
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Implementation of belief revision on Sony Aibo

Vander Schelden, Yves

Award date:
2004

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. May. 2021

https://researchportal.unamur.be/en/studentthesis/implementation-of-belief-revision-on-sony-aibo(39c2190c-dfac-4d8f-a93b-fd9ba48e3a92).html

FACULTES UNIVERSITAIRES
NOTRE-DAME DE LA PAIX, NAMUR

Institut d'Informatique
Promotion 2004

lmplementation of
Belief Revision
on Sony Aibo

Yves vander Schelden

Graduation Thesis for Master Degree

Abstract

This paper proposes an implementation for a system of Belief Revision for
the robot Aibo of Sony.

Belief Revision is an impressive theory of nonmonotonic reasoning based
on the AGM paradigm, which could lead to amazing progress in fields of
artificial intelligence such as behaviour simulation. This paper retraces the
important bases of simple logic, nonmonotonic reasoning and belief revision.
It describes one way to implement such a system for Aibo, using two major
Australian belief revision systems.

Sorne belief revision applications are built and discussed in different ap
plication domains.

Résumé

Ce mémoire propose une implémentation pour un système de "Belief Revi
sion" (révision de croyances) pour le robot Aibo de Sony.

L'impressionnante théorie des "Belief Revision" , basée sur le paradigme
AGM, pourrait nous mener à d'incroyable progrès dans le domaine de l'intelli
gence artificielle comme les simulations de comportements. Cet écrit retrace
les bases nécessaires de logiques simples, de logiques non-monotones et la
theorie des "Belief Revision". Il décrit une manière d 'implémenter un tel sys
tème pour Aibo, en utilisant deux importants systèmes de "Belief Revision ''
australiens.

Nous mettons en en oeuvres et discutons d 'applications dans différents
domaines.

This Master Degree work demanded a fair amount of personal investment,
but it couldn't have been achieved without the help of several people. That's
why, I would first of all like to thank my Professor, Mr Schobbens, for his
support and guidance during the whole process of my work.
I would also like to thank my supervisor in Australia, Pr Mary-Anne
Williams, for all her help during my stay in A ustralia. Although she was very
busy, she managed to find some time to orientate and follow my research.
My gratitude also goes the whole team of UTS Unleashed for their welcome,
kindness and support with the Aibo implementation.
I would also like to thank my rereaders Jan Sollars, Christine Moeys and
Julien Moeys, who helped me to correct a huge number of English mistakes.
Besides, I would like to say a special thanks to Frederic Randolet, who sup
ported me and helped me for the redaction.
And last but not least, I would especially like to thank all my family and my
friends for their unconditional support.

Table des matières

Introduction

1 State of the Art
1.1 Aibo and Co.

1.1.1 Scope
1.1.2 The Idea .
1.1.3 The Target
1. 1 .4 Actual AI Development .

1.2 Different Approaches
1.2.1 The Semantic Web
1.2.2 The Physics Engine .
1.2.3 Belief Revision

1.3 Major AI Interest

2 Theories
2.1 Basic Logic

2.1.1 Classic Proposition Logic (or boolean calcul us) .
2.1.2 First-Order Logic . .
2.1.3 Transformation to Second-Ortler Logic
2.1.4 Transformation to Higher-Order Logic
2.1.5 Different Kinds of Semantics .
2.1.6 Example . .

2.2 Nonmonotonic Reasoning .
2.2.1 Classic Examples
2.2.2 Default Logic . .
2.2.3 Circumscription .

2.3 Belief Revision
2.3.1 The Core ..
2.3.2 Epistemic Entrenchment

7

i

1
1
2
3
4

4
5
5
5
6
8

11
11
12
14
15
15
16
16
17
17
20
24
28
28

31

8

3 Systems
3.1 System lmplementations

3.1.1 Systems Used
3.1.2 Believer ..
3.1.3 Core
3.1.4 WebServer .
3.1.5 WebClient .
3.1.6 BeliefViewer .
3.1. 7 Definition .
3.1.8 Log
3.1.9 Aibo Client .

3.2 Problems Encountered
3.2.1 Architecture Problems
3.2.2 Architectural Problems .

4 Applications
4.1 Architecture .

4.1.1 Telepathy
4.1.2 The hive .
4.1.3 Save and Crash

4.2 Samples
4.2.1 Case Based Reasoning
4.2.2 Psychology .
4.2.3 Bot

4.3 Future Development

5 Conclusions
5.1 Needed & Recommended lmprovement

5.1.1 Belief Revision lmprovement .
5.1.2 Linked Features
5.1.3 Software lmprovement

5.2 Reached Results
5.2.1 Belief Revision
5.2.2 Server . .

5.3 New Possibilities

Bibliography

TABLE DES MATIÈRES

37
37
38
38
40
40
40
40
42
42
42
46
46
46

49
49
49
50
50
51
51
54
56
59

61
61
61
62
64
65
65
65
66

67

Introduction

A lot of people wish for a beautiful life where work could only be an
occupation, not compulsory labour, where they could just enjoy life, doing
only what they want to do. We all know that some work is off-putting, other
is very interesting, like my own. In present , with our computer science achie
vements, we should be able to delegate a lot of this less interesting work to a
computer. In fact , the world of computing is expanding faster than any other
environment. Why don't we already have some kind of artificial intelligence
(AI) , passing the Turing Test1, to interact with us for the worst repetitive
work ? Why haven't we already succeed in this direction?

A response can be drawn from the fact that the task of coping with this
problem is very heavy because the human brain is the most complex struc
ture we know and because the scope is too large. Replicating this complex
organization is rather impossible, or at least , it would be the most difficult
work to do and to accept as a reduction of our own humanity ... but our goal
is not in here. From the engineering perspective of the previous questions,
defining some kind of environment where we could limit our research is the
first thing to do.

Having some kind of playground with a specific guinea-pig could boost
our comprehension. We then found a perfect place in the University Tech
nology Sydney(UTS) magic lab, with the Sony Aibo dog to play with. This
little robot , provided with a powerful processor and a lot of sensors, is a
good example. The restricted world of soccer competition and playground is
a very convenient environment to start with. That is what we have done in
Australia.

Human behaviour has different ways of achieving a goal : reasoning, wis
dom, innate reflexes and so on. First of all , it could be possible to simulate
our reasoning by deduction. The other ways could be approached in another

1 Weizenbaum illustrates it in [WEl76], other information available on [TUR36]

11 INTRODUCTION

paradigm. For deduction, our goal can be achieved by simple logic, as has al
ready been studied for years computer science, completely based on it. Thus,
we need to remember some of these principles before presenting our work
with Belief Revision.

One of the most impressive achievements is the implementation of Theo
rem Provers, the way we implement the reasoning and then deduce all propo
sitions from a specific theory base, by simulated computation. These Theorem
Provers are the key for a mathematical and logical derivation methodology
clone by a computer. Thus, this will be used for our logic development .

Simple logic is efficient but not suffi.dent to achieve our goal as we need
a field with larger possibilities that we met with nonmonotonic reasoning.
This extension is used to let us work with exceptions, with rules that can
be overridden in particular cases. Belief Revision is a specific system of the
nonmonotonic reasoning theories that we chose for this implementation. We
shall see the differences with the other main systems. In other words, we
have different ways of resolving these exceptions and Belief Revision deriva
tion should be, in our particular viewpoint , a specifically good resolution with
a human-like reasoning. To this end, we tried to link a belief revision(BR)
system as a plug-in for Aibo, providing new faculties (may we say intelli
gence) to this little puppy.

Even though apparently simple, the system we developed is rather com
plex. We tried to have native code running on Aibo's operating system. But
for implementation reasons, we limited our application on a de-localised ser
ver to process intelligence. A specific protocol has been implemented and it
is possible to access a particular representation of Aibo 's mind at any time.
Other use of the developed applications are also expected such as splitting
the reasoning process between some agents.

I also give some academic examples that illustrates the interest of our
system. In the future future, these dogs could have some kind of compute
rized way of belief, a behaviour that all psychologists could dream of, full y
analyzable and with no cheating or other strange human phenomena.

We'll speak about all these subjects in the following chapter.

Chapitre 1

State of the Art

In this chapter, we will first discuss about the context in which we will
work and then coverer this domain's state of the art.

1.1 Aibo and Co.

A possible application of usual artificial intelligence techniques is conduc
ted with robots. In my research framework, l've looked specifically at the
Aibo1 puppy problem, with a Belief Revision solution. Let's start discussing
the development already clone on the subject and about the foundation of
this idea of intelligence, which incorporates a set of different concepts.

SONY

FIG. 1.1 - Aibo - used version for this report .

1http ://www.sony.net/ Products/ aibo/

1

2 CHAPITRE 1. STATE OF THE ART

1.1.1 Scope

Based at the UTS university, the UTS Unleashed Team developed a full
service intelligence system required for the Aibo puppy (Figure 1.1) to suc
ceed in playing a soccer match autonomously. It implies coordinating its
physical (engine) and also logical (strategy and tactics) skills, taking into
account his teammates positions and states. This initiative is being pursued
by different universities around the world, competing together in a soccer
competition called RoboCup1 (See Figure 1.2). The main challenge of this de
velopment is to interpret the set of stimuli coming from the outside, convert
it to a pseudo-mental scheme, compute a plausible behaviour for the soccer
player - following a given strategy - and to coordinate the required movements
(engine running and feedback from the outer world) in order to respond to
a specific situation. Thus, different sub-projects can be perceived in this work.

FIG. 1.2 - Aibo - An aibo playground.

First , we need to convert raw images from one or more cameras and link it
with different objects, by shape, colour and size recognition. The process also
includes the distance computation which is harder to achieve since we should
have only one camera (like the Aibo we worked with). Situations where Aibo
doesn't see the whole, partly hidden by an other object , are also complex.

1 http ://www.robocup.org/

1.1. AIBO AND CO. 3

A second part consists in translating the position of all this visual infor
mation into a mental schema or world representation. We could have other
sources of information than vision like sound or touch via the sensors. These
other sources could be studied by another team.

Then there is an engineering part, concerning the coordination of different
engines of the robot, corresponding to movements sufficiently fast and quite
safe1 in general. The simple fact that the robot's engine is running while the
vision didn't record any displacement is a very important fact, as it tells us
that there is an object in the way that stuck the Aibo and is out of its field
of vision. This is the case when Aibo reaches a wall that it can't discern
or reaches some kind of border. It seems like a basic case, but this is not
a conclusion that reached by most A.I. systems implemented today. Once
all these physical considerations are managed, we define all the actions for
the robot to do, in order to achieve some specific goal (such as winning a
football game) with convincing behaviour. The considerable work that UTS
Unleashed does is constantly improved. Different papers can be read to get
more details as for example the two last reports : [UUR02] and [UUR03] .

1.1.2 The ldea

This reasoning constitutes a first step in Artificial Intelligence and pro
vides a first understanding towards an application of the mechanism of this
domain; the field of Informatics. Indeed, beginning with a concrete example
of a specific domain, gives us a first impression of the general complexity of
the problem we face. Moreover, it can help us to build a systematic walk
through, also define a method to control all possible errors, since we develop
the system step by step. In the worst case, if the method and structure we
choose is not satisfactory, we will learn from our errors and start again with a
better experience and a more adaptive approach to developing and a system
of intelligence. In general, we characterize the intelligence scheme that could
be generalized, as we already do in the mathematics method of deduction to
demonstrate a theorem.

1safe : the robot must avoid obstacle and any crash.

4 CHAPITRE 1. STATE OF THE ART

1.1.3 The Target

Our starting point will be the creation of an intelligence system that
can deal with a soccer players needs. Keeping in mind that we want a robot
that can work in all situations and interact with a non-specific world, it
is probably a good idea to start with a practical application such as the
restrained, relatively simple world of soccer. The game of soccer requires
some obvious objects like a goal, a ball, a field limit, and some puppies with
opponents and team mates, constituting a kind of sandpit for our little pet.

