
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

A global optimization method for mixed integer nonlinear nonconvex problems related
to power systems analysis

Wanufelle, Emilie

Award date:
2007

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/a-global-optimization-method-for-mixed-integer-nonlinear-nonconvex-problems-related-to-power-systems-analysis(5bf5c0a8-20b8-4d94-a379-3ceed2a50348).html

FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX NAMUR

FACULTE DES SCIENCES

DEPARTEMENT DE MATHEMATIQUE

A global optimization method for mixed
integer nonlinear nonconvex problems

related to power systems analysis

Dissertation présentée par
Emilie Wanufelle

pour l’obtention du grade
de Docteur en Sciences

Composition du Jury:

Sven LEYFFER

Christian MERCKX

Annick SARTENAER (Promoteur)
Jean-Jacques STRODIOT

Philippe TOINT (Copromoteur)

2007

c©Presses universitaires de Namur & Emilie Wanufelle
Rempart de la Vierge, 13

B-5000 Namur (Belgique)

Toute reproduction d’un extrait quelconque de ce livre,
hors des limites restrictives prévues par la loi,

par quelque procédé que ce soit, et notamment par photocopie ou scanner,
est strictement interdite pour tous pays.

Imprimé en Belgique

ISBN : 978-2-87037-576-1
Dépôt légal: D / 2007 / 1881 / 36

Facultés Universitaires Notre-Dame de la Paix
Faculté des Sciences

rue de Bruxelles, 61, B-5000 Namur, Belgium

d a

c b

Une méthode d’optimisation globale pour problèmes non linéaires et non convexes avec
variables mixtes (entières et continues) issus de l’analyse des réseaux électriques

par Emilie Wanufelle

Résumé: Ce travail a pour objet la conception et l’implémentation d’une méthode d’optimisa-
tion globale pour la résolution de problèmes non linéaires et non convexes, continus ou avec
variables mixtes (entières et continues), issus de l’analyse des réseaux électriques. La mé-
thode proposée relâche le problème traité en un problème d’approximation externe linéaire
en se basant sur le concept d’ensembles spécialement ordonnés. Le problème obtenu est alors
successivement raffiné grâce à une stratégie de branch-and-bound. La convergence vers un
optimum global est ainsi assurée, pour autant que les variables discrètes ou apparaissant non
linéairement dans le problème de départ soient bornées. Notre méthode, mise au point pour
résoudre un type de problème bien particulier, a été conçue dans un cadre général permettant
une extension aisée à la résolution d’une grande variété de problèmes. Nous développons tout
d’abord la méthode théoriquement et présentons ensuite des résultats numériques dont le but
est de fixer certains choix inhérents à la méthode afin de la rendre la plus optimale possible.

A global optimization method for mixed integer nonlinear nonconvex problems related
to power systems analysis

by Emilie Wanufelle

Abstract: This work is concerned with the development and the implementation of a global
optimization method for solving nonlinear nonconvex problems with continuous or mixed in-
teger variables, related to power systems analysis. The proposed method relaxes the problem
under study into a linear outer approximation problem by using the concept of special ordered
sets. The obtained problem is then successively refined by a branch-and-bound strategy. In
this way, the convergence to a global optimum is guaranteed, provided the discrete variables
or those appearing nonlinearly in the original problem are bounded. Our method, conceived
to solve a specific kind of problem, has been developed in a general framework in such a way
that it can be easily extended to solve a large class of problems. We first derive the method
theoretically and next present numerical results, fixing some choices inherent to the method
to make it as optimal as possible.

Dissertation doctorale en Sciences mathématiques (Ph.D. thesis in Mathematics)
Date: 06-12-2007
Département de Mathématique
Promoteur (Advisor): Prof. A. SARTENAER

Copromoteur (Coadvisor): Prof. Ph.L. TOINT

Remerciements

En premier lieu, je tiens à exprimer ma gratitude envers ma promotrice, Annick Sartenaer,
pour son soutien et la confiance qu’elle m’a toujours accordée, tout d’abord en me proposant
ce doctorat et ensuite, tout au long de ces quatre années de recherches. Je la remercie, ainsi
que Philippe Toint, de m’avoir encouragée à participer à des conférences internationales et à
effectuer un séjour de recherches à l’étranger. Ces voyages se sont toujours révélés être des ex-
périences enrichissantes dont je garde des souvenirs exceptionnels. J’en profite pour remercier
tous les chercheurs que j’ai côtoyés durant ces voyages pour leur accueil, leur sympathie et les
discussions intéressantes que nous avons pu avoir.

Je souhaite aussi adresser un immense merci à Sven Leyffer pour son implication, son en-
thousiasme et ses remarques avisées vis-à-vis du travail de recherches présenté ici, mais aussi
pour m’avoir offert l’opportunité d’aller travailler trois semaines à l’Argonne National Labo-
ratory. Les mots me manquent pour lui exprimer ma reconnaissance, ainsi qu’à son épouse
Gwen, pour le chaleureux accueil qu’ils m’ont réservé à Chicago. Merci de tout coeur pour ces
souvenirs!

Merci à Christian Merckx, Ludovic Platbrood et Karim Karoui de Tractebel pour m’avoir
fourni un problème intéressant à traiter ainsi que pour les discussions constructives s’y rappor-
tant.

Merci aussi aux membres du jury de cette thèse d’avoir accepté cette tâche et pour les re-
marques et suggestions pertinentes qui ont permis d’améliorer ce manuscrit.

Merci au PAI (Pôle d’Attraction Interuniversitaire), et notamment à François Maniquet et
Sébastien Laurent, d’avoir financé en grande partie ces années de recherches. Merci aussi à
Pierrette Noël pour son support logistique.

Merci à tous les membres du département de mathématiques pour la formation qu’ils m’ont
donnée lorsque j’étais étudiante ainsi que pour leur convivialité.

Merci à Michel Goffin, mon professeur de mathématiques du secondaire pour son enseigne-
ment haut en couleurs et sans qui, je ne me serais sans doute pas orientée vers les mathéma-
tiques.

Mon merci suivant s’adresse à tous mes collègues, anciens ou actuels, avec qui j’ai partagé
de bons moments qui ne se cantonnent pas aux frontières de l’université. Sans eux, ces qua-
tre années auraient été sans nul doute fort différentes. Pour ces agréables souvenirs, et pour
leur bonne humeur et leur amitié, je voudrais remercier les “copains du midi”, en particulier:
Charlotte Beauthier, Katia Demaseure, Florent Deleflie, Anne-Sophie Libert, Benoît Noyelles,
Caroline Sainvitu, Dimitri Tomanos, Stéphane Valk, Mélissa Weber Mendonça et Sebastian
Xhonneux. J’adresse un merci tout particulier à ma collègue de bureau et à ma “soeur jumelle”
pour m’avoir patiemment écoutée et soutenue pendant ma période de rédaction. Merci aussi à
Benoît Colson pour m’avoir épaulée lors de mon arrivée au département ainsi que pour tous les

i

ii Remerciements

bons moments passés quand nous partagions le même bureau.
Je remercie également mes amis de m’avoir soutenue et encouragée. Les instants de détente

passés en leur compagnie m’ont permis de rester zen et de relativiser.
Je voudrais aussi remercier mes parents, ma soeur et mes grands-parents pour leur soutien

sans faille durant cette thèse de doctorat, et plus largement au cours de ma vie.
Enfin, mon dernier remerciement, mais non le moindre, s’adresse à mon mari, Fabian, qui a

accepté de se lancer avec moi dans cette aventure. Sans son réconfort, son aide, sa confiance, sa
patience à l’égard de mes absences et de mon anxieté, et sans son amour, je n’aurais pu mener
ce projet à bien.

A vous tous, merci pour tout ce que vous m’avez apporté,

Emilie

Contents

Introduction vii

1 Background on optimization 1
1.1 Basic notions on optimization . 1

1.1.1 Formulation of a mathematical program 1
1.1.2 Feasibility and optimality . 2
1.1.3 Convexity . 3
1.1.4 Optimality conditions . 5
1.1.5 Classification of optimization problems 6

1.2 Methods for continuous optimization problems 7
1.2.1 Methods to solve continuous unconstrained problems 7
1.2.2 Methods to solve continuous linear problems 9
1.2.3 Methods to solve continuous nonlinear problems (not necessarily

convex) . 10
1.2.4 Global methods to solve continuous nonlinear nonconvex problems . 14

1.3 Methods for discrete optimization problems 22
1.3.1 Methods to solve mixed integer nonlinear convex problems 22
1.3.2 Global methods to solve mixed integer nonlinear nonconvex problems 27

1.4 Conclusion . 28

2 Solution of a mixed integer nonlinear nonconvex problem related to power sys-
tems analysis 29
2.1 Presentation of the treated problem . 29

2.1.1 Variables of the problem . 30
2.1.2 Constraints of the problem . 33
2.1.3 TVC problem . 35

2.2 Solution of the TVC problem . 36
2.2.1 Heuristics employed by Tractebel 37
2.2.2 A mixed integer nonlinear convex solver 37
2.2.3 A linear approximation method . 37
2.2.4 Global optimization methods . 49

2.3 Conclusion . 49

3 An outer approximation method based on special ordered sets 51
3.1 Motivation . 52

3.1.1 Globalization of the method . 52

iii

iv CONTENTS

3.1.2 Size of the linear approximation problem 53
3.1.3 SOS versus big-M approach . 54

3.2 An outer approximation problem based on SOS 57
3.2.1 Decomposition of nonlinear functions into nonlinear components of

one or two variables . 58
3.2.2 Propagation of the bounds through the computational graph 60
3.2.3 Exploiting common subexpressions 61
3.2.4 Maximum errors generated by SOS approximations 63
3.2.5 Expression of the outer approximation problem 75

3.3 An outer approximation method to solve nonlinear problems 76
3.3.1 Refinement of the outer approximation problem due to branching . . 77
3.3.2 Scheme of the method . 79
3.3.3 Adaptation of the method to the discrete case 83
3.3.4 Illustration of the method . 86

3.4 Conclusion . 91

4 Theoretical considerations on the proposed method 93
4.1 Comparison with other outer approximation techniques 93

4.1.1 Outer approximations of x2 based on SOS versus on tangent lines . 93
4.1.2 Outer approximations of xy based on SOS versus on McCormick’s

inequalities . 101
4.1.3 Outer approximations of trigonometric functions based on SOS ver-

sus on convex trigonometric underestimators 105
4.2 Branching on original variables or on variables λi 107

4.2.1 Outer approximation of x2 . 109
4.2.2 Outer approximation of xy . 114

4.3 Conclusion . 122

5 Presolve and range reduction 123
5.1 Comparison basis . 123

5.1.1 Basic method . 124
5.1.2 Test problems . 125
5.1.3 Some details about the implementation 126
5.1.4 Graphic representation of the results 127

5.2 Basic presolve . 128
5.3 Presolve with propagation of the tightened bounds in the problem 129
5.4 Dependency of the results of presolve on the branching rule 134
5.5 Adaptable presolve . 137
5.6 Range reduction . 139
5.7 Conclusion . 142

6 Variable selection 145
6.1 Preliminary note on branching rules . 145

6.1.1 Applicability of branching rules 146
6.1.2 Exploiting the best candidate for branching 146

6.2 Maximum approximation error branching 148

CONTENTS v

6.2.1 Maximum theoretical approximation errors 150
6.2.2 Approximation errors really produced at the current solution 157

6.3 Strong branching . 159
6.3.1 Strong branching based on the quality of the outer approximation

problem . 160
6.3.2 Scheme of the method . 161

6.4 Pseudocosts . 165
6.4.1 Handling of pseudocosts . 167
6.4.2 Scheme of the method . 169

6.5 Pseudocost technique with strong branching iterations 172
6.6 Conclusion . 175

7 Node selection 177
7.1 Depth-first search . 178
7.2 Best-first search . 178
7.3 Best-estimate criterion . 180
7.4 Conclusion . 185

8 Final comparisons of the results 187
8.1 Basic versus final method . 187
8.2 Comparison with other softwares . 192

Conclusions and perspectives 195

Summary of contributions 199

Bibliography 201

Appendix A 211

Appendix B 213

Appendix C 217

vi CONTENTS

Introduction

Optimization, also called mathematical programming, is a mathematical discipline devoted
to the search of the solution for minimization and maximization problems. Optimization prob-
lems appear in a lot of real-world applications and domains: economics, physics, industry, etc.
Because better and better performances are desired in such domains, the demand for solving
optimization problems is continually growing. So, the subject of this thesis has been induced
by the power systems analysis discipline.

To solve these problems, designers in optimization use systematic processes which, to be
efficient, are conceived to exploit as much as possible the specificities of the problem. As a
consequence, the optimization problems are divided into several categories. The research work
presented therein is concerned among other, with one of the classes of problems the most diffi-
cult to solve at the present time, namely the mixed integer nonlinear and nonconvex problems.
Due to the difficulty to characterize a solution for such problems, we have chosen to develop a
global optimization method to solve them, that is, a method which is guaranteed to find the best
solution of the problem, contrary to the methods known as local methods. Global optimization
is a new discipline in optimization since its emergence dates from a few decades. The reason of
this is simple: global optimization is expensive and before the appearance of technologies like
computers, it was utopian to hope finding with certainty the best solution of a general problem.
Nowadays, things have evolved and the development of more and more powerful computers
has enlarged the class of problems that are possible to solve, which makes global optimization
a discipline of intense activity.

In this thesis, we present a new global optimization method for solving two categories of
optimization problems, nonconvex and nonlinear continuous problems and mixed integer non-
linear and nonconvex problems. The method being motivated to solve a particular problem
coming from power system management, it is at present, only applicable on problems having
the specificities of this particular problem, although it is based on a general framework and can
be easily extended to solve a more general class of problems. The method is first theoretically
derived and then implemented and validated on a collection of test problems. More precisely,
this thesis is organized as following: The two first chapters are introductory. Chapter 1 gives
some basic notions in optimization and describes optimization methods to solve some specific
classes of problems, including the problems that we tackle. Chapter 2 is devoted to the applica-
tion which motivates the development of a new optimization method. Its physical interpretation
and its modelling are detailed. The results of some existing methods to solve this problem are
also reported. We mainly focus on the special ordered set approximation method. After having
reviewed the notion of special ordered sets, we highlight the failure of an approximation method
on the problem under study and point out that a global optimization method is more suitable.

In Chapter 3, we present the method that we have developed, namely an outer approximation

vii

viii Introduction

method based on special ordered sets. The way of building the outer approximation problem
and to refine it are then thoroughly described. The key notions of our method are those of ap-
proximation errors and branch-and-bound. The proof that our method converges to a global
solution of the problem is also established. Chapter 4 then deals with theoretical considerations
and shows on one hand that, for the problem under study, the outer approximations developed in
Chapter 3 are competitive with regard to the usual ones. On the other hand, this chapter allows
to theoretically justify some choices taken to refine the outer approximation problem.

Chapters 5 to 8 are dedicated to more practical aspects of the method. The implementation
is first described and several alternatives allowing us to improve the branch-and-bound strategy
used to refine the outer approximation problem are then investigated. The results obtained on
a collection of problems by applying these alternatives are also reported. More specifically,
Chapter 5 is interested in the tightening of the bounds on the variables before and during the
process of the method. Chapter 6 deals with the choice of the branching variable and Chapter 7
is concerned with the node selection strategy. Chapter 8 presents several comparaisons of dif-
ferent methods.

Finally, we conclude this thesis by recapitulating our approach and the obtained results, by
presenting some perspectives for future research and by giving a summary of our contributions.

Chapter 1

Background on optimization

Optimization is a mathematical branch which aims at solving a problem in the best way.
The optimization problems being formulated as minimization or maximization problems, this
amounts to look for the value, known as the optimum value, which corresponds to the minimum
or maximum of the problem. Optimization problems arise everywhere in the real-world: it can
be, for instance, the maximization of the profit of an industry or the minimization of its costs,
the minimization of energy losses in an electrical network, the maximization of efficiency for a
production line or the minimization of travel times. Anybody is confronted with optimization
problems. However, optimization mainly covers the following domains: industry, economics,
physics, biology, chemistry, medicine, planning, social management and statistics.

To tackle the problems, designers in optimization develop systematic and specific methods
depending on the features of the problem. Encouraged by the success of optimization meth-
ods to solve efficiently some classes of problems (linear and nonlinear continuous problems
or mixed integer linear problems, for example), industry, engineers and researchers look for
solving problems more and more complex, which makes of optimization a continually evolving
discipline.

In this chapter, we first review some basic notions on optimization and then present some of
the methods among the most popular for solving general continuous and discrete optimization
problems.

1.1 Basic notions on optimization

We first explain how to formulate an optimization problem and then focus on the notions of
feasibility, optimality, convexity and on the optimality conditions. We conclude this section by
describing the way chosen in this thesis to classify the optimization problems.

1.1.1 Formulation of a mathematical program

In order to be solved, the considered problems are first modelled in the sense that they are
translated in mathematical terms. This operation simplifies the problem since all its features
cannot be taken into account in the modelling. Indeed, this would make the problem too com-
plex and untractable although progresses have been done in the last decades to solve more and
more difficult problems. In fact, only the relevant characteristics of the problem are used in

1

2 Chapter 1. Background on optimization

the modelling. Note that the modelling is a crucial phase in an optimization process since the
quality of the solution for the modelled real situation is strongly based on the quality of this
modelling.

An optimization problem depends on different components: its objective function, its vari-
ables and also frequently, its constraints. The objective function, denoted f , corresponds to
the function to minimize or to maximize. It generally gives a single number which measures
the quality of a solution for the problem (for example, the production costs of a good). The
variables, denoted x, are the unknowns of the problem to which the best values as possible must
be given in order to optimize the value of the objective function (the quantity of raw materials
to produce a good, for instance). The constraints, denoted g, are functions establishing some
relations that the variables must fulfill (for example, the maximum available quantity of raw
materials). They usually are of two types: inequality or equality constraints (even if an equality
constraint can be modelled as two inequality constraints). When an optimization problem is
expressed in terms of objective function and constraints, the underlying formulation is referred
to as a mathematical program.

If the problem is unconstrained, the optimization problem is formulated as:

min
x∈IRn

f(x), (1.1)

where f : IRn → IR, while if the problem is subject to some constraints, the mathematical
program can be written like:

(P)

minx f(x),
s.t. gi(x) = 0, i ∈ E ,

gi(x) ≤ 0, i ∈ I,
x ∈ Ω,

(1.2)

where gi : IRn → IR, i ∈ E ∪ I. In this formulation, E and I are two disjoint index sets:
E comprises the indices of equality constraints while I is composed of the ones of inequality
constraints. Ω is a subset of IRn to which x must belong. For instance, the set Ω can contain
the possible discrete restrictions on the variables which require that the concerned variables
take only some particular values, like integer values for example. The variables which are
subject to such restrictions are known as the discrete variables. Note that it can be shown (see
Floudas [45]) that each discrete restriction can be modelled by a set of binary restrictions. A
problem which has no discrete restriction is said to be continuous, otherwise it is referred to as
discrete. If the problem comprises continuous and discrete variables, the problem is also known
as a mixed integer problem.

Note finally that we limit ourselves to study minimization problems since the maximization
problems can be easily transformed into minimization ones by using the fact that:

max f(x) = −min−f(x).

1.1.2 Feasibility and optimality

Some vocabulary related to the concepts of feasibility and optimality is now introduced. A
point x which satisfies the constraints of (1.2) is said to be feasible. The set S of all points
fulfilling these constraints defined by:

1.1 Basic notions on optimization 3

S = {x ∈ IRn : x ∈ Ω, gi(x) = 0 ∀i ∈ E , gi(x) ≤ 0 ∀i ∈ I},
is referred to as the feasible set or the feasible domain. When, for a given problem, the feasible
set S is empty, the problem has no solution and is said to be infeasible.

Solving the mathematical program (1.2) thus amounts to find among the feasible set, a point
which minimizes the objective function f(x). Such a particular point, denoted x∗, is known as
an optimum solution and the value of f at this point is the optimum value. A global minimum
x∗ for a problem (1.2) is a point of the feasible set which produces the minimum value for the
objective function over S. Mathematically, x∗ satisfies:

f(x∗) ≤ f(x) ∀x ∈ S. (1.3)

However, for a general problem, it is expensive to obtain the global minimum and to guarantee
that a point is really the global minimum since this implies to explore the whole feasible space.
Therefore, another type of minimum, called local minimum is considered. A local minimum is
a feasible point x∗ for which there exists N (x∗) a neighbourhood around x∗ such that:

f(x∗) ≤ f(x) ∀x ∈ S ∩N (x∗). (1.4)

Note that in lots of real applications, local minima are often sufficient. In the case of a discrete
problem, (1.4) implies that each local minimum x∗ for the problem obtained by fixing the val-
ues of the discrete variables to some feasible values is also a local minimum for the discrete
problem since it is always possible to find a neighbourhood around x∗ in which x∗ is the unique
feasible point with respect to the discrete restrictions. Therefore, the definition (1.4) does not
take the discrete restrictions into account. An alternative definition for (1.4) could be consid-
ered by requiring that a local minimum for a mixed integer problem produces the smallest value
for the objective function among all the values which can be reached at one of its feasible di-
rect neighbours with regard to the discrete restrictions. However, the optimality conditions (see
Section 1.1.4) developed to check if a point can be, or not, a local minimum are based on lo-
cal information. Therefore, comparing the value of the objective function at a point satisfying
(1.4) with the best value reachable for each of its neighbours with respect to the discrete re-
strictions would imply to solve an optimization problem for each of these neighbours. Indeed,
even if the values of the discrete variables are fixed for these neighbours, an optimization prob-
lem must be solved to determine the values of the continuous variables which minimize the
objective function. Since the number of neighbours is exponential with the number of discrete
restrictions, finding a “good” local minimum with respect to these restrictions is very hard. As
a consequence, the search of solutions is a more challenging task in the discrete case than in
the continuous one, since it needs not only to find a solution but also to prove that it is a good
solution with respect to the discrete restrictions.

1.1.3 Convexity

A useful notion in optimization is that of convexity:

• A set X is said to be convex if any points x and y of X satisfy:

λx + (1 − λ)y ∈ X, ∀λ ∈ [0, 1].

Geometrically, a convex set is characterized by the fact that any point of a segment joining
two points of this set also belongs to this set.

4 Chapter 1. Background on optimization

• A point x is referred to as a convex combination of k points xi of X if it can be expressed
as:

x =
k∑

i=1

λixi,
k∑

i=1

λi = 1, λi ≥ 0, i = 1, .., k.

If the assumption on the positivity of the λi is removed, the combination is said to be
affine. Therefore, each convex combination is also affine.

• The convex hull of a set X is the smallest convex set containing X .

• A function f defined on a convex set X is convex if it fulfills:

λf(x) + (1 − λ)f(y) ≥ f(λx + (1 − λ)y) ∀x, y ∈ X, ∀λ ∈ [0, 1].

Geometrically, this means that a segment joining two points of a convex function always
overestimates this function. Furthermore, as shown in Luenberger’s monograph [78], a
continuously differentiable function on a convex set X is convex if and only if:

f(y) ≥ f(x) + ∇f(x)T (y − x), ∀x, y ∈ X, (1.5)

where ∇f(x) is the gradient of f(x). As the right term of this inequality is the expres-
sion of the tangent of f at point x, this property means that a convex function always
overestimates its tangents at any point of its domain. The inverse of a convex function
is a concave function in the sense that f is concave if −f is convex. Accordingly, geo-
metrically, a segment joining two points of a concave function always underestimates this
function while the tangent at a point of this function overestimates it. Finally, an affine
function on a convex set X is a function f such that:

λf(x) + (1 − λ)f(y) = f(λx + (1 − λ)y) ∀x, y ∈ X, ∀λ ∈ [0, 1].

Therefore, each affine function is also convex.

After having defined the above concepts, the expression of a convex problem can be given. The
problem (1.2) is convex if the objective function f and the inequality constraint gi (i ∈ I)
are convex, the equality constraints gi (i ∈ E) are affine and the set Ω is convex. The convex
problems have nice properties, as shown by the following result (see Nash and Sofer [86] for
the detail of the proof).

Theorem 1.1 Let x∗ be a local minimum of a convex problem. Then x∗ is also a global mini-
mum.

To conclude this section, we refine the notion of a convex problem when the problem is discrete.
Indeed, in this case, the set Ω is nonconvex since it contains the discrete restrictions. A discrete
problem is said to be convex if its continous relaxation is convex, that is, if the problem obtained
by dropping the discrete restrictions is convex.

1.1 Basic notions on optimization 5

1.1.4 Optimality conditions

This section deals with the optimality conditions which allow us to check if a point can be,
or not, a minimum for the considered problem. The optimality conditions are based on local
information. They thus give a characterization for the local minima only and not for the global
ones, except for particular problems like convex ones (see Theorem 1.1) and l2-norm trust-
region subproblems (see Theorem 7.2.1 of Conn et al. [26]), for instance. As a consequence,
the optimality conditions, which have been developed for the continuous case, cannot suitably
characterize a minimum of a general problem in the discrete case (see Section 1.1.2). Even at-
tempts are made nowadays to design optimality conditions for general problems in the discrete
case, nothing practical exists for general discrete problems.

There exist several types of optimality conditions for general continuous problems: nec-
essary first-order, necessary second-order and sufficient second-order, and they differ if the
problem is unconstrained or constrained. In this section, only the classical necessary first-order
optimality conditions are presented (the other ones being not explicitly used in what follows).
For a detailed discussion about optimality conditions, we refer the reader to the books of Conn
et al. [26] and Nocedal and Wright [90]. We now state the first-order necessary optimality
condition for an unconstrained problem.

Theorem 1.2 (First-order necessary optimality condition for unconstrained problems)
If x∗ is a local minimum of problem (1.1) and if f is continuously differentiable in a open
neighbourhood of x∗, then ∇f(x∗) = 0.

Before giving the expression of the first-order necessary optimality condition for a constrained
problem, we introduce some further concepts and notations. The active set at a given feasible
point x is the set A(x) of the indices of constraints gi equal to zero at this point, that is:

A(x) = E ∪ {i ∈ I such that gi(x) = 0}.
An inequality constraint gi which is equal to zero at x is said to be active at x. The second
concept which has to be defined is that of Lagrangian. For the problem (1.2), the Lagrangian is
given by:

L(x, λ) = f(x) +
∑

i∈E∪I

λigi(x), (1.6)

where the variables λi (i ∈ E∪I) are known as the Lagrangian multipliers or the dual variables.
With this latter terminology, the variables x are called the primal variables. We finally introduce
the last notion needed to establish the first-order necessary optimality condition for constrained
problems which is the concept of constrained qualification conditions. These conditions aim at
guaranteeing the exclusion of pathological geometric cases. More precisely, they ensure that the
feasible set is reasonably represented by the first-order Taylor approximation of the constraints
around a potential local minimum x∗, that is, each constraint gi (i ∈ E ∪ I) is reasonably
approximated at points x∗ + ε (where ε is a vector with components of small values) by:

gi(x
∗ + ε) ≈ gi(x

∗) + ∇gi(x
∗)T ε.

There exist several constrained qualification conditions in the literature (Mangasarian-Fromovitz
constraint qualification and in the convex case, Slater’s constraint qualification, for instance).
We restrict here our attention to the so-called linear independency constraint qualification
(LICQ for short).

6 Chapter 1. Background on optimization

Condition 1.1 (Linear independency constraint qualification)
Given a point x∗ and the active set A(x∗) at this point, the linear independency constraint
qualification holds at x∗ for problem (1.2) if the set of gradients of the active constraints at x∗:

{∇gi(x
∗) : i ∈ A(x∗)}

are linearly independent.

Having explained the above concepts, we can now give the first-order necessary optimality
conditions for a constrained problem.

Theorem 1.3 (First-order necessary optimality conditions for constrained problems)
Let x∗ be a local minimum of the problem (1.2) at which the LICQ condition holds. Then
there exists a Lagrangian multiplier vector λ∗, with components λ∗

i (i ∈ E ∪ I), such that the
following conditions are satisfied:

∇xL(x∗, λ∗) = 0 (stationarity), (1.7)

gi(x
∗) = 0 ∀i ∈ E (feasibility), (1.8)

gi(x
∗) ≤ 0 ∀i ∈ I (feasibility), (1.9)

λ∗
i ≥ 0 ∀i ∈ I (nonnegativity of the multipliers), (1.10)

λ∗
i gi(x

∗) = 0 ∀i ∈ I (complementarity). (1.11)

These conditions developed independently by Karush [64] and Kuhn and Tucker [70] are re-
ferred to as the Karush-Kuhn-Tucker conditions (or shortly, the KKT conditions). A point x∗

which satisfies these conditions is called a KKT point.

1.1.5 Classification of optimization problems

The optimization problems can be classified according to lots of criteria. However, a major
distinction is probably concerned with the presence or not of discrete restrictions. As explained
in Section 1.1.2, the task related to the solution of such problems is double since it requires to
find a minimum (local or global) but also to prove that it is also a good optimum with regard to
the discrete restrictions. The methods developed to solve discrete problems are thus very differ-
ent from those employed in the continuous case, even if they generally use continuous methods
to solve subproblems. Therefore, in this chapter, we present separately the optimization meth-
ods to solve continuous and discrete problems. A second distinction could be the presence or
not of constraints in the problem. Among the constrained problems, we also distinguish the
methods used to solve linear and nonlinear problems. The last distinction that we consider in
this thesis is related to the quality of the optimum since we are interested in global optimization
methods which aim at finding the global optimum of a problem contrary to the local optimiza-
tion ones which can guarantee no more than finding a local minimum, unless the problem is
convex.

Note that there exist lots of other optimization problems, as for example, stochastic math-
ematical programs (see Birge and Louveaux [18] or Kall and Wallace [62], for instance),
semidefinite programs (see Boyd et al. [20], Vandenberghe and Boyd [112] and also Wolkow-
icz et al. [126]), mathematical programs with complementarity constraints (see Ferris and
Pang [38], Luo et al. [79], Outrata et al. [92]) and bilevel programs (see Dempe [30] for more
details).

1.2 Methods for continuous optimization problems 7

1.2 Methods for continuous optimization problems

This section is concerned with optimization methods for solving continuous problems, no-
tably unconstrained problems, linear problems (LP) and nonlinear problems (NLP). For the
latter, a distinction is performed between local optimization methods and global ones. Note that
this overview of optimization methods for continuous problems is far from being exhaustive
since it aims at mainly focusing on methods and concepts which will be used in the following.

1.2.1 Methods to solve continuous unconstrained problems

Our study of continuous optimization methods starts with the techniques developed to solve
the unconstrained problem defined in (1.1). As pointed out in Section 1.1.4, the first-order
optimality condition stipulates that a local minimum x∗ for an unconstrained problem must
satisfy:

∇f(x∗) = 0. (1.12)

Therefore, the methods designed for solving problems (1.1) look for points where the gradient
of the objective function of the problem is zero. A basic idea to reach this goal is to solve the
system (1.12) of n equations with n unknowns. To this aim, an iterative method producing a se-
quence of iterates that we hope converging to a point fulfilling (1.12) is used. Newton’s method
is such a technique.

Newton’s method
To motivate the use of this method for the system of equations (1.12), let us consider the fol-
lowing model of f (easier to minimize than f) around the current iterate xk:

m(xk + s) = f(xk) + ∇f(xk)
T s +

1

2
sT∇2f(xk)s, (1.13)

where ∇f(xk) and ∇2f(xk) are, respectively, the gradient and the Hessian of f at xk. If m
is a sufficiently accurate approximation of f around xk, minimizing m(xk + s) should help to
minimize f(x). By the first-order optimality condition, the minimizer sk of m(xk + s), if it
exists, must satisfy the following system of equations which are known as Newton equations:

∇2f(xk)sk = −∇f(xk). (1.14)

If the matrix ∇2f(xk) is nonsingular, the solution sk of system (1.14) is unique and is called
the Newton step or the Newton direction. Moreover, if, in addition, ∇2f(xk) is positive definite
(that is, if sT∇2f(xk)s > 0, ∀s ∈ IRn

0) and the gradient of f is nonzero at xk, the Newton step
is a descent direction (that is, sT

k ∇f(xk) < 0). The next iterate is then given by:

xk+1 = xk + sk. (1.15)

Newton’s method iterates the construction of a model given by (1.13) around the current iterate
xk, the minimization of this model by solving (1.14) and finally, the update of the current iterate
by (1.15). This method is well defined as long as the matrix ∇2f(xk) is nonsingular. However,
it happens that this matrix is singular far from a local minimum for f or that it is not positive
definite, in which case the Newton direction is not a descent one. Actually, Newton’s method

8 Chapter 1. Background on optimization

has only local convergence properties. Accordingly, it is only suitable if the starting point of
the iterative process is sufficiently close to the solution, which is not known a priori. In order to
enforce the convergence to a point which fulfills (1.12) from any starting point, a globalization
technique must be integrated into the method. Another drawback of Newton’s method is its
need of the expression of the Hessian of the objective function at the current iterate, which can
be expensive to compute. Quasi-Newton methods get round this difficulty by using an approxi-
mation of the Hessian of the objective function, as explained thoroughly in the book of Dennis
and Schnabel [31]. Nevertheless, Newton’s method has an important advantage in the sense
that, when it converges, it converges rapidly.

In addition to Newton and quasi-Newton methods, the conjugate-gradient methods intro-
duced by Hestenes and Stiefel [58] are another popular way to solve unconstrained problems.
For more details on these latter methods and more generally on methods for solving uncon-
strained problems, we suggest the reader to consult the books of Luenberger [78], Nocedal and
Wright [90] and Ruszczynski [99].

Globalization techniques
We now consider two well-known globalization techniques, namely the line-search and the
trust-region methods, whose goal is to enforce the convergence from any starting point to a
point fulfilling (1.12).

Line-search techniques
Having computed a descent direction dk from a current iterate xk, the idea of line-search meth-
ods is to find, along this direction, a point which produces a sufficient decrease in the value of
the objective function (in the sense that it will allow us to converge to a point satisfying (1.12)).
This point then becomes the next iterate:

xk+1 = xk + αdk, (1.16)

where α > 0. Ideally, to obtain the largest decrease in the value of the objective function, α
should be computed as the solution of:

min
α>0

f(xk + αdk). (1.17)

However, solving (1.17) is often expensive and useless. Accordingly, it is preferable to generate
candidate values for α until one of these values produces a sufficient decrease, in which case,
this value is accepted and the iterate is updated by (1.16). In practice, conditions are used to
determine if a particular value for α produces, or not, a sufficient decrease in the value of the
objective function. The most popular among these conditions are Armijo, Wolfe and Goldstein
conditions (see Nocedal and Wright [90] for more details).

Trust-region methods
While line-search techniques choose a direction and then determine the step length, trust-region
methods define a maximum step length and then select a direction within the region determined
by this step length. Trust-region methods start by building a model of f around the current
iterate xk. Usually, a quadratic model is employed:

m(xk + s) = f(xk) + ∇f(xk)
T s +

1

2
sT Hks,

1.2 Methods for continuous optimization problems 9

where Hk is the Hessian of f at xk or some approximation of it. Instead of minimizing this
model as in Newton’s method, we minimize it on a region where we trust the model, the trust
region. Such a region, denoted Bk, can be defined by:

Bk = {xk + s | ‖s‖ ≤ ∆k},

where ∆k > 0 is known as the trust-region radius and ‖.‖ is a given norm. The trust-region
problem can thus be expressed as:

{
mins m(xk + s),
s.t. ‖s‖ ≤ ∆k.

(1.18)

After having solved this problem (possibly approximatively), a trial step sk is obtained. Its ac-
ceptance depends on the decrease in the value of the objective function at the candidate iterate
defined by x+ = xk + sk, compared to the decrease predicted in the model. If the candidate
iterate produces a sufficient decrease in the objective function with regard to the predicted de-
crease in the model, it is accepted. If the decrease is more than sufficient, the trust-region radius
∆k is increased. Otherwise, if the candidate iterate x+ generates a poor decrease in the objec-
tive function compared to the predicted decrease, or even an increase, x+ is rejected and the
trust-region radius ∆k is reduced. More precisely, the ratio of the actual reduction versus the
predicted reduction is computed as:

ρk =
f(xk) − f(xk + sk)

m(xk) − m(xk + sk)
· (1.19)

According to the value of ρk with regard to some fixed parameters, the candidate step x+ is
accepted or rejected and the trust-region radius is enlarged, reduced or unchanged. For more
details about trust-region methods, including the way of solving the trust-region problem (1.18)
exactly or approximatively, we refer the reader to the book of Conn et al. [26].

1.2.2 Methods to solve continuous linear problems

After the unconstrained problems, we examine the constrained problems and, at first, the
class of the easiest problems in most cases, namely the linear ones. A linear program is char-
acterized by a linear objective function and linear constraints. Accordingly, each function in-
volved in the problem can be expressed as ax + b, where a and b are some constants. When the
continuous problem (1.2) is linear, it is usual to consider its standard form given below:

(LP)

minx cT x,
s.t. Ax = b,

x ≥ 0,
(1.20)

where x and c are vectors of length n, b is a vector of length m and A is an m × n matrix.
Without loss of generality, we can assume that A has full rank and m ≤ n. Note that any linear
problem can be expressed under the standard form (1.20), as illustrated in [86]. Moreover, since
it is defined by linear constraints, the feasible set S of a continuous linear problem is convex and
the problem (LP) is convex. In fact, linear problems are particular cases of convex problems.

We now introduce the notion of extreme point. An extreme point x of the feasible set S is

10 Chapter 1. Background on optimization

a point which cannot be expressed as a convex combination of two other points of this set, that
is:

@λ ∈ [0, 1], y, z ∈ S (x 6= y, x 6= z) such that x = λy + (1 − λ)z.

For example, in two dimensions, if the feasible set S is a triangle, its extreme points correspond
to its three vertices. The notion of extreme point is crucial in linear programming since it can
be shown (see [86], for instance) that the optimum value of a linear problem, if an optimum
solution exists, is reached at an extreme point of the feasible set. Therefore, it is sufficient to
consider the boundary of the feasible domain, which is the main idea of the simplex method
proposed by Dantzig (see [29]). The simplex method is an iterative method which passes from
an extreme point to another to which it is adjacent. All generated iterates are extreme points. At
each iterate, one seeks a direction (in fact an edge of the feasible set) along which the value of
the objective function decreases. If such a direction exists, it is taken towards the next extreme
point and then, the operation is repeated. Otherwise, the optimum solution is found. Accord-
ingly, the simplex method explores the feasible domain by moving on its boundary, which
distinguishes it from the second popular class of methods used in linear programming, namely,
the interior point methods. Indeed, interior point methods search the feasible set by the interior
and reach the boundary only at the limit. Historically, interior point methods have been first
developed by Fiacco and McCormick to solve nonlinear problems, as detailed in [39] and [40]
(see also Section 1.2.3), and then, have been applied by Karmarkar in the linear programming
framework [63]. For more details about interior point methods, we refer the reader to the mono-
graph of Wright [127] and about the simplex method to the books of Luenberger [78] and Nash
and Sofer [86].

1.2.3 Methods to solve continuous nonlinear problems (not necessarily
convex)

We are now interested in (continuous) nonlinear programs, that is, in problems (1.2) where
the objective function and constraints may be nonlinear. To find an optimum solution, the meth-
ods designed for nonlinear programs generate a succession of subproblems easier to solve. The
methods differ in their way of constructing and solving these subproblems. Here, we focus on
two classes of methods to solve nonlinear problems: sequential quadratic programming meth-
ods and interior point methods (the latter being already mentioned in the linear case).

This overview of nonlinear optimization methods being incomplete, we refer the reader to
the books of Conn et al. [26], Luenberger [78], Nocedal and Wright [90] and Ruszczynski [99],
and to the paper of Sartenaer [104] for a thorough analysis of this topic.

Sequential Quadratic Programming methods
Sequential Quadratic Programming methods, brievly referred to as SQP methods, have been
introduced by Wilson [125] for solving nonlinear problems. These methods can be seen as an
extension of Newton’s method to the constrained case. The idea of SQP methods is to represent
the nonlinear problem by a quadratic one (easier to solve) around the current iterate, and to
solve this latter to produce the next iterate. This quadratic problem built around the current

1.2 Methods for continuous optimization problems 11

iterate xk is defined by:

(QPk)

minp
1
2
pT∇2

xxL(xk, λk)p + ∇f(xk)
T p

s.t. ∇gi(xk)
T p + gi(xk) = 0, i ∈ E ,

∇gi(xk)
T p + gi(xk) ≤ 0, i ∈ I,

(1.21)

where ∇2
xxL(xk, λk) is the Hessian of the Lagrangian defined in (1.6) for problem (1.2). In

(1.21), the contraints are the first-order Taylor’s approximations of the original contraints gi

(i ∈ I ∪ E) around the current iterate xk. Denoting pk, the solution (possibly approxi-
mate) of (QPk) and λ, the associated Lagrangian multipliers, the next iterate is then given by
xk+1 = xk+pk and λk+1 = λ. To solve quadratic problems, some specific techniques have been
developed (see Nocedal and Wright [90]) and implemented in some solvers like BQPD [41] for
example.

Globalization techniques
Like for the unconstrained case, some globalization techniques must be added to the method in
order to enforce its convergence even if the starting point is far from the solution. Line-search
and trust-region approaches are again employed. We first consider the line-search technique.
In the unconstrained case, the line search aims to obtain sufficient decreases along the descent
directions, since the unique goal of the optimization is to minimize the value of the objective
function. Here, however, we must also attempt to reach the feasibility. To balance these two
goals often conflicting, several techniques are proposed. The use of a merit function φ which
allows us to quantify the satisfaction of these two goals, is one of them. There exist numerous
merit functions. Restricting our attention to the nonlinear problems with equality constraints
only, we give the expression of one of the most known merit functions, that is, the l1 merit
function:

φ1(x, µ) = f(x) +
1

µ
‖g(x)‖1,

where µ > 0 is the penalty parameter, g(x) is the vector of (equality) constraints and ‖.‖1 is
the l1-norm. In order to converge, the direction pk, solution of the quadratic problem (QPk),
must be a descent direction for the selected merit function φ. To this aim, µ must be sufficiently
small. A value for 1

µ
adapted to the l1 merit function is given at each iteration by:

1

µ
= δ + ‖λk+1‖∞,

where ‖.‖∞ is the l∞-norm and δ > 0 is a constant. Moreover, φ has to fulfill a line-search
condition like the ones cited in Section 1.2.1. This implies to impose some conditions on the
merit function but also on the quadratic subproblem (QPk), and in particular, to add suitable
modifications to ∇2

xxL(xk, λk), the Hessian of the Lagrangian. SQP methods differ in their
choice of the merit function and also in the modifications introduced in the latter matrix.

Let us now switch to the trust-region approach for SQP methods which is due to Beale [15]
and Sargent [103]. In this case, an additional constraint preventing the new iterate from leaving
the trust region is introduced in the subproblem (QPk), that is,

‖p‖ ≤ ∆k,

12 Chapter 1. Background on optimization

where ‖.‖ is a given norm and ∆k > 0 is the current trust-region radius. In order to measure
the progress in the convergence produced by the candidate iterate, a merit function is again
employed. As a consequence, the numerator of the ratio ρk defined in (1.19) must be modified
in order to compute the decrease in φ instead of in f . However, the objective function of (QPk)
is not the model of the merit function itself and thus cannot predict appropriately the decrease
in φ. To remedy this, several possibilities can be used: one may modify the subproblem (QPk)
by adding to it a penalty term in order that it represents more suitably the merit function φ, or
one may add to the denominator of the ratio ρk a term reflecting the predicted reduction in the
constraint violation.

Filter approach
As the efficiency of methods using a merit function is strongly related to the initialization and
update phases of the penalty parameter µ, a different approach based on the notion of filter has
been proposed by Fletcher and Leyffer [43]. The principle of filter methods is that a step is
accepted if it produces a sufficient decrease either in the value of the objective function or in
the constraint violation. In practice, a couple (θ(x), f(x)) measuring the constraint violation
and the value of the objective function at a point x is associated to each considered point x. Lots
of ways exist to measure the constraint violation, as for example, the maximum violation:

θ(x) = max{max
i∈E

|gi(x)|, max
i∈I

(gi(x), 0)}.

The filter is based on the concept of dominance. A point x dominates a point y if it satisfies:

θ(x) ≤ θ(y) and f(x) ≤ f(y).

The filter is composed of pairs (θi, fi) associated to points xi which are not dominated by other
ones. The filter, denoted F , is thus defined by:

F = {(θi, fi) | θi < θj or fi < fj for i 6= j}.
A point xk is accepted as a new iterate if the pair (θk, fk) can enter in the filter. More details
about filter methods can be found in Conn et al. [26], Fletcher et al. [42], Fletcher and Leyf-
fer [43] or in the PhD thesis of Sainvitu [102]. Concerning the SQP methods, we refer also the
reader to the book of Nocedal and Wright [90]. To conclude this section, we mention that some
competitive software packages are based on SQP methods, like FilterSQP [44] which is based
on an SQP method using a trust region and a filter, and SNOPT [50] which implements an SQP
method using a line-search strategy with a merit function of augmented Lagrangian type.

Interior point methods
In order to motivate the use of interior point methods called primal-dual, we first focus on the
barrier methods.

Barrier methods
Instead of replacing the nonlinear problem by a succession of quadratic subproblems like in
SQP methods, the barrier methods reformulate the constrained nonlinear program as an uncon-
strained one by introducing the constraints in the objective function. Assume that the nonlinear
problem involves inequality constraints only, that is, we consider:

(Pi)

{
min f(x),
s.t. gi(x) ≥ 0, i ∈ I.

(1.22)

1.2 Methods for continuous optimization problems 13

The functions used in barrier methods to combine the objective function and the constraints in a
specific way are known as the barrier functions. The most common barrier function is probably
the logarithmic barrier function which is given by:

B(x, µ) = f(x) − µ
∑

i∈I

log(gi(x)),

where µ > 0 is the barrier parameter. Therefore, barrier methods aim at solving:

min
x

B(x, µ). (1.23)

These methods have the property that the generated iterates remain strictly feasible. By mini-
mizing B(x, µ) with smaller and smaller values for µ, it can be shown (see Forsgren et al. [47])
that, under some assumptions, the sequence of minima for B(x, µ), denoted x(µ), converges
to a local minimum of (Pi). To produce the iterates, a variant of Newton’s method is applied.
However, with this approach, the full Newton step sk computed at x(µ) produces an infeasible
point for (Pi). As a consequence, the full Newton step must be reduced to generate a new iterate
belonging to the feasible set. Shorten the Newton step prevents the barrier methods from having
the fast convergence of Newton’s methods.

Primal-dual interior point methods
To get round the drawback of the barrier methods mentioned above, primal-dual interior point
methods are considered. The basic idea of these methods is to use the dual variables λ and to
treat them independently from the primal variables, contrary to the barrier methods which only
employ the primal variables. Exploiting the KKT conditions associated to problem (Pi) allows
us to reformulate the KKT conditions related to the minimization problem (1.23) like:

KKT (B(x, µ))

∇f(x) −∇g(x)T λ = 0,
G(x)λ − µe = 0,
g(x) ≥ 0,
λ ≥ 0,

(1.24)

where G(x) is equal to diag(g1(x), g2(x), ..., gm(x)) (m = #I), the diagonal matrix composed
of elements gi(x) and e is the vector of length m where all components are equal to 1. Note
that, for the sake of clarity, in the notation, we often use x for x(µ) and λ for λ(µ). The system
(1.24) is known as the primal-dual equations. The solutions (x(µ), λ(µ)) of these equations
define a primal-dual central path C, that is:

C = (x(µ), λ(µ)),

which tends to a KKT point when µ tends to zero. The system (1.24) is again solved by New-
ton’s method. Therefore, the primal-dual Newton direction (px, pλ) is such that:

(
∇2

xxL(x, λ) −∇g(x)T

Λ∇g(x) G(x)

) (
px

pλ

)
= −

(
∇xL(x, λ)
G(x)λ − µe

)
,

where Λ = diag(λ1, λ2, ..., λm) (m = #I). With this update of iterates, the drawback of
barrier methods is avoided since the full Newton step computed at a point (x, λ) of the primal-
dual central path generates a feasible iterate. Therefore, the full Newton step has not to be

14 Chapter 1. Background on optimization

reduced contrary to the barrier methods, and the convergence can be reached at an appropriate
rate, which makes primal-dual interior point methods successful to solve nonlinear problems.
Note that some globalization techniques (line-search or trust-region) and a merit function are
also introduced in the method to promote the convergence. Further details about interior point
methods can be obtained in the books of Vanderbei [114] and Wright [127]. The paper of
Forsgren et al. [47] also offers an extensive survey of this topic. Note finally that interior point
methods have been implemented in numerous solvers like LOQO [113], KNITRO [116] and
IPOPT [128].

1.2.4 Global methods to solve continuous nonlinear nonconvex problems

The nonlinear optimization methods presented above cannot yield more than local solutions,
unless the nonlinear program has specific properties (for example, if the problem is convex (see
Theorem 1.1)). In this section, we are interested in general nonlinear problems for which opti-
mality conditions for a global optimum are not available. For some of such problems, notably
highly nonconvex, the nonlinear optimization methods described above can declare the problem
(locally) infeasible while the feasible set is nonempty. For numerous applications, it is however
desirable to be guaranteed to detect a minimum, if such a point exists, and even more, the global
one.

The aim of a global optimization method is twofold since it amounts to detect a minimum,
like for local optimization methods detailed above, but also to prove that this minimum is the
global one. Since the optimality conditions used in the search of a minimum are based on local
information, these cannot be exploited to prove that the minimum of a general nonlinear prob-
lem is global. Therefore, the whole feasible set must be explored (in a clever way) to check
if a minimum is global or not, which implies that global optimization methods are much more
expensive than the local ones. Global optimization is a recent discipline in optimization because
it is born a few decades ago while local optimization methods are developed for centuries. The
progresses in the computation time due to the development of more and more powerful com-
puters have made possible the solution of problems which were expected unsolvable before.

In this thesis, we focus on global optimization methods that ensure to detect a global min-
imum. As a consequence, we are not interested in heuristics, that is, in methods which aim at
finding the global minimum but which have no guarantee to converge to it. However, in prac-
tice, such methods can also lead to good results. The use of heuristics is motivated by their
cheap cost. Simulated annealing [77] and genetic algorithms [52] are common heuristics for
global optimization.

Let us come back to methods having the guarantee to find the global minimum. Before
explaining the general idea of these methods, we give the expression of the nonlinear problem
(PG) on which we focus:

(PG)

minx f(x),
s.t. gi(x) ≤ 0, i ∈ I,

x ∈ Ω.
(1.25)

Note that the problem (P) defined in (1.2) can be reformulated like problem (PG) by replacing
each equality constraint by two inequality constraints.

Before going further, we introduce the notion of relaxation. The relaxation of a problem

1.2 Methods for continuous optimization problems 15

(PG) is a problem, denoted (R), which underestimates the objective function and the constraints
of (PG). As a consequence, the optimum value of (R) is a lower bound for that of (PG). The
relaxation (R) can thus be expressed as:

(R)

minx f̄(x),
s.t. ḡi(x) ≤ 0, i ∈ I,

x ∈ Ω̄
(1.26)

where f̄ : IRn → IR and ḡi : IRn → IR, Ω ⊂ Ω̄ and ∀x ∈ Ω, ḡi(x) ≤ gi(x) ∀i ∈ I, and
f̄(x) ≤ f(x). Two common relaxations are the convex relaxation and the continuous relax-
ation. A relaxation is said to be convex if Ω̄, f̄ and ḡi (i ∈ I) are convex. In case of a discrete
problem, the continuous relaxation corresponds to the problem obtained by dropping the dis-
crete restrictions.

Global optimization methods developed for solving nonconvex problems are in most cases
based on the same scheme: they build a convex relaxation, solve it (hence finding its global
solution) and refine it by partitioning the feasible domain. New convex relaxation subproblems
are constructed on the generated subdomains. These subproblems are themselves solved and
refined until the subdomains under study are guaranteed not to contain the global optimum.
During the process of the method, candidates for the global optimum value, also referred to as
upper bounds on this optimum, can be obtained by solving the problem (PG) by means of local
methods like the ones presented in Section 1.2.3 or when the solution of the convex relaxation
subproblems is feasible for the problem (PG). The global optimum is only found with certainty
once the whole feasible domain has been explored. It then corresponds to the best upper bound
found during the process of the method if such a bound has been found, otherwise, the problem
(PG) is infeasible.

Convex relaxations are generally used in global optimization methods since a minimum
found for these problems is always global by Theorem 1.1. As a consequence, by definition
of a relaxation, the optimum value which has been found for the convex relaxation consists of
a valid lower bound on the optimum value of the problem (PG). Since the lower bound is an
information used to determine if a subdomain can contain, or not, a global optimum and thus, if
the subdomain must, or not, still be considered, the use of valid lower bounds is crucial for the
convergence to the global optimum. Global optimization methods differ in their way of building
the convex relaxation and of refining it. Usually, the refinement of the relaxation is obtained
thanks to branch-and-bound (see below).

We next explain the main ideas of two of the most popular solvers for global optimization,
namely BARON and αBB, and that of another method proposed by Polisetty and Gatzke, which
is close to the one developed in this thesis. But before going further, we detail the principle of
the branch-and-bound strategy.

Branch-and-Bound
Branch-and-bound has been first proposed by Land and Doig [71] to solve mixed integer linear
problems. It has then been extended to the mixed integer nonlinear case by Dakin [28] and im-
proved by Gupta and Ravindran [56]. Branch-and-bound has been also adapted to solve more
general problems, like continuous global optimization ones (see Falk and Soland [37] and Horst
and Tuy [61]). In all cases, the same general scheme is used to solve with branch-and-bound
a nonlinear problem also referred to as the original problem: a relaxation of this problem is
constructed, solved and refined by partitioning the feasible domain. Subproblems are built on

16 Chapter 1. Background on optimization

the subdomains generated by this partitioning and are successively refined until the subdomain
under study is guaranteed not to contain a global optimum of the nonlinear problem or a better
optimum than the one found so far, if such an optimum has been found.

More precisely, a first relaxation (R) of the original problem is built and globally solved.
Usually, the relaxation problem is convex, which allows us to guarantee the convergence to its
global optimum value. This optimum value thus corresponds to a valid lower bound L on the
optimum value of the original problem, by definition of a relaxation. To obtain an upper bound
U , the original problem can be solved by using a local optimization method, like the ones de-
scribed in Section 1.2.3. However, because of the cost of solving a nonlinear problem, an upper
bound is not always computed. Note that, if the relaxation problem is infeasible, the original
problem is infeasible too by definition of a relaxation and the algorithm stops. Otherwise, if
the solution of the relaxation problem is feasible for the original problem, it corresponds to
the global optimum of this latter problem. But these two cases are trivial. When they do not
happen, the relaxation problem is refined by partitioning, that is, the feasible domain is divided
in several subdomains (generally two). To this aim, in case of a partitioning in two subdomains,
a variable, known as the branching variable, is selected and by bounding this variable, the do-
main is partitioned in two subdomains. For example, assume that the variable xj defined on
[lj, uj] is selected. The domain is then divided in two subdomains, the first one containing all
the points of the current domain satisfying:

xj ≤ mj,

and the second one, the points fulfilling:

mj ≤ xj,

where mj is a point belonging to]lj, uj[. This operation is called branching. The relaxation is
then refined on each of the subdomains. Indeed, the smaller the feasible domain, the tighter the
relaxation.

To each generated subproblem is associated a node which is ordered in a branch-and-bound
tree (see Figure 3.15 for an example of such a tree). According to the place of the associated
node in the branch-and-bound tree, a generated subproblem is referred to as a left subproblem or
a right subproblem. These nodes are also put in a stack containing all nodes to explore. Then,
a node is chosen and removed from the stack. The related relaxation subproblem is solved,
which gives a new lower bound L on the optimum value of the original problem valid on the
subdomain under study (by assuming that the relaxation subproblem is feasible). If the obtained
optimum solution is feasible for the original problem and if it produces a smaller optimum value
than the current one, then the upper bound U is updated with this optimum value. The process
is repeated: partitioning the domain under study, generating subproblems, choosing a node in
the stack and solving it. The branch-and-bound tree (which is thus dynamically created) is
extended in this way until one of the following conditions is satisfied at a considered node:

1. the relaxation problem corresponding to the treated node is infeasible,

2. the lower bound L generated at the node under study is larger than the upper bound U ,

3. the difference between the upper and lower bounds, L and U , is smaller than a fixed
threshold ε.

1.2 Methods for continuous optimization problems 17

If one of the two first conditions holds, the node can be cut (or equivalently, fathomed or
discarded), since the part of the domain considered at this node cannot contain a global min-
imum. Indeed, if the first condition is fulfilled, the original problem is also infeasible on this
part of the domain by definition of a relaxation. If the second condition is satisfied, no better
solution than the current one can be reached on this part of the domain since the better optimum
value which can be possibly achieved, that is, L, is larger than the current optimum value U . By
using this argument, when the upper bound U is updated during the branch-and-bound process,
all nodes in the stack associated to a lower bound larger than the new current upper bound can
be removed from this stack. Note that the lower bound for a node in the stack corresponds
to the optimum value of the relaxation problem solved at its parent. Furthermore, if the third
condition holds, the node can also be fathomed since, by a similar reasoning as for the second
condition, a better optimum value than the current one within a thresold ε cannot be produced
on the part of the domain under study. Note finally that the part of the domain containing a
global optimum is also discarded (if this optimum has been found) by the third condition since
the relaxation can be refined sufficiently in order that the lower and upper bounds on this part of
the domain are within the threshold ε. A node is thus fathomed if it is associated to a domain on
which the original problem is infeasible or if this domain cannot contain a better solution than
the current one (even if the current solution belongs to this domain).

The branch-and-bound process is complete when all the subproblems have been treated,
that is, when the stack is empty. Horst and Tuy [61] have shown that under mild assump-
tions, branch-and-bound converges to the global optimum for continuous optimization prob-
lems. More formally, Algorithm 1.1 given below is applied. When this algorithm stops, the
optimum solution and value of the original problem are given by x∗ and U respectively, unless
U is equal to +∞, in which case the original problem is infeasible.

In order for branch-and-bound to be efficient, the choices of the node to treat and the branch-
ing variable must be handled carefully. So, the choice of the node allows us to develop and
explore the tree in some order. Ideally, the tree should be explored in such a way that the op-
timum value is rapidly found. If the optimum value, or a good upper bound on it, is quickly
found, this value can be used to fathom nodes and then to converge faster. The choice of the
branching variable is also important because the way in which the branch-and-bound tree is
built strongly depends on it. Indeed, the subdomains on which the subproblems are constructed
are determined by the branching variables. Branching on variables having a lot of influence
on the problem, especially at the top of the tree, allows us to reduce the size of this tree and
thus, the number of problems to solve, which improves the speed of convergence of the branch-
and-bound process. For instance, a branching allowing us to increase the value of the objective
function for the generated subproblems may be preferred, since in this way, it can be expected
that the lower bound on the optimum value will be rapidly larger than the current upper bound
U and the node will be discarded. To select the branching variables, numerous branching rules
have been proposed (see Chapter 6 for more details). A third way to get better a branch-and-
bound process, consists in trying to tighten the bounds on the variables. This is motivated by
the fact, that, the smaller the domains of the relaxation problems, the tighter these problems and
then, quicker nodes can be fathomed.

Numerous variants of the branch-and-bound strategy exist, depending on the use or not of
techniques to tighten the bounds on the variables, on the branching rule and also on the node
selection strategy. These notions will be discussed further in Chapters 5, 6 and 7, respectively.
More details can also be found in Adjiman et al. [8] and in Linderoth and Savelsbergh [75] (the

18 Chapter 1. Background on optimization

latter reference being devoted to the mixed integer case). The branch-and-bound can also be
improved by adding valid cuts to refine the relaxation. In this case, the branch-and-bound is
referred to as branch-and-cut, which has been introduced by Padberg and Rinaldi [93].

Algorithm 1.1: Branch-and-bound

Let ε be a fixed accuracy.

Init: Set U = +∞ as upper bound and k = 0.
Build a relaxation (R0) for the original problem and put it in the stack.

while (the stack is not empty) do

1. Choose a node in the stack and solve the associated relaxation problem (Rk).
If (this problem is infeasible) then

Fathom the node and go to 3
else

Set Lk and xk the optimum value and solution of (Rk), respectively.
If (Lk ≥ U − ε) then Fathom the node and go to 3.
If (xk is feasible for the original problem) then

If (f(xk) < U) then
Update: U = f(xk) and x∗ = xk. Remove from the stack all the nodes
having a lower bound larger or equal to U − ε.

If (f(xk) − Lk ≤ ε) then Fathom the node and go to 3.
2. Choose a branching variable, branch on it and add the generated subproblems

to the stack.
3. Set k = k + 1.

end while

Branch-and-reduce
Ryoo and Sahinidis have extended in [100] the concept of branch-and-bound to solve problems
for which a valid convex relaxation problem can be built, to that of branch-and-reduce. This
approach is motivated by the fact that to achieve a fast convergence, the range of the variables
must be reduced as much as possible. The branch-and-reduce strategy has been implemented in
BARON, the Branch-And-Reduce Optimization Navigator, developed by Sahinidis and Tawar-
malani [109]. This solver is conceived to handle problems for which it can build a convex
relaxation. This includes a large class of problems. However, BARON cannot treat problems
involving trigonometric functions, for example. In order for BARON to be applicable, each
general function f or gi is decomposed in a sum of functions and each of these latter functions
is underestimated by a convex function (if BARON can treat the considered function). Then,
the resulting relaxation problem is refined through a branch-and-reduce process, as explained
below.

To improve the speed of convergence of branch-and-bound, BARON uses optimality-based

1.2 Methods for continuous optimization problems 19

range reduction mechanisms which allow it to tighten the bounds on the variables and con-
straints. These mechanisms are based on dual variables and more particularly, on the sensitivity
information that they provide. Assume, for example, that at the solution of the relaxation prob-
lem, the constraint xj − uj ≤ 0 is active and that the value of the objective function of this
relaxation problem is given by L. The Lagrangian multiplier λ associated to this constraint
gives the rate of change in the value of the objective function with respect to a modification
in uj. This information allows us to tighten the lower bound on xj if an upper bound U on
the value of the objective function is known. Indeed, as the rate of change in the value of the
objective function by moving away from uj is known, it is possible to predict the point xj = κ
from which the value of the objective function is larger or equal to the current upper bound U .
Thus, the point κ must satisfy the following equality:

L + λ(uj − κ) = U,

or equivalently,

κ = uj −
(U − L)

λ
·

For xj < κ, the value of the objective function is guaranteed to overestimate the current up-
per bound U . Therefore, the current feasible interval for xj can be reduced to [κ, uj]. Similar
reasonings can be held to strengthen the upper bound on a variable active at its lower bound,
and for the bounds on active general constraints. When the constraints are not active, some
tricks can be employed in order that the optimality-based range reduction mechanisms are even
though applicable. For more details about optimality-based range reduction, we refer the reader
to the paper of Ryoo and Sahinidis [100] and for, in addition, further information about BARON,
to the book of Tawarmalani and Sahinidis [109] and to the user’s guide [101].

A solver based on branch-and-bound: αBB
The drawback of BARON lies on the fact that it cannot be applied on any problem (1.25) because
it cannot build a convex underestimator for all functions. The solver αBB circumvents this
difficulty by using a generic formula for underestimating any nonconvex twice-differentiable
function. To build the convex relaxation problems, each function f and gi is decomposed in
a sum of nonlinear functions. These latter are then classified in three categories: the convex
functions (which are underestimated by themselves), the nonconvex functions with a special
structure (for which the expression of a convex underestimator is known: bilinear functions,
trilinear functions, concave univariate functions, etc.), and finally the other ones: the general
nonlinear functions. For a general nonlinear function f , the following convex underestimator is
used by αBB:

u(x) = f(x) +

n∑

i=1

αi(li − xi)(ui − xi). (1.27)

In order for u(x) to be convex, its Hessian must be positive definite for all x ∈ Ω̄. To this aim,
the parameters αi are positive scalars chosen in such a way that the matrix:

H + diag(αi)

has positive eigenvalues (with H , the Hessian of the function f(x), and diag(αi), the diagonal
matrix composed of elements αi). Adding the term

∑n
i=1 αi(li − xi)(ui − xi) to the func-

tion f(x) allows us to obtain an underestimating function u(x) having a Hessian with positive

20 Chapter 1. Background on optimization

eigenvalues, which characterizes a convex function. Using αi = α, for all i, the condition on
the eigenvalues of (1.27) amounts to require that α satisfies:

α ≥ max

{
0, −1

2
min

k, l≤x≤u
λk(x)

}
,

where the λk(x)’s are the eigenvalues of the Hessian of f(x). The transformation (1.27) and the
way to compute the αi’s are discussed thoroughly in the paper of Adjiman et al. [9].

The convex underestimator (1.27) is applicable to each twice-differentiable function. How-
ever, it is expensive to compute and it does not exploit all the specificities of the function under
study and thus, corresponds to a less tight convex underestimator than the one defined typi-
cally for this function. Therefore, convex underestimators have been specifically developed for
functions like trigonometric ones (see Caratzoulas and Floudas [24]) for instance, in order to
reduce the use of formula (1.27). In αBB, the convex relaxation problems involving the convex
underestimators mentioned above are refined by branch-and-bound. For further details about
the theoretical aspects of this method, we refer the reader to [9] and for a more practical point
of view (implementation, branch-and-bound choices, etc.), to [8].

