
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

FDNet: enhancing human interface with dynamic capabilities

Lambot, Nicolas

Award date:
2004

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. May. 2021

https://researchportal.unamur.be/en/studentthesis/fdnet-enhancing-human-interface-with-dynamic-capabilities(d9f8f4ce-3c3d-497f-aa4e-a833777c218f).html

Facultés universitaires Notre-Dame de la Paix- Namur
Institut d'Informatique

Année académique 2003 - 2004

FDNet: Enhancing Human
Interface with Dynamic

Capabilities

Nicolas LAMBOT

Mémoire présenté en vue de l'obtention du grade de Maître en Informatique

Facultés universitaires Notre-Dame de la Paix - Namur
Institut d'Informatique

Année académique 2003 - 2004

FDNet: Enhancing Human Interface
with Dynamic Capabilities

Nicolas LAMBOT

Mémoire présenté en vue de l'obtention du grade de Maître en Informatique

Résumé

L' I.R.S .I. « International Rescue System Institute » est une organisation
Japonaise travaillant dans le domaine des robots, et plus particulièrement sur des
robots sauveteurs. Le but de ces robots sauveteurs est d'aider les sauveteurs à
retrouver des victimes dans des environnements dangereux résultants d'un
désastre tel qu' un tremblement de terre.

Un des projets créés par l'I.R.S.I. est FDNet, diminutif de « Flat
Distributed NETwork architecture». Il fournit une architecture commune
utilisable par toutes sortes de robots, leur permettant de coopérer les uns avec les
autres.

La première partie de cette thèse expliquera en détail le projet FDNet
tandis que les parties suivantes présenteront mes contributions à ce projet ;
lesquelles étant l'ajout de capacités dynamiques à l' «Human Interface», une
application facilitant la manipulation de FDNet par l' homme.

Abstract

The International Rescue System Institute [I.R.S.I.] is a Japanese
organisation that works in the field of robots, and more particularly on rescue
robots. The purpose of those rescue robots is to help rescuers finding victims in
unsafe environments resulting of a disaster such as an earthquake.

One of the projects created by the I.R.S.I. is FDNet, acronym for "Flat
Distributed NETwork architecture". It provides a common architecture usable by
any kind of robot, allowing them to cooperate with each other.

The first part of this thesis will explain the FDNet project in details while
the next parts will present my contributions to this project; which were to add
Dynamic Capabilities to the Human Interface, an application faci litating the
manipulation ofFDNet by humans.

Acknowled2ements

First of all, I would like to thank Mr. Schobbens for finding the place of
the thesis and Mr. Tadokoro for its subject. Mrs. Tadokoro was also of an
incredible help for ail the administrative forrnalities. Without those three persons
doing this thesis wouldn't have been possible.

Then I would like to thank Mr. Tokuda and his "RoQ" team for their warm
welcome and their help. It has been a pleasure to work with them on FDNet
during those four months.

To all the students I met in the laboratory, I would like to thank them for
their support and for the great moments we had together.

A great thank to all the secretaries of the I.R.S.I. whom helped me to
overcome any problem during my stay in Japan. More particularly, I would like
to thank Tomoko, who has been a guide, a translator and moreover a very good
friend to me.

Mr Youssef Achbany and Mr. Jérôme Jadoulle, two other students of my
university and very good friends of mine, were also with me. I would like to
thank them for their support, their help, and for ail the amazing moments we have
shared together. I could not have thought of better persons to do this adventure
with me.

Lastly I would like to thank my family and all my friends for supporting
me during all those years.

Table of Contents

Résumé 5

Abstract ... 7

Acknowledgements .. 9

Table of Contents 11

Table of Figures .. 13

Glossary 15

FDNet .. 17

1 Introduction 19
1. 1 Flexibility 19
1.2 Extensibility 19
1.3 Generic architecture 20

2 FDNet in more details .. 20
2. 1 Flat Distri buted Network archi tecture 20
2.2 The Human Im itation Model 23

3 Current FDNet implementation .. 24
3.1 RoQ 24
3.2 FDNet environm ent 25
3.3 FDNet's API 25

Retro Engineering 27

1 Motivations 29

2 Analysis method ... 30

3 Conclusion 31

Human Interface's Dynamic Capabilities 33

1 Introduction 35

2 Network State Viewer .. 37
2. 1 lntroduction 37
2.2 C# Version of the Viewer. 37

2.2.l Limitations of the C# Version 39
2.3 Java Version of th e Viewer 40

2.3 . 1 Standalone Graphical Java Component 41
2.3.1. l Stocking Data values 41
2.3 .1.2 Management of Data values 41

Limiting the amount ofData values in memory41
Function for managing the data values42

2.3 .1.3 Displaying Data values 43
Allowing to change the scale oftbe X axis 43
Allowing to change the Graph type 44
Allowing to customize Colors 45
Allowing to customize Text 46
Allowing to follow the Graph evolution47
Automatically adjusting the size of the graph48
Allowing to zoom in the Graph 50

2.3.2 Connection with the Logger 52
2.3.2.1 The Logger 52

2.3.2.2 The Viewer 53
Startin g th e conn ection 54
Pausing the connection 54
Stopping the connection 54
Example 55

2.3.3 Lim itations of the Java Version 56
2.3 .3.1 Limitation of the Scrollbar 56
2.3.3.2 Problems with Lines representation 57
2.3.3.3 Limitation of the connection with the Logger 59

2.3.4 Integration into the Hum an Interface 60

3 Connection between Human Interface and FDNet's core 62
3.1 Introduction 62
3.2 The connection 62

3.2.1 Send Network Modifications connection 62
3.2.2 Receive Network Modifications connection 63

3.3 Translating FDNetwork modifications .. 63
3.3.1 The Module extension 64

3.3.1.1 Example 65
3.3 .2 Merging Nodes .. 66
3.3.3 Replacing Node 66
3.3.4 Modifying Node 67

3.4 Hum an lnterface's behaviour 68
3.4.1 Starting the connection 68
3.4.2 Connection activated 68

3.5 Limitations of the connection 69

Conclusion .. 71

Bibliography .. 75

Annexes ... 77

Annex 1: Retro engineering on FDNet .. 79

Annex 2: Retro engineering documents 85

Table of Figures

Figure 1: Basic representation of an FDN etwork 21
Figure 2: Network of the motion generation ... 22
Figure 3: Imitation model between the robot and the human 23
Figure 4: Robotic Platform for Rescue: RoQ 24
Figure 5: FDNet's API defined within several layers .. 25
Figure 6: Global view of the Human Interface .. 36
Figure 7: Old C# version of the Viewer 38
Figure 8: New C# version of the Viewer 39
Figure 9: Java version of the Viewer - explanation40
Figure 10: Limiting the amount of data values in memory - example41
Figure 11: Function for managing the data values - example 142
Figure 12: Function for managing the data values - example 242
Figure 13: Allowing to change the scale of the X axis - example 143
Figure 14: Allowing to change the scale of the X axis - example 244
Figure 15: Allowing to change the graph type - example45
Figure 16: Allowing to customize colors - example46
Figure 17: Allowing to customize text - example47
Figure 18: Allowing to follow the graph evolution - example48
Figure 19: Automatically adjusting the size of the graph- example 1..49
Figure 20: Automatically adjusting the size of the graph- example 2 50
Figure 21: Allowing to zoom in the graph with the mouse wheel- example 51
Figure 22: Allowing to zoom in the graph with a pressed key and a mouse click-
figure 1 51
Figure 23: Allowing to zoom in the graph with a pressed key and a mouse click -
figure 2 52
Figure 24: General architecture of the Logger .. 53
Figure 25: Starting the connection between the viewer and the logger - example 54
Figure 26: Connection between the Viewer and the Logger - example 55
Figure 27: Limitation of the Scrollbar - example 56
Figure 28: Problems with Lines representation - example 58
Figure 29: Integration into the Human Interface - Figure 1 60
Figure 30: Integration into the Human Interface -Figure 2 61
Figure 31: Connection between Human Interface and FDNet's core 62
Figure 32: Send Network Modifications - command lines 63
Figure 33: The module extension - Figure 1 65
Figure 34: The module extension - Figure 2 65
Figure 35: Fusion of Data Nodes 66
Figure 36: Replacement of a Data Node 67

Glossary

Connection: An interaction happening between a Data and a Relation.
Connections can either be Readers or Writers.

Data: Any piece of information that can be used or created by Relations.

FDNetwork: A construction ofNetwork Entities with the FDNet architecture.

FDNet's core: The host on which the FDNetwork will be working.

Human Interface: This is an application allowing users to easily edit an
FDNetwork before and while it is working.

Logger: This is an application allowing to keep a trace of every event generated
by a working FDNetwork.

Network Entity: A Network Entity is either a Node or a Connection.

Node: Either a Data or a Relation.

Reader: A link between a Data and a Relation allowing the Relation to read the
value of the Datait is connected to.

Relation: A processing agent, whose aim is to take some Data in entry and to
compute it in some way to create new Data.

Swing: This is a graphies library for Java. It supersedes and extends the Java
A WT library.

Viewer: Also called ''Network State Viewer", this application allows to
graphically display the values of a Data node in real time.

Writer: A link between a Data and a Relation allowing the Relation to write the
value of the Datait is connected to.

FDNet1

1 Most of this chapter cornes from the paper "Flat-distributed network architecture (FDNet) for
rescue robots", [Yosihisa Koji 2002]

Page 17 of93

FDNet

1 Introduction

The International Rescue System Institute [I.RS.I.] is a Japanese
organisation that works in the field of robots, and more particularly on rescue
robots. The purpose of those rescue robots is to help rescuers finding victims in
unsafe environments resulting of a disaster such as an earthquake. The world
where the rescue robot operates is very complicated. Regarding this environment,
the topography is unique in every place, every time. Unexpected situations might
always arise while operating among the debris. Even an expected situation is
complicated enough to be con:fusing. The fust issue is how the rescue robot can
cope with that complexity in order to act in such environment.

We cannot prepare the robot to fit each kind of environment, one after the
other. Because ofvarious trade-offs, the behaviour of an all-around robot can' t be
established. Therefore we need the rescue robot to have some sort of intelligence,
a software architecture that combines the various fundamental technologies and
new skills dynamically leamt in that specific place. That architecture is FDNet, a
Flat Distributed Network architecture.

FDNet is especially based on ORiN, ORCA and Open-R, three previous
architectures. These architectures have no structure to perform dynamic self
organization or dynamic reconfiguration, making them unusable for the rescue
robots, which is the reason why FDnet took only the interesting characteristics
from these architectures in order to create its specific and common architecture.

