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Abstract

There are several quality models used to evaluate software systems in general; how-

ever, none of them is dedicated to Open Source Software applications. The aim of

this work is to propose a model for Open Source Software system. The proposed

model is a stakeholder-centric model.

We also analyze and study several existing software quality models namely : Mc-

Call’s(Rawashdeh and Matalkah, 2006), ISO Standard (ISO/IEC, 1991), Dromey

(Dromey, 1995)and (Dromey, 1996), the QSOS model (QSOS, 2007), the Capgemini

Open Source Maturity Model (F. and C., 2003) and the Open Business Readiness

Rating (OpenBRR, 2005). We present limitations found in the existing models such

as the trend to ignore certain quality feature like functionality or the failure to de-

scribe how the quality measurement in these models has been carried out.

Keywords: Open Source Software, quality model, stakeholder, measurement.
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Résumé

Il existe plusieurs modèles de qualité pour supporter et structurer l’évaluation des

systèmes logiciels, mais aucun de ceux-ci ne s’applique d’une façon satisfaisante à

la qualité des logiciels libres. Dans ce travail, nous proposons un model de qualité

spécifique pour les logiciels libres. Ce model prend en compte les intérêts des différents

types d’utilisateurs présents dans l’environnement du logiciel libre.

Nous commençons par une analyse des principaux modèles de qualité existants

notamment les modèles McCall (Rawashdeh and Matalkah, 2006), ISO 9126 Standard

(ISO/IEC, 1991), Dromey (Dromey, 1995)and (Dromey, 1996), QSOS (QSOS, 2007),

Capgemini Open Source Maturity (F. and C., 2003) et Open Business Readiness

Rating (OpenBRR, 2005). Cette analyse nous permet de mettre en évidence les

limites de ces différents modèles de qualité pour le logiciel libre. Ces insuffisances

portent sur la non prise en compte de certaines qualités tel que la fonctionnalité ou

la portabilité.

Mots clés: logiciel libre, modèle de qualité, intérêt des utilisateurs, mesures.
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Introduction

In the software engineering we can’t do without quality. To understand the landscape

of software quality it is essential to answer the so often asked question: what is quality?

The word quality has various definitions. The definition given by the ISO/IEC 8402

standard is : the totality of features and characteristics of a product or a service that

bear on its ability to satisfy stated or implied needs.

Quality is a multidimensional concept. The dimensions of quality include the entity

of interest and the viewpoint on that entity. A popular view of quality is that it is

an intangible trait and that it can be discussed and judged, but can not be weighted

or measured. From a customer standpoint, quality is the customer’s perceived value

of the product. The customer purchases or more generally makes a choice, based on

a number of variable such as price, performance, reliability, overall satisfaction and

others.

The objective of this study report is to introduce a quality model and metrics that

help in assessing the quality attributes of an Open Source Software (OSS). The term

stakeholder is used to refer to any person or group who will be affected by the system,

directly or indirectly (Rawashdeh and Matalkah, 2006).

The report is organized as follow : in the chapter 1, we begin with a summary of

definitions of quality and related concepts and by introducing the most common and

1
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standard quality models and their limitations. After, we summarize a structured

synthesis of these quality model by presenting a generic comparison of quality model

in chapter 2. Then, the chapter 3 presents briefly the common way to develop an OSS

and in chapter 4, we introduce some of the most common characteristics of quality

models. They are used to develop a stakeholder-centric quality model to assess and

measure the quality characteristics that are appropriate for an OSS. Finally, chapter

5 proposes a methodology for the use of the proposed model.



Chapter 1

Software Quality Models State of the
Art

There are many standards of quality for software. Some are given by institutions

and others by researchers. These standards have common features: the first is the

intrinsic product quality and the second is both product quality and customer sat-

isfactions (Kan et al., 1994) . In this chapter, we review definitions of quality an

related concepts, we present the most common quality models with their limitations.

Precisely, in the next section, we review some definitions of quality, quality model

and measurement. It also presents the representation of a quality model. Section 1.2

analyses the main quality models and outlines their limitations for OSS.

1.1 Terminology

1.1.1 Some definitions of quality

Like we said above, the word quality has various definitions. In this section, we

present the viewpoint of several authors on that concept. It is important to take note

3



CHAPTER 1. SOFTWARE QUALITY MODELS STATE OF THE ART 4

about different opinion related to software quality.

Inspired by the technical report wrote by Khashayar Khosravi and Yann-GaÄel

(Khosravi and Gueheneuc, 2004), we present some definitions from International and

Standard Organizations:

1. ISO 9126: software quality characteristic is a set of attributes of a software

product by which its quality is described and evaluated.

2. German Industry Standard DIN 55350 Part 11: quality comprises all charac-

teristics and significant features of a product or an activity which relate to the

satisfying of given requirements.

3. ANSI Standard (ANSI/ASQC A3/1978): quality is the totality of features and

characteristics of a product or a service that bears on its ability to satisfy the

given needs.

4. IEEE Standard (IEEE Std 729-1983):

(a) The totality of features and characteristics of a software product that bear

on its ability to satisfy given needs. For example, conformance to specifi-

cations.

(b) The degree to which software possesses a desired combination of attributes.

(c) The degree to which a customer or a user perceives that a software meets

her composite expectations.

(d) The composite characteristics of a software that determine the degree to

which the software in use will meet the expectations of the customer.
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Finally, (Rawashdeh and Matalkah, 2006) define quality as a functional and artis-

tic measurement used for instance, to specify user satisfaction with a product, or how

well the product performs compared to similar products.

1.1.2 Definition and representation of a quality model

A quality model is an abstract form of reality enabling details to be eliminated and an

entity or concept to be viewed from a particular perspective. The term quality model

is defined as the set of characteristics and relationships between them, which provides

the basis for specifying quality requirements and evaluating quality(ISO, 1999). The

main kinds of model are cost estimation models, quality models and maturity mod-

els. They are three different ways to represent a quality model: equations, functions

or diagrams. In case of the representation of the quality model as a diagram, qual-

ity models consist basically of quality characteristics, which are refined into quality

sub-characteristics, and finally into measurable properties. We will use this type of

representation in the quality model for OSS proposed in chapter 4.