1. 1.4 Actual AI Development

The actual development is based, as most of artificial intelligence is up
to now, on pre-compiled code without any learning ability1 . Two different
approaches are usually adopted for this.
The first aims at describing any situation by its own characteristics. The
formalism used for this description can be designed with more or less argu
ments, to give more or less detail. Surely, the more arguments we have, the
more precise the "description of the situation" is. Once done, we can link any
situation to an expected response. Aside from just being a database of pre
compiled cases, this technique has one big problem as follows : To improve
intelligence, one increases the definition of each state. But for each argument
added, we at best double the number of cases. We then have an exponentially
growing set to link with a predicted behaviour.
The second way to define a good behaviour is to specify a few rules which
shows the best thing to do for a given feature. Each rule is coupled with a
value bringing the importance, the probability for this prediction to be the
most interesting step to do.
Other approaches to pre-compiled implementations that we don't define here.
Anyway, the problem with these solutions is that we always need to rebuild
the code for any change we want and we need to choose the basic reasoning
of the machine once, for all cases. Sorne kind of runtime-reconfiguration of
reasoning appears to be necessary at this step. The community also wants a
machine that could deduce the rules itself "from scratch II or from all infor
mation already provided.

1it is a simplification : developments such as Lisp are also notable.

1.2. DIFFERENT APPROACHES 5

1.2 Different Approaches

The parallel approach that we keep in mind is to bring more than just
one specific behaviour of soccer players to the <log. We want to give him
the ability to manage various situations without any help. Our dream is to
achieve good behaviour of the real world ! To do so, we had to choose between
some different possibilities, none especially exclusive. We discuss here these
different methods and their inconveniences.

1.2.1 The Semantic Web

The first approach was to use the semantic web that we describe in the
paragraph below. We first consider all entities we work with as generic ab
jects. After a comparison with a huge object database that constitutes a main
feature of the semantic web, we link a given world object with its logical re
presentation. Once the information is provided by the system, we have access
to useful knowledge such as the description of its interest, physical charac
teristics and main uses1

. [further explanations of sem. web] This approach
seems really promising, but we don't use this technology because the actual
technology isn 't yet developed and standardized enough for the goal we want
to achieve. This science is still in its infancy. Progress in this field is made
and reported in [SemWeb] and [W3CSW] .

1.2.2 The Physics Engine

Other tactics consists of defining the principal physical concepts and all
logic postulates that these imply. To illustrate this idea, let 's look at our
main example : soccer. The idea of a rolling ball, of a sliding ball, or the
idea of a ball blocked by an obstacle is for us a tautology. We know this by
our own experience as we saw all this during our childhood. Surely, for Aibo,
a synthetic being, these experimental notions are not as easy as they look.
The human brain is made in order to accumulate any kind of experience that
brings a specific empirical reasoning as it grows. That sort of behaviour is
only possible with a learning system such as our brain. Indeed, only a lear
ning process such as a neural network (or similar applications) should be able
to perform these deductions, at least in actual development .

1described in programmed methods

6 CHAPITRE 1. STATE OF THE ART

Furthermore, a lot of study has been done in this direction. This vision of
intelligent improvement then consists of furnishing concepts like gravity, the
action-reaction principle and so on. How can we define what's going on when
we push a ball ? It is an obvious fact for us that if we push a block1 from one
place to another, we will use some energy, due to ground friction (which is
due to gravity2). It's also obvious that an object won't go through the table
because of the action-reaction principle (and strong electromechanical force
between atoms). These are the physical concepts we need to implement. We
have to provide our robot with the possibility of using this information. We
don't need to take these hard examples into account. The following simpler
example is sufficient to have an idea of the complexity of this state.

In the soccer world, we need to know where a ball goeswhen we kick it.
For any non-intelligent system, kicking the ball is just kicking the ball. All the
consequences are unknown. It would be more interesting if we knew where
the ball is going (direction, distance, heightE) in this case, which depends on
kick power and velocity. The creation of these rules is a difficult task as our
own reasoning is conducted by empiricism. Flux is the system that we were
interested in, which is an inference engine that can be used for a physical
approach to concepts like the well-known Havoc system for video games3 .

Flux has been coded in Prolog by the university of Dresden, Germany[Flux].
Once again, we dismiss this work direction for the moment to focus on a
more practical yet abstract system called nonmonotonic reasoning.

1.2.3 Belief Revision

In fact, our main idea is to create a method that provides real-time
behaviour computation. The robot has to base its reflection on its own. As it
has got some sense, he will take some info from the outside world. The theory

1we don't matter what kind of block it is in this level. It could be concrete or wood,
big or small ...

2we don't need to have this perfection of knowledge :
a child just knows that this could be difficult to push the block.
That's all what we want in this level.

3www.havoc.com

1.2. DIFFERENT APPROACHES 7

base will then contain all facts and rules received before and the information
given from external help or being derived within the logic system. In the
present time, the system should make two type of reasoning :

- Create logical rules from the current axioms in the database.
- Associate sensations to facts in a theory base.

We can imagine having empirical reasoning later, on the basis of sensed
information.

To be more concrete, we give some information : rules and facts. The
system can also draw other facts from the real world. From this set of in
formation , it is able to derive all the propositions it can make with any
combination of reasoning. This theory base can then evolve : by adding new
information, removing previously deducted errors, and confronting different
opposing theories . In order to build such a system, Belief Revision(BR) is a
good method. lt permits us to attribute a degree of information certainty to
any rules and facts.

Let's take this little scenario to fix our idea : A student lives with his
father who is woodcutter and with his mother, a university professor. As he
is worried about his exams, he asks his parents for some advice. The father
says that he has to study until early in the morning to succeed, even if he
doesn't sleep at all, because he has to know the whole subject . This advice is
fairly reliable although the man didn't get any higher education. The mother
has another point of view. She thinks that the fitter the child is the better
he will succeed. In other words, she would rather have him sleep well than
studying too much before the exam. She thinks that the most important
thing is managing to prove what he really knows. The woman knows more
about university, so the wise guy would attach more credit to his Mom. Thus
we can represent our knowledge base in the following schema :

K nowing _ everything -+ Study _ all _the_ night
Succeed -+ K nowing _ everything
Ability_to_restitute-+ Sleep_well_and_enough
Succeed-+ Ability_to_Recall

certainty : 0.5
certainty : O. 7
certainty : 0.9
certai nty : 0. 7

Moreover, the student surely knows that he needs to choose one of these
2 exclusive solutions. In fact , mixing these four rules leads to what we call
inconsistency. This consistency problem often occurs in great systems due
to all "crossed" interactions and that is why we need such resolution. In our
example, the student will choose to sleep instead of staying up to study all
night, a logical choice indeed. We shall see during the following chapter how
he can choose without any external help by nonmonotonic reasoning. In fact ,

8 CHAPITRE 1. STATE OF THE ART

we can see that a part of the knowledge base will be obsolete and dismis
sed. Indeed, belief revision will contract the theory base at each step and
keep only the needed information, not the deduction. The contradiction will
also be removed. In short, we obtain a progressive system that enables us to
mime some processes of reasoning, moving step by step to a better solution.
It stands to reason that the application of Belief Revision in a serious envi
ronment will lead to a very complex architecture, and a head-ache. In order
to develop consistent systems, we need some practice and some academic
examples.

1.3 Major AI Interest

Artificial intelligence has been developed for many years for different rea
sons. We will here underline a few ideas that require more development. We
wanted also to give you some ideas how industry could invest in this area of
scientific improvement.
This kind of progress is made by learning systems, data analysis and mani
pulation, pattern recognition, etc.

Impressive work has been done in the development of a major system of
artificial intelligence called directIA[DirectIA] by the French team MASA[MASA] .
This system is able to work for many purpose as military, entertainment, mo
delling systems, ...

Entertainment

The video game industry conducts a lot of surveys in the domain. In fact ,
we use artificial intelligence to mime a human player when you're playing
alone. That was an essential need before the Internet arrived at home but
nowadays it is still important for a game. It includes strategy and tactics,
human-like failures, "intuition" (or decision forecast) and other skills.

Expert Systems

Expert systems are used to help any human to choose the best solution
for a given problem. For example, a CEO needs to choose to develop one
product or another, the system can take all information about world offer
and demand, about production needs like resources cost and supply, about
logistic and so on. It will then give some advices regarding different given
decision rules.

1.3. MAJOR AI INTEREST 9

Expert systems are useful for decision processes1
. The major techniques used

for this computation are matrix calculus and learning machine.

Military

Military domain is a great investor in AI. The development targets auto
nomous control, like missile guidance and target identification for instance.

Robotics and Route Planning

It is possible to use AI to organize every movement of a robot .. Such
systems may also include a decision system, to help a robot to get out from
any critical situation. The most important thing is to give the robot an
autonomous belief system.
Route planning is the way to compute how we can go from a place to another,
regarding any obstacle in way and with some conditions. The GPS2 system
is a good example of it.

Modelling System

System modelling is an important tool to represent any specific domain.
A major use for it is to predict how a system will evolve after a given action.
It is often used in domain like chemistry, biology or astronomy.

1 logistic , administration or factory improvement for instance
2The Global Positioning System

10 CHAPITRE 1. STATE OF THE ART

Chapitre 2

Theories

Before talking about the concrete application, the main part of this thesis,
we need to remind the reader about different theories in order to understand
all subtleties of this method. We shall start from the simplest and go to the
hardest theories : first a short reminder of basic logic, then we will take a
look at nonmonotonic reasoning, and finally to the Belief Revision Theory.

2.1 Basic Logic1

First, let's start with Basic Logic. A basic logic is a representation of
the world and of the knowledge that permits us to deduce and prove some
propositions in a systematic and deterministic manner. This representation
is based on formulae, rules and facts, assuming that we also have a deductive
algorithmic principle. It allows us to model some sensible behaviour. Dif
ferent kinds of logic exist for example : propositional logic, first-order logic,
second-order logic and higher-order logic. These are more and more powerful
generalizations. To define a logic, we need to define a syntax in a formal
way then we need to link it with semantics, also called declarative semantics.
Then, we need to assign an algorithmic walkthrough (rules) to prove any
other formulae, also called procedural algorithmics, that is useful to deduce
other more interesting rules from simplest ones.

1This information came from my courses[JMJ-C] and a website(MAT-W]

11

12 CHAPITRE 2. THEORIES

For further development, it could be useful to go through the informai
definition of the concepts of interpretations and models.

Interpretation : set of simple propositions (true propositions)

An interpretation I is a model of a proposition p
iif the truth value of p regarding I is true.

An interpretation I is a model of a set of propositions
iif I is an interpretation of each propositions of the set.

2.1.1 Classic Proposition Logic (or boolean calculus)

Abstract Syntax:1

let p , q E 1P (Atomic predicates)
< bin >::= Al V 1 ⇒ 1 +-- 1 {:} 1 - • •

<un>::= •I • ..
< formulae >::= Pl < <l>1 >< bin >< <l>2 > 1 <un>< <I> >

where <l>, <l>1 and <l>2 are Formulae2

This is not an unique representation. We can complete the 11
• ••

11 by other
new symbols and link them to their own semantic. In fact , we just need two
atomic symbols, the constructors : /\and,. The others are unnecessary but
their manipulation seems easier for the beginner.

lndeed, we can derive the other symbols from the two constructors :

To remove ambiguity, we still need a priority within the different operations :

-,, /\,V+-- , ⇒,{:}

Priority has the same interpretation as arithmetic priority in algebra. We
compute the negation first for example in ,a V b. Using the same idea, some
operators are attached to their variables and computed in combination with
another3 .

1abstract syntax doesn't define some of the simplest characteristics of a language as
bracket impacts.

2considering brackets as already defined
3iike the law of distributivity in mathematics

2.1. BASIC LOGIC 13

Semantic

formulae interpretation = application from atomic predicate to { true , f alse}
ie. I : 1P ----+ 1B

We have always1
:

1 F 0
1 F P iif I(p) = true
1 F <1>1 /\ <1>2
J F -,q>l iif

Ll
<1> is valid

iif (I F <1>1) /\ (J F <1>2)

I ~ <1>1

VI , I Fq>

<1> is satisfiable il 31, I F <1>

Proof Rules

These are some of the most usual2
:

Axioms :
p ⇒ (q ⇒ p)
(p => (q => r)) => ((p => q) => (p => r))
(,q ⇒ ,p) ⇒ (p ⇒ q)

Meta-Rules
p I\ p⇒q

-.q ~ p⇒q
-.p

p⇒q I\ q⇒r

p⇒r

(Modus ponens)

(Modus tollens) ~
(Chaining)

Regarding these different meta-rules, we can prove that the number of
deductable proofs are countable. We can for instance take the simplest al
gorithm (semi-algorithm in fact) in enumerating all proof possibilities. This
algorithm is computable and NP-complete.