Like those architectures, FDNet is a flexible, extensible and generic
architecture.

1. 1 Flexibility

Given the complexity and variation of the environment, a rescue robot
can't be entirely autonomous. Under these conditions, we must command it and
watch over it. But, it isn' t realistic to think of a human always giving detailed
movement orders to the robot. It is necessary for the robot to feature half
autonomy. It means that the robot must be able to perform complex operations
given a simple order, but it have to wait for a new order when it falls into
conditions where humanjudgment becomes necessary.

In this purpose, we need a common software architecture that shows
flexibility regarding both software and hardware, our goal being to describe an
intelligent system with that architecture.

1. 2 Extensibility

FDNet architecture is divided into several layers, allowing to limit the
impact of future changes or improvements to the layer concerned. Thus this
extensibility allows by example to easily manage new robot sensors in the system.

Page 19 of93

FDNet

1. 3 Generic architecture

One of the main goals of FDNet is to provide a common protocol and a
common architecture usable by all rescue robots. By doing this, it becomes
possible for the rescue robots to exchange information with each other.

As an example a group of robots of different types like "crawler robots",
"legged robots" and "flying robots" could be formed. Using the FDNet
architecture, those robots may exchange information with each other. The flying
robot could by example provide a global view of the environment to the other
robots on the ground and it could ask them to search specific areas while the
legged robots could ask the crawler robots to search specific areas too small for
them to enter.

2 FDNet in more details

FDNet is a Flat Distributed Network architecture based on the human
imitation model. Its aim is to allow multiple rescue robots to internet with each
other in order to help rescuers finding victims in case of disasters.

2. 1 Flat Distributed Network architecture

FDNet uses a neural-like network to represent the intelligence of the
robots.

The FDNetworks are composed of two components: The Nodes and the
Connections. The Nodes are either raw information or processing objects, and
the Connections are links between the Nodes, allowing the processing objects to
access the information.

There are two kinds ofNodes:
1. Data Node: This kind ofNode represents the raw information. This

information can either corne from the Network itself or from the
environment of the robot, via its sensors. New Data can also be processed
by the Relation Nodes.
Ail information in the network is considered as a feature. In other words,
any Data Node value is decided in the same way without any high-level or
low-Jevel distinction.

2. Relation Node: This kind ofNode has the same meaning in FDNet than
the neurons in neuronal networks. It materializes the relation among Data
Nodes. By using some input Data Node, the Relation can compute new
Data Node values. In this case, this Relation works with a "servant", an
agent which has a specific function. A relation itself can only compute the
values of directly linked Data Nodes. But through servants, it can access
the whole structure of the network. Then the relation can perform
dynarnic self-organisation or dynamic reconfiguration of the network.

Page 20 of93

FDNet

There are two kinds of Connection between the Data and Relation Nodes:
1. Reader: This kind of Connection linking a Data and a Relation Node

allows the Relation Node to use the Data Node values.
2. Writer: This kind ofConnection linking a Data and a Relation Node

allows the Relation Node to compute new values for the Data Node.

You will find below an example of a basic representation of an
FDNetwork.

a$J~--5

n_sors -----=- ·---"--,--·.. _ ___ FD_ Netw~ ork

• Data Nodes

Relation Nodes
· .. encoder

Reader
Co1mections

mot r
··c[)

Writer
Connections

. f i
___ . . . -· · · ·· · ~ joint

. . ·
0

Figure 1: Basic reJlresentation of an FDNetwork

Page 21 of93

FDNet

Below is another example showing a network allowing to manage the
motion of a robot.

11 ' li Cl.'. .. '· I \\ 'l

ke

CJ dl :iL.·

c f '.l ne \ I p l . ·

0 DATA(qulllnli ty of lh..: f ·:itun:,
or ~ i o f oscl

Rclation(ncuron , proccssing unit ,
or sub-nctwork)

Figure 2: Network of the motion generation

1 ln -. , ·al

In this network, we have Data nodes coming from sensors ("Physical
information", "A present posture") which gives information about the actual state
of the robot. We also have Data nodes providing the intentions of the robot ("I
want to keep a balance", "I want to walk"). All those information are used in
different Relation no des (' 'k:eep a balance", ''walk") in order to compute the "next
posture" the robot should take in each case. Together with the ''result of the
judgment" provided by the Relation node "decision", the network will finally be
able to compute its next posture.

There is also an important thing to notice in this example. The Data nodes
"A present posture" and ''the goal value of a next posture" are in fact the same
Data node. This means that a new value of the Data node "A present posture" can
be computed by one of its child Relation nodes. This is what a "Flat" network
architecture means, as there are no restrictions on what Data node can be
connected to what Relation node.

As for the "Distributed" network architecture, it has already been
explained in "1.3 Generic architecture", as the FDNet architecture allows multiple
robots to work with each other in a common FDNetwork.

Page 22 of93

FDNet

2. 2 The Human Imitation Mode/

Before specifying the FDNet architecture, the researchers have adopted a
recognition model. In FDNet projects, the outline of human imitation is adopted
for the rescue robot to solve most of the problems. There have been some
researches in which the researchers transposed "features" from a human being to a
robot and studied the application to the robot.

As an example, you can see in the figure below an imitation model for the
groping motion.

Robo

Hum n In ntion

oti n or RoQ

Figure 3: Imitation mode! beh,·een the robot and the human

The human imitation model is used in FDNet in order to capture high-level
human tasks and, with the self-organisation of the network, to adapt them for the
robot. In this example, the tactile sensing of the human will be realised by the
robot by using a combination of movement information and sensor information.
The robot will then be able to move its leg, tap the ground by using the leg
movements and sensors to see if the new position is safe, and then decide to take
the new position or not.

Page 23 of93

(Ir

FDNet

3 Current FDNet
implementation

3.1 RoQ

RoQ (Robotic Platform for Rescue) is a rescue robot still in development
which is used to construct and test FDNet.

Figure 4: Robotic Platform for Rescue : RoQ

Its base hardware is the following:

• Quadruped robot, TITAN-VIII

• PC Pentium-III 800MHz, 512MB RAM

• Device Network

o Angle of inclination meter, In:frared rays sensor

o Ultrasonic sensor, CCD camera

o tactile sensor at the sole

• Wheel mechanism

• Ankle mechanism

Page 24 of93

FDNet

3.2 FDNet environment

• [Operating System] kemel Linux 2.4.4

• [Real time extensions] RTLinux 3.1

• [libc] GNU libc 2.2.5

• [java] Java2 SE 1.4.1_01

• [DBMS] postgreSQL-7.1.3

• [CORBA] OpenORB-1.2.0

3. 3 FDNet's API

FDNet' s API is defined in the following main layers:
• Network layer (CORBA): Allowing the Connections and the exchange of

information.
• Program language layer (Java, C++): Allowing the implementation of

Relation and Data nodes.

··-····-·-·-· · ... '1

FDNet
·~ :1 ·~ • •1 ►

CO:RBAi
Java VM

i Java VM
JN! native method ;

1 ~ ~

'
1 1 L·nux '
RT thread !

! Other OS

RTLinux '
'
'
'

PC i
'

11 ,1 1 r 11 ' ! D ,vice Device Deviœ ! Distributed Computer

RoQ i
-·-····-·-·--- ------- -- ------· ··-··-···· ··----- -------.J

Figure 5: FDNet's API defined within seYeral la~·ers

The choice of Java/CORBA was for Java's portability feature and the
choice of RTLinux was to control the parts of the robot that are time critical (i.e. a
defined response time is expected). By example, the control of each joint of the
RoQ robot is mounted as a real-time task of the RTLinux.

Page 25 of93

Retro
Engineering 1

1 This part« Retro Engineering» cornes from the thesis of Mr Achbany & Mr Jadoulle (Achbany
& Jadoulle 2004], as the three of us did this work together.

Page 27 of93

Retro Engineering

1 Motivations

The work we had to do had strong relations with the work already done by
FDNet programmers. In fact, we had to create programs that would be used
between Robot' s intelligence (FDNet) and the users, allowing them to unleash the
full power ofthis network architecture without having to deal with its complexity.

In an environment lik:e this one, it is clear that we had to understand
FDNet's logic, structure and architecture completely before even thinking about
our own work.

A common way to achieve this work (understanding how FDNet works)
would be to have a general explanation about what the application does, to see it
run (if possible), to read its specification and its source code and to discuss all
along with the team, to understand their way of thinking and their point of view
about the way they want the application to be done.

But we had to face here with a major problem: the language spoken and
chosen to write the documentation, the Japanese language.

First, the programmers couldn't speak English enough to allow us to
discuss with them about the project. They could read English but no spoken
interaction was really possible. In such an environment, reading the most possible
documentation, specification and notes and trying to understand the most part by
ourselves is far more preferable.

But we had to face the problem that no documentation was available for
us. In fact, there was very little general explanation about the project and no
specification at all. The only thing that seemed to be present in this field was
code documentation ... which was written in Japanese. As the programmers had
no tirne to translate the comments and/or to explain us how the whole application
worked, we had to read the source code, without any comment at all, and to
understand it the most possible.

Doing this kind of work is a very difficult task. To maximize our
comprehension capacity, we decided of a structure allowing us to write down
every thing we understood and, by advancing in our understanding, to recreate our
own documentation.

Page 29 of93

Retro Engineering

2 Analysis rnethod

This is the structure we decided to use for documenting all the source code
we read. Note that the code was also a work in progress and was still being
heavily modified when we started this "Retro-Engineering" process.

Extends
lmplements

Aim ofthe class

Comments

The name of the class described. This name is Case Sensitive
If the class is abstract, its name will be written in b]ue.
If the class is an interface, its name will be written in oranae.
The name of the class that this class extends; null if no extension.
The name(s) of the interface(s) this class implements; null if no
implementation is made
The main aim of the class. This is a general explanation of what the
class has been created for. This explanation must help any
programmer to understand the structure of the code inside the class
better and to give him an idea of the relations that this class has with
the other ones (if any).
Any specific comment that doesn ' t fall In the "aim" group here
above.
Questions are \\Titten here in red color.

Name of the property. Case sensitive
The reason why this property has been created.
Any other comment concerning this property
Questions are ,uitten herc 111 red color.

Name of the method. Case sensitive
The reason why this method has been created for. The explanation
must be clear and general. lt doesn' t explain the inside of the
method, only what it does.
Any comment, technical or not, fall here.
Questions are ,uitten here in rcd color.