Piecewise linear relaxation
The method presented by Polisetty and Gatzke in [96] is now examined because it is, in a sense,
quite close to ours since it uses a piecewise linear relaxation. To build this relaxation, the feasi-
ble domain is divided in pieces. Each nonlinear function (obtained by decomposing each func-
tion of the problem (1.25) in a sum of nonlinear functions) is then underestimated separately
on each piece of the domain by a convex underestimator (by assuming that such an underes-
timator is known, otherwise, the method is not applicable). These convex underestimators are
themselves underestimated on each piece by linear functions corresponding to their tangent at
some points (see (1.5)), unless these convex underestimators are already linear. Computing the
underestimators on each piece separately allows us to obtain a tighter underestimator than if it
had been computed on the whole piece, as illustrated on Figure 1.1. It can be observed on this
figure that the resulting piecewise underestimator is no longer a convex underestimator on the
whole domain. However, the formulation of the piecewise relaxation is linear thanks to the in-
troduction of binary variables and of the so-called big-M constraints employed for determining
the linear underestimator adapted to the considered piece. Indeed, assume that for an univariate
function, the feasible interval [s0, sp] is divided in p pieces: [s0, s1], [s1, s2], [s2, s3], ..., [sp−1, sp].
Let M be a large value, δ a positive small one and bi, 1 ≤ i ≤ p, binary variables. The big-M
formulation is then given by:

−s1 + x ≤ M(1 − b1),
s1 − x + δ ≤ M(1 − b2),
−s2 + x ≤ M(1 − b2),
s2 − x + δ ≤ M(1 − b3),
−s3 + x ≤ M(1 − b3),

...
sp−1 − x + δ ≤ M(1 − bp),

(1.28)

together with:
p∑

i=1

bi = 1. (1.29)

1.2 Methods for continuous optimization problems 21

underestimated function

piecewise linear underestimator

linear underestimator

Figure 1.1: Piecewise linear underestimator versus linear underestimator.

This system implies that if x belongs to a piece [sk−1, sk], the associated binary variable bk is
necessarily equal to one while the other bi are equal to zero. For example, if x ∈ [s0, s1], b1 is
forced to be equal to one and the first constraint amounts to x ≤ s1. The second constraint is
given by s1 + δ − M ≤ x, and the third one by x ≤ s2 + M . These constraints are obviously
satisfied for x ∈ [s0, s1] since M is a large value. Note that the parameter δ is used to define a
unique piece to which x belongs in order to avoid problems at the boundaries of the pieces.

Denoting now ui(x) the linear underestimator of f(x) computed on the ith piece, the linear
relaxation on the ith piece employed in the piecewise linear relaxation problem is given by:

ui(x) − M(1 − bi). (1.30)

Therefore, if x belongs to the ith piece, bi is equal to one and the underestimator is given by
ui(x). Otherwise, bi is equal to zero and the underestimator on the ith piece corresponds to
ui(x) − M , which is a relaxation of the constraint for M sufficiently large. However, this
relaxation has no influence because x does not belong to this piece. Replacing the nonlinear
function by a new variable w, a constraint requiring that the function ui(x) is underestimating
on each piece is imposed, that is:

ui(x) − M(1 − bi) ≤ w ∀i = 1, .., p. (1.31)

As each constraint of (1.28), (1.29) and (1.31) is linear, the resulting piecewise problem is also
linear but mixed integer because of the variables bi. The use of tighter linear underestimators on
each piece (but not linear on the whole domain) has been made possible by the introduction in
the relaxation problem of binary variables. To refine the relaxation, branch-and-bound is again
used. As a consequence, at each node of the branch-and-bound tree, a mixed integer linear
problem must be solved. Methods conceived for solving such problems are cited at the begin of
Section 1.3.

The method developed in this thesis, and more particularly in Chapter 3, also builds a piece-
wise linear relaxation, in a sense. However, the way of constructing this relaxation is different

22 Chapter 1. Background on optimization

since it is not based on a big-M formulation but on special ordered sets (see Section 2.2.3 for
more details).

Summary of this section
The ideas of some global optimization methods have been brievly given. Obviously, there exist
numerous other global optimization methods like interval methods (Hansen [57]), for instance.
A survey of the subject has been realized by Neumaier in [89]. Several books like those of Horst
and Pardalos [60] and Horst and Tuy [61] are references in global optimization. Finally, we
mention the website [2] maintained by Neumaier and entirely dedicated to global optimization,
and also the COCONUT project [107] which aims at combining the techniques developed in
different optimization domains in order to produce efficient algorithms for global optimization.

1.3 Methods for discrete optimization problems

Concerning the discrete optimization problems, we directly focus on mixed integer nonlin-
ear problems (MINLP) without detailing the methods used to solve mixed integer linear prob-
lems (MILP). Indeed, solving mixed integer linear problems is out of the scope of this thesis,
even for the solution of MILP subproblems contrary to some methods. We thus limit ourselves
to cite the most common optimization methods for MILP, which are branch-and-bound, branch-
and-cut, branch-and-price and cutting-plane methods. Note that except the branch-and-price,
the nonlinear version of these methods will be explained in the next subsection. The book of
Nemhauser and Wolsey [87] treats in depth the subject of mixed integer linear optimization.

1.3.1 Methods to solve mixed integer nonlinear convex problems

This section presents some methods for solving mixed integer nonlinear and convex prob-
lems. For such problems, if the set of possible values for the discrete variables is finite, the
methods described below are guaranteed to converge to the global optimum under mild assump-
tions, contrary to the nonconvex problems (see below). However, in some cases, the methods
developed for mixed integer convex problems can be efficient to solve mixed integer nonlinear
and nonconvex problems. Therefore, they can also be used in this context.

For the sake of clarity, we express the problem considered in this section by:

(PI)

minx,y f(x, y),
s.t. gi(x, y) ≤ 0, i ∈ I,

x ∈ X, y ∈ Y,
(1.32)

where the variables x and y denote the continuous and discrete variables, respectively, the func-
tions f and gi (i ∈ I) are convex, the set X is convex and the continuous relaxation of Y is also
convex. Note that the continuous relaxation of (PI) is obtained by replacing Y by its convex
hull.

Branch-and-bound
Branch-and-bound for solving MINLP problems can be seen as a variant of the branch-and-
bound detailed in Section 1.2.4 to refine the relaxation problems, although it has been devel-
oped first. Here, the relaxation problem used is the continuous relaxation of the convex MINLP

1.3 Methods for discrete optimization problems 23

problem which is thus a convex nonlinear continuous problem. The function f and gi remain
unchanged. Accordingly, branch-and-bound is only used to satisfy the integer restrictions. As-
sume, for instance, that an integer variable y is equal to a noninteger value y∗ at the current
solution of a relaxation problem. To discard this infeasible solution, branching is used by im-
posing to the left subproblem:

y ≤ by∗c,
and to the right one:

dy∗e ≤ y,

where by∗c and dy∗e correspond to the closest integers to y∗, smaller or equal to it and larger
or equal to it, respectively. Therefore, as one goes down in the tree, the bounds on the discrete
variables are tighter and tighter and the discrete restrictions are gradually enforced.

At each node of the branch-and-bound tree, a nonlinear problem is solved. As this non-
linear problem is convex, the solution found for this problem is a global optimum and thus,
the branch-and-bound is guaranteed to converge to a global optimum of the convex MINLP, if
the set of possible values for the discrete variables is finite. Note that if the assumption on the
convexity of the problem is removed, the lower bounds on the optimum value of the original
problem corresponding to the solutions of the continuous nonconvex NLPs are not necessarily
valid, unless global optimization methods are employed to solve these nonlinear problems at
each node. As a consequence, the convergence to a global optimum cannot be ensured in this
case.

MINLP_BB [74] and SBB [105] are two solvers based on a branch-and-bound framework
designed to solve convex MINLP problems. The open-source code Bonmin (Basic Open-source
Nonlinear Mixed INteger programming) [19] also offers the possibility to solve convex MINLP
problems by a branch-and-bound process. These solvers use local optimization methods to
solve the nonlinear problems and thus, guarantee the convergence to a global optimum only if
the problem under study is convex.

Generalized Benders Decomposition and Outer Approximations
We now consider two other kinds of methods for convex MINLPs, namely the generalized
Benders decomposition and the outer approximation methods. They are presented together
since they are based on the same scheme. Indeed, they successively solve two problems: the
so-called primal problem and master problem. On one hand, the primal problem corresponds
to the nonlinear problem (1.32) in which the discrete variables have been fixed to some feasible
values. The primal problem is thus a convex nonlinear continuous problem. By fixing the value
of the discrete variables at yk, this problem is given by:

(NLPk)

minx f(x, yk),
s.t. gi(x, yk) ≤ 0, i ∈ I,

x ∈ X.
(1.33)

If this problem is feasible, its optimum value provides a valid upper bound on the optimum
value of problem (1.32). On the other hand, the optimum value of the master problem, which is
a mixed integer linear relaxation of problem (1.32), gives a valid lower bound on the optimum
value of problem (1.32). The generalized Benders decomposition and outer approximation
methods iterate the solution of the primal and master problems until the difference between
the lower and upper bound is within a tolerance ε, in which case the algorithm stops since it

24 Chapter 1. Background on optimization

has detected a global optimum for problem (1.32). Note that both methods do not partition the
feasible domain and thus, do not employ a branch-and-bound process. The generalized Ben-
ders decomposition and outer approximation methods differ in their way of building the master
problem, which is given below for both methods.

Generalized Benders decomposition
This method due to Geoffrion [49] is an extension of the work of Benders [17]. Here, the master
problem is based on the dual information provided at the solution of the nonlinear problem
(NLPk), which is reformulated as:

(NLP ′
k)

minx,y f(x, y),
s.t. gi(x, y) ≤ 0, i ∈ I,

y = yk,
x ∈ X, y ∈ conv(Y),

(1.34)

where conv(Y) denotes the convex hull of Y . If (NLP ′
k) is feasible, let (xk, yk) be its primal

solution and µk the optimum Lagrangian multiplier associated to the equality constraint y =
yk. If the problem (NLP ′

k) is infeasible, the NLP solver returns a point (xk, yk) which is the
solution of the following feasibility problem:

(F ′
k)

minx,y

∑
i∈C+ wk

i g
+
i (x, y),

s.t. gi(x, y) ≤ 0, i ∈ C−,
y = yk,
x ∈ X, y ∈ conv(Y),

(1.35)

where C− is the set of the indices of feasible constraint at the current point and C+ its com-
plementary, the function g+

i (x, y) is defined by g+
i (x, y) = max(0, gi(x, y)) and wk

i ≥ 0 are
weighting parameters not all zero. Let νk, the optimum Lagrangian multiplier associated to the
equality constraint y = yk at the solution of (F ′

k).
The master problem employed in the generalized Benders decomposition is given by:

(MILP ′
k)

minη,y η,
s.t. η ≥ f(xj, yj) + µT

j (yj − y) ∀j ∈ F +,

0 ≥∑i∈C+(wj
i g

+
i (xj, yj)) + νT

j (yj − y) ∀j ∈ F−,
y ∈ Y,

(1.36)

where F + is the set of indices k for which the problem (NLP ′
k) was feasible and F− is its

complementary.

Outer approximations
We now give the expression of the master problem used in outer approximation methods. The
outer approximation methods have been introduced by Duran and Grossman [35] to solve mixed
integer nonlinear convex problems whose objective and constraint functions are linear in the
integer variables. They have next been generalized by Fletcher and Leyffer [43] to handle
nonlinearities in the integer variables. In outer approximation methods, the master problem is
based on tangential linearizations around (xk, yk) where (xk, yk) is the solution of (NLPk) if

1.3 Methods for discrete optimization problems 25

this problem is feasible or the solution of the following feasibility problem:

(Fk)

minx

∑
i∈C+ wk

i g
+
i (x, yk),

s.t. gi(x, yk) ≤ 0, i ∈ C−,
x ∈ X,

(1.37)

otherwise. Note that this latter problem is equivalent to (1.35). The master problem can be
expressed as:

(MILPk)

minx,y,η η,

s.t. η ≥ f(xj, yj) + ∇f(xj, yj)
T

(
x − xj

y − yj

)
∀j ∈ F+,

0 ≥ g(xj, yj) + ∇g(xj, yj)
T

(
x − xj

y − yj

)
∀j ∈ F+,

0 ≥ g(xj, yj) + ∇g(xj, yj)
T

(
x − xj

y − yj

)
∀j ∈ F−,

x ∈ X, y ∈ Y.

(1.38)

Comparison of both methods
By comparing the master problems of both methods, it appears that it contains less variables
and less constraints for the generalized Benders decomposition than for the outer approxima-
tion methods. However, in practice, the generalized Benders decomposition provides a less
tight relaxation problem than the one generated by the outer approximation method. Variants
of this latter method have been proposed in order to also handle equality constraints (Kocis and
Grossmann [68]) and to exploit second order information by introducing quadratic terms in the
problem (Fletcher and Leyffer [43]). Concerning the implementation of outer approximation
methods, we can again cite Bonmin [19] and the solver DICOPT [69] which uses a third variant
of the outer approximation method developed by Viswanathan and Grossmann [115], that is, an
outer approximation extended by a penalty function and able to treat equality constraints.

LP/NLP Branch-and-Bound
The generalized Benders decomposition and the outer approximation methods need to solve a
MILP problem at each iteration, which is costly. To avoid this drawback, Quesada and Gross-
mann have proposed in [98] an alternative, which has been generalized by Leyffer in [73] to
handle nonlinearities in the integer variables. The idea of the proposed methods is to integrate
the outer approximation method in a branch-and-bound framework. More precisely, instead of
solving a MILP at each iteration, only one MILP is solved by using branch-and-bound. The
MILP which is solved corresponds to the first master problem built by the outer approximation
method. By using branch-and-bound, the problem at the root node of the tree corresponds to
the continuous relaxation of this MILP. Branching is then employed to try to satisfy the discrete
restrictions. But contrary to the classical branch-and-bound for MILP, once a solution satisfying
the integer restrictions is found in the branching tree, the branch-and-bound process is stopped
and the primal problem (1.33) is solved for this integer solution, exactly as in outer approxi-
mation. New cuts (the tangential linearizations at the current point) can then be generated to
refine the relaxation problem. These cuts are next added to each subproblem associated to a
node of the stack of branch-and-bound in order to improve the quality of all relaxation prob-
lems remaining to treat. This is why this method is also referred to as a branch-and-cut method.

26 Chapter 1. Background on optimization

Bonami et al. have recently proposed an hybrid approach [19] which solves a larger number of
NLPs during the branch-and-bound process (for example, every l nodes). The LP/NLP branch-
and-bound method and the latter hybrid approach have been implemented in Bonmin. At the
same time, Abhishek et al. [5] have developed FilMINT, a solver also based on the LP/NLP
branch-and-bound algorithm.

Extended cutting plane
The last method designed to solve convex MINLP on which we focus is the extended cutting
plane method. It is due to Westerlund and Petterson [119] which have extended to MINLP the
cutting plane method proposed by Kelley in [65] to solve NLP. In order to apply the extended
cutting plane method, the problem (1.32) is reformulated as:

(Pη)

min η,
s.t. gi(x, y) ≤ 0, ∀i ∈ I ∪ {if},

x ∈ X, y ∈ Y,
(1.39)

where gif = f(x, y) − η. The general idea of the extended cutting plane method is to solve a
sequence of tighter and tighter MILPs obtained by adding to the current MILP the linearization
of one constraint of the problem Pη at each iteration. More precisely, the first MILP problem
is composed of the linear constraints and of the linearization of the most violated constraint of
(Pη) at a given feasible point (x0, y0). Therefore, defining j0 by j0 = argmaxigi(x0, y0), the
following linear constraint is added to the problem:

gj0(x0, y0) + ∇gj0(x0, y0)
T

(
x − x0

y − y0

)
≤ 0.

As a consequence, the first MILP problem can be expressed as:

(MILP
′′

0)

min η,
s.t. gi(x, y) ≤ 0, ∀i ∈ IL,

gj0(x0, y0) + ∇gj0(x0, y0)
T

(
x − x0

y − y0

)
≤ 0,

x ∈ X, y ∈ Y,

(1.40)

where IL ⊂ I ∪ {if} is the set of indices of linear constraints. The most violated constraint
is then looked for at the solution (x1, y1) of (MILP

′′

0) and the process is repeated by adding
its linearization to (MILP

′′

0). The extended cutting plane solves a sequence of (MILP
′′

k) until
the maximum violation of the constraints at the current point is smaller than a fixed tolerance.
The optimum values of these problems generate a sequence of non-decreasing lower bounds on
the optimum value of the original problem. However, contrary to the last methods described
above, no upper bound is generated by using an NLP solver, which can prevent the method from
having a fast convergence. Indeed, since the extended cutting plane method does not employ
an NLP solver which is usually based on Newton-type methods, it cannot benefit from the fast
convergence of these methods. As a consequence, the extended cutting plane method is a first-
order method only.

Let us consider the case of nonconvex problems. To handle such problems, the extended
cutting plane algorithm has been modified to take into account the fact that the linearizations of

1.3 Methods for discrete optimization problems 27

the constraints may discard feasible parts of the domain. For example, if it appears that a lin-
earization is larger at the current point xk than the constraint that it attempted to underestimate
at a previous iteration, this linearization is removed from the problem (MILP

′′

k). For more
details about this method, we refer the reader to the papers of Westerlund and Petersson [119]
and Westerlund et al. [121] which present the method for convex and nonconvex MINLPs re-
spectively, and to [97] and [120] for extensions of the method. Note that this extended cutting
plane method has been implemented in the software Alpha-ECP [118].

The main ideas of some of the most popular deterministic methods to solve mixed integer
nonlinear programs have been presented. The described methods however do not cover all the
existing methods. We refer the reader to the paper of Grossmann [55] for a more complete
survey on the subject.

1.3.2 Global methods to solve mixed integer nonlinear nonconvex prob-
lems

Since the methods described above cannot guarantee the convergence to a global solution
(or even to a feasible solution) for mixed integer nonlinear and nonconvex programs, global
optimization methods have been proposed in the literature to remedy this. Some of them are
now reviewed.

Branch-and-reduce
The branch-and-reduce method implemented in the solver BARON and presented in Section 1.2.4
has been conceived to treat discrete variables. Indeed, the method is included in a branch-and-
bound framework. When the problem involves discrete variables, the considered relaxation is a
convex and continuous relaxation of the MINLP. In this case, branching is performed to refine
the convex relaxations as well as to satisfy the discrete restrictions. Again, the convergence to
the global optimum is ensured under mild assumptions.

Methods based on branch-and-bound: Extensions of αBB
The method implemented in αBB has been extended to be applicable in the discrete case. Two
methods have been proposed. The first one, SMIN-αBB, is applicable on problems where the
discrete variables are only involved in linear and bilinear functions. It is based on the convex
underestimation of the continuous functions and amounts to a branch-and-bound process where
a convex MINLP is solved at each node. The second strategy, GMIN-αBB, can treat a larger
class of problems, that is, problems involving twice continuously differentiable functions. It is
based on the convex relaxation of the whole problem and also uses a branch-and-bound process
but here, a convex NLP is solved at each node. More details about these two algorithms can be
found in Adjiman [7].

Interval analysis methods
These methods proposed by Vaidyanathan and El-Halwagi [111] can be seen as a branch-and-
bound approach since they reduce the domain by partitioning and bound the objective function
of the problem on each subdomain. However, the bounds are not obtained by solving optimiza-
tion problems, which distinguish the interval analysis methods from branch-and-bound ones.

28 Chapter 1. Background on optimization

Here, valid bounds are computed by interval arithmetic techniques (see Moore [85] and Neu-
maier [88]). However, these bounds can be poor and specific techniques must be employed to
accelerate the convergence.

Other global optimization methods
In addition to these methods, Smith and Pantelides have proposed in [108] a spatial branch-
and-bound, Pörn and Westerlund have developed an extended cutting plane method [97] for
nonconvex MINLPs which ensures the convergence to the global optimum for a larger class of
problems than for the convex ones and Kesavan et al. [66] have extended the outer approxi-
mation methods in order to find the global optimum of separable and nonconvex MINLPs. An
overview of the deterministic methods developed to solve nonconvex (and also convex) MINLPs
and the assumption under which they are applicable can be found in Adjiman [10]. We also re-
fer the reader to the paper [46] of Floudas et al. which presents the recent advances in the global
optimization domain. Geometric, algebraic and combinatorial approaches for MINLP are also
given in Weismantel [117].

An alternative to the deterministic methods described above are the approximation methods.
These latter build an approximation problem from the original one and solve this approximation
problem which is easier to solve than the original one and for which the guarantee to obtain the
global minimum is ensured. If the approximation problem is sufficiently accurate, its optimum
solution is close to the one of the original problem, which can be easily reached from the op-
timum solution of the approximation problem. In this thesis, we focus on an approximation
method (see Martin et al. [80]), which approximates a MINLP by a MILP involving special
ordered sets. More details on this method will be given in Section 2.2.3. Finally, we mention
the existence of heuristics to solve MINLP like simulated annealing (see [25] and [67]), tabu
search [51], evolutionary algorithms [13] and also, heuristics based on branch-and-cut as used
by the software LaGO [3].

1.4 Conclusion

This chapter aimed at fixing some basic notions and definitions useful in this thesis and
also to give a brief overview of the existing optimization methods to solve different classes of
problems. The list of the described methods being non-exhaustive and the methods being not
presented in details, we invite the reader interested in a particular topic to consult the proposed
references in the related sections.

We also recommend NEOS, an online server for optimization developed by the Optimiza-
tion Technology Center (Argonne National Laboratory and Northwestern University). NEOS
gives access to a lot of solvers presented in this chapter. It offers to the user the possibility of
submitting a problem online and of solving it also online by the solver that he has chosen. More
details about NEOS can be found in [27], [33] and [54] and on its internet address:

http://www-neos.mcs.anl.gov/

Note that a guide for optimization is also available on this website.

Chapter 2

Solution of a mixed integer nonlinear
nonconvex problem related to power
systems analysis

In an era where the world population continually increases while the natural resources de-
crease, the energy management has become an important topic. In order to tackle it in an
optimal way, the underlying problems of the energy management are often modelled as opti-
mization problems. This is the case of the problem treated in this thesis which can be expressed
as a mixed integer nonlinear and nonconvex optimization problem. The considered problem is
an optimal power flow problem which arises in the management of transmission systems. Espe-
cially, we focus on a problem known as Tertiary Voltage Control problem, or more briefly TVC
problem but the method developed in this thesis is also applicable on general optimal power
flow problems. The TVC problem has been provided to us by Tractebel Engineering, an impor-
tant engineering consultancy company for energy and infrastructure.

This chapter aims at introducing the problem under study and at investigating the question of
the best way to solve it. After explaining the physical meaning of the problem and detailing its
variables and constraints, we first explain the heuristics used by Tractebel to solve the problem.
We then describe the results obtained by using MINLP_BB, a solver dedicated to the solution of
mixed integer nonlinear convex problems. As the observed results lead to think that a method
preferring the solution of linear problems instead of nonlinear ones is better, we consider such
a method. More precisely, we detail an approximation method for the solution of mixed integer
nonlinear problems. However, this method can fail to converge to an optimum. To remedy this,
a global optimization method is finally considered.

2.1 Presentation of the treated problem

The TVC problem takes place in the framework of the Optimal Power Flow, shortly referred
to as OPF, (see Bacher [14], Momoh et al. [84]). The goal of the latter is to optimize some
objective function (power loss minimization or transfer capability maximization, for example)
by adjusting system control settings while satisfying operational and physical constraints (see
Section 2.1.2). Therefore, the OPF is an optimization problem. The OPF applies on steady-state
operating conditions. Actually, the aim of the OPF is to predict the effects of some planned

29

30 Solution of a MINLP problem related to power systems analysis

expansion or to determine the best operating conditions of an existing system.
In order to analyze the TVC problem, we first consider the variables and constraints involved

in the OPF. To this aim, some basic electricity notions linked to the problem are introduced. We
then focus on the specificities of the OPF and finally, give the complete formulation of the TVC
problem.

2.1.1 Variables of the problem

Electrical networks mainly depend on three components:

- the voltage which corresponds to the electric potential difference between two points
of an electrical circuit and which is related to the amount of energy needed to move an
electric charge from one of these two points to the other;

- the current which represents the movement (or the flow) of electricity;
- the power which expresses the quantity of energy transferred from a system to another.

The OPF is based on the alternating current which means that contrary to the directed current,
the magnitude and the direction of the current periodically vary. In this context, the three
previous notions (voltage, current and power) are complex. A complex number x can be written
as:

x = a + jb as well as x = c(cos(d) + j sin(d)), (2.1)

where a, b, c and d are reals such that a and b represent the real and imaginary parts of x
respectively, c and d are known as the modulus and the argument of x respectively, while j
corresponds to the imaginary unit (usually denoted i anywhere else than in the electrical engi-
neering domain). The polar coordinates (c, d) involve trigonometric functions contrary to the
Cartesian coordinates (a, b). However, Tractebel prefers employing the formulation with polar
coordinates because of its experiment. Indeed, the use of Cartesian coordinates introduces in
the OPF problems functions like square roots of sum of squares which do not appear by using
polar coordinates.

Moreover, as indicated by its name, the OPF focuses more on the notion of power than on
voltage or current. Note that the real and imaginary parts of the power have both a physical
interpretation. Indeed, the power, denoted S, and referred to as apparent power, is divided in
two parts: the real power P and the reactive power Q which correspond respectively to the real
and imaginary parts of the quantity S (S = P + iQ). On one hand, the real power, also called
active or true power, is the equivalent of the power for the directed current. This is the amount
of power used or dissipated in a electrical circuit and which is employed for the consumption of
the end-user. On the other hand, the reactive power corresponds to the quantity of power which
returns to the energy source at each cycle. It is produced to maintain the system and to ensure a
steady voltage.

Let us now consider the representation of an electrical network by a directed graph, that is,
by a set of nodes linked together by directed branches. To each component of the graph, node
or branch, is associated a set of variables and parameters, as detailed below.

Nodes
We consider two kinds of nodes:

2.1 Presentation of the treated problem 31

- the generator nodes which are associated to generators (devices producing electrical
energy),

- the simple nodes, the other ones.

In the following, the sets of generator nodes and of simple nodes will be respectively denoted
NG and NS , while N will be used for the set of all nodes (N = NG ∪NS). With each node, we
associate a voltage. By (2.1), this variable is divided in two parts. For a node denoted i, referred
to as node i, they are given by:

- νi, the modulus of the voltage at node i,
- θi, the argument of the voltage at node i.

Furthermore, the following parameters are also employed for each node:

- νmini
and νmaxi

that bound below and above the modulus of the voltage at node i,
- Q0i

, a parameter associated to the reactive power compensation at node i, that is, the
reactive power which is released by some components of the network such as capaci-
tors (see Section 2.1.2),

- Pci
, the real power consumed at node i,

- Qci
, the reactive power consumed at node i.

The variables and parameters depending on a node differ according to the kind of node
(generator or simple). As the generator nodes are associated to an energy source, they are
characterized by two more variables:

- Pi, the generated real power at node i,
- Qi, the generated reactive power at node i.

As the produced power cannot be infinite, parameters are used to bound these variables below
and above:

- Pmini
and Pmaxi

,
- Qmini

and Qmaxi
.

Branches
Like for nodes, we consider two types of branches, depending, this time, if a transformer is
present or not on these branches. A transformer is a device allowing us to modify the amplitude
of a voltage or of an alternating current. The representation of a transformer is given in Fig-
ure 2.1. On this figure, it can be observed that a transformer is composed of two windings. One
of these windings is linked to the voltage source. It is referred to as primary, while the other
winding is called secondary since it is associated to a voltage induced by the primary. We thus
have:

- branches with transformer,
- simple branches (the other ones).

In the following, the sets of branches with transformers and of simple branches will be denoted
BT and BS , respectively. Among these branches, only the ones with transformer are associated
to a variable which is:

- rj , the ratio of voltage at branch j.

The ratio of voltage is the ratio between the induced voltages for the primary and secondary. In
case of an ideal transformer with no energy loss, this ratio is equal to the number of turns of

32 Solution of a MINLP problem related to power systems analysis

Figure 2.1: Representation of a transformer [1].

wire for the primary divided by the number of turns of wire for the secondary (Np

Ns
in Figure 2.1).

Therefore, the ratio of voltage is not a continuous number and can take only a discrete set of
values comprised between two parameters:

- rminj
and rmaxj

.

After the variables depending on branches, the parameters are now examined. With each
branch, simple or with transformer, we associate a parameter called admittance which expresses
the ease of an alternating current to flow through an electrical circuit. The admittance is com-
posed of two parts: the conductance and the susceptance. The conductance measures the ability
of a material to conduct electricity while the susceptance represents the ease of a system to free
stored energy. As a direct consequence, the admittance depends on the materials composing
the electrical system. While the conductance and susceptance correspond respectively to the
real and imaginary parts of the admittance, the modulus and argument of (2.1) are used in the
modelling to express the admittance of a branch j:

- yj, the modulus of the admittance of branch j,
- ζj, the argument of the admittance of branch j.

Moreover, any branch is linked to the earth by means of a component called shunt which is also
associated to an admittance. Depending if the shunt is connected to a branch with transformer
or to a simple branch, a different definition is used for the admittance: modulus and argument
or real and imaginary parts. With a shunt linked to a branch j with transformer, we associate:

- y0j
, the modulus of the admittance of the shunt,

- ζ0j
, the argument of the admittance of the shunt,

while a shunt connected to a simple branch j is characterized by:

- g, the conductance of the shunt,
- h, the susceptance of the shunt.

2.1 Presentation of the treated problem 33

2.1.2 Constraints of the problem

After having listed the variables and parameters involved in the optimization problem pro-
vided by Tractebel Engineering, we now consider the constraints imposed on this problem.

Bound constraints
As previously underlined, the majority of the variables (νi, Pi, Qi and rj) are subject to bound
constraints.

Power Flow Equations
In the OPF formulation, the electrical network is also subject to power flow equations which
concern the conservation of power inside an electrical circuit. They can be deduced from Telle-
gen’s theorem [94] and require that:

The total power in an electrical circuit is equal to zero, or equivalently, the total power
generated in a network is equal to the total power dissipated in this network.

It can be shown (see [94]) that this law is implied by the well known Kirchoff’s laws and thus
expresses a physical reality. As the power is a complex value, the law on power conservation
can be decomposed according to the real and reactive powers. Mathematically, in the model
provided by Tractebel Engineering, these constraints are expressed as:

Pi − Pci
−
∑

j∈Se
i

Pj −
∑

j∈So
i

Pj −
∑

j∈T e
i

Pj −
∑

j∈T o
i

Pj = 0, ∀i ∈ N , (2.2)

Qi + ν2
i Q0i

− Qci
−
∑

j∈Se
i

Qj −
∑

j∈So
i

Qj −
∑

j∈T e
i

Qj −
∑

j∈T o
i

Qj = 0, ∀i ∈ N , (2.3)

where - Se
i is the set of simple branches coming from node i,

- So
i is the set of simple branches going to node i,

- T e
i is the set of branches with transformer coming from node i,

- T o
i is the set of branches with transformer going to node i,

- Pj is the real power on branch j,
- Qj is the reactive power on branch j.

The real and reactive powers on a branch can be written in terms of the variables and parameters
described above as shown in Platbrood [95]. For a branch denoted j linking node i to node k,
the expressions of the real and reactive powers are given by:

Pj = ν2
i (yj cos(ζj) + gj) − νiνkyj cos(ζj + θi − θk) if j ∈ Se

i ,
Qj = ν2

i (yj sin(ζj) − hj) − νiνkyj sin(ζj + θi − θk) if j ∈ Se
i ,

Pj = ν2
i r

2
jyj cos(ζj) − νiνkrjyj cos(ζj + θi − θk) if j ∈ T e

i ,
Qj = ν2

i r
2
jyj sin(ζj) − νiνkrjyj sin(ζj + θi − θk) if j ∈ T e

i .

(2.4)

If the branch j links node k to node i, the real and reactive power are written as:

Pj = ν2
k (yj cos(ζj) + gj) − νiνkyj cos(ζj + θk − θi) if j ∈ So

i ,
Qj = ν2

k (yj sin(ζj) − hj) − νiνkyj sin(ζj + θk − θi) if j ∈ So
i ,

Pj = ν2
k (yj cos(ζj) + y0j cos(ζ0j)) − νiνkrjyj cos(ζj + θk − θi) if j ∈ T o

i ,
Qj = ν2

k (yj sin(ζj) + y0j sin(ζ0j)) − νiνkrjyj sin(ζj + θk − θi) if j ∈ T o
i .

(2.5)

34 Solution of a MINLP problem related to power systems analysis

Note that the equations associated to a simple branch are symmetric for a branch linking node i
to node k and one linking node k to node i. This is not the case for branches with transformer
due to the presence of a transformer on these branches.

By replacing the expressions of the powers on a branch given by (2.4) and (2.5) in (2.2) and
(2.3), it can be seen that the power flow equations are equality constraints implying trigonomet-
ric functions, which make them nonconvex. Furthermore, as these constraints express physical
realities, they must be absolutely satisfied.

Discrete restrictions
In addition to general constraints, the problem is also subject to some restrictions on the vari-
ables in the sense that some variables are allowed to take only a discrete set of values. In the
considered problem, there are two kinds of such variables: the ratio of voltage previously men-
tioned and binary variables associated to the capacitor banks, as detailed below.

1. Ratio of voltage
As explained in Section 2.1.1, the ratio of voltage is a ratio between two integer numbers
Np and Ns. In practice, Np can take q values while the value of Ns is fixed. Therefore,
the ratio of voltage is a variable which can take q fixed values, not necessarily integer. In
the modelling used in this thesis, we have assumed, in order to simplify, that the possible
values for the ratio of voltage on a branch j are equally spaced between its lower and
upper bounds, rminj

and rmaxj
. Moreover, we have also supposed that there exist eleven

possible values for the ratio of voltage. Therefore, we have introduced an integer variable
zj belonging to [0, 10] which satisfies:

rj = rminj
+ zj

rmaxj
− rminj

10
, j ∈ BT . (2.6)

In the suggested modelling, the ratio of voltage rj is treated as a continuous variable while
the variable zj is considered as an integer one. The satisfaction of the discrete restriction
on rj is obtained by means of the constraint (2.6) and the integer restriction on zj.

Note that the simplifying assumption on the equal spacing of the possible values for
the ratio of voltage can be relaxed by using another formulation requiring that:

rj = rjk
zjk

, 1 ≤ k ≤ q, j ∈ BT , (2.7)
q∑

k=1

zjk
= 1, (2.8)

zjk
binary, 1 ≤ k ≤ q. (2.9)

In this formulation, the q possible values for rj are given by {rjk
}q

k=1. The constraint
(2.8) compels only one zjk

to be equal to one and the others to be equal to zero. As a
binary variable zjk

is associated to each of the possible values rjk
, rj is equal to one of the

values rjk
by (2.7). A set of variables where only one variable is allowed to be nonzero

is called special ordered set of type 1. Observe that the formulation (2.6) involves two
variables (rj and zj) while q + 1 variables (rj and {zjk

}q
k=1) are needed for constraints

(2.7), (2.8) and (2.9).

2.1 Presentation of the treated problem 35

2. Binary variable associated to a capacitor bank
A capacitor bank is an electrical device able to store reactive power and to free the ac-
cumulated power. In the proposed model, the constraints (2.3) assume, by means of the
term ν2

i Q0i
, that the stored reactive power is always released. However, in practice, it

is not always the case since it arises that the reactive power remains accumulated in the
capacitor. Therefore, to improve the model, binary variables ai have been added to take
this characteristic into account. With these variables, the equalities (2.3) are replaced by:

Qi + aiν
2
i Q0i

− Qci
−
∑

j∈Se
i

Qj −
∑

j∈So
i

Qj −
∑

j∈T e
i

Qj −
∑

j∈T o
i

Qj = 0, ∀i ∈ N . (2.10)

When ai is equal to zero, the reactive power remains in the capacitor at node i while if
it is equal to one, the entirety of this power is released. Note that values for ai different
from zero and one are not consistent with the reality because when the capacitor frees
power, the entirety of the stored power is released. As a consequence, the variables ai

must be binary.

2.1.3 TVC problem

The general specificities of an OPF problem being given, we now focus on the TVC problem.
In alternating current networks, the reactive power transmission produces voltage drops and
losses. In order to have a situation as regular as possible, a tertiary voltage control is applied.
Its goal amounts to try that the produced reactive power at each generator node i remains more
or less constant around a fixed value denoted obji, in such a way that the generated reactive
power Qi does not reach its bounds too often. As a consequence, the objective function of the
TVC problem is given by:

min
∑

i∈NG

wi (Qi − obji)
2, (2.11)

where wi are weighting parameters. Indeed, as the range of the generated reactive power can
be different for every node, the weighting parameters are used to scale these quantities. In fact,
(2.11) can be seen as a weighted least squares function.

The TVC problem also involves an additional constraint employed to control the voltage on
the branches connected to other networks (of other countries for example):

∑

j∈S

Qj = obj0, (2.12)

where S is the set of simple branches connected to other networks and obj0 is a fixed parameter.
Note that there also exist primary and secondary voltage controls. The primary voltage

control is used to modify the voltage directly at the devices of the network (generators and
transformers, for example) when a voltage variation is detected by the voltage regulators of
these devices. The goal of the secondary voltage control is to coordinate the action of the volt-
age and reactive power control devices of the network on a local region in order that the voltage
remains at a fixed level. Finally, the tertiary voltage control needs the solution of an optimiza-
tion problem involving measurements taken on the network, in order to adjust the settings of
devices (generators, inductances, capacitors, etc.).

36 Solution of a MINLP problem related to power systems analysis

By grouping together (2.6), (2.11) as well as (2.2), (2.10) and (2.12) in which the real and
reactive powers on branches have been replaced by their expressions given in (2.4) and (2.5),
and by bounding the variables in the way explained above, we finally obtain the complete TVC
problem that we aim at solving (see below). In this formulation, the variables are highlighted
in bold and the notation jik has been used to stress the fact that branch jik links node i to node k.

(TV C)

min
∑

i∈NG
wi (Qi − obji)

2,

s.t. Pi − Pci
−∑jik∈Se

i
(ν2

i (yjik
cos(ζjik

) + gjik
) − νiνkyjik

cos(ζjik
+ θi − θk))

−∑jki∈So
i
(ν2

k (yjki
cos(ζjki

) + gjki
) − νiνkyjki

cos(ζjki
+ θk − θi))

−∑jik∈T e
i

(
ν2

i r2
jik

yjik
cos(ζjik

) − νiνkrjik
yjik

cos(ζjik
+ θi − θk)

)

−∑jki∈T o
i

(
ν2

k (yjki
cos(ζjki

) + y0jki
cos(ζ0jki

))

−νiνkrjki
yjki

cos(ζjki
+ θk − θi))

= 0, ∀i ∈ N ,

Qi + aiν
2
i Q0i

− Qci

−∑jik∈Se
i
(ν2

i (yjik
sin(ζjik

) − hjik
) − νiνkyjik

sin(ζjik
+ θi − θk))

−∑jki∈So
i
(ν2

k (yjki
sin(ζjki

) − hjki
) − νiνkyjki

sin(ζjki
+ θk − θi))

−∑jik∈T e
i

(
ν2

i r2
jik

yjik
sin(ζjik

) − νiνkrjik
yjik

sin(ζjik
+ θi − θk)

)

−∑jki∈T o
i

(
ν2

k (yjki
sin(ζjki

) + y0jki
sin(ζ0jki

))

−νiνkrjki
yjki

sin(ζjki
+ θk − θi))

= 0, ∀i ∈ N ,

∑
jik∈S

(ν2
i (yjik

sin(ζjik
) − hjik

) − νiνkyjik
sin(ζjik

+ θi − θk)) = obj0,

rj = rminj
+ zj

rmaxj
−rminj

10
, j ∈ BT ,

Pmini
≤ Pi ≤ Pmaxi

, i ∈ N ,
Qmini

≤ Qi ≤ Qmaxi
, i ∈ N ,

νmini
≤ νi ≤ νmaxi

, i ∈ N ,

0 ≤ zj ≤ 10, zj integer, j ∈ BT ,
ai binary, i ∈ N .

The TVC problem is thus a mixed integer nonlinear and nonconvex problem. For more
details about electricity concepts, we refer the reader to Wildi and Sybille [122] and for a more
extensive description of the modelling of the TVC problem, to the work of Platbrood [95] which
focuses on the continuous relaxation of this problem.

2.2 Solution of the TVC problem

This section investigates some methods to solve the TVC problem.

2.2 Solution of the TVC problem 37

2.2.1 Heuristics employed by Tractebel

At present, Tractebel Engineering does not employ a solver typically conceived to treat
mixed integer and nonlinear problems to solve the TVC problem but uses a heuristics. This
latter consists in solving the continuous relaxation of the problem (see Section 1.2.4) and next,
for the discrete variables which are close within some accuracy to a feasible discrete value
at the solution, in fixing the value of these variables to this feasible discrete value. Then, the
process is repeated: the continuous relaxation of the problem in which the value of some discrete
variables has been fixed is solved and the discrete variables which have a value sufficiently close
to a feasible discrete value at the solution are fixed to this value. To compel the convergence,
the accuracy needed to fix the value of the discrete variables is relaxed as soon as continuous
relaxations of the problem are solved. However, this technique remains a heuristics and thus,
there is no guarantee to converge. If a solution is found, there is neither any insurance that it
corresponds to a “good” optimum. Therefore, a robuster method is desirable.

2.2.2 A mixed integer nonlinear convex solver

We have then applied MINLP_BB (see Section 1.3), a solver especially built to solve mixed
integer and nonlinear problems and available on NEOS (see Chapter 1) to the TVC problem.
This solver is able to detect a global optimum of a mixed integer and nonlinear optimization
problem if this problem is convex. If it is not the case, there is no guarantee to find a global op-
timum. However, in practice, MINLP_BB can also give good results on mixed integer nonlinear
and nonconvex problems. This solver has thus been tested on the TVC problem with a medium
set of data (34 nodes and 48 branches) provided by Tractebel Engineering. The results obtained
were encouraging since the detected optimum seemed to be the global one. Indeed, no better
solution has been found with other techniques and by using other starting points. We then have
experimented MINLP_BB on a larger set of data corresponding to the Belgian network (about
1500 nodes and 2000 branches), but here the solver failed to converge. After several days, no
solution was found. The size of the problem and also the cost of the solution of one nonlinear
problem (MINLP_BB solves a lot of such problems) can be an explanation.

2.2.3 A linear approximation method

In order to avoid the drawback cited above, an idea is to replace the solution of the nonlin-
ear problems by that of linear problems which are less expensive to solve. Moreover, the TVC
problem comprises, among others, trigonometric functions, which make it difficult to solve, due
to the highly nonconvex behaviour of these functions. Therefore, the search for an optimum,
not necessarily the global one, can be jeopardized if the starting point for the nonlinear solver is
not judiciously chosen. To remedy this, a popular idea (see Martin et al. [80] and Tomlin [110],
for example) which approximates the nonlinear problem by a particular linear one and solve
the latter, is first investigated. This idea is based on the fact that the optimum obtained for a
linear problem is guaranteed to be the global one. Accordingly, if the quality of the linear ap-
proximation problem is good enough, a solution for the nonlinear problem, possibly the global
one, can be found from the solution of the linear problem. To linearly approximate the nonlin-
ear functions, the special ordered set approximations introduced by Beale and Tomlin [16] are
used. With these approximations, a nonlinear function is approximated by means of a piecewise

38 Solution of a MINLP problem related to power systems analysis

linear function which is defined by particular constraints having common features with discrete
restrictions, as we will see below. This method has been used by Martin et al. in [80] to solve
a mixed integer nonlinear and nonconvex problem arising in the gas network management and
has brought good results. This section begins by detailing the expression of a special ordered
set approximation of a given function in one or higher dimensions and then explains the way
of building a linear approximation problem from these special ordered set approximations. Fi-
nally, the limit of this approximation method is highlighted which motivates the development
of a new method.

Special ordered set approximation
The special ordered set approximation has been introduced in 1970 by Beale and Tomlin [16].
As the methods for solving linear problems were a lot more advanced than for solving nonlin-
ear problems, their goal was to replace the nonlinear functions appearing in a problem by linear
approximations of these functions. However, the determination of a good linear approximation
for a nonlinear function is not obvious, especially when the nonlinear function is highly non-
convex. For instance, the approximation of sin(x) on the interval [0, 2π] by one linear function
cannot produce a good approximation on the entirety of the interval [0, 2π]. Accordingly, Beale
and Tomlin have suggested to use not only one linear function to approximate a nonlinear one,
but a piecewise linear function, called special ordered set approximation, or more briefly, SOS
approximation. For example, if four pieces of size equal to π

2
are used to approximate sin(x) on

the interval [0, 2π], the obtained SOS approximation is the one presented in Figure 2.2. This ap-
proximation allows us to catch the nonconvex behaviour of the trigonometric function. At each
extremity of a piece, the approximated function and its SOS approximation coincide. There-
fore, larger the number of pieces used, better the approximation. The mathematical formulation
of an SOS approximation is now given by distinguishing the cases where the nonlinear function
has one or more arguments. In the last case, the general formulation is illustrated by the SOS
approximation of a function of two variables.

0 1.5708 3.1416 4.7124 6.2832
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)
SOS approximation

Figure 2.2: SOS approximation of sin(x) on [0, 2π] by using four pieces of same length.

One-dimensional case
To approximate a nonlinear function f defined on an interval [lx, ux] by its SOS approximation,

2.2 Solution of the TVC problem 39

we determine a fixed number p of breakpoints where the nonlinear function is evaluated. These
breakpoints denoted xi, 1 ≤ i ≤ p, must belong to [lx, ux] and are ordered in such a way that
xi < xi+1. Note that x1 is always chosen to be equal to lx and xp to ux in order to cover the
entirety of the approximation interval. For example, in Figure 2.2, the breakpoints correspond
to multiples of π

2
and are represented by circles. On each piece [xi, xi+1], 1 ≤ i ≤ p − 1, the

SOS approximation of f is defined by the linear function joining (xi, f(xi)) to (xi+1, f(xi+1)),
as shown in the figure. The analytical expression of such an approximation is based on the fact
that any x belonging to the interval [lx, ux] can be expressed as a convex combination of the
breakpoints xi. This can be mathematically translated by introducing a set of new continuous
variables λ = {λi}i=1,p and by requiring that:

x =

p∑

i=1

λixi,

with
p∑

i=1

λi = 1,

0 ≤ λi, 1 ≤ i ≤ p.

(2.13)

As the breakpoints xi are fixed, the system (2.13) is linear. Note that the variables x and λ are
dependent since x is defined in function of λ. To each value of x corresponds a different convex
combination of λi. For the sake of clarity, this dependence is omitted in the notation. Thus, we
simply write x and λ.

The value at x =
∑p

i=1 λixi of the SOS approximation of the function f , denoted f̃ , can
be computed as the same convex combination taken on the images f(xi) of the breakpoints,
denoted fi by easiness, that is,

f̃(x) = f̃

(
p∑

i=1

λixi

)
=

p∑

i=1

λifi. (2.14)

However, to define the SOS approximation of f in only one way, a condition on the variable
λ must still be added to conditions (2.13) and (2.14), as explained below. For example, sup-
pose that we want to approximate sin(x) at x = 3 with an SOS approximation based on five
breakpoints (xi)i=1,5 = (0, π

2
, π, 3π

2
, 2π). Hence, by (2.13), λ must satisfy:

3 = 0λ1 + π
2
λ2 + πλ3 + 3π

2
λ4 + 2πλ5,

5∑

i=1

λi = 1,

0 ≤ λi, 1 ≤ i ≤ 5.

(2.15)

By taking λ1 = λ4 = λ5 = 0, λ2 = 2− 6
π

and λ3 = 6
π
− 1 which fulfill (2.15) and by applying

(2.14), the SOS approximation of sin(3) = 0.141120 is given by:

s̃in(3) = λ2 sin(x2) + λ3 sin(x3)
= λ2 sin(π

2
) + λ3 sin(π)

= (2 − 6
π
) 1 − (6

π
− 1) 0

= 0.090140.

40 Solution of a MINLP problem related to power systems analysis

Note that the choice λ2 = 2 − 6
π
, λ5 = 6

π
− 1 and λ1 = λ3 = λ4 = 0 also satisfies (2.15)

but does not give the same approximation as the one obtained with the previous value of λ.
The two different approximations are represented in Figure 2.3, where it can be seen that the
approximation of sin(x) on [π

2
, π] based on x2 and x3 is clearly better than the approximation

based on x2 and x5.

x1 x2 x3 x4 x5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)
approximation based on x2 and x3
approximation based on x2 and x5
sin(3)

Figure 2.3: Approximations of sin(x) at x = 3 based on x2 and x3 or on x2 and x5.

This example highlights that the linear piecewise approximation of a function is not unique
if it is only determined by constraints (2.13) and (2.14). Actually, there are numerous approx-
imations which satisfy these constraints because the value (x, f̃(x)) can be obtained by any
convex combination of the values (xi, fi). For a same value of x, there thus exist several pos-
sible values for the approximation f̃(x). For the function sin(x) approximated on the interval
[0, 2π], the domain of possible values (x, s̃in(x)) satisfying constraints (2.13) and (2.14) and
denoted DPV is represented in Figure 2.4 by the parallelogram. Indeed, it can be shown that
each value (x, f̃(x)) inside of this parallelogram fulfills these constraints.

To obtain a unique approximating function, the one represented in Figure 2.2 for sin(x), an
additional condition, known as SOS type 2 condition, must be imposed.

Definition 2.1 The SOS type 2 condition, shortly referred to as SOS condition, requires that at
most 2 λi are nonzero and that these λi are associated to consecutive breakpoints.

Definition 2.2 A set λ of variables {λi}i=1,p which satisfies the SOS condition is called SOS of
type 2, shortly referred to as SOS.

Definition 2.3 A variable λi belonging to an SOS is known as an SOS variable.

The complete definition of the SOS approximation of f can now be given.

Definition 2.4 The SOS approximation of a function f defined on an interval [lx, ux] is given

2.2 Solution of the TVC problem 41

x1 x2 x3 x4 x5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)
DPV

Figure 2.4: Domain of possible values (x, s̃in(x)) satisfying constraints (2.13) and (2.14) for
the approximation of sin(x) on [0, 2π].

by:

f̃(x) =

p∑

i=1

λifi, (2.16)

with x =

p∑

i=1

λixi, (2.17)

p∑

i=1

λi = 1, 0 ≤ λi, 1 ≤ i ≤ p, (2.18)

{λi}i=1,p satisfies the SOS type 2 condition. (2.19)

Note that the variables λi which are allowed to be nonzero to satisfy the SOS condition, may
be different depending on the point x where the function f is approximated. For the example
illustrated in Figure 2.2, if x belongs to [(i − 1)π

2
, iπ

2
], 1 ≤ i ≤ 4, only λi and λi+1 can be

nonzero.
In the formulation of an SOS approximation, (2.16), (2.17) and (2.18) are linear constraints

of continuous variables. It is not the case for (2.19) which can be mathematically transformed
into linear constraints, but involving discrete variables. Indeed, by introducing, for each piece
[xi, xi+1], 1 ≤ i ≤ p − 1, a new binary variable yi which is equal to one if the sum of the λi

associated to the breakpoints defining the piece is equal to one and zero otherwise (unless only
one λi is equal to one, in which case one of the two possibly nonzero yi must be set to zero),
the SOS type 2 condition can be mathematically expressed by system (2.20):

y1 ≥ λ1,
yi + yi+1 ≥ λi+1, 1 ≤ i ≤ p − 2,
yp−1 ≥ λp,
p−1∑

i=1

yi = 1,

yi binary, 1 ≤ i ≤ p − 1.

(2.20)

42 Solution of a MINLP problem related to power systems analysis

This formulation is known as the lambda method (see also Williams [124]). In (2.20), the bi-
nary condition on the variables yi together with the constraint on the sum of these variables
ensure that only one yi can be nonzero. As a consequence, the three first constraints of (2.20)
ensure that the variables λi and λi+1 associated to the ith piece are always smaller or equal to
the variable yi. By assembling this information and since the sum of the λi must be equal to
one by (2.18), it can be derived that only two λi associated to two consecutive breakpoints can
be nonzero.

With this formulation, after having reformulated the nonlinear problem by replacing each
nonlinear function by its SOS approximation given in one dimension by (2.16), (2.17), (2.18)
and conditions (2.20), we obtain a mixed integer linear problem which can be solved by ap-
plying the classical methods cited in Section 1.3. However, the use of the binary variables yi

increases the size of the problem. Therefore, in practice, we do not introduce them explicitly
in the problem but we exploit the fact that the SOS type 2 condition can be expressed as linear
constraints involving binary variables. Accordingly, to satisfy this condition, a technique often
used to fulfill discrete restrictions is employed: the branch-and-bound (see Section 1.2.4). So, if
the approximation of f does not satisfy the SOS type 2 condition, we branch on the variables λi.
The popular rule for branching on such variables is to choose an index k (k 6= 1, p) according to
specific rules developed to this aim (see Möller [83] or Williams [123] for instance) and divide
the current problem into two subproblems. The left subproblem consists of the current problem
subject to the equality:

k∑

j=1

λj = 1 (or equivalently λj = 0, k + 1 ≤ j ≤ p), (2.21)

while the right subproblem is subject to:
p∑

j=k

λj = 1 (or equivalently λj = 0, 1 ≤ j ≤ k − 1). (2.22)

For example, if λ is equal to (0.5, 0, 0, 0, 0.5), the SOS type 2 condition is not fulfilled. Assume
that the branching is performed on λ3. Accordingly, λ4 and λ5 must be equal to zero for the
left subproblem while λ1 and λ2 must be equal to zero for the right one. Therefore, the current
value of λ is no longer feasible for the two subproblems.

Note that this branching technique can appear as a branching rule of a branch-and-cut pro-
cess more than of a branch-and-bound one because we add equalities instead of bounding some
variables. But the equalities used together with (2.18) amount to impose, and thus to bound,
that all variables λi which are not implied in the equation (2.21) for the left subproblem or
in (2.22) for the right one are equal to zero. Therefore, we pursue to refer to this process as
branch-and-bound.

As a preliminary summary, the SOS approximations allow us to approximate a nonlinear
function by means of a piecewise linear function, which makes possible to represent a noncon-
vex behaviour. But these approximations have a price because they introduce in the formulation
a kind of discrete restrictions which must be handled by branch-and-bound.

Case of higher dimensions
Above, the one-dimensional case has been examined but the SOS approximations can also be
employed in higher dimensions. To this aim, three definitions are introduced:

2.2 Solution of the TVC problem 43

Definition 2.5 A function f is nonseparable if it cannot be decomposed as a sum of functions
of a single variable.

Definition 2.6 A set of points is affinely independent if and only if each of these points cannot
be expressed as an affine combination of the other ones (see Section 1.1.3).

Definition 2.7 A simplex in an n-dimensional space is the convex hull of a set of n + 1 affinely
independent points.

Therefore, a simplex in an n-dimensional space is an n-dimensional analogue of a triangle. For
example, in one dimension, the simplex is a line segment, in two dimensions, a triangle and in
three dimensions, a tetrahedron.

Let f : IRn → IR be a nonseparable function defined on an n-dimensional space. Note
that the case of a separable function can be discarded, because if the function is separable, it
can be decomposed into a sum of functions of a single variable that can be approximated by
using SOS of type 2. To define the SOS approximation of f , pq breakpoints are chosen in each
xq-dimension, 1 ≤ q ≤ n, (pq can be different for each dimension) and an n-dimensional grid
is built with them. The total number of breakpoints in this grid, denoted IM , is thus equal to:

IM =
n∏

q=1

pq. (2.23)

Let M be the set of the breakpoints, referred to as x̄k, k ∈ IM , where the function f is evaluated,
which gives the value fk.

The domain ⊗n
q=1[lxq

, uxq
] where f is approximated can be decomposed in a set of s sim-

plices denoted T = {T1, T2, ..., Ts} (see Tomlin [110] and Ziegler [129], for instance) and which
are defined by at most n+1 breakpoints belonging to M . The employed decomposition uses all
the breakpoints in such a way that no simplex of the decomposition is included in another one
and that the set of simplices covers the whole approximation domain. The SOS approximation
of a function f defined on an n-dimensional space can now be given.

Definition 2.8 The SOS approximation, f̃ , of a function f defined on an n-dimensional space
is such that:

f̃(x) =
∑

k∈IM
λkfk

x =
∑

k∈IM
λkx̄k, (2.24)∑

k∈IM
λk = 1, 0 ≤ λk, k ∈ IM ,

and the SOS condition is fulfilled. In the present case, it requires that:

At most n + 1 λk are nonzero and these λk must be associated to breakpoints (2.25)

adjacent on the n-dimensional grid refined in simplices.

We refer to condition (2.25) as SOS type n+1 condition. A way to interpret the SOS type n+1
condition is to require that all breakpoints associated to a nonzero λk belong to the same simplex
Tj since n + 1 is the maximum number of points which define a simplex in an n-dimensional
space and since the domain has been partitioned in simplices defined by all the breakpoints.

44 Solution of a MINLP problem related to power systems analysis

Again, this condition can be mathematically translated by introducing additional binary vari-
ables (see Lee and Wilson [72]) while it can also be satisfied by using specific branching rules
on the variables λk (see Martin et al. [80], Tomlin [110]). Note that in the particular case where
n is equal to one, conditions (2.24) and (2.25) amount to conditions (2.16) to (2.19).

Illustration for the bidimensional case
The concepts defined above are now illustrated on a bidimensional space. Let (x, y) be a couple
of IR2. In order to replace f(x, y) by its SOS approximation, px breakpoints are chosen for
the x-axis and py breakpoints for the y-axis, which allows us to build a grid composed of
pxpy breakpoints, x̄k = (xi, yj), where we evaluate the function f to obtain the values fi,j,
1 ≤ i ≤ px and 1 ≤ j ≤ py. To partition the domain in simplices, that is, in triangles
in case of a bidimensional space, each rectangle of the grid defined by [xi, xi+1] × [yj, yj+1],
1 ≤ i ≤ px − 1, 1 ≤ j ≤ py − 1, must be divided in two triangles. An illustration of
such a decomposition of the domain is given in Figure 2.5 in case of four breakpoints in each
dimension. On this figure, the sixteen breakpoints are represented by dots.

x x x x4321

4

3

2

1

y

y

y

y

Figure 2.5: Grid generated by four breakpoints for the x and y axes.

By decomposing conditions (2.24) and (2.25) according to both dimensions and by denoting
the SOS variables λi,j, 1 ≤ i ≤ px and 1 ≤ j ≤ py, the SOS approximation f̃ of a function f
is given by:

f̃(x, y) =

px∑

i=1

py∑

j=1

λi,jfi,j, (2.26)

x =

px∑

i=1

py∑

j=1

λi,jxi, (2.27)

y =

px∑

i=1

py∑

j=1

λi,jyj, (2.28)

px∑

i=1

py∑

j=1

λi,j = 1, 0 ≤ λi,j, 1 ≤ i ≤ px, 1 ≤ j ≤ py, (2.29)

2.2 Solution of the TVC problem 45

at most 3 λi,j are nonzero and these λi,j must be associated (2.30)

to breakpoints adjacent on the grid divided in triangles.

The condition (2.30) corresponds to the SOS type 3 condition. For example, a solution where
the nonzero λi,j are associated to the breakpoints (x1, y1), (x1, y2) and (x2, y1), satisfies the
SOS type 3 condition while a solution based on the breakpoints (x1, y1), (x1, y2) and (x4, y1)
does not.

The SOS approximation of the function xy on the interval [−2, 2] × [−2, 2] based on four
breakpoints for the x and y axes is represented in Figure 2.6, where the areas with the same
color correspond to parts of the domain with similar values for the function xy. Actually, on
each triangle, the SOS approximation of xy is linear and is given by the plan joining the three
points (xik , yjk

, xikyjk
), 1 ≤ k ≤ 3, where (xik , yjk

) are the three breakpoints defining the
triangle.

−2

−1

0

1

2

−2
−1

0
1

2
−4

−3

−2

−1

0

1

2

3

4

Figure 2.6: SOS approximation of xy on [−2, 2] × [−2, 2].

Figure 2.6 has been obtained by assuming that the SOS type 3 condition was fulfilled.
Without explicitly imposing this condition, the variables λi,j seldom satisfy this condition. As
mentioned before, branch-and-bound can be used to fulfill the SOS condition. In case of two
dimensions, the branching technique developed for SOS variables is a little bit more difficult
than in one dimension because different ways of branching must be employed to satisfy the
SOS type 3 condition. Firstly, the branching can be vertical (on x) or horizontal (on y). Note
that the branching is actually realized on the variables λi,j but by branching vertically (respec-
tively horizontally), the same results as by branching on x (respectively on y) are obtained,
since the variables λi,j are associated to breakpoints. Suppose that we want to branch on λk,.,
2 ≤ k ≤ px − 1, to divide the interval [x1, xpx

] in two parts. We add to the left subproblem the

46 Solution of a MINLP problem related to power systems analysis

equality:

k∑

i=1

py∑

j=1

λi,j = 1, (or equivalently λi,j = 0, k + 1 ≤ i ≤ px, 1 ≤ j ≤ py), (2.31)

and to the right subproblem the equality:

px∑

i=k

py∑

j=1

λi,j = 1, (or equivalently λi,j = 0, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ py). (2.32)

This branching is illustrated in Figure 2.7 where the breakpoints associated to possibly nonzero
λi,j are represented by black dots while the breakpoints associated to λi,j necessarily equal to
zero are represented by white dots.

1

k11 k

k

p p

p

x

x

x

Figure 2.7: Vertical branching on λk,..

If we branch horizontally on λ.,k, 2 ≤ k ≤ py − 1, to divide the interval [y1, ypy
] in two parts,

the following equality is added to the left subproblem:

px∑

i=1

k∑

j=1

λi,j = 1, (or equivalently λi,j = 0, 1 ≤ i ≤ px, k + 1 ≤ j ≤ py), (2.33)

while we impose to the right subproblem:

px∑

i=1

py∑

j=k

λi,j = 1, (or equivalently λi,j = 0, 1 ≤ i ≤ px, 1 ≤ j ≤ k − 1). (2.34)

Observe that by branching only vertically and horizontally, the SOS type 3 condition is not
necessarily satisfied. Indeed, the best results one can expect with such branching techniques
is to isolate a rectangle [xi, xi+1] × [yj, yj+1] of the grid instead of a triangle. In this case, we
can have nonzero values for four λi,j. If this situation arises, branching must be used to divide
this rectangle in two triangles in order to satisfy the SOS type 3 condition. So, one couple of
indices, say (i, j), is chosen, and we impose for the left subproblem:

λi,j = 0, (2.35)

2.2 Solution of the TVC problem 47

and for the right one:
λi,j + λi,j+1 + λi+1,j = 1. (2.36)

We refer to this technique as diagonal branching since it divides a rectangle into two triangles.
This additional way to branch allows us to ensure the satisfaction of the SOS type 3 condition.
In more than two dimensions, similar branching rules can be used. Indeed, similar rules as for
vertical and horizontal branching can be employed to branch on each dimension. This allows
us to isolate an hyper-rectangle. To have the satisfaction of the SOS condition, an additional
condition must be again imposed, which can be expressed for the left subproblem as:

λq = 0, (2.37)

and for the right one as:

the sum of all λk associated to breakpoints adjacent in the grid refined in
simplices to the breakpoint to which is associated λq is equal to 1,

(2.38)

where λq is nonnegative and belongs to an hyper-rectangle for which the SOS condition is not
satisfied. For more details, we refer the reader to Martin et al. [80] or Tomlin [110].

An SOS approximation method to approximatively solve nonlinear problems
Above, we have explained how to replace a nonlinear function by its SOS approximation but
we have not yet detailed the way to exploit these approximations to approximatively solve a
nonlinear problem. First of all, we need to introduce some vocabulary. In the following, the
system (2.24) will be referred to as a linear approximation when it is not subject to the SOS
condition and to an SOS approximation when it is.

Suppose now that we want to solve the problem (P) expressed as:

(P)

min f(x),
s.t. gi(x) = 0, 1 ≤ i ≤ m,

lx ≤ x ≤ ux,
x ∈ IRn,

where the functions f and gi, 1 ≤ i ≤ m, may be nonconvex and lx and ux belong to IRn. By
decomposing each function according to its linear, indexed by lin, and nonlinear parts, and by
transforming, if possible, the nonlinear part into a sum of nonlinear functions, the problem (P)
can be rewritten as:

(P)

min flin(x) +

t0∑

j0=1

fj0(x),

s.t. gi
lin(x) +

ti∑

ji=1

gi
ji
(x) = 0, 1 ≤ i ≤ m,

lx ≤ x ≤ ux,
x ∈ IRn.

In this formulation, only the functions fj0, 1 ≤ j0 ≤ t0, and gi
ji

, 1 ≤ i ≤ m, 1 ≤ ji ≤ ti, are
nonlinear. If the objective function f or a constraint gi is purely linear, the associated nonlinear

48 Solution of a MINLP problem related to power systems analysis

part is obviously set to zero. In order to approximate the nonlinear problem (P) by a linear
one, each nonlinear function fj0 and gi

ji
is replaced by its linear approximation given by (2.24).

