
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Analysis and prototyping of the IETF RELOAD protocol onto a Java application server

Roly, Antoine

Award date:
2009

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/analysis-and-prototyping-of-the-ietf-reload-protocol-onto-a-java-application-server(5674248c-a9ed-4ab7-b1a3-4f201616925d).html

Facultés Universitaires Notre-Dame de la Paix de Namur

Faculté d’informatique

Année académique 2008-2009

Analysis and prototyping
of the IETF RELOAD protocol
onto a Java application server

Antoine Roly

Mémoire présenté en vue de l’obtention du grade de master en informatique

Abstract

Facing the rise of Peer-to-Peer (P2P) networks and applications in the last years, many have

seen a need for standardization. Indeed, a lot of proprietary protocols currently coexist, each

one using its own specifications, messages, algorithms, etc. To sort things out, the Internet En-

gineering Task Force has created the Peer-to-Peer Session Initiation Protocol (P2PSIP) working

group in 2007, in order to develop an open, standard, generic P2P protocol and provide a generic

way to manage a Distributed Hash Table (DHT). This master thesis presents and criticizes the

REsource LOcation And Discovery (RELOAD) protocol and a prototype of this protocol im-

plemented on an IP Multimedia Subsystem (IMS) service platform.

Keywords:: RELOAD, Distributed Hash Table

Résumé

Face à l’émergence de réseaux et d’applications Peer-to-Peer (P2P) ces dernières années,

un besoin de standardisation s’est fait largement ressentir. En effet, beaucoup de protocoles

propriétaires coexistent actuellement, chacun utilisant ses propres spécifications, messages, al-

gorithms, etc. Pour mettre un terme à cette situation, l’Internet Engineering Task Force a créé

en 2007 le working group Peer-to-Peer Session Initiation Protocol (P2PSIP), afin de développer

un protocole P2P générique, standard et ouvert, et fournir une manière générique de gérer une

table de hachage distribuée. Ce mémoire présente et critique le protocole REsource LOcation

And Discovery (RELOAD) et un prototype de ce protocole implémenté sur une plateforme de

services IP Multimedia Subsystem (IMS).

Mots clés: RELOAD, Table de hachage distribuée

Acknowledgments

This master thesis could not have been written without the help of various people.

I would like to thank the Alcatel-Lucent Service Creation Environment team to have cor-

dially received me during my internship. In particular, I would like to thank Thomas Froment,

my internship supervisor, for his advices and the time spent on my work, Dimitri Tombroff,

Pierre De Rop and Arjun Panday for their help during the implementation of the RELOAD

prototype.

I also want to acknowledge my thesis supervisor: Professor Laurent Schumacher for his

feedbacks as well as his many corrections and suggestions, and Reddy Emply for his rereadings

and corrections.

Finally, thanks to my family for their continuous support during my long and complicated

studies course.

Contents

1 Introduction 1

2 Peer-to-peer: overview 3

3 RELOAD protocol 7

3.1 Presentation of the protocol . 7

3.2 Terminology . 8

3.3 Architecture . 10

3.4 Chord algorithm . 13

3.5 Obtaining of a certificate . 13

3.6 Interpretation/Understanding Draft issues . 14

3.6.1 Handling unstructured overlays . 15

3.6.2 Client issues . 16

3.6.3 Enhanced Client concept . 18

3.6.4 Variable length structure . 20

3.6.5 Unknown Kind of Data . 21

3.6.6 Unknown options . 21

3.6.7 Generation counter . 22

3.6.8 Detecting partitioning . 22

3.6.9 Unreliable links . 23

3.6.10 ICE-TCP and ICE-Lite outdated . 25

3.6.11 Maximum size of a stored value . 25

3.6.12 Handling failures . 25

3.7 Related works . 25

3.7.1 Overlay diagnostics . 26

3.7.2 Location and Discovery of Subsets of Resources 26

3.7.3 Pointers for Peer-to-Peer Overlay Networks, Nodes, or Resources 27

3.7.4 Hierarchical P2PSIP Overlay . 27

vii

Master Thesis CONTENTS

3.7.5 Traffic localization for RELOAD . 27

3.7.6 Self-tuning Distributed Hash Table for RELOAD 28

3.7.7 A Load Balancing Mechanism for RELOAD 28

3.7.8 Topology Plug in for RELOAD . 29

3.7.9 Deterministic Replication for RELOAD 29

3.7.10 A P2PSIP Client Routing for RELOAD 30

3.7.11 P2PSIP Security Requirements . 30

3.7.12 Threat Analysis for Peer-to-Peer Overlay Networks 31

3.8 Configuration of a RELOAD node . 31

4 Usages of RELOAD 35

4.1 SIP usage of RELOAD . 35

4.2 Other uses . 37

4.2.1 Domain Name System . 38

4.2.2 Jabber/XMPP . 40

4.2.3 Content Delivery Network . 43

5 Environment 45

5.1 The A5350 proxy platform . 45

5.2 The Service Creation Environment . 46

5.3 OSGi framework . 47

5.3.1 The OSGi Alliance . 47

5.3.2 The OSGi architecture . 47

5.3.3 Presentation of the OSGi Technology . 49

5.3.4 Interest of using OSGi Framework . 50

6 Implementation 53

6.1 Limitations, shortcuts, . 54

6.2 Interests and advantages of the architecture . 54

6.2.1 RELOAD container . 54

6.2.2 RELOAD application . 56

6.3 Implementation issues . 57

6.3.1 C-like structure . 58

6.3.2 NAT traversal . 58

6.3.3 Unsigned integers . 59

6.3.4 Binary protocol . 60

6.4 Use related to the A5350 proxy platform . 60

viii

Master Thesis CONTENTS

7 The Open Multimedia Platform framework 61

7.1 Presentation and background . 61

7.2 Architecture, characteristics, layers, . 63

7.2.1 The application server . 64

7.2.2 Middleware . 65

7.2.3 OAM . 65

7.2.4 Hardware architecture . 65

7.2.5 Reuse of components . 66

7.3 Comparison between OMP framework and OSGi 66

7.3.1 Generalities . 66

7.3.2 Reuse of components . 67

7.3.3 OAM . 67

7.3.4 Structure of applications . 68

7.3.5 Conclusion . 69

8 Conclusion 71

Bibliography 72

A reload.xml file i

B sip.xml file iii

ix

List of Figures

3.1 RELOAD architecture . 10

3.2 A RELOAD Chord ring . 14

3.3 Overlay with a client connected to its AP . 16

3.4 eClient, DAP and OAP . 19

3.5 Detecting partitioning . 24

4.1 SIP usage of RELOAD . 37

4.2 new SIP usage of RELOAD . 38

4.3 Classical XMPP network . 41

4.4 XMPP network using RELOAD overlay . 41

4.5 Content Sharing Usage for RELOAD . 43

5.1 ASR layers . 45

5.2 Application’s general architecture onto the ASR 46

5.3 Layers of the OSGi Framework . 47

5.4 OSGi framework layers . 50

6.1 Sample of code - doXXX() pattern - doJoin() 57

6.2 Implementation with a "servlet-like" container 58

6.3 Sequence diagram representing messages exchange. 59

7.1 Layers of the Open Multimedia Platform framework (OMP) architecture 63

7.2 Components of the Open Multimedia Platform framework (OMP) architecture 64

7.3 ASR Web Admin - Deploying applications . 68

xi

List of Tables

2.1 Classification of peer-to-peer content distribution systems [1] 4

6.1 Comparison of the RELOAD message’s header. 55

xiii

Table of Acronyms

AIMD Additive increase/multiplicative decrease

AMF Availability Management Framework

AOR Address-of-Record

API Application Programming Interface

ASR Application Server Runtime

CDC Connected Device Configuration

CDN Content Delivery Network

CKPT Checkpoint service

CLDC Connected Limited Device Configuration

CRL Certificate Revocation List

CSC Content Sharing Client

DHT Distributed Hash Table

DNS Domain Name System

DTLS Datagram Transport Layer Security

EJB Enterprise Java Beans

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IAS IMS Application Server

ICE Interactive Connectivity Establishment

IETF Internet Engineering Task Force

IMM Information model management

IMS IP Multimedia Subsystem

IP Internet Protocol

J2SE Java 2 Standard Edition

JAR Java Archives

JEE Java Platform Enterprise Edition

JMX Java Management Extensions

continued on next page

Master Thesis LIST OF TABLES

MIDP Mobile Information Device Profile

NAT Network Address Translation

NTF Notification service

OAM Operations, administration and maintenance

OAP Overlay Attachment Point

OMP Open Multimedia Platform

OSGi Open Services Gateway initiative

P2P Peer-to-Peer

RELOAD REsource LOcation And Discovery

RFC Requests for Comments

RTO Retransmission TimeOut

SAF Service Availability Forum

SCE Service Creation Environment

SGCS Sun Glassfish Communication Server

SIP Session Initiation Protocol

SNMP Simple Network Management Protocol

STUN Simple Traversal of UDP through NATs

TCP Transmission Control Protocol

TLS Transport Layer Security

TFRC TCP Friendly Rate Control

TFRC-SP TCP Friendly Rate Control, The Small-Packet Variant

TURN Traversal Using Relay NAT

UA User Agent

UDP User Datagram Protocol

URI Unified Resource Identifier

VIP Virtual Internet Protocol

WG Working Group

XML eXtensible Markup Language

XMPP eXtensible Messaging and Presence Protocol

xvi

Chapter 1

Introduction

Peer-to-peer (P2P) techniques are more and more common in every aspect of computer sci-

ence. Everybody has heard about file sharing on the Internet, but many other applications

are possible, like P2P voice over Internet Protocol (IP) applications (Skype for instance), me-

dia streaming, content distribution, etc. These techniques are also used to provide anonymity

(Freenet and Tor) and security to users.

The current situation is quite a mess as many applications use their own protocol and a lot

of them are proprietary. This brings many problems in term of compliance and interoperability.

Moreover, with the increased use of Network Address Translation (NAT) techniques (due to

lack of IPv4 addresses among other reasons) and with security problems found on the Internet,

the development of an open, secure, generic P2P protocol which could be used in a lot of P2P

applications has become essential.

Established in March 2007, the Peer-to-Peer Session Initiation Protocol Working Group

(P2PSIP WG) task was (among others) to propose a standard P2PSIP protocol:

• to be used between P2PSIP overlay peers, sometimes behind NATs

• defining how the P2PSIP peers provide user and resource location with no (or minimal)

centralized server

• using the Distributed Hash Table (DHT) algorithm.

This protocol was named RELOAD for REsource Location And Discovery.

P2P techniques bring a lot of advantages like scalability, failure tolerance, etc. In most cases,

they are used to create and maintain an overlay network. With the overlay, peers (or clients)

store and retrieve data without the need of a central server. The overlay can, for instance,

replace a SIP proxy and/or a registrar. With the P2P algorithm, data could be fetched in a

efficient way, duplicated, etc. But, at this time, every application uses its own protocol and

1

Master Thesis CHAPTER 1. INTRODUCTION

technique, resulting in a specification, maintenance and interface nightmare.. As a result, the

Internet Engineering Task Force (IETF) decided to develop a generic P2P signaling protocol

providing a generic way of dealing with a P2P overlay, manage admissions or leaves of nodes,

store and retrieve data into the overlay, route messages, etc.

This thesis is based on my internship accomplished between September 2008 and January

2009 at Alcatel-Lucent. The goal was to analyze and develop a prototype of the in-development

IETF RELOAD protocol, and deploy the prototype to a Java application server. Final aim of

the work was to identify all the advantages such techniques could bring into a specific product.

There will be two main parts in this thesis.

1.The RELOAD protocol itself. It will be presented and criticized, both from a logical (the

algorithm itself, with the management of the DHT) and a technical (messages, structure . . .)

point of view.

2. After a short presentation of the working environment, a critique of an implementation

of the RELOAD draft (including choices of implementation techniques, pros and cons, pitfalls,

etc.).

Finally, the study of the Open Multimedia Platform (OMP) framework and the comparison

between the Open Services Gateway initiative (OSGi) framework used on the development

platform and this one will be presented.

2

Chapter 2

Peer-to-peer: overview

Before defining and presenting the RELOAD protocol, it would be interesting to give a brief

overview of the already existing protocols for P2P applications. There are a lot of protocols and

software components for P2P applications. Some are used by only one software application,

others are used by multiples ones. Here is a short list of well-known protocols:

• Ares

• Bittorrent

• Direct Connect

• eDonkey

• Fasttrack

• Gnutella

• MANOLITO/MP2PN

• OpenNAP

To give a precise description of the working of these protocols would be useless, but a short

presentation of the main architecture of P2P networks, critical algorithms, etc. could help

understanding of the current situation in the P2P world.

The main differences between protocols (beyond syntax and structure of messages) are, in

one hand, the overlay network centralization, with three main categories:

• "purely decentralized architecture: All nodes in the network perform exactly the

same tasks, acting both as servers and clients, with no central coordination of their activ-

ities. The nodes of such networks are often termed "servents" (SERVers + clieENTS).

3

Master Thesis CHAPTER 2. PEER-TO-PEER: OVERVIEW

• partially centralized architecture: The basis is the same as with purely decentralized

systems. Some of the nodes, however, assume a more important role, acting as local central

indexes for files shared by local peers. The way in which these supernodes are assigned

their role by the network varies among different systems. It is important, however, to

note that these supernodes do not constitute single points of failure for a peer-to-peer

network, since they are dynamically assigned. If they fail, the network will automatically

take action to replace them with others.

• hybrid decentralized architecture: In these systems, there is a central server facili-

tating the interaction between peers by maintaining directories of meta-data describing

the shared files stored by the peer nodes. Although the end-to-end interaction and file

exchanges may take place directly between two peer nodes, the central servers facilitate

this interaction by performing the lookups and identifying the nodes storing the files.

The terms "peer-through-peer" or "broker mediated" are sometimes used to refer to such

systems.

On the other hand, the network structure can be either:

• unstructured: The placement of content (files) is completely unrelated to the overlay

topology.

• structured: In structured networks, the overlay topology is tightly controlled and files

(or pointers to them) are placed at precisely specified locations"[1]

Table 2.1 summarizes the categories, with examples of peer-to-peer content distribution

systems and architecture.

Centralization

Hybrid Partial None

Unstructured Napster, Publius Kazaa, Morpheus,

Gnutella v0.6,

Edutella

Gnutella v0.4, Free-

haven

Structured Infrastructures Chord, CAN,

Tapestry, Pastry

Structured Systems PAST, Kademlia,

OceanStore

Table 2.1: Classification of peer-to-peer content distribution systems [1]

4

Master Thesis CHAPTER 2. PEER-TO-PEER: OVERVIEW

Chord is the overlay algorithm mandatory to implement in the RELOAD protocol, but other

algorithms could be used to manage the DHT (in this case, these protocols will probably be in

the same case as Chord) or to set up a different overlay network architecture (an unstructured

overlay network with no centralization seems possible, with Gnutella for example). For more

information about the possible network overlay architectures, see Section 3.6.1.

5

Chapter 3

RELOAD protocol

In this chapter, the RELOAD protocol will be presented and criticized, both from a technical

(structure, messages, . . .) and a logical point of view (the DHT algorithm, . . .).

This work is based on the current draft version, version 03, July 2009. The draft can be

found at the address http://tools.ietf.org/html/draft-ietf-p2psip-base.

3.1 Presentation of the protocol

"REsource LOcation And Discovery (RELOAD) is a peer-to-peer (P2P) signaling protocol

for use on the Internet. It provides a generic, self-organizing overlay network service, allowing

nodes to efficiently route messages to other nodes and to efficiently store and retrieve data in

the overlay. RELOAD provides several features that are critical for a successful P2P protocol

for the Internet:

Security Framework: A P2P network will often be established among a set of peers that

do not trust each other. RELOAD leverages a central enrollment server to provide credentials

for each peer which can then be used to authenticate each operation. This greatly reduces the

possible attack exposure.