The other well-known formula could be useful to quicken the process
but are derivable from the three meta-rules above. You can access it in
[MAT-W] [propositional calcul us].

1note that F is a symbol for declarative satisfaction or equivalence.
In fact , a proposition F is a logic consequence of a set of proposition S iif
all model of S is a model of F = S p= F

2for meta rules , numerator is antecedent and denominator is consequent

14 CHAPITRE 2. THEORIES

2.1.2 First-Order Logic1

The purpose of this section is to present important differences with other
formalisms. These description are not exhaustive.

Abstract Syntax

let p, q E '.P
let f ES'
cp ::= p(t1, • • •, tn) lct>1 /\ 4>2l•4>1lv'x.ct>1

where terms are t ::= x lf(t1 , .. . , tn)

Note that the formula et> is the simplest one, but we could also add the
t:,.

well-known :3 symbols such that :lx.4>1 -,\7'-,ct>12

Semantic

Interpretation: {

1 F 0

V ---t '.D
'.D 'F 0

'.P +-- ('.Dn ---t 18) }
'.P +-- ('.Dn ---t '.D)

J F p(t)3 iif I(p)(I(t)) = true
Iv(x) = I'D(x)
I(f(t)) < I(f)(I(t))
1 F ct>1 /\ ct>2 iif (I F ct>1) /\(IF ct>2)
J F -,cpl iif f ~ 4>1

t:,.
J F \ix.4> - for all d E '.D.J[x +-- d] F et>

(Values)
(Domain)

(n = a(p))

1'.P are first-order predicates : p(t1 , t2 , ... , tn) : p-> IN
:f are functions
<l> and <1> 1 are formulae (recursive definition)

2say for example the phrase : "all chess pieces in game are white" .
lt's equivalent to "there is not black chess pieces anymore in the game" .

3- ~ t = (t1, ... ,tn)

2.1. BASIC LOGIC 15

Proof Rules

The previous rules from Classical propositional logic can be extended by
these two meta-rules :

p⇒q(x)
p⇒'v'xq(x)

p(x)⇒q
3xp(x)⇒q

2.1.3 Transformation to Second-Ortler Logic

Abstract Syntax

Abstract syntax is nearly equivalent to first-order logic, with propositions
that can have predicates as arguments. In other words, <I> ::= ... !Vp E '.P.<1>1

Semantic

It implies some new semantic :
J F Vp.0
I[x -d] F 0
I[P - a] F 0 for all a E ('Dn - IB)

Proof rules

The one interesting added rule is :

Example : Let <I> = \lx.q(y)
we can change it to : q(x) - \ly.r(y)
=> \lx.\ly.r(y)

2.1.4 Transformation to Higher-Order Logic

Abstract Syntax

The only thing we need to keep in mind is that it gives in our system the
possibility of recursive and overlapping functions .
ie. t ::= xlf(t1, . . . , tn)

16 CHAPITRE 2. THEORIES

2.1.5 Different Kinds of Semantics

N ow a word on the two different kinds of semantic used above. The first
one is declarative semantic(F) and the second one is procedural semantic(f-) .

For terminology, we say that a proof system is valid if f- <I> ⇒ F <I>.
The system is complete if F <I> ⇒f- <I>.

To have a more pragmatic vision, the declarative way is the method by
which you can set a truth table for any expression. For the human brain, it's
more understandable to have an approach of testing all possibilities for two
expressions and check if the result is the same.

Procedural semantics are used to give exact reasoning to prove some
expression. It 's a harder way for human brain, but computers do it easily.
That's why we need the two processes.

2.1.6 Example

Let just take a look to the famous bird sample. We know that a bird can
fly. How can we deduce that an object is a bird?

Vx.fly(x) ⇒ bird(x)

Let fly(Leon) , or in natural language : Leon can fly.
The system will instantiate the variable x such that x = Leon and that
fly(x)
It follows that bird(Leon), or in natural language : Leon is a bird.

The problem we'll need to face in the following chapter is : How can we
accept that Mike could be a penguin, bearing in mind that penguins can't
fly, or in logic :

x =Mike/\ bird(x) /\ ,Jly(x)

2.2. NONMONOTONIC REASONING 17

2.2 Nonmonotonic Reasoning1

After different trials it has been shown that simple logic is not enough
to simulate human reasoning.
Here is an informai definition2 of non-monotonie logic :

When declaiming a line of reasoning, it is the custom to present a case
for the object of discourse. During the argument, the propositions are steadily
built up, monotonically increasing. But, in non-monotonie logic, the proposi
tions are defeasible; that is, if an impasse is reached, the propositions can be
abandoned; thus the number of valid propositions no longer has to increase
steadily, but can even decrease and further fiuctuate.
This form of reasoning can be thus used to model thought, as in the scienti
fic method, where hypothetical explanations can be abandoned in the light of
further evidence from observation, inference and experiment.

A textbook case can be mentioned such as : the frame problem, the Yale
shooting, the ramification problem, the qualification problem or the default
priority. Below are some explanations of these problems.

2.2.1 Classic Examples

Frame Problem3

One main practice in Artificial Intelligence is the frame problem. The
major question is "How can we describe all of the environment variations due
to a specific action?". This is a little sample to illustrate the problem.

A robot's reality is based on it's beliefs. They are divided in two groups :
thinking and observation. The first is an internai process and the second is
external information generated by sensors. The robot needs to represent this
reality, that depends on the current time. The simplest way to manage this
information is to use the notion of situations. All modifications of the robot
world model can be described by actions. These actions can be done by him
self or for another reason.

1This course [PYS] has been used ail along this chapter
2comes from the wikipedia's article : www.thefreedictionnary.com[10/ 08/ 04/ 05 :31]
3Reference are: [HAY73] and [LIF94]

18 CHAPITRE 2. THEORIES

We assume that we can represent any situation from the starting situation
s0 , applying a predicate on it each time an action occurs. For example, we will
represent the action of building a brick tower for a child defined as follows :
"You can put the brick on top of this one onto some other one, if that one
has not got something else on it". That will give :

To understand this, we need an explanation of the predicates and fonctions
used :
"on" predicate says if the first argument is on the second argument in the
given situation. "move" is the action for moving the first block on the second
block. "R is" the application of an action to a given situation. " ::J II is the
implication symbol.
We could also describe the situation to move a robot in a certain direction.
Starting from a situation s0 , moving the robot forward is simply described
as R(moveforward(distanced), s0).

The problems occurs here : we know all the changes of the situation,
but what about the other abjects? We don't know anything about the other
bricks. We don't know anything about the robot "Yorld model. We don't know
if an earthquake happens or anything else. We don't even know if the top of
the brick tower is still in place.

An obvious solution to the frame problem is to add special axioms to
the domain representation, called frame axioms (or frame fluent) that expli
citly list what is not changed by each action. In other word we can create a
fluent , variable predicate or fonction describing any property (for example :
colour(object o, situation s)= yellow) and which could be "more static" than
a normal predicate. Clearly, in complex domains, the list of frame axioms
quickly becomes intractably large. We could try to make a generic axiom
setting all frames fluents to the default value. The problem is then the same
as this axiom should change from time to time.

This approach of non-monotonie logic can break the problem because the
rules are not always true, but true by default. A lot of other specific frames
were encountered as described below.

2.2. NONMONOTONIC REASONING 19

Yale Shooting

Another part of the frame problem is the Yale shooting problem.
It concerns a person who at any point in time is either alive or dead, and
a gun that · can be either loaded or unloaded. The gun becomes loaded any
time a "load" action is executed. The person becomes dead any time he is
shot with a loaded gun.
Assume that the person is initially alive. The gun is loaded, then he waits
for a while, and then he is shot with the gun. What can we say, given these
assumptions, about the values of the fluents involved - "alive" and "loaded"
- at various points in time ?
The description of the domain above does not say whether the "load" action
is considered executable when the gun is already loaded. Let 's decide that
the answer is yes : when the gun is loaded, that action can be executed but
will have no effect.
Note that the assumptions of the Yale Shooting Problem do not determine
the initial state completely : the fluent "loaded" can be either true or false in
the initial state. But once the initial value of this fluent is selected, all future
changes in the values of fluents are uniquely defined.

We still have the problem encountered in the previous section. But ano
ther problem arises as we wanted to minimize the number of of possible
change changes. Let's take a look to these two example regarding our fluents
and their possible exceptions :

1
alive

+ load-+ 1

alive
+ wait-+ 1

alive + shoot -+ 1 ,alive ,loaded loaded loaded

2
alive

1 alive + wait-+ 1
alive I .

,loaded + load -+ loaded l d d + shoot -+ alive , oa e

Here, we'll assume that the gun can't be reloaded by external action1 . In
both sample we can imagine for some reason that the loading action did not
occur for some reason. The system has an exception on both sides. Exceptions
are the special facts that change the fluent "normal" behaviour. Let's continue
the description. Suppose that the gun is loaded, we describe that nothing
happens during the delay and we shoot the guy. An exception is possible when
we shoot the guy and he miraculously survives. We have in this situation(!)
an exception on the alive fluent . In situation (2), we decide that the exception

1 the other possibilities will lead to a similar result

20 CHAPITRE 2. THEORIES

occurs while waiting to shoot, the gun unloads (fire in the sky)1
. Surely we

can't then kill the guy since the gun is unloaded.
This sample is a bit weird to explain , but it shows that it is impossible to
find a perfect situation with a perfect description for an action. The better
representation should be the one which leads to the least exceptions and this
representation doesn't exist.

Ramification Problem

If we take the simple Yale Shooting problem, we can add a new predicate
in the rule dead(i , s) -t -,respire(i, s)

This respire implies a new exception on s2 : -,respire which introduces a
new exception in the first description of the Yale Problem. Thus the second
one will be chosen as a more logical possibility. In any case, it introduces
another problem : adding a new exception to the description may not lead
to the creation of a model any better than previous models.

We could also talk about the ramification problem which is similar but
these examples are sufficiently representative of the monotonie logic problem.
AU these examples can be partially or completely resolved by the use of non
monotonie reasoning. Before enumerating the features of Belief Revision, we
suggest we review the two most interesting methods of nonmonotonic reaso
ning : default logic which takes a syntactic view, and circumscription which
takes the semantic approach.

2.2.2 Default Logic

This is a overview of The theory, as explained in [DP094]

Formalization

Depending on the same syntax as modus ponens(l) , the general rules pre
sentation (2) can be transformed to describe the default rules(3) .

1remember that we don't know anything of the rest of the situation than just our fluent ,
due to the frame problem.

2.2. NONMONOTONIC REASONING 21

The third representation mean that {Aï}iE[Ln] are the preconditions(or an
tecedents) and { BihE[Ln] are the justifications and C is the consequent(or
conclusion) of the default.

This rule can be used only if we have already proved the antecedents and
can't prove /\ Bi , then we can derive the consequent.

iE[Lm]

The main idea is to provide a system with a set of facts and a set of
defaults. From this point of view, we extract all possible derivations from the
system. The problem of justifications need to be verified. In other words, in
all derivation step, we need to confront the new conclusion we choose with
all previously encountered justifications. In this process, the choice of first
default used is essential. That 's why we have some different extension.

To be more precise and formal , a theory is a couple ô =< D , F > 1 .
00

The different steps are s0 , s1, Then LJ Si = S with S0 = F.
i=O

Sis a final extension and can be computed by

w~ ~
w(c) : a(ë):.Bi(ët ·•,.Bn(ë) is an instance of a d<>f.a in D }

·th { a(c) ~ Si ,,.
wi ,B(c)is consistent wit S \:/ E [Lm]

Explanations

We can have more than one extension as we explain in this small example :

Let F - {P} and D - { P :-.Q P :-.R}
- - R ' Q

The two possible extensions are :

{P,R} and {P,Q}.

The first extension cornes from the application of the first default on the
factual set. After applying this default , we can't use the second assuming we
need to preserve consistency.
The second extension is the converse. We apply first the second default rule
and we are then stopped.

□
1where D are default , i.e. defeasible rules and F are facts.

