
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

A validation tool for the UEML approach

Mahiat, Jérémy

Award date:
2006

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/a-validation-tool-for-the-ueml-approach(b006161c-5496-4ce1-b7c4-9aa8a03a9572).html

A Validation tool for the

UEML Approach

Jérémy Mahiat

Mémoire présenté en vue de l’obtention du grade de

Mâıtre en Informatique

Année académique 2005 - 2006

Abstract

The current economical environment constrains enterprises to be more flexible and reactive in
order to be able to anticipate and adapt to frequent changes they have to face. In order to master
these changes, enterprises have to determine, as clearly as possible, their way of working and their
environment. A fundamental tool for that purpose is Enterprise Modelling (EM). EM has an
extremely large scope that gave rise to many different Enterprise Modelling Languages (EMLs).
As enterprises deal with many different incompatible but interrelated models and as they work
more and more together, a real need for EMLs interoperation appeared.

UEML (Unified Enterprise Modelling Language) sets itself up as a solution to this need. The
project aims to create a federator language. It developed a method to analyze EMLs and to capture
the knowledge from these analyses in an ontology. Tools are provided in order to facilitate the
process. The main goal of our work is to describe the solutions brought by UEML and to provide
a new tool that helps to validate the content of the analyses. In order to build this new tool called
“UEML Validator”, we formalized the method by establishing 65 constraints that restrict how
the ontology can be populated and ensure it to be more consistent. By interpreting the “UEML
Validator” results, we make recommendations for another UEML tool in construction.

Keywords: Unified Enterprise Modelling language, UEML, Enterprise Modelling Language, in-
teroperation, validation, tool, ontology, OWL, Prolog, meta modelling, syntax and semantics of
modelling languages.

Résumé

L’environnement économique actuel oblige les entreprises à être plus flexibles et plus réactives
afin de pouvoir anticiper et s’adapter aux changements fréquents auxquels elles doivent faire
face. Pour mâıtriser ces changements, les entreprises doivent connâıtre au mieux leur manière
de travailler ainsi que leur environnement. Pour ce faire, un outil fondamental est la Modélisation
d’Entreprise (ME). La ME a un champ d’application extrêmement large, ce qui a donné naissance
à de multiples Langages de Modélisation d’Entreprise (LME). Les entreprises travaillent avec
beaucoup de modèles inter-dépendants mais incompatibles et collaborent de plus en plus souvent,
ce qui a généré un besoin d’interoperabilité des LMEs.

UEML (Unified Enterprise Modelling Language) est une solution à ce problème. Le projet a
pour but de créer un langage fédérateur. Il a développé une méthode pour analyser les LMEs et
pour garder les connaissances acquises lors de ces analyses dans une ontologie. Des outils ont été
développés pour faciliter le processus. Le but principal de notre travail est de décrire les solutions
apportées par UEML et de fournir un outil qui permet de valider le contenu des analyses. Pour
réaliser cet outil (“UEML Validator”), nous avons formalisé la méthode en établissant 65 con-
traintes qui limitent la manière dont l’ontologie peut être peuplée et qui en assurent la cohérence.
L’interprétation des résultats d’“UEML Validator” nous a permis de faire des recommandations
pour la construction d’un autre outil pour UEML.

Mots-clefs: Unified Enterprise Modelling language, UEML, Langage de modélisation d’entreprise,
interopération, validation, outil, ontologie, OWL, Prolog, meta modelisation, syntaxe et sémantique
des languages de modélisation.

III

Preface

This report is mainly the result of a nine semester project carried out in Fall 2005 in the Universidad

Politecnica de Valencia (Spain) and continued in the University of Namur (Belgium) in spring 2006.
In Spain, I worked under the supervision of Pr. Andreas Lothe Opdahl who is one of the main actor
of the UEML 2.0 project. UEML 2.0 is an ongoing, exploratory and fundamental project that is part
of InterOp, a Network of Excellence supported by the European Commission. Names and methods
changed and evolved during the whole year.

I would like to express my gratitude to Professor Andreas Opdahl for his guidance and availability
and for the general help he provided me during my internship.

A special thanks goes to my supervisor, Professor Patrick Heymans, for his continuous help and his
numerous advices during the writing. I also want to thank him for the opportunity he offered me to
work in another University on a really interesting subject.

I would also like to thank Doctor Raimundas Matulevičius who patiently read the different version
of my work and made me improve it.

Je voudrais également remercier Baudouin pour son aide durant la réalisation de ce mémoire.

Je voudrais finalement remercier ma famille qui m’a toujours encouragé et m’a permis de réaliser
mes études et ce stage à l’étranger. Merci aussi à Sophie pour tout ce qu’elle m’a apporté.

V

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 About the document . 2

I Background 3

2 Enterprise Modelling Languages 5
2.1 Enterprise modelling . 5
2.2 Enterprise modelling languages . 5

2.2.1 EML Diversity . 6
2.2.2 Need to interoperate . 7

2.3 GRL . 9
2.3.1 Intentional elements . 11
2.3.2 Links . 11
2.3.3 Actors . 12
2.3.4 Non-intentional elements . 12

2.4 Summary . 12

3 Overview of UEML 13
3.1 UEML 1.0 . 13

3.1.1 Purpose . 13
3.1.2 How it works . 14
3.1.3 Discussions . 18

3.2 UEML 2.0 . 20
3.2.1 Purpose . 21
3.2.2 How it works . 21

3.3 Comparison . 25
3.3.1 Goal . 25
3.3.2 Method . 26

3.4 Summary . 27

4 The UEML 2.0 Template 29
4.1 Generalities . 29
4.2 Preamble . 29
4.3 Presentation . 30
4.4 Representation . 30
4.5 Summary . 31

5 Ontology 33
5.1 Ontology . 33
5.2 Ontology languages . 34

VII

VIII CONTENTS

5.2.1 OWL . 34
5.3 Protégé . 37

5.3.1 Protégé-OWL . 37
5.4 Summary . 38

6 The UEML 2.0 Meta-Meta-Model 41
6.1 BWW Model . 41

6.1.1 Why the BWW Model? . 41
6.1.2 The BWW model concepts . 42

6.2 The meta-meta-model . 44
6.2.1 Preamble part . 45
6.2.2 Represented part . 45
6.2.3 Ontology part . 48

6.3 Example of a modelling construct description . 48
6.4 Constraints . 49

6.4.1 Constraints on names . 49
6.4.2 Constraints on ontClasses and RepresentedClasses 50
6.4.3 Constraints on ontProperties and RepresentedProperties 50
6.4.4 Constraints on States and Transformations 51

6.5 Summary . 52

II Contribution 53

7 Tools 55
7.1 Tools overview . 55
7.2 UEMLBase . 56
7.3 UEML Validator . 57
7.4 The “UEML Semantic template manager” . 57
7.5 Summary . 58

8 The UEML Validator 61
8.1 Purpose . 61
8.2 How it works . 61

8.2.1 Architecture . 61
8.2.2 Implementation . 62
8.2.3 Prolog base generation . 62
8.2.4 The rules . 64

8.3 Implemented constraints . 64
8.3.1 Mandatory fields . 65
8.3.2 Relationships between entities . 66
8.3.3 Identifying Names . 66
8.3.4 Classes . 66
8.3.5 Properties . 67
8.3.6 States . 67
8.3.7 Transformations . 68
8.3.8 Several ConstructDescriptions . 68

8.4 Summary . 68

III Application 69

9 Tool testing 71
9.1 Kind of mistakes . 71

A Validation tool for the UEML Approach Jérémy Mahiat

CONTENTS IX

9.2 Interpretation . 71
9.3 Recommendations . 72

9.3.1 Missing properties . 72
9.3.2 Automatic additions . 73

9.4 Summary . 74

10 Case Study 75
10.1 The method . 75
10.2 Language study . 75
10.3 Text-based Template . 76

10.3.1 Preamble . 76
10.3.2 Presentation . 79
10.3.3 Representation . 80

10.4 Protégé UEML Tool . 81
10.5 UEML Validator . 81
10.6 Observations . 82

10.6.1 UEML Validator is not context-dependant 83
10.6.2 theGoal as a LawProperty . 83

10.7 Summary . 84

11 Conclusion 85
11.1 The problem . 85
11.2 Contribution . 85
11.3 Future works . 86

Bibliography 87

IV Appendix 91

A Implemented Constraints 93
A.1 Mandatory fields . 93
A.2 Relationships between entities . 94
A.3 Identifying Names . 96
A.4 Classes . 97
A.5 Properties . 98
A.6 States . 99
A.7 Transformations . 101
A.8 Several ConstructDescriptions . 101

B Constraints in Prolog 103

C Generated Fact Base 113

D UEML 2.0 Template 115

A Validation tool for the UEML Approach Jérémy Mahiat

List of Figures

2.1 Some Enterprise Modelling uses. 6
2.2 Bidirectional translation. 8
2.3 EM translation by a UEML. 9
2.4 GRL Example. 11

3.1 Strategy for UEML. 18
3.2 UEML 1.0 meta-model. 19
3.3 UEML 2.0 general strategy. 23
3.4 Each modelling construct of the language is described separately. 24
3.5 Organisation of the common ontology. 25
3.6 Construct referential decomposition. 26

5.1 The Protégé “class” tab. 38
5.2 The Protégé “form” tab. 39
5.3 The Protégé “individuals” tab. 40

6.1 Upper part of the meta-meta-model. 46
6.2 Lower part of the meta-meta-model. 47
6.3 Simplified description of the GRL’s Goal. 50

7.1 Typical scenario of applying UEML techniques and tools. 56
7.2 Protégé UEML Tool. 57
7.3 The UEML Semantic template Manager. 58

8.1 UEML Validator’s pipes and filters architecture. 61
8.2 UEML Validator class diagram. 63
8.3 Example of Prolog facts generation from an OWL file as an Object Diagram. . . . 64

9.1 The UEML Validator. 72

10.1 Top-Level view of the GRL Meta-model. 76
10.2 GRL Meta-model: zoom on intentional elements. 77
10.3 GRL Meta-model: zoom on intentional relationships. 78
10.4 The phenomena represented by the “Goal” construct. 81
10.5 The “Goal” construct in the Protégé UEML Tool. 82
10.6 The error showed by “UEML Validator”. 83

XI

List of Tables

2.1 GRL constructs summary. 10

3.1 Top 10 general Methodology requirements names and descriptions for UEML 1.0. . 15
3.2 Analogies between modelling languages and databases. 17
3.3 Semantic correspondences between IEM, EEML, GRAI and UEML 1.0. 19

6.1 Basic concepts in the BWW model. 42
6.2 UEML 2.0 Graphical representation standard . 49

8.1 Constraints group correspondences. 65

XIII

Acronyms and Abbreviations

BWW Bunge-Wand-Weber representation model of information
systems

EEML Extended Enterprise Modelling Language
EM Enterprise Modelling
EML Enterprise Modelling Language

GRAI Graphs with Results and Actions Inter-related
GRL Goal-Oriented Requirement Language

IEM Integrated Enterprise Modelling
IS Information Systems

JPL Java Prolog Library

ML Modelling Language

OCL Object Constraint Language
OWL Web Ontology Language

RDF Resource Description Framework

UEML Unified Enterprise Modelling Language
UML Unified Modelling Language

W3C World Wide Web Consortium

XML Extensible Markup Language

XV

Chapter 1

Introduction

1.1 Motivation

The current economical environment constrains enterprises to be more flexible and reactive in order
to be able to anticipate and to adapt the frequent changes they have to face. These changes of
technological, sociological or economical nature can have deep impacts on the enterprise structure.
Mastering these changes can be crucial success factor for many enterprises working in a competitive
area.

In order to master these changes, enterprises have to determine as clearly as possible their way
of working and the environment in which they are working. One of the fundamental solutions
for that purpose is Enterprise Modelling (EM). EM enables companies to externalize information
concerning the many facets of the enterprise, for instance in order to describe their organisation or
their operational processes. The goals are very broad; it can be used to analyse and to restructure
enterprises for better results, to compare different possible scenarios to find the best solution or
to teach new people cooperating with the company.

EM can be used in every sector, producing goods or providing services. It can also be used
to model many different enterprise areas such as organisation, resources, process, information,
requirements, goals or strategy. This extremely large scope gave rise to many different Enterprise
Modelling Languages (EML).

The different enterprise models inside one enterprise are interrelated. Enterprises cooperate
more and more and need to exchange their knowledge captured in different models. But most
EMLs are implemented in tools with proprietary terminology and modelling constructs. The
different enterprise models are thus incompatible. Therefore a real need for EMLs interoperation
has appeared.

Unified Enterprise Modelling Language sets itself up as a solution to this need. Two projects
(UEML 1.0 [UEMa] and UEML 2.0 [UEMb]) aim to create a federator language that enables to
integrate existing modelling languages and to support their comparison, consistency checking, up-
date reflection, view synchronization and, eventually, model-to-model translation across modelling
language boundaries. These two projects are related but differ in their goals and approaches. The
first one was made with three different languages while the second one aims to be able to easily
incorporate new languages. The second version tries to analyse the different EMLs by building an
ontology about what they represent in the real world.

We contribute to the UEML 2.0 project which is still in progress. It developed a method to
analyze EMLs and to capture the knowledge from these analyses. Tools are provided in order to
facilitate the process and to enable one to use this knowledge.

1

2 Introduction

The main goal of our work is to describe the solutions brought by UEML and to provide a new
tool that helps to validate the content of EMLs analyses. In order to build this new tool called
“UEML Validator”, we formalise the analysis method by establishing 65 constraints restricting
how the ontology can be populated. These constraints are general and do not take the context
into account.

1.2 About the document

The document is divided into three parts. First, the background explains what EMLs are and
presents GRL, a particular EML used as an example throughout this work. This part shows
where the need for interoperation comes from and different alternatives to tackle the problem. We
present the two UEML versions before going more deeply in details about the notions on which
UEML 2.0 relies. Its template and meta-meta-model will be explained.

In the contribution part, we depict the different tools that support the UEML 2.0 approach.
The requirements for each of them will be stated. A detailed presentation of the use and imple-
mentation of the tool we created for the validation of analyses will be presented in a chapter.

The third part will provide an application and an evaluation of the concepts and tools intro-
duced in the two first parts. An analysis of GRL using the UEML 2.0 approach and the different
tools already available will be presented.

Finally, general conclusions about this project and suggestions for future work are given.

These three parts are composed of the following chapters:

Chapter 2 introduces the notion of EML, explains the need for interoperation and explains the
use of a particular EML: GRL.

Chapter 3 provides an overview and a comparison of the two versions of UEML.

Chapter 4 explains how the UEML 2.0 template works. The template is the technique used
by UEML 2.0 to analyse languages.

Chapter 5 deals with ontology in general, with the OWL language that enables to describe
them and with Protégé that gives the opportunity to manage OWL ontologies.

Chapter 6 depicts the UEML 2.0 Meta-meta-model. This model has been written in OWL and
relies on the BWW Model. The meta-meta-model is the ontology used to capture what languages
can represent.

Chapter 7 is the first chapter of the contribution part. It shows the utility of tools in the
UEML 2.0 approach and give an overview of them.

Chapter 8 focus on the program we made: “UEML Validator”. It explains its purpose, how it
works and the constraints it checks.

Chapter 9 is the first chapter of the application part. It provides the results obtained from the
use of UEML Validator. It also gives interpretation of these results.

Chapter 10 gives a typical scenario of applying UEML 2.0 techniques and tools on the GOAL
GRL construct.

Chapter 11 provides a conclusion of the work by giving its limitations and future developments
to be reached.

A Validation tool for the UEML Approach Jérémy Mahiat

Part I

Background

3

Chapter 2

Enterprise Modelling Languages

The objective of this chapter is to explain what an Enterprise Modelling Language (EML) is and
what are its main characteristics. We show why it is important to make them interoperate and
will also introduce a specific EML called GRL (Goal-oriented Requirements Language).

2.1 Enterprise modelling

In order to know what an enterprise modelling language (EML) is, we first have to know what
enterprise modelling (EM) is. [Ver96] defines it as follow:

“Enterprise modelling is the set of activities or process used to develop the various
parts of an enterprise model to address some desired modelling finality. It can also be
defined as the art of “externalising” enterprise knowledge, i.e. representing the enter-
prise in terms of its organisation and operations (e.g. processes, behaviour, activities,
information, object and material flows, resources and organisation units, and system
infrastructure and architectures).”

The use of EM is represented on Figure 2.1. In [PD02], it is explained as a finality that makes
explicit facts and knowledge that add value to the enterprise or can be shared by business ap-
plications and users for the sake of improving the performance of the enterprise. The primary
goal of EM is not only to be applied for better enterprise integration but also to support analysis
of an enterprise, and more specifically, to represent and understand how the enterprise works, to
capitalize acquired knowledge and know-how for later reuse, to design (or redesign) a part of the
enterprise, to analyse some aspects of the enterprise (e.g., economic analysis, organisation analysis,
qualitative or quantitative analysis, requirements analysis, . . .), to simulate the behaviour of (some
part of) the enterprise, to make better decisions about enterprise operations and organisation, or
to control, coordinate and monitor some parts of the enterprise.

2.2 Enterprise modelling languages

EMLs are thus (usually visual) languages that allow one to do EM as just described. The Gener-
alised Enterprise Reference Architecture and Methodology (GERAM) [oAfEI99] defines them in
those words:

5

6 Enterprise Modelling Languages

Figure 2.1: Some Enterprise Modelling uses.

“EMLs define the generic modelling constructs for EM adapted to the needs of
people creating and using enterprise models. In particular EMLs will provide construct
to describe and model human roles, operational processes and their functional contents
as well as the supporting information, office and production technologies.”

Some languages are fully qualified as EMLs because they are historically related to the field of
EM; but many other languages are used for modelling enterprise phenomena even if they were not
created specifically for this purpose (e.g., Petri Nets or GRL). In the UEML and in this work in
particular, we take both kinds of languages into account.

2.2.1 EML Diversity

EMLs are characterized by one main point: diversity. The story of EMLs related in [PD02] shows
the diversity due to the different existing tools: “Within the initiative on Computer Integrated
Manufacturing (CIM), Enterprise Modelling was born in the United States at the beginning of the
80s and emerged through large CIM projects, e.g. ICAM (Integrated Computer Aided Manufac-
turing) led by the US Air Force or CAM-I (Computer Aided Manufacturing - International) via
the project Factory Management. In the mid-80s, Europe launched several projects on Enterprise
Modelling giving birth to several EMLs (including notably GRAI and CIMOSA). As a result, in
the 90s many commercial tools dealing with EM or business process modelling appeared on the
marketplace, e.g. ARIS ToolSet, FirstSTEP, METIS, Enterprise Modeller, KBSI tools, CimTool,
MOOGO, IMAGIM and many others as well as a myriad of workflow systems, each one with its
own modelling environment (Action Workflow, COSA, FlowMark, Lotus Notes, Teamware Flow,
Ensemble, WorkParty, ...). ”

A Validation tool for the UEML Approach Jérémy Mahiat

Enterprise modelling languages 7

Models in different domains combinaison

The diversity is due to different factors, but the major one is certainly the fact that EM does
not create one monolithic model but an assemblage of models as organisational model, resource
model, economic model, functional model, . . . Moreover many enterprise languages come from
other disciplines, such as software engineering (e.g., UML, Petri Nets), knowledge engineering
(e.g., OWL, PSL) and information systems (IS) requirements engineering (e.g., i*).

Diversity is also due to the fact that EM is used for industrial enterprises (producing goods in
a continuous way or not) as well as for enterprises providing services.

Consequences

As a consequence, EMLs are often very different in their nature and this has led to a “Tower of
Babel” situation in which the many tools, while offering powerful but different functionalities and
semantics, are unable to interoperate and can hardly or not at all communicate and exchange
models. It is a serious drawback for awareness, acceptance and wide use of the EM technology
in industry which cannot capitalise from previous modelling efforts. This situation hinders true
enterprise integration, interoperability, and sharable enterprise knowledge.

[PD02] also shows to which situation this diversity lead:
“A very general first conclusion of the comparison [of EMLs] is the confirmation of a very large
number of distinct but overlapping languages. Proposed approaches such as IEM, GRAI, ARIS,
CIMOSA, are based on modelling languages to build models. Therefore, the specific objectives
(or tasks) that these approaches allow to meet (or perform) are only fully supported if the set of
the languages on which they are based provides sufficient expressive power to represent the enter-
prise aspects needed for specific analysis. Any enterprise methodology has produced a language
oriented to the kind of problems to be solved. This state of the art seems to reveal a tendency for
approaches combining, in a more or less integrated way, several sub-languages or views (see e.g.
CIMOSA,GRAI, ARIS).”

2.2.2 Need to interoperate

The GERAM ([oAfEI99]) showed that EM is a real need for today’s enterprises and that it is
not possible to choose only one EM tool but one has to use several: “One of the most important
characteristics of today’s enterprises is that they are facing a rapidly changing environment and can
no longer make predictable long term provisions. To adapt to this change enterprises themselves
need to evolve and be reactive so that change and adaptation should be a natural dynamic state
rather than something occasionally forced onto the enterprise. This necessitates the integration
of the enterprise operation and the development of a discipline that organizes all knowledge that
is needed to identify the need for change in enterprises and to carry out that change expediently
and professionally. This discipline is called Enterprise Engineering.

Previous research has produced reference architectures which were meant to be organizing all
enterprise integration knowledge and serve as a guide in enterprise integration programs. The
IFIP/IFAC Task Force analysed these architectures and concluded that even if there were some
overlaps, none of the existing reference architectures subsumed the others; each of them had
something unique to offer. The recognition of the need to define a generalized architecture is the
outcome of the work of the Task Force.”

Inside one enterprise

For each domain (organisation, resources, process, information, requirements, goals or strategy)
that enterprises want to model, a separate EML will be used. Those models are interrelated but

A Validation tool for the UEML Approach Jérémy Mahiat

8 Enterprise Modelling Languages

Figure 2.2: Bidirectional translation (adapted from [BPP04]).

not linked. Therefore, there is a real need to elaborate a link between the different models inside
an enterprise. Models built in the distinct languages have to be related in some ways and the
languages have to be integrated.

Enhancing enterprise cooperation

A second necessity comes from the fact that enterprises work more and more together: it results
in knowledge sharing. Indeed, “Enterprise Integration is not anymore only a problem of intercon-
necting physical and software applications but also requires a global business integration, aiming
at the use of the existing or new enterprise resources in order to better achieve the overall business
objectives. Things to be integrated and coordinated need to be modelled. Thus, EM is clearly a
prerequisite for enterprise integration.” [PD02]. Interoperation leads to a problem because most
of those EMLs are usually not able to communicate. Indeed most EMLs are implemented in
tools with proprietary terminology, modelling construct meaning and format, and template. Each
modelling language uses a particular syntax and limited, tool-embedded semantics and graphical
notations. Modelling tools manage the same things but do not “talk” to one another.

Solutions

In order to tackle this problem several solutions appear: to invent a new “complete” language, to
find translators between each ML couple or to use an intermediate language. The first solution
would consist in building a new language covering the domains of a set of the most used languages.
Enterprises would just have to translate their models into this new language and everybody would
be able to cooperate. The problem is, of course, the translation but also the fact that new needs
are likely to appear in the future. Before reaching a consensus about those needs, enterprises
will use other languages and the situation might come back at the same point. Moreover, the
creation of a language enabling one to make models combining every aspects of the enterprise is
an unattainable myth. A software supporting this hypothetical language would be too complex
to build and to use.

Another solution is to find a way to enable each couple of EMLs to exchange theirs models. A
kind of translator that can transform a model written in one EML into the second EML. Those
translators are represented by the bidirectional arrows on Figure 2.2 that shows a combination of
EMLs covering only a part of enterprises aspects. This solution is feasible to make EMLs inside an
enterprise interoperate. When an enterprise participates within an enterprise network, the number
of coexisting EMLs is likely to increase subsequently. The number of necessary translators would
increase dramatically and it would become uneasy to keep a global consistency.

A solution to significantly decrease the number of necessary translator and to keep a global
consistency between the shared knowledge is to define an unifier intermediate language that allows
to represent a unique, consistent and modular version of the shared knowledge. Such a language
(depicted on Figure 2.3) is usually called UEML (Unified Enterprise Modelling Language). It is not
a substitute to the other MLs but it provides a useful help for the translation and the integration

A Validation tool for the UEML Approach Jérémy Mahiat

GRL 9

of models. UEML would enable enterprises to keep their own EMLs while cooperating. This is
the solution we choose to put into practice in the rest of the work. Chapter 3 will give an overview
of what has already been done with this strategy.

Figure 2.3: EM translation by a UEML (adapted from [BPP04]).

