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Dynamique globale des débris spatiaux géosynchrones catadsés par de grands
rapports aire-sur-masse
par Stéphane Valk

Résumé :Le travail effectué dans cette thése s’appuie sur le dépeloent d’'une méthode
semi-analytique (basée sur le concept de mouvement mogeijuydierement bien adaptée a
I'étude a long terme des débris spatiaux situés au voisidadg®rbite géostationnaire. Deux
approches sont développées en parallele : la premierester@gsdonner une solution alter-
native aux problémes induits par les singularités renéestipour les orbites circulaires et
équatoriales et a proposer une approche hamiltoniennendedélisation de la résonance géo-
stationnaire. La seconde, suite a la découverte de la neypagulation de débris spatiaux avec
grands rapports aire-sur-masse, étend la méthode de basaaat compte d’une modélisation
adaptée de la pression de radiation solaire, dont les gffisisipaux sont mis en évidence par
I'étude du mouvement a long terme des vecteurs excentatit&linaison. De plus, toujours
a long terme, les effets induits par 'ombre de la Terre sotdgrés dans le modéle au moyen
d’un algorithme spécialement développé a cet effet. Finalg, une étude systématique de
la stabilité des débris spatiaux proches de l'orbite gdiostaaire avec grands rapports aire-
sur-masse est effectuée, au moyen d’un indicateur de cleaBd;GNO, basé sur le concept
de systéme d’équations aux variations et met en évidentairees zones spécifiques de la
dynamique.

Global dynamics of geosynchronous space debris with high aa-to-mass ratios
by Stéphane Valk

Abstract: This Ph.D. thesis is devoted to the development of a speeifi-analytical algo-
rithm especially well-suited to derive the long-term exao of near geosynchronous space
debris and based on the concept of mean orbital motion. Istafaproach, the semi-analytical
theory is concerned with the singularity issues arisingfarular and equatorial orbits as well
as with the geostationary resonance modeling. In a secandnpativated by the discovery
of high area-to-mass ratios space debris in high altitudehEaorbit (mostly near the geosyn-
chronous region), the direct radiation pressure modelseaisited and completed. Within this
context, the main effects of the direct solar radiation gues for the mid- and long-term evo-
lution of both the eccentricity and the inclination vectarg analyzed through a well-suited
model. Moreover, by means of a smart extension, the paseafe Earth’s shadow is taken
into account in the computations of the orbits. Finally, @tar insight into the intrinsic sta-
bility of such space debris is performed, by means of a rewemierical technique (MEGNO)
which is based on the concept of “variational chaos inditato
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First there was the “Big Ocean Theory”,
which basically meant that the ocean
was so big that humans could dump any
amount of waste into it without envi-
ronmental consequence. Of course, that
theory has proven to be false as ocean
ecosystems today suffer from dying coral
reefs and fish populations poisoned with
mercury and other pollutants. Next came
the “Big Atmosphere Theory”, which
assumed that we could belch out billions
of tons of air pollution and carbon dioxide
from our smoke stacks and tail pipes
without environmental repercussions. We
all know how that idea has impacted the
planet : air pollution, acid rain, ozone
depletion and global warming. Now we
have a “Big Space Theory”, namely, that
space is so big that the waste we create
in it will cause no harm. That's right
folks, fifty years after Sputnik launched
the space age, humans have turned space
into yet another junk yard, with millions
of pieces of man-made debris orbiting
the Earth. The space debris problem
is becoming so critical that space may
become too trashed to use at all. What
the world needs now, before it becomes
too late, is an environmental movement in
heaven : Space Ecology.

By Lynda Williams, 2007
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Introduction

The present near-Earth space environment is the resultes anfore than 50 years of space
activities. The well-known first artificial satellit§putnik 1 has been launched in October
1957 by the Soviet Union (USSR). Since that time, space exfm constantly kept on pro-

ducing significant amounts of man-made objects in spacaiallgt the near-Earth region was
probably the only close environment which remained ungpldily human activities. One can
feel the uneasiness brought by such a statement.

The space debris issue is unquestionably a growing contreteed, orbital debris gener-
ally move at very high speeds relative to current operatisatellites. At this velocity, even
a small particle contains significant kinetic energy and reotum to damage or even destroy
functional satellites during an impactCollisions between satellites and debris have already
been observed. One of the first unintentional collision iacgphistory occurred on July 1996
when a fragment of about 10 érfcoming from the explosion of an Ariane rocket upper stage
launched ten years before) hit the French sate@igeiseat the relative velocity of 14 km/s
(Alby et al., 1997; Rossi, 2005).

Even more recently, the space debris concern has been pudartbafter the successful
deployment of an anti-satelliteASAT) missile by the People’s Republic of China. Indeed,
in January 2007, the 880 kg weather spacedfaftgyun-1Claunched in 1999 into a sun-
synchronous orbit with a mean altitude of about 850 km, ha® lokeliberately destroyed over
central China without any legal consequence (Pardini argkefmo, 2007). This break-up pro-
duced around 2 600 debris, mostly larger than 10 cm (Orbigdr[3 Quarterly News, January
2008), thereby increasing the total amount of catalogedespank by about 20%. The gener-
ated debris cloud currently crosses the orbits of manylgatein low-Earth orbit, increasing
the hazard of debris collision by over 15%. For the sake ofpleteness, we ought also to
mention that this event is not unprecedented. Indeed, theespxploration history reveals
that anti-satellite weapons date back to the 1960s with thard USSR separately engaging
in the development and deployment of such space weaponartioular, a successfdiSAT
test was performed by the United States in September 198%ndpihis event, the spacecraft
Solwind P78-1was destroyed by an anti-satellite missile which was laaddhom a fighter
aircraft along the Californian coastline, producing ab®8% space debris of significant size

1To gain insight on this point, let us note that a 1-g mass tliageat 10 km/s has approximately the same
kinetic energy as a 100 kg mass travelling at 100 km/h.

1



2 Introduction

(Klinkrad, 2006).

For all theses reasons, the space debris problematic hidf/repcome a major matter of
concern which in turn has been extensively investigatedbystientific community over the
past few years. Currently, the space debris investigaBoa®ssentially performed by using
models which provide a mathematical description of theriistion of objects in space, the
motion and flux of objects and their physical charactemgstithese models are said to be statis-
tical if they are devoted to the characterization of a lakfeo$ debris by a sample of objects.
The models are deterministic if each object is describedithaially by its orbital elements
and physical characteristics. Anyhow, most of these maatelsctually conceived within the
context of a complete numerical integration of the equatimimotion, regardless the compu-
tational performances. Moreover, while numerical intégres are especially straightforward
and efficient when deriving a particular solution of a diéfetial system of equations, they fail
in providing a complete or general solution in order to giveemr understanding of the phys-
ical nature of the dynamics.

On the contrary, this Ph.D. thesis largely focuses on theldpment of a specific deter-
ministic theory which extensively takes advantages of is@\w®ncepts derived from Celestial
Mechanics. Among others, we can mention, an adapted Hamalidormalism coupled with
the well-known symplectic Lie algorithm, the resonancecawns as well as the mean orbital
motion theories. This theory can therefore be applied tveéne evolution of specific space
debris over time scales as high as several decades, whitg givdetailed interpretation of the
observed dynamics.

We now give a brief description of the contents of this thesggect and the contributions
included therein.

Contributions and structure of the manuscript

Chapter 1 gives an introduction to the space debris prolilena particular, we shortly define
the concept of space debris which is followed by a descnticthe current space debris pop-
ulation. Subsequently, this chapter is also devoted tofgitker insights into the all-important
geostationary region which will actually be the backgroand the major concern of our re-
search work. In addition, we will give a general survey of tiesv unexpected population
of space debris that has been discovered recently near tistagjenary region on behalf of
European Space Agency. As a matter of fact, these objectturto be fairly exceptional.
Indeed, these space debris are presumably characterizsattog large outermost area and a
very small weight. These space debris are said to be markb@jhyarea-to-mass ratios.

Chapter 2 is mostly devoted to the development of a speci@orthwhich is intended
to give the long-term description of an arbitrary space delbcated near the geostationary
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ring®. This chapter is effectively far from being exhaustive anéssentially devoted to give
the outline of the so-called semi-analytical theory thdt ae discussed, extensively used and
improved in the following chapters. In particular this seamialytical theory is based on the
concept of mean orbital motion. In this field, what is of spéoelevance is not the complete
description of the motion but the prediction of an approxenaosition at a given time while
improving considerably the computational performancehefalgorithm. On the other hand,
this chapter is also concerned with the singularity issuissg for circular and equatorial or-
bits as well as with the challenging resonance modeling tackvwe propose a well-adapted
solution. The results of Chapter 2 have been previously gitduiin Valk et al. (2007a).

As a result of the unexpected discovery of high-area-tosmatso space debris, we seized
the opportunity to extend our semi-analytical theory byudag the solar radiation pressure
acceleration which is assumed to be the major perturbatipereenced by those space debris.
This extension is developed in Chapter 3 and is especialiyded to derive the main effects
of the direct solar radiation pressure by analyzing the rartd long-term evolution of both
the eccentricity and the inclination vectors. In additiose, also emphasize the importance of
adopting a well-suited solar radiation pressure modelihgmwderiving the motion of these
unfamiliar space debris. The results of Chapter 3 have besqusly published in Valk et al.
(2007Db).

The main objective of Chapter 4 is dedicated to an extendidheosolar radiation pres-
sure modeling. This extension gives an improvement of teerthdeveloped in Chapter 3
by taking into account the long-term effects induced by thetes shadow. In this approach,
the perturbations accounting for the direct solar radmpeessure with the Earth’s shadow
are computed on a revolution-by-revolution basis, retajrihe original unexpanded form of
the so-called shadow function. This latter approach is géswralized into a convenient non-
singular formalism, particularly appropriate for both remcular and near-equatorial orbits
as well as for orbits which transit periodically around redtentricities and null inclinations.
As an application, we propose to apply this algorithm in otdegive further insight into the
dynamics of high area-to-mass ratio space debris that &jectuo the Earth’s shadowing ef-
fects. The results of Chapter 4 have been previously puddigihValk and Lemaitre (2008).

Besides the above-mentioned semi-analytical investigafiwe also propose to study the
stability of the high area-to-mass ratio space debris. @legestigations are performed by
using a recent numerical technique that is based on the pbotévariational chaos indica-
tor”. This method is especially devoted to the investigaid both the regular and chaotic
components of the phase space. The results, which are giv&maipter 5, provide an accurate
understanding of the location of both the stable and unstafilits as well as the time scale
of their exponential divergence in case of chaotic motionaddition, we also perform some
additional frequency analysis investigations in orderit@ @ insightful understanding of the

2Let us remark that “space debris” is commonly considered plsi@l. However, in this manuscript, the
expression “a space debris” will be regularly used as “ag@space debris”.



4 Introduction

structures appearing in the phase space. The results oféZitapave been previously submit-
ted in Valk et al. (2008).

Finally, we conclude this manuscript by giving a summaryha twork accomplished so
far and by suggesting some possible outlooks for futurearebe

Let us also mention the work introduced in Appendix H, andoihwas initially devoted to
the orbital determination of near-Earth asteroids. Thigkvi®mainly intended to the so-called
Admissible regiorwhich can be computed as part of an orbital determinatiocgs®, even
if the complete set of six orbital elements can not be derivadoarticular, we dedicate this
work to the investigation of some important aspects reladdtie admissible region and to its
refinement for the short distances with respect to the E&tis. work is all the more important
as it has been recently extended to the main problem of cetetohination of the space debris
population. The results of Appendix H have been previouslylighed in Valk and Lemaitre
(2007a).
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Chapter 1
A brief overview of space debris

“Space debris are all man-made objects, including theirgfreents

and parts, whether their owners can be identified or not, intlica
orbit or re-entering the dense layers of the atmosphere #rat

non-functional with no reasonable expectation of theimigeable to

assume or resume their intended functions or any other ilmefor

which they are or can be authorized”

United Nations, New York, 1999 (UN, 1999)

1.1 What are space debris ?

Orbital space debris generally refer to man-made objecishndre in Earth’s orbit as the re-

sult of space missions, but are no longer serving any useiiydgse. The sources and the
characteristics of such “space junks” are highly diverdifieor instance, regarding the largest,
these objects come in the form of rocket upper stages, desatellites and various mission

related debris such as discarded equipments releasedj@xtira-vehicular activities, sensors
caps, momentum flywheels used to stabilize the spacecttftsla, etc., to name only a few

of them. In addition, the space debris population also thetusmaller objects (centimeter-
up to meter-sized) such as fragments created by the break-sgtellites and rocket upper

stages but also millimeter-sized particles coming fromenak degradation as a result of solar
heating and solar radiation, as well as solid rocket motug.sl

For the sake of completeness, it is worth noting that theiaffaefinition of space debris
also includes re-entry objects, which are captured by thithBaatmosphere. Actually, more
than 60% of the objects which have been launched since therbeg of the space age have
decayed by burning into the atmosphere, even though sorhemfare known to have survived
reentry and crashed down on Earth. Typically, one “large@hrmade cataloged space debris
is known to fall back on Earth every day (Schildknecht, 2007)

7



8 Chapter 1. A brief overview of space debris

1.2 The current space debris population and its sources

Nowadays, as a consequence of a systematic and regularaspaity, the space debris pop-
ulation has significantly increased. Indeed, during eaahdh, only a part of the total mass
brought into space consists of active payldad$e other remaining part are actually made of
released objects which quickly become space debris. ThHigigeason why the current active
artificial satellites only account for about 7% of the prederown artificial objects larger that
10 cm whose number reached 12 456 in January 2008 (The Obstais Quarterly News,
January 2008). These objects are by the so-called US Spaceilunce Network (part of
the USSTRATCOM, i.e. US Strategic Command) which is a majovesy system consisting
mostly of radars and optical telescopes. Figure 1.1 reploetime evolution of the trackable
on-orbit population according to their sources. This lattassification clearly shows that the
fragments resulting from break-ups contribute to about 40%e total population. Approxi-
mately 30% of the cataloged objects are payloads (wherdyn/éf are active satellites), about
17% are upper stages of the rockets used to place the saielbtbit whereas the remaining
part are mission related debris, i.e all objects disperssuarated, or released as parts of the
planned missions. Furthermore, let us also remark thatg¢hgyun-1CGevent, which occurred

in January 2007, is clearly identifiable at the end of the tiwmedow. This event is by far
surpassing the 713 objects created in the break-up of theessBegocket body on June 1996 or
similarly surpassing th8olwind ASATest of September 1985. For an exhaustive enumeration
of the most severe on-orbit fragmentation events, we ref&tinkrad (2006).

The orbital space debris are not uniformly distributed iacgpbut are concentrated in those
regions that are heavily used by satellites. Practicdily,tear-Earth environment can be ap-
proximately split into three distinct regions, namely tbe/dEarth, the medium-Earth and the
geostationary orbit regions.

The Low Earth Orbit region (LEO) can be defined as the regiomfthe Earth’s surface
up to 2000 km in altitude. In this region, the sensitivityasinold of the sensors limits the
observations to the 5-10 centimeters in size objects. Aptbesent time, we can almost pre-
tend to know all the objects larger than about 20 cm. Radare peoved their efficiency in
detecting small objects in LEO. This is why the observatiorlsEO are mainly performed by
radars whereas the observations at higher altitudes arevadhby means of outperforming
optical systems. The high-altitude orbits are located ihéoregion spanning the area between
2000 km and about 36 000 km. This widespread region is agtealhstituted by a large
set of orbits having various characteristics. One of thetrfamsiliar high-altitude region is
unquestionably the so-called geostationary region (GB@ated at 36 000 km altitude. An
object placed in the GEO region will orbit around the Eartlhvan orbital period close to
the rotational period of the Earth, remaining almost fixethwespect to the Earth’s surface.
As a consequence, this region is extensively used for theogerof telecommunications as
well as for weather forecasting satellites. Typically, tiseial optical survey strategies allow to

Let us remark that, in the special case of the Space Shuitenbst part of the total mass is actually an
active payload.
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Figure 1.2: These graphics show the space debris populaiteioged objects). For the LEO

region [left] and for high altitude orbits [right]. Appraxiately 95% of the objects in these

illustrations are orbital debris, i.e. non-functionaledlites. [Computer generated snapshot,
source: ESA]

detect such objects whose size is on the order of 1 meter. @naléo to mentioned that GEO
satellites are set into the geostationary orbit by means@fGeostationary Transfer Orbits
(GTO), which are characterized by highly eccentric orhitsuch a way that the perigee is
located at low altitudes and apogee precisely located & Ef@ altitude. These Geostationary
Transfer Orbits extend through the so-called Medium Eartiit@QMEQO) region which is the
area where Global Navigation Satellites are placed. Thesstellations of satellites, such as
GPS, GLONASSnd more recentlEALILEO, span the region between 20 000 and 22 000 km.

To clarify these points, Figure 1.2 shows the distributibthe cataloged objects from two
vantage points. On the left, the figure reports the spacegdetypoulation in LEO. On the right,
the figure illustrates the spatial distribution as a globelwas seen from a distance of 15
Earth’s radii. In the latter figure, the geostationary orbgion is clearly identifiable. In addi-
tion, Figure 1.3 reports the spatial density of space detsres function of their orbital regime.
The results are given for three different categories of @bjenamely the objects whose size
is larger than 1 mm, 1 cm, and 10 cm. Actually, except for thieab larger than 10 cm, we
only have limited statistical information, like the numlzerd the size of pieces in particular
orbit regions. This is the reason why the latter figure has bealized by means of a specific
model which reconstructs the near-Earth environment byodking all the known sources
and sink mechanisms. These elaborated mathematical asccahmodels, called MASTER
models, are developed at the European Space Agency (ESé)der ESA contracts. Even if
this kind of models is surely all-important as part of spaekrts modeling, they exceed by far
the objective of this overview. For further details, we rdfeKlinkrad (2006) which gives an
general overview of the most important space debris enmet models. Figure 1.3 clearly
brings to the fore the three main regions mentioned beforpatticular, for the objects larger
that 10 cm in size, this chart shows that almost 70% of thdaged objects are actually in
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MEO, GTO

Density [objects/km?]

Altitude [km]

Figure 1.3: Density of the space debris population as aimmcif the altitude. The density is
shown for three different characteristic values, i.e theacis whose size is larger than 1 mm,
1 cm, and 10 cm. This chart has been produced by using the MRSXID1 population of
objects. [SourceRossi (2009)

LEO, i.e at altitudes lower that 2000 km, 9% are in the vigiraf the GEO region, 8% are
beyond the GEO region, 10% are on high elliptical orbits saglthe Geostationary Transfer
Orbits (GTO), and the small remaining part are in MEO.

It is worth noting that the space debris problematic is kmliche same in these three
regions. However, due the large discrepancies regardmgnformation available in these
regions as well as the various dynamical properties of thectdwith respect to their orbital
regime, the space debris issue requires different as wepasific approaches and solutions.
This is the reason why, from now on and within the context &f thanuscript, we will restrict
our investigations to the near-geostationary region.

1.3 The geostationary orbit region

Except to the fact that an object located on the GEO regiomaisralmost fixed with respect to
the Earth’s surface, one of the most specific feature of gdosary orbits, is that in contrast to
the LEO region, there are no natural energy-dissipatingham@sms, such as air-drag caused
by the resistance of the Earth’s atmosphere, to remove tsbjexn that altitude (Klinkrad,
2006). As a matter of fact, for LEO orbits and in particulasetall altitudes of 600—-800 km,
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most of the objects reenter into the atmosphere if no actiopysion system is operational.
On the contrary, regarding the near-GEO region, the ag-grao insignificant that the orbital
lifetime of such orbits is usually considered as immeaderas a consequence, since the
deployment of the first geostationary satellite Syncom-8ugust 1964, the GEO population
is increasing slowly but surely at a regular rate of about3®bsbjects per year.

Actually, an ideal geostationary orbit would be defined adeaatly circular orbit (null
eccentricity) located in the equatorial plane (null ination). The radius of such orbit would
also have to be 42 164 km to ensure that the orbital periodastgxthe same as the rota-
tional period of the Earth (one sidereal day, 23 h 56 m 4 s). &@n due to some external
perturbations, a GEO satellite must regularly performsesadditional corrections in order to
change its orbital elements, or in other words, in orderay siithin an assigned and confined
region above the Earth’s surface. For these reasons, tih@eestationary region is actually
operationally limited. Indeed, when a satellite reacheerid of life, its assigned region is not
anymore usable by other spacecrafts (Rossi, 2005). We @lgihto mention that in recent
years, since geostationary satellites are at some risKladiog with uncontrolled objects, the
space community has developed a new technique consistitngradfferring spacecraft at the
end of their operational life into a so-called “disposalitittalso called “graveyard orbit”,
which is located at least 300 km above the nominal geosiatyoorbit, in order to protect this
region from the natural evolution of objects without any i@tie@nal control.

The latter natural evolution of non-functional objects v&dently governed by the main
perturbing forces acting on these objects. For this purpeseais first consider a large set
of perturbing effects which are usually taken into accouanthie general context of artificial
satellite theories.

Let us recall that the Earth is not a perfect sphere. Actuallyrst approximation, the Earth
has to be considered as an ellipsoid, that is an oblate sgheith an equatorial diameter that
exceeds the polar diameter by about 20 km. More generaflygélopotential perturbations are
due to asymmetries in the Earth’s gravitational field whiah be expressed in terms of the so-
called spherical harmonics expansion (for technical tetake refer to Subsection 2.2.1). The
second degree harmonic (denoted/by; also called the oblateness coefficient, actually domi-
nates all the other geopotential perturbations (excetethé central term(; A1) and exerts a
force that tries to align the orbital plane with the equatoplane. Aside for the geopotential
perturbations, every artificial satellite is also subjecttte third-body perturbations that arise
from the gravitational attraction of both the Moon and the Ssimilar forces as for the Moon
and the Sun arise from the gravitational attraction of ttemets of the Solar System. How-
ever, their amplitude is several orders of magnitude smedkn the luni-solar perturbations.
In addition to the perturbations arising from gravitatibimduence, we have also to recall that
artificial satellites are subject to further perturbingelecations which depend on both the
mass and the area of the objects. For low-Earth orbit ohjaaave already mentioned the
air-drag which tends to reduce the orbital kinetic energequivalently the altitude and, as



1.3 The geostationary orbit region 13

2
10 | I | !
e GEO -
oM ——
10* | )
N _
10 Js
— \.“‘ .
< N |
2 10% N Moon : |
_% \ .~ . D T
X, RO A
S SUNUPPEEL L sun é I
o .\ ~ .. .
o .. - J :
o N . 22 ;
g 107 |- S e ]
< > s
< ]
Radiation pressure <. 1
Jy s
1072 ; |
1071 |- |
Jupiter
10716 | I | |
10 20 30 42.164 50

Distance from the center of the Earth [1000 km]

Figure 1.4: Order of magnitude of the main perturbationa\gational influence and direct
radiation pressure with typical area-to-mass ratig/¢ = 0.01 m?/kg) acting on Earth’s
orbiting objects as a function of the distance from the Esudénter.



14 Chapter 1. A brief overview of space debris

a consequence, the orbital life time. Another well-knowntyding effect is the solar radi-
ation pressure acceleration resulting from the interaatibthe sunlight with the surface of
the object. In contrast with the dissipative force arisirgnt the air-drag, the radiation pres-
sure mainly depends on the so-called area-to-mass ratiotetkbyA /m. We could also cite
minor perturbations which produce extremely small vaoiadi of the orbital elements. These
perturbing effects are for instance, the accelerationltiagurom the solar radiation reflected
by the Earth (albedo), both the terrestrial and ocean tiddglze relativistic effects, to name
only a few of them. Those effects will be disregarded in thetert of this work.

Among the above-mentioned perturbations, the major efleqverienced by an object located
near the GEO region can be easily derived. This can be acegdmeglby using simplified ex-
pressions which give the relations between the order of madp of the perturbations as a
function of the distance with respect to the Earth centee fEsults are given in Figure 1.4.
This chart clearly indicates that the order of magnituddefluni-solar perturbations actually
increases almost linearly with the distance between théhEsard the space debris. Conse-
qguently, in the neighborhood of the geostationary regiorhéaced by the vertical dashed
line), the order of magnitude of these perturbations areparable in size to that of the domi-
nant Earth’s oblateness. Figure 1.4 also reports that thaireng perturbing accelerations are
at least two orders of magnitude lower.

The influence of the Earth’s flattening combined with the gedional attraction of both
the Moon and the Sun actually force the orbital plane to m®aeith a typical period of
roughly 54 years (where the precession angle is the longitdidhe ascending node denoted

7sin €

1 cos (2

Figure 1.5: Projection of the orbital poles of all known gatienary space debris and artificial
satellites moving in the gravitational field of the Earthafas: April 2008).
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Figure 1.7: Histogram of the distribution of GEO Cataloglgexts with the eccentricity of
their orbit (class widthA e = 1 x 1074, status: April 2008)

by 2). This precessional motion can actually be seen as the motia gyroscope around a
fixed plane (Allen and Cook, 1964). This theoretical plaraled the Laplace plane, is in-
clined of about 7.5 degrees with respect to the equatoaalgleading to an orbital inclination
which in turn oscillates with approximately 15 degrees ofymtude. In order to make this
point clear, Figure 1.5 shows the so-called inclinationt@ed.e, (sini cos 2, sin sin ) ~

(7 cos (2, i sin ) of all GEO objects in the catalog. In order to give additioimébrmation,
the GEO trackable objects can also be classified accorditigeioorbital elements. In partic-
ular, it could be interesting to focus our attention to bdté éccentricity and the inclination
distribution. First, regarding the inclination distribn, Figure 1.6 reports a wide range of val-
ues ranging from O to approximately 15 degrees with a evideak clearly identifiable close
to the null inclination. This peak actually correspondstte turrent active satellites which
are repetitively kept inside their assigned slot in ordecdanteracting the perturbations that
would tend to change the orbital elements such as the orbdi#hation. On the contrary, the
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Figure 1.8: The geostationary ring (section) where aretéut#he present cataloged space
debris. The thickness in latitudedsl5° whereas the radial thicknessi§'5 km.

remaining objects consist of space debris. Second, inasintio the inclination distribution,
the eccentricity distribution shown in Figure 1.7, repahat the great majority of the objects
of the catalog are clearly related to eccentricity valuesctvitorrespond nearly to circular
orbits. The small variations of the eccentricity can reade explained by the combined inter-
actions of both the third-body acceleration and the soldiaten pressure. Finally, it is worth
stressing that although these eccentricity values arel stinalcorresponding variation of the
geocentric distance, i.e. the maximum radial variafie# can be significant (typically on the
order of 75 km on both sides of the nominal geostationaryt dobic = 0.0017). For all these
reasons, the geostationary ring is thus theoretically ddfas the segment of a spherical shell
with a radial thickness of 150 km and delimited #1515 degrees in latitude (see Figure 1.8).

We can not conclude this section without also mentioningdh@ear-geostationary object
is also significantly subject to the longitude-dependeiiesigal harmonics associated with
the Earth’s gravity field. The main longitude-dependenttef the geopotential expansion is
actually related to thd,, acceleration appearing in Figure 1.4. Indeed, if a spacagedvo-
lution period is commensurate with the sidereal revolugienod of the Earth, the higher-order
terms of the Earth’s potential may produce the so-callediast perturbations, the amplitudes
of which may become orders of magnitude larger than ordiheyty-order perturbations. Res-
onant perturbations are also typically of very long periotiserefore, the resonant perturba-
tions will turn out to be inescapable in the specific case afHgeostationary orbits. However,
a complete description of these resonant effects are beperstope of this overview. This is
the reason why it will be discussed in more detail in Chapter 2



1.4 Discovery of the high area-to-mass ratio population

17

0.8 -
07 0 o gy —
) E . . EI? ,--'E'n.‘%an%n/
0.6 “/, -
2 05 adl /
=
I T
£ 047
8 ] / o uncorrelated
P 0.3 + correlated
] vapo = 15"/s
0.2 1 ———-vapo = 10.5"s
T 0 T oles S e vapo = 7.5"s
01 ] vapo = 5'ls
0 3 T T T T T T T T T T T T T T T
0 2 3 4 5

Mean Motion
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1.4 Discovery of the high area-to-mass ratio population

The near-Earth environment and in particular the LEO redias already been intensively
studied during the last dozens of years. On the contraryaaradready mentioned in the pre-
vious section, the lower size threshold of objects whichlmamwmbserved in the geostationary
regime is on the order of 1 meter. As a consequence, the blail@ormation in GEO is
still very sparse in comparison with the LEO regime. Howgesarce the significance of this
region is indisputably all-important for both commercialdascientific missions, ESA has re-
cently initiated an optical search for fragments in the ¢ggosnary ring in order to improve
the knowledge about the debris population in GEO and to wtaled the future evolution of
its population (Schildknecht et al., 2005). These obsemathave actually been performed,
on behalf of ESA, by the Astronomical Institute of the Unisigy of Bern (AIUB) by using the
European 1 meter telescope located in Tenerife (Cananyds)a

Even more recently, some new optical surveys have been ioabed in order to detect
space debris orbiting on highly elliptical orbits. In padiar, for a subset of the detections, the
space debris have been followed in real-time in order to de@ducomplete set of six orbital
elements whereas only circular orbits were determinedHferrémaining objects. Although
these latter survey campaigns were first optimized to findesjibris in the Geostationary
Transfer Orbits (GTO), in particular to search out the sraaléd debris population which
originates from well-know break-ups of Ariane upper stagles results of these surveys re-
vealed not only a substantial amount of space debris atdlighdes in the size range from
0.1 to 1 meter, but also a new unexpected population for wigbotential parent object could
be identified. The mean motion of this new space debris ptipalactually turns out to be on
the order of one revolution per day whereas the eccenéscéicattered between 0 and 0.6.
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Figure 1.10: Eccentricity as a function of the mean motiontfe objects in the catalog.
[Graphics by Schildknecht et al. (200.7)

To clarify this point, Figure 1.9 shows the eccentrigitgs a function of the mean motion
n, in revolution per day, for a data set of 332 objects from tB&AEBurveys for which ellip-
tical orbits were determined. In Figure 1.10, we show theesponding cataloged objects in
which the data were filtered with respect to the eccentriity < e < 0.9), to the inclination
(0 < i < 20°) and to the mean motio@ < n < 6). In this figure, the curved lines corre-
spond to the locations of constant apparent motion in rigbg¢asion when the objects are at the
apogee. In particular, the solid curved lines indicate thanglaries of region where the survey
was able to detect objects. Consequently, the objects malwver tharb”/s or equivalently
faster thatl5”/s have not been detected. The before-mentioned new paputtobjects is
clearly visible in Figure 1.9. These objects are actuallywgihas uncorrelated objects which
are particularly concentrated about the mean motion ofgeasynchronous objects. In com-
parison with Figure 1.10, these discovered objects do rro¢spond to any data in the catalog.

These objects are probably the result of undetermined sidagradation or low inten-
sity phenomena that occurred near the geostationary rimgally, Liou and Weaver (2004)
suggested that some of the resulting fragments are actlahacterized by high area-to-mass
ratios compared to those of typical spacecrafts and uppgestwhich range from about 0.01
to 0.02 nt/kg. As a consequence, they proposed a simple explanatide tastonishing dis-
covery of high eccentricity objects: the solar radiatioghtinduce such a particular dynamics
on space debris with such high area-to-mass ratio. Indesatedite or a space debris exposed
to solar radiation pressure undergoes a force that ariees thie absorption or reflection of
photons. In contrast to gravitational perturbations, tteeeration due to solar radiation pres-
sure depends linearly on the area-to-mass ratio. Underassimptions, space debris may
reached significant large eccentricities.
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Indeed, by following in real-time some of these uncommorcspiebris and in order to
give additional measurements and mostly improve the ugistit process, it was possible to de-
rive the area-to-mass ratios by estimating this parametéeiorbit determination process. For
instance, for a subset of the survey data, the correspowiiirgoution for 73 objects is given
in Figure 1.11 (top). The results clearly report that thegmemass ratios related to the uncor-
related objects always reach significant values which arerakorders of magnitude greater
than typical Earth-orbiting objects. For the sake of corgmar, we show in Figure 1.11 (bot-
tom) the area-to-mass ratios of several well-known s#&slliindeed, the first three satellites
(Lageos 1 & 2 Starlettg were intentionally designed as geodetic satellites malkspherical
satellites which explains the small area-to-mass ratios.ti@ contrary, th&sPSsatellites,
such as most of the Navigation satellites and GEO sateliges a rather “large” area-to-mass
ratio since they are typically equipped with wide solar paié a few square meters. Conse-
guently, these new unexpected objects must be effectiighyeight since a standard sheet
of paper has an area-to-mass ratio of about 1&gn
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Chapter 2

Semi-analytical theory of mean orbital
motion for geosynchronous space debris
under gravitational influence

“For two hundred years, satellites of all shapes and sizesnfloose
nuts and bolts to entire space villages, had been accunmgjan
Earth orbit. All that came below the extreme elevation oftbeer, at
any time, now had to be accounted for, since they created silgies
hazard..”

Arthur C. Clarke The Fountains of Paradis&978

— The results of this chapter have been previously submiiteifalk et al. (2007a) —

Within the context of space debris modeling, it is convehterdistinguish two approaches,
namely the study of the evolution of space debris over shattlang timescales. The short-
time analyses consist in propagating orbits over a periathgs up to several weeks. Within
this context, the numerical integration of the osculatiggaions of motion is especially suited
as long as some valuable initial conditions are availabt@véVer, as soon as we are interested
in the study of the motion over longer timescales, typicaltg year up to several dozens of
years, the numerical integration remains technically eorable but becomes practically inap-
propriate regarding the CPU time consumption.

In this chapter, we develop a semi-analytical theory of tleamorbital motion based on
the concept of mean orbital elements. The characteristtbemethod is based on an ana-
lytical averaging of the initial differential system folled by a numerical integration of the
transformed equations. The main motivation of this ingggton is the development of an
accurate and extensive theory well-suited for the studyeafr{geosynchronous space debris
over very long periods of time. The method allows the in@dasof both zonal and tesseral
harmonics as well as the third-body attractions inducedbysun and the Moon and provides

21
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long-term solutions that are valid for a wide range of ecgeities and inclinations.

The main objective of this chapter is basically twofold. @e bne hand, we first derive
the major disturbing function acting on near-geosynchusngpace debris. These perturba-
tions are then transformed by using modified orbital elesiartich in turn are suited for the
two singularities appearing in the problem of near-geolyaoeous space debris. On the other
hand, we apply the theory by means of the above-mentiondgtmah averaging process.
Therefore, the numerical integrations of the averageesyspf equations show that this the-
ory is especially well-suited for the long-term investigatand combine the ideal properties
of numerical integrations and analytical theories to abthe best compromises between ac-
curacy and efficiency.

Section 2.2 is intended to derive the disturbing functicglated to the major perturba-
tions, that is the gravitational perturbations inducedtnt the Earth’s gravity field and by the
combined attraction of the Sun and the Moon. Subsequendlyntsoduce the first analytical
development of these disturbing functions expressed irléfigm elements by means of a se-
ries expansion in powers of the eccentricity and of the natlon.

Section 2.3 is devoted to the singularities appearing imtimaerical integrations of the
dynamical equations expressed in such classical Kepletements. As an alternative, we
propose a general solution based on a set of “near-canbamdlentirely non-singular vari-
ables (universal elements). This set of variables leadstotoice of a Hamiltonian formalism
and extends the period of validity of the solution while gre#ng a high stability of the nu-
merical integrations over very long time spans.

In Section 2.4 we explicitly present the analytical avemggsrocess over the short periods
and we take the opportunity to present our home-made symbw@hnipulator software used
for the analytical processing of the various series exjpassi

In order to give a first validation of our semi-analyticalding we give in Section 2.5 some
comparisons between numerical integrations and semydcellpropagations. The method is
applied considering both the second degree zonal harmBrand the combined third-body
attraction of the Sun and the Moon. We also take advantageesktvarious propagations to
underline the main characteristics of high-altitude otgénot being subject to resonance).

Finally, we devote the end of this chapter to the investayatf the resonant effects in-
duced by the 1:1 resonance occurring for near-geosynchsosymace debris. First, we briefly
depict the concept of resonance by stressing the main tepmsasang in the geopotential
expansion. Second, we describe how to adapt the Hamiltdaramalism to ensure that the
resonant long-periodic effects are preserved througheuaveraging process. Moreover, we
give a simplified analytical model to underline the main etffeof the above-mentioned reso-
nance (equilibrium points, stability, fundamental freqcies, width of the resonance area). At
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last, we give some semi-analytical propagations to showthevnethod is in good agreement
with both our simplified analytical model and the theory obgiationary satellite.

2.1 The perturbed equations of motion

The general form of equations of motion with perturbatioas be expressed in Cartesian
coordinates as follows

= Qpot + ag +ag + Qrp + Qpeglected (21)

wherea,,, is the acceleration resulting from Earth gravity harmotinzg includes the central
attraction (two-body acceleration). The perturbing a&@lonsa¢ anda are the results of
the third-body attraction induced by the Moon and the Suspeetively. The componeat,,,

is related to the acceleration induced by the solar radigiressure. Concerning the last term
in Eq. (2.1), it is related to the forces which are neglectethe context of this work. This
component contains the accelerations caused by smallsfd¢essentially non-gravitational)
such those related to thermal or relativistic effects (agky-O’Keefe-Radzievskii-Paddack,
Schwarzschild correction, .); the atmospheric drag, highly insignificant in the caseighh
altitude orbits; the solid and ocean tides of the Earth a$ agethe third-body accelerations
related to the other planets of the Solar System, such atedupi

Let us remark that in order to benefit of the large set of firgieo integration methods,
the second-order differential equation (2.1) is usualfgmaulated as a set of two first order
differential equations. This new system is then written as

T = v
2.2)
v = Qpot + ag +aq + Qayp + Qpeglected 5

wherew(t) is the velocity vector of the propagated object at timelowever, it is also worth
noting that all the forces taken into account are actuallyseovative (even though a special
attention has to be given for the solar radiation pressae Ghapter 3). As a consequence,
the total energy of the system will be constant, whereaspdisge systems may lose or gain
energy. This remark is relevant insofar as the accelemtiolhbe further related to the gradi-
ent of a potential disturbing function.

As shown in Eq. (2.2), the orbital state vector is implicilpressed in terms of six Carte-
sian coordinateér, y, z) of the positionr and (i, ¢, 2) of the velocityr. However, it is well
known that this natural set of coordinates is not well-glifta the development of both ana-
lytical and semi-analytical theories due to their fast a@oins with high amplitudes.

There are several alternative sets of orbital parametarsvhich the Cartesian state can be
converted. One such set are the six Kepler's orbital eles@ereafteKeplerian elements a
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(semi-major axi} e (eccentricity, ¢ (inclination), 2 (right ascension of the ascending nypde
w (argument of perigeeand M (mean anomaly which are well-suited to describe a conical
section. Actually, expressing the orbit elements in terfrisaplerian elements has a great as-
set. Indeed, while position and velocity vectors underggdachanges with time, most of the
Keplerian elements undergo small variations in perturbetian. In particular, in the case of
an unperturbed motion, only the mean anom@lychanges with time at a constant rate called
the mean motion.

The Keplerian elements will be systematically used in otdetepict the dynamics, since
they are particularly well adapted to interpret the motiearthermore, the Keplerian elements
are also the founding grounds of the so-called expansiopswers of the eccentricity and of
the inclination developed in Section 2.2. Indeed, the majediive of the following sections
is to derive the expressions of the disturbing functionateal to the major perturbations, i.e.
the gravitational perturbations induced by both the Eargravity field and the combined
attraction of the Sun and the Moon.

