated fashion. This is
done mainly by using simulation which enables us to assess the system in an
environment very close to the real-life context without risking lives or very
expensive equipments.

2.4.6 Design training programs

Today, learning and training are becoming a standard when it comes to us-
ing software systems, especially interactive and critical ones. As any complex
(complex here does not mean hard to use) system, the user need to learn and
spend some training in order to use the system more e�ciently. In Software
Engineering, documentation and training were promoted during the last years
and considered among the major factors behind software success. However, in
traditional approaches, documentation is usually a fully-manual activity (with
the exception of reference API documentation which can be automated; here
we are targeting interactive applications). This manual aspect can lead us to
produce a non-compatible documentation, sometimes the change in the label of
a button can confuse the user. Thus having an automated tool that can help
us not only generate documentations and manual of use but help design train-
ing programs for our software are undoubtedly of a great bene�t to software
engineering.

Completing a task analysis can be seen in parallel as the process of identi-
fying everything the learner will be able to do once they have completed the
training. In other words, it's identifying all the content that will be included
in the training in a well structured and formal way. The formal-structure help
build the initial structure of the training program or documentation while semi-
formal and informal details in tasks can be used to supply additional customized
information [Jonassen et al. 1999] (this includes but not limited to all the name
and description �elds we �ll inside task models). All of this is possible thanks

30 CHAPTER 2. TASK MODELING

to how our models represent the di�erent tasks that could be performed on the
system from the user's point of view.

2.4.7 Summary

We will use goal modeling which has been seen in the Requirement Engineer-
ing course to model task modeling purposes. The �gure 2.1 on the next page
represents a goal-model based on the Tropos notation [Giunchiglia et al. 2002]
summarizing our �ndings. The goals were divided along three actors:

Designer The person responsible for the overall design of the system.

Engineer Persons who have a well de�ned role and required to produce arti-
facts for the project.

Safety engineer The person responsible for assuring that the �nal system would
be safe to use.

Each one is represented with his/her own goals that he could achieve using Task
Modeling. The most noticeable thing here is the presence of Task Models within
di�erent actors and processes. Actually this demonstrates the impact of Task
Analysis and Modeling at all stages of the software development.

2.4. PURPOSE OF TASK MODELING 31

Figure 2.1: Goals Model of Task Analysis and Modeling

Chapter 3

Analysis and Classi�cation of

Task Models

3.1 Introduction

In this chapter we will have a closer look at existing Task Models. We will start
�rst by analyzing these tasks by extracting their meta-models to understand
their foundation. Then we will present their respective notation and tool if
applicable. Later we will attempt to provide taxonomy for Task Modeling by
attempting to provide a classi�cation for Task Models using Feature Diagrams.

In the next section, we will limit our analysis to three major existing task
models, nevertheless we will try to point common features found in other omitted
TMs when appropriate. Our selection criteria was based on the popularity of
the Task Model and its development continuity (a.k.a. recent task models). In
the classi�cation section, we will follow an abstract approach at analyzing Task
Models features. The results will be generic so they can be applied to most Task
Models.

3.2 Analysis of Task Models

3.2.1 KMAD

3.2.1.1 Presentation

K-MAD (Kernel of Model for Activity Description), known in French also as N-
MDA (Noyau du Modèle de Description de l'Activité) is Task Model developed
by Lucquiaud [2005]. It traces its roots to the MAD (Méthode Analytique de
Description) Task Model which was developed by Scapin and Pierret-Golbreich
[1989] regrouping di�erent disciplines such as ergonomics, computer science and
Arti�cial Intelligence. Actually, this method has continued to evolve inside the
same research laboratory and some later branches of it were created until it
reached the current edition proposed by Lucquiaud as K-MAD.

33

34 CHAPTER 3. ANALYSIS AND CLASSIFICATION OF TASK MODELS

3.2.1.2 Model

Figure 3.1 on the facing page shows K-MAD meta-model which we extracted
from the literature and KMADe (tool support for K-MAD). K-MAD is hierar-
chical Task Model structuring user actions and activities in the form of a tree
starting from the root task to the basic elementary tasks. A Task has a num-
ber (machine generated ID), a name, a duration, a priority (very, rather, not
very) and a frequency (high, medium, low). All these attributes are without
doubt bene�cial to the task description but in real-life situations some of them
are di�cult if not impossible to elicit. For instance, specifying the duration
and/or the frequency of a future system: predictive modeling; while using them
for existing system is far easier: descriptive. When it comes to roles, the task
is performed by an Executant which can be either system, user, interactive or
abstract. When the Executant is of type user, the task is assigned to an explicit
agent called Actor who is characterized by a name, an experience level and a
set of skills. Again in non-existing systems determining the experience level is
not obvious. The structure of the set of skills is not well de�ned in the model
and takes the form of an informal attribute which can be anything, pushing us
to question how it would be used beside communication purposes.

The most important or particular aspect of K-MAD, especially compared
to other models, is its strong emphasis on objects. The reason behind this
choice seems to be the failure of previous Task Models to capture formally
objects in their models [Baron et al. 2006; Lucquiaud 2005]. While, it is true
that most models started to require formal descriptions of tasks, they are still
lagging behind in describing objects and rely almost exclusively on non-formal
descriptions. This lack of formality makes it di�cult to link Task executions
with Object states. K-MAD is trying to solve this problem by making Objects
�rst-class citizens like Tasks. This can be seen through the di�erent object types
de�ned by K-MAD: Abstract, Concrete, Group, Events, Users. . . According to
Lucquiaud, the K-MAD aims to be as formal as possible in order to simplify
automated processing on the created task models. In particular, he underlines
the importance and power of observing object's states change while simulating
the execution of a task. Without a formal description, we will not be able to
decide when and how a task in�uences an object.

When it comes to communicative relationships, K-MAD de�nes some kind
of scheduler. The Schedule is usually attached to a parent task and specify how
the child-tasks are executed. It has some attributes mainly the scheduling type:
Enabling, Choice, Concurrent, NoOrder and Elementary. It uses pre-conditions
to restrain task execution and iterations. When it comes to post-conditions,
they are seen more like side-e�ects or consequences of the task execution. This
de�nition of pre- and post-conditions in K-MAD shifts from their main purpose
or raison d'être which is mainly testing and validation.

3.2.1.3 Notation

K-MAD uses a hierarchical representation for its notation. Each task is modeled
as a constituent node in the tree with a name (with a superscript task number),
an icon identifying its executant and a rectangle containing a text specifying
what scheduling type this node implies on its children (see �gure 3.2 on page 36
and 3.3 on page 37). When it comes to objects, they do not have an explicit

3.2. ANALYSIS OF TASK MODELS 35

Figure 3.1: K-MAD Meta-Model

36 CHAPTER 3. ANALYSIS AND CLASSIFICATION OF TASK MODELS

Figure 3.2: KMAD example model

notation and cannot be seen on the Task Model diagram. The tool uses tabular
forms to represent objects.

K-MAD makes the task �ow operator an attribute of the task itself. This
attribute will a�ect all the children nodes. In the notation, the task scheduling is
represented below the task node representation. This notation has the advantage
of being explicit about the temporal operator which in�uences its subtasks from
a central place. However, this choice represents some limitations especially when
it comes to navigation. If the reader wants to know the �ow type between two
sibling task, he or she needs to identify the parent task and look at the scheduling
attribute. Moreover, the notation employs text to describe these operators.
Using text has the advantage of being unambiguous but it causes some additional
cognitive work; small symbols or icons would be a better replacement.

The notation has another pitfall when it comes to modeling a complex �ow
between tasks. K-MAD notation allow the analyst to de�ne one and only one
operator for all subtasks. It is frequent in Task Analysis to have tasks that are
of the same abstraction level but with a complex �ow (two or more operators;
for example a sequence than a choice). Unfortunately, K-MAD will not be able
to model such cases without breaking those tasks into di�erent levels: creating
additional phantom levels and making the tree structure more complex and more
importantly separating tasks that are thought to be of the same abstraction
level (conceptual view) but modeled at di�erent levels in the diagram. Another
complication of such a choice is the frequent creation of super�uous tasks in
order to model a complex temporal �ow. These tasks are not included in the
data collection repository and usually are di�cult to name (as they are serving
nothing but regrouping a set of tasks around an operator).

3.2. ANALYSIS OF TASK MODELS 37

Figure 3.3: Screenshot of the K-MADe tool [Baron et al. 2006]

3.2.1.4 Tool

K-MAD has a support tool named K-MADe (Kernel of Model Activity Descrip-
tion Environment). Figure 3.3 shows a screenshot of the tool along the di�erent
UI features it provides. The K-MADe is noticeable for its rich interface for
de�ning objects. Objects have their own tab along tasks. In the implementa-
tion of the tool we notice that they have their own Module, the same goes for
tasks. The K-MADe tool comes with a very rich simulator too.

3.2.2 CTT

3.2.2.1 Presentation

ConcurTaskTrees or CTT for short is a Task Model created by Paternò et al.
[1997] with the aim to develop a notation for task model speci�cations that
can overcome limitations of notations previously used to design interactive ap-
plications. Thus, CTT initially was not meant to provide a new Task Model
de�nition, or make changes to the core of previous Task Models. In its devel-
opment the concern was mainly providing a better notation for task modeling.
Despite this, we can identify some particularities related to this model itself.

3.2.2.2 Model

The �gure 3.4 on page 41 presents the meta-model of CTT. It does not represent
an o�cial meta-model as it was extracted from existing publications related to
CTT on one hand and by looking at the CTT tool which is called CTTe on the
other. The CTT model and notation are known to be the most popular among
task analysts and in the literature. When it comes to the model elements, CTT
build on previous hierarchical models.

Tasks are usually decomposed into smaller set of subtasks. They can have
a type based on to whom they were assigned: abstract (assigned to multiple
agents), system, interaction (involves the user and the system), and user. The

38 CHAPTER 3. ANALYSIS AND CLASSIFICATION OF TASK MODELS

task can have di�erent attributes: name, duration, frequency. . . The same crit-
icism of K-MAD applies to CTT too about the duration and the frequency
attributes for future systems. Additional attributes are the optionality of the
task and recursively. An optional task is an activity that can be omitted by
its agent. Although the de�nition is simple for this attribute, CTT does not
provide enough details on how this property impact how simulation should be
done. In other words, during simulation when we encounter an optional task
what should the simulator do: just ask the analyst to decide or may be following
a more complex path by de�ning other dependencies to task optionality (think
of tasks that are optional but could become mandatory or system tasks that
can be omitted. . .). CTT enables tasks to execute repeatedly but it does not
de�ne a formal way to input the type of this iteration. Thus, during simulation
the analyst will do the iteration manually according to a set of rules that CTT
cannot capture formally.

CTT supports objects in its model. They are usually manipulated by tasks.
Analyst can de�ne special sets of actions that they can link to objects. These
actions have to belong to one of two types de�ned by CTT: Input Action or
Output Action. These actions can be used later by tasks to manipulate objects
by inputting information or outputting information. Although, CTT was keen
in de�ning objects actions and their types, it does not provide a well formalized
de�nition to describe objects (a pitfall that K-MAD is trying to solve).

May be the most important aspect or particularity of CTT is its temporal op-
erators which are based on the LOTOS notation [Bolognesi and Brinksma 1987].
These operators allow the analyst to de�ne very complex temporal relationships
between a set of subtasks of the same abstraction level. Those operators are
well de�ned and even formalized semantically using a Labeled Transition System
(LTS). The table 3.1 on the next page presents the di�erent operators de�ned
by CTT. Most of these operators are binary, with a small set of unary ones.
Binary operators means two operands, while in Task Modeling, having more
than two operands is a common situation. To solve this, operators' priority was
formalized, though it can be confusing sometimes. For instance if we take the
choice operator ([]) by de�nition it is binary and it takes two operand tasks
which only one could be chosen of. However, in most cases the choice could
be taken out of a set of tasks (two or more). For CTT, the only solution is to
include the choice operator between all the operands.

Another interesting feature that we �nd in CTT is its support for cooperative
tasks. Usually a Task Model describes how a speci�c well de�ned role performs
the task. In other words, all user-typed tasks are performed by one prede�ned
role. However in real life, complex tasks require the collaboration of multiple
roles and that is why CTT aimed to support such situations. The solution is to
form the cooperative task model by creating a super-tree of existing elementary
trees (role per tree). Later versions of CTT allows to include selected parts
from the elementary tree into the Cooperative model (which could be simply a
Task).

Finally, CTT integrates the platform type inside its model and associate it
to de�ned tasks. For the moment, three platform types are included: Desktop,
PDA and Mobile. Although, the idea at �rst seem to be interesting, making
it an integral part of the model is not practical in all situations. The use of
this property depends on the level of analysis de�ned by the analyst (describing

3.2. ANALYSIS OF TASK MODELS 39

Name Symbol Description

Independent concurrency ||| Elementary actions of operands
could be performed in any
order.

Choice [] Only one task of the operands
could be chosen to be executed.

Concurrency with information exchange |[]| The operand tasks could be
executed concurrently but they
need to synchronize their
execution by exchanging
information.

Order independence |=| Both tasks are executed in
sequence but the order does
not matter.

Disable/Deactivate [> The start of execution of the
second operand task abolishes
the �rst's.

Enable >�> The end of the execution of the
�rst operand starts the
execution of the second.

Enable with information []>�> Same as Enable but the �rst
operand can send information
as input to the second operand.

Suspend-resume |> The second operand can
interrupt the execution of the
�rst. Once it is done, the �rst
task could resume execution.

Iteration * Allow the task to execute
repetitively. The iteration can
be stopped when the task is
Disabled ([>) by another task.
CTT allows the analyst to give
the number of repetition too
when it is known (replacing the
* by n; iteration count).

Recursion Same as repetition but the
context is not reset each time
the task is re-executed.

Table 3.1: Temporal operators de�ned by CTT

40 CHAPTER 3. ANALYSIS AND CLASSIFICATION OF TASK MODELS

a task independently of the platform). In addition, we can have tasks that
can be performed from di�erent platforms which is becoming a software trend
lately. We think that this property can be of a better use at lower levels of the
system design. This will contribute to the abstraction of tasks from their system
implementation and platform-dependent factors. While we understand that the
CTT model will be used primarily to support multi-platform system interfaces,
we do not encourage the introduction of such properties as an integral part of
the core meta-model.

3.2.2.3 Notation

As mentioned in the presentation, CTT is more about notation than the model
itself. For its notation it uses hierarchical structure of tasks. Each task is
represented in a node with an icon indicating its type (abstract, user, system,
interaction) and a label indicating the task name. When it comes to objects,
CTT does not provide any notation to represent them inside the diagram. An-
alysts can enter details related to objects only through dialogs.

What set CTT apart from other notations is how it represents operators. In
addition to the parenting links (vertical from top to bottom), CTT adds other
explicit links between tasks of the same level (horizontal from left to right).
These links are accompanied by a symbol (see table 3.1 on the preceding page
for a legend) indicating the temporal operator that relates its two operands (see
�gure 3.5 on page 42 for an example). The immediate advantage of such a
notation choice is the ability to de�ne complex temporal �ow between a set of
subtasks without breaking them into additional levels as in K-MAD for instance.
Thus, CTT diagrams are usually smaller in size (reduce the need of super�uous
levels) and closer to the conceptual representation of the task model (tasks of the
same abstraction levels are always at the same level). However, there are some
weaknesses in this notation. The most important is the order of execution.
When we have a set of successive operators we need to know in which order
they should be executed. To solve this problem, CTT introduced operators'
priority, nevertheless from a notation perspective analysts would not always
escape from confusion from time to time. Some solutions were proposed aiming
at making operators priority more explicit by copying the concept of parenthesis
in arithmetics.

3.2.2.4 Tool

The CTT tool is named CTTe (ConcurTaskTreesEnviroment). It is a rich Java
Swing application that allows analysts to write their task models. Some of
the interesting features it provides is its ability to import scenarios and extract
task models from their descriptions. This feature can be useful to help the
analyst have a basic version of the task model to build-on later. One thing to
be careful about is the terminology incompatibility between the tool and the
model description in published articles (especially newer version tend to use
di�erent terms not necessary the same employed in older publications).

3.2. ANALYSIS OF TASK MODELS 41

Figure 3.4: CTT Meta-Model

42 CHAPTER 3. ANALYSIS AND CLASSIFICATION OF TASK MODELS

Figure 3.5: CTT example model

3.2.3 AMBOSS

3.2.3.1 Presentation

AMBOSS is a hierarchical task analysis model and tool created especially for
safety critical systems by a team from the Institute for Computer Science (Uni-
versity Paderborn, Germany). It was developed mainly to create a Task Modeler
that takes into account the particularities of critical systems mainly the safety
and the socio-technical factors [Giese et al. 2008]. The model di�erentiates
itself from the others by highlighting the additional information and �appro-
priate structures� it appends to Task Modeling. These additions are primarily
concerned with aspects related to time, space and communication.

3.2.3.2 Model

Additional elements related to safety make the larger part of the AMBOSS
meta-model which we extracted from [Giese et al. 2008] and its supporting tool
named AMBOSS (see �gure 3.6 on page 44). The �rst major concept that
was added to the model is the Barrier element. Barriers are found to prevent
harm primarily to human beings but also equipments and materials in general
[Hollnagel 2004]; they can be physical such as a protection suit from dangerous
rays or more abstract like laws. However, in task modeling, the focus is user
tasks implying that introducing the element of Barriers can be of a limited
impact in user modeling. This is due to the type of barriers that we can include
in such models which are social in nature and can be breached easily by users;
we cannot have a systematic check for these barriers. We think barriers are
meant more to be included in system models as they will be an integral part of
the logical execution and will never be left without being checked. Furthermore,
barriers in task models can be modeled in an easier fashion as pre-conditions or
guards to tasks.

The other major addition we can �nd in Amboss is the information �ow.
Messages are exchanged explicitly in an Amboss model and they can carry
di�erent types of information to the destination task. To make the concept
safer, the principle of feedback was added allowing the sender to verify if a
message has arrived or not; even get a more structured response.

3.3. CLASSIFICATION OF TASK MODELS 43

As for communicative relationships, Amboss de�nes a set of basic temporal
operators: sequence (SEQ), serial (SER; execution is arbitrary), parallel (PAR),
alternative (ALT; only one subtask could be executed), and SIM (all subtasks
have to start before any subtask may stop. The temporal operator is assigned at
the task level and is applied to all subtasks. All the de�ned operators are easy
to understand and employ with the exception of the SIM operator. Besides its
semantics, the condition it veri�es was not given enough arguments or examples
to demonstrate its usefulness.

The other thing to notice in Amboss, when compared to other models, is the
introduction of the spatial dimension into the model with the Room concept.
The space dimension can be of an enormous importance for some critical systems
but mostly it is not the case. We think it would be better to consider this aspect
as an extension more than an integral part of the core model. Additionally, the
room can be seen as a speci�c case of conditioning to the execution of a task.
Thus, it can be expressed inside the model without explicitly having its own
classi�er in the meta-model.

3.2.3.3 Notation

Amboss uses a hierarchical representation for its notation. Each task is modeled
as a constituent node in the tree using a rectangle with three compartments. The
�rst compartment contains set of icons that play the role of �ags; for example
indicating whether the task is critical or not etc.. The second compartment
contains a text re�ecting the task name. The third and �nal compartment
shows what temporal operator this task applies on its subtasks (see �gure 3.7 on
page 45). The same critics related to temporal operator placement in the model
which we mentioned while discussing K-MAD notation applies here (see 3.2.1.3
on page 34).

Amboss exploits the horizontal links between subtasks in a di�erent way
than that of CTT (which uses them for temporal operators). They are used to
show the information �ow between the di�erent tasks (regardless of the level).
Messages are modeled with a small circle inside the link.

3.2.3.4 Tool

The Amboss tool is rich in interaction when compared to other tools. Partic-
ularly, it allows the user to manipulate most attributes of the element directly
inside the diagram without requiring him or her to visit the property panel each
time. This is mainly due to the reliance of Amboss on the Eclipse Modeling
Project tools to develop their tool.

The Amboss tool provides a simulator and a graphical query-builder. The
latter can be used to write queries graphically and interrogate task models.

3.3 Classi�cation of Task Models

In this section, we propose a feature model to compare di�erent task models ap-
proaches and provide more formalized criteria to categorize them. The feature
model makes the di�erent possible approaches in Task Models more explicit.
We are not going to detail every classi�cation feature as most of them have

44 CHAPTER 3. ANALYSIS AND CLASSIFICATION OF TASK MODELS

Figure 3.6: AMBOSS Meta-Model

3.3. CLASSIFICATION OF TASK MODELS 45

Figure 3.7: Amboss example model

been discussed or will be; references to related sections will be provided accord-
ingly. In order to make some features clearer, we will provide concrete examples
(whether from an existing model or through more general cases). Identifying
all these features will allow us to form di�erent classes for di�erent strategies.
The importance of this classi�cation lies in its generic applicability; it could be
used to classify future Task Models for instance although this does not mean
it is complete. This section is organized as follows, it will start by presenting
the method we used to create our taxonomy which is feature models. Next we
will present the di�erent classi�cation axis we have collected with a stronger
emphasis on features related to the model.