Note that this technique implies that all nonlinear variables of problem (P) are bounded since
the employed linear approximations are based on intervals. The linear approximation problem
obtained, denoted (P̃), is given by:

(P̃)

min flin(x) +

t0∑

j0=1

w0
j0

,

s.t. gi
lin(x) +

ti∑

ji=1

wi
ji

= 0, 1 ≤ i ≤ m,

wi
ji

=
∑

k∈I
Mi

ji

(λi
ji
)
k
(gi

ji
)
k
, 0 ≤ i ≤ m, 1 ≤ ji ≤ ti,

xi
ji

=
∑

k∈I
Mi

ji

(λi
ji
)
k
(xi

ji
)
k
, 0 ≤ i ≤ m, 1 ≤ ji ≤ ti,

∑

k∈I
Mi

ji

(λi
ji
)
k

= 1, 0 ≤ (λi
ji
)
k
, k ∈ IM i

ji

, 0 ≤ i ≤ m, 1 ≤ ji ≤ ti,

xi
ji

= x|gi
ji

, 0 ≤ i ≤ m, 1 ≤ ji ≤ ti,

lx ≤ x ≤ ux,
x ∈ IRn,

where:

• the variable wi
ji

, 0 ≤ i ≤ m, 1 ≤ ji ≤ ti, is used to approximate gi
ji
(x). For the

sake of clarity, the nonlinear functions fj0 appearing in the objective function have been
assimilated to g0

j0
;

• xi
ji

= x|gi
ji

means that xi
ji

is the restriction of vector x containing the components actually

appearing as arguments of gi
ji

. For example, if x is defined on IR3 and if g1
11

= x1x3 then
x1

11
= (x1, x3);

• the set M i
ji

comprises all breakpoints (xi
ji
)
k

used to approximate gi
ji

and IM i
ji

= {1, .., #M i
ji
};

• the value (gi
ji
)
k

is the evaluation of the function gi
ji
(x) at the kth breakpoint of M i

ji
.

Therefore, the linear problem (P̃) approximates the nonlinear problem (P) by using additional
constraints and variables.

Solution of the linear approximation problem
The nonlinear problem (P) has thus been replaced by the linear approximation problem (P̃) ob-
tained by replacing each nonlinear function of (P) by its linear approximation given by (2.24).
However, as seen previously, this problem cannot be considered as a good approximation prob-
lem since no SOS condition is imposed in (P̃). Therefore, we cannot limit ourselves to the
solution of this linear approximation problem and we must also enforce the SOS conditions.
As previously mentioned, this can be achieved by explicitly introducing binary variables in
the problem (see system (2.20)) or by using specific branching rules to directly branch on the

2.3 Conclusion 49

variables λk. Note that branching on variables λk has become popular since it is implemented
in commercial softwares like Cplex [4] for SOS of type 2. This approach has been preferred.
Therefore, to find the solution of the linear approximation problem (P̃) that satisfies the SOS
conditions, this linear approximation problem is first solved. If, at the current solution, all sets
λ do not satisfy the SOS condition associated to them, a set λ which violates this condition
is chosen, and we branch on it in the way explained above. Except for this particular branch-
ing technique on λk, the classical algorithm of branch-and-bound (Algorithm 1.1) is applied.
When the whole tree has been explored, the solution of the linear SOS approximation problem
is found. To improve the speed of convergence of the method, cuts can be added during the
branch-and-bound process and a convenient polynomial separation algorithm has been devel-
oped (see Martin et al. [80], Möller [83]).

However, the SOS approximation method is only an approximation method and it thus can
fail to converge to an optimum. As it will be explained in Section 3.1.1, it is the case for the
TVC problem. Therefore, some safeguards should be used to compel the method to converge
to an optimum. As it is difficult to determine the boundary between a method which converges
to a “good” optimum and one which does not converge, we have investigated the methods that
always converge to an optimum and even more, to the global one.

2.2.4 Global optimization methods

In an attempt to check if existing global optimization methods are available to efficiently
solve the TVC problem, we have tested BARON (see Section 1.2.4), a global optimization solver
available on NEOS for solving mixed integer nonlinear and nonconvex problems. Note first that
BARON cannot treat trigonometric functions directly. In order to apply even though this solver
on the TVC problem, the trigonometric functions have been approximated by Taylor polyno-
mials of degree 7 (see Deuflhard and Hohmann [32]). This has made the model significantly
larger and inaccurate. As a consequence, BARON could not give good results on the consid-
ered problem(1). In this case, it is really the trigonometric functions which are problematic.
These functions are not much treated in global optimization methods. At our knowledge, only
Caratzoulas and Floudas [24] have developed specific techniques to treat these functions in a
global optimization method. As their approach consists in replacing nonconvex trigonometric
functions by convex ones and thus, in solving nonlinear subproblems while we would like to
solve linear ones, a new method based on linear subproblems and involving adapted techniques
to treat trigonometric functions is developed in this thesis.

2.3 Conclusion

The class of optimal power flow problems, and notably the TVC problem, has been pre-
sented and its specificities highlighted, which allows us to class it among the mixed integer
nonlinear and nonconvex problems. Because of, on one hand, the size of the problem and the
cost of the solution of a nonlinear problem and on the other hand, the successful experiment
of Martin et al. to solve gas networks problems in this way, a method solving linear problems
instead of nonlinear ones is preferred. In this chapter, we have described a technique to approx-
imate, in one or higher dimensions nonlinear functions, possibly highly nonconvex, by means

(1)This result has been obtained thanks to Bussieck [22].

50 Solution of a MINLP problem related to power systems analysis

of piecewise linear functions called SOS approximations. The considered formulation allows
us to approximate a nonlinear problem by a linear one subject to constraints which can be seen
as discrete restrictions. However, this particular linear approximation method failed to con-
verge on the TVC problem. To guarantee the detection of an optimum, and even the global one,
global optimization methods have been also examined. However, the results obtained with the
different tested methods lead to think that the development of a new method is desirable. The
method developed in this thesis will thus be a global optimization one that will mainly solve
linear problems and that will be able to treat trigonometric functions in an appropriate way.

Note that for our numerical experiments presented in Chapters 5 to 8, the size of the TVC
problems treated has been limited (maximum 10 nodes and 10 branches) in order to easily test
the developed method.

Chapter 3

An outer approximation method based on
special ordered sets

In the second chapter, we have presented the TVC problem which motivates the develop-
ment of a new optimization method and we have considered different methods to solve it. We
have mainly focused on the SOS approximation method recently employed by Martin et al. to
solve mixed integer nonlinear and nonconvex problems arising in the gas network management
(see [80]). However, if the quality of the approximation problem built by this method is not
good enough, the solution of this problem can be useless to solve the nonlinear problem un-
der study, as mentioned earlier. Therefore, in this chapter, we modify the SOS approximation
method to make it more robust and to ensure the computation of an optimum if the nonlinear
problem is feasible, and even more, the global one.

More precisely, we propose to globalize the linear approximation problem in such a way
that it corresponds to a linear outer approximation problem for the nonlinear one, that is, any
feasible point x for the nonlinear problem is also feasible for the linear approximation problem
and can produce (among others) an objective value for this problem equal to the one that it
generates for the nonlinear problem. Note that here, the notion of outer approximation does
not refer to the outer approximation methods described in Section 1.3.1. We use this term to
highlight the fact that we start from an approximation problem and modify it in such a way
that it becomes an outer approximation problem in the sense explained above. To this aim,
each nonlinear function appearing in the problem is no longer replaced by a linear function, but
included in a linear domain based on SOS. Doing so, the feasible domain of the linear approx-
imation problem increases. Therefore, its solution can also be very far from the solution of the
considered nonlinear problem. Accordingly, the approximation problem must be refined, which
can be done through a branch-and-bound tree (see Section 1.2.4).

This chapter begins by highlighting the features of the SOS approximation method which
should be improved in order for the resulting method to be efficient on the TVC problem. The
limitation of the size of the linear problem is one of these features. To this goal, in our work,
we limit ourselves to SOS of one and two dimensions. The reasons of this choice and the way
to decompose functions of three dimensions and more in components of one or two dimen-
sions are explained. In order to bound these components, bound propagation techniques are
developed. The specificities of the problem are also exploited in order to limit the size of the
outer approximation problem. In the latter problem, each nonlinear component is replaced by a
piecewise linear domain based on SOS and that includes it. The determination of this domain

51

52 Chapter 3. An outer approximation method based on special ordered sets

passes through the computation of the maximum approximation errors generated by the SOS
approximation. The analytical expression of these errors is established for the three kinds of
components of one or two dimensions that appear in the TVC problem, which are square, bilin-
ear and trigonometric functions (sine and cosine). Since the domain of possible values for the
outer approximation problem is a lot larger than the one of the nonlinear problem, its solution
is possibly not relevant for the nonlinear problem. Therefore, the approximation problem is re-
fined thanks to a branch-and-bound tree as explained in Section 3.3, where the general process
of the method and some comments about its convergence are given.

Note that the continuous case is first treated and, from Section 3.3.3, the necessary adapta-
tions to take discrete restrictions into account are detailed. Finally, we conclude this chapter by
illustrating the proposed method on a simple example.

3.1 Motivation

We start this chapter by motivating the development of a new method for solving the TVC
problem through the necessity to globalize the method, the interest of limiting the size of the
approximation problem and finally the advantage of using an approach based on SOS instead
of on big-M constraints.

3.1.1 Globalization of the method

As we pointed out in Chapter 2, the SOS approximation method was promising to solve our
problem since it has been used to solve efficiently other mixed integer nonlinear and nonconvex
problems. We have thus applied this method on the TVC problem (without using the techniques
cited at the end of Section 2.2.3 to improve the speed of convergence), but it did not converge.
Indeed, the linear approximation problem was infeasible because it was not tight enough to ob-
tain a solution for the nonlinear problem which is itself feasible. As the TVC problem is subject
to equality constraints, a solution can be more easily discarded if the approximation is not tight
enough. An illustration of a linear approximation not sufficiently accurate is given in Figure 3.1,
where a point x is assumed to be feasible if it satisfies the equality constraint c2(x)−c1(x) = 0.
Accordingly, the feasible domain of the nonlinear problem is not empty. If we employ the SOS
approximations of c1 and c2 represented in the figure, the feasible domain of the approxima-
tion problem is empty because the SOS approximation of c1 never intersects the one of c2. To
avoid this, the approximation could be improved by employing more breakpoints for the SOS
approximation problem or by refining the approximation during the branch-and-bound process
by adding new breakpoints. But there is no guarantee that the generated approximation prob-
lem will be tight enough to be feasible, and if it is, nothing ensures that the solution of the
linear approximation problem will be relevant to find the global optimum of the nonlinear prob-
lem. Moreover, for the TVC problem, the satisfaction of the constraints is crucial because they
translate physical realities. In these conditions, the solution of a linear approximation problem
seems to be insufficient. Nevertheless, this solution could be employed as a starting point for a
nonlinear solver. But again, there is no guarantee to converge.

Therefore, it is crucial to transform the approximation problem in such a way that it be-
comes an outer approximation problem for the nonlinear one, in the sense given at the begin of
this chapter.

3.1 Motivation 53

0 1.5708 3.1416 4.7124 6.2832

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

c1
c2
sos approximation of c1
sos approximation of c2

Figure 3.1: Empty feasible domain for the linear approximation problem while it is not for the
nonlinear problem.

3.1.2 Size of the linear approximation problem

Another drawback of the SOS approximation method presented in Chapter 2 is the size of
the linear approximation problem. In the TVC problem, we can consider that we have quadrilin-
ear products x1x2x3x4. If we use p breakpoints in each dimension, the number of new variables
λi introduced in the linear approximation problem is equal to p4, by (2.23). As a consequence,
the number of variables in the linear approximation problem can significantly increase with re-
gard to the number of variables in the nonlinear problem. To reduce the number of variables
λi introduced, we propose to decompose each nonlinear function of the problem in nonlinear
components of one or two variables by means of a so-called computational graph.

We first illustrate this decomposition by an example. In the TVC problem, the definition
(2.4) of the real power on a simple branch can be seen as a constraint of the form:

x1 = ax2
2 + bx2x3 cos(x4), (3.1)

where xi, 1 ≤ i ≤ 4, are the variables and a and b are parameters. While this constraint is
nonconvex, it can be rewritten as a convex constraint involving new variables wi, by setting:

x1 = aw1 + bw4, (3.2)

with:

w1 = x2
2, (3.3)

w2 = x2x3, (3.4)

w3 = cos(x4), (3.5)

w4 = w2w3. (3.6)

As each constraint (3.3) to (3.6) can be approximated by using an SOS, a linear formulation can
be obtained to approximate (3.1).

54 Chapter 3. An outer approximation method based on special ordered sets

The formulation given by (3.2) and the linear approximations of (3.3) to (3.6) reduces the
number of variables λi introduced in the problem. Suppose for example that we want to approx-
imate a quadrilinear component x1x2x3x4 by using the same number, p, of breakpoints in each
dimension. The total number of breakpoints used to approximate this component in a space of
four dimensions is equal to p4. Now, if we decompose this product in two products, w12 = x1x2

and w34 = x3x4, and then multiply the obtained products w12 and w34, we only need to use 3p2

breakpoints since this modelling uses 3 products defined on a bidimensional space. If p is equal
to 3, the quadrilinear product uses 81 breakpoints without decomposition, while this number is
reduced to 27 if we use the decomposition in two products. If we take 5 breakpoints in each
dimension, we must compare the numbers 625 and 75. As a variable λi is associated to each
breakpoint, the decomposition allows us to reduce the number of variables in the linear outer
approximation problem. Nevertheless, the number of constraints increases with the decomposi-
tion: by quadrilinear product, 12 constraints are introduced instead of 6 without decomposition.
The advantage and drawback of such a decomposition will be discussed further in Section 3.2.1.

 x x x x2 3 4

 w =x *x1 2 2

 2 3 w =x *x w =cos(x)3 4

1

 1 x =aw +bw 1 4

 32 w =w *w 4

2

convex
PSfrag replacements

x1

x2

x3

x4

w1

w2

w3

w4

cos(x4)
x2

2

a
b

Figure 3.2: Decomposition of the constraint x1 = ax2
2+bx2x3 cos(x4) through its computational

graph.

Note that the computational graph of the constraint (3.1) is given in Figure 3.2. On this
figure, the bottom nodes correspond to the original variables xi, while the top node represents
the constraint to decompose. The other nodes are associated to new variables wj allowing us to
decompose the constraint. Each directed edge means that the source node is directly involved
in the unary functions or in the bilinear product represented at the target node.

3.1.3 SOS versus big-M approach

The approach proposed by Polisetty and Gatzke in [96] is close to ours since it is also a lin-
ear outer approximation method, but based on big-M constraints. We show here that the linear

3.1 Motivation 55

outer approximation method based on SOS that we propose can lead to tighter approximations
than the ones based on big-M constraints. To highlight this, we consider the approximation of
the function −x2 on [0, 3] by using three pieces of equal size: [0, 1], [1, 2] and [2, 3]. Without
loss of generality, we focus on the underestimation of this function. By applying (1.28), (1.29)
and (1.31), where ui(x) is the linear function joining the two extreme points of the ith piece
for the big-M formulation, and (2.16) to (2.19) for the SOS approximation (which is underesti-
mating in this case), we find that the underestimation of the function −x2 is given by the same
piecewise linear function which is represented on Figure 3.3. This underestimation, which is

0 0.5 1 1.5 2 2.5 3
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

−x2

piecewise linear underestimator

Figure 3.3: Piecewise linear underestimator obtained with a big-M formulation or an SOS for-
mulation for −x2 on [0, 3] by using three pieces of same size.

quite tight, is obtained by assuming the satisfaction of the binary conditions on the variables bi

for the big-M formulation and that of the SOS condition for the SOS approximation. However,
in practice, these conditions are not directly fulfilled. Therefore, we must also compare the un-
derestimations obtained with both formulations without explicitly imposing these conditions.

If the SOS condition is not satisfied, the less tight underestimator generated by the system
(2.16) to (2.18) corresponds to the linear function joining (0,0) to (3,-9), which amounts to the
tightest convex underestimator for −x2 on [0, 3], as shown on Figure 3.4. Let us show that
the big-M formulation can generate a worse underestimator when the binary conditions on the
variables bi are not fulfilled. We first determine a value for the parameter M . To guarantee that
the functions ui(x) − M are underestimating for −x2 on each piece i, M must be sufficiently
large. However, to have underestimations as tight as possible, M must be chosen as small as
possible. As the best linear piecewise underestimators of −x2 on [0, 3] correspond to the linear
functions joining the two extreme points of a piece, they are given by:

u1(x) = −x,
u2(x) = −3x + 2,
u3(x) = −5x + 6.

(3.7)

By (1.28), (1.31) and the binary conditions on the variables bi, M must satisfy:

ui(x) − M ≤ −x2 ∀x ∈ [0, 3], ∀i = 1, .., 3. (3.8)

56 Chapter 3. An outer approximation method based on special ordered sets

0 0.5 1 1.5 2 2.5 3
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

−x2

underestimator based on SOS
underestimator based on big M

Figure 3.4: The worst piecewise linear underestimators for −x2 on [0, 3] by using three pieces
with a big-M formulation (M = 6) or an SOS formulation for which the binary and the SOS
conditions are not satisfied.

It can be shown that 6 is the smallest value in order for M to fulfill these inequalities (this
corresponds to the difference at zero between u3(x) and −x2, or equivalently, to that at three
between u1(x) and −x2). Therefore, by (1.28), (1.29), (1.31) and (3.7), the underestimator w
must be such that:

−x − 6(1 − b1) ≤ w,
−3x + 2 − 6(1 − b2) ≤ w,
−5x + 6 − 6(1 − b3) ≤ w,

x ≤ 1 + 6(1 − b1),
1 − 6(1 − b2) + δ ≤ x,
x ≤ 2 + 6(1 − b2),
2 − 6(1 − b3) + δ ≤ x,

b1 + b2 + b3 = 1,
0 ≤ bi ∀i = 1, .., 3,

0 ≤ x ≤ 3.

(3.9)

For each value of x in [0, 3], the smallest value of the underestimation w can be found by
minimizing w subject to the constraints of (3.9). Doing this, we obtain the underestimator rep-
resented on Figure 3.4 which is clearly less tight than the one based on the SOS formulation.
Moreover, in the present case, we have taken the smallest possible value for M . But usually,
in big-M methods, a “large” value is arbitrarily chosen for M , which leads to a worse under-
estimator than the one represented on Figure 3.4. As a consequence, using an approach based
on an SOS instead of on a big-M formulation generates tighter underestimators (possibly even
much tighter).

3.2 An outer approximation problem based on SOS 57

3.2 An outer approximation problem based on SOS

As highlighted in Section 3.1.1, feasible solutions can be missed by using the SOS approx-
imation method since there is no guarantee that the optimum solution of the nonlinear problem
belongs to the domain of the linear approximation problem. It would be preferable that the lin-
ear problem is not only an approximation problem but an outer approximation problem for the
nonlinear one. To this aim, each nonlinear function is no longer replaced by its linear approx-
imation but included in a linear domain. This linear domain is based on SOS approximations
and notably, on the maximum approximation errors generated by these approximations. So, in

0 1.5708 3.1416 4.7124 6.2832

−1

−0.5

0

0.5

1

sin(x)
breakpoints for SOS approximation
envelopes based on SOS

Figure 3.5: Piecewise linear approximation domain for sin(x) on [0, 2π] obtained when the SOS
condition is satisfied.

Figure 3.5, the area delimited by continuous lines, referred to as piecewise envelopes, represent
the piecewise linear domain based on SOS to approximate sin(x) on [0, 2π] when the SOS con-
dition is fulfilled. The SOS approximation of sin(x) corresponds to the sides of the envelopes
which link the images of two consecutive breakpoints.

We denote εL (respectively εU), the maximum overestimation approximation error (respec-
tively the maximum underestimation approximation error) which can arise on an interval [lx, ux]
by replacing a function f(x) by its SOS approximation, f̃(x), that is,

εL = max
x∈[lx,ux]

(0, f̃(x) − f(x)),

εU = max
x∈[lx,ux]

(0, f(x) − f̃(x)).

Therefore, these definitions imply that the maximum approximation errors εL and εU are always
positive. In the outer approximation problem, the variable wf used to approximate the value of
a function f at a point x is required to belong to the domain defined by:

f̃(x) − εL ≤ wf ≤ f̃(x) + εU . (3.10)

In this context, the SOS condition is only imposed to determine the analytical expression of the
maximum overestimation and underestimation errors, otherwise, that is, during the process of

58 Chapter 3. An outer approximation method based on special ordered sets

the algorithm developed in this section, it is no longer required. In fact, we will see that we
exploit the features of the SOS approximations, since they correspond to good approximations,
in order to obtain tight outer approximations but without imposing SOS conditions. The reasons
of this choice will be more detailed in Section 3.2.5.

While the SOS approximations can be given by an analytical formulation common for
each kind of functions (constraints (2.24) and (2.25)), the mathematical expression of the
outer approximation defined in (3.10) must be treated differently according to the approx-
imated functions because it needs the computation of the maximum approximation errors,
εL and εU , which depend on the approximated functions. Therefore, for each kind of func-
tions involved in the problem, we must compute the associated errors. In the TVC problem,
we have several kinds of nonlinear functions: square functions (ν2

i), trigonometric functions
(sin(ζj + θi − θk), cos(ζj + θi − θk)), bilinear functions (νiνk), trilinear functions (νiνkRj),
products of a trilinear function and a trigonometric one (νiνkRj sin(ζj + θi − θk)), etc. To limit
the number of new sets λ introduced in the formulation of the outer approximation problem and
to exploit the specificities of the nonlinear problem, we choose to only work with nonlinear
components of one or two variables (see Section 3.1.2). Functions of higher dimensions are
decomposed in such components in the way explained in the following section.

3.2.1 Decomposition of nonlinear functions into nonlinear components of
one or two variables

As highlighted in Section 3.1.2, the decomposition of the nonlinear functions into nonlin-
ear components of smaller dimension reduces the number of variables in the linear problem.
In this thesis, we decompose each nonlinear function in components of one or two variables.
Moreover, the arguments of a component implying two variables are not allowed to be func-
tions themselves but simple variables (possibly new ones which replace some functions), that
is, each product of functions is transformed into a product of variables. For example, in the
computational graph presented in Figure 3.2, cos(x4) has been approximated by w3 before con-
sidering its product with w2. This allows us to develop a general framework based on the SOS
approximations of a limited number of functions (unary functions and bilinear product), which
makes the method more easily applicable to a large number of problems. Indeed, the proposed
outer approximation method needs the determination of the analytical expression of the maxi-
mum approximation errors generated by the SOS approximation of each function appearing in
the problem. The transformation of products of two functions into products of variables allows
us to use the same formulation, namely the SOS approximation of a bilinear product, to treat
all products of two functions. This avoids to determine the analytical expression of the approx-
imation errors generated by the SOS approximation of every product of any functions. With
this strategy, only three kinds of components must be examined for the TVC problem : square,
bilinear and trigonometric functions (sin(x) and cos(x)).

Note that the decomposition is not unique. For the example presented in Figure 3.2, we
could have chosen to take w2 = cos(x4), w3 = x2w2 and w4 = x3w3, for example. The
decomposition of the problem obviously has an impact on the results. Therefore, it must be
treated carefully in order to exploit the specificities of the problem. Suppose, for instance, that
a bilinear product x1x2 appears in two trilinear products: x1x2x3 and x1x2x4. The decompo-
sition w1 = x1x2, w2 = x3w1 and w3 = x4w1 is better than the following one: w1 = x1x3,

3.2 An outer approximation problem based on SOS 59

w2 = x2w1, w3 = x2x4 and w4 = x1w3 since it needs one new variable wi less, and, as a
consequence, one set λ less.

In the software (see Section 5.1.3) developed to test the proposed outer approximation
method, the decomposition of the problem into components of one or two variables is done
by hand. But there exist techniques to derive automatically a computational graph from a non-
linear function, as it is used in automatic differentiation developed by Griewank [53] (see also
the library VGTL [106] which allows us to analyze and treat graphs and which is employed
for global optimization in the COCONUT project [107]). A natural extension of our software
would be to introduce such techniques in order to reduce the modelling work of the user.

The reasons for decomposing the nonlinear functions of components of one or two vari-
ables are triple. First of all, as explained above, this allows us to develop a general framework
able to treat a large number of problems and based on the SOS approximations of a limited
number of functions. Secondly, this reduces the number of variables introduced in the problem
(see Section 3.1.2). Finally, the decomposition can exploit the multiple presence in the problem
of a same nonlinear component in components of higher dimensions. For example, in the TVC
problem, the bilinear product νiνk appears in products of this bilinear product with two different
trigonometric functions. The decomposition in components of one or two variables allows us to
exploit this observation since the same linear approximation can be used to approximate the bi-
linear product in the different cases. Conversely, without decomposition, new breakpoints must
be added each time the bilinear product intervenes. Suppose that we want to approximate x1x2

and x1x2x3x4, the decomposition in components of two dimensions introduces p2 breakpoints
for x1x2, p2 breakpoints for x3x4 and again p2 breakpoints for the product of the two. Accord-
ingly, 3p2 breakpoints are needed. Without decomposing, we must use p2 breakpoints for x1x2

and p4 breakpoints for x1x2x3x4, thus p2(1 + p2) breakpoints. If the number of breakpoints
used in each dimension is equal to 3 (respectively to 5), the difference between both techniques
corresponds to 63 breakpoints, i.e., 27 instead of 90 (respectively 575, i.e., 75 instead of 650).
Again, the decomposition allows us to reduce the number of variables λi used in the problem
but it needs two additional constraints (12 instead of 10). Furthermore, by decomposing, the
value of the approximation of a same component appearing in components of higher dimension
is equal everywhere because, in each case, the same set λ is used to approximate it. This is not
ensured without decomposition as long as the SOS conditions are not fulfilled, because we use
different sets λ to approximate the same component. Therefore, by exploiting the specificities
of the problem, the decomposition technique can discard a part of the infeasible domain with
regard to the technique without decomposition (see Section 3.2.3 for more details).

Nevertheless, the decomposition of a function into components of smaller dimensions also
reduces the accuracy of the approximation since it is based on less breakpoints. For methods
like the one developed by Martin et al. [80] where the linear SOS approximation problem is
completely solved and never refined, as explained in Section 2.2.3, it is crucial to have the best
approximations as possible since the quality of the solution depends on the quality of these
approximations. Therefore, in this case, the functions are not decomposed. In the method de-
veloped here, the approximation problem is refined by using a branch-and-bound process (see
Section 3.3), which allows us to produce tight approximations. Accordingly, in our method, an
outer approximation problem less accurate at the root node will not prevent from finding the
global optimum and the linear problems will be solved quicker as they imply less variables. A
more extensive study should be done to compare the results obtained with an outer approxima-
tion problem of less variables and able to exploit the specificities of the problem to discard some

60 Chapter 3. An outer approximation method based on special ordered sets

parts of the outer approximation domain, or with an outer approximation problem of larger size
but more accurate in the sense that is based on more breakpoints. In the following, a method
with decomposition has been preferred for the three reasons detailed above.

To build linear approximations given by (2.24), the variables appearing in the approximated
components must be bounded. While we assume that the variables appearing in the nonlinear
problem are bounded, bounds on new variables replacing a component of one or two variables
and intervening themselves in a nonlinear component are not directly available. Therefore, the
bounds on the original variables need to be propagated into bounds on new variables.

3.2.2 Propagation of the bounds through the computational graph

As the bounds on a component depend on the bounds of its argument(s) and on the func-
tion which links them together, we distinguish the propagation of the bounds according to the
different components of one or two variables which appear in the TVC problem.

1. x2

The square function is first studied. If x belongs to the interval [lx, ux], the lower and
upper bounds on x2, lx2 and ux2 , can be updated like this:

lx2 :=

{
min(l2x, u

2
x) if 0 6∈ [lx, ux],

0 if 0 ∈ [lx, ux],
ux2 := max(l2x, u

2
x).

For the lower bound on x2, the results must be distinguished depending if zero belongs
or not to the interval [lx, ux].

2. xy
If x belongs to the interval [lx, ux] and y to [ly, uy], the following formulas are used to
update the lower and upper bounds, lxy and uxy, on the bilinear product xy:

lxy := min(lxly, lxuy, uxly, uxuy),
uxy := max(lxly, lxuy, uxly, uxuy).

3. Trigonometric functions
For these functions, we assume, without loss of generality, that the definition domain,
[lx, ux], belongs to [0, 2π]. Indeed, it will be shown in Section 3.3.2 that the problems
with a domain for trigonometric functions not contained in the interval [0, 2π] can be
transformed to be defined on an interval belonging to [0, 2π] by means of an additional
integer variable and a new linear constraint. The determination of the bounds on sin(x)
and cos(x) strongly depends on the interval [lx, ux]. The lower and upper bounds on these
trigonometric functions are given by the values of these functions at the extreme points of
the interval, i.e., at lx and ux, unless an extremum is reached on the considered interval.
Therefore, we have for the sine function:

lsin(x) :=

{
−1 if lx ≤ 3π

2
≤ ux,

min(sin(lx), sin(ux)) otherwise,

usin(x) :=

{
1 if lx ≤ π

2
≤ ux,

max(sin(lx), sin(ux)) otherwise,

3.2 An outer approximation problem based on SOS 61

and for the cosine function:

lcos(x) :=

{
−1 if lx ≤ π ≤ ux,
min(cos(lx), cos(ux)) otherwise,

ucos(x) := max(cos(lx), cos(ux)).

3.2.3 Exploiting common subexpressions

Another way to limit the number of variables in the problem consists in exploiting the speci-
ficities of the problem, as previously mentioned. Firstly, if a same nonlinear function with the
same argument appears more than once in the problem, only one set λ is associated to it. It
would be useless but also less efficient to employ several λ in this case. Indeed, by using dif-
ferent sets λ, different values for a same approximated function can be obtained as long as the
SOS condition is not checked. Using the same λ to approximate the same function with the
same argument ensures to have an identical value for all the approximations of this function,
which allows us to reduce the feasible domain of the linear approximation problem, and also,
the number of variables and constraints introduced in (P̃).

In the same way, the multiple presence of a variable in the nonlinear problem can some-
times be exploited to save the number of variables and constraints introduced in the problem.
Suppose, for example, that a variable x appears in the square function x2 and in the bilinear
product xy. Assume furthermore that three breakpoints are used in each dimension. The linear
approximation of x2 is given by:

x̃2 = λ1x
2
1 + λ2x

2
2 + λ3x

2
3,

x = λ1x1 + λ2x2 + λ3x3,
3∑

i=1

λi = 1, 0 ≤ λi,

(3.11)

while the one associated to xy is given by:

x̃y =
3∑

i=1

3∑

j=1

λ′
i,jxiyj,

x =

3∑

j=1

λ′
1,j x1 +

3∑

j=1

λ′
2,j x2 +

3∑

j=1

λ′
3,j x3,

y =
3∑

i=1

λ′
i,1 y1 +

3∑

i=1

λ′
i,2 y2 +

3∑

i=1

λ′
i,3 y3,

3∑

i=1

3∑

j=1

λ′
i,j = 1, 0 ≤ λi,j.

(3.12)

These two approximations introduce twelve variables in the problem (three variables λi for x2

and nine variables λ′
i,j for xy). However, by expressing in (3.11) the variables λi in function of

variables λ′
i,j like:

λ1 =
3∑

j=1

λ′
1,j, λ2 =

3∑

j=1

λ′
2,j and λ3 =

3∑

j=1

λ′
3,j, (3.13)

62 Chapter 3. An outer approximation method based on special ordered sets

the total number of additional variables necessary in the formulation can be reduced to nine.
The number of constraints also decreases because the system (3.11) can be reduced by using
(3.13) to:

x̃2 =

3∑

j=1

λ′
1,jx

2
1 +

3∑

j=1

λ′
2,jx

2
2 +

3∑

j=1

λ′
3,jx

2
3,

since the two other constraints are already imposed in system (3.12). Again, it appears that a
good use of the sets λ can limit the number of introduced variables and also reduce the feasible
domain of the linear approximation problem since the approximations of the two functions are
linked together. Note that this substitution is made possible because, in case of SOS approxi-
mations, the quantities multiplying the breakpoints xi must be identical for the SOS approxi-
mations of x2 and xy in order to satisfy the SOS condition. Actually, we employ a feature of
the SOS approximations to refine an approximation which is not subject to the SOS condition
since we know that the SOS approximations correspond to good approximations.

The specificities of the problem can also be exploited to reformulate the problem differently
in order to reduce the number of sets λ used in the approximation problem. For example, in the
TVC problem detailed in Chapter 2, the following nonlinear functions appear:

cos(ζj + θi − θk),

cos(ζj + θk − θi),

sin(ζj + θi − θk), (3.14)

sin(ζj + θk − θi),

where θi and θk are the variables while ζj is a parameter. To approximate these functions, only
one set λ can be used instead of four. To this aim, we introduce a new variable ηj such that:

ηj = ζj + θi − θk.

By substituting this variable in the nonlinear functions of (3.14), we obtain:

cos(ηj),

cos(2ζj − ηj),

sin(ηj), (3.15)

sin(2ζj − ηj),

respectively. By using the trigonometric formulas, (3.15) becomes:

cos(ηj),

cos(2ζj) cos(ηj) + sin(2ζj) sin(ηj),

sin(ηj), (3.16)

sin(2ζj) cos(ηj) − cos(2ζj) sin(ηj).

Accordingly, the nonlinear functions of (3.14) have been transformed into nonlinear functions
of one same variable ηj. The linear approximation of (3.16) (equivalent to (3.14)) obtained by

3.2 An outer approximation problem based on SOS 63

using p breakpoints ηj,i, 1 ≤ i ≤ p, can be written as:

c̃os(ηj) =

p∑

i=1

λi cos(ηj,i),

s̃in(ηj) =

p∑

i=1

λi sin(ηj,i),

c̃os(2ζj − ηj) = cos(2ζj) c̃os(ηj) + sin(2ζj) s̃in(ηj), (3.17)

s̃in(2ζj − ηj) = sin(2ζj) c̃os(ηj) − cos(2ζj) s̃in(ηj),

ηj =

p∑

i=1

λiηj,i,

p∑

i=1

λi = 1, 0 ≤ λi, 1 ≤ i ≤ p.

By exploiting the trigonometric formulas and the fact that the functions sine and cosine have
the same argument, we have finally managed to approximate four nonlinear functions by intro-
ducing only one set λ and six linear constraints.

We now focus on the way of building the linear outer approximation domains. As shown
in inequalities (3.10), the determination of these domains passes through the computation of
approximation errors, which is the object of the next section.

3.2.4 Maximum errors generated by SOS approximations

As the TVC problem can be expressed as a problem involving three different kinds of non-
linear components, the analytical expression of the approximation errors generated by their
SOS approximation must be determined for each of them. The approximation errors are com-
puted on each piece of the domain which corresponds to a segment joining two consecutive
breakpoints in case of one dimension and to a triangle defined by three adjacent breakpoints in
case of two dimensions. Among the overestimation (respectively underestimation) approxima-
tion errors computed on the pieces of the domain, the maximum overestimation (respectively
underestimation) approximation error used in (3.10) corresponds to the largest one.

1. x2

Theorem 3.1 Let [xi, xi+1] be a piece of the domain where the function x2 is replaced
by its SOS approximation. The maximum overestimation and underestimation approxi-
mation errors, εx2,L and εx2,U respectively, generated by the SOS approximation of x2 on
this piece are such that:

εx2,L =
(xi+1 − xi)

2

4
and εx2,U = 0.

Proof
Since the function x2 is convex, its SOS approximation on [xi, xi+1], which corresponds

64 Chapter 3. An outer approximation method based on special ordered sets

to the segment joining (xi, x
2
i) and (xi+1, x

2
i+1), always overestimates it. Therefore, the

underestimation error, εx2,U , generated by the SOS approximation of x2 is always equal
to zero. It remains thus to establish the expression of the overestimation error. On the
interval [xi, xi+1], it can be easily shown that the analytical expression of the SOS ap-
proximation of x2 is given by f̃(x) = ax + b, where a = xi+1 + xi and b = −xixi+1.
Accordingly, the overestimation approximation error at x is equal to:

e(x) = f̃(x) − f(x) = (xi+1 + xi)x − xixi+1 − x2, (3.18)

and is always positive. As this error is equal to zero, and thus minimized, at the bounds
of the interval [xi, xi+1], the derivative of e(x), that is,

e′(x∗) = xi+1 + xi − 2x∗,

must be zero at the point x∗ which maximizes the error on this interval. Hence,

x∗ =
xi+1 + xi

2
·

The maximum overestimation error is thus reached at the half of the interval [xi, xi+1].
By evaluating the equation (3.18) at x∗ and factorizing the obtained expression, the value
of the maximum overestimation error generated by the SOS approximation of x2 on the
piece [xi, xi+1] can be written as:

εx2,L =
(xi+1 − xi)

2

4
·

2

The maximum overestimation approximation error produced on a piece thus depends
on the length of this piece. To take the right approximation errors into account on the
corresponding pieces, binary variables yi satisfying (2.20), like in the lambda method,
should be introduced in the formulation to specify which piece is considered. So, in the
outer approximation problem, by (3.10), the approximation wx2 of x2 should satisfy:

p∑

i=1

λix
2
i −

p−1∑

i=1

εx2,Li
yi ≤ wx2 ≤

p∑

i=1

λix
2
i , (3.19)

where εx2,Li
is the maximum overestimation error produced on the piece [xi, xi+1]. How-

ever, in practice, to avoid to introduce binary variables in the problem, we relax (3.19)
in:

p∑

i=1

λix
2
i − max

i=1,p−1
εx2,Li

≤ wx2 ≤
p∑

i=1

λix
2
i . (3.20)

To obtain approximations wx2 as tight as possible, the maximum on the quantities εx2,Li

should be minimized. As the errors εx2,Li
depend on the length of the piece, this amounts

to minimize the length of the pieces, and thus, for a fixed number of breakpoints, to
choose equally spaced breakpoints. In this case, each piece [xi, xi+1] has the same length,

3.2 An outer approximation problem based on SOS 65

denoted ∆x. Therefore, the maximum overestimation error generated by the SOS approx-
imation of x2 is equal on each piece and is such that:

εx2,L =
∆2

x

4
· (3.21)

By assuming that p breakpoints are used, ∆x can be expressed in function of the range
[lx, ux] of the variable x like:

∆x =
ux − lx
p − 1

,

which allows us to write (3.21) as:

εx2,L =
(ux − lx)

2

4(p − 1)2
· (3.22)

Accordingly, by applying the inequalities (3.10) to the function x2, the approximation
wx2 of x2 in the outer approximation problem, based on p equally spaced breakpoints,
must satisfy the conditions (2.13) and:

p∑

i=1

λix
2
i −

(ux − lx)
2

4(p − 1)2
≤ wx2 ≤

p∑

i=1

λix
2
i . (3.23)

We recall that the SOS condition is not imposed for this outer approximation.
Note(1) that the underestimation used in (3.20) could be strengthened. Indeed, it is

sometimes too strong to remove the maximum approximum error whatever the considered
piece, like in (3.20). Because it is too expensive to introduce binary variables like in (3.19)
to determine which piece is considered, we work on the variables λi instead. Since the
sum on the λi must be equal to one and since if the SOS condition is satisfied, only λi

and λi+1 can be nonzero if the ith piece is considered, we should remove an error equal to
(λi+λi+1)εx2,Li

for the ith piece. However, λi (i 6= 1, p) can be nonzero if we consider the
(i− 1)th or the ith piece. Therefore, for these λi, to avoid to remove twice an error for the
same λi and to be sure to obtain an underestimating function, we remove the maximum
between the two errors εx2,Li−1

and εx2,Li
. That is, (3.20) would be replaced by:

λ1

(
x2

1 − εx2,L1
) +

p−1∑

i=2

λi

(
x2

i −max(εx2,Li−1
, εx2,Li

)
)

+ λp

(
x2

p − εx2,Lp−1
) ≤ wx2. (3.24)

In this case, the total removed error is given by a convex combination of the errors εx2,Li

produced on the pieces, which is always smaller or equal to the maximum of these er-
rors. However, this underestimation remains a relaxation for the underestimation of (3.19)
when the variables yi are binary, because the removed error does not necessarily corre-
spond to the error associated to the piece to which x belongs. As the underestimation
(3.24) is expected to be better than that of (3.20), it would be worth to employ it for
further researches.

(1)Following a suggestion of Sven Leyffer in his report on the present work.

66 Chapter 3. An outer approximation method based on special ordered sets

2. xy
The case of a bilinear product is now examined. For each dimension, we choose a fixed
number of breakpoints and build from them a grid composed of rectangles, which must
be again decomposed into triangles to satisfy the SOS type 3 condition. Assume that we
divide each rectangle of the grid in two triangles in the way used in Figure 2.5. Two types
of triangles are obtained.

@
@

@
@

@
@

@@

xi xi+1

yj

yj+1

T1

T2

Figure 3.6: Decomposition of a rectangle of the grid into two triangles.

Each triangle is defined by three breakpoints: (xi, yj), (xi, yj+1) and (xi+1, yj) for T1 and
(xi+1, yj+1), (xi, yj+1) and (xi+1, yj) for T2. The maximum approximation errors are first
computed for triangles like T1.

Theorem 3.2 Let T1 be a triangle defined by the breakpoints (xi, yj), (xi, yj+1) and
(xi+1, yj). The SOS approximation of the bilinear product xy on this triangle is given by:

f̃(x, y) = xyj + yxi − xiyj,

and the maximum overestimation and underestimation approximation errors, εxy,L and
εxy,U respectively, satisfy:

εxy,L = 0 and εxy,U =
(xi+1 − xi)(yj+1 − yj)

4
·

Proof
As explained in Section 2.2.3, the SOS approximation of xy on a triangle T1 corresponds
to the plan joining the three points (xi, yj, xiyj), (xi, yj+1, xiyj+1) and (xi+1, yj, xi+1yj)
which is defined by the following equation:

f̃(x, y) = xyj + yxi − xiyj. (3.25)

Indeed, it can be easily shown that the three points, which are not collinear by construc-
tion, satisfy (3.25). Since McCormick has shown in [81] that, on a rectangle [xi, xi+1] ×
[yj, yj+1], the inequality:

xy ≥ xyj + yxi − xiyj,

is always valid, we can conclude that the SOS approximation f̃(x, y) underestimates the
function xy on T1. The associated overestimation approximation error is thus equal to
zero. It remains to compute the maximum underestimation approximation error. The
underestimation approximation error, which is always positive, is given by:

e(x, y) = f(x, y) − f̃(x, y) = xy − xyj − yxi + xiyj, (3.26)

3.2 An outer approximation problem based on SOS 67

and its gradient by:

∇e(x, y) =

(
y − yj

x − xi

)
.

This gradient is zero at (xi, yj) which is precisely a point defining the triangle. At this
point, the approximation error is equal to zero. Therefore, a minimum has been found
since the underestimation approximation error is always positive. As a consequence, this
error must be reached on a side of the triangle. Three cases must be considered:

• 1st case: Side of T1 defined by x = xi. On this side, by (3.26), the underestimation
approximation error is such that:

e(xi, y) = xiy − xiyj − yxi + xiyj = 0.

The bilinear function and its SOS approximation coincide on this side.

• 2nd case: Side of T1 defined by y = yj. On this side, the underestimation approxi-
mation error can be computed as:

e(x, yj) = xyj − xyj − yjxi + xiyj = 0.

Again, the bilinear function and its SOS approximation coincide.

• 3rd case: Since the approximation error is equal to zero on the two other sides of
the triangle, the maximum underestimation approximation error must be reached on
the hypotenuse. As shown in Figure 3.6, the hypotenuse of T1 is the line joining
(xi, yj+1) to (xi+1, yj). Therefore, it can be derived that it is defined by:

y =
yj+1 − yj

xi − xi+1
x +

xiyj − xi+1yj+1

xi − xi+1
· (3.27)

By expressing y in function of x in (3.26) and simplifying the obtained expression,
the underestimation approximation error produced on the hypotenuse is such that:

e(x, y(x)) =
yj+1 − yj

xi − xi+1

(
x2 − (xi + xi+1)x + xixi+1

)
· (3.28)

As the first derivative of this error with respect to x is given by:

e′(x, y(x)) =
yj+1 − yj

xi − xi+1
(2x − xi − xi+1),

and its second derivative by:

e′′(x, y(x)) = 2
yj+1 − yj

xi − xi+1

,

which is negative since the breakpoints are increasingly ordered, the point x∗ for
which the first derivative is zero, that is,

x∗ =
xi + xi+1

2
,

68 Chapter 3. An outer approximation method based on special ordered sets

corresponds to the maximum that we are looking for. By replacing this value in
(3.27), it can be obtained after some manipulations that the associated value of y is:

y∗ =
yj + yj+1

2
·

The point (x∗, y∗) which maximizes the underestimation approximation error thus
corresponds to the half point of the hypotenuse. By evaluating the equation (3.26)
at this point, the expression of the maximum underestimation approximation error
can be deduced:

εxy,U = e(x∗, y∗) =
(xi+1 − xi)(yj+1 − yj)

4
· (3.29)

2

By using a similar reasoning, we can obtain similar conclusions for triangles of type T2.

Corollary 3.3 Let T2 be a triangle defined by the breakpoints (xi+1, yj+1), (xi, yj+1)
and (xi+1, yj). The SOS approximation of the bilinear product xy on this triangle is
given by:

f̃(x, y) = xyj+1 + yxi+1 − xi+1yj+1,

and the maximum overestimation and underestimation approximation errors, εxy,L and
εxy,U respectively, satisfy:

εxy,L = 0 and εxy,U =
(xi+1 − xi)(yj+1 − yj)

4
·

The approximation errors have the same expression for triangles of type T1 and T2. By
taking equally spaced breakpoints, the maximum underestimation approximation error is
identical for each piece and minimized on the entirety of the approximation domain, like
for the square function. It is equal to:

εxy,U =
∆x∆y

4
, (3.30)

where ∆x (respectively ∆y) is the discretization step for x, respectively for y, i.e., the
length between two breakpoints. Expressing this error according to the range of variables,
by taking px equally spaced breakpoints for the x-dimension and py for the y-one, we
obtain:

εxy,U =
(ux − lx)(uy − ly)

4(px − 1)(py − 1)
· (3.31)

Observe that in order to approximate the bilinear product by its SOS approximation,
the approximation domain can be decomposed into triangles in the way shown in Fig-
ure 2.5, as well as by using the cutting presented in Figure 3.7. By using this cutting, it
can be demonstrated by a similar proof to the one of Theorem 3.2 that the SOS approxi-
mation f̃(x, y) of xy defined on triangles like in Figure 3.7 satisfies:

xy ≤ f̃(x, y),

3.2 An outer approximation problem based on SOS 69

x x x x4321

4

3

2

1

y

y

y

y

Figure 3.7: Converse cutting of the grid into triangles.

and that the maximum approximation errors, εxy,L and εxy,U , are such that:

εxy,L =
(ux − lx)(uy − ly)

4(px − 1)(py − 1)
and εxy,U = 0. (3.32)

Therefore, the bilinear product xy is overestimated by its SOS approximation based on
triangles like in Figure 3.7 while it is underestimated by its SOS approximation based
on triangles like in Figure 2.5. Since we do not impose the SOS condition for the pro-
posed outer approximations, any triangle like in Figure 2.5 or Figure 3.7 can be gener-
ated since no λi,j is imposed to be equal to zero. As a consequence, there always exists
a convex combination of λi,j satisfying conditions (2.26) to (2.29) and which produces
an overestimating SOS approximation of xy and another one for which the associated
SOS approximation is underestimating. In addition, Theorem 3.4 demonstrates that for
any point (x, y, xy), there exists a unique combination of λi,j which satisfies conditions
(2.26) to (2.29) and such that f̃(x, y) = f(x, y) = xy. This amounts to show that any
point (x, y, xy) can be written as a unique convex combination of points (xi, yj, xiyj)
where (xi, yj) are breakpoints.

Theorem 3.4 Each feasible point (x, y, xy) with lx ≤ x ≤ ux and ly ≤ y ≤ uy can
be written as a unique convex combination of the four points (lx, ly, lxly), (lx, uy, lxuy),
(ux, ly, uxly) and (ux, uy, uxuy).

Proof
To demonstrate the theorem, we need to show that there exist some positive reals
a, b, c and d such that:

x
y
xy

 = a

lx
ly
lxly

+ b

lx
uy

lxuy

 + c

ux

ly
uxly

 + d

ux

uy

uxuy

 , (3.33)

and
a + b + c + d = 1. (3.34)

Since the variable x is defined on the interval [lx, ux], it can be expressed as a convex com-
bination of the extremities of this interval, lx and ux, i.e., there exists some µ belonging
to [0, 1] such that:

x = (1 − µ) lx + µ ux. (3.35)

70 Chapter 3. An outer approximation method based on special ordered sets

In the same way, there exists some ν belonging to [0, 1] such that:

y = (1 − ν) ly + ν uy. (3.36)

By using the expressions of x and y in function of µ and ν, the bilinear product xy can be
transformed into:

xy = (1 − µ)(1 − ν) lxly + (1 − µ)ν lxuy + µ(1 − ν) uxly + µν uxuy. (3.37)

It can be shown that the values:

a = (1 − µ)(1 − ν),
b = (1 − µ)ν,
c = µ(1 − ν) and
d = µν,

satisfy conditions (3.33), (3.34) and the positivity condition on these reals. Indeed, by re-
placing in (3.33), a, b, c and d by the values suggested above and simplifying the obtained
expressions, the equalities on the three components amount to (3.35), (3.36) and (3.37)
respectively, which proves their validity. The satisfaction of condition (3.34) can be easily
obtained by summing the values of the reals a, b, c and d and factorizing. The positivity
constraint on a, b, c and d also holds since µ and ν belong to the interval [0, 1]. Finally,
the convex combination is unique since it can be easily shown that the four vectors:

lx
ly
lxly
1

 ,

lx
uy

lxuy

1

 ,

ux

ly
uxly
1

 and

ux

uy

uxuy

1

 , (3.38)

used in the system composed of (3.33) and (3.34) are linearly independent.

2

Note that four points (and not three) are necessary to generate any point (x, y, xy) be-
cause we impose that (x, y, xy) is written as a convex combination of the reference points.
Therefore, four equations must be satisfied, that is, the system (3.33) and (3.34), which
explains the fact that four points are needed. Note that this theorem is not trivial since a
positivity constraint is imposed on the coefficients of a convex combination.

As a direct consequence of this theorem, for each point (x, y) there exists a convex
combination fulfilling conditions (2.27) to (2.29) for which the bilinear product and its
linear approximation are equal at this point as long as the variables λi,j associated to the
four extreme breakpoints are not set to zero. This is the case since the SOS conditions are
no longer imposed. Accordingly, we do not have to introduce approximation errors in in-
equalities (3.10) to guarantee that the correct value of the bilinear product xy at a feasible
point (x, y) can be produced in the linear outer approximation problem. Consequently,
for the bilinear product, the inequalities (3.10) can be replaced by the equality:

wxy =

px∑

i=1

py∑

j=1

λi,jxiyj, (3.39)

3.2 An outer approximation problem based on SOS 71

which amounts to condition (2.26) applied to the bilinear function. Note that this rea-
soning cannot be applied to the function x2 since the value (x, x2) cannot be generated
by a convex combination of the values (xi, x

2
i) (where xi is a breakpoint) unless in the

particular case where x is a breakpoint.

3. Trigonometric functions
While the approximation errors for the square and bilinear functions depend on the size of
the pieces more than on the approximation interval, the approximation errors for trigono-
metric functions have a different analytical expression according to the piece where the
function is approximated. Again, the domain where the trigonometric functions are ap-
proximated is assumed to belong to the interval [0, 2π]. The computation of the approx-
imation errors for the functions sine and cosine must be distinguished. The analysis
begins with the sine function.

a. sin(x)

Theorem 3.5 Let [xi, xi+1] ⊆ [0, 2π] be a piece of the domain where the function sin(x)
is replaced by its SOS approximation f̃(x) which is defined by f̃(x) = aix + bi, where:

ai =
sin xi+1 − sin xi

xi+1 − xi

and bi =
xi+1 sin xi − xi sin xi+1

xi+1 − xi

· (3.40)

Then, the maximum overestimation and underestimation approximation errors, εsin,Li

and εsin,Ui
respectively, generated by the SOS approximation of sin(x) on the interval

[xi, xi+1] are such that:

εsin,Li
=

ai(2π − arccos(ai)) + bi if 2π − arccos(ai) ∈ [xi, xi+1],
+ sin(arccos(ai))

0 otherwise,

εsin,Ui
=

{
−ai arccos(ai) − bi + sin(arccos(ai)) if arccos(ai) ∈ [xi, xi+1],
0 otherwise.

Proof
On the piece [xi, xi+1], the SOS approximation of sin(x) corresponds to the segment
joining (xi, sin(xi)) to (xi+1, sin(xi+1)) which is defined by f̃(x) = aix + bi, where ai

and bi are given in (3.40). The definition of the approximation error for sin(x) can thus
be written as:

e(x) = f(x) − f̃(x) = sin(x) − aix − bi. (3.41)

At points where this approximation error is positive, the SOS approximation underes-
timates the sine function while it overestimates it if e(x) is negative. Therefore, we
are looking for the optima of e(x), minima or maxima. Since the approximation error
vanishes at the breakpoints xi and xi+1, the optima that interest us must be reached in
]xi, xi+1[at points where the derivative of e(x) is equal to zero. As the derivative of e(x)
is given by:

e′(x) = cos(x) − ai,

72 Chapter 3. An outer approximation method based on special ordered sets

the points where e′(x) is zero on [0, 2π] are, by inverting the cosine function,

x∗
a = arccos(ai),

or
x∗

b = 2π − arccos(ai).

Since the value of arccos(x) is always in the interval [0, π], it is also the case for x∗
a while

x∗
b belongs to [π, 2π]. These two points correspond to optima for the approximation error

on [xi, xi+1] if they belong to this interval. We discuss three cases.

• If xi+1 ≤ π, the maximum approximation error on [xi, xi+1] is reached at x∗
a (be-

cause x∗
b is not in the studied interval which must contain an optimum), and it is an

underestimation error because sin(x) is concave on the considered interval. In this
case, the SOS approximation always underestimates sin(x) and the overestimation
approximation error vanishes.

• If xi ≥ π, the maximum approximation error is reached at x∗
b and it is an overesti-

mation error since sin(x) is convex on the studied domain and, as a consequence, its
SOS approximation always overestimates it. The underestimation error generated
by the SOS approximation is thus equal to zero.

• If xi < π and xi+1 > π, the SOS approximation underestimates the function sin(x)
on an interval [xi, xmi

] and overestimates it on [xmi
, xi+1]. In this case, x∗

a and
x∗

b must both belong to [xi, xi+1] and the maximum underestimation approximation
error is reached at x∗

a while the maximum overestimation approximation error arises
at x∗

b .

To summarize, an underestimation approximation error arises only if x∗
a belongs to [xi, xi+1].

By evaluating (3.41) at this point, the maximum underestimation approximation error is
equal to:

εsin,Ui
= −ai arccos(ai) − bi + sin(arccos(ai)).

On the other hand, an overestimation approximation error is produced only if x∗
b belongs

to [xi, xi+1]. To obtain a positive value for the overestimation approximation error, the
signs in (3.41) must be inverted. By evaluating this updated equation at x∗

b , the maximum
overestimation approximation error is given by:

εsin,Li
= ai(2π − arccos(ai)) + bi − sin(2π − arccos(ai)).

As the sine function is 2π-periodic and as sin(−x) = − sin(x), the desired result can be
derived.

2

As for the square function, the convex combinations of the points (xi, sin(xi)) (where
xi is a breakpoint) cannot generate all the possible values (x, sin(x)) (see Figure 2.4).

3.2 An outer approximation problem based on SOS 73

Therefore, the approximation errors must be taken into account to define the outer ap-
proximation domain. Note that, contrary to square and bilinear functions, for the trigono-
metric ones, the approximation errors are different in function of the pieces even if the
breakpoints are equally spaced. Therefore, (3.10) becomes(2):

p∑

i=1

λi sin(xi) − max
i=1,p−1

εsin,Li
≤ wsin(x) ≤

p∑

i=1

λi sin(xi) + max
i=1,p−1

εsin,Ui
. (3.42)

b. cos(x)
The cosine function is now considered. In this case, the analytical expression of the errors
is a little bit more complicated. Indeed, by inverting the sine function to determine in a
similar way as in Theorem 3.5, the points for which the derivative of the approximation
error is zero, there are no longer two but three solutions, as detailed in the following
theorem.

Theorem 3.6 Let [xi, xi+1] ⊂ [0, 2π] be a piece of the domain where the function cos(x)
is replaced by its SOS approximation f̃(x) which is defined by f̃(x) = cix + di, where:

ci =
cos xi+1 − cos xi

xi+1 − xi

and di =
xi+1 cos xi − xi cos xi+1

xi+1 − xi

· (3.43)

Then, the maximum overestimation and underestimation approximation errors, εcos,Li

and εcos,Ui
respectively, generated by the SOS approximation of cos(x) on the interval

[xi, xi+1] are such that:

εcos,Li
=

ci(π + arcsin(ci)) + di if π + arcsin(ci) ∈ [xi, xi+1],
+ cos(arcsin(ci))

0 otherwise,

εcos,Ui
=

ci(arcsin(ci)) − di if − arcsin(ci) ∈ [xi, xi+1],
+ cos(arcsin(ci))

−ci(2π − arcsin(ci)) − di if 2π − arcsin(ci) ∈ [xi, xi+1],
+ cos(arcsin(ci))

0 otherwise.

Proof
Since the SOS approximation of cos(x) on the piece [xi, xi+1] is given by the segment
f̃(x) = cix + di where ci and di are defined in (3.43), the approximation error generated
by the SOS approximation of cos(x) on this piece is given by:

e(x) = f(x) − f̃(x) = cos x − cix − di. (3.44)

A positive error corresponds to an underestimation of cos(x) by its SOS approximation
while a negative error corresponds to an overestimation. As the cosine function and its
SOS approximation coincide at breakpoints, the points which optimize the approximation

(2)An alternative formulation could be obtained by using the same reasoning as for (3.24).

74 Chapter 3. An outer approximation method based on special ordered sets

error and which interest us must be in]xi, xi+1[, and, the derivative of the error must be
zero at these points. Since the derivative of e(x) is given by:

e′(x) = − sin x − ci

and since the image of the function arcsin is defined on [−π
2

, π
2
], the derivative of e(x)

may be zero at the following points on [xi, xi+1] ⊂ [0, 2π]:

x∗
a = arcsin(−ci),

x∗
b = π − arcsin(−ci),

x∗
c = 2π + arcsin(−ci),

depending if x∗
a, x∗

b and x∗
c belong, or not, to the considered interval [xi, xi+1]. As x∗

a

belongs to [−π
2

, π
2
], x∗

b to [π
2
, 3π

2
] and x∗

c to [3π
2

, 5π
2

], by distinguishing like in Theorem 3.5,
between the different possibilities according to the parts of the domain where cos(x) is
concave or convex, we obtain that the maximum underestimation approximation error
can be reached at x∗

a or x∗
c belonging to intervals where the cosine function is concave,

while the maximum overestimation approximation error can be reached at x∗
b which be-

longs to a convex part of the domain of cos(x). Using a similar reasoning to the one
used in Theorem 3.5, that is, by replacing in equation (3.44) the different values of x∗

(x∗
a, x

∗
b and x∗

c) if they belong to the interval [xi, xi+1], by inverting the signs in this equa-
tion to obtain a positive value for εcos,Li

and finally by exploiting trigonometric properties
(arcsin(−x) = − arcsin(x), cos(−x) = cos(x), cos(π +x) = − cos(x) and the periodic-
ity of cos(x)), the desired result can be derived. Note that the value of εcos,Ui

is correctly
defined since by assumption, the length of the piece [xi, xi+1] is smaller than 2π. As
a consequence, among the three conditions giving the value of εcos,Ui

, only one can be
fulfilled.

2

To determine the outer approximation wcos(x) of cos(x), a similar inequality to the one
used for sine, (3.42), can be employed(3):

p∑

i=1

λi cos(xi) − max
i=1,p−1

εcos,Li
≤ wcos(x) ≤

p∑

i=1

λi cos(xi) + max
i=1,p−1

εcos,Ui
. (3.45)

In summary, an SOS approximation generates:

• an overestimation error for x2,

• an underestimation error for xy if the cutting of Figure 2.5 is employed but an overesti-
mation error if the cutting of Figure 3.7 is used,

• overestimation and/or underestimation errors for sine and cosine depending on the ex-
amined interval.

(3)By using a similar reasoning as for (3.24), this outer approximation could be strengthened.

3.2 An outer approximation problem based on SOS 75

3.2.5 Expression of the outer approximation problem

We are now able to give the expression of the linear outer approximation problem (ÕP) which
is nearly identical to problem (P̃) of Section 2.2.3. In fact, the unique difference appears in
the general constraints bounding the variables wi

ji
. Indeed, in the linear approximation problem

(P̃) a nonlinear component gi
ji

is replaced by a linear function while in the linear outer approx-

imation problem (ÕP), the approximation of this component is bounded by a linear domain. In
the formulation of (ÕP) given below, the parameters εL

i
ji

and εU
i
ji

correspond to the maximum
overestimation and underestimation approximation errors done by replacing the nonlinear com-
ponent gi

ji
by its SOS approximation on a piece of the domain and which have been computed

in the previous section for square and trigonometric functions. For the bilinear products, these
errors are set to zero for the reasons detailed before. Note that (P̃) is a particular case of (ÕP)
where all the errors εL

i
ji

and εU
i
ji

are set to zero.

(ÕP)

min flin(x) +

t0∑

j0=1

w0
j0

,

s.t. gi
lin(x) +

ti∑

ji=1

wi
ji

= 0, 1 ≤ i ≤ m,

∑

k∈I
Mi

ji

(λi
ji
)
k
(gi

ji
)
k
− εL

i
ji
≤ wi

ji
≤
∑

k∈I
Mi

ji

(λi
ji
)
k
(gi

ji
)
k

+ εU
i
ji
,

1 ≤ i ≤ m, 1 ≤ ji ≤ ti,∑

k∈I
M0

j0

(λ0
j0

)
k
(g0

j0
)
k
− εL

0
j0
≤ w0

j0
, 1 ≤ j0 ≤ t0,

xi
ji

=
∑

k∈I
Mi

ji

(λi
ji
)
k
(xi

ji
)
k
, 0 ≤ i ≤ m, 1 ≤ ji ≤ ti,

∑

k∈I
Mi

ji

(λi
ji
)
k

= 1, 0 ≤ (λi
ji
)
k
, k ∈ IM i

ji

, 0 ≤ i ≤ m, 1 ≤ ji ≤ ti,

xi
ji

= x|gi
ji

, 0 ≤ i ≤ m, 1 ≤ ji ≤ ti,

lx ≤ x ≤ ux,
x ∈ IRn.

Note that in case of inequality constraints or for the objective function, only the underestimation
of the variables wi

ji
used to replace a component involved in these functions is needed.

Remember that the approximation errors for the unary functions have been computed by
assuming that the SOS conditions are fulfilled, while these conditions are not imposed in the
problem (ÕP). The reasons of this choice are now detailed. Without taking the approximation
errors into account, the linear approximation of a function f at a point x can be equal to any
value wf(x) such that (x, wf(x)) belongs to DPV defined by:

DPV =

{
(x, wf(x)) | wf(x) =

p∑

i=1

λifi, xi =

p∑

i=1

λixi,

p∑

i=1

λi = 1, λi ≥ 0, 1 ≤ i ≤ p

}
.

(3.46)

76 Chapter 3. An outer approximation method based on special ordered sets

However, the possible values (x, wf(x)) do not always correspond to good approximations as
highlighted in Figure 2.4. Among the possible approximations, we would like to keep the good
ones like SOS approximations. Therefore, to guarantee that a point x feasible for the nonlinear
problem belongs to the feasible domain of the outer approximation problem and can produce in
this problem the same value as in the nonlinear problem for the approximated components, the
approximation domain has been extended by using the maximum approximation errors gener-
ated by the SOS approximation, and not the maximum approximation errors generated on the
set DPV . Indeed, the maximum approximation errors generated by the SOS approximation are
smaller than the ones produced on the set DPV because the SOS approximation is only one
of the numerous approximations satisfying (3.46). Using the approximation errors associated
to the SOS approximation allows us to reduce the domain DPV OA of possible values for the
outer approximation of a function f at a point x which is given by:

DPV OA =

(x, wf(x)) |
p∑

i=1

λifi − εf,L ≤ wf(x) ≤
p∑

i=1

λifi + εf,U ,

xi =

p∑

i=1

λixi,

p∑

i=1

λi = 1, λi ≥ 0, 1 ≤ i ≤ p

. (3.47)

As the errors associated to SOS approximations are used to build the outer approximations, we
refer to the latter as outer approximations based on SOS. Note that this appellation is a little bit
improper for the bilinear product since in this particular case, the approximation errors are not
employed. But for the sake of generalization, we talk even though about outer approximations
based on SOS.

