Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

An exploratory analysis of an approach and prototype architecture for design
transformations

Deliege, Lionel

Award date:
2004

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. May. 2021

https://researchportal.unamur.be/en/studentthesis/an-exploratory-analysis-of-an-approach-and-prototype-architecture-for-design-transformations(a31c31b9-51c6-4cea-a3fb-a25672b37fc7).html

Facultés Universitaires Notre-Dame de la Paix, Namur
Institut d’Informatique
Année Académique 2003 - 2004

An exploratory analysis of an
approach and prototype architecture
for design transformations

Lionel Deliége

Mémoire présenté en vue de |'obtention du grade de Maftre en Informatique.

Résumé

La modélisation d’une base de données complexe, efficace et sans erreur
est une tache complexe requieérant beaucoup de connaissances, tant d’un
point de vue technique que d’un point de vue théorique. La méthodologie
de modélisation est claire, simple, unique et efficace. Les données sont
collectées et un schéma regroupant les concepts est crée. Il est ensuite
transformé en un schéma logique puis implémenté dans le systeme final.
La transformation du schéma conceptuel vers le schéma logique est une
action bien définie dans la théorie et peut étre faite automatiquement
a ’'aide d’outils. Ces outils, appelés CASE pour Computer Aided Soft-
ware Engineering, sont sensés implémenter correctement la théorie des
transformations. Mais cette implémentation est-elle correcte? Et que se
passe-t-il quand on atteint les limites de la théorie?

mots-clés : Outil CASE, regles de transformation, OCL+.

Abstract

Modeling a complex, efficient and error free database is a complex task
requiring a lot of technical and theoretical knowledges. The methodology
is clear, simple, unique and efficient. Data are collected and, using these
data, a conceptual schema is designed. It is transformed into a logical
schema and the implementation on the final system is made.

The transformation from the conceptual schema to the logical schema
is a theoretically well defined action and could be made automatically
using tools. These tools, called CASE (Computer Aided Software En-
gineering), normally implement correctly the theory of transformations.
But what about the correctness of this implementation? And what ap-
pends when we are beyond the limit of the theory?

keywords : CASE tool, transformation rules, OCL+.

Acknowledgement:

The author wishes to thank Pr. V. Engle-
bert, Mrs. C. Moyen and Mrs. V. Deti-
enne (University of Namur, Belgium), Pr.
B. Lundell, Dr. H. Gustavsson, Mr. A. Re-
hbinder (University of Skévde, Sweden), Pr.
B. Lings (University of Ezxeter, UK), for
helpful discussions and supervision of this

work.

iii

Contents

1 Introduction 1
1.1 Methodology and computer science 1
1.1.1 An efficiency problem 1
1.1.2 Following a method 1
1.2 CASE tool to implement methodologies 2
1.2.1 Computer should help to apply a method 2
1.3 CASE tool assistance for database design 3
1.3.1 Are tools really in adequacy to the reality? 3
1.4 Paper’sstructure 4
2 Research methodology 7
2.1 IntroQUCHION . « < oo s o o6 w0 5 @5 @ oo s 0w s e e s 7
2.2 Identifying the schemes T
2.3 Practice based schemes. 8
2.4 Methodology used for tool’s assessment 14
2.4.1 Designing adatabaseo 14
2.4.2 Drawing the conceptual schema in a tool 15

2.4.3 Transforming from conceptual schema into relational
model schema 0L, 15
2.4.4 Analyzing theresult 16
2.4.5 Commercial CASE toolsused 16
3 Transformation rules and commercial CASE tools 19
3.1 Classical transformation rules 19
3.1.1 What do we call Classical transformation rules? 19

3.1.2 Zero to many relationship 21

3.1.3 zero to one relationship 23
3.1.4 Many to many relationship 26
315 Isarelationship 28
3.2 Uncommon and practice based transformation rules 30

3.2.1 What is an uncommon and practice based transfor-

mation Tale?’ . . v is i nsr e s s e s o e sl 30

3.2.2 Limitation due to the conceptual models 30
3.2.3 Unstudied transformation rules 31
3.24 Informationlost 35

33 CASEBI00IS <« s cnsavinrosnssos o4 @5 5ds s 53 35
3.3.1 What is a repository? 35
3.3.2 Transformation rules in CASE tools 37
CASE tools evaluation 39
41 Introduction « w5 « s @ 4 s 6 6 5 b s 8 5 258 % 5 585 385 39
4.2 Classical transformation rules 40
4.2.1 Identifying vs non identifying relationship 40
4.2.2 Zero to many relationship 40
4.2.3 Zerotoomnerelationship 42
4.2.4 Many to many relationship 43
425 Is-Arelationship 43

4.3 Uncommon and practice based rules 45
4.3.1 Limitation due to the conceptual models 45
4.3.2 Unstudied transformation rules 46
4.3.3 Informationlost 46

44 Conclusion. : <+ :s s s e s snpoasswo nwe din®ssss 47

Using a novel rule approach for expressing transformation

rules 49
5.1 Introduction L. 49
5.2 The repository system 50
5.2.1 UML as Repository language 50
5.2.2 A basic repository example 51

vi

5.3 Transformationrules oo cnviwoons sne
5.3.1 Introducing OCL and OCL+ as transformation rules .
5.3.2 The active repository system
5.3.3 A basic example of OCL+ rules using the basic reposi-

BOTY o s v s s nma s w ok ¢ 5. 9586 5 94 § 86+ § 8

5.3.4 An alternative: Action Semantic

6 Solving practice base case using OCL+

6.1 UsedreposSibory - : = s o s = s 5 s s s w6 5 896 5 58 5 5 55
6.1.1 Introduction
6.1.2 Repository’s description oL oL
613 Ladkl .. : ciswes s snanns samssnassnen

6.2 Classical transformation rules
6.2.1 Building therules
6.2.2 Zero to many relationship
6.2.3 Zero to one relationship
6.2.4 Many to many relationship
6.2.5 Is-arelationship

6.3 Practicebasedrules
6.3.1 Limitation due to the conceptual models
6.3.2 Unstudied transformation rules
6.3.3 Informationlost

6.4 Conclusion

Conclusion
7.1 Purpose of this document

7.2 Future works o i e e e

Using CASE tools

Al Using ERwin
A.1.1 Conceptual phase.
A12 Logicalphase
A.1.3 Generating SQL code

A.2 Using Rational Rose
A2.1 Conceptual phase.

vii

A.2.2 Logicalphase, 92

A.2.3 Generating SQL code 92

A3 Using DB-main L. 93

A.3.1 Conceptual phase. 93

A3.2 Logicalphase 93

A.3.3 Generating SQL code 94

B Testing tools 95

B.1 Resulttable 95

B.1.1 Zero to many non-identifying optional relationship . . 95

B.1.2 Zero to many non-identifying mandatory relationship 96

B.1.3 Zero to many identifying relationship. 96

‘ B.1.4 One to many identifying relationship 97
i B.1.5 Zero to one identifying relationship 97
| B.1.6 Many to many relationship 98
B.1.7 Composition by two many to many relationship 99

B.1.8 Is-a disjunctive relationship 99

B.1.9 Is-a non disjunctive relationship 100

B.1.10 Limitation in conceptual model 101

B.1.11 Temporal Is-a relationship 101

B.1.12 Semantical information lost 102

C Architecture developed for the ASTRID project 105

C.1 Repository. o i e e 105

2 Rules. : o2 : 2 2s s s mmd s s 8 & 5 5,85 5 858 4 5 Bl s s 9 110

viii

List of Figures

2.1
2.2

2.3

24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

Description of the ER-win’s [Chen and Carlis, 2003]. 10
A genomic schema fragment to manage sequence similarity

search [Chen and Carlis, 2003]. 10
A genomic schema fragment to manage sequence clustering

[Chen and Carlis, 2003]. 11
APS Entity Relationship diagram [Penicka and Friedsam, 2002]. 12
CLARA entity relationship diagram (redrawn in English) . . 14
Bus example (Kolp 2000). 18
Identifying relationship instances example 22
Zero to many’s instances example 22
Zero to many identifying relationship 22
Zero to many non identifying relationship 25
Zero to one’s instance example 25
Zero to one identifying relationship 25
Zero to one non-identifying relationship 26
Many to many’s instances example 27
Many to many relationship’s transformation 27
Type of Is-A conceptual schemes 29
Type of Is-A logical schemes 29
ERwin’s Conceptual Schema 32
ERwin’s Logical Schema 32
Biological example, 34
Is-a temporal entity relationship diagram 34
Is-a temporal relational model diagram 34
Legacy Entity-Relation model 36

ix

3.18 Legacy Relational Model with semantical informations lost

4.1 Transformation of an optional identifying relationship in Ra-
Honal ROBE = s m e vhl s s d @B & M@ 56 o8 o d el sas
4.2 Zero to one relationship in ER-win

4.3 Many to many in Rational Rose
5.1 A simplerepositoryo

6.1 Repository version.1 : : ¢ s v s s 5 65 s 56 2 s m 65 65 ¢4 s
6.2 Repository version 2

6.3 Repositoryversion3d00

C.1 Original Metamodel
C.2 Metamodel version 1
C.3 Metamodel version 2 i i i i e e e e

C.4 Metamodel version 3

36

List of Tables

3.1

4.1
4.2

5.1
5.2

ERwin’'s SQL code 32
Rational Rose and optional primary key 41
SQL code for a zero to one relationship in ER-win 44
OCL quick specifications 54
OCL types, values and operations 54

xi

Chapter 1

Introduction

1.1 Methodology and computer science

1.1.1 An efficiency problem

At the end of the 60’s, software became a important problem if nothing
is done. The cost of hardware steadily declined even as hardware perfor-
mance steadily increased but software seemed headed in the opposite di-
rection. Large software projects were consistently late, over budget, and
full of defects [Shapiro, 1997]. We are in the software crisis and software
developers addressed the adequacy of an engineering approach in their pro-
fession [Jackson, 1990]. Since 1968 and the NATO (North Atlantic Treaty
Organization) conference on Software Engineering, good development pro-
cess have to follow a method. Methodologies define each step of the cycle
of development of an application. Developers have to produce well defined
documents and diagrams in order to formalize the development process.
Classical methodologies are monolithic, every step has to be respected. The
theoretical result is an error free application with a shortest time of devel-

opment.

1.1.2 Following a method

But this approach is criticized. Monolithic methodologies are considered as
a time consuming process with not enough result in term of software quality.
According to Hughes [Hughes and Wood-Harper, 2000]:

For example, the faster 'metabolism’ of today’s business environ-
ment means that developers do not have the luzury of being able

to follow all the detailed steps in a monolithic methodology.

Experts take their distances with methodologies, considering most of the
produced documents are not mandatory.

Anyway, according again to Hugues [Hughes and Wood-Harper, 2000]:

The study indicated that less-experienced developers relied more
on formalised methodologies than did their experienced colleagues.
These less-experienced developers did feel that the formal method-
ologies provided a psychological security and the more exrperi-
enced developers, whilst cynical about standards and quality, recog-

nised the need to produce ’what the managers wanted’.

Methodologies should be viewed as a security to guarantee a good result in
the applications development process. Nevertheless, the time consumed by
the product of each document, the exchange of these documents between
all developers of a project, the faster development required by the market

make the usage of classical methodologies impossible.

1.2 CASE tool to implement methodologies

1.2.1 Computer should help to apply a method

In this context, CASE tool appears to support the development method.
The potential of this software is terrible in terms of quality and productiv-
ity improvement. A citation made by Dixon [Dixon, 1992] as an example,
the DuPost Corporation has ’..created over 400 programs, all failure-free,
experiencing over 6:1 productivity gains.’. But in practice, this expectation

seems to be totally unrealistic. According to Butler [Butler, 2000]:

Recent research also lends support to the view that practitioners
are disillusioned with CASE; Kemerer (1992) reports that 70%
of CASE tools are not used 1 year after their intruduction and

only 5% are widely used, but not to their full capacity. Recent

studies indicate that the situation may not be as bas as Kemerer

suggests...

Possible reasons for this are CASE tool is another technology which au-
tomates a series of design practices and tasks. CASE tool helps to use
a development methodology. Logical modeling, generating documentation
etc. are not made easier. Another reason is actual CASE tools implement
methodology is a too strong way. The developer must follow each step de-
fined by the tool without understanding exactly why the step must be done.
Tools are not able to fit to a company and it is to the developers to fit their
development processes to the tool. Tools help the developer to produce the
right document to follow a defined methodology, but are not really able to
fit to the development process of a company. Steps are hard-coded. If the
steps of the used methodology of a company differ from the steps used in a
tool, the company would have to change its methodology to adapt this one

to the tool.

1.3 CASE tool assistance for database design

1.3.1 Are tools really in adequacy to the reality?

In this context, database modeling is separated from common CASE tool
usage. Methodology to design a database is clear, simple, unique and easy
to implement in a tool. All methods follow approximatively the same steps:
firstly requirements are collected from the relevant parts of an organiza-
tion, it will form a set of functional requirements affecting the database,
secondly using these requirements a conceptual schema is designed, thirdly
this schema is transformed into a logical schema closer of the implementa-
tion and finally the implementation of the database on the final system is
made.

One of the main point in this process is the transformation applied on
the conceptual schema to transform this one into a logical diagram. Number
of authors considered the transformation based method is the best to get an
error free and efficient database. To transform the conceptual schema, we

use rules. These rules are well defined in the literature and CASE tools are

able to implement these rules.

But even in database modeling, CASE tools have limits. Transforma-
tion are most of the time hard-coded, rules produce sometimes wrong re-
sults, dropping some constraints for example. No CASE tool can claim to
cover any possible transformations and, even if tool provides a language to
write our own transformations, this one is proprietary and rules can not be
exported or used in another tool.

Transformation rules are well defined in the theory, but is this theory in
adequacy with the practice based needs? Furthermore, are CASE tools that
implement the theory in adequacy with the needs of its users? In this work,

we will try to response to these two questions.

1.4 Paper’s structure

The purpose of this document is presenting some real life database problems.
Four examples present different usages of CASE tools in database design.
We do a systematic exploration of tools support for forward engineering with
specific schemes.

Chapter two introduces briefly the methodology used to conceive this
tool evaluation. It presents how we selected our practice based schemes, the
domain of each used schema and the assessed CASE tools.

Chapter three describes all tests used in the evaluation. The purpose of
the evaluation is double. We want to assess the quality of the implementa-
tion of the transformation rules used by CASE tools. These rules are well
defined in the theory and should be rightly implemented in each tool. We
secondly want to assess the capacity of tools to apply uncommon transfor-
mation rules. An uncommon transformation is a rule not studied in the
literature and required by the modeled domain. This chapter is the starting
point of the work.

Chapter four presents the result of the evaluation of three CASE tools,
Rational Rose, Computer and Associate ER-win and DB-main.

Chapter five introduces the work of Henrik Gustavson. It presents his

transformation oriented language OCL+ and his system of active repository.

Using this combination of repositories, rules and active databases, we are

able to implement our own transformation rules.

Chapter six presents the result of the implementation of rules using

OCL+ and the evaluation of the prototype build as proof of concept tools.

Chapter 2

Research methodology

2.1 Introduction

An important point in our research was working following a methodology
in order to demonstrate we are systematic in what we claim. This project
has two different objectives: firstly, using modeling of real life problems,
we want to assess the capability of CASE tools to be able to model and
transform schemes. If some problems are unsolvable by current tools, we
present secondly another approach to model our schemes using a meta-
CASE tool with a transformation oriented language.

The first part of our research was a systematic examination of the liter-
ature in order to find practice based schemes. By literature analysis, we do
not mean review of existing works about transformation rules in database
engineering but an examination of real problems undertaken with a specific
purpose in mind. These problems are already modeled using a specific mod-
eling language and using notations to define specific domain’s constraints.

The second part of our research consist in the presentation of OCL+,
a transformation oriented language and in the implementation of rules to

solve our practice based examples.

2.2 Identifying the schemes

The first objective was to identify real life schemes. We do not want only

school examples. By school examples, we mean examples solving an imag-

inary problem using some good theoretical practices and producing a per-
fect database without redundancy. These examples are not based on real
specifications. These specifications are precise and without any ambigui-
ties. Furthermore, some of these examples are made to explain theoretical
constructs.

It was important for us to assess the gap between theory and practice in
database engineering. Indeed, it not always possible to adapt real problem
to the theory. Some constraints are impossible to express using common
modeling languages. Furthermore, even if respecting the rules is the best
way to produce a strong and error free solution to a problem, we want to
demonstrate that is not always possible.

We selected four different papers modeling four different real life prob-
lems. Each schema uses entity relation models. This selection was made
on two criteria: the schema’s complexity, that means the number of entities
and the number of relationships linking theses entities, and the complexity
of the rules used to transform the conceptual schema into its logical schema.
For each schema, the result of the analysis is a list of transformation rules.
Each transformation will be tested in CASE tools to assess the quality of

each tool.

2.3 Practice based schemes

We selected finally four different papers and five different schemes. For each
selected schema, we present firstly its background and its studied domain

and secondly we summarize the important points we extracted from.

First article [Chen and Carlis, 2003] is about representation of DNA data.
The goal of this paper is to represent biologists’ current understanding of
their biological knowledge and to support biologists’ subsequent biological
discovery activities. Number of researchers characterizes biological data as
more complex than business data, a biologic data is often heterogeneous
in data sources (Davidson 1995), uncertain, inconsistent, and complicated

[Willson, 1998]. New discoveries are regularly made and structure of data

could change due to this fact.

Building a schema able to capture data efficiently is complicated and
furthermore, according to the authors, quality of schemes used in biology
is poor mainly because they are made by biologist them self without any
knowledges in database design. The result is most of time inefficient, with
redundancy and not enough constraints. Requests to extract data are slow
and difficult to write.

Two schemes, 2.2 and 2.3, were extracted from this article. They were
created using ER-win, the semantic of the notation is illustrated by the
figure 2.1. We are mainly interested in the subschema to manage sequence
similarity search and more precisely to the relationships between Query Set A
Member, Query Set B Member, Identification Set and Pairwise Similarity Hit.
The authors use foreign keys and call attributes member of these foreign
keys with special names. Furthermore, the schemes presented in this article
uses different relationships between the entities. Schemes are huge and the
transformation from entity relation to relational model is too complex to be

achieved without a tool.

The second article [Penicka and Friedsam, 2002] is about APS (Advanced
Photon Source) survey and alignment database. An important number of
data is needed for precise positioning of beamline components for the APS
accelerator systems. These data can not be stored in raw mode because users
need to access to them quickly and easily. The tool used until now (Geonet)
was developed under a DOS environment and became slowly obsolete in
every used domain (measure, digital system, operating system, database).
The subject is specific and no commercial tool exists to help them to achieve
their need. This paper presents a new database schema. Its goal of this was
to produce a 3NF schemes for efficiency and saving space goal.

The selected schema 2.4 uses entity relationship notation. An important
point appears in the used Is-a relationship linking Survey Point to 1D Survey
Point, 2D Survey Point, and 3D Survey Point.

The Survey Point has three defined subtypes: 1D Survey Point, 2D
Survey Point, and 3D Survey Point. The m indicates that Survey

Point may belong to anywhere from one to many subtypes. The

. Entity Name

/ Primary Key B
/ Attriute D!
fequence 1D (F

Biologml quugnce Be Seq String

Sequeme 1D/

Seq Length” i

Bilogical Function Compound ID

equence ?’Ig‘(;”‘(’)c‘u‘e Function ID _Has/__ __ o ICompound Name
sSequenee Structure ID (FK) Requires Descfiption

tructure 1D Sequence ID (FK) "
Cellular Location \ Bio Cdmpound ID (FK)
Cellular Condition \ d1 Descripton. | Relationship
Structural Profile ! | Link Phrases Independent

{ i ki
m lnﬂ , rolename of migrated foreign key
nmlomhlp _relationship " migrated foreign key

Figure 2.1: Description of the ER-win’s [Chen and Carlis, 2003].

/ Relate as Sequence I-\Qe Pairwise Similarity Hit

----- T T PWS Hit ID
Il mr'sr“‘fd“tm Set Set 1D (FK)
L o< Seq A ID (FK)
Description —+— —G4 5eq B ID (FK)
Query Set B Member 5o 1o oion Date Score
Set |d (FK) Maxscoreperc
Sequence Id (FK) / Relate As Sequence B Pvalue Fraction Portion
U e

.|.