1.1.3 Measurement

As said above, the main objective of a quality model is to operationalize the term

quality by making it eventually measurable. For this reason, refinement of quality

characteristics inside a quality model stops at the level of quality attributes, which are

measurable properties. In order to measure the property or attribute of an entity (i.e.,

process, product or resource) via measurement, numbers or symbols are assigned to its

attribute (Fenton and Pfleeger, 1996) and (Agresti et al., 2002). This assignment has
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to follow clearly specified rules so that different people assign the same measurement

values to the attribute. A measure is the number or symbol assigned to a quality

attribute of an entity by making a measurement (ISO/IEC, 1991).

There are direct measures that are determined by directly analyzing the entity under

study. Indirect measures, on the other hand, are derived from the measures of one

or more other attributes. A descriptive quality model is an operational rule that

determines how to measure an entity’s attribute. Formally, a descriptive quality

model can be defined as a function f that computes a measure M = f(x1, ..., xn),

from the values of the measures xi where i = 1, ..., n (Briand et al., 1997).

1.2 Literature study of the main existing quality

models

In the literature, several quality models have been defined by different people and

organizations. In the following, we summarize briefly some of the most standard and

well-known quality models. These quality models could be divided in two categories:

Hierarchical general category which is a group of quality models with represen-

tation as a diagram. There are also more general models than the other one

and could not be used for an OSS. These representation consists basically of a

high characteristics , which are refined into sub-characteristics and finally into

measurable properties. These models are described from section 1.2.1 to section

1.2.5.

Category specific for an OSS which are quality models for an OSS. We review
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these models from section 1.2.7 to section 1.2.9.

We notice that none of the main existing quality models takes into account ex-

plicitly the stakeholders interests. Therefore, we propose in chapter 4 a stakeholder-

centric quality model.

1.2.1 McCall’s quality model

Presentation of the McCall’s model

Created in 1976, McCall’s model for software quality combines eleven criteria

(Rawashdeh and Matalkah, 2006) around three stages of a software lifecycle:

1. Product operations: running and operating;

2. Product revisions: changing and updating;

3. Product transitions: moving to a different context.

These criteria include : correctness, reliability, efficiency, integrity, usability, main-

tainability, testability, flexibility, portability, reusability and interoperability like

show in figure 1.1.

The main idea behind McCall’s model is to assess the relationships among external

quality factors and product quality criteria. External quality is quality viewed by the

customers; Internal quality is quality as measured by the programmer.

McCall’s model is used in the United States for very large projects in the military,

space, and public domain.

The layers of quality model in McCall are defined as :
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Figure 1.1: McCall’s Quality Model
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1. Factors which describe the external view of the software, as viewed by the users;

2. Criteria which describe the internal view of the software, as seen by the devel-

oper;

3. Metrics which is defined and used to provide a scale and method for measure-

ment.

Contributions and limitations of the McCall model

One of the major contributions of the McCall model is the relationship highlighted

between quality characteristics and metrics. Adnan in (Rawashdeh and Matalkah,

2006) criticized that not all metrics are objective. Another limitation is one aspect

not considered directly by this model. This aspect is the functionality of the software

product.

1.2.2 Boehm’s quality model

Presentation of the Boehm model

In 1978, Boehm added some characteristics to McCall’s model with emphasis on

the maintainability of software product. This model also includes considerations

involved in the evaluation of a software product with respect to the utility of the

program.

In addition, Boehm’s model proposed categories attributes according to a util-

ity view. The attributes in the model come from three different types of utility (see
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Figure 1.2: Boehm’s Quality Model

figure 1.2):

1. As-is utility;

2. Maintainability;

3. Portability.

The layers of quality model in Boehm are defined as (Khosravi and Gueheneuc,

2004):

1. High-level characteristics which represent the general utility of software.

2. Intermediate-level characteristics which the Boehm’s 7 quality factors that to-

gether represent the qualities expected from a software system.
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3. Primitive characteristics which provide the foundation for defining qualities met-

rics.

Contributions and limitations of the Boehm model

Like expressed in (Ortega et al., 2003), the Boehm quality model is similar to the

McCall quality model in that it represents a hierarchical structure of characteristics,

each of which contributes to total quality. Boehm’s notion includes users needs,

as McCall’s does. However, it also adds the hardware product characteristics not

encountered in the McCall model. Boehm’s quality model contains only a diagram

to organize into a hierarchy characteristics without any suggestion about measuring

those characteristics.

1.2.3 FURPS quality model

Presentation of the FURPS quality model

The FURPS model was proposed in 1987 by Robert Grady and Hewlett-Packard

Compagny. The FURPS model takes into account the following five characteristics

that make up its name:

• Functionality

• Usability

• Reliability

• Performance
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• Supportability

The FURPS-categories are of two different types:

• Functional requirements (F): defined by input and expected output;

• Non-functional requirements (URPS): Usability, Reliability, Performance, Sup-

portability.

Contributions and limitations of the FURPS model

One disadvantage of this model is that it fails to take account of the software product’s

portability (Ortega et al., 2003).

1.2.4 ISO/IEC 9126 Quality Model

Presentation of the ISO/IEC 9126 quality model

With the need for the software industry to standardize the evaluation of software

products using quality models, the ISO (International Organization for Standard-

ization) proposed in 1991 a standard (ISO/IEC, 1991) which specifies six areas of

importance for software evaluation and, for each area, specifications that attempt to

make the six area measurable. The layers of quality model in ISO/IEC are defined

as show in figure 1.3.

• External and internal quality: internal quality is the totality of characteristics of

a software product from an internal view, while an external quality is the totality

of characteristics of the software product from an external view (ISO/IEC,
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Figure 1.3: ISO/IEC 9126 Quality Model
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1991). The internal attribute can be observed without any execution of the

software and thus with no connection with environmental, while the external

attribute are observed during execution of the software with environment (Habra

et al., 2007)

• Characteristics (functionality, reliability, usability, efficiency, maintainability,

portability).