(\

- - - -------------------------,

22 CHAPITRE 2. THEORIES

These rules are the bases of default logic. Each extension is a model of the
reality described in the theory base o. It can be understood as an explanation
of a formula.

Precisely, if g is a closed formula, the extension E is an explanation of g
from o =< D, F > if E is the set of consequents of some D'(D' c D) when

1. ELJF F g;

2. E LJ F entails the preconditions of D', such that we can order the de
fault in D' and only use previous defaults in the sequence to prove the
precondition of any default in D';

3. all of the justifications of D' are consistent with some extension of o
that contains E.

Sorne specific default profiles have been grouped to be computed faster
and to predict easily how the system will behave as normal and semi
normal defaults1 or closed and open defaultl- . These different default types
have characteristics which could be useful to read before actually using de
fault logic.
For further information, please refer to [DP094] .

As we'll see in further examples, the way we choose to write our rules is
absolutely critical. The extensions created will be totally different for each
chosen syntax. Indeed, we need skill to obtain the foreseen result.

At last , to compute this research of a final extension, two main approaches
are possible: the forward-chaining and the backward-chaining default prover.
The first is an approach of generate and test , trying all combinations of
default and getting a new extension when the system is blocked. The second
approach is the converse, trying for a final formula to derive its predecessor
until we have a way in the solution tree to explain this final point.

1normal default are of the form "'~N:s•l, and semi-normal are of the form c,~7:)(~)
2a closed default doesn't contains any free variables, otherwise it is an open default.

'7

2.2. NONMONOTONIC EASONING 23

Examples

These sam es are directly taken in [David Poole, Default Logic]. The
birds can ft,y cept baby birds can be represented as follows :

D = /-: :rdsfly(x)}
L 1:jrdsfly(x) '

F = {\:/birdsfly(x) /\ bird(x) =} flies(x),
\:/xbird(x) /\ baby(x) ⇒ ,birdsfly(x) ,
bird(Tweety),
baby(Polly),
bird(Polly),
baby(Keith),
,jlies(Fred)}

Remember that F is the facts, given to the system or computed by some
processus and D1 are the defaults . Note for instance that we can then derive
a newfact: birdsfly(Keith) by default ie from D.

This description led to some conclusions : "There is one extension that
contains birdsfly(t) for every term t (except fort = Polly) . fli es(Tweety)
can be explained using the explanation FU {birdsfly(Tweety)}. We cannot
explain flies(Polly) as birdsfly(Polly) is not consistent with the facts. We
can explain ,bird(Keith), using FU {birdsfly(Fred)} . We can also explain
bird(t)::::} flies(t) /\ ,baby(t) for every ground term t (except fort= Polly) . "

The same situation can be represented with another form :

D = { bird(x):flies(x)A-,baby(x)}
flies(x)A-,baby(x) '

F = {bird(tweety)
baby(Polly) ,
bird(Polly),
,jlies(Fred)}

Here, the default is also normal and the description mimes the same situa
tion but the consequences are different. We see here that the syntax is really
important in this process. ''we can explain fli es(Tweety) and ,baby(Tweety) ,
by assuming the default for x = Tweety. We still cannot explain f lies(Polly) ,
and can no longer explain ,bird(Fred) , nor bird(t) ::::} bird(t) /\ ,baby(t) for
an arbitrary ground term t." The main difference between the two represen
tation is that we need to derive bird(t) before applying the default , which

1 Here, this is a unique normal default

24 CHAPITRE 2. THEORIES

led to some trouble.

We thought this sample be a good one to show the importance of che
cking for consistency, and the difficulties of creating a good representation
considering the importance of a syntax choice.

2.2.3 Circumscription1

Let's now take an overview of the circumscription theory, which is another
good example of nonmonotonic reasoning. Unlike default logic, circumscrip
tion doesn't suffer from the choice of the chosen representation, implying less
problems is choosing the way we describe it.

This time, we will work with abnormal predicates, for the exception. The
rules will be like b(x)/\,ab(x) ---t f(x) which is equivalent to: b(x)/\,J(x) ---t

ab(x).
The main idea of this formalism is to minimize the domain in which all for
mulaes are consistent.

In fact, in our world, there is a lot of interpretation. We will choose the
smallest possible interpretation of our model that is consistent with the rules
and facts of which the model is composed to represent the circumscription.
Note that we can also have more than one smallest interpretation.

Figure 2.1 below represents different interpretations Ji and the set of
interpretation in a model A. We can see in blue the circumscriptive effect that
takes the smallest interpretation of Mod(A). To be more precise, the lines
in the drawing represent all comparable relations between representations
(clown to up). For instance, h ~ 15 where ~ is the given comparison2 function
as we'll see below.

1 Based on note[LIF94]
2partial order

2.2. NONMONOTONIC REASONING

FIG. 2.1 - Model and Interpretation - circumscription.

Semantic

Let's begin with semantic of the circumscriptive interpretation.
Interpretation is : 1 : '.P ----+ ('.D ----+ IB) .

We first need explain the partial order between interpretation :
t:..

li :::; h l1(ab) ç h(ab)
/\ 11(T) = h(T) (T = type)
/\ 11 (p) = h (p) (p = predicate)
/\ 11(!) = 12(!) (f = function)

25

minimal model is then min(A) = {m1 E mod(A)I ,li m2 E mod(A)lm2 :::;

m1}1

26 CHAPITRE 2. THEORIES

Syntax

A model can easily be represented by a unique second-order logic. If we
have two interpretations representing the same model, we need to take the
interpretation which contains the least restriction. If we have two distinct
interpretation 11 and 12, let be ab1 and ab2 the only difference between the
two interpretations. The translation of minimal models into the second order
logic is as following, taking A as a simple logic sentence, with the default
predicate ab :

(A[ab := ab1]/\ ,llab2.A[ab := ab2] /\ ab2 < ab1)[ab1 := ab]
= [AA ,llab2.A[ab := ab2] /\ ab2 < ab]

(minimal models definition)

ab1 ~ ab2 ~ Vx : T.ab1(x)---+ ab2(x)
where:

ab1 < ab2 ~ ab1 ~ ab2 /\ ab2 i ab1

or in contracted version, CIRC[A,P] = A(P)f\-,:3p.[A(p)l\p < P]

Resolution

These formulaes can be resolved by simplification, then with appropriate
choice of a substitutive predicate p, which need to be the most general. The
results are often very intuitive, but not all the time.

The example of A= Q(x) =:} P(x) leads to

A'= CIRC[A, P] = Vx[Q(x) = P(x)]

which is a good intuitive solution, as the solution domain, the interpretation,
of A' are always true in the starting theory A, and moreover, this is the
smallest set where this property is true.

Surely due to this basic case of circumscription is too specialized for
most of applications , the way we limit our workspace without changing any
thing else in the model. An extended definition has been created to face
this limitation. We can then have a possible change of external functions or
predicates(called z1 , ... , Zn denoted by Z) :

CI RC[A, P, Z] = A(P, Z) /\ -,pz .[A(p, z) /\ p < P]
with arity conservation for p and z, regarding P and Z.

2.2. NONMONOTONIC REASONING 27

Theory

Like in default logic formalism, an idea of a circumscriptive theory can
be drawn:

A circumscriptive theory is defined by a set r of sentences, called the
axioms of the theory, and a set ~ of expressions of the form "circ P var Z1 , . . . Zn" .
That form of expression means that circumscription will be used on predicate
P with the constants Z1 , . . . , Zn varied1. This ~ is called policy declarations.

A model of a circumscriptive theory(r, ~) is any model of r that is
minimal regarding ~P;Zi , ... ,Zn corresponding to the policy declarations. We
can then access to theorems of (r, ~) that are sentences which are true in
all its models.

Computation

Surely, there is also a lot of propositions, lemmas and theorems that are
used to accelerate the process of resolution without this kind of intuition we
need to progress. To this end, you can refer to [LIF94] .

The Bird Example

Once more, we can describe a representation of the bird example that we
met twice above. Suppose that we want to represent the problem we had in
simple logic chapter, it should give a system as :

{

bird(x) /\ ,Ab(x) =:) fly(x)
r = bird(Mike)

fly(Mike)

with the circumscription ~ = { circ Ab }2

1with the restriction that Zi is not containing P
2 A more interesting example would have more than one circumscribed predicate, with

varying constants. See [LIF94] for more.

28 CHAPITRE 2. THEORIES

2. 3 Belief Revision

Belief revision could not be explained better than Mary-Anne Williams
[WIL95] just as we couldn't explain the AGM paradigm better than its in
ventors Alchourr6n, Gardennfors and Makinson [AGM85] . Our objective in
this paper is to present their principles in a general overview. In fact , belief
revision has been used only in its general principle. We did not play the limit
of this formalism for our application.
To this end, we'll try, once more, to sketch a simple overview or intuition of
this theory. The essential requirements to understand its power and usage
will be explained. The link between previous nonmonotonic reasonings that
we met in previous sections and belief revision will be underlined. This is
important to fix our idea for the real application.

2.3.1 The Core

Belief revision systems offer different mechanisms to manage new entries
of knowledge into a knowledge base. It's not only a method to develop but
also to verify the consistency of its incremented base. Indeed, some new in
formation could be in conflict with some axioms or consequence of axioms in
this world.
The great interest of this formalism is based on minimal change principle.
This one is relatively simple to understand : we try to suppress only the
least important axioms, while the new information added on the system is
considered as more important than any other belief : a true belief.

We can see it in a simple logical example. Starting with { Ji}[1..31 and adding
IR , we conclude to an inconsistence :

To remove the inconsistency, we need to suppress / 1 , / 2 or / 3 on top of IR1 .

It could be interesting to suppress more than one of the Ji leaving the base
maybe less rich but surely more stable.

1 because IR is a consequence of the conjunction of the Ji

2.3. BELIEF REVISION 29

The main question is then to know how define an ordering between beliefs.
In fact, it could be more efficient to withdraw 2 less important axioms instead
of one more important. For this, two methods have been proposed :

- define a possibility value for any axioms or rules called entrenchment.
- use a system of sphere representing the different possible(distinct of a

probabilistic viewpoint) world extending from the "more possible" to
the "less" one.

Let 's take the following example system :

Axioms / rules Entr. Added axiom(considered true)
A 0,99
B 0,99

A ---t C 0,3
B---tC

,D
0,3
0, 8

IV : C AD

The most logical conclusion is to choose to withdraw1 J li and J 12 instead
of III.

To develop the theory, we need to define some operators that take a
knowledge base X,cand a symbol of the language f., (representing an axiom,
the belief) and provide a new knowledge base.

Here is a brief description of actions before the formal definition :

withdrawal : Suppression of certain axiom, without any other verification.

contraction : Suppression of an axiom and of all of the rules implying it .

expansion : addition of a new axiom in the theory base

revision : addition of a new axiom with the respect of the system consistency.

These actions constitute the AGM paradigm's kernel , created for mo
delling ideal and rational changes to repositories of information under the
principle of minimal change.

To be more precise in the definition, we should implement these fonctions
with respect to the minimal change principle as defined in [WIL95] :

Expansion

+: X,cxf.,
(T, cp)

- X,c - r: = Cn(T U {cp})

1with the most standard rule

30 CHAPITRE 2. THEORIES

Expansion is the simplest operation 1. This is a normal monotonie opera
tian to add a belief in the theory base. We have a consistent theory without
other changes iif ,cp (/. T .

Contraction

X.ex,(,
(T, cp) - X.c

rcp such as:

(- 1)
(-2)
(-3)
(-4)
(- s)
(- 6)
(-7)
(-8)

T; EX.c
r- CT cp -
If cp (/. T then T ç r;
If If cp then cp r/. r;
T Ç (T;)! (recovery)
If r cp - 'l/; then T; = Ti
r; n r; ç r:;""1
If cp (/. T~,t, then r:;""1 ç r;

An interesting point of these properties is the postulate (- s) which says,
according that cp ET and with the previous four postulate, that T = (T;)!
This is a powerful feature because it says that no more information is lost
that can be reincorporated by an expansion with respect to the explicit infor
mation contracted, that is, if we contract cp and then immediately replace it
using expansion then we obtain the theory we started with. Intuitively then,
this postulate forces a minimal amount of information to be lost during a
contraction2

. The withdrawal fonction fulfills all the postulate but the reco
very (-s).

