
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER EN SCIENCES DE GESTION

La culture organisationnelle: entre volonté d'intégration et stratégies de mise à
distance: le cas de Boehringer Ingelheim

Baudoux, Céline

Award date:
2009

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Namur

https://core.ac.uk/display/326315111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/fr/studentthesis/la-culture-organisationnelle-entre-volonte-dintegration-et-strategies-de-mise-a-distance-le-cas-de-boehringer-ingelheim(9858856e-4114-4199-9215-a5a8db854650).html

Facultés Universitaires Notre-Dame de la Paix, Namur
Faculté d’Informatique

Année académique 2008-2009

Automated Software Configuration:

the Product Line Approach
An Application to Conference Management

Websites

Baudoux Chritophe

Mémoire présenté en vue de l’obtention du grade de
Mâıtre en Sciences Informatiques

Acknowledgements

I would particularly thank:

Mr Patrick Heymans, my supervisor and professor at the Faculty of Com-
puter Science at the University of Namur, to have directed me throughout the
elaboration of this master thesis ;

Mr Arnaud Hubaux and Mr Quentin Boucher for the time they have spent
to guide me and to answer to my questions, as well as for the frequent reread-
ing ;

Mr David Benavides Cuevas, professor at the University of Seville, to have
integrated me as trainee in the Department of Computer Languages and Sys-
tems, and to have followed, advised, helped me throughout my traineeship ;

The whole staff of the Department of Computer Languages and Systems
for its hospitality and good mood ;

And finally, my parents and friends to have supported me unconditionally
during the elaboration of this work.

Abstract

The active researchers and engineers in diversified domains need to com-
municate, to archive the obtained results and to state their advances. At this
end, they publish articles in specialist magazines or participate at scientific
conferences, which take generally place annually.

The organization of these last ones passes in particular by the creation of
a website presenting the practical modalities. However, the organizers have
generally not enough time to dedicate to this task. The conferences have
a well defined organization and have recurring operating modes. This last
characteristic is typical of software product line. Thanks to this approach, we
can envisage the automation of the creation of a product, namely, in our case,
a website of conference.

In this master thesis, we present two approaches allowing to automate the
creation of a website of conference to lighten the time dedicated to this task.
These two approaches have totally opposite optics: the first one proposes a
graphical interface allowing to guide users in their choices and the second
one, more technical, allows to select the characteristics directly on a feature
diagram. On basis of the collected information, they generate automatically
the website of conference. Beyond these two solutions, our contribution will
be also supported by the comparison of these two methods in order to identify
their strengths and weaknesses. On basis of the results, we shall present a
unified approach.

Résumé

Les chercheurs et ingénieurs actifs dans divers domaines ont besoin de
communiquer, d’archiver les résultats obtenus et faire état de leurs avancées.
A cette fin, ils publient des articles dans des revues spécialisées ou participent
à des conférences scientifiques, qui ont lieu annuellement.

L’organisation de ces dernières passe notamment par la création d’un site
internet présentant les modalités pratiques. Cependant, les organisateurs n’ont
généralement que peu de temps à consacrer à cette tâche. Les conférences ont
une organisation bien établie et sont dotées de modes opératoires récurrents.
Cette dernière caractéristique est typique des lignes de produits logiciels.
Grâce à cette approche, on peut envisager l’automatisation de la création
d’un produit, à savoir, dans notre cas, un site internet de conférence.

Dans ce mémoire, nous présentons deux approches permettant d’automati-
ser la création d’un site web de conférence afin d’alléger le temps consacré
à cette tâche. Ces deux approches ont des optiques totalement opposées :
l’une propose une interface graphique permettant de guider l’utilisateur dans
ses choix et l’autre plus technique permet de sélectionner les caractéristiques
directement sur un feature diagram. Sur bases des informations recueillies,
ils génèrent automatiquement le site internet de conférence. Au-delà de ces
deux solutions, notre contribution sera également appuyée par la comparaison
de ces deux méthodes afin d’identifier leurs forces et faiblesses. Sur base des
résultats, nous présenterons une approche unifiée.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem to solve . 2
1.3 Solution strategies . 3
1.4 Outline . 3

2 Background 5
2.1 Software product lines . 5

2.1.1 Motivations for SPL engineering 6
2.1.2 Variability . 7
2.1.3 SPL engineering framework 8

2.2 Feature diagrams . 11
2.2.1 Basic feature diagrams 12
2.2.2 Cardinality-based feature diagrams 14
2.2.3 Extended feature diagrams 15

2.3 Variability modelling and configuration tools for SPL 16
2.3.1 Existing variability modelling and configuration tools . 17
2.3.2 Comparison of selected variability modelling and config-

uration tools . 23
2.3.3 Discussion . 25

3 Running example: A conference website SPL 29
3.1 Basics of conference management 29
3.2 Basics of content management systems 31
3.3 Requirements engineering . 31

3.3.1 Requirements elicitation approach 32
3.3.2 VOLERE template . 32
3.3.3 Project drivers . 33
3.3.4 Project constraints . 38
3.3.5 Functional requirements 40

ix

x CONTENTS

3.3.6 Non-functional requirements 52
3.4 Conference website product line feature diagram 56
3.5 Selection of a content management system 57

3.5.1 Existing CMSs . 57
3.5.2 Comparison of selected CMSs 63
3.5.3 Discussion . 64

4 Approaches to configuration 69
4.1 Application specific: wizard . 69

4.1.1 Structure . 70
4.1.2 Graphical user interface 83

4.2 Generic: feature-model based 89
4.2.1 Structure . 90
4.2.2 Graphical user interface 100

4.3 Comparison . 104
4.3.1 Comparison criteria . 105
4.3.2 Analysis . 108

5 Towards a “unified” approach 113
5.1 Discussion of previous approaches 113
5.2 Change priorities . 116
5.3 Solution proposal . 117
5.4 Known limitations . 120

6 Conclusions 123
6.1 Summary . 123
6.2 Contributions . 124
6.3 Limitations . 124
6.4 Perspectives . 125

Bibliography 127

List of Figures

2.1 The software product line engineering framework 9
2.2 Feature diagrams: a mandatory relationship 12
2.3 Feature diagrams: an optional relationship 13
2.4 Feature diagrams: an or relationship 13
2.5 Feature diagrams: an alternative relationship 13
2.6 Feature diagrams: Requires and Excludes constraints 14
2.7 Example of feature diagram . 14
2.8 Feature diagrams: a group cardinality 15
2.9 Feature diagrams: a feature cardinality 15
2.10 Example of extended feature diagram 16
2.11 Screenshot of the Feature Modelling Plug-in interface 18
2.12 Screenshot of the Kumbang tools interface 20
2.13 Screenshot of the RequiLine interface 22
2.14 Screenshot of the Pure::variants interface 23

3.1 Goal model 1: organize a conference 42
3.2 Goal model 2: generate the conference website 43
3.3 Goal model 3: goals of the contributors 44
3.4 Goal model 4: goals of the participants 44
3.5 Conference website feature diagram 58

4.1 Class diagram of the conference website 71
4.2 Application specific approach: general sequence diagram 72
4.3 Application specific approach: languages sequence diagram . . 73
4.4 Application specific approach: dates sequence diagram 74
4.5 Application specific approach: templates sequence diagram . . 75
4.6 Application specific approach: content sequence diagram 76
4.7 Application specific approach: plugins sequence diagram 77
4.8 Application specific approach: generation sequence diagram . . 78
4.9 Application specific approach: screenshot of the start panel . . 84

xi

xii LIST OF FIGURES

4.10 Application specific approach: screenshot of the conference dates
choice panel . 84

4.11 Application specific approach: screenshot of the calendar window 85
4.12 Application specific approach: screenshot of the events choice

panel . 85
4.13 Application specific approach: screenshot of the date confirma-

tion window . 85
4.14 Application specific approach: screenshot of the content choice

panel . 86
4.15 Application specific approach: screenshot of the modules choice

panel . 86
4.16 Application specific approach: screenshot of the images addi-

tion panel . 87
4.17 Application specific approach: screenshot of the templates choice

panel . 87
4.18 Application specific approach: screenshot of the template de-

tails window . 88
4.19 Application specific approach: screenshot of the generation panel 88
4.20 Generic approach: general sequence diagram 91
4.21 Generic approach: selection sequence diagram 92
4.22 Generic approach: dates sequence diagram 93
4.23 Generic approach: content sequence diagram 94
4.24 Generic approach: plugins sequence diagram 95
4.25 Generic approach: generation sequence diagram 96
4.26 Generic approach: screenshot of a new project 100
4.27 Generic approach: screenshot of a new feature addition 101
4.28 Generic approach: screenshot of details of a new feature addition101
4.29 Generic approach: screenshot of new attribute addition 102
4.30 Generic approach: screenshot of features selection 102
4.31 Generic approach: screenshot of attributes 103
4.32 Generic approach: screenshot of Pure::variants export function 103

List of Tables

2.1 Summary of variability modelling and configuration tools com-
parison: general . 26

2.2 Summary of variability modelling and configuration tools com-
parison: operating systems support 27

2.3 Summary of variability modelling and configuration tools com-
parison: rendering of modelling 27

2.4 Summary of variability modelling and configuration tools com-
parison: formats of Input/Output (I/O) models 27

3.1 Requirement engineering: summary of the hand-on users of the
product . 37

3.2 Requirement engineering: summary of the first constraint . . . 39
3.3 Requirement engineering: summary of the second constraint . . 39
3.4 Requirement engineering: legend of the goal model 41
3.5 Requirement engineering: requirement 1 46
3.6 Requirement engineering: requirement 2 46
3.7 Requirement engineering: requirement 3 47
3.8 Requirement engineering: requirement 4 47
3.9 Requirement engineering: requirement 5 48
3.10 Requirement engineering: requirement 6 49
3.11 Requirement engineering: requirement 7 49
3.12 Requirement engineering: requirement 8 50
3.13 Requirement engineering: requirement 9 50
3.14 Requirement engineering: requirement 10 51
3.15 Requirement engineering: requirement 11 52
3.16 Requirement engineering: requirement 12 52
3.17 Requirement engineering: summary of the usability requirements 54
3.18 Summary of the CMSs comparison 65
3.19 Summary of the points attributed to selected CMSs 68

xiii

xiv LIST OF TABLES

4.1 Example of ics file content . 82
4.2 Summary of the ISO 9126 standard criteria 107
4.3 Summary of the refined ISO 9126 standard criteria 109
4.4 Summary of the refined ISO 9126 standard comparison 111

5.1 Summary of the satisfaction of the application specific and
generic approaches in relation to the specified criteria 116

5.2 Summary of the priorities assigned to characteristics 118

Chapter 1

Introduction

Since many years, Software Product Lines (SPLs) have been presented as a
promising approach to improve software quality and productivity. SPLs have
been used by the manufacturing industry for a long time to reduce costs and
increase productivity for software development [61]. According to customer
requirements, a product configuration allows to derive a list of all standard
features and available options for each product.

In this chapter we present the context of this master thesis with an intro-
duction to SPL and feature-based product configuration. Then, we define the
problem to solve and the different strategies which could be used to solve it.
The structure of the thesis is finally defined at the end of the chapter.

1.1 Context

SPLs refer to software engineering methods, tools and techniques for creat-
ing a collection of similar software systems from a shared collection of software
assets using a common way of production [78]. SPL is an important software
development paradigm allowing to yield enormous gains in quality, costs, time
to market, productivity and carry out order-of-magnitude improvements in
other business drivers. “Manufacturers have long employed analogous engi-
neering techniques to create a product line of similar products using a common
factory that assembles and configures parts designed to be reused across the
varying products in the product line” [61]. For instance, automotive manufac-
turers can produce unique variations of one car model using a set of designed
pieces and a platform especially designed to assemble and configure those
pieces.

SPLs are distinct from previous works by pro-active against opportunistic

1

2 1 Introduction

software reuse. In a well defined SPL, when reuse is predicted in one or
more products, software artefacts are called to create different products of
the SPL rather than put general software components into a library with
the hope that reuse will be possible. Recent advances in the SPL domain
have showed that software engineering capability can be improved thanks to a
narrow and strategic application of these concepts [66]. SPL engineering has
a competitive business advantage in providing rapid market entry and flexible
response, and allowing mass production and mass customization. The mass
production represents a big advance in the manufacturing domain and can be
defined as the ability to efficiently produce many copies of the same product,
which is trivial. Advance in software engineering and manufacturing, the
mass customization can be defined as the ability to efficiently produce many
variations of a single product. Commonality and effective management of the
variation (variability) in a product line are key elements of mass customization.

Many SPLs use product configuration techniques for managing the vari-
ability between their applications. Product configuration systems allow to
configure modular products in function of the customer requirements. Such
systems list all mandatory features as well as available options for each prod-
uct. Configuration is the process of deriving a concrete configuration con-
forming to a Feature Diagram (FD) by selecting and cloning features, and
specifying attribute values [64]. FDs are a well accepted means for expressing
requirements in a domain on an abstract level. They are applied to describe
variable and common properties of products in a SPL, and to derive and val-
idate configurations of software systems [82]. FDs are visually represented as
a tree where primitive features are leaves and compound features are interior
nodes. One of the key success elements in SPLs is to achieve reusability, adapt-
ability, and configurability of SPL assets like architectures and features. These
goals are achieved by the identification of commonality and variability prop-
erties among products of a product line. Feature modelling is an important
approach for capturing commonalities and variabilities in SPL [65].

1.2 Problem to solve

An important problem to solve is the automation of the creation of the core
assets available in the SPL. As we have seen above, configuration is essential in
the optic of SPL because it pilots product configuration according to customer
requirements. In this master thesis, we illustrate this problem on conference
website product lines. The automation of the creation of conference website
has some advantages. First, it allows to simplify the process which can be
complex and thus, to spare some precious time that people generally don’t

1.3 Solution strategies 3

have. Second, users do not require new technical knowledge (HTML, PHP,
etc.) to build the website and they do not need a professional to make the
task, allowing them to save money.

That problem can be subdivided into three sub-problems. The first one is
the translation of the conference website product line into a particular con-
ference website ready to use. Different techniques to start from the SPL and
go to the final result should be developed. The second one is a problem of
representation of the SPL to be comprehensible for users. They must have
a global view of the features of the SPL to configure a product. The third
problem is the validity of a product composed by users: verifications should be
performed in order to avoid errors. We thus need to find a means to validate
products. We have to find strategies to solve these problems.

1.3 Solution strategies

The contribution of this work is to automate the creation of a product
using the SPL approach. In order to reach that goal and solve the problems
introduced in the previous section, two strategies will be analysed.

The first strategy is an application specific approach which consists in the
development of a wizard generating a conference website. This wizard is user-
friendly and easy to use. It allows users to select features they want in the
website. At each step of the configuration, they will be helped in their choices.

The second strategy is a generic approach which uses variability modelling
and configuration tools to generate the conference website. Those tools require
more experience from the user. They take one or more models (representing
the product line) as input and allow users to configure a product. The different
tools will be compared in order to highlight their strengths and weaknesses.

1.4 Outline

This master thesis is divided into four chapters:
In Chapter 2, the background of our work is presented and the general

principles used in this master thesis such as SPL, feature diagrams (FDs), and
variability modelling and configuration tools are introduced.

In Chapter 3, we introduce the running example: the conference website
product line. We begin to introduce the principles of conference management
and Content Management Systems (CMSs). Then we carry out a requirements
engineering of the system to build followed by the definition of the conference
product line. Finally we make the selection of a CMS.

4 1 Introduction

In Chapter 4, we develop two different approaches to automate the cre-
ation of a conference website. We first explain an application specific approach
and then a generic one which can be used with different tools. We also propose
a structured comparison of those approaches.

In Chapter 5, a unified solution which combines pros of both approaches
presented in the Chapter 4 is proposed.

Finally we present contributions, limitations and perspectives of this work
in the concluding chapter.

Chapter 2

Background

This chapter presents the necessary concepts for the understanding of our
solutions. First, we define what a SPL is. Second, we describe the FDs and
finally we present a selection of variability modelling and configuration tools
for SPL.

2.1 Software product lines

During those last years, the manner to produce goods has radically changed.
Before, artisans produced goods for individual clients. As one goes along years,
we have seen an increase of the number of people able to buy different kinds
of products. For instance, in the automobile area, this led to production lines
allowing for a mass market to produce at lesser costs than hand-made individ-
ual products. However, the number of possible diversifications has decreased
because of production line.

We can classify products, those individual and those issued of mass pro-
duction in the software area as: standard and individual softwares [78]. But
both types of software products have their disadvantages, the standard soft-
ware products have a lack of adequate diversification whereas the individual
software products are expensiver. Standardized mass products satisfied the
most of customers but, to stay in the automobile area, some of them would
not use the same type of car for any goals. Indeed, some cars are used for
making races, others for going to the work place. Others are made to wel-
come two persons whereas certain welcome six persons. This implies a rising
demand for individualized products that confront the car industry. “This
was the beginning of mass customization, which means taking into account
the customers’ requirements and giving them what they want” [78]. In order

5

6 2 Background

to reach the customer wishes in term of customization, SPL engineering en-
courages the production of software products with common features instead
of producing them one by one [53]. Mass customization can be defined as
“ the production of goods and services to meet individual customer’s needs
with near mass production efficiency” [87]. In this definition, two concepts are
represented, the first is that mass customization meets individual customer’s
needs whereas the second is that the first is possible thanks to the mass pro-
duction efficiency. The production of individual products of an organization
producing mass production goods can be substituted by the production of
similar products allowing flexibility because they share a common part. The
mass production aims to produce a large quantity of standardized products by
the use of standardized processes. These processes allow to the same product
to be produced a lot of times in a reduced time to market. In mass production,
there is no customization of products because the customers’ requirements are
identical.

“A SPL consists of a set of software products sharing a common set of
features that satisfy the needs of a particular domain and that are developed
from a common set of core assets in a prescribed way” [61]. SPL is an im-
portant software development paradigm allowing to yield enormous gains in
quality, cost, time to market, productivity and accomplish order-of-magnitude
improvements in other business drivers. For that, SPL engineering promotes
the development of standard systems rather than individuals. In a same do-
main, a set of software products can vary from one to another, this is the
variability between products which is captured by SPLs. “The variability des-
ignates elements that may vary from a product to another one” [94]. SPL
engineering is divided in two complementary activities: domain engineering
and application engineering. The purpose of the domain engineering is to pro-
duce software assets which are employed in different products of the SPL. It is
also named core asset development. Application engineering, also called prod-
uct development, aims to produce individual systems on basis of individual
needs and core assets. In this section, we begin by defining the motivations
for using SPL. Then, we explain the concept of variability and we finish with
the description of the SPL engineering framework.

2.1.1 Motivations for SPL engineering

The main goal that SPL engineering searches to reach is to provide cus-
tomized products for minimum costs. Here, we briefly describe the motivations
to use SPL engineering for the software development.

2.1 Software product lines 7

Reduction of developments costs The costs reduction is an important
pretext to introduce SPL engineering. The reuse of artefacts issued of a plat-
form in different types of systems allows to considerably reduce the costs for
each system. However, we have to make indispensable investments in order to
reuse artefacts. Before reducing the costs, investments for the creation of the
platform are necessary.

Quality enhancement As artefacts in the platform are reused in a lot
of products, they are frequently tested and possibly improved. These im-
provements allow each time to increase the general quality of the products by
detecting and correcting errors.

Reduction of time to market The SPL engineering allows to reduce the
time to market because of the reuse of artefacts. In SPL engineering, only
the first development of artefact takes time as for the development of each
individual product. Once the artefact is developed, it can be reused for each
new product and thus reduce the time to market.

2.1.2 Variability

SPLs can have several forms: in some ways, every product in a SPL use
the same architecture without fit it, whereas in other ways, the architecture of
the different products may vary [58]. In the same way, in some SPLs, only one
configurable component implementation can be related to each architectural
component, whereas, multiple component implementations are possible for an
architectural component in other SPLs. Those different forms describe the
variations between the products by taking advantage of different variability
mechanisms.

“Software variability is the ability of a software system or artefact to be
changed, customized or configured for use in a particular context. A high
degree of variability allows the use of software in a broader range of contexts,
i.e. the software is more reusable” [57].

In SPLs, the variability is expressed through variation points. “Variation
points represent unbound options about how the software will behave” [71].
For each variation point in the production process, product decisions are used
to opt for some options and so entirely specify the variation point behaviour
in the final product. The moment at which the decisions are bound for a
variation point is often called binding time. In a SPL, multiple binding times
may be used allowing to bound some decisions earlier in the lifecycle and
defer others later in the process. Among the different binding times, there

8 2 Background

are the following: source reuse time, development time, language design time,
program writing time, compile time, load time, run time, etc.

2.1.3 SPL engineering framework

The SPL engineering framework is divided into two key processes: domain
engineering and application engineering. Figure 2.1 shows the domain and
application engineering processes which are described in the following subsec-
tions.

Domain engineering

“The domain engineering process is responsible for defining the common-
ality and the variability of the product line, and thus for establishing the
reusable artefacts” [78]. To produce applications that are within the scope of
the SPL, the role of the domain engineering is to ensure that the appropriate
variability is available. That implies to provide mechanisms for performing
variability in the respective development artefacts, for instance by designing
configurable components.

The domain engineering process includes four sub-processes such as domain
requirements engineering, domain design, domain realization and domain test-
ing (as shown in upper part of Figure 2.1 issued of [78]).

Domain requirements engineering The domain requirements engineering
sub-process includes the documentation and elicitation activities to highlight
the common and variable requirements of the SPL. This sub-process receives
in input the product roadmap. Its output is reusable, textual and model-
based requirements and, more particularly, the variability model of the SPL.
The output contains the common and variable requirements for all possible
applications of the SPL and not those of a particular application.

Domain design This sub-process includes the definition activities of the
SPL reference architecture. This architecture determines the high level and
common structure for every SPL applications. The input of this sub-process
is composed of the domain requirements and the variability model issued of
the previous process, the domain requirements engineering. The output pro-
vided is a refined variability model and the reference architecture. The refined
variability model contains the necessary variability for technical reasons and
named internal variability.

2.1 Software product lines 9

Figure 2.1: The software product line engineering framework

Domain realization The detailed design and the implementation of reusable
software components are accomplished in the domain realization sub-process.
The input is composed of the variability model and the reference architecture
which encompasses a set of reusable software artefacts to elaborate in this
sub-process. The output is the detailed design and implementation assets of
reusable software components.

Domain testing The domain testing sub-process deals with checking and
validating the reusable components. The components are assessed in func-
tion of their specifications such as their architecture, requirements and design
artefacts. Domain testing provides also, to reduce the application testing
effort, reusable test artefacts. Its input is composed of different elements: im-
plemented reusable software components, components and interfaces designs
(issued of domain realization), the reference architecture (issued of domain
design) and domain requirements (from domain requirements engineering).
The output includes reusable test artefacts and test results executed in this
sub-process.

10 2 Background

Application engineering

The application engineering process deals with the derivation of SPL appli-
cations from reusable artefacts. “Application engineering exploits the variabil-
ity of the reusable artefacts by binding the variability according to application
specific needs” [78].

In the application engineering process, four sub-processes are included such
as application requirements engineering, application design, application realiza-
tion and application testing (as shown in lower part of Figure 2.1 issued of [78]).