• Sub-characteristics.

• Metrics.

Each characteristic is refined to a set of sub-characteristics and each sub-characteristic

is evaluated by a set of metrics.

Contributions and limitations of the ISO/IEC 9126 model

One of the advantages of the ISO 9126 model is that it identifies and distinguishes

the internal characteristics and external quality characteristics of a software product.

ISO 9126 is also recognized as a standard model.

However, at the same time it has the disadvantage of not showing very clearly how

these characteristics can be measured (Ortega et al., 2003).

1.2.5 Geoff Dromey’s quality Model

Presentation of the Dromey quality model

In 1996, Dromey proposed a new quality model having same similarities with the

McCall, the Boehm’s and the FURPS quality models. Dromey suggests a framework
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Figure 1.4: Factors that determine quality product in Dromey’s model

for the construction, the use of practical, testable quality model for requirements,

design and implementation (Dromey, 1995)and (Dromey, 1996). In referring to the

well-known expression build quality into software, Dromey points out that high-level

quality attributes, such as reliability and maintainability, cannot be built into the

software. What can be done though is to identify a set of properties (such as mod-

ules without side effects) and build them up consistently, harmoniously and fully to

provide reliability and maintainability. Links must be forged between the tangible

properties of the product and the high-level quality attributes (Ortega et al., 2003).

Dromey proposes three models, depending on the products resulting from each stage

of the development process: requirements quality model, design quality model, and

implementation quality model (programming). It define factors that determine a

quality product (see figure 1.4):

• A set of components ;

• A set of quality-carrying properties of components;

• A set of high quality attributes.

Dromey insists in the fact that we need a quality process to produce a quality

product (Dromey, 1996) . Dromey identifies five steps to build his model:
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1. Choose a set of high-level attributes that we need to use for evaluation.

2. Make a list of all the components or modules in the system.

3. Identify quality-carrying properties for each component that is, qualities of the

component that has the most impact on the product properties from the list

created in last step.

4. Decide on how each property affects the quality attributes.

5. Evaluate the model.

6. Identify and resolve weaknesses in with feedback loop.

The quality model of Dromey’ product implementation is represent by figure 1.5.

Contributions and limitations of the Dromey model

This model adds reusability of software to the international standard ISO 9126

software product evaluation. This model raises a number of important issues about

programming language design. For example, most existing languages leave the

responsibility for satisfying the various quality-carrying properties in the hands of

the designer or the programmer.

Dromey suggests that programmers have to change their style of implementa-

tion and/or submit their programs to much more rigorous compiler checks which

insist that quality requirements are satisfied before a compiler will produce executable

code.
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Figure 1.5: Dromey Quality Model
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The disadvantage of the Dromey model is associated with reliability and maintain-

ability. For the author, it is not feasible to judge both attribute (reliability and

maintainability) of a system before it is actually operational in the production area.

1.2.6 ISO 9126 VS McCall quality model

As show on figure 1.6, there are many similarities between characteristics in the

McCall quality model and the ISO/IEC 9126 quality model.

1.2.7 QSOS model

Presentation of the QSOS model

QSOS (QSOS, 2007) split its evaluation template in two kinds of sections: one generic

section and several sections specific to a particular family of applications such as

Groupware, CMS, Database,....

Contributions and limitations of the QSOS model

In some case, the terminology used by QSOS is not detailed enough. References is not

precise enough as its is unclear to the reader to know what characteristic of reference

are under consideration.
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Figure 1.6: ISO/IEC 9126 VS McCall Quality Model
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1.2.8 Open Source Maturity (OSM) model

Presentation of the OSM model

Below is the hierarchy proposed by OSMM, as defined by Cap Gemini (F. and C.,

2003):

• Product

– Age

– Licensing

– Human hierarchies

– Selling points

– Developer community

• Integration

– Modularity

– Collaboration with others products

– Standards

• Use

– Support

– Ease of deployment

• Acceptance

– User community

– Market penetration



CHAPTER 1. SOFTWARE QUALITY MODELS STATE OF THE ART 21

Contributions and limitations of the OSM model

The hierarchy is much lighter and it is also very imprecise in its language. For

example, Integration .. Standards does not specify what characteristics related to

standards are under consideration.

1.2.9 Open Business Readiness Rating (OBRR) model

Presentation of the OBRR model

The OpenBRR builds on two existing general maturity models, Navica’s Open Source

Maturity Model (Golden, 2005) and Cap Gemini’s equivalent (OpenBRR, 2005). The

OpenBRR hierarchy of quality characteristics looks as follows:

• Usability

– End user UI experience

– Time for setup pre-requisites for installing open source software

– Time for vanilla installation/configuration

• Quality

– Number of minor releases in past 12 months

– Number of point/patch releases in past 12 months

– Number of open bugs for the last 6 months

– Number of bugs fixed in last 6 months

– Number of P1/critical bugs opened
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– Average bug age for P1 in last 6 months

• Security

– Number of security vulnerabilities in the last 6 months that are moderately

to extremely critical

– Number of security vulnerabilities still open (unpatched)

– Is there a dedicated information (web page, wiki, etc) for security?