The aim was to make the documentation in several loops, each tirne
answering the questions written in red and writing new questions down.

At the same time as this documentation' s creation, we created schemes of
the dynamic interactions between the classes, schemes of the database tables,
general schemes of way FDNet worked logically and so on. These schemes
allowed us to have a better overview about the work done by FDNet.

We decided to limit our work to FDNet' s core packages. Theses packages
contained all the base information conceming network entities, the relations
between them and so on. This limitation was set because we had little time for us
to produce quite an amount of work too.

Page 30 of93

Retro Engineering

3 Conclusion

T o use a retro engineering process in a case like the one we faced was
really a difficult job. It took us more than one month (with three people) to read
the core packages and to have a first dra:ft of FDNet' s implementation. To
produce the schemes required us to read the code more than one time and we must
admit that we still have some questions which haven't found any answer.

Nevertheless, the retro engineering system we decided to use (for which an
example is given in annexes 1 and 2) appeared to be a good choice. It allowed us
to understand the most ofFDNet, which is already interesting, but, more than this,
it constituted our documentation for the rest of the training session. Without this
retro engineering system, it is clear that achieving the work we were asked to do
at the very beginning of the training session wouldn' t have been possible.

Page 31 of93

Human
lnterface's
Dynamic

Capabilities

Page 33 of93

Human Interface's Dynamic Capabilities

1 Introduction

The aim of the Human Interface is to give a simple way for FDNet users to
manage the robot(s) through an easy edition of an FDNetwork before and while
the robot(s) are functioning.

My work was to provide Dynamic Capabilities to the Human Interface.
First and foremost it was necessary to be able to see graphically the evolution of
Data Node values in real tirne when the FDNetwork was working. For this I
implemented the Network State Viewer (further called Viewer) which will be
explained in ''2 Network State Viewer".

Then I had to provide a way to allow to start an FDNetwork loaded in the
Human Interface and to be able to interact with the FDNetwork while it was
working, and for this I had to implement the connection between the Human
Interface and FDNet's core which will be explained in "3 Connection between
Human Interface and FDNet's core".

The Human Interface was mainly programmed by Mr. Jadoulle and Mr.
Achbany, soif you want to learn more aboutit apart from the Dynamic parts that
will be explained in this chapter, I invite you to read their thesis1

•

1 See [Achbany & Jadoulle 2004]

Page 35 of93

Human Interface's Dynamic Capabilities

In the figure below you can see a global view of the Human Interface.

- □ X

Fie Network Help

- - - - - - - - - - - - - - - ~; - - - - - - - - - 7 ,. (Actions Nodes
32 .1 1:
15.7 :
-0 .6 -M,,/~rlr,;::Hla,~,t.H;-.t-ii ..

1

1

This is a Data
Node.

Relat ion1

This is a Relation
Node.

___ -17.0

Â -33.4

42 62

◄

This 1s a
representing the
of a Data Node.

Those lines are either Reader or Writer
connections between the Relation and
Data Nodes.

The red part is the Graphie
based display of the network

Viewer
values

r
(
(
1:
1:
1:
(
1:
1:
(
f
1:
1:
1:
1:
[

1:
(
i:
i:
r
i:
1:

The blue part provides
different tools to edit
the network

File C:\Documents and Settings\nlambot\Mes documents\ExampleNetwork.fdn selected ...
Parsin1:1 of File C:\Documents and Settin1:1s\nlambot\Mes documents\ExampleNetwork.fdn started .. .

Example Network Network information :
Number of Modules : 1

The green part is the status window allowing
to inform the user on various things.

Figure 6: Global ,iew of the Human Interface

Page 36 of93

Human Interface's Dynamic Capabilities

2 Network State Viewer

2. 1 Introduction

The FDNet Network is composed of nodes which can be Datas or
Relations and connections between those nodes. The aim of the Network State
Viewer is to display graphically the values of a specific Data node over time and
it has to do this in real tune, thus displaying the data values as soon as they are
generated.

At the beginning, the Network State Viewer was a separate application that
has been prograrnmed in C# by a former French research student in Kobe
Laboratory. That application was not :finished and not fully functional.

Therefore the first thing I had to do was to improve that application with
some functionalities that were required for a presentation ofFDNet.

In order to do these improvements, I had to get familiar with the C#
prograrnming language and with the source code of that application.

After that, as the Network State Viewer had to be used in the Human
Interface designed by Mr. Achbany & Mr. Jadoulle in Java, we commonly
decided to rnake it again from scratch in Java and in a way that it could be easily
imported into the Human Interface.

2. 2 C# Version of the Viewer

I've been asked to Îinprove a first version of the Network State Viewer,
prograrnmed in C#, that Mr Alain Pujol has made; And to get it working for a
presentation 3 weeks later.

So I had to read some documentation about C#, to read ail the source code
ofMr Pujol, and then to see how I could implement the modifications required for
the presentation:

• Being able to see arrows for readers/writers connections
• Allowing to scroll the Graph
• Generating datas (data values over time) to be used in the presentation

Page 37 of 93

Human Interface's Dynamic Capabilities

As I said before, this application was first programmed by a former
research student in Kobe Laboratory. The figure below shows a screenshot of the
original application displaying a really simple FDNet network.

rie ',1isuolz11tion o..t111l<>se

Il,; dd d)0111

07

g1 .me,rn

•••••

Those lines
the are

connections

This is a Data node
with the graphical
representation of
its values •~~-----m ___ __,

o,

~ pro : leg4.n dn

Figure 7: Old C# version of the Viewer

1. lengtl

• • ror I mf o

This is a Relation node
(also called Process)

As you can see, this application was more than just a Network State
Viewer, as it represented a network with its nodes (process or relation and data)
and connections between them. But this version was not sufficient as the graph
for the data values was limited (we could only see the first 30 seconds of value)
and the connections were not enough detailed (it wasn't possible to know if it was
a reader or writer connection).

To review those problems I was asked to improve this application so that it
could be used for a presentation of FDNet.

Page 38 of93

Human Interface's Dynamic Capabilities

In the picture below, you can see a screen capture of the application after
that the changes have been made. Notice the arrows on the connections, allowing
to know whether the connection is a reader or a writer. And the scrollbar below
the graph of the data values, allowing the user to scroll when there are more
values than we can display.

• Dîoii/ffB/XMŒl ~ @J -=-=----=-----------------------------===ee..1
File V-isualization Dataflase

dat . Jom O

' 0,9
0.8
0,1
Of,
05
0,4
D.J
o..:
a.

◄ 1

proc: lcg1 .mean

proc: f4 flag

data: roq

1 ► 1

1□ ,Il :D ICI

◄ 1 1 ► j

proc. leg4.m ,

Figure 8: New C# Yersion of the Viewer

2.2.1 Limitations of the C# Version

proc: le ,2.medn

oc.: le 1.length

moan

This version of the Network State viewer was very limited. It could only
display values between O and 1 and it was not possible to make it work in a real
situation by getting data values in real time from FDNet.

For those reasons, and also because the Human Interface in which the
Network State Viewer would be later included was being programmed in Java, I
had to create a completely new version of the Network State Viewer in Java. This
version would only focus on the display of data values, as the other functionalities
would be provided by the Human Interface.

Page 39 of93

Human Interface's Dynamic Capabilities

2.3 Java Version of the Viewer

As the Network State Viewer would be later included in the Human
Interface that Mr Jadoulle has created, it had to be easy to import it into other
applications. This is the reason why I implemented it as a Standalone Graphical
Java Component.

The viewer had also to be able to retrieve data values in real time;
And for this, Mr Achbany implemented a server on his Logger to allow the
Network State Viewer to connect to it; and to retrieve the Data values. This part
will be explained later in the point "2.3.2 Connection with the Logger".

If you want more information on the Human Interface or the Logger, I
invite you to read Mr. Achbany & Mr. Jadoulle's thesis 1

•

In order to avoid misunderstandings, you can see below a screen capture of
the viewer explaining its different parts.

The Y axis The centre X axis
representing the representing the time. It
data values. is situated at O on the Y

axis. In some cases it
l't~.H may not be displayed.
140.8
01.7

.~
122.7
13.6

1

14.5 ,1 .. .
~ 4.4 ·~ 1 , 30 156 182 208 234 260 286

13.5
" \ 22.6

\ 31.6
40.7 ·- _, \

1 26 52 78 10°lll 130 156 182 208 234 260 286 -

r " \ I ►
\

\
The Scrollbar allowing the

The grapb}cal The down X axis user to navigate through the
data values when there is too representation of the representing the time. It

much of them for one screen. data values. is always displayed.

Figure 9: Jam wrsion of the Viewer - ex1llanation

1 [Achbany & Jadoulle 2004]

Page 40 of93

~---------------------- - ---- -

Human Interface's Dynamic Capabilities

2.3.1 Standalone Graphical Java Component
The aim of this Graphical Java Component is to Stock, manage and

display data values. It has been developed as a single Java package providing a
Swing graphical component class that can be used in any Java application using
the Java Development Kit version 1.2 and older.

2.3.1.1 Stocking Data values

For each Data node of an FDNet Network, we have values that can be any
figures and that could change at maximum once every microsecond. The viewer
also needs to display the values in real time and it was essential to keep all the
values directly in memory, thus avoiding possible lags of using slower non
volatile memory such as hard drive. Consequently the memory consumption for
displaying and memorizing the values of a specific Data may become really high.

Therefore, I had to limit the amount of values kept in memory.

2.3.1.2 Management of Data values

LIMITING THE AMOUNT OF DATA VALUES IN MEMORY

In order to limit the amount of memory used by the data values, I
implemented a limitation of the number of data values kept in memory.
This was done by using a maximum amount of data values that, once
reached, led to the suppression of old data values, in order to reach an
average amount of data values.

0: 100
1: 60
2: 40
3: 20
4: 40
5: 80
6: 100
7: 20
8: 80

9: 60

Table l

4: 40
5: 80
6: 100
7: 20
8: 80
9: 60

Table 2

In this example, we have:
Maximum amount of data values = 10
Average amount of data values = 6

When we get the 10th value in table 1, we suppress the old
values in order to keep only the 6 newest ones, as shown in
table 2.

Figure 10: Limiting the amount of data values in memory - example

Another way to reach this aim could be to simply have a maximum
amount of data values that, once reached, led to the suppression of one old
data value for each new one. But as the viewer used already a lot of
processing power and because such process would have been called every
time we received a new data value, it would have been a bad idea as the
viewer has to work in real time.