Application requirements engineering The application requirements en-
gineering sub-process includes development activities for application require-
ments specification. The quantity of domain artefact reuse that can be com-
pleted is dependent of the application requirements. Consequently, identify
the platform available abilities and detect deltas between applications require-
ments are the main concern of the application requirements engineering. The
input includes the domain requirements and the product roadmap completed
with the main characteristics of the corresponding applications. It can be
completed in addition by specific requirements for the particular application,
those that have not been identified during the process of domain requirements
engineering. The requirements engineering specification for the particular ap-
plication composes the output.

Application design This sub-process includes the production activities
of application architecture. The application architecture is instantiated by
the reference architecture defined in this sub-process. It also makes the se-
lection and the configuration of the required parts of the reference architec-
ture. Application-specific adaptations are also added. The variability bound
is linked to the complete structure of the system. The input of the application
design is the application requirements specification and the reference archi-
tecture issued of the previous sub-process, whereas the output is composed of
the application architecture for the application.

Application realization The application realization sub-process implements
the application. The major activities are to select and configure the reusable
software components, and complete the application-specific assets. Reusable
software components and application-specific assets compose the application.

The input of this sub-process is composed of the application architecture
and the reusable realization artefacts issued of the platform. The output is a
running application and the design artefacts.

2.2 Feature diagrams 11

Application testing This sub-process consists of the activities dealing with
the validation and verification of the application in relation to its specifica-
tion. The input of this sub-process is composed of a test reference which uses
the application artefacts, the implemented application, and the reusable test
artefacts issued of the domain testing. The output contains a test report con-
sisting of the test results and problem reports with the detected failures of the
application.

2.2 Feature diagrams

“SPL Engineering (SPLE) is an emerging software engineering paradigm,
which guides organizations toward the development of products from core
assets rather than the development of products one by one from scratch” [73].
The reuse of existing assets is the basis of the creation of a product issued of
a SPL. For a specified SPL, some of these assets are particular for individual
products whereas others are common to other products [53]. When coping
with SPLs, the software engineering is confronted to the manner to express a
SPL to highlight the commonality and the variability between products and
express a specific product. FDs are a widespread means to represent SPLs. A
feature is so a particular product and can be assimilated to an increment in
the product functionality [69]. “Feature modelling is one of the most popular
domain analysis techniques” [73] allowing to build highly reusable core assets
for a SPL by the analysis of commonality and variability in the domain.

In a SPL, all the possible products are represented by a FD in a unique
model in which the commonality and variability of the SPL are captured. Each
relevant property is defined as a feature in the model. The commonalities and
variabilities are described in a feature, which is an abstract concept meaning
the needs for each SPL to be decided. In this meaning, a feature is, for some
stakeholders, a relevant property of a system. It can be a requirement, a
technical function or function group or a non-functional (quality) property,
etc. determined by the stakeholders interest [56].

A FD is a set of features having a precise hierarchy based on relationships
and cross-tree constraints. A relationship is a connection between a parent
feature and its child features. A cross-tree constraint is a declaration of the
type inclusion or exclusion. For instance, if a feature is included/excluded,
then another feature must also be included/excluded.

After the introduction of the original FD notation, called Feature-Orient-
ed Domain Analysis method (FODA) [69], an extension, named Feature-RSEB
was proposed extending FODA with an additional relationship. Since, the FDs

12 2 Background

have been adopted by the SPL community and other extensions suggested such
as cardinality-based FDs (introducing cardinalities) and extended FDs (adding
attributes).

In this section, first, we describe the basic FDs which are composed on
basis of FODA and RSEB notations. Then, we present the cardinality–based
FDs and the extended FDs.

2.2.1 Basic feature diagrams

The elements composing a FD are features and relationships between par-
ent features and child features. The root feature represents a concept and the
other features define the commonality and variability of this concept [75]. The
features in a basic FD can be categorized into four elements:

• Mandatory – A mandatory relationship (illustrated in Figure 2.2) be-
tween a parent and a child feature means that the inclusion of the parent
feature in the product requires the inclusion of the child feature.

• Optional – An optional relationship (illustrated in Figure 2.3) between
a parent and a child feature means that at the inclusion of the parent
feature, the child feature may or not be included in the product.

• Or – An or relationship (illustrated in Figure 2.5) between a parent
feature and a set of children features means that the inclusion of the
parent feature requires the inclusion of one or more child features.

• Alternative – An alternative relationship (illustrated in Figure 2.4) be-
tween a parent feature and a set of children features means that the
inclusion of the parent feature in the product requires the inclusion of
only one child feature.

Figure 2.2: Feature diagrams: a mandatory relationship

In addition to the relationships between features, cross-tree constraints
allow to restrict feature combinations. The cross–tree constraints in basic FD
are of two types:

2.2 Feature diagrams 13

• Requires – A requires constraint between two features means that the
inclusion of a feature implies the inclusion of the feature concerned by
the requires constraint. For example, as shown in Figure 2.6, G requires
D means that if G is included, then D should be included.

• Excludes – An excludes constraint between two features means that the
inclusion of a feature implies the exclusion of the feature concerned by
the excludes constraint. The two features cannot be part of the same
product. For example in Figure 2.6, E excludes F means that if E is
included in a product, then F should not be included and backwards.

Figure 2.3: Feature diagrams: an optional relationship

Figure 2.4: Feature diagrams: an or relationship

Figure 2.5: Feature diagrams: an alternative relationship

The FD shown in figure 2.7 is an example of basic FD. It presents some
features of a car. A car possesses a body, transmission, engine and may have

14 2 Background

Figure 2.6: Feature diagrams: Requires and Excludes constraints

a cruise. The transmission is either automatic or manual but not both. And
finally, the engine may be electric or gasoline, or both.

Figure 2.7: Example of feature diagram

2.2.2 Cardinality-based feature diagrams

Some cases, leading to ambiguities in FDs, could not be represented with
“alternative” and “or” relationships, so some authors have proposed to extend
the basic FDs with cardinalities (also named multiplicities). The cardinalities

2.2 Feature diagrams 15

in FDs are divided into two types: group cardinalities and feature cardinalities
[63].

The group cardinalities (shown in Figure 2.8) can be generalized as a set of
features included when their parent feature is included and having a cardinality
depending on the number of features of selected features in the set [81]. So,
alternative relationships can be interpreted as a [1..1] group cardinality and
or relationships can be equivalent to a [1..N] group cardinality in which N is
the number of features in the set.

The feature cardinalities having the form [N..M] with N the lower bound
and M the upper bound, are employed to limit the number of child features
each time that their parent feature is selected [63]. When the upper bound
is “*”, the parent feature has an infinite number of child features as long as
the constraints are respected. This notation allows to have products having a
random number of components. Mandatory and optional relationships can be
represented using cardinalities. Mandatory features have a [1..1] cardinality
(as shown in Figure 2.9) whereas optional features have a [0..1] cardinality.

Figure 2.8: Feature diagrams: a group cardinality

Figure 2.9: Feature diagrams: a feature cardinality

2.2.3 Extended feature diagrams

Basic FDs are useful to represent the commonality and variability of dif-
ferent products in a SPL. But in some cases, additional information about

16 2 Background

features have to be added in the model, so the FD must be extended to in-
clude attributes. The FDs including additional information (attributes) are
named extended FDs [55].

Coping with features attributes introduces four concepts: feature, attribute,
attribute domain and attribute value. A feature is a characteristic of a product.
In function of the stage of development, “a feature may refer to a requirement
(if products are requirement documents), a component in an architecture (if
products are component architectures) or even pieces of code (if products are
binary codes in a feature oriented programming approach) of a SPL” [55].
An attribute of feature is a property which can be evaluated. The attribute
domain defines for an attribute the range of its possible values. A domain is
always associated to an attribute. An attribute value is a value which is part
of the domain. When a feature is not selected, it takes a default value. We can
distinguish basic attributes and derived attributes, the first are values directly
on the domain and the second are attributes of other features combined in
expressions. An example of extended FD is presented in Figure 2.10.

Figure 2.10: Example of extended feature diagram

2.3 Variability modelling and configuration tools for
SPL

In this section, we present a selection of variability modelling and con-
figuration tools for SPL. “Variability modelling and configuration tools are
tool-support approaches to domain engineering and application engineering
activities” [88]. They allow to select and configure the required parts of a
product within the SPL. As SPLs are based on commonality and variability,
various products can be derived in order to reuse them in software develop-

2.3 Variability modelling and configuration tools for SPL 17

ment.
First, we present a selection of variability modelling and configuration tools

available and then we compare them on different criteria. Finally, we discuss
the characteristics of each of them.

2.3.1 Existing variability modelling and configuration tools

We have chosen to present a selection of five current variability modelling
and configuration tools: Feature Modelling Plug-in, Kumbang tools, FaMa-
FW, RequiLine and Pure::variants. We have selected the Feature Modelling
Plug-in, Kumbang tools and RequiLine because they are the most quoted tools
in the literature. We have also selected FaMa-FW because it is developed in
the Department of Computer Languages and Systems of the University of
Seville where we have made our traineeship. As Pure::variants has been rec-
ommended to us, we have integrated it into our comparison. The descriptions
of these tools are based on the information available in May 2009.

Feature Modelling Plug-in

The Feature Modelling Plug-in (FMP) is a free Eclipse plugin for the edi-
tion and the configuration of feature models [15]. FMP is either employed
with Eclipse or integrated in the fmp2rsm plugin allowing product line mod-
elling in UML. fmp2rsm is a plugin for feature-based model templates to IBM
Rational Software Modeller [17] or Rational Software Architect [16].

FMP main capabilities are the following: feature model editor, feature-based
configurator, support for constraints, constraint checking and propagation, syn-
chronization between feature models and configurations, model and configura-
tion exchange, and user-extensible metamodel [62]. The feature model editor
allows to edit feature models in an explorer-style view (as shown in Figure 2.11)
whereas the feature-based configurator enables the creation of feature config-
urations using a check-box view or a wizard. The support for constraints uses
XPath [50], a query language for selecting nodes or computing values from the
content of an XML document, and/or propositional formulas to describe addi-
tional constraints among features and feature attributes. The constraint check-
ing and propagation allows to check the consistency of a feature model which
means that it verifies if the feature model has at least one valid configuration.
It checks also that concrete configurations satisfy all the constraints from their
corresponding feature models. During configurations, the constraint propaga-
tion provides an optional guidance (with different levels of assistance) to users
in their selections of features that require other features. Those required fea-
tures will be automatically selected. The system distinguishes the choices that

18 2 Background

are made by users, automatically made and undecided. The synchronization
between feature models and configurations allows to automatically propagate
the changes made in a feature model to its configurations. Feature models
and configuration are treated in a uniform way. The model and configura-
tion exchange, allows to import and export feature models and configurations.
The configurations are represented using an XML format to be fed into other
tools (code generators, etc.). FMP provides also a user-extensible meta-model
which can be extended with additional information such as priorities, binding
times, implementation status, etc. joined to the features. Users define the
format of these information completing the feature modelling notations.

Figure 2.11: Screenshot of the Feature Modelling Plug-in interface

Kumbang tools

Kumbang tools are Eclipse plugins consisting in two tools: Kumbang Mod-
eller and Kumbang Configurator. Free and open source, they have been con-

2.3 Variability modelling and configuration tools for SPL 19

ceived for the creation and the configuration of software product families.
“Kumbang tools support seamless and integrated domain engineering and ap-
plication engineering activities” [77].

Kumbang Modeller allows to create and modify models of variability on
basis of software product families from features and architectural elements.
The graphical interface (visible in Figure 2.12) of the Kumbang Modeller leads
users through the modelling task in hiding the complexity of concrete syntax.
It allows to validate the models made by users in order to check that the
derivation of models produces at least one valid product and that there are not
other errors such as required interfaces not connected to their corresponding
interfaces, constraints not satisfied, and cyclic loops.

Kumbang Configurator allows to bind variability in a model in order to
derive individual products configurations. At each new configuration or modi-
fication of configuration, their consistency, completeness, and consequences are
checked. To be consistent, configurations must have no violation of the rules
of the Kumbang model. A complete configuration implies that all mandatory
selections are satisfied. The consequences are implications of selections by
others and conflicts between selections. The tool must automatically add the
implied selections and identify the different conflicts.

Kumbang tools use ontology which has a rigorously-defined semantics [51]
to capture the features and components having compositional structure and
attributes, the interfaces of components, the connections between the inter-
faces of components, and constraints to derive product family variability and
derived products. A meta-model for Kumbang models and configurations is
so offered by the Kumbang ontology. The latter summarizes the modelling
of variability in software and non-software product families of the previous
approaches.

As Kumbang tools validate automatically the models and configurations,
they are particularly useful for software product families having many complex
and variability dependencies but also for simpler software product families.

FaMa-FW

“FaMa-FW is a framework for automated analysis of feature models in-
tegrating some of the most commonly used logic representations and solvers
proposed in the literature (BDD, SAT and CSP solvers are implemented)”
[14]. FaMa-FW is presented as an Eclipse plugin and distributed under free
license. The main objective pursued by FaMa-FW is to provide an extensi-
ble framework to easily integrate and develop current research on variability
model automated analysis. Its architecture follows the SPL paradigm, allow-

20 2 Background

Figure 2.12: Screenshot of the Kumbang tools interface

ing it to support different variability meta-models, reasoners, solvers, analysis
questions and reasoner selectors.

The benefits of its architecture are to facilitate its extension by adding new
components or features, or updating the existing, the integration of extensions
(thanks to its simple and stable interface) and its configuration with a unique
XML file.

The two main functionalities offered by FaMa-FW are automated model
analysis and visual model edition/creation [54]. The model analysis allows
once the feature model is created to verify that a feature model is valid (all
the constraints satisfied), calculate for a feature model the number of possible
products, list possible products of a feature model, calculate the commonality
of a feature (number of apparition of a feature in the possible products), etc.

To improve the analysis, different solvers and logic representations can be
integrated in FaMa-FW. According to the user needs and the configuration of
FaMa-FW, it is able to automatically select the most efficient solver in terms

2.3 Variability modelling and configuration tools for SPL 21

of performance (execution time). It integrates CSP, SAT and BDD, three
solvers for automated analysis of feature models. FaMa-FW can be updated
to integrate other solvers.

RequiLine

RequiLine is a requirements engineering tool used in stand-alone for the
management of product lines [32]. It uses requirements and feature models for
the modelling of product lines and allows from specified models, the derivation
of product configurations. RequiLine provides also a graphical editor, a con-
sistency checker, a query interface, a user management (with different views),
and an XML interface.

RequiLine uses FDs whose the semantics are similar to those of other fea-
ture models. It allows to highlight the commonalities and variabilities between
the products in the software product family [52].

The main capabilities of RequiLine include the entering of features and
requirements, a consistency checker, and a query interface [90]. First, the tool
allows to entering features and requirements, and defining relationships be-
tween them. The interface (visible in Figure 2.13) is divided into three parts,
one for the management of products in the product line, one for the man-
agement of features and one for the management of requirements. Second,
the consistency checker analyses that all features and requirement models are
consistent and completely specified, which means that they contain the re-
quired information (such as state, version, priority, etc.) and dependencies
contain no contradictions. A consistent model means that the correctness of
domain relationships and dependencies are ensured, the resolving of variation
points and the partitioning of features and requirements. The user can select
to perform all checks simultaneously or individually by selecting the desired
one. The consistency checker allows to assist users in their construction of
stable and correct feature and requirements models by providing them help-
ful information. Third, the query interface provides a selection of predefined
queries for features and requirements models and a query generator. Informa-
tion about the modelled dependencies and variation points are included into
the predefined queries. If these information are not included by the predefined
queries, the query generator allows to define new queries.

Pure::variants

Pure::variants is an Eclipse plugin supporting the development and the de-
ployment of SPLs. Pure::variants allows to follow each phase of the entire soft-
ware configuration process in order to automatically produce valid solutions

22 2 Background

Figure 2.13: Screenshot of the RequiLine interface

from the chosen features, and efficiently manage the components, restrictions
and terms of usage of software products [31]. “It has also been designed as
an open framework that integrates with other tools and types of data such as
requirements management systems, object-oriented modelling tools, configu-
ration management systems, bug tracking systems, code generators, compilers,
UML, documentation, source code, etc.”[79].

Pure::variants allows the development of SPLs using a set of integrated
feature models which defines the problem domain, family models and vari-
ant description models (VDMs). The representation of the problem domain
is made using feature models. The family models are used to represent the
solution domain which is the concrete design and implementation of the soft-
ware family. The VDM specifies individual products from the product line
and contains the selected features and their values.

These models represent knowledge which is captured in Pure::variants to
provide tool support for all the people involved within a family-based software
development process such as the domain analysts, domain designers, applica-

2.3 Variability modelling and configuration tools for SPL 23

tion analysts, and application developers. Domain analysts use the feature
model editor (shown in Figure 2.14), domain designers the family domain edi-
tor and application analysts the VDM, whereas application developers use the
transformation engine to generate a member of the solution family.

Figure 2.14: Screenshot of the Pure::variants interface

2.3.2 Comparison of selected variability modelling and config-
uration tools

The comparison is based on a study in which general and technical infor-
mation for a number of variability modelling and configuration tools for SPL
are compared [88]. We confront each tool using the 8 following criteria of
comparison:

• Application type – Type of application composing the tool.

• Implementation language – Implementation language in which the
tool has been developed.

24 2 Background

• Supported languages – Programming languages supported by the
tool.

• Cost – Required cost to purchase the tool.

• Product configuration wizard – Ability of the tool to provide a wiz-
ard to help users in the product configuration step.

• Operating system support – Capability of the tool to run on the
following operating systems: Windows, Mac OS X, Linux, and Unix.

• Rendering of modelling – Ability of the tool to render the model in
the form of GUI tree, table, box arrow, and textual language.

• Formats of Input/Output (I/O) models – Type of format sup-
ported by the tool in input and output among DB, HTML, XML/XMI,
CSV, user define, grammar.

We have chosen these criteria because they are key characteristics allowing
to differentiate the different tools. In analysing the application type, we are
able to determine the ease of installation of the tools. The implementation
and supported languages allow us to highlight the required languages to use
the tools and possibly modify them. We are also interested in the cost asked
for the use of the different tools because we are looking for a free solution. The
functionality providing a product configuration wizard is important to guide
users in the process of configuration, increasing the ease of use of the tools. We
also examine the operating system supported by the tools because they have
to be used on the majority of the operating systems. Another aspect allowing
to judge of the ease of use of the tools is the rendering of modelling. Indeed,
the representation of the model has an influence on the ease to configure a
product and so the ease of use. As last criterion, we are interested by the I/O
formats of models supported by the tools because it is important that they
support the maximum of formats.

Table 2.1 summarizes the comparison of the different variability modelling
and configuration tools on the five first criteria: application type, implemen-
tation language, supported languages, cost and product configuration wizard.
Four of the five selected tools are Eclipse plugins at the exception of RequiLine
which is a stand-alone application. At the level of the implementation lan-
guage, we can notice that FMP, Kumbang tools and FaMa-FW are written in
Java whereas RequiLine and pure::variants has been implemented respectively
in C# and .NET, and in C/C++. The supported languages by the tools are
dependent of the application type. Indeed, the Eclipse plugins support all

2.3 Variability modelling and configuration tools for SPL 25

the languages of the Eclipse platform whereas for RequiLine, no information
about the supported languages was available. All the selected languages are
completely free at the exception of Pure::variants which is free for non commer-
cial use. The last criterion of this table is the ability of the tools to provide a
product configuration wizard to help user in their tasks of configuration. Only
RequiLine and Pure::variants possess a such functionality.

We continue our comparison by confronting the selected tools to a selection
of operating systems, as summarized in Table 2.2. The support of the variabil-
ity modelling and configuration tools has been tested on Windows, Mac OS X,
Linux and Unix. All the tools support to be run on Windows without prob-
lems. On Mac OS X, they also run at the exception of Kumbang tools which
support partly this operating system. We can make the same observation on
Linux. The last operating system is Unix and we observe that Kumbang tools
still support partly this platform and that Pure::variants does not support it.

The next comparison criterion is the rendering of modelling and is shown
in Table 2.3. The different tools have been tested on four different model
representations such as GUI tree, table, box arrow, and textual language. On
the one hand, the GUI tree and the textual languages are supported by all the
tools. On the other hand, only Pure::variants support tables whereas at the
exception of FMP and FaMa-FW, they support box arrow.

The last comparison criterion is the format of I/O models and its results
are summarized in Table 2.4. The selection of tools is tested on five formats
of (I/O) models: database (DB), HTML, XML/XMI, CSV, user define and
grammar. If we compare the tools in relation to DB and grammar, we notice
that no tools support these formats. For the HTML, CSV and user define
formats, only Pure::variants is able support them. All of the tool support the
XML/XMI format.

The comparison results are discussed in the next section.

2.3.3 Discussion

We glance through each criterion to identify the main differences between
the selected variability modelling and configuration tools in order to identify
which one we will use.

On the point of view of the application type, at the exception of Requi-
Line which is stand-alone, the others are Eclipse plugins. RequiLine has so an
advantage because it does not require the install of Eclipse. The implementa-
tion languages of FMP, Kumbang tools and FaMa-FW are Java whereas for
RequiLine and Pure::variants, it is the C language. It is not possible to differ-
entiate these different tools because they are, according to our experience, the

26 2 Background

T
able

2.1:
Sum

m
ary

of
variability

m
odelling

and
configuration

tools
com

parison:
general

N
am

e
A

p
p

lication
ty

p
e

Im
p

lem
en

ta-
tion

lan
gu

age
S

u
p

p
orted

lan
gu

ages
C

ost
P

ro
d

u
ct

con
-

fi
gu

ration
w

izard
F
eatu

re
M

o
d

-
ellin

g
P

lu
g-in

E
clipse

plugin
Java

A
ll

E
clipse

platform
Free

N
o

K
u

m
b

an
g

to
ols

E
clipse

plugin
Java

A
ll

E
clipse

platform
Free

N
o

F
aM

a-F
W

E
clipse

plugin
Java

A
ll

E
clipse

platform
Free

N
o

R
eq

u
iL

in
e

Stand-alone
C

#
,

.N
E

T
N

o
inform

ation
Free

Y
es

P
u

re::varian
ts

E
clipse

plugin
C

/C
+

+
A

ll
E

clipse
platform

Free
for

non
com

m
ercial

use
Y

es

2.3 Variability modelling and configuration tools for SPL 27

Table 2.2: Summary of variability modelling and configuration tools compar-
ison: operating systems support
Name Windows Mac OS X Linux Unix
Feature Mod-
elling Plug-in

Yes Yes Yes Yes

Kumbang tools Yes Partly Partly Partly
FaMa-FW Yes Yes Yes Yes
RequiLine Yes Yes Yes Yes
Pure::variants Yes Yes Yes No

Table 2.3: Summary of variability modelling and configuration tools compar-
ison: rendering of modelling
Name GUI tree Table Box ar-

row
Textual
language

Feature Mod-
elling Plug-in

Yes No No Yes

Kumbang tools Yes No Yes Yes
FaMa-FW Yes No No Yes
RequiLine Yes No Yes Yes
Pure::variants Yes Yes Yes Yes

Table 2.4: Summary of variability modelling and configuration tools compar-
ison: formats of Input/Output (I/O) models
Name DB HTML XML

/XMI
CSV User

define
Gram-
mar

Feature Mod-
elling Plug-in

No No I/O No No No

Kumbang tools No No I/O No No No
FaMa-FW No No I/O No No No
RequiLine No No I/O No No No
Pure::variants No I/O I/O I/O I/O No

28 2 Background

most widespread languages which are supposed known by every IT specialist.
The supported languages are dependent of the application type. However, for
RequiLine, this information was not available so we cannot advantage a tool
in relation to the others which are all the languages supported by the Eclipse
platform. At the level of the cost, the five tools are equals because they are
free of use. An important criterion is the possibility offered by the tools to
provide a product configuration wizard. RequiLine and Pure::variants have
the advantage that they possess this functionality and not FMP, Kumbang
tools, FaMa-FW. On the point of view of the operating system support, as
we can see in the Table 2.2, three tools are able to run on the four specified
operating systems: FMP, FaMa-FW and RequiLine. On the other hand, there
are Kumbang tools which are partly supported by Mac OS X, Linux and Unix,
and Pure::variants which is not supported on Unix. The three first have so an
advantage on the two others. At the level of the rendering of modelling, we can
see that only Pure::variants is able to represent models using the four specified
representations (as shown in Table 2.3). The others are not able to represent
the model under the form of table or box arrow, or both. Pure::variants has so
an advantage on the others. For the last criterion, the formats of (I/O) mod-
els, Table 2.4 shows that none of the five tools are able to use all the specified
formats. However, Pure::variants support more formats than the four others
that support only the XML/XMI format.