3.3.1 Feature Modeling

We will rely mainly on a special analysis technique called Feature Modeling
[Czarnecki 1998] to provide a classi�cation for Task Models. Essentially, a Fea-
ture Model de�nes taxonomy to classify a set of elements from a speci�c Analysis
Domain. In our case, the domain is Task Analysis and the elements are Task
Models. A key element of the feature model is the feature diagram, which is a
graphical notation for describing dependencies between (variable) features.

Feature Diagrams are proven to be particularly very useful when developing
new models and languages [van Deursen and Klint 2001] which is the case here.
The following classi�cation will form the basis for our model Hamsters. Mainly,
alternative choices and di�erent techniques which could a�ect the development
of a Task Model will be synthesized here from existing Task Models features and
particularities. Before proceeding to the next section, we will present a generic

46 CHAPTER 3. ANALYSIS AND CLASSIFICATION OF TASK MODELS

high level Feature Diagram for Task Modeling along a legend in �gure 3.8 on
the next page.

As you might notice, two major classi�cation axes were analyzed:

Model This branch of the feature diagram will list all the features that are
related to the de�nition of the core model. Mainly, it presents the di�erent
required features and/or alternatives we can include in our meta-model.

Notation Features related to notation are described here. It gives us an
overview of the possible language choices that we can use to represent
our model in a human readable format.

It is possible to include additional axis such as Simulation presenting all features
related to simulation choices and how it can be carried. Finally we could also
include a fourth axis which classify based on use purposes, but this will result in
reproducing the same �gure 2.1 on page 31 which uses instead a better adapted
goal-modeling notation.

3.3.2 Model

3.3.2.1 Model Structure

The �rst feature is related to the structure of our model. The structure of the
model de�nes how the di�erent task are related from a conceptual point of view.
It maps to the decomposition relationship in Task modeling. Two alternative
structures are identi�ed:

Hierarchy The most adopted structure. It was initiated by the HTA task
model. The idea is to represent the task in the form of a hierarchy (tree).
Usually a parent task is decomposed into children nodes which are called
subtasks. It is easy to implement and more importantly considered easier
to represent and process. The popularity of this choice is due to the claim
that that people �nd hierarchies naturally easy to understand [DeMarco
1979]; Paterno, the developer of CTT, claims that people's understanding
of hierarchies is �intuitive�.

Heterarchy A more complex structure, which actually is a more generic form
of hierarchies. In fact, a hierarchy is a special case of heterarchy. The
most important feature of heterarchies is their ability to allow its nodes
to be related to more than one thing. In other words, a node can have
multiple parents or better described can be included in multiple nodes.
The reason behind this complex structure is how our world is really or-
ganized. According to [Diaper 2000], it is far less clear that either the
natural world or the social one are arranged hierarchically. Although this
representation of the world seem to be more accurate, its adoption by
the Task Modeling scienti�c community remains limited. We can cite as
an example of Task Models using this structure the TAKD model (Task
Analysis for Knowledge Descriptions) [Diaper 1989; Diaper and Johnson
1989].

It is clear that the second choice represents a better �delity and �exibility to
represent real-world models. In the context of tasks, heterarchical models are
quite powerful in modeling tasks that are shared among various higher abstract

3.3. CLASSIFICATION OF TASK MODELS 47

Figure 3.8: Generic Feature Diagram for Task Models

48 CHAPTER 3. ANALYSIS AND CLASSIFICATION OF TASK MODELS

ones. Current trends seem to prefer the �rst structure for its simplicity and
formal-imposed nature (it pushes the analyst to think more about what consti-
tute a task). In some situations, exactly incertae sedis, heterarchical models are
to be used instead.

3.3.2.2 Collaborative Task

The model should be able to support collaborative tasks. Those are tasks that
cannot be performed without the participation of multiple roles. In our feature
model, we identi�ed three alternatives:

NotAllowed Simply, the model does not support collaborative tasks.

Combining Using this technique, the model constructs collaborative models by
combining existing atomic models. The analyst will select the rel-
evant role-based tasks required to achieve the task and then will
combine them to form a new model representing the di�erent atomic
models along an additional information indicating to which agent it
was assigned.

De�nedModel In this case, the model goes beyond a simple combination but
add additional features speci�c to collaborative tasks.

3.3.2.3 Communication between tasks

The model can de�ne a set of possible communication �ows between tasks.
Those links are usually called communicative relationships. In Task Models two
major relationships of this type are found:

Temporal Those relationships are used to de�ne how a set of tasks should be
executed. The model can de�ne various operators such as sequence, par-
allel, choice . . . The model can view the operator as simply an elementary
type and thus it cannot provide additional attributes related to this op-
erator. Operators can be de�ned as elements too and can have their own
attributes related to how they carry the execution in details. Most of the
Task Models we discussed, consider the operator as a type and does not
take the speci�city of each operator. In the K-MAD model, the operator is
called schedule which has some common attributes among all Schedulers
like optionality and interruptibility. Another feature related to temporal
operators is where they should be attached. A �rst alternative attaches
the operator to the parent node (e.g. K-MAD, Amboss). A second one
attaches them to a �ow link (e.g. CTT).

Information Exchange The model can de�ne a way to allow exchange of in-
formation possible between tasks. Information here can be of any type
from scalar to complex objects. The model can make this feature avail-
able only to tasks of the same abstraction levels (has the advantage of
tasks encapsulation) or LevelIndpendent. In the latter case, any task can
communicate with other tasks from a di�erent level in the same hierarchy
or even a di�erent one. Amboss is a typical example of LevelIndpendent
information �ow named Message.

3.3. CLASSIFICATION OF TASK MODELS 49

3.3.2.4 Objects and Agents

The model can include objects which can be manipulated by tasks. Most mod-
els allow the capture of objects but do not provide a formal representation of
objects. In particular, there is no consensus whether objects should be modeled
as classes or instances. In addition, the way we should capture the attributes of
an object remains most of the time informal (with the exception of some models
notably K-MAD).

Agents are used as the major classi�cation criteria for tasks in most models.
Depending on which agent should perform the task, we determine its type. Four
major agent types are widely de�ned: abstract, system, interaction, and user
(role). The model can add additional details related to roles; at least a name.
Some models allow the analyst to provide the organizational structure of its
roles (can be useful for safety critical systems where the role de�ne also the
level of clearance); it can be for instance the organogram of an organization.

3.3.3 Notation

Di�erent notation features are possible for Task Modeling. They depend heavily
on the choices made at the model level. As any other model, a TM can be
modeled using di�erent languages which can be graphical, textual, tabular. . . In
our feature diagram, we will concentrate more on the graphical notation.

To model the structure of the model graphically, we can opt for di�erent
options depending on the structure of our model. For hierarchical models, the
most widely used graphical representation is a tree diagram. Another alternative
is employing a Venn-based diagram which is based on the set theory.

Tree diagram Tasks are structured in the format of a tree starting with higher
level tasks from the top to more detailed ones in the bottom. Conceptual
relationships are created using vertical links between the nodes (associat-
ing the parent to its children). Communicative relationships are usually
drawn horizontally to represent a �ow between subtasks.

Venn diagram This notation is based on the set theory. Instead of using
nodes and links, the Venn-diagram represents elements as sets and uses
the contained-in graphical relationship to identify the parent set (or task
in our case); conceptual relationship. For communicative relationships,
arrows linking di�erent sets are used to represent �ow of tasks.

The �gure 3.9 on the next page represents the same model using both a tree
diagram (3.9a) and a Venn-based one (3.9b) . We will not develop further
features related to notation in this section as we will discuss notation in Task
Models in details in chapter 6.

50 CHAPTER 3. ANALYSIS AND CLASSIFICATION OF TASK MODELS

Use ATM

Authenticate Service

Insert Card Verify Card

(a) Tree-Based Model

Use ATM

Authenticate

Insert Card

Verify Card

Service

(b) Venn-Based Model

Figure 3.9: Model Structure Notation

Part II

Hamsters Task Model

51

Chapter 4

Foundation

4.1 Task Structure

4.1.1 Dealing with complexity

In this part, we will represent how our model deals with complexity. We will
explain the basic methods and techniques used to make it easier to model and
understand task models.

4.1.1.1 Abstraction

In modeling, abstraction is a key tool not only to simplify the modeling process
but to focus on speci�c parts of what we are modeling. Task Modeling is not
an exception and relies heavily on Abstraction to deal especially with the com-
plexity of tasks carried in a system. Hamsters abstracts the task models in its
basic form by:

Abstracting the system: When carrying task analysis, tasks related to the sys-
tem are not required to be detailed. Actually, those tasks should be
modeled as black boxes because the Task Model should represent
the Task from the user's perspective. This abstraction allows the
analyst to concentrate more on user and interactive tasks without
giving much importance to system ones. In worst cases, he should
know what is the awaited input or the generated output from a
system task.

Limiting analysis to one role: In early stages of the task analysis, Hamsters
should scope the analysis of a speci�c task to a one role. Thus
eliminating complicated tasks involving multiple agents and com-
plex social interactions. Focusing on one role allow the analyst to
provide better details and elicit the particularities of that role for
performing the required task.

Optionality: Hamsters aims for generic use. The goal is to provide a Task Model
that can be used for di�erent purposes and does not limit itself to
one use. This generic feature is achieved by allowing optionality
and extensions. Optionality de�nes a set of pro�les for di�erent

53

54 CHAPTER 4. FOUNDATION

types of system designs. Each pro�le de�nes the attributes that are
relevant to that domain and omits the rest or makes it optional.
Extensions are special structures that provide additional data to
the meta-model, their purpose is complementing the model with
domain-speci�c features not found in the core model.

4.1.1.2 Decomposition

The aim of task decomposition is to decompose the high level tasks and break
them down into their constituent subtasks and actions. This conceptual re-
lationship helps the analyst build the overall structure of a main user task.
Decomposition presents our task at di�erent levels of details or abstraction. At
higher levels, tasks seem to be more abstract (We mean Task abstraction not the
model one). At lower levels, we opt to make our structure richer by identifying
less abstract tasks and de�ning the di�erent �ows that relate tasks, mainly from
the same level (which are basically communicative relationships in nature).

The process of task decomposition is carried out by identifying subtasks. In
order to break down a task, the analyst should ask a �rst question of type �how�.
The answer will help him/her formulate a description of the task. Following
this, he or she should extract the steps required to achieve the task out of this
description. Alternatively, we can perform the decomposition in the reverse
order by building-up the tasks. In this case the analyst starts with the basic
tasks and identify higher tasks by following a goal-oriented analysis. In other
words, the driving question of the analysis would be �Why this task is needed?�.
The extent to which the analyst should decompose a task depends on many
factors. More detail will be provided in section 4.1.3 on page 56 which discusses
abstraction levels.

4.1.1.3 Projection

Task Models can vary in size considerably, but most of them are employed to
model interactive-systems with a higher interest that can be seen from critical
ones such as Air Tra�c Control. Those systems tend to be very complex and
would require a well sized model in order to capture all the tasks related to
them. To deal with this kind of complexity, Hamsters aim to allow projections
on task models. A projection aims to select a sub-part of the whole model and
analyze it in isolation of the rest of the system.

In Hamsters projection is carried out using two methods:

Simple projection Those are simple projections that identify smaller parts of
the system based on simple criteria or model partitioning. Simple criteria
can be a speci�c role or a task at a prede�ned level. Those projections
are built-in the hamsters model.

HQL Hamsters Query Language is an advanced projection tool that allows an-
alyst to execute queries on the model to select a speci�c part. In addition
to projection, HQL can be used to perform profound analysis and evalua-
tion on the system. In fact, our thesis does not provide details about HQL
as it was not fully implemented, it is considered as part of the prospects.

4.1. TASK STRUCTURE 55

4.1.1.4 Modularization

Hamsters aims to be a modular model. We mentioned already in the abstraction
section how �exible and generic Hamsters tend to be, mainly through Option-
ality Pro�les and Extensions. Extensions are small model de�nitions that can
enrich our core model to decorate it with additional formal information. De-
pending on the application domain, the extension can require additional details
from the analyst and more importantly capture it in a formal way.

Modularity of Hamsters is not only about the possibility to extend its meta-
model but also lies in its foundation. Hamsters makes it possible to develop
modular models that can be used in di�erent situations. To achieve this, two
techniques are used:

Reusability: All tasks de�ned inside a Hamsters model can be reused in dif-
ferent locations. The reused task can be either plugged directly or
referenced.

Patterns: Hamsters aim to capture reoccurring patterns and to simplify their
introduction into future models. In ideal cases, we aim to provide
some refactoring capabilities.

4.1.2 Conceptual relationships

Conceptual relationships specify how the main elements of our model (tasks) are
structured. The most important conceptual relationship in task modeling is the
has-a (or decomposed-into) relationship. In our classi�cation of Task Models,
we identi�ed two major structures for task models (see 3.3.2.1 on page 46).
The heterarchy which represents a closer model to how our world is structured.
The hierarchical structure on the other hand tends to model our world in a
more organized simpli�ed way (regulation and simpli�cation of reality). The
choice between adopting a hierarchy or a heterarchy is not a problem that
concerns only Task Modeling, almost every model of the world should ask this
question when de�ning its conceptual relationships. If we look at the discipline
of Software Engineering in general, we will �nd that hierarchical models prevail.
The argument behind this choice is usually that these models are a deliberate
simpli�cation of the real world. However, such hierarchical models pose some
serious problems and the reason is the high likelihood to have an invalid model
structure [Diaper 2001] that does not re�ect the thing we are aiming to model.

No doubt that from a theoretical point of view, Heterarchical models seem to
be very tempting with their ability to provide better models with higher �delity,
but their problem lies in later stages of the model development: precisely how
they should be represented? When it comes to notation, Hierarchical models
outperforms heterarchical models in almost all levels: simple to represent, easy
to implement and highly popular in di�erent domains. Heterarchies do not
have a well de�ned graphical representation when compared to the popular
hierarchical graphical representation in the form of trees. The solution can be
replications for trees; whenever a node is linked to another one, we duplicate it as
necessary. However, this solution can make our diagram looks cumbersome and
rise confusion as multiple nodes of the same task are represented. Heterarchies
are easy to represent mathematically (using the set theory) and in computing

56 CHAPTER 4. FOUNDATION

(using the graph theory) but they tend to be di�cult to represent graphically
which is an important aspect for the success of any model in nowadays.

In Hamsters, we opted for a hybrid solution. We will use heterarchies in an
indirect way inside the model structure but well employ hierarchies for notation.
In the notation, we chose to represent nodes with multiple links using references
(node replication but with explicit semantics for the user). References are a
special type of tasks that simply call another task (like a proxy who passes the
execution to the task it is referencing). Another sophisticated solution for the
notation lies in the use of Venn-diagram instead of trees. The power of the Venn-
model is that it is a set based model (uses mostly as a graphical notation in the
Set Theory). We can look at tasks as sets and those sets can share elements
enabling us to de�ne tasks with multiple links. More details about this notation
including its advantages and shortcomings can be found in the notation section.

4.1.3 Abstraction Levels

As stated above, Hamsters allows the analyst to decompose the task into a set
of subtasks creating in the process di�erent abstraction levels. Each lower level
represents the task with a certain added details. Introducing abstraction levels
into the model helps the analyst identify smaller parts of tasks with every new
level, creating a structured task model in the process. Usually this activity
depends on the data collection phase which helps us to identify how tasks are
or should be carried. The most important question for abstraction levels is not
how to break down a task into subtasks but when to stop decomposing tasks.
The question can be reformulated to be: At which abstraction level should the
analyst stop? Deciding upon the level of detail into which to decompose depends
on various factors. Those factors are related mainly to (1) the type of the system
to be modeled and (2) the way we intend to use task models later.

The system type impact the required level of details of the model. For
instance in critical systems, having as much as possible detail is very important
to understand the system and more importantly to increase the accuracy of
evaluation and assessment. Primitive tasks in this case should be well de�ned
and unambiguous. Other types are less concerned about much detail but focus
more on enhancing existing systems performance. In this case, the analyst
focuses more on task allocations to roles and understanding the required process
to achieve a task.

The second factor that has a great impact on the level of details is related to
the de�ned purposes for the task model. If we aim at evaluating required perfor-
mance, a very deep level is needed. In this case, the model can reassemble to a
GOMS model and the analyst could provide very low abstraction levels such as
KLM (Keystroke-Level Model). If we intend to use the task for communication
purposes only than a higher level would su�ce. It all depends on how we will
put our task model into use later. Here higher level models have the advantage
of being modular thanks to their increased abstraction. They can be used and
reused in various systems. Whereas, lower-level models are more coupled to the
system design and tend to be less modular and manageable.

Unfortunately, those factors cannot be encoded inside the Hamsters model to
help the analyst choose the right abstraction levels. Choosing the right abstrac-
tion is considered more an art than an exact science. Nevertheless, Hamsters

4.1. TASK STRUCTURE 57

can be useful to check some aspects of the chosen level of details. For instance,
Hamsters can help the analyst ensure that all the subtask decompositions are
treated consistently after the end of a modeling iteration. This check can be
performed by looking at the �ows details at the lowest level of di�erent tasks.
An initial check would verify that the output of one subtask is the expected
input of another in a di�erent but related hierarchy. But this is not easy as
it might seem. Relying only on decompositions and �ows is not su�cient for
a complete check. To make the implementation more sophisticated, Hamsters
consider levels as entities in the model having their own properties. Thus, it
does not look at levels as simple conceptual relationships that are the logical
consequences of creating a new subtask. Abstraction levels in Hamsters, could
have additional attributes that give some formal semantics to them, which can
be in turn used for various purposes later.

Note that this view of abstraction levels in Hamsters is �exible and it does
not need to be explicit. This is achieved through a default behavior: the cre-
ation of a new subtask leads to the creation of a new level if the parent has no
subtasks. Those subtasks will be assigned implicitly to this new level. However
if we think of a scenario where we have two distinct sub-hierarchies, we will
come to an interesting question: How the levels of the �rst hierarchy are related
to the second? The simplest answer would consider that tasks having the same
decomposition level would belong to the same abstraction level. Actually, this is
not true in all cases. The way we detail two tasks can be di�erent. Some tasks
tend to be more complex than others. Complexity here is not about the number
of subtasks but about the required number of decompositions in order to reach
the required level of details. To make our point clear we will use a simpli�ed
real-life example modeled in �gure 4.1 on the following page (the only aspect we
are interested in this model is its levels, details about the notation of our model
will be provided in 6.2 on page 89). It models how a user can use an ATM, it fo-
cuses precisely on the withdraw task which is enough to demonstrate our point.
First we identify two main related hierarchies issued from the same parent task
but with di�erent complexities (or decomposition levels): �Authenticate client�
and �Use service�. The �rst has only one additional decomposition level while
the second has two (with the additional abstract task �Withdraw money�). If
we consider that decomposition levels are identical to abstraction levels, than
the subtasks of �Authenticate client� would have the same details level as the
�Use service� which is not true (the latter being abstract and the others be-
ing grained). Hamsters aims to be intelligent enough to di�erentiate between
decomposition levels and abstraction ones. However, its ability to distinguish
them is limited mainly to the lowest level. For intermediary levels, the user can
specify explicitly the abstraction level that a decomposition belongs too; that
is why levels are seen as entities in Hamsters. Provided with these information,
Hamsters can run various checks on the model to validate its consistency. The
most important check is the complementarily between subtasks of the same lev-
els coming from various hierarchies. If when combined, those tasks forms a well
formed task �ow model than the check passes otherwise it fails.

58 CHAPTER 4. FOUNDATION

Figure 4.1: Example task model to withdraw cash from an ATM

4.2. COMMUNICATIVE RELATIONSHIPS 59

4.2 Communicative relationships

4.2.1 Introduction

Hamsters allows analysts to create two types of communicative relationships.
The �rst is related to how tasks are related in time (mostly temporal operators)
and the second represents the information �ow between tasks.

4.2.2 Modeling temporal operators

Temporal operators provide the necessary details about how tasks should be
related in time. Those relationships can be simple as a sequence of actions
or more complex such as precise synchronization between two or more tasks.
Temporal operators in Hamsters are attached to the parent Node. This operator
will de�ne how all its subtasks are related in time. Our choice is similar to that
of K-MAD or Amboss (see respectively 3.2.1.3 on page 34 and 3.2.3 on page 42).
The advantage that attracted us to this choice is the explicit presence of the
operator and how it helps eliminate confusion which can be noticed in CTT
models with the operators' priority problem (see 3.2.2.2 on page 38). Meanwhile,
we need to solve some problems inherited from our choice. These problems are
concerned mainly with super�uous levels and tasks when modeling complex task
�ows.