2.3 GRL

At this stage, we will present the Goal-oriented Requirements Language [Yu97, ITU03] which
is used to provide an example throughout our work. The presentation is inspired by [DHP05,
MHO06]. GRL is a EML but is not usually presented as an EML because it originates from the IS
and requirements engineering communities. However it really helps in EM and especially in goal-
oriented modelling and reasoning about requirements, especially for dealing with non-functional
requirements. This kind of modelling is different from the detailed specification of what is to be
done. Here, the modeler is primarily concerned with exposing “why” certain choices for behaviour
and/or structure were made or constraints introduced.

GRL provides constructs for expressing various types of concepts that appear during the re-
quirements process. It has four main categories of concepts: intentional elements, links, actors
and non-intentional elements. The constructs of these categories are described in [Yu97] and
summarized in Table 2.1.

Figure 2.4 presents a meeting scheduler example adapted from [Yu97]. It consider a computer-
based meeting scheduler for supporting the setting up of meetings. The requirements might state
that for each meeting request, the meeting scheduler should try to determine a meeting date and
location so that most of the intended participants will participate effectively. The system would
find dates and locations that are as convenient as possible. The meeting initiator would ask all
potential participants for information about their availability to meet during a date range, based
on their personal agendas. This includes an exclusion set of dates on which a participant cannot
attend the meeting and a preference set dates preferred by the participants for the meeting. The
meeting scheduler comes up with a proposed date. The date must not be one of the exclusion
dates, and should ideally belong to as many preference sets as possible. Participants would agree
to a meeting date once an acceptable date has been found.

Figure 2.4, shows the three actors and the dependencies between their activities. The main
task of the meeting initiator is to organize a meeting. This task is decomposed in three sub-
goals: two softGoals (Quick and low effort) and one goal (Meeting be scheduled). The
meeting initiator have two alternatives to achieve these goals: schedule meeting or let

scheduler schedule meeting. The former contributes in a negative way to the two soft goals
while the latter contributes positively to them. The task let scheduler schedule meeting is
dependent on the goal meeting be scheduled which is shared by the meeting initiator and
the meeting scheduler. This goal (meeting be scheduled) is also dependent on the task
schedule meeting of the meeting scheduler.

A Validation tool for the UEML Approach Jérémy Mahiat

10 Enterprise Modelling Languages

Table 2.1: GRL constructs summary.

Cat Construct Definition Presentation

In
te

n
ti
o
n
a
l
el

em
en

ts Goal
A condition or state of affairs that the
stakeholders would like to achieve

SoftGoal
Goal for which there are no clear-cut
criteria to determine whether this con-
dition is achieved

Task
describes a particular way of doing
something

Ressource
an entity for which the main concern is
whether it is available

Belief express design rationale

L
in

k
s

means-ends
describe how goals are in fact achieved,
typically through tasks

Decomposition
defines the subcomponents of a task,
typically (but not limited to) the sub-
goals that must be accomplished

Contribution
describes the impact that one element
has on another by design

Correlation
the same as a contribution link except
that the contribution is not an explicit
desire, but is a side-effect

Dependency
describes an intentional relationship
between two actors

A
ct

o
r

Actor holders of intentions

A Validation tool for the UEML Approach Jérémy Mahiat

GRL 11

Figure 2.4: GRL Example (from [Yu97]).

2.3.1 Intentional elements

The intentional elements in GRL are goal, softgoal, task, resource and belief. They are intentional
because they are used for models that allow answering questions such as why particular behaviors,
informational and structural aspects were chosen to be included in the system requirements, what
alternatives were considered, what criteria were used to deliberate among alternative options, and
what were the reasons for choosing one alternative rather than the other. A goal is a condition
or state of affairs that the stakeholders would like to achieve. As a goal, a softgoal is a condition
that the stakeholder wants to achieve, but there are no clear-cut criteria to determine whether this
condition is achieved or not (e.g., Quick, Low effort). A task describes a particular way of doing
something (e.g., Organise meeting or Schedule meeting). A resource is an entity for which the
main concern is whether it is available (e.g., Proposed dates). A belief is used to express design
rationale.

2.3.2 Links

The Link category includes means-ends, decomposition, contribution, correlation and dependency.
The Means-ends links are used to describe how goals are in fact achieved, typically through tasks.
Each task provided is an alternative means for achieving the goal. Normally, each task would
have different types of impacts on softgoals, which would serve as criteria for evaluating and
choosing among each task alternative. The decomposition link defines the subcomponents of a
task, typically (but not limited to) the subgoals that must be accomplished. The contribution link
describes the impact that one element has on another by design (i.e., how softgoals, task, believes,

A Validation tool for the UEML Approach Jérémy Mahiat

12 Enterprise Modelling Languages

or links contribute to others). A contribution is an effect that is a primary desire during modelling.
The correlation allows to express knowledge about interactions between intentional elements in
different categories, and to encode such knowledge. A correlation link is the same as a contribution
link except that the contribution is not an explicit desire, but is a side-effect. The Dependency
link describes an intentional relationship between two actors (i.e., one actor (Depender) depends
on another actor (Dependee) for something (Dependum)).

2.3.3 Actors

Actors are holders of intentions and characterize active entities (e.g., Meeting initiator, Meeting

participant), who want goals to be achieved, tasks to be performed, resources to be available and
softgoal to be “satisfied”. Graphically, an actor may optionally have a boundary, with intentional
elements inside.

2.3.4 Non-intentional elements

Non-intentional element is a reference to non-construct instance outside a GRL model. The main
concern of these clauses is not to capture the syntax and semantics of the external model but
to serve as references to the external model only. Non-intentional elements definition is used to
navigate through the non-intentional model.

2.4 Summary

In this chapter, we have described what an EML is and how and why it is used in enterprises.
Different EMLs have been used for specific needs even within a company. Therefore, interoperation
between these EMLs has become an important objective. There are two main reasons leading to
the need of interoperability. Companies need several EMLs to model their own activities and
companies need to exchange their knowledge while cooperating with others. GRL (Goal-oriented
Requirements Language), an example of EML which will be used throughout this work, was
presented. In the next chapter we will introduce and explain how UEML provides a solution to
interoperability.

A Validation tool for the UEML Approach Jérémy Mahiat

Chapter 3

Overview of UEML

The previous chapter explained how companies use different EMLs and tools to reach a better
integration inside the organisation. The integration efficiency depends on the way the modelling
languages can cooperate. In order to integrate them a solution is to use a Unified Enterprise
Modelling Language (UEML). This solution is the one that enable one to use the least necessary
number of translator.

In this chapter we explain what is UEML and what are its goals and method. There are
two different versions of UEML (1.0 and 2.0). Both have a common overall goal: support enter-
prise model exchange (integration, translation and transformation) and global consistency between
evolving enterprise models. However, as we will see, they have different specific goals and hence
adopt different approaches.

3.1 UEML 1.0

UEML (Unified Enterprise Modelling Language) was a Themantic Network Project (IST200134229)
financed by European Union (EU). The project started on March 1st 2002 and ended May 30th
2003. The aim of UEML 1.0 was to create a working group involved in the 6th Framework Pro-
gramme to develop core UEML. We will first present its purpose, then how it works and finally
the limitations of this first version.

3.1.1 Purpose

UEML is the acronym for Unified Enterprise Modelling Language. It can be defined by interpreting
the acronym as follows:

“Unified and shared linguistic context for Enterprise Modelling supporting
all the needed tasks for representing and utilizing enterprise knowledge through a
Language with well defined syntax, and possibly, semantics.” [Ber03]

The UEML project is reported in [PD02] as being set up in an attempt to contribute in resolving
the problems of having multiple EMLs. The long term objective of UEML is the definition of a
Unified Enterprise Modelling Language, which would serve as an interlingua between EM tools.
This language will:

• provide the business community with a common visual, template based language to be used
on top of most commercial EM and workflow software tools;

13

14 Overview of UEML

• provide standardised mechanisms for sharing knowledge models and exchanging enterprise
models among projects, overcoming tool dependencies;

• support the implementation of open and evolutionary enterprise model repositories to lever-
age enterprise knowledge engineering services and capabilities.

UEML is thus an intermediate unifying language that allows to represent a unique, coherent and
modular vision of the shared knowledge. It is not a new modelling language that would replace
the existing ones but it helps to integrate and to translate different models. UEML is therefore
a pivot language that would allow enterprises to continue to use their own EMLs. Moreover, it
should be extendable. The main results of the UEML project are:

• a state of the art description of Enterprise Modelling;

• a collection and categorization of requirements for the UEML language;

• an initial set of core UEML constructs presented in a meta-model (Figure 3.2);

• a demo showing the core constructs used in 3 different modelling tools and a demo of XML
exchange between them;

• a survey concerning Enterprise Modelling tools.

3.1.2 How it works

The main goal of the first version of UEML was to show the feasibility of the UEML definition
with respect to the objectives. The project was achieved with three EMLs: IEM (Fraunhofer)
[MJ99], EEML (Computas) [EEM] and GRAI (Graisoft SA) [DVC98, DVZC92].

It produced a state of the art and a collection and categorization of requirements for the
UEML language related in [KBB03]. The integration problems were emphasized and solutions
were proposed to finally give a strategy for UEML 1.0. These problems and their resolutions are
explained in the following subsections. We show the 10 most important requirements according
to [KBB03] in Table 3.1.

Integration problems

When translating knowledge represented in one EML to another, it is important to define some
commonality between constructs belonging to each language. This is why UEML comprise con-
structs common to the most representative existing EMLs. In the integration process the following
problems ([BPP04] and [BAO04]) have to be tackled:

• differences in the (abstract) syntax: even in a unique business domain, EMLs differ syntac-
tically. For instance, two companies could respectively use IEM and EEML.

• coverage and expressivity of the Enterprise Modelling Languages: Enterprise Modelling Lan-
guages have different focuses and purposes.

• differences in semantics of similar constructs: sometimes enterprises use the same constructs
but they associate distinct meanings.

UEML handles these integration problems within the language dimension, in the following ways:

Differences in the (abstract) syntax: UEML is founded in the agreement concerning the
structure (i.e. the Constructs) of the knowledge (i.e. the Concepts underlying the Constructs)

A Validation tool for the UEML Approach Jérémy Mahiat

UEML 1.0 15

Table 3.1: Top 10 general Methodology requirements names and descriptions for UEML 1.0 (from
[KBB03]).

Nr Name Description of requirements

1 Low resource demands UEML should be easy to use and should demand a
low level of resources for the definition of models

2 Model hard and soft as-
pects of human and team
engineering

UEML should provide capabilities to model hard and
soft aspects of human participative and resource sys-
tems in support of team engineering

3 Invariant and unique be-
havioural semantic

UEML need invariant and unique behavioural se-
mantic. This is important for stable exchange and
common understanding of EMs

4 Ability to capture busi-
ness rules

UEML should help to capture and explain business
rules.

5 Fast, easy and safe co-
operation between enter-
prises

UEML should provide methodologies for fast, easy
and safe cooperation’s by using EMs (hiding of spe-
cial informations)

6 Management of increasing
degree of (un)certainty in
enterprise structures

UEML should provide capabilities to manage the dif-
ferent degrees of certainty in an enterprise

7 Separately knowledge, in-
formation and data rep-
resentation, and manage
them with their own rules

UEML should represent the knowledge, information
and data with their own rules and don’t mix them

8 Usable for people who are
not familiar with graphi-
cal modelling languages.

UEML should be usable for model-weak people.

9 Human cognitive
processes management

UEML should help to manage the human cognitive
processes

10 Identify critical enterprise
processes for merging and
acquisition

UEML should provide methodologies for the identi-
fication of the most critical processes and objects for
the merging and acquisition of enterprises (e.g., con-
trolling, logistic) - because in case of enterprise merg-
ing and acquisition there is a lot of time pressure.
Normally both enterprises do not have EM but with
EMs the quality of merging will be improved and the
time expenses will be reduced. The modelling of all
the enterprise objects and processes takes too much
time

A Validation tool for the UEML Approach Jérémy Mahiat

16 Overview of UEML

being exchanged or translated. This (abstract) syntax is expressed through a class model and
specifically (just for convenience) a UML class model.

Coverage and expressivity of the Enterprise Modelling Languages: the decision to be
taken is related to what kind, and to which extent knowledge should be shared by using UEML;
in this case, the following equation has been defined:

UEML = CommonConcepts + (someof)NonCommonConcepts

This equation well represents the UEML as a federator containing what it is shared among
various languages.

Differences in semantics of “similar” constructs: it is the most difficult type of problem
and it is related to the definition of common concepts. A part of the complexity is due to the
fact that the underlying concepts of most EMLs constructs are provided by text expressed in
natural language which is ambiguous. Using these texts for finding semantic relationships between
constructs belonging to distinct languages is thus very difficult and quite subjective. However,
database integration suggests to use examples to cope with that kind of problem. The purpose is to
identify and verify clearly the “intentional relationships between concepts” by using the evidence
of available examples of such concepts. In practice, if two tables of different schemata allow to
represent the same instances, we can suppose that those tables are equivalent. As showed in Table
3.2 an analogy can be done between languages and databases. Modelling languages artifacts play
the role of database’s instances, ML’s model plays the role of the database and, finally, the ML’s
meta-model plays the role of the database schema. We can thus apply the database technique in
order to compare MLs meta-models.

Therefore, in the UEML project, a complex scenario was defined. This scenario plays the
role of databases and instances, by using the three modelling languages cited above (IEM, EEML
and GRAI). Meta-models for each of these languages were also built. Afterwards, these meta-
models were compared based on models and model artifacts, part of the scenario. Based on such
comparisons, in the simpler case of two constructs with their underlying concepts C1 and C2
respectively in EML1 and EML2, the following types of semantic correspondences were found:

1. C1 = C2

2. C1 ⊇ C2

3. C1 ⊆ C2

4. C1 ∩ C2 6= ∅.

For instance, the first semantic correspondence (1) can be paraphrased as: by looking into the
available models, represented in EML1 and EML2 respectively, the model artifacts represented
through the concept C1 are also represented by C2 and vice-versa. In the general case, a common
concept C can be introduced if C1 ∩ C2 6= ∅.

Strategy for UEML 1.0

In this first version of UEML the results in term of a common meta-model were restricted to the
three languages: IEM, EEML and GRAI. The following strategy (also shown in Figure 3.1) was
applied to define UEML 1.0 [BPP04]:

1. A scenario is defined and modeled in each language. This task has to be achieved by mod-
elling experts of the languages. But of course, as experts are humans, a part of subjectivity
is still possible.

A Validation tool for the UEML Approach Jérémy Mahiat

UEML 1.0 17

Table 3.2: Analogies between modelling languages and databases (adapted from [BAO04]).

Level Database Glossary Modelling Language Glossary

1
Database Schema Meta-model

Example: Example:

2
Database (a set of related instances) Model (a set of related model artefacts)

Example: Example:

3
Data (instances) Model artifacts

Example: Example:

Thorgal / Van Hamme / Le Barbare

/ Kriss de Valnor / ...

Meeting initiator / Organize

meeting / Quick / Low effort /

...

A Validation tool for the UEML Approach Jérémy Mahiat

18 Overview of UEML

Figure 3.1: Strategy for UEML.

2. Each language’s meta-model is defined in a UML class Diagram. Those meta-models repre-
sent the languages abstract syntax by a set of classes and relationships between them. They
are checked by UML experts.

3. Semantic correspondences are established between the three languages.

4. Common concepts and some non-common concepts are identified.

5. A version of UEML can be made with the common concepts identified in the previous step.
Some non-common concepts are also added.

6. A final version of semantic correspondences between the languages and the UEML meta-
model is defined.

7. A final check of the semantic correspondences between the languages and the UEML meta-
model is done (for instance with new scenarios).

The UEML meta-model of figure 3.2 is the result of this strategy used with the three languages.
Table 3.3 is a summary of semantic correspondences between the three languages and UEML 1.0
obtained as a result of step 6.

3.1.3 Discussions

The benefits and the problems of UEML 1.0 given by [Ber05a] can be summarized as follows:

Several underlying benefits that can be gained by the UEML 1.0 approach can be pointed
out:

• Practical, because the method proposes at least one suitable way to map one language onto
another one;

A Validation tool for the UEML Approach Jérémy Mahiat

UEML 1.0 19

Figure 3.2: UEML 1.0 meta-model (from [BPP04]).

Table 3.3: Semantic correspondences between IEM, EEML, GRAI and UEML 1.0 (from [BPP04]).

Common concept GRAI IEM EEML

ACTIVITY Extended activity Action state Task
ROLE Not explicit IEM Object state Role
RESOURCE Resource Resource class Resource
INPUT / OUTPUT /
FLOW

Input / Flow Ouput/
Flow

Successor /
ProcessElement

Flow (with is control
flow = false)

CONSTRAINT
FLOW

Control / Flow (with
trigger=false)

No direct equivalence Flow (with is control
flow = false and Role)

CONTROL FLOW Control / Flow (with
trigger=true)

ControlSuccesor /
ProcessElement

Flow (with is control
flow = true)

RESOURCE FLOW Resource / Flow
(with trigger = false)

ResourceSuccessor /
Resource State

Role (with Task)

CONNECTION
OPERATOR

Logical operator Connection Element
State

DecisionPoint (not
(Inport or Outport))

PORT Connector Port Decisionpoint (Inport
or Outport)

A Validation tool for the UEML Approach Jérémy Mahiat

20 Overview of UEML

• Conceptual, because the model artefacts represented in a language and further represented
by UEML constructs, are understandable in terms of what they are intended to represent
(because the correspondences tend to be basic correspondences);

• Potential, because, on the top of the simple exchanges of models that can be realised by
using only the identified correspondences, more complex exchanges may also be realised iff
a mapping language is available for representing mappings over meta model artefacts.

• Architectural, because the approach allows to implement an architecture in which it is pos-
sible to provide a uniform interface for accessing models represented in several languages;

• Methodological, because new relationships between UEML constructs, not available between
language constructs (because distinct languages are not related) can be identified (and new
methods and methodologies can be developed).

The following problems are also pointed out:

• The proposed approach seems difficult to be generalized, to be suitable for managing sit-
uations of potential inconsistencies of correspondences (e.g. a construct in a language can
represent several constructs in another language), and to be independent from the models
used to find out the correspondences and from the modellers building these models.

• Between two fully formalized languages (even between a language and itself) there are several
possible correspondences: the problem is still how to identify correspondences that might be
basic correspondences.

• The advocated specific mappings that realise complex exchanges can be represented if a
specific mapping language is available. However, the UEML 1.0 approach does not help to
formally prove (correctness) properties of these exchanges.

• It is uneasy to know how UEML reached its objectives because the requirements are unclear
and fuzzy.

3.2 UEML 2.0

The second version of UEML is currently being developed (from 2003 to 2007) in the INTEROP
Network of Excellence (NoE) (IST-1-508011). INTEROP aims to create the conditions of an inno-
vative and competitive research in the domain of Interoperability for Enterprise Applications and
Software. The integration will be achieved by the end of the 3-year project duration. Meanwhile,
INTEROP spreading of excellence activities should ensure the fertilisation of the largest research
community as well as IT providers and users, to provide a durable Virtual Lab on Interoperability
beyond the EU-funded period. The UEML work in INTEROP has three main activities:

1. determining requirements for UEML;

2. selecting languages to incorporate into UEML;

3. describing the modelling constructs that are chosen as part of UEML.

As for UEML 1.0, we first present its purpose and then how it works.

A Validation tool for the UEML Approach Jérémy Mahiat

UEML 2.0 21

3.2.1 Purpose

[Opd06] presents UEML 2.0 as follows:

The Unified Enterprise Modelling Language (UEML) is an ongoing effort to develop
an intermediate language for modelling enterprises and related domains, such as IS.
Being an intermediate language, the aim of UEML is not to propose new modelling
constructs or new visual model presentations. Instead, the aim is to integrate existing
modelling languages in a structured and cohesive way. In the longer term, the UEML
can thus potentially support for comparison, consistency checking, update reflection,
view synchronization and, eventually, model-to-model translation across modelling lan-
guage boundaries.

The following principles ([Ber05b]) were taken into account to define the UEML approach:

1. Integrative approach: The UEML should not propose a new language. Instead, the UEML
should be built on existing industrial and experimental languages and try to integrate them.
The approach allows to select only part of a language and maintains clear relationships
between the existing languages and the UEML core language because constructs belonging
to existing languages are directly represented.

2. Extendable, tailorable: It should be possible to incorporate new modelling languages
into the UEML when needed and to locally tailor the UEML to fit specific organisational
standards. In other words, UEML should promote an open-ended approach. The approach
recognises that languages are difficult to be compared without a context of application and
provides a very general way to model modelling languages.

3. Standardised and template-based: All diagram type definitions and modelling construct
definitions in the UEML should be in a common standardised format (see the text-based
template in Chapter 4)

4. Separate presentation from content: The UEML should have clearly separated meta-
models for presentation (lexical, syntax and related issues) and content (semantic issues).
On the presentation side there should be one meta-model for each included type of diagram.
On the content side there should be a common meta-model that integrates the semantic
domain of the various languages. This meta-model would thus represent semantic and not
syntax as it usually does (see Chapter 6). Each presentation meta-model should of course
be linked (or mapped onto) the content meta-model.

5. Structured approach to organise and manage the common meta-model: As more
languages are added to the UEML, a major risk is that the common meta-model becomes
messy. Providing principles for extending and evolving the content meta-model is therefore
important. Additionally, the approach suggests the reuse of object classes and properties
included in the semantic domain; this constitutes the base for defining a UEML core lan-
guage.

6. Industrial languages: The UEML should give priority to industrial languages to make
sure the work is practically relevant.

3.2.2 How it works

In this section we explain the mechanisms of the UEML 2.0 approach. We first present the criteria
to choose the languages to study, then the general approach and the three parts of the template
and finally the meta-meta-model.

A Validation tool for the UEML Approach Jérémy Mahiat

22 Overview of UEML

Language selection

In order to select which languages should be part of UEML 2.0, a method called “The Extended
Quality Framework” has been considered. It is composed of a list of criteria based on a quality
assessment which is made through six areas of appropriateness [OA05, KLS]:

• Domain appropriateness. Ideally, the conceptual basis (i.e. the set of concepts embedded
by the language) should be powerful enough to express anything in the domain and nothing
else. We pay attention to construct deficit (when the conceptual basis is not be powerful
enough to express anything in the domain) and to construct excess (when the conceptual
basis enables one to express things that are not in the domain).

• Knowledge appropriateness. The conceptual basis should correspond as much as possible to
the way people perceive reality. But it depends on the persons and the persons knowledge
is not static. The external representation of the different phenomena should be intuitive.

• Knowledge externalization appropriateness. The goal is that there is no statement in the
explicit knowledge of the participant that cannot be expressed in the language. This focuses
on how relevant knowledge can be articulated in the modelling language.

• Comprehensibility appropriateness. Participants should understand all the possible state-
ments of the language. The following requirements should be fulfilled:

– the number of concepts should be reasonable,

– the concepts should be general,

– the concepts can be composed (related statements can be grouped in a natural way),

– the language must be flexible in precision,

– the language must be formal and unambiguous,

– the language must have constructs for modelling non-detailed knowledge (that are also
formal).

• Technical actor interpretation appropriateness. The language itself should lend to automatic
reasoning.

• Organizational appropriateness. How appropriate is the language for the organization using
it, taking into account standardization on technology, tools and modelling methods within
the organization. In this case, it should be noted that the ORGANIZATION is INTEROP
itself. However, not all the criteria related to the organizational appropriateness should
be taken into account, because the objective of INTEROP is not to apply languages for
modelling but to provide new solutions. It can be debatable if a language should not be part
of a UEML just because in INTEROP there is no skill about it. In fact, INTEROP should
also be able to acquire skills on specific languages.

Strategy

We present on Figure 3.3 the UEML 2.0 general strategy. This strategy consists in dividing
the languages in different constructs one has to analyse. By using the UEML template, these
constructs will reveal the classes, properties, states and transformations (see below) they represent
in order to build the UEML ontology. This ontology will enable one to find several categories of
correspondences and to generate the UEMLCore.

A Validation tool for the UEML Approach Jérémy Mahiat

UEML 2.0 23

Figure 3.3: UEML 2.0 general strategy (adapted from [Ber06]).

General approach

The UEML 2.0 approach is described in [Opd06] in the following seven features:

1. A construct description is created in a structured and cohesive manner for each modelling
construct that is to be incorporated into UEML (Figure 3.4).

2. The construct description has both a presentation part, dealing with the visual presentation
of the modelling construct (“lexeme”, “syntax” and some “pragmatics”), and a representa-
tion part, accounting for which enterprise phenomena the construct is intended to represent
(“reference”, an aspect of “semantics”).

3. The representation part uses referential decomposition to break each modelling construct
into its ontologically atomic parts, defined as a part that maps one-to-one with an ontology
concept, e.g., a particular class of things in the enterprise (ProductionEquipment), a partic-
ular type of property or relationship (having a responsibility), a particular state (being idle)
or a particular transformation (acquiring a new responsibility). The representation part and
the underlying idea of referential decompositon are based on [OHS04, OHS05].