Page 41 of93

Human Interface's Dynamic Capabilities

FUNCTION FOR MANAGING THE DATA VALUES

Another thing I had to implement was a function that allowed
getting a list of data values between two given tùnes and with a given tÎlne
slice. This function was required in order to allow the modification of the
X axis scale for the representation of data values, as it will be explained in
"2.3.1.3 Displaying Data values : Allowing to change the scale of the X
axis".

Y ou can see in the example below a little explanation of how this
function works.

0: 100
1: 60
2: 40
3: 20
4: 40
5: 80
6: 100
7: 20
8: 80
9: 60

Table 1

f
f
f
J-
J

0: 100+60 / 2=80

1: 40 + 20 / 2 = 30

2: 40 + 80 / 2 = 60

3: l 00 + 20 / 2 = 60

4: 80 + 60 / 2 = 70

Table 2

In this example, the Table 1 would represent the
list of data values as they are in memory, with the
line number representing the tùne of appearance
of the value in microseconds.

The Table 2 would represent the list of data
values given by the function with a start time of 0,
an end tùne of 9, and a tùne slice of 2
microseconds. As you can see each value in
Table 2 is an average of the values contained in
its tÎlne slice.

Figure 11: Function for managing the data values - example l

But as the data values can occur at any tùne, it could happen that
we receive values in a less ordered manner, in which case we have to be
careful, as shown in the example below.

0:
1: 60
2:
3:
4: 40
5: 80
6: 100
7: 20
8: 80
9:

Tahle 1

J
J
J
f
f

0: 60

1:

2: 40 + 80 / 2 = 60

3 : 100 + 2 0 / 2 = 60

4: 80

Tahle 2

In this example, we can see that we don't have
values for the tùnes 0, 2, 3 and 9 microsecond in
the Table 1.

Consequently, the Table 2 will have no value for
line 1 and the values for lines 0 and 4 doesn't
need the calculation of an average as there is only
1 value in those tùne slices.

Figure 12: Function for managing the data values - example 2

Page 42 of93

Human Interface's Dynamic Capabilities

2.3.1.3 Displaying Data values

An essential functionality of the viewer is to display the data values. And
that is the reason why I spent a lot oftime on this part of the application.

Please note that the data values used in the different examples of this
section does not have any meaning, as they were randomly generated.

ALLOWING TO CHANGE THE SCALE OF THE X AXIS

Allowing to change the scale of the X axis (representing the time
axis) of the graphical representation of the Data values was an essential
feature, as it is possible that we receive one new value each microsecond,
thus being impossible for the user to cope with the speed at which the
values would be displayed. This was also necessary to allow the users to
choose between global or precise views of the data values.

In the figures below you will find some screen captures allowing
you to better understand how it works.

Y Axis represents
the Data values

I

31.9
24.6
17.3
10.0
2.7
-4.6
-11.9
-19.2
-26.5

116 145 \ ~ 203 232 261 290 7 19 8 377 406 435 464 493

'--......_

~/ -33.8

0 29 7 116 145 174 203 232 261 290 319 348 377 406 435 464 493

◄ ►
The two X Axes represent the time of occurrence of the value in the scale chosen for the
viewer (here the scale is l millisecond per pixel or 1000 microsecond per pixel).
Thus here you can see that the X scale goes from O to about 500 milliseconds, meaning
that about the first 0.5 seconds of this data ' s values are displayed .

Figure 13: Allowing to change the scale of the X axis - example 1

Page 43 of93

l"".:J.~

31.9
24.6
17.3
10.0

Human lnterface's Dynamic Capabilities

And as you can see in the following screen captures, the user can
change the X axis scale at any moment by using the contextual menu
provided when right clicking on the graphical component with the mouse.

SetXSalle ► 0 1000 ms/ pixel

Set §_raph Type ► O 100 ms /pixel

Set Colors ► 0 10 ms lpbœl

~ -
Set Font ... ,j) 1 ms (1000 micros) /pixel 2.7

-4.6 Follow Graph Evolution O 100 micros /pixel ;148 377 406 435 464 493
/

-11.: / n 10 micros /pixel
-19.2

O 1 micro s / pixel
-26.5
-33.8 .,. o set a value ...
. - - v · ..._ ..

1 29 58 87 116 145 174 203 232 261 290 319 348 377 406 435 464 493

LJ /
~

I ►
,/'
31. y Set X Scala ► O 1000 ms I pixel
24.6 (Set §.raph Type ► O 100 ms / pixel
17.3
10.0 Set Colors ► @ 10 ms /pixel -
2.7 Set Font ... 0 1 ms (1000 micros) /pixel
-4.6 b ~9 58 87

Follow Graph Evolution o 100 micro s / pixel
464 493

-11.9 0 10 micros /pixel
-19.2
-26.5 J

\i
0 1 micro s / pixel

-33.8 0 setawlue
0 29 58 87 116 145 174 203 232 261 290 319 348 377 406 435 464 493

1 ◄ 1
Figure U: Allowing to change the scale of the X axis - example 2

In the example, the X axis scale bas been changed and the
graphical representation bas been simplified a little, as some data values
were merged together. This is explained in "2.3.1.2 Management of Data
values : Function for managing the data values"' (where the time slice is
represented by the X axis scale in micro seconds), as I use this function to
get the values that need to be displayed at each given moment.

ALLOWING TO CHANGE THE GRAPH TYPE

In order to clearly see the Data values (or average values) and their
positions, it was necessary to allow the representation of the data values as
points in addition to the line presentation.

1 See at page 42

Page 44 of93

1 ► 1

40.3
31.3
22.3
13.3
4.3
-4.7
-13.7
-22.7
-31.7
-40.7

40.
31.3
22.3
13.3
4.3
-4.7
-13.7
-22.7

Human Interface's Dynamic Capabilities

As you can see in the example below, like the other features, this
one can be accessed by using the contextual menu provided when right
clicking on the graphical component with the mouse.

► O Points

► @ Unes 435 464 49

116 145 174 203 232 261 290 319 348 377 406 435 464 49

. . . .
. . . •

..
• . .

116 145 174 203 232 261 290 ~1
• • •

406 435 464 49

•
-31.7 • ..

. .
-40.7

◄

. .
•

0 29 7 116 145 174 203 232 261 290 319 348 377 406 435 464 49

Figure 15: Allowing to change the graph t~1,e - examJlle

ALLOWING TO CUSTOMIZE COLORS

The customi:zation of colors was also an important feature, because
once integrated into the Human Interface there could be several instances
of the viewer running at the same tune. And for this reason I allowed the
change of colors for the Axes (axes lines, graduations and figures) , the
Graphie (points or lines) and the Background.

Page 45 of93

►

40.3
31.3
22.3
13.3
4.3

Human Interface's Dynamic Capabilities

In the example below you can see a modification of the Axes,
Graphie and Background colors.

Set >C Scale

Set ~raph Type

Set Colors

u
Aperçu

Figure 16: Allowiog to customize colors - e:xam1•le

ALLOWING TO CUSTOMIZE TEXT

□· ■ □ Echantillon de texte Echantillon de texte

~ I -- 1 !!Ml 1

This feature allows the user to modify the police of character used
to display the figures on the axes, thus with this the viewer can be used
without problems in either small or big screen resolutions, as the text can
be adjusted in consequence.

You can see in the example below the window allowing to choose
the font. As this feature was not provided by Java (unlike the Color
chooser in the point above), I had to search on the internet to see if such
thing hadn't already been programmed, and in the process, I found the
project Ozten's JFontChoose which I used. This project is under the GNU
LESSER GENERAL PUBLIC LICENSE but it has since then been
discontinued.

Page 46 of93

X

1

Human Interface's Dynamic Capabilities

'l~ .I:! I 41 .7 Set~Scale ►

\/
33 fi Set §_raph Type ►
25.3 Set Colors ► 17.1 -
8.9 Set font_ ,__
0.7

~ Follow Graph Evolution 82 '208 34 '26 : 86 , 12 '338 164 190 416 442 468 494
-7.4 J

--'-~ . . '. ,_1_ "~-
I

-15 .6
""• -23.8 V -32.0 1 Aria! ... 8 ...

r ArialBlack w 9 -40.2
@ Bold O nalic - 1 Arial Narrow 10

) 26 52 78 Book Antiqua 11
Ap~newFont

Current Selection:

1 ◄ 1 ..--=i Bookman Old style 12 Arial 16pt .

~~
Bookshelf ~bol 7 13

Century 14

38.9 Century Gothie
,_

16 -... ...
28.0 This is how your text will look like
17.1

Cancel

6.2 '"'i)

-4.7) 32\ t \ r

j~ -15.6
-26.5 ~
-37.5 ~
·-

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480
1 ◄ 1

Figure 17: Allowing to customize text - exam1>le

Y ou can also notice that the viewer have adapted itself to work
correctly with the new (bigger) font size. More space is given for the
figures of the Y axis and the X (down) axis, also the size of the
graduations becomes bigger in order to compensate for the size taken by
the figures.

The graduations are created in such a way that it will try to display
the most graduations possible, without having figures overlapping each
other.

ALLOWING TO FOLLOW THE GRAPH EVOLUTION

This feature allows the user to decide whether he wants to see the
new data values as soon as they arrive or stay at the same position to look
more closely.

Like the other features, this one can be accessed by using the
contextual menu provided when right clicking on the graphical component
with the mouse. But this time the choice is provided by a checkbox, as
there were only two possible choices.

Page 47 of93

I •

-
)(

40.4
31.4
22.4
13.4
4.4
-4.5
-13.5
-22.6
-31.6
-40.6

"' 40.
31.4
22.4
13.4
4.4
-4.5
-13.5
-22.6
-31.6
-40.6

◄

Human Interface's Dynamic Capabilities

In the example below, you can see the transition between the two
choices. Notice that once the Follow Graph Evolution feature is activated,
when new data values arrives, the newest values are shown to the user (the
scrollbar allowing to navigate through the data values is positioned to its
end).

Set X Scale

Set ~raph Type

Set Colon~

)

►

►

►

338 367 396 425 454 483

Figure 18: Allowing to foUow the gra1>h ernlution - ex.ample

AUTOMATICALLY ADJUSTING THE SIZE OF THE GRAPH

/

Because the Data values can be any figures, it was necessary to
automatically adapt the Y axis whenever new bigger or smaller values
occurred. Also, it was necessary to implement the second X (down) axis
which is displayed continuously in the case of data values never going to
O.

Page 48 of93

31

►

21.2
25.7

.:>
6.6
9.7
2.8

16.0
.1
.2
4.6
11.5
18.4
25.2

◄

Human Jnterface's Dynamic Capabilities

Below are some examples.