If we sum up all the advantages of the five tools, we can notice that
Pure::variants has more strengths than the others. However, it is disadvan-
taged on two aspects: application type and operating system support. Its two
disadvantages are minor compared to its strengths (I/O format, rendering of
modelling, product configuration wizard).

Chapter 3

Running example: A
conference website SPL

In this chapter we elaborate on the development of a conference website
product line (CWPL) relying on a CMS as support technology. First, we give
the basics of conference management and CMSs before defining the charac-
teristics of a CWPL. Then, we apply a requirements engineering template in
order to identify the needs for an application generating a CWPL. Finally we
explore some of the most important free CMSs available on the market before
comparing them and selecting the best CMS for CWPL.

3.1 Basics of conference management

Covering a broad range of specialized sets of topics, conferences allow
researchers to present and discuss their work. “Together with academic or
scientific journals, conferences provide an important channel to exchange in-
formation between researchers” [67]. The conference program is designed to
provide maximum opportunity to present high quality papers appropriate to
the defined scope of the conference [83]. The work of researchers is presented
in the form of concise presentations of 10 to 30 minutes, usually including dis-
cussions. It is synthesized under written form, named academic papers, and
published as conference proceedings.

During a conference, two types of speakers give talks: keynote speakers
and prospective presenters. Keynote speakers, usually prominent scholars,
present a lecture during around an hour. Keynotes are advertised before the
conference as they usually attest of its importance and quality. Prospective
presenters are told to submit their abstracts or papers by a “call for papers” or

29

30 3 Running example: A conference website SPL

a “call for abstracts”. These calls list the conference’s topics and are used to
attract qualified presenters. Sometimes, presenters base their talk on a visual
presentation, like slides, that shows research results and key figures. Some
conferences may have only one session at a time, and others, several parallel
sessions with speakers in separate rooms speaking at the same time. Abstracts
and papers are diligently reviewed and only those matching the quality stan-
dard of the conference are accepted for publication. Paper sizes usually vary
between 4 and 20 pages and the review process, called peer reviewing, is per-
formed by several experts in the field.

Generally, these peers are members of the Program Committee or Referees.
Program, Publications, Publicity and Public Relations, and Finance Commit-
tees are subcommittees composing the Conference Committee responsible for
the organization of the conference. The Program Committee determines the
topic of the conference and organizes the technical program in collaboration
with the Conference Committee and Sponsors. The Publications Committee
defines the recommendations to publish the complete papers or an abstract
of each paper. The Publicity and Public Relations Committee promote the
conference with the objective to get the maximum of attendees. The Finance
Committee manages the approved budget to ensure that the financial policies
are respected.

Typically accommodating more than 250 attendees, conferences are usu-
ally organized either by a group of researchers with a common interest or by
a scientific society and are held on a regular basis, typically annually. Those
characteristics may change because there are different categories of conference:
general conferences, themed conferences and professional conferences. A gen-
eral conference is a conference with sessions covering a wide range of topics. A
themed conference is a small conference organized around a particular topic.
A professional conference is a large conference not limited to academics but
with academically-related issues. In addition, conferences may include, or be
held in conjunction with, symposia, workshops or tutorials [83]. A symposium
is similar to a conference but covers more specialized topics. With less than
250 attendees, it runs like a conference on one or more days. Symposia may
include workshops or tutorials. A workshop is a small meeting limited to a
narrow topical area. With no more than 100 attendees, the lodging and meet-
ing space is closely limited to improve communication between them. Often
it explores an emerging technology. Workshops may also include tutorials. A
tutorial aims at educating a small group of attendees on a selected topic. One
or more instructors share their expertise in a specific field.

3.2 Basics of content management systems 31

3.2 Basics of content management systems

A CMS is a tool that enables a variety of (centralised) technical and
(de-centralised) non-technical staff to create, edit, manage and publish, in
a number of formats, a variety of content (such as text, graphics, video, doc-
uments, etc.), whilst being constrained by a centralised set of rules, process
and workflows that ensure coherent, validated electronic content [92]. Fre-
quently, CMSs are used for the storage, control, versioning, and publication of
industry-specific documentation. Most often, a CMS application will operate
from a browser based interface, which will likely have some resemblance to a
typical word processing program [93].

Typically, a CMS is made up of two elements: a Content Management
Application (CMA) and a Content Delivery Application (CDA). The CMA
element allows the content manager or author, who may not know Hyper-
text Markup Language (HTML), to manage the creation, modification, and
removal of content from a website without needing the expertise of a web-
master. The CDA element uses and compiles that information to update the
website.

The features of a CMS most often include indexing, search, and retrieval,
format management, revision control, and web-based publishing [86]. The
web-based publishing feature allows to use a set of templates, as well as wizards
and other tools to create or modify web content. The format management
feature allows legacy electronic documents and scanned paper documents to be
formatted into HTML or Portable Document Format (PDF) for the website.
The revision control feature allows content to be updated to a newer version or
restored to a previous version. Revision control also tracks any change made
to files by individuals. The indexing, search, and retrieval features allow CMSs
to index all data within an organization. Individuals can then search for data
using keywords, which the CMS retrieves. A CMS may also provide tools for
one-to-one marketing [1]. There are hundreds of CMSs available, written in a
variety of languages for any platform such as .Net, Java, Flash, Cold Fusion,
PHP, etc. In Section 3.5, we explore existing CMSs as we have to select one
of them for CWPL. Now we have defined the different concepts used in the
field of CWPL, a requirements analysis can be made in order to highlight the
important characteristics needed to build a CWPL generator.

3.3 Requirements engineering

In this section, we present a first attempt to identify requirements for a
new tool allowing to automatically generate a conference website. In this

32 3 Running example: A conference website SPL

aim, we have used a Software Requirement Specification (SRS). A SRS is a
complete description of the intended purpose and environment for a software
to be developed. “It fully describes what the software will do and how it will
be expected to perform” [38]. First, we explain how we proceed to complete
the specification. Second, we define the structure that we follow in the rest
of this section. Third, we describe the stakeholders of the system. Fourth, we
define the project constraints to identify how the eventual product must fit
into its environment. Finally, we develop the functional and non-functional
requirements, which are respectively, the fundamental or essential functions of
the product and the behavioural properties that the specified functions must
have.

3.3.1 Requirements elicitation approach

To complete a SRS, there are some existing templates available such as
IEEE [18], VOLERE [43], Klariti [24], etc. We have chosen the VOLERE
Requirements Specification Template because we have completed previously
requirements analysis with good results using it. Indeed, we have already
used it for the Requirements Engineering course [19] (INFO M431) lavished in
the University of Namur by Mr Patrick Heymans. VOLERE will be used to
complete the SRS and provide a global view of the system-to-be. We tried to
respect the specification structure but the collected information unfortunately
turned out to be insufficient to complete entirely the specification. So, we
focus then on the scope and the purpose of the system. We omit elements of
the specification about which we have no information.

In order to understand better the system and its requirements, we have
employed two elicitation techniques to clarify the system: background reading
and interviews. During the background reading, we read some documents
related to the organization of conferences. This technique allowed us to be
ready for other interactive techniques. Then, we made interviews of persons
involved in conference organization. They discussed their needs for a system
which generates a conference website.

3.3.2 VOLERE template

The VOLERE template is divided into four parts: Project drivers, Project
constraints, Functional requirements, and Non-functional requirements. We
will begin with the project drivers which describe the business-related forces.
We will be interested in the Purpose of the project and the different people
who have a link with the product. Then, we will continue with the Project
constraints, the constraints on the requirements that will affect the eventual

3.3 Requirements engineering 33

design of the product. Our interests will be the Solution design constraints,
the Partner or collaborative applications and the Anticipated workplace envi-
ronment. After that, we will tackle the core of this requirement engineering:
the Context of the work and the Functional requirements and Non-functional
requirements.

3.3.3 Project drivers

The project drivers are the business-related forces. In this section, we focus
on the Purpose of the project and the different people who have a link with
the product. We identify the client, the customer and other stakeholders as
well as the Users of the product.

Purpose of the project

The purpose of the project is to define the user problem and the goals of
the project. The user problem describes the work context and the situation
that triggered the development effort. It also gives a description of the work
that the user wants to do with the delivered product. The goals of the project
are the reasons that the product is being developed.

User problem The active researchers and professors in diversified academic
domains need to attend scientific conferences to present and discuss their works
and to state their advances. For their participation, they consult the confer-
ence website to find the practical modalities such as the submissions deadlines,
dates, place, etc. For organizers, the design of the conference website takes a
lot of time, that they generally do not have. Organizers who have no knowl-
edge in HTML, PHP, etc. can call to a professional to set up the conference
website, but it costs money which can be devoted to other more important
posts in the organization. In the two cases, loss of time and call to a profes-
sional, it is problematic. Consequently, a solution has to be developed.

Goals of the project At the present time, there is no tool available on the
market allowing to solve the user problem. So the goal of the project is to
implement a tool which automatically generates a conference website according
to user’s needs. The goal is to be able to quickly generate a conference website
with the required features in a minimum amount of time.

34 3 Running example: A conference website SPL

Client, customer and other stakeholders

Here we define who are the client, customer and other stakeholders of the
product and the differences between them. The client is the person paying for
the development, and owner of the delivered product whereas the customer is
the person who will buy the product. Other stakeholders are the other people
or organizations affected by the product.

Clients Mr David Benavides from the Computer Languages and Systems
Department (LSI) of the University of Seville (Spain) and Mr Patrick Heymans
from the University of Namur (Belgium) are jointly the clients as they will be
the owners of the delivered product. They will not pay for the development
of the product as it will be developed in the free software philosophy and will
consequently be free of use.

Customer The product is built to satisfy the aims of the customers whilst
conforming to the constraints of clients. As conference organizers (professors,
researchers, engineers or other people) are going to use the product, they can
be considered as its customers. Universities can also be customers in getting
it for a distribution to all people who organize conferences inside their walls.
They will not have to buy the product as it will be free to download and use.

Other stakeholders The people affected by the product could be catego-
rized mainly into four different groups:

• Conference organizers – They use the product to generate conference
websites. Attendees and conference participants use then the website.
They are the user of the product so their involvement and influence are
large.

• Conference contributors – They use the conference website to sub-
mit their papers and to consult information as the submission deadline,
acceptance notification, etc. They have no contact with the product,
they just consult and use the functions of its result (i.e. the conference
website).

• Conference participants – They just consult web pages of the confer-
ence website to get practical information or to register to the conference.
They have no contact with the product, they just consult its result (i.e.
the conference website).

3.3 Requirements engineering 35

• System administrators – They are responsible for all modifications or
evolutions of the product so their involvement and influence are large.

Users of the product

We define the Hands-on users of the product as well as the Priorities as-
signed to them and their Participation. Then we introduce the Maintenance
users. As we have seen, the role of the client is to pay for the development of
the product and the role of the customer is to buy the product. The role of
hands-on users is to use the product to do work. We will use the character-
istics of those users to define the usability requirements for the product. The
Priorities assigned to users are important because some users must be consid-
ered to be more important to the product, or the organization. This should
then be clearly defined because it should affect the way that the product is
designed. Some users must be listed as having no impact on the product. It
means that they will make use of the product, but have no vested interest in
it. Any special requirement from these users will have a lower design priority.
So we can attach to each category of users a priority rating. Many projects
fail through lack of User participation, sometimes this is because the required
degree of participation was not made clear. It is important that specified user
resources are allocated to the project. So we attach to each category of users,
a statement of the participation that will be necessary for them to provide the
requirements. Maintenance users are a special type of hands-on users who
have requirements that are specific to maintaining and changing the product.
They will help to trigger requirements that might otherwise be missed.

The hands-on users of the product We can identify two categories of
users who use the system: the conference organizers and the system adminis-
trators. Attendees and conference participants deal with the results provided
by the product but not with it, so they cannot be considered as users of the
system. For the two categories, we provide the following information:

• User role – Summary of the users’ responsibilities.

• Subject matter experience – Summary of the users’ knowledge of
the business.

• Technological experience – Description of the users’ experience with
relevant technology.

• Other user characteristics – Description of any characteristic of the
user that have an effect on the requirements and eventual design of the

36 3 Running example: A conference website SPL

product. This description is made on characteristics such as: physical
abilities/disabilities, intellectual abilities/disabilities, education, linguis-
tic skills, age group, and gender.

As shown in Table 3.1, the conference organizers are the main users of the
system as they provide the main input. Their importance lies within the fact
that they are responsible of completing the fields with the information corre-
sponding to the conference website. System administrators are in charge of
the system maintenance and information checking. Both must have a master
subject matter and technological experience, and no physical disabilities that
prevent from using the system. They also have high standard intellectual abil-
ities. As conferences take place in the academic field or between professionals,
conference organizers have often a university level or a high standard. Sys-
tem administrators have a high standard education because they have made a
minimum of studies in the computer science field to administrate the system.
The Graphical User Interface (GUI) and the documentation will be in English.
Consequently, a minimum knowledge of this language is required for the two
categories. As conference organizers have a high standard or university level,
we can evaluate the minimum age at 25 years old and the maximum to 65
years old. System administrators have a lower education level, so the age goes
from 20 to 65 years old. Finally, for both, there is no distinction in the gender,
they are male or female.

Priorities assigned to users We attach to each category of user described
previously a priority rating. We prioritize the users into 3 categories: key
users, secondary users and unimportant users. Key users are critical to the
continued success of the product. We will give a greater importance to require-
ments generated by this category of users. Secondary users use the product
but their opinion of it has no effect on its long-term success. Unimportant
users represent the category for which we give the lowest priority. It includes
infrequent, unauthorized and unskilled users, and people who misuse the prod-
uct. For each category of users, we give a percentage to assess the amount of
consideration given to this category.

Key users They are of two types:

• Conference organizers

• System administrators

These key users represent 100% of the totality of users using the product.

3.3 Requirements engineering 37

T
ab

le
3.

1:
R

eq
ui

re
m

en
t

en
gi

ne
er

in
g:

su
m

m
ar

y
of

th
e

ha
nd

-o
n

us
er

s
of

th
e

pr
od

uc
t

In
fo

rm
at

io
n

C
on

fe
re

n
ce

or
ga

n
iz

er
s

S
y
st

em
ad

m
in

is
tr

at
or

s
R

ol
e

T
he

y
ar

e
th

e
m

ai
n

us
er

s
of

th
e

sy
st

em
.

T
he

y
ar

e
re

sp
on

si
bl

e
of

co
m

pl
et

in
g

th
e

fie
ld

s
w

it
h

th
e

in
fo

rm
at

io
n

co
rr

es
po

nd
-

in
g

to
th

e
co

nf
er

en
ce

w
eb

si
te

.

T
he

y
ar

e
in

ch
ar

ge
of

th
e

sy
s-

te
m

m
ai

nt
en

an
ce

an
d

in
fo

r-
m

at
io

n
ch

ec
ki

ng
.

Su
b

je
ct

m
at

te
r

ex
pe

ri
en

ce
M

as
te

r
M

as
te

r
T

ec
hn

ol
og

ic
al

ex
pe

ri
en

ce
M

as
te

r
M

as
te

r

O
th

er
us

er
ch

ar
ac

te
ri

st
ic

s

P
hy

si
ca

l
ab

ili
ti

es
/d

is
ab

ili
ti

es
N

o
ph

ys
ic

al
di

sa
bi

lit
ie

s
th

at
pr

ev
en

t
fr

om
us

in
g

th
e

sy
s-

te
m

.

N
o

ph
ys

ic
al

di
sa

bi
lit

ie
s

th
at

pr
ev

en
t

fr
om

us
in

g
th

e
sy

s-
te

m
.

In
te

lle
ct

ua
l

ab
ili

ti
es

/d
is

ab
ili

ti
es

H
ig

h
st

an
da

rd
.

H
ig

h
st

an
da

rd
.

E
du

ca
ti

on
U

ni
ve

rs
it

y
le

ve
l

or
hi

gh
st

an
-

da
rd

.
H

ig
h

st
an

da
rd

.

L
in

gu
is

ti
c

sk
ill

s
T

he
gr

ap
hi

ca
l

in
te

rf
ac

e
w

ill
be

in
E

ng
lis

h
so

a
m

in
im

um
kn

ow
le

dg
e

of
th

is
la

ng
ua

ge
is

re
qu

ir
ed

.

E
ng

lis
h

A
ge

gr
ou

p
25

to
65

ye
ar

s
ol

d.
20

to
65

ye
ar

s
ol

d.
G

en
de

r
M

al
e

or
fe

m
al

e.
M

al
e

or
fe

m
al

e.

38 3 Running example: A conference website SPL

Secondary users
No secondary users for this product.

Unimportant users
Conference contributors and participants as they simply consult the website

but do not use the product.

User participation The participation of key users (see above) is funda-
mental to provide the different requirements. We can take advantage of their
business knowledge of conferences. They can give advices and their point of
view on the requirements of the product, just as for its design, mainly for the
user interface.

Maintenance users The system administrators working for the client (David
Benavides and Patrick Heymans) are charged to maintain and change the
product.

3.3.4 Project constraints

The project constraints are constraints on the requirements that will af-
fect the eventual design of the product. They are of 3 types: solution design
constraints, partner or collaborative applications and anticipated workplace en-
vironment. Solution design constraints specify constraints on the way that the
problem must be solved. The client, customer or users may have design prefer-
ences. These preferences are constraints that must be part of the final product
and if these are not met then the solution is not acceptable. Partner or col-
laborative applications are applications that are not part of the product but
with which the product will collaborate. We provide information about design
constraints that are caused by using partner applications. Anticipated work-
place environment is the workplace in which the users will work and use the
product. This should describe any feature of the workplace that could have
an effect on the design of the product.

Solution design constraints

We have identified two design constraints that must be part of the final
product. For each of them, we provide the following information:

• Description – Sentence statement of the intention of the constraint.

• Rationale – Justification of the constraint.

3.3 Requirements engineering 39

• Fit criterion – Measurement of the constraint such that it is possible
to test if the solution matches the original constraint.

Table 3.2 describes the first constraint which imposes that the product will
be multi-platform because users have to run the tool on their computer or an
external computer with different operating systems such as Windows, Mac OS
X, Linux or Unix. To test if the solution matches the original constraint, the
system must run on the three operating systems mentioned above.

The second constraint described in Table 3.3 is that the product must use
a CMS. For a better management, the website generated by the product must
be of CMS type. The fit criterion is that the CMS generated by the product
must be ready to use.

Table 3.2: Requirement engineering: summary of the first constraint
Constraint #: 1
Description: The product must be multi-platform.
Rationale: Users must be able to run the tool with their computer or
an external computer with Windows, Mac OS X, Linux or Unix operating
systems.
Fit criterion: The system must run on the four operating systems men-
tioned above.

Table 3.3: Requirement engineering: summary of the second constraint
Constraint #: 2
Description: The product must use a CMS.
Rationale: For a better management, the website generated by the prod-
uct must be of CMS type.
Fit criterion: The CMS generated by the product must be ready to use.

Partner or collaborative applications

In some cases, the product would collaborate with conference management
systems such as EasyChair [13], OpenConf [28], Colibri [11], etc. that supports
the organization of conferences. They help the program committee, conference
organizers, contributors and reviewers (see Section 3.1 for more details about
the participants) in their respective activities. They allow the submission
management, paper assignment, paper review, committees management, etc.

40 3 Running example: A conference website SPL

Anticipated workplace environment

The workplace can be anywhere an Internet connection is available. To
use the system, an Internet connection is not required but once the generation
is finished, the files upload requires a connection.

3.3.5 Functional requirements

First, the context of the work has to be presented in order to have a better
understanding of the functional requirements. The context of the work iden-
tifies the work that is needed to investigate in order to be able to build the
product. “Functional requirements specify the software functionality that the
developers must build into the product to enable users to accomplish their
tasks, thereby satisfying the business requirements” [91]. The boundaries for
the work study and requirements effort must be clearly defined. Without this
definition, there is little chance of building a product that will fit seamlessly
into its environment.

Context of the work

Elicitation techniques (interviews and reading) allow to have a better un-
derstanding on the work context. We define it through a work context diagram
(goal model) using the KAOS language. KAOS is an approach for goal-oriented
requirements engineering having many formal analysis techniques [72]. Ana-
lysts are able to build requirements model and to derive requirements docu-
ments from KAOS models [59].

In our goal model, five components are used: goal, requirement, agent, goal
refinement, and responsibility. A goal is an objective that must be met by
the system to develop. It requires the cooperation of agent to be reached. A
requirement is a goal of low level which can be placed under the responsibility
of an agent which is part of the system to develop. An agent is either human
beings, automated components or a software that are responsible for achieving
requirements. The goal refinement is a relation allowing to point out how a
goal (more general) can be satisfied by a set of sub-goals (more specific) and
properties of the domain. The responsibility is a relation used to assign a
requirement to an agent [60]. The legend allowing to understand our KAOS
diagram is shown in Table 3.4.

Our goal model is composed of four different models which identify the
goals and requirements of the conference organizers, conference contributors
and participants. The identified requirements related to the conference website
must be part of the final system.