Experiment Method
Method Code |
Creation Date |
wnscors | Similarity Hit Detail
NMaxscorepant: Rm"d
Minnlpvalue S * »
Minmatchperc Similarity Di y Result | PWS Hit ID (FK)
Minspanperc | 4— — i Experiment ID Subscore
-+ -+ Description Seq A ID (FK) Match Length
Sequence Seq B ID (FK) s‘:g;;:%"
SequencelD 4/ Relate As Sequence A oy Method Code (FK) Seq A Sirand Flag
mw | /Relate As Sequence B _ | Relationship String Sea A
g , | Experiment Date
Parent Seq ID (FK)P0— § Ss: g g:'nd Flag
| Seq B End
s i e sl S

Figure 2.2: A genomic schema fragment to manage sequence similarity
search [Chen and Carlis, 2003].

10

Cluster Matrod
Method Code
Creation Date
Method Description

a

Sequernce Clusler
Cluster Id
Cluster Method Code (FK)

Assembly Method
Method Code

Creation Date
Description

7’-

Soquen;e Assembly
(Cluster Method Code (FK)
Method Code (FK)

Ciuster Sequence Mamber
‘Sequenne ID (FK)
Cluster Method Code (FK)

wChmerld(FK)

Description
Crealion Date

e

Seguence Alig

Cluster Methed Code (FK)
Sequence ID (FK)

Assmbly Method Code (FK)
Cluster Id (FK)

AlignStrand Flag

¥

¥

Annotation

Consensus Calling Method
Method Code

Creation Date

Method Description

i

\

Consensus Sequence
[Consensus ID (FK) 1
Consensus Method Code (FK

Cluster Method Code (FK)
Cluster Id (FK)

Sequence
Sequence ID

Descrip *)_]

-

Seq String
Parent Sequence ID (FK) |

T |

Figure 2.3: A genomic schema fragment to manage sequence clustering

[Chen and Carlis, 2003].

11

LATTICE-IDEAL
<IN>
\/

<3

ROLL-COMP

€ D

ASSIGN-COMP

Figure 2.4: APS Entity Relationship diagram [Penicka and Friedsam, 2002].

12

IDEAL-FIDUCIAL

D

COMP-FID

TARGET-FID

subtypes are not mutually exclusive, because one specific instance
of a Survey Point can be measured with a level instrument as a 1D
Survey Point or with a laser tracker as a 3D Survey Point. This
generalization hierarchy contains an IS-A relationship, which im-
plies that the subtypes have the same identifier as the supertype
Survey Point, and they can also inherit many other attributes of
the Survey Point.

(--)

The 1D Survey Point, 2D Survey Point, and 3D Survey Point dif-
fer only in the number of coordinates and respective standard
deviations they contain. The primary key is point ID in com-
bination with measured date. These relations cover measured
point coordinates, measuring methods, and order of survey net-
works. In addition, they hold hyperlinks to measurement data
files, which will be stored in a hierarchical directory on a server.
[Penicka and Friedsam, 2002]

The third article [Lundell and Lings, 1999] was written to expose a legacy
problem. The company Skovde Systemutveckling AB (SSAB) has devel-
oped for an international corporation which is a supplier to the car-industry
a system (CLARA) to support the management of non-conforming prod-
uct in manufacturing. The first version of the system has been in use at
the company since May 1995 and evolved as new requirements have been
identified.

Schema 2.5 is an ER diagram using the Information Engineering no-
tation. We are particularly interested in the relation between Comment,
IndividualComment, MiscComment and MainActivity. Indeed, these four enti-
ties need to be merged into an unique entity for technical and legacy reasons.
Existing Tools using the database are made to use this unique entity and to

guarantee that every constraint is respected.

Last article [Kolp and Zimanyi, 2000] uses a school example. Schema 2.6
is used in the paper to test a system of schema optimization using prolog.

This schema is interesting for two reasons: it introduces recursive relation-

13

Administrator Comment Customer

Code RapportNumber Code
= — ————— ActiityDate By — — — — — ~©H Designat
ot ignation
Sntiers Comment Purchaser
MainActivity lpd'widualCommem MiscComment CommentLine
SO ST e,
f NumberOfErrors
ErmorSupensor H——————— Custitemio } <}
ErrorAnalysis NumberOfErrors e w‘l
T
| | | Item
| | [Code
| : ————— Designation
-
ode
I | ErrorC
Iy S .
| Designation f '
|
l Un
it
| Code
b oo i s i G A, S 1
Designation || '

Figure 2.5: CLARA entity relationship diagram (redrawn in English)

ships between the entities and uses different kind of basic relationships that
we did not found in the other papers. CASE tool is an implementation of
database design theory and we want to assess if this implementation is cor-
rect or not. We extract from this example all kinds of construct we did not

find in the other selected papers.

2.4 Methodology used for tool’s assessment

2.4.1 Designing a database

Designing a database always follows the same methodology. First, the de-
veloper draws the concepts, called the conceptual schema. It is an abstract
view of the problem, a high level design. The conceptual schema does not
keep out of any implementation tricks and of the platform’s destination.
Different models exist to represent a conceptual schema, for the moment,
ER (Entity Relationship) and UML (Unified Modeling Language) are the

most used.

14

In this schema, the developer draws the entities, the attributes, chooses
which attributes identify entities (identifiers are not mandatory but highly
advised). The developer specifies too the relations between the entities and
the cardinalities of these relationships.

After that, the conceptual schema is transformed it into a logical schema.
Logical schema keeps out of the implementation and platform’s destination.
Actual databases use the relational model and schemes are coded using SQL
language. The relationships defined in the conceptual schema are mainly
transformed into foreign keys. Another possible transformation is to merge
entities part of the relation. Identifiers are transformed into primary key and
some constraints are added to guarantee the new schema represents exactly

the same thing than the conceptual schema.

2.4.2 Drawing the conceptual schema in a tool

Designing a database with a CASE tool is different from one program to
another. In some cases, we have to enter all data when the conceptual
schema is drawn. Users choose which transformation has to be applied on
each kind of relationship. Some other tools ask when the transformation’s
process is launched which transformation has to be applied on every kind of
relationship.

Nevertheless, whatever the used tool, designing a database in a tool has
to follow the two same steps. Firstly, developer has to enter all data and to
build his conceptual schema. Developers need to specify every information
used by the tool to transform a conceptual schema into logical schema with-
out any ambiguities. This step is based on an identification of the needs.

Secondly, developers effectively apply the transformations on the schema.

2.4.3 Transforming from conceptual schema into relational

model schema

Transformation is a strong theory and should be totally automatized. But in
order to automatize the transformation process, user has to add enough data
and has to have a high knowledge of the tool and transformations’ theory.

To help the user to apply the transformations, some CASE tools like ER-win

15

prefer to unautomatize the process and to ask the users for transformation
that has to be applied on each construct or relationship using graphical
wizards.

From our point of view, the transformation process has to be totally
automatized. Conceptual schema are compound by many entities and many
relationships. Drawing the conceptual schema and identifying the needs are
complex steps. Transformation process needs a global view of the schema
to be applied properly. Graphical wizards hide the schema and only show
the problematic relationships. Users should be able to define which trans-

formation shall be used to transform each relationship.

2.4.4 Analyzing the result

For each studied transformation, we write the result of the transformation
in a table. This table records the name of the transformation, troubles
we met when we drew the conceptual schema, troubles we met when we
transformed the conceptual schema into the relational model and finally a
small note records additional information. Result tables are listed in annexe
B. For each line of the result table, we analyse the problem. Using these
conclusions, we are able to demonstrate if CASE tools are in adequacy with
practice based examples or not.

The next chapter presents for each studied transformation the result of
the assessment. The assessment has two goals: firstly we check if the tools
were able to transform the schema without asking any new information when
the transformation process is launched, secondly we check if the relational

model and the produced SQL code are correct.

2.4.5 Commercial CASE tools used

We decided to assess three different tools, with different characteristics.

ER-win version 4.1 uses two different models for logical and physical no-
tation: IDEF1x [IDE, | and Information Engineering [James and Finkelstein, 1981].
For the moment, this tool is developed by Computer and Associate. The
purpose of the tool is only database design. The transformation process is

divided in two steps: first user draws conceptual schema and decides which

16

transformation has to be applied on the sub-type relationship and secondly,
a graphical wizard helps user to transform the conceptual schema. There is
no language to create our own rules. The system is based on two synchro-
nized repositories. If a modification is made in one model, this modification
is automatically reflected on the other model.

DBmain is a forty persons/year project of the university of Namur di-
rected by Jean-Luc Hainaut. This tool uses the ERA notation and is able
to create, store and transform conceptual and logical schemes. It provides
too a strong system of transformation rules with the possibility to script the
transformation process. Its repository can be updated to be able to store
new information or new models. It includes too a proprietary language,
Voyage 2, to extend the functionalities of the tool. We use the version 6.5.

Rational Rose is our last tool. Part of the rational process, it uses UML
for modeling language. Unlike DB-main and ER-win, the purpose of the
tool is not only database design but the whole development of an applica-
tion. Rose uses two separate repositories without link between them. When
a schema is exported in the data modeler, modification of the conceptual
schema does not change anything in the logical schema. So, each modi-
fication of the conceptual schema induces the regeneration of the logical
schema.

For each tool, we explain the way we use it in the annexe A. The pur-
pose of this annexe is not to explain how to use a tool, but to explain how
we use each tool. The distinction is important, we want to provide every
information in order to demonstrate we are systematic in our method of as-
sessment. Using these information, everybody could reapply our assessment

and produce the same results.

17

Figure 2.6: Bus example (Kolp 2000).

18

Cause

Chapter 3

Transformation rules and

commercial CASE tools

3.1 Classical transformation rules

3.1.1 What do we call Classical transformation rules?

Transformation based approach in database design is considered now by
number of authors as a good practice to transform an abstract specifica-
tion into a correct and efficient database structure. With the analysis of
database requirements, developer builds a conceptual schema. This con-
ceptual schema is subsequently transformed into logical schema and imple-
mented in the final system. A transformation rule is a correctness preserver
operator, that means the schema resulting of application of the transfor-
mation rules on a conceptual diagram expresses the same thing than the
original diagram.

Between conceptual and logical schemes, transformations have to be ap-
plied. In the DB-theory, the transformation concept can be defined as fol-

lows:
A Schema transformation is an operator that applies on a con-
struct C' of a schema S, and that replaces it with other constructs
C', leading to new schema S’. C' is the target of source construct
C through T, i.e. C' =T(C).
(--)

19

To define transformations more precisely, we need a second map-
ping t, that specifies how valid instances of construct C are trans-
lated into C' instances: if ¢ is an instance of C, then ¢ = t(c)
is an instance of C'.

[J-L. Hainaut and Roland, 1996]

A special class of transformations is semantics-preserving. Through
the transformation, no semantical information is lost. Using a semantics-
preserving transformation 7', and a schema R, we obtain by the application
of T on R a new schema R’, i.e. R’ = T(R). Each instance of R should be
recovered from an instance of R’ using an algebraic or procedural operators.

A higher class of transformations is symmetrically reversible. Every
instance of C can be expressed in C’ using mapping t and each instance of
C’ can be expressed in C using the opposite mapping t’.

In order to limit the scope of this work, we choose to divide symmetrically
reversible transformations into four new classes, Zero to many, Zero to one,
Many to many and Is-a. Each one denotes a set of transformations with
common characteristics. They work on relationships with the same maximal
cardinalities, and, through a same class, variations are made on the minimal
cardinalities. Each relationship could be transformed using different rules.
We decide to transform relationships using only transformation rules found

in the selected practice based example presented in the previous chapter.

Identifying versus non identifying relationship

In classes Zero to many and Zero to one, the relationship could be identifying
or non identifying. That means, considering the relationship R between
the entity Parent and Child, if R is an identifying relationship, an instance
of Child is identified by an instance of Parent and by zero or more of its
attributes. Figure 3.1 illustrates an example of identifying relationship’s
instances. A and B are linked by a Zero to many identifying relationship R.

Each CASE tool uses its own representation for an identifying relation-
ship. DB-main adds the name of the relationship into the identifier of the
entity, in opposite to ER-win and Rational Rose which draw the identifying

relationship with a continuous line instead of a dotted line.

20

These different views have some advantages or disadvantages: the DB-
main system forces user to build completely the identifier of an entity in one
action, by selecting all attributes and relationships which are part of the
identifier. This system produces for us better schemes, user does not make
mistake when he creates the identifier.

The ER-win and Rational Rose system could cause mistakes in the
schema. For example, a child entity should have only one zero to many iden-
tifying relationship as identifier. With only one zero to many relationship as
identifier, all instances of the child entity must reference a different instance
of the parent entity. This constraint matches against the cardinalities of the

relationship.

3.1.2 Zero to many relationship
Identifying relationship

A zero to many identifying relationship links two entities A and B. Each
instance of A can be referenced by zero, one or many instance(s) of B and
each instance of B must reference one and only one instance of A. Figure 3.2
illustrates allowed and disallowed instances.

Identifying means this relation is a part of the B’s identifier with other
attributes or relationships. For example, if the B’s identifier is made up of
the attribute b1, for all instances Il and 12, if 11.b1 = 12.b1 then I1.R must
reference another instance than I2.R.

The usual transformation 3.3 to implement this relationship into rela-
tional model consists in, for all attributes of A’s identifier, adding these
attributes into entity B referencing the entity A. These new attributes are

mandatory and are part of the primary key group with other B’s attributes.

Non-Identifying relationship

A zero to many non identifying optional relationship links two entities A and
B. Each instance of A can be referenced by zero, one or many instance(s)
of B and each instance of B can reference zero or one instance of A.

The usual transformation 3.4 used to implement this relationship into

relational model consist in, for all attributes of A’s identifier, adding these

21

A1 A2 AR B2

1 a 1 1

2 1 1
4

Allowed and disallowed instances

Figure 3.1: Identifying relationship instances example

Parent Child Parent Child

Allowed Disallowed

Figure 3.2: Zero to many’s instances example

B
A " F 5. bl
a P R T
bl
: i i
—-—;D A bl
e id:ID_A
ld. EZC—:\ Q‘—_\—‘_‘_ bl
ref:ID A

Figure 3.3: Zero to many identifying relationship

22

attributes into entity B referencing the entity A. These new attributes are

optional.

Variations

Some variations on minimal cardinalities can be made and combined. The
non identifying relationship can be mandatory instead of optional. In this
case, each instance of A can be referenced by zero, one or many instance(s)
of B and each instance of B must reference one and only one instance of A.
The usual transformation used to implement this relationship into relational
model is similar to the optional relationship, but the attributes members of
the foreign key group are mandatory.

Both relationship (identifying or non identifying) can be mandatory for
the parent entity. That means each instance of A can be referenced by
one or many instance(s) of B. Implementing this constraint directly in the
relational model is impossible. The only way is by adding a constraint in

the target database. In SQL, it can be made using a trigger or a check.

3.1.3 zero to one relationship
Identifying relationship

A zero to one identifying relationship links two entities A and B. Each
instance of A can be referenced to zero or one instance of B and each instance
of B must reference one and only one instance of A. Furthermore, the
relation is a part of B’s identifier. For example, if the B’s identifier is made
up of the attribute bl, for all instances Il and 12, I1.R must reference
another instance than I2.R. Figure 3.5 illustrates allowed and disallowed
instances.

The usual transformation 3.6 used to implement this relationship into
relational model consist in. for all attributes of A’s identifier, adding these
attributes in entity B referencing the entity A. These attributes are manda-
tory and are added to the B’s primary key. Furthermore, the group of
attributes constituting the foreign key is unique. That means if the primary

key of A entity is made up of two attributes al and a2, the union of B.al

23

and B.a2 referencing each instance of A entity must be different for each

instance of B.

Non-Identifying relationship

A zero to one non-identifying relationship links two entities A and B. Each
instance of A can be referenced by zero or one instance of B and each
instance of B can reference zero or one instance of A.

The usual transformation 3.7 to implement this relationship into rela-
tional model consists in, for all attributes of A’s primary key, adding these
attributes in entity B referencing the entity A. These attributes are optional
and the group of attributes constituting the foreign key referencing entity

A is unique.

Variations

Variations could be made on the minimal cardinalities. The non-identifying
relationship can be mandatory for the child entity. In this case, attributes
part of the foreign key are mandatory. For both relationships, the minimal
cardinalities for the parent entity can be one and only one. This constraint
can not be expressed directly in the relational model and must be imple-
mented by a trigger in SQL to guarantee each instance of A is referenced by
an instance of B.

Variations can be made by the way that we transform the relationship.
Usually, the studied example transformed the relationship using a foreign
key, but merging the child entity with the parent entity could be, in some
cases, more efficient. It is the case when the parent entity must have one
and only one child which references each of its instances. Merging the enti-
ties consist in transferring all attributes into the parent entity and adding
constraints on the attributes, depending of cardinalities of the original rela-

tionship.

24

A

B

id:a

B
a = "
id-a refa

Figure 3.4: Zero to many non identifying relationship

Parent Child Parent Child

Allowed Disallowed

Figure 3.5: Zero to one’s instance example

A
a ——0-1—@-—1-1 2
ida L
\’ B
A 2
a bl
ida < id:a
ref

Figure 3.6: Zero to one identifying relationship

25

A B
a —0-1—@—1-1— Bl
id:a id: bl
\L B
A bl
a a
e id: bl
id:a Q——_&_ id-a
ref

Figure 3.7: Zero to one non-identifying relationship

3.1.4 Many to many relationship
Relationship

Many to many relationship links two entities A and B. Each instance of
A references zero, one or many instance(s) of B and each instance of B
references zero, one or many instance(s) of A. Figure 3.8 illustrates the
allowed and disallowed instances for a many to many relationship and one
of its variation.

It is impossible to implement directly this relationship using foreign keys.
The most usual implementation illustrates in figure 3.9 is the addition of a
entity K. This entity is linked with two zero to many relationships to entities
A and B.

Variations

Some variations can be made on minimal cardinalities inducing new con-
straints. The minimal cardinalities, zero at the outset, mean each linked
entity can reference zero, one or many instance(s) of the other entity and
vice versa. But in some cases, this minimal cardinality is one, that means

each linked entity can reference one or many instance(s) of the other entity.

26

0-n - 0-n 1-n-1-n 1-n - 1-n _
Parent Child Parent Child Parent Child

Allowed Allowed Disallowed

Figure 3.8: Many to many’s instances example

A B
a b
0-N O-N
(s>
1-1 1-1
R
id:R_BB
R_AA

Figure 3.9: Many to many relationship’s transformation

27

3.1.5 Is-a relationship

Is-a relationship is probably one of the most studied and one of the most
complicated relation we can meet in a conceptual schema. Is-a relationship
can be divided into four categories [J-L. Hainaut and Roland, 1996]. Firstly,
the relation can be total or partial. In a total Is-a relationship, each instance
of the parent entity must be referenced by an instance of at least one of its
children. Secondly, the relation can be disjoint or overlapping. In a disjoint
Is-a relationship, each instance of the parent entity can be referenced by one
and only one instance of one of its child. That means, if the parent entity
A has two children B and C, if an instance of B references the instance al
of A, there is only one instance of B which references al and no instance of
C references al.

Mixing up these two variations, we have a Total-Disjoint relationship, a
Partial-Disjoint relationship, a Total-Overlapping relationship and a Partial-
Overlapping relationship. Each variation can be transformed in different way
into the relational model. Conceptual schemes is illustrated by figure 3.10,

examples of logical transformation is illustrated by figure 3.11.

Partial Disjunctive relationship

An is-a disjunctive relationship is a relation between a super-type entity and
one or more subtype(s). Disjunctive relationship means no parent entity can
have the same value as any B or C entity, and so on for B and C.

There is two ways to implement this relationship. First, child entities
reference the parent entity using a unique foreign key. A constraint must
be added in the relational model to guarantee every instance of every child
references a different instance of the parent entity. Such a constraint can
not be implemented directly in the relational model and needs a trigger to
be implemented in SQL.

The other way to implement this relationship is to merge every child into
the parent entity. The child’s attributes are grouped into optional group and
a constraint is added to guarantee the original is-a constraint is respected.
Such a constraint can not be implemented directly in the relational model

and needs too a trigger to be implemented in SQL.