4. The ontology concepts are maintained in a common ontology, which grows incrementally as
more modelling constructs are incorporated into the UEML. The common ontology is based
on Bunges ontological model [Bun77, Bun79] and the Bunge-Wand-Weber representation
model (the BWW model, [WW88, WW95, WW93]) of IS. The initial classes, properties,
states and transformations are drawn from Bunge ’s ontology and the BWW-model, but
the common ontology also grows dynamically as more specific classes, properties, states and
transformations are included (Figure 3.5).

A Validation tool for the UEML Approach Jérémy Mahiat

24 Overview of UEML

Figure 3.4: Each modelling construct of the language is described separately (from [Opd06]).

5. The common ontology is hierarchically organized. Ontology classes are organized using
generalisation / specialisation (ProductionEquipment is subclass of Equipment) and using
aggregation / decomposition (Equipment is composed of EquipmentParts). Properties are
organized using property precedence (being human precedes having a responsibility). States
are similarly organized using super-/substate relationships and transformation using super-
/subTransformation relationships (also shown in Figure 3.5).

6. All the modelling constructs in the UEML are thereby interrelated at the most detailed
level possible via the common ontology: if two modelling constructs are identical, they will
map onto the exact same ontology concepts. If two modelling constructs do not overlap
at all, they will map onto completely distinct ontology concepts, i.e., onto concepts which
are not even hierarchically related. The third case is likely to be most common, where two
modelling constructs map onto some identical ontology concepts, some ontology concepts
that are hierarchically related and some ontology concepts that are completely distinct. But
in all cases, the hierarchically organized common ontology makes it possible to determine
the exact representational (“semantic”) relationship between any pair or group of modelling
constructs (Figure 3.6).

7. A meta-meta-model (Figures 6.1 and 6.2 explained further in Chapter 6) is provided to
account for the representation part of the UEML approach (it does not yet account for
the presentation part), based on earlier work: [OHS04, OHS05]. It is called a meta-meta-
model because it is a model of how to model languages and because models of languages are
called meta-models. The top layer of the meta-meta-model deals with modelling languages,
their diagram types and their modelling constructs. The middle and bottom layers deal,
respectively, with individual construct descriptions and with the common ontology.

The three parts of the template

In order to follow the general approach, a text-based template has been set up. This text-based
template is more deeply explained in Chapter 4. Analyzing a modelling construct is done by filling
it in (see Section 4.1). As explained in ([Opd05]) the template is made of three parts: preamble,
presentation and representation.

A Validation tool for the UEML Approach Jérémy Mahiat

Comparison 25

Figure 3.5: Organisation of the common ontology (adapted from [Opd06]).

The Preamble section corresponds with the upper layer of Figure 6.1. It deals with general
issues about the modelling construct such as the name, the version or the relationships to other
modelling constructs.

The Presentation section of the template is not taken into account in Figures 6.1 and 6.2. “It
describes the visual presentation of the modelling construct. Presentation issues include lexical
information (such as icons, line styles), syntax (how this and other modelling constructs connect
in diagrams and repositories) and some pragmatics (in particular layout conventions). The Pre-
sentation section of the template has been kept informal at this stage, because efforts have been
focussed on the following Representation section, which is believed to be more difficult. Earlier
versions of the template used the term “Syntax” to describe this section. It has been renamed
because it is not only about syntax, but also about lexicals and pragmatics. The Presentation
section deals with lexical, syntax and practical informations” [Opd06].

The Representation section deals with the semantic aspects of the constructs. “It corresponds
to the top three classes of Figure 6.1, in particular to the ConstructDescription class. It describes
that instantiation level, classes, properties and kinds of dynamic behaviour that a modelling con-
struct can be used to represent. Most existing modelling language definitions describe semantics
using text only, so the entries in this template section usually cannot be filled in without interpret-
ing the language definition, looking between the lines to some extent, and also looking at examples
of how the language is used in practice” [Opd06]. This is the most difficult and most important
part of the template.

3.3 Comparison

Previously, we presented UEML 1.0 and 2.0. Within this section, we point out some differences
in their objectives and approaches.

3.3.1 Goal

The two versions aim to support enterprise model exchange (integration, translation and transfor-
mation) and global consistency between evolving enterprise models. However they have different
priorities. First, one of the main goals of UEML 1.0 - to translate different models - is clearly
revised downwards in the second version. Indeed, in the second version, it becomes an eventual
consequence of the approach. Secondly, the UEML 2.0 approach offers more perspectives such as
consistency checking, update reflection or view synchronization.

A Validation tool for the UEML Approach Jérémy Mahiat

26 Overview of UEML

Figure 3.6: Construct referential decomposition (from [Opd06]).

3.3.2 Method

Both approaches require to represent the abstract syntax but the second version has a standardised
way to do it based on the template. UEML 2.0 undertakes a very different, eventually comple-
mentary approach. Basic correspondences are not statically defined as in UEML 1.0 step 4 of the
strategy (Section 3.1.2) but should be inferred according to the represented semantics (as shown
on Figure 3.6).

In UEML 1.0, there is no explicit representation of semantics. Abstract syntax is defined but
not the semantic. This is done is the second version with the Representation part of the template.

UEML 1.0 approach is based on three specific languages and nothing is done to include new
ones. UEML 2.0 approach was though in a way that always enable to add new language analyses.

[Ber05a] gives the advantages of the UEML 2.0 approach in comparison with those of the first
version: The meta-meta-model (depicted in Figures 6.1 and 6.2) introduces, formally, the notion
of construct, forcing to become clear on the abstract syntax. All the benefits that have been
mentioned in for UEML 1.0 (Section 3.1.3) are mostly similar for the UEML 2.0. However, the
UEML 2.0 approach improves the UEML 1.0 approach:

• to guide, according to a meta-meta-model, the representation of abstract syntax, semantics
and semantic domain for any enterprise modelling language;

• to infer basic correspondences between distinct languages, once their semantics and the
semantic domain have been represented;

A Validation tool for the UEML Approach Jérémy Mahiat

Summary 27

• to represent some UEML constructs and their semantics whenever the semantic domain
contains enough information (i.e. whenever a significant number of relevant languages has
been represented);

• As for UEML 1.0, the undertaken approach does not allow to formally prove properties of
basic correspondences and more complex exchanges because the meta-meta-model is repre-
sented with a UML class diagram. However, the meta-meta-model can be represented in
some formal language enabling reasoning.

3.4 Summary

In this chapter, we described the purpose of UEML and its evolution through the two versions.
Of course, the approach had to adapt to this evolution. While the first version was only based
on three languages, the second is more ambitious and aims to be extendable to many different
languages. In the remainder of this work we will focus exclusively on the second version which is
notably based on a template and a meta-meta-model we are going to explore more deeply in the
following chapters.

A Validation tool for the UEML Approach Jérémy Mahiat

Chapter 4

The UEML 2.0 Template

In the previous chapter we exposed the general approach of UEML 2.0. We noticed it is based on
a template that helps one to analyse a language and its constructs. In this chapter, we will detail
the different parts of the template and how to use it.

4.1 Generalities

In order to incorporate a language into UEML, each of its modelling constructs has to be described
in a standard way following the general approach of Section 3.2.2. This approach can be achieved
by using the text-based form called the template.

At the beginning of the UEML 2.0 project, the template was only text-based. The way to follow
the method is to answer to the different questions one can find in a text-document called “UEML
Template”. As explained in [Opd05], this document is divided in 3 main parts corresponding to
those of Section 3.2.2: Preamble, Presentation and Representation. This document assists one to
do a complete UEML 2.0 analysis of a language.

One document has to be filled in for each construct and has to be named like this:

"UEML_construct_<LANGUAGE_ACRONYM>_<LANGUAGE_VERSION>_

<DIAGRAM_TYPE>_<CONSTRUCT_NAME>_<VERSION_NUMBER>."

where LANGUAGE VERSION and DIAGRAM TYPE can be left out. A filled in template can be
found in Section 10 where we propose an example of a language analysis with the GRL language.

4.2 Preamble

The preamble section deals with general issues about the modelling construct such as the construct
name, relations to other constructs, the diagram types and the language it belongs to. This section
is composed of the following entries:

• Construct Name – The name of the construct.

• Alternative Construct Names – Other names that are sometimes used for the construct.

• Related, but distinct construct names – Names of related constructs that should not be
confused.

29

30 The UEML 2.0 Template

• Related terms – Terms that are not names of modelling languages but that are nevertheless
useful or necessary to understand and talk about the language.

• Language – The language the construct belongs to.

• Diagram Type – The Diagram Type(s) of the language in which the construct can be used.

4.3 Presentation

The presentation section describes the visual presentation of the modelling construct. It includes
lexical information, syntax and some pragmatics. The lexical information deals with things such
icons or lines style, the syntax describes how the modelling construct is connected to other con-
structs in the diagram and the pragmatics mainly deal with layout conventions. The presentation
section is composed of the following entries:

• Icon, line, style, text – The corresponding icon of the construct if it’s a node or the corre-
sponding line style if it’s an edge. It must also explain how the construct can change with
the value of its attributes.

• Builds On – If the presentation of the construct is based on those of other constructs, they
are named here.

• Built on by – Here are named the construct that list the construct as “Builds On”.

• User-definable attributes – List of the language-defined attributes that can be defined for an
instance of the construct. This is different from the Properties of the Representation section
because it only has to do with how things looks on the surface.

• Relationships to other constructs – language-defined attributes that can be defined for an
instance of the construct (relationships within the same diagram type or relationships to
constructs in other diagram type of the same language).

• Layout conventions – Description of the preferred way (layout rules or conventions) to use
this construct when drawing visual models.

4.4 Representation

The representation section deals with the semantic aspects of the constructs. It describes the
instantiation level, classes, properties, states and transformations the modelling construct can be
used to represent. The representation section is composed of the following entries:

• Instantiation level – The construct is intended to represent either classes, properties, states
or transformations at the type level or at the instance level or both.

• Classes of things – This entry lists the classes of things the construct is intended to represent.
Each modelling construct represents a class of things even if it is not its main purpose.
Indeed, a property is implicitly the one of one or more classes of things; a state is defined in
terms of properties that characterize a class; a transformation possesses pre and post states
that are defined in term of properties that characterize classes.

• Properties (and relationships) – This entry lists the properties the modelling construct is
intended to represent if any. It also lists the relationships it represents because they are
considered as mutual properties. As for the “Class” entry, properties are sometimes rep-
resented even if it is not the main purpose of the construct. Indeed, each state is defined

A Validation tool for the UEML Approach Jérémy Mahiat

Summary 31

in terms of properties and a transformation has pre and post states. Some properties have
sub-properties.

• Behaviour – This entry states the kind of behaviour the construct is intended to represent.
If the construct is only intended to represent existence, then this entry is only filled in with
the word “existence”. If the construct represents a state, this state has to be described with
an invariant over the property roles defined in the previous entry. If the construct represents
a transformation, the from and to states have to be specified. If the construct represents a
process the states transformations in the process must be specified.

• Modality – This entry tells if the language is intended to represent regular or modal asser-
tions. If it represents regular assertion (that is actually what they usually do) this means it
represents things as they are. If it represents modal assertions (like goal in i*), it means it
represents things as someone wants them to be or as someone is not permitted to do, etc.

4.5 Summary

The UEML 2.0 Template is the device used to perform the language analyses. The three sections
help one to formalize the knowledge about a language in order to be able to share it. It is
also foreseen that, based on this knowledge, it will be possible to devise language comparison,
consistency checking, update reflection, view synchronization, model-to-model translation,... The
preamble and representation sections actually rely on the meta-meta-model we will present in
chapter 6. Chapter 10 will give an application of the template on the GRL language.

A Validation tool for the UEML Approach Jérémy Mahiat

Chapter 5

Ontology

Before continuing the exploration of UEML 2.0 and its meta-meta-model, we have to precise the
notion of ontology. While presenting this notion we will also explore the OWL language and
Protégé because these technologies are used in the solutions presented later. In the first section
we explain what is an ontology and how to represent one with OWL. In the second section we
introduce Protégé and how it can manage ontologies.

5.1 Ontology

This section is largely inspired by [Cor, Wik].

“Ontology is the theory of objects and their ties. The unfolding of ontology provides
criteria for distinguishing various types of objects (concrete and abstract, existent and
non-existent, real and ideal, independent and dependent) and their ties (relations,
dependences and predication)” [Cor].

Contemporary ontology is developed from both philosophers and scientists working in Artificial
Intelligence, data-bases theory and natural language processing. We may therefore distinguish
ontology as conceptual analysis from ontology as technology.

In philosophy, ontology is the most fundamental branch of metaphysics. It studies being or
existence and their basic categories and relationships, to determine what entities and what types
of entities exist. Ontology thus has strong implications for conceptions of reality.

In computer science, an ontology is a data model that represents a domain and is used to reason
about the objects in that domain and the relations between them. Ontologies are usually used
as a form of knowledge representation about the world or some part of it. Ontologies generally
consist of:

1. Individuals: the basic or “ground level” objects,

2. Classes: sets, collections, or types of objects,

3. Attributes: properties, features, characteristics, or parameters that objects can have and
share,

4. Relations: ways that objects can be related to one another.

A domain ontology (or domain-specific ontology) models a specific domain, or part of the
world. It represents the particular meanings of terms as they apply to that domain. For example

33

34 Ontology

the word “card” has many different meanings. An ontology about the domain of poker would
model the “playing card” meaning of the word, while an ontology about the domain of computer
hardware would model the “punch card” and “video card” meanings. In Chapter 6 the BWW
ontology related to the domain of IS is described.

An upper ontology (or foundation ontology) is a model of the common objects that are generally
applicable across a wide range of domain ontologies. It contains a core glossary in whose terms
objects in a set of domains can be described. There are several standardized upper ontologies
available for use, including Dublin Core, GFO, OpenCyc/ResearchCyc, SUMO, and WordNet.

5.2 Ontology languages

[PS04] defines ontology languages as follows:

“An ontology language is a language in which it is possible to provide information
about the different kind of objects in the domain of discourse (i.e. the part of the
world that is of interest). Collections of such information are called ontologies.”

Usually, two global entities are distinguished inside an ontology. The first part, that has a termi-
nological objective, defines the domain of discourse’s components nature. It is more or less like
defining entity types in Entity Relationship diagrams. The second part of an ontology explains
the relationships between the instances of the classes defined in the terminological part. Inside an
ontology, concepts are defined one related to the others and it allows to consider and to manipulate
this knowledge.

5.2.1 OWL

OWL stands for Web Ontology Language. It is an Official W3C Standard built on top of RDF
and written in XML. The W3C describes it in [MvH04] in those words: “The OWL Web Ontology
Language is designed for use by applications that need to process the content of information instead
of just presenting information to humans. OWL facilitates greater machine interoperability of Web
content than that supported by XML, RDF, and RDF Schema (RDF-S) by providing additional
vocabulary along with a formal semantics. OWL has three increasingly-expressive sublanguages:
OWL Lite, OWL DL, and OWL Full.”

An OWL ontology may include descriptions of classes, properties and their instances. Given
such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e.
facts not literally present in the ontology, but entailed by the semantics. These entailments may
be based on a single document or multiple distributed documents that have been combined using
defined OWL mechanisms.

We briefly explain the header of the OWL file and then the most important concepts: Classes,
Properties and individuals. This section is based on the W3C recommendations ([DSB+04]).

Header

An OWL file must begin by specifying two things: the namespace and the header. The namespace
is a link to glossaries and the header describes the ontology domain. In order to be able to use
terms in an ontology, it is necessary to indicate from which glossary these terms come from. That
is why, as in all other XML documents, an ontology begins with the declaration of namespaces.
After the namespaces declaration, we can write a header describing the contents of the current
ontology. It is done with the owl:Ontology axiom. Typically it also contains the following axioms:

A Validation tool for the UEML Approach Jérémy Mahiat

Ontology languages 35

• owl:imports, that references another OWL ontology containing definitions, whose meaning
is considered to be part of the meaning of the importing ontology;

• owl:versionInfo, giving information about this version, for example RCS/CVS keywords;

• owl:priorVersion that identifies a specified ontology as a prior version of the containing
ontology;

• owl:backwardCompatibleWith, that identifies a specified ontology as a prior version of
the containing ontology, and further indicates that it is backward compatible with it;

• owl:incompatibleWith that indicates that a specified ontology is a later version of the
referenced ontology, but is not backward compatible with it;

• owl:DeprecatedClass and owl:DeprecatedProperty that allows an ontology to main-
tain backward-compatibility while phasing out an old vocabulary (thus, it only makes sense
to use deprecation in combination with backward compatibility).

We now introduce the main OWL concepts that allow to represent the ontologies.

Classes

A class defines a group of individuals that are together because they have similar characteristics.
Each individual is an instance of the class. Depending on the way they are constructed, classes
can have a name or not. A class can be constructed by naming it (class indicator), by enumerating
its individuals, by restricting the properties (the class is composed of all instances that satisfy the
constraints) and by intersection, union or complementarity. Here is an example of class definition
with the class indicator:

<owl:Class rdf:ID="Human" />

Class axioms

OWL contains three language constructs for combining class descriptions into class axioms:

• rdfs:subClassOf allows one to say that the class extension of a class description is a subset
of the class extension of another class description. Every class inherits from the superClass
Thing. A class can thus specialize other classes with the special property called subClassOf.

• owl:equivalentClass allows one to say that a class description has exactly the same class
extension as another class description (i.e., both class extensions contain exactly the same
set of individuals). The use of this axioms does not imply class equality. Class equality
means that the classes have the same intensional meaning (denote the same concept).

• owl:disjointWith allows one to say that the class extension of a class description has no
members in common with the class extension of another class description.

Properties

Now we know OWL classes but we still have to learn how to express facts related to these classes
and their instances. This is the goal of the OWL properties. There are two different kinds of
properties:

• owl:ObjectProperties that allow to link instances to other instances;

A Validation tool for the UEML Approach Jérémy Mahiat

36 Ontology

• owl:DataTypeProperties that allow to link instances to data values.

Those two classes of properties are sub-classes of the rdf-class rdf:Property.

The definition of the property’s characteristics is done with a property axiom. In its basic
form, it only declares the existence of the property:

<owl:ObjectProperty rdf:ID="hasParent" />

Nevertheless it is possible to define many other property characteristics in a property axiom.
As for a mathematical function, we can restrict the domain and the range of the property. For an
ObjectProperty we can specify the kind of classes. In the case of a DataTypeProperty the range
can be a data type as defined is the XML schema (e.g., positiveInteger). For instance we can
define the property of type “yearOfBirth”

Inheritance can also be used for the properties, exactly as for the classes.

<owl:Class rdf:ID="Human" />

<owl:ObjectProperty rdf:ID="isFromFamilyOf">

<rdfs:domain rdf:resource="#Human" />

<rdfs:range rdf:resource="#Human" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasBrother">

<rdfs:subPropertyOf rdf:resource="#isFromFamilyOf" />

<rdfs:range rdf:resource="#Human" />

...

</owl:ObjectProperty>

</owl:Class>

The property “hasBrother” is a sub-property of the property “isFromFamilyOf”. It means that
every entity having the property “hasBrother” of a certain value also has a property “isFromFam-
ilyOf” of the same value.

In addition to the inheritance mechanism and the restriction of the domain and the range, other
ways to add characteristics to properties exist. Some of the main characteristics are “transitivity”,
“symmetry”, or “inverse”.

Individuals

In order to define an individual, we state a fact. Two kinds of facts are distinguished: facts
concerning the membership to a class and facts concerning the identity of individuals.

Facts usually concern the membership declaration of an individual to a class and the properties
values of this individual. A fact is expressed like this:

<Human rdf:ID="Nicolas">

<hasFather rdf:resource="#Gilles" />

<hasBrother rdf:resource="#Sebastien" />

</Human>

This fact states the existence of a human called “Nicolas”. This human has a father called “Gilles”
and a brother called “Sebastien”. It is also possible to instantiate an anonymous individual by
leaving out its identifier.

Problems could occur with the names we give to individuals. For instance, one individual could
be called in two different ways. In order to avoid that kind of difficulties, OWL offers mechanisms

A Validation tool for the UEML Approach Jérémy Mahiat

Protégé 37

like: owl:sameAs, owl:differentFrom or owl:AllDifferent. The following example illustrates the
how to express class equality:

<rdf:Description rdf:about="#Robert">

<owl:sameAs rdf:resource="#Bob" />

</rdf:Description>

5.3 Protégé

Protégé [Pro] is a free, open-source platform that provides a growing user community with a suite
of tools to construct domain models and knowledge-based applications with ontologies. At its core,
Protégé implements a rich set of knowledge-modelling structures and actions that support the cre-
ation, visualization, and manipulation of ontologies in various representation formats. Protégé
can be customized to provide domain-friendly support for creating knowledge models and entering
data. Further, Protégé can be extended by way of a plug-in architecture and a Java-based Ap-
plication Programming Interface (API) for building knowledge-based tools and applications. The
Protégé platform supports two main ways of modelling ontologies:

• The Protégé-Frames editor enables users to build and populate ontologies that are frame-
based, in accordance with the Open Knowledge Base Connectivity protocol (OKBC). In
this model, an ontology consists of a set of classes organized in a subsumption hierarchy
to represent a domain’s salient concept, a set of slots associated to classes to describe their
properties and relationships, and a set of instances of those classes – individual exemplars
of the concepts that hold specific values for their properties.

• The Protégé-OWL editor enables users to build ontologies for the Semantic Web, in particular
in the W3C’s Web Ontology Language (OWL).

5.3.1 Protégé-OWL

The Protégé-OWL editor is an extension of Protégé that supports the Web Ontology Language
(OWL). The Protégé-OWL editor enables users to:

• load and save OWL and RDF ontologies;

• edit and visualize classes, properties and SWRL (a Semantic Web Rule Language combining
OWL and RuleML);

• define logical class characteristics as OWL expressions;

• execute reasoners such as description logic classifiers;

• edit OWL individuals for Semantic Web markup.

Protégé-OWL’s flexible architecture makes it easy to configure and extend the tool. Protégé-
OWL is tightly integrated with Jena (a Java API for OWL) and has an open-source Java API for
the development of custom-tailored user interface components or arbitrary Semantic Web services.

Ontology management

Managing an ontology is done logically without the need to know the OWL syntax at all. Creating
a class or a property is really simplified thanks to the graphical interfaces. One just needs to fill in
a form from the “class” or “property” tab we can see in Figure 5.1. Those classes and properties

A Validation tool for the UEML Approach Jérémy Mahiat

38 Ontology

Figure 5.1: The Protégé “class” tab.

can be updated by simply changing the values of the different fields. In order to easily populate an
ontology, adapted forms can be created. Those forms (Figure 5.2) are similar to the standard ones
that create classes and properties. Individuals are then created like classes and properties. They
can be visualized thanks to the “individuals” tab we can see on Figure 5.3 where their properties
can also be changed.

5.4 Summary

In this chapter we described what an ontology is and how to express it using OWL. We also
discussed how Protégé can facilitate the management of an ontology. Those tools will be used for
managing knowledge about EMLs as we will see in Chapter 7. In Chapter 6 we will present the
UEML 2.0 meta-meta-model.

A Validation tool for the UEML Approach Jérémy Mahiat

Summary 39

Figure 5.2: The Protégé “form” tab.

A Validation tool for the UEML Approach Jérémy Mahiat

40 Ontology

Figure 5.3: The Protégé “individuals” tab.

A Validation tool for the UEML Approach Jérémy Mahiat

Chapter 6

The UEML 2.0 Meta-Meta-Model

In Chapter 4 we presented the UEML 2.0 template that briefly introduced what we call the UEML
meta-meta-model. In this chapter we are going to explore in more detail this meta-meta-model
written in OWL in drawn as a UML class diagram. To do this, we need to introduce the BWW
model on which the ontology part of the meta-meta-model is based. After we will explain the role
of each class and the basic constraints that are added to the meta-meta-model.

6.1 BWW Model

The BWW model of IS was proposed by Wand and Weber [WW93, WW95]. It is based on
Mario Bunge’s comprehensive philosophical ontology [Bun77, Bun79]. It is an already populated
ontology which can be used to describe and analyze modelling constructs. Bunge’s comprehensive
philosophical ontology is a typical philosophical ontology (see Chapter 5). The BWW model is
still a philosphical ontology even if it restricts the Bunge’s ontology to the domain of IS. As we
will see, in the UEML 2.0 meta-meta-model, the BWW model is formalized and extended. We
can characterize this version as a computer science ontology.