Usage Model: RELOAD is designed to support a variety of applications, including P2P

multimedia communications with the Session Initiation Protocol. RELOAD allows the defini-

tion of new application usages, each of which can define its own data types, along with the

rules for their use. This allows RELOAD to be used with new applications through a simple

documentation process supplying the details for each application.

NAT Traversal: RELOAD is designed to function in environments where many if not most

of the nodes are behind NATs or firewalls. Operations for NAT traversal are part of the base

7

http://tools.ietf.org/html/draft-ietf-p2psip-base

Master Thesis CHAPTER 3. RELOAD PROTOCOL

design, including using Interactive Connectivity Establishment (ICE) to establish new RELOAD

or application protocol connections.

High Performance Routing: The very nature of overlay algorithms introduces a require-

ment that peers participating in the P2P network route requests on behalf of other peers in

the network. This introduces a load on those other peers, in the form of bandwidth and pro-

cessing power. RELOAD has been defined with a simple, lightweight forwarding header, thus

minimizing the amount of effort required by intermediate peers.

Pluggable Overlay Algorithms: RELOAD has been designed with an abstract interface

to the overlay layer to simplify implementing a variety of structured (DHT) and unstructured

overlay algorithms. This specification also defines how RELOAD is used with Chord, which is

mandatory to implement. Specifying a default "must implement" overlay algorithm will allow

interoperability, while the extensibility allows selection of overlay algorithms optimized for a

particular application.

These properties were designed specifically to meet the requirements for a P2P protocol to

support SIP. RELOAD is not limited to usage by SIP and could serve as a tool for supporting

other P2P applications with similar needs".[2]

3.2 Terminology

DHT: "A distributed hash table. A DHT is an abstract hash table service realized by storing

the contents of the hash table across a set of peers.

Overlay Algorithm: An overlay algorithm defines the rules for determining which peers in

an overlay store a particular piece of data and for determining a topology of interconnections

amongst peers in order to find a piece of data.

Overlay Instance: A specific overlay algorithm and the collection of peers that are collab-

orating to provide read and write access to it. There can be any number of overlay instances

running in an IP network at a time, and each operates in isolation of the others.

Peer: A host that is participating in the overlay. Peers are responsible for holding some

portion of the data that has been stored in the overlay and also route messages on behalf of

other hosts as required by the Overlay Algorithm.

8

Master Thesis CHAPTER 3. RELOAD PROTOCOL

Client: A host that is able to store data in and retrieve data from the overlay but which is

not participating in routing or data storage for the overlay.

Node: The term "Node" refers to a host that may be either a Peer or a Client. Because

RELOAD uses the same protocol for both clients and peers, much of the RELOAD related text

applies equally to both.

Node-ID: A 128-bit value that uniquely identifies a node. Node-IDs 0 and 2128 - 1 are

reserved and are invalid Node-IDs. A value of zero is not used in the wire protocol but can be

used to indicate an invalid node in implementations and Application Programming Interfaces

(APIs). The Node-ID of 2128 is used on the wire protocol as a wildcard.

Resource: An object or group of objects associated with a string identifier.

Resource Name: The potentially human readable name by which a resource is identified. In

unstructured P2P networks, the resource name is sometimes used directly as a Resource-ID. In

structured P2P networks the resource name is typically mapped into a Resource-ID by using

the string as the input to hash function. A SIP resource, for example, is often identified by its

Address-Of-Record (AOR) which is an example of a Resource Name.

Resource-ID: A value that identifies some resources and which is used as a key for storing

and retrieving the resource. Often this is not human friendly/readable. One way to gener-

ate a Resource-ID is by applying a mapping function to some other unique name (e.g., user

name or service name) for the resource. The Resource-ID is used by the distributed database

algorithm to determine the peer or peers that are responsible for storing the data for the over-

lay. In structured P2P networks, Resource-IDs are generally fixed length and are formed by

hashing the resource name. In unstructured networks, resource names may be used directly as

Resource-IDs and may have variable length.

Connection Table: The set of peers to which a node is directly connected. This includes

nodes with which Attach handshakes have been done but which have not sent any Updates.

Routing Table: The set of peers which a peer can use to route overlay messages. In general,

these peers will all be on the connection table but not vice versa, because some peers will have

Attached but not sent Updates. Peers may send messages directly to peers that are in the

connection table but may only route messages to other peers through peers that are in the

routing table.

9

Master Thesis CHAPTER 3. RELOAD PROTOCOL

Destination List: A list of IDs through which a message is to be routed. A single Node-ID

is a trivial form of destination list.

Usage: A usage is an application that wishes to use the overlay for some purpose. Each

application wishing to use the overlay defines a set of data kinds that it wishes to use. The SIP

usage defines the location data kind."[2]

Churn: "The arrival and departure of peers to and from the overlay, which changes the peer

population of the overlay".[3]

3.3 Architecture

RELOAD is an overlay network, and can be divided in several components, as depicted in the

following picture.

Figure 3.1: RELOAD architecture

10

Master Thesis CHAPTER 3. RELOAD PROTOCOL

The major components of RELOAD architecture are:

Usage Layer : "Each application defines a RELOAD usage; a set of data kinds and behaviors

which describe how to use the services provided by RELOAD . These usages all talk to RELOAD

through a common Message Transport API.

Message Transport : Handles the end-to-end reliability, manages request state for the us-

ages, and forwards Store and Fetch operations to the Storage component. Delivers message

responses to the component initiating the request.

Storage : The Storage component is responsible for processing messages relating to the stor-

age and retrieval of data. It talks directly to the Topology Plugin to manage data replication

and migration, and it talks to the Message Transport to send and receive messages. This

component can use these messages:

• Store: this message is sent by a node for storing data in the overlay.

• Fetch: the Fetch message retrieves one or more elements stored in the overlay.

• Stat: this request is used to get meta-data for a stored element without retrieving the

element itself.

• Find: this message can be used to explore the overlay, or knowing the responsible peer

for certain data.

For these messages, both requests and responses are defined.

Topology Plugin : The Topology Plugin is responsible for implementing the specific overlay

algorithm being used. It uses the Message Transport component to send and receive overlay

management messages, to the Storage component to manage data replication, and directly to the

Forwarding Layer to control hop-by-hop message forwarding. This component closely parallels

conventional routing algorithms, but is more tightly coupled to the Forwarding Layer because

there is no single "routing table" equivalent used by all overlay algorithms. The messages used

by this plugin are:

• Join: this message is sent by a new peer to join the overlay. It is sent to the responsible

peer and warn him that a new peer is taking some responsibilities (in term of routage and

storage) and it needs to synchronize its state.

• Leave: this request is sent by a peer when it is leaving the overlay.

11

Master Thesis CHAPTER 3. RELOAD PROTOCOL

• Update is a maintenance message. A node sends this message to notify the recipient of

the sender’s point of view of the overlay (by sending its routing table). Such a message is

sent when a peer detects a topology shift.

• Route_Query: this request allows the sender to ask a peer where it would route a message

directly to a given destination.

• Probe: this message allows a peer to learn some information. It can be used to determine

which resources another node is responsible for or to allow some discovery services in

multicast settings.

Forwarding and Link Management Layer : Stores and implements the routing table

by providing packet forwarding services between nodes. It also handles establishing new links

between nodes, including setting up connections across NATs using ICE. The messages used by

these components are:

• Attach: a node sends an Attach request when it wants to open a Transmission Control

Protocol (TCP) or User Datagram Protocol (UDP) connection with another node to send

RELOAD messages.

• AppAttach: a node sends this message to establish a direct TCP or UDP connection with

another node to send non RELOAD messages, application messages typically.

• AttachLite: this message has the same aim that Attach message but without using full

ICE. This message support ICE-Lite.

• AppAttachLite: Same than Attach but without full Interactive Connectivity Establish-

ment (ICE) support. ICE-Lite is used.

• Ping: this message allows to test connectivity along a path.

• Config_Update: this request is used to push updated configuration data into the overlay.

For these messages, both requests and responses are defined.

Overlay Link Layer : Transport Layer Security (TLS), with TCP, and Datagram Transport

Layer Security (DTLS), used with UDP, are the "link layer" protocols used by RELOAD for

hop-by-hop communication. Each such protocol includes the appropriate provisions for per-hop

framing or hop-by-hop ACKs required by unreliable transports" [2].

12

Master Thesis CHAPTER 3. RELOAD PROTOCOL

3.4 Chord algorithm

Amodified version of the Chord algorithm is mandatory to implement according to the RELOAD

specifications. In this section, an overview will be given to allow a full comprehension of the

algorithm or the terms used further on. More information about the original Chord algorithm

can be found in [4]. A complete presentation of the modified algorithm can be found in the

RELOAD base draft [2].

"The algorithm described here is a modified version of the Chord algorithm. Each peer

keeps track of a finger table of 16 entries and a neighbor table of 6 entries. The neighbor table

contains the 3 peers before this peer and the 3 peers after it in the DHT ring. The first entry

in the finger table contains the peer half-way around the ring from this peer; the second entry

contains the peer that is 1/4 of the way around; the third entry contains the peer that is 1/8th

of the way around, and so on. Fundamentally, the Chord data structure can be thought of

a doubly-linked list formed by knowing the successor and predecessor peers in the neighbor

table, sorted by the Node-ID. As long as the successor peers are correct, the DHT will return

the correct result. The pointers to the prior peers are kept to enable inserting new peers into

the list structure. Keeping multiple predecessor and successor pointers makes it possible to

maintain the integrity of the data structure even when consecutive peers simultaneously fail.

The finger table forms a skip list, so that entries in the linked list can be found in O(log(N))

time instead of the typical O(N) time that a linked list would provide.

A peer, n, is responsible for a particular Resource-ID k if k is less than or equal to n and k

is greater than p, where p is the peer id of the previous peer in the neighbor table. Care must

be taken when computing to note that all math is modulo 2128" [2].

Figure 3.2 depicts a Chord overlay, with tables and connections of the peer 119. The

neighbor table contains three predecessors and three successors of the peer, the finger table

contains neighbors and some other nodes present in the overlay.

An important point is the failure tolerance. In this version of the Chord algorithm, a node

is still up unless it looses connectivity to all three of the peers that follows this peer in the ring.

In such a situation, the peer should behave as if it is joining the network.

If connectivity is lost to all the peers in the finger table, the peer should assume that it has

been disconnected from the rest of the network.

More detailed information is available in Section 9.7.1 of the RELOAD base draft.

3.5 Obtaining of a certificate

One of the most important features in the RELOAD protocol is security. To ensure security and

to avoid numerous possible attacks on P2P networks (denial of service, Sybil attack, false claim

13

Master Thesis CHAPTER 3. RELOAD PROTOCOL

Figure 3.2: A RELOAD Chord ring

to owned Resource-ID,. . .) all messages sent by a node must be signed with a X509 certificate,

as well as all data stored in the DHT. The certificate can be found in the overlay configuration

file, which can be downloaded from a HyperText Transfer Protocol Secure (HTTPS) server.

3.6 Interpretation/Understanding Draft issues

Many issues and questions which surface during the implementation come from the draft itself.

The RELOAD protocol is still in a relatively early stage of development and there are still quite

a lot of undefined details in the draft, related to its implementation.

14

Master Thesis CHAPTER 3. RELOAD PROTOCOL

3.6.1 Handling unstructured overlays

In the introduction, RELOAD is defined to allow simple implementation of both structured

(DHT) and unstructured overlay algorithms. If structured overlays are the expected way to

use the RELOAD protocol (using DHT to store and retrieve data, route message towards the

correct peer using its Node-ID,. . .) the use of an unstructured algorithm is an interesting point

to develop.

Indeed, Chord is mandatory to implement according to the draft, but seems to be (at least)

difficult to implement with an unstructured overlay. In such a network, peers are randomly

connected to each other. Their identifier is not a simple integer, which can cause difficulties

for contacting a node, identifying the node responsible for a specific data, routing the message,

etc. Obviously, in the case of an unstructured overlay algorithm, Chord has to be replaced by

another algorithm.

The aim of using a topology plugin (and the word "plugin" is important) is that another

algorithm can be used without major changes on the other levels. For example, in the case of a

unstructured network, a behaviour like original Gnutella (no centralization at all) can be used,

with messages transmitted from the source peer to each connected node, and forwarded by

these nodes, and so on. The nodes flood the message until it reaches a predetermined number

of "hops" from the sender [5]1.

To know if such an algorithm can be used with RELOAD, we have to analyze the structure

of a RELOAD message and see if the needed parameters are present. For the ttl parameters,

the value could be 100 unless if it is specified in the configuration file. Such a value is obviously

too high for a flooding algorithm, but it could be set to a lower value easily (for example, the

value was 7 for Gnutella version 0.4 [5]). In a Gnutella-like algorithm, a message is forwarded to

all the nodes a node is connected with (storing in a single table), so the routing of the message

is not a problem.

For location, storage and retrieval operations, the resource name can be used as an identifier.

The admission in the network could be complete in the classical Gnutella way. The incoming

peer sends a message to a bootstrap peer, receives a list of nodes to connect with and establish

a connection with them.

At the first sight, using an unstructured overlay with RELOAD is not a problem, but a

further analysis could confirm this idea.

1No external sources were available in the Wikipedia page.

15

Master Thesis CHAPTER 3. RELOAD PROTOCOL

3.6.2 Client issues

Client vs Peer

As defined above (Section 3.2), clients are nodes who do not store or route messages. They can

use the overlay to store, retrieve data, etc. but take no other responsibility.

The most classical situation is depicted in Figure 3.3 with a client connected to its admitting

peer (AP). All messages from and to the client are routed through the AP.

Figure 3.3: Overlay with a client connected to its AP

There are a lot a discussions in the Working Group about clients. Despite the fact that

clients are not considered a first-class concept, it seems useful to think about it. There are a

lot of cases where nodes have to act like a client rather than like a peer. For example,

• The node does not have appropriate network connectivity, typically because it has a low-

bandwidth network connection.

• The node may not have sufficient resources, such as computing power, storage space, or

battery power.

• The overlay algorithm may dictate specific requirements for peer selection. These may

include participation in the overlay to determine trustworthiness, control the number of

peers in the overlay to reduce too long routing paths, or ensure minimum application

uptime before a node can join as a peer.

16

Master Thesis CHAPTER 3. RELOAD PROTOCOL

The reader can find more specific information about clients in the corresponding draft [6].

There are several issues about status, roles,. . . of clients in a RELOAD overlay. In this

section, an overview of these issues will be presented, with an explanation of the problem, a

few possible solutions and (when it is possible) a reference to the specific draft dealing with the

issue.

At this point, it seems important to remind about two different concepts: the RELOAD

client and the application client. There must be no confusion between these concepts.

A RELOAD client is (like defined above) a node who can use the overlay, store and retrieve

data into it,. . . It is "just" a RELOAD concept and the application using RELOAD (if there is

one) is not relevant in most of the cases.

An application client is a "higher" concept and is used in the classical way. So an application

client (like a SIP User Agent (UA), a Jabber client) can run on either a RELOAD peer, a

RELOAD client or be completely independent of RELOAD. When talking about application

clients, a clarification will be made (if needed) if it is running on a node, a peer, a client or a

non-RELOAD node.

Client promotion

In section 3.3 of the RELOAD base draft, it is specified that RELOAD’s routing capabilities

have to (among others) ensure the client promotion. RELOADmust support clients that become

peers at a later point as determined by the overlay algorithm and deployment.

A client could become a peer at any moment, for example a mobile SIP UA acting like a

RELOAD client can be connected to a computer, having enough bandwidth, storage capacity,

. . . to act as a peer from that point on. When such a situation occurs, the client has to send a

Join message to its admitting peer, and admission into the overlay will take place.

Peer to client

If the client promotion is (more or less) explained in the RELOAD draft, it could be a good

thing to think about the opposite situation. Indeed, if there are reasons for a node to become

a peer, the same reason could bring a peer to demote itself to a client.