28

A

id:a

Partial-Disjoint
A
2
C_1[0-1}
B _1[0-1
id:a
B axel:C_1 e
2 B_1 a
b e
id:a id: 3
raf raf

Figure 3.11: Type of Is-A logical schemes

A

id:a

A

id:a

Total-Overlapping
A
2
C_1[0-1]
B _1[0-1]
id:a
B at-1st-1C_1 L
2 B_1 i
?’d' id: a
- :g - raf
Total-Disjoint
A
2
C_1[0-1]
B_1[0-1]
B id:a C
- exact-1C 1 =
ES B 1 2
b = (S
1d:a 1d:a
raf ref

29

Partial Overlapping relationship

An Is-a partial overlapping relationship is similar to the previous relationship
but there is no constraint between the child entities.

There is two ways to implement this relationship. First, child entities
reference the parent entity using a unique foreign key. The other way to
implements this relationship is to merge every child into the parent entity.

The child’s attributes are grouped into optional group.

3.2 Uncommon and practice based transformation

rules

3.2.1 What is an uncommon and practice based transforma-

tion rule?

Theoretical transformations try to cover every case which developer could
meet when he develops a database. But these transformations are not always
in adequacy with the real life. To demonstrate this hypothesis, we have read
some practice based schemes and analyse the applied transformations.
This analysis shows three categories of transformations that are not stud-
ied in the literature or not implemented in CASE tools. We do not claim
these categories cover each possible case of uncommon transformations, but
we claim there is some uncommon transformations. If actual CASE tools

are not able to transform schemes rightly, it could cause some problems.

3.2.2 Limitation due to the conceptual models

Limitation can appear due to the conceptual models. As we explained be-
fore, the transformation process has to be applied automatically. Users
should be able to choose the transformation to apply on each relationship
and eventually to add additional informations needed by the transformation.

The biological example illustrates this problem. The schema was drawn
using ER-win. This program has the particularity to be able to mix the
conceptual and logical models. User is able to see the migrated attributes

when he draws the conceptual schema and is able to change the name of

30

these attributes. Furthermore, if entities A and B have only one attribute
ID as identifier, and if entity C' is linked to A and B with a zero to many
relationship, ER-win adds one attribute I D in the entity C' to implement
this relation and this attribute is added to two different foreign key groups.
This example is illustrated by schema 3.12, schema 3.13 and SQL code 3.1.
This is a characteristic of the semantic used in the model IDEF1x.

Using this special notations, the authors of the example express a new

constraint. Conceptually, this constraint can be described as follows:

Each instance of Pairwise Similarity Hit, Query Set A Member and
Query Set B Member must reference an instance of Identification
Set. Each instance of Pairwise Similarity Hit can reference an
instance of Query Set A Member and Query Set B Member. If
an instance psh of Pairwise Similarity Hit references an instance
qsa of Query Set A Member and ¢sb of Query Set B Member then
qsa. qsb and psh references the same instance is of ldentification

Set.

The proposed implementation 3.14 consists in adding only one attribute
Set ID in the entity Pairwise Similarity Hit to implements the three foreign
keys.

To transform correctly this schema, the user has to be able to choose the

name of attributes implementing the relationship.

3.2.3 Unstudied transformation rules

An unstudied transformation rule is a variation of an existing transformation
(in our example, a temporal is-a relationship).

Our example is based on a is-a partial overlapping relationship with a
temporal aspect. A temporal database records present and previous states
of the application domain. To achieve this goal, each modification of data

must be recorded with timestamps.

If an entity type is temporal, then, for each entity that existed
or still exists, the birth and death instants (if any) are known

(valid time), and/or the recording (in the database) and erasing

31

A

ID ID

-y
|

i

ident

Figure 3.12: ERwin’s Conceptual Schema

A B

ID: CHAR(18) ID: CHAR(18)
— |_ -6
|
|

2 %

ident: CHAR(18)
ID: CHAR(18) (FK)

Figure 3.13: ERwin’s Logical Schema

CREATE TABLE A (ID CHAR(18) NOT NULL PRIMARY KEY (ID));
CREATE TABLE B (ID CHAR(18) NOT NULL PRIMARY KEY (ID));
CREATE TABLE C (

ident CHAR(18) NOT NULL,

ID CHAR(18) NULL

PRIMARY KEY (ident)

FOREIGN KEY (ID) REFERENCES A

FOREIGN KEY (ID) REFERENCES B);

Table 3.1: ERwin’s SQL code

32

instants (transaction time) are known. This information is im-
plicit and is not part of the attributes of the entity type. If an
attribute is temporal, then all the values associated with an en-
tity are known, together with the instants at which each value was
(is) active. The instants are from the valid and/or transaction
time dimensions according to the time-tag of the attribute. If a
relationship type is temporal, then the birth and death instants
are known. The two time dimensions are allowed, according to
the time-tag. [Detienne and Hainaut, 2001]

The article does not specify if we are in valid or transaction time but
the transaction time is useless in this domain. For each modification, we
need a timestamp to record when the new data has been inserted in the
database. Each instance of 1D Survey Point, 2D Survey Point or 3D Survey
Point must reference a parent instance in Survey Point. A parent instance
can be referenced by one or more instance(s) of its children.

Common implementation of temporal databases uses two timestamps to
store the date of an instance (starting and ending date). Between these
two dates, nothing changes in the instance. For example, using a database
recording every information about workers, the temporal table stores the
name, the address and the department of the worker. If one of these infor-
mations changes, a new instance is created, the lasted old instance receives
the date of today as the ending date and the new instance receives the date
of today as starting date.

In our example, such a reasoning is false. To position the beamline,
the same points are measured repeatedly many times by many different
methods. Between two dates, the value of the lasted recorded instance is
different and could change. We need to take a picture at regular moment
to see the evolution of the domain. We need one timestamps to record the
date of each instance. Figure 3.15 and figure 3.16 illustrate the applied

transformation.

33

A Pairwise Similarity Hit

PWS Hit ID

Set ID (FK)
Seq A ID (FK)
Seq B ID (FK)
Score

Pvalue Fraction Porton
Abs Pvalue Log Portion

Figure 3.15: Is-a temporal entity relationship diagram

Machine
Sector
|__Desoption |
Targel_ID

Point_ID

1o

——{}~0

4
X
Sz
SX
Method
NetworkOrder

LinkToFile

— b

Figure 3.16: Is-a temporal relational model diagram

34

3.2.4 Information lost

Until now, all applied transformations have to be symmetrically reversible.
But sometimes, this constraint is too strong and the developer accepts to
loose semantical information when he applies the transformation rules on the
conceptual schema. For example, the lost constraint could be implemented
directly in the software and does not need to be implemented in the database.

Our example is a legacy problem. The original schema, made for an old
database engine (paradox) was optimized and transformed to be usable on
the final system. The original conceptual schema was kept but the logical

schema is lost. The first idea to get the logical schema was to retro-engineer

the paradox database to reuse this database schema [Lundell and Lings, 1999],

but no tool at that time was able to do this action correctly.

This test consists in merging four entities: Comment, IndividualComment,
MiscComment and MainActivity. No constraint is added to respect the cardi-
nalities of the original relationships, every constraint is already implemented
in tools using the database. Figure 3.17 and figure 3.18 illustrate the applied

transformation.

3.3 CASE tools

3.3.1 What is a repository?

Purpose of CASE tool is helping user to conceive a software. It provides tools
to share data between developers, notations to describe the behavior of the
application, notations to describe the classes, the database, etc. To achieve
this goal, CASE tool uses different notations, different models. These models
are the description of the models. They are the underlying notations. We
call these notations the meta-model. It contains the type definitions for
the different data items used in the models. It describes what is an entity
or an attribute, relationship between an entity and its attributes etc. But
describing an application is useless if tool does not provide anything to store
this description. Case tools need a kind of database able to store models
without loosing information. We call this database the repository.

The meta-model describes every characteristics of every items that user

35

Comment

MainActivit
RapportNumber
ErrorSupenvisor ézm?w?te
ErrorAnalysis

|
Individual Comment MiscCorInment
"

CustlitemNo
NumberOfErrors

Figure 3.17: Legacy Entity-Relation model

Comment
RapportNumber: NOT NULL

ActivityDate: NULL
Comment: NULL
CustitemNo: NULL
NumberOfErrors: NULL
ErrorSupervisor: NULL
ErrorAnalysis: NULL

Figure 3.18: Legacy Relational Model with semantical informations lost

36

could use to describe his model. A repository has a meta model to describe
the various types of information which it can store. These types of informa-
tion can be high level concepts common to every model (an attribute has a
name) or can be specific to a tool and is stored for internal reason by the
tool. A repository is a database, it must provide access’ method to retrieve
stored data easily, probably support data versions and security restriction
as a classical database.

In our work, we limit the usage of the repository to its storing purposes.
We do not study the meta data exchange, the security restriction or the

versioning system.

3.3.2 Transformation rules in CASE tools

The first step of the conception of a database consists in collecting the
requirements from the relevant parts of an organization. It forms a set of
functional requirements affecting the database application, a set of database
requirements affecting the design of the database. These requirements are
used to form a conceptual schema of the system. Ideally, the conceptual
schema does not contain implementation details, and can therefore often be
understood by less technically oriented users. This conceptual schema is
mapped to a logical schema. This schema contains every implementation
details.

Mapping the conceptual schema to the logical schema is made using
transformation rules, as we already explain in the previous sections. CASE
tools provide system to help this mapping, by implementing transformation
rules. The transformation rules, using the conceptual schema stored in the
repository, create the logical schema and store it into the repository. Ideally,
this action is automatic, user does not have to do anything. Furthermore, the
schemes have to be synchronized, if a modification is made in the conceptual
schema, this modification must be reflected on the logical schema.

In this work, we pay attention to two characteristics of transformation
rules: rules must be applied automatically, using every information stored
in the repository by the user and must provide the right result regarding

transformation’s theory.

37

Chapter 4

CASE tools evaluation

4.1 Introduction

Three CASE tools based on different meta models were used for this evalu-
ation. DB-main and ER-win are tools on ER model. Their purpose is only
databases design. Rational Rose is based on UML. Its purpose is the whole
cycle of development of an application. It implements the Rational Process’
methodology.

These programs have different ways to transform a conceptual schema
into a logical schema. DB-main is able to mix the relational notations with
the ER notations. To transform schemes, developer can transform by hand
every relationship and therefore choose the best transformation rule for each
relationship. Users could too build a script to transform automatically every
relationship meeting a specific precondition.

ER-win works with a system of double linked repositories. Every mod-
ification made on a schema in the ER model is automatically reflected on
the schema in the relational model. Nevertheless, two exceptions are made
to transform Many to many relationships and Is-a relationships. Firstly, the
user can decide if subtypes have to be merged with their super type. Sec-
ondly, a wizard helps the user to choose which rule has to be applied on Many
to many relationships and on non merged Is-a relationships. Other relation-

ships are transformed automatically using foreign keys. The transformation

process is so divided into two independent phases.

Transformation process in Rational Rose is totally automatic. The ap-
plication adds automatically a technical identifier in each transformed en-
tity. All relationships are transformed using foreign keys. Rose is not able
to merge entities. There is no link between a conceptual schema and its
transformed version. If a modification is made, the whole schema must be

reexported.

4.2 C(Classical transformation rules

4.2.1 Identifying vs non identifying relationship

ER-win and Rose use a different notation to make the difference between an
identifying relationship (continuous line) and a non identifying relationship
(doted line). ER-win automatically disallows cardinalities that are against
the identifying concept. An identifying relationship can not be optional
for the child entity. Rose allows controversial cardinalities and is able to
produce an optional primary key as illustrates in figure 4.1 and table 4.1.
DB-main does not use a different notation to make the difference between
identifying and non identifying relationship. A relationship can be a part
of the identifier of an entity. DB-main checks the cardinalities and does not
allow controversial cardinalities. Furthermore, DB-main does not allow an
identifier conflicting with the cardinalities of the relationship. That means
a zero to many relationship can not be the only identifier of an entity and a

zero to one relationship must be the unique identifier of an entity.
4.2.2 Zero to many relationship

Identifying and non-identifying relationship

Every tool was able to transform zero to many identifying and non-identifying
relationship. In all cases the transformation and the produced SQL code are

correct.

40

A1 B1
&a1 > &n1
T_A1 <<ldantiying>> ﬁ
D(a] 8 Smﬂ“ R SHA T]i?:
T_B1_ID: INTEGE bi: Li
0.1 0.1|™T_B1_ID: INNEGER

BeePic> PK_T_A10)
*eaFiG> FK_T_AD() %P> PK_T_B11))
Secindee> TC T_AT1)

Figure 4.1: Transformation of an optional identifying relationship in Ratio-

nal Rose

CREATE TABLE T_A1 (al SMALLINT NOT NULL, T_B1.ID INTEGER.

PRIMARY KEY (T_B1.1D));

CREATE TABLE T_B1 (bl SMALLINT NOT NULL, T_B1.ID INTEGER
NOT NULL. PRIMARY KEY (T_B1.ID));

Table 4.1: Rational Rose and optional primary key

41

Variations

Almost variations of zero to many relationship do not cause any troubles.
Nevertheless, troubles appear when the relationship is mandatory for the
parent entity. Rational Rose and ER-win transform correctly this relation-
ship into the relational model, using a notation to specify this relationship is
mandatory but this constraint does not appear in the produced SQL code.
DB-main transforms the relationship correctly, using its own notation to
represent the constraint (equ’ next to the foreign key group) and adds a

trigger in the SQL code.

4.2.3 Zero to one relationship
Main characteristic

To implement a zero to one relationship, tools have to add a constraint of
uniqueness on the foreign key implementing the relationship. Rational Rose
and DB-main automatically add this unique constraint and produce the
right SQL code.

An important problem illustrated by figure 4.2 and table 4.2 appears
using ER-win. There is no difference between a zero to one relationship
and a zero to many relationship. To guarantee the constraint of uniqueness,
user has to add in the conceptual schema an alternate key group. This
group contains only the attribute member of the foreign key. The problem
is double, firstly the conceptual schema does not have to show migrated
attributes and secondly the information about the uniqueness is already
present in the cardinalities of the relationship and this alternate key group

is redundant.

Variations

The variations on the minimal cardinalities are similar to the variations of
zero to many relationship. The problem that occurs when the relationship is
mandatory for the parent entity appears again in Rational Rose and ER-win.
No constraint is added in the SQL code.

Foreign key is the only way to implement zero to one relationship in

42

ERwin and in Rational Rose. These tools can not merge entities linked by
such a relationship.

DB-main supports merging of entities and puts the moved attribute to-
gether in an optional group. All attributes become optional and a constraint
guarantees that if an attribute member of the group get a value, other at-

tributes member of the group can not be null.

4.2.4 Many to many relationship

Rose, ER-win and DB-main do not have any problems to transform this
relationship. Anyway, a problem appears again in ER-win. This tool does
not support a many to many relationship mandatory for one or both entities.
Only the 0-N - 0-N is supported by this tool.

Rational Rose ignores totally the difference between 1-N - 1-N cardinali-
ties and 0-N - 0-N cardinalities. The result of the transformation is the same
for both relationships. Rose creates a new table to implement the relation-
ship and links this new table to the entities using 0-1 - 0-N relationships as
illustrated in figure 4.3.

Another problem appears in Rational Rose when two many to many
relationship link the same entities. For a unknown reason, the program
implements both relationship using only one table. This transformation is
probably an optimization, each relationship does ‘the same thing’. Never-
theless, this optimization is wrong because the purpose of these relationships

is different.

4.2.5 Is-A relationship
Partial Overlapping relationship

Partial overlapping Is-a relationship is supported by every tool. The trans-
formation, using an unique foreign key, is correct and the produced SQL
code does not suffer of any problems.

Rational Rose does not support merging of entities. ER-win can merge
two entities linked by an partial overlapping is-a relationship but does not
add any constraints on the merged attributes. These attributes have to be

optional and have to be put together in a group to guarantee that if one

43

A

a (FK)

Figure 4.2: Zero to one relationship in ER-win

CREATE TABLE A (a CHAR(18) NOT NULL,

PRIMARY KEY (a));

CREATE TABLE B (b CHAR(18) NOT NULL, a CHAR(18) NOT NULL,
PRIMARY KEY (b), FOREIGN KEY (a));

Table 4.2: SQL code for a zero to one relationship in ER-win

SA7

SA7

frd

PHSAT_ID : INTEGER

#o<PK>> PK_SATT1)

SA9

SAS

i

PRSAS ID: INTEGER

$<<PIC> PK_SAST)

SB7
1.n 1.n
<ldent {ings 9 E <<ldentifying>> SB7
»____ [SB7ID: INTEGER " L
1 PSAT ID: INTEGER " 1 ®ecPis> PK_SETT4)
$<<PK>> PK 8770 P
0.1 %ecpc> FK_3650
®<<FC> > FK_368()
$<<indme> TC_2108)
®ecindme> TC_3110)
SB9
0.n
0.n
<<ldentiing: > 11
SB3 ID: INTEGER L Benéfjing™ P
i |XSASID: INTEGER) e ﬁ
1 0 sB9
°| $e<Pi>> PK_1178) d.+ 4| ™ SB3_ID : INTEGER

$e<FiIG> FK_1153)
$<<FiG>> FK_1180)

$<cindec> TC_11113)
Secindac> TC_11114)

S<<Pic> PK_SBITE)

Figure 4.3: Many to many in Rational Rose

4

of these attributes gets a value, the other must not be null. DB-main can

merge entities and adds the needed constraint on the merged attributes.

Partial Disjoint relationship

Partial Disjoint relationship is supported only by ER-win and DB-main. In
both tools, the relationship could be transformed into an unique foreign key
or could be merged into an unique table. In both cases, a constraint must
guarantee the uniqueness of each instance.

Nevertheless, even if ER-win uses a different notation in the conceptual
model to make the difference between an overlapping and a disjoint relation-
ship, these tdwo relationships are transformed using the same rule and the
produced SQL code is the same. The disjoint constraint is not respected.

DB-main is able to transform and to merge partial disjoint relationship

and produces the right relational model and SQL code.

4.3 Uncommon and practice based rules

4.3.1 Limitation due to the conceptual models

The original schema was modeled using ER-win. ER-win implements IDEF1x

and according to the specification of this model:

A migrated attribute may be part of more than one foreign key
provided that the attribute always has the same value for these
foreign keys in any given instance of the entity. A role name
may be assigned for this migrated attribute.

[IDE, |

DB-main does not allow to choose the name of the migrated attributes.
Furthermore, the logical schema could be drawn directly in the relational
model but this schema could not be retro-engineered to the ER model due
to its special foreign keys. The conceptual model is not able to store our
schema rightly due to lacks in the used ER model.

Rational Rose does not allow to choose the name of the migrated at-

tributes. Furthermore, it does not allow to choose the attributes identifying

45

an entity. This tool automatically adds a technical identifier. It was impos-

sible to model this schema rightly.

4.3.2 Unstudied transformation rules

Designing a temporal database is only possible in DB-main. ER-win and
Rational Rose totally ignore this concept. Furthermore, using ER-win, if
the attribute Date is added by hand in the logical schema, the attribute is
automatically added in the conceptual schema as an element of the primary
key. This new attribute induces a contradiction between the primary key
groups and the Is-a relationship.

Three temporal relationships are supported by DB-main: valid time,
transaction time and both. In valid time, user has to insert the timestamps
into each instance. In transaction time, user does not have to care about
the time, the system fills the timestamps automatically.

The example is valid time. To implement a valid time entity, DB-main
adds two attributes: starting and ending date. Between this two dates,
nothing has changed in the instance. As we already explained, we need
only one attribute to implement the time in our example, because of each
instance represents a snapshot of the position of a Survey Point. A snap-
shot transformation is not supported by DB-main but could be added using
the proprietary language Voyager 2. Nevertheless, this language is not a
transformation oriented language, it is not its purpose. We decided not to

explore this way.

4.3.3 Information lost

Rational Rose can not merge entities. Furthermore, it is impossible to define
the transformation by hand. The test is canceled with this tool for these
reasons.