In classical approaches, the analyst must create a new task each time it
needs a new grouping (think of parenthesis in arithmetics) resulting in a new
decomposition level and a additional cognitive overhead to �nd a name for the
new task and relate it the conceptual view of the model (constructed from
data collections). After adopting operator's attachment to the parent task, a
debate arose about how to model this modi�cation inside the meta-model. Two
alternatives were possible:

4.2.2.1 Both tasks and operators should be seen as nodes

In this solution, the model will be simply a generic tree model (like DOM for
instance). Our task model will become a set of nodes having the following
classi�ers (note that we will limit the discussion to the Task Modeling level;
see 5.2 on page 66 for more details about Task Modeling Levels in Hamsters):

Node An abstract class (similar to the Node interface in DOM) used as a
super-type for any element in the hierarchy.

TaskNode The node that will be the super-type of all tasks de�ned in the
meta-model. (It plays the role of the AbstractTask in this case).

OperatorNode A special node to represent an operator.

The �nal result would be a tree that contains two di�erent types of nodes: Tas-
kNode and OperatorNode. The model will be de�nitely a hierarchy but not of
Tasks. It will be a Tree of mixed elements as semantically speaking a Task is
di�erent from an Operator: a Task is not an Operator and an Operator is not
a Task. Making them having the same super-type does not make any sense in
this regard. Any element introduced in the model has to have its semantics well
de�ned, what is the added value by adding the Node classi�er other than its

60 CHAPTER 4. FOUNDATION

utility in our notation meta-model? The problem with the solution lies in the
fact that it mixes the front-end or the notation meta-model with the domain
meta-model. For the analyst, the model is not seen as a tree of Tasks and Op-
erators but rather a tree of Tasks related according to the operators he added;
for him it is always a hierarchy of tasks. To express this argument from a theo-
retical ground, by making an Operator element of the hierarchy, we are mixing
Conceptual relationships with Communicative ones. In a conceptual relation-
ship, the goal is classifying or categorizing elements (through generalizations
and specializations), whereas communicative ones are used to de�ne the �ow
of communication between di�erent elements (the case of an operator in Task
Modeling). Another major di�erence between the two relationships is that the
�rst is structural in nature (de�nes the hierarchy of our tasks), and the second
is behavioral; it de�nes how our tasks are meant to be executed and exchange
information.

To better see the picture we will use the following sample model:

Figure 4.2: Sample model for temporal operators

We will use a pseudo-XML language in order to show how the model is stored
inside the system (only information related to the model are found here, data
related to the notation is added in at lower levels). Our sample model is stored
in this structure following this solution:

1 <taskmodel>
2 <roo t ta sk name="T1">
3 <subnode :operator type=" | | | ">
4 <subnode : task name="T2"/>
5 <subnode :operator type=">>">
6 <subnode : task name="T3"/>
7 <subnode : task name="T4"/>
8 </ subnode :operator>
9 </ subnode :operator>
10 </ roo t ta sk>

4.2. COMMUNICATIVE RELATIONSHIPS 61

11 </ taskmodel>

Listing 4.1: Sample model structure (Operator is a node)

By analyzing the above domain model representation of our graphical model
we may notice:

1. The task model is nothing but a tree of semantically di�erent nodes.

2. We will have an additional super�uous decomposition level at each task.
In our example T2 and the operator �:]� are not the direct children of T1
as the user might think (even if the user does not necessarily perceive this
as an additional decomposition level).

3. We will have always Tasks that have only one child no matter what we do
(in our example look at the lonely child of T1 which is �|||�, this operator
cannot have any sibling in this case).

4. What about if we want the execution of operator �:]� to be optional or
make it iterative and so on..? The only solution would be to replace this
operator by a super�uous task and creating two additional abstraction
levels in the process.

So the model was semantically altered simply to suit the notation needs but
usually the notation and the domain model have di�erent meta-models and more
precisely the domain-model should not worry too much about its presentation
(a domain-model can be represented in di�erent ways which might be a future
add-on to Hamsters; the aim is decoupling the model from its representation).
That was a general rule argument but let's focus more on Hamsters case. In
addition to doubling the decomposition levels inside the domain model we should
notice how the OperatorNode shares various features with the Task in a way
that makes it better to be modeled as a special type of Task rather than a
semantically di�erent element: Operator. This is the founding idea behind our
adopted solution which is presented next.

4.2.2.2 Phantom Tasks

In order to solve this problem our solution need not to alter the domain meta-
model in a way that changes its semantics. Our meta-model will be always
a hierarchy of tasks no matter the notation is. Strictly speaking, it is the
notation's job to adapt to our model and not the opposite. We need this total
abstraction with the notation. This explains why we do not have an X and
Y attributes in our elements to specify where they are positioned inside the
graphical canvas: those attributes are de�ned inside the notation meta-model.

The alteration that we suggest is allowing tasks to be unnamed (i.e. anony-
mous or phantom). Anonymous tasks will have an operator as any other Task
(in the end they are tasks). This way we have a task that does not require nam-
ing and description as its objective is not to present a real-life counterpart task
but a transient grouping of tasks around a speci�c operator. In this case the
notation will be simple to implement and remains valid as the notation meta-
model can be represented graphically using an elliptical �gure but at the same
time allows it to bene�t from the attributes and references it inherited from the
superlative TaskNode classi�er. This way we can de�ne for instance that an

62 CHAPTER 4. FOUNDATION

OperatorTask has to be repeated 10 times without requiring neither additional
super�uous tasks neither doubling the abstraction levels.

Now, let's see how the model is represented in our pseudo-XML language
following the new solution:

1 <taskmodel>
2 <roo t ta sk name="T1" operator=" | | | ">
3 <subta sk : t a sk name="T2"/>
4 <subta sk : ope ra to r t a sk operator=">>">
5 <subta sk : t a sk name="T3"/>
6 <subta sk : t a sk name="T4"/>
7 </ subta sk : ope ra to r t a sk>
8 <roo t ta sk />
9 </ taskmodel>

Listing 4.2: Sample model structure using phantom tasks

In our new pseudo domain model, we have 2 abstraction levels instead of 3.
The root task owns his children directly now without the super�uous �|||� in the
previous example. The hierarchy is purely composed of tasks and their subtasks
(the operator in this case can be seen as an attribute and not a node). Now,
we can resolve the issue of adding some features like iteration to our operators
easily (line 4 in listing 4.3) while designing our model graphically. The domain
model will o�er a seamless integration, our pseudo-model will be (although in
the real domain model it will be containment but in either ways it is a matter
of setting a reference):

1 <taskmodel>
2 <roo t ta sk name="T1" operator=" | | | ">
3 <subta sk : t a sk name="T2"/>
4 <subta sk : ope ra to r t a sk operator=">>" i t e r a t i o n="x10">
5 <subta sk : t a sk name="T3"/>
6 <subta sk : t a sk name="T4"/>
7 </ subta sk : ope ra to r t a sk>
8 <roo t ta sk />
9 </ taskmodel>

Listing 4.3: Sample model structure using phantom tasks with iteration

4.2.3 Tasks Flow

4.2.3.1 Errors in Task �ows

A task �ow is the series of execution a set of tasks follow in order to achieve
a higher level task which is related to a well de�ned goal. This execution can
be composed of multiple tasks that are inter-related. As most Task Models,
Hamsters rely on temporal operators to de�ne how a set of subtasks should be
executed. In the easiest case, it could be simply a sequence and in complex ones
a synchronized parallel execution. Another interesting feature of task �ows is
their ability to carry information. One task can provide a message to another
task. In this section we will discuss parallel execution and synchronization
because of its complexity compared to simpler executions. But �rst we will

4.3. ROLES AND OBJECTS 63

take a look how Hamsters models errors through two di�erent Task Flows it
supports:

Normal Flow This is an error-free �ow of tasks. Usually this �ow represents
the ideal path that the user should follow in order to execute his/her task.
Most existing Task Models supports only this type of �ow.

Exceptional Flow Hamsters provides a direct support to model error-prone
tasks. When a task raises an error, Hamsters will try to �nd if the analyst
had provided any exceptional �ow de�nitions and proceed along. Errors
are usually encoded in the form of conditions attached to each task.

4.2.3.2 Parallel execution

Hamsters de�ne two major parallel execution operators. The �rst simply indi-
cates that both tasks can be ran in parallel and their constituent actions can
be executed in an arbitrary order. The second allows the actions to be carried
in parallel but restrain them to a set of synchronizations. The latter type of
parallelism is usually de�ned at higher level parallel tasks. When those tasks are
broken-down into smaller tasks, the way they executed in parallel can be more
complex as one of them would wait for a speci�c action to be executed in the
other in order to continue (logical ordering or waiting for an input. . .). Ham-
sters support synchronizations between tasks by allowing the analyst to create
synchronizers between subtasks. This synchronizer would block the execution
of one task and resume it only if the other task has started or �nished execution
depending on its de�nition.

4.3 Roles and Objects

4.3.1 Roles

Hamsters de�ne various types of Tasks. Those tasks are classi�ed rather based
on the nature of the task. Most previous models classify tasks according to
their executant. In Hamsters this remains true but we opted to provide a more
�ne-grained task types in order to make richer and more precise models. The
model de�nes four major task types: Abstract, System, Interaction and User.
Abstract tasks are usually present in higher abstraction levels of the model.
Their abstraction came essentially from the fact that we do not have enough
details to associate them with a speci�c type. The main reason behind this lack
in details is that carrying this task requires di�erent agents to collaborate (mix
of abstract, system, interaction and user tasks). System tasks are simply tasks
performed by the system, usually these tasks are not detailed by the analyst and
seen as black boxes. User tasks are used by analysts to indicate that a speci�c
task is performed by the user. Finally, Interactive tasks are a special type of
Abstract tasks which mixes only system and user tasks involving interaction
mainly input and output actions.

Hamsters, being a Task Model, should provide additional details about users.
In particular, it should allow the analyst to be more speci�c about who is
performing the task. This has many advantages, mainly task allocation and
con�ict detections (see 2.4.4 on page 26). Each Task Model in Hamsters is

64 CHAPTER 4. FOUNDATION

associated with a well de�ned role which can in turn have multiple models
describing the di�erent tasks it can perform. Roles are also mandatory if we
want to create collaborative models; in this case the situation can get a bit more
complex (see 5.2 on page 66 about the concept of Actor). One �nal interesting
feature that Hamsters provides is allowing inheritance when de�ning roles, thus
enabling analysts to represent complex organizational structures of roles. This
property can be very useful for other modeling purposes too as we will see later.

4.3.2 Objects

In Hamsters Objects represent the world through their states. Tasks are de�ned
to execute a set of actions that aims basically at manipulating objects and
consequently the world. As in K-MAD, Objects are considered only second
to tasks in the model. Our model allows analysts to provide a well de�ned
formal description of the world by de�ning the di�erent Objects that are found
there. For the moment, Hamsters only de�nes the attributes of an object which
together de�nes a speci�c state of that object and in turn the world. What
is lacking is the concept of Object methods. Although the concept might be
interesting, we think that introducing actions to objects con�icts with our Task-
Oriented model. In addition most of these actions are usually performed by the
system and consequently do not provide added value to our model.

One interesting challenge we faced when trying to include objects in our
model is the Class vs. Instance problem. If objects are de�ned as classes, than
our model should de�ne a registry of Object-classes. Those classes can be used in
di�erent models to create di�erent instances. If we consider an Object always as
an instance, its de�nition should be provided when it is added to the model. The
�rst solution would require including two concepts: Class and Object, while the
second would require only one which can be called simply an Object. We opted
for the �rst solution as the �rst solution would lead us to de�ne a UML class-
diagram like model inside Hamsters which can (1) shift the analyst attention
from tasks to de�ning classes, (2) requires a set of additional elements in the
meta-model in order to support this (basically consists of including a full or
partial version of the UML class diagram meta-model). If di�erent objects of
the same type are used in di�erent places, the analyst can rely more on the
usability of the tool (mainly using copy and paste).

Chapter 5

Hamsters Meta-Model

5.1 Introduction

After giving some important foundation details about Hamsters, this section
goes further by giving a more formalized description of all the introduced con-
cepts �ne-grained with additional details. These information were encoded in-
side a meta-model which we will be detailed in this chapter. But, �rst we will
present some other foundational constructs for the Hamsters Meta-Model which
are required to understand the meta-model later.

While designing Hamsters meta-model, we identi�ed di�erent levels in cre-
ating a Task Model. By level we mean the analysis frame or frontiers. Usually,
task models are modeled for a particular role doing a particular task as you
might notice so far. This particularity provides us with a well framed model
and some abstraction (see 4.1.1.1 on page 53), but at the same time put some
interesting questions on the table. What about relationships relating Tasks of
the same role de�ned in di�erent models, or moreover what about relationships
linking tasks from di�erent roles (i.e. Collaborative Tasks).

In our meta-model, we took into consideration these di�erent levels of fram-
ing in task modeling and we make them an integral part of it. By not limiting the
meta-model to only how constituent elements inside a conventional task model
relate, we may achieve better consistency and organization among task models
at higher levels. Before proceeding, these concepts described in our meta-model
do not concern the task analysis and/or task modeling process; it does not de-
�ne how the analyst should perform his analysis neither what process should he
or she follows. To make it more clear, it is about structural organization and
consistency and does not concern any process or global traceability. Our meta
model de�nes three main task modeling levels:

1. Task Analysis Level

2. Collaborative Task Level

3. Task Model Level

We will follow a bottom-top approach in de�ning and detailing these levels in
the following subsections (starting from the most speci�c).

65

66 CHAPTER 5. HAMSTERS META-MODEL

5.2 Hamsters Modeling Levels

5.2.1 Task Model Level

The third level concerns the Task Model (TM) itself with the conventional
understanding of it; as described by most models. Task analysts will work on
this level of modeling most of the time as it is the most details-demanding
and challenging to build in the process. A primary purpose of a task model
is describing how an already de�ned role performs a task put into question to
achieve a well de�ned goal. The answer to this question lies in decomposing this
task; typically by subdividing it into smaller manageable and understandable
subtasks (see 4.1.1.2 on page 54). Another important feature that TM provides
is specifying how these subtasks are related mainly in time (usually relates
tasks at the same level of abstraction but there are some cases where more
sophisticated relationships are required between di�erent tasks from di�erent
abstraction levels; see 4.1.3 on page 56 and 4.1.2 on page 55 for additional
details). As noted earlier this type of task modeling is framed by two constraints:

Only one role is implicated in performing the task Although, it is worth
mentioning that technically speaking not all described subtasks are per-
formed by it. There are some prede�ned agents that could perform these
tasks. Actually there is a one major agent: the System (any task per-
formed by the System). Other tasks are said to be performed interactively
but do not have detailed subtasks to state in a better precision who did
what (see 4.3.1 on page 63). In the bottom line, it is going to be per-
formed thanks to collaboration between the role and the prede�ned agent
System, but to avoid confusion we better de�ne it as another type of
agents: �Interactive� (these tasks can perform only interactive actions:
input, output. . .). For example the task �Print Document� is performed
interactively (the user presses the print button than the system outputs
the printed document). We mentioned the subtasks just to explain the
collaboration but in the task model they can be omitted; mainly because
they are not relevant to the Task Analysis domain.

Only one major task is described by this model We used the ambiguous
adjective major intentionally because it is the job of the analyst to de�ne
which tasks are considered major and thus require TMs to describe them.
This constraint frames the analysis problem and focus on this particular
task.

Both constraints have consequences on our modeling. We will start by the
positive ones:

1. Help the analyst focus on one role (see 4.1.1.1 on page 53).

2. Help the analyst focus on one task.

3. Implicit assignments of tasks: we know which role will perform which task
(see 2.4.4 on page 26 and 4.3.1 on page 63).

4. It results not only in a task-focused model but also a role-centered one
, we can say a role-centered analysis too. (implying automatically User-
Centered analysis).

5.2. HAMSTERS MODELING LEVELS 67

5. Simple to interpret and analyze by automatic tools.

Among the disadvantages we can cite:

1. What about complex identi�ed major tasks. Modeling a task can be
cumbersome in complex environments and would require further framing
of subtasks. In other words we cannot use one TM to fully model a
complicated major task.

2. Limit the analysis scope which can be confusing for some types of tasks
where inter-operations among tasks and collaborations among roles is a
necessary to achieve certain goals.

3. What about tasks which can be performed by multiple roles. In this case
the analyst is required to model the same task for each role.

Our meta-model can tackle easily those disadvantages by using the already
introduced concept (Modeling Level) and second by providing new elements or
altering existing ones to bypass these limitations. Point 2 is easy to refute by
our second Modeling Level: Collaborative Task; explained more below. Point
3 can be resolved through the introduction of a better structural feature called
Actor and by enabling inheritance among roles. An Actor is a special agent
that can have multiple roles. It is better to abstract actors from roles and make
them modeled separately as they are more likely to change in the future. This
separation avoids re-modeling tasks each time a new organizational hierarchy
structure is imposed which is common nowadays.

May be the most challenging argument is the �rst one. In order to solve it
we introduced a new relationship among TMs which is simply: TM could have
zero or more sub-TMs (in reality, they reference one or more tasks de�ned in
that sub-TM and not limited to the root task; this will be explained more when
we describe the TaskReference element; to make things easier we opted for this
explanation for now). So in this case we have a TM that contains some subtasks
described in other TMs (i.e. referencing another TM). This way we can always
have a manageable TM and avoid complex models. This property provides us
the right time to mention two distinctive types of TMs:

Basic Task Models They are the basic building block of the whole global
model. A basic model does not have any sub-TM. All of its subtasks are
de�ned and modeled locally.

Composite Task Model We can consider them as a higher level task models
but what really makes them special is that they reference other sub-TMs.
One important constraint arises in this case: any reference to any sub-
TM can be nothing but an atomic subtask in its referencing TM. Beside
the abstraction gain we have by applying this constraint, it keeps the
model of the referenced TM independent from its referencing TM (so any
modi�cation to that task can be only made in one central location) and
also avoids confusion (de�ning additional subtask for a sub-TM reference
raises the question: how these are related to the original model?). One last
thing to mention is that Composite TMs are not limited to reference only
Basic TMs but can reference other Composite TMs giving the precondition
that each of these TMs does not reference them in any way (if allowed this
will create a vicious circle).

68 CHAPTER 5. HAMSTERS META-MODEL

Notice that any Basic or Composite TM can be referenced by more than one
Composite TM. This property open the door to an important feature of our
meta-model which is reusability. You can describe a speci�c task once and
include it in multiple composite models with a simple reference! Nevertheless,
there is an important contradiction that will arise. We said that a TM concerns
one and only one role, the question if we allow reusability through referencing
what will happen if a Composite TM performed by role A references another TM
performed by role B. A simple answer would be to consider such references illegal
and eventually ban them, but in real life we have many cases where smaller tasks
are shared among multiple roles. So limiting reusability to one role would not be
really bene�cial without enabling it between roles. Our solution to this problem
is the use of generic roles (specialized roles inherits all tasks of their parents).
We introduced also a special role called Anonymous as the most generic role (all
roles inherits from it directly or indirectly). Anonymous TMs can be performed
by any role referencing them. Again one can argue that if we allow Anonymous
roles we cannot optimize tasks and analyze them correctly because we have no
idea who is performing them. This leads us to how a composite TM can reuse
an anonymous TM? We propose two modes of reusing Anonymous TM to solve
this issue:

By reference where the anonymous task is not a�ected by its referencing
TM. This preserves the reference integrity and allows a long-term e�cient
reusability.

By replication where the reference replicates the anonymous task content but
cannot guarantee full future reference integrity. Replication could be per-
formed locally or results in a new sub-TM when we are dealing with a
complex TM.

When it comes to how the task should perform or how it should be executed we
can identify two ways:

Inclusion The task is included inside the model and fully integrates with it.
In this type of referencing, the analyst should have access to the internals
of this task. The task in this case needs to be aware of its environment.

Extension The task here extends an existing model by providing additional
details. This type of tasks tends usually to be optional and does not
depend on the environment. These types of tasks are included in a read-
only mode.

There is another kind of reusability worth mentioning: in-model reusability. In
this kind of reusability we reuse a task inside the same model more than once.
This is completely allowed in our meta-model but as any reference it has to be
atomic. This implies that the reused task needs to be described at least once
than referenced by other tasks. Where to describe the actual task is a decision
that needs to be made by the analyst (sometimes it makes sense to have it
described in one location and referenced in others).