2 8 104 '

2 18 104 ,q 104'

8 104' 2 8 104 ' 2 8 104 '

\

◄

0
9

ri 5.3
130 'y 13.5

21.7
29.8
38.0

◄

◄

2 8 104 130 156 182

Figure 19: AutomaticaUy adjusting the size of the graph - e.xam1>le 1

In this example, the Y axis, ranging in the beginning from about -
30 to 19.5 has automatically adjusted itself to corne to about -46 to 43.5.

Note that the X axis scale of this example is of 10 milliseconds per
pixel, and thus it can happen that the last line of a graph changes a:fter
some time because all the values for that time slice may not be available
yet.

Page 49 of93

►

Human Interface's Dynamic Capabilities

Below is an example showing the importance of the X (down) axis
when ail the values of a data are far away from O.

0 29 8 87 116 145 174 203 232 261 2

1 ◄ 1 l ► 1
Figure 20: Automaticau,· adjusting the size of the grapb - example 2

ALLOWING TO ZOOM IN THE GRAPH

As explained in the previous point, the graph adapts itself to
display the whole range of data values. As the range grows bigger, it may
become difficult for the user to know the value of a specific part of the
graph.

To resolve the problem, I implemented a zoom feature. This zoom
can either be performed by using the mouse wheel or by using a
predefined pressed key with a left mouse click.

Using Mouse wheel

The zoom behaves the same way as in picture editing programs.

Turning the mouse wheel up when the mouse cursor is on the graph
will zoom in on that part of the graph and centre the view on it.

Turning the mouse wheel down when the mouse cursor is on the
graph will zoom out and try to centre the view on that part of the graph.

Page 50 of93

""· 32.1
23.9
15.8
7.7
--0.4
-8.5
-16.6
-24.8
-32.9
-41.1

◄
nr.l
10.0
5.9
1.9
-2.1
-6.2
-10.2
-14.3
-18.4
-22.5
-26.5

◄

0 29

Human Interface's Dynamic Capabilities

Y ou can see an example below.

Here the zoom is performed by

0 pointing the mouse to the part
we want to see more clearly
and then tunùng the mouse
wheel up.

116 145 1 3 232 261 290 3

\

-8.2

-9.2
-10.1
-11.0
-11.9

►

\

\
\
\
\

196 200 204 208 212 216 220 224 228

Figure 21: Allowing to zoom in the graph with the mouse wheel - example

Using Pressed key and Mouse click

This feature behaves exactly like when using the mouse wheel,
except that it requires the user to press a specific key and perform a left
mouse click on the graph in order to zoom in or out, as explained below.

Tlùs mouse cursor is displayed when the user is pressing and holding the
SHIFT key wh.ile being over the graph. When tlùs cursor is displayed, if the
user does a left mouse click on the graph, it will zoom in.

Tlùs n10use cursor is displayed when the user is pressing and holding the
CTRL key while being over the graph. When tlùs cursor is displayed, if the
user does a left mouse click on the graph, it will zoom out.

Figure 22: Allowing to zoom in the graph "ith a pressed ke~· and a mouse click - figure 1

Page 51 of93

32.1
23.9
15.8
7.7
-0.4
-8.5
-16.6
-24.8
~2.9
-41.1

10.0
5.9
1.9
-2.1
-6.2
-10.2
-14.3
-18.4
-22.5
-26.5

◄

Human Interface's Dynamic Capabilities

Here the zoom is performed by
+---,r:,'--tt-+-Y--+--+-+-'r-tttt-tiHt--+-tt--rt:+--ff-ltl-tt-Ht-1--t point ing the mou se to the part

we want to see more clearly,

/
pressing and holding the SHIFT

/
key and then performing a left

./' I , , 1 mou se click.

0 29

f

V

, , ,

133 148 163 178 193 208 223 238 253

-6 .4
-10.5
-11.7
-12.9

►

\
\
\
\
\

191 196 201 206 211 216 221 226 231 2

Figure 23: Allowing to zoom in the gra1>h with a 1>ressed ke:r and a mouse click- figure 2

2.3.2 Connection with the Logger
As I said before, the data values are provided by the Logger realized by

Mr. Achbany. For a better understanding I will start by explaining quickly the
purpose of the Logger and what it does for the viewer. If you would like to have
more information on the Logger, I invite you to read Mr Achbany & Mr
Jadoulle's thesis 1

•

2.3.2.1 The Logger

The main purpose of the Logger is to behave like a buffer between the
FDNet Core and the Database. In fact, when the FDNetwork is running, it sends
ail the information generated to the logger in order to keep them for later
reviewing. And among those information are the data nodes values.

1 [Achbany & Jadoulle 2004]

Page 52 of93

Human Interface's Dynamic Capabilities

Below you can see the general architecture of the logger.

Viewer

TCP
Client

DB

Logger

Server Receiver

Logger Writer

Figure 24: General architecture of the Logger

FDNet Core

t
Connection
Manager

The part of interest in this figure is the one working with the viewer,
namely the "Server Sender".

2.3.2.2 The Viewer

For the connection itself, we have to provide the viewer with some
information. As the protocol used to communicate is TCP/IP, we need the IP
address of the Logger and the port number used by its "Server Sender". When the
viewer is correctly configured and when the logger is running, we can initiate the
connection.

There are three possibilities for the connection: we can ask to Start, Pause
or Stop the connection with the logger.

Page 53 of93

Human Interface's Dynamic Capabilities

5TARTING THE CONNECTION

When we start the connection, we will ask the logger to send us
values of the specific data displayed by the viewer, then it will take all the
values it has for this data and send them to us, and after this, whenever
new values arrives for this data, they will be sent to the viewer.

You can see an example below.

Viewer
1

Logger
1

1: send request -
1

Server Sender ~

-~
2: send old values
3: send new values

Comments:

1

1: The Viewer sends a request to the logger and provides the identifier of the Data
Node it is displaying.
2: The Logger retrieves ail the values it has for this Data (in its cache and/or in the
data base) and sends them to the Viewer.
3: Whenever new values arrive in the Logger, they are directly sent to the Viewer.

Figure 25: Starting the connection between the ,iewe1· and the logger - exam1>le

PAUSING THE CONNECTION

When we pause the connection, the physical connection with the
logger is stopped and ail the data values already in the viewer' s memory
are kept. Being able to "Pause" the connection was a good feature to
implement because it ailows the user to later restart the connection without
having to wait to get ail the old data values before getting the new ones, as
only the newer values that are not yet in the viewer's memory will be sent.

STOPPING THE CONNECTION

When we stop the connection, the physical connection with the
logger is stopped and ail the data values already in the viewer's memory
are erased. Thus if the user restart the connection later, all the data values
will have to be sent again.

Page 54 of93

Human lnterface's Dynamic Capabilities

EXAMPLE

Below is an example showing ail the states of the connection.

1

Viewer
1 1

Logger's Server Sender 1

1: Start Connection ~ 2: send request l': New Conn - ection
~

3: send old values -~
4: send new values

~ 1

1 1
~ 1 1

5: Pause Connection ~
~

5': Connectio n closed

6: Start Connection ~ 6': Ne,Y Conn ection
7: send request -.

~
8: send old values

9: send new values - 1 1

1 1 - 1 1

10: Stop Connection ~
~

10': Connectio n closed

- ~

Comments:
1: The user decides to start the connection between the Viewer and the Logger.
2: The Viewer sends a request to the logger and provides the identifier of the Data
Node it is displaying.
3: The Logger retrieves ail the values it has for this Data (in its cache and/or in the
database) and sends them to the Viewer.
4: Whenever new values arrive in the Logger, they are directly sent to the Viewer.
5: The user decides to pause the connection and all the data values already in the
viewer' s memory are kept.
6: The user decides to (re)start the connection
7: The Viewer sends a request to the logger and provides the identifier of the Data
Node it is displaying and the time index of the last data value it has in memory.
8: The Logger retrieves all the values of dus Data newer than the tirne index it has
received (in its cache and/or in the database) and sends them to the Viewer.
9: Whenever new values arrive in the Logger, they are directly sent to the Viewer.
10: The user decides to stop the com1ection and all the data values in the viewer ' s
memory are erased .

Figure 26: Connection between the Viewer and the Logger - example

Page 55 of93

Human Interface's Dynamic Capabilities

2.3.3 Limitations of the Java Version
There are still some limitations to this version of the Network State

Viewer. I will explain them and propose some solutions to resolve them.

2.3 .3 .1 Limitation of the Scrollbar

This limitation is due to different factors. First is the fact that the time of
occurrence of the data values is in microseconds, meaning that in one second the
time increases by 1.000.000 microseconds. In order to manage such big figures, I
had to use a variable of the type long integer which is coded on 64 bits, meaning
that it can handle values from about -9*1018 to +9*1018

. In the other band, the
Scrollbar provided by Java bas its value in a variable of the type integer which is
coded on 32 bits, meaning that it can handle values from about -2*109 to +2*109

•

As I directly use the Scrollbar value to decide of the position (and thus also
the graduation) on the X axis, some problems may occur when the X axis scale is
at 1 microsecond per pixel, as the number of +2* 109 will be exceeded after only
2000 seconds which is a little more than half an hour.

I tested this case and it appears that when this happen, the scro llbar ' s
behaviour becomes erratic, as you can see in the example below.

i4~.~

37.4
24.9
12.4

In the first picture, we are
approaching the limit of the
integer variable.

0.0
·12.5
-25.0
-37.4
·- -

1 ◄ 1

2141017331 21410174162141017501 2141017

2141017331 21410174162141017501 2141017

37:4
24.9
12.4

1 :;::;! ► 1

In the second picture you
can see that we have looped
to the smallest value of an
integer.

o.o 2147483648
1
-2147483558 ~2147483468 ~2147

-12.5
-25.0
-37.4

-2147483648 -2147483558 -2147483468 -2147

►
Figure 27: Limitation of the ScroUbar - example

Page 56 of93

Human Interface's Dynamic Capabilities

To resolve that problem, the easiest way would be to :find an
implementation of the Scrollbar that uses a variable of the type long integer for
its value; that way we would never have this kind of problem again, or only after
about 290.000 years.

2.3.3.2 Problems with Lines representation

This problem is due to 2 factors. First of all, as I mentioned in ''2.3.1.2
Management of Data values : Function for managing the data values" 1

, I use this
function to get the data values I have to display at each given moment, meaning
that I only ask for data values that are currently displayed on the graph. The
second partis that, to display Lines, we need to have two points, and when the X
axis scale is very small, we don' t have usually many data values to display at the
same time.