2.2 Disturbing functions — expansion in powers of the eccen-
tricity and of the inclination

2.2.1 Potential of the Earth
According to the Newton universal law of gravitation, thed® of attraction between two
particles of masses; andms, at a distance from each other will be

my ms

F=-G

)

r2

where G is the universal constant of gravitation. Assuming the ot be spherical and
homogeneous and considering its mass is concentrateadanity, the forcé' can be obtained
by expressing the acceleration as the gradient of a scatatifun, called potential/. This
potential per unit of mass is written as

v=-2
r

whereu = G mg, is the so-called gravitational constant of the Earth.

However, the Earth is neither spherical nor homogeneousreftre, the previous as-
sumptions are no longer verified. However, the expressitinegpotential function may easily
be generalized to an arbitrary mass distribution by sumramghe contributions created by
individual mass elements. In particular, we have

Uy = [ L2y (2.3)

U
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wherep(r,) stands for the density at some poitinside the Earth, anflr — r,|| is the dis-
tance between the object and a particular volume elemeattdd@t the geocentric positiep.

First, let us note that the typical denominator appearirtggn(2.3) may be developed into
a rapidly convergent series

H_ilu - li (F) 7 (w) - li (F) Pulcosw). @)

n=0

wherer, /r is the argument of the series expansiorihe geocentric angle betweerandr,,
and?P,, are the so-calledegendre polynomialsf degreen.

Second, by introducing the spherical coordinates in thehHated reference frame, i.e.
the geocentric longitudg (counted positively towards the Earth) and the geocerdtitudes
of the geocentric position

T = T COS¢ COSA
Yy = 7T cos¢sinA
z = rsing,

as well as the corresponding quantitigsinde, for the volume element at,, and by using the
decomposition formula, the Legendre polynomials can baeded into spherical harmonics

n

Palcos ) = > (2 — dom) % P (sin ¢,) cos(m(h — A,)),

whered;; is the Kronecker function);; = 1 for ¢ = j and zero otherwiseP," are the so-called
associated Legendre functignghich may be defined as

m=0

Pula) = Pule) = 5o o {(a? 1))

2 n! dan
o) = (-2 L )
n dxm
We finally write the Earth’s gravity potential in the form

Ulr,\, ¢) = i i (—e) P (sin @) (Chm o8 mA 4 Sy, sin mA) | (2.5)
—0m

whereR, is the equatorial Earth’s radius and where the quantifijgsands,,,,, are the spher-
ical harmonics coefficients which are given by

2 — Som (n—m)! "o\ s
Con = 25 [ () Prsiney) cosmd,) plr) av

(2.6)

2 — Som (n—m)! "o\ s :
S = 2 i [ () Pt sin () plry) v
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Let us remark that even though the expressions (2.6) of tbpajential coefficients seem
to be fairly complicated, some first degree and order coefftsimay be computed readily.
First, it is shown that the coefficieldty, is equal tol. As a consequence, the first term in the
expansion is nothing else than the two-body potentjalr. Moreover, it is worth noting that
all termssS,,, are zero, sincein (m),) in the integrand (2.6) is equal to zero far= 0. It can
also be shown easily that the coefficieats, C1; and S;; correspond to the center of mass
coordinates divided by the equatorial Earth’s radius. @fuee, these coefficients are zero if
the coordinate system refers to the Earth’s center of masslagy, the coefficientsy; and
Sa1, are zero as long as theaxis is aligned with the Earth’s main axis of inertia. Flgait
can be shown that

20-B-A B—-A
— T -5 and ngzm,

whereA, B andC' (with A < B < () are the principal moments of inertia of the Earth and
My, is the Earth’s mass.

Similarly, the potential may be expressed using an altermatay, with a single cosine
term, a phase difference,,,, as well as a new,,,,, coefficient

U(r,\, ¢) = % gzz (—e) P (sin @) Jpm cosm(A — A (2.7)

using the definitions fon > m > 0

Com = —Jam cos (mAyy)

Som = —Jnm sin (MmA\y,)
Jnm = V C%m + S%m

m\ = arctan —Snm
nm - C .

—Ynm

The use of the Earth’s equatorial radifts and the isolation of the factqr/r in Egs. (2.5)
and (2.7) have the advantage that the coeffici€nts and S,,,, (similarly J,,,) are non-
dimensional. The index is called thedegreeand m the order of the spherical harmonics
expansion. Coefficients witlw = 0, which are only latitude-dependent, are denotedasl
harmonics If n # m, the(C,,,,, andS,,,,, coefficients are referred to &ssseral harmonicand

if n = m, they are referred to asectorial harmonics They describe the purely longitude-
dependent part of the geopotential. Figure 2.1 illustrdtedirst order and degree harmonics
of the geopotential (2.7).



2.2 Disturbing functions — expansion in powers of the eawatyt and of the inclination 27

SR

5
AN
e

o
N

2=
1
=

AT

]
7

@ J»

(f)

e J22

I5

(d)

(8 31

ght regions indicate mass accumulations, while dagkores indicate

mass deficiencies@raphic and caption by Klinkrad (200B)
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2.2.2 Gravity field in terms of the satellite orbital elemens

In Section 2.2.1, the potential has been developed intorgaheoordinatesr, A, ¢). Even
though these formulations are rather important, it is atsoetimes useful to represent the po-
tential in terms of the classical Keplerian elemdits:, i, (2, w, M). This last formulation may
be more convenient when using the Lagrangian as well as thedza equations developed
in Appendix E (page 173). Moreover, the expansion into Kepheelements is also relevant
when developing a simplified analytical model. Besides,pgadial derivatives of this form
can be used to evaluate numerical, analytical, and senhytaoa methods.

Several authors discussed such an expansion, in parfiadala (1966) which is usually
associated to this technique. As a final result, Kaula (18&@esents the Earth’s gravitational
field as

n +o0

U= —% - Z Z Z Z g (%) Emp(9) Grpg(€) Snmpg (2, w, M, 0) (2.8)

n=2 m=0 p=0 g=—o0
where the functions,,,,,,, depend on the geopotential coefficietts, ands,,,

r +C - n—m even
Snmpq(Q,w, M, 0) = Snm €08 Opmpg (2w, M, 0)

- n—modd

— —|-S - n—m even
+ +CZ: Sin O ympq (2, w, M, 0) ,

- n—modd

defined with respect to th&aula gravitational argument
Onmpg(w, M, 0) = (n—2p)w~+ (n—2p+q) M +m(Q—90).

wheref is the sidereal time. The subscript indexes represented by p, ¢ are integers that
identify the terms in the so-calleiiclination functionsfF,,,, (i) and eccentricity functions
Gnpg(e) for a particular harmonién, m).

For the sake of clarity, both the eccentricity functions dnel inclination functions are
presented in Egs. (C.1) and (C.2) of Appendix C, page 165.

2.2.3 Luni-solar perturbations

As mentioned before (Figure 1.4), third bodies, such as thre&d the Moon, have greater
influence on space debris in higher altitude orbits. Acaaydo the Newton’s law of gravity,
the acceleration of an object by a point masdgs given by

= (2.9)
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wherer andr; are the geocentric coordinates of the space debris and oh#issm;, re-
spectively. The quantity; = G m; is the gravitational constant of the third body. However,
Eqg. (2.9) can not be used directly for describing the motibepace debris with respect to
the center of the Earth. Actually, the acceleration defimeédq. (2.9) refers to an inertial
coordinate system in which the Earth is not at rest, but mfitsubject to an acceleration
(Montenbruck and Gill, 2000)

L

P = .
Hi P

As a consequence, the acceleration of the space debrigssepr with respect to the Earth’s
center of mass is given as

" ( r—r; N r; )
AN L A

The first term of the third-body perturbation is known asdirect effectand the second term
is theindirect effectaccounting for the inertial acceleration of the geocenter.

Because the reason of perturbations from a third body is téna@tgtional attraction, it is
also reasonable to use a disturbing function. The potesiB&lirbing function can be written

as .
Ri = s ( _ <’°"’"§>) . (2.10)
[ =7l ]

Expansion using Legendre Polynomials

In keeping with Eq. (2.4), we find the final formulation by egpsing the potential (2.10) in
terms of the Legendre polynomials

R; = ’:— 3 (1)n Polcos ), (2.11)

U >0 i

wherer; is the geocentric distance andis the geocentric angle between the third body and
the satellite P, is the Legendre polynomial of degree

Let us now derive the expansion of the disturbing functiopawer series of the eccentric-
ity and of the inclination. To reach this goal, let us first sioler the three componertis, y, )
of the position vector expressed with respect to the Keplerian eleménts, i, 2, w, f) where
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f is the true anomaly. We have

x cos) —sinQ) 0 1 0 0
Y = sin{)  cos2 0 0 cosi —sint
z 0 0 1 0 sini cosi
cosw —sinw 0 rcos f
X | sinw cosw O rsin f
0 0 1 0

Second, let us also consider the Cartesian coordingtes; andZ; of the unit vector pointing
towards the third body. Consequently, the cosine of the g@oic angle can be expressed as

cos Xix+Y,y+ 2,z
= X; [cos(f +w+Q)+2sin(f+w) sinQ sin®i/2]
+ Y [sin(f+w+Q) —2sin(f +w) cosQ sin*i/2 |

+ Z;2sin(f + w) sini/2 cosi/2,

where we used/2 instead of the inclination and whefe, y, z) are the components of the
unit vector pointing toward the space debris. To derive &sexxpansion fotos ) we also
need to make use of the expansionsdiarf andcos f in terms of the mean anomaly which
correspond to d’Alembert series, i.e. Fourier series inrttean anomaly with coefficients
containing higher powers of the eccentricity for the higharmonics. These expansions are
given by (Brouwer and Clemence, 1961)

—+oc0o
1d
i = 2V/1 —¢e? ——J in sM
sin f Vi—e ;Sde (se)sin s
) . 5 (9 . T
= sinM +esin2M + ¢ gsm?)M—gsmM
+é? (% sin4M—gsin2M)

) 45 125
+ et (— cos M — — cos3M + — COS5M) + O(e%)

192 128 384
and similarly
2(1 _ 62) +o00
= —e+ ——= g M
cos f e+ . 2 cos sM,

9 2
= cosM +e(cos2M — 1) + %(COS?)M—COSM)

4¢3
+ =3 (cos4M — cos2M)

25 225 625
+ (@ cos M — o8 cos 3M + 384 COS5M) + O(€%).
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We also need the expansioniofa, indirectly present in Eq. (2.11) because of

(r/r)" = (r/a)"r;"a".

We have

IS

1 = 1d
= 1+562—Qe;?&Js(se)cossM
e 3e?
= 1—6COSM+5(1—C082M)+?(COSM—COS?)M)

64

+ T (cos2M — cos4M) + O(€”).

We show that the expansion of (2.11) has the form

 Foo n ' [1]4+253
Ri=2 X (g) AL o (X0, Vi Z2) el (sin%) cos @, (2.12)

— A\
Y on=2 kJlgiga.gs S

whereA™ (X;,Y;, Z;) are polynomial functions which depend on the Cartesiandioor
kvl7.717]27.]3

nates of the third-body. Her@, is a linear combination with general form
=g A+pw+ s

where) is the mean longitude, which is the sum of the mean anomagitjument of perigee
and the longitude of the ascending node, that is M + w + €2; andw is longitude of the
perigee, i.ew = w + M.

This potential is obviously time dependent through the tomsiof the perturbing body.
This particular formulation has two benefits: first, the eagan is rather compact which is
relevant since these series will be evaluated at each stibyg oiumerical integration process;
second, the chosen parameters are easily derived fromsatssof variables such as equatorial
or ecliptic spherical coordinates. Therefore, we can ugeasailable numerical or analytical
ephemeris. In our implementation, we choose the highly rateuand well-knowrDE405
solar system ephemeris. The Jet Propulsion Laboratb{ X provides these solar system
ephemeris in the form of Chebyshev approximations. The Dpweent EphemerisE) are
publicly available and have emerged as a standard for higtigion planetary coordinates
(Montenbruck and Gill, 2000). For further details, we refeStandish (1998).
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2.3 Expansion of the disturbing functions in universal ele-
ments

2.3.1 Singularities and numerical integrations

The Keplerian elementsi( e, i, ), w, M) present three cases of singularity in the prob-
lem of an Earth-orbiting object. For circular orbits = 0), the mean anomaly/ and the
argument of perigee are undetermined but the subh + w is well defined. Meanwhile, for
equatorial orbit§: = 0), the argument of perigee and the longitude of the ascendidg®
are undetermined but the suo € is well defined. Finally, when the eccentricity= 0 and
the inclinationi = 0, only the sumM + w + Q2 is well defined (Henrard, 1974). However,
it is worth stressing that there is no physical instabilioyresponding to this mathematical
singularity. In other words, for a very small value of the etiricity, a large change in the
argument of perigeer corresponds to a small change in both the position and trexiel
vectorsr, r, respectively. For the sake of the illustration, we refeodth the Lagrangian and
Gaussian equations developed in Appendix E (page 173)athemathematical singularities
are clearly apparent through the presence of the so-catted divisorgerms of the formi /e
and1/sini.

As an illustration of the effects of singularities in nunoadi propagations, we analyze
the stability of an osculating numerical integration psseith and without small divisors. In
order to perform these tests, we have taken advantage desofgomplete numerical osculat-
ing propagators calledAGRAN- M CRQOZ developed at “L’'Observatoire de la Cote d’Azur” in
Grasse (France). This extensive numerical software altoysopagate various sets of Earth-
orbiting objects while taking into account a large set oftydrations. Moreover, the latter
allows to consider two different integration algorithmserafter, we consider the Adams-
Moulton-Cowell multistep algorithm of order 12. To sum up,lrief, one can say that the
LAGRAN software is based on the numerical integrations of both #uelating Lagrangian
and Gaussian equations of motions expressed in Kepleeamegits (even though some exten-
sions have been given to partly avoid the singularitiesé€fliel 2002)). On the other hand, the
M CRQZ software is based on the numerical integrations of the asiogl equations of motion
expressed in Cartesian coordinates.

In our investigations, we performed numerical propagatiover a period of 60 days with
an integration step size of 90 s. The dynamical model indulde Earth’s gravity field devel-
oped up to degree and order 20 and the luni-solar perturigtithe initial conditions used in
the simulations are those of nearly geosynchronous spécesdiat isug = 42 164 km, eq =
10~%, iy = 10~* rad. The validation is performed by considering the diffes between a
forward and a backward numerical integration. That is thal fatate vector of the first nu-
merical integration is used as initial condition of the setmumerical integration which is
performed with a negative step size. As a consequence, thgamt of the difference is then
located at the end of the time window. Figure 2.2 shows thierdifices using Keplerian
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Figure 2.2: Stability of numerical integration in case ofadhdivisors (singularities): Kep-
lerian elements of two numerical integrations performedingular coordinates:( i, 2, w)
using theLAGRAN software. Differences between a forward integration andckward in-
tegration o = 42164 km, ey = 1074, iy = 10~* rad). Dynamical model: Earth’s gravity
field up to degree and ordef, luni-solar attractions. On each graph, on the left are show
(Ae, Ai, A, Aw) and on the rightdpAe, agAi, agAS), agAw).
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Figure 2.3: Stability of numerical integration without dindivisors (without singularity):
Keplerian elements of two numerical integrations perfatnmenon-singular Cartesian coordi-
nates ¢, i, 2, w) using theM CRQZ software. Differences between a forward integration and
a backward integratiomf = 42164 km, eq = 107%, i, = 10~* rad). Dynamical model:
Earth’s gravity field up to degree and ordY, luni-solar attractions. On each graph, on the
left are shownfe, Ai, AQ2, Aw) and on the rightdyAe, agAi, agAS), agAw).
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Table 2.1: Statistical analysis of numerical integratimoes. Dynamical model: Earth’s grav-
ity field up to degree and order 20, luni-solar perturbatigd@smparison between the forward
numerical integration and the associated backward nualantegration with and without
small divisors. In each orbit, there is one point every 15 (wiith a total ofn = 5761 points).

ap = 42164km, ey =10"% iy =10"*rad, Qy=wy= My =0rad
Keplerian elements Non-singular elements
Mean RMS X2 Mean RMS X2
a [m] | 0.664107% 0.472107° 0.305107% | 0.464107% 0.5601079% 0.724 10~10
e 0.842107%  0.156 10794 0.878 -0.13910~'*  0.46410~'' 0.129107 4
i [rad] | 0.5681071% 0.898 10~% 0.26910~1° | 0.152107* 02751072 0.24010~'7
[rad] | -0.588 1076  0.269 10~ 0.112107% | -0.184 1071 0.947107'° 0.982 10~
w [rad] | -0.483107% 0.104 1074 0.189 -0.458 10797 0.447107°7 0.157 10710
M [rad] | -0.10910792 0.827 107! 0.363 10797 | -0.10910792  0.827107°' 0.237 10710

elements during the integration process (usingtA€RAN software). As a consequence, the
eccentricity and the inclination are small enough to indsioll divisors in the equations of
motion. The propagation of the numerical errors is quitedas involves a deviance of several
thousands meters between the two orbits only #fietays.

On the contrary, Figure 2.3 shows the differences betweersdme orbits integrated in
non-singular Cartesian elements (using Me&CRQOZ software), namely the projection of the
Cartesian coordinates into classical Keplerian elemdntshis case, the differences remain
quite small and underline mainly the characteristics ofdih@sen numerical integrator.

In order to quantify the significance of singularities in théer numerical integrations, we
have computed a couple of statistic quantities shown in€Taldl. The statistic quantities char-
acterize the similarity between thepointsz; of the orbit obtained by the forward numerical
integration, and the pointsz; of the orbit obtained with the backward numerical integnati
The first two columns correspond to the mean values and theaté deviation (Root Mean
Square) of the differences. The third column shows the dfyapt where

The smallery?, the higher the similarity between the two numerical in&tigins. By means of
this quantity, it is even clearer that the numerical intégraperformed witiM CRQOZ, i.e. by
using a set of variables avoiding the small divisors in thea¢igns of motion, is significantly
more stable than numerical integrations performed in abKeplerian elements.
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2.3.2 Universal set of variables: the Poincaré variables

As shown in the previous section, it is relevant to considgpexific set of variables avoiding
both singularities and still ensuring an easy geometridakpretation of the motion.

Non-singular sets of variables already exist in the liter@t As an example, the following
equinoctial elementsi, A = M +w+Q, e sin (w+2), e cos (w+2), tan % sin €, tan % cos €
are used extensively in several domains of celestial mechaThe associated Lagrangian
equations have been computed (Giacaglia, 1977; Nacozy ailldsD1977; Wytrzyszczak,

1986). However, these equations are rather complicated.

As an alternative, in our approach, we prefer to adopt a mogutar set of variables which
is also canonical. The following Poincaré variables, ..., x¢) hold these specific charac-
teristics and are defined by

xlz\/ﬁsinp, x4 = /2P cosp,
s = /2Q sing, 25 = v2Q cosq, (2.13)
r3=A=M+Q+w, rg = L,
where
P=L-G, p=—-—w-—1Q,
Q=G-H, q=—1,

and(L, G, H) are the Delaunay’s elements defined by

L=/na, G=+/pa(l—e?), H = +/pa(l—e?) cosi

as well as\, the mean longitude. As a consequence, canonical propevriligreatly simplify
the dynamical equations leading to the following Hamileomsystem of equations

% _ 8H($1,...,x6) 1<]<37

d 03 (2.14)
% _ _aH(ZL‘l,...,l‘G) 4§j<6’

dt al‘j_g

where’H is the Hamiltonian function taken into account. The syst@m4) is said to be

a Hamiltonian system of order 6, or, equivalently, of 3 degref freedom. The quantities
z; (j = 1,...,3) are called the variables (similarly the coordinates) witie quantities

z; (j =4,...,6) are called the momenta, which are conjugated tacthg =1, .. ., 3).

The Hamiltonian equations of motion differs from the Lagy@m equations because the
canonical elements rates depend not only on the disturbimggibn but also on the total energy
of the system. In particular, when the Hamiltonian functiéms autonomous, i.e. it does not
depend explicitly on the timg one can show th&t is the sum of the kineti@ and potential
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energy) of the system and so equals the total energy, an integraédfytstem. Generally, we
have a Hamiltonian

H = T+V+0A
— H2b+ZRn+éA

2

_ A :
= —ﬁ—F;Rn—F@A

where —p?/2L? is the Hamiltonian for the two-body problem afit, are the various dis-
turbing functions which are possibly taken into accountoider to preserve an autonomous
Hamiltonian, we also consider a correcting tetth which is due to the Earth’s rotation. The
guantity A is the momentum conjugated to the sidereal ttme

One major benefit of Hamiltonian systems is that it makesip@oordinate transforma-
tions easier to carry out, which will be particularly relavavhen we will investigate reso-
nant dynamics. More generally, the canonical form of théedghtial equations can be easily
preserved while considering the so-called canonical toemsations which define a subset of
transformations from one set of canonical variables tolaeraget. Furthermore, we ought to
mention that the canonical properties will also greatly@ify the further analytical filtering
in order to eliminate the short-period variations.

However, expressed in this form, the canonical set of elésn@hl3) is not well suited
for the implementation of a perturbation theory becaus@thentials, expressed as a function
of them, are not simple Poisson series. This is due in patigddct thatP? and (@ are not
dimension-free (Henrard, 1974). A more convenient (buttaobnical) set of elements would

be
[2P [2Q
L’ L
Because of their design, these elements are dimensiomuficcéhus well suited for series ex-

pansions.

Let us note that for small to moderate eccentricity and matlon, these elements are di-
rectly related to both the eccentricity and the inclinatidotually, we have

since
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Figure 2.4: Graphic of/ = \/2P/ L with respect to the eccentricity For eccentricity values
such as: < 0.5, the two quantities are very close.

as well as

. 214
2sin—- = 11— —
sin V{ 2]

1 2 3 4 6
= V+ZVU +§VU +O(U%).
For the sake of comparison, in Figures 2.4 and 2.5, we plovahees of both/ = /2P/L
andV = ,/2@Q)/L with respect to the eccentricity and the inclination, respely. It is clear
that for eccentricity values such as< 0.5, U ande are very close. Similarly, for small to
moderate values of the inclination and of the eccentrititg, quantities” and2sini/2 are
also very similar.

If the series expansions are performed and truncated, theltdaian functions taken into
account in the problem of space debris, such as the geo@d{@18) and the third-body (2.12)
disturbing functions can be easily expressed as a combmiagitween polynomials iti andl
and trigonometric functions with respect to the angulamgjtias. Regarding the geopotential
expansion and for an arbitrary harmonic of degieere formally have

N,

1 n
(n) _ § : (n) (n)

Rpot — L2n+2 A_] (U, V) B] (A,p, q, 0) y

j=1




2.3 Expansion of the disturbing functions in universal edats 39

25 T T L
2sini/2 ——
V(ie=0.0) ———
Vie=0.2)
2+ / Vie=04) .
A e V(e=0.6) -
}q /// //,, \\\\\\
E 2 / |
N ’ b, \’»f‘
I 11 0 1
~ %
05} 4 N
O I I I
0 z T 37” 2w

Inclinations [rad]

Figure 2.5: Graphic of = /2@ /L with respect to the inclinationfor various values of the
eccentricitye.

whereas the-degree third-body expansion is related to

ALG Nn

RY = 20 S ADWU VXY, Z) B (A pa).
j=1

7 n+1
T

The quantityBJ(.") is a trigonometric function which depends on the angulaiaées )\, p, ¢

and possibly. Ag.") is a polynomial in thé/ andV” variables and possibly depending on the
Cartesian coordinates of the third-body when considetiegthird-body expansion:,,,.. is

the maximum degree of the expansion angdis the number of terms in the-degree expan-
sion. Let us note that the sidereal tifiés only present in the case of tesseral and sectorial
harmonics due to the asymmetry in longitude.

Therefore, it is straightforward to deduce the final expamsn a set of non-dimensional
Cartesian variableX, Y;, X5, Y5, that is

Hpu = Ha+0A+ > R
n=2 (2.15)

2 nmaz N”l
_%+9A+ Z T2n+2 Ag'n)(XhYlaXQ,YQ)BJ(»n)()\,H)7
n=2 j=1
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whereA is the momentum conjugated to the sidereal time&Similarly, from Eq. (2.12), we
obtain the third-body expansion

M = ni: R
n=2

Nmaz L2n Ny,

- Z ”—HZ Ag'n)(XlaYiaXQaYéaXi)}/i?Zi) Bj(n)(A)’
n=2 Jj=1

(2.16)

i

[2P [2P

X1 =Usinp=/— sinp, Y1 =U cosp=1/— cosp,
L L (2.17)
/2 /2

Xy =V ssing = TQsinq, Yo =V cosq = TQcosq.

These variables are similar to the elements that we havednted in Eq. (2.13). It is worth
noting that despite the fact that this set of variables is@égnt non-dimensional, the new dif-
ferential system of the equations of motion remains simptEigisaid to beuasi-Hamiltonian
i.e. Hamiltonian when excluding the non-dimensional Valea substitutions. We mean that
we keep the Hamiltonian formulation of the differential atjans, after having divided the
momentaP and @ by L, making them non-dimensional. Of course, this divisionegates
some corrective terms. The new differential system of eqnatreads

where

. 1 0H . 1 OH
X, = -y 2P 9
7 L&K’ 1 LaXZ’ bl
oH 1 [ oH 2 oM OH (219
o= opa | Nty b=

whereH is the Hamiltonian function (2.15) and/or (2.16) taken iat@ount and expressed in
the before-mentioned non-dimensional and Cartesian setrizbles (2.17).

2.4 Manipulating series and first order averaging process

2.4.1 The Poisson series manipulator MSNAM

It is clear that the expansion of the disturbing functionggrened so far is a non-trivial task: it

is best undertaken with the assistance of computer alggbtamss (Murray et Dermott, 1999).

Actually, the various Hamiltonian series involve an extedyriarge number of analytical com-

putations, particularly in the case of a high order develepinHand computations are then
avoided.

To tackle this technical difficulty, we use a symbolic softevdeveloped in our University.
This tool is called thdVSNAM standing forNamur SeriesManipulator. It is based on the
idea described by Henrard (1986). This software was firdgtevrinFor t r an77 by Michéle
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Moons (Moons, 1993) and was further extended and improvedhbgues Henrard in 2004.
This software is at present writtenkor t r an90 and is used for manipulatirépisson series

of the form
p q
exp(i COS .
a ] X ( n ) (Z arg(])cbj) ,
i=1 j=1
that is Fourier series in theanglesyy, - - - , ¢, the coefficients of which are polynomials;n
variablesy, - - - , x,. The argumentsrg(j);-1.., and exponentszp(i);—;..., are integers and

the a coefficient is a real number.

The software package is provided with various mathematisatation functionalities such
as the addition, the multiplication of series as well as i@l differentiation and integration
with respect to both polynomial and trigonometric variable

When multiplying such series, more and more terms are petland they are always
reduced to linear form by the following well-known relatsimps

sind cosB = 3 (sin(A+ B)+sin(A— B))
cosAsinB = 1 (sin(A+ B)—sin(4-B))
cosAcosB = 1 (cos(A+ B)+ cos(A— B))
sinAsinB = 1 (cos(A+ B)+cos(A—B)).

The concern to keep a linear expression in both the sine aidecfunctions is actually manda-
tory for the manipulation of the series. In particular, iteissential when differentiating the
Hamiltonian function in order to derive the differentialuiagions, but also in order to perform
the averaging process which will be discussed further.

2.4.2 Averaging over the short periods

Before presenting the averaging algorithm, let us firstlt¢icat the perturbations acting on an
Earth-orbit object can be categorized with respect to fheitodicity. First, theshort-periodic
perturbations are said to be harmonic changes in the oddgalents with a periodicity which
is on the order of the orbital period. Second, tbeg-periodic perturbations are character-
ized by harmonic changes in the orbital elements with permdthe order of the periodicity
of both the perigee and the longitude of the ascending notesé perturbation oscillations
are typically on the order of several dozens of years. Rin#le secular perturbations are
characterized by time-proportional changes of the orkiahents. Moreover, we should also
define the resonant changes related to resonance effdatd lio some synchronism between
the orbital motion and a perturbing environment. This pecwase will be discussed further.

Figure 2.6 shows schematically the characteristics of @ruation classes according to
their periodicity as defined above. In this figure, we showtitme evolution of an arbitrary
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osculating elemeng'(¢) as well as the related mean elemé#i{t) which includes both the
long-periodic and secular variations (filtered over thersperiods). E'(t) is usually called
asingle-average@lement as the result of removing the short-periodic mdtiom the oscu-
lating elementE(¢). Removing the long-periodic effects would lead to the sitedadoubly-
averagecelement which is only associated with the secular changessented by the straight
line.

Let us recall that in completely numerical integrationsgtsas those obtained in Fig-
ures 2.2 and 2.3, the state vector or more generally the ohesieof orbital elements is
propagated along the osculating trajectory. The integmagtep in such integrations is typi-
cally on the order of a few minutes to ensure a sufficienthhlstability when following orbits
which are subject to high-frequency perturbations. In tfamework, the right-hand sides of
the differential system of equations are evaluated a hugeeuof times.

The main idea of our approach consists in using first an analyiltering procedure of the
initial osculating equations of motion, and second a nuca¢mtegration of these transformed
equations. This approach is well-known and is said to berai-analytical theory The main
interest of semi-analytical theories is the determinationg-term ephemerides. In this field,
what is of special relevance is not the complete descrigifahe solution requiring a lot of

Mean element E'(¢)
Long periods + Secular

Osculating element E(t)
Short periods + Long periods + Secular

Time

> 1

Figure 2.6: Schematic illustration of short-period, Igpgriod as well as secular effects with
respect to a generic perturbatiof(t) and E’(t) stand for an arbitrary osculating and mean
element, respectively. The straight line shows seculacedf The large oscillation line shows
the secular plus long-periodic effects, and the small legwh line, which combine all the
effects, shows the short-periodic effects.
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CPU time consumption, but the prediction of an approximat&ton at a given time.

Before proceeding with the averaging process, it is obWooscessary to specify the cut-
off period. In our theory, the cut-off period has been sethi® d¢rbital period of the space
debris, that is 1 day in the specific case of a geosynchrorpacesiebris. As a consequence,
in our approach, the so-called approximate position witi@ly corresponds to the propagation
of the long-periodic curve (Figure 2.6). When propagatilogpg this long-periodic curve, the
integration step can be significantly increased. Typicdlé/entry-level time step is chosen to
be on the order of 1 day. Consequently, the numerical intiegraf the transformed system
of equation guarantees a great precision for the futureisaland is very fast thanks to the
absence of short-periodic oscillations in the equationidd@st ten times faster than traditional
numerical extrapolation, depending on the order of the esioa).

The averaging process can be easily explained by first depathe fast periodic terms
from the long periodic ones. For geopotential and luniispiturbations, this has been ac-
complished by means of expansions with respect to our nayukar and Cartesian set of vari-
ables (dimension-free Poincaré variables defined in Eq7}9. Therefore, from Egs. (2.15)
and (2.16), we can formally consider the following generantilltonian functiorf<{

Nmax Nn
H =Y FOY (c]("’ (X1,Y1, Xa, Ya, X, Y, Z:) B (2, 6)

n=2 7j=1

AP (X0, Y3, X, Yo, X0 Y 20))

whereF is a positive or negative power function bf As we are interested in the long-term
dynamics and as we assume at this stage that we are not clagegonance with respect to
the mean longitudg, we average the disturbing functions over the fast varjal@dethe mean
longitude\. As shown before, all the forces taken into account inducelacations of the
same order of magnitude. As a consequence and as a first appwsaverage the disturbing
functions to the first order by dropping the fast periodiersiin the trigopnometric functions
leading to the general averaged Hamiltonian formulation

Nmazx Np,
H="y FOL) > AW (XY X3, Y5, X0, Y5, Z0),
n=2 j=1

where X|, Y/, X}, Y, as well asl’ denote the averaged quantities (mean elements). For the
sake of simplicity, the primes will be omitted further on.tlus note that, at present, the fast
variable) is now disregarded which means that the mean semi-majondkismain constant,
which is compatible with a first order theory. Therefore, vinglfeasily the transformed system
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Table 2.2: First termsi¢order expansion) of the averaged Hamiltonian setigsassociated
with the second degree harmonic. Let us notice that for sammeanient reasons, we use the
geostationary semi-major axis (42 164 km) as the distante Mworeover, the gravitational
constanfu is set to unity.

A0 Xy Y Xo Yo L Xo Yo Zg rq Xo Yo Zo 1o Coefficient
cos(@®@ 0 (O 0O 0 0 -6 O 0 O O O O 0 0) 0.123866193131270D-04
cos(0O 0) © 0 0 2 6 O 0 0O 0O O 0O 0 0) -0.185799289696905D-04
cos(0O 0) O 0 0 4 6 O 0 0O O O O 0 0) 0.464498224242264D-05
cos(@®@ 0 (O 0 2 0 -6 O 0 0O 0O O O 0 0) -0.185799289696905D-04
cos(@ 0 (O 0 2 2 -6 O 0 0O 0O O O O 0) 0.928996448484529D-05
cos(@®@ 0 (O 0O 4 0 -6 O 0 0O O O O 0 0) 0.464498224242264D-05
cos(0O 0) © 2 0 0 -6 O 0 0O O O O 0 0) 0.185799289696905D-04
cos(0O 0) © 2 0 2 6 O 0 0O 0O O O 0 0) -0.371598579393811D-04
cos(0O 0) O 2 2 0 6 O 0 0O 0O O O 0 0) -0.371598579393811D-04
cos(@®@ 0 (O 4 0 0 -6 O 0 0O O O O 0 0) 0.185799289696905D-04
cos(@ 0 2 0 0 0 -6 O 0 0O O O O 0 0) 0.185799289696905D-04
cos(0O 0) 2 0 0O 2 6 O 0 0O 0O O O 0 0) -0.371598579393811D-04
cos(0 0) 2 0 2 0 -6 O 0 0O 0O O O 0 0) -0.371598579393811D-04
cos(0O 0) 2 2 0 0 -6 O 0 0O 0O O O 0 0) 0.371598579393811D-04
cos(@®@ 0 4 0 0O 0 -6 O 0 0O O O O 0 0) 0.185799289696905D-04

of equations (quasi-Hamiltonian)

. 1 OH . 1 OH
Xi = T av> }/i:__—) 22172
g%% 1 [& aﬁL - 2 9H OH (219
A Y5 Ll e Z+;am i ox !

2.4.3 Characteristic series expansion and coding illusttaon

As an illustration, Table 2.2 shows the first terms of the somgular averaged serigs,
associated with the second degree harmonic. The relatedtdiaian disturbing function is
given by

1,u4Rz a\s .

Hy = 3 16 (;) (1—3sin’¢)
1 p*R? ra\3 L

= 3 (5) 132

In the present case, the Hamiltonian series is obviouslgpaddent of the positions of the
Sun and the Moon leading to the null values of the exponenisth€rmore, to give an idea

of the complexity of the various perturbations expandedower series, we also compute the
Hamiltonian series for several order expansions. Tablgi2es the numbers of terms for each
perturbation which is taken into account.
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Table 2.3: Number of terms in the various averaged and ascglaélamiltonian series ex-
pressed in non-singular Poincaré variables. The numbesaflating terms are inside paren-
theses.

Perturbation Number of terms
n-order expansion
XY XPYytwith iy + g + i3+ <n n=2 n=4 n=6 n=2_§

Geopotential

H, 5 15 31 53
(33) (145) (410) (895)

External Body - Sun & Moon

up to degree 27 86 197 390
(205)  (836) (2374) (5480)
up to degres 73 250 611 1227

(645) (2642) (7854) (18380)

Finally, we refer to Appendix G (page 181) where the termsadge given for the third-
body series expansion.

2.5 Checking the method

As mentioned before, the semi-analytical theory has beeslolged to avoid the use of numer-
ical integration of the complete differential system overwlong periods of time, which are
typically on the order of several years up to hundred yeaosvé¥er, the numerical integration
scheme is always considered to be the reference if it is psoppplied. As a consequence,
and in order to give a first validation of the theory, we apploeir semi-analytical theory to
the typical case of a high-altitude abandoned space detdisva compared our results with
respect to the osculating orbits derived from complete nmigakintegrations.

It is worth noting that the usual way of testing semi-anahftitheories that consists in
comparing directly the semi-analytical solution with tlesult of the osculating numerical in-
tegration is not entirely consistent. As a matter of faae, dsculating elements and the mean
elements are not directly comparable. Therefore, a hightyirate testing procedure should
have regard for this difference. For instance, Exertier ld@tris (1995) describe such an ac-
curate method based on the conceptha&foretical filtered elementdNithin this context, the
osculating orbit is first numerically and analytically fikkel over the short periods leading to
the so-callecbbserved filtered elementSubsequently, the evolution of the mean elements
computed using the transformed dynamical model (semiyinal method) is finely tuned
on the observed filtered elements, with adjusted initialdtitions by a differential correction
procedure. For further details concerning this testinggdore, we refer to Métris (1991),
Exertier and Métris (1995) and Deleflie (2002). However retreough this testing procedure
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Figure 2.7: Comparison between the osculating orbit (bkl& dine) and the mean orbit
(red dashed line) for the long-term time evolution of a fiotis space debris subject to the
second order harmonig, and to the third-body perturbation (Moon). Initial condits are
ag = 42164 km, ey = 0,75 = 0rad,Qy = wg = Ao = 0 rad. Initial time at epoch is
25 January 1991.

is much more rigorous, we consider that the time taken toempht such a procedure is too
much regarding the fact that our main purpose is to give a ‘Gider” comparison.
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Figure 2.8: Differences between the osculating orbit aedlean orbit for the long-term time
evolution of a typical abandoned space debris. The modedraes is equivalent to the one
chosen in Figure 2.7.

Here, in order to make these comparisons achievable, weathlentage of a home-made
numerical software. This software has been first develoged.lDelsate and has been re-
cently extended for the special needs of the investigatiensloped in this manuscript. This
extensive tool allows to derive the osculating motion of griteary object orbiting any of the
terrestrial planets of our Solar System. Similarly to MeCROZ software mentioned earlier,
the osculating equations of motion are expressed using$§ian coordinates which ensures
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a high stability of the numerical solution by avoiding botteteccentricity and inclination
singularities. The packages include the combined thimdylattractions of the Sun and the
Moon, the direct radiation pressure (possibly includingBarth’s shadow), the Earth gravita-
tional field expanded up to an arbitrary degree and order tiaicfEGVD6 model, Lemoine
et al., 1987) using the Cunningham algorithm (see Appendpage 161) and air drag when
applicable. The latter software allows to consider twoedtdht integration algorithms. Here-
after, we adopt the variable step size Bulirsh-Stoer algori{see e.g. Bulirsh and Stoer, 1966;
Stoer and Bulirsh, 1980). For further details concerningratext where this software is used
extensively, we refer to Chapters 4 and 5. Concerning theenigal algorithm used in the
semi-analytical propagations, we also adopted the Buliitsler algorithm as well as a fourth-
order Runge-Kutta algorithm when a fixed step size is require

From this point, let us consider the dynamical evolution tifeoretical high-altitude space
debris. As a first approach, the perturbations taken intowatcare the oblateness of the Earth
and the third-body perturbation induced by the Moon. Fidliileshows the variation of both
the inclination and the eccentricity as well as the assedi&ingitude of the ascending node
and the argument of perigee over a period of more than 103 yé@1000 days). In this fig-
ure, the mean orbit (red dashed line) obtained by our sealisacal theory is superimposed
with the related osculating orbit resulting from the intgyn of the full differential system.
It is worth stressing at this point that the entry-level stgge used in the osculating numerical
integration is fixed at 200 seconds, whereas we defined a ltelpagize when integrating the
averaged system of equations.