3.3 Requirements engineering 41

Table 3.4: Requirement engineering: legend of the goal model
Legend

Type Object

Goal

Requirement

Agent

Goal refinement

Responsibility

The first model (shown in Figure 3.1) shows the goals of the conference or-
ganizers. To complete the Organize a conference goal, other sub-goals must be
reached such as: Attract the appropriate papers which are in the scope of the
conference, Attract qualified contributors and Generate the conference website.
This last goal can be refined in another model which is presented in Figure
3.2. Its objective, completed thanks to all the requirements and goals that we
will describe below, is to generate the conference website (Generate the con-
ference website goal). Each conference has a title, a place and dates. These
are mandatory information that must be imposed. We can add three require-
ments to our goal model: Impose to select title, Impose to select place, Impose
to select dates. In addition to the conference dates, other events can take place
such as different deadlines (registration, submission, etc.), discussants assign-
ment, etc. This can be satisfied by the addition of the requirement Propose to
add different events. Once all the dates are defined, users asked to have the
possibility to save them using a standardized form to import it in a calendar
(requirement Propose to save dates in a standardized form). They may also be
interested presenting information of the conference in different languages. As
English is the most commonly used language during international conferences,
it will be probably the most selected language. Some conferences take place in
their languages, it is so interesting to propose different other languages such
as Spanish, French, Dutch and German. In some countries as Belgium, there
are different national languages (French, Dutch and possibly German), there-
fore propose up to 3 languages for the conferences seems to be sufficient. We
can thus add the two following requirements: Propose 5 different languages
and Impose the selection of minimum 1 and maximum 3 languages. Often,

42 3 Running example: A conference website SPL

Figure 3.1: Goal model 1: organize a conference

conferences or organizing institutions have a logo which can be displayed to il-
lustrate the conference. It is important to note that this requirement proposes
the display but does not impose it. We can thus add the requirement Propose
to display the conference logo. With a unique template, it is impossible to
satisfy all the conference organizers on the point of view of the appearance
of the website. The addition of different templates to personalize the website
is opportune (requirement Propose to add additional templates). Some users
asked to display images, for example to illustrate the place of the conference.
It is interesting to add more than 2-3 images so we have decided to display
until 10 images. For that reason, we can add to our goal model the two follow-
ing requirements: Propose to display slideshow and Display until 10 images
in the slideshow. To inform persons interested by the conference, we have two
means: newsletters sent by email to registered persons and news displayed on
the conference website. A newsletter and a news systems are thus required
(requirements Propose a newsletter system and Propose a news system). Of-
ten persons wishing to attend the conference must enrol. For that, different
personalized forms can be added. We can thus add the requirement Propose a
forms system to the goal model. When a date has to be added, there is always
a problem of format: some people give the date in numbers whereas others in
letters. In order to avoid this problem and in an aim of standardization, it is
easier to choose a date in a calendar. We can add the requirement Propose a
calendar to select dates. All the requirements we have expressed participate
to fill the Build a product of SPL goal. Requirements beginning with “Im-
pose” might be completed by users and those beginning with “Propose” will
be at their choice. Once the product is completed, its validation is required

3.3 Requirements engineering 43

Figure 3.2: Goal model 2: generate the conference website

44 3 Running example: A conference website SPL

to check that it is correct (requirement Validate configuration). The previous
goals participate to fill this requirement.

Figure 3.3: Goal model 3: goals of the contributors

Figure 3.4: Goal model 4: goals of the participants

The third model (shown in Figure 3.3) represents the goals of the con-
ference contributors. To reach their goals, they have to write a paper which
is within the scope of the conference (Write a paper within the scope of the
conference requirement). They can before the conference, Submit their paper
and during it, Present their work and Discuss their work.

The fourth model (visible in Figure 3.4) describes the goals of the con-

3.3 Requirements engineering 45

ference participants. If they are interested by the conference (Be interested
by the conference requirement), they can Consult the conference website and
Receive information about the conference.

Functional requirements

From Table 3.5 to Table 3.16, we specify the detailed functional require-
ments introduced in the previous section that must be supported by the prod-
uct. For each requirement, we provide the following information:

• Goal model – Goal model that needs the requirement.

• Description – Sentence statement of the intention of the requirement.

• Rationale – Justification of the requirement .

• Source – Technique which allows to raise the requirement.

• Fit criterion – Measurement of the requirement such that it is possible
to test if the solution matches the original requirement.

• Customer satisfaction – Degree of stakeholder happiness if the re-
quirement is successfully implemented.

• Customer dissatisfaction – Degree of stakeholder unhappiness if the
requirement is not part of the final product.

The first requirement (Table 3.5), highlighted by background reading, im-
poses that the product validates each configuration of conference website made
by users. Indeed, when users select features which should be available on their
conference website, the product must check the validity of the selection in
relation to the CWPL. To test if the solution we will provide matches this
requirement, the product shall generate a percentage of 100% of valid con-
figurations (during a month of use). As the validation is necessary for the
generation, we give 5 as customer satisfaction degree. Without validation, the
conference website will never be correct so the customer dissatisfaction can be
evaluated to 5 because the validation is mandatory.

The second requirement (shown in Table 3.6) has been mentioned by users
during interviews and imposes that the product offers to users the possibility
to display the conference logo on the website. Conferences often have their
own logo which can be displayed if it is available. To test if the solution we
will provide matches this requirement, in one month’s use, the product shall
copy all the logo files without any error. This requirement is really useful, so

46 3 Running example: A conference website SPL

Table 3.5: Requirement engineering: requirement 1
Requirement #: 1 Goal model #: 2
Description: The product shall validate each configuration of confer-
ence website made by users.
Rationale: When users select features which should be available on
their conference website, the product must check validity of the selection
in relation to the conference website product line.
Source: Background reading.
Fit criterion: In one month’s use, the product shall generate a per-
centage of 100% of valid configurations.
Customer satisfaction: 5
Customer dissatisfaction: 5

if it is implemented in the final product, the customer satisfaction will be of
4. On the other hand, it will be of 3 if it is not part of the final product.

Table 3.6: Requirement engineering: requirement 2
Requirement #: 2 Goal model #: 2
Description: The product shall offer to users the possibility to display
the conference logo on the templates.
Rationale: Conferences often have their own logo which can be dis-
played if it is available.
Source: Interviews of users.
Fit criterion: In one month’s use, the product shall copy all the logo
files without any error.
Customer satisfaction: 4
Customer dissatisfaction: 3

As shown in Table 3.7, the third requirement imposes that the product
proposes 3 languages among 5 languages as website languages, one by default
and 2 additional. As the product can be used by everybody in the world, it
must propose different languages as default language for the website: English,
Spanish, French, Dutch and German. Two other languages among them can
be added to the default language. This requirement has been highlighted
by interviews of users. To test if the solution we will provide matches it,
in one month’s use, the product shall generate the website in the selected
language(s) without any error. The customer satisfaction and dissatisfaction
can be evaluated respectively to 3 and 2. As English will probably be the most
selected language, the choice of other languages is a plus. Users will be not

3.3 Requirements engineering 47

much affected if the requirement is not implemented.

Table 3.7: Requirement engineering: requirement 3
Requirement #: 3 Goal model #: 2
Description: The product shall propose 3 languages among 5 languages
as website languages, one by default and 2 additional.
Rationale: As the product can be used by everybody in the world, it
must propose different languages as default language for the website:
English, Spanish, French, Dutch and German. Two other languages
among them can be added to the default language.
Source: Interviews of users.
Fit criterion: In one month’s use, the product shall generate the web-
site in the selected languages without any error.
Customer satisfaction: 4
Customer dissatisfaction: 2

The fourth requirement (shown in Table 3.8) asked by users imposes that
the product offers the possibility to add a minimum of 6 events in addition to
the conference dates. Indeed, during a conference organization, events such as
registration or submissions deadlines can take place. So it is useful to add these
activities and their corresponding dates. To test if the future solution matches
this requirement, in one month’s use, the product shall add the selected events
in the dates website page without any error. If the product does not allow
to add these events, users have to manually add them after the generation.
For this reason, a customer satisfaction of 4 can be given and a customer
dissatisfaction of 3 because the manual addition is not a difficult operation.

Table 3.8: Requirement engineering: requirement 4
Requirement #: 4 Goal model #: 2
Description: The product shall offer the possibility to add a minimum
of 6 events in addition to the conference dates.
Rationale: During a conference organization, events such as registra-
tion or submissions deadlines can take place. So it is useful to add these
activities and their corresponding dates.
Source: Interviews of users.
Fit criterion: In one month’s use, the product shall add the selected
events in the dates website page without any error.
Customer satisfaction: 4
Customer dissatisfaction: 2

48 3 Running example: A conference website SPL

As shown in Table 3.9, the fifth requirement, highlighted by interviews,
imposes that the product proposes a calendar to easily choose dates or events
of the conference. The use of a calendar is more user-friendly for users because
they can select the date on the calendar rather than add it manually. To test
if the solution we will provide matches this requirement, in one month’s use,
the product shall recover the selected date in the calendar without any error.
The addition of a date will be facilitated if the requirement is implemented in
the final product. We can give an evaluation of 4 as customer satisfaction. In
addition, this requirement allows to have a standardization of all dates. The
customer dissatisfaction will be high (evaluated to 4) if it is not implemented
because if the dates formats are different, it will cause verification problems.

Table 3.9: Requirement engineering: requirement 5
Requirement #: 5 Goal model #: 2
Description: The product shall propose a calendar to easily choose
dates or events of the conference.
Rationale: The use of a calendar is more user-friendly for users because
they can select the date on the calendar rather than add it manually.
Source: Interviews of users.
Fit criterion: In one month’s use, the product shall recover the selected
date in the calendar without any error.
Customer satisfaction: 4
Customer dissatisfaction: 4

As shown in Table 3.10, the sixth requirement imposes that the product
offers the possibility to save all dates in a standardized format. The use
of a standardized format allows to share, send by email and import dates
in a calendar. This requirement has been asked by users (interviews). In
one month’s use, all the dates inserted by the product in the standardized
format must be recovered without any error. We can evaluate the customer
satisfaction and dissatisfaction respectively to 3 and 2 because the requirement
is useful but probably not often used.

Table 3.11 describes the seventh requirement, highlighted by background
reading and interviews of users, imposes that the product shall offer the possi-
bility of adding a plugin managing a newsletter. Some users can be interested
in receiving different information by email. That notification can, for ex-
ample, be sent to the subscribers of the newsletter. To test if the provided
solution matches this requirement, all the registered persons must receive the
newsletters during one month’s use. The degree of customer satisfaction can
be evaluated to 4 because a newsletter is a good means to inform interested

3.3 Requirements engineering 49

Table 3.10: Requirement engineering: requirement 6
Requirement #: 6 Goal model #: 2
Description: The product shall offer the possibility to save all dates in
a standardized format.
Rationale: The use of a standardized format allows to share, send by
email and import dates in a calendar.
Source: Interviews of users.
Fit criterion: In one month’s use, all the dates inserted by the product
in the standardized format must be recovered without any error.
Customer satisfaction: 3
Customer dissatisfaction: 2

persons. Other means might be less practical and more expensive but possible,
so the customer dissatisfaction can be evaluated to 3.

Table 3.11: Requirement engineering: requirement 7
Requirement #: 7 Goal model #: 2
Description: The product shall offer the possibility of adding a plugin
managing a newsletter.
Rationale: Some users can be interested in receiving different infor-
mation by email. That notification can, for example, be sent to the
subscribers of the newsletter.
Source: Background reading and interviews of users.
Fit criterion: In one month’s use, all the registered persons must re-
ceive the newsletters.
Customer satisfaction: 4
Customer dissatisfaction: 3

As shown in the Table 3.12, the eighth requirement imposes that the prod-
uct offers the possibility of adding a plugin managing news related to the
conference. Users must be informed of all novelties of the conference by dis-
playing the news on the website. Background reading and interviews of users
allowed us to highlight the needs for this requirement. To test if the future
solution matches it, in one month’s use, the users must have access to the
news displayed on the website. We can evaluate the customer satisfaction to
4 and the customer dissatisfaction to 3 for the same reasons as the previous
requirement.

The ninth requirement (Table 3.13) has been highlighted by background
reading and interviews of users and imposes that the product shall offer the

50 3 Running example: A conference website SPL

Table 3.12: Requirement engineering: requirement 8
Requirement #: 8 Goal model #: 2
Description: The product shall offer the possibility of adding a plugin
managing news related to the conference.
Rationale: Users must be informed of all novelties of the conference by
displaying the news on the website.
Source: Background reading and interviews of users.
Fit criterion: In one month’s use, the users must have access to the
news displayed on the website.
Customer satisfaction: 4
Customer dissatisfaction: 3

possibility of adding a plugin managing forms. On a website, users often
have to fill in a form or a questionnaire. For this task, it can be useful to
integrate mail forms to the website. To test if the future solution matches
this requirement, it must be possible to add forms to the website during one
month of use. A conference website often need to register persons for different
reasons (participation, paper submission, etc.), so this requirement is very
useful (customer satisfaction of 4). On the other hand, if this requirement is
not part of the final product, the customer dissatisfaction can be evaluated to
4 because there is no other means for automatic registration.

Table 3.13: Requirement engineering: requirement 9
Requirement #: 9 Goal model #: 2
Description: The product shall offer the possibility of adding a plugin
managing forms.
Rationale: On a website, users often have to fill in a form or a ques-
tionnaire. For this task, it can be useful to integrate mail forms to the
website.
Source: Background reading and interviews of users.
Fit criterion: In one month’s use, it must be possible to add forms to
the website.
Customer satisfaction: 4
Customer dissatisfaction: 4

As shown in Table 3.14, the tenth requirement imposes that the product
offers the possibility to add a plugin displaying a slideshow on the homepage.
Webmasters can be interested in displaying a serie of chosen images on the
homepage of their website. We have identified this requirement thanks to

3.3 Requirements engineering 51

background reading and interviews of users. The solution that we will provide
can be tested if in one month’s use, the slideshow must be visible on the
website and display the selected images. This requirement is not essential, a
majority of users will probably not use it, so the customer dissatisfaction can
be evaluated to 2. Nevertheless, it will be useful (for example, to present the
place of the conference), so we attribute 3 as customer satisfaction.

Table 3.14: Requirement engineering: requirement 10
Requirement #: 10 Goal model #: 2
Description: The product shall offer the possibility to add a plugin
displaying a slideshow on the homepage.
Rationale: Webmasters can be interested in displaying a serie of chosen
images on the homepage of their website.
Source: Background reading and interviews of users.
Fit criterion: In one month’s use, the slideshow must be visible on the
website and display the selected images.
Customer satisfaction: 3
Customer dissatisfaction: 2

Table 3.15 shows the eleventh requirement has been highlighted by users
(interview). It imposes that the product offers the possibility to add up to 10
images in the slideshow. Generally, a slideshow must display a set of images
and is not limited to some images. To test if the solution we will provide
matches this requirement, in one month’s use, the product shall copy all the
selected images without any error. The customer satisfaction can be evaluated
to 3 because it is more practical to add images via the product than manually
later. In addition, it is more interesting to add until 10 image rather than 2
or 3. The customer dissatisfaction can be evaluated to 2 because it is always
possible to add images afterwards.

As shown in Table 3.16, the twelfth requirement imposes that the product
offers the possibility of adding 5 other templates in addition to the default
template. Indeed, users can be interested in changing the look and feel of
their website in order to personalize it. This requirement has been asked by
users during interviews. To test if the solution matches it, we test if in one
month’s use, the product adds the selected templates without any error. We
can evaluate the degree of customer satisfaction and dissatisfaction to, 5 and
3 respectively, because it is important and useful to personalize the look and
feel of the website. We have attributed an average degree of dissatisfaction
because this operation can be made once the generation is completed and the
website put in place.

52 3 Running example: A conference website SPL

Table 3.15: Requirement engineering: requirement 11
Requirement #: 11 Goal model #: 2
Description: The product shall offer the possibility to add up to 10
images to the slideshow.
Rationale: Generally, a slideshow must display a set of images and is
not limited to some images.
Source: Interviews of users.
Fit criterion: In one month’s use, the product shall copy all the se-
lected images without any error.
Customer satisfaction: 3
Customer dissatisfaction: 2

Table 3.16: Requirement engineering: requirement 12
Requirement #: 12 Goal model #: 2
Description: The product shall offer the possibility of adding 5 other
templates in addition to the default template.
Rationale: Users can be interested in changing the look and feel of
their website in order to personalize it.
Source: Interviews of users.
Fit criterion: In one month’s use, the product shall add the selected
templates without any error.
Customer satisfaction: 5
Customer dissatisfaction: 3

3.3.6 Non-functional requirements

In addition to the functional requirements, the non-functional requirements
include descriptions of quality attributes and performance goals. The descrip-
tion of the product’s characteristics in various dimensions that are important
to users or developers allows to describe the product’s functionalities. The de-
scription of the product’s functionalities is increased by the quality attributes
[91]. Here we focus on the look and feel, usability and humanity, performance,
and operational requirements.

Look and feel requirements

The look and feel requirements deal with the interface and the style of
the product. The requirements on the interface ensure that the appearance
of the product conforms to the organization’s expectations. We capture the

3.3 Requirements engineering 53

requirements for the interface rather than the design of the interface. The
requirements on the style of the product give a description of salient features
of the product that are related to the way a potential customer will see the
product. Once the functional requirements are satisfied, it is often the ap-
pearance of products that determines whether they are successful or not. We
determine how the product shall appear to its intended consumers.

The interface The product shall have an attractive and practical interface
for a scientific use. The succession of screens shall be practical and coherent.
The interface shall be clear with no ambiguity on the navigation and provide
feedback.

The style of the product The product must have a professional appearance
and comply with the standard of the organizing institution.

Usability and humanity requirements

Usability and humanity requirements define the ease of use and the ease of
learning of the product. They also describe understandability and politeness,
and accessibility requirements. The ease of use section describes the client’s
aspirations for how easy it will be for the intended users of the product to op-
erate it. The product’s usability is derived from the abilities of the expected
users of the product and the complexity of its functionalities. Ease of learning
gives a statement of how easy it should be to learn to use the product. We
quantify the amount of time that the client feels is allowable before a user
can successfully use the product. This requirement will guide designers in
how users will learn the product. Understandability and politeness require-
ments specify the requirements for the product to be understood by its users.
While usability refers to ease of use, efficiency etc., understanding determines
whether the users instinctively know what the product will do for them. Ac-
cessibility requirements define how easy the product should be for people with
common disabilities to access the product. These disabilities might be to do
with sight, physical disablement, hearing, cognitive, or others.

Ease of use As described in Table 3.17, we have identified different require-
ments of usability. For each of them, we define a fit criterion, a measurement
of the requirement such that it is possible to test if the solution matches the
original requirement.

As the product is made for generating conference websites in a specific
domain, the first usability requirement is that the product is efficient to use

54 3 Running example: A conference website SPL

Table 3.17: Requirement engineering: summary of the usability requirements
Description Fit criterion
1 The product is made for generat-

ing conference websites in a spe-
cific domain, so the product shall
be efficient to use for all users
of that domain. The user shall
quickly be able to use the prod-
uct.

The user shall be able to under-
stand all functions and use the
system after 10 minutes.

2 The interface shall be clear and
coherent so the ease of remem-
bering shall be maximum: the
user shall quickly remember how
to use the product.

The user shall be able to under-
stand the interface after 10 min-
utes.

3 The error rate shall be minimum
because the product shall pro-
vide feedback for all errors that
the user will make.

The user should not execute un-
derstanding errors after a week of
use. However, (s)he will be sus-
ceptible to make inattention er-
rors.

for all users of that domain. The user shall quickly be able to use the prod-
uct. To test if the solution meets this requirement, all functions and the use
of the system must be understand by the user after 10 minutes. The second
requirement is that the interface must be clear and coherent, so the ease of
remembering must be maximum: the user must quickly remember how to
use the product. Test if the user is able to understand the interface after 10
minutes is the best means to note that the solution matches this requirement.
The last usability requirement concerns the error rate. It must be minimum
because the product must provide feedback for all errors that the user make.
We test this solution during a week of use in which the user should not execute
understanding errors. However, (s)he is susceptible to make inattention errors.

Ease of learning The product shall be useable by any user without any
training. It shall allow users to generate their first conference website in a few
minutes.

Understandability and politeness requirements To be the most intuitive
and easy to use, the product shall hide the details of its construction from
the user. The product shall also use symbols and words that are naturally

3.3 Requirements engineering 55

understandable by the users of the system.

Accessibility requirements The product shall be usable by users with phys-
ical disabilities or partially-sighted users if they are equipped with necessary
tools: special keyboards or keypads, pointing device, etc.

Performance requirements

Performance requirements define the speed and latency, reliability and
availability, and robustness or fault tolerance requirements. Speed and latency
requirements specify the amount of time available to complete specified tasks.
Reliability and availability requirements quantify the necessary reliability of
the product. This is usually expressed as the allowable time between failures,
or the total allowable failure rate. It also quantifies the expected availability
of the product. Robustness or fault tolerance requirements specify the ability
of the product to continue to function under abnormal circumstances. They
allow to ensure that the product is able to provide some or all of its services
after or during some abnormal happening in its environment.

Speed and latency requirements The time to go from a screen to another
shall be of maximum 1 second. When the user is familiar with the system,
(s)he shall be able to generate a website in maximum 3 minutes.

Reliability and availability requirements Once it has been installed on the
computer of the user, the product shall be available 24 hours a day. Users
who make a business journey in another country should generate a website at
each moment of the day and copy the files on a web server when they have
time and an Internet connection is available.

Robustness or fault tolerance requirements In case of abnormal circum-
stances, the product shall be unable to function normally. Information that
has not been saved shall be lost.

Operational requirements

The operational requirements define the expected physical environment
and the expected technological environment. Expected physical environment
specifies the physical environment in which the product will operate to ensure
that the product is fit to be used in its intended environment. Expected tech-
nological environment specifies the hardware and other devices that make up

56 3 Running example: A conference website SPL

the operating environment for the new system.

Expected physical environment The product shall be used in relatively
quiet conditions (generally in an office room).

Expected technological environment The product shall be used on a desk-
top or a laptop equipped with a mouse and a keyboard.

Now we have identified the requirements to develop a conference website,
we are able to model the CWPL which is the object of the next section.

3.4 Conference website product line feature diagram

In this section, we build the CWPL on the basis of the information collected
previously. To represent the CWPL, we use a FD which is presented in Figure
3.5.

A conference website provides all the useful information about the con-
ference. First, the title, the place, the dates and eventually the logo of the
conference are always visible. A conference website also has a collection of
pages containing various details of the conference. We can find details such
as a description, information about sponsors and submissions, and practical
information on the venue and the accommodation during the conference. The
description page gives the topic of the conference, the sponsors information
page lists the sponsors of the conference and information about them, the
submissions information page provides details on how to proceed to send sub-
missions, the venue page gives to participant a plan to reach the conference
place, the accommodation page gives details on the possible lodgings around
the conference place. We can also find a form allowing to register users on the
website. This page requires (requires relation) a plugin adding forms.

Second, modules can be added at the content and the core functions of
the basic website. A Newsletter module allows organizers of the conference
to send various information about the conference to the registered users. A
News module allows to warn users about all novelties of the conference by
displaying news on the website. A Forms module allows to create customized
forms, essentially used to create registration forms. A Slideshow module allows
to display images on the homepage of the website. A language module allows
to select the default language of the website. It is also possible to add two other
additional languages which are different of the default language. Therefore,
there are excludes relations between the default and the additional languages.

3.5 Selection of a content management system 57

Third, the appearance of the website can be personalized with templates.
The look and feel of the website is modified by placing the layouts at different
places. The best example is the menu: depending on the chosen template, it
can be situated under the header or in a column on the left.

After having analysed the CWPL, we have noticed that it can easily be
developed in a CMS. There are several existing CMSs, so a choice must be
carried out.