In this case, the draft does not specify any action to take. It seems interesting to think

about that and maybe try to define the actions which have to be taken to deal with that.

Currently, the only possible solution for the peer is to disconnect from the overlay, and

reconnect as a new client. Indeed, there is no message designed to complete this operation.

According to the draft, the leaving peer should send a Leave message to all members of its

neighbor table. It will be removed from the neighbor table of the other peers and a stabilization

17

Master Thesis CHAPTER 3. RELOAD PROTOCOL

mechanism will ensure the replication of data and the return of the overlay in a correct, well-

defined state. Then, the node can reconnect to the overlay like a new client. The node can keep

its Node-ID and the certificate and try to reconnect as a client. In this case the responsible

peer for it will be its immediate successor in the ring. If the client still has the information to

contact its responsible peer, it could use it. But a safer choice could be to start from scratch,

since other changes may have happened in the overlay. So the client contacts a bootstrap peer,

gets a configuration file and (maybe) a new certificate.

3.6.3 Enhanced Client concept

The new concept of enhanced client (eClient) has been proposed in [7] by V. Narayanan and A.

Swaminathan to deal with two possible issues: the mobility of a node inside the overlay, and the

topology of the overlay (nodes are placed randomly in the overlay, and the resulting situation

can be not optimal). Before a presentation of the solutions, a short overview of eClient concept

is requested to give the reader all the information s/he needs.

Despite the name, it is important to note that the eClients are functionally similar to peers.

Overview of eClient concept eClient operation allows a node to connect to an overlay via

an arbitrary peer (called here the Direct Attachment Point, DAP), not the node that owns

its identity (called the Overlay Attachment Point, OAP). The DAP is chosen to be a node

topologically close from the incoming peer. Doing this, the connection between the eClient and

the DAP will be easier to establish and maintain, less messages will be needed (saving power

for battery operated devices), . . . For example, a Bluetooth connection between the two nodes

can be enough.

Figure 3.4 depicts an example, with eClient (with NODE-ID 24), its OAP (NODE-ID 30) and

the DAP (with NODE-ID 70).

This solution brings some changes in some features of the RELOAD base protocol, like

bootstrap. Moreover, additional information are needed in eClient, OAP and DAP to route

messages, . . .

Concerning the bootstrap process, the DAP serves as the bootstrap peer (the discovery of

this peer is not specified).

After the join process, both OAP and DAP store state information about the eClient:

• the OAP creates forwarding state for the eClient with the DAP as the next hop. Every

message sent to the eClient will be forwarded to the DAP

• the DAP maintains a list of eClients attached to it.

18

Master Thesis CHAPTER 3. RELOAD PROTOCOL

Figure 3.4: eClient, DAP and OAP

Messages sent by the eClient (and responses if the routing process is symmetric) will be

routed on the overlay through the DAP. Messages sent to the eClient (or responses if the

routing process is asymmetric) will be routed to the OAP and forwarded, according to the state

information.

The reader will find complete information about eClient in [7].

Overlay topology

The topology issue is recurrent about overlay network. For a RELOAD like overlay (a ring),

two main choices are possible: to place nodes randomly or, conversely, make an "intelligent"

location of nodes, for example nodes physically close are placed close in the overlay.

The first one is better for reliability. Indeed, if physically close computers are close in the

network and these computers disappear from the overlay (network issue, power failure,. . .),

replication mechanisms could be ineffective (if replicated data are on the successor, which is

also down).

The second choice is sometimes more complicated from an algorithmic point of view (in-

formation about topology and location must be taken into account, attribution of id for the

placement is tricky), but easier to put in place when the place of the node is determined (we can

19

Master Thesis CHAPTER 3. RELOAD PROTOCOL

assume that a connection between physically close computers is not more complicated, and in

some cases easier than a connection between two distant nodes) but can have a negative impact

on the reliability.

In [2], nodes are randomly placed into the overlay. This can bring a not optimal situation,

where nodes topologically far away have to establish and maintain connection. If a node could

choose to connect with a closer peer, fewer messages will be needed, power or bandwidth could

be saved,. . . The eClient concept can deal with this issue, since an eClient can connect to an

arbitrary peer in the overlay, and has the advantage that it is optional for all nodes involved.

Client mobility

An issue related to nodes is mobility. If a RELOAD node is mobile, it can connect, disconnect

and reconnect often and needs to update all data stored in the overlay with its new contact

information, in order to receive request messages. This behaviour is expensive in term of number

of messages, time,. . . Avoiding this could so be a good thing. A solution has been proposed in

[7], using the eClient.

After a first connection of the eClient, if it loses the connection with its DAP, but manages

to reconnect to the address it used for the DAP, the eClient can be back on the overlay without

having to re-join on the overlay (i.e. without having to redo the bootstrap operations).

Possible misunderstanding of eClient concept

A possible source of confusion has to be highlighted: in some situation, a Join request from an

eClient can be received by a peer (the OAP of the eClient). In this case, if the message has not

been received through the DAP (indicating that eClient can no longer connect to DAP), the peer

has to update the table of information it keeps about the eClient. In the normal situation, after

receiving a Join request, a peer triggers a series of Store requests for the incoming peer. Using

the same messages for two very different things could lead to misunderstandings. Maybe the

creation of a new message could solve the problem, in the same way that AppAttach messages

have been created to avoid confusion using Attach for two different things (according to some

discussions in the P2PSIP WG mailing list).

3.6.4 Variable length structure

In section 5.3.1.1 of the RELOAD base draft [2], one can read: "Like a NodeId, a Resource-ID

is an opaque string of bytes, but unlike Node-IDs, Resource-IDs are variable length, up to 255

bytes (2, 048 bits) in length. On the wire, each Resource-ID is preceded by a single length byte

(allowing lengths up to 255). Thus, the 3-byte value "Foo" would be encoded as: 03 46 4f 4f."

20

Master Thesis CHAPTER 3. RELOAD PROTOCOL

Following this sentence, a byte has to be added on the wire before Resource-ID, which

is a variable length structure. This byte is obviously necessary to parse the message and to

know how long the Resource-ID is. But, what in the case of other variable length structures

(for example the payload in the content of the message, opaque destination type in destination

and via lists, . . .)? Must a byte be added before every of these structures or only when it is

necessary and there is no other mean to compute the length?

Moreover, if this "length byte" has to be added on the wire, why not include it in the

structure of the data? It is not absolutely necessary but could match the structure of the data

and the flow of bytes on the wire.

3.6.5 Unknown Kind of Data

In the draft, section 6.4.1.1, one can read this: "Implementations SHOULD reject requests

corresponding to unknown kinds unless specifically configured otherwise." According to this

sentence and the signification of the SHOULD in [8], a RELOAD overlay could accept unknown

Kind of Data in particular circumstances. This is not the recommended behavior but it is

possible.

A few lines below in the same section, you can read "The peer MUST perform the following

checks: The Kind-ID is known and supported. [...] If all these checks succeed, the peer MUST

attempt to store the data values". Following this sentence, a peer must perform some checks

to verify the kind of data is known, and must store the data if all checks succeed. What is the

correct action if the RELOAD overlay is configured to accept unknown kinds?

One can assume that the specific setting (i.e. to accept unknown Kind of Data) is used

here, instead of the default behaviour, but it is not specified in the draft.

3.6.6 Unknown options

The Forwarding header of a RELOAD message can be extended with forwarding header options.

The structure of such an option is given in the draft, but to allow new usage, new options can

be easily created and used. Section 5.3.2.3 of the RELOAD base draft gives a definition of the

structure:

enum { (255) } ForwardingOptionsType;

struct {

ForwardingOptionsType type;

uint8 flags;

21

Master Thesis CHAPTER 3. RELOAD PROTOCOL

uint16 length;

select (type) {

/* Option values go here */

} option;

} ForwardingOption;

but the behaviour when an unknown option is used in a known data structure is not defined.

The same question can be asked when an unknown option is used in a unknown data structure.

3.6.7 Generation counter

The generation counter is used in the Store method. According to the draft, it represents "the

expected current state of the generation counter (approximately the number of times this object

has been written)" but, since "if there are multiple stored values in a single StoreKindData, it

is permissible for the peer to increase the generation counter by only 1 for the entire Kind-ID,

or by 1 or more than one for each value", the value of the generation counter can be quite far

from the definition, and it is more related to the kind of data than a single element. Specify in

more precisely the value to add could be a good thing for the sake of interoperability.

3.6.8 Detecting partitioning

Partitioning, for an overlay network, is when peers have different information about the state

of the overlay, when peers see the overlay differently (some nodes are missing for a node, the

same ones are present for another node,. . .). Such a situation can bring a lot of problem, since

overlay algorithm can be performed in a inaccurately.

In Section 9.7.4.4 of the RELOAD base draft, one can read that "To detect that a parti-

tioning has occurred and to heal the overlay, a peer P MUST periodically repeat the discovery

process used in the initial join for the overlay to locate an appropriate bootstrap peer, B. P

should then send a Ping for its own Node-ID routed through B. If a response is received from

a peer S′, which is not P ’s successor, then the overlay is partitioned and P should send a

Attach to S′ routed through B, followed by an Update sent to S′. (Note that S′ may not be

in P ’s neighbor table once the overlay is healed, but the connection will allow S′ to discover

appropriate neighbor entries for itself via its own stabilization.)"

This last sentence is not easy to follow. At this point, how can we maintain that the overlay

is broken? Moreover, why a message sent by P should be routed through its successor S, since

if it sends the message through B, B and P are connected and the message can be resent to P

immediately?

22

Master Thesis CHAPTER 3. RELOAD PROTOCOL

An explanation could be there is a small mistake in the draft. If P sends a message to its

(Node-ID + 1) through B, it will be routed to the successor of P known by B. After receiving

the response, P can check whether the responder is its immediate successor S (in this case P

and B have the same successor for P and the situation is correct) or another node S′(in this

case the view of the overlay is not the same between P and B, and an overlay partitioning is

possible).

Figure 3.5 depicts such situation: the Ping message is sent by P (1 in the Figure 3.5) to

(Node-ID +1) through B.

In the normal case, the message is routed to S (2) and the response is received by P (3-4).

P now checks which node has sent the response. It is S so P and B have the same view of the

overlay.

In case of partition, the Ping message will be routed to another node S′ (2’). When P

receives the response (3’-4’), he can see that it has been sent by a node S′,and can now deduct

that B has a different view of the overlay (since for B, the node S is not P ’s successor, but S′

is).

3.6.9 Unreliable links

Allowing the use of unreliable links, whereas requesting the reliability of the message trans-

mission brings complexity to the implementation. Indeed, if DTLS or another unreliable link

protocol is used, "it needs to be used with a reliability and congestion control mechanism, which

is provided on a hop-by-hop basis, matching the semantics if TCP was used."[2]

The reliability is provided by an acknowledgment mechanism. At each hop, the receiver

sends an ACK message to the sender, containing the sequence number of the message.

The retransmission and flow control mechanism can be implemented in different ways. The

requirement is that the implementation must not be more aggressive than the TCP Friendly

Rate Control (TFRC)2. Three alternatives are proposed:

• a "default" implementation, section 5.6.2.2 of the RELOAD base draft;

• an implementation based on the additive increase, multiplicative decrease (AIMD) algo-

rithm in TCP;

• an implementation based on the TFRC in the Small Packet (TFRC-SP) variant3 , "and

use the received bitmask to allow the sender to compute packet loss event rates.[2]"

In brief, retransmission is done by a peer if it has not received an ACK for messages in a

interval of Retransmission TimeOut (RTO). After each retransmission the interval is doubled.
2Requests For Comments (RFC) 5348: http://www.rfc-editor.org/rfc/rfc5348.txt
3RFC 4828: http://tools.ietf.org/html/rfc4828

23

http://www.rfc-editor.org/rfc/rfc5348.txt
http://tools.ietf.org/html/rfc4828

Master Thesis CHAPTER 3. RELOAD PROTOCOL

Figure 3.5: Detecting partitioning

The value of the RTO can be static (default is 500 ms) or dynamic (using the algorithm described

in RFC 29884, with some exceptions). There are at most 5 retransmissions for a message.

RELOAD messages may be fragmented. The fragments are reassembled only at the final

destination. Details of the fragmentation and reassembly mechanisms are not relevant here,

they can be found in section 5.6.3 of the RELOAD base draft.

To summarize, adding reliability, congestion control, retransmission, . . . seems to bring a

lot of complication in the implementation of a RELOAD peer, but could be justified in some

cases. Nevertheless, making this requirement optional could be a good thing and ease the

implementation.

4RFC 2988: Computing TCP’s Retransmission Timer, http://tools.ietf.org/html/rfc2988

24

http://tools.ietf.org/html/rfc2988

Master Thesis CHAPTER 3. RELOAD PROTOCOL

3.6.10 ICE-TCP and ICE-Lite outdated

Implementing full ICE-TCP and ICE-Lite support is a mandatory requirement for the RELOAD

protocol, but neither ICE-TCP or ICE-Lite are making progress.

The last version of the draft 5 is from July 2008. Having normative dependencies on this

topic at this point seems problematic. And possible future implementations could bring a lot

of changes in the RELOAD base protocol, if the development process is continued in another

direction.

ICE-Lite is in the same situation, the last version of the draft 6 dates from February 2007.

3.6.11 Maximum size of a stored value

A possible issue related to the size of data could be the dynamic change of the overlay configura-

tion. With the Config_Update method, some overlay parameters can be dynamically changed,

max-size of data for example. In such a situation, [2] specifies that "if a node is not capable of

supporting the new requirements, it MUST exit the overlay." If the max-size is decreased on a

running overlay (for example to limit the use of bandwidth) what about the data stored which

exceed the size limit? One can assume that these data could be dropped, but it is also possible

that the change is temporary and the old size limit could be put back. In this case, removal of

data could result in a waste of time and bandwidth if they need to be re-stored in the overlay.

Moreover, the maximum size of a stored value has to be present in the configuration file of

the overlay, but the unit is not specified. The most likely unit is byte, but a precise information

would be a good thing.

3.6.12 Handling failures

Section 9.7.1 of the RELOAD base draft is dedicated to the handling of neighbor failures. One

can read that "If connectivity is lost to all the peers in the finger table, this peer should assume

that it has been disconnected from the rest of the network, and it should periodically try to join

the DHT." This sentence should be moved in the Section 9.7.2: Handling Finger Table Entry

Failure.

3.7 Related works

With the increase in the number of drafts in the WG, more and more aspects of RELOAD

have been covered. There are currently three working group documents (RELOAD base draft,

5http://tools.ietf.org/html/draft-ietf-mmusic-ice-tcp-07
6http://tools.ietf.org/id/draft-rescorla-mmusic-ice-lite-00.txt

25

http://tools.ietf.org/html/draft-ietf-mmusic-ice-tcp-07
http://tools.ietf.org/id/draft-rescorla-mmusic-ice-lite-00.txt

Master Thesis CHAPTER 3. RELOAD PROTOCOL

SIP usage of RELOAD and diagnostics draft) and more than fifty related active documents

(of course some of these documents are outdated or currently useless but some are still under

development. To give a more complete overview of the RELOAD current situation and the

issues raised by these drafts, a short overview of the most important documents will be given

in this section.

The first concerns the diagnostics mechanism. As said above, this is a working group

document, and therefore an essential point concerning the RELOAD protocol.

The draft dependency graph can be found at the address http://www.fenron.com/~fenner/

ietf/deps/viz/p2psip.pdf.

3.7.1 Overlay diagnostics

Overlay networks are seen as a good platform for distributed systems because of, among other

things, their failure tolerance. But there are a lot of situations in which some peers of an

overlay may malfunction (peers misrouting messages, congested peers, network failure,. . .), and

the consequence can be degradation of the quality of service, or an interruption of service.