It is also worth noting that the short-periodic effects apezially significant on the semi-
major axis and to a lesser extent on the eccentricity. Aljtuile angular quantities, that is the
inclination, the argument of perigee and the longitude efdbcending node are also subject to
short-period oscillations but with small amplitudes. Id@rto give a quantitative estimation
of the accuracy of the method, Figure 2.8 shows the diffexdretween both orbits. First,
when regarding the semi-major axis, it is clear that theedsifice is mostly induced by the
short-period amplitudes. Second, on the remaining orkihents, the differences remain
small although the chosen time of integration is very siegalfictually, the compute® M/ S
can really be considered as being very small insofar as thpadson has been made with-
out any preliminary fitting of the mean initial conditions. okéover, thekRM .S on both the
argument of perigee and longitude of the ascending node aséyninfluenced by the singular
transformation when projecting the integrated non-siagstate vector into Keplerian orbital
elements.

We seize the opportunity here to regain the main dynamiagpgaties of high-altitude
space debris which will be relevant in our further invediigas. These properties will be en-
hanced by drawing the time evolution of the main orbital edats. For this purpose, Figure 2.9
shows the variation of both the inclination and the ecceityras well as the associated longi-
tude of the ascending node and the argument of perigee owramf more than 100 years.
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Figure 2.9: Comparison between the osculating orbit (bki&l dine) and the mean orbit
(red dashed line) for the long-term time evolution of a tgbiabandoned space debris. The
model of forces is the second order harmoni®of the geopotential and the combined Moon
and Sun third body attraction. Initial conditions arg = 42 164 km, ey = 0, ig = 0 rad,

Qo = wy = Ag = 0 rad. Initial time at epoch is 25 January 1991.

The perturbations which are considered are the oblaterfdbe d&arth as well as the com-
bined attraction of the Sun and the Moon. As highlighted mphevious chapter, the Earth’s
oblateness causes the orbital plane of the space debrigresseabout the Earth’s polar axis.
Actually, for low-altitude orbits, the dynamics is mainlffected by the oblateness perturba-
tion, leading essentially to a precession about this axisreds for high-altitude orbits, such
as those of geosynchronous objects, the order of magnituthes dhird-body attraction be-
comes similar to the one related to the Earth’s oblatenesgafding the Sun, the perturbation
causes a regression of the orbital plane about the eclipkec Similarly, the Moon’s perturba-
tion leads to a regression of the latter plane about an axmaldo the Moon’s orbital plane.
In practice, we obviously observe a superposition of thedtabove-mentioned precessional
motions. The plane normal to the pole of the resulting motas called theé_aplace plane
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7sin €
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Figure 2.10: Projection of the orbital poles of theoretigabstationary space debris mov-
ing in the gravitational field of the Earth. The initial cotidns area, = 42164 km, eq =
4.1072, iy = 8.1072 rad for the semi-analytical propagation. The model of ferise oblate-
ness of Earth and the combined attraction of the Sun and thenM®dime of integration is
54 years. The orbital evolution is superimposed with theemircataloged objects.

The perturbations involve an important long-periodic &aon of the inclination with values
as high as 15and a periodicity of about 54 years, which is in agreemerth wie discussion
presented in Section 1.3. Moreover, the argument of peaggeshows a significant preces-
sion rate. Let us note that another long period of about 1€a6sy induced by the Sun and the
Moon attraction, is also especially apparent on the ecioggtevolution.

In addition, Figure 2.10 shows the projection of the orbgale of a theoretical space
debris placed on a particular geostationary Earth’s omk propagated by using our semi-
analytical theory. The orbital evolution is also superirsgd with the current cataloged GEO
space debris shown in Figure 1.5 (page 14). The clear diteebetween the two plots may
be explained by the two following statements: firstly, thedtetical object was propagated
over a 54 years period whereas the objects cataloged aré¢yradgicial satellites and space
debris which were deployed at most 35 years ago. Secondlghjects could leave their initial
geostationary orbit only after the end of the operationahteaance period, which explains
the present distribution of the orbital poles.



2.6 Resonance with the Earth’s rotation 51

2.6 Resonance with the Earth’s rotation

The rotation period of an object in Earth’s orbit is said toibbe@esonancewith the Earth’s
rotation if it is commensurate with the sidereal rotatioriqe: of the Earth. In other words, the
object is in resonance if a small integer numbeof sidereal days is equal to a small integer
numberg, of revolution periods of the object, that is

P@ :@
Pobj CJ2’

where P, is the Earth’s rotational period, that2s/ne = 1 day (ng = 6) and P, is the
orbital period of the object taken into account. In thosece&deases, that is when the orbital
period is commensurate with respect to the rotation periititeoEarth, the object ground-trace
will be a closed or repeating path. The repeating grouncktraeans the object will periodi-
cally encounter the same configuration of gravitationatésr The result is a variation of the
motion with very long periods, typically the order of sevareonths, or even years, for deep
resonance (Vallado, 2001).

The geopotential resonances exist if at least one of theéabddements shows a net non-
zero accumulated perturbation due to the term considerexdome revolution period (Beutler,
2005). These resonances occur for instance when the rdie &f&ula gravitational argument
is close to zero, that is

@nmpq(QawaM79):(n_2p>w+(n_2p+Q)M+m<Q_9)20

Typically, when the conditiog = 0 is satisfied, that is when considering a zero-order expan-
sion with respect to the eccentricity, we have

(n—2p)(d)+M):m(9—Q),

or similarly
G+ M _Q
0-Q @
Such resonances are said taREpeat Ground-Track Resonancegypically, the rates of both
w andf are small and the condition (2.20) reads

, (2.20)

When the ratiay, /¢- is close to 1, the resonance is clearly associated with tbhstggonary
orbit whereas it is close to 2 f@PSsatellites.
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2.6.1 Resonant Hamiltonian formalism — the resonance angle

In order to describe the motion of a near-geostationaryesgdabris, we take into account the
fact that the Earth’s sidereal rotation period and the raimh period of the space debris are
nearly commensurate. In the case of a purely geostatiopagesdebris, the two frequencies
are exactly the same. Therefore, this repeat ground-tessniance will drastically increase
the amplitude of the harmonics by producing small divisarthie coefficient of the trigono-
metric terms.

Let us rewrite the Hamiltonian function of the second ordet degree harmonic, denoted
by H ,,,, which can also be expanded in series of non-dimensionatB# variables

' R?
L6
= HJ22<X17X27Y171/27A7)\,L,G)‘i‘é/\.

Hp, = 3 [Coa (22 — %) + S (227)]

Let us define the so-calledsonant angler
oc=\—10, (2.22)

where X is the mean longitude defined in Eqg. (2.13). In order to keepraugical set of
variables, we use the following symplectic transformation

doL' +d0' N =d\NL+doA, (2.22)
leading to the new set of canonical variables
L'=1, 0 =0, N=A+L

and the new Hamiltonian formulation including the resoreargle

Hy, (X1, Y1, X5, Vs, 0,1 ,0)+60 (N — L) . (2.23)

Averaging process

Thanks to the introduction of the resonant anglé is now conceivable to average the Hamil-
tonian after making sure that only the short-periodic tedmsappear, that is guaranteeing that
long periods associated with commensurate or near-conuregesorbits are preserved. To
proceed with this particular averaging process, it is ordgassary to average the Hamilto-
nian disturbing functior#{ ;,, over the fast angular variable, namely the sidereal timegesi

the mean longitude has been replaced by the combinatiorebatthhe resonant angle and the
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sidereal time. The averaging process can be formally ittt by the following relations

HJQQ (X17 Y17 X27 Y27 L7 A7 97 )\)

|

HJQQ (X17 Y17 X27 Y27 L7 A7 97 U)

ﬁJQQ (X171/17X27}/27L7A7 _70> )

Consequently, the differential system of equations rdl&aehis new averaged Hamiltonian is
given by

. 10Hy, - 16HJ22 o
Xi = L oy, ’ Yi=- L 0X; '’ 1=12

. OHp, 1 aH J22 OH J22 . OHy,
7 T 7oL 2L p Z Y’ ’ L__W’

which is very similar to EqQ. (2.18) except thats at present conjugated to the resonant angle
For the sake of completeness, Table 2.4 gives the numbema$ i@pearing in the disturbing
function and Table 2.5 gives the first terms of the expansitie4th-order series expansion is
given in Appendix G (page 181).

Table 2.4: Number of terms appearing in both the averageasculating Hamiltonian series
expressed in dimension-free Poincaré variables. The nuofbesculating terms are inside
round brackets.

Perturbation Number of terms
n-order expansion
XY 2 XPYo with iy + g +is +is < n n=2 n=4 n=6 n=3~8

Resonant disturbing function
H iy, = Heyy + Hs,, 10 40 104 206
(94) (468) (1392) (3178)

2.6.2 Long-term effects induced by the Earth’s rotation — snplified an-
alytical model

Subsequently, we will confine ourselves to the discussiotirotilar orbits in the equatorial
plane. Within these assumptions and in order to outline thie fieatures of the 1:1 resonance,
we consider the following “minimum” resonant Hamiltoniahincluding the two body prob-
lem as well as the second degree and order harmonic of thetedal. From Eqg. (2.23), we

have )
W 1
H(L,0,\) = ~572 +60(A— L)+ 75 [ag cos20 + g sin20] |
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Table 2.5: First termorder expansion) of the averaged Hamiltonian seklgs associated
with the second degree and order harmonic. Let us noticddhabme convenient reasons,
we use the geostationary semi-major axis (42164 km) as 8targie unit. Moreover, the
gravitational constant is set to unity.

o 0 X1 Y1 Xo Yo L X¢ Yo Zg rq Xo Yo Zo 1o Coefficient
cos(2 00 O 0 0O O -6 O 0 0O O O O 0 0) 0.1077767255434384D-06
cos(2 0) O 0 0 O -6 O 0 0O O O O 0 0) 0.1080907167254767D-06
cos(2 0) © 0 0 2 6 O 0 0O O O O 0 0) -0.5404535836273835D-07
cos(2 00 O 0 2 0 -6 O 0 0O 0O O O 0 0) -0.5404535836273835D-07
cos(2 00 O 2 0 0 -6 O 0 0O 0O O O 0 0) -0.2702267918136917D-06
cos(2 00 2 0 0O 0O -6 O 0 0O 0O O O 0 0) -0.2702267918136917D-06
sm(2 0) 0O 0 0 O 6 O 0 0O O O O 0 0) -0.6204881922826443D-07
sm(2 0) 0O 0 0 2 6 O 0 0O O O O 0 0) 0.3102440961413221D-07
sm(2 0) (0O 0 2 0 6 O 0 0O O O O 0 0) 0.3102440961413221D-07
sim(2 0) O 2 0 0 -6 O 0 0O 0O O O 0 0) 0.1551220480706611D-06
sim(2 00 2 0 0O 0O 6 O 0 0O 0O O O 0 0) 0.1551220480706611D-06

wherea; andas, are the numerical values of the first terms appearing in theildanian series
as shown in Table 2.5, that is

a; ~ 0.1077 x 1079, s ~ —0.6204 x 1077 .

Two stable equilibriao?,, L,), (015, L},) as well as two unstable equilibrias, , L, ), (05, L3s)
are found to be solutions of

om_on_
oL 0o
where
oy = A" Ol =N+
T 3T
051:/\*+§ 052:)\*+77
as well as

Ly = L3, = 099999971, L% = L3, = 1.00000029,

where the distance unit has been set to 42 164 km. The angalisg V' is the first quadrant
solution of

S
tan 2\* = 22 — *2

0—22 (03] ’
that is\* ~ 75.07°.

We can understand the existence of these four equilibriumgpthrough physical argu-
ments. First, let us consider the peculiar case of a pertsastgtionary object which means
that its orbital period is exactly one sidereal day. Secdetdys recognize that within these
assumptions, the Earth’s gravity field is only longitudg@eiedent when considering only the
second degree and order harmonics which correspond physathe ellipticity of the equa-
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Figure 2.11: Polar view of an equatorial section of the EaBbhematic illustration of both
the stable and unstable equilibrium points.

torial radius of the Earth (Figure 2.11). As quoted by Vallgd001): ‘in a reference frame
rotating with the Earth, it is clear that when the object is the extension of either axis of
the equatorial ellipse, the gravitational force is purebdial. These must then be equilibrium
positions or stationary points in the rotating referencanfre. On the other hand, when the
object is off-axis, there will be a net tangential forde, toward the nearest major axis. On
first examination, we might expect the satellite to accaéena the direction of theF’. How-
ever, the drag paradox dictates just the opposite, and thellga will accelerate toward the
nearest equilibrium position on the minor axis. Becauseguares momentum, the satellite
will actually drift pastS, and the direction of’ will then be reversed. The drift will gradually
be reversed. Hence, poinfson the minor axis are positions of stable equilibrium, wiasE
are unstable position’s

To investigate analytically this two degree of freedom pealy the Hamiltonian is first re-
duced to a quadratic form in a neighborhood of a stable dxjitn point. After diagonalizing
the Hessian matrix, we will be able to verify that the problemains decoupled and that the
proper frequency is also computed from the local analysis.

Let us introduce the resonant Cartesian coordinadtes= 2L coso,y = v2Lsino)
and at any equilibriuntz* = v2L* cos o™, y* = v2L*sin o*). Developing the Hamiltonian
function in Taylor series around one of the stable equdili*, y*), up to the second order,
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we find (having dropped the constant additive terms)
H(X,Y,A\) =0A+ %(ax2 +26XY Y2 4o
whereX andY are defined as
X=(@-2"), Y=(u-y).

The values:, b andc stand for the second order derivatives

_PH ,_ M _ PH

= — s = s C = ——
8372 (L*,O’*) 61.8:1/ (L*,O'*) 6y2 (L*,O’*)

a )

where (L*, o*) are the values ofL, o) evaluated at the first stable equilibrium. It is thus
possible to introducaction-anglevariables. This can best be performed using the so-called
reducing transformatioim order to eliminate the mixed terms in such a quadratic Hamian

(for further details concerning contexts where similangfarmations are useful, we refer to
Henrard 1988). Here, the transformation is given by

X=pcos¥+gsin¥ and Y =-—psin¥+qgcosV¥,
that is a¥ angle rotation, solution of
(@ —c)sin2W 4 2bcos 2V = 0.
As a consequence, we find the new Hamiltonian formulation
H(p,q. A) =0 A+ % [Ap* +C ],

with
A =acos2¥ — 2bsin ¥ cos ¥ 4+ csin 2V

and
C =asin2V¥ + 2bsin ¥ cos W + ccos 2.

A last scaling canonical transformation of the fopre= o p’ andg = éq’ obtained by solving

: : C : N
the following equatiom o® = —;, allows us to write the new Hamiltonian as
«

H(J, ¢, A) =0A+VAC T,
where(.J, ¢) are the correspondirartion-anglevariables

p =vV2Jcosop, ¢ =V2Jcosd.
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Subsequently, we find two frequencies, namely the frequendihe sidereal time and the
so-calledresonant fundamental frequency; at equilibrium.

. OH OH
0—6—/\, I/f—W—VAC

Numerical computations lead to the following value of thedamental frequency
v = 7.674 x 107%/[days]
that is a period of 818.7 days.

By a similar approach, we can easily estimate the width ofélsenant zone; we take the
Hamiltonian level curve corresponding to one of the ungt&juilibrial., ando,

2
7 : 1 .
H(Ly, 00, \) = o2t O(A— L)+ 75 (a1 cos20 + ay sin20] ,
and we find the maxima and minima of this “banana curve”, apoeding to the stable equi-
libria; by a quadratic approximation abolf, we obtain the width of the banana at the stable

points, i.e. the width\ of the resonant zone. It can be approached by

7* + 863 a 3 p? wo
JNY Ll Y 2.24
gz 0 LS cos 20, ’ & 2147 7 L3 f (2.24)

The numerical value of the width of the resonance zone isebtlder of 69 km.

2.6.3 Resonant effects — numerical investigations

Let us show how the semi-analytical method can highlighttlaén features of the debris pop-
ulation in the geostationary region. In this section, wespre the resonant motion and its main
characteristics: equilibria, stability, fundamentalguencies and width of the resonant area,
by comparison with our basic simplified model defined in Saber 2.6.2.

Figure 2.12 shows the mean semi-major axis and the resongig &hat is the mean
longitude in a frame rotating with the Earth) for a set of thgeosynchronous space debris
propagated over a period of more than 8 years where the ortlyrpation taken into account
is the second degree and order tesseral (sectorial) hatm@hie mean semi-major axis as
well as the resonant angle are subject to very-long pericdlatsons. Near the first stable
equilibrium, namely\ = \*, we observe that the period of oscillation is about 800 deglsie
very close to our formal calculation of 818.7 days.

Further, the periods increase as the deviafide= |\, — \*| increases with respect to
the stable equilibrium point. As a consequence, an arkigpace debris orbiting the geosyn-
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Figure 2.12: Semi-major axig [top] and resonant angle = X\ — 6 [bottom] of several
geosynchronous space debris with initial conditiops= 42164 km, ¢y = 0, ig = 0 rad,
Qo = wo = 0 rad, the initial longitude of which arg, = 5°, 35°, 75°.
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Figure 2.13: Libration periods [top] and width of resonafimstom] related to 32 virtual space
debris the initial longitude\, of which varied from0 to 27. The solid curves are obtained by
interpolation.
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Figure 2.14: Motion of a geostationary space debris nedlesequilibria in a rotating ref-
erence frame as seen from the pole. The variations on the samaRmajor axis have been
amplified for the illustration by a factor 100.

chronous Earth’s orbit may considerably librate except i$ iexactly located at the theoreti-
cal stable equilibrium point. As in the case of the first moafelesonance (see for instance
Breiter, 2003; Henrard and Lemaitre, 1983), the amplitwddéke perturbations affecting the
mean longitudes are observed tobA)X. Moreover, the perturbations seem to induce rele-
vant variations on the mean semi-major axis. Figure 2.18shbe variations of the periods
as well as the mean variations observed on the semi-majsraaxa function of the initial
mean longitude. The two stable equilibrium points as wellhestwo unstable ones appear
clearly. Near the first stable equilibrium, the period cages to the so-called fundamental
period. As a consequence, the variation on the mean senorr@és converges to zero. On
the contrary, the periods diverge to infinity near the urstaluilibria and the variations on
the mean semi-major axis reach their maximum that is alm®&n7 in the worst case, value
in agreement with our 69 km obtained analytically in Equa{i®.24). These results seem to
be in agreements with Beutler (2005) where the libratiomgokis found to be

2T ~

P=—K
R,

with k& = sin2 A\, A\ is the mean longitude deviance with respect\toand K (k) is the
normalized elliptic function of the first kind ik.
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We also represent the phase spéceos o, asino); Figure 2.14 shows clearly the exis-
tence of three distinct regions: the internal region cqroesls to orbital motion the period of
which is less than 24 hours. In this case, the longitude o$piaee debris is increasing; that is,
the space debris seems to orbit eastward around the Earlselbiond region is characterized
by mean motions synchronized with the Earth’s rotation, wel dvith the so-called geosyn-
chronous orbits. When the object is near one of the two stdpléibria, the space debris
oscillates. As shown previously, this oscillation corsist a long periodic libration around
the equilibrium. The last region is external, and the motloas not show anymore significant
long-periodic variations.
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Chapter 3

Analytical and semi-analytical
Investigations of geosynchronous space
debris with high area-to-mass ratios

“Houston, we have a trash problem !”

By Sean Cooper, Wired Magazine, Issue 15.05

— The results of this chapter have been previously publishe®alk et al. (2007b) —

The recent observational discoveries in high altitudelEadrbit (for the most part in geosyn-
chronous orbits), stimulated the revisit of direct solali@fion pressure models. In particular,
recent numerical investigations were performed in ordastess the time evolution of objects
subject to such extreme situations (Anselmo and Pardif520iou and Weaver, 2004; Mc-
Kee, 2004). In this framework, short-term as well as longatevolutions of geosynchronous
space debris were studied in detail. Liou and Weaver (2086)@oposed the source of such
high area-to-mass ratios, namely thermal blankets or #ayér insulation (MLI), which are
made from Myla®, Kaptor® or Nomex®.

The topic specifically addressed in this chapter is the dgwveént of an accurate semi-
analytical theory. This theory provides a Hamiltonian fatation for GEO space debris sub-
jected to direct solar radiation pressure. Similarly to skeni-analytical theory developed in
Chapter 2, this theory is still based on the concept of awstaguations of motion over the
short periods and is of order 1 regarding the averaging peocéhe transformed differential
system of equations is then numerically integrated ovelahg periods.

First, for the sake of clarity and completeness, we presetit the description and the
modeling of direct radiation pressure in Section 3.1.

Sections 3.2 and 3.3 describe the osculating equations tdmassociated with the direct
solar radiation pressure followed by the non-relativiaisumption leading to our Hamiltonian

65
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formulation. This formulation is based on the analyticgb@xsion of the disturbing function
using canonical and non-singular variables with respeantexpansion in powers of the ec-
centricity and of the inclination truncated at an arbitraimgh order.

In addition, in order to underline the main effects inducgdhe direct solar radiation pres-
sure, Section 3.4 describes simplified analytical modetsessed in non-singular elements.
The aim of this section elaborates and is an improvemeniecdtialytical model presented by
Chao and Baker (1983) and Chao (2006), in order to obtain migttbhe averaged equations
in eccentricity and longitude of perigee, but also the cmgpéquations between eccentricity
and inclination as well.

Finally, Section 3.5 consists of a comparison of variousiaggions in the modeling of
direct solar radiation pressure and emphasize the impmrtainadopting an accurate model of
radiation pressure when dealing with high area-to-massstavloreover, this section claims to
be the counterpart of previously published results (Ansedmd Pardini, 2005; Schildknecht
et al., 2007).

3.1 The direct solar radiation pressure

By direct solar radiation pressure, we mean the net act¢elenasulting from the interaction
of the sunlight with each elementary surface of the spaceiglebhe Quantum Mechanics
says that each photon of frequencgnd wavelengtiA = ¢/v carries the energy

E=hv,

whereh = 6.62 x 10~%* J s is the Planck’s constant anis the speed of light in vacuum. The
photons carry not only energy but also linear momentum wisigjiven by

hv
P=——8,
C

wheres is the unit vector pointing toward the Sun. The momentumstiemed per time unit
onto a unit surface in a radiation field is calledliation pressure As a consequence, the radi-
ation pressure is a vectorial quantity (Beutler, 2005).

To model what happens of the linear momentum carried by tetran impacting the
surface, we can use a combination of three standard physamls, namely, thabsorption,
thereflection and thediffusion. For each elementary surfa@® of the space debris, one can
define the coefficients, p andd, that is the fractions of incident sunlight which are absakb
reflected and diffused, respectively. These coefficier@seaated to the following equation

a+p+do=1.
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Figure 3.1: Elementary surfaets, and the angled between the normal vectot and the
direction of the Surs [left]. Geometry of the incident, reflected, diffused andaibed radia-
tion [right].

To simplify the investigations of radiation pressure, ic@venient to consider the following
assumptions

e the absorbed light is not re-emitted (black body);

¢ for a given direction, the intensity of diffused light is partional to the cosine of the
angles from the normal to the surfaes (Lambert law) (Figure 3.1, left);

¢ the reflection is perfectly specular, which means that thetquis bounce on a smooth
surface following the laws of mirror reflection;

¢ the elementary surfacéS behaves like a linear combination of three physical models:
that is a combination of a black body, a perfect mirror and enhert diffuser. As
a consequence, the three coefficients completely speafppiical properties of the
surface taken into consideration (Figure 3.1, right).

Making use of these assumptions, the force induced by thatiawl pressure is directed in
part along the normat to the surface and in part along the direction of the Suiihis force
can be easily obtained by adding together the elementacgsai’,,, dF', anddF 5 induced
by the absorbed, the reflected and the diffused sunliglhgentively.

The elementary force acting on a surface elemkfilue to the absorption is naturally
oriented along the-s direction and is proportional to the cross sectitsii cos (|, that is

)
dF, = ——= & cos 3 sdS,
c

where ., is the energy flux, that is the flux per unit of area. Let us amwoark that the
energy fluxd, is also called theolar-radiation constantgiving the energy flowing through
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this surface per time unit at the distance of 1 AU. The valughisfconstant is
P, = 1368 Watt/m?.

Concerning the elementary force resulting from the refbectf the sunlight, we know that
it will be directed along the-n direction, with a force directly proportional to the crogxs
tion. Moreover, the fraction of photons corresponding ®ridflection coefficient transfers to
the spacecraft, not only the momentum they had upon artvalalso the recoil momentum
(Milani et al., 1987). Therefore, we have

p

)
dF,=——22pcosdS|cos 3| n.
c

Finally, regarding the fraction of photons correspondmtiie diffusion coefficient, we have
d 2
dFs = ——2§ cos 3dS [s + gn]
C

where thes-component is first related to the absorbed part of the imtikight and where the
n-component is associated with the re-emitted part.

As afinal result, the resultant of the elementary forcesvsmgby

F,, = —(I)—C@ {(1 —p) cosfs+ (%5 +2p COSB) cosﬁn} ds, (3.1)
S

whereS is the portion of the space debris illuminated by the Sun.

In practice, the evaluation of the integral (3.1) is rathmnplicated. Actually, determining
the coefficients properly is extremely difficult. The thresefficients change over time and
are virtually impossible to predict. This is especiallyarior objects with complex shape,
eventually made of various materials, that enter and elppseregions, and possibly have a
constantly changing orientation (Vallado, 2001). Moreoitas not guaranteed that the resul-
tant force is applied on the center of mass of the space delssibly leading to variations on
the attitude. However, as reported by Milani et al. (1987he object subjected to direct radi-
ation pressure has some simple shapes, the integral of By .c€h be computed analytically.
In such a case, the force induced by the radiation pressarkecdirectly expressed as

F,, = _204, : (3.2)

C

whereA is theeffective cross sectionFor instance, considering a flat panel oriented orthogo-
nal to the Sun direction vectar, the effective cross section is simply related to the arahef
panel. Otherwise, in the specific case of a spherical oljeatadius of which is defined by,
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the effective cross section can be computed as
A= a+p+§5 T R*, (3.3)
where the coefficients defining the optical properties ofibjects are assumed to be constant.
Let us also remark that in the literature, the name “reflé@gticoefficient is usually used
to represent the single coefficient related to the opticaperties of the surface even though
it is not only related to the reflectivity properties, as istsown in Eq. (3.3). Although this

misuse is misleading, we will adopt this generic name. Timgle scalar coefficient will be
denoted by, further on in this manuscript.

3.2 Osculating equations of motion

In keeping with Eq. (3.2), the acceleration due to the diradiation pressure can thus be
written in the form

(3.4)

2
A —_
arp:CTPr |: CL@ :| - r®

[ — o]
where(, is the above-mentioned dimension-free “reflectivity” dmeént (fixed to 1 further

on in this manuscript), which depends on the optical progeidf the space debris surface;
P, = &, /c = 4.56 x 1076 N/m” is the radiation pressure for an object located at a distance
of 1 AU; a, is a constant parameter equal to the mean distance betwe8uthand the Earth,
thatisa, = 1 AU; r is the geocentric position of the space debrisant the geocentric posi-
tion of the Sun. Finally;n is the mass of the object subject to radiation pressureh&untore,

the variation of the distance between the Sun and the Eairipigcitly taken into account in

Eqg. (3.4) since the incoming flux will change because of treeeticity of the Earth’s orbit
around the Sun.

—_ )
m |r —rel

Without any assumption, the radiation pressure should bsidered as a dissipative force.
Therefore, the equations of motion taking into account ffeceof the radiation pressure are
traditionally written using the Gaussian perturbationagmns (see Appendix E.1, page 173).
As a consequence, the acceleration is expressed alongdibéSaalong-trackT' (perpendic-
ular to position vector in the orbital plane) and out-of-plan® (normal to the orbital plane)
directions. Under the following assumptions

1. The Sun-space debris vector is considered to be equa t6uh—Earth vector, that is
r— I'@ = —I'®,

2. The albedo radiation pressure of the Earth is ignored,
3. The Earth’s shadowing effects are not taken into account,

4. The light aberration is not taken into account (relatigisffect),
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5. The YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack)ihal effect is not taken into
account,

6. The radiation pressure acceleration, defined in Eq.,(8s8umes implicitly a spherical
object, with optical properties defined by a single scalar

the Gaussian equations for the variations of the osculatibgal elements subjected to direct
radiation pressure acting along the Sun—Earth directictovare (Appendix E.1, page 173)

g %[es(f) sin f +T(/)?]

% _ %{S(f)sianrT(f) [cosf—ké(l—g)]}’
W,

Yo el M s eos et (140 ) smg| . @9
% = ﬁwgsmwm

- n—%S(f)%—n(i—j—i—cosi%).

In Egs. (3.5),x = C, P, A/m (as/rs)*; n = V1 — €2; [ is the true anomalyy the orbital
mean motion ang = a (1 — ¢?) is thesemi-latus rectumFrom Kozai (1961) and later Aksnes
(1976), we have

{ggg} . _60525'6052;{C?S}u@—w—a—ﬂ

S R
sin” o sin 2{ “in }()\Q w4+ Q4+ f)
L. cos cos
—§s1nzsmeH “in }()\@—w—f)—{ “in }(—)\Q—w—f)}
Cein? Lol s Ly _
sin” 5 cos 2{ o }( Ao —w+Q—f) (3.6)

W = sinicos? % sin(Ag — Q)

— sin i sin® 5 sin(Ag + ) — cosisinesin Ay,

wheree is the obliquity of the Earth with respect to the ecliptic andis the ecliptic longitude
of the Sun.
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3.3 Extension of the semi-analytical theory for direct rada-
tion pressure

Let us remark that under the previously defined assumptextept for the first one which
is not a necessary condition, the direct radiation presdefieed in Eq. (3.4) is conservative
and therefore does not induce any long-term and seculaatvars of the semi-major axis
(Anselmo et al., 1983; Milani et al., 1987). As a consequetioe direct radiation pressure
force may be expressed as the gradient of the following edg@upotential (let us note the
similarity with Eqg. 2.11 on page 29)

H,p = C, P — —2 msz < ) (cos ), (3.7)
n=0

wherey) andP,, are still the geocentric angle between the Sun and the spmesgdand the
Legendre polynomial of degree respectively. In keeping with the expansion of the third-
body disturbing function in universal elements (see SacB@, page 32), that is using an
expansion in powers of the eccentricity and of the incloatperformed typically up to order
10 and followed by convenient substitutions, the poteritiehulation of Eq. (3.7) may then
be expressed in terms of the dimension-free and non-singaiebles

Nmaz Nmaz L2n Ny,

ZR —Z n+1ZA” X1, Y1, X0, Yo, Xo, Yo, Zo) Bf(A). (3.8)

In Eqg. (3.8), the3} still denote trigonometric functions with respect to theaméongituden.
The A? are polynomials in the rectangular coordinates of the Suvedlsas the dimension-free
Poincaré variablesvhich are recalled for the sake of clarity (see Eqs. 2.17¢ &)

[2P [2P

X, = T sinp, Y, = A cosp,
[2Q) . /2

Xy, = TQ sing, Y, = TQ cosq .

For similar developments and further details, we refer tafiér 2, where the method for the
expansion of the geopotential of the Earth and the exparmdithre luni-solar perturbations in
non-dimensional, non-singular and rectangular variailslpsesented with its effective imple-
mentation in computer algebra. In Eq. (3.8), denotes the number of terms in thedegree
potential functionsk,,; n,... is the upper limit of the expansion in Legendre polynomihé.
us remark that the potential expansion of Eq. (3.7) restlitvn,,,, = 1 corresponds to the
case where the Sun—space debris direction is replaced lrdwtion pointing from the Sun
to the Earth, thatis — ro, = —r, as itis the case in the Kozai’s formulation of Eg. (3.6).

In the framework of a semi-analytical theory and in the sarag as described in Chapter 2,
the non-singular expanded disturbing function (3.8) can te subsequently averaged over the
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short periods (w.r.t. the mean longitude) in order to detineeso-called averaged differential
system of equations. This transformed system of equatnsiiten similarly to the quasi-
Hamiltonian system of equations derived in Eq. (2.19, pabe 4

3.4 Simplified analytical investigations

As shown in Eq. (3.4), the acceleration induced by the dselar radiation pressure increases
linearly with respect to the area-to-mass ratio of the splst®is. As an illustration and for
the sake of comparison with Figure 1.4 (page 13), the ordenajnitude of the perturba-
tions is again represented in Figure 3.2. Aside from thee®nwhich were represented in
Figure 1.4, we also represent the order of magnitude of tleetdsolar radiation pressure ac-
celeration for various area-to-mass ratios. In a first agpration of EqQ. (3.4), we see clearly
that the radiation pressure acceleration does not deperhleoaltitude of the space debris
(Milani et al., 1987; Montenbruck and Gill, 2000). Furthexra, for small area-to-mass ratios,
namely(0.01 m?/kg, the acceleration is several orders of magnitude smaléer the acceler-
ation induced by the second zonal harmaniof the geopotential. Near the particular value
of A/m ~ 1.63 m?/kg, the solar radiation pressure equals the acceleration tihenkarth’s
dominant zonal gravity terni, for an object located at a GEO altitude. Finally, the soldi-ra
ation pressure becomes the major perturbation for objeithssufficiently high area-to-mass
ratio, such as 10-2? /kg, just behind the central body attraction (denotediyf). In this
last case, the solar radiation pressure becomes more amlesgders of magnitude greater
than the second zonal harmonic perturbation.

Referring to Section 3.3, we have developed an accurate-aeatytical method. More
precisely, we have written a mean differential system wtoah be numerically integrated
with an integration time step considerably larger than assical numerical integration. As
shown in Chapter 2, this fact reduces hugely the time of natgmn as well as the round off
and truncating errors. The solution of such a mean diffeakaystem can be used to define
a so-called centered motion, that is a motion which reptesbe mean characteristics of the
osculating orbits. Consequently, as soon as a high quaweiteccuracy is needed on a desired
mean motion, the orbit extrapolations are obtained usirsgsttmi-analytical theory. As spec-
ified in Section 3.3, the expansion of the mean differenytateam of equations is performed
typically up to order 10 in eccentricity and in inclinatiomhis high order expansion ensures
a theoretical accuracy of a few meters on the position wradhrgely sufficient. Indeed, the
order of magnitude of the neglected effects, such as thé'Eahadow and the assumption of
an optically uniform sphere exceeds by far the intrinsiciaacy of our model.

On the other hand, on a qualitative point of view, it would b&resting to underline the
main properties of objects with high area-to-mass ratiasgusimplified equations. Such an
approach is adopted in Chao (2006) where the coupling sffeetween the solar radiation
pressure effects and the luni-solar attractions is considéNithin this framework, the latter
provides a detailed understanding of the long-term ewahutif both eccentricity and inclina-
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Figure 3.2: We show the order of magnitude of the main peatiwhs acting on space debris
orbits [solid curves]. Additionally, we plot the order of gratude of the direct radiation
pressure perturbation for various area-to-mass ratioagheA/m = 0.01,1,10,40 m?/kg
[dashed curves].

tion. Regarding our approach, we will focus our efforts aarddiation pressure without taking
into account the coupling between the radiation and thedofar effects. Consequently, this
analysis will then emphasize the intrinsic effects reldtedadiation pressure. On the other
hand, to avoid any singularity in eccentricity and inclioat the following simplified equa-
tions will be expressed using our non-singular set of véemb

As we are interested in the long-term dynamics, we averageligturbing function over
the fast variable, namely the mean longitudeéAs a first approach, we average the disturbing
function to the first order by dropping the fast periodic tenm the trigonometric functions.
Using the non-dimensional ecliptic spherical coordingtes, 3.) of the Sun instead of the
before-mentioned rectangular coordinat&s,, 7., 7. ), the averaged potential expansion de-
fined in Eq. (3.7), truncated up to degree 1 in Legendre paiyals, takes the form

3 A fas)\?
(Hrp)y = —QCTPT— <—®) ae [Cycos gy + Cocos go

m To

(3.9
+Cj5 cos g3 — Cs cos g4 + Cycos gs + C cos gg) -
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Figure 3.3: Magnitudes of coefficients, Cs,-- -, C5 appearing in the averaged Hamiltonian

disturbing function (3.9) as a function of the space delntétal inclination.

This potential formulation is consistent with the Gausg&qunations described in Chao (2005),
where the coefficients’; are defined by (we take the opportunity here to correct mspthat

occurred in them)

Cy
Cy
Cs
Cy

Cs

and the angular valueg are given by

g1
g2
g3
94
95
3

7 €
cos® — cos® — ,
2 2

Lol . o€
s1n2—sm2—,

2 2
1

ésinisine,

Ao — @,
Ao —w + 20,
Ao —w+ 82,
Ao+ + €,
Ao+ — 20,
Ao +@.

(3.10)

(3.11)
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In Egs. (3.10) and (3.11), as in Section 3.8till denotes the obliquity of the Earth with respect
to the ecliptic andw denotes the longitude of perigee. The coefficigritdo C; are clearly
functions of the orbital inclination. Figure 3.10 shows trders of magnitudes of these coef-
ficients as a function of the inclination. As shown in this figlC; is the leading coefficient
for small to moderate inclinations.; andC’; are very small for every value of the inclination
whereag”; andC, reach relevant values for moderate to high inclinations.

The potential formulation defined in Eq. (3.9) is computeslasing that the relative mo-
tion of the Sun around the Earth is circular because of thdl @oeentricity of the orbit of
the Earth. The angular motion of the Sun on its orbit is theeeissumed to be constant, that
isne = 2m/[year]. Moreover, we assume that the Sun lies on the megptiectihat isG. = 0.

This potential formulation may then be expressed using timeision-free Poincaré vari-
ables. After isolating the dominant terms (first order agpnation in eccentricity and in
inclinationO(e, sin i/2)), the averaged potential takes the form

1
oy = ~2{(Cori= 50X (1- (3 +12)
1
T (Y7 = X3) (CoYi + SoX1)] — 2X,Ya(Se Y1 — C®X1)}

1
—Z {(C@Yi + S X4) (1 — 1 (X22 + YQQ))

1
4 107 = X3 (Cota - S0X)] + 2XaXa(So: + CoXo)

—Zg{SQ (1/1)(2 — X1Y2)} -+ 0(62, Sin2 2/2) s

(3.12)
where

w

2
Z=-aC,P, 4 (a—Q) , Co=cosAy(t), Se=-sinA(t)

m o

[\]

and
€ €
21:ZCOSQ§, 22:Zsin2§, Z3 = Z sine.

3.4.1 Mid-term evolution of eccentricity and longitude of gerigee

The coupled averaged equations in eccentricity and lodgitaf perigee due to direct solar
radiation pressure have been treated by a couple of autfidms.problem has been solved
by Chao and Baker (1983) in the particular ¢) phase space whetds the eccentricity and
¢ = Ao — w, that is the angular distance between the Sun and the |lalegdliperigee (see
also Chao 2006). Afterwards, Chao and Campbell (2005) us=ddmee, ¢) formalism to
explain why a Sun-pointing strategy can minimize long-tecoentricity variations for space
debris located within the GEO ring, as well as for disposedisi@s at 250 to 300 km above
GEO. Similarly, Krivov and Getino (1997) investigated thetman of artificial satellites with
large area-to-mass ratios in high altitude low inclinedtstiperturbed by solar radiation pres-
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sure coupled with the Earth’s oblateness. However, theei@averaged equations turn out to
be singular in eccentricity, that is awkward for geostatiyrspace debris. On the other hand,
the authors represent the motion of the eccentricity anti@finglep; we prefer to keep the
classical eccentricity vector, linked tcandw, and to introduce\;, as an external function of
time. It is true that the averaged frequencies\gfand ofw are very similar (equal in first
approximation); however the introduction of their diffece as a new anglé could be con-
fusing, introducing a kind of virtual resonance in the pesblwhich we do not identify as a
resonance in our Hamiltonian approach.

Thanks to the quasi-Hamiltonian formalism, the averageggns of variation (w.r.t. the
mean longitude\) of the eccentricity related variablés , Y; are given by

. 10(Hyy) 1 1
1 1
e (e e
_Z,/L 8o X,
. 10 (H,p) 1 1
1 1
+2,/L |:S© <1 - 55/22) + C©§X2Y2} (3.14)

—Z,/L S, Ys.