5.2.2 Collaborative Task Level

The second modeling level concerns collaborative tasks modeling. A collabo-
rative task is a special task performed by more than one role. This level of

5.2. HAMSTERS MODELING LEVELS 69

modeling is very intuitive to understand at �rst. To construct a Collaborative
Task Model (CTM), we need �rst to construct our role-oriented TMs than refer-
ence them in our newly created CTM. In this regard, CTMs share some common
properties with Composite TMs including mainly the inherited constraint �ref-
erences to other TMs must be atomic�. Actually this can be a serious problem
for collaborative tasks as they are going always to have one task abstraction-
level; the root collaborative task will be eligible only to reference other TMs
which cannot be subdivided further as they had already been detailed in their
respective real models.

To be more precise, we can construct new subtasks and consequently new
abstraction levels but those tasks can only be performed by the prede�ned
System agent. The problem with the remaining task types (User, Interactive. . .)
is that they cannot be inserted due to the fact that they need a role which is
missing from our CTM in the �rst place. Any CTM that will include tasks other
than what the referenced TMs describe will need a role in order to function.
Thus we allowed CTMs to have an optional role which is played most of the
time by a role of a higher organizational level whose responsibility, usually, lies
in enabling collaboration between di�erent actors' instances. Notice we used the
term actor and instance instead of simply roles. CTM have a special attribute:
role or actor instances. This enable collaboration or task partitioning not only
among roles but among instances of these roles which is what happens in real life
most of the time. For example a leader L commands A who holds the role R1 to
perform the task T1.1 (which can be performed by instances of role R1). Imagine
that the leader will need to perform another T1.1 in parallel so he will likely
need another agent of R1. Role instances and other TM elements instances will
be discussed in details, including the above situation, in the Simulation section
(see 5.4 on page 81). However before proceeding, an important property should
be mentioned: the same CTM and more generally Composite TMs can reference
another TM more than once.

5.2.3 Task Analysis Level

The highest level of modeling is the Task Analysis Model (TAM). The TAM
encloses all elements belonging to other levels of modeling. It can be considered
like the modeling project. For instance when an analyst starts analyzing a
speci�c case like Air Tra�c Control, he begins by creating the Task Analysis
Model for this particular application. Later on, he works on the building blocks
(other low level models). This project-level container allows better organization
as said earlier and allows us to have a centralized way of de�ning, manipulating
and storing shared properties and elements. The �rst example that came to
the mind is the roles; the TAM allows us to manage all the roles related to our
project in one place; of course all other common elements need to be moved to
this level.

Another interesting feature of TAMs is their ability to contain other TAMs.
This is particularly very useful in modeling very complex systems by allowing
analysts to divide the system into smaller components or subsystems. Further-
more, when dividing the system into smaller subsystems, we can run special
automatic or even manual analysis in a more accurate way. For instance, run a
task query within a subsystem scope.

TAMs support also what we call registries. A registry is simply a global

70 CHAPTER 5. HAMSTERS META-MODEL

container which allows di�erent components to access a set of elements belonging
to the same type. For some elements it plays the role of the storage container.
For example roles and actors will be stored in their respective registries as they
are not dependent on one TM or CTM (a role can have many TMs). Registries
provide di�erent facilities including performing an action that will a�ect all
elements of the same type (adding pre�x to all tasks) or simply allows some
queries or statistics. This is especially true for the Tasks registry where we
register all tasks de�ned by this TAM. Another feature of registries is its simple
interface to communicate with other TAMs. The Tasks registry alone (alone
hear means provide one external interface!) for instance can export tasks easily
to be copied or reused through referencing in other TAMs (this is especially true
for task patterns).

5.3 Hamsters Meta-Model Elements

In this section we will try to give a description of Hamster's meta-model ele-
ments. These elements are basically partitioned into two types : relationships
and elements. We chose to model Hamsters into two diagrams to improve read-
ability and to separate concerns. The �rst diagram (see �gure 5.1 on the facing
page) gives an overview of Hamsters meta-model from a higher level, basically
exposing Hamsters modeling levels.

The second diagram (see �gure 5.2 on page 72) describes our conceptual
meta-model by detailing the TaskModel element content (found in the �rst dia-
gram and the lowest modeling level in Hamsters). We call it conceptual because
we will alter this conceptual version progressively to support features required
by simulation, notation and the implementation. What this meta-model rep-
resents is the essence of our task model (the �nal result of the model in its
static form would be viewed from this perspective for all automated processing
of the model). Most attributes were omitted in order to focus on the structure
of the meta-model: constituent elements and their relationships. Most of the
terminology we are going to use to describe our model is based on the Eclipse
Modeling Framework.

There is also a third diagram that follows (see �gure 5.3 on page 73). It
builds on the conceptual meta-model and integrates some implementation-aware
modi�cations. This meta-model plays the role of a bridge between the concrete
model representation and its abstract one. The conceptual model can be ob-
tained simply by running a model transformation script.

5.3.1 TaskAnalysisModel and CollaborativeTask

These elements are mainly used to describe the �rst and second modeling levels
of Hamsters (see section 5.2 on page 66 for details and �gure 5.1 on the facing
page for their placement inside the meta-model).

TaskAnalysisModel It represents the global task modeling project. It con-
tains properties and attributes that are related to our project (project
name, organization, version. . .) It contains also a set of TaskModels. In
addition, it encloses four major registries (one for Roles, a second for Ac-
tors, a third for Tasks, and a fourth for Objects).

5.3. HAMSTERS META-MODEL ELEMENTS 71

Figure 5.1: Hamsters Higher Level Meta-Model

72 CHAPTER 5. HAMSTERS META-MODEL

Figure 5.2: Hamsters Conceptual Meta-Model

5.3. HAMSTERS META-MODEL ELEMENTS 73

Figure 5.3: Hamsters Implementation-Aware meta-model

74 CHAPTER 5. HAMSTERS META-MODEL

CollaborativeTask A specialized classi�er of TaskModel where task references
are allowed for di�erent roles (the reference additionalRoles in the meta-
model is a derived reference; can be computed). Remember a normal
TaskModel can reference either TMs having the same role or marked as
Anonymous. Another interesting reference is instances; it is used to dis-
tinguish tasks that are meant to be performed by the same role but with
di�erent actors.

5.3.2 Registries

The following classi�ers are used to de�ne registry related elements:

Registry The super type of all registries, it holds all common attributes and
operations common to all registries.

RolesRegistry This registry contains all the roles de�ned inside its containing
TAM. Roles can be added directly into the RolesModel or through creating
a new TM and assigning it a role that does not exist. The RolesModel
is an utility element allowing analysts to describe roles without necessary
creating a task model. This is especially useful for existing systems.

ActorsRegistry This registry contains all the actors de�ned inside its con-
taining TAM. An Actor corresponds to a real agent (instance of role).
Actors can belong to more than one role (re�ecting real-life organization).
Actors are modeled inside the ActorsModel which plays the same role as
RolesModel.

TasksRegistry This registry contains all the tasks de�ned inside its containing
TAM. This registry is useful for di�erent purposes (see above).

ObjectsRegistry This registry serves as a central container for all Objects
used in our TaskModels.

Registries are used to store elements that are global in nature or in some cases
to create an index for some elements. Among global entities we can include the
Roles and Actors registries. As for an index registry we can cite the Object-
sRegistry.

5.3.3 TaskModel

It represents task models as described in 5.2.1. Note that we did not create
a speci�c type for Composite TMs on the other hand. A Composite TM is
nothing but a TM which holds at least one reference to another TM or TM's
tasks. Nevertheless, we de�ned a special derived attribute called �isComposite�
for the convenience (for example performing the right interaction when copying,
moving, deleting, can be useful for �ltering too etc.). The task model has the
following additional non-derived attributes :

ID This TAM unique identi�er (will be generated automatically but analysts
can always override it given they respect the ID naming constraints.

Name a human readable name for this task model. Useful for the notation and
documentation.

5.3. HAMSTERS META-MODEL ELEMENTS 75

Description: a description of this task model, same as Name, useful mainly
for the documentation.

The task model has the following references:

role Determines which role should perform this task model. If no role was
speci�ed, the task will be assigned to the prede�ned Anonymous role.

rootTask The root task of this model as every task describes one and only one
task which could contain itself subtasks (see below for the a discussion
about rootTask vs. TaskModel).

Every task is performed by a role (if not speci�ed the default Anonymous role
will be selected). To de�ne roles we use the Role classi�er:

Role It de�nes a role in the system. A Role can have a parent role inheriting
all its tasks in addition to its properties (using the parentRole reference).
Hamsters de�ne a default role named Anonymous that will be used when-
ever the analyst does not provide a custom role. Every task performed by
this prede�ned role can be reused anywhere inside the project.

Before moving to the next section, we would like to argument our choice of
having a rootTask inside a TaskModel. The TaskModel is meant to provide
a detailed description of a major Task. For every task model we will have
one and only one root task. The question is why don't we consider simply
that a TaskModel is nothing but a task? The primarily answer is providing a
speci�c type to represent the Task Model Level, and to provide some additional
information related only to the TaskModel. Moreover, in technical terms, this
choice makes implementing diagram referencing and partitioning easier for our
model. However, Thanks to multiple-inheritance, in our implementation meta-
model we considered making the TaskModel inherits from the Task classi�er.
This way we preserve two important features:

1. TaskModel is semantically an independent element.

2. TaskModel can be use in diagram partitioning as it is a Task itself.

5.3.4 Tasks

This section will describe the most important elements of our meta-model�
tasks. In Hamsters tasks are not typed using an attribute as most task models.
The task has its own class allowing us to add relevant attributes and actions
depending on its type. We followed previous models in dividing tasks into four
major types: Abstract, User, System and Interactive. However we did not stop
there, we went identifying more specialized types for User and Interactive tasks
(specialized types of System tasks are not necessary because they are always
seen as black boxes from the Task Modeling perspective).

The following list de�nes all used classi�ers to denote a task in our model:

Task It is a classi�er used as a super-type to de�ne any special task type. The
Task element has the following attributes and references:

ID A unique identi�er for this task.

76 CHAPTER 5. HAMSTERS META-MODEL

isOptional Determines whether this task is optional or not.

criticality Determines the criticality level of the task. This is an integer
value, 0 means neutral, the greater the value, the more critical
the task becomes.

subtasks Every Task can have zero or more children subtasks. In our
conceptual meta-model which supports heterarchies natively,
a task can belong to multiple parent-tasks. However, in our
implementation meta-model, every task may have either zero
or one and only one parent (this may seem at �rst as we are
breaking the reusability feature but using another magical ele-
ment called TaskReference reusability will be indeed retained;
see below) .

preconditions, postconditions De�nes the set of conditions related to this
Task. See Condition description for details.

operator Each Task has at least one operator. This operator will de�ne
the execution �ow of underlying tasks. See Operator descrip-
tion below for more details.

Set of features, mainly we can cite:

iteration: a reference to an Iteration which describes how this
Task iterates.

guard: a reference to a Guard specifying when this Task
could be executed (see Precondition vs. Guard dis-
cussion below for di�erences).

synchronizers: Synchronizations related to this Task. Only descendants
of Parallel tasks can have synchronizations. Synchronizations
and parallel tasks are a large topic, you can consult Paral-
lel Task Modeling section for further details (see 4.2.3.2 on
page 63). This reference is navigable in both directions.

Our meta-model has the following specialization classi�ers for Task :

SystemTask Describes a task performed by the system.

UserTask A classi�er for abstract tasks that are performed solely by the user.
An interesting reference only UserTask possesses is the possibility to as-
sociate it with a role. By default all tasks are performed by the default
role associated with the containing TaskModel . The analyst can override
this behavior by specifying in a more accurate way which role exactly per-
forms the task. However, this role has to be an ancestor of the default
role (through the parentRole reference). UserTask has the following spe-
cialization classi�ers (note: any subtask of UserTask has to be a direct
instance of UserTask or one of its specializations):

MotorTask A physical task or activity.

CognitiveTask A cognitive activity (calculation, decision making, anal-
ysis. . .)

PerceptiveTask The user perceives something (seeing a plane for in-
stance in ATC).

5.3. HAMSTERS META-MODEL ELEMENTS 77

InteractiveTask: A classi�er for interactive tasks; tasks that are performed
interactively between the User and the System. By interaction we mean
exchange like in request-feedback or feedback-reaction. The used naming
terminology describes specializations from the user's perspective (as an
Input action for the user is seen as an Output action from the System
perspective). It has the following specialization classi�ers (note: any sub-
task of InteractiveTask has to be a direct instance of InteractiveTask, or
one of its specializations, see the end of this section for di�erences between
InteractiveTask and AbstractTask elements).

InputTask A task where the user provides input to the System.

OutputTask A task where the system provides an output to the User.

InputOutputTask A mix of both but in an atomic way (see the end of
this section for di�erences between InputOutputTask and. Interac-
tiveTask).

It should be noted, that the use of specialized tasks depends on the analyst.
This increases Hamsters �exibility by supporting di�erent level of details. We
can use Hamsters to describe high level abstract tasks, as to detail low level
concrete tasks (like KLM).

In our conceptual meta-model, we do not deal directly with the problem
of integrating operators inside the task model which was discussed in 4.2.2 on
page 59. But in our implementation meta-model, we distinguish two major
types of Task to support this feature:

NamedTask has a name and maps to a semantically existing task in real world.
Any instance of this classi�er or its descendants are usually seen as the
real constituent of task models. Its direct instances represent Abstract
tasks.

OperatorTask It inherits from Task but does not require a name (thus the
other naming alternatives Anonymous/Phantom Tasks). They are special
in way that they do not have a direct real-life counterpart. This kind of
tasks is useful to model convenience task nodes which are needed to group
a set of subtasks around a speci�c operator eliminating super�uous named
tasks and operators priority problems. What makes them special is that
they do not require a name so they can have a special representation in our
notation model (this choice raised an interesting discussion while designing
the meta-model, see OperatorTask vs. Operator for a comparison in 4.2.2
on page 59).

Another interesting element that merits mentioning but found only in our im-
plementation meta-model is:

TaskReference This classi�er was introduced to solve the paradox that you
might notice earlier: �How could a task be reusable while it needs to have
only one parent at anytime?�. The answer is using a special adapter clas-
si�er called TaskReference. This classi�er links to its target task through
its referencedTask reference. Another bene�t for adopting such approach
is making the subtasking constraint (any reference has to be atomic) easy
to implement. One additional gain is that TaskReference can be viewed

78 CHAPTER 5. HAMSTERS META-MODEL

as a Proxy pattern too. This is will help the implementation to be more
e�cient and boost the performance for complicated models as we are not
required to load the actual referenced task, will make lazy loading easier
to implement.

Before closing this section, we would like to eliminate some ambiguities related
to the de�nitions of AbstractTask, InteractiveTask and InputOutputTask. Since
an AbstractTask has a set of subtasks performed either by the User or by the
System, Why not consider it simply as an InteractiveTask? Or remove the
InteractiveTask as it is representing the same thing as an AbstractTask. The
question is How an InteractiveTask is di�erent from an AbstractTask? In fact,
AbstractTask plays two roles: it is the super-type of all named tasks and it
is the class that can be subtasked into any other type of tasks. So it has a
broader de�nition as the adjective Abstract implies already. InteractiveTask on
the other hand is a more specialized version where a well semantically de�ned
tasks are classi�ed as Interactive. An InteractiveTask is a task where we can
witness a direct interaction between the User and the System so in other terms
it requires an interface, consequently an Input from the User and a feedback
or an Output from the System. Additionally, InteractiveTasks are limited to
subtask only tasks of type InputTask, OutputTask or InputOutputTask.

As for the InputOutputTask, it usually describes a task where the Input
provided by the User and the Output provided by the System are strongly
coupled that we prefer not to break them into subtasks. This description can
be used to imply that all InputOutputTasks are orphans by de�nition. The
provided description and argument above are strong but they do not really
imply banning the InputOutputTask from subtasking. For instance an analyst
could perform a KLM (Keystroke Level Modeling) so he will need to decompose
further every InputOutputTask but at the same time preserve the property of
coupling. We prefer giving more freedom to the analyst in this case rather than
restraining it.

5.3.5 Conditions

Conditions are very important in order to verify and validate the task model
execution. In particular, they play a key-role when modeling critical-interactive
systems. In Hamsters conditions are modeled by instantiating the Condition
classi�er:

Condition A classi�er to model conditions. Conditions are like test units or
veri�cation �ags that might signal a problem if anything wrong happens
when it should not be. When attached to a Task, Condition can be added
to di�erent references:

Precondition Conditions of this type are validated before proceeding
the execution of the Task. If any condition fails, the task will not
execute and a default TaskPreconditonFail exception will be raised.

Postcondition Same as Precondition but di�ers in when to verify. Post-
conditions are validated after the task execution. If any condition
fails, a default TaskPostconditonFail exception will be raised.

Invariant Same as above but will validate before and after execution.
Another particularity of this type is that its containing task will

5.3. HAMSTERS META-MODEL ELEMENTS 79

validate it before and after the execution of any subtask. This is
equivalent somehow to the Invariant loop principal in algorithms (the
condition needs to remain valid at all times).

Before proceeding to next meta-model element, you should know that the ana-
lyst can override the default Condition behavior of simply raising a Condition-
Fail exception by de�ning the next exceptional �ow in this case. Each condition
can have its own next exceptional �ow making it possible to respond properly to
di�erent invalid conditions. You can have more details about exceptional �ows
and task exceptions in the Simulation section 5.4 on page 81.

When it comes to conditions and their relationships to tasks, one can argue:
what is the di�erence between a Task's Guard and a Task's Precondition? As we
might use preconditions to constraint the task execution given if a precondition
is not valid, the task will never execute.

Actually, there is a major di�erence between a Precondition and a Guard.
A Guard simply guards the task, in other words it will allow the task to execute
only when it evaluates to TRUE. Otherwise, it will pass the execution �ow to
next possible task. As for the precondition, it is true that it constraints the task
execution in the same way but the outcome is di�erent in both cases (TRUE
or FALSE). When it evaluates to TRUE, there is no guarantee that the task
will execute as we could have other preconditions that will prevent the execution
anyway. If it evaluates to FALSE, the task would not simply abort the execution
but will raise an exception. That marks clearly the di�erence between passing
the execution (Guard) and halting it or diverging to an exceptional execution
�ow (precondition).

Talking about Conditions, we considered the following additional question:
Why a Task has a 0..1 multiplicity for the Guard (allowing maximum one Guard)
but it has 0..* multiplicity for Pre-conditions? The answer to this question is also
related to how the behavior resulting from these are di�erent. When a condition
raises an exception we would better give more details about this exception so
we could proceed to the right exceptional �ow or provide a speci�c behavior.
In the case of Guard, we do not need such feature. We can specify multiple
conditions using the AND operator (possibly using a Task Constraint Language
TCL; see Prospects).

5.3.6 Operators

Operator A super-type for di�erent types of operators. There are two main
operator groups:

Unary operators They are special operators that operate on one operand
which is usually their containing task (which can be an Operator-
Task). We can cite the following unary operators:

Stop Halts the whole task execution. Use Stop operator when
everything is done and no need to go further in execution.
A Stop is a clean way to end the task execution.

Leaf This operator is a null operator (does nothing). It is used
to indicate that the containing task is considered atomic
for the analyst.

80 CHAPTER 5. HAMSTERS META-MODEL

Goto An operator that jumps the execution to another task.
Call An operator that calls another task in the hierarchy, the

environment state will be preserved (objects will not re-
set). If the operator is calling an ancestor, this ancestor
will be considered automatically a recursive task. Any
task that contains a Call operator and is calling its an-
cestor has to de�ne a Guard or it has to be enabled con-
ditionally by other tasks.

Error The same as Stop but signals an abnormal exit.
Exception Raises a task exception (see 4.2.3.1 on page 62 and 5.4.2.2

on page 84).

N-ary operators They are the most commonly used type of operators.
They de�ne how subtasks should be executed; the task �ow (which
one, in sequence or in parallel. . .) An N-ary operator must have at
least two operand subtasks. Among the most used n-ary operators
we can cite:

Sequence It executes the subtasks in sequence. Two behaviors are
possible: following the given order (Enabling) and arbi-
trary (Order Independence).

Choice Only one subtask will be executed. The chosen task
will be either selected explicitly by the user (in non-
deterministic cases), selected by the execution environ-
ment automatically or �nally will select the �rst task that
returns true for its Guard will be chosen.

Parallel It executes subtasks in parallel. Parallel operators can de-
�ne zero or several synchronizations. Parallel tasks and
task synchronization are discussed in a special section
within Task Flows as they represent some important par-
ticularities with many e�ects on the task model (this is
especially true for critical tasks), see 4.2.3.2 on page 63
for more details.