• Performance

– Performance Testing and Benchmark Reports available

– Performance Tuning and Configuration

• Scalability

– Reference deployment

– Designed for scalability

• Architecture

– Is there any 3rd party Plug-ins

– Public API / External Service

– Enable/disable features through configuration

• Support

– Average volume of general mailing list in the last 6 months

– Quality of professional support
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• Documentation

– Existence of various documentations

– User contribution framework

• Adoption

– How many books does amazon.com gives for Power Search query: sub-

ject:computer and title:component name

– Reference deployment

• Community

– Average volume of general mailing list in the last 6 months

– Number of unique code contributor in the last 6 months

• Professionalism

– Project Driver

– Difficulty to enter the core developer team

Contributions and limitations of the OBRR model

Unlike the other two previous hierarchies, elements of OpenBRR hierarchy are very

specific, for example, under the Quality category, we find number of minor releases

in the past 12 months. This is not a quality characteristic but as OpenBRR calls it:

a metric.
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1.3 Conclusion

Several models, including hierarchy and OSS’ models specializing in measuring the

quality of software products have been described. These models have been studied,

analyzed and their limitations outlined. Specifically, functionality of a software prod-

uct was not considered directly by McCall’s model. No suggestion about measuring

the quality characteristics has been found in Boehm’s model. FURPS model fails to

take account of the software product’s portability. ISO 9126 has the limitation of not

show very clearly how certain quality aspects can be measured. The disadvantage of

Dromey’s model is associated with reliability and maintainability. It is not possible

to judge these two attributes of a system before it is actually operational in the pro-

duction area. The disadvantage of OSS’ models (QSOS, OSMM and OBRR) are : the

terminology used by QSOS is not detailed enough , the hierarchy of OSMM is much

lighter and it is also very imprecise in it language and elements of OpenBRR hierar-

chy are very specific. The study of the OSS’ models shows that they are not mature

enough (Kamseu and Habra, 2007). The specific models for an OSS are recent, not

really test or used. They are specific for industry and their industrial occupancy is

limited.

Among all the existing models that have been studied, we found that ISO 9126 is the

most complete model with some limitations. Our proposed model will be based on

some quality characteristics of this model.



Chapter 2

Generic comparison of quality models

This chapter combines different layers of the hierarchical1 quality models studied

in chapter 1 to construct a mapping between the key concepts of the main quality

model. This work would outlines the similarities between these concepts. In the next

section, we present layers from the hierarchical quality model. Theses layers are used

to construct a mapping in section 2.2.

2.1 The concept of layer in the main quality models

Models studied in chapter 1 have different layers. We present and describe these

layers per model. This section present the definition and description of terms from

layers in main quality models used to construct a mapping between these models.

McCall’s quality model : it has three layers.

1. Factors (to specify): they describe the external view of the software, as

viewed by the users. The quality factors describe different types of system

behavioral characteristics. They can have many criteria.
1We restrict ourself on hierarchical models: McCall, Boehm, Dromey and ISO 9126 models.

25
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2. Criteria (to build): they describe the internal view of the software, as seen

by the developer. They can have many metrics.

3. Metrics (to control): they are defined and used to provide a scale and

method for measurement. The quality metric, in turn, aims to capture

some of the aspects of a quality criteria.

Boehm’s quality model : it has four layers.

1. High-level characteristics : they represent basic high-level requirements

of actual use to which evaluation of software quality could be put (the

general utility of software). The high-level characteristics address three

main questions that a buyer of software has:

• As-is utility: How well (easily, reliably, efficiently) can I use it as-is?

• Maintainability: How easy is it to understand, modify and retest?

• Portability: Can I still use it if I change my environment?

2. Intermediate level characteristic : it represents Boehm’s 7 quality fac-

tors that together represent the qualities expected from a software system

:portability, reliability, efficiency, usability, testability, understandability,

flexibility.

3. Primitive characteristics metrics hierarchy: they provide the foundation

for defining qualities metrics.

4. Metrics

ISO/IEC 9126 quality model : it has three layers.
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1. Characteristics: as given in ISO 9126, software quality characteristics is a

set of attributes of a software product by which its quality is described and

evaluated. This set of attributes includes functionality, reliability, usability,

efficiency, maintainability, and portability.

2. Sub-characteristics.

3. Metrics

Dromey quality model : it has three layers.

1. Quality attributes necessary for the evaluation.

2. Components or modules of the system.

3. Components properties for the components/modules. That are qualities

of the component that have the most impact on the product properties.

2.2 Mapping between the key concepts from the hi-

erarchical quality models

The figure 2.1 shows different relationship between layers from the main quality mod-

els.
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Chapter 3

Development process of OSS

OSS is computer software whose source code is available under a copyright license

that allows users to study, change, and improve the software, and to redistribute

it in modified or unmodified form. One research question of interest is how OSS

projects work? How are they organized? What methods and techniques do they use

to produce software?

As a product, an OSS is a software like all others softwares: a sequence of instructions

to be interpreted by a computer, which performs actions accordingly. OSS exists

in all shapes and sizes and is made to solve different tasks. Most software solves

a specific problem. For example word processing software solves the problem of

writing text, creating layout for the text; Email clients are software for sending

and receiving emails, and the list goes on. Software helps people perform different

tasks, some of which can only be performed by use of a computer with the proper

software. The difference between OSS and proprietary software consists in the

type of licence and then to the development process. The next section describes

the type of licence in OSS and section 3.2 presents the development process of an OSS

29
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3.1 The type of Licence in OSS

OSS is computer software, which comes with a license that is different from the

licenses in commercial software such as Microsoft Office suite or the Windows Oper-

ating System. The license is a legal agreement between the user and the producer.

The license defines the terms of use, that a user must accept to be allowed to use

the software. Commercial companies have typically relied on very restrictive licence

schemes, which allowed the user a minimum of rights. Commercial licenses do not

allow users to copy or modify the software in any way. Users are only allowed to use

the software. Commercial companies never release the source code for their software.

OSS exists since the early days of computing as software sharing. The name OSS

indicates, one of the special properties of the license: the source code for the software

is freely available–open source. Apart from access to the source code, OSS licenses

have other properties, which are very different from that of the usual commercial

software license.

An OSS license grants the users (Kumiyo et al., 2002):

Access to source code : access to source code is required, and any person creating

OSS has to make the source code for his software available to anyone.

The right to freely redistribute : the right to freely redistribute means that any

person, who accepts the license, is allowed to make as many copies as he wishes

and distribute these copies.

The right to create derived work : the right to create derived work allows any-

one to use the source code from OSS, modify the source code and distribute

this work under a new name. It is, however, required that reference the original
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contributor are made. The original contributor retains copyright for the code

that he wrote.

The obligation to redistribute the licence : to keep the software from changing

license to a non-open source license, it is required that the same license is used

for distribution. A person making copies of OSS is therefore required to copy

the license.