Egs. (3.13) and (3.14) can be further reduced by negledtiadjiist and second order terms in
X5,Y5. One can then integrate the equations with respect to tirobtein the solution of our
so-calledsimplified modein eccentricity

Z
Xi(t) = “TIn sinA\o(t) + S,
®
3.15
Z cose ( )
Yi(t) = L. cos \o(t) + ao,

where(ay, 3) are constants of integration determined from initial ctinds. These equations
describe an ellipse with center coordinates, 3,). In addition to the choice of non-singular
variables, this simplified analytical model differs fronetbne developed by Chao and Baker
(1983) by the presence of the termsim?® ¢/2. Neglecting the terms isin? ¢/2, the ellipse
becomes a circle, the radius of whichiis= (1/Ln.) Z cos® ¢/2. Egs. (3.15) show that the
so-calledeccentricity vecto(Y;, —X;) ~ (ecos(w + §2), e sin(w + €2)) moves along this
circle (counter clockwise) at a constant rate= 27 /[year]. As a consequence, the longitude
of perigeew librates (Figure 3.4, left) or circulates (Figure 3.4, tighbout a fixed value which
depends on the initial conditions in eccentricityand in longitude of perigeg, as well as on
the radius of the circle, that is a directly proportionaldtion of the area-to-mass ratiy/ m.
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Figure 3.4: Schematic mid-term evolution (yearly osdidiat) of the eccentricity vector in
the (Y, —X1) ~ (e cos(w + 2), e sin(w + €2) ) phase space. Depending on the initial condi-
tions in eccentricitye, and longitude of perigeer,, the longitude of perigee librates [left] or
circulates [right] for a fixed value of the area-to-massoratym.

To draw a parallel with our complete modeling of the radiajioessure, the mid-term evo-
lution (several years) of the eccentricity is plotted irgiiie 3.5, top) using our semi-analytical
theory. The corresponding eccentricity vector evolut®shown in (Figure 3.5, bottom). For
clarity, only a subset of area-to-mass ratios are shownehatym = 5, 10, 20 m?/kg. The
amplitude of the mid-term oscillations, with a period of igane year, significantly grows
from 0.1 to 0.4 with increasing area-to-mass ratio. On the other hand,dberdricity vector
defines nearly a circle with center coordinates dependintherinitial conditions as well as
on the area-to-mass ratios. Each circle intersects thenarfghe frame of reference. There-
fore, these last numerical results are in agreement witedheion of the simplified analytical

model defined in Egs. (3.15).

If we choose the initial eccentriciy, and the initial longitude of perigee, in such a way
thatay = 5y = 0, the circle will be centered ify;, —X;) = (0,0). In that case, the module
of the eccentricity vector will remain constant over timeg(ie 3.4, right). The conditions
leading to such an equilibrium in eccentricity can then bitem as

Zcos?€/2
V2P /L coswy = LE/(:os)\@(O),
LTL@
Zcos?e/2
BT sinwe = 292 G0,

LTL@
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Figure 3.5: Mid-term variations (yearly oscillations) bkteccentricity and the corresponding
eccentricity vector as a function of various area-to-mas®s (A/m = 5,10,20 m?/kg —
red, green, blue line, respectively) for a fixed initial ctimh (ag = 42 164 km, eq = 0, ig =

0 rad,Qy = wyg = A\g = 0 rad). Time at epoch is 21 March 2000.
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leading to
3 A 1
e = =C,.P.— cos? & — e,
2 m nang 2 def.
woy — A@(O) .

These values are in good agreement with those of Chao and B#£8&3), where the so-called
forced eccentricitye* turns out to be directly related to the area-to-mass ratithefspace
debris by the following equation

A

e ~0.01C, —.

m
As a comparison with our semi-analytical model, Figure 6ves the mid-term evolution
of the eccentricity and the corresponding eccentricitytmeevolution for a fixed value of
the area-to-mass ratiol(m = 10 m?/kg) and a fixed value of the initial conditions, that is
ag = 42164 km, ey = 0.1,i5 = O rad, 29 = wy = A\g = 0 rad. The numerical propagations
were carried out with our semi-analytical theory over 2 gedhe difference between the cho-
sen release orbits only depends on the iniimak at epoclparameters,. Different initial times
at epoch will induce different initial ecliptic longitude$ the Sun\(0). Figure 3.6 revealed
a quite rich collection of behaviors depending only on theadhecliptic longitude of the Sun,
that is the initial angular distance between the Sun andothgitude of perigee. Assuming an
initial time at epoch of 21 March 2000, that is adopting a Samfing longitude of perigee
strategy 4, (0) = 0 rad), the eccentricity will remain nearly constant. In thése, the ec-
centricity vector moves counter-clockwise on a circle,¢bpter coordinate of which matches
nearly the center coordinate of the eccentricity vectaeneice frame. Assuming other initial
ecliptic longitudes of the Sun, the eccentricity presetdarty a yearly variation. On the other
hand, the amplitude of variations of the eccentricity isieglent in each case, namely twice
the radius of the circle in the eccentricity vector refeeframe. These numerical results are
over again in good agreement with our simplified analyticated.

3.4.2 Long-term evolution of inclination and longitude of he ascending
node

The coupled equations in inclination and longitude of theeaging node under the influence
of direct solar radiation pressure were studied by severtaloas (e.g. Anselmo et al., 1983).
As part of this work, the authors present some results conagthe long-term variation of
the inclination and longitude of the ascending node. Egflgcthe authors quote:The in-
clinationi and the nodé) undergo no long-periodic or secular perturbation to zerderin
the eccentricity. However, this result were obtained within the context wfadl to moderate
area-to-mass ratios. As a matter of fact, as seen previouSlybsection 3.4.1, a space debris
subjected to direct solar radiation pressure presentsgieroscillations of the eccentricity
with high amplitudes for moderate to high area-to-masera{s a consequence, the zero or-
der assumption in eccentricity does not hold anymore.
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Figure 3.6: Mid-term variations (yearly oscillations) bkteccentricity and the corresponding
eccentricity vector for a fixed initial conditiosy = 42 164 km, eq = 0.1, ig = O rad, Qy =

wo = Ao = 0 rad and a fixed area-to-madgm = 10 m?/kg. Various initial time at epoch,
were used for the numerical propagations.
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The direct solar radiation pressure mean potential defmgdi (3.12) can be differentiated
to obtain the coupled averaged equations in inclinationlangitude of the ascending node

. 10(H,
XQ — —M —Zl/QL —XQ (S@)/l —C®X1)+QS®X1}/2
L Y,
—Z,/2L| 4+ X5 (SoY1 + CoX1) — 25, X1Y5 (3.16)
+25/L So Xy,
: 10 (H,
1/2 - ——M +Zl/2L - Y2 (S@K - C@Xl) - 20®X2Y1
L 0X,
+2,/2L { + Y2 (SoY1 + CoXy) — 20®X2Y1] (3.17)
+2Z3/L SeYh.

After substituting the first order approximation of the adceity and longitude of perigee
variation defined by Eqgs. (3.15) into Egs. (3.17) and (3.&)find the doubly averaged equa-
tions with respect to the mean longitudl@nd the ecliptic longitude, that is

. z 1 ,
<X2>A® - 2n®L2{(zl—zz)Y2—zg} = {z coseYy — ZZ5| .
2 (3.18)
. Z cose Z< cose
Y> - Z 4+ ) Xy = — 2 €
< 2 )\@ 2n®L2< 1+ 2) 2 2n®L2 2

where the relative motion of the Sun around the Earth is &#lumed to be circular with a
constant angular motion af,, = 27 /[year]. This system of differential equations (3.18) is no
more and no less than a harmonic oscillator expressed irrth@tgular coordinates,

Z? cose
2”@ L2 '

<X2> — 22X, with o= (3.19)
Ao

Moreover, a general solution of our secaosithplified modeln inclination can be written as
follows

<X2>)\® = —AQ Sin(l/Qt + 00) s (3 20)

(Ya),, = sine— Agcos(val +6p) + O(e?),

where the amplitudel, and the phase differen¢g are determined from initial conditions.
Egs. (3.20) describe a circle with fixed center coordinétesin ¢) = (0, ¢ + O(¢*)) and a ra-
dius R = Ay. The so-callednclination vector(Yz, —X5) ~ (sini cos €2, sini sin 2) moves
along this circle (clockwise) at a constant rate Similarly to the case of the eccentricity
vector presented in Egs. (3.15), the longitude of the asngnubde will librate or circulate
depending only on the initial conditions in inclinatignand longitude of the ascending node
Qo (Figure 3.7, top). However, the libration regime takes elat about O degree. On the
other hand, the amplitudé, of the solution (3.20), that is the radius of the circle, idapen-
dent of the area-to-mass ratio as well as of any multiplyaxdr present in the direct solar
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Figure 3.7: Schematic long-term evolution of the inclinativector in (Y, —X5) ~
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radiation pressure formulation (Eq. 3.4). Indeed, the @&oge only depends on the initial
conditions and on the obliquityof the Earth’s orbit with respect to the ecliptic. Conceqnin
the long-term evolution for small area-to-mass ratiosifgiy O up to~ 5 m?/kg) there is

no significant long-term variation of the inclination ance tlongitude of the ascending node
over a time span of several decades. Indeed, the period cégsi®n of the inclination vector
(Figure 3.7, bottom) becomes extremely large. As a conseguadding all the other relevant
perturbations, that is the luni-solar interactions andail@teness of the Earth, we expect that
the space debris presents the behavior of a typical abaddmusynchronous spacecraft, with
a maximum inclination ofl5° and a periodicity of about 54 years (Agrawal, 1986; Allen and
Cook, 1964).

As a comparison with respect to the simplified analytical elaal inclination, we plotted
the long-term evolution (several decades) of the incloraind the corresponding inclination
vector using our semi-analytical theory. The numericalppgations were carried out over
a time span of 80 years using the initial conditions of a tgpgeosynchronous space de-
bris. Figure 3.8 shows clearly that an increase of the aremdss ratio has as consequence a
faster orbit pole precession. Taking into account only tifeces of the direct solar radiation
pressure, we also see that the maximum amplitude of thenatan, that is the amplitude of
the plane motion, is independent of the area-to-mass ratemall wobble, with a period of
approximately 1 year, is also clearly identified due to thd-term variations present in the
numerical integrations. The maximum reached by the intbnaseems always to converge to
the particular value ot7°, that is twice the obliquity of the Earth with respect to tlohic.
Actually, if we choose a zero inclinatiag as initial condition (Figure 3.7, top, dashed circle),
the inclination variation can be written as

. ! . . VQt
Sln2 -~ SlIl2 € SlIl2 — .
2 2

In this particular case, corresponding to the initial ination of most geosynchronous objects,
the maximum valué,,., reached by the inclination can be computed easily to obtain

Z.ma:c22€7

which is in agreement with our previous numerical propagesti

Moreover, if we choose the initial inclination and longitudf node in such a way that the
inclination vector matches the center coordinates of tfeés;ithe module of the inclination as
well as the longitude of the ascending node will remain camisbver time. Such equilibrium
conditions happen if and only if
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5,10,15,20 m?/kg, ag = 42164 km, ¢y = 0, iy = 0rad,Qy = wy = Ay = 0 rad) [top].
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This result is in complete agreement with the fact that, c@rgg the Gauss equations, the
inclination and the node are affected only by the out-ofiplaomponent

. € .
W = smzcosQ§sm(/\@—Q)
g€ . .
—singsin® o sin(Ag + ) — cosisinesin Ay ,

where this quantity is zero if and only if the inclinatioms equivalent to the obliquity, and
the longitude of the ascending node is equal to zero. Howdéstens note that this theoreti-
cal equilibrium is certainly important but to a lesser extigvan the equilibrium presented in
the eccentricity vector phase space. As a matter of fad,équilibrium will be easily bro-
ken through the addition of the luni-solar perturbationkijoh induce important variations of
the inclination and longitude of the ascending node as wek. the contrary, as explained
in Anselmo and Pardini (2007a), the equilibrium in ecceitfyican be used to adopt a Sun
pointing perigee within the framework of eccentricity mgament during reorbitation (see
also Delong and Frémaux, 2005). However, for typical s&sll this Sun-pointing re-orbit
strategy is applicable only for small eccentricities<( 0.005), but in general is inappropriate
for about 8 months of the year, due to the effects of lunitspé&aturbations on the evolution
of the perigee altitude. In general, the perigee should letgab towards about0° or 270°

in right ascension, and this may also correspond to suntipgiconditions only around the
solstices.

3.4.3 Long-term coupled equations between eccentricity aninclination

As shown in Subsection 3.4.2, Egs. (3.13), (3.14) and (3(B7)6) are not uncoupled in the
set of variableg X, Y;) and (X5, Y3), respectively. Similarly to this latter analysis, it can be
shown that the mid-term variations of the inclination rethwariableq X5, Y5) will induce
additional long-term variations on the eccentricity vedip combination of mid-term periods
only. The solution of this additional coupling effect betmeeccentricity and inclination can
be written

Z
Xq(t) = ~7 sin A\ (t) + Bpsin(vgt + ¢o),
2 "o (3.21)
Yi(t) = LCT(;S € cos Ao(t) + Bycos(vat + ¢o),
®

where the amplitudé3, and the phase differencg are determined from initial conditions
only. More precisely, the amplitud8, depends only on the initial center of coordinates

(v, Bo) by the following relation
BO = \/ag + ﬁg .

Egs. (3.21) show that the eccentricity vector always mowesifter clockwise) along a circle,
defined in Eqgs. (3.15), the center of coordinates of which esdelockwise) along a great
circle of radiusB, with a proper period ofr /. The combination of mid-term and long-term
variations is illustrated schematically in Figure 3.9 {tofJsing our semi-analytical theory,
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Figure 3.9 (bottom) shows the evolution, over 40 years, efdbcentricity vector of a space
debris, taking into account only direct solar radiationggige. The pattern observed is, as
expected, basically produced by the superimposition ofwartations, the first with a period
of 1 year, associated with the solution presented in Eg$5)3and the other with a period of
several decades, that is the proper petiogd, of the longitude of the ascending node defined
in Eq. (3.19).

3.5 Comparison of radiation pressure models — long-term
analysis

The aim of the analysis presented in this section is to coenffa long-term evolution of

geosynchronous orbits predicted by various models for ifeeidsolar radiation pressure. As
shown in Section 3.2, the direct solar radiation pressucelaration was given by Eq. (3.4).
As a first approximation, if the Sun—space debris direcsaeplaced by the direction pointing
from the Sun to the Earth, thatts— r, = —r., EQ. (3.4) becomes

2
A rg

m el

arp:_CrPr|: 1o :|

lro

(3.22)

This simplified acceleration may then be expressed as thigegtaof the following potential

2 ()
H,p=C,P,— | — | rcosy,

m To
and therefore can be expanded using non-singular variabésapproximation seems consis-
tent inasmuch as the ratio of the position vector of the spabeis with respect to Sun—space
debris vector may be assumed to be smalk(/(||r — re|| = 2.8 x 10~ for a geosyn-
chronous space debris). Figures 3.10 and 3.11 show theatlitfes between two mean orbits
propagated with our semi-analytical theory over 54 yeare first orbit is propagated us-
ing a first degree expansion in Legendre polynomials thataking the assumption that the
Sun-space debris direction coincides with the Sun—Earécton. The second orbit is prop-
agated using a third degree expansion in Legendre polymamide initial conditions are
those of a perfect geostationary space debris. Figuresa®d@.11 correspond to numerical
propagations with a small area-to-mass/'» = 0.01 m?/kg) and a high area-to-mass ratio
(A/m = 30 m?/kg), respectively. Although the differences remain modenateach case,
these figures show the importance of adopting a completensiqgoa when dealing with ra-
diation pressure. Indeed, Figure 3.11 reports clearlytti@mbrder of magnitude of the error
on the position may reach high values, namely hundreds ofmeters when propagating an
object with extremely high area-to-mass ratios. It shooldéver be remarked that modeling a
30 m? /kg very strange object as an optically uniform sphere for se\dgcades would affect
the computations with a significant uncertainty. On the ottend, the order of magnitude
of the error on the position remains moderate for small &weaass ratios and even if the
difference in the inclination related variabfeX, presents an apparent secular behavior, the
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Figure 3.10: Differences between two mean orbits expressdide non-singular and non-
dimensional variables;, Yi, X3, Y3) and propagated with a first degree, (., = 1) and a
third degree expansiom(,,, = 3) of the direct solar radiation pressure, respectivelytidhi
conditions areng = 42164 km, ey = 0, ig = 0 rad,Qy = wyg = A\g = 0 rad and the area-to-
mass ratio isd/m = 0.01 m?/kg. On each graph, the left vertical scale shows the deviations
(AX,, AY;, AX,, AY;)and the right vertical scale shows the order of magnitudeeérror

on the positiondoA X7, agAYr, agAXs, agAYs) [meter(s)].

deviation reaches at most 80 m after 54 years of propagaemKigure 3.10).

A further simplification may be introduced, by disregardthg small eccentricity of the
Earth’s orbit around the Sur{ = 0.0167), that is putting the geocentric vector of the Sun
ro = 1 AU In Eq. (3.22), leading to the doubly simplified accelevati
A o

B = O ol

(3.23)

However, even though the correct evolution of the Sun maitiothe geocentric reference
frame is retained in the computation of the running Eartm-&ivection, the dynamics may
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Figure 3.11: Differences between two mean orbits expressdige non-singular and non-
dimensional variablesX, Y7, X5, Y5) and propagated with a first degree, (., = 1) and a
third degree expansiom(,.,, = 3) of the direct solar radiation pressure, respectivelytidhi
conditions areaay = 42164 km, ey = 0, i = 0 rad,Qy = wg = A\¢ = 0 rad and the area-
to-mass ratio is1/m = 30 m?/kg. On each graph, the left vertical scale shows the deviations
(AX,, AY;, AX,, AY3)and the right vertical scale shows the order of magnitudeeérror

on the positionqo A X+, agAY:, agAXs, agAY>) [kKilometers].

change considerably. Figure 3.12 shows the effects indhgetle eccentricity of the Earth
on a geosynchronous space debris, subjected only to @u@tessure, when its area-to-mass
ratio reached 7 m? /kg. First, we choose the complete model of radiation pressefiaet in
Eqg. (3.4) to perform an orbital propagation, taking intoaatt the variation of the distance
between the Sun and the Earth. Second, we perform the santal priopagation with the
same initial conditions but using the doubly simplified eddin pressure model defined in
Eqg. (3.23), that is neglecting the eccentricity of the EaRimally, we plot the two propagated
orbits as well as the difference between them. As a resulsegehat the difference between
the two models remains small on the inclination variatioowdver, the eccentricity dynamics
clearly presents additional variations due to a phaserdiffee effect, the period of which is
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Figure 3.12: Eccentricity [top] and inclination [bottomjadution in GEO over 80 years taking
into account only direct solar radiation pressure. Orlptalpagations taking into account the
eccentricity of the Earth, (Eq. 3.4, complete model) [Solidves]. Orbital propagation assum-
ing ro = 1 (Eq. 3.23, simplified model) [dashed curves]. Differencevaen the two orbital
propagations [bottom curves]. Area-to-mass ratio andiirgonditions ared/m = 17 m? /kg
and(ag = 42164 km, eq = 0, iy = 0, Qy = wy = My = 0 rad), respectively.
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directly related to the period of revoluti@x /v, of the inclination vector. The amplitudes of
these variations are on the order of the maximum eccentribit is 0.37. Let us remark that
if we consider all the other relevant luni-solar perturbas, we can draw the same conclusion.

When considering the direct solar radiation pressure @uplith the effects induced by
the second zonal harmonic of the geopotential, the difftererbetween the complete model
and the simplified one become considerable. Indeed, FigliBeshows the effects induced by
the eccentricity of the Earth on the same geosynchronousspebris, subjected to radiation
pressure and also influenced by the second zonal harrdenin this case, the dynamics of
the eccentricity as well as the dynamics of the inclinaticay @mpletely different. In addi-
tion to the yearly eccentricity oscillations, obvious ihthk plots, some long-term trends with
high amplitudes are clearly recognizable. In this casecthspling between radiation pressure
and the oblateness of the Earth produces such a large ecitgr{ffigure 3.13, top) able to
induce a fictitious orbital decay (Anselmo and Pardini, 200@)7b). Then we can draw a
conclusion:the assumption of a fixed Sun—Earth distance, in the estmafisolar radiation
pressure magnitude, introduces a significant spurious loagod effect, especially when the
radiation pressure is coupled with the influence/ef

Consequently, these results confirm that a correct modelinlge Sun—Earth distance is
very important to describe accurately the long-term evotubf geosynchronous objects, in
particular if the area-to-mass ratio is large. This sinytiff assumption is not considered
in the numerical investigations performed by Liou and Weg2805) and Chao (2006). On
the contrary, considering the elements provided, such algied assumption seems to be
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adopted in Schildknecht et al. (2007), where orbital deteations provide estimates for the
area-to-mass ratios of a small sample of the newly discaveopulation of space debris (see
Figure 3.14). However, as mentioned before, a fixed value®Sun—Earth distance induces
significant spurious long-period effects, mainly affegtithe eccentricity and, therefore, the
orbital lifetime, but also the inclination. Consequenthis assumption might introduce im-
portant additional residuals in the restitution processrbital elements as well as parameters
such as the area-to-mass ratios.
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Chapter 4

Semi-analytical investigations of high
area-to-mass ratio geosynchronous space
debris including Earth’s shadowing effects

“The Kessler Syndrome is a scenario, proposed by NASA damsul
Donald J. Kessler, in which the volume of space debris in LantHe
Orbit is so high that objects in orbit are frequently struck thebris,
creating even more debris and a greater risk of further imipadhe
implication of this scenario is that the escalating amouhdebris in
orbit could eventually render space exploration, and evenuse of
satellites, too prone to loss to be feasible for many gemnamnaf’

IAF website, 2008 (Source: Kessler and Cour-Palais, 1978)

— The results of this chapter have been previously publishe®alk and Lemaitre (2008) —

As shown in Chapter 3, the effects of direct solar radiatimspure on the motion of a space
debris, in particular those with high area-to-mass rath@sje been treated by a number of
authors (Anselmo and Pardini, 2005; Chao, 2006; Liou andv@fe2005). As an example,
we performed analytical and semi-analytical investigagiovhich both emphasize and lead to
an insightful understanding of the intrinsic effects ofedir solar radiation pressure. In the
latter papers as well as in Chapter 3, the authors mainlysftoeir attention on the long-term
variations of both the eccentricity and the inclinationtees. On the other hand, the analytical
investigations of direct solar radiation pressure have lgegived under the assumption of full
illumination by the Sun, that is not taking into account theath’s shadowing effects on the
orbital dynamics. However, most of the space debris orpiéiround the Earth are subjected
to eclipses of the Sun by the Earth, inducing a great fluanati the available solar radia-
tion caught by the objects. Therefore, unlike the clasgjcalitational forces which affect the
motion permanently, the solar radiation pressure pertimbaas to be considered as a discon-
tinuous function.

95
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Usually, the Earth’s shadowing effects are consideredmitte framework of a completely
numerical integration process. For this purpose, the ratean process is only performed dur-
ing the sunlight portion of the orbit; the radiation pregsbeing obviously turned off if the
radiation is blocked by the Earth between the Sun and theegpataris. This approach can be
realized by the introduction of a so-callsdadow functiomwvhich is equal to one if the space
debris is illuminated by the Sun, and to zero if the spaceigébin shadow (Ferraz-Mello,
1972).

In this chapter, and as a subsequent review of solar radiptiessure developed in Chap-
ter 3, we will stay within the framework of a mean motion seanalytical theory, that is only
the long-term and secular effects will be derived. In otherads, the resulting theory will not
include any short-term effects. In practice, the theorystsis of the numerical integration of
the filtered equations of motion over the short periods orfickvwe superimpose the mean
variation induced by the Earth’s shadowing effects.

For the purpose of computing the effects induced by the Batiadow, our semi-analytical
theory proposes an improvement of the analytical methodldped by Aksnes (1976), where
the expressions for the perturbations on the orbital elésname given. In this approach, the
perturbations accounting for the direct solar radiatioespure with the Earth’s shadow are
computed on a revolution-by-revolution basis, retainimg original unexpanded form of the
shadow function.

In this chapter, this latter approach is adopted and gdmedainto a more convenient non-
singular formalism, particularly suitable for both ne@&cular and near-equatorial orbits as
well as for orbits which transit periodically around nulkeatricities and null inclinations.

This chapter is organized as follows. First, in Section kh bpposition to the classical ap-
proach where the singular eccentric anomalies at shadowamd shadow exit are computed,
we present our algorithm allowing to compute the non-siagalean longitude at shadow en-
try and shadow exit.

In Section 4.2, as an extension of the semi-analytical thdeveloped in Chapters 2 and 3,
we show how to apply the above-mentioned algorithm in ordeletrive the mean net change
over each orbital revolution.

Finally, in Sections 4.3 and 4.4, the algorithm is appliedri®ans of numerical integrations
of the equations, averaged over the short periods, indudidiation pressure with Earth’s
shadow,/,, the combined Moon and Sun third-body attraction as welhaddng-term effects
of the 1:1 resonance occurring for geosynchronous objeBtth the numerical and semi-
analytical investigations are performed within the frarogwof short-, mid- and long-term
analyses. Subsequently, these semi-analytical invéistiga which are compared with com-
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pletely numerical propagations, will lead to a deep und@ding of the long-term evolution
of the semi-major axis.

4.1 Orbital entry and exit of a space debris from the shadow
of the Earth — the algorithm

This section introduces the main algorithm previously nogr@d in the introduction: consid-

ering a fixed orbit in space, characterized by a set of wdllhdd elements as well as by the
position of the Sun with respect to the Earth, we show how topagte the mean longitudes at
shadow entry\; and shadow exik, of a space debris orbiting around the Earth.

For the purpose of eclipse investigations, we assume teaE#nth is perfectly spherical
with radius R, (the Earth’s atmosphere is neglected in the present ahgoyitMoreover, we
also assume that the Sun is infinitely far from the Earth, ahsuway that the light rays are par-
allel in the neighborhood of the Earth. Under these assumgtithe boundary of the Earth’s
shadow is a circular cylinder with radius,, the axis of which is parallel to the Sun—Earth
direction. Figure 4.1 illustrates the geometry of the eatry exit points of a space debris with
respect to the position of the Sun and of the space debrizectasgely.

The geometric constraint of the problem can be obtained &lyzneg that, upon entry or
exit from the Earth’s shadow, the angular distagiceetween the radius vector to the Sun
and the radius vector to the space debris solution of the following equation

r?cos® =r? — R?, (4.2)

where is taken within the intervat /2 < ¢» < 37/2, since this is the only domain where a
shadow exists (Escobal, 1965). Let us remark that the spadaiuct of the Sun vector with
the space debris vector determines the angular distanog éitze

cosp = (ro - 7) . (4.2)
TeorT
This formulation is elementary but does not include anydalirgormation on the space debris
location on its orbits. However, considering the non-slagaquinoctial orbital elements

a he = esin(w + Q) Pe = tan(i/2) sin
A=M+w+Q ke = ecos(w + ) ¢e = tan(i/2) cos (),

wherea is the semi-major axig; the eccentricity; the inclinationw the argument of perigee,
() the longitude of the ascending node avidhe mean longitude, the radius vectdr.., y.., z.)
of the space debris can be expressed in the equinoctiakneierframe f, g, h) using the
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Orbital plane

.......... A
! / ' \ Vernal Equinox ’7

Figure 4.1: Entry and exit orbit geometry for solar radiatgressure in the non-singular equinoctial reference fr@ylendrical shadow). The
Earth’s shadow is supposed to be cylindrical. The true loagis at shadow entry and shadow exit are representeg ayndV,,,;, respectively.
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following matrix relation

Te 1 1- pg + qz 2peQe 2pe Xe
c = T 5 . 5 2 e(e 1+ z_ 2 -2 e Y;
Y 1102+ ¢ Ped p q 2q )
ZC _2p€ 2(]6 1 _pe _Qe 0
Xe
= [fgh]| Y|,
0

where the quantitiesX., Y;, 0) are the coordinates relative to the equinoctial refererarad,
which can now be expressed either in terms of the true lodgitu= f+w+$ or, alternatively,
of the eccentric longitudé’ = £ + w + 2, wheref and E are the true and eccentric anomaly,
respectively. The equations are given by

X, = rcosV = a((1—h%n) cosF + hk,sinF —k,) ,

4.3
Y, = rsinV = a((1-Fk?n)sinF + hck. cosF —h,) , (4.3)

making use of the auxiliary quantity (Broucke and Cefola/3)9

1
L oy
As a consequence, the angular distance between the Sums kestitor and the space debris
radius vector can be obtained as a function of the true lodgit
costy = FecosV +EsinV (4.4)

where the quantitie§ and¢ are defined as

B=XofetYefy+Zsfs, §=Xo0:+Yo9y+ 209,

where (f,, fy, f-) and (g., g4, g.) are the Cartesian components of the first two equinoctial
reference frame vectors, that fsand g, respectively. The quantitigsX, Y5, Z) are the
Cartesian normalized components of the Sun radius vectavaluated at some convenient
time, say at the timg when performing the integration step in the intervalt;  1]. Therefore,

the so-callecshadow functiortl; can be computed when the squares of Eqgs. (4.2) and (4.4)
are made equal

Y1 =p*(BeosV 4 Esin V)2 + R2(1+ hecos V + kesin V) —p? =0, (4.5)

where we substituted the magnitude of the radius vactasing the following expressions

B p
"= 1+ k.cosV 4 hesin V'’

p=a(l—¢e*).
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As expected, the shadow functi@h is a second-order equation containing both sine and co-
sine values of the true longitude. Unfortunately, contriaryhe results obtained by Escobal
(1965) and Vallado (2001), the equation can not be convémntedh simple fourth-order poly-
nomial containing only cosine values of the true longitueéeduse of the double products.
Consequently, the equation can not be solved in closed fgrqubdratic radicals. Let us re-
mark that, at this stage, we could use a numerical techn@mselte the equation with respect
to the angular variable. However, a drawback of this technique is that the shadowtiom
can admit at most four solutions, whereas numerical metsads as the Newton—Raphson
approach (or any other iteration method) only converge taigue root, which depends on
the choice of the initial condition. Moreover, under speciecumstances, the numerical con-
vergence of the method is not systematically ensured. Tdrereour method claims to be
analytical so far as we can.

Here, we propose to show how the so-callesultant methodan be used to solve analyt-
ically our problem as a system of two algebraic equationsvimtariables. Let us define the
two following Cartesian variables

r=-cosV, y=sinV,

which satisfy the trivial algebraic relatiod, = 22 + y?> — 1 = 0. As a result, the shadow
function:; can be written as a second-order polynomial function in treablex

S = as(y) 2® + ai(y) @ + ao(y) = 0,
whose coefficients; are functions of the variablg

as(y) = RZh*+p*B3?,
ai1(y) = 2RZh+2R’hk.y+2p°By,
ao(y) = R2E>y? + 2R’k y + p*€2y* + R? — p°.

The resultant is built by computing the determinant of4¢he 4 Sylvester’s matriXSylvester,
1840), leading to a fourth-order polynomial functionjimamely the sine of the true longitude

ax(y) 0 1 0
R, Eol(y) = aly)  az(y) . ! = Ay + A3+ AP+ Ay + A =0
’ ao(y) ai(y) y*—1 0 ’
0 ao(y) 0 y? —1

where the coefficientd; are considered to be constant during the current intervategration
and are functions of the equinoctial elements

AO = (p2ﬁ2 + Rg -2 Rthe + R62h62 - p2) (pQﬁz + Rg +2 Rghe + R€2h62 - p2) )
Ay = —4R}(R’k.h.” — R2k. +2p°BEhe + p°ke — kep®B?)
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Ay = 6Rk? —2p*¢ — 2R kS + 2 R2p*E€ + 2 R2hp? — 2 p° P R?
+2p* 0% — 4 p* B R2h” 4+ 2 R2hp?E 4 2 p* P Rk — 8 p*B € R heke
—2Rih' —2p*3%¢" — 2p*B* — 2p*R2k.? + 2 RIA,

A3 = 4R (2p°BEhe + Rikehe” — kep? 5 + B2k + p*EPke)

Ay = (PP +RK—2R.kBp+p*B° + 26 R hep + RZ1.P) %
(P’ + Rk + 2R keBp+ p°B* — 2 Rehep + R2R.)

The resultanR [3;, 33,], as a fourth-order polynomial function, admits at most fiaal solu-
tions which can be computed in closed form by quadratic edsliasing the Descartes method.
Moreover, by construction of the resultant polynomial fumre, these solutions in the sine of
the true longitude are solutions of the complete system oatgns. Once one has solved
for thesey values, one can substitute them back into the original émpugand solve for the
corresponding cosine values of the true longitude throbghrtvariable. Rejection of the
two additional spurious roots can be accomplished, consgléhe fact that only the solutions
which lead to

cost) = FeosV +EsinV <0

are of any physical meaning, because of the restrictionefriterval where a shadow exists
(Eq. 4.1). Let us remark that the solutions of Eq. (4.5) cal&b be computed within the
complex formalism. Indeed, by expressing the sine and edsinctions of the true anomaly
in terms of an auxiliary quantity = ¢V, Eq. (4.5) is easily converted into a fourth-order
polynomial inz, which is in turn solved for its real and imaginary part, resvely.

Finally, considering Egs. (4.3) and solving for the sine eosine of the eccentric longitude
I, yields the following expressions
(1 B kgn)Xe - hekjen}/e

a/1—h2—k2

(1 - hgn)}/e - hekenXe

a\/1—hz—k2 '

cos F' =k, +

sin ¥ = h, +

for determining the eccentric longitude, from which the méangitude) can be computed
using the generalized Kepler’'s equation

AN=F —k.sinF' + h,cos F'.

4.2 Analytical averaging

As mentioned before, the approach pursued in this chapteased on the one developed by
Aksnes (1976). In this theory, the shadowing effects aretaian into account using some
specific series expansion of the shadow function such inaEévtello (1972), Vashkoviak

(1974) as well as in Lala and Sehnal (1969). The accelerafitite solar radiation pressure is
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kept in its original form and the perturbation is computedaaevolution-by-revolution basis.
Under such a formalism, the Gauss variational equationsotifom are analytically integrated
under the assumption that all the variables on the rightrsatles, except those depending
explicitly on the position of the space debris within its ibrlare held constant. Therefore,
Kozai (1961) and later Aksnes (1976) derived the pertuobatisuffered by a satellite that
moves in sunlight from eccentric anomdly to F,

da = 2&3F|SCOSE+T(1_62)SinE|§217
Es

be = d’>F(1—e*)/?

Y

1 1
ZS(l — )2 cos2E+ T <2E —2esin £ + 1 sin QE)

Bl
6i = a>FW(1—e?) 12 —geE + (1 —e*)sinE — ZsinQE cos w

2\1/2 e . B2
+(1—¢%) (COSE — 1@052E> sinw

sini o) = a?FW(1—e?)"1/? —geE—i—(l—eQ)sinE—ZsinQE sinw

Y

El

) E
—(1 —e)V/? (cosE — Zcos 2E> cosw|

a2 F (1 o 62)1/2

)

E1l

3 1
dw = —cosiof)+ S<—§E+esinE+Zsin2E)+
1 £
T(1—¢*)"Y?(ecos E— = cos2F )
4 E1
M = —(1—e)2(6w + cosi 6Q)
3 5 2 5
—3d*F ’S {_§€E + (g + 562) sin F/ — Ee sin QE]

3 12
—[Scos E+ T(1—¢*)*sin E] (E - esinE)‘gi :

5 D
—T(1—¢&*)'/? (— cos ' — —ecos QE)

whereS = S(0), T = T(0) and W are the direction cosines of the force, along the ra-
dial, along-track and cross-track direction, respecyivehd evaluated at true anomaly= 0
(Kozai, 1961). The angle&; and F, denote the eccentric anomalies at shadow exit and
shadow entry, respectively. The author stresses that fh@gsions fovw anddéM are sin-
gular for circular orbits. Similarly, a problem appears foe expressions of(2 andéw for
equatorial orbits. Through some corrections, the latgorthm is also assumed to hold when
the eccentricity and the inclination are zero. Actuallgdé singularities can be partly avoided
by expanding some eccentricity denominators in powers @kttcentricity or by computing
the perturbations directly in the radius vector and in tigaarent of latitude: = w + f (Ak-
snes, 1976). However, let us remark that these new pertonbatpressions always depend on
the eccentric anomalies at shadow exit and shadow entrgeldrggular values can be theoret-
ically determined by solving a fourth-order polynomial atjan in the cosine of the eccentric
anomaly, but only when the eccentricity and the inclinafdos not too small (Escobal, 1965).
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4.2.1 Analytical evaluations of the perturbations

The solution addressed in this chapter is based on the adoptithe algorithm outlined in
Section 4.1, in addition to the non-singular extension efahalytical averaging discussed in
Section 4.2. In this approach, the acceleration of the saldiation pressure including the
Earth’s shadowing effects is always computed on a revaitibip-revolution basis. Within our
theory, the mean net change over an orbital revolution ispeded by means of the osculat-
ing Hamiltonian disturbing function expressed in terms of+singular variables. The latter
disturbing function is a function of the mean longitudand can be therefore averaged taking
into account that the space debris crosses the Earth’s whaetween shadow entry; and
shadow exit\,.

Making use of the Cartesian Poincaré variajl€s Y;, Xs, Ys, L, A), the osculating Hamil-
tonian disturbing function of the direct solar radiatioregsure is given by (see Eq. 3.8,
page 71)

Nmaz L2n Ny,

Hep = D~ D AT(X0 1, X0, Y, X, Yo, Z0) B ()
n=0 'O  j=0

that is a well-known Fourier series in the angular variab#émely the mean longitude whose

coefficients are polynomials in the Cartesian variablesY;, X., Y, Z.. For similar de-

velopments and further details, we refer to Chapters 2 and 3.

Thanks to the Hamiltonian formalism, the associated dfiéal system of equations has
been easily derived. More precisely, we have

: 1 0H : 1 OH :

Xi = f(‘?—YZ’ Y;__E(?—Xi’ 1=1,2 e

poo o L[y Somy ) on o 089
9L 2L |&0X, T oy | oN

This differential system of osculating equations can beefoge analytically integrated with
respect to the mean longitude if all the variables on the right-hand side in the polyndmia
functions are considered as constants. Subsequentlypnigetérm mean variations, over a
complete revolution of the space debris, are given by

— Ao
AYZ' _ l {57_{7“? _/ 5HTPd>\}
A

L oY, . 0 (4.7)
Vi :
Tit Hrp - Sg;()\l, )\2) ;
and similarly
— 1 (0H A H
AY, = —— L e
‘ L { 60X, /M 0.X; dk} (4.8)

= ﬁi{pl - S:I()‘(Al, )\2) y
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where’,, is the first-order averaged Hamiltonian disturbing funetio

Ny,
> AN X1, Y1, X, Yo, X, Yo, Zo) -

Jj=0

3
3
3
3

a

ax L2n
n+1
o

Ho=S R, =

n

I
=)
I
o

n

In both Egs. (4.7) and (4.8), the quantit%yi, ﬂfpi denote the mean variations in the orbital
elementsX; andY;, respectively, without considering the Earth’s shadowaffgcts, from
which we subtract the mean net char@@()\l, Ao) and Sﬁg(}\l, A2) when the space debris
crosses the Earth’s shadow between shadow entand shadow exib,. Let us remark that,
whenever the space debris does not encounter the Eartliswshvathin its orbit over a rev-
olution, the functionsS,, equal zero, by fixing, say; = X,. Itis also worth noting that the
mean net change$,, are defined as integrals of functions expanded into Foueiees As a
consequence, these integrations can be easily perforneedampletely analytical way.

