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Abstract

This report deals with the analysis of the performance of different ver-
sions of the wide spread Transport Control Protocol (TCP) over 3G UMTS
networks. This analysis is done through simulations executed on the Net-
work Simulator version 2 (NS2) and its Enhanced UMTS Radio Access Net-
work Extension (EURANE). Different tool enhancements were developed in
order to make this project possible.

This paper starts with explaining the main UMTS networks and TCP
functionalities. Then, the performance of the most common TCP versions
is analyzed with data transfer on the common channels only. Afterwards,
the case of WEB traffic with a possible dedicated channel allocation is de-
scribed. The impact of several parameters is analyzed. This last set of
simulations is first done using a single non-preemptive inactivity timer for
the DCH de-allocation, and then with hybrids preemptive/non-preemptive
inactivity timers.

Résumé

Ce rapport tente d’analyser les performances de différentes versions du
protocole de transport TCP (Transport Control Protocol) sur les réseaux
3G UMTS. Cette analyse est menée via des simulations utilisant le Network
Simulator version 2 (NS2) et son extension UMTS (Enhanced UMTS Ra-
dio Access Network Extension, EURANE). Différents utilitaires ont dû être
développés pour rendre ce projet possible.

Cette thèse commence par expliquer les principales fonctionnalités de
l’UMTS et de TCP. La performance des versions les plus communes de
TCP est ensuite analysée via un transfert de données sur les canaux com-
muns. Ensuite, Le cas d’un trafic WEB avec l’allocation possible de canaux
dédicacés est décrite et l’impact de différents paramètres est analysé. Ce
dernier jeu de simulations utilise d’abord un inactivity timer non préemptif
pour la désallocation d’un canal dédicacé et ensuite un système mixte d’inactivity
timer non préemptif et préemptif.
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Chapter 1

Introduction

1.1 Motivation

From the very beginning, mobile wireless networks and data networks such
as Internet developed separately. With the GPRS (General Packet Radio
System), we could see a beginning of unification, where the mobile terminals
could access a small part of the existing data services, but the main shortfall
of these technologies was the small available bandwidth. This is the reason
why the claim of the new 3G (Third Generation) networks is to deliver a
high data rate service.

Those who want to speak about the Internet, have to speak about TCP
(Transmission Control Protocol). Indeed, TCP accounts for about 95% of
the bytes, 90% of the packets and 80% of the flows on the Internet [1].
Therefore, this kind of data traffic will be a main part of the traffic carried
by the emerging 3G technologies. TCP is intended for use as a highly reli-
able host-to-host protocol in packet-switched networks [2]. However, TCP
assumes that packets are lost only because of congestion. This was almost
true in the case of wired networks, but not anymore in the case of wireless
communications where a lot of errors can occur. This is one of the reasons
why networks such as UMTS (Universal Mobile Telecommunication System)
can use a local ARQ (Automatic Repeat Request) mechanism in order to
ensure the reliability of the wireless link. Nevertheless, using a local ARQ in
a lower layer than TCP can partly hide the congestion to the TCP conges-
tion control mechanism, and the well known TCP performance could change
a lot.

The main goal of this project is to analyze and compare the downlink
performance of different TCP protocols over UMTS networks common and
dedicated channels, using a Radio Link Control (RLC) in Acknowledged
Mode (AM).
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1.2 State of the Art

Only a few studies were published about the TCP performance over UMTS
networks. The published papers are theoretical or give simulation or emu-
lation results. In the theoretical studies, [3] tries to analyze the impact of
different power control methods on the end-to-end TCP performance. Some
other analysis concentrate on very specific problems, like [4] which analyzes
the importance of the RLC buffer size in UMTS networks. Indeed, a small
buffer size leads to unnecessary dropped TCP packets since the buffer is full.

Most of the published simulation studies concentrate on specific UMTS
channels with a specific traffic. Some simulations are very simple, like [5]
that did not use any ARQ at the link layer, and that only uses the TCP
throughput as a quality indicator. The throughput comprises the data sent,
the protocol headers and all the retransmitted packets. Therefore, if there
are a lot of TCP retransmissions, the throughput is not a good indicator of
performance.

The dedicated channel (DCH) was simulated in several papers, but al-
most never in combination with the common channels. For example, [6]
analyses the effect of the TCP advertised window and of some RLC param-
eters with one user on DCH. One of the main RLC parameter that is tested
in this study is the effect of the RLC AM maximum number of retransmis-
sions. The conclusion said it is better not to limit this number. However, the
main drawback in this study is only DCH was simulated, and thus there was
no congestion problem at the base station. The application used in these
simulations was FTP (File Transfer Protocol), that sends as much data as it
can. Another similar study analyzed the impact of the status prohibit timer
on the TCP throughput, with an infinite number of RLC retransmissions [7].
The status prohibit timer defines how often a RLC bitmap acknowledgment
is sent at the receiving RLC. The traffic used in this case was an HTTP
traffic, with only one object per page, following a Poisson distribution.

Reference [8] is a lot closer to our concern. The study simulates bursty
traffic on a cell with one DCH and a possible switch to DCH from the com-
mon channels. The DCH can be allocated to different users following a
simple packet scheduling. It analyzes the impact of some switching parame-
ters on the TCP throughput. The wireless link is supposed to be error free.
This analysis is the most realistic one, but the traffic tested is not web traf-
fic, and setting an error rate would allow testing the RLC AM parameters.
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In all these studies, only one TCP version was used. Most of the time
it was Reno or Newreno, but there are no results about the other common
TCP versions.

1.3 About this document

This report is divided into the following parts. First, this introduction ex-
plains the general motivation of this project. Then, since the settings se-
lected in this study is UMTS, the main characteristics of the UMTS networks
will be described, with a detailed description of the different protocols and
the different available channels. Then, the main TCP principles will be ex-
plained, followed by a description of the main TCP versions.

Afterwards, the project will be described with more details. The prob-
lem statement and the approach followed during this project will be clearly
defined. The simulation tools and limitations will be described in this part.
The next chapter will depict the different implementations that were done
during this project.

The three following chapters contains simulations results. The first one
shows the congestion problem at the Node B (similarly called Base Station
or BS in this document), through the hypothetic case of a FTP (File Trans-
fer Protocol) session over a common channel. The second and the third
simulation chapter analyze the performance of different TCP versions us-
ing the switch between DCH and Forward Access Channels (FACH) in the
downlink. With two different kind of DCH de-allocation mechanisms.

Finally, general conclusions about this project and suggestions for future
work are given.
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Chapter 2

Overview of UMTS

2.1 Introduction

This chapter is intended to be an overview of the 3G Mobile Communication,
the UMTS networks. First of all the main parts of UMTS will be depicted.
After that, we will speak about the Wireless Code Division Multiple Access
(WCDMA) protocol stack. Then the physical layer and the different chan-
nels will be described, and finally some remaining parts of the 3G Mobile
Communication basic knowledge will be briefly explained.

2.2 UMTS architecture

According to the 3rd Generation Partnership Project (3GPP) [10], a UMTS
network is a ”network operated by a single network operator and consist-
ing of UTRAN access networks (WCDMA and/or TD-CDMA), optionally
GSM BSS access networks, and UMTS core network”. The main parts of
the UMTS specific network components, that are shown in Figure 2.1, will
be described in the following sections.

2.2.1 User Equipment and External Networks

The user equipment is divided in two parts. The UMTS Subscriber Identity
Module (USIM) holds the subscriber identity and store other subscription
information. The Mobile Equipment (ME) is the radio terminal used for
radio communication over the Uu interface. On the other extremity, we can
see the two big existing network types: Circuit Switched (CS) and Packet
Switched (PS) networks. The Public Switched Telephone Network (PSTN)
is a common example of CS network, while the Internet is PS.

5



Figure 2.1: UMTS architecture, taken from [12]

2.2.2 UTRAN

The Universal Terrestrial Radio Access Network (UTRAN) is the most im-
portant part of the UMTS networks. It handles all radio-related function-
ality. It is split in two components: Node B and Radio Network Controller
(RNC).

Node B

A node B (similarly called Base Station (BS) in this report) is a logical node
responsible for radio transmission / reception in one or more cells to/from
the User Equipment [10]. The Node B is responsible for coding/spreading on
the physical channel. It also participates in Radio Resource Management
(RRM). For example, it makes radio measurements for the upper layers,
Forward Error Correction (FEC), encoding/decoding of transport channels
and Inner loop Power Control [11].

RNC

The RNC is in charge of controlling the use and the integrity of the radio
resources [10].

The Radio Network Controller (RNC) controls one or more Node Bs.
It is the access point between the Core Network (CN) and UTRAN. It is
responsible for the traffic management of the common/shared channels and
the Admission control. It also performs Soft Handovers (SHO).

RNC also has a logical role. The RNC controlling a Node B is called
Serving RNC (SRNC), and is responsible for the load and control congestion
in its own cells. Further, a RNC can be a SRNC or a Drift RNC (DRNC).

6



The SRNC for one mobile is the RNC that terminate the Iu link for the
transport of user data. All traffic from the CN to the mobile will go through
this RNC. On the other hand, a DRNC is any other RNC that controls a
cell used by the mobile. All communications received by the DRNC of this
mobile will be redirected to his SRNC [12].

2.2.3 Core Network (CN)

The CN is responsible for switching, routing procedures and data connec-
tions to external networks. It makes the link between the existing external
CS and PS networks such as PSTN and Internet. So, the core network is
splitted into several CS and PS entities. [12]

MSC/VLR and GMSC

The Mobile Switching Centre (MSC) and the Visitor Location Register
(VLR) are the switch and the local database that serve the User Equip-
ment (UE) in its current location for CS services. GMSC is the Gateway
MSC.

SGSN and GGSN

The Serving GPRS (General Packet Radio Service) Support Node has the
same function than the MSC/VLR, but for PS services. GGSN is the Gate-
way GPRS Support Node.

HLR

The Home Location Register (HLR) is a database located in the user’s home
system that contains the master copy of all information about the user’s
service profile. For example, it contain information about roaming areas,
allowed services, authentication keys, etc.. It is created when a new user
subscribes to the system and remains stored as long as the subscription is
active.

2.2.4 Interfaces

An interface defines the connection between different entities. The main
interfaces are well-specified by the 3GPP. With these, the equipment on
different ends of the interface can be acquired from different manufacturers.
It is necessarily to enable competition between them in order to decrease
the prices [11]. The most important ones are:

7



Iu

This interface connects the CN to the UTRAN. It can be divided in two
parts: Iu-CS for the CS domain and Iu-PS for the PS domain.

Iub

This interface is situated between the RNC and the Node B in the UTRAN.
The tasks that Node B and RNC have to perform together are so complex
that a proprietary solution is the most likely one. For example, the traffic
management of common/shared/dedicated channels and system information
management are performed on this link.

Iur

The Iur interface connects two RNCs. It is used for example for the DRNC-
SRNC connectivity.

2.3 WCDMA air interface protocol stack

To help the transparency between the different Mobile Communication Gen-
erations, the concepts of Access Stratum (AS) and Non Access Stratum
(NAS) were defined. The AS is a functional entity that includes radio access
protocol between the UE and the UTRAN. The NAS includes CN protocols
between the UE and the CN itself [11]. Thus, in theory, NAS protocols are
independent of the underlying radio access technology and can be reused
from older Global System for Mobile communication (GSM) networks. This
section will focus on the AS protocols specific to UMTS, that are typically
implemented in the UE and in the RNC. Note that the Node Bs are not
aware of Radio Link Control (RLC) and upper protocols. This section will
describe the UMTS AS protocols, shown in Figure 2.2.

2.3.1 Radio Resource Control

The Radio Resource Control (RRC) is a sub layer of radio interface Layer
3 existing in the control plane only which provides information transfer
service to the non-access stratum. The RRC is responsible for controlling
the configuration of radio interface Layers 1 and 2 [10].

RRC functions and signaling procedures

The major part of the control signaling between UE and UTRAN is RRC
messages [11]. They carry all the parameters required to set up, modify
and release layer 2 and 1 protocol entities [12]. Among other things, RRC

8



Figure 2.2: Protocol stack in the UTRAN (only AS), taken from [11]

is responsible for outer-loop power control, security mode control (through
ciphering and integrity protection), Handovers (HO), reception of paging
messages, measurements, etc.. RRC is also responsible for the establishment,
reconfiguration and release of radio bearers.

RRC Service States

The two basic modes of a UE are idle mode and connected mode [12]. In
the idle mode, the UE is ”camping on a cell”. However, it is still able to
receive signaling information such as paging. The UE will stay in this state
until a RRC connection is established. The connected mode can be further
divided into service states.

1. Cell DCH

In this state, a dedicated channel (DCH) is allocated for the UE, and
the UE is known by its SRNC.

2. Cell FACH

Here, common channels are used to send signaling and small or bursty
amount of data. Random Access Channel (RACH, for the uplink direc-
tion) and Forward Access Channel (FACH, for the downlink direction)
are used. Because the UE has to continuously monitor the FACH, it
consumes power. Thus, if the channel is no longer used, the RRC
switches to the Cell PCH state.

3. Cell PCH

The RRC connection still exists, but the UE can only receive broadcast
messages and messages from the Paging Indicator Channel (PICH).
The UE cannot send anything.

9



4. URA PCH

This state is close to the previous one, except that a cell-update pro-
cedure is only triggered if the UTRAN registration area changes.

What makes UMTS so different from the other mobile telecommunica-
tion systems is that it allows adapting and changing bearers characteristics
following the application needs. This allows link usage optimization and bet-
ter end-to-end transport services. For example, real-time bit rate, Constant
Bit Rate (CBR), Variable Bit Rate (VBR) traffic have different requirements
in term of delay variation, Bit Error Ratio (BER) and data rate. Thus, a
negotiation routine exists that takes care of the current network congestion
(through the admission control) and the required quality of service. Figure
2.3 shows this routine and the possible RRC state changes.

Figure 2.3: UE modes and RRC states in connected mode (taken from [12])

The main parameters used to switch from a Cell FACH state to a
Cell DCH are the upswitch RLC buffer threshold and the downswitch in-
activity timer. The upswitch buffer threshold is the RLC buffer size above
which a DCH should be allocated, and the downswitch inactivity timer is
the time an inactive UE stays in the Cell DCH state before a downswitch
to the Cell FACH state can be triggered.