To prevent as much as possible these drawbacks, it is useful to identify these malfunctioning

peers and exclude them from the overlay. To perform these operations, an overlay diagnostic

framework supporting periodic and on-demand methods for detecting node or network failures

is desirable [9].

Some methods, specific to the RELOAD Chord algorithm, are already present in the

RELOAD base document. But a specific extension, presenting a general P2PSIP overlay diag-

nostic has been proposed in [9].

In this part, mechanisms included in the base RELOAD protocol will be presented and

discussed. After, the overlay diagnostic framework presented in [9] will be discussed.

The following sections tackle some interesting documents related to the P2PSIP WG (but

not WG documents). As mentioned above, there are a lot of related active documents but only

documents which have been published in 2009 (and therefore still valid) have been taken into

account for the following sections.

3.7.2 Location and Discovery of Subsets of Resources

Mechanisms provided by the RELOAD protocol to efficiently search some resources may turn

out to be limited. [10] introduces the "location and discovery of filter resources selected by

search-conditions. The peers, which are virtually grouped, construct n-tuple overlay virtual

hierarchical tree overlay network. With cached addresses of peers, the overload of traffic in tree

structure can be avoided. The resources are classified into hierarchical domains, and registered

26

http://www.fenron.com/~fenner/ietf/deps/viz/p2psip.pdf
http://www.fenron.com/~fenner/ietf/deps/viz/p2psip.pdf

Master Thesis CHAPTER 3. RELOAD PROTOCOL

into the peers which are located in the same domain virtual groups as the resources. This

proposal supports flexible queries by a SQL-like query statement."

If the mechanism of resource classification can be extended to data, it could be very useful

when looking for data based on their characteristics instead of their names. With the hierarchical

classification, data semantics can be taken into account for a search. This classification could,

for example, be used with the hierarchical overlay proposition (see Section 3.7.4) to provide a

more complete search mechanism.

3.7.3 Pointers for Peer-to-Peer Overlay Networks, Nodes, or Resources

RELOAD has been designed to manage large overlay networks on the Internet. But providing

links (similar to Unified Resource Identifier (URI)) to an overlay in textual media like web

pages, email messages,. . . could be a good thing to make easier the search, the identification of

an overlay or the resources present in it. This proposition has been done in [11].

3.7.4 Hierarchical P2PSIP Overlay

With RELOAD, all the peers participating into the overlay are considered equal. But actually

peers can differ from each other on many aspects (physical, bandwidth or system performance,

storage capacities,. . .) These differences should be taken into account to avoid some potentially

"bad" situation (critical or often accessed data stored on a peer with low bandwidth, . . .). In

[12], authors "introduce the performance concerns of P2P SIP overlay without consideration

of node heterogeneity at first. After that, an alternative architecture of hierarchical P2P SIP

overlay is brought up."

Their solution is to divide an overlay into suboverlays using different classification algo-

rithms. These overlays hold equally powerful and stable nodes. An incoming peer will be

inserted in the lowest suboverlay (containing peers with the lowest capabilities), and will bring

up into the next if it has enough capabilities.

There are still a few open issues in the document, but this approach could bring some

improvement.

3.7.5 Traffic localization for RELOAD

In the RELOAD default mechanism, data are randomly distributed. It does not take into

account the geographical location information. This situation can bring some drawbacks. For

example, if the storing peer of a data is far away from data’s owner, the data has to be moved

through the entire overlay. The same situation can happen if the node needing the data is far

from the storing peer. For a peer-to-peer telephony service, this situation can unnecessarily

27

Master Thesis CHAPTER 3. RELOAD PROTOCOL

overload the network, since most of calls from or towards a particular node are geographically

close. In [13], authors propose a solution to take into account the location information to

minimize these effects.

3.7.6 Self-tuning Distributed Hash Table for RELOAD

In the RELOAD protocol, a lot of parameters have to be set to configure the DHT. Moreover,

some of these parameters can change dynamically. In [14], authors propose a "self-tuning version

of the Chord DHT algorithm". Their solution

• uses periodic stabilization,

• defines new Update, Leave messages (request and answer),

• defines new incorporation mechanism for peers into the finger table,

• defines new routine for successors and predecessors stabilization,

• defines new joining and leaving process, and

• defines mechanism to determine or estimate some parameters (overlay size, routing table

size, failure rate, join rate and stabilization interval).

This new algorithm is supposed to bring these benefits:

• No need to tune DHT parameters manually,

• The system adapts to changing operating conditions, and

• Low failure rate and low stabilization overhead. [15]

3.7.7 A Load Balancing Mechanism for RELOAD

Load balancing is an essential mechanism to manage data and provide services on overlay with

a satisfying quality of service. Without such strategy, overlay performance could be affected.

The problem of load balancing can be even more incapacitating in the case of heterogeneous

networks, where nodes’ capabilities (in terms of storage and/or bandwidth) can be very different.

In the worst cases, the imbalance in load distribution could create a bottleneck in the system.

Unfortunately, the RELOAD protocol with the Chord implementation does not support

operating in the overlay in a load balanced manner.

In [16], authors present a solution for load balancing the default DHT in RELOAD and avoid

the related problems. The solution is an improvement of the virtual nodes approach7 proposed
7More information can be found in Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications,

http://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf

28

http://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf

Master Thesis CHAPTER 3. RELOAD PROTOCOL

in "Heterogeneity and load balance in distributed hash tables"8. It works by "associating keys

with virtual nodes, and mapping multiple virtual nodes (with unrelated identifiers) to each real

node."

3.7.8 Topology Plug in for RELOAD

RELOAD is designed to be used with large scale overlay networks. However, one can find some

limitations in the functionalities provided by the default topology plug in. In [17], authors

propose another implementation of this plug in, bringing functionalities "that allow RELOAD

to operate under real world constraints":

• a load balancing algorithm,

• robust techniques for stabilization, self tuning mechanisms, and

• a locality aware finger selection algorithm.

The load balancing mechanism is quite close to the one described in section 3.7.7 and will

not be discussed here.

The current RELOAD base topology plug in is based on reactive stabilization. This tech-

nique may not be the most robust to a wide variety of network conditions and the authors

revisit this choice and recommend other techniques based on periodic stabilization.

The self-tuning DHT mechanism brings two main advantages (users no longer need to set

every DHT parameter correctly and the system adapts to changing operating conditions).

Finally, a locality aware routing "aims to mitigate the routing stretch of the topology plug

in so that a lookup is answered by making progress in the identifier space while minimizing the

amount of distance traveled in physical space at each hop."[17].

3.7.9 Deterministic Replication for RELOAD

Basic replication mechanism is natively provided by the RELOAD protocol. In [2], the replica-

tion is used to provide:

• persistence: to protect against data loss occurring from churn on the overlay,

• security: to avoid Denial of Service attacks or routing attacks by the responsible peer and

• load balancing to distribute the load of queries for resources.

8www.cs.berkeley.edu/~pbg/y0.pdf

29

www.cs.berkeley.edu/~pbg/y0.pdf

Master Thesis CHAPTER 3. RELOAD PROTOCOL

The replication strategy is not specified in the RELOAD core, but is provided by the overlay

algorithm. The mandatory Chord implementation specifies to store two redundant copies of

data on the two immediate successors of a node.

This mechanism is essential but "does not address the problem of replication to meet the

availability requirements for a particular piece of data or to have the replicas be useful in some

inherent load balancing on the overlay"[18]

Additional mechanism has been proposed in [18] to provide "application-agnostic, determin-

istic replication on the overlay to meet these needs. The basic mechanism proposed here takes

target availability A for the data item that is being stored and determines the number of replicas

k, required to attain that target availability depending on the overlay network characteristics.

It then defines which K nodes should be used to store these replicas."[18]

3.7.10 A P2PSIP Client Routing for RELOAD

The RELOAD base draft [2] allows clients to connect either to the peer responsible for the

client’s Node-ID or to an arbitrary peer (based on the proximity, or the inability to establish

a direct connection with the responsible peer). In the second case, an issue relates to the

localization of the client in the overlay. Indeed, in this case the client is not connected to the

responsible peer and is not directly reachable using only its Node-ID. [19] " tries to define the

Client Routing protocol for locating a client that connects with an arbitrary peer in an overlay."

The proposed solution "is to store the information of a client’s Attached Peer in the overlay

together with the registration data of the client."[19]

3.7.11 P2PSIP Security Requirements

Security is one of the most important aspects when building an open network. RELOAD is

designed to be used with very large, open networks made up of untrusted nodes and security

must be guaranteed. To manage security, the RELOAD base draft [2] mandates several things:

• the use of TLS or DTLS for connections between peers,

• the use of X.509 certificates to sign each RELOAD message and

• the use of X.509 certificates to sign stored objects

Details about certificates can be found in the RFC 5280: Internet X.509 Public Key Infras-

tructure Certificate and Certificate Revocation List (CRL) Profile9.

These levels work together to check the origin and correctness of data they receive from

other peers[2].
9http://tools.ietf.org/html/rfc5280

30

http://tools.ietf.org/html/rfc5280

Master Thesis CHAPTER 3. RELOAD PROTOCOL

To avoid complications when a group of users wants to set up an overlay network without

being concerned with security, the use of self-signed and self-generated certificates is allowed.

In addition to the security considerations present in [2], extra information can be found

in two drafts: P2PSIP Security Requirements ([20]) and P2PSIP Security Overview and Risk

Analysis ([21]). These documents both discuss and analyze security requirements and threats

of P2PSIP systems.

3.7.12 Threat Analysis for Peer-to-Peer Overlay Networks

[22] "provides a threat analysis for peer-to-peer networks, where the system relies on each

individual peer to route message, store data, and provide services. The threats against P2P

networks include those that target individual peers, those that target routing protocols, those

that target identity management, and those that target stored data. Focusing on distributed

hash table based P2P network, authors first establish a threat model and perform a triage of

various assets in a P2P system. They then describe each individual threat in details, including

threat description, impact of attack, and possible mitigations. The threats and mitigations are

discussed under the context of feasibility and practicality, with the ultimate goal of achieving

better understanding of the threats for secure P2P system design."

3.8 Configuration of a RELOAD node

One of the main advantages of the P2P overlay network is the "self-organization" of the ap-

plication. In a RELOAD overlay, a node has to get an eXtensible Markup Language (XML)

configuration file from a server somewhere on the web to learn parameters such as listening

port, hash algorithm, length of the hashes produced by the algorithm (for Node-ID for exam-

ple), topology plugin for the management of the overlay, address and port of bootstrap peer(s),

. . . Fifteen parameters can be found in the configuration file. An example of configuration file

is:

?xml version="1.0" encoding="UTF-8"?>

<?oxygen RNGSchema="config-schema.rnc" type="compact"?>

<overlay xmlns="urn:ietf:params:xml:ns:p2p:config-base"

xmlns:ext="urn:ietf:params:xml:ns:p2p:config-ext1"

xmlns:chord="urn:ietf:params:xml:ns:p2p:config-chord-128-2">

<configuration instance-name="overlay.example.org" sequence="22"

expiration="2002-10-10T07:00:00Z">

31

Master Thesis CHAPTER 3. RELOAD PROTOCOL

<attach-lite-permitted>false</attach-lite-permitted>

<bootstrap-peer>192.0.0.1:5678</bootstrap-peer>

<bootstrap-peer>192.0.2.2:6789</bootstrap-peer>

<initial-ttl> 30 </initial-ttl>

<clients-permitted>false</clients-permitted>

<max-message-size>4000</max-message-size>

<credential-server>https://example.org</credential-server>

<ext:example-extention> foo </ext:example-extention>

<multicast-bootstrap>192.0.0.3:5678</multicast-bootstrap>

<chord:probe-frequency>300</chord:probe-frequency>

<chord:update-frequency>400</chord:update-frequency>

<self-signed-permitted digest="sha1">false</self-signed-permitted>

<shared-secret>asecret</shared-secret>

<topology-plugin>Chord-128-2-16</topology-plugin>

<root-cert>TODO</root-cert>

<required-kinds>

<kind name="sip-registration">

<data-model>single</data-model>

<access-control>user-match</access-control>

<max-count>1</max-count>

<max-size>100</max-size>

</kind>

<kind id="2000">

<data-model>array</data-model>

<access-control>user-match</access-control>

<max-count>22</max-count>

<max-size>4</max-size>

<ext:example-kind-extention>1</ext:example-kind-extention>

</kind>

</required-kinds>

</configuration>

<signature>TODO BASE 64 encoded signature block</signature>

</overlay>

32

Master Thesis CHAPTER 3. RELOAD PROTOCOL

To configure a RELOAD overlay, this type of file is necessary. Indeed, RELOAD is designed

to be generic and provide an interface to a distributed hash table. So, even with a RELOAD

compliant implementation, many parameters shall be set before the RELOAD overlay can really

be used by an application. But, with a configuration file with all these parameters, can we still

talk about "self-organization"?

Some people find this way inefficient, and think that a better way to configure the overlay

could be found, maybe using another XML schema language like RELAX NG 10. Using this

language makes the file easier to read for a human (and maybe to parse), but this is still an

XML file.

Finding a better way to configure RELOAD nodes seems difficult in the case of an open,

large scale, unsecure overlay in the Internet (a lot of parameters have to be set, in one way or

another), but self-tuning DHT (as discussed above in Section 3.7.6) could bring advantages and

more simplicity in the configuration of a node.

Another important aspect is the security of this configuration file. Indeed, it has to be

available from a HTTPS server, but its security and integrity have to be guaranteed. If this

file can be modified or replaced, consequences on the overlay could be considerable. Moreover,

with the introduction of the Config_Update since the third version of the RELOAD base draft,

this configuration file could be quickly allocated to every node in the overlay.

10http://relaxng.org/

33

http://relaxng.org/

Chapter 4

Usages of RELOAD

In this chapter, a few possible usages of RELOAD will be presented. The first one concerns the

SIP usage of RELOAD , which is the most expected one. Indeed, the RELOAD overlay has

been explicitly developed to be used as a SIP proxy and/or registrar.

The following sections are brief overviews of other possible usages, namely:

• Domain Name System (DNS)

• Jabber/eXtensible Messaging and Presence Protocol (XMPP)

• Content Delivery Network (CDN)

4.1 SIP usage of RELOAD

One of the first potential applications for RELOAD was to replace the SIP proxy and/or the

SIP registrar. Of course, the removal of one or both elements can bring some advantages like

failure tolerance, scalability, no need of a central server,. . . The SIP use of RELOAD involves

two functions.

The first is the registration. SIP UA can use the RELOAD overlay (with the data stor-

age functionality) to store a mapping between their AOR and their Node-ID in the overlay.

They can also retrieve the Node-ID of other UAs from the overlay. To register its loca-

tion, a RELOAD node stores a specific SipRegistration structure under its own AOR. This

structure uses the SIPREGISTRATION Kind-ID. For example, Alice can store the mapping

"sip:alice@example.org -> 5678" and everyone who wants to contact Alice knows that s/he has

to send a message to Node-ID 5678. Of course, you can also store a mapping AOR to AOR. In

this case, if Alice stores the mapping "sip:alice@example.org -> sip:carol@example.org", a SIP

UA who wants to call Alice will receive Carol’s AOR and will call her.

35

Master Thesis CHAPTER 4. USAGES OF RELOAD

The second function is the Rendezvous management. Once a SIP user agent has identified

the Node-ID of the user agent it wishes to call, it uses the RELOAD message routing system to

set up a direct connection between the UAs for exchange SIP messages.

With these two functions, we can see one more time the two big aspects of RELOAD. The

first one concerns the data management system (storage, duplication, retrieval, removal,. . .).

This is, in outline, the DHT part of the protocol. The second one concerns the message routing

system (with the establishment of connections, the collection of information like ICE candidates,

. . .)

To illustrate these functions, and compare with the classical SIP scenario, let’s take an ex-

ample. The users (Alice and Bob for example) store the mapping AOR-NodeID in the RELOAD

overlay, with a RELOAD Store request. Each of the mappings will be stored by a peer some-

where in the overlay, following the topology plug in of the overlay.