Revision

----+ X.c
----+ T* cp such as:

(*1)
(*2)
(*3)
(*4)
(*5)
(*6)
(*7)
(*8)

r; EX.c
cp Er;
T* C T+ cp - cp

If ,cp r/. T then r;; ç r;
If r; =1- then r ,cp
If r cp - 'l/; then r; = TJ
r;""1 ç (r;)S
If ,'l/J r/. r; then (T;)S ç r;/\,p

In other words, we can see that revision is nonmonotonic. We can also
conclude that revision is a combination of expansion and contraction.

1except withdrawal which is trivial
21n our opinion, this is an essential postulate to take into account while implementing

this function , which is probably not as easy as it seems.

2.3. BELIEF REVISION 31

The AGM paradigm's creators have also demonstrated the relationship
among the different fonctions :

- The Levi Identity : If - is a contraction fonction and+ is an expansion
fonction, then we can then define a revision fonction by

r; = (T~~)! .
- The Harper I dentity : If * is a revision fonction then we can define the

contraction fonction - by

2.3.2 Epistemic Entrenchment

In order to define an ordering between the different rules and axioms
that we believe, we need to define a specific Epistemic Entrenchment Orde
ring(EEO). This can be clone by implementing some fonctions that comply
with the following definitions :

An Epistemic Entrenchment related to a theory T of f., is any binary
relation :S on f., satisfying the conditions below.
(EEJ) if r.p :S '1/; and '1/; :S X, then r.p :S x(transitivity)
(EE2) for all r.p, '1/; E f., , if r.p f- '1/; then '1/; :S '1/;
(EE3) For all r.p, '1/; E f., , r.p :S r.p /\ '1/; or '1/; :S r.p /\ '1/;
(EE4) When T /-, r.p r/ T ~ r.p :S '1/; for all '1/; E f.,

(EE5) if '1/; :S r.p for all '1/; E f., , then f- r.p

Indeed, if r.p :S '1/;, then we say '1/; is at least as entrenched as r.p.
We define r.p < '1/;, as r.p :S '1/; and not '1/; :S r.p (as often in logic). If r.p :S '1/; and
'1/; :S r.p, then we say r.p and '1/; are equally entrenched.

- (EEl) is a simple property of transitivity.
- (EE2) says that the consequent is at least as entrenched as the ante-

cedent. For example, we have r.p that entails r.p V '1/; . It 's essential that
we have more conviction of r.p V '1/; than r.p .

- (EE3) combined with the precedent two axioms says that a conjunction
is ranked at the same level of its least ranked conjunct.

- (EE4) tells us that the sentences not in the theory are minimal.
- (EE5) says that tautologies are minimal.
All these properties need to be followed to describe a correct ordering.

They define a class of binary fonctions where we could get the needed cha
racterization of any rules between them. For any epistemic entrenchment
ordering, we can define the set eut :

32 CHAPITRE 2. THEORIES

The set eut~ (cp) contains all those sentences that are at least as entrenched
as cp. An important property of an epistemic entrenchment is being a total
preorder of the sentences in J:., such that :
If~ is an epistemic entrenchment, then for any sentence cp, cut<('P) is a
theory.

From this point, we can develop further theories using several theorems
given by the AGM's authors. Without going into details ([WIL95]), they
serve to :

- give the finiteness of the representation of an existing entrenchment.
- prove the existence of an entrenchment for each contraction fonction.
- prove the existence of a specific contraction fonction for each entrench-

ment .
- prove the existence of an entrenchment for each extraction function.
- prove the existence of a specific extraction fonction for each entrench-

ment.
- give the number of extraction an contraction fonctions for a given

theory.

lmplementing Entrenchment

Two major problems appear while when trying implement entrenchment.

The first lies in the need to support iterated revision. The basic trans
formation defined in the AGM paradigm take an epistemic entrenchment
ordering coupled with a sentence and transforms it into a theory at which
point the ordering is lost. That's why repeated revision iterations can't be
done.

The second problem is the typical infiniteness of the ranking of sentences1

by an epistemic entrenchment, which is a well-known problem in computer
implementations.
As [WIL95] says, we can define the relationship between the formal epistemic
entrenchment ordering and the implemented partial entrenchment ordering.

Finite Partial Entrenchment Rankings2

The definition below can be taken to understand the use of a fini te partial
entrenchment ordering(FPEO), graduating the content of a fini te knowledge

1due to infiniteness of the set of sentence contained in the base.
2FPER

2.3. BELIEF REVISION 33

base, according to its epistemic importance. In practise, it's a mapping from
any sentence to a rational number.
A finite partial entrenchment ranking is a function B from a finite subset
of sentences into the interval [ü , 1] such that the following conditions are
satisfied for all <p E dom(B) :

(PERI) {'l/J E dom(B): B('l/J) < B('lj;)} If <p
(PER2) If f- ,<p, thenB(<p) = 0
(PER3) B(<p) = lifandonlyif f- r.p

A qualitative use can be observed as we graduate a sentence relative to
another. Conversely, we observe another use which is quantitative as we give
the specific entrenchment for a sentence corresponding to a necessity, a kind1

of probability. The system will then compute the other sentences from the
numeric value.

We can then separate two kinds of belief, the explicit and the implicit
ones, that corne from system derivation. As usual, the first is the described
theory defined by :

Given a finite partial entrenchment ranking B, the explicit information
content represented by B, denoted by exp(B) , is {r.p E dom(B) : B(r.p) > O}.
The implicit information content represented by B, denoted content(B), is
Cn(exp(B))2. A lot of convenient rankings are coherent with a starting base.
We'll choose the minimum possible degree of entrenchment.

Once we have a ranking, it should be necessary to create an epistemic
entrenchment ordering from this ranking. To this end, we define how to as
sign a degree of acceptance to implicit information :

Let r.p be a nontautological sentence. Let B a finite partial entrenchment
ranking. We define the degree of acceptance of r.p to be :
degree(B, r.p) =

{
jlj 2'.: i where {'l/J E exp(B): B('lj;) 2'.: i} f- r.p if r.p E content(B)
0 otherwise

The simplest way to compute the degree of an expression lie in a straight
forward top clown procedure : We can take all sentences from the highest
degree3 and try to derive the expression. If we succeed, the reached degree is

1 Entrenchments don't work as with probability.
2Cn is a logic fonction often used giving the set of ail possible conclusion of a theory.

Refer to [MAK94] for further explanation for example.
3Remember that tautologies are degree 1 and inconsistency a degree 0

34 CHAPITRE 2. THEORIES

set , else we try with the degree just below and so one until reaching O.

Then the theorem below finishes to show how the FPER generates an
EEO using the degree of acceptance :
Let B a FPER an <p, 'if; be sentences.
Define 5'B by <p 5'B 'if; -<===} f- 'if;, or degree(B ,<p) 5, degree(B,'if;).
Then 5'B is an epistemic entrenchment ordering related to content(B).

lterated Revision

The lack of a policy to support iteration of change function in the AGM
paradigm can be resolved in practise. In fact , this omission is useful to keep
all different implementations available. As we want to modify a ranking, we
need not only the sentence but also a degree of acceptance which is in [0,1[.
The policy for change quoted above is linked with a function of minimal
change. The computation of a minimal change function can vary with res
pect to our goal. The exact definition of the adjustment1 function is a bit long
but the concept is understandable enough to imagine without formalizing.
Adjustments define change fonctions for theory bases, rather than logically
closed sets of sentences as in the previous section.

Intuitively, a (<p, i)-adjustment of B involves minimal change to B such
that <p is accepted with a degree i. In other words , to keep the system
consistent , all sentences 'if; in B will be reassigned to the closest number
of B('if;) chosen in the adjusted partial entrenchment ranking obtained under
the guiding principle that if we reduce the degree of the new accepted <p toi,
we will also reduce the other relative sentences, as in the contraction process.

We could continue to identify some of propositions comparable to Harper
and Levy identity but we don't think it's essential understanding. Our refe
rence paper describes a good example for special adjustments that you could
refer to, for a practical description. Anyway, different adjustments method
will be overviewed in the next subsection.

Well-known Adjustments

Sorne adjustment definitions can be quoted for the Saten System descri
bed in the next chapter. Saten implements Standard AGM, maxi- , hybrid,
global, linear and quick adjustment as defined in [SADJ] .

1You can check it in [WIL95], the source of all this section

2.3. BELIEF REVISION 35

The Standard adjustment is based on the standard epistemic entrench
ment construction for belief revision. It seems that it proceeds from the top
of the ranking and moves clown it rank by rank until it finds inconsistence.
Then, any belief of the same rank or below is discarded.

Maxi-adjustment proceeds from the top of the ranking and moves clown
it rank by rank. At each rank it deletes all the beliefs that are inconsistent
with other belief at that rank and above.

These are the adjustments we used to work with. The other adjustment
are described in [SADJ].

This concludes our theory chapter.

36 CHAPITRE 2. THEORIES

Chapitre 3

Systems

Belief Revision is a good approach for artificial intelligence. Our goal is
to run it on a specific robot, already used in international RoboCup com
petition. In fact, we would like to have some kind of dynamic behaviour for
a robot in all possible environments. Basic weak1 AI vision, like the actual
development for Aibo, is not far enough to achieve this goal. The need to
recompile and build another case for any special action for the fake being is
reluctant and time-consuming. The robot is not as autonomous as we hope.
The good feature of Belief Revision is the modification of the way to behave
and think in real-time.

The description of the system implemented for Aibo below could be used
on another platform as we essentially work with Java. In the next section we
will focus on the description of all problems encounter_ed during development.
All the code is fully documented and presently available on [MYWWW] 2

•

3.1 System lmplementations

The system we made is based on a client-server principle. First of all, we
tried to have a separate code method to let us improve one part or another
when needed. Thus we'll speak about all the different views in the next
subsections.

1 In short, weak AI corresponds to a particular code for any action, using hardware
properties to be a very effective way to work. Strong AI is oriented in simulating human
brain, deduction or behaviour(e.g. Neural Networks, .. .)

2 the system is still improving

37

38 CHAPITRE 3. SYSTEMS

3.1.1 Systems Used

Two major softwares have been integrated to complete this part of the
system, constituting the core of process.

The first software is the belief revision system of the Queensland Univer
sity of Technology(Australia) as known as AIFS[AIFS]. It's a belief revision
system based on three different theorem provers: robdd solver, buddy solver
and sicstus solver. Robdd is a Reduced Ordered BDDs solver which follows
SAT technics. Buddy is another BDD solver1 . Sictus is a prolog distribution
providing some theorem provers as prolog programs. We choose not to go fur
ther in defining theorem provers. The AIFS system implements four different
adjustments as AGM, maxi, maxi approximated and linear change functions .

In other hands, the second software is SATEN[SATEN], developed in
NewCastle university(Australia) and supervised by Mary-Anne Williams.
This one is based on a proprietary prover called vader, also developed in
NewCastle. The Saten system is able to perform nonmonotonic reasoning,
possibilistic reasoning, and hypothetical reasoning. The available adjustment
are AGM adjustment, hybrid, linear, maxi , nebels and speedy. We will discuss
the differences la ter. Both systems were coded in Java the en tire system.

3 .1. 2 Believer

This program was needed to link with a human-handable interface for
this extraction-revision systems for belief revision. In fact, the hardest task
consists on the translation from one system to the other as they are not
compatible.

BelieverCommandLine

The Believer contains a text input interface coded in Java.
See Figure 3.1 below.

1 http ://sourceforge.net/ projects/ buddy

3.1 . SYSTEM IMPLEMENTATIONS 39

The command line allows users to :
Create and Run a Revision Engine in the specified prover and adjust
ment.
Stop and Kill a Revision Engine.
Load a previously saved theory
Save a given theory
Revise a new sentence with a degree into the actual knowledge base
Show all the knowledge base information

- Show all ranked sentences of the knowledge base, with their explicit
entrenchment degree.
Ask for degree of a given sentence or expression.
Navigator-like transition as Next-Previous to undo/ redo actions.

The command line checks for all possible errors as parsing errors, illegal
entrenchment values, incorrect save names ...