5.3.7 Objects and Communication Flows

It is agreed that Task Models are task-focused, nevertheless objects still remain
important to design a complete model. Objects in task models are the most
generic element of information �ow between tasks. A task can modify, produce
and consume objects. That is why tasks need a method to allow communica-
tion between siblings other than temporal relationships which are attached at
a higher level (parent task). To solve all these issues we de�ne the following
elements:

Object A classi�er to represent objects in a generic way. It has a name and a
set of attributes, each attribute has a name, a type and a value.

CommunicationFlow A classi�er to abstract any type of communication that
can occur between two siblings (i.e. having the same parent). A Com-
municationFlow can vehicle di�erent types of information mainly Objects
through its objects reference. In its implementation meta-model, a Com-
municationFlow will always target an InputPort and it will be always

5.4. TASK SIMULATION IN HAMSTERS 81

issued by an OutputPort. It is contained in its source port (i.e. the Out-
putPort sending it).

ObjectAction This classi�er allows the analyst to de�ne actions that the task
can undertake to manipulate objects and thus change the world state.
Additional specialized actions can be de�ned to alter objects in a well
de�ned way. For example:

UpdateAttribute It changes the value of an attribute inside the object.

CloneObject It creates a copy of an Object.

The implementation meta-model appends another element to support ports:

Port A port is like a communication channel that has some speci�c properties
(perception bandwidth for instance). Each Task can have one or more
ports which could be helpful in case we have multiple communication
channels between siblings. There are two types of ports: (1) InputPort
acts like a reader of external information �ow, (2) OutputPort acts like a
writer to send information through its associated task �ows.

As you might notice in the implementation meta-model, the Task classi�er
already inherits from InputPort and OutputPort (shown as from Port only in
the diagram for readability purposes). This inheritance will enable our Task to
act like a Port thus allowing CommunicationFlows to target the Task directly
without forcing it to pass through a port. This default behavior can save the
model many super�uous elements and will allow the user to design his model
with a larger freedom as he might not need Ports.

5.4 Task Simulation in Hamsters

In this section, we give some details about the way Hamsters supports task
simulation. The section will start by describing a modi�ed version of Hamsters
meta-model (only relevant elements will be shown). Next we will detail how
Hamsters runs task simulation. The �nal subsection will give practical details
about task �ows, mainly how the simulation supports exceptional �ow.

5.4.1 Simulation Extensions to the Meta-Model

Simulation lies in the core of almost any task model. Hamsters adds support for
simulation by extending its core meta-model. Until now, the meta-model was
static in nature and provides only information about the various relationships
and attributes of each element. Simulation will alter this static model to add
some behaviors to it by appending actions or methods that can be carried by
active elements (elements exposing behaviors). The �gure 5.4 on the follow-
ing page shows again Hamsters conceptual meta-model with some additional
extensions carried by task simulation. The table 5.1 on page 83 gives a short
description for important methods of some simulation-core elements.

82 CHAPTER 5. HAMSTERS META-MODEL

Figure 5.4: Hamsters Simulation Meta-Model

5.4. TASK SIMULATION IN HAMSTERS 83

Classi�er Method Description

Task simulate The main method that asks this task to start
simulation. It handles itself the whole simulation
process locally starting from this task.

execute Execute the task, basically it executes actions (mainly
ObjectActions).

invariant Validate invariant conditions; will call parent task
invariant method if any.

wait In parallel execution asks the task to wait for another
task to start or to �nish execution.

notify In parallel execution asks this task to resume
execution.

ObjectAction manipulate Manipulates the associated object. This is an abstract
method, specialized classi�ers should de�ne concrete
implementations.

Condition evaluate Evaluate the condition de�nition. Returns TRUE or
FALSE.

validate Calls evaluate and return an ErrorException when
false, NULL otherwise.

Operator execute Execute operands according to this operator behavior.
This is an abstract method, specialized operators
should provide concrete implementations.

Role isBusy Indicates whether the role is busy doing something else
or not.

getCognitiveLoad Example method to demonstrate Hamsters �exibility.
This method can be implemented to calculate
accumulating cognitive load.

CommunicationFlow transport Transports all objects to their destination.

Table 5.1: Important Simulation Methods

84 CHAPTER 5. HAMSTERS META-MODEL

5.4.2 Principle of Hamsters Simulation

5.4.2.1 Simulation Execution

The simulation execution in Hamsters is launched by calling the root Task's
simulate() method. This method will proceed in the ideal case (no exceptions)
by:

1. Checking Task Guard. Return if guard evaluates to false, continue other-
wise.

2. Checking all preconditions

3. Checking all invariant conditions of this task and if it has a parent tasks
call its invariant() method.

4. Reading any objects sent using the CommunicationFlow if any.

5. Calling the attached operator execute() method and pass execution to the
operator. The behavior depends on the operator type. For the case of
n-ary operators, it will call the simulate() in a speci�c order, call (syn-
chronous, asynchronous), . . .

6. Execution resumes inside the task body. Now execute the task itself by
running basically its ObjectActions to change world state.

7. Checking all postconditions.

8. Checking all invariant conditions of this task and if it has a parent tasks
call its invariant() method.

9. Sending Objects using the CommunicationFlow if any.

Note that these steps will be the same for all subtasks resulting in complex
recursive executions. You can �nd a simpli�ed sequence diagram of Hamsters
simulation principle in �gure 5.5 on the facing page.

5.4.2.2 Exceptional Task Flows in Simulation

Hamsters deals with exceptional �ows using the Exception object. Basically,
it resembles to the Exception principle in some programming languages (Java,
C++, . . .). To model an exceptional �ow, the analyst can choose among the
following methods:

1. Create an explicit Task that raises exception every time its guard evaluates
to true. For instance to verify a date and launch an exception if it is
malformed. The analyst practically will proceed by adding a Task and
attaching to it a guard (de�ning the condition to throw the exception)
and attach to it the Exception unary operator.

2. Specify Exceptions when de�ning validation conditions (pre/post/invari-
ant conditions), overriding the default ConditionFail exception. Whenever
a condition evaluates to false, it will throw the de�ned Exception.

5.4. TASK SIMULATION IN HAMSTERS 85

Figure 5.5: Hamsters Simulation Basic Sequence Diagram

86 CHAPTER 5. HAMSTERS META-MODEL

Figure 5.6: Example of using exceptional �ow

Now after de�ning where exceptional �ows can generate, the analyst needs to
specify where to send the execution after. Hamsters enables this by allowing
ancestor tasks to catch exceptions. This is done by de�ning a list of exceptions
that any Task could deal with. The simulator will pass the execution to the �rst
ancestor that catches the exception starting from the bottom. Note that there
is a special disabling operator that has a di�erent behavior by propogating the
exception to its latter operands. To de�ne a complete exceptional �ow (series
of tasks executed only in abnormal cases), the analyst can use a special guard
that evaluates to true only with the presence of an Exception.

As an example, let's consider the case of a login task in web sites. The
system allows a maximum of three trials, than it will resorts to use captcha
to protect the system but increasing required cognitive load (see �gure 5.6).
To describe this, the analyst should add a guard to the captcha task. The
system authenticate task de�nes a postcondition that throws an exception if
accessGranted condition evaluates to false. After throwing the exception, only
the Deny Access task will be able to catch it. This task is guarded so only when
an exception of type DenyAccess is arisen, it would execute. The task de�nes
one simple action that increments the denied attribute of the SecurityFlags
object. After three trials, the denied attributes will be greater than 3 allowing
the Validate Captcha task to execute.

Chapter 6

Model Notation

6.1 Modeling notation

6.1.1 Introduction

6.1.1.1 Purpose of de�ning notations

Notation is the language which we use to represent our models. Mapping models
from a pure abstract form into a concrete one requires us to de�ne a set of
representation rules. Notations are used mainly for two purposes. The �rst is
to �nd a way to express our models using more intuitive and concrete forms.
The second is making our model human-friendly (i.e. readable).

Models are used to capture data about the modeled thing. However, this
data now formalized into the model, is usually abstract and stored as informa-
tion which can be processed only by its holder (human models are stored and
processed by the brain, engineering models are usually stored and processed
by computers). The notation for models is like language to human beings. It
allows the model to be expressed in a uni�ed fashion that can be understood
by people. Notation is not only about readability but it is mandatory to create
models. It allows the modeler input new data into the model using this same
notation without dealing directly with its abstract or digital form.

Notation is not only necessary during model creation. It is also very useful
in post-creation stages of the model. It is a key-requirement to communicate
models. Using a notation, the engineer is able to show his model to di�erent
stakeholders or get it modi�ed by another engineer; as in the ideal case the
model speaks for itself through its notation. Simply, notations are the main
medium models use to communicate with the external world. They are used
to input data into the model, to represent data out of the model, and more
importantly for communication and analysis purposes.

6.1.1.2 Importance of de�ning carefully the notation

Modeling is widely used in various domains, but no other discipline has sparked
deep discussions lately more than computer science and especially Software En-
gineering. While modeling in its core gets a big attention from the community,
its notation and language were put into second raw if not ignored. In fact, the
cognitive e�ectiveness of notations, for instance, has been widely taken as an

87

88 CHAPTER 6. MODEL NOTATION

assumption and got accepted without any critical observation for a long time
[Petre 1995]. If we look at the majority of models used to model Information
Systems for example, we will �nd that they are not e�ective in communica-
tion, if not a source of trouble [Kimball 1995; Nordbotten and Crosby 1999].
The problem lies in the way we deal with notation de�nition. Di�erent factors
such as the crucial factor how we perceive things are not given any importance.
Therefore, the process of de�ning a notation should be performed carefully and
take into consideration a set of more formal methods or principles instead of
relying on instinct and assumptions.

6.1.1.3 Notation types

In order to represent a model into a more concrete form, we can employ di�erent
types of notations. Those types usually di�er in their readability and their
expressive power. Of these notations we can cite the most widely known ones:

Textual This notation relies on text to represent the model. Its formality de-
pends on the model's. In formal models, it has a well de�ned syntax. This
representation can be very powerful to express mathematical and complex
models but it tends to be not e�ective for communication. Sometimes
dealing with notations of this kind for the �rst time requires learning (it
is like learning a new language).

Tabular Tables can be used to express some models. They are especially very
�exible in making elements of the model better classi�ed (using columns).
They employ textual notation to represent the contents of their cells. They
are very useful in representing dual relationships using cells intersections
but they will pose some problems when the number of relationships in-
creases.

Graphical (diagrams) Relies heavily on our visual perceptions �rst and our
interpretation skills second. They are very powerful in conveying informa-
tion far easier than textual and tabular data, although they usually employ
rely on text in most parts and rarely use tables. The power of graphi-
cal notations comes from the di�erent variables they can employ. Those
variables are known in graphic design as Bertin's Semiology of Graphics
from his book �Sémiologie graphique: Les diagrammes - Les réseaux - Les
cartes�. Bertin de�ned the following eight variables: horizontal position,
vertical position, shape, value, color, orientation, size and texture.

6.1.2 Graphical Notation

6.1.2.1 Introduction

Graphical notations or diagrams are considered to be among the best e�cient
notations to express most models, especially descriptive ones. Among the most
famous notations in our days we can cite the Uni�ed Modeling Language (UML)
which de�nes 13 types of models, all of which use Graphical Notation. The
primary reason behind adopting graphical notations in most models is Commu-
nication. Diagrams are able to convey information contained in models better
than other notations such as text or tables. With graphical elements, we can

6.2. TASK MODELS NOTATIONS 89

share easily the captured data inside a model with di�erent people from dif-
ferent backgrounds and experience-levels. We repeat again, as mentioned in
section 1.1 on page 7, that communication is a critical success-factor in software
development to underline the importance of designing carefully notations and
languages.

6.1.2.2 Principles for an e�ective graphical notation

We will present in this subsection a list of principles that are known to pro-
vide better e�ective diagrams when applied. This list relies heavily on the list
and research performed in [Moody 2006] and presents a quick overview of each
principle.

Discriminability Refers to the ease of di�erentiating diagram elements. There
are two types of discriminability: absolute (di�erentiate elements from the
background) and relative (di�erentiate between di�erent element types).

Modularity Decompose complex models into smaller modules that are per-
ceptually and cognitively manageable.

Emphasis Emphasize on important elements of the model and allow �ltering
of second-class elements.

Cognitive Integration When using multiple diagrams in modeling, they need
to be easy to navigate in. The user should be able to have an integrated
mental representation of multiple diagrams if any.

Perceptual Directness Employ direct representations which do not require
cognitive e�orts in order to be understood. This is can be done by making
the representation share some important properties with what it repre-
sents.

Structure The way we group diagram elements.

Identi�cation Refers to identifying the correspondence between diagram el-
ements and the represented world, or in some cases the correspondence
between these elements and the graphical convention in use.

Visual Expressiveness Refers to the number of variables used to encode the
diagram (basically Betrin's variables).

Graphic Simplicity This is related to the number of graphical conventions
used in the diagram. Usually, it corresponds to the number of employed
symbols in the model.

6.2 Task Models notations

In this part we will present a review on di�erent notations in Task Modeling.
The work that led to this part was done with the help of three HCI students from
the University of Toulouse. They worked with us particularly on the notation
and interaction aspects of Task Modeling.

90 CHAPTER 6. MODEL NOTATION

6.2.1 Representing the structure of a Task Model

Since the birth of Task Analysis and later Task Modeling, di�erent notation
languages were use to represent the structure of the captured models. These
notations are found in di�erent forms: text, tabular and graphical. In this
section we will give a review of major existing notations and will focus more
on graphical ones. The most popular form of representing hierarchies is trees
which were used �rst by the HTA model. In this regard, the notation work will
not involve how to structure the model but how to represent its constituents ;
mainly di�erent nodes. Thus, �nding a way to represent conceptual relation-
ships does not require a long discussion. On the other hand deciding how to
represent communicative relationships and external elements pose a challenge
in task models.

We will start �rst by reviewing the di�erent representation methods for com-
municative relationships (basically task �ow operators). Next we will discuss
how we could integrate foreign elements to the task core structure (mainly ob-
jects) inside the model.

6.2.2 Hierarchical representation

6.2.2.1 Task level �ows

In this kind of notations, task �ows description are represented by additional
graphical elements to be found at the parent Task Level. The presence of this
element indicates that it should be applied to all direct subtasks of the parent
task. Those notations are compatible with task models which attaches the
task �ow operator to each task. The actual details can vary considerably. For
instance in HTA, task �ows are considered as plans. Each plan is attached to its
correspondent node. the plan contains a procedural-like code which describes
how subtasks should proceed to execute (see �gure 6.1 on the next page which
shows a classical example of HTA).

The second type of notations takes advantage of the more advanced seman-
tics that the core model provides. These notations rely on models describing a
set of well de�ned task �ow modi�ers (mainly operators). This precision allows
the notation to employ simpler terms instead of verbose procedural-like scripts.
Usually the notation will attach the operator's name or symbol to the target
node. We can distinguish two types of attachment in this regard: internal and
external.

Internal Operators are drawn as part of the task node. They are more like
an attribute than a modi�er for subtasks or part of the hierarchy. This
type of notation has the advantage of compressing the model by providing
more space and it generally produces pure tasks hierarchies (as from the
reader's perspective the model contains only a tree of tasks). However,
when reading the model, one needs to look inside the node and localize
the part where the operator indicator is drawn. This has a serious concern
because task �ows are important elements of the Task Model and need to
be more visible and explicit in their representation. For an example of
this notation you can refer to �gure 3.7 on page 45 based on Amboss.

External Operators are drawn out of the task node itself but they remain
attached to it using a link. In this type of notation, the operator has a

6.2. TASK MODELS NOTATIONS 91

Figure 6.1: Make a cup of tea Task in HTA

more explicit presence and exists between the parent node and its subtasks
making it clearly seen as some sort of relationship. Using this notation
method, identifying di�erent task �ows becomes easier as the operators
in this case are represented at the same level as their respective tasks.
But it contributes to complicating the hierarchy structure by adding an
additional notational level with every new task, and by making the hier-
archy heterogeneous (tasks and operators are at the same level giving the
illusion for some that this represents a tree of tasks and operators). For
an example of this notation you can refer to �gure 3.2 on page 36 based
on K-MADE.

In summary, operators are built-in the task node this kind of notations. In other
words we attach the operator to the node allowing the presentation to show that
this operator applies to all subtasks (or to the parent task if it is unary).

6.2.2.2 Horizontal Flows

Another method to represent task �ow operators is making them occupy the
horizontal space of our model. This notation is very close to how we write
expressions in arithmetics. Tasks plays the role of the operands and task �ow
descriptions play the role of the operator. This notation fashion has the ad-
vantage of both making the operators more explicit in the representation and
preserving at the same time the hierarchy coherency and size. This notation
goes further in compressing the hierarchy using its ability to express complex
�ows without requiring super�uous levels. However, it has some readability
problems. Mainly, it requires either learning or an additional notation to help
prioritize operators. The most famous example that uses this notation is the
CTT model. Figure 3.5 on page 42 gives an example of notation in CTT.

92 CHAPTER 6. MODEL NOTATION

Use Equipments

login

scan

scan

Use printer

Use scanner

Figure 6.2: Sample heterarchy using Venn diagram

6.2.3 Heterarchical representation

6.2.3.1 How to represent a heterarchy

Heterarchies are a more general form of hierarchies that allows its nodes to have
more than conceptual link. In our case, it allows the subtask to belong to more
than one parent-task. This special property can be of a very valuable importance
to create more valid models thanks to its ability to capture very complex real-
world situations which their components are not forcibly organized or structured
but inter-connected. Most scholars agree about the expressiveness and �delity
power of heterarchies but providing the right notation remains a problem. In
this section we will take a look at some methods that can help us represent
heterarchies.

Tree with replication The �rst notation solution uses traditional tree em-
ployed in hierarchies with an additional feature: node replication. The
idea is to replicate any node as necessary to associate it with its parent.
This notation is simple to implement and takes advantage of the existing
familiarity of users with hierarchies. However, it makes our tree more com-
plex if not impossible to read. Not to forget the confusion that can result
from drawing the same node at multiple places inside the same model.

Tabular This is not a graphical notation, it uses tables to model heterarchies.
This solution seems interesting at �rst but its problem becomes apparent
when we wanted to represent a model with multiple levels, as for each
level we will need a new sub-table.

Venn diagrams Venn diagrams are well used especially in the Set Theory.
Their ability to represent sets gives us a clue how to employ them to
represent heterarchies. The idea is to formalize heterarchies into sets and
then map them into a Venn model. Graphically speaking, the solution
might be easier to understand as �gure 6.2 shows. We have a task named
login linked to the task of using two distinct equipments. The notation
clearly shows that this task belongs to the Use Printer and Use Scanner
activities at the same time.

6.3. HAMSTERS NOTATION 93

6.2.3.2 Task Flows

Representing task �ows into hierarchies depends largely on the adopted nota-
tion (see above for examples). In trees, the same options that are available to
hierarchies can be adopted. In tabular notation the challenge is greater, this
is mainly due to its poor expressive power compared to graphical ones. The
solution in this case it is basically using special textual syntax, special �ags
or colors. We will detail further representing task �ows inside Venn diagram
because it has some interesting properties compared to others. The following
discussion talks about task �ows in Venn diagrams in general and it does not
limit itself to the case where they are used to represent heterarchies; as we will
see Venn diagrams have some advantages even for hierarchies.

Contrary to trees which are links-oriented, Venn diagrams are set-driven
from a mathematical point of view, which could be translated to a containment-
based from the notation perspective. This is means the use of containment
instead of links to represent membership. In our case, we can use this repre-
sentation style to model our conceptual relationship �subtask� by drawing the
subtask inside the parent task where it belongs. This choice leaves lines and
arrows to be used exclusively by communicative relationships. Generally, em-
ploying arrows can spare us from using labels or new symbols and thus provide
cleaner diagrams. In addition, arrows and lines have a strong history of usage
to model �ows. Another advantage we can cite is making it possible to have a
task �ow from two tasks of di�erent decomposition levels.

6.3 Hamsters Notation

6.3.1 Diagram Structure and Tasks

In its conceptual form, our model is structured as a hierarchy to provide valid
models having high level of �delity to what they are modeling. However, our
notation uses a tree graphical form to represent tasks which is essentially used
for hierarchy-structured models. We highlighted above that heterarchies are
challenging to represent in a notational language. May be the best choice would
be using Venn diagrams but after experimenting with it we identi�ed a major
problem related to this kind of representation which is space. Venn diagrams
consume much space making it very complex to represent deep level of details.
The second problem lies in a decrease in the level of readability. Even if we con-
sider that the space is unlimited, we will confronted with major complications
related to diagram navigability. Further, as the number of decomposition levels
increases as the model becomes very complicated. It will present a �rst challenge
to approach graphically two tasks sharing the same actions. In addition, the
intersections caused by this notation can be confusing as the number of overlap-
ping lines keeps growing. At the end of our thesis, in the prospects section on
page 117, we will try to give some possible solutions to the navigability problem
in such diagrams. Note that any possible future solution can be attached to
our model without modifying its core as in its pure form is structured as an
heterarchy.