When Alice wants to call Bob, instead of sending an INVITE to her proxy, she does a

RELOAD Fetch request with the key (or the hash of the key) "Bob", she receives the Node-ID

of Bob and can send a AppAttach request with this Node-ID as destination. The message will

be routed towards the node of Bob, collecting informations (like ICE(-Lite) candidates,. . .).

Bob will respond with an AppAttach message, collecting same information (ICE(-Lite) candi-

dates,. . .) throughout the journey of the message. As a result, a direct connection can be

established between Alice and Bob, and they can start to send classical SIP messages to each

other. At this point, RELOAD overlay is no longer involved into the transaction (or the SIP

call) until it ends.

This scenario is depicted in Figure 4.1.

An important point to keep in mind is that in this case, the SIP UA must be running

on a RELOAD peer, so must have a complete RELOAD implementation. It is not "just" an

application client, a pure SIP client like a SIP phone. A first possible improvement could be to

allow SIP UA to run on RELOAD clients, and a second (and more important one) could be to

specify a SIP usage with "pure" SIP clients, having no knowledge of RELOAD but using the

overlay as a classical proxy/registrar, with all its potential uses.

A draft [23] has been proposed to take the case of "pure" application clients into account.

Briefly, this document tries to solve drawbacks of [24]:

• trouble in inter-domain interworking (a peer of overlay A must be present in the overlay

B if a SIP user in A and a SIP user in B must communicate);

• trouble in SIP users’ mobility (peers’ mobility and churn of the overlay); and

• exclusivity towards overlay clients in SIP usage.

The process of a SIP call using this solution is depicted in figure 4.2.

36

Master Thesis CHAPTER 4. USAGES OF RELOAD

Figure 4.1: SIP usage of RELOAD

4.2 Other uses

It seems interesting to think about other uses and try to see how they could work with RELOAD

.

Theoretically, all uses described in [25] could be fulfilled by a RELOAD overlay. This

document presents four main applications:

• Content distribution (see Section 4.2.3)

• Distributed Computing

• Collaboration

• Platforms

Indeed, RELOAD is designed to provide a generic interface to manage an overlay. And even

if SIP is the expected usage of a RELOAD overlay, other applications like DNS, Jabber/XMPP,

CDN,. . . could be supported.

37

Master Thesis CHAPTER 4. USAGES OF RELOAD

Figure 4.2: new SIP usage of RELOAD

4.2.1 Domain Name System

The Domain Name System is a hierarchical, distributed database implemented in a hierar-

chy of DNS servers. Its main task is to translate domains names meaningful to humans

(www.example.com) to IP addresses (121.7.12.78) used to identify, locate and address net-

working equipment worldwide.

It is assumed that the reader is familiar with DNS. For more information, a list of RFCs

relevant to DNS could be found at the address http://www.dns.net/dnsrd/rfc/.

In summary, DNS servers store mapping between domain names and IP addresses. Obvi-

ously, a single server cannot store every domain name of the Internet, so a hierarchical orga-

nization has been set up. For example, for a request for example.com, a query will be sent to

a root name server to find the authoritative for the next level down (here .com), after that a

query will be send to the second server to know the IP address of the example.com domain.

Using a RELOAD overlay is possible to store the pairs and build a decentralized DNS

system. In this case, advantages brought by a P2P system could be very useful: failure tolerance,

38

http://www.dns.net/dnsrd/rfc/

Master Thesis CHAPTER 4. USAGES OF RELOAD

elimination of a possible single point of failure, load balancing between servers, security, . . . From

this point of view, this usage could be compared to the Round Robin DNS concept.

Section 4.1.2 of the RELOAD base draft specifies things necessary to define a new usage:

• Register Kind-ID code points for any kind that the Usage defines.

• Define the data structure for each of the kinds

• Define access control rules for each kind

• Define how the Resource Name is formed that is hashed to form the Resource-ID where

each kind is stored

• Describe how values will be merged after a network partition

More information about data model and access control policies can be found in Sections 6.2

and 6.3 of the RELOAD base draft.

Currently, there are almost thirty record types defined by DNS. In this work, only records

of type A (for a 32-bit IPv4 addresses) will be used, but the mechanism is the same for other

types of record.

Lines below define the DNS-A-RECORD type.

Name DNS-A-RECORD.

Kind-IDs The Resource Name for the DNS-A-RECORD Kind-ID is the domain name. The

data stored in a DnsARecordData is the IPv4 address of a given domain. The Resource-ID is

the hash of the domain name.

Data Model The data model for the DNS-A-RECORD Kind-ID is dictionary. The use of

dictionary instead of single value enables having multiple IP addresses for the same domain

name.

When a peer is looking for an address, it hashes the domain name, obtains a Resource-ID

and sends a RELOAD Fetch message with it. It receives a set of data and chooses one of them

to make the mapping.

Access Control Policy The policy is USER-NODE-MATCH. This policy specifies that "a

given value MUST be written (or overwritten) if and only if the request is signed with a key

associated with a certificate whose user name hashes (using the hash function for the overlay)

to the Resource-ID for the resource. In addition, the dictionary key MUST be equal to the

Node-ID in the certificate. [2]"

39

Master Thesis CHAPTER 4. USAGES OF RELOAD

Other security problems related to DNS (like DNS cache poisoning) could be avoided, since

all messages have to be signed with a certificate.

The overlay itself is built with servers, acting as peers from the RELOAD point of view,

and is not accessible from the outside. Requests are sent in the classical way, and RELOAD is

only used by the servers.

This usage of RELOAD should not pose any problem and could bring advantages. Obviously,

the case of type A DNS records is one of the numerous possibilities and other types of records

could maybe be a problem.

On the other hand, P2P DNS solutions have been planned (inside the WG, in collaboration

with RELOAD , or outside the WG11) but have been abandoned. It appears that peer-to-peer

systems have fundamental limitations and simply are not appropriate for applications that need:

• Lower latency.

• Protection against insertion DoS.

• Choice of functionality for network outages.

• More than just distributed hash tables.

• High confidence in the network.

• Generic incentives for people to run servers.[26]

4.2.2 Jabber/XMPP

XMPP is an open, XML-based protocol used (among others) for instant messaging and presence

information. It is the core protocol of Jabber Instant Messaging and Presence technology, and is

used by some very important actors in the IM world like Google for Google Talk, and AOL was

considering using it [27]. The protocol is an open standard, developed by the XMPP Working

group12.

One of the problems of XMPP, according to some authors, is the scalability of the server.

Because scalability is one of the major advantages of using P2P overlay, using a RELOAD

overlay to act as a XMPP server could make sense.

According to XMPP RFC [28], primary responsibilities of a XMPP server are:

• to manage connections from or sessions for other entities, in the form of XML streams to

and from authorized clients, servers and other entities
11http://sourceforge.net/projects/p2pdns/
12http://tools.ietf.org/wg/xmpp/

40

http://sourceforge.net/projects/p2pdns/
http://tools.ietf.org/wg/xmpp/

Master Thesis CHAPTER 4. USAGES OF RELOAD

• to route appropriately-addressed XML stanzas13 among such entities over XML streams

A priori, a RELOAD overlay could take on these responsibilities.

A classical XMPP network is depicted in the figure 4.3.

Figure 4.3: Classical XMPP network

A possible usage of RELOAD could be to replace one or more server(s) by an overlay, as

in Figure 4.4. Instead of connecting directly to a single server, clients could connect to one of

the members of the overlay (known using DNS for example). The mechanism is transparent for

them and allows some load balancing. Indeed, if the DNS request sends back several responses,

the client can pick one randomly and connect to this peer. The client has no knowledge of the

existence of the overlay.

A major difference between this usage and (for example) the SIP usage is that in this case,

messages between two clients are sent through the overlay. In SIP, RELOAD is just involved

for the rendez-vous and the registration.

Figure 4.4: XMPP network using RELOAD overlay

13A stanza is a Jabber/XMPP message. It can be XML stanzas with attributes.

41

Master Thesis CHAPTER 4. USAGES OF RELOAD

When a XMPP client (Alice@jabber.be) connects to one of the peers in the overlay (RA, for

Responsible for Alice), the peer RA has to store in the overlay the information about the client.

For example, if RA has Node-ID 15, this node will store a mapping between "alice@jabber.be"

(or its hash) and "Node-ID 15". When Bob wants to talk to Alice, it sends a message through its

own server (RB, the peer in the overlay to which it is connected) as usual. The peer RB will re-

trieve from the overlay (with RELOAD Fetch method) the mapping between "alice@jabber.be"

and the Node-ID. The result is 15, so the peer RB knows that XMPP messages will be exchanged

between them. The connection between RA and RB will be established using the AppAttach

method. This method has been especially added to the protocol to open a TCP (or UDP)

connection between two nodes for sending application layer data. At this point, XMPP mes-

sages can be sent from Alice to RA to RB to Bob without any problem, since the connection is

especially dedicated to application layer messages and RELOAD is no longer involved.

Another case could be if the two users are not connected to the same server. Indeed, with

Jabber, Alice, connected to jabber.be server can talk without problem with Carol connected to

jabber.fr. In this case, messages will be sent from one server to the other via the Internet.

If one of the servers is a RELOAD overlay, there has to be a mapping between the domain

jabber.fr and the Node-ID of the peer connected to this server (50 for example). If Alice

wants to talk with Carol, her message is sent to her responsible peer, this peer retrieves the

mapping between jabber.fr and the Node-ID 50, opens a TCP connection with the node 50

using AppAttach. After that, messages for Carol will be sent to this node, and forwarded to

the server jabber.fr as regular XMPP messages.

So far, the overlay must contain both user to Node-ID mapping and domain to Node-ID

mapping.

Now, it is possible to define a new kind of data for a XMPP usage of RELOAD .

Name XMPP-MAPPING

Kind-IDs The Resource name for the Kind-ID XMPP-MAPPING is the Node-ID of the node

connected to the Jabber client or the other Jabber server.

Data Model The data model for the XMPP-MAPPING Kind-ID is dictionary. The key is

the Jabber ID or the domain. This allows peers to search either for a user or an entire domain.

Access Control Policy USER-NODE-MATCH.

In this case, using RELOAD as a XMPP server seems possible too. A more complete study

would be necessary to determine at which point a single hosted Jabber/XMPP server would

42

Master Thesis CHAPTER 4. USAGES OF RELOAD

be overloaded. Below this point, the overhead of using an overlay to retrieve information from

the DHT instead of a single hosted hash-table may be too important. For servers with a huge

number of users, a RELOAD -like solution could improve the quality of service.

4.2.3 Content Delivery Network

Another use of a RELOAD overlay has been proposed in [29]. The overlay could act as a CDN.

It seems interesting to think about such a usage, quite far from the initial aim of the protocol,

and see what RELOAD could bring in this situation. Indeed, content sharing is important and

P2P techniques are sometimes used to share commercial content for a huge number of users

(one of the most known example is the distribution of World of Warcraft updates using the

Blizzard Downloader, which relies on peer-to-peer protocols).

This use of RELOAD allows content providers to distribute their shared content such as

streaming media, files . . . to a peer-to-peer overlay. The distribution and fetching functions are

performed by the overlay, and involves two basic functions:

• "Storing content: Content providers can use the RELOAD data storage functionality to

store the shared content such as streaming media, files to a peer-to-peer overlay network

efficiently and safely.

• Fetching content: Once an authorized Content Sharing Client (CSC) wants to get the

shared content, it can use the RELOAD Fetch functionality to get the shared content

efficiently and safely."[29]

Figure 4.5 depicts the architecture proposed for the content sharing usage.

Figure 4.5: Content Sharing Usage for RELOAD

43

Master Thesis CHAPTER 4. USAGES OF RELOAD

The main components of the content sharing usage of RELOAD are:

• Content/Service provider: The owner of the shared content. This component provides

two functionalities, storing the shared content (store full content or content segment into

the overlay network) and providing content portal (publishing information for the content

that CSC can access).

• Overlay provider: the owner of the overlay network. The overlay is built and run using

RELOAD .

• CSC: it is used to get the content. It retrieves the information about the content by

contacting the content portal first. Then it fetches the content from the overlay.

This usage of RELOAD is quite far from the predicted one, but could bring some advantages.

Security and NAT traversal, for example, are natively present with RELOAD .

44

Chapter 5

Environment

5.1 The A5350 proxy platform

The A5350 proxy platform (a.k.a Application Server Runtime (ASR)) is one of the Alcatel-

Lucent IP Multimedia Subsystem (IMS) Application Servers. This platform provides a wide

variety of services, supports protocols like SIP, HTTP, Diameter, RADIUS,. . . All applications

in the platform are mono-threaded, and use asynchronous programming. This platform uses the

OSGi framework to deal with important aspects of deployment and life cycle of components.

The framework and its use by the platform is described in Section 5.3.

The platform is natively multiprotocol, it contains a set of APIs to develop applications

using high availability mechanisms. The platform embeds a high-performance load-balancing

protocol, SIP-servlet containers, HTTP containers,. . . .

Figure 5.1 shows layers, with hardware, operating system, middleware and applications.

Figure 5.1: ASR layers

45

Master Thesis CHAPTER 5. ENVIRONMENT

The architecture of an application is depicted in figure 5.2. One can see the general use

of the platform as a telecommunication application server dealing with SIP, Diameter, HTTP,

Radius requests and responses.

Figure 5.2: Application’s general architecture onto the ASR

5.2 The Service Creation Environment

The Alcatel-Lucent IMS Application Server (IAS) Service Creation Environment (SCE) provides

a global Development Tool to develop, test, package, deploy, provision and charge SIP and multi-

protocol applications. It is used internally by Alcatel-Lucent developers and developers from

other major players. This tool has been widely used during the development of the RELOAD

prototype to be addressed in the next chapter.

The SCE uses Eclipse as an integrated development environment, and a wide range of

external plug ins in all domains. With the IAS plug in, it is a lot more easier to develop,

46

Master Thesis CHAPTER 5. ENVIRONMENT

test, deploy applications on the A5350 proxy platform since it handles features like bundles

architecture (with the different directories and files for OSGi), the automatic deployment on

the platform, the start and stop of applications, manifest generator.

5.3 OSGi framework

5.3.1 The OSGi Alliance

As stated on its website [30], the Open Services Gateway initiative (OSGi) Alliance "is a world-

wide consortium of technology innovators that advances a proven and mature process to assure

interoperability of applications and services based on its component integration platform. It is

widely used by major companies in diverse markets.

The alliance provides specifications, reference implementations, test suites and certification

to foster a valuable cross-industry ecosystem.

The OSGi Alliance is a non-profit corporation founded in March 1999."

5.3.2 The OSGi architecture

"The OSGi technology has been developed to create a collaborative software environment.

Engineers wanted an application by putting together different reusable components that had no

prior knowledge of each other’s existence. Even harder, they wanted that application to emerge

from dynamically assembling a set of components.

Layering

The OSGi Framework has a layered structure that is depicted in the following figure.

Figure 5.3: Layers of the OSGi Framework

47

Master Thesis CHAPTER 5. ENVIRONMENT

The following list contains a short definition of the terms:

• Bundles - Bundles are the OSGi components designed, implemented and tested by the

developers.

• Services - The service layer connects bundles in a dynamic way by offering a publish-find-

bind model for plain old Java objects.

• Life-Cycle - The API to install, start, stop, update, and uninstall bundles.

• Modules - The layer that defines how a bundle can import and export code.

• Security - The layer that handles the security aspects.

• Execution Environment - Defines what methods and classes are available in a specific

platform.

These concepts are more extensively explained in the following paragraphs.