In addition, the long-term variation of the semi-major asi@r a complete revolution is
simply related to
AL = [Hyp)3? = Hpp(A2) — Hip(Mr) - (4.9)

4.2.2 How to apply the semi-analytical theory

Let us assume that a set of well-defined variables, such a&&éi variables or equinoctial
variables, are given for an initial timsg.

1. For the purpose of numerical integration of the filteredagmpns of motion, we consider
the differential system of equations (4.6). At each stefmefihtegration process, the net
change of the variables can be computed for all the pertiorsmexcluding the Earth’s
shadowing effects.

2. By means of the algorithm mentioned before, the mean fodgiat shadow entry and
shadow exit are computed within the assumption that the wrbield frozen during the
integration time step.

3. From Egs. (4.7), (4.8) and (4.9), the perturbations indleenents are computed on a
revolution-by-revolution basis. If the integration tintegis lower than the orbital period
of the space debris, the perturbations induced by the Easti@dow are linearized over
the current integration time step.

4. Summing the latter perturbations with the perturbatiootsined in the first step, gives
the total perturbations in the elements.
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4.3 Short- and mid-term investigations for objects with high
area-to-mass ratios

In the framework of short-term investigations, numericaégrations of the osculating equa-
tions of motion, without taking into account eclipses, shibat the direct solar radiation pres-
sure mainly produces short-period effedtsidereal day) on the semi-major axis. These short-
period effects are characterized by high amplitudes, tberasf which is proportional to the
area-to-mass ratid /m. Considering the Gaussian equations of motion, the aat@erof a
near-circular and near-equatorial object is given by

% =—-C, P, % % cos’ % sin(Ag — V).
Let us recall thatC. is the non-dimensional “reflectivity” coefficient which dagds on the
optical properties of the space debris surfaée:= 4.56 x 107° N/m2 Is the radiation pressure
for an object located at a distance of 1 AUs the obliquity of the Earth with respect to the
ecliptic; A\ is the ecliptic longitude of the Sun andis the mean motion, that i&r/day for
geosynchronous space debris.

Consequently, a first estimation of the short-period am@ésy appearing in the semi-

major axis can be derived

A Lel

x =2C, P.—cos” = —.

m 2 n?
As a matter of fact, these high amplitude short-period &fface responsible for the long-term
variations of the semi-major axis, when considering sadiation pressure with the pertur-
bations induced by the Earth’s shadowing effects. Actuahythe latter case, the radiation
pressure cannot be considered as a conservative force emyititani et al., 1987), (Anselmo
et al., 1983), what is due to the breakage of short-periattfiduring the transit time through
the shadow of the Earth. On the contrary, the radiation pressoes not induce any signifi-
cant short-period variation of the other orbital elemeiftss statement explains why radiation
pressure with eclipses does not affect significantly therotinbital elements, in contrast with
the variations of the semi-major axis. These remarks aregireanent with Anselmo and
Pardini (2007b) where, among other results, the authoseptgeosynchronous objects prop-

agations with and without eclipses.

Let us recall that in the theoretical context of classicalgjationary space debrid (m <
1 m?/kg), the orbital plane remains reasonably close to the egabfalane. As a conse-
guence, the Sun moves through the orbital plane twice per psa matter of fact, a classical
geostationary space debris will experience eclipses drthaspring and autumn equinoxes.
During these two eclipse seasons, the space debris transitgh the Earth’s shadow once per
day, leading to eclipses of the Sun by the Earth. Figure fu&tiates the two eclipse seasons
occurring over a year.
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Let us now consider the evolution of several higher arearé@s ratio space debris sub-
jected to solar radiation pressure with eclipses; we aealye dynamical evolution of objects
over both short-term (a few days) and mid-term (a few years} scales.

The simulations were carried out by means of both completeigerical integrations and
semi-analytical extrapolations, that is numerical inédgns of the filtered equations of mo-
tion, including the Earth’s shadowing effects. The chos#sit® correspond to initial geo-
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Figure 4.2: Schematic evolution of the shadow transits awggar for near-equatorial orbits.
Twice per year, the Sun moves through the orbital plane ofanpkeading to eclipse seasons.
By means of the before-mentioned algorithm (Section 4Hg,mean longitudes at shadow
entry \; and shadow exit,, as well as the mean change over an orbital period, are dieim
at each step of the integration process.



4.3 Short- and mid-term investigations for objects withhh&gea-to-mass ratios 107

stationary space debris with area-to-mass ratios betwaer20 m?/kg. The top graphs of
Figure 4.3a-c shows the short-term evolution of the semoemaxis (the osculating semi-
major axis obtained by numerical integration) and its nad¥t evolution (obtained by the
semi-analytical approach), over 5 years, for three areadss ratiosH, 10 and20 m?/kg).
The bottom graphs of the same figures show the mid-term ewolaf the eccentricity for the
same period.

The amplitudes of the short-term variations, observed éndabculating semi-major axis,
are obviously directly proportional to the area-to-mas®rarhe sign of variation of the cu-
mulated mean change over an eclipse seadan,, depends on the sign of variation of the
mean eccentricity over this period. Indeed, an increasbeoétcentricity induces a decrease
of the mean semi-major axis during the eclipse season. &iur represents schematically
the mean and osculating semi-major axis over an eclips@sdéasan increasing eccentricity
during a shadow transit. A similar plot could be drawn for ardasing eccentricity, with a
resulting increasing semi-major axis over an eclipse seaket us now plot the cumulated
mean changé,, over an eclipse season with respect to the area-to-masstragibehavior
is clearly quadratic (Figure 4.5). Besides the understandf the dynamics occurring in the
semi-major axis, these results also report to what extens@mi-analytical theory is in good
agreement with accurate numerical integrations. The theeems to define accurately the
so-called mean motion even with the simplifying assumgihich are made.

It is worth stressing that a particular attention has to bemiwhen making comparisons
between osculating orbits and mean orbits derived witherctintext of mean orbital theories.
As shown in Figure 4.3a-c, the chosen osculating initialdittons do not have to be equal to
the initial conditions given in the semi-analytical exto#ions. Indeed, the osculating initial
conditions have to be computed, taking into account thesmiesof short-term variations. This
is the reason for which we indicate the initial osculatinghsenajor axis on the graphs; it does
not coincide with the initial mean semi-major axis and it ystematically distant from the
exact equilibrium. Fortunately, thanks to the chosen Hamihn formalism, the conversion
between osculating and averaged initial conditions canebbzed within the framework of
Lie transforms theory (Deprit, 1969; Deprit and Rom, 197@nkard, 1970). For instance,
within the context of a first order averaging process ovesstigat periods, the transformation
between both the osculating and mean semi-major axis delargables. and L/, is given by

(expanded up to order 1)
o oW,
L=I - { ” }

where E’ stands for the complete set of mean variables and whérés the first-order gen-

erating function, that is a function of the discarded “skmetiodic” terms, which is computed
in the following by an analytical integration with respeotthe fast angle\ (see Eq. F.6,

page 178).

I
E/
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Figure 4.3: Short-term (1 day) and mid-term (a few years)wian of the semi-major axis
over 5 years. The amplitude of variation of the short periasisvell as the cumulated varia-
tion Aa,,; Over an eclipse season is represented for three area-to+atass. The mid-term
evolution of the eccentricity is given below for each case.



4.3 Short- and mid-term investigations for objects withhh&gea-to-mass ratios 109

/\ /\ /\—»Osculatlng motion
Eclipse season exit
anvane il
\
\

Eclipsé season
Aaiot E >.‘\0

\ Mean motion

| fourauia

Eclipse season entry
)\1 = )\2

Time

Figure 4.4: Schematic evolution of the mean and osculatng-snajor axis over an eclipse
season. The sign of the cumulated variation of the mean s&juor axisAa,,; depends on the
sign of variation of the mean eccentricity during the edipsason.
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Figure 4.5: Amplitudes of both short-term variatiopgnd cumulated mean change over an
eclipse seasona,,, as a function of the area-to-mass ratio.
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Similar transformations are available for the remainirgtat elements. For further details,
we refer to Appendix F (Section F.4, page 178), where sucistoamations between mean and
osculating elements are given.

4.4 Long-term investigations for objects with high area-te
mass ratios

In Figure 4.3, besides the cumulated mean change over esgasons, there is no significant
long-term variation of the semi-major axis. During this &ggeperiod, the dates and duration
of the eclipse seasons are almost the same for every yearcéssaquence of the low incli-
nation of the orbits with respect to the equatorial planeheslipse season lasts more or less
46 days, from February 26 to April 13 (spring eclipse seasonl)from August 31 to October
16 (autumn eclipse season) (Soop, 1994). Actually, evemimiierate area-to-mass ratios,
the radiation pressure, coupled wifh and the third-body attractions, induces only small to
moderate variations of the inclination.

For the purpose of long-term investigations 25 years) of the semi-major axis, we also
performed several propagations by means of both completencal integrations and numer-
ical integrations of the filtered equations of motion, imthg Earth’s shadowing effects. The
chosen model of forces included the second zonal harmgnand the luni-solar perturba-
tions. These numerical investigations were performed éoious high area-to-mass ratios.

In each case, we show both the dynamical evolution of thelasog semi-major axis
and the mean semi-major axis over a perio@dfyears. In addition, we plot the evolution
of the eclipse seasons by means of the mean longitude atwleadoy and shadow exit, su-
perimposed with the evolution of the longitude of the asaeadode. Finally, the long-term
evolution of the inclination is represented.

4.4.1 Earth’s shadow,J,, third-body — moderate area-to-mass ratios

On the one hand, fad /m = 5 m?/kg (Figure 4.6), the inclination remains moderate and the
eclipse seasons present a regular pattern over time. Thegoence is a small to moderate
long-term variation of the semi-major axis. For the sakelafity, it is important to note that
the growth of the duration of the eclipse seasons due to agasimng inclination can not explain
completely the long-term evolution of the semi-major akisfact, in the latter case, the length
of the eclipse seasons has almost increased linearly by ddgs/(Figure 4.7, bottom), while
the semi-major axis seems to present a more intricate ésoluiin particular, the cumulated
variation over eclipse seasons seems to decrease in thpditsof the integration process,
reaches very small amplitudes after years and finally increases. This specific dynamics
is directly related to the asymmetry between the length efspring eclipse seasons and the
length of the autumn eclipse seasons. More precisely, tigths of the spring eclipse seasons
always seem to be greater than those of the autumn eclipserse@igure 4.7, bottom). To
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Figure 4.6: [Top] Long-term semi-major axis evolution tagiinto account/; and solar ra-
diation pressure with Earth’s shadowing effects: mean gegjor axis (solid curve), oscu-
lating semi-major axis (dotted curve). Area-to-mass rata mean initial conditions are
A/m =5 m2/kg anda,() = 42164 km, epg = 0, 19 = 0, Qg = wy = My =0 rad, re-
spectively. The osculating semi-major axis initial coraitis af; = 42158.810 km (solid
square). [Middle left] Mean longitudes at shadow entryand shadow exih, superimposed
with the longitude of the ascending nof¥g(dashed curve). [Middle right] A blow-up of the
first eclipse season. [Bottom] Long-term inclination evian.

explain this behavior, we investigated the values of theetities at both entry and exit
of the eclipse seasons. As indicated in Figure 4.7 (topy dlear that the eccentricities at
both entry and exit of the eclipse seasons change over tilmeedcentricities are also clearly
greater during the spring seasons than during the autunsorsgaexplaining the differences
of duration of the seasons between spring and autumn. Iscs @éar that, aftet1 years
of integration, the eccentricities at both shadow entry simadow exit converge to the same
values, leading therefore to vanishing cumulated meangdsanof the semi-major axis over
the eclipse seasons.

4.4.2 Earth’s shadow,J,, third-body — high area-to-mass ratios

On the other hand, the situation is more elaborate for highea-to-mass ratios. In this case,
the inclination reaches larger values. In particular, ti@imation vector nearly describes a
circle with fixed center coordinates depending on the setkatea-to-mass ratio. Figure 4.8



112 Chapter 4. Extended semi-analytical theory including lEsghadowing effects

’ Eccentricity at shadow season exit ~ *
012 1 Eccentricity at shadow season entry 8

A R

01 HY

0.08 | AEIN

Eccentricity

0'06_ IRt I _:

0.04 i .

0.02 |-

54: ' ' i v I i i v v I i i v i I i v ' i I v v i i I ’

o o]
52 | o 0 % "]

50 | 5 o © o © ;
48 £ Spring seasons
46 — o 0 © o o '

3 o © Autumn seasons
44 B

42:O.O.O.A.OIO.O.O. R R N S SR
0 5 10 15 20 25

Time [years]

Seasons duration [days]

Figure 4.7:A/m = 5 m?/kg. [Top] Eccentricities values at both entry and exit of thipse
seasons, superimposed with the long-term eccentricitjugga. The solid dark rectangle
underlines the region where the eccentricities at bothyertd exit of the eclipse seasons are
similar. [Bottom] Evolution of the length of eclipse season

illustrates schematically the evolution of the inclinatiwhen taking into account the second
zonal harmonic/, and possibly the solar radiation pressure with eclipsesn@éthe Earth’s
shadowing effects do not induce significant effects on thknation), as well as the combined
Moon and Sun third-body attraction. Fdym = 0 m?/kg, that is not taking into account the
effects of the radiation pressure, a space debris presentsehavior of a typical abandoned
geosynchronous spacecraft, with a maximum inclination®ftlégrees and a periodicity of
aboutb4 years (see Chapter 2 as well as Allen and Cook, 1964 and Agra9&6). However,
for A/m = 10 m?/kg, the inclination almost reaches the specific value cormeding to the
obliquity of the Earth on the ecliptic. Let us also remarktttiee longitude of the ascending
node always converges to zero when the inclination reathesaximum.

As a consequence of the large variation of the inclinatiorh bhe time of the eclipse sea-
son and its total length change considerably over time (€igu9, bottom).The longer is the
season, the smaller is the angle between the orbital plahtharecliptic plane. As an illustra-
tion, Figure 4.10 shows the evolution of the semi-major &xigin area-to-mass ratio equal to
10 m? /kg. At the beginning of the integration process, the incliotiemains small to mod-
erate, leading to moderate variations of the semi-maj@& sxch as in Figure 4.6. Moreover,
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Figure 4.8: [Top] Schematic long-term evolution of the ination vector in(Ys, —X5) ~
(sin cos €, sini sin 2) phase space, taking into accouht solar radiation pressure and the
combined Moon and Sun third-body attraction. [Bottom] Enimin of the inclination for vari-

ous area-to-mass ratios.
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the decrease of the cumulated variations on the semi-mgigr @served afteb years, can
also be explained by the evolution of the eccentricitiesadh lentry and exit of the eclipse
seasons as indicated in Figure 4.9 (top). Afleéryears of integration, the inclination reaches
its maximum. The eclipse seasons become “permanent” forgatime, since the orbital plane
of motion is almost parallel to the ecliptic. Consequertthg semi-major axis is subjected to
large variations without any conservative regime, due &l#tk of a complete illumination
region over successive orbital revolutions (see Figur&)4 uring this particular period, the
semi-major oscillates with a period ofyear, following what we called theccentricity law
that isincreasing eccentricity during eclipse seasons leads twe#sing mean semi-major
axis, and conversely

The patterns illustrated in Figure 4.12, corresponding te» = 15 m?/kg, mainly show
the same dynamics as fof/m = 10 m?/kg. As expected, the amplitudes of the variation
of the semi-major axis are larger than previously, what is ttua larger area-to-mass ratio.
However, the large variations of the semi-major axis ocastdr, since the rate of the orbital
pole precession, as well as the variation of the inclinatiocrease with highed /m.
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Figure 4.9:A/m = 10 m?/kg. [Top] Eccentricities values at both entry and exit of thipse
seasons, superimposed with the long-term eccentricitjugga. The solid dark rectangle
underlines the region where the eccentricities at bottyentd exit of the eclipse seasons are
similar. [Bottom] Evolution of the length of the eclipse seas.
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Figure 4.10: [Top] Long-term semi-major axis evolutionitekinto account/,, solar radiation
pressure with Earth’s shadowing effects and the combineai\dod Sun third-body attraction:
mean semi-major axis (solid curve), osculating semi-mayis (dotted curve). Area-to-mass
ratio and mean initial conditions ar¢/m = 10 m?/kg anday = 42 164 km, ey = 0,49 =
0,wy = Qg = My = 0 rad, respectively. The osculating semi-major axis int@ahdition is
afy = 42 153.621 km (solid square). [Middle] Mean longitudes at shadow entrand shadow
exit A\, superimposed with the longitude of the ascending rleddashed curve). [Bottom]
Long-term inclination evolution.

In all the previous investigations, our homemade semiyaical theory gives an insightful
understanding of the semi-major axis dynamics. The exlatipo of the mean motion is
in complete agreement with the numerical integrationsndwee longer time scales such as
25 years. Moreover, let us emphasize that the extrapolatidine@inean orbital motion is
considerably faster than in classical numerical integresti Indeed, the integration of the
filtered differential system of equations is made with adargegration time step of the order
of the orbital period [ day). This fact hugely reduces the time of integration ad agkthe
round off and truncating errors (Exertier and Métris, 1995)

4.4.3 Earth’s shadow,/,, third-body and resonant effects

Finally, the patterns illustrated in Figure 4.13 (page 1sk&)w the evolution of the semi-major
axis when including the 1:1 resonance effects in additiodstathe radiation pressure with
the Earth’s shadow and the third-body attractions. Thegapon is performed with an area-
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Figure 4.11: The duration of eclipse seasons depends anatioh of the space debris with
respect to the orbital plane of the Sun (ecliptic). When tieination is small, the space
debris is only affected at equinox periods (short eclipssses) whereas it is affected at each
orbital revolution when the inclination reaches a valuselto the obliquity value (long eclipse
seasons — “permanent” seasons).

to-mass ratio equal td0 m?/kg. Since the 1:1 resonance effects do not affect significantly
the inclination, the eclipse seasons display partiallys@mme evolution over time as in Fig-
ure 4.10. The inclination always reaches its maximum &ftgrears of integration, leading to
large yearly variations of the semi-major axis. Furthemndine dynamics of the semi-major
axis presents an additional long-term variation, cleapgaaent at the beginning of the inte-
gration window. The additional period can easily be relatethe long-term effects induced
by the 1:1 resonance. Indeed, it is well known that geostatip objects are subjected to a
long-term variation of both the semi-major axis and meamikole (libration around stable
equilibrium longitudes). Moreover, the period of variatigignificantly depends on the chosen
initial conditions with respect to both stable and unstagjeilibrium points (Chao, 2005). In
this latter propagation, we consider an initial mean lamdgt close to the first stable equilib-
rium point (~ 75° E). In this case, the object in consideration begins imnteljigo oscillate
with a period close to thproper periodof geostationary objects (see Subsection 2.6.2), that
is 818.7 days even though the evolution is considerably more irtichet us remark that at
the end of the integration interval the agreement betweemtéan semi-major axis and the
osculating one seems to break up. However, these signifiifi@tences are not the conse-
guences of the simplifying assumptions adopted in the ssralytical method. Indeed, high
area-to-mass space debris, subjected to both radiatissyreand the 1:1 resonance effects,
seems to present highly unstable dynamics. Further imgaggins have to be made to quantify
the order of instability as a function of both the area-tosmgatios and the initial conditions.
These further analyses should clarify the regular and ahaotmponents of the phase space.
These investigations are the main objective of the nexttenap
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Figure 4.12: [Top] Long-term semi-major axis evolutionitakinto account/,, solar ra-
diation pressure with Earth’s shadowing effects and thelsned Moon and Sun third-
body attraction. Area-to-mass ratio and mean initial cbods areA/m = 15 m?/kg and
ap = 42164 km,eq = 0,79 = 0,wy = Q9 = My = 0 rad, respectively. The osculating
semi-major axis initial condition ig§ = 42 148.432 km. [Middle] Mean longitudes at shadow
entry \; and shadow exit, superimposed with the longitude of the ascending rfodegashed
curve). [Bottom] Long-term inclination evolution.
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Figure 4.13: [Top] Long-term semi-major axis evolutionitakinto account/,, solar radiation
pressure with Earth’s shadowing effects, the combined Mawh Sun third-body attraction
and the 1:1 resonance induced by &g and Sy, tesseral harmonics: mean semi-major axis
(solid curve), osculating semi-major axis (dotted curvea-to-mass ratio and mean initial
conditions ared/m = 10 m? /kg anday = 42164 km, ey = 0,49 = 0,wy = Qy = 0,00 =

Ao — 6p = 1.32 rad, respectively. The osculating semi-major axis inid@hdition isaj =
42153.621 km (solid square). [Middle] Mean longitudes at shadow entryand shadow exit
A2 superimposed with the longitude of the ascending fodeashed curve). [Bottom] Long-
term inclination evolution.
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Chapter 5

Global dynamics of high area-to-mass
ratios GEO space debris by means of the
MEGNO indicator

“Two golf balls will soon be hit into Earth orbit from the Inteational
Space Station for a television commercial [...] The cosnubria

a golf novice and was tutored in July by a golf instructor and a
retired professional golfer [...] the ball does come equedpwith

a transmitter. So the satellites should be able to keep tabshe
ball...until the transmitter’s batteries wear out.”

NewScientist, 23 August and 17 November 2006

— The results of this chapter have been previously submiftetfalk et al. (2008) —

As mentioned in the previous chapters, the recent opticakgs in high-altitude orbits, per-
formed by the European Space Agency 1 m telescope in Ten@deary islands), have
discovered a new unexpected population of 10 cm sized spatmesdhear the geostation-
ary region (GEO). These objects sometimes present higlegrniec orbits with eccentricities
as high as 0.55 (Schildknecht et al., 2004, 2005). Followiminitial guess of Liou and
Weaver (2004), who suggested that this new population mayE@ objects with high area-
to-mass ratios, recent numerical and analytical investiga were performed to defend this
assumption (Anselmo and Pardini, 2005; Liou and Weaver5R0@ addition, these authors
and others, such as Chao (2006), Valk et al. (2007b), ValkLamdaitre (2007b), presented
some detailed results concerning the short- and long-teotugon of high area-to-mass ra-
tios geosynchronous space debris subjected to directrsalm@tion pressure (see Chapter 3).
More specifically, these latter authors mainly focusedrtagention on the long-term varia-
tion of both the eccentricity and the inclination vector. fdover, some studies concerning
the effects of the Earth’s shadowing effects on the motiosuch space debris were given in
Chapter 4.

121



122 Chapter 5. Numerical stability investigations of high ateanass ratios space debris

However, no concern about the intrinsic stability of suchammon orbits has been given
so far. In other words, up to the present, nobody ever de#ittive question to know whether
these orbits are really predictable or not on the time scaldseir investigations.

The objective of this chapter is basically twofold. The figstal is the investigation of
the long-term stability of high area-to-mass ratios spaserid subjected to the direct solar
radiation pressure, by means of the MEGNO criterion (Citacet al., 2003). Second, while
considering high area-to-mass ratios, we bring to the for®levant class of additional sec-
ondary structures appearing in the phase space.

This chapter is organized as follows. In Section 5.1, we $omur attention to the speci-
fication of the underlying model and we give some details abminumerical aspects of the
method.

In Section 5.2, for the sake of completeness, we dwell uperdétailed definition of the
Mean Exponential Growth factor of Nearby Orbitalicator, also providing a review of its
main properties, in order to understand the behavior of ia@s indicator.

Then in Section 5.3, within the framework of the validatidnoor implementation, we
regain the results obtained by Breiter et al. (2005a). We discuss the significance of the
time of integration, recently reported by Barrio et al. (2RO

In Section 5.4, we first apply the MEGNO technique in order it gn insightful un-
derstanding of the stability of high area-to-mass raticacepdebris. More specifically, we
show that the orbits of such peculiar space debris are egtyesensitive to initial conditions,
especially with respect to the mean longitude and the seappnaxis. Second, we perform
extended analyses, showing that the related 2-dimengbiagk space is dominated by chaotic
regions, in particular when the area-to-mass ratio is lahg@ddition, we also provide some
results presenting the importance of the initial eccertyricalue in the appearance of chaotic
region.

Finally, in Section 5.5, we give extensive numerical andidital investigations of the
additional patterns which will be identified as secondasprances.

5.1 The model

For the purpose of our study, we consider the modeling of aespabris subjected to the
influence of the Earth’s gravity field, to both the gravitatperturbations of the Sun and the
Moon as well as to the direct solar radiation pressure. Asx\a@guence the differential system
of equations governing the dynamics is given by

'f’:apot_'—a@ +a®+arp7
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whereay, is the acceleration induced by the Earth’s gravity field resped as the gradient of
the following potential (see Eq. 2.5, page 25)

U(r,\, ¢) = i z": (—e) P (sin @) (Crm oS MA + Sy sin mA) (5.1)
—0m

which is subsequently expressed in Cartesian coordingtegens of the recursive Cunning-
ham algorithm (see Appendix B, page 161).

Both the accelerations; anda, result from the gravity interaction with a third body of
massm,, wherex = ¢ andx = ®, and can be expressed with respect to the Earth’s center of
mass (see Subsection 2.2.3, page 28)

( roT T )

= M« )

I = lrs]?

Regarding the direct solar radiation pressure, we assuryipatetical spherical space debris
with optical properties defined by a single scalar coeffici&he albedo of the Earth is ignored
and the Earth’s shadowing effects are not taken into acasithrer. For the sake of clarity, the

acceleration induced by the direct solar radiation pressurecalled here. From Section 3.2,
we have

2
ac } A r—rg

m r—ro|

= C. |

[r —ro

5.2 The Mean Exponential Growth factor of Nearby Orbits
We present in this section the definition and some propesfidse MEGNO criterion.

Let H(p, q), with p € R", q € T", be an-degree of freedom Hamiltonian system and let
us introduce the compact notatian= (p, q) € R*" as well asf = (—9H/dq,0H /Ip) €
R?", then the dynamical system is described by the following@etdinary differential equa-

tions
d

dt
wherea is a vector of parameters entirely defined by the model.d(&t = ¢(t; xo, ty) be a
solution of the flow defined in Eq. (5.2) with initial conditis (¢, ), then it has associated
the Lyapunov Characteristic Number (hereafter LCN), deffimg (Benettin et al., 1980a)

xz(t) = f(z(t), ), x € R™, (5.2)

16,(0)]
A= hm In 5.3
R TSI (5:3)

whereé (t), the so-calledangent vectarmeasures the evolution of an initial small deviation
d,(to) = &, betweeny(t) and a nearby orbit, and whose evolution is given by the variat
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equations (terms of ord&?(6?) are omitted)

b= S0 = TGW)6,0). with T6(0)= (o), (6

whereJ (¢(t)) is the Jacobian matrix of the differential system of equetjevaluated on the
solutiong(t). Let us note that the definition of the LCN, given by Eqg. (5¢3) also be written
in an integral form
L
A dim & [ %8)
B Jy 0,(5)

ds,

Where5¢ = ||(5¢ ,5¢ = 5¢ . (5(15/5(15.

The Mean Exponential Growth factor of Nearby Orbits (hedlEGNO)Y,(¢) is based
on a modified time-weighted version of the integral form aof ttCN (Cincotta and Simo,

2000). More precisely ‘
2 t
Yy(t) = — / %(5) sds,
t Jo 04(s)
as well as its corresponding mean value to get rid of the euersndic oscillation possibly
existing inYy(t)

Y,(t) = 1/O Yy(s)ds.

t

In the following we will omit the explicit dependence BfandY on the specific orbit, once
this will be clear from the context.

Actually, this latter approach allows to study the dynanfmslong time scales, where
genericallylim,_ ... Y (t) does not converge, whilém,_... Y (¢) is well defined (Cincotta et
al., 2003). Consequently, the time evolution¥oft) allows to derive the possible divergence
of the norm of the tangent vecté(t), giving a clear indication of the character of the different
orbits. Indeed, for quasi-periodic (regular) orbits(¢) oscillates around the valuiewith a
linear growth of the separation between nearby orbits. @rother hand, for chaotic (irreg-
ular) motion, the module o grows exponentially with time, antf (¢) oscillates around a
linear divergence line. Cincotta et al. (2003) showed tatthe quasi-periodic regimeé(t)
converges to 2, that is a fixed constant, independent of thie doreover, it has been shown
that ordered motions with harmonic oscillations, i.e. tylery close to a stable periodic orbit,

result asymptotically ta”(¢) = 0.

These latter properties can also be used to compute efficiergood estimation of the
LCN, or similarly the Lyapunov timé@, = 1/, by means of a linear least square fitioft).
Indeed, in the case of an irregular orbit, the time evolutibi () may be easily written as

Y(t) ~a,t+d, t — 00,
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wherea, is simply related to the LCN by the relatian = \/2 andd is close to zero.

Regarding the numerical computation of the MEGNO indicat@radopt the same strategy
as in Gozdziewski et al. (2001). To be specific, in additmthe numerical integrations of both
the equations of motion and the first order variation equatiove consider the two additional
differential equations ‘

d 6-0 d Yy
A v A T
which allow to derive the MEGNO indicators as

, (5.5)

The MEGNO criterion, unlike the common Lyapunov variatiom&thods, takes advantage of
the whole dynamical information for the orbits and the etiolu of its tangent vector, which
results in shorter integration times, to achieve comparaeddults. Moreover, a couple of appli-
cations found in the literature (e.g. Gozdziewski et aDP20G0zdziewski 2003; Gozdziewski
et al. 2008; Cincotta and Simo 2000; Breiter et al. 2005ait&ret al. 2005b) justify and con-
firm that the MEGNO is relevant, reliable and provides an igffitway for the investigation
of the dynamics by detecting regular as well as stochagjiones.

5.2.1 MEGNO and numerical integrations

As previously mentioned, in order to evaluate the MEGNO dathbr, we have to integrate
the differential system of equations of motion (5.2), theedr first order variational system
of equations (5.4) as well as the two additional differdngiguations (5.5). We choose to
write both the expressions of the perturbing forces and éinational system, i.e. the Jacobian
matrix, in rectangular coordinatgsgpsitionsandvelocities In such a way we can overcome
both the null eccentricity and the null inclination singitapresent in the dynamics of space
debris. Moreover, the explicit analytical expressionshef vector fields allow us to avoid the
difficulties inherent in the classical method of neighbgrirajectories (two particles method).
For further detail concerning the explicit computation loé tvariational system of equations,
we refer to Appendix D on page 167.

In order to numerically integrate the two differential ®ysts of equations, we adopted the
variable step size Bulirsh-Stoer algorithm (see e.g. Boland Stoer, 1966; Stoer and Bu-
lirsh, 1980). Let us note that, for the purpose of validatithve numerical integrations were
also made with a couple of other numerical integrators. Hewehe Bulirsh-Stoer algorithm
seems to be the best compromise between accuracy and efficigtoreover, as quoted by
Wisdom (1983)What is more important for this study, Benettin et al. (198D&und that the
maximum LCE did not depend on the precision of their caloutatlt appears likely that as
long as a certain minimum precision is kept, maximum LCE’y beaccurately computed,
even though it is not possible to precisely follow a specifiggctory for the required length
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of time

Although this latter observation was formulated in the feawark of both Lyapunov vari-
ational method and Hamiltonian systems, it seems that iamesrelevant in the computation
of the MEGNO criterion, at least in the particular case of analysis.

5.2.2 Influence of the initial tangent vectord,

By construction MEGNO depends on the initial value of theyent vectod, although the lat-
ter does not influence significantly the detection of cha@gion. Nevertheless we preferred
to adopt the strategy of initializing randomly the initiahigent vectors in order to avoid some
parts ofartificially created zones of low MEGNO due to the proximitygto the minimum
Lyapunov exponent directidBreiter et al., 2005a). Moreover, as pointed out by Goadski

et al. (2001), the random sampling &f is relevant in the sense that different initial tangent
vectors can lead to different behaviors of the MEGNO timewian while considering the
same orbit. This observation has been reported in the framkeof extrasolar planetary sys-
tems and seems to be similar in the case of Earth orbitingctshj@nd more generally for
high-dimensional dynamical systems (having more than Badsgof freedom).

Regarding the impact of the choice of the initial tangentteeéd,, we performed a set
of exhaustive numerical investigations of regular orbNtore specifically, we compared the
time evolution of the MEGNO using different initial tangeveectors and identical generic
initial conditions. The results confirm that the random cleoof the initial tangent vector
induces a significant random behavior in the way MEGNO apgres.the limit valu€, hence
preventing this information from being useful to check th&bgity/instability character of
regular orbits. Actually, when considering a slightly pebted two-body problem (such as
the central attraction disturbed by the oblateness of ththEdahe MEGNO convergence o
is completely random, leading to more or less 50% of converg®fY (¢) to 2 from above
and the other remaining 50% from below. This result is folyndiscussed in the following
subsections. However, when the order of magnitude of theuation is larger, the result
does not completely hold anymore. In particular, when ateréng the perturbing effects
induced by the 1:1 resonance, the MEGNO evolution no longpedds on the random choice
of the initial tangent vector. In this latter case, the mgrc stability of the chosen orbits
seems also to dictate the evolution of the MEGNO as reponté€incotta et al. (2003). More
specifically, the stability of the orbit seems to influence time evolution of the MEGNO the
stronger the orbit is closer to a stable or unstable equilibmpoint. For instance, regarding
the orbits extremely close to a stable equilibrium poing MEGNO generally approaches
slowly the limit value2 from below even though some infrequent orbits present a MBGN
convergence from above. Conversely, the orbits initialgse to the separatrices generally
present a MEGNO approaching the value 2 from above.
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5.2.3 MEGNO for integrable systems

In this paragraph we will study the MEGNO indicator for intalgle Hamiltonian systems and
we will show that generically (if the system is not isochraapit always converges &) more-
over the wayY (¢) reaches this limit value, say from higher or lower valuegettels only on
the choice of the initial tangent vector and not on the otbdilf.

So let us consider an integrable Hamiltonian system andhassction-angle variables,
H = H(p), wherep € B C R" denotes the action variables agd= IT" denotes the angle
variables. Then the Hamiltonian equations are

p = 0,
) oH
q = %—W(P)-

The tangent space (to a given orbit) can be split into theadirection and angle direction,
namelyd = (4,, d,), thus the variational system can be written as

6, = 0,
: O*H
0, = —8p2 d0,=M(p)é,.

If the system is isochronous théd = 0, thuséd, andd, are constant andf’(¢) = 0 for all
t. On the other hand, if the system is non-isochronous weygel = 4,(0) andd,(t) =
d,(0) + M(p(0)) 6,(0)t. To simplify the notations let us introduce

M (p(0)) = Mo,  6,(0) = &, andd,(0) =, .
Using the definition of MEGNO, we get

1 t (Mo€y)*s + M€, - 1o
Y(t) = t /o (£0)% + (mg)* + 2Mo&, - mgs + (Mo€)*s?

and this integral can be explicitly computed and we obtain

s ds,

Mofo No

1(Mo€)?
2 \/(Mo&,)? — (Mo&, - mp)?

_ ; (Mofo)2 [arctan

Mo, - ] .
V (Mo€p)? — (Mo& - 1o)?

One can check that the square root is well defined, i.e. pesiind thus one can cast (5.6)
into

Y(t) = 2- log [1+ 2Mo&, - mot + (Mo&y)*t°]+

MOfO "My + (MO£O)2t2 (56)
\/(]\4050)2 — (Mo&, - my)?

— arctan

Y(t)=2— 050 2080 Mo () — %FQ(LL),

whereF; and F; are positive functions anﬂ’g is bounded. We can then conclude that
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1. if My&, - n, > 0thenY (¢) approacheg from below;

2. if M€, - m, < 0thenY'(¢) approache& from above, in fact for large the first contri-
bution dominates the bounded tefm

In this last part we will consider if and under which assurmipsi the previous results con-
cerning the convergencdé — 2 are still valid, for a quasi—integrable Hamiltonian systein
the formH (p, q,¢) = Ho(p) + €V (p, g). The main idea is the following, fix > 0 but small
and consider a “non—chaotic’orhit, namely an orbit without a positive Lyapunov exponent
(or if you prefer with a bounded MEGNO), theneiis sufficiently small this orbit is a pertur-
bation of an orbit existing also fer= 0, ¢y, and we can check thaf, = Y, + O(¢), hence
the smallness of suah-correction cannot change “the waygoes to2”. More precisely the
Hamilton equations are now

o oM __ v
- 9q 0
R S

and a similar decomposition can be done for the variatioysiesn

oV OV

opdq *  Oq?
é, = aQ—HJreaQ—V 0, +€——0
0 \opr opr) " opog !

Looking ford, andd, ase—power series, i.6), = d,0+€d,1+... andd, = §,0+€d,1+. ..,
and collecting together, in the definition of MEGNO, termsitibuting to the same power of
€, we can thus get

610 = 6(1

v = 7 | (MoBy0) s + Modyo B
o t Jo (8p0)%+ (0p0)% +2Mo,0 - 6405 + (Modg0)?s?
= Yy (t) + O(e).

sds+ O(e)

5.3 Validation of the method

To validate our method we first apply the technique on a siiedlimodel, containing only
the Earth’s gravity field expanded up to the second degreeoahel harmonics, namely,
Jo = —C9,Cy and Sy,. For the purpose of the analysis, we followed a set of 12600
orbits, propagated over a 30 years time span, that is the ofdg)* fundamental periods

(1 day) empirically required by the method (Gozdziewslkalet2001). As reported in Breiter
et al. (2005a), a 30 years time span seems to be relatively femeng-term investigation of
geosynchronous space debris. However, on the one handytherical integration of varia-
tional equations in addition to the extrapolation of theiidquite time consuming. Indeed,
the simulation with an entry-level step size of 400 secoakiss approximately 20 seconds per
orbit when including only the Earth’s gravity field wheretiakes 42 seconds with a complete
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Figure 5.1: MEGNO for quasi-integrable Hamiltonian systéife consider the evolution of
Y,, for the system:H = p3/2 + py + ecosq; + ecos(q1 — g2). On the top paned = 1074
while on the bottom panel= 10~3. In both cases is small enough to confirm the theoretical
predictions, let observe that in this case the matdxis given by (}§) and thus the sign

condition reads\/d,,o - 4,0 = 9}, o0y -

model, which is already significant when examining large sétinitial conditions (typically
more thanl0* orbits). On the other hand, the analysis of the followingiseawill bring to the
fore some indications about the Lyapunov times resultingwer than 30 years. As a conse-
guence, our choice of integration time can be consideredféisiently large in the particular
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case of our study.

For the purpose of this validation study, we consider a setitél conditions defined by a
mean longitude grid of°, spanning0° on both sides of the first stable equilibrium point and
a semi-major axig grid of 1 km, spanning thé2 164 + 35 km range. The other fixed initial
conditions are;y = 0.002 for the eccentricity;, = 0.004 for the inclination 2y = wy, = 0 for
the longitude of the ascending node and argument of penigepectively. These values have
been fixed to compare our results for the nearly-geosyncuarbits with the ones of Breiter
et al. (2005a). As pointed out by Breiter et al. (2005a), dubée 1:1 resonance, good variables
to present our results will b, oy), Whereq, is the osculating initial semi-axis arndis the
so-called resonant angle, i®= \ — 0 with the sidereal timé.

Figure 5.2 (top) shows the MEGNO values computed using 3@sya&antegration time.
We identify clearly a blow-up of the typical double penduHike pattern related to the 1:1
resonance (observe the horizontal rangésof). Both the unstable and the two stable equilib-
rium points are clearly visible. We observe that the phaseesgeems to be essentially filled
in with MEGNO valuesY (¢) ~ 2, that is plenty of regular orbits. Moreover, the two separa-
trices are also identifiable and are associated with neigihp¥ EGNO value® < Y (t) < 4.
Therefore, following the properties defined in Section bri& could consider that these orbits
are chaotic, however, we will show that this conclusion Isda Indeed, a careful identifica-
tion of the MEGNO time evolution shows that the latter alwapproaches slowly the limi
from above. The closer to the separatrice, the slower theetgance. More precisely, none of
the above simulated orbits presents a MEGNO time evolutionral a linear divergence line,
leading to the conclusion that these orbits are actuallyalne periodic orbits, and as a matter
of fact also regular.