With outer approximations, each possible value (x, f(x)), where f is a nonlinear compo-
nent, belongs to the domain of the outer approximation (ÕP). However, this does not imply
that the solution of the outer approximation problem corresponds to the global optimum of the
nonlinear problem since the domain of the linear outer approximation problem is larger than the
one of the nonlinear problem. Indeed, each nonlinear component has been replaced by a linear
domain which includes it. As a consequence, the solution of the outer approximation problem
can be quite far from the one of the nonlinear problem. Accordingly, to find the global optimum
of the nonlinear problem, the outer approximation problem must be refined until the approxi-
mation is sufficiently tight to guarantee that the solutions of the linear and nonlinear problems
are close enough to find the solution of the nonlinear problem by starting from the one of the
linear problem. This refinement is made possible by using branch-and-bound, as explained in
the next section.

3.3 An outer approximation method to solve nonlinear prob-
lems

To be closer and closer to the nonlinear problem that it approximates, the linear outer ap-
proximation problem (ÕP) is refined by employing a branch-and-bound tree. As we do no
longer impose the SOS condition, the branching is not used to satisfy this conditions like in the
classical SOS approximation method. This choice will be justified in Chapter 4 by demonstrat-
ing that branching on original variables and always keeping the same number of breakpoints to

3.3 An outer approximation method to solve nonlinear problems 77

approximate a same component everywhere in the tree allows us to obtain tighter approxima-
tions than the ones obtained by branching on the variables λi. Before going further, we illustrate
this on an example.

Suppose that we branch on xi at the middle point of its range. As the range of the variable
xi has been divided in two equal parts, to keep the same number of breakpoints, the latter must
be twice as close in the two subproblems to be equally spaced. Therefore, the resulting outer
approximations are better. A graphic illustration of the refinement of the outer approximation
for the function x2 on the interval [−2, 2] is given in Figures 3.8, 3.9 and 3.10. The first figure
represents the domain before branching of the possible values (x, wx2) for the outer approxima-
tion of x2 based on three equally spaced breakpoints. This domain, DPV OA, is delimited by
the continuous lines on the figure. By branching on x equal to zero, two outer approximations
associated to both new subproblems are obtained, one with x ≤ 0 and another one for which
x ≥ 0. Since, in this case, the two graphic representations are symmetric, we only consider the
subproblem where x ≥ 0. To keep constant the number of breakpoints after branching, a new
breakpoint must be added. To have equally spaced breakpoints, it is introduced at x = 1 . The
obtained outer approximation is represented in Figure 3.9. It can be seen that this new outer ap-
proximation is tighter than before branching. Indeed, the upper side of the outer approximation
domain after branching (the segment joining the images of the first and last breakpoints) corre-
sponds to the SOS approximation on the piece [0, 2] before branching illustrated in Figure 3.8.
Figure 3.10 represents the domain of possible values obtained by branching on the variable λ.
In this case, a new breakpoint cannot be added (see Section 4.2). By comparing Figures 3.8 and
3.10, we can observe that the size of the domain of possible values for the outer approximation
is smaller after branching on x than on λ since the addition of a new breakpoint has allowed a
refinement of the outer approximation.

Moreover, we can also note that this choice avoids, as previously explained, to use an SOS
approximation error, and thus to enlarge the domain of the possible values, for the outer ap-
proximation of a bilinear product, which it is not the case when the SOS condition is imposed.
Therefore, the branching is no longer done on the variables λi but on the variables of the non-
linear problem. By branching on such variables, the linear outer approximation problem can be
modified since the linear outer approximations are based on the bounds of the original variables.
The following section discusses these changes in the problem.

3.3.1 Refinement of the outer approximation problem due to branching

First, we recall that we treat here the case where the problem (P) is not subject to discrete
restrictions. This latter case will be examined in Section 3.3.3.

After having solved the linear outer approximation problem (ÕP), a variable xi which ap-
pears nonlinearly in problem (P) is chosen for branching. Indeed, it is useless to branch on a
variable which intervenes only linearly in the problem since it does not generate any approx-
imation error, and branching on it would not improve the quality of the outer approximation
problem. Once the branching variable xi has been chosen (see Chapter 6 for more details), we
branch on it at a point mxi

belonging to the approximation domain of xi and the current problem
is divided into two subproblems by imposing for the left subproblem that:

xi ≤ mxi
, (3.48)

78 Chapter 3. An outer approximation method based on special ordered sets

−2 0 2
−1

0

1

2

3

4

5

6

x2

SOS approximation
DPVOA

Figure 3.8: Domain before branching of the possible values (x, wx2) for the outer approximation
of x2 when x ∈ [−2, 2].

−2 −1 0 1 2
−1

0

1

2

3

4

5

6

x2

SOS approximation
DPVOA

Figure 3.9: Domain after branching of the possible values (x, wx2) for the outer approximation
of x2 when x ∈ [0, 2].

−2 0 2
−1

0

1

2

3

4

5

6

x2

SOS approximation
DPVOA

Figure 3.10: Domain after branching on λ2 of the possible values (x, wx2) for the outer approx-
imation of x2 when x ∈ [0, 2].

3.3 An outer approximation method to solve nonlinear problems 79

and for the right one that:
xi ≥ mxi

. (3.49)

By branching, the bounds on the variable xi are tightened: the upper bound uxi
can be up-

dated to mxi
for the left subproblem while the lower bound lxi

can be set to mxi
for the right

one. As the range of the variable xi has changed, the approximations of all nonlinear compo-
nents in which this variable appears can be refined. We decide to always use the same number of
breakpoints to approximate a same nonlinear component throughout the branch-and-bound tree.
These breakpoints are also chosen equally spaced to have a uniform information on the approxi-
mation domain. Moreover, as highlighted in Section 3.2.4, this choice allows us to minimize on
each piece of the domain, the approximation errors generated by the SOS approximation of the
square function and thus to minimize the size of the domain DPV OA (3.47) for this function.

The refinement of the outer approximation explained above needs the modification of the
general constraints of the outer approximation problem (ÕP) because some of them depend on
breakpoints. Note that we do not limit ourselves to refine the approximation of the components
of one or two variables in which the variable xi directly appears, but if the refined components
are themselves arguments of other components of one or two variables, we also refine the ap-
proximation for these components. For example, assume that we have a trilinear product x1x2x3

decomposed in w1 which approximates x1x2 and w2 which replaces x3w1, and that the branch-
ing is done on x1. Therefore, the bounds on x1 but also on w1 and w2 can be updated by using
the bound propagation technique detailed in Section 3.2.2. As the bounds on the variables
are modified, the associated breakpoints are updated in order to keep equally spaced break-
points. Accordingly, the maximum approximation errors must be modified since the pieces
have changed. A tighter outer approximation problem is thus obtained. More schematically,
after branching on a variable xi, Algorithm 3.1 is applied for each generated subproblem.

Algorithm 3.1: Update of the outer approximation problem after branching on xi

1. Update the bounds on xi and, by bound propagation, all the bounds on components
wki

involving xi as well as the bounds on components having a component wki
as

argument.
2. Update the breakpoints associated to a variable for which the bounds have been

updated at Step 1, in order to keep constant their number throughout the branch-
and-bound tree and also to keep them equally spaced.

3. Update the general constraints of (ÕP) which depend on breakpoints which have
been modified at Step 2.

4. Update the maximum approximation errors associated to approximations which
have been modified at Step 3 and, as a consequence, update the bounds on the
associated general constraints.

3.3.2 Scheme of the method

Since we have explained how to update the outer approximation problem (ÕP) after branch-
ing on a variable, we can now detail the general process of the method that we have developed

80 Chapter 3. An outer approximation method based on special ordered sets

and which can be seen as a variant of the branch-and-bound strategy detailed in Section 1.2.4.
We start by building the linear outer approximation problem (ÕP) from the nonlinear problem
(P), as explained in Section 3.2.5, and then we solve the obtained problem. As the linear prob-
lem is an outer approximation problem with regard to the nonlinear one, the optimum value of
problem (ÕP) consists of a lower bound for the nonlinear problem. Therefore, if the linear
outer approximation problem is infeasible, the nonlinear problem (P) is also infeasible. If it is
not the case, the nonlinear problem is solved by starting from the solution of the linear problem.
If the nonlinear solver finds an optimum value, denoted U ∗, for the nonlinear problem, it con-
sists of an upper bound for this problem. Indeed, there is no guarantee that the optimum found
is the global one. But at this time, U ∗ is the best optimum value found so far. If the difference
between the upper and lower bounds is smaller than a fixed small quantity ε, both problems
can be considered to be close enough and the solution of the nonlinear problem is the global
optimum within the accuracy ε.

However, the situation where the optimum values of the nonlinear problem and its outer
approximation are directly so close seldom arises. Therefore, the outer approximation problem
must be refined. In this way, a variable xi appearing nonlinearly in problem (P) is chosen and
we branch on it. To guarantee the convergence of the method, the branching variable must pro-
duce an approximation error at the current solution. Indeed, it would be useless to branch on a
variable for which the approximations are exact at the current solution, for all the components
in which it appears since the branching cannot improve the quality of the outer approximation
problem. Different ways to choose the branching variable are tested and compared in Chap-
ter 6. By branching on xi like in (3.48) and in (3.49), two new linear outer approximation
subproblems are created and updated by Algorithm 3.1. These subproblems are ordered in a
branch-and-bound tree where they are associated to nodes. These nodes are put in the stack of
nodes to treat.

One subproblem is chosen and solved. Different techniques to select this subproblem are
tested and discussed in Chapter 7. If this linear outer approximation subproblem is infeasible
or if its optimum value is larger than the best optimum value, U ∗, found so far, the node asso-
ciated to this subproblem can be fathomed, as in the classical branch-and-bound strategy (see
Section 1.2.4). Otherwise, the nonlinear problem is solved by starting from the solution of the
linear outer approximation subproblem. If a solution is found for (P) and if the optimum value
produced is better than the best optimum value, U ∗, found so far, U ∗ is updated. When the
optimum values of the outer approximation and the nonlinear problems solved at this node are
within the accuracy ε, the node can be fathomed since on the part of the domain examined at
this node, we have found the global optimum of the nonlinear problem within the accuracy ε.
On the other hand, if the nonlinear solver cannot find a solution for the problem (P) by start-
ing from the solution of the linear outer approximation problem, the associated node cannot be
fathomed because there is no guarantee that the nonlinear problem is infeasible on this part of
the domain because the nonlinear solver is a local one. Therefore, we must pursue refining the
linear outer approximation problem and we put the node associated to this subproblem in the
stack of nodes.

After this, a new subproblem which needs to be treated is chosen in the tree. If the selected
subproblem has been already solved, it corresponds to a subproblem which must be refined by
being divided in two new subproblems. Therefore, we choose a branching variable and branch
on it. This creates two new subproblems which are updated by Algorithm 3.1. Among these

3.3 An outer approximation method to solve nonlinear problems 81

two subproblems, we select one, solve it and act as explained above. The other node is put
in the stack of nodes to treat. Note that if the upper bound U ∗ can be updated, all nodes of
the stack having a lower bound on the optimum value larger than the new upper bound can be
fathomed. Next, the process is repeated by choosing in the tree a subproblem to treat. As the
other subproblem generated by branching has not been solved, it belongs to the set of nodes to
explore. If it is chosen to be treated, it is no longer necessary to choose a branching variable
since this step has already been done before, and the subproblem can be directly solved. There-
fore, among the set of nodes to treat, they are two kinds of nodes: nodes to divide and nodes to
solve. Finally, if the whole tree has been explored, the global optimum value of the nonlinear
problem (P) corresponds to U ∗ unless all nonlinear problems solved during the process of the
algorithm were infeasible, in which case the nonlinear problem is infeasible.

Note that we do not branch directly and do not create two subproblems after having solved
successfully a linear subproblem since the associated nodes could be discarded if a better upper
bound U ∗ was found before they are examined. In this case, we would have chosen a branching
variable needlessly. We will see in Chapter 6 that this choice can be expensive. Moreover,
branching only when we choose to treat the node allows us to consider and to store only one
node to explore (the node to divide) instead of two, which limits the memory space needed to
solve the problem.

The method proposed above is given more schematically in Algorithm 3.2 and the proof of
its convergence is established in Theorem 3.7.

Theorem 3.7 If all variables appearing nonlinearly in the nonlinear problem (P) are bounded,
Algorithm 3.2 converges to the global optimum of problem (P), within the accuracy ε, in a finite
number of iterations.

Proof
This theorem is demonstrated in two steps: we begin by showing that a node associated to a
domain which contains a better optimum for the problem (P) than the one found so far by the
algorithm cannot be cut and next, we show the finiteness of the algorithm.

As the approximation problems (ÕP
k
) are linear, the solution found, if the problem is

feasible, is the global one on the domain explored at iteration k. Moreover, as (ÕP
k
) is an outer

approximation problem for the nonlinear problem (P), the global optimum of (ÕP
k
) consists

of a valid lower bound for the one of (P) on this domain. Therefore, a node is fathomed only
if the associated feasible domain does not contain a better solution then the current one since
Algorithm 3.2 fathoms nodes in the three following cases:

1. If the linear problem (ÕP
k
) is infeasible, the node can be fathomed because any solution

feasible for the problem (P) on the domain examined at iteration k is always feasible

for its outer approximation problem (ÕP
k
). As a consequence, the problem (P) is also

infeasible on the part of the domain explored at iteration k.

2. If the optimum value of the linear problem (ÕP
k
) is larger than the best optimum value

found so far for the nonlinear problem, the node can also be discarded since the optimum

value of (ÕP
k
) always corresponds to a lower bound for the one of problem (P) on

the domain under study. Accordingly, the domain associated to the node examined at
iteration k cannot contain a better solution.

82 Chapter 3. An outer approximation method based on special ordered sets

Algorithm 3.2: Outer approximation method based on SOS (continuous case)

Let ε be a fixed accuracy for the method.

Init: Set U∗ := +∞, the current optimum value for the nonlinear problem (P).

Build the linear outer approximation problem (ÕP
0
) from the nonlinear prob-

lem (P) and place it at the root node of a branch-and-bound tree.
Set the index of the current iteration, k, to zero.

while (the tree has not been completely explored) do

1. Choose a linear problem to treat in the tree.
If this problem has never been solved then Go to 3.

2. Choose a branching variable which generates an approximation error, branch on it,
create two new subproblems and update them, as explained in Algorithm 3.1.
Add the two subproblems to the branch-and-bound tree and select one of these two
subproblems to solve.

3. Solve the selected subproblem (ÕP
k
).

Let x̃k be its solution and wfk
its optimum value, if it is feasible.

If ((ÕP
k
) is infeasible) or (wfk

≥ U∗ − ε) then Fathom the node and go to 5.

4. Solve the nonlinear problem (P) by starting from x̃k.
If (a solution has been found for (P) by starting from x̃k) then

Let x∗
k and f ∗

k be the optimum solution and value for (P) obtained by starting
from x̃k.
If (f ∗

k < U∗) then Update the current solution by setting x∗ := x∗
k and U∗ := f ∗

k .
Fathom all the nodes of the stack having a lower bound on
the optimum value of (P) larger than U ∗ − ε

If (f ∗
k − wfk

≤ ε) then Fathom the node.

5. Set k := k + 1.

end (while)

3. The optimum value of the linear outer approximation problem is close, within an accuracy
ε, to the optimum value of the nonlinear problem at the node examined at iteration k.
Therefore, the solution of the nonlinear problem (P) can be considered as the global one,
within the accuracy ε, on the domain associated to the node. When the optimum values of

problems (ÕP
k
) and (P) are so close, the examined node can be cut, after having updated

the best optimum value for (P) if necessary, since the value of the global optimum of (P)
is known, within an accuracy ε, on the domain associated to the examined node.

3.3 An outer approximation method to solve nonlinear problems 83

Accordingly, a node is fathomed only when the associated domain is guaranteed not to contain
a better optimum than the current one. It remains to prove that any branch can be stopped by
the fathoming of a node after a finite number of iterations. If none of the three conditions above
to fathom a node is fulfilled, we branch on a variable which generates an approximation error
at the current solution of the linear problem with regard to the nonlinear one. By branching
on such variables, their ranges are reduced and by keeping the same number of breakpoints to
approximate a same component throughout the branch-and-bound tree, the outer approximation
problems are tightened and become closer and closer to the nonlinear one when one goes down
in the tree. Therefore, as the ranges of the variables used in the approximations are bounded by
assumption, after branching a finite number of times, the outer approximation problems will be
close enough to the nonlinear problem in such a way that one of the three above conditions to
cut a node will be satisfied.

2

Note that this theorem requires that all variables appearing nonlinearly in the problem are
bounded. This assumption is also needed to build the linear outer approximation problem since
the employed linear outer approximations are based on an interval. However, in TVC problem,
the variables θ which appear in trigonometric functions (cos(ζj + θi − θk) for example) are
unbounded. In (3.15), the quantity ζj + θi − θk has been replaced by a new variable ηj. As the
variables θ are unbounded, the variable ηj is also unbounded. Nevertheless, as the trigonometric
functions are 2π-periodic, the analysis of these functions can be limited to the interval [0, 2π].
The variable ηj has thus been bounded by 0 and 2π, which amounts to also bound the quantity
ζj + θi − θk by these values. This could discard feasible solutions but, in practice, for classical
electrical networks involved in the TVC problem, the difference θi − θk is not expected to vary
a lot around the parameters ζj. In the treated problems, the value of these parameters is such
that we can impose that the quantities ζj + θi − θk belong to the interval [0, 2π]. Nevertheless,
if this assumption is turned out to be too strong, it could be relaxed, even if some bounds (not
necessarily tight) must still be imposed on each quantity ηj = ζj + θi − θk. By introducing
a new integer variable, t, belonging to a bounded interval and an additional constraint in the
modelling, the quantity ηj ∈ [l, u] can be transformed into a new variable η ′

j in order that η′
j is

bounded by 0 and 2π, that is:
η′

j = ηj − 2πt ∈ [0, 2π]. (3.50)

As a multiple of 2π is removed from ηj , the values of the trigonometric functions at ηj and η′
j

coincide because of the periodicity of these functions.
This formulation introduces an integer variable in the problem to solve. Until now, the

treated problem has been assumed to depend on continuous variables only. The following sec-
tion discusses the modifications necessary to take discrete variables into account.

3.3.3 Adaptation of the method to the discrete case

If the nonlinear problem to solve is subject to some discrete restrictions, Algorithm 3.2 must
be adapted. This task can be realized relatively easily because the method has developed an
ideal framework to treat discrete variables. Indeed, it uses a branch-and-bound process, which
is often employed to solve integer programs. With discrete variables, the goal of branching is

84 Chapter 3. An outer approximation method based on special ordered sets

double: to refine the outer approximations but also to satisfy the discrete restrictions. Accord-
ingly, the candidate variables for branching are both the variables which appear nonlinearly in
the original problem and the discrete ones.

In Algorithm 3.2 developed in the continuous case, the linear outer approximation and the
nonlinear problems must be solved. However, in discrete case, it would be too costly to find
the discrete solution of these problems at each node of the branch-and-bound tree, which would
imply to solve mixed integer linear and nonlinear problems at each node. Therefore, to obtain a
lower bound on the optimum value of the nonlinear problem, we limit ourselves to solve at each
node the continuous relaxation of the mixed integer linear problem. The discrete restrictions
are gradually enforced as one goes down in the branch-and-bound tree.

In the continuous case, the optimum value of the nonlinear problem (P) solved by starting
from the solution of the linear outer approximation problem (if an optimum has been found)
corresponds to an upper bound for the global optimum of the nonlinear problem. In the discrete
case, it is not necessarily true if we solve the continuous relaxation of the nonlinear problem
because the obtained solution does not usually fulfill the discrete restrictions. To use the so-
lution of the continuous relaxed nonlinear problem as an upper bound, this solution must be
guaranteed to be feasible for the discrete nonlinear problem. Therefore, we do not solve the
continuous relaxation of the nonlinear problem, but we solve the nonlinear problem in which
the value of each discrete variable is fixed to the closest discrete value to its current value at the
solution of the associated linear outer approximation problem. For example, if at the solution
of the linear outer approximation problem, an integer variable has a value of 6.12, the value of
this variable is fixed to 6 in the associated nonlinear problem. In this way, the solution of the
nonlinear problem is ensured to be feasible with regard to the discrete restrictions.

According to what precedes, Algorithm 3.2 has been adapted to the discrete case to obtain
Algorithm 3.3, where the modifications are highlighted in italic. Note that Theorem 3.7 about
the convergence to the global optimum and the finiteness of the method remains applicable if the
discrete variables can take only a finite number of values, which is the case for the TVC problem.

Bound propagation
To refine the outer approximations, specific techniques can be developed to treat the discrete
variables. So, the link between a discrete variable (not integer) only feasible for a finite number
of equally spaced values (typically the ratio of voltage of TVC problem) and the integer variable
allowing us to model this constraint can be exploited to establish a suitable bound propagation
technique. Indeed, suppose that a discrete variable x defined on [l0x, u

0
x] can be equal to only

k + 1 equally spaced values given by:

xk = l0x + z
u0

x − l0x
k

where z is integer and z ∈ [0, k].

If we branch on the integer variable z, the bounds on the variable x can also be updated from
the new bounds of z given by [lz, uz], where lz and uz are integer, as:

lx := l0x + lz
u0

x − l0x
k

and ux := l0x + uz

u0
x − l0x
k

· (3.51)

This allows us to refine next the outer approximations of components in which the variable x
intervenes. In the same way, if we branch on the variable x, the bounds on the integer variable

3.3 An outer approximation method to solve nonlinear problems 85

Algorithm 3.3: Outer approximation method based on SOS (discrete case)

Let ε be a fixed accuracy for the method.

Init: Set U∗ := +∞, the current optimum value for the nonlinear problem (P).

Build the linear outer approximation problem (ÕP
0
) from the nonlinear prob-

lem (P) and place it at the root node of a branch-and-bound tree.
Set the index of the current iteration, k, to zero.

while (the tree has not been completely explored) do

1. Choose a linear problem to treat in the tree.
If this problem has never been solved then Go to 3.

2. Choose a branching variable which generates an approximation error or which vi-
olates a discrete restriction, branch on it, create two new subproblems and update
them as explained in Algorithm 3.1.
Add the two subproblems to the branch-and-bound tree and select one of these two
subproblems to solve.

3. Solve the continuous relaxation of the selected subproblem (ÕP
k
).

Let x̃k be its solution and wfk
its optimum value, if it is feasible.

If ((ÕP
k
) is infeasible) or (wfk

≥ U∗ − ε) then Fathom the node and go to 5.

4. Fix the values of the discrete components of x̃k to the feasible discrete values closest
to their values at x̃k.
Solve the nonlinear problem (P) by starting from x̃k.
If (a solution has been found for (P) by starting from x̃k) then

Let x∗
k and f ∗

k be the optimum solution and value for (P) obtained by starting
from x̃k.
If (f ∗

k < U∗) then Update the current solution by setting x∗ := x∗
k and U∗ := f ∗

k .
Fathom all the nodes of the stack having a lower bound on the
optimum value of (P) larger than U ∗ − ε.

If (f ∗
k − wfk

≤ ε) then Fathom the node.

5. Set k := k + 1.

end (while)

z can be updated from the bounds [lx, ux] by:

lz :=

⌈
k

lx − l0x
u0

x − l0x

⌉
and uz :=

⌊
k

ux − l0x
u0

x − l0x

⌋
· (3.52)

86 Chapter 3. An outer approximation method based on special ordered sets

3.3.4 Illustration of the method

Algorithm 3.3 is now applied on an example which has been chosen to be intentionally
simple in order to give a graphic illustration of the method. Assume that we want to find the
global optimum, within an accuracy ε equal to 10−3, of the problem (Pex) which is only subject
to a discrete restriction:

(Pex)

min 3 sin(x) + 0.2 (x − 1)2,

s.t. x ∈ [0, 2π] and x is a multiple of 2π
9
·

To model the discrete restriction on x, a new integer variable z belonging to the interval [0, 9] is
introduced in the problem by means of the constraint:

x = z
2π

9
·

The graphic representation of the continuous objective function of (Pex) as a function of x only
is given in Figure 3.11. The circles represent the points which satisfy the discrete restriction

0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832
−4

−3

−2

−1

0

1

2

3

4

5

6

7

3*sin(x)+0.2*(x−1)2

feasible points
optimal solution

Figure 3.11: Graphic representation of problem (Pex).

and the one which minimizes the objective function f , that is x∗ = 4.189, is highlighted.
We start by building the linear outer approximation problem (ÕPex) for (Pex). We should

mention first that in this case, an underestimation problem would be enough to solve the prob-
lem since the nonlinear functions only appear in the objective function of a minimization prob-
lem. Therefore, there is no need to overestimate them. However, to illustrate the proposed
method, we build the linear outer approximation problem. To this aim, we decide to use only
one set λ based on five equally spaced breakpoints xi, that is,

xi = lx + (i − 1)
ux − lx

4
, 1 ≤ i ≤ 5, (3.53)

3.3 An outer approximation method to solve nonlinear problems 87

where lx and ux are the current lower and upper bounds on x. Each time these bounds are mod-
ified, the breakpoints are updated. By approximating sin(x) and x2 by two new variables wsin(x)

and wx2 thanks to conditions (2.17), (2.18), (3.23) and (3.42), the linear outer approximation
problem is given by:

(ÕPex)

min 3wsin(x) + 0.2 (wx2 − 2x + 1),
s.t. x = z 2π

9
with z integer,

wsin(x) ≥
∑5

i=1 λi sin(xi) − εsin,L,

wsin(x) ≤
∑5

i=1 λi sin(xi) + εsin,U ,

wx2 ≥∑5
i=1 λix

2
i − εx2,L,

wx2 ≤∑5
i=1 λix

2
i ,

x =
∑5

i=1 λixi,

1 =
∑5

i=1 λi,
0 ≤ λi, 1 ≤ i ≤ 5,
lx ≤ x ≤ ux,
lz ≤ z ≤ uz,
lwsin(x)

≤ wsin(x) ≤ uwsin(x)
,

lw
x2

≤ wx2 ≤ uw
x2

.

In this problem, x, z, wsin(x), wx2 and λi, 1 ≤ i ≤ 5 are the variables. We denote the objec-
tive function wf(x). The errors εsin,L and εsin,U correspond to the maximum overestimation and
underestimation approximation errors done on a piece [xi, xi+1] by approximating sin(x) by its
SOS approximation. These two errors are computed on each piece by using Theorem 3.5 and
among these errors, the maximum ones are taken. The overestimation approximation error gen-
erated by x2, εx2,L, is given by the formula (3.22). The parameters lk and uk denote the lower
and upper bounds on the variable k. Note that the bounds on wsin(x) and wx2 can be computed
by using the bound propagation technique detailed in Section 3.2.2. The update of these bounds
allows us to discard solutions where the approximation wsin(x) of sin(x) does not belong to the
interval [−1, 1], for example. If this update of the bounds on new variables is not taken into
account, the domain given by the possible values (x, wf(x)) for the outer approximation prob-

lem (ÕPex) relaxed with regard to the discrete restriction is illustrated in Figure 3.12. On this
picture, the image of the five breakpoints are represented by circles and the SOS approximation
of the function to minimize corresponds to the piecewise linear function which links the im-
ages of two consecutive breakpoints. Note that the expression of this piecewise linear function
wf(x) =

∑5
i=1 λi(3 sin(xi) + 0.2 (x2

i − 2x + 1)) can be written, by linearity, in function of the
linear approximations of sin(x) and x2 as:

3

5∑

i=1

(λi sin(xi)) + 0.2

5∑

i=1

(λix
2
i) + 0.2(−2x + 1).

However, the constraints of problem (ÕPex) are not sufficient to guarantee to have an SOS
approximation since the SOS type 2 condition is not explicitly required. Therefore, all points
belonging to the convex hull based on the breakpoints are feasible. This convex hull, which cor-
responds to the domain DPV defined in (3.46) (in fact the set of the possible values (x, wf(x))

for the linear approximation method (P̃) of Section 2.2.3) is also represented in the figure. Note
that the left and right sides of this convex hull correspond to a part of the SOS approximation.

88 Chapter 3. An outer approximation method based on special ordered sets

Observe also that the global optimum of the nonlinear problem highlighted by a star does not
belong to this convex hull. Therefore, to ensure that the optimum solution, x∗, of the nonlinear
problem can produce an objective value equal to f(x∗) in the approximation problem, the do-
main DPV has been extended by adding or removing the approximation errors (εsin,L, εsin,U and
εx2,L) to have an outer approximation problem. Accordingly, the obtained domain, DPV OA,
includes the previous one, as shown in Figure 3.12.

0 1.5708 3.1416 4.7124 6.2832
−4

−3

−2

−1

0

1

2

3

4

5

6

7

3*sin(x)+0.2*(x−1)2

SOS approximation
DPV
DPVOA

Figure 3.12: Graphic representation of the continuous relaxation of problem (ÕPex) without
taking the bounds on wsin(x) and wx2 into account.

But this domain can be a little bit tightened since it does not take the bounds on the new
variables wsin(x) and wx2 into account. The domain obtained by discarding the parts of the
domain which violate the bound constraints on wsin(x) and wx2 is presented in Figure 3.13.
The minimum on this domain for the linear outer approximation problem relaxed with regard
to the discrete restriction is highlighted by a star. The problem (Pex) is now solved by using
Algorithm 3.3.

1. LP1

In the problem (ÕPex), x belongs to [0, 2π]. Therefore, the bounds on the new variables
are given by lwsin(x)

= −1, uwsin(x)
= 1, lw

x2
= 0 and uw

x2
= 4π2 by using the bound

propagation technique of Section 3.2.2. As five breakpoints placed at 0, π
2
, π, 3π

2
and 2π

are used, by Theorem 3.5 and equation (3.22), the maximum approximation errors are
such that εsin,L = εsin,U = 0.211 and εx2,L = π2

16
. By solving the linear outer approxima-

tion problem (ÕPex) relaxed with regard to its discrete restriction, the obtained optimum
value, w∗

f(x), is equal to −0.905 and the solution is such that x∗ = 3.720 and z∗ = 5.329,
which corresponds to the star of Figure 3.13. The solution does not satisfy the SOS type 2
condition because λ = (0.211, 0, 0, 0.789, 0) and, logically, the integer restriction is also
violated.

3.3 An outer approximation method to solve nonlinear problems 89

0 1.5708 3.1416 4.7124 6.2832
−4

−3

−2

−1

0

1

2

3

4

5

6

7

3*sin(x)+0.2*(x−1)2

updated domain
optimum solution for the relaxed OA problem

Figure 3.13: Graphic representation of the continuous relaxation of problem (ÕPex) by taking
the bounds on wsin(x) and wx2 into account.

2. NLP1
The nonlinear problem (Pex) is next solved by starting from the solution of the linear
outer approximation problem in which the value of the discrete variable has been fixed
to its closest feasible value. As z∗ = 5.329 at the solution of (ÕPex), z is equal to 5 for
the solution of the nonlinear problem. Note that for this simple problem, the nonlinear
problem must not be really solved. Indeed, by fixing the value of z, the value of x is
directly determined and is equal to 3.491. It remains to evaluate the objective function of
(Pex) at this value, which gives an optimum value, f ∗(x), equal to 0.215. Since it is the
first feasible solution found for (Pex), U∗ is updated by:

U∗ = 0.215.

As there is no reason to fathom the node, we choose to branch on the discrete variable z at
z∗ = 5.329, and, as a consequence, we obtain two new feasible intervals for z: I1 = [0, 5]
and I2 = [6, 9]. Each of these two intervals is associated to a new problem which is added
to a branch-and-bound tree. This tree is represented in Figure 3.15. The way to choose
the branching variable and the problem to examine first will be discussed in the following
chapters. Note that in this particular case, the interval I1 could be reduced to [0, 4] because
the optimum found when z is equal to 5 is guaranteed to be the global one for the problem
(Pex) because all variables of the problem were fixed. Nevertheless, for the illustration of
the method and since this particular case does not arise with more complicated problems,
we keep I1 = [0, 5].

3. LP2
Assume that the next problem to solve is the one associated to the feasible interval for z
given by I2 = [6, 9]. By (3.51), the variable x must belong to the interval [4.189, 2π]. By
propagating these bounds on wsin(x) and wx2 , the bounds on these variables can be updated
by lwsin(x)

= −1, uwsin(x)
= 0, lw

x2
= 17.546 and uw

x2
= 4π2. Since the breakpoints are

90 Chapter 3. An outer approximation method based on special ordered sets

based on the lower and upper bounds on x, they are also modified by (3.53) to be less
spaced, which implies that the approximations are refined. The errors associated to the
new SOS approximations are given by εsin,L = 0.033, εsin,U = 0 and εx2,L = 0.069.
The graphic representation of the resulting linear outer approximation problem relaxed
with regard to the discrete restriction, is given in Figure 3.14. The domain DPV is
delimited by continuous lines while the domain DPV OA containing all possible values
(x, wf(x)) for the outer approximation problem (by taking the bounds on wsin(x) and wx2

into account) is delimited by discontinuous lines. In this case, the upper side of these two
domains coincide since the SOS approximation of sin(x) and x2 never underestimate the
approximated functions on the considered domain for x. Therefore, the underestimation
error is equal to zero. Note that the difference between both domains becomes quite small.
By solving the problem (ÕPex) updated with the values given above, the optimum value

4.188 4.7118 5.2356 5.7594 6.2832
−4

−3

−2

−1

0

1

2

3

4

5

6

7

3*sin(x)+0.2*(x−1)2

DPV
DPVOA
optimum solution for the relaxed OA problem

Figure 3.14: Graphic representation of the continuous relaxed problem (ÕPex) if z ∈ [6, 9].

and solution are given by w∗
f(x) = −0.672, x∗ = 4.196 and z∗ = 6.011. As it could be

expected, the value of the objective function has increased with regard to the first linear
problem solved. However, it is not high enough compared to U ∗ in order to fathom the
node. The associated nonlinear problem must thus be solved.

4. NLP2
By fixing z to the closest feasible integer to its current value, 6.011, i.e., by fixing z to
6, the value of x is directly fixed to 4.189, which gives a better optimum value for the
nonlinear problem than the one previously found. Accordingly, U ∗ is updated with this
value:

U∗ = −0.564.

5. LP3
We choose to pursue refining the linear outer approximation problem treated. Again,
the problem is splitted in two new subproblems that are added to the branch-and-bound
tree. We branch on z = 6.011, which gives two feasible “intervals” for z: I3 = {6} and

3.4 Conclusion 91

I4 = [7, 9]. We select to solve the problem associated to I3. For this subproblem, the
value of z is fixed to 6. As a consequence, the value of x can be directly determined. All
the variables of the original problem have thus a fixed value. As an outer approximation
defined at a point, and not on an interval, amounts to the approximated nonlinear function,
the optimum values of the problems (ÕPex) and (Pex) coincide. Since the global optimum
of the nonlinear problem when z is equal to 6 has already been found (see NLP2), the node
can be fathomed. Another way to reason would be to say that the difference between the
optimum values of the linear and nonlinear problem (here equal to zero because these are
the same problems as all the variables are fixed), is smaller than the fixed accuracy ε and
that, therefore, the node can be fathomed.

6. LP4
We now choose to examine the problem associated to the interval I4 = [7, 9]. With
such values for z, the variable x must belong by (3.51) to the interval [4.887, 2π]. By
propagating these bounds on wsin(x) and wx2 , we obtain lwsin(x)

= −0.984, uwsin(x)
= 0,

lw
x2

= 23.882 and uw
x2

= 4π2. Since the breakpoints based on the lower and upper
bounds of x have changed, the SOS approximation errors must also be updated by:
εsin,L = 0.014, εsin,U = 0 and εx2,L = 0.030. By injecting these values in (ÕPex) and
solving its continuous relaxation, the obtained optimum value is equal to w∗

f(x) = 0.068.
As this value is larger than U ∗, we can conclude that we cannot find a better solution on
this node, and accordingly, we can fathom it.

7. LP5
We go up in the branch-and-bound tree to examine the last problem not yet solved, that
is, the one associated to I1 = [0, 5]. The update of the bounds on the variables is given by
[lx, ux] = [0, 3.491], [lwsin(x)

, uwsin(x)
] = [−0.342, 1] and [lw

x2
, uw

x2
] = [0, 12.185], while

the approximation errors are given by εsin,L = 0.001, εsin,U = 0.091 and εx2,L = 0.190.

The optimum value of the updated problem (ÕPex) relaxed with regard to the discrete
restriction is given by w∗

f(x) = 0.159 which is larger than U ∗. As a consequence, the node
can be fathomed. Since the whole tree has been explored, the solution of the problem
(Pex) is reached at x∗ = 4.189 (with z∗ = 6) and its optimum value is equal to −0.564.

3.4 Conclusion

In this chapter, we have explained the reason of the failure of the usual SOS approximation
method on the TVC problem and we have proposed to decompose each nonlinear function of
the problem in nonlinear components of one or two variables in order to reduce the size of
the linear problems. We have also shown that the approximation based on SOS can be better
than the one based on a big-M formulation. After having highlighting the features that should
be improved in the classical SOS approximation method, we have exploited these observations
and have developed a method that globalizes the SOS approximation problem by replacing each
nonlinear function by a linear domain which includes it. This allows us to obtain an outer ap-
proximation problem. These domains are based on SOS approximations and more particularly,
on the approximation errors generated by the latter. These errors have been computed for each
kind of components of one or two variables appearing in the treated problem. Each function

92 Chapter 3. An outer approximation method based on special ordered sets

of the problem defined on a space of more than two dimensions has indeed be decomposed
into components of one or two variables, which produces a decrease in the quality of the used
approximations. However, this decomposition allows us to reduce the number of variables nec-
essary in the linear outer approximation problem, to exploit the specificities of the problem in
order to refine the approximations and finally to develop a general framework easily adaptable
to treat a large number of problems. The specificities of the problem have been also exploited
to reduce the size of the linear outer approximation problem.

The linear outer approximation problems built to solve the nonlinear problem are no longer
subject to the SOS conditions but we use the fact that good approximations fulfill these condi-
tions, in order to refine the approximation. Without imposing these conditions, tight approx-
imations can even though be obtained by refining the outer approximation problem through
a branch-and-bound tree and updating breakpoints. In this context, the treatment of discrete
restrictions is not a major difficulty. With the method developed in this chapter, the global op-
timum of the nonlinear problem itself is found, after a finite number of iterations, instead of
the global optimum of its linear SOS approximation as it is usually the case in approximation
methods.

1

2

43

PSfrag replacements

z z

z

z

z

w∗
f(x)

w∗
f(x) w∗

f(x)

w∗
f(x)

w∗
f(x)

w∗
f(x)

f ∗(x)

f ∗(x)

f ∗(x)

f ∗(x)

U∗

U∗

U∗

U∗

≤≤

≤

≤≤

≤≤≤0

0

6

6

7 9

9

9

5

5

=

=

= −0.905
= 0.215
= 0.215

= −0.672

= −0.564
= −0.564

= −0.564
= −0.564

= 0.159

= 0.068
>

>

Figure 3.15: Branch-and-bound tree developed to solve the problem (Pex).

Chapter 4

Theoretical considerations on the
proposed method

This chapter aims at theoretically justifying the interest of the proposed method. Firstly,
the outer approximations developed in Section 3.2 are compared with other outer approxima-
tion techniques employed in the literature: tangent lines to a convex function, McCormick’s
inequalities [81] and convex trigonometric underestimators for trigonometric functions (Carat-
zoulas and Floudas [24]). The advantages and drawbacks of these techniques and ours are
highlighted and show that the outer approximations proposed in this thesis are competitive with
the other ones, in particular for the TVC problem. Secondly, the question of the choice of the
branching variable is treated. By always using the same number of breakpoints to approximate
a same nonlinear component everywhere in the branch-and-bound tree, that is, by updating
breakpoints when one goes down in this tree, we will see that branching on variables λi is no
longer convenient and that it is preferable to branch on original variables. A comparison of the
size of the domains of possible values for the outer approximation obtained by branching on the
variables λi without updating breakpoints or by branching on original variables and updating
breakpoints is also performed for the square and bilinear functions. The case of trigonometric
functions is not considered for the reasons mentioned in Section 4.2. The performed comparison
underlines the advantage of updating breakpoints and thus, of branching on original variables.

4.1 Comparison with other outer approximation techniques

As the TVC problem can be formulated by using three kinds of functions and as different
outer approximation techniques have been developed in the literature for these functions, they
are again separately considered. The analysis starts with the square function.

4.1.1 Outer approximations of x2 based on SOS versus on tangent lines

As the square function is convex, a usual way (see Polisetty and Gatzke [96], for instance)
to bound this function below by a linear function consists in bounding it by its tangent lines
at some points of its domain, since a tangent line to a convex function always underestimates
it. To bound above a convex function f defined on an interval [x1, xp], the best linear function
which can be employed corresponds to the linear function, denoted φ, joining (x1, f(x1)) and

93

94 Chapter 4. Theoretical considerations on the proposed method

(xp, f(xp)). As f corresponds to the square function in the present case, it is easy to show that
φ is given by:

φ(x) = (x1 + xp) x − x1xp. (4.1)

Note that this linear function is also the upper limit of the domain of possible values for the
outer approximation of x2 proposed in Section 3.2. Therefore, the difference between the outer
approximations based on SOS or delimited below by tangent lines arises in the lower limit
of the outer approximation domains. This is illustrated in Figure 4.1, which represents the
domain of possible values for the outer approximation of x2, on the left when based on SOS
with four equally spaced breakpoints and on the right when defined by the tangent lines at these
breakpoints and by the straight line φ bounding the square function above. We now show that
if the set λ used in the outer approximations proposed in Section 3.2 and if the tangent lines are
both based on the same number p of equally spaced breakpoints, then the two compared outer
approximation techniques are equivalent with regard to two different quality measures: the
maximum approximation errors and the area of the domain of the possible values for (x, wx2).

x1 x2 x3 x4

x2

domain of possible values

x1 x2 x3 x4

x2

domain of possible values

Figure 4.1: Domains of possible values for the outer approximation of x2: on the left, based on
SOS, and on the right, based on its tangent lines.

Maximum approximation errors
First of all, we examine the maximum overestimation and underestimation approximation errors
that the two outer approximation techniques based on p equally spaced breakpoints can produce
on the approximation domain denoted [lx, ux]. Note that the maximum overestimation approxi-
mation error is identical in both cases since the upper limit of the domain of possible values for
the two approximation techniques is the same. It thus remains to compare the underestimation
approximation errors.

1. Outer approximation based on SOS
In Theorem 3.1, the expression of the maximum overestimation approximation error pro-
duced on a piece by the SOS approximation of x2 has been established. To guarantee that
the domain DPV defined in (3.46) does not discard any possible value (x, x2) for the
nonlinear approximated problem, this domain has been enlarged to give DPV OA (see
(3.47)) by bringing down the lower limit of DPV by the overestimation error defined in

4.1 Comparison with other outer approximation techniques 95

Theorem 3.1. Since the lower limit of DPV , which is given by the SOS approximation
of x2, overestimates x2 everywhere, except at breakpoints at which it is equal to x2 (see
Figure 3.8), the maximum underestimation approximation error produced by the outer
approximation of x2 based on SOS is reached at breakpoints. Moreover, it is equal to
the maximum overestimation approximation error εx2,L produced on a piece. Denoting
ελ(x2),U this maximum underestimation approximation error, we then have by (3.22):

ελ(x2),U =
(ux − lx)

2

4(p − 1)2
· (4.2)

2. Outer approximation based on tangent lines
For this outer approximation technique, the lower limit of the domain of possible values
is determined by tangent lines. The expression of the tangent line of x2 at a breakpoint
xi, 1 ≤ i ≤ p, and denoted Ti, is given by:

Ti ≡ y = 2xix − x2
i . (4.3)

Since the maximum underestimation error on a piece is reached at the intersection of two
tangent lines of x2 defined at two consecutive breakpoints, as shown on the right part of
Figure 4.1, the point x∗ which maximizes the underestimation error must be one of the
points x∗

i , 1 ≤ i ≤ p − 1, that satisfy:

2xix
∗
i − x2

i = 2xi+1x
∗
i − x2

i+1, (4.4)

or equivalently, by isolating x∗
i :

x∗
i =

xi + xi+1

2
· (4.5)

As the underestimation approximation error, denoted eU(x), is equal at x∗
i to:

eU (x∗
i) = (x∗

i)
2 − Ti(x

∗
i) = (x∗

i)
2 − 2xix

∗
i + x2

i ,

by replacing x∗
i by its value given in (4.5), it can be derived that:

eU(x∗
i) =

(xi+1 − xi)
2

4
· (4.6)

As the breakpoints are equally spaced, the quantity xi+1 − xi is the same for all indices
i, 1 ≤ i ≤ p − 1, and each point x∗

i = xi+xi+1

2
at the half of a piece produces the same

value for the underestimation approximation error, that is, (4.6). Therefore, the maximum
underestimation approximation error, that we denote εtangente(x2),U , is equal to this value.
By expressing this error in function of the range of the variable x and not in function of
the breakpoints, we find that:

εtangente(x2),U =
(ux − lx)

2

4(p − 1)2
,

since xi+1 −xi = ux−lx
p−1

. We thus obtain the same maximum underestimation approxima-
tion error as in (4.2).

96 Chapter 4. Theoretical considerations on the proposed method

The maximum underestimation and overestimation approximation errors are thus equivalent for
the two outer approximation techniques. Observe however that the maximum underestimation
errors are reached at breakpoints for the outer approximation based on SOS while they are at
the half of the pieces for the outer approximations based on tangent lines. We now demonstrate
that the area of the domain of possible values is also identical for the two outer approximation
techniques.

Area of the domain of possible values for the outer approximations

1. Outer approximation based on SOS
We have the following result.

Theorem 4.1 The area of the domain of possible values for the outer approximation of
x2 based on SOS with p equally spaced breakpoints is given by:

Aλ =
∆3

x

12

2p2 − 4p + 3

(p − 1)2
,

where ∆x is the range of the variable x, that is, ∆x = ux − lx.

Proof
As presented in Figure 4.2, the domain of possible values for the outer approximation
of x2 based on SOS can be decomposed into p − 1 trapeziums where the number of
trapeziums corresponds to the number of pieces. The “height”, H , of a trapezium is
equal to the length of a piece, i.e., ∆x

p−1
. The length of the bases, the parallel sides defined

by x = xi, 1 ≤ i ≤ p, and denoted Bi, is equal to the sum of ελ(x2),U , the maximum
underestimation error defined in (4.2) generated by the outer approximation of x2 based
on SOS and εover,x2(xi), the maximum overestimation approximation error produced at
xi. By expressing (4.2) in function of ∆x, ελ(x2),U becomes:

ελ(x2),U =
∆2

x

4(p − 1)2
· (4.7)

The maximum overestimation approximation error that can be produced at xi, εover,x2(xi),
is equal to the difference at point xi between the upper limit φ(x) defined at (4.1) and the
square function, that is,

εover,x2(xi) = φ(xi) − x2
i ,

= (x1 + xp)xi − x1xp − x2
i ,

= (xp − xi)(xi − x1).

By using the fact that the breakpoints are equally spaced to write (xp − xi) and (xi − x1)
in function of ∆x, εover,x2(xi) is equal to:

εover,x2(xi) =
∆2

x

(p − 1)2
(p − i)(i − 1)· (4.8)

Since the area Aλ of the domain of possible values is equal to the sum of the areas of
p − 1 trapeziums, we have:

Aλ =

p−1∑

i=1

1

2
H(Bi + Bi+1) =

p−1∑

i=1

1

2

∆x

p − 1
(2ελ(x2),U + εover,x2(xi) + εover,x2(xi+1)).

4.1 Comparison with other outer approximation techniques 97

x1 x2 x3 x4

x2

domain of possible values

Figure 4.2: Decomposition of the domain of possible values for the outer approximation of x2

based on SOS into p − 1 trapeziums.

As εover,x2(xi) is equal to zero at points x1 and xp, Aλ becomes:

Aλ =
1

2

∆x

p − 1

(
2

p−1∑

i=1

ελ(x2),U + 2

p−1∑

i=2

εover,x2(xi)

)
·

By simplifying and replacing ελ(x2),U and εover,x2(xi) by their values given in (4.7) and
(4.8) respectively, we have:

Aλ =
∆x

p − 1

(
(p − 1)

∆2
x

4(p − 1)2
+

∆2
x

(p − 1)2

p−1∑

i=2

(p − i)(i − 1)

)
·

By developing and applying the following properties:
n∑

i=1

i =
n(n + 1)

2
and

n∑

i=1

i2 =
1

6
n (n + 1)(2n + 1), (4.9)

the desired result is obtained, since:

Aλ =
∆3

x

(p − 1)3

(
1

4
(p − 1) +

p−1∑

i=2

(
− p + (p + 1)i − i2

))

=
∆3

x

(p − 1)3

(
1

4
(p − 1) + (p − 2)(−p) + (p + 1)

(
(p − 1)p

2
− 1

)

−1

6
(p − 1) p (2(p − 1) + 1) + 1

)

=
∆3

x

(p − 1)3

(−4p2 + 9p − 1

4
+

p3 + 3p2 − 10p

6

)

=
∆3

x

(p − 1)3

2p3 − 6p2 + 7p − 3

12

=
∆3

x

12

2p3 − 2p2 − 4p2 + 4p + 3p − 3

(p − 1)3

=
∆3

x

12

(p − 1)(2p2 − 4p + 3)

(p − 1)3
,

98 Chapter 4. Theoretical considerations on the proposed method

and thus, finally:

Aλ =
∆3

x

12

2p2 − 4p + 3

(p − 1)2
·

2

2. Outer approximation based on tangent lines

Theorem 4.2 The area of the domain of possible values for the outer approximation of
x2 based on tangent lines defined at p equally spaced breakpoints is also given by:

Atang =
∆3

x

12

2p2 − 4p + 3

(p − 1)2
·

Proof
As shown in Figure 4.3, the domain of the possible values for the outer approximation of
x2 based on tangent lines can be decomposed into 2 triangles and p − 2 trapeziums. The

x1 x2 x3 x4

x2

domain of possible values

Figure 4.3: Decomposition of the domain of possible values for the outer approximation of x2

based on tangent lines into 2 triangles and p − 2 trapeziums.

“height” of the ith trapezium, denoted Htrapezi
, corresponds to the distance between the

points xi+xi+1

2
and xi+1+xi+2

2
, or equivalently to the length of a piece since the breakpoints

are equally spaced. Therefore,

Htrapezi
=

∆x

p − 1
·

The length of the bases, the parallel sides defined at points xi+xi+1

2
, 1 ≤ i ≤ p − 1 and

denoted Btrapezi
, is equal to the distance at xi+xi+1

2
between φ and the tangent Ti. By using

(4.1) and (4.3), we have:

Btrapezi
= φ(xi+xi+1

2
) − Ti(

xi+xi+1

2
)

= (x1 + xp)
xi+1 + xi

2
− x1xp − 2xi

xi+1 + xi

2
+ x2

i

=
x1xi

2
+

xixp

2
+

xi+1xp

2
+

x1xi+1

2
− x1xp − xixi+1

=
1

2

(
(xp − xi)(xi+1 − x1) + (xp − xi+1)(xi − x1)

)
.

4.1 Comparison with other outer approximation techniques 99

Since the breakpoints xi are equally spaced, Btrapezi
can be rewritten in term of ∆x as:

Btrapezi
=

1

2

(
∆2

x

(p − 1)2
(p − i)i +

∆2
x

(p − 1)2
(p − i − 1)(i − 1)

)

=
1

2

∆2
x

(p − 1)2

(
(p − i)i + (p − i)i − (p − i) − (i − 1)

)

=
1

2

∆2
x

(p − 1)2

(
2(p − i)i − p + 1

)
. (4.10)

Accordingly, the area of the ith trapezium is given by:

Atrapezi
= 1

2
Htrapezi

(Btrapezi
+ Btrapezi+1

)

=
1

2

∆x

p − 1

(
∆2

x

2(p − 1)2
(2(p − i)i − p + 1 + 2(p − i − 1)(i + 1) − p + 1)

)
,

=
1

4

∆3
x

(p − 1)3
(2(p − i)i − 2p + 2 + 2(p − i)i − 2(i + 1) + 2(p − i)),

=
1

4

∆3
x

(p − 1)3
(4(p − i)i − 4i),

=
∆3

x

(p − 1)3
(−i2 + i(p − 1)).

We now consider the area of the triangles. The height of the first triangle (the one defined
by using (x1, x

2
1)) is given by:

Htriangle1
=

x2 − x1

2
· (4.11)

Since the breakpoints xi are equally spaced, Htriangle1
can be rewritten as:

Htriangle1
=

∆x

2 (p − 1)
·

The basis of the first triangle, Btriangle1
, corresponds to the basis at x1+x2

2
of the first trapez-

ium. By evaluating (4.10) with i = 1, we find:

Btriangle1
=

∆2
x

2(p − 1)
·

Therefore, the area of the first triangle is equal to:

Atriangle1
=

1

2
Htriangle1

Btriangle1
=

∆3
x

8 (p − 1)2
·

It can be shown by a similar reasoning that the area of the second triangle is identical. By
summing the areas of the two triangles and the p− 2 trapeziums, we obtain the total area
Atang of the domain of possible values for the outer approximations of x2 based on the

100 Chapter 4. Theoretical considerations on the proposed method

tangent lines defined at the p breakpoints:

Atang = 2
∆3

x

8 (p − 1)2
+

p−2∑

i=1

∆3
x

(p − 1)3
(−i2 + i(p − 1))

=
∆3

x

(p − 1)2

(
1

4
+

1

p − 1

p−2∑

i=1

(
− i2 + i(p − 1)

))

=
∆3

x

(p − 1)2

(
1

4
+

1

p − 1

(
−1

6
(p − 2)(p − 1)(2(p − 2) + 1)

+(p − 1)
(p − 2)(p − 1)

2

))

=
∆3

x

(p − 1)2

(
1

4
+ (p − 2)

(
3 − 2p

6
+

p − 1

2

))

=
∆3

x

12

2p2 − 4p + 3

(p − 1)2
,

where we have used (4.9).

2

The area of the domain of possible values (x, wx2) is thus identical for the outer approxima-
tions based on SOS or on tangent lines. As the maximum overestimation and underestimation
approximation errors are also the same, the quality of the two outer approximation techniques
can be considered as equivalent. The difference between these techniques appears in the num-
ber of constraints and variables needed to build the outer approximations, but also in the way to
exploit the knowledge of the problem.

First, with respect to the number of variables, the outer approximation technique based on
SOS is more expensive than the outer approximation technique based on tangent lines because
it needs the introduction of p variables λi. On the other hand, with respect to the number of
constraints, the less costly technique depends on the number of breakpoints used. If the tangent
lines are based on p breakpoints, the associated outer approximation uses p+1 constraints (p to
bound the domain below and one to bound it above). To the contrary, the outer approximation
of x2 based on SOS requires four constraints, whatever the number of breakpoints. Accord-
ingly, the outer approximation based on SOS is more expensive with regard to the number of
constraints if less than three breakpoints are used, while it is cheaper if more than three break-
points are employed. Note also that this outer approximation technique can exploit the fact
that a variable appears in different functions of the problem in order to reduce the domain of
possible values for the outer approximation, as explained in Section 3.2.3.

Observe now that the bounds on the value of the approximation wx2 can be tightened by
applying the bound propagation developed in Section 3.2.2. Therefore, some values belonging
to the domain of possible values for the outer approximation of x2 may possibly be rejected by
the updated bounds on wx2 . When zero is not strictly inside the approximation interval for x,
the bounds of the interval of the possible values for wx2 correspond by bound propagation, to
the squares of the lower and upper bounds on x. Accordingly, bound propagation can allow us
to refine the outer approximation around a bound of the approximation interval for x. As by
construction, these bounds are breakpoints, the bound propagation allows us to refine the outer

4.1 Comparison with other outer approximation techniques 101

approximation around a breakpoint. For the outer approximation technique based on SOS, the
underestimation approximation error is maximized at breakpoints while it is equal to zero at
these points if the outer approximation technique is based on tangent lines (see Figure 4.1).
Therefore, refining the domain around a breakpoint reduces more the domain for the outer ap-
proximation based on SOS, as illustrated in Figure 4.4. The left part of this figure corresponds
to the outer approximation based on SOS while the right one represents the outer approximation
based on tangent lines. As shown in the figure, only the outer approximation based on SOS can
be tightened. In this case, the refinement of the domain of possible values is obtained thanks to
the lower bound on the square function which is given by the square of the lower bond of the
approximation interval. Note that we have deliberately omitted to treat the case where zero is
strictly inside the approximation interval for x, in which case, the discussion is different. This
is motivated by the fact that in the TVC problem, the arguments of square functions are always
positive.

0 1 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x2

domain of possible values
new lower limit

0 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x2

domain of possible values

Figure 4.4: Domains of possible values for the outer approximation of x2: on the left, based on
SOS, and on the right, based on its tangent lines.

Since the outer approximations based on SOS can be more refined by bound propagation
than the ones based on tangent lines and since the variables which are arguments of square
functions generally also appear in other functions in the TVC problem, the use of outer approx-
imations based on SOS can be justified to solve this problem.

4.1.2 Outer approximations of xy based on SOS versus on McCormick’s
inequalities

A popular way (see Adjiman et al. [9], Sahinidis and Tawarmalani [109]) to outer approx-
imate a bilinear product xy on a rectangle [lx, ux] × [ly, uy] consists in using McCormick’s
inequalities developed in [81]. These inequalities bound xy below and above in this way:

(McCormick)

xy ≤ lxy + uyx − lxuy,
xy ≤ uxy + lyx − uxly,
xy ≥ lxy + lyx − lxly,
xy ≥ uxy + uyx − uxuy.

(4.12)

102 Chapter 4. Theoretical considerations on the proposed method

We will show in this section that the outer approximation generated by these inequalities has
exactly the same domain of possible values as the outer approximation based on SOS defined
by the conditions (2.27), (2.28), (2.29) and (3.39). To establish this result, a definition is firstly
introduced.

Definition 4.1 Let f : X → IR be a continuous function defined on a non empty convex set, X ,
of IR2. The convex envelope of f(x, y) over X is a function Cvex(x, y) which satisfies:

• Cvex(x, y) is convex on X ,

• ∀(x, y) ∈ X , Cvex(x, y) ≤ f(x, y),

• If h(x, y) is a convex function defined on X such that ∀(x, y) ∈ X , h(x, y) ≤ f(x, y),
then ∀(x, y) ∈ X , h(x, y) ≤ Cvex(x, y).

The convex envelope is thus the tightest convex underestimator of the function f on the set X .
A similar definition can be given for the concave envelope, Ccave(x, y), of a function f defined
on a set X in such a way that the concave envelope is the tightest concave overestimator of f on
X . In the case of a bilinear product xy defined on a rectangle, Al Khayyal and Falk have shown
in [11] that the convex and concave envelopes are given by McCormick’s inequalities (4.12), as
stated by the following theorem.

Theorem 4.3 The convex and concave envelopes of the biliner product xy defined on the rect-
angle [lx, ux] × [ly, uy] are given by:

Cvex(x, y) = max{lxy + lyx − lxly, uxy + uyx − uxuy}, (4.13)

Ccave(x, y) = min{lxy + uyx − lxuy, uxy + lyx − uxly}. (4.14)

Let us now introduce the set Cenv as:

Cenv = {(x, y, z)| Cvex(x, y) ≤ z ≤ Ccave(x, y), lx ≤ x ≤ ux, ly ≤ y ≤ uy}. (4.15)

Using Theorem 4.3, the set Cenv for a bilinear product xy defined on a rectangle can be rewritten
by using the definitions (4.13) and (4.14) of the convex and concave envelopes as:

Cenv = {(x, y, z)| max{lxy + lyx − lxly, uxy + uyx − uxuy} ≤ z,
z ≤ min{lxy + uyx − lxuy, uxy + lyx − uxly},
lx ≤ x ≤ ux, ly ≤ y ≤ uy}.

(4.16)

The third component of the points belonging to Cenv is thus bounded as the bilinear product in
McCormick’s inequalities (4.12).

We now compare Cenv and the set DPV OA which contains all the possible values (x, y, wxy)
for the outer approximation of xy based on SOS. To this aim, note that since Cvex(x, y) and
Ccav(x, y) are respectively the tightest convex underestimator and concave overestimator of a
function f(x, y) (here, xy) on [lx, ux] × [ly, uy], it is easy to show that Cenv is the convex hull
(see Section 1.1.3) of points (x, y, f(x, y)) ((x, y) ∈ [lx, ux]× [ly, uy]). We now recall in Theo-
rem 4.4, a known result (see Hiriart-Urruty and Lemaréchal [59]).

4.1 Comparison with other outer approximation techniques 103

Theorem 4.4 The convex hull of points (x, y, f(x, y)) is the set of the convex combinations of
these points.

Therefore, according to what precedes and by particularizing the previous theorem to f(x, y) =
xy, the following theorem can be derived.

Theorem 4.5 Cenv is the set of the convex combinations of (x, y, xy) with lx ≤ x ≤ ux and
ly ≤ y ≤ uy.

Using this result, Theorem 4.6 can now be shown.

Theorem 4.6 For a bilinear product defined on a rectangle [lx, ux]× [ly, uy], the set Cenv of the
convex combinations of points (x, y, xy) coincides with the set DPV OA defined in (3.47).

Proof
The equivalence is demonstrated by using two inclusions. First, we show that:

DPV OA ⊆ Cenv.

Indeed, by definition, each point of DPV OA is a convex combination of points (xi, yj, xiyj)
where (xi, yj) are breakpoints, since the approximation errors εxy,L and εxy,U used in (3.47)
are equal to zero for the reasons detailed in Section 3.2.4. As these breakpoints belong to
[lx, ux] × [ly, uy], any point of DPV OA belongs to Cenv, by Theorem 4.5.

Secondly, we prove the inverted inclusion:

Cenv ⊆ DPV OA.

By Theorem 3.4, any point (x, y, xy) such that lx ≤ x ≤ ux and ly ≤ y ≤ uy, can be rewritten
as a convex combination of the four extreme points (lx, ly, lxly), (lx, uy, lxuy), (ux, ly, uxly) and
(ux, uy, uxuy), where (lx, ly), (lx, uy), (ux, ly) and (ux, uy) are breakpoints. Accordingly, any
point of Cenv, a convex combination of points (x, y, xy) by Theorem 4.5, can be expressed as a
convex combination of the four extreme points given above, and thus belongs to DPV OA.

2

By combining the previous results, one can derive Theorem 4.7.

Theorem 4.7 The possible values (x, y, wxy) for the outer approximation of the bilinear prod-
uct xy on [lx, ux]×[ly, uy] are the same for an outer approximation of xy satisfying McCormick’s
inequalities and for an outer approximation of xy based on SOS.

Proof
By Theorem 4.6, the domain of possible values for the outer approximation of xy on a rectangle
based on SOS coincides with the set Cenv. This set being defined by (4.16), it is obvious by
using (4.12) that the desired result is valid.

2

As the quality of the two outer approximation techniques is the same with respect to the
size of the domain of possible values, a natural question is to ask if there exist some reasons to

104 Chapter 4. Theoretical considerations on the proposed method

employ the formulation based on SOS while it introduces more variables in the problem than
McCormick’s inequalities. Again, the use of outer approximations based on SOS can produce
tighter outer approximations if one argument of the bilinear product appears in another func-
tion of the problem. Suppose that a variable x intervenes twice in the problem in x2 and xy.
By applying the modelling of Section 3.2.5 which uses (3.23) and (3.39), the outer approxima-
tion based on SOS with three equally spaced breakpoints in each dimension is given for these
functions by:

wx2 ≤∑3
i=1

∑3
j=1 λij xi

2,

wx2 ≥∑3
i=1

∑3
j=1 λij xi

2 − εx2,L,

wxy =
∑3

i=1

∑3
j=1 λij xiyj,

x =
∑3

i=1

∑3
j=1 λij xi,

y =
∑3

i=1

∑3
j=1 λij yj,∑3

i=1

∑3
j=1 λij = 1, 0 ≤ λij, 1 ≤ i, j ≤ 3.

Assume also that the approximation of x2 and the constraints of the problem imply that x = x2

with λ11 = λ12 = λ13 = λ31 = λ32 = λ33 = 0. Hence,

wxy =
∑3

i=1

∑3
j=1 λij xiyj

= x2

∑3
i=1

∑3
j=1 λij yj

= xy.

In this case, the outer approximation of xy is exact. We now examine the outer approximation
based on McCormick’s inequalities. As x = x2 = lx+ux

2
since the breakpoints are equally

spaced and by using ∆x to denote the quantity ux − lx, it is easy to show that McCormick’s
inequalities given in (4.12) can be expressed as:

xy ≤ lxy + uy

2
∆x,

xy ≤ uxy − ly
2
∆x,

xy ≥ lxy + ly
2
∆x,

xy ≥ uxy − uy

2
∆x.

(4.17)

For example, if x ∈ [−1, 2] and y ∈ [−3, 0], the value of all parameters appearing in the right
terms of inequalities (4.17) can be replaced and these inequalities become:

xy ≤ −y,
xy ≤ 2y + 9

2
,

xy ≥ −y − 9
2
,

xy ≥ 2y.