ER-win can merge entities for sub/super type relationship, but can not
merge entities linked by a 0-1 - 1-1 relationship. Using a sub/super type
relationship instead of the 0-1 - 1-1, the transformation is made possible.
We already showed, ER-win does not add any constraints when it merges sub

type entities with its super type entity. In this example, this lack makes the

46

transformation possible. But user of the tool is not aware that semantical
information have been lost.

DB-main can merge entities linked by a Is-a relationship and a zero to one
relationship. Nevertheless, the transformation is not possible because DB-
main does not support to loose semantical informations. When we merge
entities MainActivity and IndividualComment, the tool adds a coexistence
constraint on attribute moved from MainActivity entity. Because of this
constraint, it does not accept to merge the new entity IndividualComment
with MiscComment and Comment. Indeed, this constraint would be lost.
The transformation could be made by deleting by hand the constraint but

no automation is possible.

4.4 Conclusion

Using our practice based examples, we were able to demonstrate some lacks
in transformation rules implemented in studied CASE tools.

Firstly, lacks appear in the implementation of classical transformation
rules. ER-win and Rational Rose drop systematically some constraints.
ER-win does not implement rightly transformation rules even if these rules
are well defined in the theory (zero to one relationship). Rose does some
optimizations on the schema without asking anything to the user of the tool
and without providing any way to disable them.

Secondly, uncommon transformation rules have a mixed result, depend-
ing on the used tool. Rose and DB-main were not able to solve any of these
problems and ER-win was able to solve two of them. The biological example
was already conceptualized using ER-win and the special constraints can be
expressed with this tool due to its management of the foreign in the con-
ceptual schema. The legacy example was solved because of the tool looses
some semantical informations, but this loss was made without preventing
the user.

Thirdly, ER-win and Rational Rose every classical transformation rule
(merging entities linked by a Is-a relationship or a zero to one relationship).

In short, important differences of quality appears between studied tools.

Rational Rose is the poorest tool for database design. It does not support

47

important concepts as entity’s identifier, entities’ merging and disjoint Is-a
relationship. ERwin is better but some lacks appear especially concerning
the constraint added in SQL code to respect relationships’ cardinalities.
The best results were obtained with DB-main. Theory is well implemented,
constraints are added in SQL code to respect cardinalities but this tool is

not able to apply our uncommon rules.

48

Chapter 5

Using a novel rule approach
for expressing transformation

rules

5.1 Introduction

As we defined before, a CASE tool helps the developer to design its appli-
cation. To achieve this goal, a tool provides models (UML, ERA...) and
developer designs its application using these models. Models defining other
models are called meta-model.

We can divide models in three levels: meta-metamodel, metamodel and
model. Meta-metamodel is the higher level. It allows us to specify a meta-
model. Metamodel is the second highest level. It is the model of the models.
In this level, we define for example what is an entity type, a relationship,
an attribute, etc. We define too the link between them. For example, an
entity can have zero, one or more attributes. An attribute must belong to an
entity. A relationship links an entity to another. Using these information,
we can too define the structure to store models (the repository’s structure).
The lowest level is the model. It is a description of the user data.

The proof of the concept tool [Guvstavsson, 2003] is a meta-case tool
(tool able to build its meta-model) based on a repository (formalized in

UML) and an active rules system. The purpose of this project is to share

49

conceptual schema with its transformation rules. To achieve this goal, the
author defines a transformation based language, OCL+, to implement eas-
ily transformation rules. This language is an extension of the Object Con-
straint Language defined by the OMG group to describe constraints in UML.
Schemes are exchanged using XML Metadata Interchange Language (XMI),
a standardized language able to export metadata information. So, to export
a schema (user model) from a tool to another one, we need to export the

meta-model, the rules used to transform the schema and the schema itself.

5.2 The repository system

5.2.1 UML as Repository language

UML, for Unified Modeling Language, is considered now as a standard for
modeling applications. UML offers several diagrams for separating concerns
of different system views. The same conceptual framework and the same
notation can be used from specification through design to implementation.
Furthermore, UML is not a proprietary and closed language but is open and
fully extensible. If we need something else that is not present in UML, we
can easily change the UML specifications in order to add it.

In our work, we will use UML as meta-metamodel. We are particularly
interested in the class diagram to build our repository. A class diagram is
composed by three main components: class, binary association and gener-

alization.

Class

A class is symbolized by a rectangle divided into three fields. The first
field contains the class’ name, the second field contains the class’ properties
and the third field contains definition of methods that are applicable in the
class. Each property has a name and a type of data. A property can have
an optional symbol representing its visibility (public, private or protected).
Each method has parameters and a return data type. A method has a

symbol representing its visibility too.

50

Binary association

A binary association is represented by a line linking two classes. A recursive
binary association is an association where both end lines are the same class.
At each end point, we find the role of the association and its multiplicity.
On the line’s center, we find the name of the association. The multiplicity

can be * (zero or more), 1..* (one or more), 0..1 (zero or one) or 1 (one).

Generalization and specialization

Generalization is represented by a triangle connected to the supertype. Each
subtype is linked to the triangle by a line. A subtype is by definition derived
from the supertype. There are four kinds of generalization: overlapping,
disjoint, complete or incomplete.

Using UML as meta-metamodel, we are able to build a metamodel and
to use it in the proof of the concept tool. Metamodel could be a subset of
UML or any other existing model. In our example, we will always use a
subset of ER and relational models. We considerer UML is not complete
enough to design database. The unexistance of identifier in entities is the

main reason.

5.2.2 A basic repository example

Our repository illustrated by figure 5.1 is divided into two parts: on the top
of the dotted line we have the conceptual part and on underneath we have
the logical part.

The conceptual section is made up of three entities. The entity At-
tributes stores every information about attributes. The entity Entities stores
every information about entities. An entity can have zero, one or more at-
tribute(s). This relation is represented by the relationship AttrToEnt. The
entity ERRelationship stores every information about relationships between
entities. A relationship has a cardinality, this cardinality represent the max-
imal number of instances that can be referenced by another instance. The
minimal cardinalities are always 0 in this example. A relationship links two
entities, the parent entity is linked with the relation FromRel and the child
entity is linked with the relation ToRel.

o1

The logical section is made up of three entities. The entity column stores
information about the columns of a tables. The entity Tables stores infor-
mation about the tables. A table can have zero, one or more column(s), this
relation is represented by the relationship In. The entity ForeignKeys stores
information about table referencing another table. A foreign key links two
tables, the referenced table uses the relation FromTable and the referencing
table uses the relation ToTable and is compounded by one or more column(s)
using the relation MemberOf.

Now, our repository is composed of the modeling of two simple models.
We need to link these models by relationships. A table is the implementation
of an entity, this relation is expressed by ImplementsTable. A column is the
implementation of an attribute, this relation is expressed by ImplementsAttr
and can be the implementation of a foreign key by the relation MemberOf
defined above. Finally, a relationship is implemented by a foreign key, this

relation is expressed by ImplementsRel.

5.3 Transformation rules

5.3.1 Introducing OCL and OCL+ as transformation rules

An UML diagram, such as a class diagram, is typically not re-
fined enough to provide all the relevant aspects of a specification.
There is, among other things, a need to describe additional con-
straints about the objects in the model. Such constraints are of-
ten described in natural language. Practice has shown that this
will always result in ambiguities. In order to write unambigu-
ous constraints, so-called formal languages have been developed.
The disadvantage of traditional formal languages is that they are
usable to persons with a strong mathematical background, but dif-
ficult for the average business or system modeler to use.

[OMG, 2003]

OCL, Object Constraint Language, helps the developer to fill this gap.
OCL can be used to specify invariants on classes and types in the class

model, invariants for stereotypes, to describe pre and post-conditions on

52

Attributes

Name: String 0.1
Keystate: Boolean [fanroll
Nullable: Boolean

0.1 jtillrofl
ERRelationship o
MName: String AttiToEnt
0..1|FromRole: String 0.1 Entities 0.
franroll {ToRole: String . Name: Strin
FromCard: String franvoll 9 _|[franrod
ToCard: String a* 0.
01 01 tillroll tillroll
franroll franroll
ToRel
FromRel
ImplementsAttr
ImplementsRel 0.1 [tillroll
ImplementsTable Columns
0..1|{Name: String
MemberOf tillroll K@y state: Boolean
0..* |{franroll e Nullable: Boolean
ForeignKeys 0.1 |tillroll
Unique: Boolean|
0.1
i Tables
tillroll 0.1 = 0.*
Name: String
tiliroll franroll In
0.." [franrol-anroll

0..7]tio. "illrol
Relationnname

Relationnname

Figure 5.1: A simple repository

53

methods and metadata operations and to describe guards. An OCL rule
illustrated by the table 5.1 is composed by three fields: the context class,
the pre-condition and the post-condition. For all instances of the context
class, if the pre-condition is respected, the post-condition must be respected
too. OCL is a no side effect language. No action can change the system

when a rules is applied.

context Typename::operationName(paraml : Typel, ...): ReturnType
pre parameterOk: paraml = ...

post resultOk: result = ...

Table 5.1: OCL quick specifications

Type of data

OCL is a strongly typed language. It supports basic type data as integers,
floats, booleans and strings. Operations on each type are summarized in the

table 5.2.

Type Values Operations

Integer 1, -2, 504, ... * 4+, -, /, abs()

Float 1.2, 2.5, 56.89. ... | *, +, -, /, floor()
Boolean true, false and, or, xor, not, implies, if-then-else
String | ‘This is a string’ | toUpper(), concat()

Table 5.2: OCL types, values and operations

Operations

Pre and post conditions allow us to make some basic operations such as the
addition on integers and floats, boolean operations and some modifications
on strings. Theses operations are allowed to check the value of each variable,
but can not change the system. There is no possibility to declare new
variables or to keep a value between two rules for example. Purpose of
an OCL rules is checking if all variables respect the precondition then the

produced result has to respect the post condition.

54

Extending OCL

OCL is an interesting language to express transformation rules. The system
of pre and post conditions with a context class defines clearly on which kind
of instance the rules have to be applied. But operations in OCL have no
side effect and we need, to apply a transformation, to be able to change the
data stored in the repository. Furthermore, we don’t want to apply rules on
a function in a class but on the class itself.

To avoid this problem, some modifications are made. The post condition,
now known as Action, accept two new instructions: the assignment (:=) and
the separator of instructions (;). A new field appears, Declaration, to be able
to create new values and to declare variables.

Some other modifications are made too to complete the system. We keep
the Context class and the Precondition, now known as Condition. Context
class refers now to an entity in the repository system (in place of a function
signature).

With the field Event, we are able to define in which case the rule have to
be applied when the condition are respected. There is three kinds of event:
insert, update and delete. A rules where the field Event is defined as Insert
will be used when a new tuple is added in the entity defined by the field
Context Class and if and only if every statement of the Condition field is
met. A rule must be declared for one and only one event.

To complete the event, three categories are added: normal, internal and
collection. A normal event is initiated when a tuple is inserted, updated
or deleted by the user. An internal event is an event initiated by another
event. A collection event is initiated when an action modifies a collection of
data.

An OCL+ rule is defined like this:

Context Class Name of the entity

Event type of event

Condition conditionl [and/or] condition2 [and/or] ..

Declaration type: variable

Action actionl;action2;..;actionN

55

The next example presents a rule which automatically add the string

"Ent.” to the name of the entity and add an identifier "ID” to the entity.

Context Class Entity

Event Insert

Condition
Declaration Attributes A
Action A.Create;
A .Name:=ID;
A Keystate:=true;
A .Nullable:=false;
self.name := concat("Ent_", self.name);

self. AttrToEnt := A

5.3.2 The active repository system

With a repository and a set of rules, we need a system to apply the rules
on the components we add in the repository. To reach this goal, the author

has decided on an active database systems.

Active database systems allow users to create rules specify data
manipulation operation to be executed automatically whenever
certain events occur or condition are met.

[Widom, 1996]

Using this idea, when an user adds an information in the repository,
if this information respects the conditions of one rule defined for the used
context class, the action of the rule is initiated. This action can initiate
some other rules (internal or collection) and these rules can initiate other
rules too, in every context class.

The proof of the concept tool admits multiple events, that means the user
adds all its information in one time and commit all changes. The system first
applies all ‘Normal’ rules and after applies all internal or collection rules.
The order is the order of the rules. If two rules could be applied, the system
applied the first one (i.e. the first in the list).

56

In order to reduce the scope of this work, we just study the event ‘Insert’.
Actually, ‘Update’ and ‘Delete’ events are complex, due to the fact they
should change all the database schema. For example, if we allow an user
to change the cardinalities of a relationship, this change could induce the
deleting of a table (many to many relationship updated to a one to many
relationship), could change the primary key of number of table (Identifying
relationship to a non identifying relationship), etc. This kind of problem is

out of scope and should be the subject of another research.

5.3.3 A basic example of OCL+ rules using the basic reposi-
tory

Scope of the example

The basic repository supports only entities, attributes and relationships be-
tween two entities in the ER part and only tables, foreign keys and columns
for the relational part. We need two transformation rules: the first one
transforms a zero to many relationship with a foreign key pointing the pri-
mary key of the other table and the second one transforms a zero to one

relationship, adding a unique foreign key in the child table.

Building the rules

The purpose of a rule is not to replace the developer in the identification of
the needs but to help him to automatize the transformation of huge schemes
from one model to another. This distinction is important because of the
developer has to enter enough information when he builds his conceptual
schema to allow the tool to choose the right rule. In the other way, each
rule must have a unique condition to be applicable.

Due to these two conditions, we demonstrate the importance of the link
between the rules and the repository. The repository has to be complete
enough to allow the rules’ developer to write unambiguous rules. It must
provide attributes to write the condition statement without ambiguity and
attributes to execute the action statement without asking to the tool’s user

any unknown information when the transformation is made.

57

Firstly, we need a rule to transform an entity to a corresponding table.

This transformation is the easiest, the action statement needed is divided in

two parts: we create first a new table using the instruction new, secondly

we copy all common attributes from the entity to the table (name...).

Context Class Entities
Event Insert
Condition ImplementsTable—isempty
Declaration Tables Tab
Action Tab.create;

Tab.Name := self.Name;

self.ImplementsTable := Tab;

Secondly, we need a rule to transform each attribute of an entity to a

column in the corresponding table. In this rule, we take care the fact an

attribute must belong to an entity (see the condition statement).

Context Class Attributes

Event Insert

Condition ImplementsAttr—isempty and AttrToEnt—notempty

Declaration Columns Col

Action Col.create;

Col.Name := self.Name;

Col.Keytate := self.Keystate;
Col.Nullable := self.Nullable;
self. ImplementsAttr := Col;

Thirdly, for each relationship, we build the transformation rule. To make

the difference between each kind of relationships, we check the cardinalities

in the condition statement. In these rules, we need to create a new instance

of ForeignKeys. We need to add in the table implementing the child entity a

column for each attribute member of the identifier of the parent entity (i.e.

attribute with Keystate = true).

58

Context Class

ERRelationships

Event Insert
Condition ImplementsRel—isempty and FromCard="N" and ToCard="1"
Declaration ForeignKeys FK, Columns Col
Action FK.create;

FK.Unique:=false;

self.ImplementsRel:=FK;

self. FromRel. AttrToEnt—reject(Keystate=false)—iterate(
PK1]|

Col.Create;

Col.Keystate := false;

Col.Name := PK1.Name;

Col.In:=self. ToEntity.ImplementsTable;
Col.MemberOf:=FK)

Context Class ERRelationships
Event Insert
Condition ImplementsRel—isempty and FromCard="1" and ToCard="1"
Declaration ForeignKeys FK, Columns Col
Action FK.create;

FK.Unique:=true;

self.ImplementsRel:=FK;

self. FromRel. AttrToEnt—reject (Keystate=false)—iterate(
PK1|

Col.Create;

Col.Keystate := false;

Col.Name := PK1.Name;

Col.In:=self. ToRel.ImplementsTable;
Col.MemberOf:=FK)

Three remarks have to be made about the OCL+ language and the

used tool. First remark, loop, the statement able to examine a collection

of instance, is prefixed. That means the condition and the list of instance

to be examined is evaluated and created before the entrance of the loop.

During the analyze of each instance of a collection, if we add an instance in

59

the collection and if this instance respects the conditions of the loop, this
new element will not be analyzed. In our example, we need to analyze every
instance referenced by childAttribute of an entity. The condition of the loop
is the rejection of every attribute with the Keystate set to false. The first
word following iterate(is the variable pointing to the current element to
analyze.

Second remark, the current version of the tool does not allow to use
the conditional instruction (if-then-else) in the action statement. For the
moment, the only way to do a condition in the action part is dividing the
rules in two new rules, using a different condition statement. This solution
is not complete enough, and some problems are unsolvable. We analyze
this problem in the next chapter. This is a known problem and it will be
corrected in the next version of the tool. This problem is not a bug, but the
author of the tool considered this instruction as optional.

Third remark, the current version of the tool does not allow to merge

two strings. This is a bug and it will be corrected in the next version.

5.3.4 An alternative: Action Semantic
Purpose of Action Semantic

Action Semantic is a language added in UML by the OMG in 2000. The
purpose of this language is to fill the gap between high level concept of
UML and the low level programming constructs found in the used oriented
language. One of the main lacks in UML is the absence of formal and precise
foundation for several constructs such as transition guards or method bodies.
These lacks cause the impossibility to simulate and validate an architecture.

Action Semantics (AS) was defined by the OMG to specify algorithms
in high level. Before AS was included in UML, the only way to specify
the behavior of a function was in an uninterpreted string. This solution is
problematic because of developers could misinterpreted the string. Further-
more, this string does not help to automate a formal proof of correctness
of a problem specification, does not make possible high-fidelity model-based
simulation and verification, does not help for the reusability of a component

without reading the whole low-level code.

60

Such precise action specifications, in conjunction with the UML, provide
a stronger basis for model design and eventual coding and could support
code generation to multiple software platforms. Action Semantics is a for-
mal language, platform independent, strongly typed, able to specify any
functionality of a software.

Relying on the fact that UML meta model is itself a UML model, authors
[G. Sunye and Jezequel, 2002] show how the AS can be used at the meta
model level to help the OO designer carry on activities such as behavior-
preserving transformations, design pattern application and design level as-
pects weaving. This approach of AS is particularly interesting for us for
two reasons: the repository used to build OCL+ rules uses UML as meta
model and AS can be combined with OCL to verify if a transformation may
be applied, as the condition statement of OCL+. Furthermore, the authors
distinguish the same two steps in design level activities: identification of the
need to apply a given transformation on a UML model in actual transforma-
tion of that model, without forgetting the fact the purpose is not to replace

the developer in the first step but to automatize the second step.

Rules’ example

A quick example helps to compare OCL+ and AS. The purpose of this rule
transforms an entity into a table. In OCL+, such a rule is defined like this:

Context Class Entity

Event Insert

Condition ImplementsTable—isempty
Declaration RelTable RT
Action RT.create;

RT.name:=self.name;

self.ImplementsTable:=RT

In Action Semantic, there is no declaration field, new instances are cre-

ated directly in the action code. The same rule can be expressed like this:

61

Class::Entity

Pre:
class.ImplementsTable—isEmpty()
Action:

newTable := RelTable.new

new Table.name:=self.name;

new Table.add AssociationTo(self, 1, 1)
Post:
class.ImplementsTable—notEmpty()

Comparison to OCL+

OLC+ and AS with OCL are very similar, defined in UML and able to
realize the same kind of program. Furthermore, their syntax is nearly the
same.

But there are two big differences between them. Action Semantic does
not define a field Event. In our system of active rules, this is really problem-
atic. Without event, we need to reapply all transformations to transform
the schema into the other model. Cascading the rules became impossible
(we can not make the difference between an internal event and a normal
event).

OCL+ replaces the post condition field with an action field. This action
field is able to modify the repository. By replacing this post condition,
OCL+ prevents the use a tool to check the final result. We can imagine a
system where action is realize and post condition is checked to verify if the
result of the transformation is correct. Such a system will help to debug
huge number of rules easily.

Purpose of these languages is similar but the absence of the Event field
in AS is too important to be used in the repository system describe above.
Furthermore, the absence of post condition field in OCL+ is not important,
it just helps the developer to create correct rules and to verify the behavior

of these.