The most important element of any task model is Task. In our notation,
the diagram is basically a hierarchy or a tree. The nodes of this tree are the

94 CHAPTER 6. MODEL NOTATION

tasks. We used a combination of various perceptual dimensions to represent a
task element (see �gure 6.3 on the next page; operator was omitted because it
will be discussed in the following section). The dimensions used to encode a
Task node graphically are:

Vertical position It identi�es to which level of hierarchy this task belongs. This
corresponds to the decomposition level. The order of the hierarchy
is not speci�ed explicitly to allow more freedom but usually it is
top-bottom.

Horizontal position It encodes the order in which tasks are executed (starting
from the left).

Shape We use a rounded rectangle as a container shape to symbolize a task.
The perimeter is by default a continuous line to denote a mandatory
task. Optional tasks are drawn using a dotted line. When repre-
senting an OperatorTask this shape and all its contained children
are ignored.

In addition to this basic representation, the task node contains additional graph-
ical elements that are encapsulated inside the shape container limits. Those
elements in order of representation from top to bottom are:

Icon It identi�es the type of the Task. Each task type de�ned by our
model has its own icon. Our selection of icons were carefully chosen
and evaluated so they reduce the required cognitive overhead. The
table 6.2 on page 96 lists all of our task icons with their respective
Task elements followed by the reason behind their design.

Label This is a simple text �elds containing the task name as given by the
analyst. It has a special value perceptual dimension because it uses
a bold character to make it more explicit. Users usually look for a
speci�c task based on its name.

Features This a horizontal container used to show various features that are
present in this task. More practically, it can be used to indicate if
the task has a Guard or an Iteration property. This container is
extensible and can be used to add system-speci�c features.

Additional containers The task node can have additional containers or com-
partments. This feature can be customized allowing the analyst to
add additional details to his/her model. For example he can add a
compartment for to show the list of pre-conditions (see �gure 6.3 on
the next page; it has a compartment named �conditions�).

Operator The attached operator to this task. The next section will detail the
used notation for operators.

The color perceptive dimension in Hamsters notation is used in di�erent
places. This concerns graphical elements including icons. To have a regular
default color scheme, we identi�ed a set of colors and associated each one with
a set of relevant properties (see table 6.1 on the facing page). These basic colors
were than harmonized using the Kuler tool from Adobe 1.

1http://kuler.adobe.com

6.3. HAMSTERS NOTATION 95

Figure 6.3: Task Element notation

Property Color

Technology Blue
Cerebral Violet
Communication Brown (humanity)
Reassuring, Comfort Green
Warm Orange
Solid, reliable Metallic (sparkling)
Professional Gray

Table 6.1: Colors properties from a western perspective

As mentioned above, this is a default scheme because color signi�cation de-
pends on a very complex factor which is the cultural background of the user.
Our table builds on common colors meaning found in the West. A customiza-
tion is possible to adapt our notation to a di�erent culture but this can lead
us to multiple notation problems. When exchanging models in their native for-
mat, the model will always show up using the analyst's own con�guration of
notation. However, in other formats like print, this can be confusing. We think
that analysts who are spread over di�erent cultures should use one agreed-upon
notation to avoid confusion and communication problems.

6.3.2 Operators

The second most important elements to represent in our diagram after Tasks are
Operators. In our model, each task can have its own Operator. OperatorTask
relies exclusively on the Operator's notation inside the diagram as it does not
have a shape perceptual dimension per se. In our notation we chose the following
perceptual dimensions to encode an Operator graphically:

Vertical position It indicates the level of this operator inside the hierarchy. In
addition, it helps the analyst determine the order of evaluation for
complex task �ows.

Horizontal position It Speci�es the order in which operators should be executed
by their parent operator.

96 CHAPTER 6. MODEL NOTATION

Icon Task Element Description

AbstractTask A spot of paint. Represent an unde�ned form referring
to abstract art.

SystemTask Printed Circuit Board. The darkness makes it seem
more like a black box.

UserTask A basic user icon; will form the base for sub-types of
UserTask.

CognitiveTask A partial user icon (the head) with a balloon inspired
from comics indicating the presence of a cognitive
process.

MotorTask The basic user icon with an emphasis to show his hand
referring to task which requires motor skills.

PerceptiveTask The basic user icon with an emphasis on perceptual
senses.

InteractiveTask Represents a user facing a computer screen, implying
some kind of interaction.

InputTask Basic icon of InteractiveTask with an arrow from the
user to the screen implying an input action.

OutputTask Basic icon of InteractiveTask with an arrow from the
screen to the user implying an output action.

InputOutputTask Basic icon of InteractiveTask with a bidirectional
arrow implying an input/output action.

Table 6.2: Icons of Task Elements

6.3. HAMSTERS NOTATION 97

Shape We use a circle to symbolize an operator.

Inside the circle, a textual symbol indicates the operator type. We chose to
adapt the same symbols used by the CTT task model to take advantage of their
relatively wide usage in the community. For a complete list of these operators
see table 3.1 on page 39.

6.3.3 Objects and Information Flow

Most task models take into consideration the presence of objects in their meta-
models to varying degrees. When it comes to notation, these objects do not
have a direct representation inside the model. Usually they are added to the
model using dialog forms and dot not show up in the diagram. In our model, we
wanted to allow objects to have presence in our diagram. Objects in Hamsters
are represented using two perceptual dimensions (see �gure 6.6 on page 100 for
the an example graphical representation):

Shape Objects are represented using a rectangular shape. The shape was
inspired by the rectangle used in UML diagram classes helping users
having some familiarity with this type of diagrams. This shape
serves as a container for some additional sub-elements:

Label The object name inside the model.

Attributes compartment It serves as a container for this object's
attributes. Attributes are represented as a set of verti-
cally listed labels with each label referring to an attribute
name.

Color We preferred to add the color perceptual dimension because of the
strong similarities between the shape used for Task and the one for
Object (rounded rectangle vs. rectangle) which can cause confusion.
Adding a special background to identify objects make it easier for
users to �lter them out of tasks.

Object name

Attributes

Optional icon

Attribute type

Figure 6.4: Object notation

The major challenge that results from this choice is a considerable increase
in the diagram elements condensation: making it very di�cult to read (see

98 CHAPTER 6. MODEL NOTATION

�gure 6.5 on the next page for an example). Adding objects to the model
notation means more space consumption but more importantly means de�ning
their location. Our model is represented as a hierarchy so having external
elements to this hierarchy pushes us to �nd a way to put them inside this
hierarchy without interfering with its core structure. The proposed solution to
this problem is making objects visibility optional and second developing a special
interaction that shows objects only when they are relevant. For instance, we
can develop the following interaction techniques in order to deal with condense
models:

• Objects will be shown only when tasks manipulating them are selected.

• Show only objects belonging to the abstraction level the user is working
at.

• Show objects only when the communication �ow they are attached to is
selected.

Unfortunately, those example solutions are interaction-based and can be only
implemented in the editor or viewer. They do not solve the problem when print-
ing the whole diagram for instance. Nevertheless, we believe having it possible
to represent objects inside the model is better o� than disabling completely this
feature.

Information exchange in Hamsters is represented using directed arrows. Ob-
jects, than, can be attached to these arrows indicating that they are sent along
this communication �ow. In their default con�guration, communication �ows
are used to link two tasks directly. Additionally, to support Hamsters concept of
ports (see 5.3.7 on page 80), communication �ows can link two tasks indirectly
through their ports. Figure 6.6 on page 100 gives an example of both types of
communication: (a) direct communication �ow, (b) communication �ow using
ports.

6.3.4 Hamsters notation reviewed

In this section we will review our notation by projecting di�erent choices to the
principles listed in 6.1.2.2 on page 89:

Discriminability Hamsters employ two techniques to achieve absolute dis-
criminability. The �rst is forcing a minimum size for all elements (pri-
marily implied by their mandatory content; e.g. icons for tasks). The
second is contrast, Hamsters icons, lines and labels are designed to have a
su�cient contrast with the background (which is white). For relative dis-
criminability, Hamsters employs various perceptual dimensions to encode
di�erent elements.

Modularity Hamsters supports diagram partitioning allowing the user to di-
vide the model into smaller chunks. Those chunks can be later assembled
using Task references in a higher level model.

Emphasis Special emphasis consideration were given to tasks compared to
other graphical elements. Communication �ows were given additional em-
phasis compared to hierarchy links. The reason is that the latter links can

6.3. HAMSTERS NOTATION 99

Figure 6.5: ATC example model in Hamsters

100 CHAPTER 6. MODEL NOTATION

(a) Direct communication �ow (b) Communication �ow using ports

Figure 6.6: Communication �ow notation

be identi�ed easily thanks to the additional perceptual dimensions (verti-
cal positions of elements and orientation). Inside tasks, a special emphasis
was given to the task name which plays the role of its identi�er inside the
diagram making it easier to locate tasks.

Cognitive Integration Hamsters de�nes only one diagram to de�ne all task
model aspects preserving cognitive integration through all models. In
addition, Hamsters diagram partitioning makes it e�cient to navigate
between di�erent diagrams in an integrated fashion.

Perceptual Directness All icons designed for Hamsters are symbols which
perceptually resemble the objects they represent. This helps people to in-
fer their meaning without explanation or reference to a legend. The sym-
bols used for operators do not have directly perceptual because they are
representing abstract notions and are based on existing notations which
could make adopting our notation easier. When it comes to relationships,
we use vertical directed arrows for subtask relationship which can be easily
perceived as a decomposition concept. Communication �ows use directed
horizontal arrows with attached objects giving the illusion of object trans-
fer.

Structure We use a well de�ned structure in our notation which is Hierarchy.

Identi�cation Our diagram is identi�ed by its root task. Users are encouraged
to place this node at the top of the diagram.

Visual Expressiveness We tried to introduce di�erent perceptual dimensions
as possible in order to encode as much data without �ooding the diagram
with super�uous �ags and indicators. The resulting language can be used
to express almost all the model semantics.

Graphical Simplicity Our notation de�nes three major graphical elements:
tasks, object and links. This leaves us with only 3 categories clearly below
the span of absolute judgment which is around 6 categories [Miller 1956].

Chapter 7

Hamsters Implementation

7.1 Hamsters CASE tool

7.1.1 Hamsters CASE classes

In software engineering, CASE (Computer Assisted Software Engineering) is
the �eld responsible for developing and creating support tools that can help
developers during software lifecycle. From the course of Advanced Cooperative
Systems (prof. Englebert), we have learned that CASE tools can be classi�ed
along two axis. The �rst is about their presence along the lifecycle, they can
be categorized as horizontal meaning they provide support for di�erent cycles,
or they can be vertical and thus are only able to support one axes. The second
axis is their contribution level. Some CASE tools are meant to be used at upper
levels: analysis process, requirements, speci�cation. . . Others are more oriented
toward lower level processes: implementation process, editors, version control,
debuggers. . . When used at lower levels, the tool needs to produce high-quality,
error-free artifacts.

The implementation of Hamsters will result in a CASE tool that will con-
tribute to simplify engineering of software systems, mainly targeting interactive
ones. As a task model, Hamsters could be classi�ed more as an upper-vertical
CASE tool. This classi�cation is not �nal but concerns the core features pro-
vided by Hamsters in its most primitive form. Hamsters can be extended in
various ways allowing it to extend in time (making it horizontal), and to ap-
proach implementation (making it lower).

It is an upper level tool because its main function is modeling Task Analysis
which is a higher level activity that can help us understand the system, elicit re-
quirements, and evaluate system performance and design choices. Nevertheless,
it should be noted that Hamsters can be extended to provide low level features.
These features concern mainly generating documentation and training artifacts,
or to provide output that can be used by other lower-level CASE tools to pro-
duce interactive systems. This is mainly done by mixing what we captured into
the Task Model with the System Model. Finally, Hamsters is mainly vertical
because it is used in some well de�ned processes of the software lifecycle. This
limitation does not mean that any model or tools (evaluation, simulation) pro-
duced by Hamsters cannot be used in di�erent processes. Further, Hamsters
depending on its extensions and context-of-use can be used for various goals

101

102 CHAPTER 7. HAMSTERS IMPLEMENTATION

and thus can extend in time to support multiple cycles. We already showed
using the goal model in �gure 2.1 on page 31 the wide variety of uses for a Task
Model that can span di�erent software processes.

7.1.2 Hamsters CASE architecture

In this section we will provide the architecture of Hamsters through its di�erent
modules. This list is partially based on the one we saw in Advanced Cooperative
Systems course.

7.1.2.1 Model Data Structure

This module is responsible for holding the model data in memory. It maps
our model elements into real objects so they can be processed easily by the
di�erent other modules. In its implementation, this module de�nes a class for
each classi�er in our meta-model. Each classi�er will have its own attributes
and methods. References on the other hand are transformed into local variables.
Those variables can be mono-valued in the case of a 0..1 or 1..1 multiplicities,
or multi-valued (collection) when having a multiplicity greater than 1 (e.g. 0..2,
0..*). In our Java implementation, all of these classes are accessible only via
a set of interfaces. The advantage of this choice is total abstraction from the
implementation details. Any external module to Hamsters should only access
the model using these interfaces.

7.1.2.2 Graphics and Interaction

Hamsters features another module providing di�erent services for graphics and
interaction. The graphics sub-module allows Hamsters to draw its element into
the canvas (The graphical component on which we will draw our model; it is
usually in the form of a rectangular white container). The module relies on a
lower-level Model Data Structure that in addition to holding model elements, it
contains additional graphical properties such as the position, size, color. . . The
Interaction module on the other hand provides users with the necessary tools to
interact with the model through its representation. This module plays the role
of the Controller in this Model-View-Controller architecture (the Model Data
Structure being the model and the Graphics module being the View).

7.1.2.3 Model Checking and Processing

Hamsters in its conceptual model has a strict formal de�nition. However in prac-
tice we cannot force this strictness on users from the beginning. It is like forcing
a Java programmer to write a whole Java class without generating any syntax
error which is impossible. Hamsters takes into account the temporal structure
of human cognitive activities such as exploration, understanding, communica-
tion and design. It functions by default in a Tolerant Mode state. While in
this mode, users have much freedom in the way they build their model. They
can insert unlimited number of isolated tasks and place them wherever they
want, they can create objects that are not connected to any communication
�ow. . . This way the user can construct his/her model in parallel with the ex-
ploration phases for example. Finally, when the user �nishes his/her model,
he or she can run the model checking module which will in turn process the

7.2. META-CASE 103

model and identify any anomalies or errors. The table 7.1 on the following page
provides the list of major example checks performed by Hamsters model checker.

7.1.2.4 Intelligence module

Intelligence modules are usually added to CASE tools to provide automated
features that require some intelligence. Hamsters has one prede�ned intelli-
gence module which is simulation. It allows analysts to run di�erent scenarios
following the model description they gave. The module will execute the tasks
according to their �ows, will interact with the analyst when necessary (to make
non-deterministic decisions for instance) and will monitor objects states along
the simulation lifecycle. The simulation module can detect exceptional �ows
and highlights them too.

Hamsters can be extended to include further intelligence modules, for exam-
ple we can develop:

Cognitive Validator It can measure the cognitive load of various tasks and
notify the analyst if there is an overload somewhere. Those extensions
depend primarily on the purposes we de�ned to use Task Analysis and
Modeling.

Documentation Generator It can generate full system documentation based
on task descriptions.

Exporter It can be used to export the model into various formats. For instance
export a scenario into a Flow Diagram, or generate a basic UML use-cases.

7.1.2.5 Model store

This module provides services to make the Task Model persistent . During the
�rst phases of Hamsters, we wanted to use a standard persistence representa-
tion for our model. The OMG XMI format was chosen during a meeting on
technological choices, mainly for its relative wide adoption by various CASE
tools, and second it will make it easier for us to employ existing tool that can
read an manipulate the XMI format. For example to run model transformations
from and to our model format; we use existing transformation tools to export a
model de�ned in Hamsters into another tool format (CTTe for example).

7.2 Meta-CASE

Before proceeding into the development of Hamsters support tool, we discussed
various choices. Actually, those choices are coupled to the technology options we
have in hand to develop our tool. We had three paths, either to develop every-
thing from scratch (i.e. develop all the aforementioned modules from scratch),
use some external libraries and modules, or use a Meta-CASE tool.

The �rst option o�ers a fully controlled solution with complete freedom on
how to implement the �nal application. However developing everything from
scratch is time consuming and can be counter-productive: instead of focusing on
how to implement our �ndings, we will be likely dealing with other complexities
such as lower-level graphics.

104 CHAPTER 7. HAMSTERS IMPLEMENTATION

Error (e) /Warning (w) Reason and Solution

Orphan Task (e) A Task element found but it does not have any
parent task. The solution would be integrating this
orphan task into the hierarchy by making it a
subtask of an existing Task.

Only one hierarchy is
allowed (e)

The model checker �nd two distinct task
hierarchies inside the model. To solve the problem
the analyst should either relate those separate
hierarchies to form one hierarchy, or create a new
model where he or she can put one of the
hierarchies.

Leaf OperatorTask not
allowed (e)

An OperatorTask element was found but without
any subtask. The analyst should append valid
Tasks to this OperatorTask or remove it from the
hierarchy.

Operator expects at least n
operands (e)

The operator attached to the task requires at least
n operands but there is less than n subtasks. The
analyst should add enough subtasks required by
the parent task operator.

Invalid reference (e) A TaskReference cannot �nd the Task it is
referencing. The analyst should verify that the
actual task exists. This usually results when the
proxy cannot resolve the actual task (not able to
access the referenced model �le for instance).

One subtask (w) This warning indicates that there is a task with a
lonely child.

Abstract Task is leaf (w) This warning indicates that there is a an abstract
task that does not have children tasks. This type
of warnings helps analysts avoid vague task
de�nitions and push them to give more concrete
details.

Empty communication �ow
(w)

A communication �ow should have at least one
object to transport.

Table 7.1: Example of errors and warning checked by Hamsters

7.2. META-CASE 105

The second option still provides us with a high level of freedom while allowing
us to use some existing libraries to support the development of some modules.
The most important module that concerned us was the Graphics and Interaction
module being almost the most complex to develop. For this we started looking
for some third-party libraries that are conceived to create diagram based tools.
This search was limited to Java-only libraries (the chosen programming language
of the implementation) and we found a library called JGraph. This library which
started as an Open Source project, allows the developer to create graphs using
a swing-like components architecture. This path was tempting but it turns out
that some additional features that were needed by our application were only
available with a commercial license.

The third option was to use a Meta-CASE tool. A meta-CASE tool is
a software that helps in the design and generation of CASE tools. Our choice
�nally was to use this option thanks to the di�erent services and tools it provides
that can accelerate our development. Being our technology of choice, we will
devote this section to it.

7.2.1 Concept of meta-CASE

The idea behind this concept is the strong similarity between di�erent graphi-
cal CASE tools, they share almost the same modules. Thus, a meta-CASE tool
provides a set of generic components that can be customized as needed to gen-
erate �nally a CASE tool compatible with our speci�cation. Furthermore, the
generated tools are the result of rigorous and continuous development carried
by expert people from di�erent backgrounds: computer graphics (visualization
and editing), modeling and meta-modeling, etc. Another important advantage
is the �exibility of meta-CASE tools and how they are developed to embrace
change and evolution. In traditional approaches, an error in the meta-model can
cost the implementation a lot (requiring sometimes a whole new restructuring).
In meta-CASE tools, we worry only about the model description at a very high
level independent of most implementation details enabling us to adapt our tools
to change in the method, the model, the notation etc.

As a consequence, Meta-CASE tools are usually available in the format of
a very specialized CASE software that enables users to provide a higher level
descriptions of the required tools. Based on these meta descriptions, the tool
will alter the generic content of the components it supports. This �exibility
varies according to the selected meta-environment. Di�erent types of meta-
CASE tools exist, some are able to support almost all functionalities required
by a rich modern CASE tool, some are limited to a subset of features provided
by a CASE. Our tool, Hamsters, is basically a model-driven CASE tool; meaning
that we will not need advanced features such as providing our own methodology
and process support. Therefore, next sections will focus on meta-CASE tools
that are model-driven.

7.2.2 How it works?

As mentioned above, meta-CASE tools relies on providing some generic com-
ponents that can be customized later to produce a more complete and more
speci�c CASE tool. Those components are almost the same as provided in
section 7.1.2 which lists the major required modules in Hamsters architecture.