Thus it can occur that in some cases, when in Line representation, there is
a data value that cannot be displayed, because it is the only data value in the
displayed part of the graph.

1 See at page 42

Page 57 of93

Human Interface's Dynamic Capabilities

Y ou can see in the example below that with two data values in the
displayed part of the graph we can see where are those values with the line
representation, but if we move the graph a little to the left, when there is only one
data value, nothing is displayed in the line representation.

94 10311068 1105

1001 1038 1075 1 12 1149
1

94 10311068 11 5 10011038 1075 1, 12 1149

Legend

Correspondence between Line and Point representation

Figure 28: Problems with Lines re1lresentation - exam1lle

Representation
of the line
where it should
be displayed.

As a first solution, the "Function for managing the data values" could be
enhanced to deliver one data value before and one data value after the displayed
part of the graph, and that way, we would never have this problem again. But
doing this could also increase the processing power needed to run the viewer, as
providing one data value before and one after could be time consuming when
those values are distant from one another.

Another way could be not to use the "Function for rnanaging the data
values" but to have one whole set of data values in memory for each possible
scale of the graph. That way it would be very easy to get the data values needed
for the display, but on the other hand, it would require additional memory and
some processing power in order to rnaintain the sets of data values for each scale
whenever new data values arrives.

Page 58 of93

Human Interface's Dynamic Capabilities

2.3.3.3 Limitation of the connection with the Logger

As you rnay have noticed in "2.3.2 Connection with the Logger",
whenever we start a new connection (without having paused the connection
before) between the viewer and the logger, the entirety of the values of this
viewer's Data node are sent from the logger to the viewer. That means that even
if the viewer's memory capacity is too small to contain ail the data values, the
data values will be sent anyway. In some cases, this may lead to an important
delay before the user is able to see the new data values arriving in real time.

To resolve that problem we should allow to specify one more parameter
when connecting to the logger. This parameter would be a number representing
the maximum quantity of old data values that we want to receive from the logger.
Thus the logger would only retrieve and send that quantity of recent data values
before sending the new data values.

Page 59 of93

Human Interface's Dynamic Capabilities

2.3.4 Integration into the Human Interface
Because the Viewer was programmed as a standalone graphical Java

component, the integration into the Human Interface was pretty easy. The only
functionalities that had to be added into the human interface were to allow
configuring the connection with the Logger, to allow showing / hiding the Viewer
for each Data node and to allow starting / pausing / stopping the connection
between the Viewer and the Logger.

In the following figure, you can see the window allowing to configure the
connection with the Logger.

• - -□ ><

Network Help

Rel.atlon1

Fi le C:\Do cuments and Settings\nlambo~
Parslng ofFile C:\Documents and Settln

Example Netvrork Nelv\/Ork information :
Number of Modules : 1

FDNet Connection Options _J-
Logger Options : 1
______ __.IP : ~12- 7-.0-.0-.1---~,

Port : J5556 1

FDNetConnection options: 1 Here are the 1P address and port

ReoeiveCommands Port :

number of the Logger' s Server
Sender used by the Viewers to get
the data values.

OK Cancel

Figure 29: Integration into the Human Interface - Figure 1

Page 60 of93

Human lnterface's Dynamic Capabilities

In the following figure, you can see the graphical part of the Human
Interface with the contextual menus accessible on the Data nodes and on their
Viewer' s representation.

D.:1ta1 Relation1

Change Size ►
This color ►

Parent color ►
Chldren color ►

ShowGraph

The "Show Graph" item allows replacing the
Data node display (circle) with a Viewer.

0.9
0.6
0.3 Action
0.0
·0 .;) FoHow Graph Evolution
-0.6

0 Set K Scale

Set ~raph Type

ChangeSize

Set Colors

Set Font ...

Hide Grnph

► O start

O Pause

► O stop

►

►

►

Rel.:1tion1

The contextual menu of the Viewer has been complemented with the possibility of
Starting / Pausing / Stopping the connection with the Logger and also to allow hiding
the Viewer ("Hide Graph" item allows to go back to the circle representation of the
Data node).

Figure 30: Integration into the Human Interface - Figure 2

Page 61 of93

Human Interface's Dynamic Capabilities

3 Connection between Human
FDNet's core Interface and

3. 1 Introduction

As I said before, the aim of the Human Interface is to give a simple way
for FDNet users to manage the robot(s) through an easy edition of an FDNetwork
before and while the robot(s) are functioning.

Thus the aim of the connection between the Human Interface and FDNet's
core is to allow to start an FDNetwork loaded in the Human Interface and to be
able to interact with the FDNetwork while it is working.

3. 2 The connection

The connection is subdivided into 2 connections; one to send network
modifications from the Human Interface to FDNet's core and one to receive
network modifications from FDNet's core. It was necessary to subdivide the
connection because the information exchanged in each direction is not of the same
type.

In the figure below you can see a simple representation of the architecture
of the connection.

Human Interface FDNet's core

Seod Network Modifications conoection HICommandLineServer

ReceiYe Network Modifications connection HINetCommandServer

Figure 31: Connection between Human Interface and FDNet's core

3.2.1 Send Network Modifications connection
This connection is based on text command lines and it allows the Human

Interface to send network modifications to FDNet's core. This connection is used
to send the FDNetwork when we start the main connection and to send network
modifications made by the user when the FDNetwork is working (and thus when
the main connection is active).

Page 62 of93

Human Interface's Dynamic Capabilities

The commands allowed are very simple as you can see in the figure below.

addData Name Host Path Class [argl [arg2 [...]]]
Adds a Data node to the network.

addRelation Name Host Path Class [argl [arg2 [...]]]
Adds a Relation node to the network.

delData Name
Deletes a Data node from the network.

delRelation Name
Deletes a Relation node from the network.

connect Name DataName RelationName Type
Adds a connection between a Data node and a Relation node.
The "Type" parameter allows specifying if it is a Reader (' 'R") or a Writer
("W'') connection.

disconnect Name RelationName Type
Deletes a connection between a Data node and a Relation node (but the
name of the Data node is not needed to identify a connection).
The "Type" parameter allows specifying if it is a Reader ("R") or a Writer
("W'') connection.

set DataName Data Value
Sets a manual value for a Data node.

Figure 32: Send Network Modifications - command lines

3.2.2 Receive Network Modifications connection
This connection is based on NetCommandEvent objects that are directly

generated by FDNet's core and it allows the Human Interface to receive network
modifications made by FDNet' s core.

These NetCommandEvent objects can provide the same commands as in
"Figure 32: Send Network Modifications - command lines" except that it does not
provides Data node values, as those are only sent to the Logger.

3. 3 Translating FDNetwork modifications

As there are some differences between the network of the Human Interface
and the network of FDNet's core, I had to make a set of methods to allow
translating Network modifications made in the Human Interface into something
that FDNet's core could understand. In fact, the command lines shown in "Figure
32: Send Network Modifications - command lines" are the only commands that
can be used to send the network modifications.

For the simple modifications like adding or deleting a Data or a Relation
node, the translation is very simple, but for some advanced functionalities
provided by the Human Interface, it becomes more complex.

Page 63 of93

Human Interface's Dynamic Capabilities

I will now go through some of those differences and explain how I
managed them If you would like more information on the functionalities of the
Human Interface I will introduce in the following points, I invite you to read the
"Human Interface" part ofMr. Achbany & Mr. Jadoulle ' s thesis 1

•

3.3.1 The Module extension
The module extension is one of the main functionalities provided by the

Human Interface. It allows the user to subdivide an FDNetwork in different parts
(named modules). Those modules are generally composed of Data nodes,
Relation nodes and connections (Readers or Writers) that have a common goal; by
example allowing the management of a specific sensor or a specific part of a
robot.

For each module (except the default "main" module) the user can choose if
the module has to be loaded when starting the FDNetwork (when connecting to
FDNet's core), and once the FDNetwork is started, the user can activate or
deactivate a module whenever he wants.

As the module extension only exists in the Human Interface, we have to
translate the activation or deactivation of a module into something that FDNet' s
core can understand and thus, we can only use the commands provided in "Figure
32: Send Network Modifications - command lines".

By example to activate a module, we have to do the following things:

• Add all the Data and Relation nodes of the module

• Add all the Reader and Writer connections of the module

• Check for ail the connections this module may have with the
loaded part of the FDNetwork, in order to add them if necessary.

1 [Achbany & Jadoulle 2004]

Page 64 of93

Human Jnterface's Dynamic Capabilities

3.3.1.1 Example

You can see below a simple FDNetwork composed of two modules: the
"main" module and another module named "Sensor 1 ".

- tJ X

File Network Help

.---------
1 1

1

ManageRobot

Here in red is the ' main" module, it
contains l Relation and l Reader.

Y ou can see here that the
module "Sensor l "
loaded yet.

2

Display all

1 : Sensor1 true no loaded ---~
main true loaded

1 :

Sensor1 Here in is the module named "Sensorl", it
contains 2 Data nodes, one Relation node, l Reader and
l Writer. Displayed : ._I t_ru_e ___ •_.I

Co lor : joranqe

Push.ing th.is button wh.ile the connect.ion with
FDNet's core is active will activate the module

...,. ······· ····· "Sensorl" and send it to FDNet's core.

Figure 33: The module extension - Figure 1

And below are the command lines that will be sent to FDNet's core when
we activate the module "Sensor 1 ".

addData Sensorl-AVG
addData Sensorl-RA W
addRelation CalculateA VGSensorl
connect readsslraw Sensorl-RA W CalculateAVGSensorl R
connect writesslavg Sensorl-AVG CalculateAVGSensorl W

At this point the whole module "Sensorl" has been sent to FDNet's core.
connect readsslavg Sensorl-AVG ManageRobot R

This was necessary to link the already loaded "main" module with our
"Sensor 1" module.

Figure 34: The module extension - Figure 2

Page 65 of93

start

• I

Human Interface's Dynamic Capabilities

3.3.2 Merging Nodes
Another functionality provided by the Human Interface is to be able to

merge two Data or two Relation nodes together to create a resulting node having
information of the two source nodes and their Connections redirected toit.

Below is a figure ta.ken from the thesis of Mr. Achbany & Mr. Jadoulle,
explaining the merge oftwo Data nodes.

CJ
Before merge:

We haYe 2 Data Nodes haùng two
different nan1es. We realize that theses
two Datas couJd be merged as one.