-
Th••• .,.. tM Coa••nd• 1

: L06d Thl-or1JB• .. fr-o• fil•
$: $~ Thl-onjBeH to fih
< : undo
> : R..:lo

: (C)~ tM Savrload }oc.al filMMH
.N : (N).., Tr.orylH•

: (l() ill thi• n_.or-"'9aH
R : (R)evin • rwM axioH
D : Hk. f'or- the (O)•w•• for an .,.;pr-aHion
A : 11how (Â)ll .xpreHior,a of tha t~y bau
I : Show ail curr'•nt info
O , (Q)uit

Note tM t WKto/r-edo ia unabla to undoM ~ . N an4 L

FIG. 3.1 - Believer - Command Line.

40 CHAPITRE 3. SYSTEMS

3.1.3 Core

The internai system manages also other features :
- Implementation of all command line tasks.
- Synchronized thread management for different tasks1 .

- Automatic conversion of input format for SATEN into AIFS format.
- Separated implementation of command line system to be overriden in

further development.
- Error and confirmation message management using own protocol2

.

3.1.4 WebServer

The WebServer consists on a socket server doing the factory work for any
incoming socket. It links all incoming requests to the Believer when available.
The main features are :

- Stack of multi-threaded external request
- Auto resizable thread pool for minimizing memory allocation and la-

tency.

3.1.5 WebClient

The WebClient is the simple client layer providing socket opening. It just
invoke a new socket when BelieNiewer asks for it and forward the requests.

3.1.6 BeliefViewer

BV is another great part of the whole work. It's task is to provide a more
pleasant GUI client application to access the intelligence server.
The program is separated into two tabs . The first is "administrative tools''
while the second is "theory base" .
Sorne "Printscreen" are available at the of this section : Figure 3.2 and 3.3.

Administrative tools

The window is separated between different semantic zones :

Communication Options
- Server IP and Port
- Local IP and Port

God-like Options (Management of Revision Engine)

1useful for serving or for multitask command line systems if implemented
2which will be used by the client-server

3.1. SYSTEM IMPLEMENTATIONS 41

- Set of different provers (robdd, buddy, sistus and vader)
- Set of different adjustments, depending on the prover selected

- Standard AGM, Maxi, Maxi approximated and Linear for the first
three provers

- AGM adjustment, Hybrid, Linear, Maxi , Nebels and Speedy for
Vader

- A time value for approximation for all prover but Vader .
- Creation or Destruction of Revision Engine Button depending on

context.
- "Morphing" script button : After a dialog with dialog box, permits

to convert a given theory base

Saving Options
- Text input for filename
- Load and Save button.

Info
- Refresh : reload information from the server
- Server Status : provide information of the running state of the server

This description is not complete : a lot of case base interface changes have
been implemented to hide, focus or disable buttons in different contexts.

Theory Base

The second tab, accessible when the server is running a revision engine,
contains the knowledge base. It permits interaction with sentences.

Running belief
- The knowledge base is represented by a simple table which contains

1. Ranking

2. Entrenchment or degree

3. Sentences or expressions

- Different beliefs can be selected to be used with the action part .

Actions : Queries to the server
- Expression and Entrenchment input
- Choice of actions with combo-box

- Revise a given expression with a certain degree
- Ask for the degree of a given expression

- Dismiss button (when the option is activated) to revise an expression
to O degree.

- Navigation control for undo/ redo actions (Next/ previous)
- Refresh

•I

42 CHAPITRE 3. SYSTEMS

Note that all feedback, local or from the server are handled by a dialog
box, same as confirmation of actions.

3.1. 7 Definition

We followed for our development an interface coding to have some moni
toring different of protocols, string definitions, parameters between different
parts of the code. A compilable Java file called "Definition.java" groups all
parameters in different interfaces for each domain (Believer, Client/ Server,
prover options ...) . It permits us to have a revision system.

3.1.8 Log

All different parts described above are always logged. It provides a me
thod to trace any bug and a backtracking method to reconstruct theory base
if the server crashes.

3.1.9 Aibo Client

Aibo dog works with a special processor running a specific dedicated
operating system called Apertos1 . The memory of this puppy is stored in
a memory stick2

, and it needs a specific configuration of different files. For
example, if we need to work with FTP client , we can put in some special di
rectory a program given by Sony to have the system running. We could also
code our own version of the program, starting from scratch or completing
the Sony version, which is very limited.

To this end, we need to code with a special version of C+ + called Open
R[OPENR] designed for Apertos. To do so, we need to install some add-on
to Linux installation, to have a GCC3 compiler for Open-R. Once compiled,
we can access to a special directory to have native code to put on Aibo. The
amazing stuff with this method is that we just need to put some different
programs all together in the memory stick to have them all running together
(if there is no unsolicited side effect) . For inter-abject communication, aspe
cial interface has been provided.

1or Aperios, http ://www.csl.sony.eo.jp/ project/ Apertos/ techpaper.html (Japanese)
2http ://www.memorystick.org
3GNU C Compiler

3.1. SYSTEM IMPLEMENTATIONS 43

To contact the intelligence server, we have modified the soccer team code.
The example we develop for the simple demonstration in Australia is a re
quest to play. The dog contact his "brain" and asks if it wants to play. In case
that the server computes a negative answer, after using belief revision, the
dog sit clown and blinks some leds. In other hand, if it want to play, it stands
up and wags his tail, turning on other leds. As we did not have enough time
in Australia, we finished the development for the dog in the lab, keeping the
belief revision application to be clone in Belgium, on the delocalized server.

The code is available on a website but is not added in annex to this thesis
for three reasons :

- A raw code is not pleasant to read nor interresting.
- A J avadoc is better if we use HTML link.
- The program is still being improved (with 90% completed javadoc).
- Printing more than 5000 codelines(only our new code) for swaggering

is a bit silly.
We'll see in the next section all the problems encountered, mostly in the Aibo
implementation.

44

x]

~

x]

~

C, ...,
ai ...
~ I ~ .

1
1 aÏ [Il 1
1~n,1°

ai

"'
11~llë

hl 1

C, ...,
:g -&: I~

1
@

ci:
,:,

1 a Ï g

1 Il ~ ""
>- >- ~

1 IJll ,
ai
"'

1'~11 ~

1
a Ï 1
11 I

1
1 1
0 @

1 1
0 0

~

CHAPITRE 3. SYSTEMS

\ i "'
1 ~ C ,;. :,

C

l. ,l! w a,
0 0

C

! ~
~ ..

i~ 1
i ~ 1

i 1 1 f 0

!

0 ~ i ~ i
111 ~ !
l!J I J

i
f

FIG. 3.2 - Belief Viewer - Administration tab.

C;,;)

C;,;)

1

t:d
Cl)
cri ',
<
Cl)

~
'"'.Î
::;
Cl)

0
"1

'-<
t:d
~
Cl)

c+
~
Ci'

~ llelieNiewer ,,

Tlleal)IBaN

Belllf'

1 (possessionlinscrum)&leammatehasball-•deg_poss O 1.0
1 -possession&inscrum&teammatehasball-•deg_poss 1 1.0
1 -(possession I teammatehasbalO & inscrum -• deg_ oss min2 1.0
1 (possession I teammatehasbalO & clear-• deg_poss_mln3 1.0

1 squeezeball-•possesslon 1.0
1 possesslon&lnscrum-•deg oss_2 1.0
1 ossesslon&clear-•deg_ oss_3 1.0
2 -seeball 0.8

oving 0.8
lking 0.8
oving&walldng-•lnscrum 0.8

os session 0.4
4 -inscum 0.3
5 clear 0.2

'1essaqe . ,

Tllevaluaaf ~->dlg..,.,.._3 1s 1.0

Actions

mcpr: possession & clear-• de oss 3 valua 1.0

~

~ l lelieNiewer · ~

(f.J

Belllf' ~
Ra ...

1 a
2c

Enlr .. ~ 0.9
0.7 ~

3b
4 c-•b

0.6
~ 0.3

~
t'.tj

~
~

~
~
0
~

Actions

mcpr: ._ ______________ ..,J va1ua i~o ___ ~

46 CHAPITRE 3. SYSTEMS

3. 2 Pro blems Encountered

We'll start with architecture problems and continue with coding pro
blems, in parallel of the description given above, in the previous section.

3.2.1 Architecture Problems

Our goal is to run the intelligence system on Aibo to have a completely
independent robot. The first trial was to look for a conversion from java to
C++ for Saten or any other belief revision system. In fact, we conclude that
will be a hard task in such little period of time. SATEN or AIFS have been
time-consuming developments and bugs have been discovered and fixed after
years. For the moment, we reject the possibility to rebuild a similar program
in Open-R which is a very young language with some unreported side effects .
We don't want to have a buggy program to start working with Aibo.

The second trial was to convert the AIFS program from Java to C++
using some Java interpreter in C++ as JNI[JNI] or direct compiler in Apertos
as gcj [GCJ] for Linux or other commercial products. After weeks of research,
we did not find any useful tools of this kind. We hope that these tools could
be developed as for Lego robot1

. The same research have been made deeper
by other students or scholars who didn't succeed.

We conclude with our last possibility: the client-server architecture. This
method was proposed in the beginning of the development but we put it
aside due to the delocalizated viewpoint. Indeed, this way to do is restrictive
because we need always a network connection, a server responding and we
don't want any interaction with other computers or human brain in the first
place. Anyway, this choice provides us other possibilities to work with. We
will discuss about it later.

3.2.2 Architectural Problems

Believer

We had first a lot of trouble with wrapping SATEN in AIFS formalism.
The differences between the two software led us to serious incompatibilities.
We had to study the SATEN code to determine the formalism due to a lack of
J avadoc and then make a wrapper to con vert one system to another. The me
thods for revision engine creation, null theory base manipulation and others

1http ://mindstorms.lego.com/

3.2. PROBLEMS ENCOUNTERED 47

were also a challenge. lt would had been smarter if the specification in both
languages were the same. We think the creation of a good documentation of
the system workflow is essential to continue to work with these systems.

Aibo

The main problems occured here. This information could be useful for
any student who wants to work with our system. Learning C+ + is just a
prerequisite in this process.

First of all, the inter-object communication had some trouble to work
properly. The problem was not fixed but it seems to corne from the memory
problem we present below. We change our direction using one big object, like
the one created in the UTS lab. This version isn't probably the same anymore

The second problem came from TCP connections : the TCP code was
only stack server code, which is a little limited as it cannot access a speci
fic IP address and port. This specific architecture used in the lab has been
understood and debugged with the few added included information. The mis
sing TCP client method were developed with respect to the team code. This
respect was the hardest task in this process.

Third, a big problem was discovered probably with memory allocation.
The repeated crashes were surely due to a dirty memory access without al
location in some part of the team reference code. We tried to contact Sony
to understand the cause.
This problem has consequences for the visibility of our code : only static
memory allocation could be used(no new or dispose could be executed.). In
fact , the proper code is still commented out in the final version, unless the
problem has been fixed.

The last problem was the long process to compile, copy on memory stick,
run the aibo, use a very limited debugger after recopying the memory stick
to pc ... These manipulations took a very long time in each trial. It could be
useful to have an emulator of apertos and a good debugger.
The difficulties of managing motors and movement for the Aibo was not the
point , because we understood and used a part of Suzanne Grell 's code.

48 CHAPITRE 3. SYSTEMS

Chapitre 4

Applications

4.1 Architecture

The Client Server architecture isn't the perfect way to implement our
brain for Aibo, but we still can find good applications for this way of working.
The next subsection of this part will introduce some of these aspects.

4.1.1 Telepathy

In former development for RoboSoc competition, UTS Unleashed team
always used to work with Aibo alone. AU information of the world model,
intelligence, views ... were accessible via TCP connection to Aibo, who was
serving aU this information. This way to work is better for rarely accessed
information like view, which is only useful for development or debugging in
this case : few connections are then needed to Aibo.

In other hand, systems like world model or intelligence and belief could be
used by most of the external actors. We mean that other Aibo mates could use
this information for their own reasoning. In such case, a lot of connections are
likely to exist. This implies that our puppy could be overwhelmed by incoming
requests. Our solution, another server just for belief is a good solution because
Aibo's network use wifi connection which is slower than wire networks. AU
the more so when the connection bandwidth drops during competition due
to the number of dogs present.
The possibility to read in the mind of any puppy without decreasing its
capacity is a strong reason to use a dedicated server.