2.3.2 Layer 2

BMC/PDCP

The Packet Data Converge Protocol (PDCP) must hide the particularities of
each protocol from the UTRAN [11]. The PDPC functions includes, among
other things, header compression and decompression of IP data streams and
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the transfer of user data.

The Broadcast/Multicast Control (BMC) only handles downlink broad-
cast/multicast transmission. It implements the Cell Broadcast Service (CBS)
messages that are broadcast to every user in a cell.

RLC

RLC is a sub layer of radio interface layer 2 providing transparent, unac-
knowledged and acknowledged data transfer service [10]. A wireless physical
channel is characterized by a high error rate. Normally, errors are corrected
by the transport layer if needed (for example with TCP), but because er-
rors occur often, it can be faster to do retransmissions in a lower layer.
That is the goal of this sub layer. Note that in order to do this, the RLC
performs segmentation and reassembly of higher-layer Service Data Units
(SDU) into/from smaller RLC payload units (called Protocol Data Unit,
PDU).

The following services are provided to upper layers [11] [12]:

1. Transparent Data Transfer Service (TR)

In this mode, the only operation that can be done by the RLC is seg-
mentation and reassembly, but even this functionality is very limited,
since the RLC doesn’t add a protocol header. If this is used, it has to
be negotiated in the radio bearer set up procedure. Erroneous packets
are dropped or marked.

2. Unacknowledged Data Transfer Service (UM)

In this mode, data delivery is not guaranteed. Segmentation and re-
assembly is done by adding a header to RLC PDUs. Those PDUs also
contains sequence numbers so that the integrity of higher layer PDUs
can be checked. The packets are encrypted.

3. Acknowledged Data Transfer Service (AM)

Here, an Automatic Repeat Request (ARQ) mechanism is used to
reduce the error rate for higher layers. The quality vs delay perfor-
mance of the RLC can be configured by the RRC, by changing the
maximum number of retransmissions (maxDAT). Moreover, the RLC
can be configured for in-sequence or out-of-sequence delivery. The
packets are encrypted.
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MAC

The main function of the Medium Access Control (MAC) sub layer is the
mapping between the logical channels recognized by the RLC and the trans-
port channels used by the physical layer. New data is sent each Transmission
Time Interval (TTI) to the physical layer.

The logical channels specify the kind of data flowing over the network,
though the transport channels defines how the data is transferred. To do
this, the MAC protocol has to select the appropriate Transport Format (TF).

Among others, the MAC layer is also responsible for:

• Some traffic volume monitoring, that will be used by the RRC for
triggering reconfiguration of Radio Bearers and/or Transport channel

• Ciphering if the RLC is in TR

• Multiplexing/demultiplexing of higher PDUs into/from transport block

• Dynamic transport channel type switching (the switching decision be-
tween common and dedicated channel come from the RRC.

The MAC layer consists of three logical entities (see Figure 2.4). There
is only one MAC-b and one MAC-c/sh in each Node B and in each UE.
However, there is one MAC-d entity in each UE and one MAC-d entity for
each UE in the SRNC. The possible mappings between logical channels and
transport channels is shown in Figure 2.5, while table 2.1 and 2.2 briefly
describe the logical and transport channels.

Figure 2.4: MAC layer architecture, taken from [12]
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Figure 2.5: Mapping between logical channels and transport channels, taken
from [12]

Logical channels Direction
BCCH Broadcast Control Channel DL
PCCH Paging Control Channel DL
DCCH Dedicated Control Channel UL/DL
CCCH Common Control Channel UL/DL
DTCH Dedicated Traffic Channel UL/DL
CTCH Common Traffic Channel UL/DL

Table 2.1: Logical Channels

Transport channels Direction
BCH Broadcast Channel DL
PCH Paging Channel DL
RACH Random Access Channel UL
CPCH Common Packet Channel UL
FACH Forward Access Channel DL
DSCH Downlink Shared Channel DL
DCH Dedicated Channel UL or DL

Table 2.2: Transport Channels
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Note that RACH is only for limited-size data fields, while FACH is in-
tended for bursty data traffic.

DCH is the only dedicated channel. If the data traffic over the DCH
suffers from some peaks, it can be associated with a DSCH to help sending
these peaks. This system allows not to give a too large bandwidth to the
DCH if the peaks are not frequent.

There is a last transport channel that can be added: the High Speed
Downlink Shared Channel (HS-DSCH). It is optimized for very high speed
data transfer, and is always associated with a DCH.

2.3.3 Physical layer

The physical layer mainly maps transport channels into the right physical
channel. Figure 2.6 shows the mapping between the transport channels and
the physical channels, and Table 2.3 briefly describe the physical channels.
Only channels that are relevant in term of services for the upper layer are
showed here.

Figure 2.6: Mapping between transport channels and physical channels,
adapted from [11]

The UMTS physical layer uses WCDMA as its air interface. Its descrip-
tion will be very brief, and is only present in order to make this overview
complete.

Figure 2.7 shows how Code Division Multiple Access (CDMA) works for
one user. It is the same when multiple users are sending data. Among other
things, CDMA is used in order to send more than one data flow in the same
time, to decrease the multiple access interference from many system users
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Physical channels Direction
PRACH Physical Random Access Channel UL
PCPCH Physical Common Packet Channel UL
DPDCH Dedicated Physical Data Channel UL and DL
DPCCH Dedicated Physical Control Channel UL and DL
P-CCPCH Primary Common Control Physical Channel DL
S-CCPCH Secondary Common Control Physical Channel DL
PDSCH Physical downlink Shared Channel DL

Table 2.3: Physical Channels

Figure 2.7: Spreading-despreading in CDMA (single user), taken from [15]
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and to provide variable bit rates [12].

The spreading codes are chosen through the channelization and the
scrambling mechanisms.

1. Channelization

Figure 2.8: Beginning of the channelization code tree, taken from [12]

The spreading/channelization codes of the Universal Terrestrial Radio
Access (UTRA) are based on the Orthogonal Variable Spreading Fac-
tor (OVSF) technique. The codes are picked from the channelization
tree (see Figure 2.8). This allow UTRA physical layer to give a higher
bandwidth to a connection, by giving it a higher channelization code.
However, when a code is allocated to an user, no other code from an
underlying branch can be used (in order to respect the orthogonality).

2. Scrambling Scrambling is needed to separate terminals or base stations
from each other, and is used in top of spreading (see Figure 2.9).

Figure 2.9: Relationship between spreading and scrambling, taken from [12]

2.4 Procedures

This section summarize two of the main UMTS procedures: the handovers
(HO) and the power control.
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2.4.1 Handovers

A HO is the transfer of a user’s connection from one radio channel to another
(can be the same or different cell) [10]. For example, a UE can maintain its
connection in cellular networks when it moves from one cell area to another
one [11]. The biggest problem with HO is the long delays.

There are three kinds of HO:

Soft Handovers

A Soft Handovers (SHO) takes place when a UE receives data from more
than one base station at the same time [11] [12]. This requires the use of
two separate codes in the downlink direction, so that the UE can distinguish
the signals.

Softer Handovers

A Softer HO is a special type of SHO where only one of the possible base
station is sending data to the UE [11].

Hard Handovers

A Hard Handovers (HHO) is also known as an inter-frequency HO [11]. The
problem is making the required measurements on the new channel. Indeed,
a CDMA handset is transmitting continuously in connected mode, so there
are no spare slots available to make measurements in other frequencies.
To resolve this problem, the compressed mode can be used. That means
that not all time slots in downlink are used for data transmissions. When
the required measurements are done, the UE stops transmitting on the old
frequency and begins using the new one.

Intersystem Handovers

Intersystem HOs are HOs between two different Radio Access Technologies
(RAT) (for example, between a GSM/GPRS and an UMTS). A lot of mea-
surements have to be done before such a HO can take place. In order to do
this, the compressed mode can be used [11].

2.4.2 Power control

The main purpose of the Power Control (PC) is to minimize the interference
in the system, in order to keep the Bit Error Rate (BER) as constant as pos-
sible. In the uplink direction, all signals should arrive in the Node B with the
same signal power, whether the UE is close or not. In the downlink, signals
sent by other Node Bs are not orthogonal and thus increase the interference
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level. That is one of the reasons why signals should be transmitted with the
lowest possible power level [12].

There are two different ways to operate this power control:

Open-loop power control

The transmitting entity estimates the required power level by itself from the
received signal.

Closed-loop power control

This power control is based on the explicit power control commands received
from the peer entity. This power control can be further divided into inner-
loop power control and outer-loop power control.
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Chapter 3

Transmission Control
Protocol overview

This chapter intends to make a little summary of the common Transmis-
sion Control Protocol (TCP) mechanisms and the way they are working.
Moreover, although the most common TCP principles never changed, a lot
of improvements were proposed from the original TCP. Each version has
its own strengths and weaknesses. First, the most important characteristics
of TCP will be described. Then, the different ways for TCP to react to
congestion will be detailed. Finally, there will be a brief explanation of the
main TCP versions.

3.1 TCP basics

3.1.1 Connection oriented and reliable data transfer

The main goal of TCP is to provide a reliable host-to-host data transfer on
top of a non-reliable layer, usually the Internet Protocol (IP).

Reliable data transfer

TCP ensures that the data transfer is reliable because [13]:

• The application data is broken into what TCP considers the best sized
segments to send, identified by a sequence number.

• When TCP sends a segment, it starts a timer known as the Retrans-
mission Time-Out (RTO), waiting for the other end to acknowledge
reception of the segment (by sending an acknowledgement (ACK)).
If an ACK is not received before the RTO expires, the segment is
retransmitted.
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• TCP maintains a checksum on its header and data. If the receiver has
an invalid checksum compared with the data, it simply discards the
packet. Normally, the sender will retransmit the corrupt segment as
no corresponding ACK will be received before the RTO expires.

• A TCP receiver discards duplicate data.

• TCP will reorder packets received out-of-order.

• TCP also provides flow control. A receiving TCP only allows the other
end to send as much data as the receiver has buffers for.

TCP header

The TCP sender and receiver must share some information (like acknowledg-
ments and receiver’s buffer size). This information is sent within a header
appended to each TCP segment. The standard size of this header is 20
bytes, but some protocols use 20 more bytes for TCP options (see Figure
3.1).

Figure 3.1: TCP header

In order to be reliable, the two hosts using TCP must be aware of the
connection, and be synchronized with each other. From this we can say that
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TCP is a connection-oriented protocol, since it needs a connection establish-
ment procedure to synchronize the sender and receiver of the data, and a
connection termination procedure to inform the hosts that there is no data
to transmit anymore.

Connection establishment and termination

Figure 3.2: TCP handshake procedure

The connection establishment procedure is called ”handshake”, and the
segments sent at this time only contains the header, usually 40 bytes (a 20
bytes TCP header and a 20 bytes IP header).

1. The requesting end (called a client) sends a SYN segment with no data
to the other end (called the server), meaning that the client wants to
initiate a connection. This segment must contain the Initial Sequence
Number (ISN) of the segments, and the Maximum Segment Size (MSS)
that will be used for this connection.

2. The server replies with its own SYN segment containing a piggybacked
ACK for the client’s SYN.

3. The client acknowledges the server’s SYN, and the connection is es-
tablished for the two ends.

While TCP uses only 3 segments to initiate the connection, it needs 4
segments to terminate it. This comes from the TCP’s half-close state (see
Figure 3.3).

1. At the beginning, the end who wants to terminate the connection (for
example the client) sends a FIN segment to the other end.
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2. When receiving a FIN segment, the server has to acknowledge it, but
can still send data to the client. The TCP connection is in half-close
state.

3. When the server decides to close the connection, it sends a FIN seg-
ment

4. The client acknowledges the FIN segment. At this time, the connection
is completely closed.

Figure 3.3: TCP termination procedure

3.1.2 Flow control

Practically, there are two different ways to send data. The first way is called
”Stop And Wait”. This mechanism is very inefficient, because the sender
only sends one segment at a time, and waits for the receiver to acknowledge
it. The second way is called ”sliding window”, and permit to send as much
segments as the receiving end can handle, before having to wait for acknowl-
edgment [19]. TCP uses the sliding window mechanism.

In this mechanism, a certain number of segments (called a window of
segments) are transmitted at once. Each segment has a sequence number
appended to it, and the receiver can acknowledge more than one segment
at a time by acknowledging the highest one received, meaning that all the
previous segments were successfully sent.

This flow control needs some information to be shared between the sender
and the receiver. For this, a field called the advertised window (AWND) in
the TCP header (Figure 3.1) is used to inform the sender of the receiving
buffer size. The sending window is limited by the AWND, so a fast sender
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will not overwhelm a slow receiver.

3.1.3 Congestion control

If the sender is only limited by the AWND, a lot of packets can be dropped
because of a full buffer in an intermediate router. Therefore the sending
window must be limited not only by the receiver buffer, but also by the
network capacity. The window size resulting from the congestion control
is called the congestion window (CWND). The sending window is taken as
being the minimum of the AWND and the CWND.

If a packet is lost, TCP retransmits it (and all the following packets)
through its Automatic Repeat Request (ARQ) mechanism. This kind of
ARQ is called Go-Back-N.

Slow Start

The way in which TCP data transmission operates during the start of a
connection is known as slow start [13].

The slow start algorithm avoids the congestion problem by observing
that the rate at which new packets should be injected into the network is
the rate at which the acknowledgments are returned by the other end.

The sender starts by transmitting one segment and waiting for its ACK.
Afterwards, CWND is increased by one segment each time an ACK is re-
ceived.

The main drawback to slow start is the large amount of time that is
required during start up. If the data that is being sent is very small, the
bandwidth efficiency will be reduced considerably [19].

Congestion Avoidance

The slow start increases the CWND exponentially. At some point during
the connection a bottleneck in the network will be congested and starts dis-
carding packets [13]. Therefore, above a certain threshold, an exponential
increase of CWND seems inappropriate to find the right CWND value.

The relation between slow start and congestion avoidance is done through
a variable called Slow Start Threshold (SSTHRESH). If CWND is below
SSTHRESH, the TCP sender is in slow start, otherwise it is in congestion
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avoidance, meaning that CWND is increased only by 1/CWND each time
an ACK is received. This is an additive increase (Figure 3.4).

Figure 3.4: Slow Start and Congestion Avoidance

TCP assumes that almost all packet losses are due to congestion some-
where in the network. Therefore it is necessary to reduce the amount of
segments to be sent if a packet loss is detected (indicated by a RTO or the
reception of duplicate ACKs).