6.1.1 Why the BWW Model?

[OHS04] explains that the BWW model has already been used to analyse and evaluate the mod-
elling constructs of many established IS and EMLs, including:

• dataflow diagrams,

• ER models,

• NIAM,

• nine languages supported by the Upper CASE-toolset Excelerator,

• four languages supported the ARIS toolset for business modelling,

• the OPEN Modelling Language (OML),

• the Unified Modelling Language (UML)

The BWW model has also been used for general analyses of: IS design theory, object-oriented
modelling constructs, systems decomposition, object-oriented IS, dimensions of data quality, op-
tional properties in conceptual modelling, a two-layered information modelling approach where

41

42 The UEML 2.0 Meta-Meta-Model

instances are not tied to particular classes, whole-part relationships (like UML’s aggregation and
composition constructs) in OO models.

The BWW model is therefore a natural starting point for a template for defining enterprise
modelling constructs, although alternatives exist both in the form of general philosophical ontolo-
gies, (e.g., [Chi96]), or special enterprise and IS ontologies, (e.g., the enterprise ontology [UKM98])
and the framework of IS concepts (FRISCO) [VS01]. In support of the BWW model, [WW93]
have argued that Bunge’s ontology is:

1. better developed and formalised than alternative philosophical ontologies,

2. based on concepts that are fundamental to the computer science and IS domains,

3. productive, in the sense that it has given useful results.

6.1.2 The BWW model concepts

In this section we present the most important BWW individuals that are used for the UEML 2.0
ontology. This presentation is largely inspired by [OHS05]. Table 6.1 gives definitions of all the
BWW concepts used here.

Table 6.1: Basic concepts in the BWW model (from [OHS05]).

BWW concept Concept definition

BWW-thing “The elementary unit in our ontological model. The real
world is made up of things.” [WW95]

BWW-property of a thing “Things possess properties” [WW95]. “We know about
things in the world via their properties” [Web97].

Property precedence “One properties precedes another if al the things that pos-
sess the latter property also possess the former.” [Bun77].

BWW-complex property “A complex BWW-property consists of other properties,
which may themselves be complex” [Bun77].

BWW-property co-domain “The set of values into which the function that stands for
the property of a thing maps the thing” [WZ96].

BWW-class of things “A set of things that can be defined by their possessing
a particular set of properties” [WZ96]. 1) A BWW-class
is defined by a “characteristic set” of properties. 2) All
groups of BWW-properties that are possessed by at least
one BWW-thing define a BWW-class.

BWW-subclass of things “A set of things that can be defined via their possessing
the set of properties in a class plus an additional set of
properties” [WZ96]. (Hence, a BWW-subclass is itself a
BWW-class.)

BWW-intrinsic property of a

thing
“A property that is inherently a property of an individual
thing” [WW95].

BWW-mutual property of two

or more things
“A property that is meaningful only in the context of two
or more things” [WW95].

BWW-state of a thing “The vector of values for all property functions of a thing”
[WW95].

A Validation tool for the UEML Approach Jérémy Mahiat

BWW Model 43

BWW concept Concept definition

BWW-state law of a thing A property that “[r]estricts the values of the property func-
tions of a thing to a subset that is deemed lawful because
of natural laws or human laws” [WW95].

BWW-event in a thing “A change of state of a thing. It is effected via a transfor-
mation” (see below) [WW95].

BWW-process in a thing “An intrinsically ordered sequence of events on, or states
of, a thing” [Gre96]. Processes may be either chains or
trees of events [Bun77].

BWW-transformation of a

thing
“A mapping from a domain comprising states to a co-
domain comprising states” [WW95].

BWW-transformation law of a

thing
“Events are governed by transformation laws that define
the allowed changes of state” [PW97]. [WW95] and other
papers on the BWW model instead introduce BWW-lawful
transformations, which define “which events in a thing that
are lawful”. The term “transformation law” instead of
“lawful transformation” is chosen here to emphasise that
a transformation law like a state law is a property of a
particular thing.

BWW-law property of a thing “Properties can be restricted by laws relating to one or
several properties” [PW97]. 1) A law is either a state law
or a transformation law of a particular thing. 2) A law is
either a natural law or a human law (see below.)

BWW-composite thing “A composite thing may be made up of other things (com-
posite or primitive)” [WW95]. “Things can be combined
to form a composite thing” [PW97].

BWW-component thing Any BWW-thing that is in the composition of a composite
thing.

BWWwhole-part relation The property of being in the composition of another thing
or, complementary, of having another thing as a component
(according to [Bun77]).

BWW-resultant property of a

composite thing
“A property of a composite thing that belongs to a com-
ponent thing [WW95].

BWW-emergent property of a

composite thing
A property of a composite thing that does not belong to a
component thing (adapted from [WW95].)

BWW-history of a thing “The chronologically ordered states that a thing traverses
in time” [WZ96].

BWW-acting on another thing,

BWW-coupling of things
“A thing acts on another thing if its existence affects the
history of the other thing. The two things are said to be
coupled [...]” [WW95].

BWW-direct acting on, BWW-

binding mutual property
A thing acts directly on one or more other things when
the former thing changes a BWW-binding mutual property
they all possess. Changing the binding mutual property is
an internal event in the former thing and an external event
in each of the latter things.

A Validation tool for the UEML Approach Jérémy Mahiat

44 The UEML 2.0 Meta-Meta-Model

According to Bunges ontology and the BWW model, there is a world that exists independently
of human observers, and it consists of things that possess properties. Atoms, fields, persons,
artifacts and social systems are examples of BWW-things. Conversely properties of things (e.g.,
energy), changes in them, or ideas considered in themselves are non-things. In particular, concepts
are not BWW-things.

The BWW model distinguishes properties in different ways. A property can be intrinsic or
mutual. A property is intrinsic if it belongs to only a single thing, whereas a mutual property
belongs to two or more things. Intrinsic and mutual properties are perceived by humans in terms
of attributes which are represented as functions over time. A wholepart relation is a property
that relates an aggregate thing to one of its component things. A property can also be resultant
if it belongs to a BWW-aggregate and is derived from one or more properties of its components or
emergent if it belongs to a BWW-aggregate but not to any of its components. A law property
restricts other properties of the same thing. A BWW-law is either a state law or a transition
law. A property can be individual (or property of a particular) if it is a specific property like
“being 25 years old” or “having grey hair”, or general like “having an age” or “having a hair
color.” [Bun77] also distinguishes between BWW-properties that are permanent and those that
are variable. BWW-properties can also be complex (composed of other properties).
A BWW-property precedes a second BWW-property if and only if:

• either the second property is complex and the first property is one of its constituents (“being
mammal” precedes “being human”);

• or a BWW-law states that all BWW-things that possess the second property must also
possess the first (“being a human being” precedes “being married”).

Things with a property in common form classes. A BWW-class is defined by a non-empty
set of characteristic properties of the things in the class. The most general BWW-class is the
class of all things, which is defined by the universal property of being able to associate with other
things. Because characteristic properties may be complex, it is sometimes possible to say that
a BWW-class is defined by a group of characteristic BWW-properties. One BWW-class may be
defined by a group of characteristic properties that is contained in a larger group of properties
that defines a second class. We then say that the second BWW-class is a subclass of the first.

A BWW-thing has time-dependent states that are determined by the values of the things
property functions over time. A state can be stable (can only change as a result of an external
action to a thing) or unstable (must change by a law). A change of BWW-state in a thing is an
event, hence a BWW-event can be described as a pair of BWW-states. Consecutive BWW-events
form complex events, or processes if they occur in the same thing. The sequence of consecutive
BWW-states undergone by a thing (or, alternatively, the sequence of consecutive BWW-events)
is called its history. A BWW-thing acts on a second thing if and only if the BWW-history of
the second thing would have been different if the first thing had not existed. The first thing is
called an active thing. Two BWW-things are coupled if and only if (at least) one of them acts
on the other. BWW-couplings are caused by certain BWW-mutual properties that are said to be
binding. A BWW-aggregate whose BWW-components are coupled is a system.

6.2 The meta-meta-model

In this section we present the meaning of each class of the meta-meta-model (Figures 6.1 and 6.2)
and why they are interrelated. The meta-meta-model was entered in Protégé and thus written in
OWL. It is also presented as a UML clas diagram for better readability. The meta-meta-model
is divided into three main parts: the “preamble” part, the “represented” part and the “ontology”
part. The “represented” and “ontology” parts correspond to the “representation” part of the

A Validation tool for the UEML Approach Jérémy Mahiat

The meta-meta-model 45

template and the “preamble” part to the “preamble” part of the template. The presentation part
of the template is not taken into account in the meta-meta-model (see Section 3.2.2).

6.2.1 Preamble part

The first part (“preamble”) is constituted of three classes: LanguageDescrtiption, DiagramType-
Description and ConstructDescription. It is meant to contain general information about the
language and the diagram type the modelling construct belongs to. A modelling construct be-
longs to one and only one language and can be used in several diagram types of the same language.
We show here the description of the DiagramTypeName’s property in OWL:

<owl:DatatypeProperty rdf:ID="diagramTypeName">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#InverseFunctionalProperty"/>

<rdfs:domain rdf:resource="#DiagramTypeDescription"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

6.2.2 Represented part

The second part (“represented”) is meant, as a structure, to contain a description of each modelling
construct’s semantics. A modelling construct is supposed to describe one or more phenomena. A
phenomenon is “An appearance; anything visible; whatever, in matter or spirit, is apparent to,
or is apprehended by, observation; as, the phenomena of heat, light, or electricity; phenomena of
imagination or memory” [Wae03]. The represented part is useful to keep a link between what the
construct represents in term of the common ontology and its intuitive signification. This level is
thus an intermediate step between the construct and the ontology enabling one to understand the
mapping. Indeed, as the ontology level is general it is not always easy to find the exact mapping.
For instance, as we will see after, a GRL goal is notably mapped onto the ActiveThings class
of the ontology. We understand why when we decompose the construct into the property goal
characterizing an actor. This actor is actually an ActiveThing because attempting to reach a goal
entails activity.

The phenomenon description is made with the help of the BWW model. Indeed, it is made
in terms of RepresentedClasses, RepresentedProperties, RepresentedStates and RepresentedTrans-
formations the construct describes. Each of them belongs to only one modelling construct. New
RepresentedClass, RepresentedProperty, RepresentedState and RepresentedTransformation have
thus to be invented each time a construct is described. This part is thus going to evolve often.
The meaning of the classes is the following:

• A RepresentedPhenomenon is something represented by a construct. It can be either a Rep-
resentedClass, a RepresentedProperty, a RepresentedState or a RepresentedTransformation.
It has the following attributes:

– explanation used to explain the role of the phenomenon;

– minCardinality used to express the minimum number of instances of the phenomenon
the construct represents;

– maxCardinality used to express the maximum number of instance of the phenomenon
the construct represents;

– roleName used to name the phenomenon.

• A RepresentedClass is a class of things a construct represents (e.g., Actor or Token);

A Validation tool for the UEML Approach Jérémy Mahiat

46 The UEML 2.0 Meta-Meta-Model

Figure 6.1: Upper part of the meta-meta-model.

A Validation tool for the UEML Approach Jérémy Mahiat

The meta-meta-model 47

Figure 6.2: Lower part of the meta-meta-model.

A Validation tool for the UEML Approach Jérémy Mahiat

48 The UEML 2.0 Meta-Meta-Model

• A RepresentedProperty is a property a construct represents (e.g., name, evaluation). The
categorization distinguishes two special types of properties:

– TransformationLaw that effects a RepresentedTransformation;

– StateLaw that restricts a RepresentedState.

• A RepresentedState is a state represented by a construct (i.e., a vector of values for the
properties the state is defined by).

• A RepresentedTransformation is a transformation represented by a construct (i.e., a mapping
from a pre-state to a post-state).

As mentioned in Section 3.2.2 each modelling construct describes a Class because a property is
the one of a class, a state is defined in term of properties that belong to a class and a transformation
has pre- and post-states that are defined in term of properties that belong to a class.

6.2.3 Ontology part

The third part is the ontology. This is where the BWW classes are used to describe what the
constructs represent in the real world. We build thus here an ontology which domain is what the
EMLs altogether represent. The ontology is in essence common to every modelling construct of
every language. It is not supposed to change as often as the “represented” part.

The ontology part is organized in the same way as the represented part. However, it is more
precise. Classes, States and Transformation have a relationship of specialization/generalization
between them (see Figure 6.2). Properties do not have it because specialization is defined in term
of properties things have in common. Properties have a relationship of precedence between them
(as explained in section 6.1). The specialization/generalization is not managed at the represented
level for more facility. The most important is to have this relation at the ontology level because that
is where modelling constructs can be compared. Indeed, every “represented” phenomenon has to
represent an “ontology” phenomenon (of the same type). In the meta-meta-model (Figures 6.1 and
6.2) we only see one link (represents) betweenRepresentsPhenomenon and OntologyPhenomenon
but it is actually more precise. A RepresentedClass can only represents an OntologyClass, a
RepresentedState can only represent an OntologyState, etc... (see constraints in Section 8.3)

The ontology was first populated with classes, properties, states and transformations from
Bunge’s ontology and the BWW Model such as the classes AllThings, AssociatedThings and
AttributedThings or the properties AnyRegularProperty, AnyMutualProperty and AnyTransfor-
mationLaw. As new constructs are mapped, the ontology can grow up as more specific classes,
properties, states and transformations are included.

6.3 Example of a modelling construct description

In order to better understand how to describe a modelling construct in the meta-meta-model,
we give the example of the “Goal” construct of GRL (from [MHO06]). For clarity, a standard
way of graphical representation has been introduced. It enables to draw the represented classes,
properties, states and transformation as well as the common ontology. The icons used for that
purpose are showed in Table 6.2. Normal arrows represent subrelations and striped arrows mapping
to the common ontology.

GRL goal is played by an “ontological scene” called “theGoal” and presented in Figure 6.3.
The “ontological scene” consists of a set of represented classes and represented properties mapped
to the common ontology. For theGoal which is a complex law property, the ontological scene
consists of three parts: a thing theGoal belongs to, theGoal as a complex property, and theGoal

as a law property.

A Validation tool for the UEML Approach Jérémy Mahiat

Constraints 49

Table 6.2: UEML 2.0 Graphical representation standard

Instance Type Both Common ontology

Things

Properties

States

Transformations

Thing theGoal belongs to

GRL goal describes the intentions of some BWW thing that wishes the goal would become true.
This thing is identified as the actor who holds the Goal. Actor is mapped to the ActiveThings

because attempting to reach a goal entails activity.

theGoal as a complex property

Complex property is a BWW property that has subproperties. GRL goal is a complex property
because it is characterised by different attributes that are all anyRegularProperties in the BWW
model. Attributes for GRL goal include name, description, and evaluation.

theGoal as a law property

Law is a property “that restricts values that other properties can have”. Goal expresses constraints
on the possible states of a thing which might denote the proposed system, the entire organisation
or a particular actor, and, thus, is mapped to componentThings, the least general BWW concept
accounting for the three possibilities. Next theGoal is about this thing, meaning that attempting
to reach a goal entails acting on this thing, which is also mapped to the ActedOnThings class in
the common ontology. However in GRL there is no construct that indicates what this thing is.
We describe it as the thingGoalIsAbout.

6.4 Constraints

In addition to the meta-meta-model itself, some constraints have been added in order to structure
the ontology. These constraints show how the entries depend on each other. They also formalize
the template and thus help for later tool development by making it more clear. [OHS05] divide
them in four groups: “constraints on names”, “constraints on ontClasses and RepresentedClasses”,
“constraints on ontProperties and RepresentedProperties” and “constraints on States and Trans-
formations”. We present them here in English but they will be presented in a more formal way
(OCL) with other constraints we provide in Chapter 8.

6.4.1 Constraints on names

The constraints of this group ensure that some names are unique. These constraints are simple
identifier but it is necessary to express them because that notion does not exist in UML.

1. Two distinct ConstructDescriptions cannot have the same “constructName”.

2. Two ontClasses cannot have the same “className”.

A Validation tool for the UEML Approach Jérémy Mahiat

50 The UEML 2.0 Meta-Meta-Model

Figure 6.3: Simplified description of the GRL’s Goal (from [MHO06]).

3. Two ontProperties cannot have the same “propertyName”.

4. Two States with non-empty “Name” cannot have the same “Name”.

5. Two Transformations with non-empty “Name” cannot have the same “Name”.

6.4.2 Constraints on ontClasses and RepresentedClasses

The three constraints in this group deal with the uniqueness of “Class roleNames” within Con-
structDescription, with the uniqueness of the set of “characteristic Properties” of an ontClass and
with ontClass specialization/generalization.

6. If a ConstructDescription contains more than one RepresentedClass, each of them must have
a roleName that is unique to the ConstructDefinition.

7. Two different ontClasses cannot be associated with the same sets of characteristic ontProp-
erties.

8. If the set of “characteristic Properties” of one ontClass is a subset of that of another ontClass,
the first ontClass must generalize the second.

6.4.3 Constraints on ontProperties and RepresentedProperties

The first four constraints in this group ensure that the RepresentedClasses and RepresentedProp-
erties contained in a ConstructDescription match one another, i.e., that all the necessary Classes

A Validation tool for the UEML Approach Jérémy Mahiat

Constraints 51

and Properties are contained in the ConstructDescription and that the Properties belong to the
Classes and vice versa. The last four ensure the uniqueness of RepresentedProperties “roleName”
within a RepresentedClass and the consistency of the precedence relationship.

9. If a ConstructDescription contains a RepresentedClass that characterizes a RepresentedProp-
erty, the ConstructDescription must also contain the RepresentedProperty.

10. Conversely, if a ConstructDescription contains a RepresentedProperty that characterizes a
RepresentedClass, the ConstructDescription must also contain the RepresentedClass.
For instance, in GRL, a Goal is a complex property. This RepresentedProperty,

we call ‘‘theGoal" characterizes the RepresentedClass ‘‘Actor". The construct

has thus to be described by the RepresentedClass ‘‘Actor" and the

RepresentedProperty ‘‘theGoal"

11. If a RepresentedClass has a RepresentedProperty, the corresponding ontClass must have the
corresponding ontProperty as “characteristic”.
For instance, in GRL, the RepresentedProperty, ‘‘isAbout" characterizes

the RepresentedClass ‘‘ThingsGoalIsAbout". As ‘‘ThingGoalIsAbout" is mapped

onto the ontClass ‘‘ActedOnComponentThings" and ‘‘isAbout" on the ontProperty

‘‘MutualProperties", ‘‘MutualProperties" has to characterize ‘‘ActedOnComponentThings".

12. Conversely, if a RepresentedProperty has a RepresentedClass, the corresponding ontProperty
must be “characteristic” of the corresponding ontClass.

13. If a RepresentedClass has more than one RepresentedProperty, each of them must have a
“roleName” that is unique relative to the RepresentedClass.

14. If an ontClass has a “characteristic Property” that is “preceded” by another ontProperty,
then the ontClass must also have the second ontProperty as “characteristic”.

15. If an ontProperty is “preceded” by a second ontProperty and the second ontProperty is
“preceded” by a third, then the first ontProperty must also be “preceded” by the third
ontProperty (transitivity of precedence).

16. An ontProperty cannot be “preceded” by itself (non reflexivity of precedence).

6.4.4 Constraints on States and Transformations

The final and most complex group of constraints deal with States and ontTransformations. The
three first constraints deal with coherence between State, Properties, Class and ConstructDescrip-
tion. The last one ensure‘s that every ontTransformation is different.

17. If an ontState has a set of ontProperties, there must be an ontClass whose set of “charac-
teristic Properties” is a (possibly improper) superset of the first set.

18. If a ConstructDescription contains a RepresentedState and the corresponding ontState has
a set of ontProperties, then there must be an ontClass whose set of characteristic Properties
is a (possibly improper) superset of the first set and the ConstructDescription must contain
the corresponding RepresentedClass.

19. If a ConstructDescription contains a RepresentedState and the corresponding ontState has
a ontProperty, then the ConstructDefinition must also contain a corresponding Represent-
edProperty.

20. Two distinct Transformation cannot have identical “from-” and “toStates”.

A Validation tool for the UEML Approach Jérémy Mahiat

52 The UEML 2.0 Meta-Meta-Model

6.5 Summary

In this chapter we presented the UEML meta-meta-model and the BWW-model on which it relies.
We also provided an example of its use. The end of this chapter coincides with the end of the
first part. In this first part, we learned what EMLs are and what are their problems caused by
their diversity. We explored a solution to this problem with UEML and particularly its second
version. UEML 2.0 relies on a template and a meta-meta-model that build an ontology based
on the BWW model. This ontology constitutes a base of knowledge that enables the UEML
applications (language comparison, model translation or language consistency checking). In the
second part we will focus on tools that support UEML 2.0 and especially on the tool we made, a
validator of the constraints.

A Validation tool for the UEML Approach Jérémy Mahiat

Part II

Contribution

53

Chapter 7

Tools

In the previous part we learned what is UEML. Now, we are going to explore the tools that help
achieve the objectives fixed by UEML 2.0. These tools assist one to follow the general approach
we saw in Section 3.2.2 and to keep the data gathered from the analyses in a structured way.

7.1 Tools overview

In this section we present the tools that help to perform the analysis of languages constructs. Figure
7.1 depicts a typical scenario of applying UEML techniques and tools. This is an adaptation of
the general method presented in Figure 3.3. The different steps are:

1. studying the language;

2. filling in the text-based template;

3. entering the data into Protégé ;

4. validating the construct defintions;

5. using the knowledge to compare, to translate or to check consistency.

The first step consisting in studying the language usually provides a meta-model of the lan-
guage. This step is not usually supported by tools except for (meta-) modelling tools which do
not offer particular guidance.

Secondly, one has to fill in the text-based template presented in chapter 4. This step is not
yet assisted by a tool. For this step, a tool could help to select the ontology classes a construct
represent, and to graphically do the analyses instead of writing everything.

Thirdly, in order to have a formalized knowledge, data have to be entered in the Protégé
tool (that we will call Protégé UEML Tool from now on). Results are then put in a central base
representing the meta-meta-model. This central base is automatically written in OWL by Protégé.

The fourth step consists in validating the analysis. Validation is performed using “UEML
Validator”, one of the major contribution of this work. This tool is described in Chapter 8.

Finally, a last tool called “UEML Semantic template manager” is under development. Its goal
is to manage the data instead of the Protégé UEML Tool. It could also enable the update of the
knowledge base from a distant location by several people at the same time.

55

56 Tools

Figure 7.1: Typical scenario of applying UEML techniques and tools.

The main requirements of the three tools are:

Requirement 1 to gather the results of the construct analyses;

Requirement 2 to check the construct analyses;

Requirement 3 to enable an easy and distant update of the knowledge base;

Requirement 4 formalize the construct analyses;

Requirement 5 to enable an easy comparison.

7.2 UEMLBase

The Protégé UEML Tool is used for gathering all the analyses in one unique base and to formalize
the results. Filling in the template with the Protégé tool is not really different than answering
to the question of the text-based template, but with this new tool some improvements have been
brought. First, the knowledge about the analyzed constructs are all in one OWL file managed by
the tool. Then the analysis is more standardised as the data are managed by a tool. However, the
Protégé version of the template only deals with the Preamble and Representation sections of the
general approach (Section 3.2.2).

In order to formalize the analyses, the meta-meta-model has been described in the Protégé
UEML Tool. Forms were also elaborated in order to collect the analyses data. With this descrip-
tion and these forms, Protégé allows one to enter the results of his analysis in a central OWL
file.

As we see in Figure 7.2 the Protégé UEML Tool is composed of the different tabs we saw in
Section 5.3.1. In order to enter the data, we thus have to use the “Individual” tab. In this tab
one can choose the form of the kind of thing he wants to add an instance (e.g. RepresentedClass
or ConstructDescription). In each form one has to fill in the different fields.

Protégé does not really help to do the analysis. The best way to use it is to first follow the
template (e.g., by doing the text-based analysis) and then to add the results into the tool.

For the comparison, every analysed data is in the same base and can easily be consulted.
However nothing is done to facilitate the finding of constructs respecting some constraints (e.g.,
every construct representing one ontologyClass).

A Validation tool for the UEML Approach Jérémy Mahiat

UEML Validator 57

Entering the data is easy but there is nothing to check if one forgot something mandatory
or if something does not comply with the constraints we presented in Section 6.4. Indeed, even
mandatory fields or relationships of an entity are not checked (this is partially due to the fact that
we need a form for each different entity).

The most important contributions of the Protégé tool are thus to have a unique base of the
whole knowledge (Requirement 1) and to formalize the analyses (Requirement 4). This knowledge
base, coded in an OWL file, is called the UEMLBase.

Figure 7.2: Protégé UEML Tool.

7.3 UEML Validator

The purpose of “UEML Validator” is to check the consistency of the analyses (i.e., if all the
constraints presented in section 8.3 are respected). For each constraint it gives a list of the
instantiations that do not respect it.

The main goal is to meet Requirement 2 and thus to get a consistent base at the end of the
process. However there are also other objectives as emphazing “usual” mistakes, finding a list of
mistakes that can be avoided by the new user interface or testing the “correctness” of the meta-
meta-model. As “UEML Validator” is the work we have done, we present it much more deeply in
chapter 8.