Modules

The fundamental concept that enables such a system is modularity. Modularity, simplistically

said, is about assuming less. Modularity is about keeping things local and not sharing. Mod-

ularity is at the core of the OSGi specifications and embodied in the bundle concept. In Java

terms, a bundle is a plain old Java ARchive (JAR) file. However, where in standard Java ev-

erything in a JAR is completely visible to all other JARs, OSGi hides everything in that JAR

unless explicitly exported. A bundle that wants to use another JAR must explicitly import the

parts it needs. By default, there is no sharing.

Services

The reason the service model is needed is because Java shows how hard it is to write collaborative

models with only class sharing. The standard solution in Java is to use factories that use

dynamic class loading and statics.

With the OSGi service registry, a bundle can create an object and register it with the OSGi

service registry under one or more interfaces. Other bundles can go to the registry and list all

objects that are registered under a specific interface or class.

A bundle can therefore register a service, it can get a service, and it can wait for a service

to appear or disappear. Any number of bundles can register the same service type, and any

number of bundles can get the same service.

48

Master Thesis CHAPTER 5. ENVIRONMENT

Each service registration has a set of standard and custom properties. An expressive filter

language is available to select only the services in which you are interested. Properties can be

used to find the proper service or can play other roles at the application level.

Services are dynamic. This means that a bundle can decide to withdraw its service from

the registry while other bundles are still using this service. The service dynamics were added

so it is possible to install and uninstall bundles on the fly while the other bundles could adapt.

The availability of the service models the availability of a real world entity. It also turns out

that the dynamics solve the initialization problem. OSGi applications do not require a specific

start ordering in their bundles.

In conclusion, the OSGi specifications provide a mature and comprehensive component

model with a very effective (and small) API. Converting monolithic or home grown plug in

based systems to OSGi almost always provides great improvements in the whole process of

developing software [30]".

5.3.3 Presentation of the OSGi Technology

In this section, OSGi technology will be shortly explained.

"The core component of the OSGi Specifications is the OSGi Framework. The Framework

provides a standardized environment to applications (called bundles). The Framework is divided

in a number of layers.

• L0: Execution Environment

• L1: Modules

• L2: Life Cycle Management

• L3: Service Registry

• An ubiquitous security system is deeply intertwined with all the layers.

The L0 Execution Environment layer is the specification of the Java environment. Java 2

Configurations and Profiles, like Java 2 Standard Edition (J2SE), Connected Device Configu-

ration (CDC), Connected Limited Device Configuration (CLDC), Mobile Information Device

Profile (MIDP) etc. are all valid execution environments.

The L1 Modules layer defines the class loading policies. The OSGi Framework is a powerful

and rigidly specified class-loading model. It is based on top of Java but adds modularization. In

Java, there is normally a single classpath that contains all the classes and resources. The OSGi

Modules layer adds private classes for a module as well as controlled linking between modules.

49

Master Thesis CHAPTER 5. ENVIRONMENT

The Modules layer is fully integrated with the security architecture, enabling the option to

deploy closed systems, walled gardens, or completely user managed systems at the discretion of

the manufacturer.

The L2 Life Cycle layer adds bundles that can be dynamically installed, started, stopped,

updated and uninstalled. Bundles rely on the module layer for class loading but add an API to

manage the modules at run time. The Life Cycle layer introduces dynamics that are normally

not part of an application. Extensive dependency mechanisms are used to assure the correct

operation of the environment.(...)

The L3 layer adds a Service Registry. The Service Registry provides a cooperation model

for bundles that takes the dynamics into account. Bundles can cooperate via traditional class

sharing but class sharing is not very compatible with dynamically installing and uninstalling

code. The Service Registry provides a comprehensive model to share objects between bundles.

A number of events are defined to handle the coming and going of services. Services are just

Java objects that can represent anything. Many services are server-like objects, like an HTTP

server, while other services represent an object in the real world, for example a Bluetooth phone

that is nearby" [30].

Figure 5.4 depicts several layers of the OSGi framework, with bundles.

Figure 5.4: OSGi framework layers

5.3.4 Interest of using OSGi Framework

In this part, the main advantages of using OSGi will be explained. Most of those are predictable

but emphasizing them is a good thing, especially in the context of its usage on the A5350 proxy

platform.

Container & applications modularization A major advantage will be that with OSGi,

usage of containers will be made easier, and applications will be easily modularized. This means

50

Master Thesis CHAPTER 5. ENVIRONMENT

that reuse of components will be very easy, they could be shared and called by other applications

easily (the bundle just will ask what it needs to use the registry).

In the case of the RELOAD implementation, the modularization will bring a very important

advantage. Indeed, the RELOAD protocol is made of a few components, which (theoretically)

could be used independently from each other. The best example is the topology plug-in. This

plug-in deals with the overlay algorithm, the core of the DHT management. With the modu-

larization, several topology plug-ins (with several DHT algorithm) could be implemented and

deployed when necessary. The other components will not have to be replaced or modified. More

information about implementation can be found in Chapter 6.

Life cycle of the container With OSGi, bundles can be dynamically installed, started,

stopped, updated and uninstalled without bringing down the whole system. This has of course

great advantages like deployment times, no down time of server,. . . . Moreover, the OSGi

technology also specifies how components are installed and managed, through command shell,

graphical interface,. . . .

Again, this advantage will be helpful in the case of the RELOAD implementation. A compo-

nent could be stopped and replaced by another (for example another topology plug-in) without

stopping the RELOAD application (in RELOAD terms, without stopping the node). This can

be helpful when the configuration changes (see Section 3.8 for further information).

Object bundle repository With the Object Bundle Repository (OBR), bundles can be

placed in a single location and be fetched and deployed by an application running on a different

computer. This brings advantages in terms of deployment, update, replacement of bundles.

On the OSGi website [30],the reader will find a more complete list of advantages, among

others

• reduced complexity,

• reuse,

• adaptability,

• transparency,

• simplicity,

• security,. . .

51

Chapter 6

Implementation

The initial goal was to implement the RELOAD protocol onto the A5350 platform in addition

to already supported ones (HTTP, SIP, Diameter,. . .).

A recurrent idea was to use a DHT into the platform to replace the fast cache compo-

nent. The configuration server, another name for the fast cache, centralizes configuration,

performance and fault management data. It also contains information about (for example) SIP

sessions,. . . This is a central and critical component for the platform, and the initial idea was

to study which advantages the RELOAD protocol could bring in this case. The fast cache is a

large, centralized DHT and is used by almost every component in the platform. Of course, to

ensure reliability, replication mechanisms have been set up. A slave fast cache can be deployed

on another host, the original one will automatically replicate its data in the so-called slave

configuration server.

From a theoretical point of view, use a DHT and a ring to store the information is obviously

a good thing. It brings scalability with the possible use of more than one host for a single fast

cache component, failure tolerance, replication of data,. . . The use of P2P techniques and DHT

instead of a centralized component could be a really good thing, with a special attention for

requirements (reliability, high availability, recovery, well defined state of the overlay, . . .) of a

professional IMS platform (for example a node of a P2P network could crash or disconnect, no

big deal. But it can not happen in a professional product).

The whole implementation has been done using asynchronous "single thread" programming

(all others applications running on the A5350 platform use this technique too) , and following

the "doXXX()" pattern, like in the SipServlet14.

14"A SIP servlet is a Java-based application component, managed by a container, which performs SIP signaling.

SIP servlets can inspect and set message headers and bodies, and they can proxy and respond to requests and

forward responses upstream.[31]"

More information about this topic can be found in the Master Thesis of Jean-François Wauthy [32]

53

Master Thesis CHAPTER 6. IMPLEMENTATION

Due to specificity of the implementation (using the Java language, SIP-servlet) it is assumed

that the reader is familiar with these concepts and techniques.

6.1 Limitations, shortcuts, . . .

The initial goal was to implement and test a prototype using the RELOAD protocol, running on

the A5350 proxy platform, and to study the advantages that such protocol could bring for a IMS

server. Quickly, it appeared that implementing all RELOAD requirements was not possible.

Indeed, RELOAD is designed to be generic (for the DHT algorithm for example), secure (with

the use of X509 certificates), supporting NAT traversal (with the use of ICE, Simple Traversal

UDP through NATs (STUN), Traversal Using Relay NAT (TURN), etc.),. . . The development

of a fully compliant RELOAD application could have taken significant time and/or resources.

Moreover, some of these requirements were not necessary for a prototype in a closed, secure

environment and were, therefore, not implemented.

6.2 Interests and advantages of the architecture

With the use of the OSGi framework and the deployment in the A5350 platform comes an

important choice of architecture. We have chosen to develop a RELOAD container and a

RELOAD application. This approach with a container and an application has been chosen to

allow an efficient split between low-level operations (parsing, network, serializing) and higher-

level operations.

6.2.1 RELOAD container

The RELOAD container is the first layer of the stack. It deals with "network" and does some

other operations like parsing, doing some validity checks on the message received,

The container deals with the parsing of the received bytes. ByteBuffer had been used instead

of array of bytes to deal with received messages. The first operation is to parse the header of

this message and construct a well defined Java object.

The structure of the header has changed during the development of the RELOAD protocol.

Table 6.1 show the differences. To ease the comparison, the header structure in the following

table is not the real structure, fields have been rearranged (version and max_response_length

are not in the correct place). The correct structure can be found in Section 5.3.2 of the RELOAD

base draft.

54

T
ab

le
6.
1:

C
om

pa
ri
so
n
of

th
e
R
E
LO

A
D

m
es
sa
ge
’s

he
ad

er
.

Fo
rm

er
st
uc
tu
re

of
th
e
he

ad
er

(D
ra
ft

ve
rs
io
n
00

,O
ct
ob

er
20

08
)

C
ur
re
nt

st
ru
ct
ur
e
of

th
e
he

ad
er

(D
ra
ft

ve
rs
io
n
03
,J

ul
y
20
09
)

st
ru

ct
{

st
ru

ct
{

ui
nt

32
re

lo
_t

ok
en

;
ui

nt
32

re
lo

_t
ok

en
;

ui
nt

32
ov

er
la

y;
ui

nt
32

ov
er

la
y;

ui
nt

16
co

nf
ig

ur
at

io
n_

se
qu

en
ce

;

ui
nt

8
tt

l;
ui

nt
8

tt
l

ui
nt

8
re

se
rv

ed

ui
nt

16
fr

ag
me

nt
ui

nt
32

fr
ag

me
nt

;

ui
nt

8
ve

rs
io

n
ui

nt
8

ve
rs

io
n;

ui
nt

24
le

ng
th

ui
nt

32
le

ng
th

;

ui
nt

64
tr

an
sa

ct
io

n_
id

;
ui

nt
64

tr
an

sa
ct

io
n_

id
;

ui
nt

16
fl

ag
s;

ui
nt

16
vi

a_
li

st
_l

en
gt

h;
ui

nt
16

vi
a_

li
st

_l
en

gt
h;

ui
nt

16
de

st
in

at
io

n_
li

st
_l

en
gt

h;
ui

nt
16

de
st

in
at

io
n_

li
st

_l
en

gt
h;

ui
nt

16
ro

ut
e_

lo
g_

le
ng

th
;

ui
nt

16
op

ti
on

s_
le

ng
th

;
ui

nt
16

op
ti

on
s_

le
ng

th
;

De
st

in
at

io
n

vi
a_

li
st

[v
ia

_l
is

t_
le

ng
th

];
De

st
in

at
io

n
vi

a_
li

st
[v

ia
_l

is
t_

le
ng

th
];

De
st

in
at

io
n

de
st

in
at

io
n_

li
st

[d
es

ti
na

ti
on

_l
is

t_
le

ng
th

];

De
st

in
at

io
n

de
st

in
at

io
n_

li
st

[d
es

ti
na

ti
on

_l
is

t_
le

ng
th

];

Ro
ut

eL
og

En
tr

y
ro

ut
e_

lo
g[

ro
ut

e_
lo

g_
le

ng
th

];

Fo
rw

ar
di

ng
Op

ti
on

s
op

ti
on

s[
op

ti
on

s_
le

ng
th

];
Fo

rw
ar

di
ng

Op
ti

on
s

op
ti

on
s[

op
ti

on
s_

le
ng

th
];

ui
nt

32
ma

x_
re

sp
on

se
_l

en
gt

h;

}F
or

wa
rd

in
gH

ea
de

r
}F

or
wa

rd
in

gH
ea

de
r

Master Thesis CHAPTER 6. IMPLEMENTATION

Comparing with the first version of the draft 15 some parameters have been moved inside the

forwarding header (ttl, version), some have been removed (reserved, flags, route_log

and route_log_length), some have been resized (fragment is now a 32 bit unsigned integer)

and new parameters have been added (configuration_sequence, max_response_length).

These changes can easily be explained by the fact that the RELOAD specification is a work

in progress, and there is a difference between the new revision of the draft and the code because

of the implementation of the prototype has begun in October 2008.

With this particular example, one can see the interest of using the OSGi framework. In this

case, the length of the header has changed, but just a few changes in the RELOAD container

to deal with the new header’s structure will be necessary. The RELOAD application does not

need any changes.

During the parsing, a few validity checks are performed. The possible checks at this level are

not numerous: only those which are the same for each RELOAD message, since the RELOAD

container is generic and it has no knowledge of the application running in the upper layers. For

example, one of these checks is that the four first bytes with the value 0xC2454C4F16.

The RELOAD container handles a rule matching system. This rule matching system could

enable some load balancing between several instances of RELOAD servlets. Indeed, after the

parsing of a message, it is possible to choose to which servlet the object (representing the

RELOADmessages) is sent. A possible way to decide could be to inspect the name of the overlay.

It is possible with this to deploy several servlets on the same host, with for example different

implementations of the DHT or different applications running above. The rule matching is done

with an XML file listing criterions, just like for SIP servlet with a sip.xml file. reload.xml

file and sip.xml file can be found in the appendix.

When the parsing operations are completed, the RELOAD container can call the appropriate

servlet with a doXXX() call (doJoin() for a Joinmessage, doAttach() for an Attach,. . .). This

is the same within the SIP Servlet.

Finally, the container can also serialize a RELOAD message received from upper layer and

send it to the appropriate node.

6.2.2 RELOAD application

The RELOAD application (RELOAD servlet) is the layer above the container. This is where

the overlay algorithm is implemented. As mentioned before, the implementation follows the

"doXXX()" pattern, just like in the SIP Servlet. So, the application called at this level is

15http://tools.ietf.org/html/draft-ietf-p2psip-base-00
16This value identifies a RELOAD message. It represents the string ’RELO’ with the Most Significant Bit of

the first byte set.

56

http://tools.ietf.org/html/draft-ietf-p2psip-base-00

Master Thesis CHAPTER 6. IMPLEMENTATION

the right method for the message it is receiving. The first operation to do is another parsing.

Indeed, for the container the payload of the message is opaque and passed as a ByteBuffer. At

this level, the structure of the message is well known17. At this point, a new kind of Java object

is created to match the exact structure of the message. The RELOAD application can initiate

new requests, responses or error messages.

This is at this level that the matching between IP address and port and RELOAD Node-ID

is created. When a message is sent towards another node through the container, IP and port

of the node are sent as parameters to permit the sending.

Figure 6.1 depicts the pattern of a "doXXX()" method.

Figure 6.1: Sample of code - doXXX() pattern - doJoin()

Figure 6.2 depicts the "implementation architecture". One can see the RELOAD container

used on two nodes (a peer and a client) with, above, a client application and a peer application.

At the end of the internship, the RELOAD container has been implemented, as well as a

subset of the RELOAD application. Messages could be sent and received, some parsing opera-

tion could be done. Figure 6.3 depicts a possible message exchange using the implementation.

It is not a real and complete RELOAD admission. It has been realized with the SequenceDia-

gramPushlet of the A5350 platform. Values 26679 and 44575 are Node-IDs. The joining peer

has the Node-ID 26679, while the Bootstrap Peer has the Node-ID 44575.