Moreover, assume that y = − 3
2
. Accordingly, McCormick’s inequalities require that the product

xy is bounded by:

−3 ≤ xy ≤ 3

2
·

As a consequence, McCormick’s inequalities are weaker in this case than the outer approxima-
tion based on SOS which produces an exact approximation. An optimization problem illustrat-
ing this observation is given in Appendix A. When arguments of the bilinear product appear in
other functions of the problem, the outer approximation based on SOS may bring tighter outer

4.1 Comparison with other outer approximation techniques 105

approximations than McCormick’s inequalities (the inverse being not true). This is due to the
fact that the same λ is used to approximate different functions (see Section 3.2.3) with the outer
approximation based on SOS. Therefore, the outer approximations of the functions using the
same λ are linked together. This imposes an implicit constraint on the problem, which allows us
to reject some values of the domain of possible values as shown in the previous example. Since
arguments of the bilinear product in the decomposition of the TVC problem can also appear in
square functions, we think that the choice of the outer approximations based on SOS can be
justified, even if it is more expensive with respect to the number of variables.

For the sake of easiness, we have handled each bilinear product in the same way, that is, by
using its outer approximation based on SOS. However, in some cases, other formulations should
be preferred. So, when the arguments of the bilinear product do not appear in unary functions,
McCormick’s inequalities should be used instead since they do not introduce variables λ in the
problem. Finally, the specificities of the problem can also be exploited to reformulate it in a
better way. For example, the TVC problem involves a function aiν

2
i where ai is binary, which

can be modelled, after decomposition, as a bilinear product xy where y is binary. For this par-
ticular product, an outer approximation is not needed since w = xy can be rewritten as four
linear inequalities by exploiting the fact that y is binary. Indeed, if y = 0 then w = y = 0,
otherwise, y = 1 and then w = x. This can be expressed by using a big-M formulation:

w ≥ −My,
w ≤ My,
w ≥ z − M(1 − y),
w ≤ z + M(1 − y),

(4.18)

which is exactly equivalent to w = xy when the binary condition on y is satisfied and for M > 0
sufficiently large.

4.1.3 Outer approximations of trigonometric functions based on SOS ver-
sus on convex trigonometric underestimators

The determination of outer approximations appropriate for trigonometric functions has not
been treated much in the literature. To our knowledge, the only work on the matter is due to
Caratzoulas and Floudas. In [24], they propose to underestimate a nonconvex trigonometric
function by a convex trigonometric one. Since bounding above a function f amounts to bound-
ing below its opposite (which can be written as a trigonometric function by means of trigono-
metric properties if f is a trigonometric function) and taking the opposite of the obtained un-
derestimator, we limit the study of the outer approximations of trigonometric functions to their
underestimations. Although the underestimators built by Caratzoulas and Floudas are convex
but not necessarily linear, linear underestimations can also be obtained from them by taking the
tangent lines of these convex trigonometric functions at some points of their domain. But here,
we consider the convex trigonometric underestimators, which are given in [24] for sin(x) and
cos(x) on [0, 2π] by:

Usin = −15.72 sin

(
1

6
(x + 2π)

)
+ 13.61,

and

Ucos = −16.99 sin

(
1

6
(x + 2π)

)
+ 15.72.

106 Chapter 4. Theoretical considerations on the proposed method

Figure 4.5 compares these underestimations with the ones based on SOS and shows that the
latter are globally tighter.

0 1.5708 3.1416 4.7124 6.2832
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

sin(x)
underestimator based on SOS
trigonometric underestimator

0 1.5708 3.1416 4.7124 6.2832
−1.5

−1

−0.5

0

0.5

1

1.5

cos(x)
underestimator based on SOS
trigonometric underestimator

Figure 4.5: Underestimations of sin(x) and cos(x) on [0, 2π] based on SOS or given by a convex
trigonometric function.

Moreover, Caratzoulas and Floudas have shown that the maximum underestimation error
grows linearly with the size of the domain. This is not the case with the underestimation based
on SOS where the underestimation error is always smaller than the maximum underestimation
error reached on [0, 2π] augmented by one, since the periodicity of trigonometric functions is
exploited, as detailed in Section 3.3.2. A graphic illustration of the underestimation of cos(x)
on [0, 10π] is presented in Figure 4.6. On this domain, the convex trigonometric underestimator
established in [24] is given by:

Ucos = −47.91 sin

(
2π

188.48
(x + 31.41)

)
+ 42.49.

0 5 10 15 20 25 30

−7

−6

−5

−4

−3

−2

−1

0

1

cos(x)
underestimator based on SOS
trigonometric underestimator

Figure 4.6: Underestimators of cos(x) on [0, 10π] based on SOS or given by a convex trigono-
metric function.

4.2 Branching on original variables or on variables λi 107

Again, as highlighted by the figure, the underestimator based on SOS is globally tighter
than the convex trigonometric underestimator. Note that, when the length of the approximation
domain is smaller than π, the trigonometric function may be convex on this domain. In this
case, the convex trigonometric underestimator is better than the underestimator based on SOS
because it corresponds to the trigonometric function itself. Finally, when the trigonometric
function is defined on a domain where it is concave, the underestimator used by Caratzoulas
and Floudas is not a trigonometric function but the straight line joining the extreme points of
the interval, exactly like the underestimator based on SOS.

Two underestimation techniques with very different goals have been compared. Caratzoulas
and Floudas employ a twice continuously differentiable convex underestimator, not necessarily
linear, while the underestimation used in the method proposed therein is linear. Both techniques
have advantages and drawbacks: tighter on some domains, less accurate on other ones. The
underestimator based on SOS needs additional variables contrary to the convex trigonometric
underestimator but the latter produces nonlinear problems which must be solved by a nonlinear
solver while the underestimator based on SOS generates linear problems. For these reasons,
we think that the use of outer approximations based on SOS for trigonometric functions can be
considered as a valid alternative with regard to the existing technique.

4.2 Branching on original variables or on variables λi

Since the previous section has highlighted that for the TVC problem, the outer approxima-
tions based on SOS are competitive with regard to the usually employed outer approximations,
the use of the outer approximations based on SOS can be theoretically validated. The present
section now focuses on the way to refine the outer approximations. For classical SOS ap-
proximations methods (not outer), the approximation problem is refined by branching on the
variables λi (see Martin [80], Möller [83], Tomlin [110]) in order to satisfy the SOS condi-
tions. However, the method developed in this thesis needs more than the satisfaction of the
SOS conditions to guarantee the convergence to the global optimum of the problem, as seen in
Section 3.1.1. Indeed, we must be able to refine the approximations as much as necessary. We
cannot limit ourselves to the SOS approximation of the problem which is possibly not enough
accurate if the chosen number of breakpoints is too small. In order to refine sufficiently the
approximations, the proposed method uses a constant number of breakpoints to approximate a
same nonlinear component on a given interval everywhere in the branch-and-bound tree. This
introduction of new breakpoints when one goes down in the tree allows us to produce tighter
and tighter linear outer approximations since the latter are built on smaller and smaller pieces,
which implies that the approximation errors and as a consequence, the domain of possible val-
ues, decrease. This is the key for the convergence of the method.

We now explain how to update breakpoints when one goes down in the tree. After branch-
ing, the range of the branching variable is divided in two intervals. Therefore, the number of
remaining breakpoints in each of these two intervals is smaller than before branching. To keep
constant the number of breakpoints on each of these two intervals, new equally spaced break-
points denoted x′

i or x̄i are introduced in the subproblems, as shown in Figure 4.7, where five
breakpoints are used. In this figure, the white dots correspond to the previous breakpoints which
do no longer belong to the approximation interval for the branching variable after branching.
Note that the updated breakpoints are chosen equally spaced for the reasons mentioned in Sec-

108 Chapter 4. Theoretical considerations on the proposed method

tion 3.3.1.

PSfrag replacements

x̄1x̄2 x̄3 x̄4x̄5

x1 x2 x3 x4 x5

x′
1x′

2x
′
3x′

4x
′
5

Figure 4.7: Update of breakpoints after branching.

By modifying the breakpoints when one goes down in the tree, the branching on variables
λi is no longer valid, as illustrated by the branching represented in Figures 4.7 and 4.8. Indeed,
before branching, a variable λi is associated to each breakpoint xi. After branching, which is
realized on λ3 in this case, to each of the new breakpoints x′

i or x̄i is again associated a variable
λi. The same variables λi as before branching are employed to avoid to increase the number of
variables in the problem. This situation is represented in Figure 4.8. However, these variables

PSfrag replacements

λ1λ2λ3λ4λ5

λ1 λ2 λ3 λ4 λ5

λ1λ2λ3λ4λ5

Figure 4.8: Update of variables λi after branching.

have another meaning after branching since they are associated to other breakpoints. Therefore,
we no longer can use the branching constraints (2.21) and (2.22), which would have required
in the present case that λ4 = λ5 = 0 and λ1 = λ2 = 0, respectively. But we have to employ
x ≤ x3 and x ≥ x3 instead, where x3 is a parameter equal to the value before branching of
the third breakpoint, that is, the one on which we branch. Thus, when the breakpoints are
modified, branching on the variables λi is no longer relevant, while branching on the original
variables allows us to avoid this problem. Note that in the one-dimensional case, branching on
x = xi by updating breakpoints or on λi without modifying breakpoints allows us to discard
exactly the same part of the domain, as highlighted by comparing the approximation intervals
for the subproblems of Figures 4.7 and 4.9, the latter figure representing a classical branching
at λ3. However, by updating breakpoints like in Figure 4.7, the outer approximations on the

PSfrag replacements

λ3 λ4 λ5

λ1 λ2 λ2 λ4 λ5

λ1 λ2 λ3

Figure 4.9: Branching on variables λi.

remaining subdomains can be refined since the breakpoints are less spaced and thus, the outer

4.2 Branching on original variables or on variables λi 109

approximations become tighter. This remark is also true in two dimensions as long as the
branching is done vertically or horizontally, as explained in Section 4.2.2.

This section presents the reduction in the size of the domain of possible values by always
keeping the number of breakpoints (used to approximate a same component on a given interval)
constant and by branching on original variables instead of on the variables λi. This reduction
is analytically computed for square and bilinear functions. We do not consider the reduction
for trigonometric functions since, as seen in Section 3.2.4, the approximation errors for this
kind of functions depend on the approximation interval and not only on the size of this domain.
Therefore, the expression of the area of DPV OA will vary with respect to the approximation
interval and the place where we branch in this interval. As the goal of this section is to give an
idea of the reduction in the size of the domain and not to develop heavy analytical expressions,
we limit our analysis to square and bilinear functions.

4.2.1 Outer approximation of x2

To correctly compare the two branching choices, we assume that the branching is done at
the same place in both cases. For branching on variables λi, the branching is done on λj while
for branching on original variables, the branching is realized on xj, the associated breakpoint.
Without loss of generality, we are going to study the area of DPV OA defined in (3.47) for the
right subproblems (see below) generated by branching. The expression of the area associated
to the left subproblems can be derived in a similar way. For the branching on the variable λj ,
the following constraint must be added to the right subproblem:

p∑

i=j

λi = 1, or equivalently λi = 0, 1 ≤ i ≤ j − 1,

and for the branching on the variable x, we require that:

x ≥ xj.

Theorem 4.8 establishes the difference and the ratio between the areas of DPV OA for the
outer approximation of x2 after a branching on λj without modifying breakpoints, or obtained
by branching on x = xj and keeping the same number of equally spaced breakpoints for the
outer approximation before and after branching.

Theorem 4.8
Let ∆x be the range of the variable x before branching and p be the number of equally spaced
breakpoints. Then, the area of DPV OA for the outer approximation of x2 for the right sub-
problem (R) obtained by branching on the variable λj without updating the breakpoints is given
by:

AλR
=

∆3
x

12

(p − j)

(p − 1)3
(1 + 2(p − j)2),

while that obtained by branching on the variable x at the j th breakpoint and by keeping a
constant number of equally spaced breakpoints is given by:

AxR
=

∆3
x

12

(p − j)3

(p − 1)5
(2p2 − 4p + 3).

110 Chapter 4. Theoretical considerations on the proposed method

The area associated to the branching on the variable λj is thus always larger and the difference
between the two areas is equal to:

AλR
− AxR

=
∆3

x

12

(p − j)

(p − 1)5
(j − 1)(2p − j − 1) > 0,

while their ratio is given by:

AλR

AxR

=
(p − 1)2

(p − j)2

2p2 − 4pj + 2j2 + 1

2p2 − 4p + 3
> 1·

Proof
We begin by computing the area AλR

of DPV OA for the outer approximation of x2 associated
to the branching on the variable λj. In the same way as in Theorem 4.1 which established
the area of DPV OA before branching, the area AλR

obtained after branching can be seen as
the sum of the areas of p − j trapeziums (since it remains p − j pieces after branching). The
“height”, H , of a trapezium is equal to the length of a piece, i.e., ∆x

p−1
. The length of the bases,

the parallel sides at x = xi, j ≤ i ≤ p, and denoted Bi, is equal to the sum of ελ(x2),U , the
maximum underestimation error given in (4.7) generated by the outer approximation based on
SOS and εover,x2(xi), the maximum overestimation approximation error which can be produced
at xi for the right subproblem obtained after branching on λj . The error εover,x2(xi) is equal to
the difference at point xi between the straight line joining (xj, x

2
j) to (xp, x

2
p) and the square

function, that is,

εover,x2(xi) = x2
j + (xp + xj)(xi − xj) − x2

i

= (xp − xi)(xi − xj).

By using the fact that the breakpoints are equally spaced to write (xp − xi) and (xi − xj) in
function of ∆x, εover,x2(xi) is equal to:

εover,x2(xi) =
∆2

x

(p − 1)2
(p − i)(i − j)· (4.19)

Therefore, the area associated to the branching on λj can be computed as follows:

AλR
=

p−1∑

i=j

1

2
H(Bi + Bi+1) =

p−1∑

i=j

1

2

∆x

p − 1
(2ελ(x2),U + εover,x2(xi) + εover,x2(xi+1)).

Since the overestimation approximation error εover,x2(xi) is equal to zero at xj and xp, AλR

becomes:

AλR
=

1

2

∆x

p − 1

(
2

p−1∑

i=j

ελ(x2),U + 2

p−1∑

i=j+1

εover,x2(xi)

)
.

Using (4.7) and (4.19), we then find:

AλR
=

∆x

p − 1

(
∆2

x

4(p − 1)2
(p − j) +

∆2
x

(p − 1)2

p−1∑

i=j+1

(p − i)(i − j)

)
.

4.2 Branching on original variables or on variables λi 111

Using (4.9), we get:

AλR
=

∆3
x

(p − 1)3

(
1

4
(p − j) +

p−1∑

i=j+1

(pi − i2 + ij − pj)

)

=
∆3

x

(p − 1)3

(
1

4
(p − j) + (p − j − 1)(−pj) + (p + j)

(
p(p − 1)

2
− j(j + 1)

2

)

−p − 1

6
p (2(p − 1) + 1) +

j

6
(j + 1)(2j + 1)

)

=
∆3

x

(p − 1)3

(
1

4
(p − j) + (p − j − 1)(−pj) +

(p + j)2

2
(p − j − 1)

−p − 1

6
p (2(p − 1) + 1) +

j

6
(j + 1)(2j + 1)

)

=
∆3

x

(p − 1)3

(
1

4
(p − j) + (p − j − 1)

(p2 + j2)

2
− p2 − p

6
(2p − 1)

+
j2 + j

6
(2j + 1)

)

=
∆3

x

(p − 1)3

(
1

4
(p − j) +

p3 − p − 3p2j + 3pj2 − j3 + j

6

)

= ∆3
x

(p − j)

(p − 1)3

(
1

4
+

p2 + j2 − 2pj − 1

6

)

=
∆3

x

12

(p − j)

(p − 1)3
(1 + 2p2 + 2j2 − 4pj)

=
∆3

x

12

(p − j)

(p − 1)3
(1 + 2(p − j)2),

which is the desired result. The area associated to the branching on the variable x is now
computed. Since no variable λi is compelled to be equal to zero, Theorem 4.1 can be applied
with the range of the variable x obtained after branching which is given by:

∆xR
= ∆x

p − j

p − 1
·

Therefore, by Theorem 4.1,

AxR
=

∆3
xR

12

2p2 − 4p + 3

(p − 1)2

=
∆3

x

12

(p − j)3

(p − 1)5
(2p2 − 4p + 3),

which is again the desired result. By removing now AxR
from AλR

, we obtain that:

AλR
− AxR

=
∆3

x

12

(p − j)

(p − 1)3

(
1 + 2(p − j)2 − (p − j)2

(p − 1)2
(2p2 − 4p + 3)

)
(4.20)

=
∆3

x

12

(p − j)

(p − 1)3
α, (4.21)

where we define α as:

α = 1 + 2(p − j)2 − (p − j)2

(p − 1)2
(2p2 − 4p + 3).

112 Chapter 4. Theoretical considerations on the proposed method

As
∆3

x

12

(p − j)

(p − 1)3
is always positive since 1 < j < p, it remains to show that α is also positive.

By employing some basic manipulations, the desired result can be obtained. Indeed, we have
that:

α =
(p − 1)2(1 + 2(p − j)2) − (p − j)2(2p2 − 4p + 3)

(p − 1)2

=
(p − 1)2 + (p − j)2 (2(p − 1)2 − (2p2 − 4p + 3))

(p − 1)2

=
(p − 1)2 − (p − j)2

(p − 1)2

=
(j − 1) (2p − 1 − j)

(p − 1)2
> 0,

because 1 < j < p. Therefore, the difference between AλR
and AxR

is always positive and is
equal to:

AλR
− AxR

=
∆3

x

12

(p − j)

(p − 1)5
(j − 1) (2p − 1 − j).

Finally, the ratio
AλR

AxR

can be derived and is equal to:

AλR

AxR

=
(p − 1)2

(p − j)2

2p2 − 4pj + 2j2 + 1

2p2 − 4p + 3
·

2

Note that taking j = 1 in the expression of AλR
amounts to the formula of the area of

DPV OA before branching established in Theorem 4.1. Table 4.1 gives some examples of
values associated to the right subproblems obtained with different values for the number p of
breakpoints and for the place indexed by j where the branching is performed. This table, in
particular the ratio

AλR

AxR

, confirms the interest of using the suggested branching technique instead
of branching on the variables λi. (Similar results can also be derived for the left subproblems.
In this case, each occurrence of (p − j) in Theorem 4.8 must be replaced by (j − 1)).

The question of the place of branching is also important. Theorem 4.9 shows that branching
at the half of the range of x is the best way to reduce the sum on the areas of DPV OA for the
outer approximation of x2 for the right and left subproblems.

Theorem 4.9 The best choice to minimize the sum of the areas of the domain of possible values
for the outer approximation of x2 for the left and right subproblems is to branch at the half
of the range of the variable x, if we suppose that the p breakpoints used to build the outer
approximation are equally spaced.

Proof
By Theorem 4.8, the area of DPV OA for the right subproblem obtained by branching on x at
xj is equal to:

AxR
=

∆3
x

12

(p − j)3

(p − 1)5
(2p2 − 4p + 3).

4.2 Branching on original variables or on variables λi 113

p j AλR
AxR

AλR
− AxR

AλR
/AxR

3 2
1

32
∆3

x

3

128
∆3

x

1

128
∆3

x

4

3

5 2
19

256
∆3

x

297

4096
∆3

x

7

4096
∆3

x

304

297

5 3
3

128
∆3

x

11

512
∆3

x

1

512
∆3

x

12

11

5 4
1

256
∆3

x

11

4096
∆3

x

5

4096
∆3

x

16

11

Table 4.1: Some examples of values associated to the right subproblem for different values for
the number p of breakpoints and for the place indexed by j where the branching is performed.

By using a similar reasoning as in Theorem 4.8, it can be shown that the area of DPV OA for
the left subproblem is equal to:

AxL
=

∆3
x

12

(j − 1)3

(p − 1)5
(2p2 − 4p + 3).

Accordingly, the sum of the areas of DPV OA for the two subproblems obtained after branching
on xj is given by:

A(j) =
∆3

x

12

2p2 − 4p + 3

(p − 1)5
((p − j)3 + (j − 1)3)·

Since the derivative of the sum of the areas with respect to j must be equal to zero for the value
of j which minimizes this sum, we compute j for which:

A′(j) =
∆3

x

12

2p2 − 4p + 3

(p − 1)5
(−3(p − j)2 + 3(j − 1)2) = 0,

that is:
(j − 1)2 − (p − j)2 = 0.

By factorizing, we find that j must satisfy:

(p − 1)(2j − p − 1) = 0.

Since it can be easily shown that the second derivative of A(j) is positive, the value:

j∗ =
p + 1

2

minimizes the sum of the areas. As the breakpoints are equally spaced between x1 and xp, xj∗

(which is not necessarily a breakpoint since j is not an integer if p is even) corresponds to the
point at the half of the range of the variable x.

2

114 Chapter 4. Theoretical considerations on the proposed method

4.2.2 Outer approximation of xy

After having determined the reduction in DPV OA obtained for the outer approximation of
the square function by keeping constant the number of breakpoints and branching on the origi-
nal variables instead of on the variables λi, we now analyze the case of a bilinear function. As
explained in Section 2.2.3, there exist several ways to branch on the variables λi,j, contrary to
the one-dimensional case: vertically, horizontally or diagonally. Therefore, different compar-
isons with these three branching techniques must be performed. The comparison basis will be
the volume of DPV OA for the right subproblems generated by both kinds of branching vari-
ables (on λi,j or on original ones). We show in this section that the best way to reduce the sum
of the volumes of DPV OA for the left and right subproblems consists in branching on original
variables at the half of their range, as for the square function.

Volume of DPV OA before branching
We start by determining the volume of DPV OA before branching for the bilinear product xy.

Theorem 4.10 The volume of DPV OA for the outer approximation of xy on [lx, ux] × [ly, uy]
is given by:

V0 =
1

6
(ux − lx)

2(uy − ly)
2. (4.22)

Proof
Theorem 4.6 has established that, for a bilinear product defined on a rectangle [lx, ux]× [ly, uy],
the set DPV OA is equivalent to the set Cenv where the possible values for the approximation
of xy are delimited by the convex and concave envelopes of xy on this rectangle. The volume of
DPV OA thus corresponds to the volume between these convex and concave envelopes defined
by (4.13) and (4.14), respectively. To compute the volume between these envelopes, we need to
precisely determine on each part of the domain which function maximizes (respectively mini-
mizes) the right term of (4.13) (respectively (4.14)). To this aim, the approximation domain is
divided in four parts like in Figure 4.10.

�
�

�
�

�
�

�
�

�
�

��@
@

@
@

@
@

@
@

@
@

@@

lx ux

ly

uy

1

2

4

3

Figure 4.10: Decomposition of the approximation domain for xy following its convex and
concave envelopes.

4.2 Branching on original variables or on variables λi 115

Let us consider the concave envelope of xy on parts 1 and 2. On these parts of the domain, y is
bounded below by the straight line joining (lx, ly) and (ux, uy), and thus satisfies:

y ≥ uy − ly
ux − lx

(x − lx) + ly, ∀x, y, (4.23)

or equivalently, since ux − lx > 0:

(ux − lx)y + (ly − uy)x − uxly + lxuy ≥ 0, ∀x, y. (4.24)

Since this expression can be rewritten as:

uxy + lyx − uxly ≥ lxy + uyx − lxuy, ∀x, y,

the concave envelope (4.14) on parts 1 and 2 is precisely given by:

lxy + uyx − lxuy.

By similar reasonings, it can be established that the convex and concave envelopes are defined
on the four parts of Figure 4.10 as:

on part 1:
Cvex(x, y) = lxy + lyx − lxly,
Ccave(x, y) = lxy + uyx − lxuy,

on part 2:
Cvex(x, y) = uxy + uyx − uxuy,
Ccave(x, y) = lxy + uyx − lxuy,

on part 3:
Cvex(x, y) = uxy + uyx − uxuy,
Ccave(x, y) = uxy + lyx − uxly,

on part 4:
Cvex(x, y) = lxy + lyx − lxly,
Ccave(x, y) = uxy + lyx − uxly.

In order to compute the volume of DPV OA, each triangle of Figure 4.10 is now divided in
two parts, as presented in Figure 4.11. We first compute the volume between the concave and
convex envelopes on part 1a. On this part, x can vary from lx to mx = lx+ux

2
, while y is bounded

above by my = ly+uy

2
and below by (4.23). Accordingly, the volume of DPV OA can be com-

puted on 1a as in the following.

116 Chapter 4. Theoretical considerations on the proposed method

V1a
=

∫ lx+ux
2

lx

∫ ly+uy

2

uy−ly

ux−lx
(x−lx)+ly

(Ccave(x, y) − Cvex(x, y)) dydx

=

∫ lx+ux
2

lx

∫ ly+uy

2

uy−ly

ux−lx
(x−lx)+ly

(lxy + uyx − lxuy − lxy − lyx + lxly) dydx

=

∫ lx+ux
2

lx

∫ ly+uy

2

uy−ly

ux−lx
(x−lx)+ly

(uy − ly)(x − lx) dydx

= (uy − ly)

∫ lx+ux
2

lx

(x − lx)[y]
ly+uy

2
uy−ly

ux−lx
(x−lx)+ly

dx,

= (uy − ly)

∫ lx+ux
2

lx

(x − lx)

(
uy − ly

2
− uy − ly

ux − lx
(x − lx)

)
dx

= (uy − ly)
2

∫ lx+ux
2

lx

(1

2
(x − lx) −

1

ux − lx
(x − lx)

2
)

dx

= (uy − ly)
2

[
1

2

(
x2

2
− xlx

)
− 1

ux − lx

(x − lx)
3

3

] lx+ux
2

lx

= (uy−ly)
2

(
1

4

(
lx + ux

2
− lx

)(
lx + ux

2
+ lx

)
− 1

2
lx

(
lx + ux

2
− lx

)

−1

3

1

ux − lx

(
lx + ux

2
− lx

)3
)

= (uy−ly)
2

(
1

4

ux − lx
2

3lx + ux

2
− 1

2
lx

ux − lx
2

− 1

3

1

ux − lx

(ux − lx)
3

8

)

=
1

4
(uy − ly)

2 (ux − lx)

(
3lx + ux

4
− lx −

1

6
(ux − lx)

)

=
1

48
(uy − ly)

2 (ux − lx)
2.

�
�

�
�

�
�

�
�

�
�

��@
@

@
@

@
@

@
@

@
@

@@

lx mx ux

ly

my

uy

1a

1b

2a

4a 4b

2b

3b

3a

Figure 4.11: Decomposition of the approximation domain to compute the volume of DPV OA.

By using similar computations, it can be shown that the volume on each of the eight triangles
of Figure 4.11 is equal to V1a

. Therefore, as the volume of DPV OA is equal to the sum of the

4.2 Branching on original variables or on variables λi 117

volumes on the eight triangles, we have that:

V0 =
1

6
(uy − ly)

2(ux − lx)
2.

2

Vertical branching
Let us consider the modification in the volume obtained by branching. Suppose that px equally
spaced breakpoints are used for x and py for y, which gives pxpy breakpoints. Also assume
that the branching is vertically performed at the same place, either on the variable λj,. or on the
breakpoint xj depending on the branching variable. The representation of breakpoints before
and after branching (in case of three breakpoints in each dimension before branching) is given
in Figure 4.12. The left part of the figure represents the breakpoints associated to the branching
on the variables λi,j given by equations (2.31) and (2.32) while the right one, the breakpoints
employed for the branching on x. For the latter, new breakpoints are created. The previous
breakpoints that are no longer used (since they do not belong to the updated approximation
domain) are represented by white dots.

PSfrag replacements

Branching on λi,j Branching on x

Figure 4.12: Breakpoints for a vertical branching phase (three breakpoints in each dimension
before branching).

For both branching techniques, the volume of DPV OA after branching is the same. Indeed,
by Theorem 4.10, the volume of DPV OA for xy on a rectangle only depends on the bounds
of this rectangle, which are in the present case identical for both kinds of branching. As by
branching on λj,. or on xj , the feasible range of x for the right subproblem is reduced to be equal
to px−j

px−1
(ux−lx), the volume of DPV OA for the right subproblem is, by applying Theorem 4.10

with this new range, such that:

Vvert =
1

6

(px − j)2

(px − 1)2
(ux − lx)

2(uy − ly)
2. (4.25)

Horizontal branching
We now examine the case of an horizontal branching at λ.,k or at breakpoint yk, depending if the

118 Chapter 4. Theoretical considerations on the proposed method

branching is done on variables λi,j (as defined in (2.33) and (2.34)) or on the original variables.
The configuration of breakpoints before and after branching is given in Figure 4.13.

PSfrag replacements

Branching on λi,j Branching on y

Figure 4.13: Breakpoints for an horizontal branching phase (three breakpoints in each dimen-
sion before branching).

A similar reasoning as for vertical branching can be held to obtain that the volume of DPV OA
is identical by branching on variables λ.,k or on yk. Moreover, the volume of DPV OA for
the right subproblem obtained after having branched on λ.,k or on y = yk is, by applying
Theorem 4.10, equal to:

Vhoriz =
1

6

(py − k)2

(py − 1)2
(ux − lx)

2(uy − ly)
2.

Diagonal branching
We finally consider the third way of branching on the variables λi,j, that is, the diagonal branch-
ing detailed in Section 2.2.3. We first focus on the branching on variables λi,j. Assume that
after having branched several times, it is no longer possible to vertically or horizontally branch
and that it remains only four breakpoints associated to a possibly nonzero λi,j. Therefore, the
SOS condition (2.30) is not necessarily satisfied. In order to impose this condition, a diagonal
branching given by (2.35) and (2.36) is performed. We recall that the diagonal branching con-
sists in dividing the rectangle formed by the four breakpoints to which are associated a nonzero
λi,j in two triangles according to its diagonal. In this way, the SOS condition is necessarily ful-
filled for the left and right generated subproblems and the bilinear product is thus replaced by a
plan, its SOS approximation. As a consequence, the approximation is no longer outer. Indeed,
Theorem 3.4 cannot be applied since only three breakpoints can be associated to nonzero λi,j

while four of them are necessary in order that the approximation is outer. Accordingly, in order
to guarantee that any possible value (x, y, xy) is also feasible for the SOS approximation, an
approximation error must be introduced to enlarge the domain of possible values.

To avoid this, when we branch on original variables, we prefer to pursue branching vertically
or horizontally to always keep a rectangle as approximation domain, since in this case, there
is no need to use an approximation error by Theorem 3.4. Furthermore, a diagonal branching

4.2 Branching on original variables or on variables λi 119

cannot be performed on original variables by simply modifying their bounds, as it is the case
with the variables λi,j. Accordingly, a diagonal branching on original variables would imply
to adopt a branch-and-cut technique instead of a branch-and-bound one, and thus to add new
constraints when going down in the tree.

Since the branching on variables λi,j or on original variables does not divide the approxima-
tion domain in the same way, the resulting approximation domains are different. Therefore, the
sum of the volumes of DPV OA for the right and left subproblems could be better by branching
on λi,j but we will see that it is not the case. Figure 4.14 represents the approximation domains
after branching which are delimited by triangles in case of branching on variable λi,j or by rect-
angles in case of branching on original variables. Here, the situation before branching is not the
same depending if the branching is performed on variables λi,j or on original variables. This
is due to the fact that this situation results from previous branching phases. During the latter,
the number of breakpoints associated to a nonzero λi,j has been reduced by branching on λi,j

while it has not changed by branching on original variables because we have chosen to update
breakpoints.

PSfrag replacements

Branching on λi,j Branching on x

Figure 4.14: Breakpoints for a diagonal branching phase if we branch on λi,j and for a vertical
branching phase if we branch on x (three breakpoints used in each dimension for the first outer
approximation problem).

With a branching on variables λi,j, the approximation (which is an SOS approximation in
this case) given by the convex combination

∑
i

∑
j λi,jxiyj of (3.47) does not generate any

volume because only the three breakpoints associated to the remaining nonzero λi,j can be
used and only one plan can be defined with three noncollinear points. But, as explained above,
this approximation is no longer outer and an approximation error must be introduced in the
formulation of the linear approximation. This error has been established in Theorem 3.2 for
a particular kind of triangle. The expression of the error for other types of triangle is also
given in Section 3.2.4. Therefore, the outer approximation on the triangle defined by the three
breakpoints to which are associated a nonzero λi,j must satisfy:

∑

i

∑

j

λi,jxiyj ≤ wxy ≤
∑

i

∑

j

λi,jxiyj + εxy,U , (4.26)

120 Chapter 4. Theoretical considerations on the proposed method

or ∑

i

∑

j

λi,jxiyj − εxy,L ≤ wxy ≤
∑

i

∑

j

λi,jxiyj, (4.27)

depending on the shape of the triangle formed by the breakpoints associated to the nonzero
λi,j. We recall that the errors εxy,L and εxy,U produced by the SOS approximation of xy on a
triangle corresponding to one half of the rectangle [lx, ux] × [ly, uy] are identical and are equal
by Theorem 3.2 to:

εxy =
(ux − lx)(uy − ly)

4
· (4.28)

Theorem 4.11 establishes the expression of the volume of DPV OA for the outer approximation
of xy on a triangle given by constraints (4.26) or (4.27). In this theorem, lx, ux, ly and uy denote
the bounds on the approximation domain before the last branching phase.

Theorem 4.11 Let Trig be a triangle corresponding to one half of the rectangle [lx, ux] ×
[ly, uy]. The volume of the domain of possible values for the outer approximation of xy on
triangle Trig for constraints (4.26) or for constraints (4.27), depending on the shape of Trig,
is given by:

Vdiag =
1

8
(ux − lx)

2(uy − ly)
2.

Proof
The volume Vdiag corresponds to the volume delimited by constraints (4.26) or (4.27) imposed
on the triangle Trig, that is, the volume of an hyper-triangle having the triangle Trig as basis
and for which the height is equal, by subtraction of the part of the constraint ((4.26) or (4.27))
bounding wxy below from the other part of the constraint bounding wxy above, to:

∑

i

∑

j

λi,jxiyj + εxy −
∑

i

∑

j

λi,jxiyj,

since εxy,L = εxy,U = εxy. By hypothesis, the basis of triangle Trig is equal to ux − lx while its
height is equal to uy − ly. By applying the formula of the volume of an hyper-triangle, we thus
find that:

Vdiag =
1

2
(ux − lx)(uy − ly)εxy.

Replacing εxy by its value given in (4.28), the desired result is finally obtained.

2

Coming back to the branching on original variables for which the number of breakpoints used
remains constant, we decide, without loss of generality, to vertically branch on a breakpoint x̄j

which has been added after a previous branching phase. Formula (4.25) can thus be applied to
determine the volume of DPV OA for the outer approximation of xy. Therefore, the volume is
equal to:

Vvert =
1

6

(px − j)2

(px − 1)2
(ux − lx)

2(uy − ly)
2.

Summary of the results
A summary of the obtained results is given in Table 4.2 for px equally spaced breakpoints for

4.2 Branching on original variables or on variables λi 121

x and py for y. For the sake of clarity, the quantities ux − lx and uy − ly giving here the length
of the approximation interval before branching have been replaced by ∆x and ∆y, respectively.
The diagonal branching is assumed to be performed if vertical or horizontal branching can no
longer be applied. Note that if each occurrence (px − j) is replaced by (j − 1), and (py − k) by
(k − 1), we obtain the results for the left subproblems.

Branching on variables
λi,j

Branching on original
variables

Volume before branching
1

6
∆2

x∆
2
y

1

6
∆2

x∆
2
y

Volume after a vertical
branching (on λj,. or on xj)

1

6

(px − j)2

(px − 1)2
∆2

x∆
2
y

1

6

(px − j)2

(px − 1)2
∆2

x∆
2
y

Volume after an horizon-
tal branching (on λ.,k or on
yk)

1

6

(py − k)2

(py − 1)2
∆2

x∆
2
y

1

6

(py − k)2

(py − 1)2
∆2

x∆
2
y

Volume after a diagonal
branching on λi,j or after a
vertical branching on xj

1

8
∆2

x∆
2
y

1

6

(px − j)2

(px − 1)2
∆2

x∆
2
y

Table 4.2: Comparison of the volumes of DPV OA for the outer approximation of xy for the
right subproblems obtained by different types of branching.

As for the square function, it is easy to show, by employing a similar reasoning, that in every
case, the best place to branch on in order to reduce the sum of the volumes for the left and right
subproblems corresponds to the half of the interval of the original variables. Doing this, the
formula in the last column and last row of Table 4.2 can be replaced by:

1

24
∆2

x∆
2
y, (4.29)

since (px− j) is, in this case, the half of (px−1). Note that by branching at the half of the range
of the original variables, the volume of DPV OA for the left and right subproblems is identical.

By comparing the results according to the branching variable, we see that the difference
only appears when a diagonal branching is performed. By (4.29), we can see moreover that it is
again preferable to branch on the original variables (at the half of their range) since in this way,
the volume of DPV OA is divided by three with respect to the branching on variables λi,j.

122 Chapter 4. Theoretical considerations on the proposed method

4.3 Conclusion

This chapter has presented a comparison of the outer approximations based on SOS and
proposed in Section 3.2 with other outer approximations employed in the literature. It has been
highlighted that the outer approximations based on SOS are more expensive in terms of the
number of variables since they need variables λi. However, these additional variables allow us
to produce tighter outer approximations by exploiting the multiple presence of a same variable
in the problem. As the quality of the outer approximations based on SOS is competitive with the
other examined outer approximation techniques, notably for the features of the TVC problem,
we consider that the technique suggested in this thesis offers an interesting alternative to the
existing methods.

After having underlined the interest of the outer approximation method based on SOS, our
choice to branch on the original variables has been justified. To guarantee the convergence to
the global optimum, the breakpoints are updated when one goes down in the tree in such a way
that a same component is always approximated by using the same number of equally spaced
breakpoints. In this way, the pieces become smaller and smaller when one goes down in the
tree, and the outer approximations are, therefore, tighter and tighter. In this context, branching
on variables λi is no longer convenient since the meaning of these variables varies from an it-
eration to another. Accordingly, branching is done on original variables. Finally, an analytical
comparison of the volumes of DPV OA given in (3.47) has been presented for the outer ap-
proximation of square and bilinear functions, by branching on variables λi without modifying
the breakpoints and by branching on original variables with an update of the breakpoints. The
obtained results allow us to quantify the improvement and show that the latter technique leads
to tighter approximation domains.

Chapter 5

Presolve and range reduction

This chapter and the next two are devoted to choices to improve a branch-and-bound pro-
cess: presolve and range reduction, variable choice and node selection. The goal of presolve
and range reduction amounts to reduce the range of variables, and as a consequence, to refine
the outer approximations. We refer to this bound tightening as presolve or preprocessing when
it is performed at the top of the branch-and-bound tree and as range reduction when it is realized
during the exploration of this tree. The variable selection is also important because the choice
of branching variables determines in some way the depth of the tree where a node can possibly
be cut. Since earlier the nodes are cut in the tree, better the results, the branching variable must
be chosen in such a way that branching on it produces a sufficiently large modification for the
two resulting subproblems compared to the parent problem. A branching rule is thus necessary
to choose the best branching variable. At last, the order in which the branch-and-bound tree
is explored must be treated carefully as it allows us to find more or less quickly good upper
bounds to cut nodes. We show that a convenient way to treat these three features can improve
the results a lot. In each of the three chapters, we propose and test several variants on a collec-
tion of twenty problems for the continuous case but also for the discrete one. These problems
are presented in Section 5.1.2.

In a lot of methods, an appropriate presolve can improve the results. In this chapter, we show
that it is also the case for our method. As the speed of convergence of the outer approximation
method based on SOS strongly depends on the ranges of the variables, these ranges must be
reduced as much as possible. We begin the discussion about presolve by analyzing the impact
of a basic presolve in the sense explained below. Two kinds of presolve are suggested, tested
and discussed: one is cheaper, the other is more expensive. An improved version of the prepro-
cessing obtained by propagating the modified bounds into the whole approximation problem is
then considered. The importance of the choice of the branching variable is also highlighted.
Furthermore, a more elaborate preprocessing technique to decide when the presolve phase must
be stopped is developed. Finally, all these ideas are applied not only at the beginning of the
algorithm but also during its process.

5.1 Comparison basis

This section presents the basic method to which the possible improvements will be com-
pared as well as the test problems used for this comparison. Some details about the software

123

124 Chapter 5. Presolve and range reduction

developed to test these possible improvements are also given and the ways chosen to graphically
represent the results are finally explained.

5.1.1 Basic method

In what follows, some alternatives are proposed to improve the method which is given by
Algorithm 3.2 for the continuous case and by Algorithm 3.3 for the discrete one. To build the
linear outer approximation problems used in these algorithms, we have decided to base the outer
approximations on a number of breakpoints that we think appropriate to catch the nonlinear
behaviour of the approximated functions: three breakpoints for the square functions and five
for the trigonometric ones. For the bilinear products, four breakpoints (two in each dimension)
are used. Indeed, by Theorem 3.4, only four breakpoints are needed to approximate a bilinear
product. However, if one or both arguments of the bilinear product also appear in a square
function, nine breakpoints (three in each dimension) are employed. In this way, the same set λ
can be used to handle the variable appearing in the square function and in the bilinear product
in order to refine the outer approximations of these functions, as highlighted in Appendix A.

The methods given by Algorithms 3.2 or 3.3 allow other degrees of freedom (node selection,
branching variable choice, etc.). For the basic method, we have chosen to use no presolve
or range reduction, to employ a depth-first search with backtracking and to use a branching
rule based on the variable with the largest range, as detailed below. As no presolve or range
reduction is used for the basic method, nothing particular is done to reduce the range of the
variables, which is the simplest choice that we can take. In a branch-and-bound process, a
node selection is needed to determine the order in which the nodes are treated. The depth-first
search proposed by Dakin [28] and Little et al. [76] explores the tree in a depth-first manner.
This means that the deepest nodes in the tree are first treated. Therefore, as long as we can
go down in the tree, we do it. When a node is fathomed, the next node to be examined is the
last one which has been created and which has not yet been explored. This is the principle of
backtracking.

Once the node to refine has been determined, the branching variable must be chosen. The
branching rule based on the largest range naturally requires to branch on the variable having the
largest range among the variables which, at the current solution, are not at their nonlinear value
for the outer approximations of all nonlinear components in which they appear, or which do not
satisfy the discrete restrictions. Indeed, it would be useless to refine a variable which generates
right values for the original problem and does not violate the discrete restrictions, since such
a variable cannot improve the quality of the outer approximation problem by branching on it.
Moreover, we decide to branch at a different place of the approximation interval depending if
the variable is continuous or discrete. If the variable is discrete, we choose to branch at its
current value in the solution in order to discard this current solution. Indeed, by branching on
an integer variable x at its current noninteger value, denoted x′, we tighten the bounds of the
approximation interval by imposing x ≤ bx′c for the left subproblem and x ≥ dx′e for the
right one. Therefore, x′ is no longer feasible for both subproblems. For a continuous variable,
the branching at the current solution does not always discard this solution with regard to the
original variables because the outer approximation is possibly not sufficiently refined. As a
consequence, if the variable is continuous, the branching is realized to improve the quality of
the outer approximation. Since it has been shown in Chapter 4 that the middle of the range of the
branching variable is the best place for branching to reduce the sum of the sizes of the domain

5.1 Comparison basis 125

of possible values for the left and right subproblems for the square and bilinear functions, we
branch at this place for the continuous variables.

By branching on a variable, two subproblems are generated. We decide to first solve the
one having the most feasible domain with regard to the current solution. More precisely, if we
branch on a continuous variable, the range of this one is partitioned in two parts. The value
of the branching variable at the current solution before branching thus belongs to one of the
domains of the two generated subproblems. The subproblem with this domain is thus first
treated since it can be expected that this problem is more feasible than the other one and that the
value of the objective function does not increase much compared to its current value. Indeed,
the value of the original variables at the current solution remains valid with respect to the bound
constraints of this subproblem. Now, if the branching is performed on an integer variable x, the
current value of this variable, denoted x′, is discarded, as explained above. Therefore, the same
method as for continuous variables is no longer applicable. We then choose to firstly examine
the subproblem having the closest domain to the current value of the branching variable. Thus,
if x′ is smaller than bx′c+dx′e

2
, the left subproblem is treated before the right one, otherwise, it is

the contrary.
In the next sections, several techniques related to presolve and range reduction, are proposed

in order to accelerate the speed of convergence of this basic method. When a modification
allows us to improve the method, it is validated and the basic method is updated to take this
modification into account. Therefore, the basic method evolves with the experiments.

5.1.2 Test problems

To test the impact of our different ideas, a collection of twenty test problems has been built.
Each of them is used in a continuous and a discrete version. The latter is simply obtained from
the continuous one by imposing that some variables take discrete values (typically, binary val-
ues for the variables ai and discrete ones for the ratio of voltage Rj of the TVC problem). In
order to model the discrete restrictions different from binary restrictions, new integer variables
are introduced in the problem, as detailed in Section 2.1.2. The number of variables in the dis-
crete problems is thus equal to the number of variables in the associated continuous problems
augmented by the number of discrete variables which are not binary.

All the problems have particularities of the TVC problem presented in Section 2.1.3. They
comprise trigonometric, square, bilinear, trilinear functions and also products of a trigonometric
function with a trilinear one. The first class of problems named pb can be seen as toy problems.
They have in general less variables than the other ones, called TVC, and always less constraints.
Problems TVC correspond to the TVC problem of Chapter 2 applied to different sets of data.
The expression of each problem pb is given in Appendix B. In fact, we have only seven different
problems of type pb. As for the TVC problems, we employ the structure of the problems on
different data (two for each problem pb). The differences can appear in the bounds of the vari-
ables and constraints, in the coefficients of the problem as well as in the choice of the discrete
variables. Table 5.1 gives some information about the problems: the number of variables and
constraints in the nonlinear continuous problem, the number of variables and constraints in the
linear outer approximation continuous problems (ÕP), the number of sets λ used in these linear
outer approximation problems based on SOS, the number of discrete variables in the discrete
version of the problems, the optimum value of the problem without or with discrete restrictions,
within an accuracy ε on the value of the objective function and finally, the optimum value of

126 Chapter 5. Presolve and range reduction

the first linear outer approximation problem. For the numerical experiments, the accuracy ε
used in Algorithms 3.2 and 3.3 has been set to 10−3. Note that the problems are also more or
less ordered according to their difficulty. Problems pb0 to pb5 are generally the easiest to solve
while the TVC problems are the most difficult.

#var #cons #var in OA #cons in OA #sets λ #disc f ∗
cont f∗

disc 1
st fLP

pb0 4 2 44 33 6 1 -3.0070 -2.9144 -3.3348
pb1 4 2 44 33 6 1 -1.8875 -1.8186 -2.0000
pb2 6 2 41 32 5 1 0.0000 0.0000 -0.2500
pb3 6 2 41 32 5 1 0.2500 0.2500 -0.2321
pb4 12 4 97 75 11 2 0.0248 0.0342 -0.2578
pb5 12 4 97 75 11 2 11.6073 11.6528 6.7186
pb6 12 4 143 101 19 3 0.0081 0.0400 -0.4100
pb7 12 4 143 101 19 3 0.4337 0.4370 -1.2325
pb8 12 4 119 81 14 2 0.0366 0.0900 -0.3100
pb9 12 4 119 81 14 2 7.8094 8.2900 0.3452

pb10 10 4 111 74 13 2 0.0423 0.0900 -0.3100
pb11 10 4 111 74 13 2 7.8356 7.9485 1.4924
pb12 24 8 275 195 40 6 1.7612 2.0855 -2.1758
pb13 24 8 275 195 40 6 0.5163 0.5483 -2.4008
TVC1 16 9 269 210 39 6 5.6514 5.6606 0.0000
TVC2 18 9 275 214 40 6 2.3796 2.3840 1.3145
TVC3 27 15 431 331 61 9 5.3187 5.3301 0.6231
TVC4 27 15 431 331 61 9 1.0123 1.0295 0.3063
TVC5 37 21 602 472 87 13 1.1654 1.1865 0.0000
TVC6 38 21 635 496 92 14 0.0910 0.0993 0.0000

Table 5.1: Brief description of the test problems.

5.1.3 Some details about the implementation

The software developed to test the possible improvements for the proposed method has
been written in Fortran 95 [82]. As explained in Chapter 3, this method needs to solve linear
and nonlinear problems. To handle the linear problems, the commercial solver Cplex [4] has
been employed. The method used to solve the problems is based on a simplex algorithm (see
Chapter 1). In order to solve the nonlinear problems, the nonlinear solver filterSQP developed
by Fletcher and Leyffer [44] has been employed. This solver implements a sequential quadratic
programming method using a filter to guarantee the convergence to a (local) optimum (see again
Chapter 1 for more details about these notions).

Our software is not optimized with regard to the CPU time. For example, the update of the
linear problems could be improved and the solution of a linear problem could be accelerated
by exploiting the information obtained during the previous solutions of the linear problems. A
natural extension of our work would be to improve the software in this way.

A maximum number of linear problems allowed to solve has been fixed to 500.000. If this
number is exceeded on a problem, the method is considered not to converge in a reasonable
time on the treated problem and the algorithm stops.

5.1 Comparison basis 127

5.1.4 Graphic representation of the results

To analyze the impact of the different suggested variants on the basic method, two kinds of
graphs are used: performance profiles and graphs showing the improvement or degradation per-
centage obtained for each problem with the new alternative versus the basic method. Note that
in addition to these graphic representations, the full numerical results are given in Appendix C.

Performance profiles
The performance profiles have been introduced by Dolan and Moré [34] to display in a single
graph some information about results obtained with two or more methods on a set of problems.
In particular, the graph highlights the efficiency and the robustness of each method with regard
to the other ones. The basis of comparison can be CPU time, number of function evaluations,
number of subproblems solved, etc. To build the graph, performance ratios are computed for
each problem p and for each method m:

rpm =
qpm

min{qpm′ |m′ ∈ M} ,

where M is the set of compared methods and qpm are the quantities on which we base the
comparison. As we want to minimize the quantities qpm (CPU time, function evaluations, etc.),
the best technique on problem p is the one which minimizes the performance ratio rpm among
all techniques m ∈ M. For this particular technique, the ratio is equal to one. If the method m
fails on problem p, rpm is set to infinity. The definition of performance profile for the method
m is given by:

pm(σ) =
#{p|rpm ≤ σ}

#{p} , σ ≥ 1.

The performance profile gives the proportion of problems for which the method m has a per-
formance within a factor σ of the best observed performance.

The graph showing performance profiles has as many curves as compared techniques. The
variable σ is represented in abscissa and the performance profiles in ordinate. The efficiency of
a method can be seen on the left of the graph. Indeed, the value of pm(1) gives the percentage
of problems for which the method m is the best. The robustness is given on the right of the
graph: when σ tends to infinity, pm(σ) gives the percentage of problems that the technique m
can solve. In summary, the higher the curve, the better the technique.

To compare the different techniques, we base the performance profiles of Chapters 5 to 7 on
the number of linear problems solved and also on the CPU time for Chapter 8.

Improvement percentage
Performance profiles present the results obtained on average with different methods, without
detailing them for each problem. Accordingly, each problem is supposed to have the same
weight. But amongst our test problems, these called TVC have more importance than the other
ones because they correspond more closely to the real problems that we want to solve and
because they are also the largest ones. Therefore, it is interesting to distinguish the results
obtained on each problem. As the number of linear problems solved can strongly vary from one
problem to another, the improvement percentages are used instead of the numbers themselves.
The improvement percentage obtained with the method m on the problem p with respect to the

128 Chapter 5. Presolve and range reduction

reference method r is expressed by:

ipm =

{
100

(
npr

npm
− 1
)

if npr ≥ npm,

−100
(

npm

npr
− 1
)

if npr ≤ npm,
(5.1)

where npm is the number of linear problems solved by the method m to find the global solution
of problem p. A positive value for ipm means that the method m is better than the reference
method r while a negative value means the inverse. Note also that a deterioration and an im-
provement of same magnitude produce the same absolute value for ipm.

An example of a graph representing improvement percentages can be found on Figure 5.1.
On this graph, the improvement percentages ipm are represented in ordinate while the abscissa
give the names of the problems. The numbers 0 to 13 are respectively associated to problems
pb0 to pb13 while the notations T1 to T6 correspond to the six TVC problems. Moreover, this
graph always comprises an horizontal line at y = 0 that corresponds to the reference technique.
For each problem and for each method compared to the reference technique is associated a
bar showing the magnitude of the improvement or the deterioration. For each problem, the
higher the bar, the better the technique. If for a problem, all the bars are drawn below zero, the
reference technique is the best.

5.2 Basic presolve

After having presented the basic method and the comparison basis, we now discuss the
presolve itself. As we already mentioned, the smallest the domain of a nonlinear component, the
best its outer approximation based on SOS. Therefore, it is desirable to strengthen the bounds
on the variables. However, we only focus on the original variables and on the ones which
replace a nonlinear component in the outer approximation formulation (the variables wi

ji
of

problem (ÕP) detailed in Section 3.2.5). Indeed, we are not interested in tightening the bounds
on the variables λi because they are updated to 0 and 1 as soon as the associated breakpoints
are modified, as explained in Section 4.2, that is, when the bounds on the original variables
to which are associated these breakpoints are tightened. Accordingly, the strengthening of the
bounds on variables λi is expected not to be durable.

As the tightening of bounds has a cost (see below), we do not try to reinforce bounds which
could be relaxed later. That is, we strengthen the bounds on variables only if they remain
valid in the whole branch-and-bound tree. Furthermore, we neither consider the bounds on
continuous variables appearing only linearly in the problem, because the tightening of such
bounds cannot improve the quality of the outer approximation problem. Indeed, in the linear
outer approximation problem, a linear component is approximated by itself, and thus, does not
produce an approximation error. To summarize, the candidate variables for bound strengthening
are the variables of the original problem which appear nonlinearly in the problem or which are
discrete, but also the variables wi

ji
introduced to approximate a nonlinear component.

For each variable x candidate for bound tightening, two linear problems are solved (see also
Adjiman [8]):

(Tx)

{
min / max x,

s.t. constraints of the linear outer approximation problem (ÕP).

5.3 Presolve with propagation of the tightened bounds in the problem 129

These optimization problems thus have the same structure as the ones solved during the process
of the algorithm except for the objective function. Therefore, the complexity of solving one
of the problems (Tx) or one problem (ÕP) can be considered as more or less equivalent. The
optimum value of the minimization problem of (Tx) gives the smallest feasible value for x, that
is, its lower bound, while the one of the maximization problem is equal to its upper bound.

This basic presolve has been applied to our collection of twenty problems presented in Sec-
tion 5.1.2 at the top of the tree, before solving the first linear outer approximation problem.
The following alternatives have been compared: no presolve, presolve with one sweep and full
presolve. For presolve with one sweep, the minimization and maximization problems (Tx) are
solved once for each candidate variable for bound strengthening. With full presolve, this op-
eration is repeated (multiple sweeps), until for each variable, the bound strengthening can no
longer produce an improvement in the range of the variable larger than the fixed accuracy, ε,
required for the optimum value (here 10−3). This improvement is obviously compared with
respect to the range of the variable before the last sweep. Presolve with one sweep thus corre-
sponds to a cheap presolve but it does not possibly exploit all the benefits of a presolve. To the
contrary, the full presolve tries to strengthen the bounds on the variables as much as possible
but the improvements generated by this kind of presolve can, in some cases, be small compared
to its cost. Note that when it is detected that a bound on a variable can be tightened by solv-
ing a problem (Tx), this bound is updated in the bound constraints of the outer approximation
problem (ÕP) and, thus, also in the bound constraints of problems (Tx) for all variables x for
which we must still try to improve the bounds. As a consequence, with regard to the situation
without presolve, only the bounds on some variables are modified in the outer approximation
problem (ÕP) after using the kind of presolve explained in this section.

The two types of presolve (one sweep or full) have been tested on the twenty problems pre-
sented earlier. They have produced for the continuous case only two improvements in terms of
the number of linear problems to solve and, for the discrete version, three improvements (one
sweep presolve) and two improvements (full presolve). All the other results were less good
than without presolve. Therefore, we consider that the presolve detailed above is not efficient
since it generally deteriorates the results. However, the idea of this presolve is quite simple.
The following section focuses on a more sophisticated presolve technique.

5.3 Presolve with propagation of the tightened bounds in the
problem

The bound tightening is important because the outer approximations based on SOS are built
by using the bounds on the variables. For the presolve of the previous section, the bounds on the
variables have been strengthened but this bound tightening has not been exploited to refine the
outer approximations. Indeed, these are always the outer approximations based on the bounds
on the variables before preprocessing which are employed, even if they are now defined on
smaller intervals. We could gain a lot by updating the outer approximations of (ÕP) with the
bounds tightened by presolve.

We are thus interested in the update of the linear outer approximation problem (ÕP) due
to the strengthening of bounds on some variables. In Section 3.3.1, we have explained how to
update the problem after branching on a variable. For the subproblems, the impact of branching

130 Chapter 5. Presolve and range reduction

can be assimilated to bound tightening. Therefore, the same update as for branching can be em-
ployed for bound tightening. This update summarized in Algorithm 3.1 is crucial to converge to
the solution. Briefly, the bounds on the branching variable (here, the strengthened variable) are
modified and the outer approximations of the nonlinear components based on this variable are
updated. Finally, the bounds associated to the variables wi

ji
which replace these nonlinear com-

ponents are also improved, if possible (see Algorithm 3.1 for more details). Note that we have
decided to use this update not only after presolve but also during the presolve once a bound has
been tightened in order to refine the outer approximation problem (ÕP) as soon as possible. As
a consequence, the constraints of problems (Tx) are also modified for all variables x which are
still candidate for bound tightening, by hoping to produce tighter bounds on the variables x in
this way. In summary, the constraints of (Tx) (general constraints and bound constraints) thus
vary each time we can strengthen the bounds on a variable and before trying to tighten another
bound.

When it is used in the case of a presolve allowing us to tighten the bounds on new variables
wi

ji
, the update of Algorithm 3.1 must be carefully handled with regard to the bound propaga-

tion technique of Section 3.2.2 which is employed to propagate bounds on some variables to
bounds on other ones. Indeed, we must take care that the bound propagation does not produce
a worse bound than the current one. For example, suppose that a bilinear product xy appears
in a problem with x ∈ [−2, 2] and y ∈ [1, 4]. By bound propagation, the lower bound on the
outer approximation wxy of xy is equal to -8 and its upper bound to 8. Imagine furthermore that
the presolve has strengthened the lower bound on wxy to -6. In this case, we do not update the
lower bound by the value given by the bound propagation technique and keep a lower bound
equal to -6 because -6 is tighter than -8. Accordingly, the bound propagation is used to update
the bounds only if it does not relax the current bounds.

In case of a presolve allowing us to strengthen the bounds on new variables wi
ji

, the bound
propagation of Section 3.2.2 can be improved. Indeed, this section focuses on the bound propa-
gation only from original variables into new variables replacing nonlinear components involving
these original variables. With the considered presolve, the bounds on the new variables can be
also tightened. As a consequence, the bound propagation can be done in the opposite direction:
from new variables replacing nonlinear components into their arguments. Again, we detail this
bound propagation according to the three nonlinear components appearing in the TVC problem.

1. x2

Suppose that the bounds on wx2 have been updated to be equal to lx2 and ux2 , the bounds
lx and ux on x can be modified like this:

if (lx ≥ 0) then
lx = max(lx,

√
lx2)

ux = min(ux,
√

ux2)
else if (ux ≤ 0) then

lx = max(lx, −
√

ux2)
ux = min(ux, −

√
lx2)

else
lx = max(lx, −

√
ux2)

ux = min(ux,
√

ux2)

5.3 Presolve with propagation of the tightened bounds in the problem 131

The conditions are used to determine which, among the negative or positive square roots,
must be taken into account. The maximum taken for the lower bound and the minimum
for the upper bound aim at preventing from relaxing the bounds, as explained above.

2. xy
If the bounds lxy and uxy on wxy have been tightened, the following rule can be applied
to strengthen the bound on x ∈ [lx, ux] from lxy and uxy and from the bounds ly and uy

on y, if the latter are different from zero:

if
(
(ly > 0) or (uy < 0)

)
then

lx = max

(
lx, min

(
lxy

ly
,
lxy

uy

,
uxy

ly
,
uxy

uy

))

ux = min

(
ux, max

(
lxy

ly
,
lxy

uy

,
uxy

ly
,
uxy

uy

))

Indeed, the lower and upper bounds lxy and uxy on xy are necessarily produced by an
extreme point (lx, ly), (lx, uy), (ux, ly) or (ux, uy). If zero does not belong to the interval
[ly, uy], for ly, uy, lxy and uxy fixed, the lower and upper bounds on x cannot take infinite
values and thus, must belong to the set of the four values obtained by dividing the extreme
values for xy by the extreme values for y. The maximum taken for the lower bound and
the minimum for the upper bound prevent from generating worse bounds than the current
ones. The condition on the bounds of y avoids to treat situations where zero belongs to
[ly, uy] which need a more sophisticated updating rule obtained by discussing the values of
lxy, uxy, ly and uy. Since in the TVC problems, the arguments of the bilinear components
are positive in most cases, we limit ourselves to the rule presented above. Note that by
symmetry, the same reasoning can be used to strengthen the bounds on y from these on x
if zero does not belong to [lx, ux].

3. Trigonometric functions
For the trigonometric functions, we again assume without loss of generality that the ap-
proximation domain [lx, ux] is included in [0, 2π]. The analysis starts with the sine func-
tion. The bound propagation aims here at propagating the bounds lsin and usin on the
outer approximation wsin(x) into the bounds lx and ux. We first check if sin(lx) is in
[lsin, usin]. If it is the case, the lower bound on x cannot be tightened since the cur-
rent lower bound produces a value for the sine function belonging to the feasible inter-
val for this component. When sin(lx) is outside this interval, the values of x belong-
ing to [0, 2π] and producing the extreme points lsin and usin are computed by means of
the function arcsin. As arcsin(x) always belongs to [−π

2
, π

2
] and as x must be inside

[0, 2π], not only arcsin(lsin) and arcsin(usin) (which belongs to [−π
2
, π

2
]) must be eval-

uated, but also 2π + arcsin(lsin) and 2π + arcsin(usin) (which belongs to [3π
2

, 5π
2

]) and,
finally, π − arcsin(lsin) and π − arcsin(usin) (which belongs to [π

2
, 3π

2
]). Among these six

values, the lower bound on x corresponds to the smallest one comprised between lx and
ux. The same reasoning can be used to update the upper bound, if necessary. This bound
propagation technique is schematically given below.

132 Chapter 5. Presolve and range reduction

For the cosine function, a similar reasoning can be held. As the image of the func-
tion arccos is defined on [0, π], only four values instead of six can produce the extreme
points: arccos(lcos), arccos(ucos), 2π − arccos(lcos) and 2π − arccos(ucos). The bound
propagation technique associated to the cosine function is given below.

Bound propagation from lsin and usin to lx and ux

if
(
(lsin > sin(lx)) or (sin(lx) > usin)

)
then

l = 106

if (lx ≤ arcsin(lsin) ≤ ux) then l = arcsin(lsin)
if (lx ≤ arcsin(usin) ≤ ux) then l = min(arcsin(usin), l)
if (lx ≤ 2π + arcsin(lsin) ≤ ux) then l = min(2π + arcsin(lsin), l)
if (lx ≤ 2π + arcsin(usin) ≤ ux) then l = min(2π + arcsin(usin), l)
if (lx ≤ π − arcsin(lsin) ≤ ux) then l = min(π − arcsin(lsin), l)
if (lx ≤ π − arcsin(usin) ≤ ux) then l = min(π − arcsin(usin), l)
lx = max(l, lx)

if
(
(lsin > sin(ux)) or (sin(ux) > usin)

)
then

u = −106

if (lx ≤ arcsin(lsin) ≤ ux) then u = arcsin(lsin)
if (lx ≤ arcsin(usin) ≤ ux) then u = max(arcsin(usin), u)
if (lx ≤ 2π + arcsin(lsin) ≤ ux) then u = max(2π + arcsin(lsin), u)
if (lx ≤ 2π + arcsin(usin) ≤ ux) then u = max(2π + arcsin(usin), u)
if (lx ≤ π − arcsin(lsin) ≤ ux) then u = max(π − arcsin(lsin), u)
if (lx ≤ π − arcsin(usin) ≤ ux) then u = max(π − arcsin(usin), u)
ux = min(u, ux)

The strategy applied by the full presolve described in this section is summarized in Algo-
rithm 5.1. The method related to a one sweep presolve is obtained from this algorithm if the
loop “repeat” is only done once. The results obtained by using these two kinds of presolve
which propagate the tightening of the bounds in the whole outer approximation problem are
presented in Figure 5.1, which shows the improvement percentage ipm defined by (5.1) and
obtained by using a one sweep presolve or a full presolve compared to the method without
presolve. Since presolve handles continuous and discrete variables in the same way, the results
obtained in both cases are represented on the same graph. The left part of the graph shows the
results for the continuous problems ordered like in Table 5.1 while the right part presents the
result for the discrete version. For this part, the problems are placed in the reverse order in
such a way that the TVC problems, continuous and then discrete, are in the center of the graph.
Therefore, these are the results at the center of the graph on which we focus the most. For some
problems, the method does not converge within the number of linear problems allowed to solve.
A dot is used to represent such a situation. When the dot is placed at y = 0, the two compared
methods fail to converge. When it is placed at y > 0, the method with presolve converges
while the method without presolve does not. It is exactly the contrary when the dot is situated
at y < 0. Sometimes, the method with presolve allows us to obtain more than 1000% improve-
ment, or equivalently, the number of linear problems solved is divided by 11. In order to have
a readable graph, such a situation is represented by a star. For example, since the number of

5.3 Presolve with propagation of the tightened bounds in the problem 133

linear problems solved for the discrete version is divided more or less by thirteen for pb5 and
by twenty-two for TVC3 with a full presolve, stars are used for these problems. The complete
results for the three compared methods in term of number of linear and nonlinear problems
solved can be found in Tables 8.5, 8.6 and 8.7 of Appendix C.