An OSS license is clearly very different from its commercial counterparts. None

of the mentioned four properties are ever granted in commercial software licenses.

We should stress that OSS should not be confused with free software. The term

free software does not mean non-commercial. Free software is a matter of the

users’ freedom to run, copy, distribute, study, change and improve the software (Limi

et al., 2007). Similarly, OSS should not be confused with shared source software

(the source code of which is visible, but there are limitations on use, modification, or

redistribution).

This report uses the term open source for its usual meaning, that is, software which

has its source code freely available for use, viewing, modification, and redistribution.

3.2 Development process of an open source software

OSS exists in all sorts and sizes, and every day new OSS projects are initiated.

It is important to emphasize that the nature of the activities in OSS projects is a

development effort.
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3.2.1 Different roles of members in an OSS community

Members of the most OSS project assume certain roles by themselves according to

their personal interest in the project (Kumiyo et al., 2002). A member may have one

of the following eight roles:

1. Project Leader : it is usually the person who has initiated the project. This

person is responsible for the vision and overall direction of the project. He is

often the person who conceived the idea for the software.

2. Core member : a core member is responsible for guiding and coordinating

the development major points of an OSS project. He has been involved with

the project for a relatively long time and has significant contributions to the

development and evolution of the system.

3. Active developers : they are people who regularly contribute new features

and fix bugs. Together, they contribute one of the major development forces of

OSS systems.

4. Peripheral developer : they contribute occasionally to create new function-

alities or features to the existing system. Their contribution is irregular and the

period of involvement is short and sporadic.

5. Bug fixer : they fix a bug, that they either discovered themselves or was

reported by bug reporters. Bug fixers have to read and understand a small

portion of the source code of the system where the bug occur.

6. Bug reporter : they discover and report bugs. They do not fix the bugs

themselves and they may not read source code either. They play the same role
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as testers of the traditional software development organization.

7. Readers : they are active users of the system. They not only use the system,

but they also try to understand how the system works by reading the source

code. Readers are like peer reviewers in a traditional software development

organization.

8. Passive User : they are those who just use the system in the same way as

most of those use commercial software. They are attracted to OSS mainly due

to its high quality and the potential of being changed when needed.

The first two groups (project leader and core members) are also called maintainers.

The maintainer takes on a special responsibility for the project and functions as the

personal point of contact for the project. The maintainer is the person who releases

new and improved versions of the software. As such, the maintainer has the final

word on what features and suggestions should be incorporated into the software.

All people who participate in the project are referred to as contributors. Figure 3.1

presents members’ contribution for developing an OSS.

3.2.2 Communication between members in an OSS commu-

nity

A common feature of most OSS development projects is the means of communications

employed. Communications in OSS development are maintained primarily using ser-

vices facilitated by the Internet such as email, newsgroups, mailing lists, web pages,

and chat (Kamseu and Habra, 2007). Of the mentioned forms of communication,

chat is the only real-time medium.
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Figure 3.1: Members contributing for an OSS quality software

Occasionally telephone is being used, but this is a rare event mostly due to the cost of

long distance phone calls and the intimate nature of personal phone calls. FreeBSD

developer Poul-Henning Kamp noted that phone calls were invaluable when trying

to solve a complex problem, but did require a level of personal intimacy not usually

associated with OSS development (Edwards, 2001). Phone calls also moved the devel-

opment process out of the regular forum and isolated the discussion from comments.

Most projects use a web page for general information and downloading the project

software. Central means of communications are facilitated by mailing lists, which

provide a centralized way of reaching all the people in the project.
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3.2.3 Lifecycle of activities for an OSS product

As presented above, the development of an OSS is different from the commercial one.

The basic development cycle of an OSS development can be schematized as follows:

1. }Previous steps ...

2. Maintainer releases software and source code

3. Contributors download software and source code

4. Contributors identify problems or needed features

5. Contributors implement corrections

6. Corrections are emailed to the Maintainer/mailing list for inclusion in the

project

7. Corrections are discussed on the mailing list

8. Maintainer reviews the corrections and includes changes

1. Maintainer releases new version software and source code

2. Contributor downloads software and ... and so aford

3.2.4 A typical process

The maintainer initiates the projects by making available the first version of the soft-

ware on the project home page and making announcements on various news groups,

mailing lists and home pages. Interested people download the software to try it. Some
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people immediately dislike the software, others find it useful and begin to use the soft-

ware. Some of those who find the software useful also identify problems or needed

features in the software. Interested people then subscribe to the project mailing list

to receive discussions regarding the project and its further development. Given the

ability to code and the source code, the interested person now begins to make changes

to the software. The interested person is now becoming a contributor to the project.

Once changes are made, the contributor submits the changes (a patch) to the project

mailing list and/or the maintainer. It is the hope of the contributor that his patch

will be included in the project. The maintainer and/or other persons on the mailing

list will review the submitted patch and discuss it. The interest in the submitted

patch is correlated to the interest that other people have in that particular area of

the software. Often the code will not be discussed in detail, simply because no one on

the list is interested in that part of the software. Following review and perhaps some

discussion, the patch is either accepted or rejected. If accepted the patch is included

in the software, and the new version is made available for downloading. Often several

or even hundreds of persons are engaged in a development project and contribute to

the best of their efforts. Large variations in contributed code can be observed in the

projects.

Participation in development requires a person to read or scan a lot of emails referred

to as high traffic. The Linux kernel development is an example of a project with a

high traffic mailing list. In week 20 of year 2001 the Linux kernel mailing list re-

ceived 1227 posts from 423 different contributors 45% posted more than once, and

38% posted in the week before (Edwards, 2001). This suggests that active persons

on the list frequent the list. The amount of emails to the list is enough to discourage
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many people.

The actual source code development takes place in two spheres: at home and in the

mailing list. Contributors work in their homes and develop the software using their

personal computer. The source code they produce are later submitted to the project

mailing list. Suggestions are made and backed up with technical arguments. Often

there is a back and forth discussion where different suggestions are tested privately

and the results are discussed. The testing is a central part of the development, and

since system configuration and usage pattern vary among users, it is important to

find a solution, which satisfies most people.