62

Chapter 6

Solving practice base case
using OCL+

6.1 Used repository

6.1.1 Introduction

As we explained in the previous chapter, the purpose of a repository is
to store every information about a schema and to be able to express every
needed constraint. To this purpose, we add a second one: the repository has
to store every information to transform a schema from a model into another
model without requiring new information. This second purpose leads to add
extra information not present in the original models.

To be able to transform a schema, the tool presented in the previous
chapter uses a system of linked repositories modeled in UML. The repository
models two or more models, each model linked to each other. These links
are made using relationships between repository’s entities and with trans-
formation rules coded with a transformations oriented language (OCL+).

We divided transformation rules into two different classes: classical trans-
formation rules and uncommon transformation rules. Classical transforma-
tions are well defined in the theory and are symmetrically reversible. We crit-
icized CASE tools which are not able to transform rightly relationships using
these classical transformation rules. In order to implement these rules, our
work was based on [Hainaut, 2002] and [J-L. Hainaut and Roland, 1996].

63

About uncommon transformation rules, we implement the transformation
as presented in the selected papers.

The purpose of this work was not to make a perfect repository able
to store every kind of constructs and every possible transformation but to
have a repository complete enough to be able to store and to transform our
practice based schemes and furthermore to implement all classical transfor-
mation rules presented in the previous chapters. Building our repository as
and when we need it, we can study the incidence of the completeness of a
repository on transformation rules.

This chapter sums up the implementation of the different rules used
to solve our practice based schemes. Firstly, we describe the first ver-
sion of the used repository. This repository was made by Gustavsson in
[Guvstavsson, 2003] to solve the real life example of his thesis. This version
is illustrated in annexe C. Secondly, we sum up, for each class of transfor-
mations, the implemented transformation rules. They are listed in annexe

C.

6.1.2 Repository’s description

Figure 6.1 represents the first version of the repository. The upper part is
the conceptual repository. It is a simplified version of ER model. The lower
part is the logical part. It is a modified version of the classical relational

model.

Entity Association Repository

The entity EREntity stores every information about entity type, that is its
name and if a table has to be created to implement it. The notable attribute
is used in case of merging of entities. This indicates that no relational table
is to be generated for the merged entity.

An entity could have zero, one or more attributes and an attribute is part
of zero or one entity. Therefore, EREntity is linked by a 0-1 - 0-* relationship
to the entity ERAttribute. This is a choice made by Gustavsson in his first
repository. From our point of view, it does not bring any problems, an

attribute without entity is present in the repository but has no side effect.

64

ERAttribute
0.1 Name:String
—{Keystate:Integer
IMpIERA INyllable: Boolean
0..*|ChildAttr
ERRelationship 0..1|ParentEntity
Name: Stnng EREntity ERSubtyperel
Type:String A 0.* 0.1 ‘:am:;gtlring 0.1 0..*|Constraints: String
Fromrole:String | ToRel Fromentity | Ot aPle-Integer o mEntity ToSTRel
ITorole: String "
FromCardMin: String []'—,—0—1- 0.1 - LS
FromCardMax:String[FromRal ToEntity ToEntity FromSTRel
IToCardMin: String
IToCardMax:String] 0..*|DefByST
0.1|ImplementsAel ImplementsEntity|
|ImplementsRel
I0..* ImplementsRel
0..*|DefByRel
] 0..1|DefinesDep
ERDependency
0.1 ype:String
DefinesDep
;]ImplDep
PrimaryKeyDep|
0.~
0..1|ImplementsTable
ll;io"mPKDSD 0?1 |ImplementsTable 0. *|ImplementsFiK
ToPKDep RelTable ForeignKey
0..1|Name:String 0.1 0..*|Equ:Boolean
0..1|ImplementedbyDep T°T‘abl: Err;mTable T‘g:‘f
FromTable ToTable FromFK
0..1|ParentTable 0..1|impIByFk

0..* [lmplementsAttr

RelAttribute

Altr [Nullable:B

Name: String

0.*

KeyState:Boolean

ghildAﬂribme

ImplAttr

Figure 6.1: Repository version 1

65

An instance of ERAttribute has three characteristics: Name, Keystate and
Nullable. Keystate means the instance is an attribute part of the identifier
of its entity. Nullable set to true means the value of the attribute is optional.

A relationship links two and only two entities (the entities could be the
same instance of EREntity) and an entity can be linked to zero, one or many
other entities. A relationship links a child entity to its parent entity. ER-
Entity is linked by two 0-1 - 0-* relationships to the entity ERRelationship.
The parent entity is linked to its child by the relation FromEntity and the
child entity is linked to its parent by the relation ToEntity. This notation
helps us to distinguish between two parts of a non-symmetrical relationship.
In case of a symmetrical relationship like a many to many relationship, this
distinction has of course no sens. A relationship is described by eight at-
tributes. Name stores the name of the relationship. T'ype stores the type
of relationship. We make the choice to use this attribute to distinguish be-
tween identifying and non identifying relationships. Fromrole and Torole
give a name for each role played by the relationship. FromCardMin and
ToCardMin store the minimal cardinalities of each side of the relationship
and FromCardMax and ToCardMaz store the maximal cardinalities of
each side of the relationship. FromCard indicates the number of entities
which could reference the parent entity and the T'oCard indicates the num-
ber of parent entity which a child could reference.

ERSubtyperel stores a sub-type relationship between a child (FromEntity)
and a parent (ToEntity). An ERSubtyperel relationship is only between two
entities. A super-type could have one or more children. To store this infor-
mation, we use ERDependency. It puts together ERSubtyperel instances and
allows to add constraints between these relations (dijunction etc.). A sub-
type relationship can be implemented using a zero to one relationship. The
relation DefineDep links the relationships implementing a sub-type relation
with the sub-type group in the ER model. A sub-type group is implemented
using zero, one or more relationships.

The original repository has two other relations 0-1 - 0-* linking ERDe-
pendency and EREntity. From our point of view, these relations were useless
and redundant with the relation linking ERSubtyperel and EREntity. We

choose to delete these two relationships in order to simplify the repository

66

and the rules.

Relational model Repository

RelTable stores information about table. A table can implement zero, one or
more entities or can implement a relationship (transformation of a many to
many relationship, for example). A table is characterized by a name. The
relation between RelTable and EREntity is a 0-1 - 0-* one in the repository
of Gustavsson. This relation allows a table to implement many entities and
is used when two entities are merged into an unique table. In theory, an
entity could be spitted into many tables. Nevertheless, we do not meet this
transformation in our practice based schemes. We keep the relation 0-1 -
0-* in order to keep the repository as simple as possible.

A table has zero, one or more attributes, stored in RelAttribute. An
attribute has a name, a keystate (the attribute is member of the primary
key group) and can be nullable (for an instance of the table X, this attribute
can have the value null). A RelAttribute is an implementation of an ER
attribute or an implementation of a relationship (attribute part of a foreign
key).

ForeignKey puts together attributes into a foreign key group, to imple-
ment a relationship. If the boolean Fqu is set to true, each instance of the
parent entity has to be referenced by an instance of the child entity.

PrimaryKeyDep puts together the attributes member of a foreign key im-
plementing an identifying relationship. This entity was originally present
in the first repository. In order to access to the information as quickly as
possible, Gustavsson [Guvstavson, 2003] recommends to build a redundant
repository. In a relational schema, the difference between the implementa-
tion of an identifying relationship and a non-identifying relationship is the
fact that all migrated attributes are members of the primary key group of the
child table. In the repository, that means these attributes have the boolean
keystate set to true. To make the difference between the implementation
of an identifying and a non identifying relationship, we have to check the
keystate of each attribute member of a foreign key. In order to save us from

this heavy action, the entity type PrimaryKeyDep was added.

67

Another usage of PrimaryKeyDep is to puts together the attribute mem-
ber of the primary key group that are created to implement a kind relation-
ship but that are not in a foreign key group. This special attribute will be

studied in the section about unstudied transformation rules.

6.1.3 Lacks

We can already point at some lacks in the repository. It can not represent
ternary relationships. A relationship links two and only two entities. This
choice was made by Gustavsson to simplify the model. Modeling a repos-
itory able to store this kind of construct is possible but no practice based
schemes analyzed uses ternary relationships. Furthermore, rules based on
a repository able to store ternary (and more) relationships are more com-
plicated and impossible to implement without the conditional instruction.
Indeed, with only binary relationships we bypass the absence of the condi-
tional instruction by building a rule for each variation of the cardinalities.
With ternary relationship, the number of rules becomes too important to
be done.

The ER model does not support attributes and identifiers in a relation-
ship. Even if such a relationship appears in the bus example, we decided not
to care about this notation. Rules able to transform such a relationship are
easy to implement but without the conditional instruction, we need to divide
all rules into two new different variations (with and without attributes).

An attribute in the relational model could take part of one and only
one foreign key group. We selected the biological example because of an
attribute takes part of many foreign key groups. We will avoid this lacks in
the next sections and studying the incidence of the change on the already
made rules.

The relational model is not able to add constraints between the attributes
and between groups of attributes. This lack will be avoided in the next

sections.

68

6.2 Classical transformation rules

6.2.1 Building the rules
If-then-else problem

As we explain in the previous chapter, the proof of the concept tool does not
support the if-then-else instruction in the action statement. Due to this fact,
we have to build a new rule for each small modification of the cardinalities
and for each type of relationships.

The non existence of the if-then-else instruction causes another unex-
pected problem: the debugging of rules is more complicated. Rules are
really similar and doing a copy and past to create every small variation is
probably the best way to create an homogeneous set of rules. But if the
starting rule has a mistake, this mistake will be copied on all rules and de-
bugging will be multiplied by the number of variations made from the first

rule.

Entities and attributes

Before creating rules to transform relationships, we need some basic rules
to transform entities and attributes to the corresponding constructs in the
relational model.

A table has to be created if the relation ImplementsTable between ER-
Entity and RelTable does not exist. That means this entity is not already
implemented. Furthermore, a table must be created if the value of the at-
tribute notable is false. The notable attribute is used in case of merging of
entities. This indicates that no relational table is to be generated for the
merged entity. If these two conditions are respected, a table is created and

linked to the implemented entity.

Declaration:
RelTable RT
Action:

RT .create;
RT.name:=self.name;

self. ImplementsTable:=RT

69

The rule implementing an attribute is similar. We have to check if the
relation ImplementsAttr does not exist and if the attribute notable of the
parent’s entity is set to false. Indeed, the notable is set to true, this entity
will be merged in another. We will create each instance of RelAttribute
for each attribute member of this kind of table in the rules that effectively
merge the entities. If the condition is respected, an inscance of RelAttribute
is created with the same characteristics than the instance of ERAttribute and

is linked to the implemented attribute.

Declaration:

RelAttribute RA

Action:

RA.Create; (Instantiation of the RelAttribute)

RA.ImplERA:=self;

RA.Name:=self.Name;

RA.KeyState:=self.KeyState; (all common characteristic are copied
from one model to another)
RA.ParentTable:=self.ParentEntity.ImplementsTable (link between
ERAttribute and RelAttribute is made)

6.2.2 Zero to many relationship
Identifying relationship

We choose to use the attribute type of ERRelationship to make the difference
between a non-identifying and an identifying relationship. We choose the
string "I” for an identifying relationship. The condition statement checks the
cardinalities of the relationship (both minimal and maximal cardinalities)
and the value of the attribute type.

The identifying relationship needs to migrate every attribute part of
the parent’s entity identifier to the table implementing the child entity. A
new instance of ForeignKey is created to put together all migrated attributes.
This is the foreign key group. As we explain in the previous section, in order
to make the difference between a foreign key group implementing an identi-
fying relationship and one implementing a non-identifying relationship, an

instance of PrimaryKeyDep is created. This instance puts together the same

70

attributes than the instance of ForeignKey. The instances of PrimaryKey-
Dep and ForeignKey are linked to the implemented relationships using the
relations ImplementsRel. Finally, all migrated attributes have their keystate
attribute set to true because they are members of the primary key group and

their attribute nullable is set to false because the relationship is mandatory.

Action:

FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self; (We link the instance to the imple-
mented relationship)
FK.FromTable:=self.FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity.ImplementsTable;

Pk.Create;

nal model. This entity stores, for each relatio PK.ToTable:=self. ToEntity.ImplementsTable;
Pk.ImplementsRel:=self; (We link the instance to the imple-
mented relationship)

self. FromEntity.ImplementsTable.childAttribute—
reject(Keystate=false)—

iterate(PK1| for each attribute member of the primary key group
of the parent entity, we copy these attributes in the table im-
plementing the child entity. PK1 refer to the current attribute
member of the identifier of the parent entity

Re.Create;

Re.Keystate:=true;

Re.Nullable:=false;

Re.Name:=PK1.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;
Re.ImplementedbyDep:=Pk;

Re.ImplByFk:=FK)

Non-identifying relationship

The transformation is nearly the same than the identifying relationship but

the value of the attribute type is the string "N” in order to make the differ-

.

ence with the identifying relationship.

An instance of ForeignKey is created to put together all migrated at-
tributes but no instance of PrimaryKeyDep is created, this relationship being
not part of the identifier of the child entity. The keystate of each migrated
attribute is set to false. The attribute nullable is set to true because the

relationship is not mandatory for the child entity.

Variations

An instance of the child entity could be linked to one and only one instance
of the parent entity with a non-identifying relationship. In this case, the
boolean nullable is set to false for each attribute part of the foreign key
implementing the relationship.

A zero to many relationship (identifying or non-identifying) can be manda-
tory for the parent entity. Each instance of the parent entity must be refer-
eced by one or more instances of the child entity. In this case, the boolean
Equ of the instance of ForeignKey is set to true.

Briefly, a zero to many relationship is implemented by six different rules,
depending of their minimal cardinalities. Two of these rules implement iden-
tifying relationship. Indeed, an identifying relationship is always mandatory
for the child entity but could be optional or mandatory for the parent entity.

The four other rules implement the non-identifying relationships.

6.2.3 Zero to one relationship

The zero to one relationship rules are similar to the zero to many rules,
but the value of the union of the attributes part of the foreign key must be
unique. In order to guarantee this constraint, the repository needs to be
able to store constraints between attributes in the relational model. The
first version of the repository is not able to do this.

The first idea to implement this constraint was the addition of a new
attribute unique in the entity type ForeignKey. A foreign key group with
the attribute unique set to true means the union of the attributes members
of this group must be unique. Nevertheless, the implementation of the

different kinds of Is-A relationships will require other constraints between

72

attributes and between groups of attributes (unique, coexistence, exactly
one, exclusion, etc.). Furthermore, these attributes are not always members
of a foreign key group (case of merging for example). The unique attribute
is not general enough to be used.

In order to solve this problem, an entity AttrConstraint is added in the
repository. This entity is linked to RelAttribute by a relation many to many.
An attribute can be member of different constraints and a constraint can
contain zero, one or more attributes. Furthermore, we add a recursive zero to
many relationship to be able to add constraint between group of constraints.
For example, an entity A has four optional attributes. These attributes, we
are under the next constraints:

(A1 IS NOT NULL AND A2 IS NOT NULL) XOR

(A3 1S NOT NULL AND A4 1S NOT NULL)

To implement these constraints, three instances of AttrConstraint are cre-
ated. The two first instances guarantee the coexistence constraints between
Al and A2 and between A3 and A4. The third constraint adds the exclusion
between the two first groups using the recursive relationship.

An instance of AttrConstraint could be created to implemente a relation-
ship or a constraint of an Is-a relation. This entity is linked to ERRelationship
and to ERDependency in order to keep this information.

The other transformation found in our practice based example consists
in implementing the zero to one relationship by merging the child entities
with its parent entity. All attributes of the child entity are added in the
table implementing the parent entity. All mandatory attributes of the child
entity become optional and are put together in a coexistence group using
the entity AttrConstraint. The optional attributes are simply added into the
parent table without any other constraints.

In case of a zero to one non-identifying relationship, the child entity could
have an identifier. In this case, a unique constraint must be added to put
together the attributes members of the identifier.

Finally, the parent table implements two different entities, this relation
is stored with the relation ImplementsTable.

One more time, the absence of the if-then-else instruction adds a new

problem. An unique constraint must be added if the child entity has an

73

identifier and a coexistence constraint must be added to put together the
mandatory attributes of the child entity. We decide to systematically create
these two instances of AttrConstraint even if there is no attribute referenced
by these constraints. It simply adds some useless data in the repository and

building a rule able to clean the repository is not complicated.

6.2.4 Many to many relationship

To implement a many to many relationship, we need to create a new table.
This table will be the component implementing the relationship. It is not
linked to an entity as other table but to the implemented relationship using
the relation ImplementsTable. The identifier of this table is compound by all
attributes members of the identifier of both linked entities. Two instances of
PrimaryKeyDep and of ForeignKey are created to put together the migrated
attributes.

As in the variation of zero to many relationships, attribute Equ of the
entity ForeignKey has to be set to the right value, corresponding to the type
of minimal cardinality for each side of the relationship.

We explained in the previous section that a relationship is oriented from
the child entity to the parent entity. This orientation has no sens for a
symmetrical relationship such as the many to many. This relation can be
mandatory for one entity or for the other (one minimal cardinality is set to
1). We need to build two different rules to implement 0-N - 1-N, one for
each orientation, depending which side of the relationship has the minimal

cardinality set to 1.

6.2.5 Is-a relationship
Merging the entities or implementing by foreign keys

All Is-a relationships are stored in the repository using the same entities.
ERSubtyperel stores the relation between the parent and the child entities
and all relations are put together using an instance of ERDependency. ERDe-
pendency defines the type of Is-a relationship.

The first method presented in our practice based schemes to implement

an Is-a relationship consists in implementing each relation by a foreign key,

74

as the zero to one relationship. An instance of ERRelationship is created
for each ERSubtyperel referenced by the instance of ERDependency. This
ERRelationship is a zero to one relationship. The boolean NoTable of each
child entity is set to false. Each child references the parent entity using a
foreign key and all attributes implementing the foreign key are put together
under a constraint of uniqueness by an instance of AttrConstraint.

The second method presented in our practice based schemes to imple-
ment an Is-a relationship consists in merging the children entities with the
parent entity. The boolean NoTable of each child entity is set to true.
The table implementing the parent entity is linked to all child entities. All
attributes of each child become optional and are put together under a con-
straint of coexistence using entity AttrConstraint defined above.

In both implementations, depending on the constraints between the chil-

dren, some variations appear.

Overlapped

An overlapped relationship does not require any other constraints between
the children, whatever the method to implement this relationship (merging

or using foreign keys).

Disjoint
A disjoint relationship requires a constraint between the children, to respect
the disjunctive constraint. Using foreign keys to implement this relation-
ship, we add an attribute for each child entities in the parent table. All
these attributes are optional and under an exclusive constraint. The in-
stance of AttrConstraint implementing this constraint references the instance
of ERDependency.

Merging the entities to implement this relationship requires a exclusive
constraint between each coexistence group of attributes. A new instance of

AttrConstraint is created and references each constraint of coexistence.

75

6.3 Practice based rules

6.3.1 Limitation due to the conceptual models

All problems we met until now with OCL+ were produced because of lacks
in the repository or because of the absence of the if-then-else instruction.
Our repository is a light version of the ER model and is intentionally not
able to store every type of constraints and every kind of relationships nor-
mally allowed by the ER model. But limitations are not always due to our
repository but to ‘lacks’ in the used model itself.

The model used to model the original schema (IDEF1x [IDE, |) allows
an attribute to be member of many foreign keys.

To be able to choose the future name of the attribute implementing the
foreign key, we need a new entity, an hybrid between the ER model and the
relational model. This entity stores, for each relationship, the name of the
migrated attribute for each attribute member of the identifier. If an attribute
with the same name already exists in the table, no new attribute is added
and this existing attribute is added in the foreign key group implementing
the current relationship.

The first idea to solve this problem was to read the information stored
by AttributRelation. But without the if-then-else instruction, it is impossible
to check if an attribute with the same name already exists in the table.

The second idea was the addition of a new rule with AttributRelation
as context class. When an information is stored in this entity, the rule
creates automatically an instance of RelAttribute if no attribute has the
same name in the table implementing the child entity. The rules which
transform effectively the relationships are changed. They create the instance
of ForeignKey and do not create the instance of RelAttribute but make the

union between the foreign key group and the previously created attributes.