6.3 Implementation issues

The RELOAD protocol itself is not simple to implement, especially in Java. In this section,

implementation issues will be explained. These issues can be relatively easily circumvented with

appropriate techniques, but it seems useful to present them anyway.
17But, the payload could be destined to the "top-level" application and still be opaque for the RELOAD

application

57

Master Thesis CHAPTER 6. IMPLEMENTATION

Figure 6.2: Implementation with a "servlet-like" container

6.3.1 C-like structure

In the draft, almost all structures are C-like structures, based on the presentation language used

to define TLS. Following the draft, this choice brings some advantages:

• "It is easy to write and familiar enough looking that most readers can grasp it quickly.

• The ability to define nested structures allows a separation between high-level and low

level message structures.

• It has a straightforward wire encoding that allows quick implementation, but the struc-

tures can be comprehended without knowing the encoding.

• It brings the ability to mechanically (compile) encoders and decoders. [2]"

But this kind of structure is not very easy to handle in Java, and the classes to represent some

of these structures are complicated, with many attributes.

6.3.2 NAT traversal

The RELOAD protocol is designed to be used on the Internet. It is well known that more

and more computers (RELOAD nodes in this case) are behind NAT or firewalls. To deal with

these middleboxes, RELOAD requires an ICE or ICE-Lite implementation. This requirement

is understandable for use on an open network like the Internet but can be heavy to implement

in a small/closed environment (a laboratory, a building, a company, . . .).

58

Master Thesis CHAPTER 6. IMPLEMENTATION

Figure 6.3: Sequence diagram representing messages exchange.

6.3.3 Unsigned integers

Unsigned integers are not easy to handle in Java, because they do not exist!

To deal with the unsigned8, 16, 24, 32, 64 and 128 from the draft, Javolution library
18 has been used. One of the problems is that it is impossible to define constant the same way

you define an integer constant for example. It is not possible to do a thing like

18http://javolution.org/

59

http://javolution.org/

Master Thesis CHAPTER 6. IMPLEMENTATION

public static final int xxx = x;

for an unsigned integer . And, of course, definition of one of these objects is longer than a

simple integer. To create a unsigned integer of 16 bits with the value zero, you have to do this:

Unsigned16 flags = new Struct().new Unsigned16();

flags.set((short)0);}

Another inconvenience is that there is a lot of type casting in the code. For example, the

length of most structures is an Unsigned32, but Java integers are coded on 32 bits with the first

bit for the sign. So Unsigned32 are bigger than a Java integer, and it is impossible to allocate

an array doing

byte[] tab = new byte[this.getLength()];

because getLength() return a long, and a array’s length has to be an int.

6.3.4 Binary protocol

Implementing a binary protocol in Java is sometimes painful. There is no SIP-like "name-value"

header to parse, and the entire message has to be parsed (or at least header, message code and

signature) before any action can be taken. Moreover, it is impossible to be sure that a message

is correct (since it is generic and some parts can not be parsed in the container) before sending

it to the above layer.

6.4 Use related to the A5350 proxy platform

After the (partial) implementation of the RELOAD protocol on the platform, and a study about

drawbacks and pitfalls about the possible use on the ASR, it is time to draw a (preliminary)

conclusion. Due to the incomplete implementation, these conclusion cannot be considered as

final. Nevertheless, they seems to be reliable and relevant enough to be presented.

Using RELOAD stricto sensu, with all requirements, into an IMS platform turns out to be

a little overkill. Indeed, according to the specifications, every message and every data stored

into the DHT has to be signed with an X509 certificate. The use of these certificates is useless

in a close, secure environment where every peer is trusted by definition. Another issue comes

from the NAT traversal, which is also useless in this case but has to be implemented according

to the draft.

A possible use of RELOAD relating to the platform could be the communication between

several platforms. In this case, requirements like security, NAT traversal, certificates, (D)TLS

use,. . . have to be fulfilled, and the use of an open, standard protocol could be a good thing.

60

Chapter 7

The Open Multimedia Platform

framework

It seems interesting to compare the A5350 proxy platform with solutions designed in other active

companies in the telecom business, or with tools developed for the same purpose. Our choice

felt on the OMP framework, created by Ericsson [33]. This section will be divided in several

parts. First a little bit of history and background about the creation of this framework. Next,

an explanation of the main functionalities of the OMP and a comparison with the equivalent

functionalities of the Alcatel-Lucent’s A5350 proxy platform will be presented.

7.1 Presentation and background

The Open Multimedia Platform framework has been created by Ericsson. The aim was to

"describe a generic execution environment for applications that adheres to open standards;

and enables constant additions to, as well as modifications or substitutions of, its components

parts"[33].

In the past, telecommunication networks were built from a set of integrated vertical solutions,

meeting requirements for availability and retainability. These requirements were often met with

proprietary solutions. With the evolution of telecommunications, users come with more and

more demands of features, speed, faster change. . . A wider use of standards was also present.

Today, "the network architecture hierarchies are being flattened and the signaling infrastructures

moves to all-IP. Accompanying these changes are pooled resources, a clear separation of client

and server gateways, and the ability to build networks that more or less fulfill availability

requirements through network redundancy."[33]

One of the most important elements in the recent history of telecom industry is the effort

made for wide standardization. IT and telecom industries initiated a variety of layered, open-

61

Master Thesis CHAPTER 7. THE OPEN MULTIMEDIA PLATFORM FRAMEWORK

standardization activities. Some of these activities became open-source projects supported by

large companies with the same purpose: "to enable open, horizontal isolation and exchange-

ability, and to create a lively and healthy ecosystem."[33]

One of the most important results is the Service Availability Forum (SA Forum), whose

objective is "to define a high-availability middleware environment, primarily for telecom."[33]

To develop this middleware, Java has been chosen by the industry, as early as 2000, even if it

had not yet been widely deployed. There was an understanding in the industry that this was

the way forward. Today we can see that this choice is a very smart one with the advantages of

Java language in term of requirements and expectations of a faster-moving universe.

Another major driving force is the ongoing-convergence and consolidation of networks.

Things like the network configuration protocol (NETCONF) and its modeling language provide

a northbound interface19 from the base platform. These developments stem from the need to

centrally manage and configure huge numbers of network elements.

A lot of companies were involved in the efforts described above but without coordination, so

there were numerous standards or specifications to describe aspects of basic execution platform

but it was impossible to combine them into useful implementation. For this reason, the SCOPE

Alliance was created in 2006 by most major telecom equipment manufacturers. The aims of the

Alliance was "to guide the industry’s use of existing specifications and standards and to drive the

requirements and requests for missing functionality toward the specification and standardization

bodies."[33]

But the industry has yet to create a generic implementation of the defined architecture.

With this purpose, Ericsson has defined and created the Open Multimedia Platform framework

(OMP) "in order to embrace an existing and evolving ecosystem that provides the necessary

layered components". The main layer of OMP is a software applications execution system. In

complement, there are application services (database management system, protocol stacks) and

directories (for implementing and deploying). To embrace the largest-possible ecosystem, to be

compliant to standards is very important, so the OMP framework includes the Java Platform

Enterprise Edition (JEE) execution environment. Another important thing is to be hardware

and operating system independent during the design of the application.

Finally, it is possible for an application to use services deployed outside the cluster itself (if

these services fulfil some conditions). So the use of the OMP is not limited to solutions that

use all the included components.

19"A northbound interface is an interface that conceptualizes lower level details. It interfaces to higher level

layers and is normally drawn at the top of an architectural overview."[34] No external sources were available in

the Wikipedia page for this definition.

62

Master Thesis CHAPTER 7. THE OPEN MULTIMEDIA PLATFORM FRAMEWORK

7.2 Architecture, characteristics, layers, . . .

The main target of the OMP framework is to provide a support for portable JEE applications.

As shown in Figure 7.1 the OMP is horizontally layered as follows:

• a third generation application server;

• standardized middleware providing high availability;

• an operating system;

• any hardware system; and

• management components that provide the generic management features to the application

server and the applications.

Figure 7.1: Layers of the Open Multimedia Platform framework (OMP) architecture

The differents layers are separated using well-defined interfaces, and the components of

each layer are expected to comply with existing or evolving standards or specifications. The

dimensioning and integration is part of the application design. In other words, there are no

63

Master Thesis CHAPTER 7. THE OPEN MULTIMEDIA PLATFORM FRAMEWORK

Figure 7.2: Components of the Open Multimedia Platform framework (OMP) architecture

limitations regarding the usage of components by the applications. And the applications need

not use all layers.

The application server consists of the Sun Glassfish Communication Server (SGCS), which

includes the SIP container contributed by Ericsson (via the open-source SailFin project). Oper-

ations, administration and maintenance (OAM) of both applications and application server are

provided by integration with the Service Availability Forum (SAF) middleware. The OAM for

hardware and software are decoupled, so can be done separately. Finally, reusable components

and performance management are added in the JEE domain.

The implementation of the SAF middleware that Ericsson uses is provided by the open-

source OpenSAF project. Optional load-balancing service can be used with Virtual Internet

Protocol (VIP). The operating system is Linux, in an enterprise edition.

In the rest of this section, the components will be explained.

7.2.1 The application server

The main component of the application server layer is the SGCS, with features to provide

services for applications and application server.

The application development environment is Java EE, coming with all the positive, stan-

dardized aspects of a JEE development environment.

The SGCS uses the servlet architecture for both HyperText Transfer Protocol (HTTP) and

SIP. This programming model is well-known and successful.

64

Master Thesis CHAPTER 7. THE OPEN MULTIMEDIA PLATFORM FRAMEWORK

Using Enterprise Java Beans (EJB), the model and enterprise business logic are part of

the application server. This choice allows application to use one single process in memory for

combining business logic and communication needs.

To develop an application, there is no need to know how the SAF middleware implementation

works. All middleware services are made available through standard Java interfaces, within the

JEE Software Development kit (SDK).

7.2.2 Middleware

The middleware provides services required to build high availability applications in a clustered

system. The most important ones are:

• Availability Management Framework (AMF)

• Checkpoint service (CKPT)

• Information Model Management (IMM)

• Notification service (NTF)

The Availability Management Framework coordinates redundant resources within the clus-

ter. It also specifies an abstract system model to represent resources under its control.

The Checkpoint service manages a set of checkpoints that allow a process to save its state.

This can be used to minimize the impact of failure.

The Information Model Management allows object managers to create, access and manage

the objects of the information model.

The Notification service triggers alarms and alerts to fault management.

7.2.3 OAM

The OAM provides centralized or remote operations, administration, maintenance and provi-

sioning of OMP-based systems. OAM provides configuration management (for administering

the configuration data of a system), fault management (allows operators to detect and act on

faults) and software management (provide support for installing or upgrading support).

7.2.4 Hardware architecture

There is no need to know which type of hardware applications will be deployed on. The choice of

the hardware can be made later. However, a common hardware architecture has been defined to

ensure that the OMP components and applications can run properly. Principles and guidelines

65

Master Thesis CHAPTER 7. THE OPEN MULTIMEDIA PLATFORM FRAMEWORK

have been defined to show how applications should be built in order to reach a common view

of the underlying hardware.

This solution increases the possibility of reusing components, which was one of the initial

purposes.

7.2.5 Reuse of components

The organizations that develop applications can contribute to reusable objects. There are three

main systems to support that:

• software object inventory

• community forums

• governance structure

The software object inventory stores meta-data related to software objects. It stores candi-

dates for reusable objects, reusable objects maintained and third-party software.

The community forums share knowledge about developing applications, contain discussions

about the framework, under development software object,. . .

A council has been established to lead the development process and decide how new systems

and objects for the OMP should be developed and maintained and by whom.

7.3 Comparison between OMP framework and OSGi

In this section, a comparison will be made between OMP framework and A5350 proxy-platform

and its use of the OSGi framework. At first sight, the tools very similar in terms of aims,

advantages, layered architectures, . . . A step-by-step comparison will be made to confirm or not

this idea.

7.3.1 Generalities

There are a lot of similarities between the OMP and the A5350 (with OSGi).

The aim of both tools is to provide an execution environment for telecommunication appli-

cations, with the new requirements brought by convergence like multiprotocol support. They

provide ways to develop, deploy, manage applications easily, and encourage modularity, reuse of

components,. . . They both use Linux as operating system and Java as programming language,

two reliable open, standards, reliable and well-known tools to build applications. And Eclipse,

another open, well-known software, can be used as an Integrated Development Environment

(IDE) on both frameworks.

66

Master Thesis CHAPTER 7. THE OPEN MULTIMEDIA PLATFORM FRAMEWORK

7.3.2 Reuse of components

The reuse of component is one of the most important feature of both tools.

With OSGi, you can build bundles. These bundles export services that other bundles can

easily import. So reuse of components is extremely easy. Moreover, it is very simple to "bundle-

ize" a standard JAR file to make it available for the platform and all applications. All you have

to do is modify the Manifest of the JAR file and make it compliant with the OSGi specifications.

Usually, it takes no longer than a few minutes. This is obviously a great advantage of the A5350

and facilitates the reuse of components.

Since the OMP framework publicly provides no structure for the applications, it is hard to

know how reuse of components really works.

7.3.3 OAM

The OAM is the component that enables centralized operations of OMP-based systems. In this

way, it could be compared to the administration module of the A5350 proxy-platform. This

modules allows control and administration of the platform through several ways, including

• a web graphical user interface;

• a command line interface (allowing automated administration operations through shell

scripts, and all operations available through the web GUI);

• a Java Management Extensions (JMX) interface (used for example to have counters into

SIP Servlets);

• notifications (applications can raise notifications that can be translated into Simple Net-

work Management Protocol (SNMP) alarms);

• the Fast Cache allowing configuration, fault and configuration management

• centralized log operations (using Syslog NG) for all the ASR.

It is clear that all operations management enabled by the OAM (configuration management,

fault management, software management) are also available on the Alcatel-Lucent’s platform.

Configuration management (of the OMP framework) uses NETCONF protocol while the

ASR uses SNMP. These two protocols have the same aim, but SNMP can be considered more

mature, having more development and deployment experience.

Fault management in an OMP-based system is the function that allows operators to detect

and act on faults. This function uses SNMP. In the proxy platform, logs operations can be

centralized with Syslog NG and easily monitored. Moreover, the web GUI also allows a complete

67

Master Thesis CHAPTER 7. THE OPEN MULTIMEDIA PLATFORM FRAMEWORK

alarm management, including a complete set of related information (the application where the

alarm came from, the timestamp, the severity of the alarm, a informative message, . . .).

The system management of the OMP framework provides support when installing or up-

grading a system. Once again, the GUI of the platform provides easy ways to manage the

deployment or the upgrade of one or more components. It is possible to create and control

groups of applications (on several hosts if the platform is multi hosted), with chosen compo-

nents in every groups, and decide which component you want to stop, start, restart, . . .

These operations are depicted in Figure 7.3 where a comprehensive list of web Admin capa-

bilities is given.

Figure 7.3: ASR Web Admin - Deploying applications

7.3.4 Structure of applications

The Alcatel-Lucent’s product and the OMP framework are both tools for ease the deployment

of IMS applications. Of course, like every platform, these ones do nothing on their own, but

provide a set of services.

Applications running on the Alcatel-Lucent’s ASR are OSGi bundles. Bundles are just

classical JAR files that typically contain the Java class files of the service interfaces, their

implementation and some more meta information in a META-INF/manifest.mf file. Services

are Java interfaces and once your bundle registers a service with the OSGi framework, other

68

Master Thesis CHAPTER 7. THE OPEN MULTIMEDIA PLATFORM FRAMEWORK

bundles may use your "published" service.

The OMP framework is not a traditional platform but it "describes a generic execution

environment for applications that adhere to open standards"[33]. At this point, there is not a

well defined applications’ architecture but we can assume that some kinds of Java files could be

used, and why not OSGi-like bundles.

7.3.5 Conclusion

Both tools are very similar, and share a lot of features. They both encourage modularity,

reuse of components. They both are hardware independent, use Linux as the O.S., Java as

the programming language and Eclipse as the IDE,. . . But OSGi framework seems to be more

mature, with several implementations available (Apache Felix, Eclipse Equinox, FUSE ESB

4,. . .), an active community and a lot of resources easily available on the Internet. The OMP

framework seems to be, at this point, a project still in development. Public resources are more

difficult to find, specifications seem less complete,. . .