When congestion occurs, SSTHRESH is set to [13]:
SSTHRESH = Max(Min(CWND,AWND), 2)

The TCP behavior is different if the congestion was detected through an
RTO or some duplicate ACKs.

TCP Retransmission Time-Out

When data segments are not received, the RTO expires, TCP retransmits
the segment and goes back to slow start. However, the RTO cannot be fixed,
since the time between when a packet is sent and its ACK arrives (known as
the Round Trip Time (RTT)) can change a lot depending on the network.
The RTO is calculated in the following way, as proposed in the original TCP
specifications [20]:
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RTO = SRTT + 4 ∗Deviation
SRTT = 7

8 ∗ SRTT + 1
8 ∗ SampleRTT

Deviation = 3
4 ∗Deviation + 1

4 ∗ |SampleRTT − SRTT |
where SampleRTT is the last calculated RTT value.

It can be seen that the RTO is dependent on the last RTT sample, and
in some part from the past RTTs. When a timeout occurs, the RTO is
doubled, with a maximum of 64 seconds [13].

Duplicate ACKs

When 3 duplicate ACKs are received by the TCP sender, the following TCP
mechanisms can take place.

1. Fast Retransmit

When a RTO occurs, it means that almost no packets could go through
the network because of congestion. However, if the TCP sender re-
ceives duplicate ACKs, it means that a packet was lost, but that some
others reached the receiver. In this case, TCP will retransmit the
concerned packets without waiting for the RTO [14] [13].

2. Fast Recovery

When the third ACK duplicate is received, TCP performs congestion
avoidance instead of slow start, since it does not want to reduce the
flow abruptly by going into slow start. SSTHRESH is set to one-half
the current window, but CWND will be set at SSTHRESH plus three
(because we received three duplicate ACKs) [19] [13]. Each time an-
other duplicate ACK arrives, CWND is incremented by one. When
an ACK that acknowledges new data arrives, TCP goes to congestion
avoidance.
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3.2 TCP versions

3.2.1 TCP Tahoe

These are the main features of TCP Tahoe [20]:

• Slow Start

• Congestion avoidance

• Fast retransmit

The main problem of Tahoe is that even if some packets can still flow
through the network, it will perform slow start if a packet loss is detected,
abruptly reducing the flow.

3.2.2 TCP Reno

These are the main features of TCP Reno [20] [16]:

• Slow Start

• Congestion avoidance

• Fast retransmit

• Fast Recovery

TCP Reno extends Tahoe by introducing the Fast Recovery mechanism.
This solves the main Tahoe problem, but can lead to a stall. Indeed, TCP
Reno goes out of Fast Recovery when it receives a new partial ACK (those
which represent new ACKs but do not represent an ACK for all outstanding
data). That means that if a lot of segments from the same window are lost,
TCP Reno is pulled out of Fast Recovery too soon, and it may stall since
no new packets can be sent. Indeed, in Congestion Avoidance, CWND is
increased by 1/CWND each time a new ACK is received, though in Fast
Recovery CWND is increased by 1.

3.2.3 TCP Newreno

These are the main features of TCP New Reno [20] [16]:

• Slow Start

• Congestion avoidance

• Fast retransmit

• Enhanced Fast Recovery

26



TCP New Reno has the same behavior than TCP Reno, but tries to
avoid the TCP Reno stall problem by ignoring the new partial ACKs in
Fast Recovery. TCP New Reno will only be pulled out of Fast Recovery
when an ACK with a higher value than the highest seen so far is received.

3.2.4 TCP Vegas

TCP Vegas introduces some innovations. The sender stores the current value
of the system clock for each segment it sends. Therefore it is able to know
the exact RTT for each sent packet.

These are the main features of TCP Vegas [21]:

• Fast retransmit

• Fast Recovery

• New Retransmission mechanism: If the RTT of a duplicate ACK is
greater than a threshold, the segment is retransmitted without waiting
for the classic RTO nor for 3 duplicate ACKs.

• New Congestion Control mechanism: It depends on the difference be-
tween the calculated throughput and the value it would achieve if the
network was not congested. When that difference is smaller than a
boundary, the window is increased linearly. When it is larger than an-
other higher boundary, it is decreased linearly. The throughput of an
uncongested network is defined as the window size in bytes, divided
by the BaseRTT, which is the value of the RTT in an uncongested
network. The RTT in an uncongested network is calculated as the
RTT of the last packet that was sent alone.

• New Slow Start mechanism: CWND is doubled every time the RTT
changes instead of every RTT. To exit the Slow Start phase, a bound-
ary is set on the difference between the current RTT and the last RTT
instead of a boundary on the CWND size.

3.2.5 TCP Sack

These are the main features of TCP Sack [22]:

• Slow Start

• Congestion avoidance

• Fast retransmit

• Modified Fast Recovery (see below)

• Sack mechanism (see below)
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Sack was implemented in order to stay as close as possible to TCP Reno,
while adding a full Selective Repeat and Selective Acknowledgement mech-
anism. TCP Sack uses the option field in the TCP header to store sets
of properly received sequence numbers. The main difference between TCP
Sack and TCP Reno is in the behavior when multiple packets are dropped
from one window of data [22].

During Fast Recovery, Sack maintains a variable called pipe, that repre-
sents the estimated number of packets outstanding on the link. The sender
only sends new or retransmitted data when the value of pipe is less than the
congestion window (CWND). The variable pipe is incremented each time
the sender sends a packet, and is decremented when the sender receives a
duplicate ACK with a SACK option reporting that new data has been cor-
rectly received.

The sender maintains a scoreboard that remembers acknowledgments
from previous SACK options. When the sender is allowed to send a packet,
it sends the next packet known as missing at the receiver if such a packet
exists, otherwise it sends a new packet. When a retransmitted packet is lost,
Sack detects it through a classic RTO and then goes into Slow Start. The
sender only goes out Fast Recovery when an ACK is received acknowledging
all data that was outstanding when Fast Recovery was entered. Because of
this, we can say that Sack is closer to New Reno than to Reno, since partial
ACKs do not pull the sender out of Fast Recovery.

3.2.6 TCP Fack

TCP Fack is an extension of TCP Sack and has the same functionalities.
However, it improved some parts of the TCP Sack protocol:

• More precise estimation of outstanding data: The information of the
SACK option is being used to better estimate the amount of data in
transit [23].
data in transit = snd.nxt− snd.fack + retransmitted
where snd.nxt is the first byte of data not sent, snd.fack is the highest
sequence number known to have been received plus one and retrans-
mitted is the number of retransmitted segments.

• Data smoothing: A better way of halving the window when congestion
is detected. When the CWND is immediately halved, the sender stops
transmitting for a while and then resumes when enough data has left
the network. This unequal distribution of segments over one RTT can
be avoided when the window is gradually decreased [23].
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• Slow start and congestion control: The window should be halved ac-
cording to the multiplicative decrease of the correct CWND when con-
gestion occurs. Given the fact that the sender identifies congestion at
least one RTT after it happened, if during this RTT it was in Slow-
Start mode, then the current CWND will be almost double then the
CWND when congestion occurred. Therefore, in this case, the CWND
is first halved to estimate the correct CWND that should be further
decreased [24].
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Chapter 4

Problem Statement

4.1 Problem definition

As said in the introduction, the main goal of this project is to analyze and
compare the performance of different TCP protocols over UMTS networks
common and dedicated channels. As the downlink capacity is expected to be
more important than the uplink capacity because of the asymmetric traffic
type [12], only the downlink performances are analyzed.

Since the goal of this project is to analyze TCP performance, the Ac-
knowledged Mode of the RLC was chosen. The tested RLC parameters are
the maximum number of RLC retransmissions, the upswitch buffer thresh-
old at the BS (in the downlink), and the downswitch delay.

4.2 Approach

A discrete event simulation approach has been chosen for this project. Each
packet generates an event when it is handled by the simulator (see Sec-
tion 4.3). The main advantage of this approach is that it is really faster
than an emulation or a real testing, and that it is often easier to implement
than a real system.

Figure 4.1 shows the general topology that was used for the simulations.
The continuous lines represent wired links while the wireless links are repre-
sented by the dotted lines. There are n nodes connected to the GGSN and
n UEs. Each wired node is a TCP sender and each UE is a TCP receiver.

Web traffic was chosen for the main simulations since it is one of the
most important data traffic that will be transported on common/dedicated
channels. The main quality indicators that were considered for such a traffic
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Figure 4.1: General simulation topology

are the TCP goodput (data sent, without headers and retransmissions, per
given time), the number of successful page calls (a user’s request for infor-
mation [9]) and the average time necessary to complete a packet call. Some
other simulations (including the simulations on the common channels only)
used an FTP traffic.

The errors occurs between the BS and the UE, thus the ”discard unit”
is the RLC PDU (Protocol Data Unit). Therefore, it is a Block Error Rate
(BLER) at the RLC level. The error rate is supposed constant. Two differ-
ent error rates will be used during the simulations. When the traffic was a
FTP session, a standard error rate was used.

A multistate error rate was used for the main simulations. It uses a
two-states Gilbert model to show the correlation between packet losses. In
the used Gilbert model, there is an error-free state (0) and an error state
(1). Figure 4.2 shows the Gilbert model state transition diagram.

Figure 4.2: Gilbert model state transition diagram, taken from [25]

The corresponding error rate, Pr(error), is calculated as follow [26]:

Pr(error) = Pr(1|0)
Pr(1|0)+Pr(0|1)
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4.3 Tools

4.3.1 Network Simulator 2

The chosen discrete event simulator is the Network Simulator (NS2) [16].
NS2 is an open-source simulator widely used in the academic community.
Therefore a lot of people are working on this project and there is a wide
variety of add-ons. NS2 is implemented in two parts: a TCL interpreter
to make the simulation scripting easier and a C++ implementation to have
faster simulations. Figure 4.3 shows a simplified user’s view of NS.

Figure 4.3: Simplified User’s view of NS, taken from [18]

A lot of standard network features and protocols are implemented in
NS2. It is not the goal of this section to summarize all the existing func-
tionalities of NS2, but just to mention some of them. All the TCP versions
described in Chapter 3 are implemented. Some applications like FTP al-
ready exists too. The lower layers (MAC and physical) are simulated as
well for wired networks.

Some parts of TCP are only partially implemented in NS2. The use of
the different TCP versions in NS2 is limited to one-way TCP connection,
with a partial TCP handshake. A synchronization packet is sent by the client
and acknowledged by the server, but no synchronization packet is sent from
the server to the client. The connection termination is not implemented at
all.

There is no advertised window (AWND) mechanism in NS2. The adver-
tised window is supposed to be always equal to 20 packets by default.
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4.3.2 Eurane

EURANE (Enhanced UMTS Radio Access Network Extensions for NS2) is
the NS2 UMTS extension developed within the framework of the IST SEA-
CORN project[17] that was used during this project. This extension limits
the simulations to one cell, and as such no handover is implemented. EU-
RANE includes three additional nodes (the RNC, BS and UE, see Chapter
2 for their meaning), whose functionality allows for the support of FACH,
RACH, DCH and HS-DSCH. The main functionality additions to NS2 are
the RLC in AM and UM, as well as some MAC support for the new transport
channels. In sequence delivery is used and no power control is implemented.
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Chapter 5

Implementations

This chapter will describe the implementations that were made in order to
make this project possible. The two first implementations, that are specific
to a UMTS environment, were made on top of EURANE. The WEB traffic
generator and the trace analyser are more general, and are made on top of
the unpatched NS2.

5.1 Maximum RLC retransmission limit

The original EURANE implementation does not limit the number of RLC
retransmissions (maxDAT). This is an important parameter, since one of
the worst problems on the common channels is the congestion at the BS.
Therefore, infinite retransmissions at the RLC can cause TCP to almost
never being aware of the congestion, since there are no packet losses, and
thus it would never adapt its sending rate (see Chapter 6).

When a PDU is retransmitted too many times, the corresponding SDU
has to be discarded. However, a single SDU is often segmented in a lot
of smaller PDUs, and all the associated PDUs have to be discarded too.
There is no problem to discard them on the sender side, but a specific mes-
sage has to be sent to the receiver so it can discard the PDUs belonging to
the concerned SDU. This message is sent through a status message, with a
MRW (Move Receiving Window) indication [29]. This MRW contains the
sequence number (SN) of the last PDU of the discarded SDU, so the re-
ceiver can discard all the not yet successfully received SDUs that have a
PDU SN < MRW and move the receiving window accordingly.

The 3GPP specification allows to send several MRW in a single status
message [29]. However, in the modified EURANE implementation, only one
MRW is sent at the same time. The RLC sender tries to piggyback the
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status inside the next packet to be sent, and if it is not possible it sends it
immediately with padding.

The MRW message can be lost due to congestion at the base station
or because of a transport channel error. Therefore it is necessary that the
receiver acknowledges the status messages containing MRWs. The 3GPP
specification allows the use of a MRW ACK status message. However, this
kind of message was not implemented. It is possible to know if the MRW
message was successfully received when the sender receives the next bitmap
acknowledgment. If MRW < FSN , where FSN is the first sequence number
of the received bitmap, then the sender knows that the concerned MRW was
successfully received. After a certain delay (500ms by default in the simu-
lator), if a MRW is not acknowledged, the sender sends the MRW message
again.

5.2 DCH allocation

The second EURANE modification is a limitation of the total cell bandwidth
allowed for the DCH allocation. The implemented packet scheduling is quite
simple compared to the 3GPP specification. There is no dynamic bandwidth
allocation and the same bandwidth is allocated to all DCH. The connection
uses the common channels (FACH and RACH) until the RLC buffer reaches
a threshold [12]. When this threshold is reached, and if there is enough free
bandwidth in the cell, a switch to a DCH is triggered. If not, the user simply
keeps using the common channels. Please note that each RRC change state,
as the allocation and deallocation of a DCH, takes a certain time. It is not
specified if the user can continue to use the common channels or not when
allocating a DCH. The examples in [12] consider that the user cannot use
the common channels while allocating a DCH. This is the approach that
was considered in this report.

Figure 5.1 shows the RLC buffer occupancy during a TCP file download.
The transfer is divided in 4 periods:

1. During the first period, the user is on FACH/RACH and the buffer
occupancy is below the threshold. Then, the file transfer starts and
the buffer occupancy becomes quickly bigger than the threshold.