Bound propagation from lcos and ucos to lx and ux

if
(
(lcos > cos(lx)) or (cos(lx) > ucos)

)
then

l = 106

if (lx ≤ arccos(lcos) ≤ ux) then l = arccos(lcos)
if (lx ≤ arccos(ucos) ≤ ux) then l = min(arccos(ucos), l)
if (lx ≤ 2π − arccos(lcos) ≤ ux) then l = min(2π − arccos(lcos), l)
if (lx ≤ 2π − arccos(ucos) ≤ ux) then l = min(2π − arccos(ucos), l)
lx = max(l, lx)

if
(
(lcos > cos(ux)) or (cos(ux) > ucos)

)
then

u = −106

if (lx ≤ arccos(lcos) ≤ ux) then u = arccos(lcos)
if (lx ≤ arccos(ucos) ≤ ux) then u = max(arccos(ucos), u)
if (lx ≤ 2π − arccos(lcos) ≤ ux) then u = max(2π − arccos(lcos), u)
if (lx ≤ 2π − arccos(ucos) ≤ ux) then u = max(2π − arccos(ucos), u)
ux = min(u, ux)

Algorithm 5.1: Full presolve

Set C = {xi : xi appears nonlinearly in (P) or xi is discrete} ∪ {wi
ji
}i=0,..,m, j=1,..,ti.

REPEAT

For all x ∈ C :

1. Solve (Tx) subject to the current constraints of (ÕP).
2. If (the two problems (Tx) are feasible) then

Set x∗
min and x∗

max, the optimum values of these problems
else

Stop: the problem (P) is infeasible
3. If ((x∗

min > lx) or (x∗
max < ux)) then Apply Algorithm 3.1 to the variable x.

UNTIL (the improvement in the range of each variable is smaller than 10−3)

In Figure 5.1, we observe that the three methods converge only for the problem TVC3 among
the TVC problems for the continuous version, as highlighted by dots. For the discrete version,
the methods with presolve allow us to obtain better results on these problems. Indeed, they con-
verge on five TVC problems instead of two without presolve. Furthermore, the improvement
obtained for TVC3 is significant: more than 2100% improvement with the full presolve (see

134 Chapter 5. Presolve and range reduction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0

−400

−200

0

200

400

600

800

1000

1200

1400

1600

no presolve
one sweep presolve
full presolve

Figure 5.1: Comparison of the number of linear problems solved with a one sweep or a full
presolve with regard to no presolve.

tables). In fact, the methods with presolve mainly improve results for problems at the center of
the graph, that is, for the most difficult problems while they deteriorate results for the smallest
problems (in the sense that a small number of linear problems is solved for such problems).
This result could be expected because of the cost of the presolve which must be amortized in
order for the presolve to be efficient. This is in general only possible for not too small problems.
For the smallest problems, the number of problems solved during the presolve is too large with
regard to the total number of problems solved during the process of the algorithm. Therefore,
the presolve is too expensive with respect to the improvement that it generates. Observe also
that the full presolve produces results which are in majority more extreme than the ones ob-
tained with a one sweep presolve. When the results are improved with presolve, the obtained
improvements are often larger with a full presolve than with a one sweep presolve, but when the
results are deteriorated, the full presolve produces worse results than the one sweep presolve.
Note finally that our experiments (that we do not detail here) have shown that if we only do
a bound propagation from original variables into new ones and not in the opposite direction,
the results are generally deteriorated for problems which are not too small. A complete bound
propagation phase is thus useful.

5.4 Dependency of the results of presolve on the branching
rule

The improvement and deteriorations obtained in the results are not only due to the solution
of LPs during the presolve. Indeed, the choice of the branching variable also influences a
lot the results, as shown in this section. Therefore, in order to highlight more the effect of
preprocessing, we try to reduce the impact of the selection of the branching variable. In order to
show the impact of the branching variable, we now focus on the reduction percentage obtained
in the range of the original variables after presolve. This percentage is computed as:

100
(
1 −

∑
ranges of the original variables after presolve∑
ranges of original variables before presolve

)
· (5.2)

5.4 Dependency of the results of presolve on the branching rule 135

The reduction percentages obtained for each problem by using a one sweep or a full presolve are
respectively reported in Tables 8.6 and 8.7 while Figure 5.2 graphically presents them. This fig-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0

10

20

30

40

50

60

70

80

90

100

one sweep presolve
full presolve

Figure 5.2: Reduction percentages in the range of the original variables.

ure shows that the range reduction generated by presolve can be quite substantial. For instance,
for all the TVC problems, the presolve allows us to reduce the sum of the variable ranges by at
least 60%, which can explain the good results of the methods with presolve on TVC problems
in the discrete case. However, the reduction percentages cannot always justify the results ob-
tained by using a presolve. So, for pb8, the full presolve reduces the sum of the variable ranges
by 1.9% only, in the continuous case, but the number of linear problems to solve increases by
161%. The method with full presolve needs to solve 85229 LPs (366 during presolve) while
only 32673 LPs are solved by the method without presolve. This result appears to be quite
surprising because the presolve does not modify the problem much.

In fact, the deterioration in the results can be explained because the presolve changes the
order in which we branch on the variables. For pb8, the majority of the variables have the same
range before presolve. Without preprocessing, among the variables having the same largest
range, we begin by branching on the first one, then on the second one, etc. By using a presolve,
the range of three variables (on twelve) is modified for pb8 and in particular, the range of the
second considered variable is reduced by 3%. The problem has not changed much, but instead
of branching on the second variable early in the tree because of our branching rule based on
the largest range, we branch on this variable after having examined nearly all the other ones.
However, this variable is precisely a variable which can eliminate important parts of the domain
by branching on it. For comparison purposes, if we modify the order of the variables which
have the same range before presolve by treating the second variable in last, the results without
presolve are very different: 96809 LPs to solve instead of 32763. The results are thus influ-
enced a lot by the order of branching on the variables. This shows the necessity of having a
sophisticated technique to choose the best branching variable.

In order to compare the methods with or without presolve on a more consistent basis, we
have tried to reduce the impact of the order in which we branch on the variables. Instead of
considering the variables from 1 to n (which is random) and branching on the first one with the
largest range, we sort them in the order of their range after a full presolve and examine them
in this order. Nevertheless, we always branch on the variable which has the largest range. In

136 Chapter 5. Presolve and range reduction

fact, we have only removed a part of random in the data. Note that the impact of this trick
will be more important on pb problems because for these problems, the ranges of the variables
before presolve are often identical, contrary to the TVC problems. For example, the number of
linear problems to solve without presolve for pb8 is equal to 111721 in the continous case by
using such a trick. This value is quite far from the one obtained without this specific way for
considering the variables (32763 LPs).

We have then considered the results produced by the method without presolve by using the
particular ranking mentioned above and have compared them with the two methods with pre-
solve. The new results for the method without presolve are given in Table 8.8. In the following,
these results will be always used for the method without presolve instead of these of Table 8.5
since they have been obtained by trying to limit the impact of the choice of the branching vari-
able in order to highlight the effect of presolve. We can also note that the results of these two
tables can strongly differ (pb8 in the continuous case for example). This shows that the choice
of the branching variable is very important.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0

−400

−200

0

200

400

600

800

1000

1200

1400

1600

no presolve
one sweep presolve
full presolve

5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

no presolve
one sweep presolve
full presolve

Figure 5.3: Comparison of the number of linear problems solved with a one sweep or a full
presolve with regard to no presolve but by using a specific order for considering the variables.

A graphic comparison of the different proposed methods is given in Figure 5.3. The rep-
resentation of the improvement percentage for the one sweep and for the full presolves is also

5.5 Adaptable presolve 137

given separately by the two first pictures of Figure 5.4. The top picture of Figure 5.3 represents
the improvement percentage in the number of LPs for a one sweep or a full presolve, compared
to the situation without presolve while the bottom figure shows the associated performance pro-
files. It is clear by observing these figures that the methods with presolve are better than the
one without presolve since they are more efficient and more robust. Note that on Figure 5.1,
the benefit of using a presolve was not so obvious since it deteriorated the results for a larger
number of problems, due to the modification of the order to branch on the variables.

To conclude this section, the use of a presolve can be validated since the number of lin-
ear problems solved to find the global solution is generally better with presolve and since the
methods with presolve are able to solve a larger number of problems, as shown in Figure 5.3.
Note finally that the best method among both with presolve depends on the problem treated.
On the smallest problems (in the sense that a small number of problems must be solved), a
one sweep presolve is better than a full presolve. But on larger problems, the full presolve is
generally better. However, the difficulty of solving the problem is not a priori known and as
a consequence, the best presolve technique cannot be determined. For the tested problems, it
seems nevertheless to be correlated with the number of variables but it is not always the case.

5.5 Adaptable presolve

Since the best technique among the one sweep or the full presolve is problem dependent,
we have developed a new presolve able to combine the advantages of both presolve and to give
good results on all problems. As seen earlier, the efficiency of a presolve on a problem mainly
depends on the complexity of the problem and on the total cost of the method. However, this
information is not a priori known. Therefore, we have tried to find a trade-off between both
presolve techniques by tightening the variables as long as a one sweep presolve produces a
sufficient reduction in the sum of the ranges of the original variables. We refer to this kind of
presolve as an adaptable presolve. In practice, this latter strengthens the bounds on original
variables until the total reduction percentage (5.2) for the sum of the ranges of these variables
obtained in a sweep is smaller than 20% (1). If this percentage is larger than 20%, we pursue
preprocessing by trying to tighten the bounds on the new variables wi

ji
, otherwise, we stop

the presolve phase. This is motivated by our numerical experiments which have shown that
the improvement due to the tightening of new variables is a lot weaker than the one obtained
with original variables. It can however improve results on large problems. This is why bounds
on new variables are reinforced only if the tightening of the bounds on original variables has
allowed us to sufficiently decrease their range. After having tried to tighten bounds on the
new variables, the presolve phase is repeated on original variables and so on. Schematically,
Algorithm 5.2 is applied.

The obtained results are graphically presented in Figure 5.4 (see also Table 8.9). On the three
top figures, the improvement percentages (5.1) have been detailed for each kind of presolve (one
sweep, full or adaptable) with regard to the method without presolve. The last figure compiles
all the obtained results to have a more global sight on them. It can be observed that the adaptable
presolve consists of a trade-off between the results obtained with a one sweep and a full presolve

(1)The best results have been obtained by using this value.

138 Chapter 5. Presolve and range reduction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0

−400

−200

0

200

400

600

800

1000

1200

1400

1600

no presolve
one sweep presolve

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0

−400

−200

0

200

400

600

800

1000

1200

1400

1600

no presolve
full presolve

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0

−400

−200

0

200

400

600

800

1000

1200

1400

1600

no presolve
adaptable presolve

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0

−400

−200

0

200

400

600

800

1000

1200

1400

1600

no presolve
one sweep presolve
full presolve
adaptable presolve

Figure 5.4: Comparison of the number of linear problems solved.

5.6 Range reduction 139

Algorithm 5.2: Adaptable presolve

REPEAT

1. Tighten the bounds on original variables by steps 1 to 3 of Algorithm 5.1.
2. Compute by (5.2) the reduction percentage RP in the sum of the ranges of the

original variables with regard to its value before the last sweep.
3. If (RP is larger than 20 %) then tighten the bounds on new variables wi

ji

by steps 1 to 3 of Algorithm 5.1.

UNTIL (RP is smaller than 20 %)

for the majority of problems. Indeed, it strengthens the bounds more than the one sweep pre-
solve when a sufficient improvement in the range of the variables is observed but it does not
tighten the bounds as much as the full presolve since the stopping criterion is less strict (since it
is based on the sum of the ranges of the variables instead of on the maximum tightening of only
one variable). Note that the deterioration of the results with an adaptable presolve compared to
a full presolve is more pronounced for the continuous case. Furthermore, the adaptable presolve
is more efficient on a larger number of problems than the other ones as shown by Figure 5.5
which gives the performance profiles for the three methods with presolve and the method with-
out preprocessing. The bottom figure corresponds to a zoom of the performance profiles around
σ = 1. However, for some problems, the convergence of the method with adaptable presolve
is considerably slower than with full presolve (39 times slower for pb9 in the continuous case).
For these problems, the first sweep on original variables does not bring much reduction in the
range of the original variables and as a consequence, the preprocessing is stopped. But the
repetition of presolve phases can finally strongly decrease the variable range. However, such
a situation cannot be detected a priori. Nevertheless, as the method with adaptable presolve is
more efficient and allows us to solve the same number of problems than the two other methods
with presolve, we think that it consists of a good alternative between the one sweep and the full
presolves. Therefore, we pursue using it in the following.

5.6 Range reduction

The previous experiments have shown that the presolve can improve a lot the results (see
TVC problems in the discrete case for example). In this section, we show that the ideas used
for the presolve can also be employed during the process of the algorithm to improve its perfo-
mance. When the presolve technique is employed in the tree, we refer to it as range reduction
instead of preprocessing. Since the presolve phase is quite expensive (2 LPs to solve for each
variable candidate for bound tightening), a range reduction phase is not performed at each node.
Accordingly, the following strategy is employed: a number k is fixed and a range reduction
phase is performed for each node at a level of the tree equal to a multiple of this number k. The
scheme of this technique is given in Algorithm 5.3.

140 Chapter 5. Presolve and range reduction

5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

no presolve
one sweep presolve
full presolve
adaptable presolve

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

no presolve
one sweep presolve
full presolve
adaptable presolve

Figure 5.5: Performance profiles of methods with different kinds of presolve and its zoom
around σ = 1.

Algorithm 5.3: Range reduction

Let level be the level in the tree of the examined node and k be a fixed number.
1. If (level = multiple of k) then tighten the bounds on original variables.
2. Proceed to the general iteration of Algorithm 3.2 or 3.3, update level and go to 1.

The level of a node in the tree is used to determine when to proceed to a range reduction
instead of the number of iterations in order to avoid risking tighten the bounds for two con-
secutive nodes. After a vertical moving of k levels in the tree, the problem is expected to be
sufficiently modified with regard to the last range reduction on the same branch in such a way
that a bound tightening is useful. For our numerical experiments, two different values have been
used for k depending on the impact of the presolve on the range of the original variables. If the
presolve needs at least two sweeps and that the second sweep allows us to reduce the range of
the variables by at least 2%, k is set to 4, otherwise, a range reduction phase is performed less
often by setting k to 8(2). For a range reduction phase, the bound tightening is limited to the

(2)Among the different alternatives and values tested, these ones have produced the best results.

5.6 Range reduction 141

original variables since the strengthening of bounds on new variables generally produces small
modifications only. Moreover, only one sweep is performed contrary to the presolve for which
bound tightening is repeated until the sum of the reductions in the range of the original variables
is too small. In case of a range reduction, the repetition of consecutive bound tightening would
be too costly with regard to the improvement that it would generate. Indeed, with the presolve,
the update of the bounds can be applied on the whole tree while the range reduction modifies
the bounds only for the subtree (which can be possibly rapidly discarded) generated from the
node where the range reduction is performed. Note that Algorithm 3.1 is again used to update
the outer approximation problem each time a bound can be tightened during the range reduction
phase.

We present on Figure 5.6 the results obtained with an adaptable presolve using, or not, a
range reduction compared to the method without presolve. Firstly, we can observe that the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0

−400

−200

0

200

400

600

800

1000

1200

1400

1600

no presolve
adaptable presolve
range reduction

Figure 5.6: Comparison of the number of linear problems solved with an adaptable presolve
using or not a range reduction phase compared to the method without presolve.

range reduction allows us to produce the best results on the TVC problems among the three
compared methods (see Table 8.10 for the detail of the results). With range reduction, the
method converges for the first time on TVC4 for the continuous and discrete cases, as shown by
the dots. It also converges for problem pb8 in the discrete version contrary to the other meth-
ods, but it does not find a solution for pb13 in the continuous case while this problem is solved
with the two other methods. However, if we increase the number of linear problems allowed to
solve, a solution is found for this problem after solving 735760 LPs, which corresponds to 54%
deterioration with regard to the method with adaptable presolve. On the other hand, we can
note on Tables 8.9 and 8.10 that the improvements due to the range reduction phases compared
to the method with adaptable presolve only, are generally larger than the deteriorations that it
generates. The improvements are concentrated on the largest problems while the deteriorations
more often arise on the smallest ones, which is logical. Indeed, for the latter on which the pre-
solve is already too expensive, such results could be expected. To the contrary, for the largest
problems, the cost of range reduction can be amortized, which produces good results. We now
focus on the performance profiles from Figure 5.7 that clearly show which of the three methods
(no presolve, adaptable presolve or adaptable presolve combined with range reduction) is the

142 Chapter 5. Presolve and range reduction

best since the method with range reduction is both the most efficient and robust.

10 20 30 40 50 60 70 80 90 100 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

no presolve
adaptable presolve
range reduction

Figure 5.7: Performance profiles related to the comparison of the number of linear problems
solved with an adaptable presolve using or not a range reduction phase compared to the method
without presolve.

Finally, we can note in Tables 8.9 and 8.10 that the method with range reduction does not
only allow us to reduce the number of linear problems solved but also the number of nonlinear
problems, in the sense that it reduces the ratio between the number of NLPs and of LPs solved.
Indeed, during the general process of the algorithm, an NLP is associated to each LP success-
fully solved unless the related node can be cut (see Algorithm 3.2 or 3.3). On the other hand,
no NLP is associated to the LPs solved during the presolve and the range reduction phases.
Accordingly, the ratio between the number of NLPs and of LPs decreases by using a presolve
and even more with range reduction. These ratios can be found in Tables 8.8, 8.9 and 8.10 for
the three methods compared in Figure 5.7. Finally, as the number of LPs solved decreases by
using bound tightening, the number of nonlinear problems also decreases. For all the reasons
mentioned above, the method with range reduction will be always applied in the following.

5.7 Conclusion

This chapter has shown that presolve can significantly improve the results if the problem
to solve is not too small. Otherwise, its cost is too high compared to the improvement that it
generates. In all cases, a trade-off must be found between these two aspects. To this aim, an
adaptable presolve based on the improvement percentage in the sum of the ranges of the original
variables has been proposed. Another presolve depending on the size of the problem could also
be considered since for the treated problems, the efficiency of the presolve on a problem seems
to be correlated to the size of this problem.

Moreover, the bound tightening is not only efficient at the beginning of the algorithm but
also during its process. With such a technique, the results have been a lot improved and the
resulting method has allowed us to converge on some problems which could not be solved be-
fore, within the number of linear problems allowed (even though, some problems still remain

5.7 Conclusion 143

unsolved). Finally, we have highlighted in this chapter that the obtained results are strongly
dependent on the order in which we branch on the variables. Therefore, a suitable technique
should be developed to choose the best branching variable.

144 Chapter 5. Presolve and range reduction

Chapter 6

Variable selection

In this chapter, the question of the choice of the branching variable is examined. As the
goal of branching is to refine the outer approximation problem and also, in the discrete case,
to satisfy the discrete restrictions, the choice of the branching variable must be treated care-
fully. Indeed, it determines the way of building the tree, and thus the speed of convergence of
the outer approximation method, as explained in Section 1.2.4. For the experiments presented
in the previous chapter, a very simple branching rule which consists to branch on the variable
having the largest range has been used. With this choice, the method proposed in Chapter 5
was not converging on some problems before the maximum number of linear problems allowed
to solve was reached. We show here that the convergence can be obtained for these problems
by using a more clever branching rule. Several ways to choose the branching variable among
the variables of the original problem are proposed, tested and discussed: by basing the choice
on the approximation errors (with two different ways to compute these errors), by adapting to
our outer approximation problem the strong branching method suggested by Applegate et al.
in [12] as well as the pseudocost technique of Bénichou et al. [23] developed in mixed integer
linear programming, and finally by combining pseudocosts with strong branching iterations. As
shown by the numerical experiments, this latter is the best choice amongst the proposed strate-
gies. We also highlight the interest of “branching again” on variables which have allowed us
to cut nodes in a close past, and the importance of weighting the approximation errors used in
branching rules by the coefficients of the original problem.

For all the numerical experiments presented below, the adaptable presolve and range re-
duction techniques developed in Sections 5.5 and 5.6 respectively, have been applied since it
has been shown that they generally improve the results. Therefore, the basic method on which
the possible improvements are tested and quantified is the one detailed in Section 5.1.1 and
modified by the addition of an adaptable presolve and a range reduction technique.

6.1 Preliminary note on branching rules

Before developing and testing branching rules, we first give some comments about their
applicability and present a trick allowing us to generally improve them.

145

146 Chapter 6. Variable selection

6.1.1 Applicability of branching rules

Branching rules aim at choosing among candidate variables for branching, the one which is
the best to branch on according to some criterion defined by the branching rule. As branching
is used to make the outer approximation problem as close as possible to the nonlinear approx-
imated problem and also to satisfy the discrete restrictions (if the problem is subject to such
restrictions), the candidate variables for branching are the variables of the original problem
which appear nonlinearly in the problem or which are discrete.

Because of the goal of branching, the variable selected by a branching rule is used pro-
vided, at the current solution, it is not at its nonlinear value for the outer approximations of all
components in which it appears or, provided it does not satisfy the discrete restrictions. Oth-
erwise, it would be useless to branch on this variable, since the branching could not bring any
improvement in the quality of the outer approximation problem. For the same reason, we do
neither branch on variables appearing only linearly in the nonlinear problem. Indeed, each lin-
ear component of a nonlinear problem remains unchanged in the linear outer approximation
problem. By summary, the branching variable is the first variable selected by the branching rule
producing an approximation error or violating a discrete restriction.

6.1.2 Exploiting the best candidate for branching

We pursue this discussion on branching by doing a general note: nodes can sometimes be
cut rapidly due to the branching on only one variable, always the same, among those involved in
the branching. Branching on other variables would not allow us to fathom nodes (at least after
a limited number of branching on the same branch), but if we branch on this particular variable,
the generated nodes can be immediately cut. Detecting such a situation is desirable because it
would be interesting to directly branch on this particular variable instead of branching on the
variable selected by some branching rule. Therefore, in practice, we consider the branching
which has been done just before the two last nodes that have been fathomed. If the branching
has been performed on the same variable for both, we can assume that the branching on this
particular variable will again allow us to cut nodes in the next branching phases. Accordingly,
we do not employ any branching rule but we branch again on this variable. If this allows us
to cut the two generated nodes, we pursue branching on it, otherwise, we come back to the
branching rule under use. We refer to this technique as the exploitation of the best candidate
for branching.

Note that this technique is a trick added to improve a branching rule, and not a branching
rule itself since it can be employed in few cases. In fact, it is only used when it is expected
to allow a faster convergence of the method. We consider that the fathoming of only one node
(left or right) obtained just after branching does not produce a sufficient improvement to use this
trick. We would like to fathom both nodes instead. To this aim, in order to determine if a best
candidate for branching exists, we only focus on the branching which has been performed just
before the two last nodes which have been cut by going down in the branch-and-bound tree. The
branching realized before a node fathomed by going up in the tree is not considered. Indeed, in
the case of a depth-first search with backtracking (see Section 5.1.1), a node examined by going
up in the tree implies that the other node generated by branching was feasible. Accordingly,
in such a situation, we are not interested in branching again on the variable which has been
used for this branching since it has not allowed us to cut both nodes. To the contrary, if a node

6.1 Preliminary note on branching rules 147

explored by going down in the tree has been cut, we can think that the other node generated by
branching will be also fathomed since the first subproblem to be treated among the left and the
right is the one which is expected to be the most feasible, as explained in Section 5.1.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
−200

−150

−100

−50

0

50

100

150

200

no exploitation of the best candidate
exploitation of the best candidate

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

no exploitation of the best candidate
exploitation of the best candidate

Figure 6.1: Comparison of the number of linear problems solved with or without exploiting the
best candidate for branching, if it exists.

This trick has been applied to the basic method developed before with the branching rule
based on the largest range. The results obtained with or without exploiting the best candidate
for branching, if it exists, are graphically presented on Figure 6.1 (see also Tables 8.10 and 8.11
for more details). The top figure represents the improvement percentages ipm defined in (5.1)
and produced by exploiting the best candidate for branching, while the bottom figure gives the
performance profiles. Remember that the interpretation of these graphs has been detailed in
Sections 5.1.4 and 5.3. The dots at y = 0 in the top figure show that both compared methods do
not converge on five of the largest problems in the continuous case. Nevertheless, the exploita-
tion of the best candidate for branching allows us to produce twenty-one improvements in the
results, ten equalities and only four deteriorations with regard to the basic method. One of these
deteriorations is however quite important (160% deterioration for pb9 in the continuous case)
with regard to the improvements produced by this trick, as shown in the top graph of Figure 6.1
or in the right part of the performance profiles. In fact, all branching rules being subject to a
random part out of control, good techniques give sometimes worse results on some problems

148 Chapter 6. Variable selection

than other generally less good methods, the latter having the chance to branch on a “good vari-
able” at a “good time”. As the method proposed in this section generally improves the results
while the deteriorations are seldom, we validate this trick and add it to the basic method for the
next experiments.

6.2 Maximum approximation error branching

Instead of branching on the variable with the largest range, the branching rule proposed in
this section is based on the approximation errors. Indeed, to produce a relevant solution for
the nonlinear problem, the linear outer approximation problems must be close to the nonlinear
problem. To this goal, we aim at refining, among all the outer approximations of the nonlinear
components used in the problem (see Section 3.2), the one which produces the maximum ap-
proximation error. This idea has been used by Adjiman et al. [8]. We have applied this concept
by computing the errors in two ways: as the theoretical approximation errors but also as the
approximation errors really produced at the current solution. Initially, we only focus on the
continuous problems.

For each approximated nonlinear component, the maximum error (theoretical or real) gen-
erated by its outer approximation is computed. Once these errors are determined, the nonlinear
component associated to the largest error is selected. However, as we want to branch on origi-
nal variables only, we must decide how to choose the branching variable from this component.
In the developed method, the components can be functions of one or two variables which can
be themselves original or new, as explained in Section 3.2.1. If the selected component is a
function of one variable and if this variable belongs to the original problem, this variable is
chosen for branching. To the contrary, if the variable is a new variable introduced by the linear
outer approximation formulation, it is used to replace a nonlinear component. Consequently,
this new component becomes the one to refine and the process is repeated in order to determine
the variable of the original problem which contributes the most to the approximation error as-
sociated to this component. Now, if the nonlinear component is a function of two variables,
more precisely a bilinear function in the employed formulation, the variable to branch on must
be selected among both. In this case, the variable with the largest range is chosen since it is the
one which contributes the most to the volume of the domain of possible values for the outer ap-
proximation of a bilinear product (see (4.22)). If this variable belongs to the original problem, it
is selected for branching, otherwise the associated component becomes the component to refine
and we look for the variable which contributes the most to the associated approximation error.
This process is repeated until finding a variable of the original problem to branch on.

To illustrate this strategy, the following example is considered: suppose that the nonlinear
function:

x1x2 sin(x3)

appears in a problem and that it is approximated by its linear outer approximation w3 such that:

w1 ≈ sin(x3),
w2 ≈ x1x2,
w3 ≈ w1w2,

where x ≈ y means that x is the linear outer approximation of y. Assume also that the max-
imum approximation error in the problem occurs for w3. As w3 approximates a component of

6.2 Maximum approximation error branching 149

two variables (w1 and w2), we determine the one which contributes the most to the error, i.e.,
the one with the largest range. Suppose that it is w1. Since w1 is not an original variable, we
look for the variable which contributes the most to the approximation error associated to w1.
As w1 replaces a function of one variable only, x3, which belongs to the original problem, x3 is
finally selected for branching.

On the other hand, when discrete restrictions are imposed in the nonlinear problem, new pos-
sibilities are introduced for the solution of the linear outer approximation problem to produce
an error for the mixed integer nonlinear problem. Indeed, the solution of the outer approxima-
tion problem does not necessarily satisfy the discrete restrictions. Therefore, in addition to the
approximation errors related to the nonlinear components, we must also take the errors asso-
ciated to discrete restrictions into account to determine the variable which can make the outer
approximation problem the closest to the original one by branching on it. We must thus select
the maximum one among the errors related to the approximation of a nonlinear component and
the errors corresponding to the violation of a discrete restriction. In the following, we improp-
erly assimilate each discrete restriction to a nonlinear component and the error produced by the
violation of a discrete restriction to an approximation error. As a consequence, in the discrete
case, the number of components to take into account in order to determine the one associated
to the most important error is larger than in the continuous case.

This branching rule is summarized in Algorithm 6.1. The results obtained by applying this
algorithm are now considered by using two different definitions for the approximation errors.

Algorithm 6.1: Maximum approximation error branching

1. For each nonlinear component and for each discrete restriction, compute the error
produced by its approximation or by its violation, respectively.

2. Choose among the computed errors the maximum one provided that a positive error
occurs at the current solution for the component wi

ji
or for the discrete restriction

on yk associated to the error.
3. Do while (the branching variable has not been found)

If (the error is related to a discrete restriction on yk) then
Select yk as branching variable and stop

else if (wi
ji

is an unary function) then
if (wi

ji
is a function of an original variable xk) then

Select this variable xk for branching and stop
else

Set wi
ji

to its argument
else (choose among the two arguments of wi

ji
the one with the largest range)

if (this argument is an original variable) then
It is selected for branching and stop

else
Set wi

ji
to this argument

150 Chapter 6. Variable selection

6.2.1 Maximum theoretical approximation errors

The first examined errors are the maximum theoretical approximation errors, that is, for each
nonlinear component, the maximum approximation error (underestimation or overestimation)
is theoretically computed. We distinguish here the errors produced by an outer approximation
or by a discrete restriction.

Maximum theoretical approximation error generated by an outer approximation
If f(x) is approximated by wf(x) on [lx, ux], the maximum theoretical approximation error is
given by:

ef = max
x∈[lx,ux]

|f(x) − wf(x)|.

More precisely, in the present case, for each nonlinear component f of the problem, we must
compute the maximum error between the function f and any of its linear outer approximations
based on SOS, wf(x), satisfying (3.47). Accordingly, ef can be written as:

ef = max
x∈[lx,ux], λi

(
max

(
f(x) −

p∑

i=1

λif(xi) + εf,L,

p∑

i=1

λif(xi) + εf,U − f(x)
)
)

with x =

p∑

i=1

λixi,

p∑

i=1

λi = 1, λi ≥ 0, 1 ≤ i ≤ p.

(6.1)

In this formulation, the errors εf,L and εf,U correspond respectively to the maximum overesti-
mation and underestimation errors produced by the SOS approximation of f and used in (3.47).
On the other hand, the error ef is computed without assuming that the SOS condition is satis-
fied because no requirement is imposed to this goal in the linear outer approximation problems
(ÕP) of Section 3.2.5. Accordingly, by (6.1), we must determine the maximum approximation
error (underestimation or overestimation) produced between f and all possible values for its
linear outer approximation based on SOS, wf(x), satisfying (3.47). Like in the previous chap-
ters, the errors are separately computed for the three kinds of nonlinear components appearing
in the decomposition of the TVC problem.

1. x2

The domain of possible values for the outer approximation of x2 defined in (3.47) is
represented in Figure 6.2 in case of an outer approximation based on three breakpoints. It
is clear on this figure that the maximum approximation error (underestimation or overes-
timation) between x2 and an outer approximation satisfying (3.47) is reached for (x2, x

2
1)

or, equivalently, for (x2, x
2
p), (where p, the number of breakpoints is equal to 3 in Fig-

ure 6.2). It is an overestimation error which is equal to the maximum overestimation
approximation error produced by the SOS approximation of x2 on the piece [x1, xp].
Therefore, by Theorem 3.1 applied to the piece [x1, xp], the maximum theoretical ap-
proximation error is equal to:

(xp − x1)
2

4
· (6.2)

Note that this error can be easily obtained from the maximum overestimation approxima-
tion error εx2,L (3.22) used in (3.47) and which has already been computed to build the

6.2 Maximum approximation error branching 151

x1 x2 x3
−1

0

1

2

3

4

5

6

x2

DPVOA
maximum error

Figure 6.2: Maximum approximation error on DPV OA for x2.

outer approximation problem (ÕP). Indeed, by multiplying (3.22) by (p−1)2, we obtain
(6.2) since lx = x1 and ux = xp.

2. xy
We now switch to the case of a bilinear product. As explained in Section 3.2.4, the ap-
proximation errors εf,L and εf,U used in (6.1) are set to zero for this function. Furthermore,
Theorem 4.6 has stated that, when (x, y) is defined on a rectangle [x1, xpx

]× [y1, ypy
], the

set of possible values for the linear outer approximations of xy defined in (3.47) coincides
with the set of convex combinations of points (x, y, xy) where (x, y) belongs to the rect-
angle. Combining this result with Theorem 4.5, we obtain that the set of the linear outer
approximations of xy is delimited by the convex and concave envelopes of the bilinear
product. Determining the maximum approximation error between the bilinear product
and any linear outer approximation satisfying (3.47) thus amounts to compute the max-
imum error, in absolute value, between the bilinear product and its concave or convex
envelope. The expression of these envelopes on a rectangle established in [11] by Al
Khayyal and Falk have been reported in Theorem 4.3. Moreover, it has been shown in the
proof of Theorem 4.10 that these convex and concave envelopes on a rectangle are defined
on triangles corresponding to the half of the considered rectangle [x1, xpx

] × [y1, ypy
]. As

it can be easily derived that these envelopes coincide with the SOS approximations of
the bilinear product on such triangles (they are both linear functions defined by the three
same points), the maximum theoretical approximation error that we are looking for cor-
responds to the maximum approximation error generated by the SOS approximation of
xy on these triangles. Therefore, formula (3.30) can be applied with ∆x = xpx

− x1

and ∆y = ypy
− y1 to find that the maximum theoretical approximation error (6.1) for a

bilinear product is equal to:
(xpx

− x1)(ypy
− y1)

4
· (6.3)

3. Trigonometric functions
For these functions, we first consider the maximum underestimation and overestimation

152 Chapter 6. Variable selection

approximation errors generated by any linear approximation of f (not outer), that is,
by any linear approximation belonging to DPV defined in (3.46). This amounts to set
in (6.1) the approximation errors εf,L and εf,U to zero. Once these maximum underes-
timation and overestimation approximation errors are determined on DPV , the maxi-
mum theoretical approximation error ef , that is, the maximum error in absolute value on
DPV OA defined in (3.47), can be obtained by adding the approximation errors εf,L and
εf,U to the underestimation and overestimation approximation errors produced on DPV
respectively, and by taking the maximum among both. Indeed, as the overestimation error
εf,L is removed from the linear approximation in (3.47) and as the underestimation error
εf,U is added, the underestimation and overestimation errors on DPV OA are the corre-
sponding errors on DPV increased by εf,L and εf,U respectively. This is summarized in
Theorem 6.1 which is also valid for other functions than trigonometric ones.

Theorem 6.1 Let e∗U and e∗O be the maximum underestimation and overestimation ap-
proximation errors reached on DPV . The maximum theoretical approximation error ef ,
that is, the maximum approximation error in absolute value produced on DPV OA, is
equal to:

ef = max(e∗U + εf,L, e∗O + εf,U),

where εf,L and εf,U are respectively the maximum overestimation and underestimation
approximation errors produced by the SOS approximation of f and used in the definition
of DPV OA.

We first compute the maximum overestimation and underestimation approximation
errors produced on DPV . However, the determination of the domain DPV is not obvi-
ous. Indeed, by definition, DPV corresponds to the set of convex combinations of points
(xi, f(xi)) where xi are breakpoints but the breakpoints which really define this set de-
pend on the studied interval. For example, for sin(x), if the linear approximations are
built by using five equally spaced breakpoints, DPV is defined on [0, 2π] by x1, x2, x4

and x5 (thus not x3) while it is by all breakpoints on [0, π], as shown on Figures 6.3 and
6.4. On these figures, breakpoints are highlighted by circles and the domain DPV based
on these breakpoints is represented by the rectangle comprising them for [0, 2π] and by
the pentagon for [0, π].

We start by examining sin(x). The error at a point x between this function and a lin-
ear approximation belonging to DPV must arise on a side of DPV and not at a point
inside it. Indeed, the maximum error between a function and a point of a domain lim-
ited by linear constraints is reached on one of these constraints, in the present case, on
a side of DPV . For example, on Figure 6.4, the maximum approximation error can be
reached on the segments defining DPV , that is, on the segments joining (x1, sin(x1))
to (x2, sin(x2)), (x2, sin(x2)) to (x3, sin(x3)), (x3, sin(x3)) to (x4, sin(x4)), (x4, sin(x4))
to (x5, sin(x5)) and, finally, (x1, sin(x1)) to (x5, sin(x5)). Observe that, on [0, π], the
maximum overestimation approximation error on DPV is equal to zero since any lin-
ear approximation belonging to DPV underestimates sin(x) on this interval, while the
maximum underestimation error is reached on the straight line joining (x1, sin(x1)) to
(x5, sin(x5)) at x = x3 = π

2
and is equal to sin(π

2
) − 0 = 1. We now detail how to

compute these errors analytically. To this aim, the maximum overestimation and un-
derestimation approximation errors between the function sin(x) and a segment joining

6.2 Maximum approximation error branching 153

x1 x2 x3 x4 x5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)
DPV

Figure 6.3: DPV for sin(x) on [0, 2π] defined by five equally spaced breakpoints.

x1 x2 x3 x4 x5

0

0.2

0.4

0.6

0.8

1

1.2

sin(x)
DPV
maximum error

Figure 6.4: DPV for sin(x) on [0, π] defined by five equally spaced breakpoints.

(xi, sin(xi)) to (xj, sin(xj)) are first determined. Such a segment can be seen as the SOS
approximation of sin(x) on the piece [xi, xj]. Therefore, applying Theorem 3.5 on the
piece [xi, xj] allows us to directly determine the maximum overestimation and underesti-
mation errors that we are looking for on this piece.

Theorem 3.5 gives the expression of the maximum underestimation and overestima-
tion approximation errors between sin(x) and the straight line joining (xi, sin(xi)) to
(xj, sin(xj)). For some couples (xi, xj), this line defines a side of DPV , as explained
earlier. To determine the maximum underestimation and overestimation approximation
errors produced on DPV , Theorem 3.5 must be applied to each side of DPV . Among
all the computed overestimation (respectively underestimation) approximation errors, the
largest one corresponds to the maximum overestimation (respectively underestimation)
error that we are looking for.

By a similar reasoning for the function cos(x), Theorem 3.6 can be applied to deter-
mine the maximum underestimation and overestimation errors on DPV for this function.
By adding the maximum underestimation and overestimation errors on DPV computed
by using Theorems 3.5 and 3.6 to the approximation errors εf,L and εf,U as explained
in Theorem 6.1, the maximum approximation error on DPV OA, or equivalently ef , is
finally obtained.

154 Chapter 6. Variable selection

Maximum theoretical approximation error produced by a discrete restriction
Let us now consider the maximum theoretical approximation error generated by the violation
of a discrete restriction. Remember first that, in Section 2.1.2, all the discrete restrictions have
been modelled as integer restrictions. The analysis can thus be limited to errors produced by
the violation of an integer restriction.

Without loss of generality, we assume that the variable x subject to an integer restriction
is defined on [l̄x, ūx] where l̄x and ūx are two integers such that ūx > l̄x. The considered
error, denoted eint(x), produced for an integer variable at a point x in [l̄x, ūx] corresponds to the
minimum distance between x and the nearest integer. Therefore, eint(x) is defined by:

eint(x) = min(x − bxc, dxe − x). (6.4)

The maximum theoretical approximation error for an integer restriction is obtained by taking
the maximum on x in equation (6.4), that is,

max
x∈[l̄x,ūx]

eint(x).

It can be easily derived that this maximum is reached at x = bxc+dxe
2

and at this value, eint(x) is
equal to 0.5. Therefore, the maximum theoretical approximation error for an integer restriction
is always constant.

Usefulness of weighting the errors
In a first attempt to use the branching rule based on the maximum theoretical approximation
errors on the test problems of Section 5.1.2, only one of the five problems unsolved by the basic
method developed at this stage could be solved. Comparing with the branching rule based on
the largest range, it has been observed that the best results were shared between both methods
depending on the problems treated. For more details about the numerical results, we refer the
reader to Table 8.12.

The disappointing results produced by the branching rule based on the maximum theoret-
ical approximation errors can be explained by the fact that the branching has been performed
on the variable contributing the most to the approximation error for one component but with-
out exploiting the knowledge of the problem. Indeed, a component can be subject to a large
approximation error, but if its coefficient in the nonlinear problem is very small, the branching
on the associated variable will not make the linear outer approximation problem much closer to
the nonlinear one. To remedy this problem, the approximation errors (including also the viola-
tions of integer restrictions) have been weighted by the absolute value of the coefficients of the
associated nonlinear components appearing in the original problem. If a nonlinear component
appears more than once in the problem, the largest coefficient (in absolute value) associated to
this component is chosen to weight the error(1).

Figure 6.5 compares the results obtained with or without weighting the maximum theoret-
ical approximation errors and shows that the majority of the results is improved by weighting
(see also Tables 8.12 and 8.13). The method with weighting converges for all TVC problems, in

(1)An alternative that would be worth to be tested would be to take into account the number of times that a
variable appears in the problem by summing all the (weighted) errors that it generates in the problem.

6.2 Maximum approximation error branching 155

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
−400

−200

0

200

400

600

800

1000

1200

1400

no weighting
weighting

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

no weighting
weighting

Figure 6.5: Comparison of the number of linear problems solved with or without weighting the
maximum theoretical approximation errors.

particular for TVC1, TVC2 and TVC6 in the continuous case, which were unsolved so far within
the maximum number of linear problems allowed to solve. For the other problems, only pb13
in the continuous case remains unsolved. These facts are represented by dots on the top figure
of Figure 6.5 (see Sections 5.1.4 and 5.3 for a detailed interpretation of the graph). Further-
more, the improvements obtained with weighting can be important with regard to the produced
deteriorations. More precisely, the number of linear problems solved for TVC4 is approxima-
tively divided by eight in the continuous case and by twelve for the discrete case when the
errors are weighted (that is 660% and 1145% improvement, respectively). On the other hand,
the largest deterioration in the results is equal to 130% and occurs for pb5 in the discrete case.
Such a deterioration in the results can be explained by the fact that, sometimes, the choice of the
branching variable without weighting is better because it allows us to divide early the range of a
variable which can improve the speed of convergence by branching on it (for instance, because
branching on it increases the value of the objective function which is the goal of strong branch-
ing detailed in Section 6.3). As a consequence, it happens that weighting does not always give
better results. However, since the method with weighting is more robust and efficient than the
method without, as shown in the performance profiles of Figure 6.5 and since the deteriorations
obtained with weighting mainly arise for smallest problems (the ones at the extremities of the

156 Chapter 6. Variable selection

top graph) while the largest improvements are obtained for the most difficult problems (the ones
at the center of the top graph), this modification of the basic method can be considered as an
appreciable step and we pursue using this idea below.

Note that we can a priori be afraid that the maximum theoretical branching rule together
with the fact that the number of breakpoints is fixed introduces a bias in the method by prefer-
ring branching on a particular kind of function. In practice, such a drawback does not happen
due to the fact that the ranges of the variables are different and that the theoretical approxima-
tion errors are weighted by the coefficients of the original problem.

Branching rule based on weighted maximum theoretical errors versus on largest range
The results obtained when the branching rule is based on the weighted theoretical approximation
errors are now compared with the results when branching on the variable having the largest
range. The graphic comparison is presented in Figure 6.6 while the extensive numerical results
are given in Tables 8.11 and 8.13. It can be observed from the top picture of Figure 6.6 that

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
−400

−200

0

200

400

600

800

1000

1200

1400

largest range
theoretical approximation errors

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

largest range
theoretical approximation errors

Figure 6.6: Comparison of the number of linear problems solved by basing the branching rule
on the maximum weighted theoretical approximation errors or on the largest range.

for problems pb, the best results are shared between both methods. The results really depend
whether the variables with the largest range at the top of the tree are variables which allow a
quick convergence by branching on them. If they are, the method based on the largest range

6.2 Maximum approximation error branching 157

can be better because it branches early in the tree on important variables for the convergence.
If they are not, the method based on the approximation errors is generally better. The success
of the method with the largest range is thus more random because it depends on the range
of the variables at the top of the tree. For TVC problems, the use of weighted theoretical
errors improves the results since it allows us to get convergence for all of these problems and
notably for four problems that did not converge with the branching rule based on the largest
range. Moreover, for TVC4 which can be solved by the two methods, branching according
to the approximation errors divides the number of linear problems solved by thirty-three in
the continuous case and by sixteen in the discrete one, which explains the two stars in the
graph. Employing weighted maximum theoretical approximation errors thus allows us to obtain
a more efficient and robust method, as shown in the performance profiles of Figure 6.6. As a
consequence, we validate this technique with regard to the branching rule based on the largest
range and adopt it in the basic method. A more elaborate variable selection can thus significantly
improve the results.

6.2.2 Approximation errors really produced at the current solution

We now investigate the case where we branch on the variable producing the maximum real
approximation error at the current solution. So, if a nonlinear component f(x) is approximated
by wf(x) and if x0 is the value of x at the current solution, the real approximation error produced
by wf(x) is given by:

ef(x0) = |f(x0) − wf(x0)|.
If the problem is subject to integer restrictions, the associated errors are obtained by evaluating
eint(x) defined in (6.4) at the current value of the integer variables.

Only the computation of the errors is modified with regard to the technique based on max-
imum theoretical approximation errors. For the numerical experiments, the computed approxi-
mation errors have still been weighted by their associated coefficients in the nonlinear problem.
Figure 6.7 compares the results obtained by basing the branching rule on real approximation
errors or on maximum theoretical approximation errors (see also Tables 8.13 and 8.14). By
comparing these methods, we note that the best method between both is strongly problem de-
pendent. By considering the top graph of Figure 6.7, it is not totally clear which method is the
best. According to the performance profiles, the branching based on theoretical approximation
errors is more efficient since it produces the best results for 24 problems (on 40). However, the
largest improvement is generated by the branching rule based on the real approximation errors,
as shown in the right part of the performance profiles of Figure 6.7. Note that this improvement
(220%) is obtained for pb3 in the continuous case, which is a small problem.

Moreover, the cost of the two methods is not too different to prefer one method instead of
the other. Indeed, in each case, approximation errors associated to the nonlinear components or
to the discrete restrictions appearing in the problem must be computed. As explained in Sec-
tion 6.2.1, the maximum theoretical approximation errors can be obtained for square functions
by multiplying by a constant (depending on the number of breakpoints) the approximation er-
rors εx2,L defined in (3.22) and already computed to build the outer approximation problem. By
(6.3), the computation of the maximum theoretical approximation error associated to a bilinear
product is also relatively simple. For trigonometric functions, we need to apply Theorem 3.5 or
3.6 to compute the maximum overestimation and underestimation errors on each possible sides

158 Chapter 6. Variable selection

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
−300

−200

−100

0

100

200

300

theoretical approximation errors
real approximation errors

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

theoretical approximation errors
real approximation errors

Figure 6.7: Comparison of results obtained by basing the branching rule on maximum theoret-
ical or real approximation errors (weighted in both cases).

of DPV . Among these, the maximum ones must be determined and by Theorem 6.1, these
values must be summed with the maximum approximation errors εf,L and εf,U used in (3.47)
and which have been already computed to build the outer approximation problem. The deter-
mination of the theoretical errors associated to trigonometric functions is thus a little bit more
expensive than for square and bilinear functions. For an integer restriction, the maximum theo-
retical approximation error is a constant. On the other hand, to compute the real approximation
errors, the different nonlinear components appearing in the problems (x2, xy and trigonometric
functions) must be evaluated at the current solution. The resulting values are then compared
with the values of their approximations which have been computed during the solution of the
linear outer approximation problem. For the integer restrictions, the real approximation errors
are given by the function eint(x) evaluated at the current solution. Finally, the approximation
errors obtained are weighted in the same way in the two cases. As the computational cost of the
errors in both cases is not dramatically different and remains cheap compared to the total cost
of the method, no method can be preferred.

However, the method based on theoretical approximation errors is better for a larger num-
ber of problems, and also for a larger number of TVC problems (7 on 12). As we are mainly
interested in solving these problems, we pursue using the branching rule based on theoretical

6.3 Strong branching 159

approximation errors in what follows.

6.3 Strong branching

Instead of basing the choice of the branching variable on approximation errors, we could
decide to branch on the variable that produces, by branching on it, the largest increase in the
value of the objective function for the two generated subproblems. Doing so, we hope to cut
nodes more rapidly (see Section 1.2.4). This idea, known as strong branching, has been devel-
oped by Applegate et al. [12].

The application of strong branching requires the solution of two linear problems for each
candidate variable for branching at each iteration. In fact, strong branching simulates to branch
in turn on each of these variables, and for each of them, the two resulting subproblems are
solved in order to know how the value of the objective function would be modified with such a
branching. In the following, we refer to this technique as the strong branching iteration. This
branching is purely informative and not actual. Its goal is to obtain information about the vari-
ation in the value of the objective function, and not directly to refine the outer approximation
problem. As a consequence, one does not go down in the tree during a strong branching itera-
tion.

Strong branching aims at branching on the variable which provides the largest increase in
the value of the objective function for the two subproblems generated by branching. However,
the variation in the value of the objective function usually differs for the right and left subprob-
lems. Therefore, to choose the branching variable, the obtained values for both subproblems
are combined through a score function (Eckstein [36]) defined by:

score(x, y) = (1 − µ) min(x, y) + µ max(x, y), (6.5)

where µ ∈ [0, 1], is a weighting parameter. Since, in our case, the score function is applied to
the variations of f for the left and right subproblems, the strong branching technique computes,
for each variable xi candidate for branching:

si = score(f+
i − f, f−

i − f), (6.6)

where:

• f is the solution of the linear outer approximation problem before branching,

• f+
i is the solution of the right subproblem obtained after branching on xi,

• f−
i is the solution of the left subproblem obtained after branching on xi.

As we want to increase as much as possible the value of f in order to fathom nodes, we choose
to branch on the variable xj producing the largest change in the objective function value, that
is, the variable xj such that:

smax = sj = max
i

si.

Note that if the maximum score function is reached for several variables, the branching variable
is, among these variables, the first one which has been examined. Therefore, it corresponds to
the one with the smallest index i since the variables are treated in the order of their indices.

160 Chapter 6. Variable selection

The motivation of using a score function is based on the fact mentioned by Linderoth and
Savelsbergh in [75] that it is better to branch on a variable producing a good increase in f for the
two resulting subproblems instead of on a variable which brings an important increase for one
subproblem and to a weak (or no) increase for the other. Achterberg et al. [6] have proposed
to use a weighting parameter µ equal to 1

6
. Our experiments with different values of µ have

confirmed that it is a good choice.
After having branched on xj , the first subproblem (left or right) to be examined is the one

with the most promising value for the objective function. It thus corresponds to the subproblem
for which f+

i or f−
i is the smallest, that is, the subproblem for which the value of the objective

function is minimized.
This strong branching technique has been applied to our test problems, but the method

did not converge on eleven of the TVC problems (continuous and discrete cases) before the
maximum number of linear problems allowed to solve was reached. This can be explained by
the fact that with strong branching, we try to increase the value of the objective function but
without taking the quality of the outer approximation problem into account. Therefore, it arises
that we try to increase the value of the objective function of an outer approximation problem
which is quite far from the original one. A possible way to improve the convergence would be
to also branch to refine the quality of the outer approximation problem.

6.3.1 Strong branching based on the quality of the outer approximation
problem

Since our goal in branching is not only to increase the value of the objective function but
also to make the outer approximation problem closer to the nonlinear one, the improvement in
the quality of the approximation should be also taken into account in the branching rule. As a
consequence, we must first quantify the quality of an approximation. To this aim, we measure
the difference (in the sense explained below) between a linear outer approximation problem and
the original approximated problem. Accordingly, smaller this difference, better the associated
outer approximation. In practice, the difference, denoted d, is computed as the sum of the
maximum errors produced with regard to the original problem. That is, we compute d as:

d =

m∑

i=0

errors generated by the approximation of the constraint gi

+

b∑

i=1

errors generated by the violation of the ith integer restriction,

(6.7)

where the objective function of the nonlinear problem has been assimilated to g0 by sake of eas-
iness and b is the number of discrete restrictions in the nonlinear problem. In (6.7), the errors
generated by the violation of an integer restriction correspond to the weighted maximum theo-
retical approximation errors associated to each discrete variable and detailed in Section 6.2.1.
We now describe how to compute the errors generated by the approximation of a constraint
used in definition (6.7). Since each constraint gi, 0 ≤ i ≤ m, can be decomposed as:

gi = gi
lin +

∑

ki

Lki
fki

, (6.8)

6.3 Strong branching 161

where gi
lin is the linear part of the constraint gi, fki

are the nonlinear components involved in gi

and Lki
are the coefficients of these components, we define the approximation error associated

to gi by: ∑

ki

|Lki
|eki

. (6.9)

In this formula, the quantities eki
are the maximum theoretical approximation errors computed

in Section 6.2.1 and generated by the outer approximations based on SOS of the nonlinear com-
ponents fki

. Theoretical approximation errors are used instead of real ones because they lead to
a more intuitive definition of the quality of the approximation. Indeed, intuitively, the quality of
an approximation problem must be improved by branching since the problem is refined. As the
maximum theoretical approximation errors are reduced by branching since the outer approx-
imations are refined, the quantity (6.9) decreases for at least one index i, and thus (6.7) also
decreases, which corresponds to an improvement in the quality of the approximation. To the
contrary, this is not guaranteed with real approximation errors in the sense that after branching,
the real approximation errors may increase and thus, increase the quantity (6.9) and thereafter
(6.7), which would produce a decrease in the quality of the approximation according to our def-
inition. Moreover, in the following, we will need to average the different variations obtained in
the tree. By allowing improvements and deteriorations in the quality of the approximations, we
risk to obtain completely irrelevant values. Therefore, we prefer using theoretical errors since
they produce monotonous variations. Note that with such a definition for d, the value of d is
decreasing when one goes down in the tree (while that of f is increasing).

Since we have determined how to quantify the quality of an approximation, we can now
measure the improvement in the quality of the approximation obtained by branching. To com-
bine these improvements for the left and right subproblems generated by branching on a variable
xi, the score function defined in (6.5) is again used:

ti = score(d − d+
i , d − d−

i), (6.10)

where

• d measures the quality of the linear outer approximation problem before branching,

• d+
i measures the quality of the right subproblem obtained after branching on xi,

• d−
i measures the quality of the left subproblem obtained after branching on xi.

6.3.2 Scheme of the method

Before giving the scheme of our adaptation of strong branching, we first discuss the treat-
ment of infeasible problems. As seen previously, strong branching is based on the variations
in the objective function value and in the quality of the approximation obtained by branching.
Sometimes however, these variations cannot be determined. Indeed, to compute the increase in
the value of the objective function obtained by branching on a variable, we must solve two linear
problems by candidate variable for branching. It can obviously happen that one or both sub-
problems are infeasible. If after branching on a variable xi, the two generated subproblems are
infeasible, the node for which we look for the best branching variable can be directly fathomed.

162 Chapter 6. Variable selection

Conversely, if only one subproblem is infeasible, the interval of xi associated to the infeasible
subproblem can be discarded and as a consequence, the bounds on xi can be tightened for the
node for which we look for the best branching variable. In these cases, strong branching thus
allows us to reduce the range of the variables and thus, to refine the outer approximation prob-
lem. Therefore, the interest of strong branching is not only to choose the branching variable but
also to strengthen the outer approximation problem.

When one problem is found infeasible after branching on xi during a strong branching itera-
tion, the determination of the variation in f generated by this branching is not possible because
the value f−

i or f+
i (depending if it is the left or the right subproblem which is infeasible) is not

available to evaluate the score function (6.6). However, as one subproblem has been discarded
because it was infeasible, the range of the variable xi can be tightened to be equal to the range
obtained for the variable xi for the other subproblem, the feasible one. Consequently, this is
only the variation associated to this subproblem that interests us. In this case, we set the score
function to this variation without combining with another variation computed for the infeasi-
ble problem, that is, we set si = f+

i − f if it is the left subproblem which is infeasible and
si = f−

i − f if it is the right one.
After having explained some features about strong branching applied to outer approxima-

tions, we now summarize the process of this technique. Two goals, which must be combined(2),
are taken into account in the branching rule: increase the value of the objective function and
improve the quality of the outer approximation problem with respect to the nonlinear one. Note
that our numerical experiments have shown that it is better to give priority to the increase of f.
Therefore, we choose to base our choice on the objective function as often as possible and try to
improve the quality of the approximation only when the branching based on the objective func-
tion is expected to produce a small (or no) increase in f, or to be irrelevant because only a few
number of score functions are nonzero, which can be an indication that the outer approximation
problem is not close enough to the nonlinear one since its feasible domain is too large.

In practice, if the value of the maximum score function associated to the increase in f is
smaller than a fixed quantity ε1 or if the proportion of zero score functions is larger than another
fixed parameter, denoted ε2, we try to improve the quality of the outer approximation problem.
However, unless the proportion of zero score functions is larger than the parameter ε2, we do not
branch twice consecutively to improve the quality of the outer approximations in order to avoid
to refine too much an approximation problem that could possibly be discarded if the value of f
would a little bit increase. Indeed, in some cases, small increases in the value of the objective
function can even though help to cut nodes. More schematically, we apply Algorithm 6.2 pre-
sented below. Note that this algorithm is well defined since, if the proportion of score functions
si equal to zero is too large, it is always possible to find a variable which allows us to improve
the quality of the approximation according to our definition (6.7).

By applying Algorithm 6.2 to choose the branching variable with ε1 = 0.01 and ε2 = 0.75(3),
the method converges for all problems, even for problem pb13. On Figure 6.8, we compare the
results obtained using strong branching (see also Table 8.15) with the ones related to the branch-
ing rule based on the weighted theoretical approximation errors (see Table 8.13) presented in
Section 6.2.1.

(2)In this work, we have chosen to try to improve one goal or the other, but not a combination of both by means
of some merit function. It would be worth to also test this alternative.

(3)Among the tested values for parameters ε1 and ε2, Algorithm 6.2 has produced the best results with these
particular values.

6.3 Strong branching 163

The top figure again represents the improvement percentage defined in (5.1) obtained by
using strong branching with regard to the branching rule based on the weighted theoretical
approximation errors. On this figure, we observe that the strong branching method is very com-
petitive because it improves the majority of the results and sometimes significantly. For nine
problems highlighted by stars, the number of linear problems to solve is divided by more than
ten with strong branching. The best improvement is obtained for pb8 in the discrete case with
a number of linear problems to solve divided by 44 (see Tables 8.13 and 8.15 for more details).
These results explain the particular performance profiles of Figure 6.8: since strong branching
is better on a larger number of problems and since it generates improvements in the results
notably larger than the deteriorations that it produces, the curve representing its performance
nearly merges with the axis σ = 1 and thus, cannot be seen on the figure.

Algorithm 6.2: Strong branching: choice of branching variable

Set C = {i | xi is candidate for branching},
ε1, ε2 = fixed real parameters.

1. For each variable xi (i ∈ C), solve the two linear problems generated by branching
on it and compute the associated score functions si by (6.6).
Set smax the maximum score function and xj the variable for which the maximum
is reached. If there exist several variables xj for which the score function is
maximized, choose among them the one with the smallest index j.

2. If
(
(smax < ε1 and the branching for the parent node did not aim at improving the

quality of the approximation) or (the proportion of zero score functions si > ε2)
)

then
For all i ∈ C, compute the score functions ti defined in (6.10) and based on the
improvement of the quality of the approximation.
Choose the variable xj associated to the maximum score function tj .
If there exist several variables xj producing the maximum value for this score
function, choose among them the one with the smallest index j.

3. Branch on xj .

The substantial improvements can be justified by the fact that, for some problems, better re-
sults can be obtained by mainly branching on variables which rapidly increase the value of the
objective function. Strong branching can detect these variables and branch on them. Methods
based on approximation errors do not branch so often on such variables because, with repeated
branching on them, the associated approximation errors become too small with regard to the
errors generated by the other variables, which are, as a consequence, chosen for branching.
Strong branching is also particularly efficient since it allows us to discard some parts of the fea-
sible domain, as explained above. Especially for some problems pb, it reduces a lot the feasible
domain in the first levels of the tree, and thus, avoids to branch numerous times in the tree to
discard infeasible nodes. Indeed, earlier the outer approximation problem can be refined in the
tree, smaller the size of the branching tree.

164 Chapter 6. Variable selection

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
−400

−200

0

200

400

600

800

1000

1200

1400

theoretical approximation errors
strong branching

50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

theoretical approximation errors
strong branching

Figure 6.8: Comparison of results obtained with strong branching with regard to the branching
rule based on the weighted theoretical approximation errors.

However, strong branching can also deteriorate the results. This is the case for two of the
TVC problems in the discrete case (TVC1, TVC5) and also for pb13. This can be explained by
the cost of strong branching which is relatively important. Indeed, strong branching needs to
solve two linear problems for each candidate variable for branching at each iteration. On our
problems, the number of linear problems solved during the strong branching iterations is gener-
ally larger than the half of the total number of linear problems solved (see the sixth column of
Table 8.15 which gives the percentage of linear problems solved during strong branching itera-
tions). By comparing the cost of using strong branching with the one of the approximation error
method, it is obvious that strong branching is more expensive because it requires the solution of
linear problems while the branching rule based on theoretical approximation errors only needs
to compute approximation errors by applying the formula or theorem detailed in Section 6.2.1.
Nevertheless, the use of strong branching generally allows us to decrease the total number of
linear problems to solve with regard to the other branching rule. Therefore, the cost of using
strong branching can be amortized since the cost associated to the solution of a linear problem
for a general iteration or during a strong branching iteration can be considered to be similar.

Note furthermore that no nonlinear problem is associated to the linear problems solved dur-
ing strong branching iterations. Since the use of strong branching reduces the number of general

6.4 Pseudocosts 165

iterations, the number of nonlinear problems to solve also decreases. For all the reasons men-
tioned above, strong branching can be validated with regard to the approximation error methods.
However, in order to reduce its cost, another strategy is investigated.

6.4 Pseudocosts

An alternative of strong branching called pseudocosts, has been developed by Bénichou
et al. [23]. The goal of pseudocosts is to collect information similar to the one obtained by
strong branching, but without systematically computing a sequence of linear problems. In fact,
pseudocosts try to extract information from linear problems solved during the general branch-
and-bound process. This information is stored and used in order to predict the increase in
f obtained by branching on a particular variable. For each candidate variable for branching,
pseudocosts scale, that is, compute by unity of reduction in the range of the variable, the increase
in the value of the objective function (for the left and right subproblems) that one can expect by
branching on it. Such a scaling allows us to predict the increase in f everywhere in the tree and
whatever the range of the variable is. Indeed, for a same variable, if we branch at the middle
of a small interval, the increase in f is expected to be smaller than if we branch at the middle
of a large interval. Scaling pseudocosts allows us to take this dependence on the range of the
variables into account. To predict the increase in f for a subproblem (left or right) obtained
after branching on a variable, the pseudocosts associated to this variable are multiplied by the
range of the variable discarded by this subproblem.

Since the increase in f is generally different for the left and right subproblems, two kinds of
pseudocosts are used for each candidate variable for branching: the up pseudocosts which are
associated to the right subproblems and the down pseudocosts which are associated to the left
ones. Let us focus to the up pseudocosts which are indexed by +, to distinguish them from the
down pseudocosts, indexed by −. According to what precedes, and in order that the definition of
pseudocosts is also applicable for continuous variables, we define the up pseudocosts associated
to a variable xi by:

ζ+
i =

f+
i − f

mxi
− lxi

, (6.11)

where:

• f is the value of the linear outer approximation problem before branching on xi. At this
level, xi belongs to [lxi

, uxi
],

• f+
i is the value of the right subproblem obtained after branching on xi. At this level, xi

belongs to [mxi
, uxi

],

• mxi
is the value where we branch on xi when xi ∈ [lxi

, uxi
],

• mxi
− lxi

corresponds to the range of the variable xi discarded by branching.

The value (6.11) must be still multiplied by the length of the part of the domain discarded
by the right subproblem to predict the increase in the value of f . Note that to compute the up
pseudocost, we divide the variation in the value of the objective function obtained for the right
subproblem by the size of the interval remaining for the left subproblem, that is, by the length

166 Chapter 6. Variable selection

of the interval which has been discarded. Indeed, this is the size of the discarded interval which
has the largest impact on the variation of the objective value. So, the variation in the value of
the objective function for two subproblems can be expected to be similar if parts of same size of
the range of the same branching variable are discarded. This is not the case if these are the two
remaining intervals which have the same size because if for one problem, the discarded interval
is a lot larger than for the other one, the variation in the objective function is expected to be
larger for the first one.