69

Chapter 8

Conclusion

Several conclusions can be drawn from this thesis, for the RELOAD protocol itself and for its

implementation onto the A5350 proxy-platform.

Drawing final conclusions about the RELOAD protocol is not easy. When the present work

about RELOAD started (in September 2008), the protocol was still at an early stage of devel-

opment, with a single main draft, and a lot of aspects were not yet covered. Almost a year later

the situation has radically changed: there are now a lot of drafts (Working Group documents

or related documents) taking into account many aspects of the protocol. Moreover, the devel-

opment process is more and more rapid, more and more fragmented in different topics (just

like RELOAD related documents) and tracking every change in every topic becomes intricate.

This is obviously natural and inevitable, due to the complexity and the ambition of the task.

Indeed, the definition of an open, standard, "generic, self-organizing overlay network service"

is not easy and needs a lot of work.

The RELOAD protocol is bound to become the standard in the P2PSIP (and maybe P2P)

world, but some important points could be improved in order to do that. The main drawbacks

highlighted in Section 3.6 (misunderstandings, imprecisions, dependence on not mature topics

like ICE,. . .) should be removed to allow a complete development. Moreover, some of the

RELOAD requirements could seem too heavy or complicated to set up for some uses, but

to make these requirements optional could impair interoperability. . . The question whether a

feature is mandatory or optional is very complicated to work out.

Concerning the use of RELOAD in the Alcatel-Lucent’s IMS platform, it appears that the

RELOAD protocol may be overkill the way it was initially planned. Indeed, for a specific internal

use, a dedicated, specially designed protocol with all the requirements for an industrial usage,

without useless features is more adapted. But the question of using RELOAD to exchange data

between several platforms deserves to be studied further. The question of the nature of the

information to be exchanged is open.

71

Bibliography

[1] S. Androutsellis-Theotokis and D. Spinellis, “A Survey of Peer-to-Peer Content Distribution

Technologies,” ACM Computing Surveys, vol. 36, pp. 335–371, Dec. 2004.

[2] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne, “REsource LO-

cation And Discovery (RELOAD) Base Protocol,” July 2009. http://tools.ietf.org/html/

draft-ietf-p2psip-base-03 (work in progress).

[3] J. Buford, H. Yu, and E. K. Lua, P2P Networking and Applications. Morgan Kaufman,

2009.

[4] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and

H. Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for internet applications,”

IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 17–32, 2003.

[5] “Gnutella.” http://en.wikipedia.org/wiki/Gnutella, Last visited August 05, 2009.

[6] V. Pascual, V. Matuszewski, E. Shim, H. Zheng, and Y. Song, “P2PSIP Clients,” February

2008. http://tools.ietf.org/html/draft-pascual-p2psip-clients-01 (work in progress).

[7] V. Narayanan and A. Swaminathan, “Enhanced Client Support for RELOAD,” June 2009.

http://tools.ietf.org/html/draft-vidya-p2psip-eclients-00 (work in progress).

[8] S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels,” 1997. http:

//tools.ietf.org/html/rfc2119.

[9] H. Song, X. Jiang, R. Even, and D. Bryan, “P2PSIP Overlay Diagnostics,” June 2009.

http://tools.ietf.org/html/draft-ietf-p2psip-diagnostics-01 (work in progress).

[10] L. Huang, “Location and Discovery of Subsets of Resources,” January 2009. http://tools.

ietf.org/html/draft-licanhuang-p2psip-subsetresourcelocation-01 (work in progress).

[11] T. Hardie and V. Narayanan, “Pointers for Peer-to-Peer Overlay Networks, Nodes, or Re-

sources,” March 2009. http://tools.ietf.org/html/draft-hardie-p2psip-p2p-pointers-01 (work

in progress).

73

http://tools.ietf.org/html/draft-ietf-p2psip-base-03
http://tools.ietf.org/html/draft-ietf-p2psip-base-03
http://en.wikipedia.org/wiki/Gnutella
http://tools.ietf.org/html/draft-pascual-p2psip-clients-01
http://tools.ietf.org/html/draft-vidya-p2psip-eclients-00
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/draft-ietf-p2psip-diagnostics-01
http://tools.ietf.org/html/draft-licanhuang-p2psip-subsetresourcelocation-01
http://tools.ietf.org/html/draft-licanhuang-p2psip-subsetresourcelocation-01
http://tools.ietf.org/html/draft-hardie-p2psip-p2p-pointers-01

Master Thesis BIBLIOGRAPHY

[12] L. Le, “Hierarchical P2PSIP Overlay,” July 2009. http://tools.ietf.org/html/

draft-le-p2psip-hierachical-p2psip-overlay-00 (work in progress).

[13] G. Li, L. Le, and N. Zhou, “Traffic localization for RELOAD,” July 2009. http://tools.ietf.

org/html/draft-li-p2psip-localization-00 (work in progress).

[14] J. Maenpaa, G. Camarillo, and J. Hautakorpi, “A Self-tuning Distributed Hash Table

(DHT) for REsource LOcation And Discovery (RELOAD),” February 2009. http://tools.

ietf.org/html/draft-maenpaa-p2psip-self-tuning-00 (work in progress).

[15] J. Mäenpää, G. Camarillo, and J. Hautakorpi, “A Self-tuning DHT for RELOAD.” IETF

proceedings, www.ietf.org/proceedings/74/slides/p2psip-0.pdf.

[16] S. Das, S. A., and V. Narayanan, “A Load Balancing Mechanism for RE-

source LOcation And Discovery,” March 2009. http://tools.ietf.org/html/

draft-saumitra-p2psip-loadbalance-00 (work in progress).

[17] J. Maenpaa, A. Swaminathan, G. Das, S. ans Camarillo, and H. J., “A Topology

Plug-in for REsource LOcation And Discovery,” July 2009. http://tools.ietf.org/html/

draft-maenpaa-p2psip-topologyplugin-00 (work in progress).

[18] V. Narayanan and A. Swaminathan, “Deterministic Replication for RELOAD,” June 2009.

http://tools.ietf.org/html/draft-vidya-p2psip-replication-00 (work in progress).

[19] L. Xiao and Y. Zhang, “A P2PSIP Client Routing for RELOAD,” May 2009. http://tools.

ietf.org/html/draft-xiao-p2psip-client-routing-00 (work in progress).

[20] J. Zhu and M. Qi, “P2PSIP Security Requirements,” February 2009. http://tools.ietf.org/

html/draft-zhu-p2psip-securityrequirements-00 (work in progress).

[21] H. Song, M. Matuszewski, and D. York, “P2PSIP Security Overview and Risk Analy-

sis,” July 2009. http://tools.ietf.org/html/draft-matuszewski-p2psip-security-requirements-05

(work in progress).

[22] Y. Mao, V. Narayanan, and A. Swaminathan, “Threat Analysis for Peer-to-Peer Over-

lay Networks,” March 2009. http://tools.ietf.org/html/draft-mao-p2psip-threat-analysis-00

(work in progress).

[23] Y. Gao and Y. Meng, “A New SIP Usage for RELOAD,” July 2009. http://tools.ietf.org/

html/draft-gaoyang-p2psip-new-sip-usage-00 (work in progress).

74

http://tools.ietf.org/html/draft-le-p2psip-hierachical-p2psip-overlay-00
http://tools.ietf.org/html/draft-le-p2psip-hierachical-p2psip-overlay-00
http://tools.ietf.org/html/draft-li-p2psip-localization-00
http://tools.ietf.org/html/draft-li-p2psip-localization-00
http://tools.ietf.org/html/draft-maenpaa-p2psip-self-tuning-00
http://tools.ietf.org/html/draft-maenpaa-p2psip-self-tuning-00
www.ietf.org/proceedings/74/slides/p2psip-0.pdf
http://tools.ietf.org/html/draft-saumitra-p2psip-loadbalance-00
http://tools.ietf.org/html/draft-saumitra-p2psip-loadbalance-00
http://tools.ietf.org/html/draft-maenpaa-p2psip-topologyplugin-00
http://tools.ietf.org/html/draft-maenpaa-p2psip-topologyplugin-00
http://tools.ietf.org/html/draft-vidya-p2psip-replication-00
http://tools.ietf.org/html/draft-xiao-p2psip-client-routing-00
http://tools.ietf.org/html/draft-xiao-p2psip-client-routing-00
http://tools.ietf.org/html/draft-zhu-p2psip-securityrequirements-00
http://tools.ietf.org/html/draft-zhu-p2psip-securityrequirements-00
http://tools.ietf.org/html/draft-matuszewski-p2psip-security-requirements-05
http://tools.ietf.org/html/draft-mao-p2psip-threat-analysis-00
http://tools.ietf.org/html/draft-gaoyang-p2psip-new-sip-usage-00
http://tools.ietf.org/html/draft-gaoyang-p2psip-new-sip-usage-00

Master Thesis BIBLIOGRAPHY

[24] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne, “A SIP Usage

for RELOAD,” March 2009. http://tools.ietf.org/html/draft-ietf-p2psip-sip-01 (work in

progress).

[25] G. Camarillo and IAB, “Peer-to-peer (P2P) Architectures,” July 2009. http://tools.ietf.

org/html/draft-iab-p2p-archs-02.

[26] R. Cox, A. Muthitacharoen, and R. Morris, “DNS and Distributed Hash Tables Not Quite

Perfect Together.” http://swtch.com/~rsc/talks/iptps02.pdf.

[27] “The AOL XMPP scalability challenge.” http://www.process-one.net/en/blogs/article/the_

aol_xmpp_scalability_challenge.

[28] J. S. Foundation, “Extensible Messaging and Presence Protocol (XMPP): Core,” October

2004. http://tools.ietf.org/html/rfc3920.

[29] J. Wang, J. Shen, and Y. Meng, “Content Sharing Usage for RELOAD,” June 2009. http:

//tools.ietf.org/html/draft-shen-p2psip-content-sharing-00 (work in progress).

[30] “OSGi Alliance web site [online].” http://www.osgi.org, consulted August, 2009.

[31] “SIP Servlet Developer’s Homepage.” http://www1.cs.columbia.edu/~ss2020/sipservlet/,

Last visited August 2009.

[32] J. Wauthy, “P2PSIP: Towards a Decentralized, SIP-based VoIP System,” 2007.

[33] B. Andrèn, “Open Multimedia Platform framework,” Ericsson Review, no. 1, pp. 17–21,

2009.

[34] “Northbound interface.” http://en.wikipedia.org/wiki/Northbound_interface, consulted Au-

gust 14, 2009.

75

http://tools.ietf.org/html/draft-ietf-p2psip-sip-01
http://tools.ietf.org/html/draft-iab-p2p-archs-02
http://tools.ietf.org/html/draft-iab-p2p-archs-02
http://swtch.com/~rsc/talks/iptps02.pdf
http://www.process-one.net/en/blogs/article/the_aol_xmpp_scalability_challenge
http://www.process-one.net/en/blogs/article/the_aol_xmpp_scalability_challenge
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/draft-shen-p2psip-content-sharing-00
http://tools.ietf.org/html/draft-shen-p2psip-content-sharing-00
http://www.osgi.org
http://www1.cs.columbia.edu/~ss2020/sipservlet/
http://en.wikipedia.org/wiki/Northbound_interface

Appendix A

reload.xml file

1 <?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE reload-app>

<reload-app>

<servlet>

5 <servlet-name>ReloadServletStorage</servlet-name>

<servlet-class>

com.alcatel_lucent.reload.ReloadServletImpl

</servlet-class>

</servlet>

10 <method-mapping>

<servlet-name>ReloadServletStorage</servlet-name>

<method-name>

FETCH_REQ,FETCH_ANS,FIND_REQ,FIND_ANS,REMOVE_REQ,

REMOVE_ANS,STAT_ANS,STAT_REQ,JOIN_REQ,JOIN_ANS,

15 LEAVE_REQ,LEAVE_ANS,ROUTEQUERY_REQ,ROUTEQUERY_ANS,

PROBE_REQ,PROBE_ANS,UPDATE_REQ,UPDATE_ANS,ATTACH_REQ,

ATTACH_ANS,ATTACHLITE_REQ,ATTACHLITE_ANS,PING_REQ,

PING_ANS,STORE_REQ,STORE_ANS

</method-name>

20 </method-mapping>

</reload-app>

i

Appendix B

sip.xml file

1 <?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sip-app PUBLIC "-//Java Community Process//

DTD SIP Application 1.0//

EN" "http://www.jcp.org/dtd/sip-app_1_0.dtd">

5 <sip-app>

<display-name>Alcatel-Lucent-SIP-Basic-Proxy</display-name>

<servlet>

<servlet-name>BasicSipServlet</servlet-name>

<servlet-class>

10 com.alcatel_lucent.examples.sip.servlet.basicproxy.BasicSipServlet

</servlet-class>

<load-on-startup/>

</servlet>

<servlet-mapping>

15 <servlet-name>BasicSipServlet</servlet-name>

<pattern>

<or>

<equal>

<var>request.method</var>

20 <value>INVITE</value>

</equal>

<equal>

<var>request.method</var>

<value>SUBSCRIBE</value>

25 </equal>

iii

Master Thesis APPENDIX B. SIP.XML FILE

<equal>

<var>request.method</var>

<value>REFER</value>

</equal>

30 <equal>

<var>request.method</var>

<value>PUBLISH</value>

</equal>

<equal>

35 <var>request.method</var>

<value>INFO</value>

</equal>

<equal>

<var>request.method</var>

40 <value>MESSAGE</value>

</equal>

</or>

</pattern>

</servlet-mapping>

45 </sip-app>

iv

	Introduction
	Peer-to-peer: overview
	RELOAD protocol
	Presentation of the protocol
	Terminology
	Architecture
	Chord algorithm
	Obtaining of a certificate
	Interpretation/Understanding Draft issues
	Handling unstructured overlays
	Client issues
	Enhanced Client concept
	Variable length structure
	Unknown Kind of Data
	Unknown options
	Generation counter
	Detecting partitioning
	Unreliable links
	ICE-TCP and ICE-Lite outdated
	Maximum size of a stored value
	Handling failures

	Related works
	Overlay diagnostics
	Location and Discovery of Subsets of Resources
	Pointers for Peer-to-Peer Overlay Networks, Nodes, or Resources
	Hierarchical P2PSIP Overlay
	Traffic localization for RELOAD
	Self-tuning Distributed Hash Table for RELOAD
	A Load Balancing Mechanism for RELOAD
	Topology Plug in for RELOAD
	Deterministic Replication for RELOAD
	A P2PSIP Client Routing for RELOAD
	P2PSIP Security Requirements
	Threat Analysis for Peer-to-Peer Overlay Networks

	Configuration of a RELOAD node

	Usages of RELOAD
	SIP usage of RELOAD
	Other uses
	Domain Name System
	Jabber/XMPP
	Content Delivery Network

	Environment
	The A5350 proxy platform
	The Service Creation Environment
	OSGi framework
	The OSGi Alliance
	The OSGi architecture
	Presentation of the OSGi Technology
	Interest of using OSGi Framework

	Implementation
	Limitations, shortcuts, …
	Interests and advantages of the architecture
	RELOAD container
	RELOAD application

	Implementation issues
	C-like structure
	NAT traversal
	Unsigned integers
	Binary protocol

	Use related to the A5350 proxy platform

	The Open Multimedia Platform framework
	Presentation and background
	Architecture, characteristics, layers, …
	The application server
	Middleware
	OAM
	Hardware architecture
	Reuse of components

	Comparison between OMP framework and OSGi
	Generalities
	Reuse of components
	OAM
	Structure of applications
	Conclusion

	Conclusion
	Bibliography
	reload.xml file
	sip.xml file