7.4 The “UEML Semantic template manager”

With the Protégé UEML Tool, construct analyses are managed in a central base that enables
the use of the global knowledge. However, a problem remains: collaboration. Indeed, with the
UEMLBase we can distribute the OWL file but it is impossible to update it simultaneously. As
many people are involved in the process of languages analysis, the update of the central UEMLBase
is problematic. The “UEML Semantic template manager ” is a tool for publishing and exchanging

A Validation tool for the UEML Approach Jérémy Mahiat

58 Tools

Figure 7.3: The UEML Semantic template Manager.

UEML templates. It is still a project under construction. It would replace the Protégé UEML
Tool and provide other possibilities like the support of distant work. A prototype graphical user
interface has already been developed (Figure 7.3) by Torbjørn Vefring a student of Pr. Opdahl.
The solution is planned to be an online system for specification, sharing and editing of language
constructs. Initially the system will be used by a few researchers but a goal is that it can be used
by knowledgeable people in the role of language managers. The system to be developed should
be a tool that supports asynchronous distant work and possibly features validation of input and
version control.

This will require a design that is intuitive even for persons not familiar with the system; it
should have an intuitive interface and actually aid the users in their primary goal by contributing
to make the work less error prone, improve cooperation and thus make the prototype cost effective.

The main function of the system is to implement the meta-meta-model which allows language
managers to create relationships across EMLs. “UEML Semantic template manager” should con-
tribute to more effective information sharing through improving the information flow among users.
It might also reduce repetitive or manual work, hence reducing the risk of errors and possibly im-
proving the work environment for the end-user.

7.5 Summary

In this chapter, we saw the main tools supporting the UEML 2.0 approach. They help one to
perform a language analysis compliant with the UEML approach and to manage the results of

A Validation tool for the UEML Approach Jérémy Mahiat

Summary 59

these analyses. In the next chapter we will see the tool we built in order to face a problem of the
Protégé UEML Tool: almost nothing is validated.

A Validation tool for the UEML Approach Jérémy Mahiat

Chapter 8

The UEML Validator

In the previous chapter we presented an overview of the tools that help to support the UEML 2.0
approach. In this chapter we are going to investigate in details the tool called “UEML Validator”.
We first remind its objectives before explaining how it has been implemented. We will then see
the constraints it checks.

8.1 Purpose

As we saw in the previous chapter, “UEML Validator” aims to check the UEMLBase consistency.
It concentrates on Requirement 2 (see Section 7.1). For this, it checks if the constraints we
present in section 8.3 are respected in the whole OWL file containing the analyses results. As
already mentioned in the previous chapter, “UEML Validator” also has secondary objectives such
as emphazing “usual” mistakes in order to make a list of errors that can be avoided by UEML
Semantic template manager or testing the consistency of the model.

8.2 How it works

In this section we explain the architecture and the way the “UEML Validator” works. We also give
instructions on how to write and comment new rules that could be checked by “UEML Validator”.
Indeed, as we will explain later, the tool is independent from the model and the rules. Rules can
thus be removed or added easily depending on the model and its evolution.

8.2.1 Architecture

Figure 8.1: UEML Validator’s pipes and filters architecture.

61

62 The UEML Validator

The “UEML Validator” has a pipe and filter architecture. Indeed, as we can see in Figure 8.1
it takes the informations of the OWL file in order to make a Prolog fact base. Then it adds the
rules written in a separate file and finally, it checks them with the help of another (see section
8.2.4) file and shows the errors.

The “UEML Validator” has been made as independent from the model and the constraints as
possible. The model of which we want to check constraints is not important. The only thing it has
to respect is to have been written in OWL. Indeed, it generates the prolog base without knowing
the name of the classes. The model has thus just to be written in OWL and to respect its syntax.
This is the same for the rules that have to be checked. But even so, they have to respect two
constraints:

1. to be written in Prolog;

2. to correspond to the way facts are generated (see section 8.2.3).

The model and the rules are not hard coded in the program so they have to be given to the
program.

8.2.2 Implementation

“UEML Validator”’s implementation is rather simple. Indeed, the difficult part of the work was to
find the constraints (see Sections 8.3 and 6.4.1) and to state them in Prolog. “UEML Validator”
uses two main libraries: Jena [Lib] for the OWL extraction and JPL [Lp] for the Prolog part.

The “UEML Validator” class diagram is depicted in Figure 8.2. The main class of the program
is OC ConstraintChecker. It is the one that manages the graphical interface and call the dif-
ferent methods in order to check the model given in the graphical interface. The OWLParser class
is the one using Jena. It is used to transform the OWL file of the model into a Prolog fact base.
Jena enables one to get individuals from the OWL files in a logical way (without having to parse
the whole file manually). The fact base is given to Prolog thanks to the importFacts method of
the Prolog class. This Prolog class is actually the one that makes the link with the SWI-Prolog
engine thanks to JPL. It enables one to send queries to the Prolog engine and get its answers. In
order to check the constraints on the fact base, the Checker class takes each constraints from the
rules and rulesToCheck files and gives them to the Prolog class. The Prolog answers are then
given back to the main class that displays them.

8.2.3 Prolog base generation

As we wanted an independent and reusable tool we had to decide of a standard way to generate
the Prolog facts from the instances of the OWL file. It is necessary because without knowing how
facts are generated, it is impossible to write the rules. An OWL file is composed of three main
concepts: classes, object properties and datatype properties.

The instances of classes produce this kind of Prolog fact:
nameoftheclass(nameoftheinstance).

The instances of object properties are written:
objectpropertyname(nameoftheinstance, valueoftheproperty).

Finally, as datatype properties are usually used to describe properties of a class, they are written:
nameoftheclass-datatypepropertyname(nameoftheinstance,valueoftheproperty).

The following simple OWL description can be represented with an object diagram (Figure 8.3).

A Validation tool for the UEML Approach Jérémy Mahiat

How it works 63

Checker

−prologFiles:String

−rulesFile:String

−rulesToCheckFile:String

−owlFile:String

−factsFile:String

+Checker():Checker

+check():void

OWLParser

+parse():Boolean

Prolog

+importFacts():void

+ask():Hashtable[]

<< use >>

OC_ConstraintChecker

<< use >>

<< use >>

class Diagram

Figure 8.2: UEML Validator class diagram.

<DiagramTypeDescription rdf:ID="GRLModel">

<usesConstruct rdf:resource="#GRLSoftGoal"/>

<diagramTypeName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

GRL_Model

</diagramTypeName>

</DiagramTypeDescription>

<ConstructDescription rdf:ID="GRLSoftGoal">

<constructName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

SoftGoal

</constructName>

<usedInDiagram rdf:resource="#GRLModel"/>

</ConstructDescription>

This example would generate those Prolog facts:

diagramtypedescription(grlmodel).

constructdescription(grlsoftgoal).

usesconstruct(grlmodel,grlsoftgoal).

usedbydiagram(grlsoftgoal,grlmodel).

diagramtypedescription-diagramtypename(grlmodel,grlmodel).

constructdescription-constructname(grlsoftgoal,softgoal).

We provide an excerpt of the facts generated by UEML Validator with the UEMLBase 0.06 in
Appendix C.

A Validation tool for the UEML Approach Jérémy Mahiat

64 The UEML Validator

Figure 8.3: Example of Prolog facts generation from an OWL file as an Object Diagram.

8.2.4 The rules

The rules represent the constraints that “UEML Validator” has to check. They are are written in
Prolog in a separate file. The only restrictions for the rules are to respect the Prolog’s syntax and
to correspond to the model. Intermediate rules that would help to write the rules one wants to
check can be written in the same file. In order to check the selected rules (i.e., the constraints and
not the intermediate rules) another file is needed. This file is called “rules to check”. In this file,
the rules to check are specified and described in a few words. Those few words are those that will
be displayed by “UEML Validator” when giving the results. This file has to respect the following
syntax:

‘‘<DESCRIPTION>-<RULE>
’’.

where <DESCRIPTION> is an explanation sentence that does not contain any dash and <RULE>

is the name of the rule in Prolog. For instance, if we have those rules in the rules file:

hasDifferentProp(X,Y):- ontologyclass(X), ontologyclass(Y),

not(X=Y), relationtoproperty(X,A), property(A,C),

relationtoproperty(Y,B), property(B,D), not(C=D).

sameProperties(X,Y):- ontologyclass(X), relationtoproperty(X,_),

ontologyclass(Y), relationtoproperty(Y,_), not(X=Y),

not(hasDifferentProp(X,Y)).

We could have this following line in the “rules to check” file :

OntClasses having the same set of ontProp - sameProperties(X,Y).

This example is a possible “implementation” of the following rule: “Two different ontClasses
cannot have the same sets of ontProperties” (rule 32 in Appendix A).

8.3 Implemented constraints

Before explaining the results we got with “Validator”, we present the constraints it checks in the
context of the meta-met-model. We defined 8 categories of constraints:

• “about mandatory fields”, where the mandatory attributes for each entity are listed;

A Validation tool for the UEML Approach Jérémy Mahiat

Implemented constraints 65

Table 8.1: Constraints group correspondences (the numbers in brackets represent the number of
rule in each category).

New Constraints Existing Constraints

Mandatory fields (8)
/Relationships and cardinalities (19)

Several ConstructDescription (1)
Identifying names (4) Names (5)
Classes (5) ont- and Represented-Classes (3)
Properties (15) ont- and Represented-Properties (8)
States (8)

States and Transformation (4)
Transformation (3)

• “about relationships and cardinalities”, that deal with constraints concerning direct rela-
tionships between entities;

• “about Identifying names”, where names that have to be unique are given;

• “about Classes”, where we present constraints related to Represented - and ontClasses ;

• “about Properties”, where we present constraints related to Represented - and ontProperties ;

• “about States”, where we present constraints related to Represented - and ontStates ;

• “about Transformations”, where we present constraints related to Represented - and ont-
Transformations ;

• “about several ConstructDescriptions”, that deals with constraints related to several Con-
structDescriptions.

In Table 8.1 we show the correspondences between the constraints described in Section 6.4.1
and the ones presented here. All the rules presented in Section 6.4.1 are included in the next
ones. The rules not mentioned before were written during our internship. The entire set of rules
is described in Appendix A. We present here some rules from every category. Each rule is first
described in English and then expressed in OCL [OMG05]. We express them in OCL because we
used UML class diagram to represent the meta-meta-model and because OCL is the standard way
to express constraints and queries.

8.3.1 Mandatory fields

In this section we give the list of mandatory attributes for each entity. “Validator” shows an error
if one those fields is empty.

LanguageDescription

• languageName

• languageVersion

Context: LanguageDescription
inv: languageName.notEmpty() AND languageVersion.notEmpty()

A Validation tool for the UEML Approach Jérémy Mahiat

66 The UEML Validator

8.3.2 Relationships between entities

In this section we list the constraints concerning direct relationships between entities. Those
constraints are a translation of the cardinalities we can find on the meta-meta-model. They have
to be checked by “Validator” because there is nothing to check it within OWL. As for the previous
section, OCL expression is not given for every constraint for more clarity.

• Each DiagramTypeDescription has to be defined by a language.

Context: DiagramTypeDescription
inv: definedByLanguage.notEmpty()

• Each ConstructDescription has to belong to a language and has to be used by a diagram-
TypeDescription of this language.

Context: ConstructDescription
inv: belongsToLanguage.notEmpty() AND

UsedInDiagram.notEmpty() AND

belongsToLanguage =
UsesDescription.definedByLanguage

• Each OntTransformationLaw must effect an ontTransformation.

Context: OntTransformationLaw
inv: effectsTransformation.notEmpty()

8.3.3 Identifying Names

In this section we give the list of names that have to be unique in a certain scope.

• Two ConstructDescriptions cannot have the same constructName inside the same language.

Context: LanguageDescription
inv: definesConstruct− >isUnique(constructName)

• The roleName of each RepresentedPhenomenon of a ConstructDescription must be different.

Context: ConstructDescription
inv: describedBy− >isUnique(roleName)

8.3.4 Classes

In this section we produce the constraints concerning represented and ontological classes. They
deal with uniqueness of ontClasses in terms of ontProperties set and with the “generalization”
and “represents” relationship.

• Two different OntClasses cannot have the same sets of OntologyProperties.

A Validation tool for the UEML Approach Jérémy Mahiat

Implemented constraints 67

Context: OntClass
inv: self − > forAll(c1, c2 | c1 <> c2 implies

c1.characterizedBy <> c2.characterizedBy)

• If the set of OntProperty of an OntClass is a subset of the set of OntProperty of another
OntClass, then the first OntClass must generalize the second one.

Context: OntClass
inv: self − > forAll (c1,c2 | c1.characterizedBy.includesAll(c2.characterizedBy)

implies c1.genClass(c2))

8.3.5 Properties

It this section the constraints concerning Properties are listed. They deal with the Represented-
Class and RepresentedProperties a constructDescription have to possess, the coherence between
Properties sets of RepresentedClass and OntClass, the coherence between Classes of Represent-
edProperties and OntProperties, the “precedence” relationship, the coherence of the “contain”
relationship, the StateLawProperties, the TransformationLawProperties and with the “represent”
relationship.

• A ConstructDescription must describe the RepresentedProperties of the RepresentedClass it
describes and vice-versa.

Context: ConstructDescription
Inv: self.describedBy− >select(c: RepresentedClass |

c.characteristics.describesConstruct.includes(self))
and
self.describedBy− >select(c: RepresentedProperty |

c.characteristics.describesConstruct.includes(self))

• If a RepresentedClass has a RepresentedProperty then the corresponding OntClass must have
the corresponding OntProperty.

Context: RepresentedClass
Inv: represents.characteristics.includesAll(self.characteristics.represents)

8.3.6 States

The constraints concerning States are concentrated in this section. Those constraints deal with
the Class of State, the Properties of a State, and with the “generalization” and “represent” rela-
tionships.

• A RepresentedState must be restricted by a RepresentedStateLawProperty.

Context: RepresentedState
Inv: restrictedByStateLaw.notEmpty()

• If a RepresentedState has a set of RepresentedProperties, there must be a RepresentedClass
whose set of characteristic RepresentedProperties is a (possibly improper) superset of the
first set.

A Validation tool for the UEML Approach Jérémy Mahiat

68 The UEML Validator

Context: RepresentedState
Inv: self − > forAll(rs | RepresentedClass − > exists(c |

c.characteristics.includesAll(rs.defining)))

8.3.7 Transformations

The constraints concerning Transformations ensure that two OntTransformation are not the same
in term of from- and to-State and the coherence of the “contains” and “represents” relationships.

• Two distinct OntTransformations cannot have identical from- and to-States.

Context: OntTransformation
Inv: self − > forAll(t1,t2 | t1.preState=t2.preState and

t1.toState=t2.toState implies t1=t2)

8.3.8 Several ConstructDescriptions

• A representedPhenomenon can only be described by one construct.

Context: RepresentedPhenomenon
Inv: self.describedBy.size() = 1

8.4 Summary

In this chapter, we saw the purpose of “UEML Validator”, how it works and or it has been
implemented. We also produced a list of constraints concerning the UEML 2.0 meta-meta-model.
These constraints were formalized with OCL. With this chapter, we arrive at the end of the second
part which presented an overview of the tools that support the UEML 2.0 approach. The next
part provides applications that illustrate the use of UEML and its tools.

A Validation tool for the UEML Approach Jérémy Mahiat

Part III

Application

69

Chapter 9

Tool testing

In this chapter we present the results we generated while using “UEML Validator” on the UEML-
Base 0.06 containing the UML Class diagram analysis. It shows how helpful it is in the case of
UEML. Indeed, many constraints are really easy to forget or are not even known. Moreover, as
we saw in Chapter 7, data have to be entered with the Protégé interface which does not help to
link information.

We do not give explanations on the Class diagram analysis as we will do so in the next chapter
for GRL. This analysis was used to debug “UEML Validator” and to prove the usefulness of it.
We first present the mistakes “UEML Validator” found on UEMLBase 0.06 and then present an
interpretation of these errors.

9.1 Kind of mistakes

We found some twelve different types of mistakes in the UEMLBase 0.06 containing the analysis
of UML Class diagram made by Prof. Opdahl (see Figure 9.1). These mistakes exist because a
human has to enter the data concerning the analysis and humans are not perfect. In addition,
the data of UEMLBase 0.06 were entered by the creator of the meta-meta-model and its Protégé
counterpart. We guess we would find much more mistakes in analyses coming from other people
that could have a lack of knowledge.

The rules enforced correspond the the rules 8, 10, 11, 14, 32, 37, 38, 39, 41 and 42 in Ap-
pendix A. These mistakes mainly concerned relationships (e.g., a construct that does not belong
to any language – rule 10), bad name of “foreign key” (the “relatedConstruct” field in the Con-
structDescription – rule 11 class) but also the ontology management (e.g., a RepresentedClass
characterized by RepresentedProperty which corresponding OntClass is not characterized by the
corresponding OntProperty – Rule 38).

9.2 Interpretation

“UEML Validator” can help the user because he does not exactly know what is already in the on-
tology. For example, it can show to the user that an ontClass he added could be the specialization
of another he did not even know it existed.

The errors helped us to make a list of recommendations for the development of UEML Semantic
template manager (see Section 9.3) and showed up an improvement to do in the design of the meta-
meta-model.

71

72 Tool testing

The improvement is about relatedConstructName property of the constructDescription class.
As this field is supposed to contain the other similar constructs descriptions of the language, they
have to exist in the model. The best way to express that would be to have a relationship to these
other constructs and not a field we can fill in manually. ¡

Figure 9.1: The UEML Validator.

9.3 Recommendations

In this section, we list what could be done with the UEML Semantic template manager in order
to avoid the typical errors we found by using “UEML Validator” on UEMLBase 0.06.

9.3.1 Missing properties

The tool could easily warn the user when a mandatory field is not filled in. Here is a list of fields
this tool should check (the numbers in brackets refer to the rules in Appendix A):

1. LanguageDescription : languageName, languageVersion (1,2);

2. DiagramTypeDescription : diagramTypeName (3);

3. ConstructDescription : constructName, instantiationLevel (4,5);

4. RepresentedPhenomenon : roleName, represents, TypeOrValueOrNot (6,7, 36, 49, 50, 51,
59, 61);

5. RepresentedProperty : relationToRepClass (14);

A Validation tool for the UEML Approach Jérémy Mahiat

Recommendations 73

6. RepresentedTransformationLaw : effectsRepTransformation (19);

7. RepresentedStateLaw : restrictsRepState (18);

8. RepresentedTransformation : preRepState, postRepState (17);

9. OntologyPhenomenon : name (8);

10. OntologyProperty : relationToClass (22);

11. OntologyTransformationLaw : effectsTransformation (27);

12. OntologyStateLaw : restrictsState (25);

13. OntologyTransformation : preState, postState (23, 24).

9.3.2 Automatic additions

The tool could also propose to the user to add many things automatically. Indeed, depending on
what the user has already entered, it can tell him to add some relationships or phenomena. Here
is the list of these automatic additions:

1. When a RepresentedClass is said to describe a ConstructDescription, the GUI should add
the RepresentedProperties of this RepresentedClass to the list of RepresentedPhenomenon
that describe the ConstructDescription (37);

2. Conversely, when a RepresentedProperty is said to describe a ConstructDescription, the GUI
should add the RepresentedClass of this RepresentedProperty (37);

3. When a RepresentedState is said to describe a ConstructDescription, the GUI should add
the RepresentedPoperties with which this RepresentedState is defined to the list of Repre-
sentedPhenomenon that describe the ConstructDescription (55);

4. When a RepresentedProperty is added to a RepresentedClass, the GUI should propose to
add the corresponding OntProperty to the corresponding OntClass if it is not yet done (39);

5. When an OntProperty is said to characterize an OntClass, the GUI should propose to add
the OntProperties that precede this OntProperty to the list of OntProperty that characterize
this OntClass if it is not yet done (41);

6. When an OntProperty is said to be preceded by another OntProperty, the GUI should propose
to add all the OntProperty that precede this other OntProperty to the list of OntProperty
that precede this first OntProperty (42);

7. When a new OntTransformation is added, the GUI should check if the same does not already
exist (having the same pre- and postConditions) (60).

In some cases, the UEML Semantic template manager should add automatically, and in other
cases not. We think, it should not always add automatically because managing the ontology is
not something easy. It needs a lot of reflexion. By proposing one to add something, the UEML
Semantic template manager will maybe show him he is about to make a mistake instead confirming
him in his opinion.

A Validation tool for the UEML Approach Jérémy Mahiat

74 Tool testing

9.4 Summary

The use of “UEML Validator” on UEMLBase 0.06 showed the usefulness of the tool. Indeed, it
found many mistakes while it was made by the creator of the UEML method and meta-meta-
model. The results of “UEML Validator” also gave us the opportunity to make recommendations
for the future UEML 2.0 tool. In the next chapter we will provide a complete analysis of the GRL
Goal construct.

A Validation tool for the UEML Approach Jérémy Mahiat

Chapter 10

Case Study

In this chapter, we present a UEML 2.0 application with its tools. The goal is to show how to use
UEML and how important the tools are. We first explain the method we will follow, and then do
the analysis. The language used for the purpose of the case study is GRL presented in Section
2.3.

10.1 The method

The purpose of the case study is to illustrate how tools, supporting the UEML approach, could
be used for language analysis. [DHP05, MHO06] provide an analysis of the GRL constructs. In
this section we will focus on the Goal construct. In order to perform the analysis of GRL Goal
construct, we will follow the scenario depicted in section 7.1 that is a way of putting into practice
the UEML strategy of Section 3.2.2. We will use the tools currently available (i.e., the Protégé
UEML Tool and “UEML Validator”). We begin thus with the study of the language and the
production of its meta-model. Then we follow the text-based template and enter the results into
the Protégé UEMLBase. Finally we check the analysis consistency with “UEML Validator” and
do the necessary improvements.

10.2 Language study

We already presented GRL in section 2.3. For this chapter we will only perform the analysis of
the “Goal” construct. As explained in Section 6.3 GRL goal is played by an “ontological scene”
called theGoal and presented in Figure 10.4. We also provide the GRL meta-model (Figure 10.2).
This meta-model was made by [DHP05] who explains it as follow:

“Figure 10.1 gives the top-level view of the metamodel. The 4 main types of elements appear
immediately: Actor, IntentionalElement, NonIntentionalElements, and link (that was renamed
IntentionalRelationship, to be compliant with the GRL syntax definition). Instances of NonInten-
tionalElements are proxies used by GRL as a reference to constructs in different models. Figure
10.2 details the 5 kinds of intentional elements: SoftGoal, Resource, Task, Goal and Belief. it also
introduces the various kinds of GRL relationship types as subclasses of IntentionalRelationship.
How these interact with other classes is detailed in Figure 10.3. In Figure 10.2, various abstract
classes appear: IEButBelief (denoting all intentional elements except beliefs), Correlator, Con-
tributee, Contributor and Depender/Dependee. These latter classes are somewhat artificial. We
introduced them for the sole purpose of showing graphically and succintly the groups of classes
which are likely to play a role with respect to an intentional relationship. For example, the GRL

75

76 Case Study

syntax requires that the contributee in a contribution relationship is either a belief, a softgoal
or an intentional relationship. Therefore, we have introduced an abstract superclass Contributee
generalizing Belief, SoftGoal and IntentionalRelationship. This way, modelling GRL relationship
types becomes much easier. We can observe that in Figure 10.3. For example, we see that rep-
resenting contribution relationships only requires one class (ContributionRelationship) and two
associations (contributor and contributee) both pointing to abstract classes (respectively Contrib-
utor and Contributee). If we had not introduced these abstract classes, the associations would
have been multiplied (one for each type of contributor and one for each type of contributee)
and OCL constraints would have been necessary to exclude that a contribution relationship has
more than one contributee. To distinguish them from the other more obvious classes, all such
abstract superclasses have been given the stereotype “PossibleRole(s)” and were named after their
corresponding roles (except IEButBelief, for brevity).”

Figure 10.1: Top-Level view of the GRL Meta-model (from[DHP05]).

10.3 Text-based Template

In this section we provide the analysis done with the test-based template presented in Chapter 4.
This is the results of the analysis done by [DHP05] and [MHO06].

10.3.1 Preamble

• Construct name – Goal

• Alternative construct names – Condition to achieve, State of affairs to achieve, Objective

• Related, but distinct construct names – SoftGoal

• Related terms

– Intentional element: a goal is an intentional element. Intentional element is the set
comprising SoftGoal, Ressource, Task, Goal and belief.

– Sub-element: this is the role played by a goal which is decomposed in a decomposistion.

– Dependum: that is the role played by a goal, a softgoal, a ressource or a task depended
on in a dependency.

A Validation tool for the UEML Approach Jérémy Mahiat

Text-based Template 77

Figure 10.2: GRL Meta-model: zoom on intentional elements (from[DHP05]).