To clarify this point, we performed a similar study but usegignificantly longer time
span, namely 300 years. The results are showed in Figurebbtbon). For the sake of
comparison, the color bars have been taken identical onloth. Let us observe that the
maximum value reached by the MEGNOJ4dor the top panel and.5 for the bottom one.
In the 300 years simulation (Figure 5.2, bottom), the MEGNugs, associated with orbits
close to the separatrices, turn out to be, on average, srttadle in Figure 5.2 (top), reaching
almost the limitY"(¢) — 2, due to the longer time of integration. Similarly, the dagke in the
neighborhood of the stable equilibrium point correspogdmMEGNO values close to zero,
is strongly shrunk, supporting the result that, in the liofiinfinitely larget, only the orbit
originating from the exact stable equilibrium point leads’t = 0 whereas the neighboring
trajectories converge slowly i6(¢) = 2.

Let us note that the importance of integration time has beeantly reported by Barrio et
al. (2007) in the framework of applications of the MEGNO ne&thand it is here confirmed.
Moreover, the latter paper also underlines some spuriouststes appearing in the maps of
the variational chaos indicators, explaining the presericeome background patterns (Fig-
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Figure 5.2: The MEGNO computed as a function of initial meargitudes\, and osculating
semi-major axisy. The equations of motion include the central body attracti® well as the
second degree and order harmonigesCy,; and Ss;. The mean longitude grid is° and the
semi-major axis grid i km, spanning the2 164 4+ 35 km range. The initial conditions are

eo = 0.002, i = 0.004, Q0 = wg = 0. Time at epoch is 25 January 1991. The patterns have
been obtained using two different integration timgs= 30 years [top] and; = 300 years
[bottom].



132 Chapter 5. Numerical stability investigations of high ateanass ratios space debris

ure 5.2), ‘suggesting that the same periodic orbit is more or less ggdépending on the
initial conditions choicé

5.4 High area-to-mass ratios analysis

In the particular case of classical near-geosynchronojests the long-term stability has been
studied by computing the MEGNO indicator for a family of sileted geostationary, geosyn-
chronous and super-geosynchronous orbits. The clasgaalgeosynchronous object with a
period which is close to the sidereal dayday) is subjected to the main gravitational effects
of the Earth, including the 1:1 resonance, the luni-solatypking effects as well as the solar
radiation pressure for small area-to-mass ratigr < 1 m?/kg). According to Breiter et al.
(2005a) and Wytrzyszczak et al. (2007), the near-geosiatyoregion presents chaotic orbits
only very close to the separatrices due to the irregulassitaubetween the libration and the
circulation regimes. Regarding the super-geostationdnysy all the orbits seem to be entirely
regular on the time scale of the investigations, that is adewades.

The aim of this section is to provide a more extensive angalgbithe dynamics of near-
geosynchronous space debris, subjected to the solaricedpessure with high area-to-mass
ratios (typicallyA/m > 1 m?/kg). Our main objective is to study the effects of high area-
to-mass ratios on the stability of the principal periodibits and on the chaotic components.
This analysis is divided into three parts. First, Subsectal.1, we focus our attention on
the sensitivity to initial conditions; then, Subsectiod.2, we report results of dedicated nu-
merical analyses which emphasize the importance of thetargess ratio value. Finally, in
Subsection 5.4.3, we study the influence of both the initiakatricity and time at epoch.

Let us recall that for large area-to-mass ratios, the satiiation pressure becomes the ma-
jor perturbation, by far larger than the dominant zonal gyaerm J,. In this particular case,
the larger the area-to-mass ratio, the more affected thardigs of the near-geosynchronous
space debris, leading to daily high-amplitude oscillagiohthe semi-major axis, yearly oscil-
lations of the eccentricity as well as long-term variatiohthe inclination. As an illustration,
Figure 5.3 shows the orbital elements histories of the fil€® Zears of an initial geosyn-
chronous high area-to-mass ratio space debris{ = 10 m? /kg). The yearly variation of the
eccentricity reache$ 2, which confirms the expected values predicted by the the(see e.g.
Anselmo and Pardini, 2005; Liou and Weaver, 2005). Themation variation presents a well
known long-term variation whose period is directly relatethe area-to-mass ratio value. Re-
garding the argument of perigee as well as the longitudeadrang node, they both present
a libration regime due to the chosen set of initial condsgioRor further details, we refer to
Chapter 3, where a full description of the long-term motiéhigh area-to-mass ratios space
debris is given.
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Figure 5.3: Time evolution of a typical high area-to-magsrspace debris. Orbital elements
over 210 years for aA/m = 10 m?/kg, initial conditions are(ay = 42166.473 km, ¢y =
0.002, iy = 0.004 rad,2y = wy = 0 rad, M, = 4.928 rad). Time at epoch is 25 January 1991.
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5.4.1 Sensitivity to initial conditions

To start with, we follow the evolution of two high area-to-ssaratio space debrisi{m =

10 m? /kg) defined by two sets of very close initial conditions, dififigr only in the 10th digits
in mean longitude. Figure 5.4 shows the differences of theadycal variables for the two
orbits, confirming the hypothesis that the sensitivity titiahconditions is especially relevant
for the semi-major axis and resonant angle whereas theefiite between the other orbital
elements remain small. Consequently, we first focus oun@bie on the time evolution of the
semi-major axis and on the resonant angle.

As a complement to Figure 5.3, we numerically compute twat®for two space debris
with different area-to-mass ratiod/m = 1 m? /kg andA/m = 10 m?/kg, whose initial con-
ditions have been chosen near the separatrices, to emghiasiizchaotic behaviors. Figure 5.5
shows a blow-up of the evolution of the semi-major axis (tapgds) and of the resonant angle
[middle panels] over the time span 20 years. It is clear that the semi-major axis presents
some irregular components over its evolution, related moestransitions between different
regimes of motion, clearly identifiable in the resonant argbts. In addition we also com-
puted the corresponding MEGNO time evolution. The bottomeban each graph shows the
time evolution of the MEGNO indicator as well as its corresghmg mean value. First, we see
that the time evolution o (¢) presents a quasi-linear growth almost since the beginrfing o
the integration process, leading to the conclusion thaigloebits are clearly chaotic over that
time scale. Therefore, we also computed the linear fit) ~ a, t + d in both cases in order
to evaluate the Lyapunov tinB,, by means of the LCM or similarly the linear regression
coefficientsa, = A/2. Let us remark that to avoid the initial transient state,ld@st square
fits were performed on the last 85% of the time interval. Thiser analysis brings to the
fore the fact that larger area-to-mass ratios lead to lowaplnov times, i.e. larger Lyapunov
Characteristic Number. Indeed, fdy/m = 1 m?/kg, the Lyapunov time turns out to be on the
order of11 years, whereas it reaches the valye~ 3.7 years forA/m = 10 m?/kg. Second,
let us also remark that the behavior of the MEGNO indicatafiparticular interest in these
cases. A careful analysis &f(¢) underlines some irregular patterns directly related teetize
lution of o, in particular when the orbits seem to transit across thars#yces. Finally, we can
also highlight the fact that the sudden changes betweaetiliorand circulation regimes occur
mainly when the inclination changes its sign of variatispeially at the maximum value for
A/m >>1m?/kg and at the minimum forl/m < 1 m?/kg (Figure 5.5, top panels, dashed
line), with an empirical long-term periok,, that is the long-term period of the longitude of
the ascending node, which decreased A increases (Valk et al., 2007b).

5.4.2 Extended numerical analyses

We considered a set @2 600 simulated orbits with various initial semi-major axes anelam
longitudes. All the before-mentioned perturbing effeceyavtaken into account with several
values of the area-to-mass ratios regarding the solartradlipressure. Results are reported in
Figure 5.6 (in the casd/m = 1 m?/kg — top left panel — we recognize the same pendulum-
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Figure 5.4: Effect of sensitivity to initial conditions ftigh area-to-mass ratio space debris.
The figure shows the differences between two orbits with #reesinitial conditionga, =
42166.473 km, eg = 0.002, i = 0.004 rad, 2y = wy = 0 rad, M, = 4.928 rad) differing from

the 10th digit in mean longitudg,. On each graph, the left vertical scale shows the deviations
(Aa, Ae, Ai, AQ), Aw, Ao ) and the right vertical scale the order of magnitude of thiecéhce

(—, apAe, agAi, agAQ, agAw, agAc) [meters]. Time at epoch is 25 January 1991.
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Figure 5.5: For each graph, we show the orbital evolutiomefsemi-major axes (solid line)
superimposed with the evolution of the inclinations (dashme) [top panels]. The time evo-
lution of the resonant angles [middle panels] and the tincdugon of the MEGNO indicator
(Y andY =< Y (t) >) as well as the corresponding linear¥itt) ~ a, t + d [bottom panels].
The area-to-mass ratios arfgm = 1 m?/kg in the upper panel and/m = 10 m?/kg in
the lower one. The initial conditions are chosen near tharsg¢pces. The computed linear
regression coefficients are given by = 0.043 (for A/m = 1 m?/kg) anda, = 0.134 (for
A/m =10 m?/kg).
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like pattern as in Figure 5.2). Considering the same integraime (30 years), we notice that
the MEGNO values tend to be slightly larger than in Figure(®f). Moreover, some irregu-
larly distributed MEGNO values are clearly visible closetie two saddle unstable stationary
points. These results completely agree with those pregdntdBreiter et al. (2005a) where
the solar radiation pressure was taken into account, bytfonlery small area-to-mass ratios
(typically 0.005 m?/kg). Indeed, our latter analysis shows that in addition to the-$olar
perturbations, the solar radiation pressure (with smathtalerate area-to-mass ratios, that is
0 < A/m < 1m?/kg), do not change considerably the phase space pattern.

On the other hand, the remaining panels of Figure 5.6 showthigaphase portrait be-
comes significantly more intricate with increasing areani@ss ratios. Indeed, the width of
the stochastic zone in the neighborhood of the separatieesmes relevant with a large dis-
placement of the separatrices on the phase plane. The lengetic region can readily be
explained by the osculating motion of the separatrices dtieet before-mentioned daily vari-
ations of the semi-major axis with respect to some mean yakievell as by the increasing
amplitudes of the eccentricities. These variations leaglitably to transits between both the
regions separating libration and circulation motion fdsite initially close to the separatrices.

Moreover, itis also clear that the usual double pendulkaghase space shows a tendency
to be distorted with a apparent displacement of the unsedpdibrium points, whereas the
stable equilibrium points remain almost fixed. This lasuteis however quite awkward inso-
far as there is no physical interpretation of this phenomehadeed, the direct solar pressure
does not depend explicitly on the resonant angle with rédpete long-term investigations
and therefore can not induce a displacement of the equitibgoints in the phase space. Ac-
tually, an ingenious explanation can be found regardingatag the sampling is considered
in the elaboration of the graphics. More specifically, it isrth noting that, at first, the sam-
pling is carried out with respect to osculating initial cdrahs. Second, within the framework
of mean-motion theory, it is well-known that, due to the shmmariod oscillations, the mean
and the osculating initial conditions can not be considéodake equal. In other words, when
considering a horizontal line in the initial conditions gaimg, even though it corresponds
to a fixed value of the initial osculating semi-major axissitctually related to various sets
of mean initial semi-major axis as explained with Figure. 5Attually, the different initial
mean longitudes induce a phase difference in the correspgreaolution of the semi-major
axis, leading to different mean initial semi-major axest le remark that the maximum dif-
ference between both mean semi-major axes is directlyectkat the order of magnitude of
the short-period variations, and as a consequence, atdlgirelated to the area-to-mas ratio.

More rigorously and as already mentioned in Chapter 4, tfierdnce between osculat-
ing and mean initial conditions is a well-defined transfotiora depending on the generat-
ing function used within the averaging process allowingharge from mean to osculating
dynamics (see Appendix F.4, page 178). However, becauseowadbour analysis mainly
to numerical simulations, we cannot access such a gengifainction; we can nevertheless
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Figure 5.6: The MEGNO computed as a function of initial meamgitudes), and initial (osculating) semi-major axig. The equations
of motion include the central body attraction, the secongrel® and order harmonick, Cy, and Ss,, the luni-solar interaction as well as
the perturbing effects of the solar radiation pressure. fiean longitude grid i2° and the semi-major axis grid is km, spanning the
42164 + 35 km range. The initial conditions afe, = 0.002, i, = 0.004, Qg = wy = 0). The integration time is 30 years from epoch fixed
at 25 January 1991. The patterns have been obtained usindifauent area-to-mass ratiod,/m = 1,5, 10, 20 m? /kg, respectively top left,
top right, bottom left and bottom right panel.
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Figure 5.7: Cartoon to illustrate the difference betweeamend osculating initial conditions
with respect to the semi-major axis (s.m.a.) evolution. thersake of simplicity, the mean
semi-major axis does not present any long-term variatioareds the osculating semi-major
axis present daily oscillations related to the direct sptassure (the implicit underlying model
is radiation pressure only). Itis clear that even if the ¢eing initial conditionse{*© anda$*®
are identical, the corresponding mean initial conditiafi&* anda3***" can be significantly
different due to different initial mean longitudes (sinnijedifferent initial resonant angle val-
ues).

overcome this problem by numerically computing, for eaahis@ajor axis osculating initial
condition, the related mean initial semi-major axis, by sidaring the average over a short
time span of 10 days. As an illustration, in Figure 5.8, weedhe relation between the mean
semi-major axis and the resonant angle for various valuéiseobsculating semi-major axis
(A/m = 10 m? /kg). The first difference is related to a semi-major axis sangpiaken above
the libration region, the second is related to a semi-ma@ sampling which crosses the
libration region and, finally, the third sampling is takerdvethis region. In conclusion, we
clearly see that the order of magnitude of the differenceasipreviously mentioned, the order
of the amplitudes of the daily variations observed in theismagjor axis dynamics. Let us
note that in the latter case, i.d,/m = 10 m?/kg, the differences reach at most 27 km, which
corresponds exactly to the difference between the staldeuastable equilibrium points, as
shown in Figure 5.6 (bottom, left).

We can thus numerically apply the transformation as a pestinent process, that is con-
sidering the MEGNO values not in the osculating initial ctietds phase space, but in the
mean initial conditions phase space. For the sake of cosgawith Figure 5.6, we show
the results once such a transformation has been appliedré9). It is clear that now the
vertical gaps between both the stable and unstable equiilgpoints, are almost completely
eliminated, hence these points have almost the same me&msgan axis, getting rid of what
we called the short-period artefact Let us also remark that, from now on, all the results will
be shown in the mean initial conditions phase space.

5.4.3 Initial time at epoch and importance of the mean eccentity

One should also recall that the solar radiation pressuds leea theoretical equilibrium defined
both in eccentricitye, and longitude of perigeer, (see Subsection 3.4.1, page 75). The
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Figure 5.8: Relation between the mean semi-major axis aadeavonant angle for various
values of the osculating semi-major axis. The first osaadpsiemi-major axis is taken above
the libration region, the second is related to an osculatgmi-major axes sampling which
crosses the libration region and finally, the third sampigigken below this region.

conditions leading to such an equilibrium were derived aednitten as

3 A 1
e = =-C.P.— cos’ = ~0.01C, —,
2 m nang m
woy — A@(O)

wheren andng are the angular motion of both the space debris and the Speatagely, e

is the obliquity of the Earth with respect to the ecliptic akhg0) the initial ecliptic longi-
tude of the Sun. If these conditions are fulfilled, it has b&leown that the eccentricity vector
(e cosw, e sinw) remains constant leading to a fixed value of both the ecaitytand lon-
gitude of perigee. For an illustration, we refer to Figuré @age 80). Regarding this latter
figure, it is clear that, apart from a phase difference, thelantes of variations of the ec-
centricities are qualitatively the same, except when adgtn initial time at epoch equal to
21 March. In this latter case, the eccentricity remains almonstant, as expected by the the-
ory.
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Figure 5.9: The MEGNO computed as a function of initial meamngitudes)\, and initial
mean semi-major axeg. The model is the same as in Figure 5.6. The area-to-masssati
A/m = 5,10 m?/kg for the top and for the bottom graph, respectively.

For the purpose of this investigation, Figure 5.10 showspthg@se space in mean semi-
major axis and longitude for a fixed value of the area-to-nmrati® A/m = 10 m?/kg
and fixed values of initial conditions, namely = 0.1, i, = 0.004, g = wy = 0. The
differences between the two graphs only depends on thalitifie at epochparameter.
We could actually expect that different initial times at eppnamely, different initial ecliptic
longitudes of the Sun\,(0), will reveal a quite rich collection of behaviors depending
the different states with respect to the before-mentiosazentricity equilibrium Actually,
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Figure 5.10: The MEGNO computed as a function of initial méagitudes)\, and semi-
major axisay. The equations of motion include the central body attractibe second degree
and order harmonic$,, Cy, andSs,, the luni-solar interaction as well as the perturbing dffec
of the solar radiation pressure. The mean longitude grid end the semi-major axis grid is

1 km spanning theé2 164 4+ 35 km range. The initial conditions arg = 0.1, iy = 0.004, Qy =

wp = 0 with an area-to-mass ratié/m = 10 m? /kg. The patterns have been obtained using
two different initial times at epoch, namely, 21 Decembd&@[op], 21 March 2000 [bottom],
respectively.
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assuming an initial time at epoch of 21 December 2001, wels@eythat the phase space is
filled by a large number of chaotic orbits (Figure 5.10, tdph the contrary, starting with an
initial time at epoch of 21 March 2000, that is adopting a Samfing longitude of perigee
(A2(0) = 0 rad), the values reached by the MEGNO tend to be lower anciated with

a significantly narrower chaotic region always located eltusthe separatrices (Figure 5.10,
bottom). In the latter case, the eccentricity presents enigll yearly variations due to the
proximity of the theoretical equilibrium. Therefore, tee®esults seem to suggest that high-
amplitude variations of the eccentricity increase considly the order of magnitude of the
chaotic region close to the separatrices and conversebl] setentricity variations seem to
considerably minimize the extent of chaotic regions. Taifyashis assumption, we performed
a dedicated numerical simulation with the same set of paersiased in the one reported in
Figure 5.10, but considering higher values of the initiadeetdricity. Results are reported in
Figure 5.11, the chosen time at epoch is 21 December 200Chanditial eccentricities are,
eo = 0.2 (top panel) an@, = 0.4 (bottom panel). In the latter case, the huge variationsef th
perigee altitude, induced by the large variations of theetity as well as by the variations
of the semi-major axis, lead to even more complicated dyoamihese results confirm thus
the importance of the initial eccentricity in the appearmatchaos.

5.5 Secondary resonances

It is worth noting that inspecting Figures 5.9, 5.10 and 5ué clearly note the presence of
some additional patterns located on both sides of the seejgasain the phase space. These
never seen before regions, unexplained so far, are actahacterized by significant very low
MEGNO values. Indeed, this observation underlines thetfettthe dynamics of high area-to-
mass ratios space debris is even more intricate than expéntthe following two paragraphs
we will provide some numerical results and an analyticabtiidased on a simplified model,
to better understand such zones.

5.5.1 Numerical investigations

We followed a large set of near-geosynchronous space dedlaged to an extremely large set
of initial conditions taken on both sides of the pendulukelpattern, and for each one of the
72000 orbits we computed the related MEGNO indicator. Thigalrconditions have been
fixed by a mean longitude grid of 1spanning 360and a semi-major axis grid of 1 km span-
ning the42 164 + 100 km range, while the remaining ones and time at epoch are the aa in
Figure 5.6. Moreover, as in the previous extended analyisesnodel of forces also includes
the central body attraction, the second degree and orderdmées./,, Cy; andSs, as well as
the combined attractions of the Sun and the Moon. The penigidiffects of the direct solar
radiation pressure are also considered for a high areaasnatio fixed tol /m = 10 m? /kg.
The results are reported in Figure 5.12, which is nothingaougéxtensive enlargement of the
phase space presented in Figure 5.6 (bottom, left). Thisgopepace widening clearly un-
derlines the before-mentioned additional structurestéatat+ 40 km on each side of the



144 Chapter 5. Numerical stability investigations of high ateanass ratios space debris

16

14

12

E
= F 110
i)
x
a
S, P8
IS
T
£ L 16
[]
2]
3
o 4
=
2
0
-200 -150 -100 -50 50 100
Resonant angle [degree]
12
; {)h} ] 10
T ﬁ,;‘ s "iu-ﬁ}«s*f-f;& LN
X e -r.f‘-u St i L g
@ L 2 Qg 4
&
.% 16
£
=
3 F14
c
IS
(]
=

1 1 1 1
-200 -150 -100 -50 0 50 100

Resonant angle [degree]

Figure 5.11: The MEGNO computed as a function of initial méagitudes)\, and semi-
major axisay. The equations of motion include the central body attractibe second degree
and order harmonic$,, Cy, andSy,, the luni-solar interaction as well as the perturbing affec
of the solar radiation pressure. The mean longitude grid end the semi-major axis grid is
1 km spanning thé2 164 + 35 km range. The initial conditions aig = 0.004, 2y = wy = 0
with an area-to-mass ratid/m = 10 m?/kg. Time at epoch is 21 December 2000. The
patterns have been obtained using two initial ecceneggiti, = 0.2 [top] ande, = 0.4
[bottom].
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resonant area. Furthermore, besides these patterns,sadfagecial interest is that this figure
also brings to the light supplementary structures locategaroximately 80 km on both sides
of the main resonance, suggesting that the phase spacai@habbliated by a larger set of
secondary structures. Moreover, the order of magnitudbeesfe additional patterns seems to
be directly related to the inverse of the distance with resfgethe resonant area.

In addition, we also performed a set of similar numericaéstigations, in order to distin-
guish qualitatively the relative relevance of some paransetuch as the initial mean eccentric-
ity and the value of the area-to-mass ratio, as well as theitapce of the 1:1 resonance and
of the third-body perturbations in the occurrence of suadosdary structures. Even though
these results are not presented here in detail, we can deafeltbwing preliminary conclu-
sions: the second order harmounicas well as the third-body perturbations do not seem to be
really relevant and crucial in the appearance of these iadditpatterns. In other words, the
unexpected patterns occur only when taking into accountdah#ined effects of both the sec-
ond order and degree harmonic and the direct solar presssig@matter of fact, the extended
numerical investigations performed in Figure 5.6 (topt)lef similarly those performed in
Breiter et al. (2005a) also present these structures ewerglkhthey are difficult to perceive.
Actually, the order of magnitude of the secondary patteaesrs to be directly proportional
to the area-to-mass ratio value or equivalently directlypprtional to the mean value of the
eccentricity. To get even more concluding results, we amred a blow-up of the phase space
(dashed line rectangle in Figure 5.12) with a fairly higeateition sampling (approximately
150 meters w.r.t. the semi-majeaxis and).3° w.r.t. the resonant angte). Figure 5.13 (top)
shows this phase space widening, wherein we defined a staadlonant angle sectigmori-
zontal black solid line), that is the subset of orbits havimgsame initial resonant angle value.
This resonant angle section spans the complete range inmsejor axis and passes next to
the stable equilibrium point. For each orbit defined on teigisn, we computed the MEGNO
indicator and in Figure 5.13 (middle) we report this valughst end of the simulation as a
function of the semi-major axis.

To double check our results, we performed a frequency aisaiygestigation (Laskar et al.,
1992; Laskar, 1995; Noyelles et al., 2008) aimed to studyp#tavior of the proper frequency
of the resonant angle, whose results are reported in Figure 5.13 (bottom). Hepsaam
clearly see the distinctive characteristics regardingvitb#-know 1:1 resonance between the
mean longitude and the sidereal time. Indeed, both the ME@hDthe fundamental period
show distinctively a minimum close to the stable equilibripoint. In this case, as previously
mentioned in Section 5.3, the MEGNO should slowly conveegé(tt) = 2 everywhere except
at the equilibrium point where the limit value ¥§(t) = 0; this is why, using a finite integra-
tion time, we obtain such V-shaped curve, close to 0 in théecenf the resonance and to 2
on the borders. It is also worth noting that the fundamergalbpl of o is reported to be close
to 2.25 years, which is in good agreement with the well-kn®4/@ days libration period of a
typical uncontrolled near-geosynchronous object. Neastparatrices, the MEGNO clearly
presents some obvious high values which confirms the presainchaotic orbits. Here, the
fundamental period reaches significant values and is as temadtfact not well determined,
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Figure 5.12: The MEGNO computed as a function of initial mé&agitudes), and semi-
major axisay. [Top] Enlargement of the complete phase space. [Bottonigrgeament of the
complete phase space shown in polar coordinates. The egsati motion include the central
body attraction, the second degree and order harmahic%, and.S,; as well as the luni-solar
perturbations. The mean longitude gridiisand the semi-major axis grid iskm, spanning
the42 164 + 100 km range. The initial conditions arg = 0.002, ig = 0.004, Qy = wg = 0.
The area-to-mass ratio is/m = 10 m? /kg. Time at epoch is 25 January 1991.
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Figure 5.13: Blow-up of the phase space with the specifinaif@resonant angle sectiofinorizontal black solid line), that is the set of orbits
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the MEGNO with respect to the initial semi-major axisfor the specified section (middle panel). The fundamentabdeof o with respect ~
to the initial semi-major axig,, computed by means of frequency analysis for the specifietiose(bottom panel). The estimation of the
periods are made over a 20 years period of time.
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once again supporting the result of the existence of a ahaotie. Moreover the use of fre-
guency analysis allows us to strongly support the hyposhibsit the additional patterns are
actually related teecondary resonance$ndeed, if we look at the evolution of the fundamen-
tal period with respect to the semi-major axis, itis cleat the so-called secondary resonances
are associated, regarding the anglevith periods that are commensurate with 1 year. More
precisely, the major secondary resonance located at appaitely 40 km on both sides of the
pendulum-like pattern are related to a 2 years fundameatalghofoc. Concerning the farther
patterns located at80 km, the fundamental period efturns out to be very close to 1 year. As
a consequence, we can presumably assume that these befiotienmad secondary resonances
are actually related to a commensurability betweeand the 1 year period angke,, that is
the ecliptic longitude of the Sun.

To justify this assumption, we focused our attention on tlagomsecondary resonances
located at-40 km on both sides of the pendulum-like pattern, considghe time evolution of
various linear combinations betweerand)\ .. For this purpose, we considered various initial
semi-major axes in the phase space. The results are shovgurefs.14. At first glance, it
is apparent that three propagations stand apart from otterthe first row of Figure 5.14,
that is regarding the evolution of the resonant angleve clearly identify the well-know
characteristics related to the primary resonance. Inqaati, in Figure 5.14a, that is when
considering an initial semi-major axis inside the primagganantd, =42 188 km),c shows
a well-known long-periodic libration (2.25 years) whereasirculates outside this region.
Furthermore, what is of special interest is the time evolutf both2o + A\ and20 — A\;
shown in the second and third row, respectively. It is clbat most of the time these angles
show a significant circulation regime. However, when coasidy an initial semi-major axis
inside the major lower secondary resonance2tor- \., or similarly inside the major upper
secondary resonance fos + \., both these angles show a significant long-term evolution
(Figure 5.14b,c).

5.5.2 Analytical investigation — simplified model

The presence and the location of these secondary resorearcbes studied using an appropri-
ate simplified model. Hence we model the averaged geossaionotion by a pendulum-like
system, given by its Hamiltonian formulation up to ordéin the series expansion

I ) o, D o
H:_@_0L+3ﬁ Re (1—56 )52200(97W7M70)7
where

Sggoo(Q,w, M, 0) = 022 cos 20 + 522 sin 20 .

In the context of direct solar radiation pressure, we carothice the factoZ proportional

to A/m through the eccentricity (for further details, we refer to the averaged simplified
analytical model developed in Chapter 3). In keeping with Eg15), the time evolution
of both the eccentricity and the longitude of perige were found to be (neglecting the
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obliquity of the Earth w.r.t. to the ecliptic)

ecosw = cos Ao + ap ,
LTL@
. zZ .
esinw = sin Ao, —
LTL@

which introduces\;, in the Hamiltonian. The quantity,, is the mean motion of the Sun and
bothay andj, are related to initial conditions with respect to the ecdeity and the longitude
of perigee. Then, the resulting Hamiltonian takes the gerierm

12

H = 912 0L + % cos(20 — 20¢) — % 2 cos(20 — 20¢) cos(Ag +9),
whered, F, G, oy are constants. A suitable transformation is then necegsaintroduce
action-angle variableg), J) in the libration and in the circulation region of the doubéngu-
lum, in such a way any trajectory of the double pendulum isattarized by a constant action
J and a corresponding constant frequernicyRewriting the perturbed system (because of the
Ao terms) by means of these new variables and then using tha@sixpa in Bessel functions,
we could isolate any resonance of the type+ )., in the circulation region, for any:| and

in the libration region, fork| > 3, which corresponds to our frequency analysis. This amglysi
is surely promising, but it exceeds the goals of our numenwastigations.
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Conclusions

The main objectives of this research work have been accehgai Indeed, we have devel-
oped a new method especially devoted to the specific studpaxfesdebris orbiting in the
neighborhood of the geostationary ring. Our approach has beotivated by the distinctive
features characterizing this region. More specifically,approach has been first developed in
order to tackle the well-known problem of small-divisorsang in the numerical integrations
of the equations of motion of such objects. This problem remnlsolved by using a set of
universal elements in the framework of a quasi-Hamiltori@malism. Moreover, our ap-
proach has also been designed as a so-called semi-anlaiygitteod, that is a procedure based
on an analytical filtering of the osculating differentialuagions which is in turn followed by
a numerical integration of the transformed equations. Asrasequence of both the choice
of a semi-analytical theory and the alternative selectioentirely non-singular variables, our
work accounts for a new theory which ensures a high stalwfityhe numerical integrations
over periods of several dozens of years mostly because #igtiaal averaging process has
been made once and for all, allowing an extremely fast nuwakntegration of a large number
of orbits, without any short-period variations.

As a result of the unexpected discovery of high-area-tosmatso space debris presumably
located in geosynchronous orbit, we seized the opporttimigxtend our theory by including
the solar radiation pressure acceleration. This exterfg@srbeen especially intended to derive
the main effects of the direct solar radiation pressure layyamg the mid- and long-term evo-
lution of both the eccentricity and the inclination vectofgeosynchronous space debris with
high area-to-mass ratios. These last results have shoventcgood agreement with the works
of Anselmo and Pardini (2005) and Chao (2006) and elabdnatetresults, emphasizing the
importance of adopting an accurate and well-suited mode. résults also confirm that such
high area-to-mass ratio space debris are surely good caeditb the recently discovered de-
bris population with mean motions of about one revolutiongeey and orbital eccentricities
as high as 0.6.

As a second improvement of our theory, we have also presantegtension of our home-
made semi-analytical theory, by developing a completerdlga taking into account the long-
term effects induced by the Earth’s shadow. This algorithas Wwuilt within the context of
non-singular motion and can therefore be applied to an emgel class of orbits. In all the
performed investigations, we showed that our semi-ar@tieory is in good agreement with
numerical integrations. Furthermore, the integrationhef filtered equations of motion over
the short periods, coupled with our algorithm, as well asrtegration of the osculating equa-
tions of motion, led also to an insightful understanding leé tlynamics of the semi-major
axis. We showed how both the eccentricity and the inclimaimluce various amplitudes of
the cumulated mean variations of the semi-major axis oweettipse seasons.

Finally, the predictability of high area-to-mass ratio apaebris located near the geosyn-
chronous region has also been investigated by means of at nemgational chaos indicator



called the MEGNO. Thanks to this highly capable technique,have clearly identified the
regular (stable) and irregular (chaotic) orbits. This &ffit method allowed us to obtain a clear
picture of the phase space, hence showing that chaotiox@gan be particularly relevant, es-
pecially for very high area-to-mass ratios objects. Moezpwe discussed the importance of
both the initial eccentricity and time at epoch in the appeee of chaos. We unveiled a rel-
evant class of additional unexpected patterns which wexetifiled as secondary resonances,
that were numerically studied by means of both the MEGNGQCegah and frequency map
analysis, to eventually conclude that they involve commeatsilities between the primary
resonant angle and the ecliptic longitude of the Sun. We @lesented an analytical scheme
that could explain their existence.

Outlooks

Regarding the elaboration of our theory, and though our-saralytical theory has been mostly
applied to the peculiar case of high area-to-mass ratioesgelbris, we ought to mention that
our method could easily be applied to an even larger classbifscssuch as LEO and MEO

orbits. In this case, the theory should be adapted by corisglthe cross-coupling effects by
means of a more rigorous averaging process to be carried@higher order by using the

Lie algorithm. Furthermore, although we mainly considetteel first major perturbations of

the Earth’s gravity field, the theory generally allows thelusion of both zonal and tesseral
harmonics developed up to an arbitrary degree and order.

With regard to the solar radiation pressure modeling, tkemcould surely be extended
by taking into account some theoretical space debris déitnotions. Indeed, the space de-
bris have doubtlessly complex shape that could signifigaitect the dynamics. Though this
attitude motion as well as the shape can not be easily derivetst of the cases, it should
be all-interesting to investigate to what extent the motian be affected. These investigations
could be first developed in the framework of our semi-analifteory. Subsequently, the sta-
bility could also be investigated by using the MEGNO cribexi

Concerning the Earth’s shadowing effects, our algorithoiatalso be improved by consid-
ering a more elaborate model. In particular, one shouldsitiyate the consequences of adopt-
ing a cylindrical boundary (where the radiation pressuni@ssantaneously “turning on/off”)
instead of taking into account the two conic boundaries wittontinuous transition between
the penumbra and umbra boundaries.
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Appendix A

List of principal symbols and notations

Symbols Designation Dimension

a semi-major axis [m]

a acceleration vector (often with subscripts) Mk

e Earth equatorial radiug, = 6378 135 m [m]

ag mean distance between the Sun and the Eagh; 1 AU [m]

A/m area-to-mass ratio [m2/kg ]

A area, effective cross-section Im

A arbitrary polynomial function

BJ{”) arbitrary trigonometric function

c speed of light in vacuum s

Com geopotential harmonic coefficient

C. “reflectivity” coefficient, radiation coefficient

dv elementary volume [m3]

as elementary surface [m?]

e eccentricity

E eccentric anomaly [rad], [degree]
€ obliquity of the Earth w.r.t. the ecliptic [rad], [degree]
f true anomaly [rad], [degree]
Frmp inclination functions

G Delaunay’s elementy = \/pa(l — €?) [m]

Gpq eccentricity functions

h Planck’s constant; = 6.62 x 10734 Js [Js]

H Delaunay’s element{ = \/pa(l — e?) cosi [m]

H generic Hamiltonian disturbing function

Hsyp, third-body Hamiltonian disturbing function

Hpor geopotential Hamiltonian disturbing function

continued on next page
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List of principal symbols and notations

continued from previous page

Symbols Designation

Dimension

7 inclination

I,., n-dimensional identity matrix

7 symplectic matrix

J Jacobian matrix

g, zonal geopotential harmonic coefficiedf, = —C,,
Jrm geopotential harmonic coefficient,,,, = \/C?, + S2,.
L L = /i a, conjugate momentum w.r.k

m mass

m; mass of the third body

M mean anomaly

M, mass of the Earth

n mean orbital motion of the space debris

ne mean motion of the Sun w.r.t. to the Earth, = 27 /[year]
P longitude of perigee [opposite sign]

semi-latus rectuny = a (1 — ¢?)
P conjugate momentumw.rp, P = L — G
P Legendre polynomial of degree
Legendre functions, degreg orderm
P. radiation pressure?, = 4.56 x 1075 N/m?
q longitude of the ascending node [Opposite sign]
Q conjugate momentumw.rg, Q = G — H
r geocentric vector of the space debris
r geocentric distance of the space debris

To geocentric position of the Sun

ro geocentric distance of the Sun

S radial direction

T\ Lyapunov time = 1/

T along-track direction

U dimension-free quantity defined By = /(2P/L)
1% dimension-free quantity defined by = /(2Q/L)
w out-of-plane direction

w generating function w.r.t the averaging process
z, Yy, z  State vector

z, Yy, z hormalized state vector

T Poincaré variables, = v/2P cos p

[rad], [degree]

[m]
[ka]
[ka]
[rad], [degree]
[ka]

[rad]s
[rads!]

[rad], [degree]

[m]

[Nm~2]
[rad], fdep
[m]
[m]
[m]
[m]
[m]

[m]

[m]

continued on next page
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continued from previous page

Symbols Designation Dimension

n Poincaré variableg, = v/2P sinp

9 Poincaré variables, = /20 cos q

n Poincaré variableg, = /2Q sin ¢

X non-dimensional Poincaré variables= /2P/L cosp

Y, non-dimensional Poincaré variablgs= /2P/L sinp

X5 non-dimensional Poincaré variables= /2Q/ L cos q

Y5 non-dimensional Poincaré variablgs= /2()/Lsin g

Xo, Yo, Zo normalized state vector of the Sun

Y, Y(t) MEGNOand its averaged value, respectively

Z auxiliary quantity,Z = 24 C, P, 24 (%)2

A mean longitude) = M + Q + w [rad], [degree]
geocentric equatorial longitude (spherical coordinatedyad], [degree]

Ao ecliptic longitude of the Sun [rad], [degree]

A* mean longitude equilibrium points w.r.t. 1:1 resonance d]jridegree]

O ecliptic latitude of the Sun [rad], [degree]

0y Kronecker functiony,; = 1 for i = j, zero otherwise

d4(1), 0 tangent vector (variational method)

U gravitational constant of the Earth frer?]

1hq gravitational constant of the Moon a2

s gravitational constant of the Sun fre 2

L gravitational constant of the third body [m3s2]

w argument of perigee [rad], [degree]

Q longitude of the ascending node [rad], [degree]

0 sidereal time [rad], [degree]

w longitude of perigeezg = Q + w [rad], [degree]

o resonant angle; = \ — ¢ [rad], [degree]

v geocentric angle between the Sun and the space debris  [fladiee]

10) geocentric equatorial latitude (spherical coordinates) rad][ [degree]

P, solar radiation constand,., = 1368 Watt/m [Watt m~2]

v fundamental frequency 18]

R n-dimensional set of real numbers

T n-dimensional torus

first time derivative
second time derivative

continued on next page
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continued from previous page

Symbols Designation Dimension
(0;0) Poisson’s brackets

° averaged quantity (singly averaged)

[ auxiliary quantity

\Y% gradient operator

® Cartesian product

.o ) scalar product

Va average w.r.t. angle
o6 with respect to the Sun
o with respect to the Moon

Og with respect to the Earth




Appendix B

Cunningham’s method

B.1 Cunningham’s method

It is worth noting that in the computation of the geopotdniame recurrence relations can be
used. In this section, the method is presented for the atecaral efficient computation of the
forces from any number of zonal and tesseral terms in thénBaytavitational potential.