2. During the second period, a DCH has been triggered if there was
enough free bandwidth on the cell, but it needs a certain time to be
allocated. No data is sent during this period.

3. During the third period, a DCH is allocated to the connection, and
the user is sending data.
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Figure 5.1: DCH allocation with a TCP file transfer.

4. In the last period, the user stopped sending data, but the DCH is still
allocated, in case new data would arrive [8]. When there is a very
low or no activity on the channel for a certain period, the DCH is
released [12]. In the new implementation, the inactivity is detected
through a null throughput. This step managed by an ”inactivity
timer”.

There were two different kind of inactivity timers implemented and used
during the simulations.

5.2.1 Non-preemptive scheme

The first sets of simulations used a simple non-preemptive scheme for the
inactivity timer. It means there is a single inactivity timer at the end of
the connection, during which the UE cannot be pulled out of its DCH. This
scheme will be called ”non-preemptive” [8].

5.2.2 Preemptive/non-preemptive scheme

The last sets of simulations used an adaptation of the preemptive and non-
preemptive scheme from [8]. The downswitch step is done through two
distinct inactivity timers. The first one is non-preemptive, while the second
one is preemptive, meaning that if another UE needs the DCH, it can be
released. The first inactivity timer is intended to allow a UE to keep its
DCH, even if a TCP RTO occurs (meaning there is still data to send), while
the preemptive timer allows a UE to keep its DCH for several consecutive
connections, if no other UE needs the bandwidth.

Figure 5.2 shows two UE downloading web traffic and sharing a single
DCH. When a DCH is allocated, the intermediate dot shows the end of
the non-preemptive inactivity timer and the beginning of the preemptive

37



inactivity timer. On the first allocation, the green UE is pulled out of its
DCH to let the blue connection use it. However, around 150s the green
connection tries to use a DCH without success since the blue UE is in its
non-preemptive period.

Figure 5.2: DCH allocation (two UE and one DCH)

5.3 WEB traffic generator for NS2

5.3.1 General

Several WEB traffic generators already exist in NS2. However, because
of some EURANE particularities, they were not suitable for this project.
Therefore, a new web traffic generator for NS2 was implemented, as close as
possible to the 3GPP specification [9]. The generated traffic is only down-
link, and only acknowledgements are sent from the client to the server.

Figure 5.3 shows the packet trace of a typical web browsing session. The
session is divided into packet calls representing a web page download. Each
packet call is separated by a reading time, representing the time necessary
for the end-user to read the last received web page. A packet call is di-
vided into a main object and several embedded objects (such as pictures).
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Figure 5.3: Packet Trace of a Typical Web Browsing Session [9].

HTTP1.1 is used to download the objects, meaning that all the objects of a
packet call are sent through the same TCP connection. Based on observed
packet size distributions, 76% of the HTTP packet calls should use pack-
ets of 1,500 bytes, with the remaining 24% of the HTTP packet calls using
packets of 576 bytes [9]. These values include the headers.

The distributions of the parameters for the web browsing traffic model
are described in Table 5.1 (taken from [9]).

5.3.2 Approach

Each time an object has been sent, a timer is set to decide when the next ob-
ject will be sent. The way this timer is launched is different if it represents a
parsing time or a reading time. If it represents a reading time, the end-user
must have received all the data before starting the timer. To ensure this, the
traffic generator will wait for all the sent data to be acknowledged, meaning
the web page has been successfully received. On the other hand, the parsing
time represents the time between packets arrivals at the base station. To
stay close to this definition, the traffic generator will wait for an object to
be sent (but not necessarily acknowledged) before starting this kind of timer.
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Component Distribution Parameters
Main object size (Sm) Truncated Mean = 10,710 bytes

Lognormal Std dev. = 25,032 bytes
Minimum = 100 bytes
Maximum = 2 Mbytes

Embedded object Truncated Mean = 7,758 bytes
size (Se) Lognormal Std dev. = 126,168 bytes

Minimum = 50 bytes
Maximum = 2 Mbytes

Number of embedded Truncated Mean = 5.64,
objects per page (Nd) Pareto Maximum = 53
Reading time (Dpc) Exponential Mean = 30 seconds
The time between the
packet calls
Parsing time (Tp) Exponential Mean = 0.13 seconds
The time between the
objects in a packet
call

Table 5.1: Distributions of the parameters for the web browsing traffic model

Component Distribution Parameters
File size (S) Truncated Mean = 2Mbytes

Lognormal Std dev. = 0.722 Mbytes
Maximum = 5 Mbytes

Reading time (Dpc) Exponential Mean = 180 seconds

Table 5.2: Distributions of the parameters for the FTP browsing traffic
model

5.4 FTP traffic generator for NS2

The main drawback of the existing NS2 FTP traffic generator is that it only
sends as much data as it can. However, a FTP session consists of a sequence
of file transfers, separated by reading times [9].

The distributions of the parameters for the FTP browsing traffic model
are described in Table 5.2 (taken from [9]). The packet size is the same as
seen for the WEB traffic.
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Figure 5.4: Packet Trace of a Typical FTP Browsing Session [9].

5.5 NS2 trace Analyzer

5.5.1 Existing trace analysis tool

Most of the existing tools designed to analyze TCP traffic are first designed
to analyze real TCP traffic. Therefore, their approach is to parse and ana-
lyze the packet traces from a network or from NS2. This needs sometimes
huge trace files, and a difficult way to keep trace of all the packets through
hash-tables. Moreover, the NS2 trace files are not in the same format than
the classical tcpdump [34], so only a few TCP analysis tools can handle
these traces.

The main usable analysis tool is tcptrace [33]. This program was initially
designed for real traces, but it is now able to understand NS2 traces. It works
well with TCP traces from many simulations, but sometimes gives strange
results, and splits a single connection into a lot of different connections.
Therefore, it is difficult to trust this kind of results and to use automated
scripts.

5.5.2 Parsetcp

During this project, a new TCP analysis tool for NS2 was implemented. It
is called Parsetcp. The approach is completely different from the other tools
since it does not analyze the packet traces, but directly the NS2 variables.
The script was implemented in a shell script with an awk parser. The main
advantage of this approach is that the variables are only traced when they
change, so there are no unnecessary traces and the trace file is small, while
the calculated results can be trusted since they directly come from the NS2
implementation. Moreover, the analysis takes a short time, since it is not
necessary to have a big hash table or other mechanisms to remember each
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traced packet. The results are directly computed by NS2.

Parsetcp is able to give the following results (only about TCP connec-
tions):

• Goodput : The goodput is the amount of data sent, without headers
and retransmissions, per given time.

• Average outstanding window

• Retransmitted packets

• Received ACKs: This value is not used in the case of TCP FACK and
SACK, since these TCP versions use a special acknowledgment type.

• RTT : Average, minimum and maximum RTT.

• RTO : Number of times a RTO occurred.

• Duplicate ACKs: The number of times the TCP sender received more
than 3 duplicate ACKs in a row.

• Total packets: The total number of packets sent (without retransmis-
sions)

• Transmission time

• Connection off time: When there were more than one connection be-
tween the same TCP sender and receiver, this is the time when there
was no connection. For example, in the case of HTTP 1.1 traffic, this
is the sum of the reading times (see section 5.3).

Note that the goodput, outstanding window, retransmitted packets, av-
erage RTT and current RTT evolution can be seen on generated graphs.

All these results are given for each connection, and for the global net-
work utilization. In case there are several connections, the results can be
computed using the whole simulation time or only for the time where the
connections were used. Finally, it is possible to have an easy to parse output
for the results, in order to facilitate the use of automated scripts.
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Chapter 6

Simulation results: data
transfer using FACH

6.1 Introduction

As seen in the UMTS overview, FACH is a downlink common channel in the
UMTS networks. This channel is usually not used to transport data, since a
DCH is supposed to be allocated if the receiving buffer becomes bigger than
a certain threshold. However, this chapter will describe the hypothetical
case of a FTP data transfer over FACH. First, the chosen parameters will
be given. Then, the results will be described and explained, and finally a
general conclusion will summarize the important results.

6.2 Main parameters

In this simulation, there are two users. The second one begins to transmit
over FTP 1,500s after the first one. In order to reference it more easily later
in this chapter, ”part 1” will mean the first 1,500s and ”part 2” will mean
the last 6,000s. The maximum number of RLC retransmissions (maxDAT),
is taken very high (9,000) in most of the results in order to highlight the
congestion problem. The consequence is that no TCP packets are dropped
between the RNC and the UE. All the TCP retransmissions occur because
of the TCP Retransmission Time Out (RTO), or when the RLC buffer size
is full.

Table 6.1 summarizes the used parameters. The error rate does not take
care of the correlation between packet losses. The RLC ARQ uses a Selective
Acknowledgement mechanism. A RLC POLL timeout of 170ms means that
a poll for a bitmap acknowledgment is sent at least every 170ms. The RLC
PDU size, POLL timeout and buffer size comes from the EURANE defaults
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Main parameters
Parameter Value
Number of users 2
Simulation length 7,500s
Traffic FTP
FACH bandwidth 32kbs
FACH TTI 10ms
RACH bandwidth 16kbs
RACH TTI 20ms
RLC PDU size 40bytes
RLC POLL timeout 170ms
RLC buffer size 100kB
maxDAT 2, 5, 8 or 9,000
BLER 0.01 to 0.9
TCP version Tahoe, Reno, Newreno, Vegas and Sack

Table 6.1: Summary of the main parameters

while the common channels bandwidth and TTI come from [12]. Note that
Fack is not listed in Table 6.1 because of some NS2 implementation problems.

6.3 Results

This section gathers the different simulation results and their explanations.
First of all, the evolution of the outstanding window will be shown. Then,
different results will be given about the RTT, and the congestion problem
at the BS will be depicted. Finally, the impact of maxDAT will be shown.
Note that apart from the last subsection, the results will be detailed for a
very high maxDAT value (9,000).

6.3.1 Outstanding window

In the particular case where the maxDAT is very large, there are almost no
differences between the different TCP protocols. Indeed, if all the retrans-
missions occur because of the RTO, all the TCP protocols go back to slow
start. There is no fast retransmit or fast recovery algorithm used. The only
difference we can see concerns the Vegas version, because the RTO is calcu-
lated in a different way than the other protocols (see section 3.2.4). Since
the only TCP version that has a different behavior is Vegas, the following
graphs will only compare TCP Reno and TCP Vegas. Figure 6.1 shows the
effect of the congestion on the TCP outstanding window. TCP Reno keeps
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the outstanding window size at its maximum value (the advertised window,
20 packets). CWND was never decreased because almost no RTO occurred.

TCP Vegas is aware of the congestion through its enhanced congestion
control mechanism (see section 3.2.4). It uses the RTT as a congestion in-
dicator, and not only the lost TCP packets, keeping its outstanding window
quite small (2.57 packets). When the second user begins to transmit, Fig-
ure 6.1 shows 2 distinct decreasing steps, corresponding to RTOs caused by
the congestion, and CWND decreases until half its past value. Knowing
that the second user adapts its CWND to the same size, it means that the
total outstanding packets on the network remains unchanged.

Figure 6.1: First user’s TCP outstanding window evolution, 0.01 error rate

6.3.2 Round Trip Time

The following sections will show the relationship between the RTT and some
other results. Max DAT is set to 9,000.

RTT, error rate and outstanding window

Figure 6.2 shows the evolution of the average RTT for Reno and Vegas when
the first user is alone. While using Reno TCP, the average RTT grows very
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fast with the error rate. However, if TCP Vegas is used, the RTT stays quite
small and stable until the error rate becomes higher than 0.4.

The RTT is very high when TCP Reno is used. It can be explained by
its big outstanding window. Indeed, this window is a good indicator of the
packets that are present on the network. If it is too big, the RTT will grow
unnecessarily since it will increase the network’s congestion, and as seen
in the past section, the Reno outstanding window is only limited by the
advertised window. The relationship between the TCP advertised window,
the RTT and the TCP throughput can be seen as follow [12]:

TCP throughput ≤ advertised window
round trip time

Following this equation, notice that without reducing the throughput,
reducing the advertised window lead to a smaller RTT. Figure 6.2 shows
that the RTT is always significantly lower in the case of TCP Vegas. This
can be explained because of the small Vegas CWND (see section 6.3.1).

Figure 6.2: Average RTT and error rate for Vegas and Reno TCP, part1

RTT and congestion

The congestion at the BS has a big impact on the RTT. Figure 6.3 shows
the SRTT (see section 3.1.3) evolution with a small error rate (0.01). It is
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obvious that the negative impact of the congestion on the SRTT is bigger
while using TCP Reno than while using TCP Vegas. Moreover, comparing
Figure 6.3 and Figure 6.1 between 1,000 and 2,000 seconds confirms that the
CWND and the RTT are closely related. The two decreasing steps of the
Vegas CWND results in two distinct decreasing steps of the Vegas SRTT.
In the case of Reno, the RTT grows very rapidly and never goes down,
since the congestion is not detected by the Reno TCP sender. Therefore,
the CWND does not adapt itself and the number of outstanding packets is
doubled, resulting in a lot of local retransmissions and in a higher RTT.

Figure 6.3: SRTT and congestion at the BS, 0.01 error rate

6.3.3 Retransmitted packets

As said before, in the case of Reno, Newreno, Fack, Sack and Tahoe, there
are almost no retransmissions, even if the error rate is high. This happens
because there is a huge maxDAT (9,000). However, there are more retrans-
missions in the case of Vegas because the RTT tends to be very high. This
results in unnecessary retransmissions, but when the error rate is not big,
the RTT is a good way for the TCP sender to be aware of the congestion
and to reduce its CWND.
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6.3.4 Congestion and error rate

This section intends to show the congestion problem at the BS. First, it will
be depicted with a small error rate. Afterwards, the impact of the error rate
on this congestion problem will be explained. Max DAT is set to 9,000.

Small error rate (0.01)

Figure 6.4 shows the total TCP goodput and the RLC throughput with a
0.01 error rate. The RLC throughput is the throughput measured on the
downlink, between the RNC and the BS. This throughput includes the TCP
and RLC headers, the TCP and RLC retransmissions and the RLC status
messages.

During the first part, the link is almost used at its full capacity (32kbs).
The TCP Vegas goodput is a little bit higher than the other protocols
(31.48kbs instead of 30.36kbs), and the RLC throughput is the same. This
is explained by the small Vegas window (4 TCP segments). Indeed, with a
too high window (19.97 TCP segments for TCP Reno), the UE alone can
overflow the BS RLC buffer. This causes some RLC packets to be retrans-
mitted, a longer RTT and therefore a lower goodput.