Condition:

self.UseAttr. ToEntity.ImplementsTable.ChildAttribute—forall(RA|
RA.name <> self.Name)

Action:

RA.Create;

76

RA.ParentTable:=self.UseAttr. ToEntity.ImplementsTable;
RA.ImplERAFK := self;

RA.Name := self.Name;

RA.KeyState := false;

RA.Nullable := true;

Another lack in the repository appears during the implementation of
these rules. In this example, a relational attribute could be part of zero, one
or more foreign key groups. In order to be able to store this information,
we have to change the relation bewteen RelAttribute and ForeignKey from a
zero to many relationship to a many to many one. This change requires to
modify every already implemented rules. Indeed, in previous rule, we linked
an instance of RelAttribute and one of ForeignKey using this instruction
Re.ImplByFk:=FK;. This could not be used anymore due to the used many
to many relationship. Both sides of the relationship refers to a collection of
objects, we need to use the instruction union to add the attributes in the
foreign key group.

A third repository is created. This repository is not compatible with the

two first repositories used until now.

6.3.2 Unstudied transformation rules

This transformation is an update of the overlapped partial Is-a relationship,
studied in the previous section. The difference is we add a new attribute to
store the date in all child tables. This attribute is member of the primary key
group, has no corresponding attribute in the ER model is not member of the
foreign key group implementing the relationships between the parent entity
and its children and is added to implement the relationship. In order to keep
this information, this attribute is added in the instance of PrimaryKeyDep.
It is the only example of an attribute being member of a PrimaryKeyDep
without being member of a ForeignKey group.

We simply decide to use the attribute type to make the difference between
a normal Is-a relationship or a temporal Is-a relationship. The transforma-

tion is exactly the same than the overlapping relationship.

77

6.3.3 Information lost

The purpose of this transformation is to merge entities Comment, Individu-
alComment, MiscComment and MainActivity. As we explain before, to merge
entities IndividualComment and MainActivity, we need to create an optional
group of attributes in IndividualComment. But to merge the new entity with
its parent, we have to create an optional group and in this group, there is
another optional group. This transformation is impossible.

The used transformation does not care about optional groups. Every at-
tribute moved from the merged entities is optional, without any constraints
between them. The created rule moves all attributes, by cascading, to the
main parent entity. These rules consist in a lighter version of the merging
entity in Is-a and in zero to one relationships without implementing any con-
straints. The tool cascades automatically all transformations. All rules able

to solve this example can be found in [Guvstavsson, 2003].

6.4 Conclusion

We demonstrate in this chapter OCL+ gives to the developer a powerful
language to build his own transformations for database engineering. We
demonstrate too the importance of the completeness of the repository. The
second version of the repository, illustrated by figure 6.2, and the differences
between this repository and the first version highlight clearly this need of
completeness. We show too with the third version 6.3 of the repository that
a repository could be totally incompatible with rules even if the change is
minimal. We demonstrate finally the importance of hybrid information in a
repository to be able to store every needed information to apply completely
a transformation.

We demonstrate the proof of the concept tool works but we demonstrate
too the importance of the if-then-else instruction in the action statement.
This instruction was not implemented following an old recommendation in
the OCL description from the OMG (this note does not exist anymore).
Some rules were impossible to implement due to the absence of this instruc-

tion.

78

0.1

AttributRelation

ImplementsAttr

ImplERA

ERAllribule Name: String
Name: String .
0.1 0.
Keystate: Integer
Nullable:Boolean | IMPIName e
0..*|ChildAttr

0.Jusodn

1

! . ImplERAFK
ERRelationship 0..1|ParentEntity P
Name:String EREntity ERSubtyperel
IType: String UseAttr 0..1 [Name: String 0.1 0..*|Constraints:String
Fromrole: String T“R] Fromentity Notable:Integer FromEntity ToSTRel
Torole:String one "y . qn
FromCardMin:String — - = 2
FromCardMax: String S“{mRE' ToEntity ToEntity FromSTRel
ToCardMin: String =
[ToCardMax:String 0.°([0..1|FromEntity 0..* |DeByST
0..1|lmplementsRel ImplementsEntity 0.*|ToEntity
D..1[ImplementsRel =
.*|implementsRel 0.*|ToDep
0..*|DefByRel
FromDep |U.,'D..1 DefinesDep
ERDependency
0.1 Type: String
DefinesDep
0..*|UseConst
;\ImplDep
PrimaryKeyDep) ImplementeRel
0
FromPKDep 0..1{ImplementsTable Relationnname
0.* 0..1|ImplementsTable 0..*|ImplementgF K
ToPKDep RelTable ForeignKey
0.1/Name:String |0.1 0. |[Equ:Boolean
ToTable FromTable ToFK
0..1{Impl tedbyD
[memerscop o o o
FromTable ToTable FromFK
0..1|ParentTable 0..*|Composediy
antlr.r::::memw' implementeERD
9 il]
Name: String 0.*
0.1 |KeyState:Boolean | ChildAttribute
Unigue:Boolean A
Nullable:Boolean |Composed FKGroup
0 *[Cons 0.1 CI..'lFromConsl ConstBetCpnst
0.1 il o AttrConstraint
.1 ImplementsAtir Frype: String 0.1
0.1 ToConst
UnderConst 0..1
ImplERD

Figure 6.2: Repository version 2

79

AttributRelation
ERAﬂMe Name: String
paf POV, ., g 4 0.
IMPIERA |y, 1 able- Booleon | MPIName Altel]
ImplementsAttr Nullable:Boolean
0..*[ChildAttr o1
0..*[Usedin |
&y - ImplERAFK
ERRelationship 0..1|ParentEntity P
IName: String EREntity ERSubtyperel
Type: String UseAttr 0..1 [Name:String 0.1 0.+ [Constraints: String
[Fromrole:String = Fromentity | \otable:integer e o ToSTRel
[Torole: String one B4 a5 iy
IFromCardMin:String — = L e
IFromCardMax:String g"lmR" ToEntity ToEntity FromSTRel
[ToCardMin: String
[ToCardMax: String i .1 |FromEntity 0.*[DefBysT
0. 1[ImplementsHel ImplementsEntity| «froentity
- 6_" taRal ..*{ToDep
0..%|DefByRel
Imp teRel FromDep |U..'D..1IDeinasDap
ERDependency
0.1 Type:String
DefinesDep
."|UseConst
;limpiDop
PrimaryKeyDepl|
FromPKDep 0..1|ImplementsTable Relationnname
0.* 0..1ImplementsTable 0._*|Impl tefF K
RelTable ForeignKey
ToPKDep
0..1Name:String 0.1 0.*|Equ Boolean
mond ToTable FromTable ToFK
0.1 [ibmintedtog 0.1 0.1 0.*
FromTable ToTable FromFK'
U..ﬂl-'atemlable 0..*|Composedy
0..* [ImplementsAttr implementeERD
RelAttribute
Name: String 0.~
0.1 KeyState: Boolean | ChildAtiribute
Unique:Boolean N
Nullable:Dool Composed FiGrou
0.7 c@ﬁ 0.1 o..'|chm ConstBetCpnst
0.3 Wil - AttrConstraint
i e Type: String (0.1
0.1 ToConst
UnderConst 0.1
ImpIERD

Figure 6.3: Repository version 3

80

Chapter 7

Conclusion

7.1 Purpose of this document

The purpose of this document was the creation of a set of tests to assess
the quality of transformation rules implemented in CASE tools. These tests
had to be based on real life examples. To achieve this goal, we have read
number of papers and we selected four articles in four different domains each
one presenting a solution to a specific problem.

From the analyze of the articles, we extracted firstly classical relation-
ships. These classical relationships were divided into four different classes
depending of their maximal cardinalities. Each relationship has one or more
transformation rules to be implemented in the relational model. These
transformations are well defined in the literature. They are symmetrically
reversible, that means no semantical information is lost thought the trans-
formation process.

We extracted secondly three categories of uncommon transformation
rules. First category contains relationships with constraints that can not
be expressed in the conceptual models. Second category contains relation-
ships that have to be transformed in using an unstudied transformation rule.
Last category contains relationships that have to be transformed with a rule
that looses semantical information through the transformation process.

The second part of the work was an evaluation of existing CASE tools

using the transformations extracted from the analyze of the selected articles.

81

For each transformation we assess the capability of each tool to apply the
rule. In case of problem in the process, we wrote a result table to sum up
the difficulties.

This part of the work highlights two main problems. Firstly, the quality
of the implementation of classical transformation rules in CASE tools is be-
low what we expected, excepted in DB-main. Some constraints are dropped,
some optimizations are made, some semantical information are lost and some
concepts are totally ignored (temporal relationship). Secondly, the studied
tools are completely static. There is no way to add users’ transformation
rules.

In order to find a solution to this second problem, and implicitly a solu-
tion to the first one too, we have presented the work of Gustavsson [Guvstavsson, 2003|
with OCL+. The purpose of his proof of concept tool is to be able to share
a conceptual schema with its transformation rules. To reach this goal, the
author has defined an extension of OCL (Object Constraint Language) in
UML. OCL+ is a transformation oriented language making possible to write
our own transformation rules using OCL+ and a repository formalized in
UML and with an active database system.

Using OCL+, we were able to build rules to transform our practice based
schemes. By implementing our rules, we highlight the importance of com-
pleteness of the repository. We were not able to find a lack in OCL+ for the
expression of transformation rules. Anyway, two bugs or lacks have been
found in the proof of the concept tool: the absence of if-then-else statement
and the absence of concatenation for string. Nevertheless, we finally showed
that the prototype works and is a good solution to solve uncommon design

problems.

7.2 Future works

The goal of this work was not to assess every possible transformation rule
implemented in CASE tools. We limited our analyze to the rules used in
papers presenting database schemes.

Nevertheless, some types of relationships are not supported in most of

tested tools. Ternary relationships, relation linking three entities, or at-

82

tributes in relationships are not supported by ER-win and by Rational Rose
for example. We did not find a practice based example that is not a school
example using these relationships but, theoretical examples demonstrate
such relations should be useful and should be implemented. Transformation
of such relationships was not possible due to the absence of the if-then-
else instruction in the proof of concept tool, but using this instruction, the
implementation of such rules should be interesting.

We showed the importance of completeness of the repository. The repos-
itory have to be able to store every data needed by a model and every data
needed to apply the transformation rules. These data are not part of the
model and are used by the tool only for internal reasons. If the repository
is not able to store these data, some transformation rules should not be
applied. The used repository is based on a small part of ER model. The
study of a complete repository able to store every needed information to be
able to transform rightly a schema from one model to another should be

interesting.

83

Bibliography

[IDE, | Ideflx: Technical report. http://www.idet.com/Downloads/pdf/
Idefix.pdf.

[Butler, 2000] Butler, T. (2000). Transforming information systems devel-
opment through computer-aided system engineering (case): lessons from

practice. Information Systems Journal, 10(3):167-193.

[Chen and Carlis, 2003] Chen, J. and Carlis, J. (2003). Genomic data mod-
eling. Information Systems, 28:287-310.

[Detienne and Hainaut, 2001] Detienne, V. and Hainaut, J.-L. (2001). Case
tool support for temporal database design. In 20th international confer-

ence on conceptual modeling (ER 2001).

[Dixon, 1992] Dixon, R. (1992). Winning with CASE: Managing Modern
Software Development. McGraw-Hill, New-York.

[G. Sunye and Jezequel, 2002] G. Sunye, A. L. G. and Jezequel, J.-M.
(2002). Using uml action semantics for model execution and transfor-
mation. Information Systems, 27:445-457.

[Guvstavson, 2003] Guvstavson, H. (2003). Oral discussion.

[Guvstavsson, 2003] Guvstavsson, H. (2003). Maintaining modelling trans-
parency in multi-tool environments through standards based interchange
of design transformation. submited to the University of Exeter, UK as

thesis for the degree of Doctor of Philosophy in Computer Science.

[Hainaut, 2002] Hainaut, J.-L. (2002). Syllabus of database engineering,

university of namur, belgium.

85

[Hughes and Wood-Harper, 2000] Hughes, J. and Wood-Harper, T. (2000).
An empirical model of the information systems development process: a
case study of an automotive manufacturer. Accounting Forum, 24(4):391—
406.

[J-L. Hainaut and Roland, 1996] J-L. Hainaut, J-M Hick, V. E. J. H. and
Roland, D. (1996). Understanding the implementation of is-a relation. In
Proc. of the 15th Int. Conf. on ER Approach, Cothbus, Springer-Verlag,
pages 42-57.

[Jackson, 1990] Jackson, M. (1990). Case tools and development methods.
Spurr, K., Layzell, P. (Eds.). CASE on trial. Wiley, Chichester, pages
95-104.

[James and Finkelstein, 1981] James, M. and Finkelstein, C. (1981). Infor-

mation engineering: Technical report.

[Kolp and Zimanyi, 2000] Kolp, M. and Zimanyi, E. (2000). Enhanced er
to relational mapping and interrelational normalization. Information and
Software Technology, 42:1057-1073.

[Lundell and Lings, 1999] Lundell, B. and Lings, B. (1999). Method sup-
port for developing evaluation frameworks for case tool evaluation. In
Khosrowpour, Mehdi (Ed.) Information Resources Management Associa-

tion International Conference, pages 350-358.

[OMG, 2003] OMG, O. M. G. I. (2003). Omg unified modeling language
specification. March 2003, Version 1.5.

[Penicka and Friedsam, 2002] Penicka, J. and Friedsam, H. (2002). New
database design for the aps survey and alignment data. In the 7th Inter-

national Workshop on Accelerator Alignment, SPring-8.

[Shapiro, 1997] Shapiro, S. (1997). Splitting the difference: the historical
necessity of synthesis in software engineering. IEEE Annals of the History
of Computing, 19(1):20-54.

[Widom, 1996] Widom, J. (1996). The starbust active database rule system.
IEEEF transactions on Knowledge and data engineering, 8(4):583-595.

86

[Willson, 1998] Willson, S. (1998). Measuring inconsistency in phylogenetic
trees. J. Theor. Biol., 190(1):15-36.

87

Appendix A

Using CASE tools

A.1 Using ERwin

A.1.1 Conceptual phase
Creating entities

An entity in ERwin is represented by a box divided in three parts. The
entity’s name is written in the upper box, the primary key’s attributes are
written in the middle box and the other attributes are written in the bottom
box.

A weak entity is an entity where the primary key is composed by one or
more relation(s). The entity is represented in ERwin by a box with rounded

corner.

Creating relationship

ERwin distinguishes between four kind of relationship: sub-category, non
identifying relationship, identifying relationship and many to many rela-
tionships. The three first relationships link two kind of entities: the parent
entity and the child entity. During the creation of a relationship, user clicks
first on the parent entity and clicks after on the child entity.

The sub-category relationship is a relation where the parent entity is the
super type and the child entity is the sub type. A child entity owns all the
characteristics of its super type. According to the IDEF1x [IDE, | definition:

89

rule A: A category entity can have only one generic entity. That
is, it can only be a member of the set of categories for one cate-
gory cluster.

()

rule D: The primary key attribute(s) of a category entity must
be the same as the primary key attribute(s) of the generic entity.
Howewver, role names may be assigned in the category entity.
()

A category entity cannot be a child entity in an identifying con-
nection relationship unless the primary key contributed by the
identifying relationship is completely contained within the pri-
mary key of the category, while at the same time the category

primary key satisfies rule d above.

ERwin distinguishes between two kind of sub-category relationship: exclu-
sive and inclusive. Exclusive sub-category does not allow two children of
the same entity reference the same instance of their parent entity. Inclusive
sub-category accepts this construct.

Non identifying relationship creates a foreign key in the child attribute.
This foreign key isn’t a part of the primary key. The group box cardinality
contains the cardinality for the child. The nulls group box contains the
minimal cardinality for the parent entity. Pay attention to ’zero or one’
cardinality, an alternate key have to be had.

The identifying relationship create a foreign key in the child attribute.
This foreign key is a part of the primary key. As in the non identifying
relationship, the group box cardinality contains the cardinality for the child.
The foreign key for this kind of relation can’t be null, the nulls group isn’t
actived. Pay attention to zero or one cardinality, an alternate key have to
be had.

The many to many relationship does not allow any configuration. The
minimal cardinality is zero for both side of the relation.

An alternate key have to be create if all instances of an attribute or a
group of attributes must be unique. During the creation of a relationship,

if the maximal cardinality is one (P), a alternate key must be added. We

90

click with the right mouse’s right button on the child entity—key group. We
click on New button, we choose Alternate key. The Key is now added, we

add now all attribute coming from the foreign key:.

A.1.2 Logical phase

The menu tool— Derive new model gives us the way to transform logical
schema to physical schema .

In the first wizard screen, we choose Physical in the New Type Model
group. We choose too Oracle 8. It’s normally the default option.

On the second screen, we select Many-to-many relationship and Super-
type/subtype in the Auto transform logical objects group.

There is no special action to do in the last screen.

A.1.3 Generating SQL code

The menu tool— Forward Engineer /Schema Generation gives us the way to
generate SQL code from the physical schema.
In the wizard screen, we change the property of Referential Integrity and

we check the Unique (AK) property.

A.2 Using Rational Rose

A.2.1 Conceptual phase

Rational Rose use UML to represent schemes. UML editor allow to represent
classes for a oriented object application. For this reason, it is impossible to
create a primary key in a class (normally implicit for each class in oriented
object). The conceptual phase consist in creating a new package. This

package will contain all our entities.

Creating entities

We create each entity. In entity’s option, we select Persistent. We add all

attributes, even if this attribute is a part of the primary key.

91

Creating relationship

As ERwin, Rose distinguishes four kinds of relationships: sub-category, non
identifying relationships, identifying relationships and many to many rela-
tionships. Asin ERwin too, after selecting the kind of relationship, user click
first on the parent entity and secondly on the child entity. Translated in the
relational model, a foreign key is created in the child entity and references
the parent entity.

Sub-category relationship is non-disjunctive and partial. Rose does not
allow another kind of sub-category.

For three others relationships, after creating the relationship, user defines

the cardinality in relationship’s option.

A.2.2 Logical phase

Datamodeler in rose is the logical phase. We transform the package to a
new datamodel. All persistent entity are added in this new model, and all
links are created. A sub-category relationship is transformed to a unique
foreign key. For a many to many relationship, a new table is created with
two foreign keys referencing the initial entities. For all child entities with one
or more identifying relationship or with one sub-category, the foreign key
implementing the relationship is part of the primary key. For other entity,
a new attribute is added and implemented the primary key.

At this moment, some modification have to be made on the new model.
First we delete all automatically added attribute which are not a part of a
foreign key. Secondly, we recreate the real primary key group and we add all
attribute in this group. If the primary key is compounded by one attribute
part of a foreign key and another attribute, we simply add this attribute in

the primary key group.

A.2.3 Generating SQL code

We can generate SQL code of a data model with the data model context

menu: Data Modeler— Forward Engineering.

92

A.3 Using DB-main

A.3.1 Conceptual phase
Schema creation

An entity is a box, divided in three parts. The first contains the entity’s
name, the second contains the attribute’s list and the last contains informa-
tion about this attribute (primary key...). To create an entity, we click on
the entity’s icon and click in the schema. To add attributes in the entity,
we click on the attribute’s icon, and click on the entity, in the schema.

A relationship is an hexagon. Relationship’s name is written inside this
hexagon. To create a relationship, we click on the relationship’s icon and
click in the schema. After that, we click on the link icon, click on the
relationship and finally on the entity to link. We redo this operation until
all wanted entities have been linked.

An Is-a relationship is represented by a triangle. The bold line links the
super type entity and the normal line links the subtype entity. To create an
Is-a relationship, we doubleclick on the subtype entity and we add all the

super type entity we want.

A.3.2 Logical phase
Individual transformation

DBmain ensures to transform every relationships individually. To transform
a relationship, we select first the relation. The menu Transform— Rel- Type
is now accessible. We use systematically the — Attribute transformation.
To Transform an Is-a relationship, we select first the child entity. The
menu Transform-;Entity Type is now accessible. An Is-a relationship can be
transformed in different ways. We use mainly the Is-a— Rel-type function
(transform the Is-a to a relationship) and the split/merge function (merge

the subtype with the super type.

93

To relation transformation

DBmain ensures to transform the EA schema directly in the relational
model. Every relationships are translated with a foreign key, all Is-a re-
lationships are translated to a unique foreign key and all many to many re-
lationships are translated in a table with foreign key’s group referencing all
entities linked to this relationship. If a relationship was already transformed
individually into the relational model as explain upper, this relationship does

not change.