A Validation tool for the UEML Approach Jérémy Mahiat

78 Case Study

Figure 10.3: GRL Meta-model: zoom on intentional relationships (from[DHP05]).

A Validation tool for the UEML Approach Jérémy Mahiat

Text-based Template 79

– End: this is the role played by a goal which is the objective achieved using task in a
means-end link.

• comments: sometimes a goal plays the role of a depender or a dependee in a dependency
relationship (if this goal is held by an actor). In this analysis we ignored this case.

• Language – Recommendation Z.151 (GRL) - Version 3.0, Sept. 2003
http://www.usecasmaps.org/urn/z 151-ver3 0.zip
Also called GRL or URN-NFR

• Diagram types – GRL Model (the only diagram type in GRL)

10.3.2 Presentation

• Icon – A goal is represented by an oval with the name inside and attributes between square
brackets. Here is an example:

• Builds on – None

• Built on by

– A dependency can have a goal dependum

– A decomposition can have a goal as a decomposed element

– A means-end can have a goal as end element

• comments: sometimes a goal plays the role of a depender or a dependee in a dependency
relationship (if this goal is held by an actor). In this analysis we ignored this case.

• User-definable attributes

– Name: the name of the goal

– Description: an optional textual description of the goal

– Evaluation:

– Any other attribute the user wishes to add

• Relationships to other constructs

– Belongs to 1..1 GRL Model

– Can have 0..n Attribute

– Can be held by 0..1 Actor

– Can play the role of

∗ a dependum in 0..n dependency links

∗ a sub-element in 0..n decomposition link

∗ an end element in 0..n means-ends link

• Layout conventions – Nothing particular

A Validation tool for the UEML Approach Jérémy Mahiat

80 Case Study

10.3.3 Representation

• Instantiation level – Both type and instance level.

• Classes of things

– ActiveThings representing the actor holding the goal.

∗ Cardinality 1-1

∗ Role name: “Actor”.

– ActedOnComponentThings representing what the goal is about.

∗ Cardinality 1-1

∗ Role name: “ThingGoalIsAbout”

• Properties (and relationships)

– ComplexLawProperties representing the goal

∗ Cardinality: 1-1

∗ Role name: “theGoal”

∗ characterizes “Actor”

– AnyRegularProperties representing the name of the goal

∗ Cardinality: 1-1

∗ Role name: “name”

∗ characterizes “Actor”

∗ subProperty of “theGoal”

– AnyRegularProperties representing the evaluation of the goal

∗ Cardinality: 1-1

∗ Role name: “evaluation”

∗ characterizes “Actor”

∗ subProperty of “theGoal”

– AnyRegularProperties representing the description of the goal

∗ Cardinality: 1-1

∗ Role name: “description”

∗ characterizes “Actor”

∗ subProperty of “theGoal”

– MutualProperties representing the properties the goal is about

∗ Cardinality: 1-1

∗ Role name: “IsAbout”

∗ characterizes “ThingGoalIsAbout”, “Actor”

∗ subproperty of “theGoal”

• Behaviour – Lifetime

• Modality – The holding actor wishes the state law represented by the goal to become true.

The Figure 10.4 depicts the phenomena described by the Goal construct as explained in the
template.

A Validation tool for the UEML Approach Jérémy Mahiat

Protégé UEML Tool 81

Figure 10.4: The phenomena represented by the “Goal” construct (from [MHO06]).

10.4 Protégé UEML Tool

Using the UEML Base consists in “translating” the text-based analysis. Indeed, the results of the
previous step concerning the preamble and the representation parts are entered via the Protégé
forms made for UEML 2.0. As explained in Section 7.2 the main goal is to have a common
base for every construct of every language that allows to compare them. This step is not easy
because of all the links existing between entities. We show in Figure 10.5 the data concerning the
RepresentedProperty “theGoal”.

10.5 UEML Validator

With “UEML Validator” we know if the data entered in the UEMLBase respect the constraints
listed in Section 8.2.4. As we can see in Figure 10.6 (error 19), “UEML Validator” found a mistake
on the analysis entered. It says that the RepresentedProperties GrlGoalName, GrlGoalDescription

and GrlGoalEvaluation do not characterize any RepresentedClass. Indeed, every Represented-
Property has to characterize a RepresentedClass. It is important because, then the corresponding
OntProperty has to characterize to corresponding OntClass. It is important to know which kind
of things the properties that describe a construct, characterize. In order to correct these mistakes
we just have to add the link between the RepresentedClass Actor and the RepresentedProperties
GrlGoalName, GrlGoalDescription and GrlGoalEvaluation . This relationship is not shown
in Figure 10.4 for more clarity (the sub-properties characterize the same class than their sup-
property, if nothing is said) but was already mentioned in the text-based analysis.

A Validation tool for the UEML Approach Jérémy Mahiat

82 Case Study

Figure 10.5: The “Goal” construct in the Protégé UEML Tool.

When entering the complete GRL analysis in the UEML Base, many mistakes were found by
“UEML Validator”. Theses are the mistakes number 7, 13, 18, 17, 20, 37, 38, 53, 54, 55 and 57 of
Appendix A.

10.6 Observations

In this Section we will provide comments about the analysis and about “UEML Validator” behav-
iour. For the analysis we will discuss the mapping of theGoal and for “UEML Validator” we will
discuss the results it does not provide.

A Validation tool for the UEML Approach Jérémy Mahiat

Observations 83

Figure 10.6: The error showed by “UEML Validator”.

10.6.1 UEML Validator is not context-dependant

In the previous Section “UEML Validator” mentionned that the RepresentedProperties description,
name and evaluation had to characterize a RepresentedClass. But it did not mention any error
about the RepresentedProperty IsAbout. In truth, Isabout should also characterize the Repre-
sentedClass Actor because it is a MutualProperty. “UEML Validator” is not context dependent.
It knows the generic rule that each RepresentedProperty has to characterize a RepresentedClass
but does not take into account on which instance of the ontology the RepresentedPhenomenon is
mapped. This is why this error was not spoted by “UEML Validator”.

10.6.2 theGoal as a LawProperty

In Section 10.3, we mapped theGoal on the OntClass ComplexLawProperty. However, a LawProperty
is either a stateLawProperty or a transformationLawProperty. But in the case of GRL, a Goal
is sometimes a stateLawProperty and sometimes a transformationLawProperty. Because of
this, we cannot represent the state or transformation the construct may represent. This lead to a
loss of information. [MHO06] depicts this situation and shows that KAOS [Lam03, Let01] divides
these two cases by defining goal patterns: achieve and cease for transformationLaws and avoid
and maintain for stateLaws. It and enables us not to loose any information in the mapping.

A Validation tool for the UEML Approach Jérémy Mahiat

84 Case Study

10.7 Summary

In this chapter we described how the UEML 2.0 approach works in practical terms. We also
explained the use of the different tools. The application allowed us to find a mistake in our
Protégé Base updated with the “Goal” analysis. This chapter closes the last part of the thesis.
General conclusions are given in the next chapter.

A Validation tool for the UEML Approach Jérémy Mahiat

Chapter 11

Conclusion

11.1 The problem

We noticed that enterprise modelling (EM) can be used by companies in every sector. It can
also be used to model many different enterprise areas such as organisation, resources, information,
requirements, goals and strategy. This extremely large scope gave rise to many different enterprise
modelling languages (EML). The different enterprise models inside one enterprise are interrelated
and enterprises cooperate more and more exchanging many of their models. But most EMLs
are implemented in tools with proprietary terminology and modelling constructs. The different
enterprise models are thus incompatible. A real need for EML interoperation appeared.

11.2 Contribution

The thesis investigated the solutions given by the two versions of Unified Enterprise Modelling
Language (UEML) in the domain of EMLs interoperability. We briefly presented the first version
before going into details in the second version. We explored the UEML 2.0 approach and more
particularly its template and meta-meta-model.

The template is the method to follow in order to perform UEML 2.0 compliant EML analyses.
In order to incorporate a language into UEML, each of its modelling constructs has to be described
in a standard way defined by the template. It consists in a text-based form divided in 3 main parts:
Preamble, Presentation and Representation. The preamble section deals with general issues about
the modelling construct; the presentation section describes the visual presentation of the modelling
construct and the representation section deals with the semantic aspects of the constructs.

The meta-meta-model enables one to keep the knowledge acquired thanks to the template and
to build an ontology of what the EMLs can represent. This ontology relies on the BWW model
but grows up specifically when adding new constructs descriptions.

The method aims to enable one to work with the knowledge acquired thanks to the template
in order to build the UEML as a federator. But doing that manually becomes rapidly impossible.
This is the reason why tools are necessary. We presented the existing tools and the tool we
made (“UEML Validator”). The Protégé UEML Tool is very useful because it manages the whole
ontology in one unique OWL file. “UEML Validator” enables one to check if the analysis done
respects the constraints. These constraints restrict how the meta-meta-model can be populated
and ensure it is more consistent.

Our work, and more particularly “UEML Validator”, gave different kinds of results. First,
we produced and formalized some sixty-five constraints that the instances of the meta-meta-

85

86 Conclusion

model have to respect. Secondly, the use of “UEML Validator” on UEMLBase 0.06 gave us
the possibility to make recommendation for the tool in construction (UEML Semantic template
manager). Finally, it enabled us to be sure the analysis of GRL is consistent and to demonstrate
the utility of our validator.

11.3 Future works

Today, the main limitation for the UEML approach is the way the meta-meta-model can be
populated. For the moment, the unique UEMLBase cannot be accessed from a distant location.
Each analysis has to be entered in the Protégé UEML Tool by the same person. It is a brake to the
UEMLBase development which need to be extended if we want to have interesting results. UEML
Semantic template manager should solve the problem but a general agreement is still needed on
who can do it and which languages have to be studied.

“UEML Validator”’s main limitation is the fact that it is not context-dependent. The set
of rules we produced are at the “type level”. It means that it does not take into account what
are the instances of the UEML Base. A new set of rules could be produced. These rules would
constraint how the meta-meta-model can be extended depending on which ontology phenomena
the constructs are mapped. This work would enable one to improve the meta-meta-model in terms
of precision and formality.

“UEML Validator” could also be improved in the domain of Transformation. Indeed, it would
be interesting to know if the StateLaws are consistent (i.e., if the state on which they act have
properties that are compatible with the law). It could also check if all Transformation are possible,
if all Transformation pre-state are possible (i.e., if it is possible to find a state instance compliant
with the pre-state definition) and if all Transformation post-states are consistent (i.e., will they
still be compliant with the stateLaws?). An interesting way to achieve these objectives would be
to use Alloy [All].

The “UEML Validator” graphical interface is really basic and could be improved. Checking
the whole base can take a long time. Showing what is happening during the checking would be
more convenient. It could also offer the possibility to select the rules to be checked directly in the
program.

Studying new languages is another important need. Now that the method and the main tools
are completed, we need to study the languages in order to have a broad base of knowledge. This
base will allow comparison of these language semantics, to make model to model comparison or
to perform language update reflection.

It would also be interesting to create a tool that could find the constructs representing the
same kind of things. This tool would reveal the languages having constructs set representing the
same part of reality. It could graphically show what part of the world the analysed EMLs represent
and which ones represent which parts.

A Validation tool for the UEML Approach Jérémy Mahiat

Bibliography

[All] Alloy.URL:http://alloy.mit.edu/.

[BAO04] Giuseppe Berio, Vı́ctor Anaya, and Angel Ortiz. Supporting Enterprise Integration
through a Unified Enterprise Modeling Language. Conference on Advanced Information
Systems Engineering, 2004.

[Ber03] Giuseppe Berio. Deliverable D3.1: Requirements analysis: initial core constructs and
architecture). may 2003.

[Ber05a] Giuseppe Berio. UEML 1.0 and UEML 2.0: Benefits, Problems and Comparison. In
Business Process Management Workshops, pages 245–256, 2005.

[Ber05b] Giuseppe Berio. UEML 2.0 Deliverable 5.1. INTEROP project UE-IST-508011, 2005.

[Ber06] Giuseppe Berio. DEM project presentation, bergen, May 2006. URL: www.interop-
noe.org.

[BPP04] Giuseppe Berio, Herve Panetto, and Michaël Petit. UEML: résultats et enjeux d’un
langage unifié de modélisation d’entreprise. MOSIM’04, Nantes (France), September
2004.

[Bun77] Mario Bunge. Treatise on Basic Philosophy, Volume 3, chapter Ontology I: The Fur-
niture of the World. Reidel, Boston, 1977.

[Bun79] Mario Bunge. Treatise on Basic Philosophy, Volume 4, chapter Ontology II: A World
of Systems. Reidel, Boston, 1979.

[Chi96] Roderick Chisholm. A Realistic Theory of Categories: An Essay on Ontology. Cam-
bridge University Press, 1996.

[Cor] Raul Corazzon. Ontology: A ressource guide for Pholosophers. URL:
http://www.formalontology.it.

[DHP05] Gautier Dallons, Patrick Heymans, and Isabelle Pollet. A template-based analysis of
GRL. In Proceedings of the 10th Int. Workshop on Exploring Modeling Methods in
Systems Analysis and Design (EMMSAD05), pages 493–504, Porto, June 2005.

[DSB+04] Mike Dean, Guus Schreiber, Sean Bechhofer, Frank van Harmelen, Jim Hendler,
Ian Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn An-
drea Stein. OWL Web Ontology Language - Reference. W3C Recommendation,
http://www.w3.org/TR/2004/REC-owl-ref-20040210, 2004. Latest version available
at http://www.w3.org/TR/owl-ref/.

[DVC98] Guy Doumeingts, Bruno Vallespir, and David Chen. Handbook on architecture for
Information Systems, chapter Decision modelling GRAI grid. Springer-Verlag, 1998.

87

88 BIBLIOGRAPHY

[DVZC92] Guy Doumeingts, Bruno Vallespir, M Zanettin, and David Chen. Gim, grai integrated
methodology, a methodology for designing cim systems, version 1.0, unnumbered re-
port. Technical report, University of Bordeaux 1, 1992.

[EEM] External, Extended Enterprise Ressources, Networks and Learnings, EC Project, IST-
1999-10091, 2000.

[Gre96] P.F. Green. An Ontological Analysis of Information Systems Analysis and Design
(ISAD) Grammars in Upper CASE Tools. PhD thesis, Department of Commerce,
University of Queensland, 1996.

[ITU03] ITU. Recommendation Z.151 (GRL) version 3.0, September 2003.

[KBB03] Thomas Knothe, Christian Busselt, and Dieter Bll. Deliverable D2.3: Report on UEML
(Needs and Requirements). 2003.

[KLS] John Krogstie, Odd Ivar Lindland, and Guttorm Sindre. Defining quality aspects for
conceptual models. In E. D. Falkenberg, W. Hesse, and A. Olive (Eds.), Marburg,
Germany, March 28-30. Proceedings of the IFIP8.1 working conference on Information
Systems Concepts (ISCO3); Towards a consolidation of views.

[Lam03] Axel Van Lamsweerde. The kaos meta-model: Ten years after. Technical report,
Univeristé Catholique de Louvain, 2003.

[Let01] Emmanuel Letier. Reasoning about Agents in Goal-Oriented Requirements Engineering.
PhD thesis, Université Catholique de Louvain, 2001.

[Lib] Jena Librairie.URL:http://jena.sourceforge.net/.

[Lp] Java Prolog Library.URL:http://www.swi-prolog.org/packages/jpl/.

[MHO06] Raimundas Matulevicius, Patrick Heymans, and Andreas L. Opdahl. Comparing GRL
and KAOS using the UEML approach. In Proceedings of the 2nd International I-
ESA 2006 Workshop on Enterprise Integration, Interoperability and Networking (EI2N
2006), Bordeaux, France, March 2006.

[MJ99] Kai Mertins and Roland Jochem. Quality-Oriented Design of Business Processes.
Kluwer Academic Publishers, Boston/Dodrecht/London, 1999. ISBN 0-7923-8484-9.

[MvH04] Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language
Overview. W3C Recommendation, http://www.w3.org/TR/2004/REC-owl-features-
20040210, 10 February 2004. Latest version available at http://www.w3.org/TR/owl-
features/.

[OA05] Angel Ortiz and Vı́ctor Anaya. Criteria to select EMLs. INTEROP project UE-IST-
508011, 2005.

[oAfEI99] IFIP-IFAC Task Force on Architectures for Enterprise Integration. Geram: Generalised
enterprise reference architecture and methodology. Technical Report Version 1.6.3,
http://www.cit.gu.edu.au/ bernus/taskforce/geram/versions/, March 1999.

[OHS04] Andreas L. Opdahl and Brian Henderson-Sellers. A template for defining enterprise
modelling constructs. Journal of Database Management (JDM) 15(1), 2004.

[OHS05] Andreas L. Opdahl and Brian Henderson-Sellers. Template-Based Definition of In-
formation Systems and Enterprise Modelling Constructs, chapter 6 in Ontologies and
Business System Analysis, Peter Green and Michael Rosemann (eds.). Idea Group
Publishing, 2005.

[OMG05] Object Management Group OMG. OCL 2.0 Specification. 2005.

A Validation tool for the UEML Approach Jérémy Mahiat

BIBLIOGRAPHY 89

[Opd05] Andreas L. Opdahl. UEML template version 1.1. WP5, 2005.

[Opd06] Andreas L. Opdahl. The UEML Approach to Modelling Construct Description. In
Proceedings of I-ESA’06, Bordeaux (France), March 2006.

[PD02] Michaël Petit and Guy Doumeingts. Deliverable d1.1 : Report on the state of the art
in enterprise modelling. 2002.

[Pro] Protégé.URL:http://protege.stanford.edu/.

[PS04] Peter F. Patel-Schneider. What is OWL (and why should I care)? Invited paper for
the Ninth International Conference on the Principles of Knowledge Representation and
Reasoning, Whistler, Canada, June 2004.

[PW97] J. Parsons and Yair Wand. Using objects for systems analysis. Communication of the
ACM, 1997.

[UEMa] UEML1.0. URL: http://www.UEML.org.

[UEMb] UEML2.0. URL: http://www.interop-noe.org.

[UKM98] Uschold, King, and Moralee. The enterprise ontology. The Knowledge Engeneering
Review 13, 1998.

[Ver96] Françcois B. Vernadat. Enterprise modeling and integration: principles and applica-
tions. Chapman and Hall, 1996.

[VS01] Verrijn and Stuart. A Framework of Information System Concepts - the revised
FRISCO report. Web Document, 2001. draft version.

[Wae03] A. Walker and al. (eds.). The New International Websters Comprehensive Dictionary
of the English Language. Encyclopaedic edition, Triden Press International, 2003.

[Web97] Ron Weber. Ontological foundation of information systems. In Number 4, Accounting
Research Methodology Monograph. Coopers and Lybrand, 333, Collins Street, Mel-
bourne Vic 3000, Australia, 1997.

[Wik] Wikipedia. Ontology (computer science). URL:
http://en.wikipedia.org/wiki/Ontology %28computer science%29.

[WW88] Yair Wand and Ron Weber. An ontological analysis of some fundamental informa-
tion systems concepts. Ninth International Conference on Information Systems, 30
December 1988.

[WW93] Yair Wand and Ron Weber. On the ontological expressiveness of information systems
analysis and design grammars. Journal of Information Systems, pages 3:217–237, 1993.

[WW95] Yair Wand and Ron Weber. On the deep structure of informations systems. Journal
of Information Systems, pages 5:203–223, 1995.

[WZ96] Ron Weber and Yair Zhang. An analytical evaluation of niam’s grammar for conceptual
schema diagrams. Information Systems Journal, pages 6:147–170, 1996.

[Yu97] Eric Yu. Towards modeling and reasoning support for early-phase requirements engi-
neering. In Symposium on Requirements Engineering (RE97). IEEE Computer Society,
1997.

A Validation tool for the UEML Approach Jérémy Mahiat

Part IV

Appendix

91

Appendix A

Implemented Constraints

A.1 Mandatory fields

In this section we give the list of mandatory attributes for each entity. “Validator” show an error
if one of this field was empty. We only give the OCL expression for the first one because the other
are really similar.

LanguageDescription

1. languageName

2. languageVersion

Context: LanguageDescription
inv: languageName.notEmpty() AND languageVersion.notEmpty()

DiagramTypeDescription

3. diagramTypeName

Context: DiagramTypeDescription
inv: diagramTypeName.notEmpty()

ConstructDescription

4. constructName

5. instantiationLevel

Context: ConstructDescription
inv: constructName.notEmpty() AND instantiationLevel.notEmpty()

93

94 Implemented Constraints

RepresentedPhenomenon

6. TypeOrValueOrNot

7. RoleName

Context: RepresentedPhenomenon
inv: TypeOrValueOrNot.notEmpty() AND RoleName.notEmpty()

OntologyPhenomenon

8. Name

Context: OntologyPhenomenon
inv: Name.notEmpty()

A.2 Relationships between entities

In this section we list the constraints concerning direct relationships between entities. Those
constraints are a translation of the cardinalities we can find on the meta-meta-model. They have
to be checked by “Validator” because there is nothing to check it within OWL. As for the previous
section, OCL expression is not given for every constraint for more clarity.

9. Each DiagramTypeDescription has to be defined by a language.

Context: DiagramTypeDescription
inv: definedByLanguage.notEmpty()

10. Each ConstructDescription has to belong to a language;

11. and has to be used by a diagramTypeDescription;

12. defined by the same language.

Context: ConstructDescription
inv: belongsToLanguage.notEmpty() AND

usedInDiagram.notEmpty() AND

belongsToLanguage =
usesDescription.definedByLanguage

13. Each relatedConstructName of a ConstructDescription have to be another ConstructDescrip-
tion belonging to the same language.

Context: ConstructDescription
inv: belongsToLanguage.definesConstruct − > includes(relatedConstructName)

14. Each ConstructDescription has to be described by at least representedPhenonmenon.

A Validation tool for the UEML Approach Jérémy Mahiat

Relationships between entities 95

Context: ConstructDescription
inv: describedBy.notEmpty()

15. Each RepresentedPhenomenon has to represent an OntPhenomenon.

Context: RepresentedPhenomenon
inv: represents.notEmpty()

16. Each RepresentedProperty must characterize a RepresentedClass.

Context: RepresentedProperty
inv: characterics.notEmpty()

17. Each RepresentedState must be defined by a RepresentedProperty.

Context: RepresentedStateLaw
inv: RestrictsState.notEmpty()

18. Each RepresentedTransformation must have a pre state.

19. Each RepresentedTransformation must have a post state.

Context: RepresentedTransformation
inv: preRepState.notEmpty() AND

postRepState.notEmpty()

20. Each RepresentedStateLaw must restrict a RespresentedState.

Context: RepresentedStateLaw
inv: RestrictsState.notEmpty()

21. Each RepresentedTransformationLaw must effects a RepresentedTransformation.

Context: RepresentedStateLaw
inv: effectsRepTransformation.notEmpty()

22. Each RepresentedPhenomenon must represent a ConstructDescription.

Context: RepresentedPhenomenon
inv: describesConstruct.notEmpty()

23. Each OntClass has to be characterized by at least one ontProperty.

A Validation tool for the UEML Approach Jérémy Mahiat

96 Implemented Constraints

Context: OntClass
inv: Characterized.notEmpty()

24. Each ontProperty has to characterize an OntClass.

Context: OntProperty
inv: characterizes.notEmpty()

25. Each OntTransformation must have a pre state.

Context: OntTransformation
inv: preState.notEmpty()

26. Each OntTransformation must have a post state.

Context: OntTransformation
inv: postState.notEmpty()

27. Each OntStateLaw must restrict an OntState.

Context: OntStateLaw
inv: restrictsState.notEmpty()

28. Each OntState must be defined by at least one ontProperty.

Context: OntState
inv: definedBy.notEmpty()

29. Each OntTransformationLaw must effect an ontTransformation.

Context: OntTransformationLaw
inv: effectsTransformation.notEmpty()

A.3 Identifying Names

In this section we give the list of names that have to be unique in a certain scope.

30. Two ConstructDescriptions cannot have the same constructName inside the same language.

Context: LanguageDescription
inv: definesConstruct− >isUnique(constructName)

31. The RoleName of each RepresentedPhenomenon of a ConstructDescription must be different.

A Validation tool for the UEML Approach Jérémy Mahiat

Classes 97

Context: ConstructDescription
inv: describedBy− >isUnique(roleName)

32. Each OntPhenomenon must have a different name.

Context: OntPhenomenon
inv: isUnique(ontologyPhenomeonName)

33. If a RepresentedClass has more than one RepresentedProperty then each of them have to
have a different roleName.

Context: RepresentedClass
Inv: self.characteristics − > forAll(p1,p2 |

p1 <> p2 implies p1.roleName <> p2.roleName)

A.4 Classes

In this section we produce the constraints concerning represented an ontological classes. They
deal with uniqueness of ontClasses in term of ontProperties set and with the “generalization” and
“represents” relationship.