Let us first consider the following quantities

R n+1
Vim = (—) P, (sin ¢) cosm

r

R n+1
Whom = (—e) P (sin ¢) sinmA .
r

Making use ofV,,,,, andW,,,,,, the Earth’s gravitity potential may be written as

B ﬂ o n

€ n=0 m=0

whereV,,,, andW,,,,, satisfy the following recurrence relations

TR, R,
Vi = m—=1)3 V0 gt = W 1 b
T T (B.1)
TR, R, :
Wim = (2m —1) B Win—1m—1— y—Qmel,mfl
T T
as well as
2n —1 R, -1\ R,
Vnm - ( n ) : B anl,m (n m ) 2 Vn72,m7
n—m n—m
(B.2)
2n—1 R, -1\ R,
an - ( " )22 Wn—l,m_(n+m ) 2Wn—2m
n—m n—m
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Furthermore, we have
R,
Voo = — and Wo =0
T

leading to the following recursions scheme

Voo, Woo
! N
Vi, Who Vi, Wi
! ! N
Vio, Wio Vi, Wi Voo, Wa
| ! I\
| ! ! N
Vo, Who Vo, Wi Vo, Who coe Vs Won

B.2 Osculating equations of motion in Cartesian coordinate

The osculating acceleration induced by the geopotentrabeawritten as the gradient of the
Earth’s potential as
r=VU,

where U is written as (see Eq. 2.5)

n

U= gz Z (%) P (sin @) (Chm cos MA + Sy sin mA) .

n=0 m=0

Making use of the before-mentioned algorithm, the accetaraexpressed with respect to the
Cartesian coordinates, can be computed as

€r = E Tnm, Yy = E Ynm, <= E Znm
n,m n,m n,m

where

:i'nm m::(] ﬁ{JnVn—i—l,l}

RQ
m>0 1 M
= aﬁ{ (_Cnm Vn+1,m+1 - Snm Wn+1,m+1)
n—m+2)!
+W (Cnm Vn—l—l,m—l + Snm Wn+1,m—1) }’
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I3

o "= 5 {0 W
m>0 lﬁ
2 R?
— 2)!
+(n m+ 2)
(n—m)!

{ (_Cnm Wn—l—l,m-‘,—l - Snm Vn+1,m+1)

(Cnm Wn+1,m—1 + Snm Vn—l—l,m—l) }7

2nm - % {(TL -—m+ 1) (_Cnm Vn+1,m - Snm Wn-{—l,m)}'

e

For further details, we refer to Cunningham (1970) or laemtenbruck and Gill (2000)
where a detailed description of the algorithm is given.
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Appendix C

Eccentricity and inclination functions

C.1 Eccentricity functions

For instance, wheg = 2p —n

1 R 1\ [ 2d4+n—2p \ sey2din-2w
Gon€) = Ty Z( . ) < . ) (5) RN (oX)

wherep’ = pif p < n/2, andp’ = n — p if p > n/2 (Vallado, 2001). For the terms,
n —2p + ¢ # 0, that is for the short-period terms, the developmentpf,(e) is much more
complicated, leading to an infinite series of the eccemyriéictually, the eccentricity functions
are directly related to the Hansen coefficients by

—(n+1),(n—2
anq = Xn£2p+2]( ) .

The third indexg can be negative or positive and its magnitude determinepdier of

Table C.1: Eccentricity Functior,,,,(e) from Eq. (C.1). For a more complete list, we refer
to Kaula (1966) and Chao (2005)

n o p q n o p q Eccentricity Functions;,,,,(¢)
2 0 —2 2 2 2 0
2 0 -1 2 2 1 —e/2 + €316 4 - -
2 0 0 2 2 0 1—5e2/2+13¢*/16 + - --
2 0 1 2 2 -1 Te/2 —123¢3/16 + - --
2 0 2 2 2 =2 17€2/2 —115€*/6 4 - --
2 1 =2 2 1 2 9e2/4+Tet)4+ -
2 1 —1 2 1 1 3e/2+27¢e4/16 + - -
2 1 0 (1 —e?)=3/2
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166 Eccentricity and inclination functions

the eccentricity of the first term of the infinite series. Tksito the properties of the Hansen
coefficients, some symmetries are found in most of the teanms$ some terms are represented
in closed-form functions of the eccentricity as shown in Eg.l) (Chao, 2005). Table C.1
shows the expressions fot,,, with npg values up t@22.

C.2 Inclination functions

Unlike the eccentricity functions, the inclination furartis are always expressed in closed-form
series of the inclination by the following relation (Zaredi 1987)

o (i) _ (=DMl + m)! ( n ) inf{%’% (—1) < 2Jp ) (C.2)

Al
p j=sup{0,2p—n—m}

2n — 2 . _
% ( n P ‘ ) (COS i/2)n+m—2p+2] (sin i/2)n—m+2p—2] )
n—m-—)

Table C.2 shows the expressions fQf,,, with nmp values up t@22.

Table C.2: Inclination Functions,,,,,,,(¢) from Eq. (C.2). For a more complete list, we refer to
Kaula (1966) and Chao (2005)

Inclination FunctionsF,,,,,,,(7)
—(3/8) sin?i

(3/4) sin*i — (1/2)

Fao

(3/4) sini (1 4 cosi)

—(3/2) sini cosi

—(3/4) sini (1 — cos1)

(3/4) (1 + cosi)?
(3/2) sin?i
(3/4) (1 — cosi)?

CEECEECE R AR CR R CR IR
v N[~ R =lolo|o]|3
N ROl ROl RO




Appendix D

Variational equations — linearization

In order to measure the possible exponential divergenceeariramework of stability inves-
tigations, the equations of motion are linearized. Liresion explores the dynamics of the
solution flow locally around a given initial condition. Mospecifically, consider the set of
differential equations
Em(t) = f(z(t), ), z cR", (D.1)

wherex represents a point iniadimensional space and is a vector of parameters entirely
defined by the model. Let, be an initial point close ta:. Let x((¢) be the trajectory arising
from the initial pointzg. Since we assume thatis close toxy, we can use a Taylor series
expansion to write
df (@)

da

o

f(x) = f(zo) + (@ — o) + - -

We now find that the rate of change of the distance betweemihé&ajectories is given by

do

Ezit—i‘o:f(w)_f(wo)-

Consequently, we can now write readily the so-called firdeovariation system of equations

. déo df

0= = dr|, (x —x0) = J(t)6(1), (D.2)
which is found by keeping only the linear terms énand subtracting equation (D.1). In
Eq. (D.2),J (t) is the Jacobian matrix. This israx n time-dependent matrix. In practice, the
Jacobian matrix is unknown and its components must be cadputmerically.

It has to be noted that the equations have to be integratadtameously with the state
vector solution of Eq. (D.1). Indeed, the state vector, thain practice, the position and
the velocity of the space debris, is required in order touata the components of the Jaco-
bian matrix, that is the partial derivatives of the accdleres. The variational equations are
usually numerically integrated with the same algorithmdue integrating the equations of
motion. In order to reduce the computational cost and sigceracy requirements for the
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partial derivatives are generally more relaxed than fortthgctory itself (Montenbruck and
Gill, 2000), the force model used to integrate the varial@guations are most often reduced
from that used to integrate the equations of motion. Let ogar& that since equation (D.2) is
a first order linear differential system of equations, thecdiie length of the initial vectay is
irrelevant. A new displacement vectdr, which is initially related tod by 6 = k&', wherek

is a scale factor, will always be related&dy the same relatiod'(¢) = & d(t). “The original
vectord must be infinitesimally small so that the linear approxiroatis valid. However, after
linearization the scale factok is arbitrary and may be chosen to ma&ecomputationally
convenient, i.e. of order unityWisdom, 1983).

Hereafter, we present the partial derivatives of the acagtn for the geopotential, the
luni-solar attraction and the direct solar radiation puessrespectively.

D.1 Geopotential

D.1.1 The Two-Body problem — central term

The most important contribution to the variational equagiarises from the central term of the
Earth’s gravitational field (Cunningham, 1970; Montenliraad Gill, 2000)

r=——r
r3

wherer is the position vector of the object in consideration. Makirse of the following
relation

ot _ 0@y )" s
or or ’
it follows that
2 _ .2
o p 3rc —r §2’>:Ey ) 3xz
9 5 3yx Y= —r 3yz
32w 3zy 322 —1?

(D.3)

3
= —% {sts—T—QT@)TT} ;

wherer @ rT is Cartesian product, or outer product, of the column arrath its transpose
rT andIs,; is the3-dimensional identity matrix. Eq. (D.3) shows that the dijagradient is
symmetric with respect to the main diagonal and that the duthreadiagonal elements is zero.
Actually, this property is independent of the form of thegadtal U taken into consideration.
As a consequence, the number of independent componentsatieto be computed reduces
significantly from nine to five.



D.1 Geopotential 169

D.1.2 Variational equations for the terms of degree: and order m

In an Earth-fixed reference frame, when taking into accoargxansion of the geopotential
up to degreen and ordemn, the partial derivatives can be computed from

or O
e 2 or , (D.4)

where the partial derivatives appearing in the right-hadd ef Eq. (D.4) are given by (Mon-
tenbruck and Gill, 2000)

or  R32 {(_Jn Vigo) — ( n! ) (= V”+2’°)}
m=1 1
( — ) % Z {(Cnl Vn+273 -+ Snl Wn+273)
n+1)!
) (30 Va5 Wara) )
(D.5)
(m>1)  p 1
B ﬁ 4 {(Cnm Vatome2 + Snm Wn+2’m+2)
n—m+2)!
+2 O G Vs = S W)
n—m+4)!
+ W (+Com Vissm—2 + Som Waszm ) |-
Similarly, we have
8:cnm (m=0) 1% 1
a—y = E 5 {(_Jn Wn+272)
m=t) p Lf oy S .V
= _R3 Z ( nl VVn+23 = ~nl n+2,3)
n—+1)!
) (Ot Wasas = S Ve }
(m>1)  p 1
B ﬁ 4 {(Cnm Wht2m+2 = Snm Vn+2’m+2)
n—m+4)!
+W (~Coun W2 + Sum Waran—2) }
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and o
Tpm (m=0) W
Oz = ﬁ {(n+ 1) <_Jn Vn+2,1)}
(m>0) p (n—m-+1
- ﬁ{f (Cnm Vn+2,m+1 + Snm Wn+2,m+1)
(n—m+3
*W (=Com Vsam-s = Som Wtz
and o3
Ynm (m=0) U
Oz = ﬁ {(n+ 1) <_Jn Wn+2,1)}
(m>0) p (n—m-+1
= ﬁ {f (Cnm Wn+2,m+1 — Som Vn+2,m+1)
n—m-+3
‘|‘W (+Chm Wat2.m—1 — Snm Vn+2’m_1)}
and finally
e {W (+Com Varzm + Sam Wozm) } - (D.6)

where the quantitieg,,,,,, W,,,, are defined in Egs. (B.1) and (B.2) wheré&as, andS,,,, are
the well known geopotential coefficients defined in Eq. (2169t us note that these acceler-
ations are derived under the assumption of a non-rotatimgn EBue to the Earth’s rotation,
some additional corrections have to be considered. Moreifsgadly, the transformation be-
tween the space-fixedf and the Earth-fixed éf’ reference frame are given by

(%)Sf =U'(t) (%)ef Ul(t). (D.7)

However, in practice, the Earth-fixed components may be coeaoby evaluating the deriva-
tives (D.5), ..., (D.6) with the Earth-fixed coordinates deél by

'I"ef = U(t) 'I"Sf .

Finally, it has to be noted that both /0r),; and(0+/0r).; are partial derivatives of the ac-
celeration defined in inertial reference frames which atatedl each other by a given rotation
matrix U (¢). Actually, the acceleration in a rotating reference framelifferent by Corio-
lis and centrifugal terms. For further details, we refer iftstance to Montenbruck and Gill
(2000).

Finally, since the acceleration induced by the Earth’s itydield is independent of the
velocity of the space debris, we only have to compute thagbaterivatives with respect to
the position of the space debris. Consequently, the complatobian matrix needed in the
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variational equations is given by

0 0 0 1 00

0 0 0O 010

0 0 0 001

= 0 00
J(t) ox dy 0z
dy dy 0z 0z
0z 0z 0z

D.2 Third-body variational equations

Since, the indirect term, /|7 ||® is independent of the satellite position, the correspamdin
partial derivative is zero. As a consequence, only the gladérivatives of the direct part
remains, leading to

o __, <|¥I B_L(r_ri)éb(r—m)T) ,

= 3
Oor r =il 77 e =il

wherey; is the gravitational constant of the third body. Notice tHegticause the acceleration
is also independent of the velocity, the partial derivatiaee zero, that is

or
%—0.

D.3 Radiation pressure variational equations

Similarly, the partial derivatives of the direct solar raiitbn pressure can be easily derived.
The computation yields
or A 1 3
—=PC,— | — - (r— —ro)T ).
= B (g o e e 90

Over again, the partial derivatives with respect to the aigfas zero, leading to

or
E—O.
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Appendix E

The perturbed equations

E.1 The Gauss perturbation equations

For many applications, it is convenianent to express tlesmaiftchange of the elements explic-
itly in terms of the disturbing accelerations. The assehefGaussian perturbed equations is
for non-conservative forces because it’s directly exmegsom the disturbing forces. How-
ever, let us also remark that this formulation also workscimmservative forces bacause the
forces are simply gradients of the potential functions ladd, 2001).

Let us now present the rates of changes of the Keplerian elsmsing a disturbing accel-
erationar = (ag, ar, ay ) expressed in terms of its radials(), transversal (along-tracky{)
and out-of-plane components,() in the orbit oriented system

da 2 . D

5 - 771 —— {esmfa5+;aT},

de Vi—e? [ . e+ cos f

T T {Slnfas+ (COSerm) GT} )

di r cos(w + f)

- = ———F——aw,

dt nav1 — e?

dQ rsin(w + f)

- - aw ,

dt na?+v1—e2sin1

dw V1 —e? , r r sin(w + f)

— = —cos f ag + sin 1+—-)arpy— aw ,
dt nae { Jas f( p) T} na+y/1 —e? sini v
dM 1 .

i naQe{(pCOSf_zeT) as — (p+r) smfaT}.
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E.2 The Lagrange Perturbation Equations

If the perturbing acceleratiomy; (more precesly the related foréé) may be represented as
the gradient of the scalar perturbation functiBn that isFr = VR, the rate of change of
the osculating Keplerian elements as a function of the déwesoR /0a, OR/Je, IR /0,
OR /0L, OR /0w, OR/OM is given by

da 2 0R

dt na OM’

% B _1—62 OR \/1—628_R

At nate OM nate Ow'’

% o cos 1 OR +\/1—626_R+ 1 8_R
dt na?2+v/1—e2 sini OM natfe Ow  na2+v1—e2sini 00’
w o

dt na2+v/1—e2sini 0i

dw cos ¢ 6_R_ \/1—628_R

dt a na2+/1 — e2 sins ot na2e Oe’

dM 1—e2 0R 167—\’,

— n — —_—.
dt + nae de na Oa



Appendix F

Lie transforms and computational
algorithm

F.1 Symplectic Lie Transforms

Let us consider a to y transformationt’, close to the identity and developed as a power series
expansion of a small parameter

r=X(y,e) =y+eXi(y) + EX(y) + ... (F1)
For e sufficiently small, the transformation is always invertibl

y=Y(x,€) =x+e(x)+EN(a) + ...

Let us remark that the before-mentioned transformatioratembe defined as being the solu-
tion at “time’ ¢ of an auxiliaryn-dimensional system of differential equations

B VY]

d€ ('T7 6)

for the initial conditionz(e = 0) = y. Therefore, the-dependent transformation is considered
to be the flow spawn by a non-autonomous differential systeeguations. Let us remark that
it is always possible when considering@nerating vector field

oxX
W(x,€) = {75% e)} .
€ y:y(l‘,ﬁ)
If we wish to generate a canonical transformation it is sigfitto define the system of differ-
ential equations
i=TH!,

whereZ is the well-known symplectic matrix and;, p;) are the variables and momenta, re-
spectivaly. As a consequence, it restricts the Lie trans$ogroup to the subgroup of sym-
plectic Lie transforms. For this purpose, it is sufficientl arecessary to impose the generating
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vector field)V to be a Hamiltonian field, that is the product of the symptestatrixZ by the
gradient of a Hamiltonian function
W =1IW!.

Therefore, let us define the Lie transforms (F.1) as the moldf an auxiliary Hamiltonian

differential system

dx
— =7IW/.
de We

F.2 Computational algorithm

Let us develop the functiofi( X (y, €), €) as a powers series expansior aboute = 0. We find
that the transformation(y, €) of any analytical functiory(z, ¢), using the before-mentioned
transformation (F.1), spawn by the generating vector fieltl)( is given by

€ .
9(y.) = F(X(y.e) )= = [D'f.9],_, - (F.2)
i>0
where the differential operatdp is defined by

af o 9
Df(z,€) = a_{ 6—£sz _ 8—{ (W), (F.3)

and wherg f; W) corresponds to the Poisson brackets of the two functioasjgh

of oW OW of

i

Consequently, following Egs. (F.2) and (F.3), it is possitd write a simple computational
algorithm.

First, let us consider the analytical function
fla.0 = 30 510w
1=0
as well as the generating vector field
W= Z ;Wiﬂ@) . (F.4)
=0
Second, we successively construct the intermediate tnmgfﬁ) ()

Y x(.0.0= 3 19 a)

del :
=0
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using the following recurrence formula

1 = F50 30 (157 Wi ) (F:5)

k=0

whereC* stands for the binomial coefficients in the indi¢esk)

s (i
Ci_(k:)_k!(z'—k)!'

Finally, the transformation(y, €) of the functionf(z, €) is given by

g(y,E)ZZE—j[

1=0

The recursion (F.5) is easily visualized in Figure F.1. Balehe construction is reminiscent
of that of Pascal’s triangle. For instance, assume thahalktements of the first three lines

have been computed. The filling of the fourth row begins whi computation on(” which
involves only the elements above and includﬁéa on the column passing throug‘l§1°). Then

one is ready to computﬁf), which involvesz(” and the elements above it on the column

passing througtf{". Finally, the algorithm ends with the computation/g¥, involving
andf?.

0

%

0 1

TR A

0 1 2
RN SR A

0 1 2 3
A A A 1

0 1 2 3 4
7R AR S A

Figure F.1: Recursive transformation of an analytic fumctinder Lie transform, better known
asthe Lie triangle
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F.3 Homologic equation

In the framework of Hamiltonian system, the before-merdtbhie algorithm consists in re-
solving, at each ordek, the followinghomologic equation

n

_ )
H —HY = (Hg°> ; Wk> — - Zwi—;: k (F.6)
i=1 '

(0)
0

wherew; = andﬁé’“) is a known quantity and wheﬁeéo) depends only on the momenta

P
g;- In order to find the generating function, we have to proceeahtintegration with respect
to the angley;. For this purpose, let us consider the Fourier series expan$ the first term
in Eq. (F.6). We have

ﬁ((]k) B ch) _ Z

11,02, 0y0n

Cliin,...jin COS <Z izQz) + Siti,ein SII (Z izQz)] ,

=1
leading formally to

. n . n .
Ciy ig,....in S (Zl:l Wz) Si1igseoniin COS (Zl:l WJ!)

Wi = -
k Z i1w1+...+inwn i1w1+...—|—inwn

11,8250+, in

In order to ensure the existence of the generating fundtignt would be relevant to inspect
that no denominator is close to zero. It can happen if all tgaraentsi,, are zerqi; = iy =
-+~ =1, = 0) aswell as in the case of resonances (more precisely, cl@sedxact resonance).
In either case, the incriminated terms have to be includexitire new Hamiltoniamgk), the
other terms being integrated to form the generating funaidghe transformation. In this latter
case, it is sufficient to choose

Hy = (Hy")

where( - ) stands for the mean value with respect to some assignedsaifighe specific
requirement of the transformation is the suppression ofesonall periodic terms.

F.4 Transformation between mean and osculating elements

The osculating elements;, p;) can be deduced from the mean elmetsp;) by a canonical
transformation induced by the generating functitrdeveloped in powers of the small param-
etere (see Eq. F.4) and computed during the averaging processelitkg with Deprit (1969),
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Deprit and Rom (1970) and Henrard (1970), such a transfeoméag given by (up to order 2)

2
G = ql{ i {68W1 n 6_ |:6W2 + (6W1 : Wl)}} + 0(63),
op; 2 | Opsi Op;i (¢'.p)
Wy € [OWy (O | "0
=P — <€ + = + ,W)}} +0(e),
b=y { g 2 [ 9g; < 9q; 1 (@ ") )

whereg; andp; are the variables and their conjutated momenta, respgctAhough the pre-
sented formulae were truncated to the second order, theyaaily generalized to any order.

At this point, it is worth stressing that the right-hand sié@pearing in Egs. (F.7) are evaluted
in the mean elementsg;, p;).

Practically, in the framework of a first order averaging s over the short periods, the
transformation simply reads as

ow

Qz:qll-—i-{e 1} + O(e%),
i J vy
ow

N (1]
0di ] {0 1)

where W, is the first-order generating function, that is a functiontteé discarded “short-
periodic” terms, which is computed following Eqg. (F.6) by amalytical integration with re-
spect to the fast angle, namely the mean longitudeequivalently, for resonant motion, with
respect to the sidereal tinde
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Appendix G

Characteristic series expansion

In the following4-order series expansion, the distance unit is equal to tlameostationary
radius, i.e 42164 km. Furthermore, the gravitational camsdf the Earth is set to = 1.

G.1 Third-body averaged disturbing function H,

The third-boby disturbing functiors{degree expansion in Legendre polynomials) is given for
the particular case of the Sun attraction.

A0 Xy YT Xo Yo L X¢ Yo Zg ¢ Xo Yo Zo To Coefficient
cos(@ 0 (O 0O 0 0 4 O 0 0O 0O O 0O 0 -3) -0.1664730190000000D+06
cos(00) OO 0 0 0 4 O 0 0O 0O O 2 0 -3) 0.2497095285000000D+06
cos(00) © 0 0 0O 4 O 0 0O 0 2 0 0 -3) 0.2497095285000000D+06
cos(00) O 0 0 1 4 O 0 0O O O 1 1 -3) 0.4994190570000000D+06
cos(@ 0 (O 0O 0 2 4 O 0 0O 0O O 0 2 -3) 0.2497095285000000D+06
cos(@ 0 (O 0O 0 2 4 O 0 0O 0 O 2 0 -3) -0.2497095285000000D+06
cos(0 0) O 0 0 3 4 O 0 0O 0O O 1 1 -3) -0.3121369106250000D+06
cos(00) OO 0 0 4 4 O 0 0O 0O O 0 2 -3) -0.6242738212500000D+05
cos(@ 0 (O 0 0 4 4 O 0 0 0 O 2 0 -3) 0.6242738212500000D+05
cos(@ 0 (O 0 1 0 4 O 0 0O 0 1 0 1 -3) 0.4994190570000000D+06
cos(@ 0 (O 0 1 1 4 O 0 0O 0 1 1 0 -3) -0.4994190570000000D+06
cos(00) O 0 1 2 4 O 0 0O 0O 1 0 1 -3) -0.3121369106250000D+06
cos(00) O 0 1 3 4 O 0 0O 0O 1 1 0 -3) 0.1248547642500000D+06
cos(@ 0 (O 0 2 0 4 O 0 0O 0O O 0 2 -3) 0.2497095285000000D+06
cos(@ 0 (O 0 2 0 4 O 0 0O 0 2 0 0 -3) -0.2497095285000000D+06
cos(@ 0 (O 0 2 1 4 O 0 0O 0O O 1 1 -3) -0.3121369106250000D+06
cos(00) O 0 2 2 4 O 0 0O 0O O 0 2 -3) -0.1248547642500000D+06
cos(00) O 0 2 2 4 O 0 0O 0 O 2 0 -3) 0.6242738212500000D+05
cos(@ 0 (O 0 2 2 4 O 0 0 0 2 0 0 -3) 0.6242738212500000D+05
cos(@ 0 (O 0 3 0 4 O 0 0O 0O 1 0 1 -3) -0.3121369106250000D+06
cos(@ 0 (O 0 3 1 4 0 0 0O 0 1 1 o0 -3) 0.1248547642500000D+06

continued on next page
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continued from previous page

A0 Xo Y1 Xy Yo L X¢ Yo Zg rq Xo Yo Zo 1o Coefficient

cos00 O 0 4 0 4 0 0 0 0 O 0 2 -3) -0.6242738212500000D+05
cos@0 (O 0 4 0 4 0 0O 0O 0O 2 0 0 -3) 0.6242738212500000D+05
cos@0 O 1 0 06 0 0O 0O 0O 1 0 0 -4 0.1248547642500000D+07
cos@0 O 1 0 06 0 O O 0O 1 2 0 -4 -0.1560684553125000D+07
cos@0 O 1 0 06 0 O O O 3 0 0 -4 -0.1560684553125000D+07
cos@0 O 1 0 1 6 0 0O 0O 0O 1 1 1 -4 -0.3121369106250000D+07
cos0 0 0O 1 0 2 6 0 0 0 0 1 0 2 -4 -0.1560684553125000D+07
cos@0 O 1 0 2 6 0 0O 0 0 1 2 0 -4 0.1560684553125000D+07
cos@0 O 1 0 3 6 0 0O 0O 0 1 1 1 -4 0.1950855691406250D+07
cos@0 O 1 1 06 0 0O 0 0 O 0 1 -4 0.1248547642500000D+07
cos00 (O 1 1 06 0 O 0 O O 2 1 -4) -0.1560684553125000D+07
cos©0 (O 1 1 06 0 O 0 O 2 0 1 -4) -0.4682053659375000D+07
cos@0 O 1 1 1 6 0 0 0 0 0 1 0 -4) -0.6242738212500000D+06
cos@0 O 1 1 1 6 0 0O 0 0 0 1 2 -4 -0.3121369106250000D+07
cos@0 O 1 1 1 6 0 O 0O 0O O 3 0 -4 0.7803422765625000D+06
cos@0 O 1 1 1 6 0 0 0 0 2 1 0 -4 0.3901711382812500D+07
cos©0 (O 1 1 2 6 0 0O 0 0 0 0O 1 -4 -0.1560684553125000D+06
cos@0 O 1 1 2 6 0 0O 0 0 0 0 3 -4 -0.1560684553125000D+07
cos@0 O 1 1 2 6 0 0 0 0 0 2 1 -4 0.3316454675390625D+07
cos@0 O 1 1 2 6 0 0 0 0 2 0 1 -4 0.2145941260546875D+07
cos@ 0 O 1 2 06 0 0O 0 0 1 0 0 -4 -0.6242738212500000D+06
cos0 0 O 1 2 06 0 0O 0 0 1 0 2 -4) -0.4682053659375000D+07
cos@0 (O 1 2 06 0 0 0 0 1 2 0 -4 0.7803422765625000D+06
cos@0 O 1 2 06 0 0 0 0 3 0 0 -4 0.2341026829687500D+07
cos@0 O 1 2 1 6 0 0 0 0 1 1 1 -4 0.8193593903906250D+07
cos@0 O 1 3 06 0 O 0O 0O O 0 1 -4 -0.1560684553125000D+06
cos@0 O 1 3 06 0 O O 0 O O 3 -4 -0.1560684553125000D+07
cos@0 O 1 3 06 0 0O 0O 0 O 2 1 -4 0.1950855691406250D+06
cos@0 O 1 3 06 0 O 0O 0 2 0 1 -4 0.5267310366796875D+07
cos@0 O 2 0 0 4 0 0O 0O 0O O 0 O -3) -0.2497095285000000D+06
cos@0 O 2 0 0 4 0 0O 0O 0O O 2 0 -3) -0.2497095285000000D+06
cos@ 0 O 2 0 0 4 0 O 0O 0O 2 0 0 -3) 0.9988381140000001D+06
cos@0 (O 2 0 1 4 0 0 0 0 0 1 1 -3) -0.3745642927500000D+06
cos@0 (O 2 0 2 4 0 0 0 0 0 0 2 -3) -0.1248547642500000D+06
cos@0 (O 2 0 2 4 0 0 0 0 0 2 0 -3) 0.1248547642500000D+06
cos@0 O 2 1 04 0 0O 0 0 1 0 1 -3) 0.2122530992250000D+07
cos@0 O 2 1 1 4 0 0 0 0 1 1 0 -3) -0.9988381140000001D+06
cos@0 (O 2 2 04 0 0O 0 0 0 0 2 -3 0.1123692878250000D+07
cos@0 (O 2 2 04 0 0 0 0 2 0 0 -3 -0.1123692878250000D+07
cos@0 O 3 0 06 0 O 0O 0O 1 0 O -4 0.7803422765625000D+06
cos@0 O 3 0 06 0 O O 0 1 2 0 -4 0.1755770122265625D+07
cos@0 O 3 0 06 0 O 0O 0O 3 0 O -4 -0.1885827168359375D+07
cos@0 O 3 0 1 6 0 0O 0O 0 1 1 1 -4 0.2731197967968750D+07
cos@0 O 3 1 06 0 0O 0O 0 O 0 1 -4 0.1092479187187500D+07
cos(0 0 (0O 3 1 06 0 0O 0 0 0 2 1 -4 0.1365598983984375D+07
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A0 Xy YT Xy Yo L X Yo Zg rq Xo Yo Zo 1o Coefficient

cos(00 O 3 1 0 6 0 O 0O O 2 0 1 -4 -0.6827994919921875D+07
cos(00 O 4 0 0 4 0 O 0 O O O O -3) 0.6242738212500000D+05
cos(@ 0 O 4 0 0 4 O 0 0 0 0 2 0 -3) 0.6242738212500000D+05
cos(@ 0 OO 4 0 0 4 O 0 0 0 2 0 0 -3) -0.2497095285000000D+06
cos(@ 0 (1 0 0 O 6 O 0 0 0 0 1 0 -4) -0.1248547642500000D+07
cos(00 1 0 0O 0 6 0 O O O O 3 0 -4 0.1560684553125000D+07
cos(00 1 0 0 0 6 0 O O O 2 1 0 -4 0.1560684553125000D+07
cos(@ 0 (1 0 0 1 6 O 0 0 0 0 0 1 -4) -0.1248547642500000D+07
cos(@ 0 (1 0 0 1 6 O 0 0 0 0 2 1 -4) 0.4682053659375000D+07
cos(®@ 0 (1 0 0 1 6 O 0 0 0 2 0 1 -4) 0.1560684553125000D+07
cos(00 1 0 0O 2 6 0 O 0 O O 1 O -4 0.6242738212500000D+06
cos(00 1 0 0O 2 6 0 O 0 O O 1 2 -4 0.4682053659375000D+07
cos(@ 0 (1 0 0 2 6 O 0 0 0 0 3 0 -4) -0.2341026829687500D+07
cos(@ 0 (1 0 0 2 6 O 0 0 0 2 1 0 -4) -0.7803422765625000D+06
cos(00 (1 0 0 3 6 0 O 0 O O O 1 -4 0.1560684553125000D+06
cos(00 1 0 0 3 6 0 O 0O O O O 3 -4 0.1560684553125000D+07
cos(00 (1 0 0 3 6 0 O 0 O O 2 1 -4 -05267310366796875D+07
cos(@ 0 (1 0 0O 3 6 O 0 0 0 2 0 1 -4) -0.1950855691406250D+06
cos(®@0 (1 0 1 0 6 O 0 0 0 1 1 1 -4) 0.3121369106250000D+07
cos(00 (1 0 1 1 6 0O O 0O O 1 0 0 -4 0.6242738212500000D+06
cos©0 (1 0 1 1 6 0 0 0 O 1 0 2 -4 0.3121369106250000D+07
cos(©0 (1 0 1 1 6 0O 0O O O 1 2 0 -4 -0.3901711382812500D+07
cos(®@0 (1 0 1 1 6 O 0 0 0 3 0 0 -4) -0.7803422765625000D+06
cos(®@ 0 (1 0 1 2 6 O 0 0 0 1 1 1 -4) -0.8193593903906250D+07
cos(00 (L 0 2 06 0 O 0 O O 1 2 -4 0.1560684553125000D+07
cos(00 (1 0 2 06 0 O 0 O 2 1 0 -4 -0.1560684553125000D+07
cos(00 1 0 2 1 6 0 O 0 O O O 1 -4 0.1560684553125000D+06
cos(@ 0 1 0 2 1 6 O 0 0 0 0 0 3 -4) 0.1560684553125000D+07
cos(®@ 0 (1 0 2 1 6 O 0 0 0 0 2 1 -4) -0.2145941260546875D+07
cos(©0 (1 0 2 1 6 0 0 0 0 2 0 1 -4 -0.3316454675390625D+07
cos(00 (1 0 3 06 0 O 0 O 1 1 1 -4 -0.1950855691406250D+07
cos@0 (1 1 0 0 4 0 O O O 1 1 0 -3) -0.2497095285000000D+07
cos(®@0 1 1 0 1 4 O 0 0 0 1 0 1 -3) -0.2497095285000000D+07
cos(@ 0 1 1 0 2 4 O 0 0 0 1 1 0 -3) 0.1248547642500000D+07
cos@0 (1 1 1 0 4 0 O O O O 1 1 -3) -0.2497095285000000D+07
cos@ 0 (1 1 1 1 4 0 O 0O O 0 0 2 -3) -0.2497095285000000D+07
cos(®@0 (1 1 1 1 4 O 0 0 0 0 2 0 -3) 0.1248547642500000D+07
cos(®@0 (1 1 1 1 4 O 0 0 0 2 0 0 -3) 0.1248547642500000D+07
cos(@ 0 1 1 2 0 4 O 0 0 0 1 1 0 -3) 0.1248547642500000D+07
cos(00 (1 2 0 0 6 0 O 0 O O 1 O -4 -0.7803422765625000D+06
cos(00 (1 2 0 0 6 0 O 0O O O 3 0 -4 -0.1755770122265625D+07
cos(@ 0 1 2 0 0 6 O 0 0 0 2 1 0 -4) 0.9169021749609375D+07
cos(@ 0 1 2 0 1 6 O 0 0 0 0 0 1 -4) -0.1092479187187500D+07
cos(@ 0 1 2 0 1 6 O 0 0 0 0 2 1 -4) -0.4096796951953125D+07
cos(©0 (1 2 0 1 6 0 0 0 0 2 0 1 -4 0.9559192887890626D+07
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A0 Xo Y1 Xy Yo L X¢ Yo Zg rq Xo Yo Zo 1o Coefficient
cos(00 (1 2 1 0 6 0 O 0O O 1 1 1 -4 0.1911838577578125D+08
cos(0O0 1 3 0 0 4 0 O 0 O 1 1 0 -3) 0.6242738212500000D+06
cos(0 0) (2 0 O 0 4 0 0 0 0 0 0 0 -3) -0.2497095285000000D+06
cos(0 0) (2 0 O 0 4 0 0 0 0 0 2 0 -3) 0.9988381140000001D+06
cos(0 0) (2 0 O 0 4 0 0 0 0 2 0 0 -3) -0.2497095285000000D+06
cos(@0 (2 0 0 1 4 0 0O O O 0 1 1 -3) 0.2122530992250000D+07
cos(00 (2 0 0 2 4 0 O 0O O O 0O 2 -3 0.1123692878250000D+07
cos(0 0) (2 0 O 2 4 0 0 0 0 0 2 0 -3) -0.1123692878250000D+07
cos(0 0) (2 O 1 0 4 0 0 0 0 1 0 1 -3) -0.3745642927500000D+06
cos(0 0) (2 O 1 1 4 0 0 0 0 1 1 0 -3) -0.9988381140000001D+06
cos(@0 2 0 2 0 4 0 O 0 O O 0 2 -3) -0.1248547642500000D+06
cos(0O0 (2 0 2 0 4 0 O 0 O 2 0 0 -3) 0.1248547642500000D+06
cos(0 0) (2 1 O 0 6 0 0 0 0 1 0 0 -4) 0.7803422765625000D+06
cos(0 0) (2 1 O 0 6 0 0 0 0 1 2 0 -4) -0.9169021749609375D+07
cos(O0 (2 1 0 0 6 0 O O O 3 0 0O -4 0.1755770122265625D+07
cos(00 2 1 0 16 0 0O 0O 0O 1 1 1 -4 -0.1911838577578125D+08
cos00 2 1 1 06 0 O 0O O O O 1 -4 0.1092479187187500D+07
cos(0 0) (2 1 1 0 6 0 0 0 0 0 2 1 -4) -0.9559192887890626D+07
cos(0 0) (2 1 1 0 6 0 0 0 0 2 0 1 -4) 0.4096796951953125D+07
cos(O0 2 2 0 0 4 0 O 0O O O O O -3) 0.1248547642500000D+06
cos(0O0 2 2 0 0 4 0 O 0O O O 2 0 -3) -0.1872821463750000D+06
cos(00 2 2 0 0 4 0 O 0O O 2 0 0 -3) -0.1872821463750000D+06
cos(0 0) 3 0 O 0 6 0 0 0 0 0 1 0 -4) -0.7803422765625000D+06
cos(0 0) 3 0 O 0 6 0 0 0 0 0 3 0 -4) 0.1885827168359375D+07
cos(00 3 0 0 06 0 0O O O 2 1 0 -4 -0.1755770122265625D+07
cos(©0 3 0 0 1 6 0 O O O O O 1 -4 -0.1092479187187500D+07
cos(00 3 0 0 1 6 0 O O O O 2 1 -4 0.6827994919921875D+07
cos(0 0) 3 0 O 1 6 0 0 0 0 2 0 1 -4) -0.1365598983984375D+07
cos(0 0) (3 O 1 0 6 0 0 0 0 1 1 1 -4) -0.2731197967968750D+07
cos00 3 1 0 0 4 0 O 0 O 1 1 0 -3) 0.6242738212500000D+06
cos(00) 4 0 0 04 0 O O O O O O -3 0.6242738212500000D+05
cos(0O0 4 0 0 0 4 0 O O O O 2 0 -3) -0.2497095285000000D+06
cos(0 0) 4 0 O 0 4 0 0 0 0 2 0 0 -3) 0.6242738212500000D+05
G.2 Direct solar radiation pressure disturbing function .,