Instead of creating a new one from
scratch. deleting the Iwo old Datas. we
will tak:e ad,·antage of the merge
metbod.

After merge:

Neither --o ata l .. nor --Datar liaYe
been deleted. Instead. ail tbeir
iiûormation bas been used to create a
new merged Data. which will haœ. up
to a point. the OJd Datas information.

Figure 35: Fusion of Data Nodes

As you can see it only takes one operation to the user to merge two nodes
together, but when the FDNetwork is working (when the connection with FDNet' s
core is active) it requires several command lines in order to send that network
modification to FDNet' s core:

• First we have to delete the two old nodes (when deleting anode in
the FDNetwork on FDNet's core, ail Connections with this node
are deleted automatically, so we don't have to doit ourselves).

• Then we add the new node

• And finally, we have to retrieve all the Connections for the new
node and add them.

3.3.3 Replacing Node
This functionality allows overwriting a Node with another one, deleting all

Connections from the replaced Node and using only the ones from the
Replacement one.

Page 66 of93

Human Interface's Dynamic Capabilities

Below is a figure taken from the thesis of Mr. Achbany & Mr. Jadoulle,
explaining the replacement of a Data node.

CJ
Before Re1>lacement:

We haYe 2 Data Nodes ha\'ing two
different names. We will change the
name ··Datar to ··Datal"" ... whicb
already exists inside the module.

Tbere will be a conflict. resolœd by
ask.ing the Human Interface to Replace
.. Datai·· by --Datar

. •······
/ \ . .

.
·• ... , ... •·

,
I

I

D
Mter Replacement:

.. Data 1 ·· bas been deletcd witb ail its
related Collllections. ..Datar had its
name cbanged to Data l and ail its
Connections stay collllected to it.

Figure 36: Replacement of a Data Node

As you can see it only takes one operation to the user to replace a node by
another one, but when the FDNetwork is working (when the connection with
FDNet's core is active) it requires several command lines in order to send that
network modification to FDNet's core:

• First we have to delete the two nodes (when deleting anode in the
FDNetwork on FDNet's core, ail Connections with this node are
deleted automatically, so we don't have to doit ourselves).

• Then we add the replacement node with its new name (and
eventually new information)

• And finally, we have to retrieve ail the Connections for the
replacement node and add them.

3.3.4 Modifying Node
This is a really simple operation in the Human Interface, if a user simply

modify the name of a node or any information it may have when the FDNetwork
is working (when the connection with FDNet's core is active) it will require
several command lines in order to send that network modification to FDNet's
core:

Page 67 of93

Human Interface's Dynamic Capabilities

• First we have to delete the Node as it was before (when deleting a
node in the FDNetwork on FDNet' s core, ail Connections with this
node are deleted automatically, so we don't have to do it
ourselves).

• Then we have to add the Node with it' s modifications

• And :finally, we have to retrieve ail the Connections with this Node
and add them.

3.4 Human lnterface 's behaviour

3.4.1 Starting the connection
Once an FDNetwork is loaded into the Human Interface, you can ask to

Start or Stop that network at any tirne. And once the connection is started, the
Human Interface will try to connect to FDNet's core which will host the
FDNetwork.

As said in "3.3.1 The Module extension", the FDNetwork in the Human
Interface is subdivided into modules that can be set to be loaded or not when we
start the network. Thus, upon a successful connection to FDNet' s core, the
"main" module and ail the modules that have to be loaded when starting the
network will be sent to FDNet' s core (as explained in "3.3.1 The Module
extension").

3.4.2 Connection activated
Once the connection is active, every modification made in the Human

Interface on the FDNetwork will have to be accepted by FDNet's core before they
can be applied in the Human Interface. If a modification is not accepted by
FDNet's core, an error message will be displayed in the Human Interface and the
modification is cancelled in order to keep the consistency of the FDNetwork
between the Human Interface and FDNet's core.

There are also some functionalities in the Human Interface that can only be
used when the connection with FDNet's core is active:

• As illustrated in "Figure 33: The module extension - Figure 1 ", the
button allowing to Start or Stop a module can only be accessed
when the connection is active.

• As illustrated in "Figure 30: Integration into the Human Interface -
Figure 2", the Viewer can only be Started, Paused or Stopped when
the connection is active.

Page 68 of93

Human Interface's Dynamic Capabilities

3. 5 Limitations of the connection

There are some limitations to this implementation of the connection.
Firstly there can only be one Human Interface connected to FDNet' s core at the
same time. This is due to the fact that in FDNet, everything is at the same level,
and thus a multiple connection would imply that any of the Human Interfaces that
would be connected to FDNet' s core could manipulate any part of the FDNetwork
without any restriction. For this reason, and also because there was not much time
left to implement the connection, this simple connection was realized.

Also, as there was not much time left to implement the connection, it was
not possible to make tests in real situations with FDNet's core. For this reason
and because there are differences between the FDNetwork in the Human Interface
and in FDNet' s core, it may be possible that some problem still exists in the
connection.

Page 69 of93

Conclusion

Page 71 of93

--- - - --

Conclusion

At first, the work we had to do seemed very difficult, as it was not very
easy to understand each other with the Japanese researchers because of the
difference of language. We also had big difficulties to understand how FDNet
(the base of our work) was functioning.

But with determination and through the retro engineering we made on
FDNet's source code, we were able to progressively understand how it was
functioning. Also, after some time, we became used to converse in English with
the Japanese researchers and our relations became far better than in the beginning.

After this, we all worked on different parts. Mr Achbany and Mr. Jadoulle
worked on the Logger and the Human Interface while I worked on the Dynamic
Capabilities of the Hurnan Interface.

The work I realized allowed me to learn many things in programming and
also allowed me to work inside a team with Mr. Achbany, Mr. Jadoulle and the
Japanese researchers. It has been a wonderful experience that I will never forget.

I think that my work, together with the work of Mr. Achbany and Mr.
Jadoulle was an important improvement to FDNet and has allowed it to become
more usable.

I hope FDNet will continue to evolve in the future, as I know this project
holds a great potential for helping rescuers to save lives.

In conclusion I would like to say that I was honoured to be given the
chance to work on such an interesting project.

Page 73 of93

Bibliography

Youssef Achbany & Jérôme Jadoulle, "About adding Utility and Usability to
FDNet A Flat Distributed Network Architecture", 2004

Yosihisa Koji, "Flat-distributed network architecture (FDNet) for rescue robots",
2002

Page 75 of93

nexes

Page 77 of93

Annex 1: Retro Engineering on FDNet

Anne x 1: Retro engineering on FDNet 1

This annex consists of the schemes created while retro engineering the
programming work done on FDNet. The schemes represent all the classes found
in FDNet's core packages. Doing this kind ofwork allowed us to obtain a general
view of FDNet classes static interactions.

It also gives an idea of how FDNet works. By using theses schemes while
trying to understand the code written by the I.R.S.I researchers gave us new ideas
about what the code was doing and where to look to find an answer to our
questions.

1 This annex about « Retro Engineering» cornes from the thesis of Mr Achbany & Mr Jadoulle
[Achbany & Jadoulle 2004], as the three ofus did this work together.

Page 79 of93

Annex 1: Retro Engineering on FDNet

This is the classes hierarchy of the "cnet.core." package ofFDNet project.

As written just right in the legend :
• the classes written in blue are abstract;
• the interfaces are written in orange;
• a class/interface extending another one will have a black arrow

arriving to itself.
• a class/interface irnplementing another one will have a red arrow

arriving to itself
• underlined and italic text means that the class cornes from

another package;

Page 80 of93

L1a11d
.-----C-la_s_s __ __,I

Abstract Class

Interface

, _E_xt_e_n_d_s __.

Implements

Class
=> comes from another

package

, , ,

, ,

FDObject

, , ,

, ,

, , ,

, ,

, ,

, ,

Annex 1: Retro Engineering on FDNet

, ,
,

-------
I FDEdgeDelegate 1 ,,,,, - - - - - - - ...

,

·-·-·-·-·.
., FDEdge

,,," - . - . - . - . - .

FDNode

ProcStructure

DataStructure

ProcStructurelmpl

ConnectorSen er

FDN odeDelegate

ConnectorClient

Servant Helper

Page 81 of93

DataStructurelmpl

Data Datalmpl

Proc Proclmpl

Annex 1: Retro Engineering on FDNet

Writerlmpl

WriterAdapter
\\ riter

FDEdgeDelegate
Connector

C onnectorOperation

lnputOperation

WriterStrncture

FDObject

Readerlmpl

Reader AdapterParent

ReaderStrncture

FDEdge

Page 82 of93

Annex 1: Retro Engineering on FDNet

NoMore InternalWarning

Exception userException lnternalError

XML_ cnetException lnternalException

callException NoSuch.ID

IlleagalValue

IlleagalType

ProcStructure Pool ProcStrncturePoollmpl Listener EventListener

DataStructurePool DataStmcturePoollmpl ReleaseListener

ConnectionPool ReturnListener

PushListener

PullListener

Page 83 of93

Annex 1: Retro Engineering on FDNet

CreateWriterlnstance Paste ActivePaste

CreateReader Instance
StaticPaste

CreateProclnstance

CreateDatalnstance

WriterMap
ConnectionLoader

ReaderMap

Policy

Page 84 of93

Annex 2: Retro Engineering documents

Annex 2: Retro engineering documents 1

The following documents show you how OUT retro engineering process was
performed.
You can see them as a snapshot of OUT understanding of one part of FDNet's core
packages (here, cnet.core.Servant).

As a snapshot, the information it contains is not especially true. Most of what
is written cornes from the understanding we could have of FDNet's way of
working. It thus means that it can still contain errors or information that is too
vague to have a real meaning.

It also contains ail the questions we were asking to oUTselves at this time. This
means that none of the questions asked here had found any answer at that
moment.

Basing on theses documents, we could try to speak with FDNet researchers in
order to try to understand them and to enhance OUT own understanding ofFDNet.

1 This annex about « Retro Engineering» cornes from the thesis of Mr Achbany & Mr Jadoulle
[Achbany & Jadoulle 2004], as the three ofus did this work together.

Page 85 of93

Annex 2: Retro Engineering documents

Study of the classes in package cnet.core.Servant :

Class Servant cornes from
"cnet.core" package

Servant Visitor

Reflect

Paste

Iterator Linkagelterator

The scheme here below explains how the paste and the Reflect servants work:

Relation

Reflect

■■- ■■-■

Connection

' ' Cali ' ' ' \
\

Cali

Rep.

Page 86 of93

Reflect

l. The Relation calls a Paste Senant to ask it
to be connected to a specific Data.