34. Two different OntClasses cannot have the same sets of OntologyProperties.

Context: OntClass
inv: Self − > forAll(c1, c2 | c1 <> c2 implies

c1.characterizedBy <> c2.characterizedBy)

35. If the set of OntProperty of an OntClass is a subset of the set of OntProperty of another
OntClass, then the first OntClass must generalize the second one.

If all the properties of an OntClass are the one or precede the one of another class, then this
class must generalize the other.

Context: OntClass
inv: self − > forAll (c1,c2 | c1.characterizedBy.includesAll(c2.characterizedBy)

implies c1.genClass(c2))
Context: OntClass
inv: self − > forAll(c1,c2 | c1.characterizedBy excludes(c2.characterizedBy)

− > forAll(e | e.precedes(c1.X) implies c1.genClass(c2)))

36. There cannot have any cycle in the generalization relationship.

Context: OntClass
inv: let generalize(X) : Boolean = self.genClass(X)

generalize(X) : Boolean = not(self.genClass(X)) and
Z.genClass(X) and self.generalize(Z)

in: self.genClass − > forAll(c1 | c1.generalize.excludes(self))

37. A RepresentedClass must represents an OntClass.

Context: representedClass
inv: represents.notEmpty()

A Validation tool for the UEML Approach Jérémy Mahiat

98 Implemented Constraints

A.5 Properties

It this section the constraints concerning Properties are listed. They deal with the Represented-
Class and RepresentedProperties a constructDescription have to possess, the coherence between
Properties sets of RepresentedClass and OntClass, the coherence between Classes of Represent-
edProperties and OntProperties, the “precedence” relationship, the coherence of the “contain”
relationship, the StateLawProperties, the TransformationLawProperties and with the “represent”
relationship.

38. A ConstructDescription must describe the RepresentedProperties of the RepresentedClass it
describes;

39. and vice-versa.

Context: ConstructDescription
Inv: describedBy− >select(c: RepresentedClass | c.characteristics.describesConstruct.includes(self))

and
self.describedBy− >select(c: RepresentedProperty | c.characteristics.describesConstruct.includes(self))

40. If a RepresentedClass has a RepresentedProperty then the corresponding OntClass must have
the corresponding OntProperty.

Context: RepresentedClass
Inv: represents.characteristics.includesAll(self.characteristics.represents)

41. If a RepresentedProperty characterize a RepresentedClass then the corresponding OntProp-
erty must characterize the corresponding OntClass.

Context: RepresentedProperty
Inv: represents.characteristics.includes(self.characteristics.represents)

42. An OntologyProperty cannot be preceded by itself.

Context: OntProperty
Inv: precededBy.excludes(self)

43. If an OntClass is characterized by an OntProperty that is preceded by another OntProperty,
then it must also be characterized by the second OntProperty.

Context: OntClass
Inv: characteristics− >forAll(p | self.includesAll(p.preceded))

44. If an OntProperty is preceded by a second OntProperty and the second OntProperty is
preceded by a third one, then the first OntProperty must also be preceded by the third one.

Context: OntProperty
Inv: precededBy− > forAll(p2 | p2.precededBy − >

forAll(p3 | p.precededBy(p3)))

45. All the sub-properties of an OntComplexProperty have to characterize either the OntClass
that the OntComplexProperty characterize or a super-OntClass of OntClass that the complex-
OntProperty characterize.

A Validation tool for the UEML Approach Jérémy Mahiat

States 99

Context: OntProperty
Inv: contains − > forAll(sp | sp.characteristics.excludes(self.characteristics)

− > forAll(sp2 | sp2.characteristics.genClass.includes(self.characteristics)))

46. Each sub-Property has to be preceded by its complex-Property.

Context: OntProperty
Inv: contains − > forAll(sp | sp.precededBy.includes(self)

47. An OntProperty cannot contain another OntProperty that already contains it.

Context: OntProperty
Inv: containsProp.excludes(self.containedByProp)

48. An OntProperty cannot precede another OntProperty that already precedes it.

Context: OntProperty
Inv: precedes.excludes(self.precededBy)

49. The OntProperties defining an OntState on which an OntStateLaw acts must be contained
by this OntStateLaw.

Context: OntProperty
Inv: containedBy.includes(self.defining.restrictedByStateLaw)

50. The OntProperties defining an OntState that is pre- or post-State of an OntTransformation
must be sub-Properties of the OntTransformationLaw that effects the OntTransformation
(if there is one).

Context: OntProperty
Inv: containedBy.includes(self.defining.entryTransformation.effectedByTransformation)

AND

containedBy.includes(self.defining.exitTransformation.effectedByTransformation)

51. A RepresentedProperty must represent an OntProperty.

52. A RepresentedTransformationLaw must represent an OntTransformationLaw.

53. A RepresentedStateLaw must represent an OntStateLaw.

A.6 States

The constraints concerning States are concentrated in this section. Those constraints deal with
the Class of State, the Properties of a State, and with the “generalization” and “represent” rela-
tionships.

54. A RepresentedState must be restricted by a RepresentedStateLawProperty.

A Validation tool for the UEML Approach Jérémy Mahiat

100 Implemented Constraints

Context: RepresentedState
Inv: restrictedByStateLaw.notEmpty()

55. If a RepresentedState has a set of RepresentedProperties, there must be a RepresentedClass
whose set of characteristic RepresentedProperties is a (possibly improper) superset of the
first set.

Context: RepresentedState
Inv: self − > forAll(rs | RepresentedClass − > exists(c |

c.characteristics.includesAll(rs.defining)))

56. If an OntState has a set OntProperties, there must be a OntClass whose set of characteristic
OntProperties is a (possibly improper) superset of the first set.

Context: OntState
Inv: self − > forAll(rs | OntologyClass − > exists(c |

c.characteristics.includesAll(rs.defining)))

57. If a ConstructDescription contains a RepresentedState and the corresponding OntState has
a set of OntProperties, then there must be an OntClass whose set of characteristic OntProp-
erties is a (possibly improper) superset of the first set and the ConstructDescription must
contain the corresponding RepresentedClass.

Context: ConstructDescription
Inv: describedBy− >select(rs : RepresentedState |

self.includes(RepresentedClass c |
c.represents.characteristics.includesAll(rs.defining)))

58. If a ConstructDescription contains a RepresentedState and the corresponding OntState has
an OntProperty, then the ConstructDescription must also contain a corresponding Repre-
sentedProperty.

Context: ConstructDescription
Inv: describedBy− >select(rs : RepresentedState | self.includes(rs.defining))

59. If an OntState generalize another OntState then all the properties it defines must also be
defined by the other state.

Context: OntState
Inv: defining.includesAll(self.specState.defining)

60. An OntState cannot specialize an OntState that already specialize it.

Context: OntState
inv: let generalize(X) : Boolean = self.genState(X)

generalize(X) : Boolean = not(self.genState(X)) and
Z.genState(X) and self.generalize(Z)

in: genState − > forAll(s1 | s1.generalize.excludes(self))

61. A RepresentedState must represent an OntState.

A Validation tool for the UEML Approach Jérémy Mahiat

Transformations 101

A.7 Transformations

The constraints concerning Transformations ensure that two OntTransformation are not the same
in term of from- and to-State and the coherence of the “contains” and “represents” relationships.

62. Two distinct OntTransformations cannot have identical from- and to-States.

Context: OntTransformation
Inv: self − > forAll(t1,t2 | t1.preState=t2.preState and

t1.toState=t2.toState implies t1=t2)

63. A RepresentedTransformation must represent an OntTransformation.

64. An OntTransformation cannot contain an OntTransformation that already contains it.

Context: OntTransformation
inv: let generalize(X) : Boolean = self.genTransf(X)

generalize(X) : Boolean = not(self.genTransf(X)) and
Z.genState(X) and self.generalize(Z)

in: genTransf − > forAll(s1 | s1.generalize.excludes(self))

A.8 Several ConstructDescriptions

65. A representedPhenomenon can only be described by one construct.

Context: RepresentedPhenomenon
Inv: describedBy.size() = 1

A Validation tool for the UEML Approach Jérémy Mahiat

Appendix B

Constraints in Prolog

1 %%%%%%%%%%%%%%%%%%%%%%%% Intermediate definitions %%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% True if the class X has the property A or a property that precedes A.

hasProperty(X,A):- ontologyclass(X), relationtoproperty(X,Y),

property(Y,A).

5

hasProperty(X,A):- ontologyclass(X), relationtoproperty(X,Y),

property(Y,B),precedes(A,B).

%%%%%%%%%% Y is the property of X

10 haveProp(X,Y):- ontologyclass(X),ontologyproperty(Y),

relationtoproperty(X,Z),property(Z,Y).

%%%%%%%%%% Y is the RepProperty of X

haveRepProp(X,Y):- representedclass(X),representedproperty(Y),

15 relationtorepproperty(X,Z),repproperty(Z,Y).

%%%%%%%%%%% X is the superClass of Y

ontClassGeneralize(X,Y):- ontologyclass(X), ontologyclass(Y),

specialisationrelation(X,A), subclass(A,Y).

20

%%%%%%%%%%%% X is a property of Y

belongsToClass(X,Y):- ontologyproperty(X),ontologyclass(Y),

relationtoclass(X,Z),class(Z,Y).

25 %%%%%%%%%%%% SP is a subProperty of the complexProp Y

subAndComplex(SP,CP):- ontologyproperty(SP), ontologyproperty(CP),

relationtosubproperty(CP,X), subproperty(X,SP).

%%%%%%%%%%%% The porperty X contains the property Y

30 containsProp(X,Y):- relationtosuperproperty(X,A), superproperty(A,Y).

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Rules%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%% About mandatory fields %%%%%%%%%%%%%%%%%%%%%%%%%%%

35

%1%%%%% language without Name

languageWithoutName(X):- languagedescription(X),

not(languagedescription-languagename(X,_)).

40 %2%%%%% language without Version

languageWithoutVersion(X):- languagedescription(X),

103

104 Constraints in Prolog

not(languagedescription-languageversion(X,_)).

%3%%%%% DiagramTypeDescription

45 diagWithoutName(X):- diagramtypedescription(X),

not(diagramtypedescription-diagramtypename(X,_)).

%4%%%%% constructDescription - Name

constructDescriptionWithoutName(X):- constructdescription(X),

50 not(constructdescription-constructname(X,_)).

%5%%%%% constructDescription - Instanciation-level

constructDescriptionWithoutInstLevel(X):- constructdescription(X),

not(instantiationlevel(X,_)).

55

%6%%%%% Each RepProp must be TypeOrValueOrNot

reprPropertyWithoutTypeOrValue(X):- representedproperty(X),

not(istypeorvalueornot(X,_)).

60 %7%%%%% Each RepPhenomena must have a role-name

repPhenomenonWithoutName(X):- namedrepresentedphenomenon(X),

not(namedrepresentedphenomenon-rolename(X,_)).

%8%%%%% Each OntPhenomena must have a name

65 ontPhenomenonWithoutName(X):- namedontologyphenomenon(X),

not(namedontologyphenomenon-name(X,_)).

%%%%%%%%%%%%%%%%%%%%% Relationships - Cardinalities %%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% Language - Constructs

70

%9%%%%% relationshipofDiagramTypeDescription

definedBylanguage(X):- diagramtypedescription(X),languagedescription(Y),

definesdiagramtype(Y,X).

75 diagramWithoutLanguage(X):- diagramtypedescription(X),

not(definedBylanguage(X)).

%10%%%%% A construct has to belong to a language.

constructDescriptionOfLanguage(X):- constructdescription(X),

80 languagedescription(Y), definesconstruct(Y,X).

badConstructDescriptionOfLanguage(X):-constructdescription(X),

not(constructDescriptionOfLanguage(X)).

85 %11%%%%% A Construct has to be used by a Diagram.

badConstructDescriptionofDiagramTypeDescr(X):- constructdescription(X),

not(usesconstruct(_,X)).

%12%%%%% A Construct has to be used by a Diagram of the same Language.

90 constructOfBadDiagram(X,Diag,LgCons,LgDiag):- constructdescription(X),

belongstolanguage(X,LgCons), usesconstruct(Diag,X),

definedbylanguage(Diag,LgDiag), not(LgCons=LgDiag).

%13%%%%% relatedConstructName

95 constructOfSameDiagram(X,Y):- constructdescription(X),

constructdescription(Y), diagramtypedescription(Z),

usesconstruct(Z,X), usesconstruct(Z,Y).

relatedConstructOK(X,Y):- constructdescription(X),

A Validation tool for the UEML Approach Jérémy Mahiat

105

100 constructdescription-relatedconstructnames(X,Y),

constructdescription(Y), constructOfSameDiagram(X,Y).

relatedConstructKO(X,Y):- constructdescription(X),

constructdescription-relatedconstructnames(X,Y),

105 not(constructdescription(Y)).

relatedConstructKO(X,Y):- constructdescription(X), constructdescription(Y),

constructdescription-relatedconstructnames(X,Y),

not(constructOfSameDiagram(X,Y)).

110

%14%%%%% Each ConstructDescr has to be described by at least repPhen

constructWithoutRepPhen(X):- constructdescription(X),

not(describedby(X,_)).

115 %%%%%%%%%% RepPhenomenon

%15%%%%% Each "representedPhenomena" must represents an "ontPhenomena"

representedPhenomeonOK(X):- namedrepresentedphenomenon(X),

representedontologyphenomenon(Y), represents(X,Y).

120

badReprentedPhenomenon(X):- namedrepresentedphenomenon(X),

not(representedPhenomeonOK(X)).

%16%%%%% a representedProperty must characterise a repClass

125 badRepresentedProperty(X):- representedproperty(X),

not(reltoclass(X)).

reltoclass(X):- repproperty(Y,X), repclass(Y,_).

130 %17%%%%% a representedState must be defined by a RepProperty

representedStateWithoutRepProp(X):- representedstate(X),

not(definedbyrepproperty(X,_)).

%18%%%%% Each RepresentedTransformation must have pre state

135 representedTransformationWithoutPre(X):- representedtransformation(X),

not(prerepstate(X,_)).

%19%%%%% Each RepresentedTransformation must have post state

representedTransformationWithoutPost(X):- representedtransformation(X),

140 not(postrepstate(X,_)).

%20%%%%% Each "RepresentedStateLaw" must restrict a "RespresentedState"

badRepresentedStateLaw(X):- representedstatelaw(X),

not(restrictsrepstate(X,_)).

145

%21%%%%% a reprTransfLaw must effects a reprTransf.

reprTransfLawWithoutTransf(X):- representedtransformationlaw(X),

not(effectsreptransformation(X,_)).

150 %22%%%%% a RepresentedPhenomena must represent a Construct

repPhenWithoutConstruct(X):- namedrepresentedphenomenon(X),

not(describesconstruct(X,_)).

%%%%%%%%%% OntPhenomenon

155

%23%%%%% Each OntologyClass has to be characterized by at least a ontPropery

ontologyClassOK(X):- ontologyclass(X),

A Validation tool for the UEML Approach Jérémy Mahiat

106 Constraints in Prolog

ontologyclasspropertyrelation(Y), class(Y,X), property(Y,_).

160 badOntologyClass(X):- ontologyclass(X), not(ontologyClassOK(X)).

%24%%%%% Each ontPropery has to characterize an OntologyClass

ontologyPropertyOK(X):- ontologyproperty(X),

ontologyclasspropertyrelation(Y), class(Y,_), property(Y,X).

165

badOntologyProperty(X):- ontologyproperty(X), not(ontologyPropertyOK(X)).

%25%%%%% Each OntologyTransformation must have pre state

ontologyTransformationWithoutPreState(X):- ontologytransformation(X),

170 not(prestate(X,_)).

%26%%%% Each OntologyTransformation must have post state

ontologyTransformationWithoutPostState(X):- ontologytransformation(X),

not(poststate(X,_)).

175

%27%%%%% Each ontologyStateLaw must restrict an ontologyState

badOntologyStateLaw(X):- ontologystatelaw(X), not(restrictsstate(X,_)).

%28%%%%% Each ontState must be defined by at least one ontProperty

180 ontStateLawWithoutProp(X):- ontologystate(X),

not(definedbyproperty(X,_)).

%29%%%%% Each ontTransfLaw must effects an ontTransf.

ontTransfLawWithoutTransf(X):- ontologytransformationlaw(X),

185 not(effectstransformation(X,_)).

%%%%%%%%%%%%%%%%%%%%%%%%%% Constraints on names %%%%%%%%%%%%%%%%%%%%%%%%%%

%30%%%%% constructName must be <> for every construct of a language

190 badNameofConstruct(X,Y,Z,A):-constructdescription(X),

constructdescription(Y),not(X=Y),

belongstolanguage(X,A), belongstolanguage(Z,A),

constructdescription-constructname(X,Z),

constructdescription-constructname(Y,Z).

195

%31%%%%% uniqueness of Class roleNames within ConstructDefinitions

roleNameNotUnique(X,Y,Z):- constructdescription(X),

namedrepresentedphenomenon(Y), describedby(X,Y),

namedrepresentedphenomenon(Z), describedby(X,Z),

200 not(Y = Z), namedrepresentedphenomenon-rolename(Z,A),

namedrepresentedphenomenon-rolename(Y,B), (A=B).

%32%%%%% Each OntologyPhenomena must have a different name

ontologyPhenomenaNotUnique(X,Y,A):- namedontologyphenomenon(X),

205 namedontologyphenomenon(Y), not(X=Y),

namedontologyphenomenon-name(X,A),

namedontologyphenomenon-name(Y,B), (A=B).

%33%%%% If a RepClass has more than one RepProp, each of them must

210 %%%%%%% have a roleName that is unique relative to the RepClass.

sameRoleName(X,Y,Z,C):- representedclass(X), representedproperty(Y),

relationtorepproperty(X,A), repproperty(A,Y),

representedproperty(Z), relationtorepproperty(X,B), not(A=B),

repproperty(B,Z), representedproperty-rolename(Y,C),

215 representedproperty-rolename(Z,D), (C=D).

A Validation tool for the UEML Approach Jérémy Mahiat

107

%%%%%%%%%%%% Constraints on Classes and RepresentedClasses %%%%%%%%%%%%

%34%%%%% Two different ontClasses cannot have the same sets of ontProp.

220 hasDifferentProp(X,Y):- ontologyclass(X), ontologyclass(Y), not(X=Y),

relationtoproperty(X,A), property(A,C), relationtoproperty(Y,B),

property(B,D), not(C=D).

sameProperties(X,Y):- ontologyclass(X), relationtoproperty(X,_),

225 ontologyclass(Y), relationtoproperty(Y,_), not(X=Y),

not(hasDifferentProp(X,Y)).

%35%%%%% If the set of ontProperties of an ontClass is a subset of

%%%%%%%% another ontClass, the first ontClass must generalise the second.

230 %%%%%%%% If all the properties of an OntologyClass precede the one of another

%%%%%%%% class, then this class must generalise the other.

noPropertyOfXInY(X,Y):- ontologyclass(X), ontologyclass(Y), not(X=Y),

relationtoproperty(X,A), property(A,C), not(hasProperty(Y,C)).

235 doNotGeneralize(X,Y):- ontologyclass(X), ontologyclass(Y), not(X=Y),

not(noPropertyOfXInY(X,Y)), not(ontClassGeneralize(X,Y)).

%36%%%%% No cycle in with Generalization for Classes

specialize(X,Y):-specialisationrelation(X,A), superclass(A,Y).

240

generalize(X,Y):-specialisationrelation(X,A), subclass(A,Y).

classGeneralize(X,Y):- ontologyclass(X), ontologyclass(Y),

generalize(X,Y).

245

classGeneralize(X,Y):- ontologyclass(X), ontologyclass(Y),

not(generalize(X,Y)), generalize(X,Z),

classGeneralize(Z,Y).

250 cylceInClassGeneralization(X,Y):- ontologyclass(X), ontologyclass(Y),

specialize(X,Y),classGeneralize(X,Y).

%37%%%%% Each reprClass must represent a OntClass

repClassNotReprOntClass(X):- representedclass(X), represents(X,Y),

255 not(ontologyclass(Y)).

%%%%%%%%%% Constraints on OntProperties and RepresentedProperties %%%%%%%%%%%%

%38%%%%% a construct must containt the properties of the repClass.

260 hasAllProperties(X,A):- constructdescription(X), describedby(X,Y),

relationtorepproperty(Y,Z),repproperty(Z,A), not(describedby(X,A)).

%39%%%%% The reverse

hasAllClasses(X,A):- constructdescription(X), describedby(X,Y),

265 relationtorepclass(Y,Z),repclass(Z,A), not(describedby(X,A)).

%40%%%%% If a RepClass has a RepProp, the corresponding OntClass

%%%%%% must have the corresponding OntProp as characteristic.

isRepCharacterizedBy(Class,Prop):- representedclass(Class),

270 representedproperty(Prop),relationtorepproperty(Class,X),

repproperty(X,Prop).

notHasOntProp(I,J,K,L):- representedclass(I), represents(I,K),

A Validation tool for the UEML Approach Jérémy Mahiat

108 Constraints in Prolog

isRepCharacterizedBy(I,J), represents(J,L),

275 not(haveProp(K,L)).

%41%%%%% The reverse (if a RepProp belongs to a repClass.....)

notBelongsToOntClass(I,J,K,L):- representedproperty(I),

represents(I,K), relationtorepclass(I,X), repclass(X,J),

280 represents(J,L), not(belongsToClass(K,L)).

%42%%%%% A Property cannot be preceded by itself.

badPrecedence(X):- ontologyproperty(X), precededby(X,X).

285 %43%%%% If an ontClass has an ontProp that is preceded by another

%%%%%%% ontProp, then it must also have the second ontProp.

precededPropTheClassShouldHave(A,B,C):- ontologyclass(A),

relationtoproperty(A,X), property(X,B), precededby(B,C),

not(haveProp(A,C)).

290

%44%%%% If an ontProp is preceded by a second ontProp and the

%%% second ontProp is preceded by a third one, then the first

%%% ontProp must also be preceded by the third ontProp.

notHaveAllPrecedence(X,Y,Z):- ontologyproperty(X), precededby(X,Y),

295 precededby(Y,Z), not(precededby(X,Z)).

%45%%%%% All the subproperties of an ontologyComplexProperty have to

%%%%%%%% characterise either the OntologyClass that the

%%%%%%%% OntologyComplexProperty characterise or a subOntologyClass of

300 %%%%%%%% OntologyClass that the complexOntologyProperty characterise.

%B is the subclass of C%

sameOrSubClass(B,C):- ontologyclass(B), ontologyclass(C),

generalisationrelation(B,X), superclass(X,C).

305 sameOrSubClass(B,C):- ontologyclass(B), ontologyclass(C),(B=C).

subPropOfClassOK(X) :- ontologyproperty(X), relationtosuperproperty(X,A),

superproperty(A,Y), belongsToClass(X,B), belongsToClass(Y,C),

sameOrSubClass(B,C).

310

subPropOfBadClass(X):- ontologyproperty(X), relationtosuperproperty(X,_),

not(subPropOfClassOK(X)).

%46%%%%% Each subProperty has to be preceded by its complexProperty.

315 subPropNotPrecededByCompl(Sub,Compl):- ontologyproperty(Sub),

ontologyproperty(Compl), subAndComplex(Sub,Compl),

not(precededby(Sub,Compl)).

%47%%%%% There can’t have any cycle in the containsProp relationship.

320 isContainedBy(X,Y):- ontologyproperty(X), ontologyproperty(Y),

containsProp(Y,X).

isContainedBy(X,Y):- ontologyproperty(X), ontologyproperty(Y),

not(containsProp(Y,X)), containsProp(Y,Z), isContainedBy(X,Z).

325

cylceInContainsProp(X,Y):-ontologyproperty(X), ontologyproperty(Y),

containsProp(X,Y),isContainedBy(X,Y).

%48%%%%% There can’t have any cycle in the precedesProp relationship.

330 isPrecededby(X,Y):- ontologyproperty(X), ontologyproperty(Y),

precedes(Y,X).

A Validation tool for the UEML Approach Jérémy Mahiat

109

isPrecededby(X,Y):- ontologyproperty(X), ontologyproperty(Y),

not(precedes(Y,X)), precedes(Y,Z), isPrecededby(X,Z).

335

cylceInPrecedesProp(X,Y):-ontologyproperty(X), ontologyproperty(Y),

precedes(X,Y),isPrecededby(X,Y).

%49%%%%% The OntologyProperties defining an OntologyState on which an

340 %%%%%%%% OntologyStateLaw acts must be sub-properties of this

%%%%%%%% OntologyStateLaw.

propShouldBeSubOfStateLaw(X,Y,State):- ontologystatelaw(Y),

restrictsstate(Y,State), definedbyproperty(State,X),

not(containsProp(X,Y)).