Global Transformation

DBmain ensures to make a script to transform the EA schema. This script
is made up of one or more action to be made on each object with a certain

precondition.

A.3.3 Generating SQL code

The SQL code generation can be made in different way. The menu File— Generate
ensures the generation in different codes. In all our example, we use the Aca-

demic SQL (check) function to generate the code.

94

Appendix B

Testing tools

B.1 Result table

B.1.1 Zero to many non-identifying optional relationship

e ERwin
Phase Result | Notes
Conceptual Ok none
Logical Ok none
SQL Ok none
e Rational Rose
Phase Result | Notes
Conceptual Ok none
Logical Ok | none
SQL Ok none
e DB-main
Phase Result | Notes
Conceptual Ok none
Logical Ok none
SQL Ok | none

95

B.1.2 Zero to many non-identifying mandatory relationship
e ERwin

Phase Result | Notes

Conceptual Ok none

Logical Ok | none
SQL Ok none

e Rational Rose

Phase Result | Notes

Conceptual Ok none

Logical Ok none
SQL Ok none

e DB-main

Phase Result | Notes

Conceptual Ok none

Logical Ok none
SQL Ok none

B.1.3 Zero to many identifying relationship
e ERwin

Phase Result | Notes

Conceptual Ok none

Logical Ok | none
SQL Ok none

e Rational Rose

Phase Result | Notes

Conceptual Ok none

Logical Ok | none
SQL Ok | none
e DB-main

96

Phase Result | Notes
Conceptual Ok none
Logical Ok none
SQL Ok none

B.1.4 One to many identifying relationship

e ERwin
Phase Result | Notes
Conceptual Ok None
Logical Ok none
SQL Ko Mandatory constraint on parent entity is

not implemented

e Rational Rose

Phase Result | Notes
Conceptual Ok none
Logical Ok | none

SQL Ko Mandatory constraint on parent entity is

not implemented
e DB-main

Phase Result | Notes
Conceptual Ok none
Logical Ok none
SQL Ok none

B.1.5 Zero to one identifying relationship

e ERwin

97

Phase Result | Notes
Conceptual Ok A unique constraint must be added on the
foreign key. Normally, we don’t have to
care about foreign key in the conceptual
phase
Logical Ok none
SQL Ok | none
e Rational Rose
Phase Result | Notes
Conceptual Ok none
Logical Ok none
SQL Ok none
e DB-main
Phase Result | Notes
Conceptual Ok none
Logical Ok none
SQL Ok none

B.1.6 Many to many relationship

e ERwin

Phase Result | Notes
Conceptual Ok none
Logical Ok | none
SQL Ok none

e Rational Rose
Phase Result | Notes
Conceptual Ok | none
Logical Ok none
SQL Ok none

98

e DB-main

Phase Result | Notes
Conceptual Ok none
Logical Ok none
SQL Ok none

B.1.7 Composition by two many to many relationship

¢ ERwin
Phase Result | Notes
Conceptual Ok none
Logical Ok none
SQL Ok none
e Rational Rose
Phase Result | Notes
Conceptual Ok none
Logical Ko Both relationship are implemented by a
unique table
SQL Ko NA
e DB-main
Phase Result | Notes
Conceptual Ok none
Logical Ok | none
SQL Ok none

B.1.8 Is-a disjunctive relationship

e ERwin
Phase Result | Notes
Conceptual Ok none
Logical Ok none
SQL Ok | No trigger are created to implement the

disjunctive constraint.

99

e Rational Rose

Phase Result | Notes
Conceptual Ko Impossible to represent a disjunctive sub-
type
Logical Ko Constraint impossible to represent
SQL Ko NA
e DB-main
Phase Result | Notes
Conceptual Ok none
Logical Ok | none
SQL Ok none

B.1.9 Is-a non disjunctive relationship

¢ ERwin
Phase Result | Notes
Conceptual Ok none
Logical Ok none
SQL Ok none
e Rational Rose
Phase Result | Notes
Conceptual Ok none
Logical Ok | none
SQL Ok none
e DB-main
Phase Result | Notes
Conceptual Ok none
Logical Ok none
SQL Ok none

100

B.1.10 Limitation in conceptual model

e ERwin
Phase Result | Notes
Conceptual Ok None
Logical Ok none
SQL Ok none
e Rational Rose
Phase Result | Notes
Conceptual Ko The constraints can’t be expressed Prob-

lem with the primary key

Logical Ok | none
SQL Ok none
e DB-main
Phase Result | Notes
Conceptual Ko The constraints can’t be expressed
Logical Ok none
SQL Ok | none
B.1.11 Temporal Is-a relationship
e ERwin
Phase Result | Notes
Conceptual Ko ER-win doesn’t support this entity type.
Logical Ko NA
SQL Ko NA
e Rational Rose
Phase Result | Notes
Conceptual Ko Rose doesn’t support this entity type
Logical Ko | NA
SQL Ko NA

101

e DB-main

Phase Result | Notes
Conceptual Ok Three kind of temporal entity exist, Hain-
aut...

Logical Ko A temporal entity is implemented with
two attributes (beginning date and end-
ing date), we need one attribute

SQL Ko NA

B.1.12 Semantical information lost

e ERwin
Phase Result | Notes
Conceptual Ok none
Logical Ko Impossible to merge two entities linked by
a 0-1 relationship Using a sub-type instead
of 0-1 relationship between 'MainA ctivity’
and ‘IndivudualComment’, merging trans-
formation works, but we lose the ‘Misc-
Comment’ entity.
SQL Ok | none
e Rational Rose
Phase Result | Notes
Conceptual Ko Disjunctive constraints can’t be expressed
Logical Ko Using a non-disjunctive Is-a, Rose is not
able to merge two entities
SQL Ko NA
® DB-main

102

Phase Result | Notes

Conceptual Ok none

Logical Ko We are able to merge entities 'MainAc-
tivity’ and ‘IndivudualComment’ but we
are not able to merge the new entity with
‘comment’ because of semantic informa-

tion lost.

SQL Ko NA

103

Appendix C

Architecture developed for
the ASTRID project

C.1 Repository

Version 1 Original version of the repository
Version 1 First version of the repository
Version 2 Adds the possibility to add constraints on relational attribute.

Version 3 Used in the biological example.

105

ERAttribute
01 Name: String
—Keystate:Integer
ImplERA
0..%|ChildAttr
0..1|ParentEntity
ERRelationship EREntity ERSubtyperel
Name: String 0.* 0..1|Name:String 0.1 0.*
Type:String) ToRel Fromentity Notable:Integer FromEntity ToSTRel
Fromrole: String . -
|Torole: String 0. 0.1 0.1 0.
FromCard: String FromRel ToEntity ToEntity FromSTRel
IToCard. String
0.1 wlmriame'ntsF el 0. |o.1|FromEntity 0..*|DeBysT
D.. ?gigmemﬁejﬂel ImplementsEntity|, . ToEntity
..* |DefByRel 0..*[ToDep
FromDep ID..” 0..1|DefinesDep
ERDependency
0.1 ype: String
DefinesDep
|
| U.._‘llmpiDep
PrimaryKeyDep
0.*
FromPKDep 0.1 |ImplementsTable
0.* 0..1|implementsTable 0..*|ImplementsFK
ToPKDep RelTable ForeignKey
0.1 [Name: String 0.1 0.
0..1|implementedbyDep ToTable FromTable ToFK
0.1 0.1 r
0..*|implomentsAstr FromTable ToTable FromFK
RelAttribute | 0.1]ParentTable 0.1 ImpIByFk
Name: String i
0.1 licoyState:Boolean | ChildAttribute
lementsAttr 0.
ImplAttr

Figure C.1: Original Metamodel

106

ERAttribute
Name:String

01 Keystate:Integer
ImplERAINullable: Boolean
0_*|ChildAttr
I ERRelationship | 0_1jParentEntity
|[Name String EREntity ERSubtyperel
Type Stiing 0= 0.1 [‘llam;Stlri;\g 0.1 g _#|Constraints:String
Fromrole: String ToRe! —{Notable:Integer -
Torole:String Fromentity FromEntity ToSTRel
FromCardMin-String 0+ 0.1 0.1 0.*
FromCardiax:String ToEntity ToEntity FromSTRel
ToCardMin-Stiing ~ |FTomRel
[ToCardMax: String
0.* 0. 1|FromEnmy 0..*|DefByST
0.1 t;mplementsl"el ImplementsEntity 0_.*|ToEntity
1|implemgntsRel x
0..*|ImpjementsRel 0.*{ToDep
0.*|DeByRel
FromDep |0..*|0 1I;eﬁne50ep
ERDependen
0..1[Type:String
DefinesDep
FllmpiDep
PrimaryKeyDe
0.+
FromPKDe 0_.1implementsTable
0.* P 0__1]implementsTable 0 _*|implementsFk
ToPKDep Releane | ForeignKey
0..1|Name:String 0.1 0. *|Equ:Boolean
0 1|ImplementedbyDap Tﬂ?'? E"J{“Tab‘e TO?S
FromTable ToTable FromFK]
0. lIParentTabIe 0. 1]impiByFk
0_*|implementsAttr
RelAttribute
Name:String 0.
0. 1|KeyState-Boolean | ChildAttribute
ImplementsAttr|Unique:Boolean Sy
Nullahle Roolean ImplAttr
0_*|ConstAttr
Constraints
Coex:boolean
0.1
UnderConst

Figure C.2: Metamodel version 1

107

- AftributRelation
ERAttribute T———
Name: String 4
0.1 y | 0.
Keystate:Integer —
IMpIERA |y 11able: Boolk ImpIName AttrRel
ImplementsAttr
0..*|ChildAttr 0.1
0..*[Usedin i
1 . ImplERAFK
ERRelationship 0..1|ParentEntity P
Name:String EREntity ERSubtyperel
Type: String UseAttr 0..1 [Name:String 0.1 Constraints: String
Fromrole:String | Fromentity | \otable:integer e ey ToSTRel
Torole:String D°.° 0.1 0.1
FromCardMin:String — - 1
FromCardMax: String Elo'mRG' ToEntity ToEntity FromSTRel
ToCardMin:String [
[ToCardMax:String 0.*| [o..1|FromEntity 0.*|DeByST
0..1[implementsHel ImplementsEntityly «\roEnity
o imefomertsRel 0. [TaDep
*|DefByRel
FromDep}U..' 0..1|DefinesDep
ERDependency
0.1 Type: String
DefinesDep
0..*|UseConst
HlmplDap
PrimaryKeyDep| ImplementeRel
0.+
FromPKDep 0..1|ImplementsTable Relationnname
0.* 0..1|ImplementsTable 0..*{Impl K
ToPKDep RelTable ForeignKey
0.1|Name:String (0.1 - |Equ:Boolean
0..1|ImplementedbyD ToTable FromTable ToFK
[mplmentscbyDep o & o
FromTable ToTable FromFK
U..ﬂi’arenﬂabln 0..*|ComposedBy
Ruhtlr'r:t)‘l‘ementsi\m implementeERD
alAttribute
Name: String 0.*
0.1 KeyState: Boolean | ChildAttribute
Unique:Boolean 1
Nullable:Boolean |Composed FKGroup
0.*[Cons 0.1 0..’|meCnnst ConstBetCpnst
0.1 tmol A AttrConstraint
- Amplemen r Type: String 0.1
0.1 ToConst
UnderConst 0.1
ImplERD

Figure C.3: Metamodel version 2

108

- AttributRelation
m ER’::T'hms Name: String
lame: String o
0.1} ystateinteger 0.1 0. |
IMPIERA |\ ilable:Boolean | MPIName AttrRel
ImplementsAttr ’
0..*|ChildAttr 0.1
0..*|Usedin I
A : ImplERAFK
ERRelationship 0..1[Parsnintily
Name: String EREntity EF\‘Sz.Jb!ypcr.ol
Type: String US'EAW 0..1 [Name:String 0.1 0..*|Constraints:String
Fromrole: String - Fromentity Notable:Integer FromEntiy ToSTREl
. ToRel
[Torole: String 0. 0.1 0.1 0.
FromCardMin: String FromRel - a2 =
FromCardMax:String | "™ © ToEntity ToEntity FromSTRel
[ToCardMin: String
[FoCarbiax String [o1 [FromEntity 0. |DefByST
0.1[impl Hel ImplementsEntity| » ToEntity
- | RAEN 0..*|ToDep
" |0.7|DefByRel
ImplementeRel FromDep [0..*[0..1 [DefinesDep
ERDependency
0.1 [Type. Shring
DefinesDep
0..*|UseConst
\;‘Impmep
PrimaryKeyDep|
0.”
FromPKD 0..1 [ImplementsTable Relationnname
D.'.?'m & r‘rjip Jimp sTable 0.*|ImplementsFK
RelTable ForeignKey
ToPKDep .
0.1|Name:String [0-1 0.*|Equ:Boolean
0..1|ImplementedbyD: ToTable FromTable ToFK
[opemarsodeyop o & o
From|able lolable FromkK
0..1|ParentTable 0..*|ComposedBy
0. [implermentsAllr ImplementsERD
RelAttribute
Name: String "
0.1 |keyState:B ChildAttribute
Unigue:Boolean 0.N
Nullable:Boolean |Composed FKGroup
0..*|Const 0..1| 0..*|FromConst ConstBetCpnst
0.1 Imol _ AttrConstraint
.1 ImplementsAttr Type: String |0-1
0.1 ToConst
UnderConst 0.1
ImplERD

1

09

Figure C.4: Metamodel version 3

C.2 Rules
1. Entity to Table

Repository v. 1
Context Class EREntity
Event Insert
Declaration RelTable RT
Condition ImplementsTable—isempty and notable=false

Action RT.create;
RT .name:=self.name;

self.ImplementsTable:=RT
2. Attribute to RelAttribute

Repository v. 1
Context Class ERAttribute
Event Insert
Declaration RelAttribute RA
Condition ImplementsAttr—isempty and ParentEntity.notable=false

Action RA.Create;
RA.ImplERA:=self;
RA.Name:=self.Name;
RA.KeyState:=self.KeyState;
RA.Nullable=self.Nullable;
RA.ParentTable:=self.ParentEntity.ImplementsTable

3. 0-1 0-N non identifying relationship

Repository v. 1
Context Class ERRelationship
Event Insert

Declaration RelAttribute Re, ForeignKey Fk

110

Condition

Action

FromCardMin="0" and ToCardMin="0" and FromCardMax="N"
and ToCardMa.x:” 1” and Type<>” Wn

FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self;
FK.FromTable:=self.FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity.ImplementsTable;

self. FromEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—

iterate(PK1|

Re.Create;

Re.Keystate:=false;

Re.Nullable:=true;

Re.Name:=PK1.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;
Re.ImplByFk:=FK)

4. 1-1 0-N non identifying relationship

Repository
Context Class
Event
Declaration

Condition

Action

v. 1

ERRelationship

Insert

RelAttribute Re, ForeignKey Fk

FromCardMin="0” and ToCardMin="1" and FromCardMax="N"
and ToCardMax="1" and Type="N"

FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self;
FK.FromTable:=self.FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity.ImplementsTable;

self. FromEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—

iterate(PK1|

Re.Create;

111

Re.Keystate:=false;

Re.Nullable:=false;

Re.Name:=PK1.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;
Re.ImplByFk:=FK)

5. 0-1 1-N non identifying relationship

Repository v. 1
Context Class ERRelationship
Event Insert
Declaration RelAttribute Re, ForeignKey Fk

Condition FromCardMin="1" and ToCardMin="0" and FromCardMax="N"
and ToCardMax="1" and Type="N”

Action FK.Create;
FK.Equ:=true;
FK.ImplementsRel:=self;
FK.FromTable:=self. FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity.ImplementsTable;
self. FromEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—
iterate(PK1|
Re.Create;
Re.Keystate:=false;
Re.Nullable:=true;
Re.Name:=PK1.name;
Re.ParentTable:=self. ToEntity.ImplementsTable;
Re.ImplByFk:=FK)

6. 1-1 1-N non identifying relationship

Repository v. 1
Context Class ERRelationship

Event Insert

112

Declaration RelAttribute Re, ForeignKey Fk

Condition FromCardMin="1” and ToCardMin="1” and FromCardMax="N"
and ToCardMax="1" and Type="N”

Action FK.Create;
FK.Equ:=true;
FK.ImplementsRel:=self;
FK.FromTable:=self.FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity.ImplementsTable;
self. FromEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—
iterate(PK1|
Re.Create;
Re.Keystate:=false;
Re.Nullable:=false;
Re.Name:=PK1.name;
Re.ParentTable:=self. ToEntity.ImplementsTable;
Re.ImplByFk:=FK)

7. 1-1 0-N identifying relationship

Repository v. 1
Context Class ERRelationship
Event Insert
Declaration RelAttribute Re, ForeignKey Fk, PrimaryKeyDep Pk
Condition FromCardMin="0" and ToCardMin="1" and FromCardMax="N"
and ToCardMax="1" and Type="1"
Action FK.Create;
FK.Equ:=false;
FK.ImplementsRel:=self;
FK.FromTable:=self.FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity.ImplementsTable;
Pk.Create;
Pk.FromTable:=self. FromEntity.ImplementsTable;

113

PK.ToTable:=self.ToEntity.ImplementsTable;
Pk.ImplementsRel:=self;

self. FromEntity.ImplementsTable.childAttribute—
reject(Keystate=false)—

iterate(PK1|

Re.Create;

Re.Keystate:=true;

Re.Nullable:=false;

Re.Name:=PK1.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;
Re.ImplementedbyDep:=Pk;

Re.ImplByFk:=FK)

8. 1-1 1-N identifying relationship

Repository
Context Class
Event
Declaration

Condition

Action

v. 1

ERRelationship

Insert

RelAttribute Re, ForeignKey Fk, PrimaryKeyDep Pk

FromCardMin="1” and ToCardMin="1” and FromCardMax="N"
and ToCardMax="1" and Type="1"

FK.Create;

FK.Equ:=true;

FK.ImplementsRel:=self;
FK.FromTable:=self.FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity. ImplementsTable;
Pk.Create;

Pk.FromTable:=self. FromEntity.ImplementsTable;
PK.ToTable:=self. ToEntity.ImplementsTable;
Pk.ImplementsRel:=self;

self.FromEntity. ImplementsTable.child Attribute—
reject(Keystate=false)—

iterate(PK1|

Re.Create;

114

Re.Keystate:=true;

Re.Nullable:=false;

Re.Name:=PK1.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;
Re.ImplementedbyDep:=Pk;
Re.ImplByFk:=FK)

9. 1-1 0-1 non identifying relationship

Repository
Context Class
Event
Declaration

Condition

Action

v. 2

ERRelationship

Insert

RelAttribute Re, ForeignKey Fk, AttrConstraint AC

FromCardMin="0" and ToCardMin="1" and FromCardMax="1"
and ToCardMax="1" and Type="N”

FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self;
FK.FromTable:=self.FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity.ImplementsTable;
AC.Create;

AC.Type="unique”; self.FromEntity.ImplementsTable.childAttribute—
reject(Keystate=false)—

iterate(PK1|

Re.Create;

Re.Keystate:=false;

Re.Nullable:=false;

Re.Name:=PK1.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;
union(AC.underconst(Re)); Re.ImplByFk:=FK)

10. 1-1 1-1 non identifying relationship

Repository

Context Class

v. 2
ERRelationship

115

Event Insert
Declaration RelAttribute Re, ForeignKey Fk, AttrConstraint AC

Condition FromCardMin="1" and ToCardMin="1" and FromCardMax="1"
and ToCardMax="1" and Type="N"

Action FK.Create;
FK.Equ:=true;
FK.ImplementsRel:=self;
FK.FromTable:=self.FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity.ImplementsTable;
AC.Create;
AC.Type="unique”; self. FromEntity.ImplementsTable.childAttribute—
reject(Keystate=false)—
iterate(PK1|
Re.Create;
Re.Keystate:=false;
Re.Nullable:=false;
Re.Name:=PK1.name;
Re.ParentTable:=self. ToEntity.ImplementsTable;
union(AC.underconst(Re)); Re.ImplByFk:=FK)