106 CHAPTER 7. HAMSTERS IMPLEMENTATION

These components are usually present in every major meta-CASE tool, but the
di�erence lies on how they generate and integrate them into the �nal product.
Basically, we can identify two approaches in generating CASE tools:

7.2.2.1 Compilation

Following this approach, the meta-CASE generates a set of complete code �les
(e.g. java classes). After a successful generation, the tool will proceed by com-
piling the generated source code which will result in a new compiled dedicated
software. This solution is considered very e�cient because the generated code
is compiled and optimized to support the model we de�ned. Even at the imple-
mentation level, this approach is not very di�cult to implement. The tool can
rely on code-templates, providing generic source code of components, than �lling
in the gaps to insert model speci�c attributes and code. However this solution
introduces some problems because of the con�icts that can be produced between
the fully-generated code and user code; making its maintainability a challenge
(the solution would be providing support for intelligent synchronization).

7.2.2.2 Interpretation

The meta-CASE plays the role of an interpreter and usually runs the generated
CASE tool inside its environment. This solution does provide a slower tool
because the interpreter needs to load and parse the meta-data each time. It
is also more di�cult to implement, requiring advanced generic interpreters and
the ability to integrate generated tools inside the same environment. On the
positive side, it is the most �exible. It is easier to alter our CASE tool in
this approach without recompiling the tool every time we change our model
de�nition as compared to the �rst approach. Another interesting feature is
that the same environment can be used to edit various models at the same
time, reducing the number of CASE tools and providing a uni�ed software
environment (same UI, same notation basics. . .). Moreover, having interpreters
makes it easier to communicate and exchange models thanks to their structural
and representation similarities.

7.2.3 Architecture

CASE tools are usually coded into a two level architecture. The �rst level
de�nes how the model is structured, its notational elements, . . . The second
level is the model themselves. In Meta-CASE tools there is an additional higher
level. This level or layer was introduced in order to make the second layer
(which corresponds to CASE �rst level) more �exible. In fact when applying
modeling terminology, this level would correspond to the Meta-Meta-Model,
the second to the Meta-Model and the third to the Model. The power of meta-
CASE tools is their ability to understand Meta-Models described using the
Meta-Meta-Model they de�ne. Based on this description, it will generate the
required modules. The �gure 7.1 on the next page, based on one from a white
paper by MetaCase Inc. [2004], gives an overview of supported levels in both
meta-CASE and CASE tools. The �gure 7.1a shows how a CASE tool is usually
composed of two levels. The �rst one de�nes how di�erent components should be
developed, the problem here is that all these descriptions are hard-coded directly

7.2. META-CASE 107

Hard Coded Meta-Description
Meta-Model, Notation, Store...

Modeling Artifacts
Model, Diagram, File...

(a) CASE architecture levels

Any Meta-Description
Meta-Model, Notation, Store...

Modeling Artifacts
Model, Diagram, File...

Meta-Meta-Language
Meta-Meta-Model,Meta-Notation, Meta-Store...

(b) Meta-CASE architecture levels

Figure 7.1: CASE vs Meta-CASE architecture

into the code. This architecture will require code modi�cations whenever the
model evolves or changes. The second �gure 7.1b shows how a Meta-CASE
tool di�ers in architecture by adding a new higher level. This level de�nes the
language in which the CASE developer should describe his model, notation,
store. . . Its power lies in the ability to read any description and then generate
the respective implementation. Most modern implementations of meta-CASE
rely on the Meta-Object Facility (MOF) to describe their meta-models. MOF is
an OMG standard that has its origins in UML meta-models de�nition. In OMG
standards, the meta-modeling architecture consists of four layers (see �gure 7.2
on the following page for an example based on the UML class diagram). The
�rst three layers correspond to the generic three layers we presented in �gure
7.1b for meta-CASE tools. MOF is concerned with the de�nition of the language
to use at the M3 level. It is a strict speci�cation of meta-modeling which allows
designers to describe the structure of their meta-models in a formal way. In
essence, it is like an abstract syntax for languages. Moreover a direct analogy is
usually drawn between EBNF (which used to describe programming languages)
and the MOF which is used to describe meta-models. The last layer M0 in the
OMG meta-modeling architecture is said to represent real world objects. In the
case of Task Modeling, the M0 level would correspond to tasks instances ran
inside scenarios (usually created by users or more easily using the simulation
module).

108 CHAPTER 7. HAMSTERS IMPLEMENTATION

M3

M2

M1

M0

MOF

UML class
diagram

meta-model

Class
diagram

Real
World

objects

MOF:Class

Attribute MethodUML:Class

Car Engine

Instance of

Composition

Figure 7.2: UML class diagram MOF architecture

7.3. HAMSTERS DESIGN AND IMPLEMENTATION 109

7.3 Hamsters Design and Implementation

7.3.1 Eclipse Modeling Project (EMP)

After discussing the various implantation options we had and detailing our
method of choice which is using meta-CASE tools, we will now present more
practical and concrete information about the meta-CASE technology we have
chosen.

The meta-modeling technology we chose to develop Hamsters is the based
on a collection of frameworks from the Eclipse Modeling Project. According to
the Eclipse website: �The Eclipse Modeling Project focuses on the evolution and
promotion of model-based development technologies within the Eclipse commu-
nity by providing a uni�ed set of modeling frameworks, tooling, and standards
implementations.� We selected the EMP for our implementation for various
reasons:

1. It is free and Open Source.

2. It builds on the Eclipse Platform which demonstrated itself as a very
reliable platform.

3. To take advantage of the Eclipse Plugin Architecture.

4. To make Hamsters run on multiple platforms and operating systems.

5. EMP in most of its parts is based on open standards related to meta-
modeling, mainly the OMG speci�cations. For instance EMP implements
a functional subset of the MOF standard.

6. To take advantage of model transformation technologies built for it.

After giving a short introduction to the Eclipse Modeling Project, we will detail
the di�erent frameworks that constitute the building blocks of EMP.

7.3.1.1 Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework is the basic framework used to describe meta-
models (the abstract syntax of our models). It corresponds to the M3 level in
the OMG meta-modeling architecture. In fact, EMF is a partial implementation
of the MOF standards. Starting from a meta-model description, EMF is able
to generate the necessary code (java classes) which provides services to access
and edit the model. EMF is responsible also for providing the storage module
for the model.

7.3.1.2 Graphical Editing Framework (GEF)

The Eclipse Graphical Editing Framework was developed to provide advanced
graphics features for the Eclipse Platform. The idea behind GEF is to take
an existing application model (which can be described in any language not
necessary using EMF) and create a rich graphical editor. More precisely the
GEF framework provides the following sub-modules:

draw2D An SWT drawing library that provides a layout and graphic toolkit
for drawing graphics.

110 CHAPTER 7. HAMSTERS IMPLEMENTATION

Core GEF A set of GEF additional features that are commonly present in
most graphical editors. It provides basic tools such as Selection, Creation,
Marquee. It supports tool palettes, advanced editing system based on the
Command design pattern. Finally and more importantly, GEF provides
the necessary controllers that will make sure that our graphical represen-
tation is synchronized with our model.

7.3.1.3 Graphical Modeling Framework (GMF)

The Eclipse Graphical Modeling Framework was developed to create a bridge
between the Eclipse Modeling Framework (EMF) and the Graphical Editing
Framework (GEF). GMF provides a generative and a runtime components that
enable us to integrate models described in EMF inside the GEF MVC archi-
tecture and �nally produce a graphical editor. Usually after de�ning our meta-
model in EMF (which corresponds to the abstract syntax de�nition), we proceed
to describe the concrete syntax with the help of GMF by:

1. Writing the notation description. This is done by de�ning it inside the
GMF graphical �le which enables us to give a detailed description for each
graphical element we will use in our notation.

2. Writing the tooling description. In this step we describe what are the tools
that our �nal graphical editor should provide.

3. Linking the graphical description, tooling description and the EMF meta-
model (Ecore model). All these relationships between these di�erent three
descriptions are written inside a mapping �le.

4. Generate the basic code for our graphical model based on the information
provided in the mapping �le.

5. Customize the code and add additional features which are speci�c to our
model.

7.3.1.4 Hamsters implementation using EMP

Using the meta-CASE tools provided by the Eclipse Modeling Project provided
us with all the bene�ts mentioned in the meta-CASE section. It allow us to
focus more on the application domain and not the application details. The de-
velopment process using the EMP frameworks is very powerful and almost fully
automated. However, it is not really straightforward as it may appear. In fact,
after generating the code, we needed much time to quirk and �x it in order to
be compatible with our speci�cation. For instance to support scalable graphics
(SVG), we needed to change some graphics classes to add the necessary code in
order to draw the required graphical image. We were not able to annotate the
custom code because we could not decouple it from the main drawing method
which resides inside a java nested class. The solution we adopted in the end was
to create some sort of patch �les that update the generated code each time.

Another problem we faced is the forced Canvas element inside the graphical
de�nition �le. This element needs to be mapped to an existing model element
which can cause some problems because it creates an additional container which
does not exist really inside our meta-model de�nition. We solved this problem by

7.3. HAMSTERS DESIGN AND IMPLEMENTATION 111

mapping the Canvas element to our TaskModel element inside the meta-model.
However, this choice left us with some bugs when we implemented diagram
partitioning.

When adding elements inside the graphical editor, the mapping de�nition
required from us to indicate into which container they should belong. The
default behavior is to include them inside the TaskModel which corresponds
to the Canvas (global graphical container). This default behavior created a
problem for us as all tasks that the user will add will be considered as subtasks
of Canvas and moreover this solution would be possible only if we consider the
relationship between a TaskModel and a Task as a containment reference. To
solve this problem, we used a GMF trick called Phantom nodes. Phantom nodes
can be added to the Canvas without being forcibly contained inside any model
element. The only problem with this approach is that all phantom nodes will
be inaccessible by the root model element (which should be the rootTask of
TaskModel) as they do not belong to any element inside it. To overcome this
limitation, we needed to look inside the EMF and GMF internals to �nd a way
to access Phantom nodes from the model without relying on any graphical or
tooling component.

Finally, we would like to state that despite all these problems and its im-
maturity (especially GMF which is still considered in its early stages), EMP
frameworks proved to be very usable and powerful enough to satisfy most of
our requirements. More importantly their open architecture and extendibility
allow us to implement any feature, all you need is �nding the right extension
location, integrating the feature and testing (re-running unit-tests is usually
su�cient).

7.3.2 Hamsters Cognitive Dimensions

During the development of our tool, we wanted to take care of the some cognitive
dimensions related mainly to interactivity. In this section we will give short
introduction to cognitive dimensions than we will evaluate our tool according
to these dimensions.

7.3.2.1 Cognitive Dimensions

Usability is an important factor in the success of most software products today
and CASE tools are no exception. Unfortunately for a long time this concept
was used in an informal way with various terminology and de�nitions clashes.
As a result, it was always very di�cult to design or evaluate systems usability in
a systematic way. First attempts to solve this problem were relying on creating
some sort of usability checklists [Nielsen and Molich 1990] or provide the designer
with a procedural list of design activities he or she should follow [Wharton et al.
1994]. Unfortunately, those list based techniques were found to be not e�cient
in designing or evaluating even user interfaces [Winograd et al. 1996] let alone
the overall usability. A better solution would be creating a common theoretical
and craft-oriented ground to build on for usability engineers. This is the main
idea of Green and Petre [1996] by de�ning a framework that can help design new
systems or evaluate existing ones. This framework was introduced �rst in their
paper �Usability analysis of visual programming environments: A `cognitive
dimensions� ' and continued to evolve since then. The whole framework is based

112 CHAPTER 7. HAMSTERS IMPLEMENTATION

Cognitive
Dimension

Description

Viscosity Known also as resistance to change. It is about how much
e�ort is needed to make a change in the program.

Abstraction
gradient

What is the �exibility of the notation in hiding/exposing
details?

Consistency As part of the interaction is learned, how much new ones can
be guessed successfully?

Hidden
dependencies

Are there dependencies between elements visible or hidden?
How a change in one area re�ects on the other?

Premature
commitment

Is the program forcing the users to follow a forced method
using strong constraints? Does the user need at times to take a
decision without having all the necessary information?

Progressive
evaluation

How the program is able to provide feedback on the current
work without needing it to be in its �nal form.

Secondary
notation

Does the program provide extra �ags or notations that can
carry informal additional information that the user needs to
incorporate.

Table 7.2: List of Cognitive Dimensions

on Cognitive Dimensions which are a set of well de�ned design principles for
user interface, user interaction and notation. Among the purposes and facilities
that the Cognitive Dimensions framework provides we can cite [Blackwell and
Green 2003]:

• To o�er a comprehensible evaluation.

• To Use common terminology that can be comprehended by nonspecialists.

• To be not limited only to interactive systems but can be used for paper-
based and other non-interactive systems.

• To be theoretically coherent.

• To di�erentiate between di�erent types of user needs with high precision.

You can �nd a small descriptions of various known Cognitive Dimensions in
table 7.2. Note that there are some common concepts between Cognitive Di-
mensions and Notation Principles (see 6.1.2.2 on page 89) that we omitted here
and chose instead to concentrate more on interaction-oriented dimensions.

7.3.2.2 Cognitive Dimensions in Hamsters

After giving an overview on the Cognitive Dimensions framework and de�ning
some major elements of it, we will try in this section to project these dimensions
on our application's usability which you can �nd in table 7.3 on the next page.

7.3.3 Hamsters Application and Plugin

According to initial requirements, Hamsters should be able to integrate into
the PetShop CASE tool. The goal was to link PetShop models with Ham-

7.3. HAMSTERS DESIGN AND IMPLEMENTATION 113

Cognitive
Dimension

Hamsters Evaluation

Viscosity The user in hamsters deals basically with di�erent model
elements. The application does not provide complicated
systems to support change but some basic ones. This includes
the ability to apply a change in one shot to a whole selection
of elements, though most of the time these elements need to be
of the same type. The application provides unlimited undoes
and redoes.

Abstraction
gradient

In its default notation Hamsters does not represent the whole
model content. However, it provides a powerful abstraction
gradient by using compartments. Compartments are graphical
containers that could be shown/hidden at request. Further
when they are visible they can be collapsed or encapsulated
leaving only their title visible. In addition, the property sheets
can be extended to include additional attributes as needed.

Consistency The user interface is based on the SWT toolkit providing a
uniform interaction with basic UI elements. The notation
relies on a common strict terminology, icons and cursors.

Hidden
dependencies

Dependencies in Hamsters are essentially related to the model
hierarchies (not to be confused with tasks hierarchies).
Hamsters allow users to visualize dependencies using a
TreeView components. In addition changes performed in one
place are usually propagated to the others (thanks to the use
of references to a one real central task).

Premature
commitment

As explained in section 7.1.2.3 on page 102, Hamsters is
executed in a model-tolerant mode which does not require that
the model must be correct at any time. Users can build their
models with a complete freedom without barriers neither
worrying too much about constraints.

Progressive
evaluation

The analyst can run the check modeler at any time to provide
feedback about the model correctness. In addition, Hamsters
relies on some tools provided by a project called Epsilon from
Eclipse to provide direct graphical feedback inside the notation
if the user enables this option.

Secondary
notation

Hamsters allows the users to add personalize the notation with
the aim to add additional informal infatuation to the model
through two techniques. The �rst is using comment boxes
which are graphical elements that can be connected to any
element inside the model. The second is using appearance
styles (colors, line styles. . .) and Hamsters layout-free
notation.

Table 7.3: Cognitive Dimensions in Hamsters

114 CHAPTER 7. HAMSTERS IMPLEMENTATION

sters task models, thus requiring Hamsters to expose its models to external
tools. The idea is to create a bridge between Hamsters (Task Model) and Pet-
Shop (System Model) in order to support better the development of interactive-
systems (mainly by using scenarios in both worlds modeled by Hamsters and
PetShop). For more details about the idea of bridging the gap between Task
Models and System Models and using them in a complementary fashion to de-
velop interactive-systems see the work of Navarre et al. [2009]; Palanque and
Bastide [1996]. At the same time, we wanted to develop a standalone version
of Hamsters so Task Analysts can use it without needing another environment.
The solution we proposed was to use a service-oriented architecture (SOA), ex-
actly we opted for OSGi (formerly known as the Open Services Gateway initia-
tive). OSGi a set of open standards of a java based service-oriented architecture
released by the OSGi Alliance [2007].

To satisfy both requirements we opted to use the Eclipse Platform which
has a built-in support for the OSGi architecture. In fact the Eclipse Frame-
work uses the OSGi architecture for its rich and famous plugin architecture.
Moreover, the Eclipse implementation of OSGi named Equinox 1 was adopted
as the reference implementation by the OSGi alliance. This is an additional
reason behind our choice to use the EMP in developing our implementation.
More practically, using Eclipse we can deploy our implementation into either a
standalone application (known as RCP: Rich Client Platform which runs on top
of its own OSGi layer), or as a plugin installed on top of another OSGi layer.
The �rst challenge we faced was that PetShop is not based on Eclipse so we
cannot simply deploy Hamsters directly into it. The solution was to preserve
the generated plugin from Eclipse which is basically an OSGi bundle. Than we
created a new runtime environment for PetShop, without touching its internal
modules, running it on top of an OSGi layer. Therefore, PetShop can know
interrogate Hamsters using OSGi service calls (see �gure 7.3 on the next page
for an overview of the �nal architecture). In the same fashion, PetShop can be
ran inside the OSGi layer of Hamsters standalone application. In addition, this
approach enabled us to solve a con�ict that has arisen when trying to integrate
some task models with PetShop. This is especially true for the case of Amboss
when the team wanted to integrate it into the PetShop CASE environment.
The con�ict was not very clear technically but it has its foundation in threads
con�icts between basically AWT (PetShop is Swing based) and SWT. Although
our tool uses EMP which is based on SWT, no con�icts arose because we are
running both applications on top of the OSGi layer but with di�erent runtime
con�gurations.

1http://www.eclipse.org/equinox/

7.3. HAMSTERS DESIGN AND IMPLEMENTATION 115

Operating System

Java Virtual Machine

PetShop OSGi

Hamsters

Application

Bundle PetShop

Figure 7.3: Hamsters and PetShop integration using OSGi

Conclusion and Prospects

Conclusion

This research topic helped us to draw some important conclusions. We learned
that the activity of designing and developing software systems does not need
to rely only on pure formal rigid approaches. The success of these systems
depends largely not on their logical function but their e�ciency in improving
performance. Undoubtedly, creating correct systems is a requirement but lim-
iting our focus to technical aspects will likely produce defect products. The
software usage and its relationships with the external world are of an enormous
importance too, underlining the signi�cation of taking into consideration both
social and technical aspects while designing any system.

Sometimes, we need to deal with vague concepts which are usually avoided by
software engineers for their imprecision; this is typically true for social factors.
However, we can always �nd a way to encode them with a minimum formality
allowing us to put them into use. This is the case of Task Analysis in our
research which was formalized into task models.

Developing Hamsters helped us to establish some good practices for de�ning
models in general. Such activity should be carried in the same way as we wanted
for system design. In other terms, developing a model is a design activity itself
demanding to consider di�erent socio-technical aspects behind it (in this case
our target users are system designers). This is done through careful de�nition
of the model from di�erent perspectives by asking some basic questions:

• What are we modeling?

• Why we need this model?

• In which context the model will be used?

• What are the relevant real-world aspects this model needs?

• How should we represent this model (notation)?

• Does this model relate to other models? If yes in which way?

• How should modelers interact with the model tool (interaction and usabil-
ity)?

Finally, this research allowed us to discover some insights from the Human-
Computer Interaction discipline. Mainly, it enables the researcher to have a
broader view beyond its domain and to look at other disciplines relating them

117

Conclusion and Prospects

to the problem in hand. Another conclusion which lies at the heart of our
research is realizing the importance of task modeling in HCI and in software
engineering in general. In particular, how HCI is crucial to software engineering
if not a motor-factor.

Prospects

Hamsters is still in its early stages of research and development. This work
provides a �rst version which will eventually evolve to support additional fea-
tures and/or adapt to new �ndings by the Task Modeling community. Thus,
its current form has various opportunities for enhancements. Primarily, �nding
solutions to the various criticisms of Hamsters discussed in our research text.
As for the rest of this section, we will give some practical prospects that could
be undertaken to improve our task model.