3.5 Selection of a content management system

This section aims to select the most appropriate CMS for our application.
First, we present a selection of free CMSs on the market and then we compare
them on different criteria. Third, we discuss the choice of a CMS. Finally, we
give a more detailed description of the chosen CMS.

3.5.1 Existing CMSs

Making a choice among the quantities of CMSs available on the market [12]
is difficult. We have chosen free CMSs distributed under the GNU General
Public License (GNU GPL)1 or GNU Affero General Public License (GNU
AGPL)2. Our choice is about the 5 following CMSs: PHP-Nuke, SPIP, CM-
Simple, OpenCMS and WebGUI. We have selected PHP-Nuke and SPIP be-
cause we wanted to confront two of the most known CMSs on the market
with others. The three others, CMSimple, OpenCMS and WebGUI have been
recommended by professional. Those CMSs are presented using seven aspects:
description, license, requirements for the installation, administration interface,
modules, look and feel, and support (on basis of the information available in
April 2009).

PHP-Nuke

Description “PHP-Nuke is a web-based automated news publishing and
content management system based on PHP and MySQL” [70]. The main
goal of PHP-Nuke is to help webmasters in the deployment of an automated
website allowing users and editors to post news and articles. PHP-Nuke also
comes with a Comments system allowing users to comment and discuss these
articles.

1More information about GNU GPL are available on http://www.gnu.org/copyleft/

gpl.html
2On http://www.gnu.org/licenses/agpl.html, more details on GNU AGPL are pre-

sented.

58 3 Running example: A conference website SPL

Figure 3.5: Conference website feature diagram

3.5 Selection of a content management system 59

License Starting with version 5.6, the GPL license requires the display of
a copyright message on the pages of the website. Last versions of the software
were freely downloadable but the latest is the first version for which a download
charge is required.

Installation PHP-Nuke requires a web server supporting the PHP exten-
sion (such as the Apache HTTP Server), as well as an SQL database (such as
MySQL, mSQL, PostgreSQL, ODBC, ADABAS, Sybase or InterBase).

Administration interface Administrators control all the functionalities
of the system using a web-based administration interface.

Modules The standard modules of the PHP-Nuke system are Down-
loads, Encyclopedia, FAQ, Forums, News, Search, Statistics, Submit News,
Web Links, Journal, Members List, Private Messaging. They are part of the
PHP-Nuke core but can be extended with additional modules such as an Inter-
net Forum or a Calendar. PHP-Nuke is also able to support many languages.

Look and feel The Themes system of PHP-Nuke allows to customize the
look and feel of the template and differentiate it from the standard column
layout.

Support The official website of PHP-Nuke [29] contains a lot of helpful
information for any user around the world and community websites help users
in the support of their system.

SPIP

Description “SPIP is a publishing system for the internet in which great
importance is attached to collaborative working, to multilingual environments,
and to simplicity of use for web authors” [37]. SPIP consists of a bundle of
files, installed on a web server supporting notably multi-user management,
articles layout definition without HTML usage, easy modification of the struc-
ture of the website, etc. “SPIP’s benefit consists in managing a magazine type
website, i.e. made up mainly of articles and news items inserted in an arbores-
cence of sections nested in each other” [37]. SPIP completely separates the
graphic design, the website editorial input (submission of articles and news
items) and the website editorial management (organizing sections, validating
articles submission, etc.). The need to learn new technical skills and tedious
aspects of web publishing are avoided, and thus spared by all stakeholders. A
simple interface allows to configure SPIP step by step until the installation is
complete and then helps to create the different sections and articles which will
appear on the website.

License SPIP is a free and distributed under the GNU GPL license and
can thus be used for any type of website (personal or institutional, non-profit

60 3 Running example: A conference website SPL

or commercial, etc.).
Installation The use of SPIP requires its installation on a web server with

PHP, MySQL and FTP access supports.
Administration interface With its very simple user interface, SPIP al-

lows to set up and update a website using the same application as the one
used to browse a website.

Modules A number of varied plugins such as Agenda, Multimedia Reader,
Accessibility Bar, Forums, etc. are designed for SPIP. Their inclusion and
activation is made in a very simple way via in the user interface. Users can
also create their own plugins.

Look and feel The look and feel of a SPIP website is managed by tem-
plates delivered in HTML and PHP formats. A large number of templates
allowing to personalize a website at low cost also exist.

Support SPIP is developed and used by a community [34] which com-
municates through a website, a forum [35], a blog [33], mailing lists [36] and
meetings.

CMSimple

Description “CMSimple is a simple CMS for the smart maintenance of
small commercial or private websites” [8]. It aims to be small, simple and
smart. The complete system taking less than 100 KB memory space on a web
server makes of it a small CMS. Users just edit the entire website with an
HTML-editor and upload the content file to have a dynamic website. With no
database needed, CMSimple is easy to install and modify as the entire website
is saved in a unique HTML file. Configuration and language files are also saved
in a .txt file. A content automatic backup on logout, an integrated online
WYSIWYG (What-You-See-Is-What-You-Get) editor with links validation,
image handling and online editing of system files make of CMSimple a smart
system. CMSimple is not a community portal like SPIP or PHP-Nuke, it is
not designed for large volumes of content but to set up quickly a multi-purpose
website [9].

License Contrary to other CMSs of this section, CMSimple is released
under the Affero General Public license (GNU AGPL). This license is satisfied
if a link to the CMSimple Legal Notices [9] is kept visible in the website
template. When the link is removed, a license must be purchased.

Installation CMSimple is written in PHP, thus it runs on Linux/Apache
servers, or on Win32 with Apache or Internet Information Services (IIS).

Administration interface Administrators control all the functionalities
of the system using a web-based administration interface.

3.5 Selection of a content management system 61

Modules Like many CMSs, CMSimple has a large variety of plugins opti-
mizing its core functions. Plugins allowing to have a newsletter, FAQ, forum,
news and forms systems, are available.

Look and feel The look and feel of a CMSimple website is managed by
template files designed by the installer or selected from a set of free templates
available through CMSimple. The different templates use HTML and CSS.
Using a default template, a basic website can be configured in a few minutes
[9]. Knowledge of PHP, HTML and CSS is required to make a customized
template.

Support The free version offers support on a forum [5], a wiki [10] and a
mailing-list [7] thanks to a large community of experienced users.

OpenCMS

Description “OpenCMS is a professional, easy to use website CMS help-
ing content managers worldwide to create and maintain beautiful websites fast
and efficiently” [25]. The fully browser based user interface includes config-
urable editors used to structure the content with well defined fields. Alterna-
tively, content can be created through an integrated WYSIWYG editor. No
help of externals or professionals is needed with OpenCMS to maintain a pub-
lic website, an extranet or an intranet. Users can thus focus their attention
on the creation of the website content, and publish it in an easy and intuitive
way [26].

License Free of licensing costs (GNU GPL), OpenCMS helps to reduce IT
costs. As alternative to high expensive and proprietary commercial solutions,
OpenCMS provides a professional, cost effective solution ready to be deployed
by organizations or enterprises of any size [25]. A full access allows to extend
and remodel the source code.

Installation OpenCMS is based on Java and XML and can thus be de-
ployed in open source (Linux, Apache, Tomcat, MySQL) or commercial (Win-
dows NT, IIS, BEA Weblogic, Oracle) environments.

Administration interface Once OpenCMS is installed on a web server,
administrators can use a web browser to access the user interface of the system
from any location.

Modules The user interface of OpenCMS allows convenient bundling of
contents or functionalities thanks to an integrated module mechanism. Mod-
ules can provide templates to use for website pages, new structured content
items, additional frontend functions for a website, for instance to create photo
albums or interactive online forms [26].

Look and feel A sophisticated template engine applies to the whole web-

62 3 Running example: A conference website SPL

site the layout in the W3C (World Wide Web Consortium) [44] standard for
the compatibility of contents.

Support Support agreements, project and consulting services, and train-
ing are proposed by a number of companies around the world. Support is
also supplied by an active development community with among other things
a wiki [27]. A number of companies provides an optional support, reducing
dependency on the deploying software consultancy” [26].

WebGUI

Description “WebGUI is a modular, pluggable, and platform indepen-
dent content management platform built to give average business users the
ability to build and maintain complex websites” [47]. It is not designed to
take the time of a busy IT staff, but rather let the content in the hand of
the webmaster who just has to focus on the content. It is composed of a
users and groups system which controls the viewing privileges and the con-
tent editing and versioning and workflow systems. Thanks to these systems,
administrators can set up content approval systems to verify if something is
published by mistake. They can also set up versioned website content as the
content can move through the website. WebGUI is suitable for diverse orga-
nizations as it contains a lot of features helping for content creation such as a
number of “helper” applications (date, colour pickers) or another application
allowing simple and easy to remember URLs assigned to content applications.
Style and content are kept separate, hence allowing an easy and quick content
management.

License WebGUI is released under GNU GPL license. The code can easily
be accessed, changed, and replaced thanks to its modular design.

Installation WebGUI is built as an application framework and allows to
easily add new applications for more extensibility and flexibility. With its
pluggable macro architecture, it allows developers to create custom applica-
tions and functionalities matching company’s business processes.

Administration interface The user interface allows to learn how to man-
age the content and to directly upload images.

Modules WebGUI allows to view the user interface in multiple languages
and to display international information such as local date and time. It can
also include an e-commerce system.

Look and feel To fit with user’s skill level, the administration interface
allows to manage the available features and the appearance. The template
of WebGUI can be customized and keeps the separation between style and
website content.

3.5 Selection of a content management system 63

Support The WebGUI community maintains a number of free support
resources proposed on the WebGUI website [47]. That website also includes
forums [45], a videos library [46] and a wiki [48].

3.5.2 Comparison of selected CMSs

The comparison is based on CMS Matrix [2], a content management com-
parison tool. It allows to compare up to 10 CMSs at the same time. For each
CMS, we confront it using 12 criteria of comparison:

• Web servers – Web servers compatible with the CMS.

• Programming language – Programming language used to write and/or
extend the CMS.

• Database – Database engine the CMS uses to store content and settings.

• Online help – Availability of an integrated context-sensitive help sys-
tem.

• Documentation – Availability of free or paying documentation.

• Documentation quality – Availability of a correct documentation for
the administration of the system.

• Versioning – Ability to manage levels of system-wide content version-
ing.

• Number of administrator accounts – Number of administrators who
can manage the website.

• Content reuse – Possibility to mirror content (not copy but reuse) from
one location to another on a website.

• Multi-lingual content – Support of multiple languages for website
creation.

• Web-based style/Template management – Availability of a web-
based interface for adding styles and templates to the system for design
and layout control.

• Bug resistance – Sensibility to bugs during upgrade of version.

64 3 Running example: A conference website SPL

To judge of the quality of a CMS for our use, we have selected these criteria
to test different aspects: ease of install, support, content management, ease
of adapting appearance and bug resistance. The ease of install is important
to quickly set up a solution at low cost. We are interested in the ease of
installation of the CMS on the most common web servers and mainly on free
solutions, and the required programming languages avoiding to webmasters the
learning of a new language. We also examine the required database because
the content is generally saved in a database, which imposes knowledge and
memory space on the web server. Both must be minimum. The support allows
users to receive help and documentation to manage the system. We focus on
the online help that a user can receive for any question, the documentation
quality and if it is free or paying. We have also chosen to examine the content
management. We highlight the possibility of content versioning to recover
it when errors are found and the possibility of reuse a particular content in
different pages. The number of administrators which can manage the system
is also taken in account. On another aspect, we analyse the ease of adapting
the appearance of the website with the possibility of adding multi-lingual
content and templates to modify the look and feel. The personalization of the
appearance is an important aspect in the choice of a CMS. Finally, we are
interested in the bug resistance of the CMS because we cannot consider bugs
with the system.

Table 3.18 summarizes the comparison of the different CMSs and is dis-
cussed in the next section.

3.5.3 Discussion

We glance through each criterion to identify the main strengths and weak-
nesses of the CMSs. Table 3.18 summarizes the comparison of the different
CMSs according to the defined criteria. With this table, we can highlight
the main drawbacks of CMSs in order to select the ideal one. For a better
comparison, we give 1 point to a CMS for each criterion when it fits, 0 point
otherwise.

On the point of view of the web servers, the different CMSs run on Apache.
PHP-Nuke, CMSimple and OpenCMS also run on Microsoft Platform (IIS) but
this characteristic is unimportant because we are looking for a free solution.
As the different CMSs are equals for this criterion, we attribute 1 point to all
of them. On the point of view of the programming languages, WebGUI has a
disadvantage compared to the others. Indeed, Perl is a specific programming
language which is less known by webmasters than PHP or Java. Moreover,
Perl requires a dedicated server. We attribute 0 point to WebGUI and 1 to

3.5 Selection of a content management system 65

T
ab

le
3.

18
:

Su
m

m
ar

y
of

th
e

C
M

Ss
co

m
pa

ri
so

n
C

ri
te

ri
a

P
H

P
-N

u
ke

S
P

IP
C

M
S

im
p

le
O

p
en

C
M

S
W

eb
G

U
I

W
eb

se
rv

er
s

A
pa

ch
e,

II
S

A
pa

ch
e

A
pa

ch
e,

II
S

A
pa

ch
e,

II
S

A
pa

ch
e

P
ro

gr
am

m
in

g
la

ng
ua

ge
P

H
P

P
H

P
P

H
P

Ja
va

1.
4.

+
P

er
l

D
at

ab
as

e
M

yS
Q

L
,

P
os

t-
gr

es
,

m
SQ

L
,

In
te

rb
as

e,
Sy

ba
se

M
yS

Q
L

N
o

da
ta

ba
se

O
ra

cl
e,

M
yS

Q
L

,
P

os
t-

gr
eS

Q
L

,
M

S
SQ

L
Se

rv
er

,
D

B
2,

A
S4

00
an

d
H

SQ
L

M
yS

Q
L

O
nl

in
e

he
lp

N
o

N
o

Y
es

Y
es

Y
es

D
oc

um
en

ta
ti

on
Fr

ee
Fr

ee
Fr

ee
Fr

ee
P

ay
in

g
D

oc
um

en
ta

ti
on

qu
al

it
y

G
oo

d
G

oo
d

G
oo

d
P

oo
r

G
oo

d
V

er
si

on
in

g
N

o
Y

es
Y

es
Y

es
Y

es
N

um
be

r
of

ad
m

in
is

tr
a-

to
r

ac
co

un
ts

Se
ve

ra
l

Se
ve

ra
l

O
nl

y
1

Se
ve

ra
l

Se
ve

ra
l

C
on

te
nt

re
us

e
N

o
N

o
Y

es
Y

es
Y

es
M

ul
ti

-l
in

gu
al

co
nt

en
t

N
o

Y
es

Y
es

Y
es

Y
es

W
eb

-b
as

ed
st

yl
e/

T
em

-
pl

at
e

m
an

ag
em

en
t

L
im

it
ed

Fr
ee

A
dd

O
n

Y
es

L
im

it
ed

Y
es

B
ug

re
si

st
an

ce
Y

es
N

o
Y

es
Y

es
Y

es

66 3 Running example: A conference website SPL

others. On the point of view of the database, CMSimple has an advantage
over the others: it requires no database. As a conference website is not a
complicated website requiring a database, the solution of CMSimple is ideal.
Moreover, a website with CMSimple will be less heavy (memory space on the
server) than other CMSs. We attribute 1 point to CMSimple and 0 to others.

On the point of view of the versioning, only PHP-Nuke keeps no version
of the files. The versioning is useful to recover files to a previous version when
an error occurs. We attribute 0 point to PHP-Nuke and 1 to others. On
the point of view of the number of administrator accounts, CMSimple has a
disadvantage on the others because only one administrator can manage the
website. Other people may manage the website via the single administrator
account but this is not a good solution. Contrary to CMSimple, other CMSs
have several administration accounts to manage the website. We attribute 0
point to CMSimple and 1 to others.

On the point of view of the online help, PHP-Nuke and SPIP have not this
functionality. We attribute 0 point to them and 1 to CMSimple, OpenCMS
and WebGUI. On the point of view of the documentation, at the exception
of WebGUI all documentations are free. WebGUI is a free solution devel-
oped by a private company which is remunerated by the documentation. We
attribute 0 point to WebGUI and 1 to others. On the point of view of the
documentation quality, OpenCMS has a disadvantage on other CMSs. The
documentation available is of poor quality compared to PHP-Nuke, SPIP,
CMSimple and WebGUI. Indeed, all documentation sources are incomplete
for a correct administration of the system. We attribute 0 point to OpenCMS
and 1 to others.

On the point of view of the content reuse, PHP-Nuke and SPIP do not
offer this functionality. Indeed, for those two CMSs, making a reference to
the same document in several pages or reuse the content of a page in another
are laborious and complicated tasks. We attribute 1 point to CMSimple,
OpenCMS and WebGUI and 0 to the two others. On the point of view of the
multi-lingual content, only PHP-Nuke does not allow a multi-lingual content.
For that reason, one selects only one language. We give 0 point to PHP-Nuke
and 1 to the four others.

On the point of view of the style/template management, all CMSs allow
to personalize the appearance of the website. However, for PHP-Nuke and
OpenCMS, the personalization is limited, they have a fixed GUI which is
difficult to personalize. We attribute 0 to them and 1 point to the others. On
the point of view of the bug resistance, only SPIP has a disadvantage. Indeed,
the update of SPIP version can cause bugs, which seems to be problematic.
We attribute 0 to SPIP and 1 to others.

3.5 Selection of a content management system 67

Table 3.19 summarizes the points attributed to each CMS. As we can see,
CMSimple has collected more points than the others. It has no real weakness.
However, we can identify a problem of administration: a single administrator
is allowed to manage the system. For a conference website, it is not a problem
as the amount of pages is not big and, consequently does not require a lot
of people to administrate the website. We thus select CMSimple for our
application.

CMS choice

In this section, we give more details about CMSimple and describe its other
characteristics. It is intended for small websites (as conference websites) and
the ideal tool for a single user to maintain a website. In addition to these ad-
vantages, others features make the strength of CMSimple: a search function, a
print version option, a simple mailform, an easy setup of multi language sites,
a possible PHP -scripting within the content (named CMSimple Scripting), a
possible integration with 3rd party scripts (using CMSimple scripting), and
an automatic backup on logout and the respect of XHTML standard. The
core is designed to generate XHTML code, the external editors also respecting
this encoding (as TinyMCE [40]). The template can easily be adapted to be
entirely compatible with XHTML/CSS. CMSimple has a complete adminis-
tration interface in which different plugins can be installed.

68 3 Running example: A conference website SPL

T
able

3.19:
Sum

m
ary

of
the

points
attributed

to
selected

C
M

Ss
C

riteria
P

H
P

-N
u

ke
S

P
IP

C
M

S
im

p
le

O
p

en
C

M
S

W
eb

G
U

I
W

eb
servers

1
1

1
1

1
P

rogram
m

ing
language

1
1

1
1

0
D

atabase
0

0
1

0
0

V
ersioning

0
1

1
1

1
N

um
ber

of
adm

inistra-
tor

accounts
1

1
0

1
1

O
nline

help
0

0
1

1
1

D
ocum

entation
1

1
1

1
0

D
ocum

entation
quality

1
1

1
0

1
C

ontent
reuse

0
0

1
1

1
M

ulti-lingual
content

0
1

1
1

1
W

eb-based
style/T

em
-

plate
m

anagem
ent

0
1

1
0

1

B
ug

resistance
1

0
1

1
1

T
otal

6
8

11
9

9

Chapter 4

Approaches to configuration

In this chapter, we develop two strategies to automate the creation of a
conference website from a product line. The first strategy is an application
specific approach which consists in the development of a wizard generating
a conference website. The second one is a generic approach which uses a
variability modelling and configuration tool to generate the conference website.
The two approaches will then be compared and their limitations highlighted.

4.1 Application specific: wizard

This section presents the application specific solution developed during a
traineeship in the University of Seville. We have chosen to implement it as a
wizard, which is a good solution to complete the requirements that we have
underlined, as we will show. A wizard is a user interface that guides the
user through a potentially complex task with a sequence of dialog boxes [74].
These dialog boxes lead the user step-by-step by asking questions or telling
what data to enter and moving forward and backward through, filling in the
required details [49]. Wizards are often used for complex or infrequent tasks
in which the user is unfamiliar with the steps involved. [39].

We have decided, in this section, to not speak about the architecture be-
cause a software architecture describes the different components of a system
and the relations between them. As our wizard contains a unique component,
the generation algorithm, it can be decomposed with difficulty in a precise ar-
chitecture. It is composed of a GUI which allows users to select desired features
and an algorithm which generates the CMS with the correct configuration.

First, we develop the structure of the wizard which details how it is orga-
nized. Then, we describe its GUI.

69

70 4 Approaches to configuration

4.1.1 Structure

To build the structure of the wizard, we start from the FD presented
previously (see Figure 3.5 in Section 3.4) to translate it into a simple easy-
to-use graphical application. To define the structure, we use two notations
described in the Unified Modelling Language [41] (UML): Class Diagrams
(CDs) and Sequence Diagrams (SDs). First, we build the CD on basis of the
FD. Then we define SDs to make clear how the wizard works. Finally, we give
a solution for each functional requirement defined in Section 3.3.5. We focus
only on the functional requirements because they have a major influence on
the design of the solution rather than the non-functional requirements which
have a minor influence. Some of the latter, are automatically taken in account
in the development of an application such as the ease of use, usability or
performance requirements.

Class diagram

In this section, we describe the CD representing our system. CDs are used
to describe the structure of a system within a model by showing the system’s
classes. In an object-oriented application, classes have their attributes (mem-
ber variables), operations (member functions) and relationships with other
classes [76].

Our CD, derived from the FD described in Section 3.4, represents a con-
ference website. When an instance of it is created, the generation can be
executed. As shown in Figure 4.1, our CD is composed of the six follow-
ing classes: ConferenceWebsite (main class), Dates, Event, Page, Module and
Template. A conference website (ConferenceWebsite class) is characterized by
six attributes: title, place, logo, default language, list of additional languages,
and installation files. Each conference website is identified by the title of the
conference. A conference website has at least one date (Dates class). Each
date is identified by its begin and end dates. In addition to the conference
dates, other dates, named events (Event class), can be added. An event pos-
sesses a name which identifies it. A conference website can be composed of
different pages (Page class) which have a title and content. A page has its
own title. It can own modules (Module class) to complete different functions
such as manage a newsletter, forms, news, etc. Each module has a unique
name and installation files which must be inserted in the website installation
files. Finally, the website possesses at least one template (Template class) to
modify its appearance. It has a default template and other can be added. Like
modules, each template has a unique name and installation files.

4.1 Application specific: wizard 71

Figure 4.1: Class diagram of the conference website

Sequence diagrams

Here, we describe how the information is processed by the wizard through
SDs which show how processes operate with one another and in which order.

SDs are used to represent or model the flow of messages, events and ac-
tions between the objects or components of a system [85]. At the top of
the diagram are displayed the header elements representing objects or classes.
The vertical direction called lifeline, representing the time, shows the sequence
of interactions between them. These interactions are displayed horizontally.
Static diagrams or specifications make difficult the extraction of the system
behaviour. SDs are useful design tools which solve this problem by providing
a dynamic view of it. Primarily used to design, document and validate the
architecture, interfaces and logic of the system, SDs describe the sequence of
actions needed to be performed to complete a task or scenario.