Each time new information is available, pseudocosts are updated and averaged in order to be
as close as possible to the values that they predict. To this goal, we index by k the pseudocosts
ζ+
i and all the quantities involved in (6.11) to mean that they are related to the kth branching on

xi. Therefore, (6.11) becomes:

ζ+
i,k =

f+
i,k − fk

mxi,k
− lxi,k

·

We also introduce η+
i , the number of times that we have branched on the variable xi, solved the

associated right subproblem and that this latter was feasible. We then evaluate the sum σ+
i of

all up pseudocosts computed for the variable xi:

σ+
i =

η+
i∑

k=1

ζ+
i,k. (6.12)

By dividing this sum by η+
i , we obtain Ψ+

i , the averaged up pseudocosts associated to the
variable xi:

Ψ+
i =

σ+
i

η+
i

· (6.13)

Finally, the predicted increase in the value of f for the right subproblem obtained by branching
on the variable xi ∈ [lxi

, uxi
] at point mxi

, can be obtained by multiplying the averaged up
pseudocost by the range of the variable xi discarded by the right subproblem, that is, mxi

− lxi
.

Mathematically, the predicted increase is equal to:

(mxi
− lxi

)Ψ+
i .

Similar definitions can be established for the down pseudocost ζ−
i,k, and for η−

i , σ−
i and Ψ−

i .
As for strong branching, the predicted increases for the left and right subproblems must be

combined. Again, the score function (6.5) is used to this aim. For each variable xi candidate
for branching at point mxi

(xi ∈ [lxi
, uxi

]), the score function associated to pseudocosts Ψ+
i and

Ψ−
i and denoted psi is computed as:

psi = score
(
(mxi

− lxi
)Ψ+

i , (uxi
− mxi

)Ψ−
i

)
. (6.14)

We then choose to branch on the variable xj such that:

psmax = psj = max
i

psi.

Once the branching variable has been selected, the next subproblem (left or right) to be
examined is the one with the most promising pseudocost, that is, the one which predicts the

6.4 Pseudocosts 167

smallest increase in f . Here, it corresponds to the subproblem associated to the smallest quan-
tity between (mxi

− lxi
)Ψ+

i and (uxi
− mxi

)Ψ−
i .

As for strong branching iterations, we also want to improve the quality of the outer approxi-
mation problem. Therefore, we define pseudocosts associated to this quality. These parameters,
denoted Φi, are scaled exactly as Ψi but are defined for dk − d+

i,k and dk − d−
i,k, where the index

k means that these values are associated to the kth branching on the variable xi, dk measures the
quality of the approximation problem before the kth branching, as defined in (6.7), while d+

i,k

(respectively d−
i,k) measures the quality of the right (respectively left) subproblem obtained after

the kth branching on xi. By assuming that after this branching, the variable xi belongs to the
interval [mxi,k

, uxi,k
] for the right subproblem, we thus need to compute for the up pseudocost:

β+
i,k =

dk − d+
i,k

mxi,k
− lxi,k

, (6.15)

θ+
i =

δ+
i∑

k=1

β+
i,k, (6.16)

Φ+
i =

θ+
i

δ+
i

· (6.17)

In this formulation, δ+
i corresponds to the number of times that we have branched on the variable

xi and solved the associated right subproblem (even if this problem was infeasible, contrary to
η+

i). Again, we can give similar definitions for β−
i,k, δ−i , θ−i and Φ−

i and also combine averaged
pseudocosts Φ+

i and Φ−
i through a score function.

6.4.1 Handling of pseudocosts

Update of pseudocosts
When a linear outer approximation problem (ÕP) defined in Section 3.2.5 is solved during the
process of the algorithm, the quantities Ψ−

i and Φ−
i or Ψ+

i and Φ+
i (depending if we examine

a left or a right child) associated to the variable xi on which we have branched before are
updated. In order to update the averaged up pseudocost Ψ+

i for the η+
i + 1 times, from the

current pseudocost denoted Ψ+

i,η+
i

and from the new pseudocost ζi,η+
i +1, the following formula

is employed:

Ψ+

i,η+
i +1

=
η+

i Ψ+

i,η+
i

+ ζi,η+
i +1

η+
i + 1

·

Similar formula are employed to update Ψ−
i , Φ+

i and Φ−
i .

Initialization of pseudocosts
The pseudocosts are thus updated as soon as a linear outer approximation problem (ÕP) is
solved. However, at the top of the tree, we do not have any information to initialize pseudo-
costs, which prevents from choosing the branching variable correctly. The initialization of the
parameters Ψi

(4) is thus a crucial phase. To this goal, a strong branching iteration is performed

(4)Note that for the sake of clarity, we use Ψi to refer to as Ψ
−

i
as well as Ψ

+

i
. A similar notation Φi is also

employed for Φ
−

i
and Φ

+

i
.

168 Chapter 6. Variable selection

as suggested by Linderoth and Savelsbergh in [75]. Sometimes, however, this is not enough to
obtain relevant pseudocosts Ψi associated to the objective function. Indeed, as explained for
strong branching, we can have situations where the value of the objective function is not mod-
ified by branching on a variable xi and, as a consequence, the associated pseudocosts vanish.
For pseudocosts Φi, such a problem does not arise, because they depend on the quality of the
approximation (6.7) which is based on the theoretical approximation errors. Since at least one
of these errors is reduced by branching, the pseudocosts Φi cannot vanish, which is not the case
for the pseudocosts Ψi associated to the increase in f . If the pseudocost Ψi associated to the
variable xi is equal to zero, this variable is never chosen to branch on when the branching rule
is based on the increase in the value of the objective function. Indeed, the variable associated
to the largest pseudocost is chosen for branching. However, by using branch-and-bound, the
outer approximation problem is refined and thus modified. Therefore, it happens that a variable
which could not produce a modification in the value of the objective function at the top of the
tree (and thus, associated to an initial zero pseudocost) has more influence in a deeper level of
the tree and can lead to an important increase in the value of the objective function. Accord-
ingly, branching on such a variable is useful.

To this aim, during the process of the algorithm, we try to update the zero pseudocosts Ψi.
More precisely, for each variable xi candidate for branching and associated to a zero pseudo-
cost Ψi, two linear problems are solved, as in strong branching, to know the modification in the
value of f obtained by branching. We refer to this step as reduced strong branching iteration
since it implies a limited number of variables. Nevertheless, it would be too expensive to do
this for every general iteration. Accordingly, in practice, a reduced strong branching iteration is
performed after 4Z (5) general iterations, where Z is the number of reduced strong branching it-
erations already realized. The call to reduced strong branching iterations is thus more and more
spaced in order not to repeat useless iterations to update pseudocosts on some variables which
will never allow us to increase the value of the objective function by branching on them. We
also take care to avoid to repeat reduced strong branching iterations for two consecutive levels
(parent and child nodes) on the same branch because it can be expected that, after branching
only once, the problem will not have changed enough to obtain a nonzero value for the zero
pseudocosts. Therefore, in practice, we require to go down of three(6) levels before repeating a
reduced strong branching iteration on a same branch. Note that the goal of these reduced strong
branching iterations is only to update the zero pseudocosts and not to choose the branching vari-
able like in strong branching since we have real information for a limited number of variables
only.

Case of infeasible problems
When a linear outer approximation problem (ÕP) is detected infeasible during a general iter-
ation of Algorithm 3.2 or 3.3, the update (or initialization) of the associated pseudocost Ψ+

i or
Ψ−

i is impossible because there is no optimum value f+
i or f−

i for the linear problem to update
the pseudocosts. As a consequence, the pseudocost linked to an infeasible problem remains
unchanged. Note that we do not increase the value of such a pseudocost, although that the asso-
ciated variable seems to be a good candidate for branching since it has allowed us to cut a part
of the domain, and this, in order to avoid to give too much weight to the associated variable.

(5)Among the different tested values, this one has produced the best results.
(6)This value of parameter seems to be a good choice according to our numerical experiments.

6.4 Pseudocosts 169

Indeed, it is possible that this variable produces a very small variation for the other subproblem
generated by branching and that the associated node cannot be rapidly cut. Therefore, branch-
ing on it is not so desirable.

6.4.2 Scheme of the method

All the steps detailed before are now combined to give the method based on pseudocosts
to choose the branching variable. Pseudocosts are first initialized by doing a strong branching
iteration. At this stage, the branching variable is chosen exactly as for strong branching because
the same (and correct) information is available. Next, the choice of the branching variable is
based on pseudocosts unless more than a fixed proportion of pseudocosts, given by ε2, is equal
to zero. In this case, we consider that we do not have a good representation of the problem
and the choice of branching variable is still based on strong branching. Strong branching itera-
tions are then performed with the hope of updating the different pseudocosts quickly. When a
complete strong branching iteration is realized, the choice of branching variable is based on the
obtained information, as detailed in Algorithm 6.2. Moreover, as long as all pseudocosts have
not a nonzero value, we try to update them by doing reduced strong branching iterations in the
way and for the reasons detailed earlier.

As for strong branching, branching is performed to increase the value of the objective func-
tion but also to improve the quality of the linear outer approximation problem with regard to
the original one. If the maximum score function (6.14) related to the predicted increase in f is
larger than a fixed accuracy ε1, the branching is performed to increase the value of the objective
function. Otherwise, branching is realized to improve the quality of the approximation, unless
the branching on the parent node was already based on the quality of the approximation, ex-
actly like for strong branching. The method to choose the branching variable is schematically
presented in Algorithm 6.3.

Figure 6.9 compares the results obtained using strong branching with these obtained by ap-
plying Algorithm 6.3 with ε1 = 0.01 and ε2 = 0.5(7). By analyzing these graphs, we can see that
the best method with regard to the number of linear problems solved is problem dependent since
the best results are shared between the two methods. However, it appears on the performance
profiles of Figure 6.9 that strong branching is more efficient than pseudocosts since it gives the
best results on 26 problems (instead of on 16 problems) and that the deteriorations produced by
using pseudocosts are larger than the improvements that they generate.

These results can be justified by the fact that pseudocosts try to predict the information
computed by strong branching. Sometimes it works, but it happens that pseudocosts do not
give relevant information and that the number of linear problems to solve increases with regard
to strong branching. For example, if a pseudocost has a very small nonzero value at its initializa-
tion, we branch on it very far in the tree. But this variable could possibly have more importance
from some level where the outer approximation problem has been refined and branching on it
would be relevant. The difficulty comes from the fact that the variations in the value of the ob-
jective function obtained by branching on a variable (scaled by unity of range reduction) can be
different depending on the level of the tree and the refinement of the linear outer approximation

(7)According to our numerical experiments, the value of these parameters can be considered as adapted to our
algorithm.

170 Chapter 6. Variable selection

Algorithm 6.3: Pseudocosts: choice of branching variable

Set C = {i | xi is candidate for branching},
ε1, ε2 = fixed real parameters.

0. Do a strong branching iteration to initialize pseudocosts.
Choose the branching variable as in Algorithm 6.2 and branch on it.
Set to 1 the index Z of phases to update zero pseudocosts and set to 1 the number
laststrong of the last strong branching iteration (reduced or not). Set to 1 the index
k of the current iteration.
Choose the next subproblem to solve between the two generated ones.

1. Set k = k + 1. Solve the linear outer approximation subproblem.
If (this problem is infeasible) then go to 3

2. Update Ψ+
i and Φ+

i like in (6.13) and (6.17), or Ψ−
i and Φ−

i depending if a right or
a left child is examined, with the information obtained after solving the linear outer
approximation problem.
Set K= #{i ∈ C | Ψ+

i > 0 and Ψ−
i > 0} and J= #{i ∈ C | Ψ+

i > 0 or Ψ−
i > 0}.

3. Choose a problem not yet explored. If (all the tree has been explored) then stop.
If (the selected node is a node to solve (see Section 3.3.2)) then

go to 1 since the branching variable has already been chosen.
4. If (J < ε2 × #C) then

Do a strong branching iteration, choose the branching variable xj as detailed in
Algorithm 6.2, set laststrong = k, update pseudocosts with the obtained
information and go to 6

else
Base the score functions on pseudocosts

5. Choose the variable xj which maximizes the score functions (6.14).
Set psmax the maximum score function.
If ((psmax < ε1) and (the choice of the branching variable for the parent node

was not based on the quality of the approximation problem)) then
Base the score functions on the quality of the approximation
and choose the variable xj which maximizes these score functions.

6. Branch on xj , create two subproblems, choose one of them to solve and put the
other one in the stack of nodes to treat.

7. If
(
(K 6= #C) and (k − laststrong ≥ 4 × Z) and

(the number of levels on this branch before the last strong branching iteration
(reduced or not) is larger than 3)

)
then

Do a strong branching iteration for each variable xi such that i 6∈ K,
set Z = Z + 1 and laststrong = k and go to 1

problem. Pseudocosts cannot really take this into account, since the same scaled estimation
of the increase in the objective function by branching on a particular variable is used, as long

6.4 Pseudocosts 171

as a new problem is not solved after branching on this variable. Strong branching avoids this
difficulty because it computes the real variation at each iteration. Therefore, it always gives a
relevant information everywhere in the tree. But the quality of this information has a cost.

Nevertheless, on some TVC problems (especially in the discrete case), pseudocosts improve
the results. As a consequence, we cannot directly reject this method. The advantage of pseudo-
costs on strong branching for these problems must be even though put into perspective. Indeed,
strong branching iterations reduce the ratio between the number of nonlinear and of linear prob-
lems solved. Therefore, the number of nonlinear problems solved with pseudocosts is generally
larger (see Tables 8.15 and 8.16) than with strong branching. However, if we do not consider the
impact of the different branching rules on the method, the cost of using pseudocosts is smaller
than the one related to strong branching since it does not need to solve at each iteration two
linear problems for each candidate variable for branching.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
−300

−200

−100

0

100

200

300

strong branching
pseudocosts

1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

strong branching
pseudocosts

Figure 6.9: Comparison of results obtained by using pseudocosts with regard to strong branch-
ing.

172 Chapter 6. Variable selection

6.5 Pseudocost technique with strong branching iterations

The idea of this section is to take advantage of strong branching (relevant information) but
also of pseudocosts (cheaper technique), by combining both methods. To have more realistic
pseudocosts at our disposal, we decide to do strong branching iterations for the four(8) first levels
of the tree. Indeed, the choices at the top of the branch-and-bound tree are the most important.
Therefore, we choose to select there the branching variable as better as possible even if it is
expensive. This step also allows us to initialize pseudocosts on a more extensive basis than by
doing only one strong branching iteration. During the process of the method, in order to keep
realistic pseudocosts, we also repeat strong branching iterations for each candidate variable for
branching every k levels in the tree. In practice, we have chosen k = 4(9). In this way, pseudo-
costs are regularly updated for all variables, which allows us to obtain a better information on
the variables able, or not, to increase the value of the objective function by branching on them.
Furthermore, these strong branching iterations can sometimes cut some parts of the feasible do-
main and, thus, refine the outer approximation problem earlier in the tree than if we had waited
to branch actually on the variables allowing us to discard these parts of the domain.

When a strong branching iteration is performed, the branching variable is obviously chosen
following the information given by strong branching and pseudocosts are updated and averaged
with the new values obtained during the strong branching iteration(10). In this way, pseudocosts
are expected to be more consistent with the real variations. Note that, with this method, the call
to reduced strong branching iterations to update the zero pseudocosts (step 7 of Algorithm 6.3)
can be removed as strong branching iterations are regularly repeated during the process of the
algorithm.

The results obtained with this method are shown on Figure 6.10 and compared with results
due to strong branching and pseudocosts. Results given by the combination of these two meth-
ods are generally intermediate between results obtained with strong branching and pseudocosts
(see Tables 8.15, 8.16 and 8.17 for more details). Sometimes the improvement is larger and
the results are better than for the two previous methods (for example, in the continuous case,
pb0, pb10, TVC1, TVC2, TVC3, TVC5 and TVC6). In these cases, we have benefited from ad-
vantages of both methods. We think that the proposed method is a good compromise between
strong branching and pseudocosts. However, the combination of both methods can also give re-
sults which are worse than the two combined methods separately taken: pb13, TVC1 and TVC2
for the discrete case, for instance. Such results can be explained by the fact that the two methods
separately taken can give good results. By adding strong branching iterations to pseudocosts,
the number of linear problems to solve increases but the improvement provided by these itera-
tions is not sufficient to balance their cost. Moreover, for some problems, strong branching can
cut numerous parts of the feasible domain. This allows us to reduce the feasible domain early
in the tree. By adding strong branching iterations to pseudocosts, we hope to obtain the same
effect. But, as the strong branching iterations are spaced in this case, the outer approximation
problems cannot be refined so early and we sometimes do expensive strong branching iterations
too deeply in the tree. This justifies the few deteriorations of the results.

According to the performance profiles of Figure 6.10, the combination of strong branch-

(8)This parameter has provided the best results among the tested values.
(9)This particular value has been selected among the different tested values since it has produced the best results.

(10)Another possibility would consist to reset the pseudocosts with the values obtained during the strong branching
iteration.

6.5 Pseudocost technique with strong branching iterations 173

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
−300

−200

−100

0

100

200

300

strong branching
pseudocosts
combination of strong branching and pseudocosts

1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

strong branching
pseudocosts
combination of strong branching and pseudocosts

Figure 6.10: Comparison of results obtained by using strong branching, pseudocosts and pseu-
docosts combined with strong branching.

ing and pseudocosts is better than the two previous ones since it generally corresponds to the
higher curve. However, the difference with strong branching is weak. We now compare the
strong branching technique with the combination of strong branching and pseudocosts since
they are the two best methods. The performance profiles related to this comparison are given
in Figure 6.11. They show that the combination of both methods is more efficient than strong
branching while this latter technique produces the better improvement generated in the results
(problem pb7 in the discrete case). On this figure, we also compare the improvement percentage
obtained with the combination of both methods with regard to strong branching. In fact, it is the
same figure as Figure 6.10 in which the results related to pseudocosts have been removed. Since,
in addition, the combination of both method gives the best results on the largest problems (on
the center of the graph), and notably, on TVC problems (eight improvements, one equality and
three deteriorations), we validate the combination of pseudocosts and strong branching. Note
however that the ratio of nonlinear problems and of linear ones is still smaller for strong branch-
ing than for the method which combines it with pseudocosts. But for the treated problems, the
cost of the nonlinear problems with regard to the linear outer approximation ones is not high
enough to change the conclusions on the largest problems if we take the number of nonlinear
problems solved into account. We thus prefer the branching rule combining pseudocosts and

174 Chapter 6. Variable selection

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
−300

−200

−100

0

100

200

300

strong branching
combination of strong branching and pseudocosts

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

strong branching
combination of strong branching and pseudocosts

Figure 6.11: Comparison of results obtained by using strong branching and pseudocosts com-
bined with strong branching.

strong branching instead of the strong branching technique although these two techniques do
not give results dramatically different.

As the proposed technique is less good than strong branching on some problems, we can
wonder if the conclusions obtained in Section 6.3.2 with regard to the branching rule based
on the weighted theoretical approximation errors remain valid. The answer is obvious by con-
sidering Figure 6.12 which compares the technique proposed in the present section with the
branching rule based on the weighted theoretical approximation errors. The top figure gives the
improvement percentage in the number of linear problems to solve obtained with the combi-
nation of strong branching and pseudocosts. For a quarter of the problems, this latter method
divides by more than ten the number of linear problems to solve, as highlighted by stars. How-
ever, on TVC1, TVC5 and pb13 in the discrete case, the branching rule based on the theoretical
approximation errors is better than the last proposed technique, like for strong branching. Note
nevertheless that the deteriorations produced by the method combining strong branching and
pseudocosts are small with regard to the improvements that it generates. Moreover, the bottom
figure which represents the performance profiles is similar to the one of Figure 6.8: the curve
associated to the combination of strong branching and pseudocosts nearly merges with the axis
σ = 1, and thus, cannot be seen on Figure 6.12. This is an indication that the proposed tech-

6.6 Conclusion 175

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
−400

−200

0

200

400

600

800

1000

1200

1400

theoretical approximation errors
combination of strong branching and pseudocosts

50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

theoretical approximation errors
combination of strong branching and pseudocosts

Figure 6.12: Comparison of results by using pseudocosts combined with strong branching iter-
ations and theoretical approximation error branching.

nique is better than the method based on theoretical approximation errors. Therefore, the basic
method is modified by basing the branching rule on the combination of pseudocosts with strong
branching.

6.6 Conclusion

In this chapter, several branching rules have been tested. We have begun by highlighting that
the results could be improved by branching again on a variable which has previously allowed
us, by branching on it, to fathom the last nodes that have been cut, instead of branching on the
variable selected by the usual branching rule. Then, we have shown that the branching rules
based on the approximation errors are better than the simple branching rule based on the largest
range of the variables. Indeed, they allow us to solve all problems TVC. For these methods, the
interest of weighting the variables to take the knowledge of the problem into account has been
underlined. The best approximation error branching method (based on theoretical or on real
approximation errors) depends on the problem, but we prefer theoretical errors because they
produce slightly better results for the largest problems.

176 Chapter 6. Variable selection

However, these rules are themselves not as good as the branching rules based on the increase
in the value of the objective function, like strong branching or pseudocosts. These techniques
developed in mixed integer programming have been adapted to be efficient on our outer approx-
imation problems. Indeed, in case of outer approximation, it is also desirable to make the linear
outer approximation problem closer to the original one in addition to increase the value of the
objective function. Therefore, this increase is no longer the only criterion to choose the vari-
able. In some cases, branching to try to improve the quality of the outer approximation problem
with regard to the original problem is preferred. Strong branching updated in this way has pro-
duced good results. The success of this method to solve outer approximation problems can be
explained by the fact that it allows us not only to choose a good branching variable but also, in
some cases, to reduce the range of the variables. Therefore, strong branching refines the outer
approximation problem and can also be seen as a strategy of range reduction. Moreover, using
strong branching iterations allows us to reduce the number of general iterations, and therefore,
the number of nonlinear problems solved. Since the cost of strong branching is significant, a
technique based on pseudocosts has also been developed. We have shown that the initializa-
tion and update of pseudocosts is not as easy as in the integer case. Indeed, the increase in the
value of the objective function can often vanish by branching on continuous variables and these
increases computed by unity of change in the variables can be very different depending on the
depth of the tree and the degree of refinement of the outer approximation problem.

To work with pseudocosts as realistic as possible, we have combined pseudocosts with
strong branching iterations. The goal of this technique is twofold since it amounts to reduce the
cost of strong branching while trying to obtain realistic pseudocosts by exploiting as much as
possible the information given by strong branching. The combination of pseudocosts and strong
branching seems to be a good compromise between both methods. As this technique gives the
best results on the most difficult problems, we think that it can be considered as an interesting
alternative and we adopt it for the following.

Chapter 7

Node selection

This third chapter about choices related to a branch-and-bound process is concerned with
the node selection that determines which node must be treated next. Like the issues studied in
the two previous chapters, the node selection is very important since it can strongly increase
the speed of convergence of the proposed method. Indeed, the way used to explore the tree
allows us to find more or less rapidly a feasible solution for the nonlinear problem, and as a
consequence, an upper bound on the value of its objective function or better, the optimum value
itself. Better this upper bound, quicker nodes can be fathomed, and thus higher the speed of
convergence. Therefore, it is desirable to search the tree in order to find a good upper bound on
the value of the objective function as fast as possible (in the sense that it allows us to discard
nodes).

For the numerical experiments presented in the previous chapters, a depth-first search has
been used to explore the branch-and-bound tree, as explained in Section 5.1.1. This chapter now
focuses on two other node selection rules: the best-first search and the best-estimate criterion
adapted to our outer approximations. In Section 3.3.2, we have seen that we consider two kinds
of nodes when we must choose a node to examine: the nodes to divide and the nodes to solve.
The first class of nodes contains the nodes associated to subproblems that have been solved and
which must be divided in two new nodes by branching. When a node to divide is selected to be
treated, two new nodes are generated and one of them is solved. With the branching rule used
(pseudocosts combined with strong branching iterations developed in Section 6.5), the selected
node among both corresponds to the one leading to the smallest increase predicted by pseu-
docosts, as explained in Section 6.4. The other node which remains unsolved belongs to the
second class of nodes, i.e., the nodes to solve. Both kinds of nodes belong to the set of nodes to
explore, also called open nodes.

For the best-first search and the best-estimate criterion, quantities related to nodes are com-
puted in order to determine the best node to examine. To compute these quantities, we only
focus on the nodes to divide. Indeed, the quantities related to nodes to solve are given by the
quantities computed for their parent nodes since they quantify the ability of their children to be
promising nodes and in addition, no other information is available for a node to solve.

177

178 Chapter 7. Node selection

7.1 Depth-first search

In order to motivate the use of a different node selection rule, some features of the depth-
first search with backtracking employed so far are recalled. With a depth-first search, one
goes down in the tree as long as possible, that is, as long as the treated node cannot be cut.
With backtracking, when a node is fathomed, the next node to be examined is the last one
which has been generated. The set of open nodes can thus be seen as a LIFO (last in first out)
stack since the last generated node is the first one to be treated. As a consequence, the linear
problems associated to two nodes consecutively examined are generally quite close, which can
be exploited to solve more rapidly the linear problems by using the solution associated to the
last examined node (solution itself, Jacobian, Hessian) to solve the linear problem associated to
the next treated node. Moreover, the depth-first search is also expected to quickly find feasible
solutions for the nonlinear problem, and thus upper bounds on its objective value, since these
solutions are generally in the depth of the tree. These are the main advantages of a depth-
first search. However, if a bad direction is taken in the tree, a lot of useless iterations can be
performed before finding the optimum value or even an upper bound on it. Indeed, in this case,
numerous linear problems associated to nodes which would have been fathomed if a better
bound had been known when they were examined can possibly be solved. This is why another
node selection rule is considered.

7.2 Best-first search

The best-first search allows us to avoid the drawback related to a depth-first search men-
tioned above since it selects, among the set of open nodes, the one with the smallest lower
bound on the value of the objective function of the nonlinear problem. We recall that, for each
node of the branch-and-bound tree, the lower bound on the value of this objective function is
given by the optimum value of the linear outer approximation problem solved at this node, if it
is a node to divide, or at its parent, if it is a node to solve. With such a choice, no problem with
a lower bound on the optimum value of the nonlinear problem larger than the actual optimum
value (a priori not known) is solved. Therefore, we never treat problems associated to super-
fluous nodes, that is, nodes which would have been fathomed if a better upper bound had been
available when they would have been selected, which is not the case with a depth-first search.
Roughly speaking, the depth-first search explores the tree in a vertical way while the best-first
one searches it in a more horizontal way.

Let us now consider the drawbacks of a best-first search which mainly come from the num-
ber of open nodes, possibly large, that must be stored in the stack of open nodes. Indeed, if
a good upper bound to discard node is not found rapidly for the best-first search, the number
of open nodes can become significantly large. This problem does not arise with a depth-first
search. More precisely, in the worst case, at the kth level of the branch-and-bound tree, 2k−1

nodes are open with a best-first search while this number is reduced to k when a depth-first
search is employed. For large size problems, this can produce problems of memory. The search
of the node associated to the smallest lower bound on the optimum value is also needed to
choose the most promising node in the stack. This operation can be expensive if the stack com-
prises a lot of nodes. Moreover, the local behaviour of the depth-first search is lost and as a
consequence, the information coming from the last solved problem cannot be exploited to solve

7.2 Best-first search 179

the next problem treated.
Instead of a depth-first search, a best-first search has been used in the method proposed in

Section 5.1.1 and improved by the modifications validated in Chapters 5 and 6. This node se-
lection rule chooses to treat the open node with the smallest lower bound on the optimum value
of the nonlinear problem. If several nodes minimize this lower bound, we choose to examine,
among them, the deepest one in the tree, and if again several candidates remain, the last of them
which has been created is chosen. This choice tries to limit the size of the tree by going down
in this tree with the hope of discarding nodes. The results obtained with this best-first search
are given in Table 8.18 and must be compared with the ones produced with a depth-first search
already mentioned in Table 8.17.

The graphic comparison of these results is presented in Figure 7.1. As previously, the top
graph represents the improvement percentage ipm in the number of linear problems solved de-
fined in (5.1) and obtained by using a best-first search instead of a depth-first one, while the
bottom graph gives the performance profiles related to these methods. We refer the reader to
Sections 5.1.4 and 5.3 for a more detailed explanation about the interpretation of these graphs.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
−200

−100

0

100

200

300

400

depth−first search
best−first search

1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

depth−first search
best−first search

Figure 7.1: Comparison of results obtained by using a best-first search instead of a depth-first
one.

The results presented in Figure 7.1 are quite surprising, because the best-first search is not

180 Chapter 7. Node selection

significantly better than the depth-first one. We observe 16 improvements, 9 equalities and 15
deteriorations although the best-first search is guaranteed not to solve problems associated to
superfluous nodes, to the contrary of the depth-first search. Observe also that better results are
obtained for the discrete case than for the continuous one. This can be explained by the fact
that, with the data used for the problems treated, the optimum value of the original problem
is rapidly found with a depth-first search for the continuous version of the problems. In this
case, the number of superfluous nodes examined with a depth-first search can be considered as
insignificant. As a consequence, for these problems, there is no reason that the best-first search
produces better results.

Note furthermore, that with the branching rule employed (pseudocosts combined with strong
branching iterations developed in Section 6.5), the node selection strategy does not only modify
the way of exploring the tree, but also the branching rule. Indeed, as the tree is searched in
a different order, the pseudocosts are differently updated and the selected branching variables
can vary with regard to the method using a depth-first search. Therefore, at the end of the
branch-and-bound process, the generated branching tree will be different depending on the
node selection strategy employed. One can expect that an update of pseudocosts (see (6.13))
by passing through the tree in a depth-first manner is better than in a best-first one. This is
justified by the fact that the quantity of increase in the value of the objective function computed
at a node by unity of reduction in the range of the variable, that is, the pseudocost, can strongly
vary according to the place of the considered node in the tree and the degree of refinement of
the outer approximation problem. Locally, however, as the outer approximation is not modified
much, these quantities and thus the pseudocosts, do not differ much. To exploit this in order
to have relevant pseudocots, it is preferable to update and average pseudocosts on a more local
basis, that is, in a depth-first manner instead of updating them in a best-first way. This reasoning
is confirmed by the results. Indeed, for five of the TVC problems in the continuous case, the
best-first search gives less good results than the depth-first one. For these problems, since the
optimum value is rapidly found, as explained above, it is more the impact of a different order to
update pseudocosts which is highlighted in the results than the ability of the node selection to
discard nodes more or less rapidly.

Nevertheless, for problems for which the optimum is not rapidly found, the drawback of
updating the pseudocosts in a best-first way is exceeded by the benefit obtained by avoiding
to examine superfluous nodes. This can be observed for the discrete problems represented as
usually in the right part of the top graph of Figure 7.1. For these problems, 9 improvements are
produced by employing a best-first search, 5 equalities and 6 deteriorations. On the performance
profiles of Figure 7.1, it appears that the best-first search is slightly more efficient and also
allows us to generate improvements generally larger than the produced deteriorations. However,
on larger problems than the ones treated here, the size of the stack of open nodes for a best-first
search could generate problems of memory.

7.3 Best-estimate criterion

In order to benefit from the advantages of depth and best-first searches while reducing their
drawbacks, some node selection rules consisting in a compromise between these two techniques
have been proposed in the literature (see Breu and Burdet [21], Bénichou et al. [23] or Gauthier
and Ribière [48], for instance). We are interested here in the best-estimate criterion introduced

7.3 Best-estimate criterion 181

by Bénichou et al. in [23] for a branching on integer variables. This particular way of exploring
the tree can be motivated by the noting that the best-first search selects the node associated to the
smallest lower bound on the optimum value but without taking care that a good feasible value
for the original problem (in the sense that it allows us to discard nodes) is, or not, reachable
from this node. In fact, it would be more interesting to examine nodes that are expected to
lead to good upper bounds, which is the idea of best estimates. For each node not yet treated,
the value of the objective function for the nonlinear problem is predicted for the best feasible
solution reachable from this node. This amounts to estimate the increase in the value of the
objective function in order to obtain a feasible solution for the nonlinear problem by starting
from the solution of the linear outer approximation problem. To this goal, the pseudocosts Ψi

defined in Section 6.4 are employed.
For integer restrictions, the determination of the moving in the range of the integer variable

from its current value to reach an integer feasible value is obvious. More precisely, if at the
current solution, an integer variable xi is equal to x∗

i , the quantity of moving necessary to reach
an integer solution is equal to dx∗

i e−x∗
i or x∗

i −bx∗
i c, that is, we need to discard the part [li, dx∗

i e[
or]bx∗

i c, ui], respectively, from the current approximation interval [li, ui] for xi. According to
our definition of pseudocosts given in (6.11), the smallest predicted increase in the value of the
objective function produced when the value of a variable xi, equal to x∗

i at the current solution,
becomes integer is given by:

min
(
(ui − bx∗

i c)Ψ−
i , (dx∗

i e − li)Ψ
+
i

)
. (7.1)

Indeed, as explained in Section 6.4, the predicted increase in the value of the objective function
for a subproblem obtained by branching is computed by multiplying the associated pseudocost
by the range of the variable discarded by branching. The use of the minimum in (7.1) is mo-
tivated by the fact that when one goes down in the tree, we have two possibilities: examining
the left or the right subproblem. To estimate the smallest increase in the value of the objective
function to obtain a feasible solution, the node leading to the smallest predicted increase in f is
obviously chosen.

In the case of outer approximations of nonlinear components, the determination of the quan-
tity of moving in the range of the variable xi in order that the value of the outer approximations
of the components involving xi coincides with the value of the approximated components, is not
obvious. Indeed, for each value of xi, the outer approximations can produce the correct values
(since they are outer) but this is only guaranteed when the approximation interval is reduced to
one point. Therefore, the predicted increase in the value of the objective function in such a way
that the current value of xi given by x∗

i produces the same value for the components in which it
is involved, in the outer approximation problem and in the original problem could be expressed
like: (

(ui − x∗
i)Ψ

−
i + (x∗

i − li)Ψ
+
i

)
, (7.2)

since the parts [li, x
∗
i [and]x∗

i , ui] must be removed from the approximation interval in order to
reduce it to {x∗

i }. However, this increase in f is computed in the worst case and is therefore,
generally overestimating. Indeed, it is not always necessary to refine the variable so much in
order that at the current solution, a variable produces the same values in the outer approximation
and in the nonlinear problems. Such solutions can also arise with variables defined on more or
less large intervals. Moreover, our numerical experiments have shown that formula (7.2) does
not lead to good results. For these reasons, we have defined differently the predicted increase

182 Chapter 7. Node selection

in f :
min

(
(ui − x∗

i)Ψ
−
i , (x∗

i − li)Ψ
+
i

)
. (7.3)

This new estimation of the increase in f is expected to be underestimating since it allows us to
only remove one infeasible part ([li, x∗

i [or]x∗
i , ui]) from the approximation interval in order that

the outer approximations of the nonlinear components involving xi produce exact values. But
there is no guarantee in this way. The motivation of using definition (7.3) is twofold. Firstly,
this definition is built on the same basis as (7.1). Indeed, in case of an outer approximation,
x∗

i can be considered as the feasible value to reach and for which we want to obtain an outer
approximation producing correct values. Secondly, by discarding the part]x∗

i , ui] or [li, x
∗
i [

from the approximation interval [li, ui], x∗
i becomes a bound of the remaining approximation

interval. Remember that the outer approximations based on SOS of some particular nonlinear
components are exact at the bounds of the approximation interval. This is the case for the
lower and upper bounds on the arguments of a bilinear product since its outer approximation
based on SOS is defined by (2.27), (2.28), (2.29) and (3.39). By using bound propagation of
Section 3.2.2, it is also true for the square function, more particularly, for the bound on the
interval corresponding to the square root of the lower bound on this square function (when zero
is not strictly inside the approximation interval, as explained at the end of Section 4.1.1, see
Figure 4.4). This also holds for the lower or upper bound of trigonometric functions if these
ones are defined on particular intervals where their outer approximations based on SOS are
always overestimating or underestimating and if the considered bound produces an extremum
for the trigonometric function. For all the cases mentioned above, the outer approximations
based on SOS defined on [li, x

∗
i] or on [x∗

i , ui] are exact at x∗
i . Therefore, the predicted increase

(7.3) can be considered as valid since it is enough to remove one part]x∗
i , ui] or [li, x

∗
i [to obtain

an exact approximation in x∗
i .

We can now determine the quantity f t
est estimating the best possible value for the objective

function of the nonlinear problem which can be reached from a node t to divide. This best value
is computed by starting from f t

L, the optimum value of the linear outer approximation problem
at node t and by adding to this value, the increase predicted by pseudocosts for each nonlinear
and integer variables to obtain a feasible solution for the nonlinear problem. Note that this
definition does not take the possible correlations between the variables into account and suppose
that all variables are independent. Grouping together f t

L and the increases in this value generated
by the attempts to satisfy the integer restrictions (7.1) and to obtain outer approximations at
some points producing correct values (7.3), the estimated value f t

est for the objective function
associated to the best feasible solution reachable from a node t is defined by:

f t
L +

∑

i∈Nnl

min
(
(ut

i − xt
i)Ψ

−,t
i , (xt

i − lti)Ψ
+,t
i

)
+
∑

i∈Nint

min
(
(ut

i − bxt
ic)Ψ−,t

i , (dxt
ie − lti)Ψ

+,t
i

)
,

(7.4)
where f t

L is the optimum value of the linear outer approximation problem at node t,
Nnl is the set of variables appearing nonlinearly in the nonlinear problem,
Nint is the set of integer variables of the problem,
Ψ+,t

i and Ψ−,t
i are the up and down pseudocosts associated to the variable xi at node t,

lti and ut
i are respectively the lower and upper bounds on the variable xi at node t,

xt
i is the current value of the variable xi at the solution the linear outer approximation

problem at node t.

7.3 Best-estimate criterion 183

Our node selection rule inspired by best estimates chooses to treat the open node with the
smallest predicted value f t

est for the objective function of the nonlinear problem. If several
nodes produce the same smallest value, we choose to examine, among them, the one which is
the deepest in the tree, and if several nodes are always candidate, we select the last of them
which has been created. This node selection rule has been applied to the method developed so
far instead of a depth or a best-first search. The obtained results are given in Table 8.19 and are
graphically compared with the ones produced by a depth or a best-first search on Figure 7.2.
It can be observed on Tables 8.17, 8.18 and 8.19 and on this figure that the number of linear

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0
−200

−100

0

100

200

300

400

depth−first search
best−first search
adapted best estimates

1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

depth−first search
best−first search
adapted best estimates

Figure 7.2: Comparison of results obtained by using a best-first search or an adaptation of best
estimates instead of a depth-first search.

problems solved with the adaptation of the best estimates is generally intermediary between
the ones produced for a depth and a best-first search, even if it is closer to the number of
linear problems obtained with a best-first search. This result could be expected because of the
definitions of the three compared node selection rules. Note however that the adaptation of
best estimates can also produce results better than the two other ones (for the discrete case:
pb6, pb8, pb10, pb13 and TVC6), and sometimes significantly (pb13). In these cases, it has
allowed us to reduce the drawbacks of the best and depth-first searches. According to the
performance profiles of Figure 7.2, the adaptation of best estimates is generally better than
the depth and best-first searches. Indeed, the performance profile associated to the adaptation

184 Chapter 7. Node selection

of best estimates is generally higher than the two other performance profiles. The adaptation
of best estimates allows us to produce improvements larger than the generated deteriorations.
However, with regard to the efficiency, the best-first search is the best method among the three
compared according to the performance profiles of Figure 7.2, but if we only compare the best-
first search and the adaptation of best estimates, this is the latter node selection rule which is the
most efficient, as shown in Figure 7.3. This result about the efficiency can be explained by the
fact that the adaptation of best estimates provides results generally indermediary between the
depth and best-first searches, which prevents it from being the most efficient if we compare the
three methods together. However, if we compare it only with the best-first search, it is the most
efficient since it is also usually better on the problems for which the depth-first search was the
best method.

1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

best−first search
adapted best estimates

Figure 7.3: Performance profiles related to a best-first search and to an adaptation of best esti-
mates.

With regard to the maximum number of nodes stored in the stack of open nodes, the adap-
tation of best estimates is also intermediary between the best and depth-first searches, as rep-
resented in Figure 7.4. This figure shows the percentage of increase in the maximum number
of nodes stored in the stack for a best-first search and for the adaptation of best estimates com-
pared to a depth-first search. The scale has been chosen to be intentionaly large to focus on the
largest increases in the size of the stack, since these are the ones which can be problematic. The
maximum number of nodes stored in the stack during the process of the method is also given
for each problem in Tables 8.17, 8.18 and 8.19. The fact that the adaptation of best estimates
produces better results than best-first search on average (according to the performance profiles
of Figure 7.3 while it needs less storage, is an indication that our adaptation of best estimates
allows us to suitably detect the nodes able to generate good upper bounds.

For all the reasons mentioned above, we think that the adaptation of best estimates cor-
responds to a good compromise between the depth and best-first searches and surely, to the
best technique among the three node selection rules tested. Note nevertheless that it is more
expensive than the two other techniques since it needs to evaluate and store the best predicted
value (7.4) for the objective function reachable from each open node and, once a node has to be
selected, it needs to choose in the stack of open nodes, the one producing the smallest value.

7.4 Conclusion 185

0 1 2 3 4 5 6 7 8 9 10 11 12 13 T1 T2 T3 T4 T5 T6 T6 T5 T4 T3 T2 T1 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

1000

2000

3000

4000

5000

depth−first search
best−first search
adapted best estimates

Figure 7.4: Comparison of the maximum number of nodes stored in the stack for a best-first
search or for the adaptation of best estimates instead of for a depth-first search.

Finally, to limit the cost of this adaptation of best estimates, we employ in (7.4) the value
of pseudocosts available at each node. The quantity (7.4) is evaluated only once for each open
node and stored to be used each time a node must be selected. However, we have highlighted
in Section 6.4 that the value of pseudocosts is not always relevant (in particular at the top of the
tree when the pseudocosts have not been enough initialized). A possible way to improve this
node selection rule would be to compute (7.4) for each open node with the current pseudocosts,
Ψ+

i and Ψ−
i , each time a node must be selected. That is, (7.4) would become:

f t
L +

∑

i∈Nnl

min
(
(ut

i − xt
i)Ψ

−
i , (xt

i − lti)Ψ
+
i

)
+
∑

i∈Nint

min
(
(ut

i − bxt
ic)Ψ−

i , (dxt
ie − lti)Ψ

+
i

)
,

(7.5)
But this would imply to evaluate (7.5) for each open node each time a node must be selected,
which would increase the cost of the node selection rule. A compromise could also be con-
sidered (using (7.5) for the first iterations and then, using (7.4), for example). Another way to
possibly improve the adaptation of best estimates would be to take the quality of the approxi-
mation into account in the node selection rule, as it has been done in the branching rule.

7.4 Conclusion

This chapter has underlined the advantages and drawbacks of depth and best-first searches.
The improvement produced on our test problems by the best-first search compared to the depth-
first one has not been as large as expected because the best-first search does not only change
the way of selecting the node to examine but also modifies the order in which the pseudocosts
are updated and averaged. On the observed numerical results, it appears that an update of
pseudocosts in a depth-first manner must be preferred in order to update pseudocosts on a more
local basis. However, for problems which do not rapidly detect the optimum solution, the
impact of a best-first search is beneficial and exceeds the drawback of updating pseudocosts
in a best-first way. Nevertheless, on larger problems than the ones treated here, the best-first
search is expected to build a large stack of open nodes.

186 Chapter 7. Node selection

To remedy this problem, another way to select the node based on best estimates has been
considered. Best estimates developed in the mixed integer case predict the value of the objective
function at the best feasible solution reachable from a node. While it is obvious to determine the
moving in the range of an integer variable to obtain a feasible integer value, it is not the case for
the quantity of moving necessary to produce a value for the outer approximation coinciding with
the correct value in the original problem. This is only guaranteed if the approximation interval
is reduced to one point but this observation leads to a definition of the increase in the value of
the objective function which is overestimating and does not produce good results. Therefore,
another definition for this increase has been given. Our numerical experiments have shown that
the estimation of the best optimum value reachable from a node obtained by combining the
predicted increases in the value of the objective function to satisfy integer restrictions and to
produce exact outer approximations leads to good results in practice. Moreover, the developed
node selection rule allows us to limit the size of the stack of open nodes compared to the best-
first search. However, it is more expensive than the depth and best-first searches since it needs
to evaluate and to store the smallest estimated feasible value for the objective function of the
nonlinear problem reachable from each open node. Finally, some ideas have also been given to
improve this adaptation of best estimates.

Chapter 8

Final comparisons of the results

We conclude this part of the thesis about the numerical results with global comparisons
and comments. In the three previous chapters, the improvements or deteriorations have been
measured locally, in the sense that the method has evolved with the experiments and we have
mainly compared methods obtained with or without a proposed modification. However, we
have never compared the basic method of Section 5.1.1 with the final method combining (i) the
presolve and range reduction of Chapter 5, (ii) the branching rule based on a combination of
pseudocosts and strong branching described in Chapter 6 and (iii) the node selection strategy
given by the adaptation of best estimates developed in Chapter 7. It is one of the purposes of
the present chapter to do so. Moreover, the comparisons presented so far have been performed
on the basis of the number of linear problems solved instead of on the basis of the CPU time
since our software is not optimized with regard to this aspect. We also show in this chapter that
a comparison based on the CPU time leads to essentially similar results. Finally, we compare
our method with competitive softwares available on the NEOS server (see Chapter 1).

8.1 Basic versus final method

We thus compare the basic method with the method finally obtained after all our numerical
experiments. In order to also highlight the progresses obtained by handling the presolve and
range reduction as well as the branching rule in an appropriate way, we also consider the results
obtained with the methods developed at the ends of Chapters 5 and 6. Accordingly, we compare
four methods:

1. the basic method defined in Section 5.1.1 and using the specific ranking of the variables
detailed in Section 5.4 in order to have a more consistent basis of comparison,

2. the method with presolve and range reduction, simply referred thereafter to as the presolve
method, obtained in Section 5.6 thanks to presolve and range reduction phases,

3. the variable method, that is, the method derived from the presolve method by adding the
branching rule of Section 6.5,

4. the final method which corresponds to the variable method modified by employing the
node strategy based on best estimates (see Section 7.3). This is also the best method that
we have tested.

187

188 Chapter 8. Final comparisons of the results

We recall that the numerical results obtained with these four methods are respectively given in
Tables 8.8, 8.10, 8.17 and 8.19.

Figure 8.1 graphically represents the performance profiles related to the number of linear
problems solved by the four methods cited above. This information is summarized in Table 8.1.
In this table, stars in a field mean that the method needs more than 500.000 linear problems to
solve the problem. On Figure 8.1, the curves associated to the variable and to the final methods
nearly merge with the axis σ = 1. They are thus a lot better than the other ones, as one could
expect.

100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

basic method
presolve method
variable method
final method

Figure 8.1: Performance profiles related to the comparison of the number of linear problems
solved with the basic, presolve, variable and final methods.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

basic method
presolve method
variable method
final method

Figure 8.2: Performance profiles around σ = 1 related to the comparison of the number of
linear problems solved with the basic, presolve, variable and final methods.

In order to compare the two best methods, Figure 8.2 focuses on the performance profiles
around σ = 1. By observing these figures and the performance profiles of Figure 7.2 which
compare the final method with the variable method, that is, the two best methods among the

8.1 Basic versus final method 189

basic method presolve method variable method final method
pb0 45 112 112 112
pb1 107 104 147 142
pb2 2131 5636 44 44
pb3 159 262 78 79
pb4 9303 9710 177 163
pb5 3405 396 205 259
pb6 3533 5449 598 558
pb7 16245 19859 5054 5182
pb8 111721 37107 579 976
pb9 20302 3813 266 266

pb10 20685 19928 527 551
pb11 7241 7996 1326 1142
pb12 11131 2181 1336 1367
pb13 467225 ***** 20362 22983

TVC1 ***** ***** 82847 87182
TVC2 ***** ***** 61924 58457
TVC3 140865 1339 948 948
TVC4 ***** 113739 1701 1750
TVC5 ***** ***** 18379 20873
TVC6 ***** ***** 32852 30994

pb0 63 63 68 68
pb1 133 131 79 68
pb2 2115 3237 194 260
pb3 135 197 121 97
pb4 15389 11388 120 120
pb5 3009 257 145 145
pb6 65800 6145 348 292
pb7 377 1353 1235 1121
pb8 ***** 198817 263 241
pb9 62149 33668 442 442

pb10 113846 51816 205 197
pb11 3806 7349 558 258
pb12 ***** 33407 1503 1056
pb13 ***** 8093 17388 3885

TVC1 108861 40446 7756 8031
TVC2 ***** 72270 5792 5547
TVC3 62045 861 627 627
TVC4 ***** 38792 1396 1582
TVC5 ***** 7369 5619 4338
TVC6 ***** 12131 6096 5503

Table 8.1: Number of linear problems needed by the final, presolve, variable and final methods
to solve our test problems.

190 Chapter 8. Final comparisons of the results

four compared, we can conclude that the final method is the best one. Note moreover that the
best progresses in the results are obtained by handling the branching rule in a convenient way.
The branching variable strategy is thus the issue which has the biggest impact.

Due to the fact that our software is not optimized with regard to the CPU time, we have not
based our comparison on this measure so far. We show here that using the CPU time as basis of
comparison leads to similar conclusions, as shown in Figure 8.3 that represents the performance
profiles associated to the CPU times observed for the four compared methods. These CPU times
are given in Table 8.2. Again, stars are used in this table to represent the fact that a method
cannot solve the problem considered before the maximum number of linear problems allowed
to solve is reached. The comments about Figure 8.1 remain valid for Figure 8.3. Again, we
zoom around σ = 1 to observe the behaviour of the curves related to the two best methods.

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

basic method
presolve method
variable method
final method

Figure 8.3: Performance profiles related to the comparison of the CPU times observed with the
basic, presolve, variable and final methods.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

p(
σ)

basic method
presolve method
variable method
final method

Figure 8.4: Performance profiles around σ = 1 related to the comparison of the CPU times
observed with the basic, presolve, variable and final methods.

8.1 Basic versus final method 191

basic method presolve method variable method final method
pb0 0.154 0.260 0.285 0.290
pb1 0.419 0.277 0.423 0.441
pb2 7.590 12.872 0.119 0.129
pb3 0.562 0.662 0.224 0.256
pb4 62.050 35.024 0.778 0.850
pb5 21.470 1.593 1.002 1.262
pb6 32.553 31.865 4.674 4.208
pb7 164.018 109.898 38.225 38.317
pb8 858.543 189.060 3.244 4.873
pb9 144.914 18.081 1.620 1.633

pb10 151.166 87.069 2.577 2.625
pb11 55.544 39.612 7.486 6.509
pb12 227.770 27.416 19.072 19.506
pb13 10463.566 ***** 281.064 323.717

TVC1 ***** ***** 1264.972 1335.563
TVC2 ***** ***** 906.001 861.052
TVC3 5969.975 42.102 30.625 31.395
TVC4 ***** 3445.432 54.868 58.937
TVC5 ***** ***** 980.362 1079.785
TVC6 ***** ***** 1716.357 1653.214

pb0 0.215 0.118 0.148 0.158
pb1 0.492 0.336 0.235 0.211
pb2 7.583 8.336 0.654 0.833
pb3 0.501 0.502 0.365 0.246
pb4 98.798 43.030 0.634 0.620
pb5 19.741 0.931 0.621 0.618
pb6 673.784 29.253 2.309 2.058
pb7 3.810 8.180 7.728 7.132
pb8 ***** 813.735 1.512 1.352
pb9 446.907 120.343 2.616 2.561

pb10 802.281 203.367 0.880 0.817
pb11 31.330 36.846 3.374 1.541
pb12 ***** 423.871 29.412 21.295
pb13 ***** 79.982 266.369 60.734

TVC1 2429.940 479.115 115.79 124.184
TVC2 ***** 770.639 81.639 79.411
TVC3 3199.969 23.784 19.461 19.594
TVC4 ***** 1040.867 49.541 57.712
TVC5 ***** 317.225 311.049 244.350
TVC6 ***** 495.180 368.399 331.486

Table 8.2: CPU times needed by the final, presolve, variable and final methods to solve our test
problems.

192 Chapter 8. Final comparisons of the results

Essentially, we obtain the same conclusions as for the comparison based on the number of
linear problems. Nevertheless, two differences can be underlined. The first one is concerned
with the efficiency of the basic method with regard to the presolve method. The most efficient
method among both varies according to the basis of comparison. For the number of LP solved,
the basic method is the best while both methods are equivalent with regard to the efficiency
for the CPU time. This can be explained by the fact that we do not take the number of NLP
solved into account when the measure of the quality of the method depends on the number of
LP solved. As explained in Chapter 5, no NLP is associated to a LP solved during the presolve
or a range reduction phase. Therefore, the proportion of the number of NLP with regard to that
of LP is smaller with the presolve method than with the basic method. So, if the number of LP
solved by the presolve method is a little bit larger than with the basic method, the CPU time can
even though be smaller since the presolve method probably solves a smaller number of NLP.
This explains the difference on the performance profiles of Figures 8.2 and 8.4 around σ = 1.

The second variation which can be observed with regard to Figure 8.2 is related to the
quantity of improvement produced by the final method compared to the variable method. The
improvement is larger when the comparison is done on the number of LP solved instead of on
the CPU time. The reason of this is simple. Both methods only differ by the node strategy. The
final method uses an adaptation of best estimates while a depth-first search is employed for the
other one. As pointed out in Section 7.3, the depth-first search is less expensive to apply than
the adaptation of best estimates. This is why the improvement is reduced when the CPU time is
considered.

8.2 Comparison with other softwares

After having compared our own methods, we compare our final method with competitive
softwares available on NEOS. As no global optimization solver appropriate for our problems
is accessible on this server, we limit ourselves to test methods conceived to solve nonlinear
and convex problems. For the continuous case, we are interested in KNITRO, IPOPT and Fil-
terSQP, and for the discrete one, in Bonmin and MINLP_BB (see Chapter 1 for more details
and references about the methods implemented in these solvers). Since these methods are not
global, they are less expensive than ours. However, they cannot guarantee the convergence to a
global optimum contrary to ours, even if in some cases, they find such an optimum. The follow-
ing tables show the optimum values for each of our test problems obtained with the different
solvers cited above. The first table is related to the continuous case and the second one to the
discrete case. The second column of these tables gives the global optimum value which is found
by our method within an accuracy of 10−3. The two last lines of the tables show respectively
the number of problems for which a feasible solution has been found and that for which this
optimum is global within an accuracy of 10−3.

By analyzing these results, we observe that these solvers conceived to solve nonlinear con-
vex problems can be efficient to find a global solution for the tested nonconvex problems. How-
ever, some of our problems cannot be solved. Indeed, for the continous case, IPOPT which
gives the best results among the three solvers compared to ours, fails to converge on three prob-
lems. It finds the global optimum within an accuracy of 10−3 for only fourteen problems on
twenty. FilterSQP does not find the global optimum for the half of the problems and does not
converge to a feasible solution for eight problems. If we consider the discrete case, the results

8.2 Comparison with other softwares 193

obtained with our method are still better since here, Bonmin fails to converge on five problems
and finds the global optimum for only eleven problems on twenty, while MINLP_BB detects the
global optimum for nine problems and does not converge for nine problems. This shows that
our method, which can find the global optimum for the twenty problems can be helpful.

Optimum value IPOPT KNITRO FilterSQP
pb0 -3.00701 -3.00701 / /
pb1 -1.88748 -1.88749 -1.88748 -1.88749
pb2 0.00000 0.00000 0.00000 0.81000
pb3 0.25000 1.16682 1.16683 3.68993
pb4 0.02482 0.02482 0.02482 /
pb5 11.60727 11.60727 11.60729 11.60727
pb6 0.00811 0.00810 0.00811 /
pb7 0.43370 / 0.43370 14.62515
pb8 0.03664 0.40037 0.04755 /
pb9 7.80941 8.18574 8.18741 8.18740

pb10 0.04230 0.04230 0.04230 /
pb11 7.83560 / / /
pb12 1.76118 / / /
pb13 0.51628 0.51628 0.53683 /

TVC1 5.65141 5.65142 5.65142 5.65142
TVC2 2.37956 2.37956 2.37956 2.37956
TVC3 5.31869 5.31869 5.31869 5.31869
TVC4 1.01230 1.01228 1.01228 1.01228
TVC5 1.16538 1.16538 1.16538 1.16538
TVC6 0.09104 0.09104 0.09104 0.09104

solved 20 17 17 12
global solution 20 14 13 8

Table 8.3: Optimum values obtained for our test problems (within an accuracy of 10−3) with
our outer approximation method (2nd column) and different solvers for convex NLPs.

194 Chapter 8. Final comparisons of the results

Optimum value Bonmin MINLP_BB
pb0 -2.91437 / /
pb1 -1.81859 -1.81859 -1.81859
pb2 0.00000 0.00000 0.81000
pb3 0.25000 1.16683 3.68993
pb4 0.03416 / /
pb5 11.65284 11.65284 11.65284
pb6 0.04000 0.05448 /
pb7 0.43701 0.43701 /
pb8 0.09000 0.42529 /
pb9 8.29000 8.29000 8.29000

pb10 0.09000 0.74000 /
pb11 7.94848 / /
pb12 2.08547 / /
pb13 0.54834 / /

TVC1 5.66061 5.66061 5.66061
TVC2 2.38403 2.38403 2.38403
TVC3 5.33013 5.33013 5.33013
TVC4 1.02951 1.02949 1.02949
TVC5 1.18652 1.18652 1.18652
TVC6 0.09932 0.09835 0.09835

solved 20 15 11
global solution 20 11 9

Table 8.4: Optimum values obtained for our test problems (within an accuracy of 10−3) with
our outer approximation method (2nd column) and with different solvers for convex MINLPs.

Conclusions and perspectives

In our research work, we have developed a new global optimization method conceived to
solve specific nonlinear and nonconvex problems (continuous and mixed integer). Our approach
has been motivated by a real-world problem arising in the management of electrical networks.
Due to the cost of solving the nonlinear continuous relaxation of this problem, an approach
based on the solution of linear subproblems has been preferred. We have first considered and
tested an approximation method using special ordered sets (SOS), which has already been used
to solve real problems. However, because of the nonconvex behaviour of the problem that we
aim at solving, no feasible solution could be found by this approximation method. To get round
this difficulty, we have chosen to turn to global optimization methods.

From the approximation problem using SOS, an outer approximation problem has been
built. To this goal, we have decomposed each function of the problem under study in com-
ponents involving one or two variables. For the three kinds of components appearing in this
problem, we have established the expression of the maximum approximation errors (underesti-
mation and overestimation) produced by their SOS approximation. Using this information, we
have constructed an outer approximation problem having the advantage of handling all func-
tions in the same way, provided the expression of the associated approximation errors produced
by the SOS approximation is available. The same general framework can thus be employed to
treat a large class of problems. In order to refine the outer approximation problem, we have
used a branch-and-bound strategy that allows us to refine as much as necessary the outer ap-
proximation problem. This is the key for the convergence of the method.

In Chapter 4, we have shown that, for the considered problem, the proposed outer approx-
imations for the nonlinear components of one or two variables involved in this problem are
theoretically competitive with the outer approximations commonly used. This is due to the fact
that our formulation can exploit the possible links between the functions of the problem, but
at the price of the introduction of new variables. We have also formally proved for square and
bilinear functions that it is better to branch on original variables than on variables of SOS type,
if one aims at discarding the largest part of the domain of possible values for the outer approxi-
mation.

We have implemented the developed method and tested several alternatives for the choices
related to a branch-and-bound process, concerning notably, the range reduction of the variables,
the branching rule and the node selection strategy. It has been highlighted that a suitable choice
to handle these features allows us to strongly improve the speed of convergence of the method.
Some other questions which would be worth to be treated have not been studied thoroughly
in this thesis and would consist of a natural extension of this work, like the place of the break-
points in the modelling or the place at which branching in the range of the continuous variables.
The frequency of solving the nonlinear problem during the branch-and-bound process is also an

195

196 Conclusions and perspectives

important question. In the developed method, a nonlinear problem is solved at each node to
divide. Spacing the call to the nonlinear solver could also improve the speed of convergence
of the method. However, the criterion employed to decide when a nonlinear problem has to be
solved must be chosen with care in order to avoid to solve too many nonlinear problems, but
even though, sufficiently to obtain a good upper bound on the optimum value of the original
problem to fathom nodes. Adding cuts to the method is another way to improve it in order to
discard some parts of the domain of possible values.

Coming back to the issues that we have investigated, the adaptable presolve presented in
this thesis has allowed us to decrease significantly the number of subproblems to solve for the
most difficult problems tested. The bound tightening performed at some fixed levels of the
branch-and-bound tree has also produced the same effect. However, we think that these range
reduction phases could still be improved. Indeed, the bound tightening that we have used is ex-
pensive since it needs to solve optimization problems. Nevertheless, for not too small problems,
the improvement that it produces widely exceeds its cost. To try to reduce the cost of the range
reduction phases, the number of variables candidate for bound tightening could be reduced to
a small subset of variables (possibly chosen randomly or for which the previous range reduc-
tion phases have been successful, for example). Another possibility would be to strengthen the
bounds on the variables by using optimality-based range reduction (see Section 1.2.4). This
would avoid to solve optimization problems for the active bounds. Finally, since for the studied
test problems, the efficiency of the bound tightening is correlated with the size of the problems,
we could try to link the frequency of using bound tightening with the size of the treated prob-
lems. For each of the ideas proposed above, the ideal trade-off should be found between the
decrease in the cost of the range reduction phases and the lost of information generated.

With regard to the branching rule, we have proposed, tested and discussed several variants.
We have first pointed out that it is interesting to “branch again” on variables that have allowed
us to discard nodes for the last branching phases. When branching rules based on approximation
errors are used, weighting these errors by the coefficients appearing in the nonlinear problem
has been shown to be useful. But the branching rules based on approximation errors are not as
good as the branching rules based on the increase in the value of the objective function, like
strong branching and pseudocosts. However, to be efficient on the developed outer approxi-
mation problems, the classical rules have been adapted in order to take the quality of the outer
approximations into account. In some cases, we branch to increase the value of the objective
function, in other cases, to improve the quality of the outer approximations. An alternative
would be to use a merit function which would weight these two goals, instead of improving one
goal without considering the other one. We have also adapted the definition of pseudocosts to
the case of continuous variables and have highlighted that in our method, the pseudocosts are
not always relevant with regard to the values that they attempt to predict. To remedy this, we
have proposed to integrate strong branching iterations in the pseudocost technique, which has
given the best results among the branching rules tested.

Our study of choices related to branch-and-bound has been concluded with the question of
node selection. Three strategies have been tested and the best of them was our adaptation of the
best-estimate criterion to the continuous case and according to our definition of pseudocosts.
This rule could possibly be improved by taking into account the fact that the pseudocosts are
not always relevant with regard to the values that they predict, as detailed in Section 7.3. Com-
pared to the range reduction and to the branching rule, the use of a more suitable node selection
strategy has not improved the results a lot. This could be explained by the choice of our test

Conclusions and perspectives 197

problems for which the global optimum is rapidly found. On problems of larger size, the dif-
ferences should be more pronounced. Therefore, it would be desirable to test our method on a
larger number of test problems, and of larger size. To this aim, the method should be general-
ized to handle a larger class of functions than the three kinds of nonlinear components involved
in the problem under study. This implies to establish the expression of the approximation errors
produced by the SOS approximation of each new function to treat. Functions involving more
than two variables could be also considered (trilinear functions, for example). For the sake
of generalization, techniques allowing us to derive the computational graph of the constraints
could also be integrated in our method in order to reduce the modelling work of the user.

We think that we have developed a method which is promising, although it cannot solve
real-world applications yet, due to its high cost. In order to be competitive, its cost should be
imperatively reduced. Some ideas given above could already help to reach this goal. However,
the first way to reduce the cost of the method would be to optimize our software, for instance
by exploiting as much as possible the information available from an iteration to another for the
solution of a linear problem. We could also improve the outer approximation problem itself
by reducing its size. Indeed, in this research work, we have used a standardized framework in
which all functions are relaxed by their outer approximation based on SOS. In a lot of cases,
when the link with other functions can be exploited, this produces outer approximations tighter
than the usual ones. However, when such links cannot be used, other relaxations ((4.12) or
(4.18) for instance), possibly equivalent but involving less variables, should be employed.

In order for the method to converge faster, the outer approximation problem could also be
made closer to the original problem. The use of cuts (see Nowak [91], for instance) is one way
to reach this goal. Employing a convex combination of the errors instead of the maximum error
to define the domain of possible values as in (3.24) is another way. An alternative would be to
consider general convex outer approximation problems instead of linear ones. But as general
convex problems are more expensive to solve than linear ones, it would perhaps be judicious
to first solve linear outer approximation problems, and when the outer approximation problem
is considered sufficiently refined, to switch to general convex outer approximation problems.
A last perspective to reduce the cost of the method would be to exploit in heuristics the ideas
developed in this thesis, but at the price to lose the guarantee of convergence.