The �rst prospect we propose is developing a multi-diagram notation. Ba-
sically, we think of two diagrams of the same model�The �rst captures the
structure, and the second expresses the �ow. This approach helps us separate
concerns on one hand and provide better notation on the other. The concern of
the �rst diagram is static in nature and aims at providing a simple notation to
describe the structure of our task model (only tasks are present). The second
diagram is behavioral in nature and can resemble to some extend to a multi-level
�ow diagram: enabling us a priori to better describe �ows (using existing �ow
diagrams notation for instance) and to enhance task �ows readability (structure
is of a second-concern here). By multi-level, we mean supporting some kind of
semantic-zooming (e.g. the Fish-Eye zoom [Furnas 1986]) imporiving naviga-
bility from one abstraction level to another. This modi�cation will a�ect only
the notation level meaning that the model itself will not be a�ected. However,
working on this prospect will need to demonstrate how such separation enhances
the expressiveness and usability of our model. It should take into account some
side-e�ects such as notation confusion (the same model is represented in two
di�erent diagrams).

The second prospect is aiming at increasing the formality of our model, we
propose two formal languages:

Task Constraint Language A constraint based language that can be used
mainly to describe conditions in a more formal way. This language should
allow analysts to encode various types of conditions (basically on tasks,
roles and objects). It should support logical operators such as And, Or,
etc. It can be very useful to the simulation module as it permits better
autonomy.

Task Query Language This language enables the user to query the task model
for speci�c information. Basically, it should allow the analyst to carry pro-
jections on (1) tasks and (2) roles. The �rst helps the analyst �lter/ana-
lyze tasks depending on various constraints (type, role, etc.). The second
makes it easier to analyze roles and determine their tasks, detect clashes,
assess task allocation. . . This language could be textual (resembling a
simpli�ed version of SQL) or graphical like the one used in Amboss [Giese
et al. 2008].

118

Conclusion and Prospects

However, these languages need to be very intuitive and simple to use as task
analysts do not have necessarily a background in programming or formal lan-
guages.

119

Bibliography

An agenda for human-computer interaction: science and engineering serving
human needs. SIGCHI Bull., 23(4):17�32, 1991. ISSN 0736-6906.

OSGi Alliance, editor. OSGi Service Platform, Core Speci�cation, Release 4,
Version 4.1. aQute, 2007. ISBN 978-90-79350-01-8.

R. Anderson, J. Carroll, J. Grudin, J. McGrew, and D. Scapin. Human-computer
Interaction: Interact, '90, chapter The oft missed step in the development of
computer-human interfaces: Its desirable nature, value and role, pages 1051�
1054. 1990.

J. Annett and K. Duncan. Task analysis and training design. Occupational
Psychology, 41:211�227, 1967.

John Annett and Neville Stanton. Task Analysis, chapter Research and devel-
opments in task analysis, page 1. CRC Press, 2000.

M. Baron, V. Lucquiaud, D. Autard, and D. L. Scapin. K-made: un environ-
nement pour le noyau du modèle de description de l'activité. In IHM '06:
Proceedings of the 18th International Conference of the Association Franco-
phone d'Interaction Homme-Machine, pages 287�288, New York, NY, USA,
2006. ACM. ISBN 1-59593-350-6.

Charles E. Billings. Aviation Automation: The Search for a Human-Centered
Approach. Lawrence Erlbaum Associates, 1997.

Alan Blackwell and Thomas Green. HCI models, theories, and frameworks:
Toward a multidisciplinary science., chapter Notational Systems�The Cogni-
tive Dimensions of Notations Framework., pages 103�133. Morgan Kaufmann
Publishers, San Francisco, 2003.

B. W. Boehm. A spiral model of software development and enhancement. Com-
puter, 21(21):61�72, 1988.

Tommaso Bolognesi and Ed Brinksma. Introduction to the iso speci�cation
language lotos. Comput. Netw. ISDN Syst., 14(1):25�59, 1987. ISSN 0169-
7552.

Birgit Bomsdorf and Gerd Szwillus. From task to dialogue: task-based user
interface design. SIGCHI Bull., 30(4):40�42, 1998. ISSN 0736-6906.

121

122 BIBLIOGRAPHY

Birgit Bomsdorf and Gerd Szwillus. Tool support for task-based user inter-
face design. In CHI '99: CHI '99 extended abstracts on Human factors in
computing systems, pages 169�170, New York, NY, USA, 1999. ACM. ISBN
1-58113-158-5.

Frederick P. Brooks, Jr. No silver bullet essence and accidents of software
engineering. Computer, 20(4):10�19, 1987. ISSN 0018-9162.

Stuart Card, Thomas P. Moran, and Allen Newell. The Psychology of Human
Computer Interaction. Lawrence Erlbaum Associates, 1983.

John M. Carroll and Judith Reitman Olson, editors. Mental models in human-
computer interaction: research issues about what the user of software knows.
National Academy Press, Washington, DC, USA, 1987. ISBN 0-309-00266-0.

Alphonse. Chapanis. Research techniques in human engineering. Johns Hopkins
University Press, 1959.

Alan Cooper. The Inmates are Running the Asylum: Why High-tech Products
Drive Us Crazy and How to Restore the Sanity. Sams, 2 edition, March 1999.
ISBN 0672326140.

K.J.W. CRAIK. Theory of the human operaor in control systems. i: The op-
erator as an engineering system. British Journal of Psychology, 38:56�61,
1947.

K.J.W. CRAIK. Theory of the human operaor in control systems. ii: Man as
an element in a control system. British Journal of Psychology, 38:142�148,
1948.

Johnson C.W. Proving properties of accidents. Reliability Engineering and
System Safety, 67:175�191, 2000.

K. Czarnecki. Generative Programming: Principles and Techniques of Software
Engineering Based on Automated Con�guration and Fragment-Based Compo-
nent Models. PhD thesis, Computer Science Department, Technical University
of Ilmenau, Ilmanau, Germany, 1998.

Paulo Pinheiro da Silva. User interface declarative models and development
environments: A survey. In Interactive Systems Design, Speci�cation, and
Veri�cation, volume 1946 of Lecture Notes in Computer Science, pages 207�
226. Springer Berlin / Heidelberg, 2001. ISBN 978-3-540-41663-0. URL http:

//www.springerlink.com/content/6q0n3xw31deutjac/.

T. DeMarco. Structured analysis and system speci�cation. pages 409�424, 1979.

D. Diaper. Task analysis for human-computer interaction, chapter Task Analysis
for Knowledge Descriptions (TAKD): The method and an example, pages
108�159. Ellis Horwood, 1989.

D. Diaper. People and Computers, volume XIV, chapter Hardening Soft Systems
Methodology, pages 183�204. Springer, 2000.

http://www.springerlink.com/content/6q0n3xw31deutjac/
http://www.springerlink.com/content/6q0n3xw31deutjac/

BIBLIOGRAPHY 123

D. Diaper. The model matters: constructing and reasoning with heterarchical
structural models. In G. Kadoda, editor, Proceedings of the Psychology of
Programming Interest Group 13th, pages 191�206, 2001.

D. Diaper and P. Johnson. Cognitive ergonomics and human-computer interac-
tion, chapter Task Analysis for Knowledge Descriptions: Theory and appli-
cation in training, pages 191�224. Cambridge University Press, 1989.

Anke Dittmar, Peter Forbrig, Simone Heftberger, and Chris Stary. Sup-
port for task modeling - a �constructive� exploration. In Engineering Hu-
man Computer Interaction and Interactive Systems, volume 3425 of Lecture
Notes in Computer Science, pages 59�76. Springer Berlin / Heidelberg, 2005.
ISBN 978-3-540-26097-4. URL http://www.springerlink.com/content/

bvd9gg76mgly000b/.

Ozeas V. Santana Filho and Konrad G. Kochan. The importance of requirements
engineering for software quality. In ISAS-SCI '01: Proceedings of the World
Multiconference on Systemics, Cybernetics and Informatics, pages 529�532.
IIIS, 2001. ISBN 980-07-7541-2.

G. W. Furnas. Generalized �sheye views. SIGCHI Bull., 17(4):16�23, 1986.
ISSN 0736-6906.

Susan Gasson. Human-centered vs. user-centered approaches. Journal of Infor-
mation Technology Theory and Application (JITTA), 5 (2):29�46, 2003. URL
http://hdl.handle.net/1860/1978.

Matthias Giese, Tomasz Mistrzyk, Andreas Pfau, Gerd Szwillus, and Michael
von Detten. AMBOSS: A task modeling approach for safety-critical sys-
tems. In Engineering Interactive Systems, volume 5247 of Lecture Notes in
Computer Science, pages 98�109. Springer Berlin / Heidelberg, 2008. ISBN
978-3-540-85991-8.

Frank Bunker Gilbreth and Robert Thurston Kent. Motion study: A method for
increasing the e�ciency of the workman. D. Van Nostrand Company, 1911.

Fausto Giunchiglia, John Mylopoulos, and Anna Perini. The tropos software
development methodology: processes, models and diagrams. In AAMAS '02:
Proceedings of the �rst international joint conference on Autonomous agents
and multiagent systems, pages 35�36, New York, NY, USA, 2002. ACM. ISBN
1-58113-480-0.

J. Gould, S.J. Boies, and J. Ukelson. Handbook of HumanComputer Interaction,
chapter How To Design Usable Systems, pages 231�254. Morgan Kaufmann
Publishers Inc., 2 edition, 1997. ISBN 1-55860-246-1.

John D. Gould and Clayton Lewis. Designing for usability�key principles and
what designers think. In CHI '83: Proceedings of the SIGCHI conference on
Human Factors in Computing Systems, pages 50�53, New York, NY, USA,
1983. ACM. ISBN 0-89791-121-0.

John D. Gould, Stephen J. Boies, and Clayton Lewis. Making usable, useful,
productivity-enhancing computer applications. Commun. ACM, 34(1):74�85,
1991. ISSN 0001-0782.

http://www.springerlink.com/content/bvd9gg76mgly000b/
http://www.springerlink.com/content/bvd9gg76mgly000b/
http://hdl.handle.net/1860/1978

124 BIBLIOGRAPHY

T. R. G. Green and M. Petre. Usability analysis of visual programming envi-
ronments: a `cognitive dimensions' framework. Journal of Visual Languages
and Computing, 7:131�174, 1996.

Jan Gulliksen, Bengt Göransson, Inger Boivie, Jenny Persson, Stefan Blomkvist,
and Åsa Cajander. Key principles for user-centred systems design. In
Human-Centered Software Engineering - Integrating Usability in the Software
Development Lifecycle, volume 8 of Human-Computer Interaction Series,
pages 17�36. Springer Netherlands, 2005. ISBN 978-1-4020-4027-6 (Print)
978-1-4020-4113-6 (Online). URL http://www.springerlink.com/content/

r340755323560170/.

JoAnn T. Hackos and Janice C. Redish. User and task analysis for interface
design. John Wiley & Sons, Inc., New York, NY, USA, 1998. ISBN 0-471-
17831-4.

Erik Hollnagel. Barriers and accident prevention. Ashgate Publishing, 2004.

ISO/IEC. ISO 13407:1999 Human-centred design processes for interactive sys-
tems. ISO, Geneva, Switzerland, 1999.

David H. Jonassen, Martin Tessmer, and Wallace H. Hannum. Task analysis
methods for instructional design. Lawrence Erlbaum Associates, 1999.

D.G. Jones and M.R. Endsley. Overcoming representational errors in complex
environments. Human Factors, 42 (3):367�378, 2000. URL http://hfs.

sagepub.com/cgi/content/short/42/3/367.

Mitchell Kapor. A software design manifesto. Dr. Dobb's J., 16(1):62�67, 1991.
ISSN 1044-789X.

David Kieras. Goms modeling of user interfaces using ngomsl. In CHI '94:
Conference companion on Human factors in computing systems, pages 371�
372, New York, NY, USA, 1994. ACM. ISBN 0-89791-651-4.

R. Kimball. Is er modeling hazardous to dss? DBMS Magazine, 1995.

B. Kirwan and L. K. Ainsworth, editors. A Guide to Task Analysis: The Task
Analysis Working Group. Taylor & Francis, 1 edition, September 1992. ISBN
0748400583.

Linda T. Kohn, Janet M. Corrigan, and Molla S. Donaldson, editors. To Err Is
Human: Building a Safer Health System. National Academic Press, 2000.

Morten Kyng. Making representations work. Commun. ACM, 38(9):46�55,
1995. ISSN 0001-0782.

Benjamin A. Lieberman. The Art of Software Modeling. Auerbach Publications,
Boston, MA, USA, 2006. ISBN 1420044621.

Quentin Limbourg and Jean Vanderdonckt. Comparing task models for user
interface design. 2003.

V. Lucquiaud. Proposition d'un noyau et d'une structure pour les modèles de
tâches orientés utilisateurs. In ConfÃ c©rence Francophone sur l'Interaction
Homme-Machine, pages 83�90, Toulouse, France, 2005.

http://www.springerlink.com/content/r340755323560170/
http://www.springerlink.com/content/r340755323560170/
http://hfs.sagepub.com/cgi/content/short/42/3/367
http://hfs.sagepub.com/cgi/content/short/42/3/367

BIBLIOGRAPHY 125

T. Mandel. The Elements of User Interface Design. Wiley Computer Publishing,
New York, 1997.

MetaCase. Abc to metacase technology (white paper). Technical report, Meta-
Case Inc., 2004.

George Miller. The magical number seven, plus or minus two: Some limits on
our capacity for processing information. The Psychological Review, 63:81�97,
1956.

Daniel Moody. What makes a good diagram? improving the cognitive e�ective-
ness of diagrams in is development. In Knapp and Magyar, editors, Intl Conf
on Information Systems Development. Springer, August 31-2 2006.

J. Morgan and P. Welton. See What I Mean? Edward Arnold, London, 1992.

D.C. Nagel. Human factors in aviation, chapter Human error in aviation oper-
ations, pages 263�303. Academic Press, 1988.

David Navarre, Philippe Palanque, and Marco Winckler. Task models and
system models as a bridge between hci and software engineering. In
Human-Centered Software Engineering, Human-Computer Interaction Series,
pages 357�385. Springer London, 2009. ISBN 978-1-84800-906-6 (Print)
978-1-84800-907-3 (Online). URL http://www.springerlink.com/content/

m98vrr1216p40g83/.

Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1993.

Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In CHI
'90: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 249�256, New York, NY, USA, 1990. ACM. ISBN 0-201-50932-
6.

J. C. Nordbotten and M. E. Crosby. The e�ect of graphic style on data model
interpretation. Information Systems Journal, 9(2):139�155, 1999.

Donald A. Norman. The Design of Everyday Things. Basic Books, September
2002. ISBN 0465067107.

Donald A. Norman and Stephen W. Draper. User Centered System Design;
New Perspectives on Human-Computer Interaction. L. Erlbaum Associates
Inc., Hillsdale, NJ, USA, 1986. ISBN 0898597811.

Nadine Ozkan, Cecile Paris, and Bill Simpson-Young. Towards an approach for
novel design. Computer-Human Interaction, Australasian Conference on, 0:
186, 1998.

Philippe Palanque and Rémi Bastide. Critical Issues in User Interface Systems
Engineering, chapter Task Models - System Models: a Formal Bridge Over
the Gap, pages 65�79. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1996. ISBN 3540199640.

R. Parasuraman, R. Molloy, M. Mouloua, and B. Hilburn. Automation and
human performance, chapter Automation and human performance: Theory
and applications, pages 91�115. Lawrence Erlbaum Associates, 1996.

http://www.springerlink.com/content/m98vrr1216p40g83/
http://www.springerlink.com/content/m98vrr1216p40g83/

126 BIBLIOGRAPHY

Fabio Paternò. Model-based design of interactive applications. Intelligence, 11
(4):26�38, 2000. ISSN 1523-8822.

Fabio Paternò, Cristiano Mancini, and Silvia Meniconi. Concurtasktrees: A
diagrammatic notation for specifying task models. In INTERACT '97: Pro-
ceedings of the IFIP TC13 Interantional Conference on Human-Computer
Interaction, pages 362�369, London, UK, UK, 1997. Chapman & Hall, Ltd.
ISBN 0-412-80950-8.

Marian Petre. Why looking isn't always seeing: readership skills and graphical
programming. Commun. ACM, 38(6):33�44, 1995. ISSN 0001-0782.

J. Preece, Y. Rogers, H. Sharp, D. Helen, Benyon, S. Holland, and T. Carey.
Human-Computer Interaction. Addison Wesley, 1994.

Carol Righi and Janice James. User-Centered Design Stories: Real-World UCD
Case Studies. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2007. ISBN 0123706084, 9780123706089.

M.S. Sanders and E.J. McCormick. Human factors in engineering and design.
McGraw-Hill, 7 edition, 1992.

DL. Scapin and C. Pierret-Golbreich. Une méthode analytique de description
des tâches. Colloque sur l'ingénierie des Interfaces Homme-Machine, pages
131�148, 1989.

Wilbur Lang Schramm. The Process and E�ects of Mass Communication. Uni-
versity of Illinois Press, revised edition (october 1971) edition, 1971.

G.A. Sexton. Human factors in aviation, chapter Cockpit-crew systems design
and integration, pages 495�526. Academic Press, 1988.

Helen Sharp, Yvonne Rogers, and Jenny Preece. Interaction Design: Be-
yond Human-Computer Interaction. Wiley, 2 edition, March 2007. ISBN
0470018666.

A. Shepherd. Hierarchical Task Analysis. Taylor and Frances, 2001.

Bruce Tognazzini. Tog on software design. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 1996. ISBN 0-201-48917-1.

UPA. What is user-centered design?, June 2009. URL http://www.

usabilityprofessionals.org/.

Arie van Deursen and Paul Klint. Domain-speci�c language design requires
feature descriptions. Journal of Computing and Information Technology, 10:
2002, 2001.

& Butler M. B. Vredenburg, K. Current practice and future directions in user-
centered design. In Proceedings of the Usability Professionals' Association
Fifth Annual Conference, 1996.

Karel Vredenburg, Ji-Ye Mao, Paul W. Smith, and Tom Carey. A survey of user-
centered design practice. In CHI '02: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 471�478, New York, NY, USA,
2002. ACM. ISBN 1-58113-453-3.

http://www.usabilityprofessionals.org/
http://www.usabilityprofessionals.org/

BIBLIOGRAPHY 127

Cathleen Wharton, John Rieman, Clayton Lewis, and Peter Polson. The cog-
nitive walkthrough method: a practitioner's guide. pages 105�140, 1994.

Terry Winograd, John Bennett, and Laura De Young. Bringing Design to Soft-
ware. Addison-Wesley Professional, April 1996. ISBN 0201854910.

	Acknowledgement
	Context and Introduction
	I Literature review
	Towards a UCD Model-based approach
	Introduction and Context
	Current approaches (mainly TCD)
	Aspects
	Consequences

	User-Centered Design
	Principles
	Goals and effectiveness

	Model-based approach
	Models and Modeling
	Model-based approaches in HCI

	Task Modeling
	Introduction
	What is Task Modeling?
	Origins of Task Modeling
	What is Task Modeling?
	Task Analysis and Task Modeling

	Common Task Modeling Approaches
	Hierarchical Task Analysis
	Cognitive Task Analysis and Modeling

	Purpose of Task Modeling
	Introduction
	Discover, define tasks and remove ambiguities
	Process and check most if not all cases
	Cover most or all users/roles in our system
	Help design the system
	Design training programs
	Summary

	Analysis and Classification of Task Models
	Introduction
	Analysis of Task Models
	KMAD
	CTT
	AMBOSS

	Classification of Task Models
	Feature Modeling
	Model
	Notation

	II Hamsters Task Model
	Foundation
	Task Structure
	Dealing with complexity
	Conceptual relationships
	Abstraction Levels

	Communicative relationships
	Introduction
	Modeling temporal operators
	Tasks Flow

	Roles and Objects
	Roles
	Objects

	Hamsters Meta-Model
	Introduction
	Hamsters Modeling Levels
	Task Model Level
	Collaborative Task Level
	Task Analysis Level

	Hamsters Meta-Model Elements
	TaskAnalysisModel and CollaborativeTask
	Registries
	TaskModel
	Tasks
	Conditions
	Operators
	Objects and Communication Flows

	Task Simulation in Hamsters
	Simulation Extensions to the Meta-Model
	Principle of Hamsters Simulation

	Model Notation
	Modeling notation
	Introduction
	Graphical Notation

	Task Models notations
	Representing the structure of a Task Model
	Hierarchical representation
	Heterarchical representation

	Hamsters Notation
	Diagram Structure and Tasks
	Operators
	Objects and Information Flow
	Hamsters notation reviewed

	Hamsters Implementation
	Hamsters CASE tool
	Hamsters CASE classes
	Hamsters CASE architecture

	Meta-CASE
	Concept of meta-CASE
	How it works?
	Architecture

	Hamsters Design and Implementation
	Eclipse Modeling Project (EMP)
	Hamsters Cognitive Dimensions
	Hamsters Application and Plugin

	Conclusion and Prospects

	Bibliography