49

50 CHAPITRE 4. APPLICATIONS

4.1.2 The hive

We assert that the human brain is divided in two parts. The left side is
reasoning and rationality and the right side is artistic. We can also <livide the
Aibo's mind in three parts : one for physical rationality postulates, another
part for private feelings and thought, and we could add a third part for some
mass information described as below. We could implement this using belief
revision.

The private part, which develops the behaviour, emotions, character,
mood can be implemented on any platform.
The development of delocalized server for the Aibo's mind is useful for the
two other parts.

Tautology Server

We could dedicate a special server, containing all well-known tautologies
and mathematically proven physical concepts. It could be used by all other
dogs ie. all belief revision server from the other mates. It can also be im
plemented by simple logic or even by semantic web. But BR is also a good
solution for this, if it works better with certain information.

Aibo Community

For empirical reasoning, we could also use the general formalism known
as belief revision. The difference with the emotional way to believe is that we
could use a global mind, like in our "best II sci-fi movies or like the way some
insects works in community (ant, bee, ...). Each different actors connected
to this special network could improve a global pool of experience, the latter
concluding itself to an empirical logic.

4.1.3 Save and Crash

Another important feature of this dedicated server is the crash safety it
implies. Indeed, saving a behaviour, a belief, a <log state is possible, with
more power than with the little memory of Sony Aibo. If an Aibo puppy
crashes for any reason, its "brain 11 is still working on another site. The <log
body and processor could be replaced by another mate, with the same infor
mation and behaviour.

4.2. SAMPLES

4.2 Samples

51

Three useful examples have been developed for this paper in belief revi
sion. First of all, we managed to make some AI improvements for RoboCup
competition. The second example was psychological behaviour for Aibo. The
last one is a trial to implement a specific behaviour which could be used as
AI improvement in entertainment, more precisely for a video game.
The difficult part lies in using exceptions and mechanisms of belief revision
in practical situations without any academic example.

4.2.1 Case Based Reasoning

As described in (CBR], UTS Unleashed tries to use a case based reaso
ning for their team management and individual Aibo behaviour. Here is a
brief description of this viewpoint.

In a soccer game, we can develop some strategies to cope with particu
lar situations. For example, one obvious basic strategy could be to force an
attack with 2 or more players in a specific instance. The case could be when
all opponents are unavailable (too far to intercept) and when the 2 players
own the ball. There are certainly more complex pre-configured strategies, but
that's not our goal here1

. We need to compare the actual current situation
with the given case database. The problem of this comparison with these
global cases is to define how to compute which situation is the nearest.

To explicitly define a situation, we just take some useful characteristic of
the situation. As characteristics, we have some physical or abstract concepts
that describe one dimension of our situation. lndeed, our complete2 descrip
tion will be represented by a conceptual space3 . In a sense, it approaches the
notion of a topological space. Then we need some kind of measurement to
compute how far current situation is from each reference one, and choose the
nearest.

1 a base case strategy will in fact develop step by step to the better solution with more
and more different situations.

2complete is relative, due to the choice of description complexity. The more accurate
we want to be, the more memory and processing power we need .

3a conceptual space is a multidimensional space, geometrical structure based on
quality dimensions. Quality dimensions correspond to the ways in which
stimuli/features are judged to be similar or different. Judgments of similarity and
difference typically generate an ordering relation of stimulijfeatures , e.g. judgments
of level of control of the ball generate a natural ordering from $weak'Î' to $strong'Î'.

52 CHAPITRE 4. APPLICATIONS

For a concrete implementation of case based reasoning[CBR], the chosen
system is a description of the physical field (player, ball.. .) coupled with some
abstract information such as the score, degree of possession of the ball, or
even for future, a value describing an analysis of the opponents strategy.

To easily introduce belief revision in the RoboCup development, we star
ted to implement possession belief that can be defined regarding the table
below:

Possession
no possession
no possession but in a scrum
possession but in a scrum
possession and clear
possession by the opponent team in the scrum
possession by the opponent team and clear

degree
0
1
2
3

-2
-3

With this information, the dog should adopt a more defensive or aggres
sive tactic, regarding what the other teammate does. We now have to find
some primitive facts that could be taken from sensors.

4.2. SAMPLES 53

Here is our proposition :

Sentences Degree

,(possession V teammatehasball) /\ clear - deg _poss _ - 3 1.0
,(possession V teammatehasball) /\ inscrum - deg _poss _ - 2 1.0
,(possession V inscrum) /\ teammatehasball - deg _poss _ 0 1.0
,possession /\ inscrum /\ teammatehasball - deg _poss _ 1 1.0
possession/\ inscrum - deg_poss_2 1.0
possession /\ clear - deg _poss _ 3 1.0
,seerobot - clear 1.0
squeezeball - possession 1.0
possession/\ inscrum - deg_poss_2 1.0
possession /\ clear - deg _poss _ 3 1.0
,moving /\ walking - inscrum 0.8

,seeball 0.8
moving 0.8
walking 0.8
,possession 0.4
,inscum 0.3
clear 0.2

When primitives for current aibo are :

clear
D,.

has a free run to goal -

inscrum
D,.

is surrounded by near opponent

moving
6.

is actually moving -

possession
D,.

possess the ball

seeball
D,.

can see the ball

squeezeball
D,.

can squeeze the ball

walking
D,.

is trying to walk

We can see something lacking in the definition of this language that
we will discuss further in the needed improvements. For example, we need
some possibilities of a valued argument to be unified. We can see it with the
adjunction of constant predicate as deg _pos _ i to cope this problem. Ano
ther problem we can quote is the "truth" entrenchment1 (value 1.0) seems
to be inefficient. The "always-true" rules are sometimes dismissed when an

1which is impossible in Saten system

54 CHAPITRE 4. APPLICATIONS

inconsistency occurs. Usually, the system should block the new incoming in
formation. This is the reason why we did not add some partition 1 rule for
deg_poss_ i.

We need to underline that the choice of a specific value for degree has
been taken without testing it in real play. These values need to be optimized,
following what kind of strategies we would like. These adjustments need to
be done after a lot of testing. These values also depend on sensor accuracy.
In Aibo we'll compute all the primitive variables in real-time. For example,
the "clear" primitive depends on image quality, shape recognition, color de
tection ... With all these fixed variables, we can deduce a specific value for
entrenchment. "SqueezeBall 11 in this sample is interpreted as an exception to
the default value "possession 11

•

Belief Revision is not very helpful in this example because a simple pro
cedural language would be more efficient.

4.2.2 Psychology

Psychology can provide good examples to show the complexity of a belief
revision server. This improved theory is especially interresting, due to it's si
milarity to the way we think, taking new information to grow experience. It
is nearly the same process in an adjunction of a new fact in the theory base.
Moreover, the given example can underline the importance of default values
in such a theory. Here is a possible starting view of a soccer player's mind.

1 by partition rule we mean a rule that prevents two different deg _ poss _ i to be true
together .

4.2. SAMPLES

Sentences Degree

Happy - Out_ W agTail
Play - Out_StartSoccer
In_BatteryJammed - Siek
Sens_BatteryFull V Sens_Plugged - Energy
,Siek
,In SadElse
Energy /\ Stats _Sporting /\ ,Siek - Fit
WantPlay /\Fit/\ ,WorkToDo - Play
Happy - W antPlay

{
(Stats_Sporting /\ Stats_Winner /\ ,In_SadElse)
VIn_HappyElse - Happy

,Sens_Plugged
,Siek
,In SadElse
Stats W inner
,InworkToDo
Stats _ Sporting
Sens_ BatteryFull
In_HappyElse

Where primitives1 are :

Sens _BatteryFull

Sens_Plugged

In_BatteryJammed

In_HappyElse

In WorkToDo

In SadElse

Stats _ Sporting

Stats Winner

t:,.
's battery is full

t:,.
is plugged on electricity -

t:,.
's battery don't work

t:,.
is happy for another reason -

t:,.
has another job to do -

t:,.
is sad for another reason

t:,.
does sport regularly

t:,.
has a good result ratio -

0.99
0.95
0.9

0.87
0.8
0.8
0.8

0.75
0.6

0.5

0.9
0.8
0.8
0.8
0.5
0.5
0.3
0.1

55

We can then try to change some of these degrees, set to example values.
These values were taken from our own belief of what a dog should think.
These choices are then strictly instinctively set and persona!. When we change
any default or primitives to a larger value than any other rules using it as

1the Sens cornes frorn sensors, the In cornes frorn any other another process and Stats
should corne frorn a statistic rnethod

56 CHAPITRE 4. APPLICATIONS

an antecedent, we can see how the theory base evolves. In the case we want
to have less reason to believe in a goal, this can also be clone in decreasing
the targeted value. Actually, the theorem prover will try to choose the least
important action that could change for this result in all the decision's chain.
Attributing a specific value in the beginning of the chain(on a primitive) is
still a generate-and-test method for good behaviour. This method is good for
optimizing values of entrenchment. Using produced value as statistics is also
a fine choice and could be more effective with practise regarding the needed
experience. This example is represented below by a graphical schema(See
Figure 4.1).

HappyFo.rE. Ise ',, < Wf18Tall

filnner ' ' -- ' ,,) Happy
SadForEtse --+- : .>// ,,

,, ,, WantPlay ,
~ ,, '

' '
' ' ' WorkToDo

/ - /

BatteryJammed --- Skk - - - - - - - --:r-- / ,,/ --.... Fit /

4.2.3 Bot

BatteryFwI -----::::,.,-

~ ,,,,,,,,"",,
Connectors

Negate ---+

Or -: ;::-

And - ;:;:;--

FIG. 4.1 - Psychology sample.

Play

"\.
StartSoccer

The third example we dreamed of was to code a bot , as in the entertain
ment games. Actually, it's a long and hard task and we just make a little part
of this. The scenario we think about is a simplification of the CounterStrike
game. It was in "save the hostage 11 game.
We used a bot1 that didn't chase a SWAT followed by the hostage he was re
scuing. Actually, the bot didn't understand because he did not see the SWAT
when he was looking away, but he just saw hostages running. The rules from

1a bot is an artificial intelligence program with a human-like reasoning. lt 's the best to
way to play a multiplayer when Internet is unavailable.

4.2. SAMPLES 57

this game is for the good guy to save the hostages and the bad guy to prevent
them from bringing them into freezone. The problem we underlined is that a
hostage cannot move until a SWAT asks him to follow. By our simple human
deduction, we know that a SWAT is here if a poor guy is running.
Let's describe an AI bot in belief revision to follow these simple rules :

1. Opponent team needs to rescue some guys.

2. Our team needs to "kill" the opponent.

3. There are x routes available to hostages.

4. The opponent's mate makes a lot of noise while running and a bit less
when walking.

5. Obstacles1 don't stop the noise(particular case).

6. Hostages can't move without a rescue guy.

7. The rescue mate can ask an hostage to follow him or stop.

8. Every guy knows the position of his mate by a radar system.

We tried to implement a logical system for a bad guy bot. It is just
an example in first-order logic. Only Saten prover can presently manipulate
these kind of information. In fact, we canin particular case implement it in
propositional sentences.
We had some trouble using Saten, but in further development this problems
should be corrected. Here is our example2

:

Sentences

\:/x.seeswat(x)---+ swat(x)
\:/x.seefoe(x) ---+ foe(x)
\:/x.seehostage(x) ---+ hostage(x)
\:/x.radar(x) ---+ swat(x)
\:/x .hostage(x) /\ ,Joe(x) /\ ,swat(x)---+ ,move(x)
\:/x.noise(x)---+ hostage(x) V foe(x) V swat(x)
\:/x.foe(x)---+ attack(x)

Degree

0.90
0.90
0.90
0.90
0.90
0.90
0.90

Where primitives for vicinity of position x and current terrorist player are

1 Walls in general, avoiding to look and walk through
2Note that in this sample, x is a given place

58 CHAPITRE 4. APPLICATIONS

D,.
sees that a SWAT is present seeswat

seefoe
D,.

sees that a mate is present

seehostage
D,.

sees that a hostage is present

radar
D,.

radar is blinking there blinking

swat, foe, hostage
D,.

resp. SWAT, foe, hostage is present

noise
D,.

belief1 of a sound coming from there -

This example has not been really implemented due to lack of stability
in Saten for the first-order logic. As we continue to develop a belief revision
service, these improvements should soon correct it. Here, the default values
are not already chosen but are intrinsically present. We can deduce by our
own reasoning that this knowledge base coupled with another script system
for other intelligence skills is a good step to an autonomous intelligent system.