2. The Paste Sen-ant calls the Reflect Sen-ants
to get Data and Relation IDs.

3. Witb the belp of the IDs. the Paste Senant
can collect all the infonnation needed in the
repository to create the Connection between
the Data and the Relation.

-t The Connection (reader/writer) is created by
the Sen·ant.

Annex 2: Retro Engineering documents

cnet.core.Servant
FDObject

This class is baodling the SeITant system.

A servant is a mechanism that allows an information (an FDObject of a
"cnet.util.TYPE" type) to be shared on the network. The servant object is
an API used by a RELATION to access the network. Relation can only
access their directly connected Datas but, through the use of servants, the
whole network is reacbable.

A servant is not linked to any relation at ail. Servants are indeed shared
objects called by Relations to execute some specific work.

Servants have tree mechanisms. lt means that there are root servants,
parentServants, ChildServants and so on.

Servants that are fathers of other ones contain the Class definition of ail
their ChildServants and can then instanciate any ChildServant on demand.
A lot of the methods whose aims are to handle the different HasbTable are
declared Static. lt means that ail these methods can be called from
anywhere in the code and exist only once. rt also means that theses static
methods are shared among ail the instances of Servant Class.

static private HashMap ServantClasses
Static HasbMap. It contains ail the ServantClasses used at a certain time in
the ro ram
HashTable of the classes having the role of Servant?

static void setServantClass(String servant_name, String class_name)
Adding a Servant class to the Servant HashMap
The Servants added like this will be reachable from any other instance of
Servant class.

static protected Class getServantClass(String servant_name)
Returns the class associated with the String passed in parameter.
By having this class, it will be possible to create new instances of the
Servant (or classes extending it) and to use it on the network.

static protected boolean containsServantClass(String servant_name)
Allows Servants to know if a specific servant, whose class name is given in

arameter, is alread added in the HashMa ServantClasses

static private Server server;

See cnet.Server for more information
Question : What is a Sen cr?

static void setServer(Server s)
Sets a new server for this Servant

Page 87 of93

Annex 2: Retro Engin eering documents

starie Server getServer()
Get the server currently used by this servant

starie private HashMap instan ces
A hashMap containing the in stances of the Servant Classes
As it is a HashMap onl
Servant Class) Name.

y

private long instance_ counte r-
'

one instance can be associated with a

Allows to count the numbe r of instances currently held inside HashMap
instances

static private String createNam e()
Creates a new instance name
instances.

for the Servant Class to add it in the HashMap

The first free osition will be used to create the name.
Names are of the format: %se rvantName:[NumberOtcurrentlnstance]

Starie void set Servan tlnstance(String servant_name, Servant
servant_ instance)

throws ClassNotFou ndException
Adds in the HashTable instan ces a new instance of the Servant class

static protected Servant getSe rvantlnstance(String servant name)
Allows to get a servant alread y contained in the instances HashMap

starie protected void releaseS ervantlnstance(String servant name)
Delete a Servant from the list of the existing instances

private HashMap children;
Allows the Servant to creat
arent servants

es a tree where he can finds ail his child and

t. This property is not static <=> every Servant A servant has only one Paren
has it's own children HashM ap.

public final Servant getParen t()
Returns the Parent Servant of this Servant.

protected final void setParent (Servant p)
Allows to add the Parent Serv ant ofthis servant in the children HashMap

final protected void setChildS ervant(String name, Servant p)
Adda children ofthis Servan t in the children HashMap

Page 88 of93

Annex 2: Retro Engineering documents

final protected Servant getChildServant(String name)
gives a specific chi Id Servant with the help of its name

final protected void releaseChildServant(String name)
Delete a servant from the children HashMap.
It means that the servant deleted will not be a child if oursefl anymore

private FDObject object;
The object that this Servant is sharing.
A servant only serves one FDObject.

private Type□ type;
Contains information about FDObject's data type.
Defined in the "cnet.util" package

protected FDObject getFDObject()
retums Servant's FDObject

protected cnet.core.Servants.Node getübjectData()
Returns the node associated to the FDObject contained in the Servant

protected Type□ getübjectType()
gives the type of the Object of the Servant

private HashMap returnListener;

The ReturnListener is a callBack mechanism that allows a servant to tell to
relation that has called it that its work is done

ReturnListener getListener(String name)
Gets the RetumListener whose name correspond to the one passed m

arameter

protected void setListener(String name, RetumListener listener)
Add a ReturnListener to the returnListener HashMap

protected void releaseListener(String name)
remove the ReturnListener whose name is passed as parameter from the
returnListener HashMap

String servant_ name;
Give a name to the current Servant
Whal is this namc'? The Class·s namc·> Something with a stmcturc or
sometlung \\ ilhout an~ stmcturc at au·>

Page 89 of93

Annex 2: Retro Engineerin gdocuments

void set ame(String s)
Sets the name of the Servant

protected String getName()
Gives the Servant's name

void setID(ID[] s)
Set Servant's ID. ID[] is a property inherited from FDObject

a unique attribute given by the system at The ID of each object in FDNet is
runtime. The ID allows finding a
as identifying information for every
This mcchanism is not yct implcmc

specific object in the System and is used
body.
ntcd

protected ID[] getID()
Gives Servant's ID
This mcchanism is not yet implcmc nted

protected ServantO
Basic Servant constructor

ven any initialisation No code => this does nothing, note
The Constmctor is protcctcd. W
constmctor? What 1s the mcaning?

hat is the use of spcc1~ îng a protcctcd
What do the~ want to achic,e b~ doing

this'>

protected Servant(FDObject obj ,Typ e[] t)
We initialise a servant by initialisin
associatin a e to this FDob·ect

g the FDObject that is bound to it and by

and only one FDObject (to, cri~). It appears that a Sen-ant sen-es one
What kmd of o~ject can be passed a s paramcter? rclat1ons ont~ '?

protected Servant(FDObject obj,Typ e[] t)
This is not an FDObject that we rec eive anymore to initialise the servant but
another servant.
This servant, passed in parame
constructed Servant as it's arent.

ter wîll be known by the currently

this is here that the HashMap "cbildr en" îs used.

public void init(String name, Servan t p)
Initialisation of a Servant by using
Rem : The first Parameter < String
not use passing it...

protected void finalize()

another one as this Servant's father
namc) is ne,cr uscd m the mcthod .

ant (ourselt) wants to destroy îtself. This method is called when the Serv
The aim is to free memory and to destroy the links we have with
Servants Parents.

lt 's

our

The Servant Parent will receive th e order to remove us from it's children
HashTable.
Thcre seems to be an crror in this 1 ncthod ·s code. Look in the code to find
more explanation about it

Page 90 of93

(~xtends
_ l'1'1plements
Aim of the class
Comments

Extends
' J.mplements
:Aim of the class

Comments

Annex 2: Retro Engineering documents

public Object sendMessage(String serverClass, String message, Object[]
args)

th rows [Il egalA rgu men tException, Ill egal AccessExcepti on,
In stantiationException,

JnvocationTar etException , ClassNotFoundExce tion
This methods calls a specific method of a specific class by passing it args
parameters
Ali is done dynamically => Creation of class, instanciation and so on ...

public Object sendMessage(String serverClass, String message, Object[]
args, ReturnListener 1)

throws lllegalArgumentException , IllegalAccessException,
InstantiationException,

In vocation T argetExcepti on, CI assNotF ou n dExce tion
This methods calls a specific method of a specific class by passing it args
parameters
Same as above but we have now a listener mechanism.

public Servant getRootServant()
Returns the servant that is the father of ail other ones
Uses the "children" HashMap to getthe information

public Servant getServant()
Retums our self(this Servant)

public Servant getServant(String servant_narne)
throws InstantiationException, rllegalAccessException,

ClassNotFoundExce tion
Returns a specific Servant object corresponding with the "servant_name"

arameter

en et. core. Servants. Yi sitor
Servant in cnet.core
null

The aim of tlùs sen-ant is to search for data in the datapooL

cnet.core.Servants.Reflect
Servant in cnet.core
null
The reflect sen-ant is called by Paste sen-ants and its aim is to fetch
information about datas (and give it back to the Paste servants to let them
connect the datas with the calling relation).
See the schema about this at the beginnin ofthis study (Tengo First ou)
Ho" and" hcn do \\C conncct the reflcct sen ants "ilh the nodcs'.>
Docs cach node (Rclatton/Data) hm c 1r s rcflect sen anf>

Page 91 of93

Annex 2: Retro E ngineering documents

public String getName ()

Returns the name of t
Reflect

he node contained in the FDObject associated to the

public ID[] getID()
Returns the ID of the F DObject contained in the Reflect.

public ID[] getCiassID ()

What 1s this ClassID? Whcn is it uscd'!

cnet.core.Servants.Past
Servant in cnet.core
nuJI

e

t used to com1ect a data object ,-..-itb a relation. Tltis is the paste Sen-arr
The aim of a Paste Ser
Jt gets reference of the
servant that is able to c
How the things work:

vant is to connect data to relations.
data node to connect it to the relation. Jt is the paste
onnect data to relation.

get a Reader object from the Data object with the 1. Paste Servant
"getReader" m
Data object .

ethod. At this time, the Reader is created by the

asses the Reader to the Relation by calling Relation's 2. The servant p
setReader() m ethod. The Relation is now connected to the data

3. The Paste Ser
servant pool).

vant is not refered anymore and candie (go back to a

protected void raw _pas te(Connection the connection)
Pastes the connection to the Relation
Tlus mcthod ctmentl~ l ms no implcmcntation!

public void create(Con nection new connection)
Creates the connection to the data to pass it to the Relation
This mcthod currentl~ l tas no implementat1011!

public void activate(Co nnection the connection)
Activating a connectio
relation that needs it.

public void paste(Conn

n means creating the link between the data and the

ection new _ connection)
Creates a connection to
the 2 are connected.

connect the data to the relation and pastes it so that

Pag e 92 of93

·Extends
Implements
Aim of the class

Comments

Annex 2: Retro Engineering documents

cnet.core.Servants.Iterator
Servant in cnet.core
null
The aim of this sen-ant is to trace the network (follow).
The aim is to know another relation 's id
We currently have no information about this class.
There is no implementation ...
We need more complete ilûormation about this sen anl.

cnet.core.Servants.Linkagelterator
Iterator
null
The aim of this sen-ant is to trace the network (follow).
The aim is to know another relation ' s id
We currently have no information about this class.
There is no implementation ...
We need more complcte information about tllis sen ant.

Page 93 of93