During the second part of the simulation, the difference between the RLC
throughput and the goodput becomes really big, and the goodput decreases.
Moreover, the RLC throughput is a lot higher than the link capacity. This
is explained because the RLC throughput is monitored on the Iub (between
the RNC and the BS), which is a very fast link, and that all the congestion
losses occurs at the BS. Therefore, the RLC throughput contains all the
RLC retransmissions. As there is almost no limit on the number of such
retransmissions, the buffer at the BS is continuously overwhelmed. This
explains the smaller TCP goodput (25.76kbs for Reno, 26.72kbs for Vegas).
Another observation is that the RLC throughput while using Vegas is smaller
than while using Reno. As explained before, the Vegas new congestion
control is based on the RTT, thus Vegas is aware of the congestion at the
BS. Vegas considers that some TCP packets are lost, retransmits them and
decreases its CWND. This results in some unnecessary TCP retransmissions
and in a smaller amount of RLC retransmissions.

High error rate

When the error rate becomes higher, the general behavior does not change.
Figure 6.5 shows the evolution of the goodput following the error rate. The
general trend is that the goodput decreases while the error rate grows. It
is logical since each packet may have to be retransmitted several times by
the RLC. Moreover, the goodput while using Vegas is always higher than

48



Figure 6.4: Congestion at the BS, 0.01 error rate

the goodput while using Reno, for error rates smaller than 0.5. Afterwards,
the Vegas performance becomes worse. The reason is that for an error rate
higher than 0.4 or 0.5, the RTT with Vegas TCP becomes higher (see section
6.3.2), leading to more unnecessary TCP retransmissions.

As seen in the previous section, the congestion problem at the BS results
in a decreasing total goodput and an increasing RLC throughput. However,
the goodput difference between part 1 and part 2 (respectively with and
without congestion) is decreasing with the error rate. Figure 6.6 shows the
evolution of this goodput difference following the error rate in the case of
TCP Reno. As this difference is decreasing while the error rate grows, the
congestion is a more important problem when the error rate is small. This
difference is decreasing because there are more local retransmissions, leading
to a bigger RTT. A high RTT causes more RTO to occur, forcing the TCP
sender to reduce its sending rate and to go back into Slow Start.
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Figure 6.5: TCP goodput and error rate for TCP Reno and Vegas, part 1

6.3.5 Impact of maxDAT

This section shows the impact of a maxDAT limitation on the goodput, when
the user is alone (first part of the simulation). The congestion problem will
not be explained since a large inequity occurred between the connections
when the second user begins to transmit. This inequity is caused by the
DropTail queue at the BS. This unfairness of TCP under DropTail FIFO
queueing was already mentioned in some studies [32]. It has been observed
here that the inequity problem becomes bigger when the link bandwidth
decreases. Active queue management could be implemented to reduce this
problem [31].

Figure 6.7 shows the impact of the error rate on the goodput, if maxDAT
is small (2). In this case, the goodput falls rapidly with the error rate, and
becomes null when the error rate is bigger than 0.2. This general trend is
logical since if a lot of TCP packets are dropped, TCP will understand it as
a congestion indication and slow down its sending rate. When the error rate
becomes really high, a lot of RTO will occur and finally almost no packets
will be sent.

If the error rate is very small (0.01), there are almost no TCP packets
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Figure 6.6: Global goodput difference between part 1 and part 2 following
the error rate (TCP Reno)

Figure 6.7: Goodput and error rate, maxDAT = 2, part 1.
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dropped. Therefore, Reno, Newreno and Tahoe perform the same, as no
congestion control is involved. Sack performs the same as these protocols.
Indeed, there are almost no lost packets so the SACK mechanism does not
avoid a lot of unnecessary retransmissions. Moreover, other studies showed
that in general, using Sack does not represent a significant improvement in
lossy links [31].

TCP Vegas performance is a little bit higher, since it reduces its CWND
following the RTT and keeps it smaller than the other TCP versions (see
Table 6.2). A smaller RTT usually leads to a higher throughput (following
the equation given in section 6.3.2).

When the error rate grows, there are more losses so the TCP versions
behavior changes. TCP Vegas does not achieve the best performance any-
more, since the other versions also reduces considerably their CWND (see
Table 6.2), achieving a smaller RTT. Vegas performance is then similar to
Reno performance. They both use a standard Fast Recovery mechanism
that lead to a stall when there are a lot of packet losses in the same window
(see section 3.2 for more details).

Sack, Newreno and Tahoe give a similar performance, but Sack achieved
the best performance thanks to its Selective Acknowledgement mechanism.
Newreno follows and is just a little bit better than Tahoe thanks to its Fast
Recovery functionality. When the error rate is higher than 0.2, all the pro-
tocols achieved an almost null goodput.

Figure 6.8 shows the impact of maxDAT on the goodput, if the error rate
is equal to 0.05. The difference between the TCP versions when maxDAT is
small has already been explained in this section. However, this figure shows
that above a certain value of maxDAT, Vegas is the only TCP version that
achieves a different performance. TCP Vegas performance is better than the
others since it keeps its CWND small, as seen previously in this chapter.

6.4 Conclusion

This chapter showed the impact of the congestion at the BS, and the fact
that an infinite RLC retransmission limit hides the congestion to the TCP
sender. This problem leads to a smaller goodput, a lot of RLC retransmis-
sions and a very high RTT. However, when there is no congestion, it was
shown that a higher maxDAT leads to a higher goodput, whatever TCP
version is used. The simulations also show that an infinite maxDAT value is
not needed in order to reach the maximum goodput when the user is alone.
The congestion problem with a small maxDAT value was not showed here
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BLER TCP version Average window (packets) Average RTT (s)
0.01 Tahoe 16.54 4.17
0.01 Reno 18.47 4.71
0.01 Newreno 18.44 4.69
0.01 Vegas 3.31 0.812
0.01 Sack 17.93 4.54
0.01 Fack 18.13 4.52
0.1 Tahoe 2.15 0.70
0.1 Reno 2.12 0.75
0.1 Newreno 2.16 0.69
0.1 Vegas 2.54 0.67
0.1 Sack 2.18 0.68
0.1 Fack 2.13 0.69

Table 6.2: Average outstanding window and RTT for maxDAT = 2 (part 1)

Figure 6.8: MaxDAT and Goodput, 0.05 error rate, part 1.
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because of the DropTail FIFO queueing unfairness at the BS.

In case there are some TCP packets dropped due to the BLER (thus
with a small maxDAT) and no congestion, Sack and Newreno achieve the
higher goodput. Tahoe just follows while Vegas and Reno give a smaller
goodput because of the stall that is a well known problem of their Fast Re-
covery mechanism.

When maxDAT is very large, the best performance is achieved by Vegas
that keeps a small outstanding window, and that adapts its sending rate
accordingly to the current congestion. The other TCP versions give similar
performance.

Following these observations, to set maxDAT to a high value and to use
TCP Vegas seems to be the best combination to ensure the equity between
the connections and the highest possible goodput.
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Chapter 7

Simulation results: Web
traffic using the FACH/DCH
switch, with a non
preemptive inactivity timer

7.1 Introduction

Most probably, a major fraction of the UMTS data traffic will be WEB
traffic, which is characterized by some bursty periods (see section 5.3 for
more details). The connection setup procedure and some small data can
be transmitted using the common channels (FACH/RACH) while a DCH
is required to transmit large volumes of data [12] (see section 5.2). The
goal of this chapter is to analyze the impact of the main RLC parameters
on the performance, using different TCP versions. First, the parameters to
be considered and the performance metrics to be used will be introduced.
Then, the results from the simulation runs will be discussed.

7.2 Simulated scenarios, parameters and perfor-
mance metrics

The scenarios consider 30 users downloading WEB data in one cell. The
users begin using the common channels, and when the RLC buffer grows
above the upswitch threshold, a switch to a DCH is triggered. Each simula-
tion is ran 3 times for 4,000 seconds, with each time a different seed for the
random variables used in the traffic and error generators. Then, the results
were averaged to get statistically sounded values.
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Gilbert model statistics, taken from [25]
State i Pr(i) Pr(1|i) Pr(0|i)

0 0.9449 0.0087 0.9913
1 0.0551 0.8509 0.1491

Table 7.1: Multistate error model parameters

The error rate is assumed to be constant, but a two-state Gilbert model
from [25] is used to correlate packet losses. In the used Gilbert model,
there is an error-free state (0) and an error state (1). Transitions between
the states are governed by probabilities. Table 7.1 shows their used values,
where Pr(A|B) is the probability to go to the state A if the current state is B.

The corresponding error rate is calculated as follow:

Pr(error) = Pr(1|0)
Pr(1|0)+Pr(0|1) = 0.055

The parameters of interest are maxDAT (taken between 2 and 6), the
upswitch buffer threshold (500 bytes, 1,000 bytes or 1,500 bytes) and the
single non-preemptive inactivity timer for the downswitch (2, 4, 6, 8 or 10
seconds). Figure 7.1 summarizes the non-preemptive scheme described in
Section 5.2. No preemptive inactivity timer was used for this chapter sim-
ulations. The TCP versions that are considered in this chapter are Tahoe,
Reno, Newreno and SACK. TCP FACK and Vegas are not listed, as the
simulation results for these two cases did not succesfully complete due to
unexpected problems in the VEGAS and FACK NS2 implementation. The
encountered TCP Vegas implementation problem is specific to the WEB
traffic generator. Table 7.2 summarizes the values of the parameters for the
simulations. The parameters used in the WEB traffic generation are listed
in Section 5.3.

The allocation time, the inactivity timer values, the common channels
parameters, the DCH downlink bandwidth and the maximum cell downlink
bandwidth come from [12]. The DCH uplink bandwidth is normally 16kbs
for a 64kbs downlink bandwidth [12]. However, its value was set to 32kbs
in order to make sure that the only bottleneck in the connection would be
the downlink, since this study is limited to the downlink performance. The
RLC ARQ uses a Selective Acknowledgement mechanism. A RLC POLL
timeout of 170ms means that a poll for a bitmap acknowledgment is sent at
least every 170ms. The other parameters are set to the NS2 or EURANE
default values.
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Figure 7.1: DCH allocation with a single non-preemptive inactivity timer.

Main parameters
Parameter Value
Number of users 30
Traffic WEB
Allocation time 0.9s
Error rate multistate
Pr(Error) 0.055
maxDAT 2,3,4,5 or 6
Upswitch buffer threshold 500, 1,000 or 1,500 Bytes
Inactivity timer 2,4,6,8 or 10s
TCP version Tahoe, Reno, Newreno, Sack
Simulation length 4,000s
Number of simulations 3
FACH bandwidth 32kbps
FACH TTI 10ms
RACH bandwidth 16kbps
RACH TTI 20ms
DCH downlink bandwidth 64kbps
DCH downlink TTI 10ms
DCH uplink bandwidth 32kbps
DCH downlink TTI 10ms
RLC PDU size 40 Bytes
RLC POLL timeout 170ms
RLC buffer size 100kB
Max cell downlink bandwidth 800kbps

Table 7.2: Summary of the main parameters
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The simulation results were analyzed using the following performance
metrics:

1. Average RTT: the average Round Trip Time in seconds.

2. Retransmitted packets: the total number of retransmitted packets.

3. Cell efficiency and occupancy: the cell occupancy is the reserved band-
width of the cell (including the FACH and all the allocated DCHs).
This value is not a good performance indicator, as it shows the re-
served bandwidth, but not the used bandwidth. Instead, we introduce
a new metric called Cell Efficiency, which is defined as:

Cell efficiency = Average goodput
Average cell occupancy

4. Goodput: the total goodput transmitted in the UMTS network, in
kbps. This goodput does not include the TCP and RLC retransmis-
sions, nor any header.

5. Full-cell time: the time (in seconds) where the cell was fully loaded
and thus where no new DCH could be allocated.

7.3 Results

The following sections will explain the most important results, and the im-
pact of the different parameters on these results. When the TCP version is
not specified on a graph, the curve is an average of all the TCP versions, in
order to show the general trend.

7.3.1 Average Round-Trip Time

The average RTT is always between 400ms and 700ms. These values are
large compared to the ones given in [12] (more or less 200ms for a 128 Bytes
ping on DCH, 285ms for a 32 Bytes ping on FACH), but it can easily be
explained. First, the average packet size (1,278 Bytes) is a lot larger than
in these examples. Second, there are a lot of connections with only a few
packets, and a high probability that a DCH is allocated for each connection.
Each time a DCH is allocated, 900ms are added to the RTT of the packet(s)
in the buffer. Therefore, the RTT of these first packets is most probably
higher than one second, while the other packets have a smaller RTT if the
congestion is low.
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Another interesting thing about the RTT is that the RTT is not a good
performance indicator as goodput is not monotonic increasing function of
RTT. Nevertheless, a large RTT is often associated with a high goodput (see
Figure 7.2). When the RTT is large, that means that there were probably
a lot of DCH allocation (it takes 900ms). Moreover, DCH allocation could
lead to congestion at the BS if all DCHs are allocated. Therefore, in the
case of web traffic, a large RTT is often related with a high goodput.

Figure 7.2 can be divided in three parts. First, the goodput is quite high
for a small RTT. It means that there were only a few RLC retransmissions
(see Figure 7.3) and a few DCH allocations. The goodput is high because
the connections tended to stay in DCH. The second part shows a dip (less
than 10%) in the goodput when the RTT becomes a little bit higher. A
more precise analysis of the numeric results shows that it happens when the
upswitch threshold is high, thus when the connections tend to be blocked
in FACH. The third part, where the RTT and the goodput are the highest,
contains all the other simulations. This general behavior is the same for all
the TCP versions.

Figure 7.2: Goodput and RTT

Figure 7.3 shows that maxDAT has a big impact on the RTT. It is
logical since each retransmission consumes some time. Moreover, the effect
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TCP Average Number of TCP Average Number of
version retransmissions per connection RTO per connection
Tahoe 1.76 0.9
Reno 1.77 0.9
Newreno 1.76 0.9
Sack 1.74 0.9

Table 7.3: Retransmission statistics

of increasing maxDAT is more pronounced at lower maxDAT values than
at higher ones. This is due to the fact that the BLER is small, so a small
maxDAT is sufficient to hide the unreliability of the wireless link to the TCP
sender.