A0 Xi YT Xy Yo L Xg Yo Zg rq Xo Yo Zo 1o Coefficient
cos(00 O 0 0 0 0O 0 0O O O O O O -1) 0.2574575394591462D+03
cos(0 0) O 0 O 0 4 0 0 0 0 0 0 0 -3) -0.1287287697295731D+03
cos(0 0) O 0 O 0 4 0 0 0 0 0 2 0 -3) 0.1930931545943597D+03
cos(0 0) O 0 O 0 4 0 0 0 0 2 0 0 -3) 0.1930931545943597D+03
cos(00 O 0 0 1 4 0 O O O O 1 1 -3) 0.3861863091887194D+03
cos(@0 O 0 0 2 4 0 O 0 O O O 2 -3) 0.1930931545943597D+03
cos(0 0) O 0 O 2 4 0 0 0 0 0 2 0 -3) -0.1930931545943597D+03
cos(0 0) O 0 O 3 4 0 0 0 0 0 1 1 -3) -0.2413664432429496D+03

continued on next page




G.2 Direct solar radiation pressure disturbing functon 185
continued from previous page
A0 Xy YT Xy Yo L X Yo Zg rq Xo Yo Zo 1o Coefficient

cos(©0 O 0O 0 4 4 0 0O O O O O 2 -3) -0.4827328864858993D+02
cos(00 O 0 0 4 4 0 0 0O O O 2 0 -3) 0.4827328864858993D+02
cos@ 0 (O 0 1 0 4 0 O O O 1 0 1 -3) 0.3861863091887194D+03
cos@ 0 O 0 1 1 4 0 0O O O 1 1 0 -3) -0.3861863091887194D+03
cos(@0 O 0 1 2 4 0 0 0O 0O 1 0 1 -3) -0.2413664432429496D+03
cos(00) O 0 1 3 4 O 0 0O ©O 1 1 0 -3) 0.9654657729717985D+02
cos(00 O 0 2 0 4 0 O 0O 0O O O 2 -3) 0.1930931545943597D+03
cos(@0 O 0 2 0 4 0 0 O O 2 0 0 -3) -0.1930931545943597D+03
cos(@0 (O 0 2 1 4 0 0 O 0O 0 1 1 -3) -0.2413664432429496D+03
cos(@0 (O 0 2 2 4 0 0 0O 0O O 0 2 -3) -0.9654657729717985D+02
cos(00) O 0 2 2 4 O 0 0O 0O O 2 0 -3) 0.4827328864858993D+02
cos(00) O 0 2 2 4 O 0 0O 0 2 0 0 -3) 0.4827328864858993D+02
cos@ 0 (O 0 3 0 4 0 0 O O 1 0 1 -3) -0.2413664432429496D+03
cos@ 0 O 0 3 1 4 0 0 O O 1 1 0 -3) 0.9654657729717985D+02
cos(00 O 0O 4 0 4 0 0 O O O 0O 2 -3) -0.4827328864858993D+02
cos(00 O 0O 4 0 4 0 0O O O 2 0 0 -3) 0.4827328864858993D+02
cos(00 O 1 0 02 0O O 0 0 1 0 0 -2) -0.3861863091887194D+03
cos@ 0 (O 1 0 06 0 0O O O 1 0 0 -4 0.9654657729717985D+03
cos@ 0 (O 1 0 06 0 0O O O 1 2 0 -4 -0.1206832216214748D+04
cos(©0 O 1 0 06 0 O O O 3 0 0 -4 -0.1206832216214748D+04
cos@ 0 (O 1 0 1 6 0 0 0O 0 1 1 1 -4) -0.2413664432429496D+04
cos(@0 (O 1 0 2 6 0 0 0 0 1 0 2 -4 -0.1206832216214748D+04
cos@0 (O 1 0 2 6 0 0 0O 0O 1 2 0 -4 0.1206832216214748D+04
cos@ 0 O 1 0 3 6 0 0 O O 1 1 1 -4 0.1508540270268435D+04
cos©0 O 1 1 02 0 O 0 0 0 0 1 -2) -0.3861863091887194D+03
cos(00 O 1 1 06 0 0O 0O O O O 1 -4 0.9654657729717985D+03
cos@0 (O 1 1 06 0O 0 O 0O 0O 2 1 -4 -0.1206832216214748D+04
cos@ 0 (O 1 1 06 0 0 O O 2 0 1 -4 -0.3620496648644244D+04
cos@ 0 (O 1 1 1 2 0 0 0 0 0 1 0 -2) 0.1930931545943597D+03
cos@0 (O 1 1 1 6 0 0 0O 0O O 1 0 -4 -0.4827328864858993D+03
cos@ 0 (O 1 1 1 6 0 0 0O 0O 0 1 2 -4) -0.2413664432429496D+04
cos©0 O 1 1 1 6 0 O 0O 0 O 3 0 -4 0.6034161081073740D+03
cos@0 O 1 1 1 6 0 0 O 0O 2 1 0 -4 0.3017080540536870D+04
cos(@0 O 1 1 2 2 0 0 0O 0O 0 0 1 -2) 0.4827328864858993D+02
cos(00 O 1 1 2 6 0 0 0 0 O O 1 -4 -0.1206832216214748D+03
cos(00 O 1 1 2 6 0 0 0 0 O 0 3 -4 -0.1206832216214748D+04
cos@@0 O 1 1 2 6 0 0 0O 0O 0 2 1 -4 0.2564518459456340D+04
cos@ 0 (O 1 1 2 6 0 0 0O 0 2 0 1 -4 0.1659394297295279D+04
cos(@ 0 (O 1 2 02 0 0 0O 0 1 0 0 -2) 0.1930931545943597D+03
cos(00 O 1 2 06 0 0 0 0 1 0 0 -4) -0.4827328864858993D+03
cos(00) O 1 2 0 6 O 0 0O ©O 1 0 2 -4) -0.3620496648644244D+04
cos(@0 (O 1 2 06 0 0 O O 1 2 0 -4 0.6034161081073740D+03
cos(@0 (O 1 2 06 0 0 0O 0O 3 0 0 -4 0.1810248324322122D+04
cos@0 O 1 2 1 6 0 0 0O 0 1 1 1 -4 0.6335869135127426D+04
cos(00) O 12 3 0 2 O 0 0O 0O O 0 1 -2) 0.4827328864858993D+02
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A0 Xo Y1 Xy Yo L X¢ Yo Zg rq Xo Yo Zo 1o Coefficient

cos0 O I 3 06 0 0 0 0 0 0 1 -4 -0.1206832216214748D+03
cos@0 O 1 3 06 0 0O 0 0 O 0 3 -4 -0.1206832216214748D+04
cos@0 O 1 3 06 0 0 0 0 0 2 1 -4 0.1508540270268435D+03
cos@0 O 1 3 06 0 0 0 0 2 0 1 -4 0.4073058729724775D+04
cos@0 (O 2 0 0 4 0 0 0 0 O 0 0 -3) -0.1930931545943597D+03
cos@ 0 O 2 0 0 4 0 0O 0O 0O O 2 0 -3) -0.1930931545943597D+03
cos@0 O 2 0 0 4 0 0O 0O 0O 2 0 0 -3) 0.7723726183774388D+03
cos@0 O 2 0 1 4 0 0 0 0 0 1 1 -3) -0.2896397318915396D+03
cos©0 (O 2 0 2 4 0 0 0 0 0 0 2 -3) -0.9654657729717985D+02
cos@0 (O 2 0 2 4 0 0 0 0 0 2 0 -3) 0.9654657729717985D+02
cos@ 0 O 2 1 0 4 0 0O 0 0 1 0 1 -3) 0.1641291814052057D+04
cos@0 O 2 1 1 4 0 0 0 0 1 1 0 -3) -0.7723726183774388D+03
cos@0 (O 2 2 04 0 0 0 0 0 0 2 -3) 0.8689191956746187D+03
cos@0 (O 2 2 04 0 0 0 0 2 0 0 -3) -0.8689191956746187D+03
cos@0 O 3 0 02 0 O 0 0 1 0 0 -2) 0.4827328864858993D+02
cos@0 O 3 0 06 0 O O O 1 0 O -4 0.6034161081073740D+03
cos(0 0 (O 3 0 06 0 0 0 0 1 2 0 -4 0.1357686243241591D+04
cos@0 O 3 0 06 0 0O 0 0O 3 0 0 -4 -0.1458255594592820D+04
cos@0 O 3 0 1 6 0 0O 0 0 1 1 1 -4 0.2111956378375809D+04
cos©0 (O 3 1 02 0 0 0 0 0 0 1 -2) -0.4827328864858993D+02
cos@0 O 3 1 06 0 0O 0O 0 O 0 1 -4 0.8447825513503237D+03
cos00 (O 3 1 06 0 0O 0 0 0O 2 1 -4 0.1055978189187904D+04
cos@0 O 3 1 06 0 0 0 0 2 0 1 -4) -0.5279890945939523D+04
cos©©0 (O 4 0 0 4 0 0O 0O 0O O O 0 -3) 0.4827328864858993D+02
cos©0 O 4 0 0 4 0 0O O 0O O 2 0 -3) 0.4827328864858993D+02
cos©0 (O 4 0 0 4 0 0O 0O 0O 2 0 0 -3) -0.1930931545943597D+03
cos@ 0 (1 0 0 02 0 O 0O 0O O 1 0 -2) 0.3861863091887194D+03
cos@0 (L 0 0 06 0 0O 0O O O 1 O -4) -0.9654657729717985D+03
cos@0 (L 0 0 06 0 0O O O O 3 0 -4 0.1206832216214748D+04
cos(00 (1 0 0 06 0 0O 0 0O 2 1 0 -4 0.1206832216214748D+04
cos00 (1 0 0 1 2 0 0O 0 0 O O 1 -2) 0.3861863091887194D+03
cos@ 0 (1 0 0 1 6 0 0O 0O O O 0 1 -4) -0.9654657729717985D+03
cos@0 (1 0 0 1 6 0 0O 0 0O O 2 1 -4 0.3620496648644244D+04
cos@0 (1 0 0 1 6 0 0O 0O 0O 2 0 1 -4 0.1206832216214748D+04
cos©0 (1 0 0 2 2 0 0O 0 0 0 1 0 -2) -0.1930931545943597D+03
cos@0 (1 0 0 26 0 0O 0O 0O O 1 0 -4 0.4827328864858993D+03
cos@0 (1 0 0 2 6 0 0 0 0 0 1 2 -4 0.3620496648644244D+04
cos@0 (L 0 0 2 6 0 0 0 0 O 3 0 -4 -0.1810248324322122D+04
cos@0 (1 0 0 2 6 0 0O 0O 0 2 1 0 -4 -0.6034161081073740D+03
cos@ 0 (1 0 0 3 2 0 O 0O 0 0 0 1 -2) -0.4827328864858993D+02
cos@ 0 (1 0 0 36 0 0 0O 0 0 0 1 -4 0.1206832216214748D+03
cos@0 (L 0 0 36 0 0O 0 0 0 0 3 -4 0.1206832216214748D+04
cos@0 (L 0 0 36 0 0 0 0 0 2 1 -4) -0.4073058729724775D+04
cos@0 (L 0 0 36 0 0 0 0 2 0 1 -4 -0.1508540270268435D+03
cos@0 (1 0 1 06 0 0 0 0 1 1 1 -4 0.2413664432429496D+04
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A0 Xy YT Xy Yo L X Yo Zg rq Xo Yo Zo 1o Coefficient

cos@©0 (I 0 1 1 2 0 O 0 0 1 0 0 -2) -0.1930931545943597D+03
cos(@0 (L 0 12 16 0O 0O O O 1 0 O -4 0.4827328864858993D+03
cos@@0 (L 0 1 16 0 0 0O 0 1 0 2 -4 0.2413664432429496D+04
cos@0 (L 0 1 16 0 0O O O 1 2 0 -4 -0.3017080540536870D+04
cos@0 (L 0 1 16 0 0O O O 3 0 0 -4 -06034161081073740D+03
cos(00 (1 0 1 2 6 0 O 0 0 1 1 1 -4 -0.6335869135127426D+04
cos@ 0 (L 0 2 06 0O 0O O 0O O 1 2 -4 0.1206832216214748D+04
cos@0 (L 0O 2 06 0 0 O 0O 2 1 0 -4 -0.1206832216214748D+04
cos(@0 (L 0 2 1.2 0 0O O O O 0 1 -2) -0.4827328864858993D+02
cos@0 (L 0 2 16 0 0 O O O 0 1 -4 0.1206832216214748D+03
cos(00 (1 0 2 1 6 0 0 0 0 O O 3 -4 0.1206832216214748D+04
cos@@0 (L 0 2 16 0 0 O 0O 0 2 1 -4) -0.1659394297295279D+04
cos@0 (L 0 2 16 0 0 O 0 2 0 1 -4) -0.2564518459456340D+04
cos(@0 (L 0 3 06 0 0O O O 1 1 1 -4 -0.1508540270268435D+04
cos(00 (1 1 0 0 4 0O O O O 1 1 0 -3) -0.1930931545943597D+04
cos©0 (1 1 0 1 4 0 O 0O 0 1 0 1 -3) -0.1930931545943597D+04
cos(©0 (1 1 0 2 4 0 0 0 0 1 1 0 -3) 0.9654657729717985D+03
cos@0 (L 1 1 0 4 0 0O O O O 1 1 -3) -0.1930931545943597D+04
cos@ 0 (L 1 1 1 4 0 0 O O 0O 0 2 -3) -0.1930931545943597D+04
cos(©0 (1 1 1 1 4 0 0O 0 0 0 2 0 -3) 0.9654657729717985D+03
cos(©0 (1 1 1 1 4 0 0 0 0 2 0 0 -3) 0.9654657729717985D+03
cos(©0 (1 1 2 04 0 0 0 0 1 1 0 -3 0.9654657729717985D+03
cos(@0 (L 2 0 02 0O O O O O 1 0 -2) -0.4827328864858993D+02
cos@ 0 (L 2 0 06 0 0O O O O 1 0 -4 -0.6034161081073740D+03
cos(00 (1 2 0 06 0 O O O O 3 0 -4 -0.1357686243241591D+04
cos(00 (1 2 0 06 0 O O O 2 1 0 -4 0.7090139270261644D+04
cos@0 (L 2 0 1 2 0 0 0 O 0O 0 1 -2) 0.4827328864858993D+02
cos(@0 (L 2 0 1 6 0 0 O O O 0 1 -4 -0.8447825513503237D+03
cos@ 0 (L 2 0 1 6 0 0O O O 0O 2 1 -4 -0.3167934567563713D+04
cos(@0 (L 2 0 1 6 0 0 0 0 2 0 1 -4 0.7391847324315332D+04
cos@ 0 (L 2 1 06 0 0 O O 1 1 1 -4 0.1478369464863066D+05
cos(©0 (1 3 0 04 0O O O O 1 1 0 -3) 0.4827328864858993D+03
cos@0 (2 0 0 0 4 0 0O O O O O O -3) -0.1930931545943597D+03
cos(@0 (2 0 0 0 4 0 O O O O 2 0 -3) 0.7723726183774388D+03
cos(©0 2 0 0 0 4 0 O O O 2 0 0 -3) -0.1930931545943597D+03
cos©0 2 0 0 1 4 0 O 0O 0O O 1 1 -3) 0.1641291814052057D+04
cos(@0 (2 0 0 2 4 0 0O O O O O 2 -3) 0.8689191956746187D+03
cos(@0 (2 0 0 2 4 0 0O O O O 2 0 -3) -0.8689191956746187D+03
cos@0 (2 0 1 0 4 0 O O O 1 0 1 -3) -0.2896397318915396D+03
cos@0 (2 0 1 1 4 0 0 O O 1 1 0 -3) -0.7723726183774388D+03
cos(00) 2 0 2 0 4 O 0 0O 0O O 0 2 -3) -0.9654657729717985D+02
cos(@0 2 0 2 0 4 0 0O O O 2 0 0 -3) 0.9654657729717985D+02
cos@0 (2 1 0 0 2 0 0O 0O O 1 0 0 -2) 0.4827328864858993D+02
cos@ 0 (2 1 0 06 0 0O O O 1 0 0 -4 0.6034161081073740D+03
cos©0 2 1 0 0 6 0 O O O 1 2 0 -4) -0.7090139270261644D+04
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A0 Xo Y1 Xy Yo L X¢ Yo Zg rq Xo Yo Zo 1o Coefficient

cos0 0 (2 1 0 06 0 0 0 0O 3 0 0 -4 0.1357686243241591D+04
cos@0 (2 1 0 1 6 0 0 0 0 1 1 1 -4) -0.1478369464863066D+05
cos@0 (2 1 1 02 0 0 0 0 0 0 1 -2) -0.4827328864858993D+02
cos@0 (2 1 1 06 0 0 0 0 O 0 1 -4 0.8447825513503237D+03
cos@0 (2 1 1 06 0 0 0 0 0 2 1 -4 -0.7391847324315332D+04
cos@0 (2 1 1 06 0 0 0 0 2 0 1 -4 0.3167934567563713D+04
cos@0 (2 2 0 0 4 0 O 0O 0 O O O -3) 0.9654657729717985D+02
cos@0 (2 2 0 0 4 0 0 0 0 0 2 0 -3) -0.1448198659457698D+03
cos@0 (2 2 0 0 4 0 0 0 0 2 0 0 -3) -0.1448198659457698D+03
cos@0 3 0 0 02 0 0O 0O 0 O 1 0 -2) -0.4827328864858993D+02
cos©0 3 0 0 06 0 0O O O O 1 O -4) -0.6034161081073740D+03
cos@0 3 0 0 06 0 O 0O O O 3 0 -4 0.1458255594592820D+04
cos@0 (3 0 0 06 0 0O 0O 0O 2 1 0 -4 -0.1357686243241591D+04
cos@ 0 3 0 0 1 2 0 0O 0 0 O 0 1 -2) 0.4827328864858993D+02
cos©0 3 0 0 1 6 0 0O 0 0 O 0O 1 -4) -0.8447825513503237D+03
cos00 3 0 0 1 6 0 0 0 0 0 2 1 -4 05279890945939523D+04
cos0 0 3 0 0 1 6 0 0O 0 0 2 0 1 -4 -0.1055978189187904D+04
cos@0 3 0 1 06 0 0O 0 0 1 1 1 -4 -0.2111956378375809D+04
cos©0 (3 1 0 0 4 0 0 0 0 1 1 0 -3) 0.4827328864858993D+03
cos©0 (4 0 0 0 4 0 O O 0O O O O -3) 0.4827328864858993D+02
cos@0 4 0 0 0 4 0 0O 0O 0O O 2 0 -3) -0.1930931545943597D+03
cos©0 4 0 0 0 4 0 O O 0O 2 0 0 -3) 0.4827328864858993D+02

G.3 Second degree and order disturbing functior ;,,

o 0 X1 Y7 Xy Yo L X¢ Yo Zg rq¢ Xo Yo Zo 1o Coefficient
cos(2 00 © 0 0O O -6 O 0 0 0 0O O O 0) 0.1080907167254767D-06
cos(2 00 O 0 0 2 -6 O 0 0 0 0O O O 0) -0.5404535836273835D-07
cos(2 0) OO 0 0O 4 -6 O 0 0 0 0O O O 0) 0.6755669795342294D-08
cos(2 0) O 0 2 0 -6 O 0 0 0 0O O O 0) -0.5404535836273835D-07
cos(2 0) O 0 2 2 -6 O 0 0 0 0O O O 0) 0.1351133959068459D-07
cos(2 0) O 0 4 0 -6 O 0 0 0 0O O O 0) 0.6755669795342294D-08
cos(2 0) © 2 0 0 -6 O 0 0 0 0O O 0 0) -0.2702267918136917D-06
cos(2 0) © 2 0 2 -6 O 0 0 0 0O O O 0) 0.2296927730416380D-06
cos(2 0) O 2 1 1 -6 O 0 0 0 0O O O 0) 0.1396098432635950D-06
cos(2 0) @O 2 2 0 -6 O 0 0 0 0O O O 0) -0.1351133959068460D-07
cos(2 0) © 4 0 0 -6 O 0 0 0 0O O O 0) 0.1553804052928729D-06
cos(2 00 1 1 0 2 -6 O 0 0 0 0O O O 0) -0.1396098432635950D-06
cos(2 0) 1 1 1 1 -6 O 0 0 0 0O O O 0) 0.4864082252646452D-06
cos(2 0) 1 1 2 0 -6 O 0 0 0 0O O O 0) 0.1396098432635950D-06
cos(2 0) 2 0 O O -6 O 0 0 0 0O 0O O 0) -0.2702267918136917D-06
cos(2 0) 2 0 0O 2 -6 O 0 0 0 0O O O 0) -0.1351133959068460D-07
cos(2 0) 2 0 1 1 -6 O 0 0 0 0O O O 0) -0.1396098432635950D-06

continued on next page
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o 0 Xi Y1 Xy Yo L X¢ Yo Zg r¢ Xo Yo Zo 1o Coefficient

cos(2 0) 2 0 2 0 -6 O 0 0O O O O 0 0) 0.2296927730416380D-06
cos(2 00 2 2 0 0 -6 O 0 0O O O O 0 0) 0.3107608105857458D-06
cos(2 0) 4 0 O O -6 O 0 0 0 0 0 0 0) 0.1553804052928729D-06
sm(2 00 OO 0 O O -6 O 0 0 0 0 0 0 0) -0.6204881922826443D-07
sm(2 00 OO 0 0O 2 -6 O 0 0 0 0 0 0 0) 0.3102440961413221D-07
sm(2 00 0O 0 O 4 6 O 0 0O O O O 0 0) -0.3878051201766527D-08
simn(2 00 O 0 2 0 -6 0 0 O O O O O 0) 0.3102440961413221D-07
sm(2 00 OO 0 2 2 6 O 0 0 0 0 0 0 0) -0.7756102403533053D-08
sm(2 00 O 0 4 0 -6 O 0 0 0 0 0 0 0) -0.3878051201766527D-08
sm(2 00 O 2 0 0 -6 O 0 0 0 0 0 0 0) 0.1551220480706611D-06
sm(2 0) 0O 2 0 2 -6 O 0 0O O O O 0 0) -0.1318537408600619D-06
sm(2 00 O 2 1 1 -6 O 0 0O O O O 0 0) 0.2432041126323226D-06
sim(2 00 O 2 2 0 -6 O 0 0 0 0 0 0 0) 0.7756102403533053D-08
sim(2 00 O 4 0 0 -6 O 0 0 0 0 0 0 0) -0.8919517764063013D-07
sm(2 00 2 1 0 2 -6 O 0 0O O O O 0 0) -0.2432041126323226D-06
sm(2 00 2 1 1 1 -6 O 0 0O O O O 0 0) -0.2792196865271899D-06
sm(2 00 1 1 2 0 -6 O 0 0O O O O 0 0) 0.2432041126323226D-06
sm(2 00 2 0 O O -6 O 0 0 0 0 0 0 0) 0.1551220480706611D-06
sim(2 00 2 0 O 2 -6 O 0 0 0 0 0 0 0) 0.7756102403533053D-08
sm(2 00 2 0 1 1 -6 O 0 0O O O O 0 0) -0.2432041126323226D-06
sm(2 00 2 0 2 0 -6 O 0 0O O O O 0 0) -0.1318537408600619D-06
sm(2 00 2 2 0 0 -6 O 0 0O O O O 0 0) -0.1783903552812603D-06
sim(2 00 4 0 O O -6 O 0 0 0 0 0 0 0) -0.8919517764063013D-07
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Appendix H

Admissible regions: nodal distances and
elongations

The beginning of my research work has been originally del/tdethe most recent theories
which were developed within the context of near-Earth agdsrorbital determination. Es-
pecially, we investigated the new techniques which are-augtied even if the astrometry in-
formation is not enough to compute an orbit and/or perforndantification with an already
discovered object. In particular, we focused on the theemebbped in Milani et al. (2004a)
where the so-calleAdmissible regioms introduced.

This Ph.D manuscript gives us the opportunity to presenpeusonal contribution to the
above-mentioned theory which is all the more important &astbeen recently adapted to the
main problem of orbit determination of the space debris patpn. For further details, we
refer to Tommei et al. (2007).

The results of this appendix have been previously publisie®alk and Lemaitre (2007a)

When a non identified object is observed, the first reactiothefscientific community is to
try to determine its orbit. Unfortunately, for the data eclied on very short periods of time,
the arc of observation is not large enough to give any esimaif the curvature; the deter-
mination of the orbit is impossible, using traditional madls of orbital determination, such as
the Gauss method. If we intend to build a complete catalogich ®bjects, the conclusion is
easy: this object is rejected, and the observers hope tcketa few months or years later, to
re-observe the same body, on a larger timescale. Howevaiaiy cases, the right ascension,
the declination and their instantaneous time derivativesraeasured.

For the last few years, associations like Space Guard ormbaaists of the Near-Earth
Asteroids (Minor Planet Centeor NEODYS group) have a completely different point of

http://cfa-www.harvard.edu/iau/mpc.html
2http://newton.dm.unipi.it/cgi-bin/neodys/neoibo
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192 Admissible regions: nodal distances and elongations

view concerning these unexpected observed objects. The guastion is not only the im-
provement of their orbit, but also the potential hazard thay represent for the Earth: could
this unknown body becomes dangerous for us, in a delay of ptveochundreds years ?

Virtually, this too short arc (TSA) corresponds to an infirof orbits. We assume, because
it is true in many cases, that its right ascensioand declinatiord are know, as well as their
time derivatives; on the opposite, there is no data conegreither their distance to the Earth
or the time derivative of this distance. Consequently, oataésix variablesd, d, &, 9, r, ),
the first four are determined with a specific accuracy, winkelast two are completely arbi-
trary. This means that the object lies in a 2 dimensional gatxs of a general 6 dimensional
space.

This idea was introduced by Milani et al. (2004a) and pushethér on in Milani et al.
(2004b), Gronchi et al. (2004), Milani et al. (2005) and Miland KneZew (2005). This in-
complete set of data (2 angles and 2 time derivatives) isdalh ‘attributabl€’ by the authors
mentioned above and this denomination is conserved heranKBho reasonable hypotheses
(the fact that the object belongs to the Solar System, oritl&not a satellite of the Earth),
Milani et al. (2004a) proved that this region, in the pldne*), could be closed and formed of
one or two connected sets. Curves of constant values of tuatisig Keplerian elements can
be drawn on this region.

Unfortunately, if a second observation is not available, @ldmissible region is still very
large; one of the challenges is to follow the propagatiorisf admissible region, by means of
linear and non linear techniques, in order to compare itfudem with a potential new arc.

Our purpose here is to concentrate on some aspects of tia¢ awimissible region. Firstly,
we recalculate one of its boundaries, for the short disbzé¢he Earth, introducing the hy-
perbolic shape of the orbit instead of its linear approxiorgtsecondly, we introduce, on the
admissible zone, and in complement of the Keplerian elesnefibrmation, the nodal dis-
tances, corresponding to the intersections of the Earthpatehtial Earth’s impactors orbits.
We present different situations, where the singularityndination is inside or outside the
admissible region, following the chosen attributable. Séheurves could be very interesting
in the context of propagation of the motions, reducing theatision of the admissible re-
gion (dimension one instead of two). Thirdly we introduce toncept of elongations on the
graphics.

H.1 The admissible region
Let P, andV, be the heliocentric position and velocity vectors of a deébody A at a ref-

erence time. At the same time, the position vectB?gB and the velocity vectoi?@ of the Earth
are well known.
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The heliocentric energy per unit mass4is given by

By = gVl ~ K (D)
and its geocentric energy takes the form
B = 2|Va— Vall? = ks (H.2)
2 [Pa— Ps

wheremg, andm are the masses of the Earth and of the Sun respectively. Gaumstant
is defined by:ke, = /Gme = 0.01720209895 andk? = k% ;'%. The solar mass is taken as
the mass unit, the mean semi-major axis of the Earth orbitasdistance unit (AU) and the
average day is the time unit.

An attributable is defined as a fourth dimension vector

A= (a,6,0,8) € [—W,ﬂ[x]—g, [ x R? (H.3)

s
2
computed at the timé and to which an apparent magnitudé can be associated. We use

the classical geocentric equatorial coordingtes)) with «, the right ascension, ang the
declination. The position vectdr, can be expressed as

Pi=Ps+ri (H.4)

wherer is the geocentric distance of the badyand is the unit vector in the direction of the
observation
U = (cos acos 9, sin av cos 6, sin 0). (H.5)

The first time derivative of equation (H.4) gives the velpeaiector

Va=Ve+7 @47+ s, (H.6)

where
Uy = (—sinacosd,cosacosd,0) (H.7)
s = (—cosasind, —sinasind, cosd). (H.8)

The geocentric position and velocity vectors can be contpassfunctions of- andr

|“3A—]3@H2 = 7’ (H.9)
”VA—V@HQ = 247262 cos? 6+ 12 8% =i 4 1), (H.10)

where

n=Va2cos?§ + 62 (H.11)
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is the proper motion. The energies are given by

1 2k?
Eo =~ lﬁ +r?n?— —@} (H.12)
2 T
and
1 2k?
Eo=—-|r4ecr+Wr) — —=2|, H.13
°=73 1 (r) 50) ( )

where the quantitied/(r) and.S(r) are functions of the geocentric distancésee Milani et
al. (2004a) for details).

To determine the admissible regions, let us recall the ¢mmdi chosen by Milani et al.
(2004a)

1. Ais not a satellite of the Earth

D, ={(r,7) : Eg > 0},

2. Ais notinfluenced by the Earth’s gravity field (of radifs;)

Dy ={(r,7) : 7 > Rsr} ,

3. Ais on an elliptic orbit around the Sun

Dy ={(r,7) : E5 <0},

4. Ais obviously outside the Earth’s globe (of radilis)

Dy={(r,7) : 7 > Rg} .

The admissible region is defined as

D={D,UD,}ND;ND,. (H.14)

A schematic example of such a region is given in Figure H.1.

H.2 Immediate impact trajectory and inner boundary

Our first purpose is to exclude, from the admissible rediprall the objects which are on a
collision course with the Earth within a short time span; @ntioned by Milani et al. (2004a),
this gives an additional boundary for the left part of the &hible region, betweed, andd,
where the curves; are the boundaries of the regioRs It is based on the assumption that the
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o
d4 'dz2

Figure H.1: The topology of an admissible region with twomected components in the plane
(r,7); the curvesl;, fori = 1,2, 3, 4 are the boundaries of the regiohs.

trajectory of the body is rectilinear and can be written as
"7 > Ry, (H.15)

whereR,, = 4.26352 x 10~° AU. However, when the geocentric speeid low, the hypothesis

of linearity is not suitable anymore and the boundary dpsion can be easily improved by
using a two body (Keplerian) formalism: the object is asstineemove within the sphere of
influence of the Earth where its orbit is only controlled by tharth’s gravity field. In this

context, our new condition can be expressed as

Q@<7’,7:'>—R@ >07 (H16)

whereqg, is the perigee corresponding to the geocentric orbit of ge+farth objec. This
latest expression has no simple analytic form as a functfofr,@), nevertheless it can be
computed numerically. As it is obvious that = a5 (1 — eg), Wwe compute the semi-major
axisag (negative for hyperbolic orbits) and the eccentrieityby

k2 C2
S D
= —J1-
e QE@’ ‘e a@ké’

Co = ||Call = |(Pa = Pa) x (Va—Va)| = r*n”

where
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Figure H.2: Immediate impact trajectory in the linear angléean cases (schematic repre-
sentation).

is the norm of the angular momenttﬁg3 of the geocentric orbit. The linear and Keplerian
boundaries are represented in Figure H.2 in a descriptiyeand in the planér, i) on Fig-
ure H.3. The two conditions are very similar, even if, as expe, for low radial geocentric
speedr, the differences are significant. Nevertheless, as alrpadyted out by Milani et al.
(2004a), our new condition is only useful for the discovefryery small objects or of objects
with a very small apparent magnitude. In other words, thisd@on allows to discriminate
between the population of asteroids and that of future shgastars.

A particular region appears clearly in Figure H.3, inside ¢neen curve (geocentric en-
ergy) and to the right of the red curve (Keplerian conditidhjs is a region of bodies orbiting
around the Earth. Of course, most of the artificial satallitave very precise orbits and do not
require such a study. However, it is not always the case facespebris where orbital uncer-
tainty is a common fact, especially in the case of uncatadgeostationary space debris. A
detailed analysis of this confined area, associated to aldeitnodel of propagation, would
give an interesting tool to follow this population and to e the risk for future missions.
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dr/dt [AU/day]

Geocentric Energy

Radius Sphere of Influence

5 6
r[AU] %107

Figure H.3: Immediate impact trajectory in the linear angblkéeian cases; represented in the
(r,7) plane where- is given in astronomical unit.

H.3 Nodal distances

Our second purpose is to define the subset of this admissilerassociated with the objects
which impact the Earth. The necessary conditions for an atipetween the Earth (considered
on a circular heliocentric orbit) and an hypothetic objeant be easily formulated: the object
and the Earth should be exactly at one of the nodes of theatrtiie same time

Q—\g = (H.17)

AN
ANy

:F
wtf = 5 F=, (H.18)
where\y is the longitude of the Earth, on its geocentric circulantyrbeasured in the ecliptic
plane, 2, w and f are respectively the longitude of the ascending node, tipenaent of the
pericenter and the true anomaly of the heliocentric orbihefbody.A, in an ecliptic reference
frame. The upper sign corresponds to an impact at the asgendde, and the lower sign to an
impact at the descending node. For a collision at the asegmdide, the so calleaiscending

nodal distancemust vanish
a(l —e?)

— — =0 H.19
1+ ecosw 4B ’ ( )

d,
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wherea is the Earth’s semi-major axig,that of the body4 ande its eccentricity. We have a
very similar condition for a collision at the descending egidr thedescending nodal distance

q - a(l —e?)
1 —ecosw

—ap=0. (H.20)

For any set of values ofr,7) in the admissible zone, we compute numerically the orbital
elements using the usual transformations

R e e
a—2E®, e = Py COS% = o)

whereC = (Cy, Cy, C,) is the angular momentum of the body on its heliocentric abdC
is its norm. £, is defined by the Equation (H.13). A smart way for calculating to use a
scalar product between the line of nodes and the Laplacenaetined by

—

§=VixC

— . H.21
1Pl ey
We present two very different cases; in the first one (cooedjmg to the attributable: =
2.018, § = 0.204, & = —0.00623 andd = 0.000302), the level curvei = 90° divides the
admissible region into two parts; the level curves seem thwe@ge towards a point located
outside the admissible region. In the second one (correlpgmo the attributable: = 2.018,

§ = —1.204, & = —0.0623 andd = 0.00302), theconvergenceoint of the inclination curves
is inside the admissible region. This point correspondsgimgularity: the orbit is so elliptic
than it becomes a straight line; it means that the inclimagamot defined anymore, the orbital
plane being reduced to a line.

For both cases, the level curves of the ascending (in reddaadending (in blue) nodal
distances are plotted, giving a clear idea about the locativirtual impactors in the admis-
sible zone (Figure H.4). In the first case, on the left partiguFe H.4, the ascending and
descending nodal distances curves have no intersectioapefor the case = 0 andr = 0
(i.e. the orbit of the Earth) which is obviously common tolbobnditions. On the opposite, on
the right part of Figure H.4, they cross several times, m#d admissible region, for different
types of non circular and non coplanar orbits.

The location of the nodal distances in the admissible regi@nucial to determine the po-
tential hazard of this attributable. Indeed, it is easy tola the curveg, = 0ord_ = 0;
to each point of this subset corresponds a set of six ordgatents, i.e. an orbit and an in-
stantaneous position on this orbit. By propagating the omstiof the body (on a Keplerian
orbit, for the simplest case) and of the Earth, we can rambick whether a close encounter
is scheduled or not for the next few tens of years. By clos@emer, we mean that the
body enters the sphere of influence of the Earth. A that monaemther analysis has to be
developed, using specific variables and formulae (see fample Opik (1976) and Valsecchi
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et al. (2003)) to make the final model of approach and detegh#isant probability of impact.

In a less restrictive use, this new information (the nodsiatices location) may also be of
great interest to improve the choice of the metric functmerhance some important subsets
of the admissible region for future propagation (Milani kf 2004a).

H.4 Circular and linear orbits

Let us draw the contour levels of the eccentricity in the aibie zone, for the two selected
attributables (Figure H.5). There are two apparent cerdé@rcular orbits: the first one
coincides with the Earth itseli-(= 0 andr» = 0) which is assumed to be on a circular orbit;
the second one is more interesting and can be characteszedaution of the two following
equations

Ar
T — H.22
. . L2
p7+2[p27'"+p4ro'z+p67’5 24262 cos? 8+ r26? = . (H.23)
VPo+2pir+ 12
where
A = pytpsi+pso
B = P1,
as well as

po = (Po, Po) pr= <‘Z@aa Va) B

p1=(Ps,u0)  ps=(Ps,ta) ps=(Fs,us)

p2=(Va, @) pas=(Va,Ua) ps= (Va,Us),
These equations were obtained by combining two condititvasacterizing circular orbits.
First, the position vectoP, must be perpendicular to the velocity vector

(Py, Vi) =0 (H.24)
secondly, the orbital heliocentric velocity must corrasgpto
[ Vall? = ==,
a
that is

| Vall? || Pall = K2 . (H.25)

Let us notice that all the values of the eccentricities lisMeen0 and 1, the values outside
the admissible region correspond to hyperbolic orbits. dimyea = 1 (more visible on the

bottom diagram) corresponds to the positions of Earth’§ah® We plot the curves corre-
sponding to conditions (H.24) and (H.25) in Figure H.6. Tbedition (H.24) describes the



200 Admissible regions: nodal distances and elongations

0.02

0.015

0.005

dr/dt [AU/day]
=)

-0.005}-%

-0.01

160 —
1

-0.015;

oe
av
09—
06

L i A

-0.02
0

0.5 1 15 2 25 35 4 4.5 5

r [AU]

0.03

06

0.02F \ .

0.01F—

dr/dt [AU/day]
o

-0.01

—-0.02

-0.03 A

Figure H.4: Level curves of the inclination (i = 20, 30, 45, 60, 110, 135, 160 degrees), of
the ascendingl, = —0.01,0,0.01 [solid]) and descendingi( = —0.01, 0, 0.01 [bold]) nodal
distances for the attributable: (= 2.018, § = 0.204, & = —0.00623, 6 = 0.000302) [top].
(v = 2.018, 6 = —1.204, & = —0.0623, 6 = 0.00302) [bottom]. The unit is the astronomical
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Figure H.5: Values of the eccentricity (= 0.2,0.4,0.6,0.8,0.9) and of the inclination
(z = 20,30,45,60,90,100, 135,160 degrees) for the two test attributablesy & 2.018,
§ = 0.204, & = —0.00623, 6 = 0.000302) [top]. (o = 2.018, 5 = —1.204, & = —0.0623,
§ = 0.00302) [bottom]. Two level curves of the semi-major axis are alsmxh corresponding
toa =1 AU anda = 2 AU [bold].



202 Admissible regions: nodal distances and elongations

objects which are exactly at perihelion or aphelion divigthe admissible region into two
distinct parts. The intersections of the curves (H.24) &h@%) give the circular orbits in the
admissible region. Beside the obvious case=(0,r = 0), two potential circular orbits ap-
pear in the case of the first attributable and only one for go®isd one. The supplementary
solution hidden in Figure H.5 appears clearly as shown inféigH.6 (bottom). Let us remark
that the virtual impactors detected by vanishing the noddhdces (except in the trivial case)
correspond to non-circular orbits, which is obvious, thelEmoving on a circular orbit itself.

H.5 Elongations and related angular distance

Let us remind that the attributable consists of two anglestaeir time derivatives; usually
they are connected o, the right ascension, and the declination, the geocentric equatorial
coordinates, but they could also be replaced\land 3, the ecliptic longitude and latitude of
the object, or deduced from each other thanks to the rekation

cos Fcos A = cosdcosa
cosFsin A\ = sinesind + cosecosdsin «
sin = cosesind — sinecosd sin a,

wheree is the obliquity, i.e. the angle between the ecliptic andetpeatorial plane. A quantity
directly linked to the attributable is tredongation denoted by, the angular distance between
the Sun and the bodyl as viewed from the Earth. The elongation is given by the esgiom

CcosSp = —xpcos Acos 3 — ygsin Acos 3, (H.26)

where(xzg, yg, 0) is the heliocentric position of the Earth on its circularigtit orbit. For the
first attributable, the elongationds= 166.87°. This value suggests that the observations have
been performed close to the oppositien£ 180°). The elongation value corresponding to the
second attributable i = 91.48°. In this particular case, the observations would have been
acquired near quadrature.

Let us notice that all the virtual asteroids correspondmthe same attributable have the
same elongation. On the contrary, the opposite afighetween the objectl and the Earth,
as viewed from the Sun, for a fixed elongation, is a functiom ahd its level contours are
vertical lines in the admissible region, as shown in (Figdrg). Let us remark that the two
selected attributables have quite different proper matiomdeed, we have, ~ 47, with
m = 6.1-107? rad/day, where); andr, are the proper motions of the first and second at-
tributable, respectively. On the other hand, the declomafiof the second attributable differs
significantly from the first one giving to this last case a mibreoretical and singular aspect.
As a consequence, the internal structure of the admissgiem associated to the second at-
tributable shows several uncommon properties such asc¢heation singularity, for example.
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H.6 Conclusion

The topology of the admissible region is clearly dependenthe selected attributable, as
shown by our two test attributables, corresponding to twy déferent observations: at the
opposition or at the quadrature.

We have shown that the number and the positions of the pat@iitular orbits, the loca-
tion, the shape and the length of the ascending and descenadal distances, the behaviour
of the inclination level curves are very different from onteation to the other one and contain
substantial information about any virtual body compatibith the partial set of observations.

In the search for potential impactors, we have proposedtpksathe curves of zero nodal
distances and to propagate this set of points for severasy&his procedure reduces in a sig-
nificant way the size of the admissible region and allows tspecific propagation methods,
adapted to close encounters. It should be also interestiogmpute the minimal orbital inter-
section distance (MOID) using the Opik (1976) formalismh&we a more complete analysis
about potential Earth’s impactors. However, in this lastecave should check the validity of
the theory by computing the Tisserand parameter.
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