We can summarize these activities with their relationships to the stakeholder contrib-

utor in figure 3.2.
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Figure 3.2: Activities life cycle for an OSS product



Chapter 4

A stakeholder-centric quality model
for OSS

This chapter aims at building a quality model to improve productivity and usage of

OSS. To this end, it starts by listing features that we think are relevant to assess and

measure an OSS through a quality model. These quality attributes are then used

to develop a stakeholder-centric quality model for an OSS. Our aim is to provide an

understandable and a useful framework to evaluate the strength of OSS. This frame-

work will meet specific stakeholders quality needs for an OSS application. Precisely,

in section 4.3, we provide a method in four step to design our quality model, which

we then construct in section 4.3.4.

Introduction

OSS development and use has increased significantly over recent years (Raja and

Barry, 2005). Software quality is an important issue having an impact to overall sys-

tem lifecycle cost, performance and useful life. Research on proprietary software or

Closed Source Software (CSS) has revealed that software quality declines over time

39
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(Raja and Barry, 2005). Part of this decline is associated with the lifecycle mainte-

nance activities that increase continously in the size and complexity of the system.

Lifecycle maintenance activities in OSS systems are processed under a very different

context. The OSS movement is changing the way software is developed, maintained

and updated (Wheeler, 2006). Therefore, quality issues perspectives change also.

In this research, we explore some important software characteristics that contribute

to consistent OSS quality. In the following sections, we present quality characteristics

and the different type of stakeholders in OSS. We then develop a model for quality in

OSS. The proposed quality model is built on basis of this stakeholder typology and

takes into account stakeholders interests and function. We used this approach be-

cause there are a number of different interest groups who have quite distinct software

product quality requirements. Our model will need to properly accommodate these

requirements.

4.1 Terminology and framework

A lot of questions appears in discussions about software product quality because there

is a confusion about how various terms are used. That is why we first introduce our

terminology before starting the construction of the model for OSS.

• Some of the properties of software are desirable. We call these desirable proper-

ties qualities or quality attributes. Quality or more specifically a set of quality

attributes is the vehicle through which the different interest groups express their

requirements.

• They are two types of quality attributes of software, those corresponding to
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the behaviors of software and those corresponding to its uses. A behavior is

something that the software itself exhibits when it executes under the influence

of a set of inputs.

• A use is something that different interested groups do with or to software.

• To accommodate and balance the needs of different interested group in building

a quality model, we rely on a Goal Directed Approach (Dromey, 1998). A

Goal Directed Approach to building a quality model for software is effective for

accommodating and balancing the needs of these interest groups (Dromey, 1998).

We will use this approach to build our quality model.

4.2 Requirements to build an OSS quality model

According to Goal Directed Approach, three issues must be addressed to formulate

the requirements for a software quality model (Dromey, 1998):

1. The different interest groups need to be identified.

2. The intended applications of the model need to be spelled out.

3. It is necessary to establish the quality needs of the different interest groups.

A constructive strategy can be used to characterize the behaviors and uses of OSS

that contribute to its quality. We will employ decomposition to characterize or define

behaviors or uses in terms of subordinate behaviors, uses and software characteristics.

The two principles that guide decomposition are :
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Principle 1 : A behavior can be decomposed and defined in terms of subordinate

properties which may be described as behavior or as a software characteristic.

Principle 2 : A use can be decomposed and defined in terms of subordinate prop-

erties which may be described as uses or software characteristics.

4.3 Construction of a quality model for an OSS

In this section, we proceed to the construction of a quality model for an OSS. We use

a four step modeling as outlined below :

1. Identification of the different types of stakeholders in OSS. This is done in

section 4.3.1.

2. Identification and description of the quality attributes in OSS. We describe

quality attributes in section 4.3.2.

3. Description of some principles and guidelines for the architecture or structure

of the design of the quality model (see section 4.3.3).

4. Effective construction of the quality model for OSS. We propose a general

scheme of stakeholder-centric quality model. This model is applied in an OSS

community in section 4.3.4.

4.3.1 Different types of stakeholders in OSS

The aim is to identify all the stakeholders in OSS. One example of different roles in

an OSS community is described in section 3.2.1. We can divide an OSS community
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into two groups:

Group 1 : persons who contribute to the development and evolution of the OSS by

using the source code of the software. These contributions might be: adding new

features or fixing bugs, reading the source code and reporting some comments.

Group 2 : those who are not interested in the source code. They use the system

in the same way as most of those who use proprietary software. They can con-

tribute by discovering and reporting bugs, providing comments on the mailing

list (see section 3.2.2).

4.3.2 Quality attributes in OSS

Software quality is one of the most important indicators for the success of a software

project.

Categorization : the first task in building a software product quality model is to

identify what the intended applications of the model are and to address the

needs of the different interest groups that will use the software model. This

influences the quality attributes to focus on. We can divide OSS into two types:

(1) projects that are developed to reproduce and replace existing Closed Source

Software (CSS) and (2) projects initiated to create new software that has no

existing equivalent in CSS.

Identification of the quality attributes : We identify a set of important qual-

ity attributes in OSS of the two categories (Raja and Barry, 2005) which are

described below.
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A) Functionality which refers to providing minimum functions as required by the

user. This quality attribute is concerned with what the software does to fulfill

the identified needs. For type-1 OSS, there are no explicit functionality require-

ments. There will be a certain level of expectations in term of its functionality

compared to an existing CSS. New user will adopt type-1 software if it provides

the basic functionality of its CSS equivalent.

In case of type-2 OSS, there is no existing software to derive functional require-

ments from. Therefore, new users will be defining such requirements according

to their own needs. In type-1, OSS will be considered as of high quality if

it provides the basic functionality of its CSS equivalent. On the other hand,

type-2 OSS will be considered of a high quality if it provides the functional

requirements of its active users. Functionality can be decomposed into three

sub-quality attributes:

A-1) Suitability which reflects the capability of a software product to pro-

vide an appropriate set of functions for specified tasks and user objectives

(ISO/IEC, 1991).