To conclude, the research work presented therein has set the bases of a novel global opti-
mization method which needs, however, to be improved in order to be efficient for solving the
real-world problems for which it has been designed. Several perspectives have been proposed
to this aim. Finally, we hope that this work will be useful, in some way, for further research.

198 Conclusions and perspectives

Summary of contributions

Our main contributions are the design and the implementation of a new method of global
optimization based on special ordered sets, for solving specific nonlinear and nonconvex con-
tinuous problems as well as mixed integer nonlinear and nonconvex problems coming from
electrical design. Within the method which has been implemented, the following contributions
are new:

• the extension of an approximation method using special ordered sets to an outer approxi-
mation method guaranteeing the convergence to a global optimum (Sections 3.2 and 3.3);

• the highlighting that for the application under study, the outer approximations used in
our outer approximation problem are theoretically competitive with regard to the outer
approximations commonly used. In particular, it has been shown that in some cases,
the proposed outer approximation for a bilinear product can outperform McCormick’s
inequalities (Section 4.1);

• the theoretical proof that under appropriate assumptions, branching on original variables
is better than branching on variables of SOS type, in order to reduce as much as possible
the domain of possible values for the outer approximation. The quantification of this
improvement has also been established for square and bilinear functions (Section 4.2);

• the development of a presolve technique depending of its efficiency (Section 5.5);

• the improvement of existing branching rules by “branching again” on variables allowing
us to discard nodes (Section 6.1.2), by weighting the approximation errors (Section 6.2),
by including a criterion depending on the quality of the outer approximation in strong
branching and pseudocost strategies (Sections 6.3 and 6.4), by modifying the definition
of pseudocosts to adapt it to the branching on continuous variables (Section 6.4) and by
combining strong branching and pseudocosts suitably for the developed outer approxi-
mation problem (Section 6.5);

• the introduction of a new definition for the best-estimate criterion adapted to global opti-
mization (Section 7.3).

A paper presenting all these ideas is currently in preparation.

199

200 Summary of contributions

Bibliography

[1] http://www.electricityforum.com/products/trans-s.htm.

[2] Website dedicated to global optimization: http://www.mat.univie.ac.at/ neum/glopt.html.

[3] LaGO - a (heuristic) branch and cut algorithm for nonconvex MINLPs, 2006. submit-
ted, available for download at http://www.mathematik.hu-berlin.de/publ/pre/2006/P-06-
24.ps.

[4] ILOG CPLEX 7.1. User’s manual, 2001.

[5] K. Abhishek, S. Leyffer, and J.T. Linderoth. FILMINT: An outer-approximation-based
solver for nonlinear mixed integer programs. Technical Report ANL/MCS-P1374-0906,
Mathematics and Computer Science Division, Argonne National Laboratory, 2006.

[6] T. Achterberg, T. Koch, and A. Martin. Talk at workshop on mixed integer programming:
Branching rules revisited. School of Business, Miami, Coral Gables, Florida, June 2006.

[7] C.S. Adjiman, I.P. Androulakis, and C.A. Floudas. Global optimization of MINLP prob-
lems in process synthesis and design. Computers and Chemical Engineering, 21:S445–
S450, 1997.

[8] C.S. Adjiman, I.P. Androulakis, and C.A. Floudas. A global optimization method, αBB,
for general twice-differentiable constrained NLPs - II. Implementation and computa-
tional results. Computers and Chemical Engineering, 22:1159–1179, 1998.

[9] C.S. Adjiman, S. Dallwig, C.A. Floudas, and A. Neumaier. A global optimization
method, αBB, for general twice-differentiable constrained NLPs - I. Theoretical ad-
vances. Computers and Chemical Engineering, 22:1137–1158, 1998.

[10] C.S. Adjiman, C.A. Schweiger, and C.A. Floudas. Mixed-integer nonlinear optimization
in process synthesis. Handbook of Combinatorial Optimization, 1, 1999.

[11] F.A. Al-Khayyal and J.E. Falk. Jointly constrained biconvex programming. Mathematics
of Operations Research, 8:273–286, 1983.

[12] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Finding cuts in the TSP. Technical
Report 95-05, DIMACS, 1995.

[13] T. Bach. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolu-
tion Programming, Genetic Algorithms. Oxford University Press, 1996.

201

202 BIBLIOGRAPHY

[14] R. Bacher. The Optimal Power Flow (OPF) and its solution by the interior point ap-
proach. EES-UETP Madrid, Course, 10-12 December 1997.

[15] E.M.L. Beale. Numerical methods. In J. Abadie, editor, Nonlinear programming, pages
135–205. North Holland, Amsterdam, The Netherlands, 1967.

[16] E.M.L. Beale and J.A. Tomlin. Special facilities in a general mathematical programming
system for nonconvex problems using ordered sets of variables. In J. Lawrence, editor,
Proceedings of Fifth International Conference on Operation Research, pages 447–454,
London, 1970. Tavistock Publications.

[17] J.F. Benders. Partitioning procedures for solving mixed-variable programming problems.
Numerische Mathematik, 4:238–252, 1962.

[18] J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Verlag,
Heidelberg, Berlin, New York, 1997.

[19] P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuejols, I.E. Grossmann, C.D. Laird, J. Lee,
A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic framework for convex
mixed integer nonlinear programs. Technical Report RC23771, IBM Research Report,
2005.

[20] S. Boyd, L. El Ghoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
System and Control Theory. SIAM Publications, Philadelphia, USA, 1994.

[21] R. Breu and C.A. Burdet. Branch-and-bound experiments in zero-one programming.
Mathematical Programming, 2:1–50, 1974.

[22] M. Bussieck. Private communication, November 2004.

[23] M. Bénichou, J.M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent. Ex-
periments in mixed-integer linear programming. Mathematical Programming, 1:76–94,
1971.

[24] S. Caratzoulas and C.A. Floudas. A trigonometric convex underestimator for the
base functions in Fourier space. Journal of Optimization Theory and Applications,
124(2):339–362, 2004.

[25] V. Cerny. Thermodynamical approach to the travelling salesman problem: An efficient
simulation algorithm. Journal of Optimization Theory and Applications, 45:41–51, 1985.

[26] A.R. Conn, N.I.M. Gould, and Ph.L. Toint. Trust-Region Methods. Number 01 in MPS-
SIAM Series on Optimization. SIAM, Philadelphia, USA, 2000.

[27] J. Czyzyk, M. Mesnier, and J. Moré. The NEOS server. IEEE Journal on Computational
Science and Engineering, 5:68–75, 1998.

[28] R.J. Dakin. A tree search algorithm for mixed programming problems. Computer Jour-
nal, 8(3):250–255, 1965.

BIBLIOGRAPHY 203

[29] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press, Prince-
ton, USA, 1963.

[30] S. Dempe. Foundations of Bilevel Programming. volume 61 of Nonconvex optimization
and its application. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

[31] J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1983.
Reprinted as Classics in Applied Mathematics 16, SIAM, Philadelphia, USA, 1996.

[32] P. Deuflhard and A. Hohmann. Numerical Analysis in Modern Scientific Computing - An
Introduction. Springer, second edition, 2003.

[33] E.D. Dolan. The NEOS Server 4.0 Administrative Guide (Technical Memorandum).
Technical Report ANL/MCS-TM-250, Mathematics and Computer Science Division,
Argonne National Laboratory, 2001.

[34] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance pro-
files. Mathematical Programming, 91(2):201–213, 2002.

[35] M.A. Duran and I.E. Grossmann. An outer approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming, 36:307–339, 1986.

[36] J. Eckstein. Parallel branch-and-bound algorithms for general mixed integer program-
ming on the CM-5. SIAM Journal on Optimization, 4(4):794–814, 1994.

[37] J.E. Falk and R.M. Soland. An algorithm for separable nonconvex programming prob-
lems. Management Science, 15:550–569, 1969.

[38] M.C. Ferris and J.S. Pang. Engineering and economic applications of complementarity
problems. SIAM Review, 39(4):669–713, 1997.

[39] A.V. Fiacco and G.P. McCormick. Programming under nonlinear constraints by uncon-
strained minimization: a primal-dual method. Technical Report RAC-TP-96, Research
Analysis Corporation, McLean, Virginia, USA, 1963.

[40] A.V. Fiacco and G.P. McCormick. The sequential unconstrained minimization technique
for nonlinear programming: a primal-dual method. Management Science, 10(2):360–
366, 1964.

[41] R. Fletcher. Resolving degeneracy in quadratic programming. Technical Report NA/135,
University of Dundee, United Kingdom, 1991.

[42] R. Fletcher, N.I.M. Gould, S. Leyffer, Ph.L. Toint, and A. Wächter. Global convergence
of trust-region SQP-filter algorithms for nonlinear programming. SIAM Journal on Op-
timization, 13:635–659, 2002.

[43] R. Fletcher and S. Leyffer. Solving Mixed Integer Nonlinear Programs by outer approx-
imation. Mathematical Programming, 66:327–349, 1994.

204 BIBLIOGRAPHY

[44] R. Fletcher and S. Leyffer. User manual for filterSQP. Technical Report NA/181, Uni-
versity of Dundee, United Kingdom, 1998.

[45] C.A. Floudas. Nonlinear and Mixed Integer Optimization. Oxford University Press, New
York, 1995.

[46] C.A. Floudas, I.G. Akrotirianakis, S. Caratzoulas, C.A. Meyer, and J. Kallrath. Global
Optimization in the 21st Century: Advances and Challenges. Computers and Chemical
Engineering, 29(6):1185–1202, 2005.

[47] A. Forsgren, P.E. Gill, and M.H. Wright. Interior methods for nonlinear optimization.
SIAM Review, 44:525–597, 2002.

[48] J.M. Gauthier and G. Ribiere. Experiments in mixed-integer linear programming using
pseudocosts. Mathematical Programming, 12:26–47, 1977.

[49] A.M. Geoffrion. A generalized Benders decomposition. Journal of Optimization Theory
and Applications, 10(4):237–260, 1972.

[50] P.E. Gill, W. Murray, and M.A. Saunders. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM Journal on Optimization, 12:979–1006, 2002.

[51] F. Glover and M. Laguna. Tabu search. In C. Reeves, editor, Modern Heuristic Tech-
niques for Combinatorial Problems, pages 71–140. Blackwell Scientific Publishing, Ox-
ford, England, 1993.

[52] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, New York, 1989.

[53] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differ-
entiation. SIAM, 2000.

[54] W. Gropp and J. Moré. Optimization environments and the NEOS server. Approximation
Theory and Optimization, pages 167–182, 1997.

[55] I.E. Grossmann. Review of nonlinear mixed-integer and disjunctive techniques. Opti-
mization and Engineering, 3:227–252, 2002.

[56] O.K. Gupta and A. Ravindran. Branch and bound experiments in convex nonlinear inte-
ger programming. Management Science, 31:1533–1546, 1985.

[57] P. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, New York,
1992.

[58] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of the National Bureau of Standards, 49:409–436, 1952.

[59] J.B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of convex analysis. Springer Ver-
lag, Berlin, 2001.

BIBLIOGRAPHY 205

[60] R. Horst and P.M. Pardalos. Handbook of Global Optimization: Nonconvex Optimization
and Its Application. Kluwer Academic Publishers, 1994.

[61] R. Horst and H. Tuy. Global Optimization. Springer Verlag, Berlin, 1990.

[62] P. Kall and S.W. Wallace. Stochastic Programming. John Wiley & Sons, New York,
USA, 1994.

[63] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinator-
ica, 4:373–395, 1984.

[64] W. Karush. Minima of functions of several variables with inequalities as side conditions.
Master’s thesis, Department of Mathematics, University of Chicago, Illinois, USA, 1939.

[65] J.E. Kelley. The cutting plane method for solving convex programs. Journal of the SIAM,
8:703–712, 1960.

[66] P. Kesavan, R.J. Allgor, E.P. Gatzke, and P.I. Barton. Outer approximation algorithms for
separable nonconvex mixed-integer nonlinear problems. Mathematical Programming,
100(3):517–535, 2004.

[67] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.
Science, 220,4598:671–680, 1983.

[68] G.R. Kocis and I.E. Grossmann. Relaxation strategy for the structural optimization of
process flowsheets. Industrial and Engineering Chemistry Research, 26:1869–1880,
1987.

[69] G.R. Kocis and I.E. Grossmann. Computational experience with DICOPT solving
MINLP problems in process systems engineering. Computers and Chemical Engineer-
ing, 13:307–315, 1989.

[70] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In Proceedings of the second
Berkeley symposium on mathematical statistics and probability, California, USA, 1951.
University of Berkeley Press.

[71] A.H. Land and A.G. Doig. An automatic method for solving discrete programming
problems. Econometrica, 28:497–520, 1960.

[72] J. Lee and D. Wilson. Polyhedral methods for piecewise-linear functions I: the lambda
method. Discrete Applied Mathematics, 108:269–285, 2001.

[73] S. Leyffer. Deterministic Methods for Mixed Integer Nonlinear Programming. PhD
thesis, University of Dundee, United Kingdom, 1993.

[74] S. Leyffer. User manual for MINLP_BB. Technical Report NA XXX, University of
Dundee, United Kingdom, 1999.

[75] J.T. Linderoth and M.W.P. Savelsbergh. A computational study of search strategy for
mixed integer programming. INFORMS Journal on computing, 11:173–187, 1999.

206 BIBLIOGRAPHY

[76] J.D.C. Little, K.G. Murty, D.W. Sweeney, and C. Karel. An algorithm for the traveling
salesman problem. Operations Research, 28:497–520, 1963.

[77] M. Locatelli. Simulated annealing algorithms for continuous global optimization: Con-
vergence conditions. Journal of Optimization Theory and Applications, 10(4):121–133,
2000.

[78] D.G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publishing
Company, Massachussets, USA, second edition, 1984.

[79] Z.Q. Luo, J.S. Pang, and D. Ralph. Mathematical Programs with Equilibrium Con-
straints. Cambridge University Press, Cambridge, 1996.

[80] A. Martin, M. Möller, and S. Moritz. Mixed integer models for the stationary case of gas
network optimization. Mathematical Programming, 105:563–582, 2006.

[81] G.P. McCormick. Computability of global solutions to factorable nonconvex programs:
Part I - convex underestimating problems. Mathematical Programming, 10:147–175,
1976.

[82] M. Metcalf and J. Reid. Fortran 90/95 explained. Oxford Science Publication, 1996.

[83] M. Möller. Mixed Integer Models for the Optimisation of Gas Networks. PhD thesis,
Technische Universität Darmstadt, 2004.

[84] J.A. Momoh, R.J. Koessler, M.S. Bond, B. Stott, D. Sun, A. Papalexopoulos, and P. Ris-
tanovic. Challenges to Optimal Power Flow. IEEE Transaction on Power Systems,
12:444–455, 1997.

[85] R.E. Moore. Interval analysis. Prentice-Hall, New Jersey, 1979.

[86] S.G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill International
Editions, 1996.

[87] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley-
Interscience, USA, 1988.

[88] A. Neumaier. Interval methods for systems of equations. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 1990.

[89] A. Neumaier. Complete search in continuous global optimization and constraint satis-
faction. Acta Numerica 2004, pages 271–369, 2004.

[90] J. Nocedal and S.W. Wright. Numerical Optimization. Series in Operation Research.
Springer Verlag, Heidelberg, Berlin, New York, 1999.

[91] I. Nowak. Relaxation and Decomposition Methods for Mixed Integer Nonlinear Pro-
gramming, volume 152 of International Series of Numerical Mathematics. Birkhäuser,
2000.

BIBLIOGRAPHY 207

[92] J. Outrata, M. Kocvara, and J. Zowe. Nonsmooth Approach to Optimization Problems
with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1998.

[93] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large scale
symmetric traveling salesman problems. SIAM Review, 33:60–100, 1991.

[94] P. Penfield, R. Spence, and S. Duinker. Tellegen’s theorem and electrical networks. M.I.T.
Press, Cambridge, London, 1970.

[95] L. Platbrood. Optimal Power Flow: Etude comparative de méthodes d’optimisation pour
la résolution de problèmes classiques. Master’s thesis, FUNDP, Belgium, 2002.

[96] P. Polisetty and E. Gatzke. Piecewise linear relaxation techniques for solution of non-
convex nonlinear programming problems. Technical report, Department of Chemical
Engineering, University of South Carolina, USA, 2005.

[97] R. Pörn and T. Westerlund. A cutting plane method for minimizing pseudo-convex func-
tions in the mixed integer case. Computers and Chemical Engineering, 16:2655–2665,
2000.

[98] I. Quesada and I.E. Grossmann. An LP/NLP based branch-and-bound algorithm for
convex MINLP optimization problems. Computers and Chemical Engineering, 16:937–
947, 1992.

[99] A. Ruszczynski. Nonlinear Optimization. Princeton University Press, Princeton, United
Kingdom, 2006.

[100] H.S. Ryoo and N.V. Sahinidis. A branch-and-reduce approach to global optimization.
Journal of Global Optimization, 8:107–139, 1996.

[101] N.V. Sahinidis. BARON: Branch And Reduce Optimization Navigator, User’s Manual,
Version 4.0, 1999-2000. Available at http://archimedes.scs.uiuc.edu/baron.html.

[102] C. Sainvitu. Filter-Trust-Region Methods for Nonlinear Optimization. PhD thesis,
FUNDP, Belgium, 2007.

[103] R.H.W. Sargent. Reduced-gradient and projection methods for nonlinear programming.
In P.E. Gill and W. Murray, editors, Numerical Methods for Constrained Optimization,
pages 149–174. Academic Press, London, United Kingdom, 1974.

[104] A. Sartenaer. Some recent developments in nonlinear optimization algorithms. In Actes
des journées MODE, volume 13, pages 41–64, 2003.

[105] SBB. User’s guide available at http://www.gams.com/dd/docs/solvers/sbb.pdf.

[106] H. Schichl. VGTL (Vienna Graph Template Library) Version 1.0, Reference Manual.
Technical report, University of Vienna, Department of Mathematics, 2003.

208 BIBLIOGRAPHY

[107] H. Schichl. Global Optimization in the COCONUT project. In Proceedings of the
Dagstuhl Seminar Numerical Software with Result Verification, Springer Lecture Notes
in Computer Science 2991, Berlin, 2004. Springer.

[108] E.M.B. Smith and C.C. Pantelides. Global optimisation of nonconvex MINLPs. Com-
puters and Chemical Engineering, 21:S791–S796, 1997.

[109] M. Tawarmalani and N.V. Sahinidis. Convexification and Global Optimization in Con-
tinuous and Mixed-Integer Nonlinear Programming. Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 2002.

[110] J.A. Tomlin. A suggested extension of special ordered sets to non-separable non-convex
programming problems. Annals of Discrete Mathematics, 11:359–370, 1981.

[111] R. Vaidyanathan and M. El-Halwagi. Global Optimization of nonconvex MINLP’s by
interval analysis. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

[112] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49–95,
1996.

[113] R.J. Vanderbei. LOQO: An interior-point code for quadratic programming. Technical
report, Statistics and Operations Research, Princeton University, 1994. Revised: Novem-
ber 30, 1998.

[114] R.J. Vanderbei. Linear Programming - Foundations and Extensions. Kluwer Academic
Publishers, Dordrecht, The Netherlands, second edition, 2001.

[115] J. Viswanathan and I.E. Grossmann. A combined penalty function and outer approxima-
tion method for MINLP optimization. Computers and Chemical Engineering, 14(7):769–
782, 1990.

[116] R.A. Waltz and J. Nocedal. KNITRO user’s manual. Technical Report OTC 2003/05, Op-
timization Technology Center, Northwestern University, Evanston, Illinois, USA, 2003.

[117] R. Weismantel. Lectures on mixed integer nonlinear programming (MINLP). CORE
Lecture Series, Louvain-la-Neuve, UCL.

[118] T. Westerlund and K. Lundqvist. Alpha-ECP, version 5.101, an interactive MINLP-
solver based on the extended cutting plane method. Available for download at
http://web.abo.fi/ twesterl/A-ECPManual.pdf.

[119] T. Westerlund and F. Petersson. An extended cutting plane method for solving convex
MINLP problems. Computers and Chemical Engineering Suppl., 19:131–136, 1995.

[120] T. Westerlund and R. Pörn. Solving pseudo-convex mixed integer problems by cutting
plane techniques. Optimization and Engineering, 3:253–280, 2002.

[121] T. Westerlund, H. Skrifvars, I. Harjunkoski, and R. Pörn. An extended cutting plane
method for solving a class of non-convex MINLP problems. Computers and Chemical
Engineering Suppl., 22:357–365, 1998.

BIBLIOGRAPHY 209

[122] T. Wildi and G. Sybille. Electrotechnique. De Boeck, Bruxelles, 4th edition, 2005.

[123] H.P. Williams. Model Solving in Mathematical Programming. John Wiley and Sons,
1993.

[124] H.P. Williams. Model Building in Mathematical Programming. John Wiley and Sons,
4th edition, 2005.

[125] R.B. Wilson. A simplicial algorithm for concave programming. PhD thesis, Harvard
University, Massachussetts, USA, 1963.

[126] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semidefinite Pro-
gramming: Theory, Algorithms and Applications. Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 2000.

[127] S.J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA, 1997.

[128] A. Wächter and L.T. Biegler. On the implementation of a primal-dual interior point filter
line search algorithm for large scale nonlinear programming. Mathematical Program-
ming, 106(1):25–57, 2006.

[129] G. M. Ziegler. Lectures on Polytopes. Springer-Verlag, 1995.

210 BIBLIOGRAPHY

Appendix A

This appendix illustrates the fact that the linear outer approximation based on SOS for the
bilinear product can be better than the one given by McCormick’s inequalities (4.12) since it
is able to exploit the multiple presence of a same variable in the problem. Let us consider
the problem (NLP1) below, of three variables x, y and z where the variable z intervenes lin-
early in the problem while x and y appear in linear functions, in a bilinear product and also in
square functions. The solution of this problem is given by (x∗, y∗, z∗) = (0.5, −1.5, 0.25) and
produces an optimum value equal to 4.25.

(NLP1)

min y2 + xy + 5x + z,
s.t. x2 − z ≤ 0,

−x − z ≤ −0.75,
−x + y ≤ −2,
−1 ≤ x ≤ 2,
−3 ≤ y ≤ 0,
0.25 ≤ z ≤ 4.

Note first that only the underestimations of the nonlinear components are needed to solve
the problem because these components only appear in an inequality constraint and in the ob-
jective function of a minimization problem. In this case, the overestimations of the nonlinear
components are useless. Accordingly, we talk about linear underestimation problems instead
of linear outer approximation problems.

The linear underestimation problem based on SOS is built by applying to problem (NLP1)

the formulation (ÕP) of Section 3.2.5 without overestimating the nonlinear components. Only
one set λ is needed since the same set can be employed to underestimate the square and the
bilinear functions, as explained in Section 3.2.3. Three equally spaced breakpoints are used in
each dimension: {xi}3

i=1 = {−1, 0.5, 2} for x and {yj}3
j=1 = {−3, −1.5, 0} for y, which

gives nine variables λi,j. Three new variables wx2 , wy2 and wxy are also added to underestimate
x2, y2 and xy, respectively. The linear underestimation problem built in this way is given by
(SOS1).

211

212 Appendix A

(SOS1)

min wy2 + wxy + 5x + z,
s.t. wx2 − z ≤ 0,

−x − z ≤ −0.75,
−x + y ≤ −2,

wx2 ≥∑3
i=1

∑3
j=1 λi,j x2

i − 9
16

,

wy2 ≥∑3
i=1

∑3
j=1 λi,j y2

j − 9
16

,

wxy =
∑3

i=1

∑3
j=1 λi,j xiyj,

x =
∑3

i=1

∑3
j=1 λi,jxi,

y =
∑3

i=1

∑3
j=1 λi,jyj,

1 =
∑3

i=1

∑3
j=1 λi,j,

0 ≤ λi,j, 1 ≤ i ≤ 3, 1 ≤ j ≤ 3,
−1 ≤ x ≤ 2,
−3 ≤ y ≤ 0,
0.25 ≤ z ≤ 4.

At the solution of this problem, the components x, y and z are given by (x∗, y∗, z∗), that is,
by (0.5, −1.5, 0.25) like at the solution of (NLP1). Because of the constraints of the problem,
the variables λi,j directly fulfill the SOS condition (λ2,2 = 1). The optimum value of (SOS1)
is equal to 3.6875 which corresponds, as expected, to a lower bound for (NLP1). The value
of the underestimation of xy is given by w∗

xy = −0.75 which coincides with the exact value of
x∗y∗.

Let us now examine the problem obtained by underestimating the bilinear product with
McCormick’s inequalities and the square functions by their tangent lines at the breakpoints.
The resulting underestimation problem is given by (McCor1).

(McCor1)

min wy2 + wxy + 5x + z,
s.t. wx2 − z ≤ 0,

−x − z ≤ −0.75,
−x + y ≤ −2,
wx2 ≥ 2xi(x − xi) + x2

i , 1 ≤ i ≤ 3,
wy2 ≥ 2yi (y − yi) + y2

i , 1 ≤ i ≤ 3,
wxy ≥ −y − 3x − 3,
wxy ≥ 2y,
−1 ≤ x ≤ 2,
−3 ≤ y ≤ 0,
0.25 ≤ z ≤ 4.

The components x, y and z at the solution of problem (McCor1) are again equal to x∗, y∗ and
z∗, respectively, but the optimum value of the problem is different from the one of the two
previous problems since it is equal to 2. This is a weaker bound than the one found with the
underestimations based on SOS. The latter approach is thus better. Contrary to the underes-
timation based on SOS, McCormick’s inequalities produce, for a same value of x and y, an
underestimation of the bilinear product xy which is not exact (wxy = −3 instead of −0.75 as
mentioned earlier). In fact, the use of the same set λ for the three nonlinear functions of prob-
lem (NLP1) prevents the solution of problem (McCor1) from being feasible for the problem
(SOS1), which allows us to have a better underestimation problem.

Appendix B

The general formulation of the discrete version of the test problems pb is given in this
appendix. In the following formulations, the set D11(x) corresponds to a discrete set composed
of eleven equally spaced values between the original lower and upper bounds on the variable x.
The continuous version of these problems is obtained by removing the constraints implying the
sets D11(x).

(pb0)

min x1 sin(x4),
s.t. 4x1 − x2

2 − 0.2x2x4 sin(x3) ≤ 1,
x2 − 0.5x2x4 cos(x3) ≤ 2,
0 ≤ x1 ≤ 4,
0 ≤ x2 ≤ 3,
0 ≤ xi ≤ 2π, 3 ≤ i ≤ 4,
x4 ∈ D11(x4).

(pb1)

min x1 sin(x4),
s.t. x1 + x2

2 − 2x2x4 sin(x3) ≤ −0.5,
x2 − 3x2x4 cos(x3) ≤ −4,
0 ≤ x1 ≤ 2,
1 ≤ x2 ≤ 4,
0 ≤ x3 ≤ 2π,
−2 ≤ x4 ≤ 0,
x4 ∈ D11(x4).

(pb2)

min (x2 − 1)2,
s.t. x1 − x2

4 − 0.5x3x4 cos(x5 − x6) = 0.2,
x2 − 0.3x2

3 − x3x4 sin(x6 − x5) = 0.1,
0 ≤ xi ≤ 2, 1 ≤ i ≤ 6,
x4 ∈ D11(x4).

(pb3)

min (x2 − 1)2,
s.t. x1 − x2

4 − 0.5x3x4 cos(x5 − x6) = 2.8,
x2 − 0.3x2

3 − x3x4 sin(x6 − x5) = 0.2,
1.5 ≤ xi ≤ 6, 1 ≤ i ≤ 4,
0 ≤ xi ≤ 2, 5 ≤ i ≤ 6,
x4 ∈ D11(x4).

213

214 Appendix B

(pb4)

min (x2 − 1)2 + (x7 − 0.3)2,
s.t. x1 − x2

4 − 0.5x3x8 cos(x5 − x6) = 0.1,
x2 − 0.3x2

7 + x7x4 sin(x12 − x10) = 0.2,
x1 − x2

8 − 0.5x8x9 cos(x12 − x10) = 0.3,
x2 − 0.3x2

3 + x4x11 sin(x5 − x6) = 3,
0 ≤ xi ≤ 2, 1 ≤ i ≤ 12,
xi ∈ D11(xi), i ∈ {4, 8}.

(pb5)

min (x2 − 1)2 + (x7 − 0.3)2,
s.t. x1 − x2

4 − 5x3x8 cos(x5 − x6) = 1,
x2 − 3x2

7 + x7x4 sin(x12 − x10) = 1,
x1 − x2

8 − 5x8x9 cos(x12 − x10) = 1,
x2 − 3x2

3 + x4x11 sin(x5 − x6) = 1,
2.5 ≤ xi ≤ 6.5, i ∈ {1, 2, 3, 4, 7, 8, 9, 11},
0 ≤ xi ≤ 2, i ∈ {5, 6, 10, 12},
xi ∈ D11(xi), i ∈ {4, 8}.

(pb6)

min (x2 − 1.1)2 + (x4 − 1.4)2 + (x7 − 0.1)2 + (x9 − 0.1)2,
s.t. x1 − x2

4 − 0.5x3x8 cos(x5 − x6) − 0.2x2
3 − 0.5x3x9 cos(x12 − x10) = 0.1,

x2 − 0.3x2
7 − x4x7 sin(x10 − x12) − 0.5x2

3 − x7x11 sin(x6 − x5) = 0.2,
x1 − x2

8 − 0.5x8x9 cos(x12 − x10) − x2
4 − 0.5x3x4 cos(x5 − x6) = 0.5,

x2 − 0.3x2
3 − x4x11 sin(x6 − x5) − 0.3x2

7 − x7x8 sin(x10 − x12) = 0.4,
0 ≤ xi ≤ 2, 1 ≤ i ≤ 12,
xi ∈ D11(xi), i ∈ {3, 4, 8}.

(pb7)

min (x2 − 1.1)2 + (x4 − 1.4)2 + (x7 − 0.1)2 + (x9 − 0.1)2,
s.t. x1 − x2

4 − 0.1x3x8 cos(x5 − x6) − 1.1x2
3 − 0.1x3x9 cos(x12 − x10) = 0.2,

x2 − 0.9x2
7 − x4x7 sin(x10 − x12) − 0.1x2

3 − x7x11 sin(x6 − x5) = 0.2,
x1 − x2

8 − 0.1x8x9 cos(x12 − x10) − x2
4 − 0.1x3x4 cos(x5 − x6) = 0.2,

x2 − 0.9x2
3 − x4x11 sin(x6 − x5) − 0.9x2

7 − x7x8 sin(x10 − x12) = 1.5,
0.5 ≤ xi ≤ 6, 1 ≤ i ≤ 4 or 7 ≤ i ≤ 12,
0 ≤ xi ≤ 2, 5 ≤ i ≤ 6,
xi ∈ D11(xi), i ∈ {3, 4, 8}.

(pb8)

min (x2 − 1)2 + (x7 − 0.3)2,
s.t. x1 − x2

4 − 0.5x3x7x8 cos(x9 − x10) = 0.1,
x2 − 0.3x2

7 − x2x4x7 sin(x11 − x12) = 0.2,
x1 − x2

8 − 0.5x2x5x8 cos(x12 − x11) = 0.3,
x2 − 0.3x2

3 − x4x6x8 sin(x10 − x9) = 0.4,
0 ≤ xi ≤ 2, 1 ≤ i ≤ 12,
xi ∈ D11(xi), i ∈ {7, 8}.

Appendix B 215

(pb9)

min (x2 − 1)2 + (x7 − 1)2,
s.t. x1 − x2

4 − 2x3x7x8 cos(x9 − x10) = 3,
x2 − x2

7 − x2x4x7 sin(x11 − x12) = 2.1,
x1 − x2

8 − 2x2x5x8 cos(x12 − x11) = 3.5,
x2 − x2

3 − x4x6x8 sin(x10 − x9) = 3.2,
2 ≤ xi ≤ 6, 1 ≤ i ≤ 4,
1 ≤ xi ≤ 4, 5 ≤ i ≤ 8,
0 ≤ xi ≤ 2, 9 ≤ i ≤ 12,
xi ∈ D11(xi), i ∈ {7, 8}.

(pb10)

min (x2 − 1)2 + (x7 − 0.3)2,
s.t. x1 − x2

4 − 0.5x3x5x7 cos(0.5 + x9 − x10) = 0.1,
x2 − 0.3x2

7 − x2x4x7 sin(0.5 + x9 − x10) = 0.2,
x1 − x2

8 − 0.5x5x7x8 cos(0.5 + x10 − x9) = 0.3,
x2 − 0.3x2

3 − x4x5x6 sin(0.5 + x10 − x9) = 0.4,
0 ≤ xi ≤ 2, 1 ≤ i ≤ 10,
xi ∈ D11(xi), i ∈ {6, 7}.

(pb11)

min (x2 − 1)2 + (x7 − 0.3)2,
s.t. x1 − x2

4 − 0.89x3x5x7 cos(0.89 + x9 − x10) = 2.1,
x2 − 0.3x2

7 − x2x4x7 sin(0.89 + x9 − x10) = 1.4,
x1 − x2

8 − 0.89x5x7x8 cos(0.89 + x10 − x9) = 0.7,
x2 − 0.3x2

3 − x4x5x6 sin(0.89 + x10 − x9) = 0,
−3 ≤ xi ≤ 0, 1 ≤ i ≤ 8,
0 ≤ xi ≤ 2, 9 ≤ i ≤ 10,
xi ∈ D11(xi), i ∈ {6, 7}.

(pb12)

min (x2 − 1.1)2 + (x4 − 1.4)2 + (x7 − 0.1)2 + (x9 − 0.1)2 + (x14 − 0.2)2

+(x16 − 0.5)2,
s.t. x1 − x2

4 − 0.5x9x12 cos(x19 − x20) − 0.2x2
3 − 0.5x3x6 cos(x17 − x18) = 0.1,

x2 − 0.3x2
16 + x7x14 sin(x19 − x20) − 0.5x2

3 + x7x12 sin(x17 − x18) = 0.2,
x1 − x2

8 − 0.5x5x15 cos(x19 − x20) − x2
14 − 0.5x4x5 cos(x17 − x18) = 0.3,

x2 − 0.3x2
3 + x5x11 sin(x19 − x20) − 0.3x2

15 + x8x13 sin(x17 − x18) = 0.4,
x3 − x2

4 − 0.5x3x8 cos(x21 − x22) − 0.2x2
3 − 0.5x5x9 cos(x23 − x24) = 0.5,

x4 − 0.3x2
13 + x7x16 sin(x21 − x22) − 0.5x2

3 + x7x15 sin(x23 − x24) = 0.6,
x3 − x2

8 − 0.5x11x12 cos(x21 − x22) − x2
4 − 0.5x3x13 cos(x23 − x24) = 0.7,

x4 − 0.3x2
14 + x4x10 sin(x21 − x22) − 0.3x2

7 + x6x14 sin(x23 − x24) = 0.8,
0 ≤ xi ≤ 1, i ∈ {1, 2, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16},
1 ≤ xi ≤ 10, 3 ≤ i ≤ 4,
1 ≤ xi ≤ 2, 11 ≤ i ≤ 12,
0 ≤ xi ≤ 2, 17 ≤ i ≤ 24,
xi ∈ D11(xi), i ∈ {5, 6, 7, 10, 12, 13}.

216 Appendix B

(pb13)

min (x2 − 1.1)2 + (x4 − 1.4)2 + (x7 − 0.1)2 + (x9 − 0.1)2 + (x14 − 0.2)2

+(x16 − 0.5)2,
s.t. x1 − x2

4) − 0.5x9x12 cos(x19 − x20) − 0.2x2
3 − 0.5x3x6 cos(x17 − x18 = 0.1,

x2 − 0.3x2
16 + x7x14 sin(x19 − x20) − 0.5x2

3 + x7x12 sin(x17 − x18) = 0.2,
x1 − x2

8 − 0.5x5x15 cos(x19 − x20) − x2
14 − 0.5x4x5 cos(x17 − x18) = 0.3,

x2 − 0.3x2
3 + x5x11 sin(x19 − x20) − 0.3x2

15 + x8x13 sin(x17 − x18) = 0.4,
x3 − x2

4 − 0.5x3x8 cos(x21 − x22) − 0.2x2
3 − 0.5x5x9 cos(x23 − x24) = 0.5,

x4 − 0.3x2
13 + x7x16 sin(x21 − x22) − 0.5x2

3 + x7x15 sin(x23 − x24) = 0.6,
x3 − x2

8 − 0.5x11x12 cos(x21 − x22) − x2
4 − 0.5x3x13 cos(x23 − x24) = 0.7,

x4 − 0.3x2
14 + x4x10 sin(x21 − x22) − 0.3x2

7 + x6x14 sin(x23 − x24) = 0.8,
0 ≤ xi ≤ 2, i ∈ {1, 2, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24},
1 ≤ xi ≤ 10, 3 ≤ i ≤ 4,
1 ≤ xi ≤ 2, 11 ≤ i ≤ 12,
xi ∈ D11(xi), i ∈ {3, 6, 7, 15},
x5, x8 binary.

Note that for this latter problem, in the continuous version, the lower and upper bounds on x5

and x8 are given respectively by 0 and 2.

Appendix C

We present here the numerical results obtained with the different techniques detailed in
Chapters 5, 6 and 7. A table is associated to each specific method. The top part of the tables is
related to the continuous problems while the bottom part is concerned with the discrete versions
of these problems. For each method and test problem, some of the following information are
mentioned depending on their relevance:

• # LP solved: the total number of linear problems solved (this number takes the number
of linear problems solved during presolve, range reduction and strong branching phases
into account),

• # NLP solved: the total number of nonlinear problems solved,

• # LP presolve: the total number of linear problems solved during presolve,

• # LP range reduction: the total number of linear problems solved during range reduction
phases (this number comprises the number of linear problems solved during presolve),

• # LP strong branching: the total number of linear problems solved during strong branch-
ing phases,

• reduction percentages: the reduction percentages in the sum of the ranges of the original
variables,

• % LP strong branching/LP: the ratio between the number of linear problems solved during
strong branching iterations and the total number of linear problems solved,

• % NLP/LP: the ratio between the number of nonlinear problems solved and the one of
linear problems solved,

• # nodes in the stack: the maximum number of nodes stored in the stack of open nodes,

• CPU times: the CPU times needed to solve the original problem.

Stars in a field mean that the method cannot solve the problem before the maximum number of
linear problems solved (500.000) is reached.

217

218 Appendix C

LP solved # NLP solved
pb0 41 20
pb1 81 42
pb2 1367 683
pb3 157 78
pb4 5063 2531
pb5 1445 722
pb6 3225 1612
pb7 15315 7657
pb8 32763 16381
pb9 18931 9465

pb10 12817 6408
pb11 4523 2261
pb12 5661 2830
pb13 373313 186656

TVC1 ***** *****
TVC2 ***** *****
TVC3 185735 92867
TVC4 ***** *****
TVC5 ***** *****
TVC6 ***** *****

pb0 35 17
pb1 198 125
pb2 1441 720
pb3 135 67
pb4 5145 2572
pb5 7307 3653
pb6 6861 3430
pb7 361 180
pb8 363169 181564
pb9 30853 15426

pb10 23329 11664
pb11 11255 5628
pb12 150373 75186
pb13 38209 19616

TVC1 194767 97383
TVC2 ***** *****
TVC3 88825 44412
TVC4 ***** *****
TVC5 ***** *****
TVC6 ***** *****

Table 8.5: Results obtained with the basic method.

Appendix C 219

LP solved # LP presolve reduction percentages # NLP solved
pb0 62 25 21.3 18
pb1 100 25 43.4 37
pb2 1656 25 4.3 815
pb3 168 25 19.9 71
pb4 5466 53 20.5 2706
pb5 804 53 49.3 375
pb6 3288 71 5.5 1608
pb7 15096 71 24.9 7512
pb8 89338 61 1.7 44638
pb9 7752 61 16.4 3845

pb10 16874 59 23.1 8407
pb11 6876 59 22.5 3408
pb12 5226 139 57.1 2543
pb13 478860 139 25.8 239361

TVC1 ***** 141 63.6 *****
TVC2 ***** 145 80.9 *****
TVC3 79540 221 87.3 39659
TVC4 ***** 221 89.5 *****
TVC5 ***** 315 85.4 *****
TVC6 ***** 329 91.4 *****

pb0 40 25 23.9 7
pb1 201 25 44.3 119
pb2 1504 25 6.0 739
pb3 148 25 20.6 61
pb4 3248 53 23.8 1957
pb5 458 53 50.4 202
pb6 4400 71 6.4 2164
pb7 783 71 27.1 357
pb8 ***** 61 2.7 *****
pb9 20764 61 16.4 10351

pb10 26848 59 23.1 13394
pb11 2844 59 23.7 1392
pb12 26390 139 57.6 13125
pb13 4222 139 31.5 2220

TVC1 133028 141 63.7 66443
TVC2 456644 145 80.9 228249
TVC3 18234 221 88.9 9006
TVC4 ***** 221 89.5 *****
TVC5 168664 315 86.3 84174
TVC6 57742 329 92.6 28706

Table 8.6: Results obtained with a one sweep presolve.

220 Appendix C

LP solved # LP presolve reduction percentages # NLP solved
pb0 171 100 25.2 35
pb1 384 325 53.6 29
pb2 1681 50 4.3 815
pb3 218 75 19.9 71
pb4 5660 371 21.3 2644
pb5 1014 371 50.3 321
pb6 3656 497 6.1 1579
pb7 15383 426 25.1 7478
pb8 85229 366 1.9 42431
pb9 489 488 53.6 1

pb10 16933 118 23.1 8407
pb11 8044 1475 32.3 3284
pb12 7874 1807 57.8 3033
pb13 473179 556 25.8 236311

TVC1 ***** 564 65.5 *****
TVC2 ***** 725 86.2 *****
TVC3 19493 1326 96.1 9083
TVC4 ***** 1105 90.6 *****
TVC5 ***** 3150 86.3 *****
TVC6 ***** 1316 92.0 *****

pb0 115 100 27.4 7
pb1 436 325 54.2 56
pb2 1529 50 6.0 739
pb3 173 50 20.6 61
pb4 4952 159 24.0 2396
pb5 570 371 53.3 99
pb6 4608 213 7.3 2197
pb7 1093 426 27.2 335
pb8 ***** 305 3.0 *****
pb9 35752 305 53.9 17723

pb10 26907 118 23.1 13394
pb11 4590 1003 32.9 1793
pb12 23846 1807 58.2 11019
pb13 4500 417 31.5 2220

TVC1 61977 564 65.7 30706
TVC2 245615 870 86.3 122732
TVC3 4012 1105 97.5 1453
TVC4 ***** 884 90.7 *****
TVC5 34786 2205 87.7 16290
TVC6 33666 987 93.2 16339

Table 8.7: Results obtained with a full presolve.

Appendix C 221

LP solved # NLP solved % NLP/LP CPU times
pb0 45 22 48.9 0.154
pb1 107 55 51.4 0.419
pb2 2131 1065 50.0 7.590
pb3 159 79 49.7 0.562
pb4 9303 4651 50.0 62.050
pb5 3405 1702 50.0 21.470
pb6 3533 1766 50.0 32.553
pb7 16245 8122 50.0 164.018
pb8 111721 55860 50.0 858.543
pb9 20302 10152 50.0 144.914

pb10 20685 10342 50.0 151.166
pb11 7241 3620 50.0 55.544
pb12 11131 5565 50.0 227.770
pb13 467225 233612 50.0 10463.566

TVC1 ***** ***** ***** *****
TVC2 ***** ***** ***** *****
TVC3 140865 70432 50.0 5969.975
TVC4 ***** ***** ***** *****
TVC5 ***** ***** ***** *****
TVC6 ***** ***** ***** *****

pb0 63 31 49.2 0.215
pb1 133 67 50.4 0.492
pb2 2115 1057 50.0 7.583
pb3 135 67 49.6 0.501
pb4 15389 7694 50.0 98.798
pb5 3009 1504 50.0 19.741
pb6 65800 32905 50.0 673.784
pb7 377 188 50.0 3.810
pb8 ***** ***** ***** *****
pb9 62149 31071 50.0 446.907

pb10 113846 56924 50.0 802.281
pb11 3806 1908 50.1 31.330
pb12 ***** ***** ***** *****
pb13 ***** ***** ***** *****

TVC1 108861 54430 50.0 2429.940
TVC2 ***** ***** ***** *****
TVC3 62045 31022 50.0 3199.969
TVC4 ***** ***** ***** *****
TVC5 ***** ***** ***** *****
TVC6 ***** ***** ***** *****

Table 8.8: Results obtained without presolve but with a specific ranking to consider the vari-
ables.

222 Appendix C

LP solved # LP presolve reduction percentages # NLP solved % NLP/LP
pb0 105 34 25.0 35 33.3
pb1 100 9 9.4 45 45.0
pb2 1640 9 4.3 815 49.7
pb3 152 9 19.9 71 46.7
pb4 5430 19 13.1 2705 49.8
pb5 907 72 50.1 417 46.0
pb6 3604 19 5.2 1792 49.7
pb7 15115 90 24.9 7512 49.7
pb8 87638 19 1.1 43809 50.0
pb9 18950 19 0.0 9465 49.9

pb10 16891 76 23.1 8407 49.8
pb11 6888 17 16.4 3693 52.8
pb12 5889 178 57.8 2855 48.4
pb13 478899 178 25.8 239361 50.0

TVC1 ***** 168 65.5 ***** *****
TVC2 ***** 319 86.2 ***** *****
TVC3 30206 481 95.9 14862 49.2
TVC4 ***** 260 90.5 ***** *****
TVC5 ***** 370 86.1 ***** *****
TVC6 ***** 386 92.0 ***** *****

pb0 49 34 27.3 7 14.3
pb1 143 9 9.4 77 53.8
pb2 1438 9 6.0 714 49.7
pb3 157 34 20.6 61 38.9
pb4 15100 19 17.0 7540 49.9
pb5 295 72 50.8 111 37.6
pb6 4150 19 6.4 2065 49.8
pb7 802 90 27.1 357 44.5
pb8 ***** 19 1.4 ***** *****
pb9 30872 19 0 15426 50.0

pb10 26865 76 23.1 13394 49.9
pb11 6960 17 16.8 3471 49.9
pb12 22467 178 58.0 11144 49.6
pb13 4261 178 31.5 2220 52.1

TVC1 67285 168 65.4 33558 49.9
TVC2 242840 319 86.2 121260 49.9
TVC3 3644 481 97.4 1581 43.4
TVC4 ***** 260 90.4 ***** *****
TVC5 148459 370 87.1 74044 49.9
TVC6 28065 386 93.2 12839 45.7

Table 8.9: Results obtained with an adaptable presolve.

Appendix C 223

LP solved # LP range reduction # NLP solved % NLP/LP CPU times
pb0 112 79 16 14.2 0.260
pb1 104 45 30 28.8 0.277
pb2 5636 3051 1405 24.9 12.872
pb3 262 135 65 24.8 0.662
pb4 9710 7123 1585 16.3 35.024
pb5 396 281 62 15.7 1.593
pb6 5449 3154 1174 21.5 31.865
pb7 19859 12910 3796 19.1 109.898
pb8 37107 19142 9484 25.6 189.060
pb9 3813 2162 917 24.0 18.081

pb10 19928 12501 4086 20.5 87.069
pb11 7996 4871 1747 21.8 39.612
pb12 2181 1748 236 10.8 27.416
pb13 ***** ***** ***** ***** *****

TVC1 ***** ***** ***** ***** *****
TVC2 ***** ***** ***** ***** *****
TVC3 1339 1260 49 3.7 42.102
TVC4 113739 105020 7547 6.6 3445.432
TVC5 ***** ***** ***** ***** *****
TVC6 ***** ***** ***** ***** *****

pb0 63 52 6 9.5 0.118
pb1 131 62 36 27.5 0.336
pb2 3237 1332 995 30.7 8.336
pb3 197 94 55 27.9 0.502
pb4 11388 6935 2435 21.4 43.030
pb5 257 186 38 14.8 0.931
pb6 6145 3614 1325 21.6 29.253
pb7 1353 827 299 22.1 8.180
pb8 198817 121198 43359 21.8 813.735
pb9 33668 26405 4916 14.6 120.343

pb10 51816 35617 9560 18.4 203.367
pb11 7349 4142 1825 24.8 36.846
pb12 33407 26662 3847 11.5 423.871
pb13 8093 6424 960 11.9 79.982

TVC1 40446 34389 4205 10.4 479.115
TVC2 72270 65331 5365 7.4 770.639
TVC3 861 832 20 2.3 23.784
TVC4 38792 35693 2540 6.5 1040.867
TVC5 7369 6910 302 4.1 317.225
TVC6 12131 11352 474 3.9 495.180

Table 8.10: Results obtained with range reduction and branching on the largest range.

224 Appendix C

LP solved # LP range reduction # NLP solved
pb0 112 79 16
pb1 104 45 30
pb2 3396 1719 905
pb3 262 135 65
pb4 9642 7085 1568
pb5 396 281 62
pb6 5416 3173 1149
pb7 19775 12872 3772
pb8 29731 16780 6962
pb9 10321 7614 1685

pb10 18044 12527 3216
pb11 7622 4873 1562
pb12 2181 1748 236
pb13 ***** ***** *****

TVC1 ***** ***** *****
TVC2 ***** ***** *****
TVC3 1339 1260 49
TVC4 109762 101501 7208
TVC5 ***** ***** *****
TVC6 ***** ***** *****

pb0 63 52 6
pb1 131 62 36
pb2 3171 1368 945
pb3 195 94 54
pb4 10585 6650 2168
pb5 257 186 38
pb6 5940 3653 1217
pb7 1381 872 292
pb8 151206 108299 25935
pb9 27393 21432 4023

pb10 39915 28096 7070
pb11 8875 5370 2018
pb12 15815 13250 1582
pb13 7465 5978 862

TVC1 36144 30705 3875
TVC2 59131 53480 4397
TVC3 861 832 20
TVC4 38752 35711 2509
TVC5 5712 5383 224
TVC6 12239 11466 472

Table 8.11: Results obtained by basing the branching rule on the largest range and by exploiting
the best candidate for branching.

Appendix C 225

LP solved # LP range reduction # NLP solved
pb0 170 115 27
pb1 188 81 57
pb2 2339 1008 684
pb3 461 228 128
pb4 18853 12806 3407
pb5 405 300 58
pb6 3585 2140 742
pb7 24730 16343 4645
pb8 26159 17818 4920
pb9 37868 27601 6369

pb10 17551 11466 3464
pb11 6510 4359 1251
pb12 2518 2021 279
pb13 ***** ***** *****

TVC1 ***** ***** *****
TVC2 ***** ***** *****
TVC3 1438 1357 55
TVC4 25040 22949 1632
TVC5 136493 128430 6254
TVC6 ***** ***** *****

pb0 110 79 16
pb1 156 72 49
pb2 1224 423 413
pb3 307 168 76
pb4 5479 3820 929
pb5 347 262 46
pb6 4161 2506 852
pb7 2287 1482 463
pb8 177288 120151 32244
pb9 82154 63395 12413

pb10 35518 21803 7480
pb11 3386 2291 635
pb12 3105 2528 334
pb13 15087 12009 1773

TVC1 14556 12599 1426
TVC2 46056 40611 3950
TVC3 850 819 20
TVC4 30548 28201 1986
TVC5 7197 6792 317
TVC6 13035 12284 536

Table 8.12: Results obtained by basing the branching rule on the maximum theoretical approx-
imation errors without weighting them.

226 Appendix C

LP solved # LP range reduction # NLP solved % NLP/LP
pb0 168 115 26 15.5
pb1 188 81 57 30.3
pb2 1367 504 439 32.1
pb3 649 324 178 27.4
pb4 4295 3002 750 17.5
pb5 650 471 97 14.9
pb6 3356 2009 694 20.7
pb7 22385 15322 3897 17.4
pb8 13352 8738 2567 19.2
pb9 46161 33580 7805 16.9
pb10 8403 5012 1815 21.6
pb11 6510 4483 1207 18.5
pb12 1955 1532 233 11.9
pb13 ***** ***** ***** *****

TVC1 373873 321102 31163 8.3
TVC2 125647 111702 9209 7.3
TVC3 1281 1200 50 3.9
TVC4 3295 3024 179 5.4
TVC5 30328 28181 1316 4.3
TVC6 85049 79042 3504 4.1
pb0 101 70 15 14.9
pb1 156 72 49 31.4
pb2 1005 288 365 36.3
pb3 384 205 99 25.8
pb4 2256 1449 432 19.1
pb5 799 604 115 14.4
pb6 5554 3751 959 17.3
pb7 4613 2692 1221 26.5
pb8 113101 75126 21194 18.7
pb9 64432 46985 10851 16.8
pb10 16560 9511 3742 22.6
pb11 3070 1989 632 20.6
pb12 2702 2223 287 10.6
pb13 14489 11539 1692 11.7

TVC1 7144 6139 634 8.9
TVC2 6620 5967 482 7.3
TVC3 701 676 14 2.0
TVC4 2454 2259 128 5.2
TVC5 5380 5063 210 3.9
TVC6 8268 7739 323 3.9

Table 8.13: Results obtained by basing the branching rule on the maximum theoretical weighted
approximation errors.

Appendix C 227

LP solved # LP range reduction # NLP solved % NLP/LP
pb0 157 106 25 15.9
pb1 194 81 60 30.9
pb2 2207 1008 621 28.1
pb3 203 90 57 28.1
pb4 4927 3268 921 18.7
pb5 711 528 104 14.6
pb6 3415 2062 695 20.4
pb7 23451 15350 4280 18.3
pb8 19569 13612 3443 17.6
pb9 24817 17836 4280 17.2

pb10 14026 9315 2586 18.4
pb11 4939 3260 965 19.5
pb12 1282 997 156 12.2
pb13 ***** ***** ***** *****

TVC1 374971 321768 31279 8.3
TVC2 95256 83801 7155 7.5
TVC3 1465 1378 54 3.7
TVC4 2611 2440 125 4.8
TVC5 42970 39873 1831 4.3
TVC6 82942 76359 3618 4.4

pb0 99 70 14 14.1
pb1 169 81 52 30.8
pb2 1171 468 359 30.7
pb3 194 97 48 24.7
pb4 4463 2894 894 20.0
pb5 716 509 112 15.6
pb6 7997 4866 1626 20.3
pb7 4076 2427 944 23.2
pb8 182116 129991 30787 16.9
pb9 105518 73303 18727 17.7

pb10 43359 30564 7733 17.8
pb11 1916 1283 383 20.0
pb12 4623 3731 548 11.9
pb13 19331 14941 2444 12.6

TVC1 11081 9790 930 8.4
TVC2 10536 9407 797 7.6
TVC3 828 793 21 2.5
TVC4 2176 2015 107 4.9
TVC5 5269 5004 188 3.6
TVC6 14321 13290 587 4.1

Table 8.14: Results obtained by basing the branching rule on the real approximation errors.

228 Appendix C

LP solved # LP # LP # NLP % LP strong % NLP/LP
range reduction strong branching solved branching/LP

pb0 116 61 46 7 39.7 6.0
pb1 121 18 88 13 72.7 10.7
pb2 44 9 28 5 63.6 11.4
pb3 78 18 48 8 61.5 10.3
pb4 152 19 122 9 80.3 6.0
pb5 201 72 118 7 58.7 3.5
pb6 522 95 392 29 75.1 5.6
pb7 3963 584 3122 213 78.8 5.4
pb8 879 152 662 46 75.3 5.2
pb9 282 19 246 14 87.2 5.0

pb10 544 127 384 27 70.6 5.0
pb11 1309 136 1072 83 81.9 6.3
pb12 1320 399 886 31 67.1 2.3
pb13 18782 3337 14856 514 79.1 2.7

TVC1 114128 41345 68356 4718 59.9 4.1
TVC2 66474 23679 40448 2178 60.8 3.3
TVC3 990 715 262 12 26.5 1.2
TVC4 1672 845 788 32 47.1 1.9
TVC5 20667 8328 11954 367 57.8 1.8
TVC6 41688 14545 26394 706 63.3 1.7

pb0 68 43 20 3 29.4 4.4
pb1 99 18 68 9 68.7 9.1
pb2 224 9 180 26 80.4 11.6
pb3 127 34 74 13 58.3 10.2
pb4 118 19 92 6 78.0 5.1
pb5 143 72 64 5 44.8 3.5
pb6 654 95 518 37 79.2 5.7
pb7 632 147 446 25 70.6 4.0
pb8 259 38 202 13 78.0 5.0
pb9 471 114 332 21 70.5 4.5

pb10 223 76 134 10 60.0 4.5
pb11 740 102 578 40 78.1 5.4
pb12 1348 295 1006 27 74.6 2.0
pb13 16242 3142 12464 509 76.7 3.1

TVC1 7284 2595 4396 251 60.4 3.4
TVC2 5370 1993 3194 169 59.5 3.1
TVC3 627 520 102 4 16.3 0.6
TVC4 1947 803 1094 41 56.2 2.1
TVC5 6486 2423 3938 104 61.7 1.6
TVC6 6243 2580 3558 92 57.0 1.5

Table 8.15: Results obtained by basing the branching rule on strong branching.

Appendix C 229

LP solved # LP # LP # NLP % NLP/LP
range reduction strong branching solved

pb0 124 79 12 16 12.9
pb1 170 36 32 30 23.6
pb2 44 9 28 5 11.4
pb3 78 18 48 8 10.3
pb4 208 95 56 32 15.4
pb5 222 129 46 24 10.8
pb6 753 418 40 133 18.5
pb7 13795 8976 94 2613 18.9
pb8 367 206 82 45 12.3
pb9 266 19 228 14 5.3

pb10 624 307 142 95 15.2
pb11 1094 599 96 211 19.3
pb12 2498 1869 146 256 10.3
pb13 38077 29300 156 4582 12.0

TVC1 107330 92849 144 8897 8.3
TVC2 72701 63052 252 5851 8.0
TVC3 1060 949 68 29 2.7
TVC4 1738 1523 90 82 4.7
TVC5 22436 20895 172 903 4.0
TVC6 41835 38603 174 1750 4.2

pb0 79 52 12 8 10.1
pb1 186 63 30 50 26.9
pb2 102 9 64 16 15.7
pb3 148 43 74 18 12.2
pb4 120 19 92 7 5.8
pb5 156 91 38 14 9.0
pb6 254 133 50 35 13.8
pb7 1338 729 170 253 18.9
pb8 263 38 202 15 5.7
pb9 424 95 304 20 4.7

pb10 205 76 112 9 4.4
pb11 432 221 82 75 17.4
pb12 1661 1215 112 181 10.9
pb13 15639 12547 122 1969 12.6

TVC1 6161 5376 110 479 7.8
TVC2 5254 4483 100 417 7.9
TVC3 706 637 50 11 1.6
TVC4 1473 1302 86 58 3.9
TVC5 5467 4798 374 203 3.7
TVC6 11782 10717 276 465 3.9

Table 8.16: Results obtained by basing the branching rule on pseudocosts.

230 Appendix C

LP # LP range # LP strong # NLP % NLP/LP # nodes in CPU times
solved reduction branching solved the stack

pb0 112 61 40 7 6.3 4 0.285
pb1 147 36 80 20 13.6 6 0.423
pb2 44 9 28 5 11.4 3 0.119
pb3 78 18 48 8 10.3 7 0.224
pb4 177 76 84 12 6.8 6 0.778
pb5 205 72 118 9 4.4 5 1.002
pb6 598 133 352 75 12.5 12 4.674
pb7 5054 1439 2656 629 12.4 14 38.225
pb8 579 152 356 46 7.9 7 3.244
pb9 266 19 228 14 5.3 5 1.620

pb10 527 182 280 42 8.0 7 2.577
pb11 1326 463 606 165 12.4 17 7.486
pb12 1336 607 600 81 6.1 12 19.072
pb13 20362 9065 9382 1260 6.2 23 281.064

TVC1 82847 55530 19354 5615 6.8 24 1264.972
TVC2 61924 40193 16468 3767 6.1 19 906.001
TVC3 948 715 212 16 1.7 5 30.625
TVC4 1701 1148 484 51 3.0 8 54.868
TVC5 18379 12432 5158 561 3.1 17 980.362
TVC6 32852 22901 8548 1003 3.1 17 1716.357

pb0 68 43 20 3 4.4 2 0.148
pb1 79 18 44 10 12.7 7 0.235
pb2 194 9 138 27 13.9 7 0.654
pb3 121 34 68 12 9.9 4 0.365
pb4 120 19 92 7 5.8 5 0.634
pb5 145 72 64 6 4.1 4 0.621
pb6 348 95 206 29 8.3 9 2.309
pb7 1235 620 394 155 12.6 26 7.728
pb8 263 38 204 15 5.7 9 1.512
pb9 442 95 322 20 4.5 5 2.616

pb10 205 76 114 9 4.4 4 0.880
pb11 558 110 364 58 10.4 10 3.374
pb12 1503 613 770 78 5.2 21 29.412
pb13 17388 7275 8438 1303 7.5 62 266.369

TVC1 7756 5103 1988 485 6.3 14 115.79
TVC2 5792 4073 1252 345 6.0 12 81.639
TVC3 627 520 102 4 0.6 3 19.461
TVC4 1396 837 496 40 2.9 9 49.541
TVC5 5619 3542 1846 150 2.7 12 311.049
TVC6 6096 4323 1572 151 2.5 12 368.399

Table 8.17: Results obtained by basing the branching rule on pseudocosts combined with strong
branching iterations and using a depth-first search.

Appendix C 231

LP solved # LP # LP # NLP # nodes in
range reduction strong branching solved the stack

pb0 112 61 40 7 3
pb1 138 27 80 19 5
pb2 44 9 28 5 3
pb3 70 9 48 12 6
pb4 140 19 102 10 4
pb5 205 72 118 9 4
pb6 583 206 296 57 16
pb7 5606 1591 2932 670 146
pb8 938 377 434 77 26
pb9 266 19 228 14 5

pb10 551 216 266 49 13
pb11 1145 408 514 147 19
pb12 1129 568 454 68 14
pb13 28307 12596 13094 1723 254

TVC1 100356 66461 24432 6857 1342
TVC2 65549 42718 17372 4041 726
TVC3 954 715 218 15 4
TVC4 1717 1098 552 47 15
TVC5 23426 15873 6518 739 219
TVC6 32697 22616 8718 984 317

pb0 68 43 20 3 2
pb1 68 15 40 9 4
pb2 286 45 170 35 14
pb3 97 34 50 10 4
pb4 120 19 92 7 4
pb5 145 72 64 6 3
pb6 476 57 340 57 13
pb7 1091 538 370 124 23
pb8 304 57 222 17 5
pb9 442 95 322 21 5

pb10 212 76 116 13 7
pb11 256 59 164 25 6
pb12 940 295 574 51 14
pb13 8791 3532 4180 1066 541

TVC1 8686 5074 2848 563 185
TVC2 5410 3787 1228 292 58
TVC3 627 520 102 4 3
TVC4 1414 842 518 43 18
TVC5 3975 2354 1492 95 28
TVC6 6046 4225 1606 160 45

Table 8.18: Results obtained by using a best-first search.

232 Appendix C

LP solved # LP # LP # NLP # nodes in CPU times
range reduction strong branching solved the stack

pb0 112 61 40 7 3 0.290
pb1 142 27 82 19 5 0.441
pb2 44 9 28 5 3 0.129
pb3 79 18 48 12 6 0.256
pb4 163 38 102 12 4 0.850
pb5 259 110 126 13 3 1.262
pb6 558 133 320 67 11 4.208
pb7 5182 1629 2660 575 73 38.317
pb8 976 377 462 83 21 4.873
pb9 266 19 228 14 5 1.633

pb10 551 216 270 46 7 2.625
pb11 1142 425 490 150 23 6.509
pb12 1367 646 592 83 11 19.506
pb13 22983 9002 11880 1423 173 323.717

TVC1 87182 57507 21282 5926 160 1335.563
TVC2 58457 37658 16080 3547 104 861.052
TVC3 948 715 212 16 4 31.395
TVC4 1750 1139 538 51 15 58.937
TVC5 20873 14034 5898 660 66 1079.785
TVC6 30994 20903 8734 969 216 1653.214

pb0 68 43 20 3 2 0.158
pb1 68 15 40 10 4 0.211
pb2 260 9 190 30 12 0.833
pb3 97 34 50 10 4 0.246
pb4 120 19 92 7 3 0.620
pb5 145 72 64 6 3 0.618
pb6 292 57 180 33 6 2.058
pb7 1121 546 390 128 22 7.132
pb8 241 38 176 15 5 1.352
pb9 442 95 322 21 5 2.561

pb10 197 76 104 10 4 0.817
pb11 258 59 164 25 6 1.541
pb12 1056 373 592 60 11 21.295
pb13 3885 1582 1856 350 76 60.734

TVC1 8031 5317 2038 492 38 124.184
TVC2 5547 3930 1226 302 15 79.411
TVC3 627 520 102 4 3 19.594
TVC4 1582 949 578 47 17 57.712
TVC5 4338 2719 1474 109 23 244.350
TVC6 5503 3712 1590 143 27 331.486

Table 8.19: Results obtained by using a criterion inspired by best estimates.