Figure 4.2 presents the sequence of actions to carry out the conference
website generation. Three objects operate here: user, system, calendar and
CMS. The user is the person using the system. The calendar allows to se-
lect a specified date on a graphical interface. The system is the application
generating the conference website. The CMS website is the system which will
be generated. The user begins by selecting the general information like the
title and the place of the conference. Optionally, (s)he can add a logo on
the website template by specifying the file directory. Then (s)he selects the

72 4 Approaches to configuration

Figure 4.2: Application specific approach: general sequence diagram

4.1 Application specific: wizard 73

Figure 4.3: Application specific approach: languages sequence diagram

74 4 Approaches to configuration

Figure 4.4: Application specific approach: dates sequence diagram

4.1 Application specific: wizard 75

Figure 4.5: Application specific approach: templates sequence diagram

languages and dates, respectively described in Figure 4.3 and Figure 4.4. For
the languages, (s)he first selects the default language before adding if he wants
one or two additional languages. At each addition, the system verifies that the
user does not select a language already selected. For the dates, (s)he starts
by defining the begin and end dates of the conference. For that, a calendar is
opened to easily choose a date. For the two dates, the system validates them
by checking if they are not in the past or if the end date is not before the begin
date. After the selection of the conference dates, (s)he can add up to 12 events
by specifying the event name and the begin and end dates (via the calendar).
Here, the dates are also checked by the system. Once all the dates have been
defined, the user can choose to save them in a standardized form (which uses a
particular file) to be imported then in a calendar. As described in Figure 4.5,
(s)he is then invited to choose the templates which will allow to personalize the
website. (S)he can select up to six templates and display a preview of each of
them to have a better idea of the appearance. The next operation is to define
the content pages of the website. As shown in Figure 4.6, the user can, if (s)he
wants, add different pages to give information about the sponsors, registra-
tion, submissions, accommodation, venue, program, committee and provide a
conference description. The last operation of selection is devoted to plugins
as described in Figure 4.7. The user can select a newsletter, news, forms and

76 4 Approaches to configuration

Figure 4.6: Application specific approach: content sequence diagram

4.1 Application specific: wizard 77

Figure 4.7: Application specific approach: plugins sequence diagram

78 4 Approaches to configuration

Figure 4.8: Application specific approach: generation sequence diagram

4.1 Application specific: wizard 79

slideshow plugin. If (s)he selects the slideshow plugin, (s)he can add up to 18
images by specifying the files directories. Before generating the website, the
user must define in which folder copy the website files. (S)he can then launch
the generation. As detailed in Figure 4.8, during the generation, the system
begins by copying the basis files of the CMS which must not be modified.
Then it adapts the configuration and content files and copies them as well
as the languages files in folder of destination. After that the system copies
plugins files, dates file (in standardized format) and images for the slideshow
depending on the selection made by the user. Finally, the system adapts the
templates files (HTML and CSS files) that the user has chosen to possibly add
the logo and the news plugin and copy files. The website is then ready to use.

Implementation choices

In this section, we detail the implementation choices made for our appli-
cation. We have chosen to implement it in the Java programming language
because Java provides all the necessary components to build a GUI thanks
to the Swing library [22]. Swing is a widget toolkit for Java which allows to
create a graphical interface which will be identical on all the platforms. That
allows to respect the first constraint made in the requirement engineering (see
Section 3.3.4) which imposes to the system to run on different operating sys-
tems. Another reason to use Java is that we validate the configurations with
FaMa-FW [14]. As we have seen in Section 2.3.1, FaMa-FW is an Eclipse
plugin written in Java which will be easily integrated in our application. We
use FaMa-FW because it has been developed at the University of Seville where
we have elaborated this wizard.

Solutions to requirements

In this section, we present a solution which seems to be the most appro-
priate according to our experience for each functional requirement. We use
the functionalities of Java and CMSimple.

Requirement 1 The first requirement (defined in Table 3.5), which consists
in the validation of each configuration of conference website, is solved thanks
to FaMa-FW and the GUI especially designed to avoid errors. Indeed, we have
some features which must be completed by a textual entry (for instance, title of
the conference) or others which require or exclude other features. For example,
the English feature of the default language excludes the English feature of the
additional languages. It is the same for the other languages and this allows to
do not have two times the same language. For the first type of relationship,

80 4 Approaches to configuration

the required feature is automatically selected even if the user has not chosen it.
For the second one, a feature excluded by another one does not appear on the
interface to avoid its selection. To avoid these types of errors, the GUI manages
permanently the display to avoid the selection of two identical languages or
imposes the completion of the mandatory information. In addition, FaMa-FW
completes the GUI in order to validate the configuration. Indeed, when the
configuration is finished, FaMa-FW checks the configuration. Normally, FaMa-
FW does not identify errors because the GUI avoids them but it is above all
useful for a future evolution of the wizard allowing to check manually at each
moment the configurations. Once the configuration is validated, the website
generation can be completed.

Requirement 2 This requirement (defined in Table 3.6), which imposes to
offer the possibility to display the conference logo on the templates of the
website, is taken in account by the use of the JButton and JFileChooser com-
ponents of the Swing library. JButton is an implementation of a “push” button
which allows to execute an action when it is pressed. JFileChooser provides a
simple mechanism for the user to choose a file. Those two components, placed
on the interface, allow to select the conference logo file. When the button is
pressed, the filechooser opens and the user can navigate in his/her personal
folders and files to select the desired file. Once the configuration is completed,
the file is uploaded in the configuration files of the CMS.

Requirement 3 This requirement (defined in Table 3.7), which offers to
choose 3 languages among 5 languages as website languages (one by default
and 2 additional), is solved by the use of JCombobox components placed on the
interface allowing to select the languages. A JCombobox is a component that
combines a button or editable field and a drop-down list. The user can select
a value from the drop-down list, which appears at the user’s request. We have
placed 3 comboboxes for the 3 languages. Once the default language is chosen,
this choice is removed of the list of the second and the third combobox to avoid
to select two times the same language. The same operation is executed for the
third combobox after the choice of the second one. We have chosen to propose
the five following languages: English, Spanish, French, Dutch and German.

Requirement 4 This requirement (defined in Table 3.8), which consists
in offering the possibility to add a minimum of 6 events in addition to the
conference dates, is solved by the use of JPanel and JTextField components
of the Swing library. A JPanel is a generic lightweight container which is used
to contain other components. A JTextField is a lightweight component that

4.1 Application specific: wizard 81

allows the editing of a single line of text. We have especially designed a panel
to add up to 12 events with their details: event name and begin and end dates.
This panel contains, for the 12 events, three textfields to insert the name and
the two dates.

Requirement 5 This requirement (defined in Table 3.9), which proposes a
calendar to easily choose dates or events of the conference, is taken in account
by appealing to the JCalendar library [23]. JCalendar is a Java date chooser
bean for graphically picking a date. It is composed of several other Java beans,
a JDayChooser, a JMonthChooser and a JYearChooser. All these beans have
a locale (specific geographical region) property, provide several icons and their
own locale property editor. Also part of the package are a JDateChooser, a
bean composed of an IDateEditor (for direct date editing) and a button for
opening a JCalendar for selecting the date. In our application we use the
JDateChooser. For each selection of a date, a button is placed and when it is
pressed, the calendar opens.

Requirement 6 This requirement (defined in Table 3.10), which consists
in offering the possibility to save all dates in a standardized format, is solved
by the use of the iCalendar standard [20]. The iCalendar standard uses the
ics extension to point out a file containing information about a calendar. The
ics extension allows to share, send by email and import dates in a calendar.
At the generation of the website, the conference information and added events
information (event name and dates) are used to compose the ics file. Table 4.1
describes the fields that we have used to compose our file. Here we define the
fields that we needed to insert our information (see [20] to consult a description
of all fields). The X-WR-CALNAME field is the title of the conference. For
each event, we have a BEGIN:VEVENT field, followed with information about
the event and closed by an END:VEVENT field. As information about the
event, we have the begin and end date (DTSTART;VALUE=DATE: date and
DTEND;VALUE=DATE: date), the event name (UID: name) and the date of
creation of the event (CREATED: date of creation)

Requirement 7 This requirement (defined in Table 3.11), which consists in
offering the possibility of adding a plugin managing a newsletter, is taken in
account by adding the Geniz newsletter plugin [6] of CMSimple. The plugin
files are placed in the configuration files of CMSimple and users access it by
the administration interface.

82 4 Approaches to configuration

Table 4.1: Example of ics file content
BEGIN:VCALENDAR
PRODID:-//Google Inc//Google Calendar 70.9054//EN
VERSION:2.0
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-WR-CALNAME: + title of the conference
X-WR-TIMEZONE:Europe/Madrid
BEGIN:VEVENT
DTSTART;VALUE=DATE: begin date
DTEND;VALUE=DATE: end date
DTSTAMP:20090119T091850Z
UID: event name
CLASS:PUBLIC
CREATED: date of creation
LAST-MODIFIED: date of creation
SEQUENCE:0
STATUS:CONFIRMED
SUMMARY:
TRANSP:TRANSPARENT
END:VEVENT
END:VCALENDAR

Requirement 8 This requirement (defined in Table 3.12), which imposes
to offer the possibility of adding a plugin managing news related to the con-
ference, is solved by the use of the Advanced news plugin [4] proposed on the
CMSimple website. As all CMSimple plugins, users administrate the plugin
via the administration interface of the CMS. Its files are inserted with the
configuration files of CMSimple.

Requirement 9 This requirement (defined in Table 3.13), which consists in
offering the possibility to add a plugin managing forms, is solved by adding
the CMSimple Advanced form plugin [3]. In the administration interface of
CMSimple, an area devoted to the installed plugins allows to manage the forms
plugin. Its files are placed with other plugin files.

Requirement 10 This requirement (defined in Table 3.14) imposing to offer
the possibility of adding a plugin displaying a slideshow on the homepage, is

4.1 Application specific: wizard 83

taken in account by adding the PHP/SWF Slideshow script [30]. This script is
placed in the configuration of CMSimple and a simple command placed in the
content file allows to display the slideshow on the homepage. The generator
allows to select images to add into the slideshow.

Requirement 11 This requirement (defined in Table 3.15), which consists
in offering the possibility to add up to 10 images to the slideshow, is solved
by the use of a JPanel component of the Swing library. This panel, being a
container, is used to contain other components. We have especially designed it
to add up to 18 images with, for each of them, a JTextField (for the edition of
a single line of text) and a JFileChooser (for the user to choose a file). Once
the file is selected with the filechooser, its name is placed in the textfield.
At the generation, the files are uploaded in the CMSimple images folder and
displayed in the slideshow.

Requirement 12 This requirement (defined in Table 3.16) imposing to offer
the possibility to add 5 other templates in addition to the default one, is solved
by the use of JPanel and JButton components. The panel especially designed
to present 5 templates in addition to the default one possesses a button for each
template with an image representing it. When a user clicks on the template’s
image, a new window opens with this image in wide size.

4.1.2 Graphical user interface

In this section, we define how the GUI of the wizard has been designed. It
is composed of 8 panels which allow to generate a conference website.

When users launch the wizard, they are welcomed with the first panel
(shown in Figure 4.9) which invites them to add general information about
the conference. They are invited to add the title and the place, if necessary
upload the conference logo, and select the default language as well as 2 other
optional languages thanks to three comboboxes as we have seen previously
(see requirement 3 in Section 3.3.5). Users can navigate to the next panel
with the Next button and return in the previous to make a change with the
Previous button excepted for the first panel.

After having added the general information, users are guided to the second
panel (shown in Figure 4.10) allowing them to define the begin and end dates of
the conference. To specify the dates, users have to click on the calendar button
to open it (see Figure 4.11 to have a view of the calendar). It also allows to
add additional events. If the combobox Add additional dates is selected, they
are led to another panel allowing them to add up to 12 events with their name

84 4 Approaches to configuration

Figure 4.9: Application specific approach: screenshot of the start panel

Figure 4.10: Application specific approach: screenshot of the conference dates
choice panel

4.1 Application specific: wizard 85

Figure 4.11: Application specific approach: screenshot of the calendar window

Figure 4.12: Application specific approach: screenshot of the events choice
panel

Figure 4.13: Application specific approach: screenshot of the date confirma-
tion window

86 4 Approaches to configuration

Figure 4.14: Application specific approach: screenshot of the content choice
panel

Figure 4.15: Application specific approach: screenshot of the modules choice
panel

4.1 Application specific: wizard 87

Figure 4.16: Application specific approach: screenshot of the images addition
panel

Figure 4.17: Application specific approach: screenshot of the templates choice
panel

88 4 Approaches to configuration

Figure 4.18: Application specific approach: screenshot of the template details
window

Figure 4.19: Application specific approach: screenshot of the generation panel

4.2 Generic: feature-model based 89

and associated begin and end dates (see Figure 4.12). Once added, users can
see events details, modify or delete them thanks to the three buttons (visible
in the Figure 4.12, see the example of the event “Presentation”). When the
user clicks on the Next button, a popup (visible in Figure 4.13) asks if (s)he
wants to save dates in an ics file.

The third panel (visible in Figure 4.14) allows users to select desired con-
tent pages. They have the choice to add six content pages: sponsors informa-
tion, registration, submission information, conference description, accommo-
dation and venue.

As shown in Figure 4.15, the fourth panel allows to select modules to add
on the website. Users have to choice to add the newsletter, news, forms and
slideshow plugins. If the slideshow module is selected, they are led to an
additional panel (see Figure 4.16) to select images to insert in the slideshow.
Users can add up to 18 images and for each, see details or delete it.

The fifth panel, shown in Figure 4.17, is designed to select templates. The
website is composed of a default template which is selected by default, but
users can select 5 other templates to change the appearance of the website.
When they push a template image, a new page (visible in Figure 4.18) opens
with the selected template in large size to have a better view of it.

The sixth panel, presented in Figure 4.19, is the last before the generation.
It allows to select the directory where the files of the website have to be copied.
When users click on the Generate button, the generation is launched and users
are warned when it is finished.

4.2 Generic: feature-model based

After having developed a first approach, this section presents another ap-
proach: a generic solution. This second solution is feature-model based, it
means that it is purely FD-based in using a FD to make the choice of features.
We envisage the use of an external application to help us to reach our aim: a
variability modelling and configuration tool. As we have seen in Chapter 2 Sec-
tion 2.3, there are different variability modelling and configuration tools, but
after having compared a selection of them, we have chosen Pure::variants (see
Section 2.3.2 for the details of the comparison). Pure::variants allows to build
a FD and then display it in different formats. The user selects the desired
features directly on the diagram and then a generator takes the configured
FD (with the selected features) exported by Pure::variants. The generator
translates the configured FD in a ready-to-use website.

As in the previous section, we have made the choice to not speak about
architecture because we have just developed the algorithm of generation. Our

90 4 Approaches to configuration

solution uses Pure::variants and a generator (which contains the algorithm of
generation) with a simple working. Pure::variants has a complex architecture
that we do not detail here for brevity. The aim of the generator is simply to
check which features are selected and copy the associated files.

We develop first the structure of the feature-model based application. Then
we explore its GUI.

4.2.1 Structure

As for the application specific solution, we start from the FD presented in
Section 3.4 to build the structure of the feature-model based solution. Our
solution is composed of two parts which participate to build a functional web-
site. To present the structure, we use the SD [42] notation described in UML
[41]. First, we define SDs to present clearly how our solution operates. Then
we provide a solution for each functional requirement defined in the Section
3.3.5. As for the application specific approach, we focus only on the functional
requirements. Finally we describe the technical complications that we have
encountered in the development of this solution.

Sequence diagrams

In this section, we describe the working of the feature-model based solution
through SDs which show how processes operate with one another and in which
order. As we have already said, SDs are used to represent or model the flow of
messages, events and actions between the objects or components of a system
[85]. They describe the sequence of actions needed to be performed to complete
a task or scenario.

Figure 4.20 presents the sequence of actions needed to generate a con-
ference website in which five objects intervene: user, Pure::variants, Feature
Diagram FD, system and CMS. The user is the person using Pure::variants
and the system. Pure::variants is a variability modelling and configuration
tool that allows to configure and edit a FD. The Feature diagram FD is the
FD created by Pure::variants. The system is the application generating a
conference website on basis of the FD. The CMS is the system which will
be generated. The user begins the selection of the different features using
Pure::variants (as shown in Figure 4.21) to configure a FD which will be used
later by the system. First, (s)he selects the title, the place of the conference
and possibly a logo by specifying the file directory. (S)he continues by select-
ing the default language and, if (s)he wants up to two additional languages. At
each selection, Pure::variants checks that the configuration is valid. It avoids
that the user selects a language previously chosen. Then (s)he selects the

4.2 Generic: feature-model based 91

Figure 4.20: Generic approach: general sequence diagram

dates, as shown in Figure 4.22. In addition, (s)he can add up to 12 events,
either in selecting an existing or in adding new events in the FD. Adding more
than 12 events is also possible. For both, the user has to define the event
name, and the begin and end dates. The user can also save all the inserted
dates in a standardized form (in the dates file) by selecting the related feature.
After having configured the dates, (s)he is then invited to select the desired
templates among the six proposed. The next operation is to define the con-
tent pages and the plugins of the website. As shown in Figure 4.23, the user
can, if (s)he wants, select the different pages that (s)he wants to make appear
on the website to give information on the sponsors, registration, submissions,
accommodation, venue, program, committee and provide a conference descrip-
tion. Then, (s)he can select the plugins as described in Figure 4.24. The user
can choose the newsletter, news, forms and slideshow plugins. If (s)he has
made the choice of the slideshow plugin, (s)he can specify a list of up to 18
attributes (here images) by giving their file directory. In Pure::variants, it is
possible to add more images. Before generating the website, the user finishes
the operation of selection by specifying the folder in which copy the website
files. Once the configuration is finished, (s)he has to use the FD export func-
tion of Pure::variants to generate the configured FD. Then (s)he provides it in
a generator as input to generate the website. As it is detailed in Figure 4.25,
during the generation, the system copies the basis files, the configuration and
content files (after having adapted them in function of the selected features of
the FD), and the languages files in the destination folder. After that, it copies
the selected plugins files, the dates file (in standardized form) and the images

92 4 Approaches to configuration

Figure 4.21: Generic approach: selection sequence diagram

4.2 Generic: feature-model based 93

Figure 4.22: Generic approach: dates sequence diagram

94 4 Approaches to configuration

Figure 4.23: Generic approach: content sequence diagram

4.2 Generic: feature-model based 95

Figure 4.24: Generic approach: plugins sequence diagram

96 4 Approaches to configuration

Figure 4.25: Generic approach: generation sequence diagram

4.2 Generic: feature-model based 97

for the slideshow. Finally, it adapts and copies the templates files (HTML and
CSS files) that the user has chosen. The website is then ready to use.

Implementation choices

Here we describe the implementation choices made for our solution. As de-
tailed in the SDs, we use two tools: Pure::variants and a generator. Pure::var-
iants is used to define features of the conference website that we desire. Once
the configuration is completed, the configured FD is translated into XML. The
generator takes the configured FD generated by Pure::variants as input and
translates it into a functional website. Our solution is divided in two tools due
to integration problems of scripts in Pure::variants. Indeed, Pure::variants
allows to add scripts to execute different actions but in our case, it was not
possible. So we have decided to create another tool: the generator.

The generator has been implemented in the Java programming language
for the simple reason that generation and files copy algorithms developed for
the application specific approach (see Section 4.1) could be reused. We just
had to develop a parser to parse all the features of the FD.

Solutions to requirements

In this section, we provide a solution which seems to be the most appro-
priate according to our experience for each functional requirement. We use
the functionalities of Pure::variants and CMSimple.

Requirement 1 The first requirement (defined in Table 3.5), which consists
in the validation of each configuration of conference website, is automatically
solved in Pure::variants. Indeed, it verifies the configuration at each mo-
ment to avoid conflicts. Mandatory features are automatically selected and
Pure::variants prevents their deselection. In the same way, when a feature
which requires another is selected, the required feature is automatically se-
lected and for the exclusion, it deselects the features excluded by others. In
addition, Pure::variants allows to make a manual validation at each moment.

Requirement 2 This requirement (defined in Table 3.6), which imposes to
offer the possibility of displaying the conference logo on the templates of the
website, is completed with Pure::variants. It offers the possibility to add an
attribute or a list of attributes for each feature. An attribute has a type which
is specified by the user. Here we add an attribute of “Directory” type which
contains the directory of the logo image. Then the parser of the generator
takes it to upload the file in the CMS files.

98 4 Approaches to configuration

Requirement 3 This requirement (defined in Table 3.7), which offers to
choose 3 languages among 5 languages as website languages (one by default
and 2 additional), is solved thanks to the Exclude and Cardinality-based re-
lationships of FD (these concepts are presented in Chapter 2 Sections 2.2.1
and 2.2.2). Indeed, the cardinality of the default language is defined to only
one language and the default and additional languages exclude each other. It
allows thus to have only one language by default and a maximum of two others
which are different. As we have seen in the first solution to requirements, the
FD is permanently verified by Pure::variants, so errors are avoided.

Requirement 4 This requirement (defined in Table 3.8), which consists in
offering the possibility of adding a minimum of 6 events in addition to the
conference dates, is solved in Pure::variants. This tool allows to add easily
new features, so users can add 6 or more event features with 3 attributes, one
for the event name, one for the begin date and one for the end date.

Requirement 5 This requirement (defined in Table 3.9), which proposes a
calendar to easily choose dates or events of the conference, cannot be solved
because, during the feature selection in Pure::variants, it is not possible to
display a calendar in a graphical interface. The use of different formats of
dates makes difficult their verification, so this requirement is useful to avoid
this problem. Nevertheless, with the definition of the types of attributes in
Pure::variants, we can specify the “date” format and thus users must respect
this format. The validity of the dates can be verified in Pure::variants thanks
to a script. As the customer dissatisfaction for this requirement has a low
level, it is not a real problem if it is not totally respected.

Requirement 6 This requirement (defined in Table 3.10), which consists
in offering the possibility to save all dates in a standardized format, is simply
solved with the FD and the iCalendar standard [20]. The ics file allows to
share, send by email and import dates in a calendar. When the SaveIcsFile
feature is selected, the generator takes all the dates and conference informa-
tion, and generates the ics file.

Requirement 7 This requirement (defined in Table 3.11), which consists in
offering the possibility of adding a plugin managing a newsletter, is taken in
account in the same way that with the wizard: by adding the Geniz newsletter
plugin [6] of CMSimple. The plugin files are placed in the configuration files
of CMSimple by the generator and users access to the plugin administration
interface with CMSimple.

4.2 Generic: feature-model based 99

Requirement 8 This requirement (defined in Table 3.12), which imposes
of offering the possibility of adding a plugin managing news related to the
conference, is solved by the use of the CMSimple Advanced news plugin [4],
as for the wizard. As all CMSimple plugins, this one is administrated with
the administration interface of the CMS and its files are inserted with the
configuration files of CMSimple.

Requirement 9 This requirement (defined in Table 3.13), which consists to
offer the possibility to add a plugin managing forms, is solved by adding the
Advanced form plugin [3] available with CMSimple. The configuration files
are placed with other plugin files by the generator and an area in the admin-
istration interface of CMSimple is devoted to manage the installed plugins.