A-2) Interoperability that is the capability of a software product to mean-

ingfully interact with others software (ISO/IEC, 1991).

A-3) Security that is the capability of the software to protect data from unau-

thorized persons. In OSS, the software source code is available globally.

This means that users can identify potential vulnerabilities. It also implies

that pirates can exploit these vulnerability easily. The quality will depend

on how vigilant the active users detect vulnerabilities and protecting the

software from bad intention. In that case, more the OSS will be secure,



CHAPTER 4. A STAKEHOLDER-CENTRIC QUALITY MODEL FOR OSS 45

more the software will be consider as high quality.

B) Reliability is the ability of a system to perform its required functions for a

period of time (IEEE, 1990). The reliability is concerned with the behavior

of the software. Ideally, the software should behave as expected in type of

possible states of the environment. Although OSS is available free of cost, these

software needs to have a minimum operational reliability to make it useful for

any application. Reliability has a significant effect on software quality, since the

user acceptability of a product depends on its ability to function correctly and

reliably. Reliability can be decomposed in :

B-1) Fault tolerance which is the capability of a software to have a specific

level of performance even under the occurrence of a fault.

B-2) Maturity which is the capability of a software to avoid failure and faults.

B-3) Recoverability reflects the length of time and effort a software takes to

recover from a failure.

C) Availability means that the software should be available to the user during a

proportion of time. It means that the software should be functional at that

time.

D) Reusability : in OSS, there is usually no estimates of development or mainte-

nance cost (Raja and Barry, 2005). OSS communities encourage development

and use of reusable modules that can be shared. OSS that employs reusable

modules will attract more contributions and maintain a high quality. Reusabil-

ity can be decomposed in :
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D-1) Application independence represents the separation of the applica-

tion from the system where it is installed.

D-2) Representation independence is the separation of representation of

data from the programs that use the data.

D-3) Data encapsulation which is sometimes referred to as data hiding, is

the mechanism whereby the implementation details of a class are kept

hidden from the class user.

D-4) Function encapsulation is a mechanism used to kept a function hidden

from the class user.

D-5) Interface ability is how easily a user can interact with the software

using an interface.

E) Maintainability in general refers to the ability to maintain the system over

a period of time. This will include ease of detecting, isolating and removing

defects. Additionally, factors such as ease of addition of new functionality, in-

terface to new components, programmers ability to understand existing code

and test team’s ability to test the system will increase the maintainability of

the system. OSS is downloaded and use by the a global community of users.

There are usually no face to face meetings among the users of the software.

They have to rely on the documentation in the source code and on the commu-

nication through forum messages. OSS is required to be highly maintainable.

Because participation is voluntary, low maintainability will generate minimum

participation of active users and then, will have a negative effect on quality.

Maintainability can be decomposed in :
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E-1) Analysability is the capability to easily analyse the source code and

architecture of a software.

E-2) Learnability is the capability to easily understand existing code and to

learn how to use a software.

E-3) Modifiability is the degree to which the software facilitates the incorpo-

ration of changes (Boehm and W, 1978) such as new functionality, interface

to new components to the system.

E-4) Testability is the degree to which the software facilitates the establish-

ment of tests (IEEE, 1990).

F) Portability is the capability of the software product to be transferred from one

environnement to another. Portability can be decomposed in :

F-1) Installability represents the capability of a software product to be in-

stalled in a specified environment (ISO/IEC, 1991).

F-2) Machine independence represents the independence of the software

application from machine.

F-3) System independence is how independent is the software product from

the operating system that interact with the computer at a very basic level.

F-3) Repleaceability is the capability of a software product to be used in

place of another specified software product for the same purpose in the

same environment (ISO/IEC, 1991).
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4.3.3 Description of some principles and guidelines

The third step for building this model is to identify a suitable architecture for the

model.

In proceeding to construct an OSS quality model, we will employ the following addi-

tional design principles, guidelines and assumptions:

• We choose to associate a target of quality attributes with OSS.

• The quality of software may be characterized by the set of high quality at-

tributes.

• Each quality attribute of a given software correspond either to a set of domain

independent behaviors of software and/or a set of domain independent uses of

software.

• The chosen quality attributes of the proposed quality model should be sufficient

to meet the needs of all interest groups associated with the software.

• Each high level quality attribute of software is characterized by a set of subor-

dinate properties which are either behaviors, uses.

In section 4.3.4, we provide a generic quality model (see figure 4.1) and an instanti-

ation of this quality model for an OSS (see figure 4.2. We start out with the principal

interest groups, then we look for what are their quality requirements. Matching with

the different interest groups is what we call a stakeholder-centric quality model.

4.3.4 Proposed quality model for OSS

We describe in figure 4.1 the general scheme for a stakeholder-centric model.
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Figure 4.1: General scheme for stakeholder centric model

Figure 4.2 represents our proposed stakeholder-centric quality model specific for an

OSS. We show the different interests of every type of user from the quality attributes.

This model is an instance of the general scheme for stakeholder-centric model.
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4.4 Similarities and differences with others quality

models

Many similarities and also differences appear between the proposed model and others

quality models.

• The proposed quality model is a hierarchical one like those reviewed in chapter

1.

• We have included quality attributes that reflect considerations for type of use

in an OSS environment. Those quality attributes are functionality, portability,

reliability, maintainability, reusability and availability.

• We have kept many similarities with ISO 9126 (ISO/IEC, 1991) namely the

definition of quality attributes apart from the inclusion of availability as a top-

level quality attributes. This is because without the source code availability,

users can not access the source code. We have also add reusability as a quality

attribute because of the interest of stakeholders (Raja and Barry, 2005);

• A new set of sub-quality attributes has been defined and associated with each

high level quality attribute.

• Quality models like this are never absolute or fixed, either in terms of the chosen

primary interest groups or in terms of the set of high quality attributes. The

point we are trying to make here is that quality needs vary according to the

context but a general classification is still applicable.
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• The framework we are proposing is robust because it takes into account dif-

ferent concerns and needs from every user interact with the system. It is also

flexible enough to accommodate variability, change and refinement because of

the different type of needs.