Figure 7.3: maxDAT and RTT

7.3.2 Retransmitted packets

Retransmissions statistics averaged over all simulations are given in Ta-
ble 7.3. There are less than two retransmissions per connection, and at least
half of them are caused by a RTO. This can be explained by the fact that
a DCH is almost always allocated to a connection, and not necessarily at
the beginning if the upswitch threshold is higher than the packet size. The
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DCH allocation adds 900 ms to the RTT of the packet(s) belonging to this
connection in the buffer. Therefore, the RTT of these packets becomes very
large and a RTO can occur even if the packets are not really lost. Moreover,
Figure 7.4 shows that the number of TCP retransmissions per connection
decreases very quickly when maxDAT grows. All the TCP versions react
in the same way, but SACK has always a lower number of retransmissions
since it uses a selective repeat mechanism.

Figure 7.4: maxDAT and retransmissions per connection

Figure 7.5 shows the number of RTO per retransmitted packets, com-
pared to maxDAT. The number of TCP retransmissions per connection de-
creases very quickly when maxDAT grows. Comparing TCP versions, the
number of RTOs when Tahoe is used is high when maxDAT is small, be-
cause the errors are due to the BLER and Tahoe is falling back into Slow
Start every time a loss occurs. Thus, the CWND stays too small and there
is only a small probability that more than 3 packets arrive at the receiver
after a loss occurs (generating 3 duplicate ACKs). Most of the losses have
to be detected through a RTO. The general behavior of Reno and Newreno
is more or less the same as Tahoe. The difference is that, thanks to the
Fast Recovery mechanism, their CWND is not reduced each time a packet
loss is detected. Therefore, more packets are sent at the same time and the
probability of having 3 duplicate ACKs instead of a RTO is higher for a
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small maxDAT.

Figure 7.5: maxDAT and RTO

There are less RTOs when maxDAT is high. For a RTO to occur, a
sequence of sent packets must have been lost. Otherwise the loss of a single
packet would have been detected through 3 duplicate ACKs. Therefore, if
maxDAT is high, the probability that a sequence of TCP packets is lost
becomes very low.

The proportion of packets retransmitted because of a RTO is always a lot
higher in the case of SACK, especially when maxDAT is very small. This can
be explained by the fact that SACK only detects the loss of a retransmitted
packet through a RTO mechanism, not 3 duplicate ACKs [22]. Therefore,
if there are many losses (partially due to the BLER), a lot of retransmitted
segments could be lost and SACK would have to wait for their RTO.

When maxDAT grows, the congestion problem at the Node B is a little
bit hidden by the RLC retransmissions. Therefore, if a loss is detected, even
through 3 duplicate ACKs, it means that the congestion at the Node B is
very high. As Reno and Newreno do not reduce abruptly their sending rate
by going into Slow Start (as Tahoe), they tend to send too many packets and
it leads to an even bigger congestion, generating more RTOs. Moreover, a
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greater number of RTOs occur in Reno than Newreno, especially if maxDAT
is small, because of the stall problem which is a characteristic of Reno (see
Section 3.2 for more details).

A common way of optimizing the goodput in wireless networks is to
initialize the TCP sender window at a high value [12]. Although it was
not simulated for this report, we believe that this kind of optimisation is
probably not a good idea when the FACH/DCH switch occurs. Indeed, if
the first packets sent are retransmitted because of the DCH allocation time,
it will lead to unnecessary retransmissions, and the TCP window will be
decreased anyway before new packets could be sent.

7.3.3 Cell efficiency

In general, for identical performances, it is better to chose a parameter com-
bination that gives a high cell efficiency. If the average cell occupancy is
small, the cell is most probably able to accept more users than if the av-
erage cell occupancy is high. Practically, the simulations show that the
efficiency stays between 9% and 20%. These small values are explained by
the downswitch inactivity timer, where the DCHs are still reserved while
the connection is inactive. The connections are usually short, and the pack-
ets are not necessarily sent continuously because of the parsing time. It is
impossible to obtain a 100% efficiency because of the retransmissions, of the
inactivity timer and of the headers.

The cell efficiency is strongly dependent on the inactivity timer (see Fig-
ure 7.6). Therefore, it is better not to use a too long inactivity timer. How-
ever, this conclusion may not necessarily be correct with a non-preemptive
inactivity timer. Indeed, it might be useful to downswitch an inactive con-
nection to FACH before the end of the inactivity timer if an active connection
is waiting for an upswitch. This issue will be investigated in the following
chapter.

7.3.4 Goodput

In this section, we will see the general impact of maxDAT, the upswitch
threshold and the inactivity timer on the goodput.

maxDAT

Figure 7.7 shows the effect of maxDAT on the goodput. It can be seen that
it is better to have a high maxDAT. If some packets are dropped because
of an error, TCP would think it is because of congestion, retransmit them
and then decrease its congestion window (see Chapter 3). Moreover, a local
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Figure 7.6: Inactivity timer and cell efficiency

retransmission of a small RLC PDU is faster than an end-to-end retransmis-
sion of a big TCP segment. The congestion problem shown in Chapter 6,
is not really important in this case, since only a few packets should be sent
over FACH if a DCH is allocated.

When maxDAT is 2, all the versions achieve more or less the same perfor-
mance. As seen in section 7.3.2, there are a lot of retransmissions, meaning
that the CWND does not have the time to grow. If CWND is small, the
Fast Recovery mechanism of Reno and Newreno does not give better per-
formance than a Slow Start. Reno and Newreno performances are even a
little bit worse than Tahoe since they go out Fast Retransmit faster than
Tahoe from Slow Start. The gain in performance of SACK thanks to its
Selective Repeat is low with WEB traffic, since there are only a few packets
per connection (the average is 8). If there are only a few packets to send,
the TCP sending window is never high, and there is only a few unnecessary
retransmissions with the other versions[30]. Moreover, this small advantage
is canceled by the high proportion of RTO of Sack, as seen in section 7.3.2.

If maxDAT is equal to 3, we can see significant differences. Reno and
Newreno have the same behavior, and give better performance than Tahoe.
These three TCP versions do not have a Selective Repeat mechanism and
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Figure 7.7: Impact of maxDAT on the goodput

may retransmit more than one packet for each loss. This can lead to un-
necessary retransmissions, but in case the upswitch threshold is bigger than
the TCP packet size, the RLC buffer is filled and a DCH allocation may be
triggered. As the Fast Recovery mechanism of Reno and Newreno is more
aggressive than Tahoe and its Slow Start, the buffer is filled faster, leading
faster to a DCH allocation and thus to a higher goodput. In the SACK case,
as it only retransmits the lost packet, the RLC buffer does not grow and no
DCH is allocated because of the retransmissions.

Finally, if maxDAT is equal to or higher than 4, some TCP losses can
still occur. However, if even a single TCP packet is lost, it means the
congestion at the BS is really big, since the number of local retransmissions
is high. Therefore, the arrival of 3 duplicate ACKs is an indication of heavy
congestion and not of small congestion as with a small maxDAT. It is better
then to reduce abruptly the sending rate to reduce the congestion problem.
In this case, Tahoe gives better performance than Newreno and Reno, since
it always reacts to the congestion by going back into Slow Start. When
maxDAT becomes higher, all the TCP versions tend to achieve the same
performance since there are only a few dropped packets. SACK stays below
the other TCP versions for the same reasons as mentioned before.
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Upswitch threshold

Figure 7.8: Impact of the upswitch threshold on the goodput

Figure 7.8 shows TCP goodput as a function of the upswitch treshold.
The larger threshold gives the worst performance, but the optimal threshold
is not necessarily the smallest, and this depends on the TCP version. If a
connection has only a few small packets to transmit, the DCH allocation
time can make it worse to use a dedicated channel than to send everything
using the common channels. Moreover, if the downswitch delay is high and
the upswitch threshold is small, the DCH will be allocated too easily for a
long time to connections that do not necessarily need it, while some others
will have to stay on FACH because all the DCHs are allocated. Figure 7.9
shows that a small threshold leads to a bigger full-cell time, where the full-
cell time is the time (in seconds) where the cell was fully loaded and thus
where no new DCH could be allocated.

When the upswitch threshold is smaller than the smallest TCP segment,
even the very small connections try to use a DCH, hence saturating the
cell. A full cell prevents the other connections from triggering a switch to
a DCH. Some large connections may thus have to send data over FACH.
In this case, SACK achieves the best performance, thanks to its Selective
Repeat mechanism. As the congestion at the Node B is partially hidden by
the local retransmissions, to receive 3 duplicate TCP ACKs means that the

66



Figure 7.9: Impact of the upswitch threshold on the full-cell time

congestion is very severe. Therefore, it is better to reduce the flow abruptly
like Tahoe, in order not to overwhelm the network, than to use a Fast Re-
covery mechanism. As a result, Newreno achieves a worse performance than
Reno, since its Fast Recovery is more aggressive.

When the upswitch threshold grows, the Newreno and Reno performance
increase very fast until 1,000 Bytes, and then Newreno becomes better than
Reno. If the upswitch threshold is larger than some TCP segments, a high
number of fast retransmissions can quickly fill the RLC buffer and then trig-
ger a switch to a DCH. Therefore, the more aggressive the Fast Recovery
is, the best performance the TCP version achieves. The Tahoe performance
stays more or less stable since it retransmits the same number of segments
but in a slower way, due to the fact that it always goes back into Slow Start
(see Section 3.2). Therefore, a switch to a DCH is triggered, but not as
fast as for Reno and Newreno. Finally, SACK performance decreases very
fast since it almost never trigger a switch because of its small number of
retransmissions.

When the threshold reaches the size of the largest TCP segments, the
connections tend to use FACH for a long time before a DCH could be allo-
cated (if ever allocated). Tahoe still outperforms Reno and Newreno, and
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Newreno remains better than Reno because many DCHs are allocated due
to its more aggressive retransmission mechanism. SACK still achieves the
worst performance.

Inactivity timer

Finallly, Figure 7.10 shows the effect of the inactivity timer on the goodput.
This figure was averaged for all the protocols in order to show the general
trend. Otherwise, the values fluctuated a lot. These unpredictable fluctua-
tions are due to the packet scheduler that is very simplistic. In general, a
high inactivity timer value helps a connection to remain in DCH and there-
fore increases its goodput. However, it is clear that a too long inactivity
timer has a bad impact. Indeed, there is a higher probability for the cell to
be fully loaded if the inactivity timer is long (see Figure 7.11), even if the
DCH is not effectively used. Thus, the connections that really need a DCH
may not have one. It could also cause unfairness between the connections,
but this problem was not tackled in this project.
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Figure 7.10: Impact of the inactivity timer on the goodput
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Figure 7.11: Impact of the inactivity timer on the full-cell time

7.4 Conclusion

In this chapter, we saw the impact of different RLC parameters with dif-
ferent versions of TCP, using the FACH/DCH switch in the case of WEB
traffic. The goodput was taken as the best performance indicator. In gen-
eral, SACK gave the worst performance of the tested protocols. There is
no advantage of using a selective repeat mechanism in case of WEB traffic
with local retransmissions. Indeed, there are only a few packets to transmit,
so the CWND stays small, and when a loss occurs there are only a few un-
necessary retransmissions when a Go-Back-N ARQ is used (like in Tahoe,
Reno and Newreno)[30]. Moreover, a switch to a DCH can be caused by
the Go-Back-N retransmissions if the upswitch threshold is higher than the
packet size. The fact that SACK has to wait for a RTO to detect the loss
of a retransmitted segment[22] also explain its poor performance.

The best results were achieved when maxDAT was high (6 in the sim-
ulations). However, increasing maxDAT to a higher value than 3 or 4 only
gave really better results in the case of SACK. The upswitch threshold has a
quite big impact on the goodput. The best threshold value depends on the
used TCP protocol. SACK is very sensitive and its performance decreases
very quickly as the threshold value grows. If SACK is used, the threshold
must be as small as possible, to be sure that the first packet will trigger a
switch to DCH. In the case of Tahoe, the performance stays quite stable if
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Optimal values
Parameter Value
maxDAT 6
Upswitch threshold 500 bytes
Inactivity timer 8s

Table 7.4: Optimal values for the main parameters

the threshold is smaller than 1,000 bytes, and decreases rapidly afterwards.
Reno and Newreno achieved the best performance when the threshold was
equal to 1,000 bytes.

The performance following the inactivity timer is strongly dependent on
the packet scheduler. In the implemented scheduler, an inactive connection
cannot be pulled out of its DCH before the end of the inactivity timer. If its
value is very large, the cell is often fully loaded, meaning that no DCH can
be allocated to the connections that need it. These connections have to stay
in FACH, which is a lot slower than DCH, and experience more congestion
problems at the BS.

Therefore, the best parameters, whatever protocol is used, are a high
maxDAT value (6 in these simulations), a threshold smaller than the aver-
age packet size (500 or 1,000 bytes in these simulations), and a not too long
inactivity timer (smaller than 10 seconds in these simulations). Table 7.4
shows the values that gave optimal results for all the protocols.

For these parameter values, the TCP Tahoe, Reno and Newreno perfor-
mance were similar. The goodput is 63.1 kbps, and a packet call takes about
2.7 or 2.8 seconds. The performance of SACK was a little bit worse, with a
62.8kbps goodput, and a packet call length of 3 seconds.
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Chapter 8

Simulation results: Web
traffic using the FACH/DCH
switch, with hybrid
inactivity timers

8.1 Introduction

In the last chapter, we saw that a large non-preemptive inactivity timer leads
to a small goodput, as the cell can easily become fully loaded and UEs have
therefore to transmit on the common channels. A way to avoid this problem
may be to use a non-preemptive timer [8]. The chosen implementation uses
a hybrid approach of the inactivity timer. When there is no more activity
on the DCH, a short non-preemptive timer is set, during which no other user
can use the reserved DCH. After this short time a preemptive timer is set,
meaning that if the bandwidth is needed by another UE, the UE currently
in DCH can be pulled out of it to give the bandwidth to the user who needs
it (see Chapter 5 for more details). Please note that if a DCH has to be
released before an allocation could take place, the allocation last 1s instead
of 0.5s since there must be a de-allocation followed by an allocation.