Requirement 10 This requirement (defined in Table 3.14) imposing to offer
the possibility of adding a plugin displaying a slideshow on the homepage, is
taken in account by the addition of the PHP/SWF Slideshow script [30]. The
generator places the script in the configuration of CMSimple and places the
command allowing to call the slideshow in the content file of CMSimple.

Requirement 11 This requirement (defined in Table 3.15), which consists
in offering the possibility of adding up to 10 images in the slideshow, is solved
thanks to the lists of attributes of each feature in Pure::variants. As we
have seen for the second requirement, we can add a list of attributes for the
Slideshow feature. These attributes of “Directory” type specify the images
directory. Users can add as much attributes as they want. The generator
recovers the directories and uploads the files in the appropriate CMSimple
folder.

Requirement 12 This requirement (defined in Table 3.16) imposing to offer
the possibility of adding 5 other templates in addition to the default template,
is solved thanks to the FD. Indeed, we have added 6 features to represent the
six possible templates. However, it is impossible to display a preview of the
templates in Pure::variants. To solve this problem, we need to provide the
preview in an external source, such as in the documentation.

Technical complications

This section presents the two technical complications that we have not
succeed to overcome in the design of this solution. The first problem that we
have encountered is a script problem in Pure::variants, as we have explained

100 4 Approaches to configuration

in the implementation choices, and the second is a problem with the lists of
attributes. We have never succeeded to execute scripts in Pure::variants, that
has imposed the creation of a generator, independent of Pure::variants. The
problem with the lists of attributes occurred during the generation of the FD
in an XML file, input of the generator. Indeed, the XML file contains only the
first attribute of the list, the others were omitted. No solution to this problem
has been found for the moment.

4.2.2 Graphical user interface

In this section, we define the look and feel and the design of our solution.
Here we are interested only in Pure::variants because the generator has no
GUI, it is just an application executable in command lines. Pure::variants
being an Eclipse plugin, we explain how it is designed.

Figure 4.26: Generic approach: screenshot of a new project

When users launch Pure::variants for the first time, they have to create a
standard project. When it is made, three editor windows (as shown in Figure
4.26) open allowing to edit the project: one for the FD, one for the Family
Model (FM) and one for the Variant Description Model (VDM). The FD is
created with a root feature. “The FM describes how the products in the
product line will be assembled or generated from pre-specified components.
Each component in a FM represents one or more functional elements of the

4.2 Generic: feature-model based 101

Figure 4.27: Generic approach: screenshot of a new feature addition

Figure 4.28: Generic approach: screenshot of details of a new feature addition

102 4 Approaches to configuration

Figure 4.29: Generic approach: screenshot of new attribute addition

Figure 4.30: Generic approach: screenshot of features selection

4.2 Generic: feature-model based 103

Figure 4.31: Generic approach: screenshot of attributes

Figure 4.32: Generic approach: screenshot of Pure::variants export function

104 4 Approaches to configuration

products in the product line. The VDM describes the set of features of a single
product in the product line ” [80]. Here we especially focus on the FD and the
VDM, the FD allows users to build their models and the VDM, to complete
their configuration with the VDM Editor.

From the root feature, users can build their FD by adding child features
to it. The addition of new features, shown in Figure 4.27 is made with a
right click on the parent feature, then the selection in the menu of New and
Feature. At that time, a new window (visible in Figure 4.28) opens to provide
the feature characteristics as the unique name, possibly the visible name, the
variation type (mandatory, optional, alternative and or) and a description.
The alternative and or variation type allow to set the cardinalities. Once
the feature is created, attributes can be assigned to it. A right click, the
selection of New and Attributes opens a window (visible in Figure 4.29) to
add new attributes to the chosen feature, and it is also possible to edit the
general information and the relations, create restrictions or constraints. To
add attributes, users have to click on the Add button and edit the required
information. Information such as the attribute name, the type and the value
must be provided. Users can specify a list of values.

In repeating the same operation for each feature, the CWPL can be built
and users can use the VDM Editor to select the desired features, as shown in
Figure 4.30. However, in our case, we have already defined the CWPL FD
which can be reused. For that, user can import it and use it in the VDM
Editor. A mandatory feature is represented with a red cross which avoids
its deselection whereas an optional feature can be selected or deselected. At-
tributes and their values are also displayed on the model, as shown in Figures
4.30 and 4.31.

When the configuration is finished, users provide the configured FD to the
generator with the function of exportation. For that, they have to make a right
click on the project or the VDM file and select Export. They have to select
to export in the XML format (as shown in Figure 4.32) and then specify the
destination folder which must be those of the generator. Once it is completed,
users can launch the generator on command lines and the generation begins.

4.3 Comparison

This section is dedicated to the comparison of the two approaches devel-
oped above in order to highlight their advantages and their drawbacks. For
that we use the ISO 9126 standard. ISO 9126 is an international standard
for the evaluation of software quality [84]. This standard has the fundamental
objective to address some of the well known human biases which can have an

4.3 Comparison 105

effect on the perception and the delivery of a software development project.
Priorities that have not any clear definitions of success or that change after
the begin of a project are included in these biases. ISO 9126 tries to develop
a common understanding of the project’s objectives and goals. It categorizes
software product attributes into six characteristics, which are further subdi-
vided into sub-characteristics [68].

First, we define the comparison criteria of ISO 9126. Then we analyse the
solutions depending on the defined criteria.

4.3.1 Comparison criteria

The software product attributes of the ISO 9126 standard are categorized
into the six following characteristics: Functionality, Reliability, Usability, Ef-
ficiency, Maintainability, and Portability. In this standard, criteria are named
characteristics and each of them has further sub-characteristics.

We confront the approaches to the 21 characteristics (summarized in Table
4.2) of the ISO 9126 standard, which are defined below.

The Functionality characteristic is subdivided into 5 sub-characteristics:
Suitability, Accuracy, Interoperability, Compliance, Security. In ISO 9126, the
Suitability is the essential functionality characteristic that is the capability
of the software product to provide appropriate functions for specified tasks
[89]. The Accuracy is the capability of the software product to provide correct
results with the needed degree of precision [21]. The Interoperability is the
ability of the software product to interact with other specified components or
systems. The Compliance is the capability of the software product to adhere
to standards, conventions or regulations in laws. The Security is the ability of
the software product to prevent unauthorized access (accidental or deliberate)
to the software functions.

The sub-characteristics such as Maturity, Fault tolerance and Recoverabil-
ity are parts of the Reliability characteristic. The Maturity is the ability of the
software product to avoid failure. The Fault tolerance is the capability of the
software product to withstand in cases of software defects. The Recoverability
is the ability of the software product to bring back a failed system and recover
the data affected by the failure.

The Usability characteristic is composed of the Understandability, Learn-
ability, Operability sub-characteristics. The Understandability is the capability
of the software product to enable the user to understand how it can be used
for particular tasks. The Learnability is the ability of the software product to
enable the user to learn its application. The Operability is the capability of
the software product to be easily operated and controlled by a user.

106 4 Approaches to configuration

The Efficiency characteristic is decomposed into two others: efficiency
in relation to Time behaviour and to Resource behaviour. The efficiency is
the capability of the software product to provide appropriate performance, in
terms of response times, turnaround, network, etc. for the Time behaviour,
and in terms of resources used such as memory, CPU, disk and network usage
for the Resource behaviour.

The Maintainability is subdivided into Analysability, Changeability, Sta-
bility and Testability sub-characteristics. The Analysability is the capability
of the software product to identify the deficiencies or causes of failures in the
software. The Changeability is the ability of the software product to facilitate
the implementation of modifications. The Stability is the capability of the
software product to avoid negative effects caused by modifications in the soft-
ware. The Testability is the ability of the software product to enable software
changes to be tested.

The Portability characteristic has four sub-characteristics such as Adapt-
ability, Installability, Conformance and Replaceability. The Adaptability is the
ability of the software product to be adapted to new specifications or operat-
ing environments. The Installability is the capability of the software product
to be installed in a specified environment. The Conformance is the capability
of the software product to be in correspondence with current requirements
of legislation, specified standards, or terms of a contract. The Replaceability
is the ability of the software product to be exchanged with another specified
software product in the same environment.

However, we consider that, on the one hand, the ISO 9126 criteria are
not sufficient to compare some aspects. Indeed, some important criteria for us
such as costs, help, configuration checking, input format, etc. are not taken in
account. And in the other hand, they evaluate criteria that we consider not
relevant for our case such as the security, reliability, etc. We can so refine our
comparison criteria in adding new ones and in deleting others.

We have chosen to add five new criteria which are the following: cost,
input format, configuration check, possibility to add specific features, help, and
feedback. The cost is the required cost to purchase the application. The input
format is input type required in order to use the tool. The configuration check
is the availability in the application of a check of the user’s configuration
validity. The help criterion is the availability of a help to use the application.
The last is the feedback on errors which is the availability of a system of
feedback to warn the user when an error occurs.

These criteria have been chosen because we consider that they are impor-
tant to judge of the use quality of the applications. We are interested to costs
that are needed to use them, we favour free solutions. As users provide the

4.3 Comparison 107

Table 4.2: Summary of the ISO 9126 standard criteria

Functionality

Suitability
Accuracy

Interoperability
Compliance

Security

Reliability
Maturity

Fault tolerance
Recoverability

Usability
Understandability

Learnability
Operability

Efficiency
Time behaviour

Resource behaviour

Maintainability

Analysability
Changeability

Stability
Testability

Portability

Adaptability
Installability
Conformance
Replaceability

input of the applications, they must understand it to start with the system. So
we can evaluate the ease to take in hand the applications. When the website is
generated, we cannot envisage errors in the configuration, so the applications
check the configurations made by users. Finally, we have an interest for the
help and the feedback provided by the applications. The help is useful to start
with the system or for any question on its working and the feedback allows to
guide the user in case of error.

We have deleted eleven criteria of the standard because we consider that
they are not relevant in our case. The two first are functionality sub-characteri-
stics: compliance and security. As the conference website generation does not
need to adhere to standards, conventions, etc., it is not useful to keep the
compliance characteristic. It is the same for the security because the appli-
cations do not contain confidential information and so they do not prevent
unauthorized access. We have also deleted the reliability characteristic and
its three sub-characteristics: maturity, fault tolerance and recoverability. The

108 4 Approaches to configuration

two solutions have been developed within the framework of this master thesis
so they have no maturity. They have not been put in application in real con-
ditions so it is impossible to evaluate their reliability and fault tolerance. At
the end of the development, we have tested the functionalities and no failures
occurred. The efficiency criterion is also removed because it is not relevant for
our case as the generation is completed in a correct time without monopolize
all the resources of a computer. The application specific and generic solutions
can run on any operating system with a minimum memory space and CPU
usage and the generation the conference website takes only some seconds but
depends on the number of features selected. From the point of view of the
maintainability, we have removed the stability and testability characteristics
because they are also not useful. It is not possible to compare both solutions
on stability and testability because no system has been developed for these
tasks. Indeed, they are not able to avoid negative effects caused by modifica-
tions and the test must be made directly by testing different configurations.
The last two elements deleted are the conformance and the replaceability be-
cause respectively there are actually no requirements of legislation, specified
standards, etc. in the area of conference website, and there are not interest
to replace the application specific and generic solutions. As they are new so-
lutions, for a new task executed by no tools on the market, it is not possible
to replace them. Table 4.3 summarizes the different criteria on which we base
our comparison.

4.3.2 Analysis

In this section, we outline the major differences of both approaches devel-
oped in the two first sections of this chapter on basis of the criteria defined
before. For each criterion, we give an appreciation: good if the criterion is
completely met by the application, average if it is partially met and bad if it
is not good met.

The first criterion of the comparison (summarized in Table 4.4) confronting
the solutions is the suitability characteristic. As the application specific solu-
tion has been specially designed for the website generation, its suitability is
good whereas it is average for the generic solution because it cannot provide
all the generation process. Indeed, Pure::variants cannot execute itself the
generation (see the technical complications in Section 4.2.1). The accuracy of
both approaches is good because they provide a correct result, the conference
website possesses the selected features and is usable. At the level of the in-
teroperability, it is good for both approaches because they are able to interact
with other specified components or systems as they are written in Java.

4.3 Comparison 109

Table 4.3: Summary of the refined ISO 9126 standard criteria

ISO 9126
Functionality

Suitability
Accuracy

Interoperability

Usability
Understandability

Learnability
Operability

Maintainability
Analysability
Changeability

Portability
Adaptability
Installability

Additional

Cost
Input format

Configuration check
Help

Feedback on errors

At the level of the usability, understandability and learnability of the ap-
plication specific approach are good because it has a simple and intuitive GUI
guiding users through the website generation process. The generic approach
has average capabilities in terms of understandability and learnability because
of Pure::variants which is relatively complex to use and thus to learn and the
generator have to be used in command lines. The application specific has
a good operability because it can easily be operated and controlled by users.
Users just have to launch the application and follow the interfaces. The generic
solution is based on an Eclipse plugin (Pure::variants) and a generator, so two
separate tools to use. Its operability is thus average.

For the maintainability characteristic, we confront the two solutions to two
criteria. The first one is the analysability which is bad for the both solutions
because nothing has been implemented to identify their deficiencies or causes
of failures. The second one, the changeability is good for the application
specific approach because its source code is relatively simple, allowing to easily
implement modifications. The generic approach has an average changeability
because of Pure::variants. Indeed, Pure::variants is a plugin integrated in
Eclipse with a complex source code which makes difficult any modification.
For example to personalize the look and feel of the application by displaying
images to make the choice of features, it implies complex modifications in
Pure::variants whereas it is easier for the wizard.

110 4 Approaches to configuration

The next characteristic is the portability which is composed of the following
sub-characteristics: adaptability, installability. The adaptability can be qual-
ified of good for the application specific solution because its source code and
GUI can easily be adapted to new specifications or operating environments
as they are written in Java. For instance, we can easily display images to
present the templates to choose for the website. The adaptability is average
for the application specific solution because in case of addition or modification
of features, its GUI and the generation algorithm must be adapted. The adapt-
ability of the generic approach is good because in Pure::variants we can easily
adding, modifying or deleting features, we have just to update the generation
algorithm. One of the constraints on the solution made in the requirement
engineering analysis (see Section 3.3.4) is to run on any operating system and
thus be easily installed. However, the application specific approach consists in
one tool whereas the generic contains two tools (Pure::variants and generator).
The installability of the first one is good but average for the second one.

On the point of view of the cost, there is no real difference between the
approaches. Indeed, the application specific and generic solutions are free.
The generic solution uses Pure::variants which is free only for non-commercial
use, which is our case.

We are now interested with the input format. It is completely different for
both solutions. For the wizard, it is simple comboboxes to select in functions
of choices made by users whereas the input of Pure::variants is a FD and an
XML file for the generator.

At the level of the configuration check, the both approaches complete it,
but differently. The validity of the application specific approach is provided
by its GUI which avoids any error and by FaMa-FW. The generic approach
verifies at each moment the configuration and corrects it automatically.

At the point of view of the help, the wizard offers a support to help users
to select the features by displaying tips on each feature when they dispose the
mouse on it. The other application offers also help thanks to Pure::variants in
which it is possible to give a description for each feature.

Finally, no errors are possible with both tools. The first one gives a feed-
back on invalid dates (for example, begin date before end date) or not selected
mandatory features, when users go from an interface to another. The second
one makes the correction automatically without warn users such as for the
features required by others, they are automatically selected. For other cases,
it provides also feedback when errors occurs.

We have outlined the major differences of the application specific and
generic approaches, we will discuss them extensively in the next chapter (see

4.3 Comparison 111

Table 4.4: Summary of the refined ISO 9126 standard comparison

ISO 9126
Functionality

Suitability Good Average
Accuracy Good Good

Interoperability Good Good

Usability
Understandability Good Average

Learnability Good Average
Operability Good Average

Maintainability
Analysability Bad Bad
Changeability Good Average

Portability
Adaptability Average Good
Installability Good Average

Additional

Cost Free Free
for non-
commercial
use

Input format Combobo-
xes to
select

Feature
diagram

Configuration check Yes Yes
Help Yes Yes

Feedback on errors Yes Yes

Chapter 5) in order to develop a unified approach which combines the advan-
tages of both.

Chapter 5

Towards a “unified” approach

This chapter presents the ideal solution combining the advantages of the
application specific and generic approaches presented in the previous chapter.
First, we begin to detail deeper these two approaches. Second, we fix the
characteristics which require more attention and we prioritize them. Third, on
basis of the characteristics highlighted previously, we outline a comprehensive
description of what a unified approach should offer and finally we discuss its
limitations.

5.1 Discussion of previous approaches

In this section, we start from the comparison made in the previous chapter
(see Section 4.3) to highlight the characteristics of both approaches which are
satisfactory in our context.

The first criterion of comparison (summarized in Table 4.4) is the suitability
characteristic. We cannot envisage a solution that is not able to entirely
provide the appropriate functions for website generation. The good suitability
of the application specific approach fully satisfies this property whereas it is not
satisfied by the feature-based solution. Indeed, it is not possible to integrate
the generation algorithm in Pure::variants imposing to solve this problem with
a generator which executes the website generation.

The second criterion is the accuracy. It is an important criterion because
the solutions must provide a website ready to use and correctly configured.
Both solutions have a good accuracy allowing to satisfy this criterion.

The third criterion is the interoperability which is good for both approaches.
As they may interact with conference management systems such as EasyChair
(see constraints defined in Section 3.3.4), it is useful to respect this constraint

113

114 5 Towards a “unified” approach

which is satisfied by both solutions.
The two following criteria are the understandability and the learnability

of the application specific and generic approaches. These criteria allow to
evaluate the user-friendliness of both solutions, a characteristic for which we
are sensitive. The website configuration must be as much easy as possible,
to easily be used by the maximum of users. The understandability and the
learnability of the application specific approach is good, which is satisfactory
for our context. However, the generic solution with its average user-friendliness
(average level for understandability and learnability) is not entirely satisfying
because it uses Pure::variants which is a relatively complex and not completely
intuitive tool.

The sixth criterion is the operability of both approaches. This criterion
must be fully satisfied because we are looking for a solution which can easily
be operated and controlled by users, and requiring the minimum knowledge.
As it is a stand-alone application, the application specific approach satisfies
this criterion because it has a good operability. On the other hand, the average
operability of the generic approach is due to the use of two tools (Pure::variants
and generator) to reach our objective. This solution is not practical.

The next criterion is the analysability which is bad for both approaches
because nothing has been implemented to identify their deficiencies or causes
of failures. These bad levels are satisfying in our case because we do not need
that the solutions are able to identify their failures. Indeed, they must be
validated after their development in order to be without any bug.

The eighth criterion is the changeability. The application specific solution
has a good changeability allowing to satisfy this criterion because its imple-
mentation can be quickly changed. Indeed, the core of this solution consists
in a generation algorithm composed of modules. These modules can easily
be added, modified or deleted. However, the generic approach has an average
level of changeability because Pure::variants is a plugin integrated in Eclipse
with a complex source code making difficult any change in its functionalities.

The ninth criterion is the adaptability which is respectively average and
good for the application specific and generic approaches. We are looking for a
solution which can be quickly adapted because the features of the conference
website can be modified or deleted, or new ones added. The first approach
does not satisfy this criterion whereas the second one satisfies it. Indeed, for
both of them, the generation algorithm must be updated but in addition, the
GUI of the application specific solution must also be adapted. The GUI of the
generic approach is managed by Pure::variants allowing to display any change
in the conference website FD.

The tenth criterion is the installability. The application specific approach

5.1 Discussion of previous approaches 115

satisfies this criterion because it consists in an executable application which
is able to run on different operating systems. This last condition is imposed
by the constraints made in the requirement engineering analysis (see Section
3.3.4). The generic approach do not satisfies this criterion because the deploy-
ment of this solution is more complicated. Indeed, the install of Pure::variants
requires beforehand the install of Eclipse. In addition, users have to be ac-
customed to the install of plugin in Eclipse, otherwise they have to consult
tutorials on how to proceed.

The eleventh criterion is the required cost to purchase the applications. As
we are looking for a free solution to automate the creation on conference web-
site, application specific and generic approaches satisfy this criterion because
both are free.

The twelfth criterion is the input format which allows to highlight the
required input to use the application. We desire that the conference website
generator requires the minimum knowledge to use it and so to provide the
input. In this context, the application specific approach satisfies this criterion
because no knowledge is required, users have just to select the desired features.
On the other hand, the input of the generic approach is a FD which imposes
to know how to interpret it. This not satisfies the criterion.

The following criterion is the configuration check. In the configuration of
conference websites, some errors may be possible such as selecting two times
the same languages, or selecting the registration page without selecting the
form plugin, etc. So it is important to check that there are no errors in
the configuration. For that, a configuration check must be applied during the
configuration process or once it is finished. Both solutions satisfy this criterion
because they provide a such functionality.

The fourteenth criterion is the help provided to users in the configuration
activity. Each feature of the conference website may be described in order
to help users to know what they select. The application specific and generic
approaches provide the possibility to display the features descriptions, which
is satisfactory.

The last criterion is the ability of the approaches to provide feedbacks when
errors occur. As we have seen with the configuration check, in the configuration
of conference websites, some errors may occur. So it is important that users
receive feedbacks on their errors, allowing them to correct their configuration.
As both solutions provide feedbacks, they satisfy the criterion.

Table 5.1 sums up for each approach (application specific and generic)
which criteria it satisfies. When the approach satisfies the specified criterion,
a Yes is attributed, No otherwise.

116 5 Towards a “unified” approach

Table 5.1: Summary of the satisfaction of the application specific and generic
approaches in relation to the specified criteria

Type Characteristic Sub-characteristic Specific Generic

ISO 9126
Functionality

Suitability Yes No
Accuracy Yes Yes

Interoperability Yes Yes

Usability
Understandability Yes No

Learnability Yes No
Operability Yes No

Maintainability
Analysability Yes Yes
Changeability Yes No

Portability
Adaptability No Yes
Installability Yes No

Additional

Cost Yes Yes
Input format Yes No

Configuration check Yes Yes
Help Yes Yes

Feedback on errors Yes Yes

5.2 Change priorities

Here, we identify the characteristics of the previous approaches that we
have to change for the solution proposal as well as their priorities. We have
chosen to specify two levels of priority for each criterion: urgent or secondary.
An urgent priority for a criterion means that the solutions proposed by the
previous approaches must be changed urgently by a new solution. A secondary
priority means that in the previous approaches, a well designed solution can
be taken back.