345

%50%%%%% The OntologyProperties defining an OntologyState that is pre- or

%%%%%%%% post-State of an OntologyTransformation must be sub-Properties of the

%%%%%%%% OntologyTransformationLaw that effects the OntologyTransformation

propShouldBeSubOfTransfLaw(Prop,TransLaw,Transf,State):-

350 ontologytransformationlaw(TransLaw),

effectstransformation(TransLaw,Transf), prestate(Transf,State),

definedbyproperty(State,Prop),not(containsProp(TransLaw,Prop)).

propShouldBeSubOfTransfLaw(Prop,TransLaw,Transf,State):-

355 ontologytransformationlaw(TransLaw),

effectstransformation(TransLaw,Transf), poststate(Transf,State),

definedbyproperty(State,Prop),not(containsProp(TransLaw,Prop)).

%51%%%%% Each repProp must represent a OntProp

360 repPropNotReprOntProp(X):- representedproperty(X),

not(representedtransformationlaw(X)),

not(representedstatelaw(X)), represents(X,Y),

not(ontologyproperty(Y)).

365 repPropNotReprOntProp(X):- representedproperty(X),

not(representedtransformationlaw(X)),

not(representedstatelaw(X)), represents(X,Y),

ontologytransformationlaw(Y).

370 repPropNotReprOntProp(X):- representedproperty(X),

not(representedtransformationlaw(X)),

not(representedstatelaw(X)), represents(X,Y),

ontologystatelaw(Y).

375 %52%%%%% Each reprTransfLaw must represent a OntTransFormLaw

repTransfLawNotReprOntTransfLaw(X):- representedtransformationlaw(X),

represents(X,Y), not(ontologytransformationlaw(Y)).

%53%%%%% Each reprStateLaw must represent a OntStateLaw

380 repStateLawNotReprOntStateLaw(X):- representedstatelaw(X),

represents(X,Y), not(ontologystatelaw(Y)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%% Constraints on states %%%%%%%%%%%%%%%%%%%%%%%%%%%%

385 %54%%%%% Each RepresentedState must be restricted by a RepresentedStateLawProperty

stateNotRestricted(X):-representedstate(X),

not(restrictedbyrepstatelaw(X,_)).

%55%%%%% A represented state must be the one of a class.

A Validation tool for the UEML Approach Jérémy Mahiat

110 Constraints in Prolog

390 hasAnotherProp(X,Y):- representedstate(X), definedbyrepproperty(X,Z),

not(Z=Y).

stateOfOneProperty(X):- representedstate(X), definedbyrepproperty(X,Y),

not(hasAnotherProp(X,Y)).

395

repPropNotOfThisClass(Class,X):- representedclass(Class), representedstate(X),

definedbyrepproperty(X,Y), not(haveRepProp(Class,Y)).

classOfRepState(X,Class):- representedstate(X), not(stateOfOneProperty(X)),

400 definedbyrepproperty(X,Prop), !, haveRepProp(Class,Prop),

not(repPropNotOfThisClass(Class,X)).

stateOfNoClass(X):- representedstate(X), not(stateOfOneProperty(X)),

not(classOfRepState(X,_)).

405

%56%%%%% An Ontology state must be the one of a class.

hasAnotherOntProp(X,Y):- ontologystate(X), definedbyproperty(X,Z), not(Z=Y).

stateOfOneOntProperty(X):- ontologystate(X), definedbyproperty(X,Y),

410 not(hasAnotherOntProp(X,Y)).

propNotOfThisClass(Class,X):- ontologyclass(Class), ontologystate(X),

definedbyproperty(X,Y), not(haveProp(Class,Y)).

415 classOfState(X,Class):- ontologystate(X), not(stateOfOneOntProperty(X)),

definedbyproperty(X,Prop), !, haveProp(Class,Prop),

not(propNotOfThisClass(Class,X)).

noClassOfState(X):- ontologystate(X), not(stateOfOneOntProperty(X)),

420 not(classOfState(X,_)).

%57%%%%% if a constructDescr contains a state, then it must also contain

%%%%%%%% the class having the set of properties on wich the state acts

%hasRepProp(C,P):- representedclass(C),representedproperty(P),

425 % relationtorepproperty(C,Z),repproperty(Z,P).

%propOfStateNotOfClass(P,C,S):- representedproperty(P), representedclass(C),

% representedstate(S), definedbyrepproperty(S,P),

% not(hasRepProp(C,P)).

430

%classOfState(C,S):- representedclass(C), representedstate(S),

not(propOfStateNotOfClass(_,C,S)).

classOfStateButNotOfConstruct(Class,S,Construct):- representedclass(Class),

435 representedstate(S), not(stateOfOneProperty(S)), classOfRepState(S,Class),

describedby(Construct,S), not(describedby(Construct,Class)).

classOfStateButNotOfConstruct(Class,S,Construct):- representedclass(Class),

representedstate(S), stateOfOneProperty(S), definedbyrepproperty(S,P),

440 haveRepProp(Class,P), describedby(Construct,S),

not(describedby(Construct,Class)).

%58%%%%% If a Construct contains a ReprState and the corresponding

%%%%%%%% OntState has a ontProp, then the Construct must also

445 %%%%%%%% contain a corresponding ReprProp

constructWithoutPropOfState(A,B,D):- constructdescription(A),

describedby(A,B), representedstate(B), represents(B,C),

A Validation tool for the UEML Approach Jérémy Mahiat

111

definedbyproperty(C,D), not(hasARepPropDescribedByConstr(D,A)).

450 hasARepPropDescribedByConstr(D,A):- ontologyproperty(D),

constructdescription(A), representedby(D,X),

describesconstruct(X,A).

%59%%%%% A state that generalize another has to define all the property the

455 %%%%%%%% other state define.

%properties that X don’t define but that Y does.

nothasTheProperties(X,Y,A):- ontologystate(X), ontologystate(Y),

definedbyproperty(Y,A), not(definedbyproperty(X,A)).

460 superStateWithPropMissing(X,Y,A):- ontologystate(X), ontologystate(Y),

containsstate(X,Y), nothasTheProperties(X,Y,A).

%60%%%%% No cycle with specializations for States

stateGeneralize(X,Y):- ontologystate(X), ontologystate(Y),

465 containedbystate(X,Y).

stateGeneralize(X,Y):- ontologystate(X), ontologystate(Y),

not(containedbystate(X,Y)), containsstate(X,Z),

stateGeneralize(Z,Y).

470

cylceInStateGeneralization(X,Y):- ontologystate(X), ontologystate(Y),

containsstate(X,Y), stateGeneralize(X,Y).

%61%%%%% Each reprState must represent a OntState

475 repStateNotReprOntState(X):- representedstate(X),

represents(X,Y), not(ontologystate(Y)).

%%%%%%%%%%%%%%%%%%%%%%%% Constraints on Transformations %%%%%%%%%%%%%%%%%%%%%%%%

480 %62%%%%% 2 distinct ontTransf cannot have identical pre- & post States.

sameTransf(X,Y):- ontologytransformation(X),

ontologytransformation(Y), not(Y=X), prestate(X,A),

prestate(Y,B),(A=B),poststate(X,C),poststate(Y,D),(C=D).

485 %63%%%%% Each reprTransf must represent a OntTransf

repTransfNotReprOntTransf(X):- representedtransformation(X),

represents(X,Y), not(ontologytransformation(Y)).

%64%%%%% No cycle with the contains/containedBy for Transformations

490 transIsContainedBy(X,Y):- ontologytransformation(X), ontologytransformation(Y),

containstransformation(Y,X).

transIsContainedBy(X,Y):- ontologytransformation(X), ontologytransformation(Y),

not(containstransformation(Y,X)), containstransformation(Y,Z),

495 transIsContainedBy(X,Z).

cylceInContainsTransf(X,Y):- ontologytransformation(X), ontologytransformation(Y),

containstransformation(X,Y),transIsContainedBy(X,Y).

500 %%%%%%%%%%%%%%%%% About several ConstructDescriptions %%%%%%%%%%%%%%%%%%%%%%

%65%%%%% A representedPhenomena can only describe one construct

repPhenomenaDiscribingSeveralConstr(X):- representedphenomenon(X),

describesconstruct(X,Y), describesconstruct(X,Z), not(Y=Z).

505

A Validation tool for the UEML Approach Jérémy Mahiat

112 Constraints in Prolog

510

A Validation tool for the UEML Approach Jérémy Mahiat

Appendix C

Generated Fact Base

The following excerpt is a little part of the facts generated from the UEML Base 0.06 by UEML Validator.

1 wholeorpart(ispart).

wholeorpart(iswhole).

diagramtypedescription(umlclassdiagram).

diagramtypedescription-diagramtypename(umlclassdiagram,classdiagram).

5 definedbylanguage(umlclassdiagram,uml20).

usesconstruct(umlclassdiagram,umlassociation).

usesconstruct(umlclassdiagram,umlattribute).

usesconstruct(umlclassdiagram,umlobject).

usesconstruct(umlclassdiagram,umlclass).

10 usesconstruct(umlclassdiagram,umlaggregation).

usesconstruct(umlclassdiagram,umlcomposition).

usesconstruct(umlclassdiagram,umlproperty).

usesconstruct(umlclassdiagram,umlgeneralization).

ontologyproperty(anyregularproperty).

15 ontologyproperty-name(anyregularproperty,anyregularproperty).

representedby(anyregularproperty,umlobjectpropertyroleproperty).

representedby(anyregularproperty,umlattributepropertyroleattribute).

representedby(anyregularproperty,umlpropertypropertyroleproperty).

representedby(anyregularproperty,umlclasspropertyroleattribute).

20 relationtoclass(anyregularproperty,attributedthingsanyregularproperty).

ontologyproperty(partwholerelation).

precedes(partwholerelation,systempartwholerelation).

ontologyproperty-name(partwholerelation,partwholerelation).

representedby(partwholerelation,umlaggregationpropertyrolepartwholerelation).

25 precededby(partwholerelation,anymutualproperty).

relationtoclass(partwholerelation,componentthingspartwholerelation).

relationtoclass(partwholerelation,compositethingspartwholerelation).

ontologyproperty(systempartwholerelation).

ontologyproperty-name(systempartwholerelation,systempartwholerelation).

30 representedby(systempartwholerelation,umlcompositionpropertyrolepartwholerelation).

precededby(systempartwholerelation,partwholerelation).

relationtoclass(systempartwholerelation,systemthingssystempartwholerelation).

relationtoclass(systempartwholerelation,systemcomponentthingssystempartwholerelation).

ontologyproperty(abilitytoassociate).

35 precedes(abilitytoassociate,anymutualproperty).

precedes(abilitytoassociate,classsubclassrelationship).

ontologyproperty-name(abilitytoassociate,abilitytoassociate).

relationtoclass(abilitytoassociate,allthingsabilitytoassociate).

ontologyproperty(classsubclassrelationship).

113

114 Generated Fact Base

40 ontologyproperty-name(classsubclassrelationship,classsubclassrelationship).

representedby(classsubclassrelationship,umlgeneralizationpropertyroleclasssubclassrelationship).

precededby(classsubclassrelationship,abilitytoassociate).

relationtoclass(classsubclassrelationship,allthingsclasssubclassrelationshipparent).

relationtoclass(classsubclassrelationship,allthingsclasssubclassrelationshipchild).

45 ontologyproperty(anymutualproperty).

precedes(anymutualproperty,partwholerelation).

ontologyproperty-name(anymutualproperty,anymutualproperty).

representedby(anymutualproperty,umlobjectpropertyrolelink).

representedby(anymutualproperty,umllinkpropertyrolelink).

50 representedby(anymutualproperty,umlassociationpropertyroleassociation).

representedby(anymutualproperty,umlclasspropertyroleassociation).

precededby(anymutualproperty,abilitytoassociate).

relationtoclass(anymutualproperty,associatedthingsanymutualproperty).

ontologyproperty(anytransformationlaw).

55 precedes(anytransformationlaw,emergentbehaviour).

ontologyproperty-name(anytransformationlaw,anytransformationlaw).

representedby(anytransformationlaw,umlobjectpropertyroleoperation).

representedby(anytransformationlaw,umlclasspropertyroleoperation).

representedby(anytransformationlaw,umloperationpropertyroleoperation).

60 relationtoclass(anytransformationlaw,changeablethingsanytransformationlaw).

ontologyproperty(emergentbehaviour).

ontologyproperty-name(emergentbehaviour,emergentbehaviour).

precededby(emergentbehaviour,anytransformationlaw).

relationtoclass(emergentbehaviour,systemthingsemergentbehaviour).

65 namedrepresentedphenomenon(umlobjectpropertyroleoperation).

namedrepresentedphenomenon-rolename(umlobjectpropertyroleoperation,operation).

describesconstruct(umlobjectpropertyroleoperation,umlobject).

namedrepresentedphenomenon-maxcardinality(umlobjectpropertyroleoperation,-1).

represents(umlobjectpropertyroleoperation,anytransformationlaw).

70 namedrepresentedphenomenon-mincardinality(umlobjectpropertyroleoperation,0).

namedrepresentedphenomenon(umlaggregationpropertyrolepartwholerelation).

namedrepresentedphenomenon-rolename(umlaggregationpropertyrolepartwholerelation,partwholerelation).

describesconstruct(umlaggregationpropertyrolepartwholerelation,umlaggregation).

namedrepresentedphenomenon-maxcardinality(umlaggregationpropertyrolepartwholerelation,1).

75 represents(umlaggregationpropertyrolepartwholerelation,partwholerelation).

namedrepresentedphenomenon-mincardinality(umlaggregationpropertyrolepartwholerelation,1).

namedrepresentedphenomenon(umlaggregationclassroleaggregate).

namedrepresentedphenomenon-rolename(umlaggregationclassroleaggregate,aggregate).

describesconstruct(umlaggregationclassroleaggregate,umlaggregation).

80 namedrepresentedphenomenon-maxcardinality(umlaggregationclassroleaggregate,1).

represents(umlaggregationclassroleaggregate,compositethings).

namedrepresentedphenomenon-mincardinality(umlaggregationclassroleaggregate,1).

namedrepresentedphenomenon(umlassociationpropertyroleassociation).

namedrepresentedphenomenon-rolename(umlassociationpropertyroleassociation,association).

85 describesconstruct(umlassociationpropertyroleassociation,umlassociation).

namedrepresentedphenomenon-maxcardinality(umlassociationpropertyroleassociation,1).

represents(umlassociationpropertyroleassociation,anymutualproperty).

namedrepresentedphenomenon-mincardinality(umlassociationpropertyroleassociation,1).

namedrepresentedphenomenon(umlobjectclassroleclass).

90 namedrepresentedphenomenon-rolename(umlobjectclassroleclass,class).

describesconstruct(umlobjectclassroleclass,umlobject).

namedrepresentedphenomenon-maxcardinality(umlobjectclassroleclass,1).

represents(umlobjectclassroleclass,allthings).

namedrepresentedphenomenon-mincardinality(umlobjectclassroleclass,1).

95 namedrepresentedphenomenon(umlpropertyclassroleclass).

A Validation tool for the UEML Approach Jérémy Mahiat

Appendix D

UEML 2.0 Template

115

NoE INTEROP — DEM

UEML Template
Version 1.2

Document type: Working document
Domain/Task/Topic: DEM / UEML / Approaches
Version: 2
Date: 2005-09-04
Status: 1st iteration
Authors: Andreas L Opdahl
Distribution list: DEM
Document history:

Intended use of the template: Fill in the entries of this template once for each modelling construct in
the language you are describing. Delete the lead texts (in blue like this one) and the short
explanations (in red). This version of the template is not fully formal, and it is ok to deviate from
the proposed structure if you need. It is also ok to add comments, explanations and TBDs anywhere
as you go along.

Additional resources: The following resources are available to make the template easier to use:

• More detailed guidelines and examples are available in the associated “UEML Template
Tutorial”.

• Existing construct descriptions, in particular descriptions of all the constructs in UEML
version 1.0, which are particularly useful because of their simplicity. An “Introduction to the
BWW-representation model and Bunge's ontology” on which the template is based, is also
available.

• References [1–2] are important precursors to the template.

Change list: Changes from versions 1.0 and 1.1 of the template are listed at the end of this
document, along with an indiciation of some planned future developments. There is no need to
update existing construct descriptions to reflect the new version of the template.

Does the template look big? Most modelling constructs will be rather simple to define, and new
construct definitions can defined in terms of existing ones using the builds on entries described
below. A few constructs, particularly the ones that represent dynamic behaviour may become
complex, but they often resemble dynamic constructs from other languages, so there is even
potential for reuse across languages.

Synopsis: Brackets mean [OPTIONAL INFORMATION], parentheses with a star mean (ZERO
OR MORE TIMES) *, bars mean EITHER THIS | OR THAT etc. These are suggestions only. You
may fill in the entries in other ways if you prefer. A stricter documents structure/syntax will be
provided when we move to XML or descendants.

[“<QUOTE FROM ‘OFFICIAL’ LANGUAGE DEFINITION>”
 <REFERENCE TO ‘OFFICIAL’ LANGUAGE DEFINITION>]

 [< BRIEF INTRODUCTION>]

NoE INTEROP — DEM

1. Preamble
The Preamble provides general information about the modelling construct, such as the construct
name, related constructs, the diagram types and language it belongs to, as well as acronyms and
external resources.

Builds on
(<NAME OF OTHER CONSTRUCT IN THIS LANGUAGE>) *

Later entries in the template can then be filled in with

As for <OTHER CONSTRUCT> but with … replacing/modifying …
or with

As for <OTHER_CONSTRUCT>
or marked empty with

None

Built on by
(<NAME OF OTHER CONSTRUCT IN THIS LANGUAGE>) *

Construct name
<NAME OF THIS CONSTRUCT>

Alternative construct names
(<ALTERNATIVE NAME THAT IS SOMETIMES USED>) *

Related, but distinct construct names
• (<OTHER CONSTRUCT NAME>: <EXPLANATION OF DIFFERENCE>) *

Related terms
• (<RELATED TERM>: <EXPLANATION OF TERM>) *

Language
 <LANGUAGE NAME>, <VERSION NUMBER> (<ACRONYM>), <PRIMARY URI>.
 [((<PRIMARY REFERENCE>.) *
 (<OTHER URIS AND REFERENCES>.) *
 (<ORGANISATIONS>.) *)]

Diagram type
 (<NAME OF DIAGRAM TYPE IN THIS LANGUAGE>) *

2. Presentation
This section describes the visual presentation of the modelling construct. Presentation issues
include lexical information (such as icons, line styles), syntax (how this and other modelling
constructs connect to form diagrams and repositories) and pragmatics (in particular layout
conventions). The Presentation section of the template is still informal, because we have given
priority to the (presumably more difficult) Representation section that follows.

Builds on
(<NAME OF OTHER CONSTRUCT IN THIS LANGUAGE>) *

NoE INTEROP — DEM

Built on by
(<NAME OF OTHER CONSTRUCT IN THIS LANGUAGE>) *

Icon, line style, text
For a construct that is represented as a node:
 <DRAWING OF ICON>
 <EXPLANATION OF HOW PRESENTATION DEPENDS ON ATTRIBUTE VALUES>

For a construct that is represented as an edge:
 <DRAWING OF LINE STYLE>
 <EXPLANATION OF HOW PRESENTATION DEPENDS ON ATTRIBUTE VALUES>

User-definable attributes
• (<CARDINALITY CONSTRAINT> <ATTRIBUTE NAME>

 [: <ATTRIBUTE TYPE> [= <DEFAULT VALUE>]]
 (<OPTIONAL DESCRIPTION>)) *

Where < CARDINALITY CONSTRAINT> is:
 (<MINCARD> : <MAXCARD>)

Relations to other constructs
• <FULL CARDINALITY CONSTRAINT> <RELATION NAME>

 : <OTHER CONSTRUCT NAME>
 (<OPTIONAL DESCRIPTION>)

Where <FULL CARDINALITY CONSTRAINT> is:
 (<MINCARD> : <MAXCARD> [rev <MINCARD> : <MAXCARD>])

Diagram layout conventions
• (<DESCRIPTION OF LAYOUT CONVENTION>) *

Other usage conventions
• (<DESCRIPTION OF OTHER USAGE CONVENTION>) *

3. Representation
This section describes that instantiation level, classes, properties and kinds of dynamic behaviour
that this modelling construct can be used to represent.

Builds on
(<NAME OF ANOTHER CONSTRUCT IN THIS LANGUAGE>) *

Built on by
(<NAME OF ANOTHER CONSTRUCT IN THIS LANGUAGE>) *

Instantiation level
 Type level | Instance level | Both type and instance level

Classes of things
<CARDINALITY CONSTRAINT> “<CLASS ROLE NAME>”

NoE INTEROP — DEM

 played by <ONTOLOGY CLASS >
[(<EXPLANATION OF CLASS>)]
Also represented by: <OPTIONAL LIST OF OTHER CONSTRUCTS>

Where <ONTOLOGY CLASS> can be a single:
 <ONTOLOGY CLASS NAME>
or, in general, an intersection class of the form:
 <ONTOLOGY CLASS NAME> (& <ONTOLOGY CLASS NAME>) *

Properties (and relationships)
[<CARDINALITY CONSTRAINT>] “<PROP ROLE NAME>”

 played by <ONTOLOGY PROPERTY NAME>
 [Type: <PROPERTY DATA TYPE> [, default value: <DEFAULT VALUE>]]

(Belongs to: <FULL CARDINALITY CONSTRAINT> <CLASS ROLE NAME>
[in role <ROLE NAME>]) *

(Sub-property of: <FULL CARDINALITY CONSTRAINT> <PROP ROLE NAME>
 [in role “<ROLE NAME>”]) *
[[State | Transformation] law: <LAW DESCRIPTION>]
[(<EXPLANATION OF PROPERTY>)]
[Also represented by: (<ANOTHER CONSTRUCT IN THE SAME LANGUAGE>) *]

Where <ROLE NAME> is:
 <DOWNWARDS ROLE NAME> [/ <UPWARDS ROLE NAME>]

Behaviour
 Existence | State | Event | Process

REPRESENTED STATE ENTRIES (ONE IF STATE, ONE OR MORE IF EVENT OR PROCESS):

 “<STATE ROLE NAME>” [played by <OPTIONAL ONTOLOGY STATE>]
 (Defining property: <PROPERTY NAME>) *
 State constraint: <STATE CONSTRAINT DESCRIPTION>
 [, constrained by <PROPERTY NAME>]

[Also represented by: (<ANOTHER CONSTRUCT IN THE SAME LANGUAGE>) *]

Where <PROPERTY NAME> is:

“<PROPERTY ROLE NAME>” [of “<CLASS ROLE NAME>”]

REPRESENTED EVENT ENTRIES (ONE IF EVENT, TWO OR MORE IF PROCESS):

 “<EVENT ROLE NAME>” [played by <OPTIONAL ONTOLOGY EVENT>]
 From state: “<STATE ROLE NAME>”
 To state: “<STATE ROLE NAME>”
 Trigger: <TRIGGER CONDITION DESCRIPTION>
 Condition: <EVENT CONDITION DESCRIPTION>
 Action: <ACTION DESCRIPTION>
 [, effected by <PROPERTY NAME>]

 [Also represented by: (<ANOTHER CONSTRUCT IN THE SAME LANGUAGE>) *]

Modality (permission, recommendation etc)
Regular assertion |

NoE INTEROP — DEM

Permission of “<ACTOR CLASS ROLE>”
[, issued by “<INTENTIONAL CLASS ROLE>”] |

Mandate of “<ACTOR CLASS ROLE>”
[, issued by “<INTENTIONAL CLASS ROLE>”] |

Intention of “<INTENTIONAL CLASS ROLE>” |
Obligation of “<INTENTIONAL CLASS ROLE>” |
Belief of “<INTENTIONAL CLASS ROLE>” |
Knowledge of “<INTENTIONAL CLASS ROLE>”

4. Open Issues
• (<OPEN ISSUE>: <DESCRIPTION AND DISCUSSION>) *

Change List
Changes 1.1 → 1.2: Split the template into a pure” template and a separate “Template Tutorial”.
Introduced a Preamble entry for modelling constructs that build on other constructs. Other changes
concern mainly the Semantics section, which has become more precisely specified. There is no need
to update existing analyses to reflect the new template version.

Changes 1.0 → 1.1: Event definitions are more detailed now, comprising a trigger, a condition and
an action sub-entry. Otherwise, this revision is mainly to fix minor inaccuracies and provide better
explanations of some entries in the Semantics section.

References
[1] Andreas L. Opdahl and Brian Henderson-Sellers. A Template for Defining Enterprise Modelling

Constructs. Journal of Database Management (JDM) 15(1). Idea Group Publishing, 2004.

[2] Andreas L. Opdahl and Brian Henderson-Sellers. Template-Based Definition of Information
Systems and Enterprise Modelling Constructs. Chapter 6 in Ontologies and Business System
Analysis, Peter Green and Michael Rosemann (eds.). Idea Group Publishing, 2005.