First, the simulated scenario and the considered parameters will be given.
Then, the results from the simulation runs will be explained.
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8.2 Simulated scenarios, parameters and perfor-
mance metrics

Most of the parameters are the same as the ones used in Chapter 7. How-
ever, the simulation topology and parameters will be shortly reminded here.
The scenario considers 30 users downloading WEB data in one cell. The
users begin using the common channels, and when the RLC buffer grows
above the upswitch threshold, an allocation to a DCH is triggered. Each
simulation is ran 3 times for 4,000 seconds, with each time a different seed
for the random variables used in the traffic and error generators. Then, the
results were averaged to get statistically sound values.

The results analyzed in Chapter 7 (Figure 7.7) showed that a large max-
DAT value implicates a high goodput. Therefore, maxDAT was set to 10
in all the simulations, and the impact of maxDAT has not been shown
here. The parameters of interest are the upswitch buffer threshold (be-
tween 500 Bytes and 1,500 Bytes) and the two different inactivity timers.
Figure 8.1 summarizes the hybrid preemptive/non-preemptive scheme de-
scribed in Section 5.2.

Figure 8.1: DCH allocation with hybrid inactivity timers.

The first goal of the non-preemptive inactivity timer is to help a UE
keeping its DCH if the connection is not closed. It is used to avoid that each
time a RTO occurs the DCH is released. The preemptive inactivity timer
is used in order to keep the DCH between several consecutive connections if
no other UE needs it. Therefore, the non-preemptive timer values (between
0 and 8 seconds) are smaller than the preemptive ones (between 4 and 16
seconds).
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Main parameters
Parameter Value
Number of users 30
Traffic WEB
Switching time 0.5s
Error rate multistate
Pr(Error) 0.055
maxDAT 10
Upswitch buffer threshold 500, 750, 1,000, 1,250, 1,500 Bytes
Intermediate inactivity timer 0, 2, 4, 6, 8s
Final inactivity timer 4, 8, 12, 16s
TCP version Tahoe, Reno, Newreno, Sack
Simulation length 4,000s
Number of simulations 3
FACH bandwidth 32kbs
FACH TTI 10ms
RACH bandwidth 16kbs
RACH TTI 20ms
DCH downlink bandwidth 64kbs
DCH downlink TTI 10ms
DCH uplink bandwidth 32kbs
DCH downlink TTI 10ms
RLC PDU size 40bytes
RLC POLL timeout 170ms
RLC buffer size 100kB
Max cell downlink bandwidth 800kbps

Table 8.1: Summary of the main parameters
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The TCP versions that are described in this chapter are Tahoe, Reno,
Newreno and SACK. Table 8.1 summarizes the values of the parameters for
the simulations. The parameters used in the WEB traffic generation are
listed in Section 5.3. The switching delay between the FACH and the DCH
was taken to be 0.5 seconds, in order to stay close to the values listed in [8]
and [12]. The other parameters are the same as described in Chapter 7.

8.3 Results

Please note that due to unexpected technical problems, it has sometimes
been impossible to validate the discussions of the following sections. There-
fore, some explanations here are only hypotheses to explain the protocol’s
behavior. First, the impact of the upswitch threshold on the goodput will be
shown. A description of the TCP retransmissions evolution follows. These
first parts will only describe averaged results since all the TCP versions be-
have the same. Finally, the effect of the newly implemented inactivity timers
on the goodput will be described for different upswitch threshold values and
different TCP versions. These last sections will not show the TCP Newreno
results since its behavior was almost the same as Reno’s.

8.3.1 Upswitch threshold and goodput

Figure 8.2 shows the impact of the upswitch threshold on the goodput.
These results have to be compared with Section 7.3.4 and with some results
of Appendix A. In these past results, the maximum goodput difference fol-
lowing the threshold is 1.8% in Section 7.3.4 and 1.5% in Appendix A. This
difference is not really big, and becomes even smaller (1%) in the last set of
simulations. As seen before, the largest threshold achieves the worst perfor-
mance, but the optimal threshold is not necessarily the smallest, depending
on the TCP version. The general behavior is the same as seen previously:
Reno and Newreno achieves the best performance for a 1,000 Bytes thresh-
old and Sack seems to give the best goodput for a small threshold value (see
Section 7.3.4).

The Tahoe behavior and performance are almost the same than Reno and
Newreno since most of the connections keep using a DCH. Sack achieved a
good performance with a large threshold, compared to the simulations with
only a non-preemptive inactivity timer. A reason could be that it is easy
to keep a DCH for several consecutive connections if no other UE needs it,
thanks to the quite large preemptive inactivity timer. Therefore, the allo-
cations caused by a fast retransmission mechanism like Reno, Newreno and
Tahoe provide a small advantage when a large preemptive inactivity timer
is used. Moreover, the good performance of Sack on the common channels
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Figure 8.2: Goodput vs upswitch threshold

(Chapter 6) is a great advantage against the other versions since a lot of
data is sent on FACH because of the large upswitch threshold.

8.3.2 TCP retransmissions

Figure 8.3 shows the average number of retransmissions per connection, for
different inactivity timers values. The first interesting finding to notice is
that the number of retransmissions and of RTO is a lot smaller than for the
similar simulations of Chapter 7 (0.077 instead of 1.76 in Table 7.3). The
proportion of RTOs per retransmission is similar, but the fact that most of
the allocations last 0.5s instead of 1s avoids most of the RTOs, and then
most of the retransmissions.

The main conclusion we can draw from this figure is that the number of
retransmissions increase exponentionally with the non-preemptive inactivity
timer. Indeed, as seen in Chapter 7, a high value of non-preemptive inactiv-
ity timer keeps the cell full and prevents a lot of connections to send data
on a DCH. A lot of data has thus to be sent through the common channels,
causing congestion and retransmissions (see Chapter 6). Figure 8.4 helps to
confirm that there are less DCH allocations if the non-preemptive timer is
high. However, the same trend can be observed about the preemptive timer,
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because it allows a UE to keep its DCH between several consecutive connec-
tions if the bandwidth is not needed. Less allocations (and then less RTOs)
can thus allow the same number of connections to use a DCH. Figure 8.4
also shows that the benefits of sparing DCH allocations (allocation delays)
are bigger when the non-preemptive inactivity time is large.

Figure 8.3: Retransmissions per connection, following the inactivity timers
(average of all TCP versions).

Figure 8.5 shows the number of times a RTO occurred per retransmitted
packet. This can be a good indication of the cause of the the retransmis-
sions, three duplicate ACKs or to a RTO. Following this figure, the pro-
portion of retransmissions due to a RTO is decreasing very fast when the
non-preemptive inactivity timer increases. The reason is the same as seen
above: a high non-preemptive timer causes a lot of UE to send data on
FACH. The congestion problem on the common channel then provokes a
lot of packet drops. These drops are mainly detected through three dupli-
cate ACKs since the packets following the dropped one could arrive without
problems to the destination UE.

Finally, another trend can be seen on Figureq 8.3 and 8.5. The number
of retransmissions increases a little bit and the proportion of RTO decreases
with the preemptive inactivity timer. There are less RTOs with a big pre-
emptive timer because several connections can use the same DCH, and there
are less DCH allocations. Moreover, if the switching time grows (it is prob-
ably 1s instead of 0.5s if the preemptive timer is large), the number of TCP
packets that can arrive in the RLC buffer during the switching time increases
too, causing more packets to be retransmitted because of the same RTO.
Indeed, when a RTO occurs, all the packets sent after the one that caused
the RTO are sent again in the case of Reno, Newreno and Tahoe. In the case
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of Sack, the behavior is the same. If a RTO occurs because of the allocation
time, no TCP packet following the one that caused the RTO could arrive to
the destination and generate a Selective ACK. Therefore, all the following
TCP packets are retransmitted too.

Figure 8.4: Number of DCH allocation per connection, following the inac-
tivity timers (average of all TCP versions).
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Figure 8.5: RTOs per retransmission, following the inactivity timers (aver-
age of all TCP versions).

8.3.3 Goodput (upswitch threshold is 750 Bytes)

When the upswitch threshold is set to 750 Bytes, a DCH is easily allocated.
In this case, the behavior of TCP Tahoe, Reno and Newreno is almost the
same. Figures 8.6 and 8.7 show the impact of the non-preemptive inactivity
timer and of the preemptive inactivity timer on the goodput, for Reno and
Tahoe. The behavior of the two described TCP versions is almost exactly
the same. Two different trends can be seen on these graphs.

First, the goodput tends to decrease if the non-preemptive inactivity
timer is large. The reason is the same than in Chapter 7 (Figure 7.10).
A high non-preemptive inactivity timer causes the cell to be often fully
loaded, meaning that some connections were unable to obtain the DCH
they needed. Therefore, these connections had to transmit in FACH that is
not ”congestion-free” (see Chapter 6) and a lot slower than a DCH.

Second, a hole can be seen in the graphs with a small non-preemptive
timer and a large preemptive timer. A small non-preemptive timer causes a
connection not to keep its DCH for more than a few seconds, even when the
inactivity is due to a RTO. On the other hand, as the upswitch threshold is
small, a DCH can easily be allocated and there might be a lot of short un-
necessary and/or repeated DCH allocations. Moreover, a large preemptive
inactivity timer causes a lot of DCH allocations to last 1 second instead of
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Figure 8.6: Goodput and hybrid inactivity timers, Reno, 750Bytes thresh.

Figure 8.7: Goodput and hybrid inactivity timers, Tahoe, 750Bytes thresh.
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0.5 second if a UE has to be downswitched before the new allocation.

8.3.4 Goodput (upswitch threshold is 1,000 Bytes)

When the upswitch threshold is set to 1000 Bytes, a DCH can be allocated
but the very small connections can send data on the common channels with-
out having to wait for a DCH. If the time needed to switch is too large
compared to the amount of transferred data, it is better not to trigger a
switch to a DCH (see Section 8.3.1). Figures 8.8 and 8.9 show the impact of
the non-preemptive inactivity timer and of the preemptive inactivity timer
on the goodput, respectively for Reno and Tahoe.

Figure 8.8: Goodput and hybrid inactivity timers, Reno, 1,000Bytes thresh.

The goodput decrease seen with a 750Byte upswitch threshold, a small
non-preemptive and a large preemptive inactivity timer disapeard. The fact
that the upswitch threshold is larger makes the DCH allocation more dif-
ficult and avoids the several unnecessary and/or repeated DCH allocations
that happened when the upswitch threshold was 750 Bytes.

The goodput decrease following the non-preemptive inactivity timer is
still a trend when the threshold equals to 1,000 Bytes. However, this small
trend becomes a real dip in the graph for Reno and Tahoe, when the pre-
emptive inactivity timer is large. As seen before, a large preemptive timer
causes a lot of allocations to last 1 seconds instead of 0.5 second. Moreover,
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Figure 8.9: Goodput and hybrid inactivity timers, Tahoe, 1,000Bytes thresh.

a threshold of 1,000 Bytes means that if a user asks for a DCH, a lot of data
is waiting and the DCH is really needed. Then, the fact that the allocation
will last 1 second instead of 0.5 second may be a serious handicap. In the
case of Reno, the goodput decrease occurs only for the highest preemptive
timer value (16 seconds), while it occurs even for smaller values of preemp-
tive timer in the case of Tahoe. Reno is less sensitive to the preemptive
timer than Tahoe because of its fast recovery mechanism that helps the UE
to fill the RLC buffer and therefore to easily trigger an upswitch to a DCH
(see Sections 7.3.4 and 8.3.1).

8.3.5 Goodput (upswitch threshold is 1,500 Bytes)

With a very large upswitch threshold as 1500 Bytes, it becomes more diffi-
cult to trigger a switch to a DCH. In general, a too large upswitch threshold
achieves a bad performance for the Tahoe and Reno TCP versions, as seen
in Figures 7.8 and 7.9. There is no more real trend to explain the protocol
behavior. However, this section will attempt to explain the obtained results.
Figures 8.10 and 8.11 show the impact of the non-preemptive inactivity timer
and of the preemptive inactivity timer on the goodput, respectively for Reno
and Tahoe.

If the two inactivity timers are small, all the connections that needs a
DCH will probably get it with a 0.5s switching time since there are only a
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Figure 8.10: Goodput and hybrid inactivity timers, Reno, 1,500 Bytes
thresh.

few DCH allocations and the UE never keeps their DCH between the con-
nections. When the two timers grows, it begins to be more difficult to obtain
a DCH, and the switch often last 1s instead of 0.5s. Moreover, as the sum of
the two timers stays quite small compared to the reading time between the
connections (less than 12s against 30s, see Section 5.3), the UE rarely keeps
a DCH for several consecutive connections. The goodput is then quickly
reduced. When the sum of the two inactivity timers increases, the goodput
grows. This might be because if a DCH allocation is difficult, lasts a long
time and/or is impossible because the cell is fully loaded, it is better to keep
its DCH as long as possible when allocated. As for the smaller upswitch
threshold values, Reno and Tahoe have almost the same behavior.
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Figure 8.11: Goodput and hybrid inactivity timers, Tahoe, 1,500 Bytes
thresh.

8.3.6 Goodput while using Sack

As the behavior of the Sack protocol was often quite different from the other
versions, it seemed more appropriate to gather the informations about Sack
in a separate section. This section will show the impact of the two inactivity
timers on the Sack goodput, for different upswitch threshold values.

Figure 8.12 shows the impact of the inactivity timers on the goodput,
when a 750 Bytes upswitch threshold is used with Sack. The two trends
here are the same than for Reno and Tahoe (see Section 8.3.3). However,
the goodput decrease following the non-preemptive inactivity timer is really
small since Sack performs well when sending data on the common channels.

Figure 8.13 shows that the behavior of Sack is more unpredictable when
the upswitch threshold is 1,000 Bytes. It seems to be a really bad parameter
value for Sack. With this threshold value, the TCP connections requesting
a DCH tend to fill the RLC buffer and to trigger a switch to a DCH. The
problem is that if there is congestion on the common channels, Sack will
reduce its sending rate and retransmit only the missing TCP packet. There-
fore a connection that would use a DCH with the other TCP versions will
trigger a switch to a DCH with Sack too, but later than the other protocols,
as these ones can fill the RLC buffer with their retransmitted packets. More
data is then transmitted on the common channels with Sack. The goodput
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Figure 8.12: Goodput and hybrid inactivity timers, Sack, 750 Bytes thresh.

Figure 8.13: Goodput and hybrid inactivity timers, Sack, 1,000Bytes thresh.
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performance thus strongly depends on the congestion of the common chan-
nels.