In the previous section, we have seen that together, the application spe-
cific and generic approaches satisfy all the characteristics (as shown in Table
5.1). However, for some criteria, one of both approaches do not satisfy, so we
attribute an urgent priority to these criteria. As shown in Table 5.2, eight
characteristics have an urgent priority because we have to make a choice be-
tween the solutions proposed by both approaches. These characteristics are
the following: suitability, understandability, learnability, operability, change-
ability, adaptability, installability, and finally input format. The fact that a
criterion has a secondary priority means that application specific and generic

5.3 Solution proposal 117

approaches propose more or less the same solution, and so we can reuse it.
The first criterion having an urgent priority is the suitability. The solution

must provide all the appropriate functions for the generation of conference
websites, and only that ones. The second and third criteria are the under-
standability and learnability. They represent the user-friendliness of the appli-
cation, which means that more an application is user-friendly, more it is easy
and rapidly usable. Users can thus complete conference websites generation
in a minimum amount of time. On the other hand, the solution must have
an interface allowing to quickly learn and use all the functions of configura-
tion and generation. It must avoid other functions which are not in relation
with conference websites generation. For the fourth criterion, the operability,
the solution must easily be operated and controlled, in requiring a minimum
knowledge. For that, it must avoid to use different tools to generate the con-
ference website. The fifth criterion is the changeability, and imposes that the
implementation of the solution must be easily extended. Indeed, the solution
must allow to evolve by the addition of new functionalities, or by the modifi-
cation or deletion of others. This criterion influences the solution design, so it
must be taken in account early in the development stage. The sixth criterion
which must be urgently changed is the adaptability. Indeed, the features of
conference websites may change (addition, modification, deletion of features),
so the solution must be easily and quickly adapted to these modifications. For
the installability criterion, the seventh criterion, the solution must be installed
on any operating system and in requiring the minimum of handling. We must
avoid the installations requiring to install other tools to be ready to use. The
eighth and last criterion is the input format for which we must avoid formats
that require knowledge to be understanded.

5.3 Solution proposal

In this section we make a solution proposal for a unified approach using the
criteria that we have prioritized in the previous section. As we have seen, we
can distinguish two types of criteria: those that must be urgently changed and
those that are secondary. For each criterion, we detail what to take and what
to delete of the both previous approaches and possibly what to add to obtain
the unified approach. First, we describe the criteria having urgent priorities
and then the others.

The suitability is the first urgent change to capture in the solution pro-
posal. We keep the solution developed in the application specific approach in
designing an application especially dedicated to the conference website gener-
ation. This allows to avoid the problem seen with Pure::variants in the generic

118 5 Towards a “unified” approach

Table 5.2: Summary of the priorities assigned to characteristics
Type Characteristic Sub-characteristic Priority

ISO 9126
Functionality

Suitability Urgent
Accuracy Secondary

Interoperability Secondary

Usability
Understandability Urgent

Learnability Urgent
Operability Urgent

Maintainability
Analysability Secondary
Changeability Urgent

Portability
Adaptability Urgent
Installability Urgent

Additional

Costs Secondary
Input format Urgent

Configuration check Secondary
Help Secondary

Feedback on errors Secondary

approach which contains other functions that we do not need to accomplish
the specified task. These other functions may confuse users who may be lost
in the functionalities of the solution. We need of five functions: opening of
feature diagrams, selection of features, deselection of features, generation of
conference website, and providing help.

On the point of view of the understandability and learnability, we take
the solution proposed by the application specific approach which consists in a
wizard with an intuitive interface. The wizard can guide users in the conference
websites configuration throughout different dialog boxes. We avoid the generic
approach which has an interface too complex and several functions not relevant
for the generation of websites.

We are then interested in the operability criterion. We keep also the ap-
plication specific approach which consists in a stand-alone application and we
avoid the solution of the generic approach. The solution proposal must be
an integrated application which contains all the required functionalities for
conference websites generation. Indeed, the use of different tools in the same
solution complicates the ease of operating it.

For the changeability criterion, we keep the solution proposed by the ap-
plication specific approach which consists, as we have already seen, in a stand-
alone application especially designed for the conference websites generation. It

5.3 Solution proposal 119

has a source code which is not too complex and well documented for allowing
to easily make changes. We avoid the solution of the generic approach which
is an Eclipse plugin complicating any change in the source code because the
integration in Eclipse has to be managed in addition .

On the point of view of the adaptability, we take in the generic approach
its independence in relation to the GUI. So we propose that the solution
proposal automatically generates a wizard in which all the features of the FD
are displayed. Users keep thus an intuitive and simple interface automatically
managed by the tool. They have just to add or modify the desired features
and adapt the generation algorithm in function of the modifications but deal
not with the associated GUI components. We have to avoid the GUIs which
are implemented manually such as for the application specific approach.

For the installability criterion, we keep the solution developed in the appli-
cation specific approach. This solution consists in an executable stand-alone
application. So it can be executed on any operating system. We avoid the
generic approach which consists in a Eclipse plugin requiring the install of
Eclipse in addition to the generator.

The last urgent criterion is the input format. We keep the solution of the
application specific approach which consists in displaying the features on the
interface and allowing their selection. So we abandon the solution proposed by
the generic approach consisting to show the features under the form of a FD.
This solution confirms the proposition already made, to implement a solution
proposal that generates automatically the interface (wizard) displaying the
different features. This solution allows to avoid additionally any knowledge to
carry out the configuration.

The first secondary criterion is the accuracy. For that, we keep the solution
developed in both approaches which consists in a well implemented and tested
generation algorithm. This algorithm allows to generate conference websites
ready to use, correctly configured and without errors.

On the point of view of the interoperability criterion, we keep both previous
approaches by developing the unified solution using the Java language. Indeed,
Java can be easily operated with other applications. In addition, this criterion
is a constraint (defined in Section 3.3.4), that must be satisfied.

For the analysability criterion, we estimate that it is not useful in the
development of this unified approach. Indeed, the implementation of a func-
tionality which identifies deficiencies is not pertinent in our case because our
solution proposal will be exempt from deficiencies and bugs.

On the point of view of the cost criterion, we cannot envisage the develop-
ment of a paying solution for our unified approach. So we propose a solution
entirely free such as the application specific and generic approaches.

120 5 Towards a “unified” approach

At the level of the configuration check, as we have chosen to develop an
application which generates a wizard, we propose the same solution to check
the configuration than the application specific approach. The interface must be
correctly generated by the unified solution avoiding any error of configuration.
All the checks for mandatory information, required features, etc. must be
carried out dynamically during the configuration process.

On the point of view of the two last criteria, help and feedbacks, both
approaches, application specific and generic, were equals for helping users in
their choices and warning them when an error of configuration is made. So, we
keep this solution which consists to provide a description of each feature and
provide feedback when configuration errors are made. However, we propose
to add the obligation to specify the description of each feature added.

To summarize the main characteristics of our solution proposal, it is a
stand-alone application executable on any operating system. It allows to gen-
erate automatically a wizard which allows users to configure their conference
website in an intuitive interface and require no knowledge to use it. This
interface avoids any errors (the configuration is validated at each moment)
and provides help and feedback to help users in their selection or to complete
some information. In addition, all the features are correctly defined. If the
CWPL evolves, the wizard is updated automatically. Finally, it can easily be
adapted and interoperated with other applications as it is written in the Java
programming language.

5.4 Known limitations

In this section, we discuss the limitations of the unified approach proposed
in the previous section.

The first limitation we can highlight is situated at the level of the change-
ability. Indeed, our unified approach proposes to have source code well doc-
umented and not too complex in order to facilitate the implementation of
modifications, but if we implement all the proposed functionalities, the source
code become complicated and the changeability can decrease.

The second limitation is situated at the level of the configuration check. As
the solution proposal consists in an application which automatically generates
a wizard to guide users during the configuration process, its interface must
automatically check the validity of the configuration. But for that, users have
to specify, during the addition of a new feature, what checks operate and on
which objects. It implies to code these checks in the application implementa-
tion language (here Java) which requires knowledge and complicates the use

5.4 Known limitations 121

of the solution. So the application lost in quality in terms of operability and
understandability.

The third limitation is linked to the understandability and learnability. As
the unified solution generates automatically a wizard in function of the FD,
it manages also the display of the different features on its interface. But we
are not sure that this display will be coherent. For instance, some features
require to be grouped, or others ask a textual entry instead of to be selected,
etc. This problem may decrease the coherence and user-friendliness and thus
the understandability and learnability of the solution.

The fourth limitation is that this approach has not been implemented yet
by lack of time. All the solutions to criteria discussed for this solution proposal
are purely theoretical. As we have not implemented it, we have not tested it,
so we are not able to check if our propositions can match all the criteria in
practice.

Chapter 6

Conclusions

We conclude this work by first synthesizing the objectives and research
questions we tried to tackle. Then, we review our contributions and outline
the limitations of our approach. Finally, we discuss open perspectives and
show how our work could adjust to a variety of application domains.

6.1 Summary

Scientific conferences allow active researchers and engineers to state and
communicate their works. The organization of conferences passes in partic-
ular by the creation of a website presenting their practical modalities. As
conferences have a well defined organization with recurring operating modes,
we can envisage to represent them using software product lines. The objective
of this thesis was to provide a solution to automate the creation of conference
websites using software product lines approach.

We have so presented two different approaches to automate the creation of
conference websites. The first one, an application specific approach consisted
in the development of a wizard allowing to complete the configuration with
an intuitive interface. The wizard provides a succession of screens presenting
website characteristics that users have to select. The second was a generic
approach which consisted to use a variability modelling and configuration tool
to make the configuration and then use this configuration to generate the
website.

After having analysed those both approaches, we have confronted them in
relation to different criteria. This comparison allowed us to highlight their
strengths and weaknesses and the need to develop a unified approach combin-
ing their advantages.

123

124 6 Conclusions

6.2 Contributions

Our master thesis focuses on the automation of the creation of products
using the software product lines approach. We have noticed that no current
proposals accomplished the automation of the creation of product. So, we con-
cluded that there is a gap that has to be filled in. We have chosen to illustrate
this problem in the conference management field using conference websites as
products. We have used feature diagrams to represent the conference website
product line and all its characteristics. The conference website product line
was the basis of the development of three solutions.

The first solution is a wizard in which all the features of the conference
website product line are described. This solution provides an intuitive repre-
sentation of the conference website product line to be comprehensible for users.
They have just to select in the succession of interfaces the desired features.

The second solution tackles the problem using another approach. It uses
a variability modelling and configuration tool allowing to select and configure
the required characteristics of a website within the conference website product
line. In the tool, the conference website product line is represented by a feature
diagram that users use for the selection of the desired features.

The third approach combines the strengths of both first solutions. It con-
sists in a solution which dynamically generates a wizard containing all the
features of the conference website product line in function of the feature dia-
gram. If the product line evolves, the wizard is automatically updated.

6.3 Limitations

Following, we discuss of the limitations of the main decisions that we have
taken in this master thesis.

The first decision was to illustrate the problem of automation of the cre-
ation of the core assets available in the software product line using conference
websites. Indeed, our solutions have been only validated in the conference
management field whereas we could use other fields.

The second decision was to use a feature diagram to represent the confer-
ence website product line. Indeed, feature diagrams are a widespread means
to represent software product lines. The problem with the feature diagram
approach is that they have not actually been tested by non-experts. Other
variability modelling languages than feature diagrams can be used to represent
software product lines and the variability between products.

The third decision was to use a content management system for website
generation. This solution seemed to be useful because a content management

6.4 Perspectives 125

system has a ready to use structure and is easily updatable and configurable.
With a content management system, we have avoided the development of a
complete website in PHP, HTML, etc. The configuration was also simplified
thanks to the content management system structure because only two files
had to be modified. However, we could use other solutions than a content
management system.

The fourth decision was to propose a unified approach having the ad-
vantages of the application specific and generic approaches developed before.
Lacking of time to implement this approach, we have made a theoretical so-
lution proposal which has thus not been tested. So we are not able to prove
that our solution can be efficient in practice and respect all the criteria we
have defined.

6.4 Perspectives

Here we discuss of the different perspectives of our work that we have
identified.

As we were short in time, we had not enough time to implement the unified
approach (described in Chapter 5). A perspective in the short term will be to
implement it in respecting the priorities assigned to each characteristic.

A second perspective will be, once the unified approach is implemented,
to validate the three approaches in order to identify which one performs best
according to the criteria that we have defined in Section 4.3.1.

A third perspective will be to apply these solutions to other domains than
conferences. We can think to domains such as mass production of cars, etc.
Indeed, users might select the desired features of a car and the application
directly commands the production line to produce the car with the specified
characteristics.

Bibliography

[1] Cms definition. http://searchsoa.techtarget.com/sDefinition/0,,sid26
gci508916,00.html.

[2] Cms matrix website. http://www.cmsmatrix.org.

[3] Cmsimple advanced form plugin. http://www.cmsimplewiki.com/doku.
php/plugins/advancedform.

[4] Cmsimple advanced news plugin. http://www.cmsimplewiki.com/doku.
php/plugins/advancednews.

[5] Cmsimple forum website. http://www.cmsimple.com/forum.

[6] Cmsimple geniz newsletter plugin. http://www.cmsimplewiki.com/doku.
php/plugins/geniznewsletter.

[7] Cmsimple mailing list. http://freshmeat.net/cmsimple.

[8] Cmsimple official website. http://www.cmsimple.org.

[9] Cmsimple website. http://www.cmsimple.com.

[10] Cmsimple wiki. http://www.cmsimplewiki.com.

[11] Colibri conference management system. http://www.nongnu.org/coli-
bri/index.html.

[12] Comparison of cms. http://en.wikipedia.org/wiki/Comparison of con-
tent management systems.

[13] Easychair conference system. http://www.easychair.org/.

[14] Fama fw website. http://www.isa.us.es/fama/.

[15] Fmp website. http://gsd.uwaterloo.ca/projects/fmp-plugin/.

127

128 BIBLIOGRAPHY

[16] Ibm rational software architect website. http://www-01.ibm.com/softwa-
re/awdtools/architect/swarchitect/.

[17] Ibm rational software modeller website. http://www-01.ibm.com/softwa-
re/awdtools/modeler/swmodeler/.

[18] Ieee recommended practice for software requirements specifications.
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=15571.

[19] Info m431 course. http://www.fundp.ac.be/etudes/cours/page view/IN-
FOM431/.

[20] Internet calendaring and scheduling core object specification (icalendar).
http://tools.ietf.org/html/rfc2445.

[21] Iso 9126 software quality characteristics. http://www.sqa.net/
iso9126.html.

[22] Javadoc swing library. http://java.sun.com/j2se/1.4.2/docs/api/javax/
swing/package-summary.html.

[23] Jcalendar website. http://www.toedter.com/en/jcalendar/index.html.

[24] Klariti: Software requirements specification template.
http://www.klariti.com/Software-Requirements-Specification-
Template/.

[25] Opencms on cmswatch. http://www.cmswatch.com/Feature/152-
OpenCms-6.

[26] Opencms website. http://www.opencms.org.

[27] Opencms wiki. http://www.opencms-wiki.org.

[28] Openconf. http://www.openconf.com/.

[29] Php-nuke official website. http://phpnuke.org.

[30] Php/swf slideshow website. http://www.maani.us/slideshow/.

[31] Pure::variants website. http://www.pure-systems.com/pure variants.
49.0.html.

[32] Requiline website. http://www-lufgi3.informatik.rwth-aachen.de/
TOOLS/requiline/.

BIBLIOGRAPHY 129

[33] Spip blog. http://www.spip-blog.net.

[34] Spip community website. http://www.spip-contrib.net.

[35] Spip forum website. http://forum.spip.org.

[36] Spip mailing lists. spip-core@rezo.net, spip-en@rezo.net.

[37] Spip website. http://www.spip.net.

[38] Srs definition. http://searchsoftwarequality.techtarget.com/sDefini-
tion/0,,sid92 gci1243658,00.html.

[39] Tech terms computer dictionary. http://www.techterms.com/defini-
tion/wizard.

[40] Tinymce website. http://tinymce.moxiecode.com/.

[41] Uml website. http://www.uml.org.

[42] Uml’s sequence diagram. http://www.ibm.com/developerworks/ratio-
nal/library/3101.html.

[43] Volere requirements specification template. http://www.volere.co.uk/
template.htm.

[44] W3c website. http://www.w3.org/.

[45] Webgui forums website. http://www.webgui.org/forums.

[46] Webgui videos library. http://www.webgui.org/webgui/tv.

[47] Webgui website. http://www.webgui.org.

[48] Webgui wiki. http://www.webgui.org/community-wiki.

[49] Wizard definition. http://vdict.com/wizard,6,0,0.html.

[50] Xpath website. http://www.w3.org/TR/xpath.

[51] T. Asikainen, T. Männistö, and T. Soininen. Kumbang: A domain on-
tology for modelling variability in software product families. In Advanced
engineering informatics journal, 2007.

[52] Timo Asikainen. Modelling methods for managing variability of config-
urable software product families, 2004.

130 BIBLIOGRAPHY

[53] David Benavides. On the automated analysis of Software Product Lines
using Feature Models: A framework for developing automated tool support.
PhD thesis, University of Seville, 2007.

[54] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-
Cortés. Fama: Tooling a framework for the automated analysis of feature
models. Technical report, University of Seville, 2007.

[55] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Automated
reasoning on feature models. Technical report, University of Seville, 2005.

[56] Danilo Beuche and Mark Dalgarno. Software product line engineering
with feature models.

[57] J. Bosch. In proceedings of the 2nd groningen workshop on software
variability management: Software product families and populations. In
Workshop on Software Variability Management, 2004.

[58] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, Henk Obbink,
and Klaus Pohl. Variability issues in software product lines. In Software
Product-Family Engineering, 2002.

[59] CEDITI. A kaos tutorial. Technical report, CEDITI, 2003.

[60] CEDITI. Objectiver: résumé des notations. Technical report, CEDITI,
2005.

[61] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

[62] K. Czarnecki, M. Antkiewicz, Chang Hwan Peter Kim, Sean Lau, and
Krzysztof Pietroszek. fmp and fmp2rsm: Eclipse plug-ins for modeling
features. using model templates. Technical report, University of Waterloo,
2005.

[63] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged con-
figuration using feature models. Technical report, University of Waterloo,
2004.

[64] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing
cardinality-based feature models and their specialization. Technical re-
port, University of Waterloo, Canada and University of Applied Sciences
Kaiserslautern, Zweibrücken, Germany, 2005.

BIBLIOGRAPHY 131

[65] Marcelo Fantinato. A feature-based approach to web services e-contract
establishment. Technical report, Institute of Computing, University of
Campinas, Brazil, 2007.

[66] William A. Hetrick, Charles W. Krueger, and Joseph G. Moore. Incre-
mental return on incremental investment: Engenio’s transition to soft-
ware product line practice. Technical report, Engenio Storage Group and
BigLever Software, 2006.

[67] Inc. ICON Group International. Academicals: Webster’s Quotations,
Facts and Phrases. ICON Group International, Inc., 2008.

[68] Ho-Won Jung, Seung-Gweon Kim, and Chang-Shin Chung. Measuring
software product quality: A survey of iso/iec 9126. IEEE Software,
21(5):88–92, 2004.

[69] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–oriented
domain analysis (foda) feasibility study. Technical report, Software En-
gineering Institute, Carnegie Mellon, 1990.

[70] Chris Karakas and Claudio Erba. PHP-Nuke: Management and Program-
ming. Karakas-online, 2003.

[71] Charles W. Krueger. Software product lines.

[72] Alexei Lapouchnian. Goal-oriented requirements engineering: An
overview of the current research. Technical report, University Of Toronto
- Department of Computer Science, 2005.

[73] Kwanwoo Lee, Kyo C. Kang, and Jaejoon Lee. Concepts and guidelines
of feature modeling for product line software engineering. In Software
Reuse: Methods, Techniques, and Tools: Proceedings of the Seventh Reuse
Conference (ICSR7), pages 62–77. Springer-Verlag, 2002.

[74] Yogev Lidor. Creating a wizard in visual composer for sap netweaver
composition environment. Technical report, SAP, 2008.

[75] Xin Liu. Generating uml diagrams using feature diagrams for software
product line. Master’s thesis, Technical University of Eindhoven, 2006.

[76] Robert C. Martin. Uml tutorial: part 1 class diagrams.

[77] Varvana Myllärniemi, Mikko Raatikainen, and Tomi Männistö. Kumbang
tools. Technical report, Helsinki University of Technology, 2007.

132 BIBLIOGRAPHY

[78] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product
Line Engineering: Foundations, Principles, and Techniques. Springer,
2005.

[79] pure-systems GmbH. Pure::variants user’s guide, 2008.

[80] pure-systems GmbH. Pure::variants User’s Guide: Version 3.0 for
pure::variants 3.0, 2008.

[81] M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow. Extending
feature diagrams with uml multiplicities. In Design & Process Technology
(IDPT2002), 2002.

[82] Matthias Riebisch. Towards a more precise definition of feature models.
Technical report, Technical University Ilmenau, Germany, 2006.

[83] Germain Saval. Glossary of conference management, December 2006.

[84] Danilo Scalet, Alexandre Yokohama, André Koscianski, Claudete Maria
Rêgo, Cleusa Asanome, Dantom Romero, Jeanine M. Cieslak, Marco
Paludo, Ronaldo S. Frossard, and Tânia Mara Vostupal. Iso/iec 9126
and 14598 integration aspects: A brazilian viewpoint. In The Second
World Congress on Software Quality, 2000.

[85] Effexis Software. Uml sequence diagram tutorial.

[86] Klaus Svarre. Content management system, 2006.
http://searchsoa.techtarget.com/sDefinition/0,,sid26gci508916,00.html.

[87] M. Tseng and J. Jiao. Handbook of industrial engineering: Technology
and operations management, 2001.

[88] H. Unphon. A comparison of variability and configuration tools for prod-
uct line architecture. Technical report, IT University of Copenhagen,
2008.

[89] Erik van Veenendaal. Software testing glossary.

[90] Thomas von der Maßen and Horst Lichter. Requiline: A requirements
engineering tool for software product lines. Technical report, RWTH
Aachen, 2004.

[91] Karl E. Wiegers. Software Requirements, 2nd Edition. Microsoft Press,
2003.

BIBLIOGRAPHY 133

[92] Steve Williams. What is a content management system, or cms?, 2008.
http://www.contentmanager.eu.com/history.htm.

[93] Jeff Witkowski. Cms - content management system.
http://knol.google.com/k/jeff-witkowski/cms-content-management-
system/3uo0bldfjvjek/2.

[94] Tewfik Ziadi, Jean-Marc Jézéquel, and Frédéric Fondement. Product line
engineering with uml. Technical report, IRISA, Campus Universitaire de
Beaulieu, 35042 Rennes Cedex, France, 2005.

Index

Alternative relationship, 12
Application engineering, 10
Attribute, 16

Class Diagram, 70
CMSimple, 60
Conference, 29
Conference website product line, 56
Content Delivery Application, 31
Content Management Application, 31
Content Management System, 31
Cross-tree constraint, 11
CWPL, 29

Domain engineering, 8

Excludes constraint, 13

FaMa-FW, 19
Feature, 11
Feature diagram, 2, 11
Feature modelling, 11
Feature Modelling Plug-in, 17
Functional requirement, 40

GNU Affero General Public License,
57

GNU General Public License, 57
GUI, 36

HTML, 31

ISO 9126, 104

KAOS, 40

Kumbang tools, 18

Mandatory relationship, 12
Mass customization, 6
Mass production, 6

Non-functional requirement, 52

OpenCMS, 61
Optional relationship, 12
Or relationship, 12

PDF, 31
PHP-Nuke, 57
Pure::variants, 21

RequiLine, 21
Requires constraint, 13

Sequence Diagram, 71
Software product line, 1, 6
Software product line engineering, 11
Software Requirement Specification, 32
SPIP, 59

UML, 70

Variability, 7
Variability modelling and configura-

tion tool, 16
Variation points, 7
VOLERE, 32

WebGUI, 62
WYSIWYG, 60, 61

135