This method has a major feature in the easy and automatic introduc
tion of rules corresponding to the established rules for a game. We describe
all rules in natural language then converting them to a strong belief in our
knowledge base. We can easily determine which facts or rules are more "be
lievable" . For instance, sound is less important than vision. At least , these
are our current thoughts. It is for others to judge which sentences to use in
constructing a theory base. A set of academic samples could be created to
this end.

However, some theories we elaborate don't give the expected result.The
hardest thing to determine is using wether or not we are working with a good
description. A lot of studies are in progress in the area of nonmonotonic rea
soning. We also think that practise is strongly recommended.

1 varying also with volume level

4.3. FUTURE DEVELOPMENT 59

4.3 Future Development

There are many ways to use belief revision. We tried to determine two
of them that could be useful to develop.

Search Engine

All internet search engines use a ranking between all spidered websites.
They link the given keywords to pages with a degree of correspondence. This
feature could be generated by a belief revision server. The interest is not only
in the simple coding and revision of rankings but also in developing a logical
network. This method could lead to more logical choices for sites and can
lead to a decrease in the space needed for link information.

Breakdown Management

We could implement a system that would build up a statistical model of
the symptoms that leads to failure. This is a long-term process which could
lead to an expert system without any human decision.

60 CHAPITRE 4. APPLICATIONS

Chapitre 5

Conclusions

5.1 Needed & Recommended lmprovement

5.1.1 Belief Revision lmprovement

This part concerns the improvement that can be clone by the belief revi
sion system provider.

First-Order Logic lmprovement

It is essential that first-order logic works properly on any belief revision
server. The problem is that only Saten implements it and we had a lot of
trouble with it. AIFS didn't implement it at all.

Remember our example about case based reasoning in the previous chap
ter, we used some constant predicate to define explicitly and separately the
different value of a degree of possession as deg _poss _ l , deg _poss _ 2, .. .

In first-order logic, we could use a more general predicate as degree _ possession(x)
where x is the value of possession. In such case, the system has to instantiate
every possibility of x and check the corresponding one . We call this opera-
tion the unification of a variable x.

61

62 CHAPITRE 5. CONCLUSIONS

Several programs are now able to resolve this simple problem like the
well-known Prolog1 or like the CSP2-provers, Eclipse3 for instance which can
unify x with all possible values. Then we can select the best solution from
this set. The principle seems simple but it is a time consuming task.

Withdrawal vs Contraction

The systems we use have in their public interfaces what the theory base
calls revision. To "erase" something from the <log memory, we have to revise
the sentence to a degree equal to zero. That implies a contraction of the rule
to be executed. If you remember of the former belief revision explanation,
a contraction change not only the sentence's belief but also all the related
part of this theory base. The possibility to remove a belief without changing
any other sentences could useful, in particular when we are learning belief
revision applications. In other words, withdrawal is necessary.

This could be easily clone in AIFS system, by using integrated method.
Saten could be more complicated because even the simple revision to the
zeroth degree is impossible due to the restriction of (0,1) entrenchment.
Here cornes the reason we didn't change it ourself. The documentation is not
sufficient and we don 't know any side effect of modifying such an interna!
method.

5 .1. 2 Linked Features

This part concerns all plug-ins that could be linked with the belief revi
sion system. It can be clone by either side : the belief revision system provider
or intelligence server.

Monotonie Reasoning

We need to use a part of "always-true" sentences in several examples. In
the current system known as AIFS, we can use some entrenchment of 1.0
that should correspond to an indefeasible rule. Sadly, this entrenchment is
equivalent to any other entrenchment and thus, can be defeated. The requi
red property for an always true sentence is to be non deferrable. In theory,
if an inconsistence occurs, we can't withdraw such a sentence. We have to

1 logic programming, several version exists
2Constraint Satisfaction Problems
3http ://www.icparc.ic.ac.uk/ eclipse/

5.1 . NEEDED & RECOMMENDED IMPROVEMENT 63

block the action and return a feedback to the requesting user.

This feature is the major fact of the monotonie logic that we removed
in our development, as we wanted a dynamic theory. After practising with
some examples, our viewpoint is that in a global application we need both
reasonings at the same time. The reason is that we need to fix some global
rules to guide the reasoning where we want it to go.
Here is a partition example to quickly illustrate it 1 :

ai xor aj when i -/= j
Si ---t ai \:fi

In this example, we don't want the system to choose more than one i such
that ai is true2

•

Calculus and Arithmetic Manipulation

As we need to compute information about existing external facts , it could
be useful to implement some basic calculus with the possibility of assigning
other types of variables.

Without any additions into value domains, we could accept comparing
some belief, to each other, that could be useful in generating a more com
prehensible way to characterize a situation. We could integrate some special
reasoning with semi-linked concepts. Here is an example : "IF I prefer to
play football when the sun is shining than playing video games when the
weather is cold, TREN I prefer doing sport than playing inside games". This
reasoning could be some weird but the main psychological tests in Internet
communities3 group are clone with such a method.

The best issue is to permits use of some simple variable type as integer,
real, string ... to be linked by any variable taken from external program. These
variables could then be compared inside this program and used in reasoning.
Here is an example that we could have used in Case Based Reasoning :

(match_ won > match_ lose) ---+ Stats _ winner .

This kind of development should be made at the intelligence server to keep
the maximum amount of computation in an external processor, to avoid
stressing Aibo's CPU.

1 note : a xor b = (a V b) I\ ,(a I\ b)
2as in the example with deg_poss_i
31ike www.match.com, www.msn.com ...

64 CHAPITRE 5. CONCLUSIONS

Sentence Description

For any users working with pre-existing theory database, we recommend
assigning a written description of what each sentence gives to the knowledge
base.

5.1.3 Software lmprovement

This part concerns the improvements need to be done to our server.

System Translation

Sorne remaining problems persist in the conversion of the undocumented
syntax used by both systems. A good way of implementing it is to convert
them into a more abstract syntax. Anyway, we recommend creating a precise
definition of all formalisms for making all conversion.

Knowledge Readability

Sentences may be hard to read and understand in the actual system.
The first thing to do is separate facts and rules. Splitting antecedent and
consequent should be a better idea. To this end, we need to think about
another way to represent any sentences because some sentences have more
than one implication. We then need a dynamic representation as trees or
something else to represent information in each level.

Client 's Server Crash Management

When the server crashes for any reasons, we can suffer some problems
within the request's processing. This problem should be sorted out in next
release of this program.

Watcher Add-on

We could also add some useful watch options as in most GUI program
ming interfaces. The main idea is to define some sentences that we don't need
to revise, but we want to keep an eye on their degrees. This is really more
readable and doesn't use any space in the theory base.

Knowledge Subset

The online version of Saten implements a good method to understand and
play with knowledge base more easily. When you want to revise a theory, you

5.2. REACHED RESULTS 65

can just select some of the axioms of the theory and revise it as it was just
an independent subset of the theory base. This could be added in further
development.

5.2 Reached Results

5.2.1 Belief Revision

Belief revision seems a good idea for implementing some human-like rea
soning that could be involving, changing and very complex. This system is
able to construct step by step a complex behaviour with a certain structure.
We can help ourselves by defining a large knowledge base, using a system ba
sed on arc consistency or other techniques to represent knowledge networks
before implementing them. We've seen such applications in this report ?? .
There are still improvements to be done in selecting the best adjustment for
a given situation

With our developments and practise, we conclude that we need both
monotonie and nonmonotonic reasoning to create a knowledge base and to
keep control over it. Several rules need to be set once for all. The way we
are working in our mind is still a nonmonotonic reasoning but we are also
able to make some mistakes in interpretation. This is the greatest difference
between our reasoning and the nonmonotonic reasoning. Any rules that we
can accept in our mind that are not sure and may be false for reasons other
than just logic, for example interpretation. A computer will not make the
same mistake as we define rules totally explicitly, with mathematical forma
lism. Such description are not fuzzy. Anyway, we are agreed with the need
of rules we can revise. For instance, we can set some physical rules, "earth is
fiat" or "weight is 9.81 * mass by default" , and then revise it for all facts or
for a subset of the targeted domain("earth is a sphere" and "9.81 is only for
earth").

5.2.2 Server

The use of an intelligence server seems to be a good idea. It is a good so
lution to all problems with such volatile informatics systems. Several people
tried to break the problems we encountered and didn't succeed. Then this
solution is clearly one of the best solution until we had enough tools provided
by Sony to play with.
The server is still in improvement as we continue its development and it will

66 CHAPITRE 5. CONCLUSIONS

continue unless the project is not used. There are still some problems but
the main features works perfectly.

5.3 New Possibilities

The difficulty is in taking these theories into applications worths the case.
We really believe in the future of it, even if we just approach the problem
in the surface. The different possibilities to model the human brain are very
exciting and promising.

Bibliographie

[DPO94] D. Poole, Default Logic - in Handbook of logic in artificial intel
ligence and logic programming (vol. 3) : nonmonotonic reasoning and
uncertain reasoning,Oxford University Press 1994

[HAY73] P. Hayes , The Frame Problem and Related Problems in AI. Artifi
cial and Human Thinking, A. Elithorn and D. Jones (eds.), Jossey-Bass,
1973

[LIF94] V. Lifschitz, Circumsciption - in Handbook of logic in artificial in
telligence and logic programming (vol. 3) : nonmonotonic reasoning and
uncertain reasoning,Oxford University Press 1994

[MAK94] D. Makinson, General Patterns in Nonmonotonic Reasoning - in
Handbook of logic in artificial intelligence and logic programming (vol.
3) : nonmonotonic reasoning and uncertain reasoning,Oxford University
Press 1994

[WEl76] J. Weizenbaum, Computer power and human reason : from judg
ment to calculation., Freeman, 1976

[AGM85] Alchourron, Gardenfors and Makinson, On the Logic of Theory
Change : Partial Meet Contraction Functions and Their Associated Re
vision Functions, Journal of Symbolic Logic 50(510- 530), 1985

[JMJ-C] TIA, J-M Jacquet , 2002-2003

[PYS] NonMonotonic Reasoning, P-Y Schobbens, 2003-2004

[SADJ] Williams and Sims, SATEN, An object-oriented web-based revision
and extraction engine, The University of Newcastle(Australia), 2000

[AIFS] Lau, ter Hofstede and Bruza,A Study of Belief Revision
in the Context of Adaptive Information Filtering,QUT univer
sity(Australia),1999

[CBR] [CBR] Karol, Nebel, Stanton, and WilliamsCase Based Game Play
in the RoboCup Four-Legged League Part I The Theoretical Model,
UTS (A ustralia) ,2004

67

68 BIBLIOGRAPHIE

[UUR02] Chalup, Creek, Freeston, Lovell, Marshall, Middleton, Murch,
Quinlan, Shanks, Stanton, and Williams, When NUbots Attack ! The 2002
NUbots Team Report, The University of Newcastle(Australia) , 2003

[UUR03] Agnew, Brownlow, Dissanayake, Hartanto, Heinitz , Karol , St an
ton, Trieu, Williams and Zeman, Robot World Cup Soccer : The Power
of UTS Unleashed !, UTS(Australia) , 2004

[WIL95] M-A Williams ,Applications of Belief Revision, The University of
Newcastle(Australia) , 1995

[DirectIA] http ://www.directia.com/

[Flux] http :/ / www.fluxagent.org/

[GCJ] http ://gcc.gnu.org/java/

[JNI] http :/ /java.sun.com/j2se/ 1.3/ docs/ guide/jni/

[MASA] http ://www.masagroup.net/

[MAT-W] http ://mathworld.wolfram.com/

[MYWWW] http : //www.info.fundp .ac. be/ yvanders/ memoire/ Samus _ Believer /

[OPENR] http ://www.openr.org/

[SATEN] http ://magic.it.uts.edu.au/ systems/ saten.html

[SemWeb] http ://www.semanticweb.org/

[TUR36] http ://www.turing.org.uk/

[W3CSW] http ://www.w3.org/ 2001/ sw/