Figure 8.14 shows that with a large upswitch threshold (1,500 Bytes),
Sack behavior is very foreseeable and follow a clear trend. With such a large
threshold, it is really difficult for the UE using Sack to fill the RLC buffer
in order to obtain a DCH. The main idea is that as it is difficult to trigger
a switch, a UE has to try to keep it as long as possible. However, if another
UE needs it, it should be possible to de-allocate it. The preemptive inac-
tivity should be large in order to fulfill this objective. Moreover, as seen on
Figures 8.4 and 8.15, the gain of DCH allocation thanks to a large preemp-
tive timer is large if the non-preemptive timer is small, and reduces to null
for bigger values. In this case, the DCH should therefore be kept longer in
order to compensate the goodput losts because the cell was fully loaded and
some data had to be sent on FACH.

Figure 8.14: Goodput and hybrid inactivity timers, Sack, 1,500Bytes thresh.
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Figure 8.15: Number of DCH allocations per connection following the pre-
emptive in. timer, 1,500 Bytes thresh.

8.4 Conclusion

This chapter described the impact of the upswitch RLC buffer threshold, and
of a hybrid non-preemptive/preemptive inactivity timer mechanism. This
analysis was done through simulations of web traffic download over one cell,
using the possible switch between FACH and DCH. As in Chapter 7, the
goodput was taken as the best performance indicator.

The conclusions of Chapter 7 and Appendix A are still valid in this last
set of simulations. Apart from Sack that seems to prefer a small threshold,
the best upswitch threshold value on the average is not the smallest but
1000 Bytes. However, it is necessary to take care of the inactivity timers
values. For some of them, a threshold of 1,000 Bytes can deliver very poor
performance. Therefore, a safe threshold value seems to be 750 Bytes, since
most of the other parameters combinations achieve a maximal goodput and
that all the TCP versions’ behaviors seem to be foreseeable. The different
TCP versions’ behaviors are close to each other because with a small up-
switch threshold, even Sack can easily trigger a switch to a DCH. In this
case, the good values for the inactivity timers could be 0 or 2 seconds for the
non-preemptive timer and 4 or 8 seconds for the preemptive timer. A too
large non-preemptive timer causes the cell to be often fully loaded, and thus
more data has to be sent on the common channels, while a big preemptive
timer causes a lot of DCH allocation to last 1s instead of 0.5s.
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For greater upswitch threshold values, the TCP Reno, Newreno and
Tahoe behaviors are still foreseeable and almost the same. However, for a
very large threshold (1,500 Bytes in this chapter), the goodput is a lot more
sensitive to the inactivity timer values.

Sack always behave differently than the other TCP versions. The main
reason is that it is more difficult for Sack to trigger a switch to a DCH
by filling the RLC buffer with retransmissions than for the other protocols,
especially for bigger threshold values. Moreover, Sack is a little bit more ef-
ficient than the other protocols when using the common channels, thanks to
its Selective Acknowledgement and Selective Repeat mechanism. The most
unpredictable behavior of Sack could be seen with a 1,000 bytes upswitch
threshold. With this kind of threshold, a connection that would use a DCH
with the other TCP versions will trigger a switch to a DCH with Sack too,
but later than the other protocols that can quickly fill the RLC buffer with
their retransmitted packets. More data is then transmitted on the common
channels, and the goodput performance thus strongly depends on the con-
gestion of the common channels.

In general, Sack performed better with the hybrid inactivity timer ap-
proach than with the single non-preemptive inactivity timer, especially in
case the upswitch threshold is large. The main reason is that the preemp-
tive inactivity timer allows the UE to keep a DCH for a longer time and
for several connections, sometimes avoiding Sack difficulties to fill the RLC
buffer.
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Chapter 9

Conclusions

9.1 Conclusion

This report investigated the downlink performance of different TCP pro-
tocols over UMTS common and dedicated channels, using a RLC in Ac-
knowledged Mode. The study was performed with the help of simulations
using the discrete event simulator NS2 [16] and its UMTS extension EU-
RANE [17]. Some new functionalities had to be implemented to make this
report possible.

The first set of simulations considered two FTP sessions over FACH.
When there was only one user, it was shown that the number of RLC retrans-
missions (maxDAT) had a great impact on the TCP goodput. The goodput
grew with maxDAT until a certain threshold after which it stay constant.
When maxDAT was smaller than this threshold, TCP packets were dropped
because of the BLER. These losses were understood as a congestion noti-
fication by the TCP sender. In this case, Sack and Newreno achieved the
highest goodput. When maxDAT was larger than this threshold, Vegas gave
the best results because its congestion control took the RTT as a congestion
indicator, while the other versions tended to have their outstanding window
only limited by the advertised window. A large outstanding window lead to
a large RTT and therefore to a small goodput.

The congestion problem at the BS was only shown in the case of a very
high maxDAT. For limited maxDAT values, the bandwidth was not fairly
shared between the connections because of the DropTail policy at the BS.
When a second user began to transmit on FACH, the total goodput de-
creased a little bit with all the TCP versions. The Vegas goodput was still
higher than the others when congestion occurred, and its RLC throughput
was significantly smaller. Indeed, TCP Vegas was aware of the congestion
through its enhanced congestion control and reduced its CWND accordingly.
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The second set of simulations considered 30 users downloading WEB
traffic, with a possible switch between the common and dedicated channels.
The downswitch mechanism used a single non-preemptive inactivity timer
and the cell had limited total bandwidth. The goodput was taken as the
best quality indicator. Simulations showed that a big maxDAT achieves the
best performance. The different TCP versions obtained different goodputs
for small maxDAT values, but when maxDAT grew the results were similar.

The last set of simulations was the same as the previous one with an hy-
brid non-preemptive/preemptive downswitch mechanism. When no activity
is detected on a DCH, a short non-preemptive timer is set, during which no
other user can use the reserved DCH. After this short time, a preemptive
timer is launched, meaning that if the bandwidth is needed by another UE,
the UE currently in DCH can be pulled out of it to give the bandwidth to
the user who needs it. After these two inactivity timers, the DCH is released
anyway.

Tahoe, Reno and Newreno performed almost the same for all the up-
switch threshold values. Moreover, their behavior seemed to be stable and
predictable, especially if the threshold was not too large. Sack performed
differently, and the less foreseeable behavior could be seen with a 1,000 bytes
threshold. With this kind of threshold, a connection that would use a DCH
with the other TCP versions would trigger a switch to a DCH with Sack
too, but later than the other protocols. More data were then transmitted on
the common channels, and the goodput performance thus usually decreased
compared to the other TCP versions and strongly depended on the conges-
tion of the common channels.

In general, Sack performed better with the hybrid inactivity timer ap-
proach than with the single non-preemptive inactivity timer, especially when
the upswitch threshold was large. The main reason is that the preemptive
inactivity timer allows the UE to keep a DCH for a longer time and for sev-
eral consecutive connections, sometimes avoiding Sack difficulties to trigger
a switch to a DCH.

For both inactivity timer approaches, the RLC upswitch buffer thresh-
old had a big impact on the goodput. The best threshold value depended
on the used TCP protocol and on the other parameters. However, with a
threshold higher than the average packet size, the goodput decreased signif-
icantly. Sack was the most sensitive TCP version and needed an upswitch
threshold as small as possible, while TCP Reno and Newreno gave in general
a better performance with a higher threshold. Indeed, if the packet size was
smaller than the threshold, a high number of retransmissions could trigger
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an upswitch to a DCH. The number of retransmissions was always smaller
in the case of Sack, since it used a Selective Repeat mechanism.

In general, it was surprising to note that TCP Sack did not achieve a
better performance than the other TCP versions. These poor results come
from the used WEB traffic, that keeps the outstanding window small [30],
and from the FACH/DCH switch, that is triggered faster if the packet size
is smaller than the upswitch threshold. The fact that SACK had to wait for
a RTO to detect the loss of a retransmitted segment could explain the bad
performance too.

9.2 Future work

Due to technical problems, all the possible simulations could not be launched.
However, the scripts and source code are ready to be launched if the project
is resumed. This last section is intended to give some ideas of what could
be done if someone decides to continue the project.

The problems encountered with TCP FACK and TCP Vegas should be
corrected, particularly because FACK is intended to better recover from
episodes of heavy loss than Sack [23]. Moreover, Vegas achieved the best
performance on the data transfer over FACH (see Chapter 6).

A new packet scheduler may be implemented in order to be able to
dynamically allocate different bandwidths depending on the free cell band-
width [12].

Simulations with a different traffic type can be done in order to see if the
behavior of the TCP versions (especially Sack) changes with larger CWND.
A new FTP traffic generator following the 3GPP specifications [9] is already
implemented and just needs to be launched. However, the simulations using
this kind of traffic must last longer than for WEB traffic since there are less
connections and the file sizes are larger.

It can be interesting to run simulations with an increased TCP’s Initial
Window. It is a well known improvement for wireless communications [12],
but the effect will not necessarily be positive if a switch is triggered to a
DCH. If the first packets sent are retransmitted because of the allocation
time, it will lead to unnecessary retransmissions, and the CWND will be
decreased anyway before new packets could be sent.

Finally, it could be interesting to make some data transfer simulations
using the HS-DSCH. In order to do this, the RLC maxDAT implementation
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has to be adapted for this type of channel.

94



Bibliography

[1] Claffy K., Greg Miller, Kevin Thompson, ”The Nature of the Beast:
Recent Traffic Measurements from an Internet Backbone”, 1998

[2] Jon Postel, ”Transmission Control Protocol, DARPA Internet Program
Protocol Specification”, RFC 793, 1981

[3] T. Chahed, A-F. Canton, S-E. Elayoubi, ”End-to-end TCP Perfor-
mance in W-CDMA/UMTS”, IEEE, 2003

[4] Robert Bestak, Philippe Godlewski, Philippe Martins, ”RLC buffer
occupancy when using a TCP connection over UMTS”, ENST, IEEE,
2002

[5] Ni Zhang, ”Simulation-based investigation of TCP file transfers over
UMTS”, 2003

[6] Fabienne Lefevre, Guillaume Vivier, ”Optimizing UMTS Link Layer
Parameters for a TCP Connection”, IEEE, 2001

[7] Anthony Lo, Geert Heijenk, Cezar Bruma, ”Performance of TCP over
UMTS Common and Dedicated Channels”, IST, 2003

[8] B. Prabhu, E. Altman, K. Avrachenkov, J. Dominguez, ”A Simulation
Study of TCP Performance over UMTS Downlink”, INRIA, 2004.

[9] 3GPP, TR 25.876 V1.6.1, ”Multiple-Input Multiple Output in UTRA”,
2004

[10] 3GPP, TR 21.905 v4.4.0, ”Vocabulary for 3GPP Specifications (release
4)”, 2001

[11] Korhonen J., ”Introduction to 3G Mobile Communication (2nd edi-
tion)”, 2003.

[12] Holma H., Toskala A. ,(...), ”WCDMA For UMTS - Radio Access For
Third Generation Mobile Communications (3rd edition)”, Wiley, 2004.

[13] Stevens W. R., ”TCP/IP Illustrated, Volume 1: The protocols”,
Addison-Wesley Professional Computing Series, 1994

95



[14] James Kurose, Keith Ross, ”Analyse structuree des reseaux (2e edi-
tion)”, Pearson Education, 2003

[15] Laurent Schumacher, ”Teleinformatique et reseaux m.a. (INFO2231)”,
Lecture, University of Namur (FUNDP), 2004.

[16] Kevin Fall, Kannan Varadhan, ”The ns Manual”, VINT Project, 2003

[17] ”EURANE User Guide (Release 1.3)”, SEACORN Project, 2004

[18] Jae Chung, Mark Claypool, ”NS by Example”, Worcester Polytechnic
Institute

[19] Oumer Teyeb, Jeroen Wigard, ”FACE: Future Adaptive Communica-
tion Environment, Deliverable 2.1: Emulation of TCP Performance
Over WCDMA”, Department of Communication Technology, AAU,
Aalborg, 2003

[20] Olivier Hynderick, Sven Raes, ”TCP performance over WCDMA”, In-
stitut d’Informatique, FUNDP, Namur, 2004

[21] Lawrence Brakmo, Sean O Malley, Larry Peterson, ”TCP Vegas:
New Techniques for Congestion Detection and Avoidance”, ACM SIG-
COMM, 1994

[22] Kevin Fall, Sally Floyd, ”Simulation-based Comparison of Tahoe, Reno
and SACK TCP”, Lawrence Berkeley National Laboratory, 1996

[23] Matt Mathis, Jamshid Mahdavi, ”Forward Acknowledgment: Refining
TCP Congestion Control”, ACM SIGCOMM, 1996

[24] Charitakis Yannis, Papadakis Charalampos, ”End-to-End Congestion
Avoidance in TCP: an Introduction”, Department of Teleinformatics,
KTH

[25] Almudena Konrad, Ben Y. Zhao, Anthony D. Joseph, Reiner Ludwig,
”A Markov-Based Channel Model Algorithm for Wireless Networks”

[26] Oumer Teyeb, Malek Boussif, ”Emulation Based Performance Investi-
gation of FTP File Downloads over UMTS Dedicated Channels”, 2004

[27] Juan Rendon, Ramon, Ferrus, Ferran Casadevall, Anna Sfairopoulo,
”Experimental analisys of TCP behaviour over a downlink UMTS chan-
nel under different scheduling strategies”, June 2004

[28] Antonis Alexiou, Christos Bouras, Vaggelis Igglesis, ”Performance Eval-
uation of TCP over UMTS Transport Channels”, 2004

[29] 3GPP, TS 25.322 v5.4.0, ”Radio Link Control (RLC) protocol specifi-
cation, release 5”, 2003

96



[30] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, R. H.
Katz, ”TCP Behavior of a Busy Internet Server: Analysis and Im-
provements”, IEEE, 1998

[31] Llorenc Cerda and Olga Casals, ”Study of the TCP Unfairness in a
Wireless Environment”, IEEE, 2001

[32] Theodore Faber, ”ACC: Using Active Networking to Enhance Feedback
Congestion Control Mechanisms”, IEEE, 1998

[33] ”Tcptrace Official Homepage”, http://www.tcptrace.com

[34] ”Tcpdump Official Homepage”, http://www.tcpdump.org

97



98



Appendix A

Performance comparison of
TCP versions when switching
between UMTS common and
dedicated channels
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Appendix B

Optimum number of RLC
Retransmissions for Best
TCP Performance in
UTRAN
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