4.5 Conclusion

This model has been developed using identification of characteristics that meets the

needs of different interest groups involved with OSS (Raja and Barry, 2005).

A significant advantage of the proposed model is that it takes into account the different

needs of different users in OSS. The number of OSS systems continues to increase

significantly. The need for a model that ensures quality attributes of such system

become a necessity. Therefore, the proposed model could be use to train or educate

people to produce a quality software and facilitate the uses of software.



Chapter 5

Methodology for the use of the model

In this chapter, we propose some methods for use the proposed stakeholder-centric

quality model. The next section introduces the Goal Question Metric (G.Q.M) ap-

proach which is used to develop the methodology to use the proposed model. Section

5.2 outlines some questions concerning the proposed model we introduce a discussion

about metrics in section 5.3.

Goal Question Metric

In chapter 4, we proposed a stakeholder-centric quality model for OSS. This model

takes accounts for the interests of different types of stakeholder in terms of what

qualities they need for their product. The proposed model is dynamic and flexible in

the sense that it may be adjusted according to the type of stakeholder interests. In

our proposed quality model, we distinguished two groups of stakeholders and matched

sub-qualities to each group.

In this chapter, we suggest how to use the proposed quality model. This method

uses the GQM approach (Basili et al., 1992). The result of the application of a GQM

approach is the specification of a measurement system with a particular set of issues.

53
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The GQM model is a hierarchical structure starting with a goal which is refined into

several questions which are refined into metrics. It has three level (Basili et al., 1992):

1. Conceptual level (Goal): a goal is defined for an object, for a variety of reasons,

with respect to various points of view, relative to a particular environment.

2. Operational level (Question): a set of questions is used to characterize the

way the achievement of a specific goal is going to be performed based on some

characterizing model.

3. Quantitative level (Metric): a set of data is associated with every question in

order to answer it in a quantitative way.

The next section presents the methodology and section 5.3 suggest a discussion

about the assessment of this model.

5.1 Goal : generic

In this work, we focus on the two first steps of the GQM approach : the goal and

the question . The proposed model has two main goals :

Goal 1 : define the different kind of persons involved in the model.

Goal 2 : define and describe the quality attributes which interest these persons

(stakeholder interests).
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5.2 Questions : examples

After the definition of these main goals, the next step will be to make an interview by

asking questions to the persons concerned. An example of these types of questions is

proposed in table 5.1.

Interview Guide

Goal 1 : define the different kind of persons involved in the model

Question 1 : who are involved in the organization ?

Question 2 : why do they use this software ?

Question 3 : what do they plan to do with this application ?

Question 4 : who are the people involved in the project ?

Question 5 : why did they choose this software product ?

Goal 2 : define and describe the quality attributes which interest these
persons (stakeholder interests)

Question 1 : in what kind of application are they interested in ?

Question 2 : what kind of interest do they have with this application ?

Question 3 : what are their needs ?

Question 4 : for how long do they want to use the application ?

Question 5 : define and describe the quality attributes they need for the application

Table 5.1: Examples of questions for the two goals
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It will be interesting to group the different types of stakeholders depending on

their interests and their needs. The next step will be to construct the quality model.

It this a first step to choose or implement an OSS product which fulfill the needs of

the different types of stakeholders.

5.3 Metric : discussions

In this section, we want to introduce some dicussion about the assessment of the

proposed quality model. This section describes how we intend to aggregate metrics

of sub-quality attributes. Most of the quality attributes are refined into sub-quality

attributes, the idea is to assign a concrete indicator to interpret the model. Quality

attributes are of different importance depending on the interest of the stakeholder.

This will be represented through weights. The stakeholder will have to be able to

adjust these weights. Aggregation in this view basically consists of calculating the

weighted means of the sub-quality attributes.

The objective is to give a quantitative indicator to any metric derived from the

sub-quality attributes. Currently, we have not identified those metrics and it will be

the objective of a future work. This will allow us to generate an overall quantitative

indicator of an OSS. To define this quantitative indicator, lets Fi be the quality

attributes with i =1, .., n, where n represents the number of the quality attributes.

Lets Fij be the sub-quality attribute of each i with j=1, ..., ki, where ki represents

the number of the sub-quality attributes. Note that n and ki depend both on

the stakeholder and correspond to the number of attributes he is interested in.

If we denote by Mij a measure of Fij, a measure of Fi can be defined by Fi =
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fi(Mi1, Mi2, ...,Mik) where fi is a Rki → R function. An aggregate indicative value

of the quality of an OSS will be defined by F = f(F1, ..., Fn) where f is a function of

Rn → R.

For example, the proposed quality model will have i=1, ..., 6 and F1=functionality,

F2=portability, F3=reliability, F4=maintenability, F5=reusability, F6=availability.

The aggregate value for the proposed quality model is F=[F1; F2; F3; F4; F5; F6].



Conclusion and future work

In this report, the aim was to propose a stakeholder-centric quality model for OSS. In

chapter 1, we reviewed the literature concerning the quality and precisely the quality

model. We then present the main quality models and their limitations. Chapter 2

proposed an ontology of the main hierarchical quality models. Chapter 3 showed

the principle of an OSS project and how the community interacts in those project.

This type of communication enable us to propose a stakeholder-centric quality model

for OSS in chapter 4. Then, the chapter 5 showed a methodology for the use of the

model. It also introduce some guidelines to assess and measure the quality attributes.

Although the research area of OSS is relatively young, documented research, con-

tributions are coming at a rapid speed. Overall, there is still much to be learned

about the open source model. With this effort, we have started to qualify this model

and its potential. However, further studies are necessary to provide additional empir-

ical evidence. We plan to continue our research in this area by collecting metrics of

interest to assess the proposed quality model. Currently, we have not yet identified

authoritative and alternate formulae to do it. This can be accomplished in future

research work which will try to quantified the proposed model by using the GQM

approach. This can be done through interviews and analyzes of empirical data.
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