11. 0-1 0-1 non identifying relationship

Repository v. 1
Context Class ERRelationship
Event Insert
Declaration RelAttribute Re, ForeignKey Fk, AttrConstraint AC

Condition FromCardMin="0" and ToCardMin="0" and FromCardMax="1"
and ToCardMax="1" and Type="N"

Action FK.Create;
FK.Equ:=false;
FK.ImplementsRel:=self;
FK.FromTable:=self.FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity.ImplementsTable;

116

AC.Create;
AC.Type="unique”; self.FromEntity.ImplementsTable.childAttribute—

reject(Keystate=false)—

iterate(PK1|

Re.Create;

Re.Keystate:=false;

Re.Nullable:=true;

Re.Name:=PK1.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;
union(AC.underconst(Re)); Re.ImplByFk:=FK)

12. 1-1 0-1 identifying relationship

Repository
Context Class
Event

Declaration

Condition

Action

v. 1
ERRelationship
Insert

RelAttribute Re, ForeignKey Fk, PrimaryKeyDep Pk, AttrCon-
straint AC

FromCardMin="0” and ToCardMin="1” and FromCardMax="1"
and ToCardMax="1" and Type="1"

FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self;
FK.FromTable:=self.FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity.ImplementsTable;
Pk.Create;

Pk.FromTable:=self. FromEntity.ImplementsTable;
PK.ToTable:=self. ToEntity.ImplementsTable;
Pk.ImplementsRel:=self;

AC.Create;

AC.Type="unique”; self. FromEntity.ImplementsTable.child Attribute—

reject(Keystate=false)—
iterate(PK1|
Re.Create;

117

Re.Keystate:=true;

Re.Nullable:=false;

Re.Name:=PK1.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;
Re.ImplementedbyDep:=Pk;
union(AC.underconst(Re)); Re.ImplByFk:=FK)

13. 1-1 1-1 identifying relationship

Repository v. 1
Context Class ERRelationship
Event Insert

Declaration RelAttribute Re, ForeignKey Fk, PrimaryKeyDep Pk, AttrCon-
straint AC

Condition FromCardMin="1" and ToCardMin="1" and FromCardMax="1"
and ToCardMax="1" and Type="1"

Action FK.Create;
FK.Equ:=true;
FK.ImplementsRel:=self;
FK.FromTable:=self.FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity.ImplementsTable;
Pk.Create;
Pk.FromTable:=self. FromEntity.ImplementsTable;
PK.ToTable:=self. ToEntity.ImplementsTable;
Pk.ImplementsRel:=self;
AC.Create;
AC.Type="unique”; self. FromEntity.ImplementsTable.childAttribute—
reject(Keystate=false)—
iterate(PK1|
Re.Create;
Re.Keystate:=true;
Re.Nullable:=false;
Re.Name:=PK1.name;
Re.ParentTable:=self. ToEntity.ImplementsTable;

118

Re.ImplementedbyDep:=Pk;
union(AC.underconst(Re)); Re.ImplByFk:=FK)

14. merging -1 0-1 non identifying relationship

Repository
Context Class
Event

Declaration

Condition

Action

v. 2
ERRelationship
Insert

RelAttribute Re, ForeignKey Fk, AttrConstraint AC1, AttrCon-
straint AC2

FromCardMin="0” and ToCardMin="1" and FromCardMax="1"
and ToCardMax="1" and Type="N"

AC1.Create;

AC1.Type="coexistence”;

AC2.Create;

AC2.Type="unique”;

self. FromEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—

iterate(Att|

Re.Create;

Re.Keystate:=false;

Re.Nullable:=true;

Re.Name:=Att.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;

union(AC1.underconst(Re)); union(AC2.underconst(Re)); Re.ImplByFk:=FK);

self.FromEntity. ImplementsTable.child Attribute—
reject(Keystate=true)—

iterate(Att|

Re.Create;

Re.Keystate:=false;

Re.Nullable:=true;

Re.Name:=Att.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;
union(AC1l.underconst(Re)); Re.ImplByFk:=FK)

119

15. merging 0-1 0-1 non identifying relationship

Repository v. 2
Context Class ERRelationship

Event Insert
Declaration RelAttribute Re, ForeignKey Fk, AttrConstraint AC2

Condition FromCardMin="0" and ToCardMin="1" and FromCardMax="1"
and ToCardMax="1" and Type="N"

Action AC2.Create;
AC2.Type="unique”;
self. FromEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—
iterate(Att|
Re.Create;
Re.Keystate:=false;
Re.Nullable:=true;
Re.Name:=Att.name;
Re.ParentTable:=self. ToEntity.ImplementsTable;
union(AC2.underconst(Re)); Re.ImplByFk:=FK); self. FromEntity. ImplementsTable.child:
reject(Keystate=true)—
iterate(Att|
Re.Create;
Re.Keystate:=false;
Re.Nullable:=true;
Re.Name:=Att.name;
Re.ParentTable:=self. ToEntity.ImplementsTable;
Re.ImplByFk:=FK)

16. merging 1-1 0-1 identifying relationship

Repository v. 2
Context Class ERRelationship
Event Insert

Declaration RelAttribute Re, ForeignKey Fk, AttrConstraint AC1

120

Condition

Action

FromCardMin="0" and ToCardMin="1" and FromCardMax="1"
and ToCardMax="1" and Type="N"

ACl1.Create;

AC1.Type="coexistence”;

AC2.Create;

AC2.Type="unique”;

self. FromEntity.ImplementsTable.childAttribute—
iterate(Att|

Re.Create;

Re.Keystate:=false;

Re.Nullable:=true;

Re.Name:=Att.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;
union(AC1l.underconst(Re)); Re.ImplByFk:=FK);

17. merging Is-a disjoint

Repository
Context Class
Event

Declaration

Condition

Action

v. 2
ERDependency
Insert

RelAttribute Re, ERRelationship ER, AttrConstraint AC1, At-
trConstraint AC2

Type="D"

AC1.Create;

AC1.Type="exculsion”;

self.DefByST —

iterate(SubType|

AC2.Create; AC2.Type="coexistence”;
Union(AC2.FromConst(AC1));
SubType.FromEntity.Implementstable := SubType.ToEntity.Implementstable;
SubType.FromEntity.Implementstable.child Attribute—

iterate(Attr|

Re.Create;

Re.Keystate:=false;

121

Re.Nullable:=true;

Re.Name:=Attr.name;
Re.ParentTable:=SubType.ToEntity.Implementstable;
union(AC2.underconst(Re));

18. merging Is-a Overlapped

Repository
Context Class
Event
Declaration
Condition

Action

v. 2

ERDependency

Insert

RelAttribute Re, ERRelationship ER, AttrConstraint AC2
Type="D"

ACl1.Create;

self.DefByST—

iterate(SubType|
AC2.Create; AC2.Type="coexistence”;

SubType.FromEntity.Implementstable := SubType.ToEntity.Implementstable;

SubType.FromEntity.Implementstable.child Attribute—
iterate(Attr]|

Re.Create;

Re.Keystate:=false;

Re.Nullable:=true;

Re.Name:=Attr.name;
Re.ParentTable:=SubType.ToEntity.Implementstable;
union(AC2.underconst(Re));

19. 0-N 0-N relationship

Repository
Context Class
Event

Declaration

Condition

v. 1
ERRelationship
Insert

RelTable Rt, PrimaryKeyDep Pkl, PrimaryKeyDep Pk2, For-
eignKey Fk1, ForeignKey Fk2, RelAttribute Re

FromCardMin="0" and ToCardMin="0" and FromCardMax="N"
and ToCardMax="N" and Type="N"

122

Action Rt.Create;
Rt.Name:=self.Name;
self. ImplementsTable:=Rt;
Pk1.Create;
Pkl.ImplementsRel:=self;
Pkl.FromTable:=self.FromEntity.ImplementsTable;
Pkl1.ToTable:=RT;
Pk2.Create;
Pk2.ImplementsRel:=self;
Pk2.FromTable:=self. ToEntity.ImplementsTable;
Pk2.ToTable:=Rt;
Fk1.Create;
Fk1.Equ:=false;
Fk1.ImplementsRel:=self;
Fk1.FromTable:=self. FromEntity.ImplementsTable;
Fk1.ToTable:=Rt;
Fk2.Create;
Fk2.Equ:=false;
Fk2.ImplementsRel:=self;
Fk2.FromTable:=self. ToEntity.ImplementsTable;
Fk2.ToTable:=Rt;
self. FromEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—
iterate(PK|
Re.Create;
Re.Keystate:=true;
Re.Nullable:=false;
Re.Name:=PK.name;
Re.ParentTable:=Rt;
Re.ImplementedbyDep:=Pk1;
Re.ImplByFk:=Fk1);
self. ToEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—
iterate(PK|

123

Re.Create;
Re.Keystate:=true;
Re.Nullable:=false;
Re.Name:=PK.name;
Re.ParentTable:=Rt;
Re.ImplementedbyDep:=Pk2;
Re.ImplByFk:=Fk2)

20. 1-N 1-N relationship

Repository
Context Class
Event

Declaration

Condition

Action

v. 1
ERRelationship

Insert

RelTable Rt, PrimaryKeyDep Pkl, PrimaryKeyDep Pk2, For-
eignKey Fk1, ForeignKey Fk2, RelAttribute Re

FromCardMin="1”" and ToCardMin="1" and FromCardMax="N"
and ToCardMax="N” and Type="N”

Rt.Create;

Rt.Name:=self. Name;

self.ImplementsTable:=Rt;

Pkl1.Create;

Pkl.ImplementsRel:=self;
Pk1.FromTable:=self.FromEntity.ImplementsTable;
Pk1.ToTable:=RT;

Pk2.Create;

Pk2.ImplementsRel:=self;

Pk2.FromTable:=self. ToEntity.ImplementsTable;
Pk2.ToTable:=RT;

Fk1.Create;

Fkl.Equ:=true;

Fk1.ImplementsRel:=self;
Fk1.FromTable:=self.FromEntity.ImplementsTable;
Fk1.ToTable:=RT;

Fk2.Create;

124

Fk2.Equ:=true;

Fk2.ImplementsRel:=self;

Fk2 FromTable:=self. ToEntity.ImplementsTable;
Fk2.ToTable:=RT;

self. FromEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—

iterate(PK]|

Re.Create;

Re.Keystate:=true;

Re.Nullable:=false;

Re.Name:=PK.name;

Re.ParentTable:=Rt;
Re.ImplementedbyDep:=Pk1;
Re.ImplByFk:=Fk1);

self. ToEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—

iterate(PK|

Re.Create;

Re.Keystate:=true;

Re.Nullable:=false;

Re.Name:=PK.name;

Re.ParentTable:=Rt;
Re.ImplementedbyDep:=Pk2;
Re.ImplByFk:=Fk2)

21. 0-N - 1-N relationship

Repository
Context Class
Event

Declaration

Condition

v. 1
ERRelationship
Insert

RelTable Rt, PrimaryKeyDep Pkl, PrimaryKeyDep Pk2, For-
eignKey Fkl1, ForeignKey Fk2, RelAttribute Re

FromCardMin="0" and ToCardMin="1" and FromCardMax="N"
and TOCB.I'dMaX:”N” and Type:” N”

125

Action RT.Create;
Rt.Name:=ERRelationship.Name;
self. ImplementsTable:=Rt;
Pk1.Create;
Pk1.ImplementsRel:=self;
Pkl.FromTable:=self.FromEntity.ImplementsTable;
Pkl.ToTable:=RT;
Pk2.Create;
Pk2.ImplementsRel:=self;
Pk2.FromTable:=self. ToEntity.ImplementsTable;
Pk2.ToTable:=RT;
Fk1.Create;
Fk1.Equ:=false;
Fk1.ImplementsRel:=self;
Fk1.FromTable:=self.From Entity.ImplementsTable;
Fk1.ToTable:=RT;
Fk2.Create;
Fk2.Equ:=true;
Fk2.ImplementsRel:=self;
Fk2.FromTable:=self. ToEntity.ImplementsTable;
Fk2.ToTable:=RT;
self.FromEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—
iterate(PK|
Re.Create;
Re.Keystate:=true;
Re.Nullable:=false;
Re.Name:=PK.name;
Re.ParentTable:=Rt;
Re.ImplementedbyDep:=Pk1;
Re.ImplByFk:=Fk1);
self. ToEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—
iterate(PK]|

126

Re.Create;
Re.Keystate:=true;
Re.Nullable:=false;
Re.Name:=PK.name;
Re.ParentTable:=Rt;
Re.ImplementedbyDep:=Pk2;
Re.ImplByFk:=Fk2)

22. 1-N - 0-N relationship

Repository
Context Class
Event

Declaration

Condition

Action

v. 1
ERRelationship
Insert

RelTable Rt, PrimaryKeyDep Pkl, PrimaryKeyDep Pk2, For-
eignKey Fkl, ForeignKey Fk2, RelAttribute Re

FromCardMin="1" and ToCardMin="0" and FromCardMax="N"
and ToCardMax="N” and Typezw N?

Rt.Create;

Rt.Name:=self.Name;

self. ImplementsTable:=Rt;

Pk1.Create;

Pkl.ImplementsRel:=self;

Pkl.FromTable:=self. FromEntity.ImplementsTable;
Pkl.ToTable:=RT;

Pk2.Create;

Pk2.ImplementsRel:=self;

Pk2.FromTable:=self. ToEntity.ImplementsTable;
Pk2.ToTable:=RT;

Fk1.Create;

Fk1.Equ:=true;

Fk1.ImplementsRel:=self;
Fk1.FromTable:=self.FromEntity.ImplementsTable;
Fk1.ToTable:=RT;

Fk2.Create;

127

Fk2.Equ:=false;

Fk2.ImplementsRel:=self;
Fk2.FromTable:=self. FromEntity.ImplementsTable;
Fk2.ToTable:=Rt;

self. FromEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—

iterate(PK|

Re.Create;

Re.Keystate:=true;

Re.Nullable:=false;

Re.Name:=PK.name;

Re.ParentTable:=Rt;
Re.ImplementedbyDep:=Pk1;
Re.ImplByFk:=Fk1);

self. ToEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—

iterate(PK]|

Re.Create;

Re.Keystate:=true;

Re.Nullable:=false;

Re.Name:=PK.name;

Re.ParentTable:=Rt;
Re.ImplementedbyDep:=Pk2;
Re.ImplByFk:=Fk2)

23. Is-a disjoint by FK
Repository v. 2
Context Class ERDependency

Event Insert

Declaration RelAttribute Re, ERRelationship ER, PrimaryKeyDep Pk, For-
eignKey Fk, AttrConstraint AC1

Condition Type="D"

Action AC1.Create;

128

AC1.Type="exculsion”;
self.DefByST—

iterate(SubType|

ER.Create;

ER.Name="string”;
ER.Type="U";
ER.Fromrole:="string”;
ER.Torole:="string”;
ER.FromCardMin:="1";
ER.FromCardMax:="1";
ER.ToCardMin:="0";
ER.ToCardMax:="1";
ER.FromEntity:=SubType.FromEntity;
ER.ToEntity:=Subtype.ToEntity;
ER.DefinesDep:=self);
self.DefByRel—

iterate(Rel|

Fk.Create;

Pk.Create;

Re.Create;
Re.Name:=Re.Fromentity.Name;
union(AC1.ConstAttr(Re);
Rel.FromEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—

iterate(PK1|

Re.Create;

Re.Keystate:=true;
Re.Nullable:=false;
Re.Name:=PK1.name;
Re.ParentTable:=self. ToEntity.ImplementsTable;
Re.ImplementedbyDep:=Pk;
Re.ImplByFk:=FK)

24. Is-a overlapped by FK

129

Repository v. 2
Context Class ERDependency
Event Insert
Declaration RelAttribute Re, ERRelationship ER, PrimaryKeyDep Pk, For-
eignKey Fk
Condition Type="D"

Action self.DefByST—
iterate(SubType|

ER.Create;
ER.Name="string”;
ER.Type="U";

ER.Fromrole:="string”;

ER.Torole:="string”;

ER.FromCardMin:="1";

ER.FromCardMax:="1";

ER.ToCardMin:="0";

ER.ToCardMax:="1";
ER.FromEntity:=SubType.FromEntity;
ER.ToEntity:=Subtype.ToEntity;
ER.DefinesDep:=self);

self.DefByRel—

iterate(Rel|

Fk.Create;

Pk.Create;
Rel.FromEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—

iterate(PK1|

Re.Create; ‘
Re.Keystate:=true;

Re.Nullable:=false;

Re.Name:=PK1.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;
Re.ImplementedbyDep:=Pk;

130

Re.ImplByFk:=FK)

25. InsAttrRel

Repository
Context Class
Event
Declaration

Condition

Action

v. 2
AttributRelation
Insert
RelAttribute RA

self.UseAttr. ToEntity.ImplementsTable.ChildAttribute—forall(RA|
RA.name <> self.Name)

RA.Create;

RA.ParentTable:=self.UseAttr. ToEntity.ImplementsTable;
RA.ImplERAFK := self;

RA.Name := self. Name;

RA.KeyState := false;

RA.Nullable := true;

26. InsERRelnil10N

Repository
Context Class
Event
Declaration

Condition

Action

v. 2
ERRelationship
Insert
ForeignKey FK

FromCardMin="0" and ToCardMin="1" and FromCardMax="N"
and ToCardMax="1" and Type="N” and UsedIn—notempty

FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self;
FK.FromTable:=self.FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity.ImplementsTable;
self.UsedIn—iterate(AR|

AR.Nullable:=false;

FK.Composed := FK.Composed—union(AR.ImplementAttr.ComposedBy(FK))

131

27. InsERRelni010N

Repository
Context Class
Event
Declaration

Condition

Action

v. 2
ERRelationship
Insert
ForeignKey FK

FromCardMin="0" and ToCardMin="0" and FromCardMax="N"
and ToCardMax="1" and Type="N" and UsedIn—notempty

FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self;

FK.FromTable:=self.FromEntity.ImplementsTable;

FK.ToTable:=self. ToEntity.ImplementsTable;

self.UsedIn—iterate(AR|

FK.Composed := FK.Composed—union(AR.ImplementAttr.ComposedBy(FK)))

28. InsERRelil10N

Repository
Context Class
Event
Declaration

Condition

Action

v. 2

ERRelationship

Insert

ForeignKey FK, PrimaryKeyDep PK

FromCardMin="0" and ToCardMin="1" and FromCardMax="N"
and ToCardMax="1" and Type="1" and UsedIn—notempty

FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self;
FK.FromTable:=self.FromEntity.ImplementsTable;
FK.ToTable:=self. ToEntity.ImplementsTable;
Pk.Create;
Pk.FromTable:=self. FromEntity. ImplementsTable;
PK.ToTable:=self. ToEntity.ImplementsTable;
self.UsedIn—iterate(AR|

132

AR.Nullable:=false;
FK.Composed := FK.Composed—union(AR.Implement Attr.ComposedBy(FK));
PK.ImplementsAttr := PK.ImplementsAttr—union(AR.ImplementedbyDep(PK)))

29. Temporal Is-a overlapped by FK

Repository
Context Class
Event

Declaration

Condition

Action

Ve 2
ERDependency

Insert

RelAttribute Re, ERRelationship ER, PrimaryKeyDep Pk, For-
eignKey Fk

Type="TO”

self.DefByST—

iterate(SubType|
ER.Create;
ER.Name="string”;
ER.Type="U";
ER.Fromrole:="string”;
ER.Torole:="string”;
ER.FromCardMin:="1";
ER.FromCardMax:="1";
ER.ToCardMin:="0";
ER.ToCardMax:="1";
ER.FromEntity:=SubType.FromEntity;
ER.ToEntity:=Subtype.ToEntity;
ER.DefinesDep:=self);
self. DefByRel—

iterate(Rel

Fk.Create;

Pk.Create;

Re.Create;
Re.Keystate:=true;
Re.Nullalble:=false;

133

Re.Name:zDate’;’

Re.ParentTable:=self. ToEntity.ImplementsTable;
Re.ImplementedbyDep:=Pk;
Rel.FromEntity.ImplementsTable.child Attribute—
reject(Keystate=false)—

iterate(PK1|

Re.Create;

Re.Keystate:=true;

Re.Nullable:=false;

Re.Name:=PK1.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;
Re.ImplementedbyDep:=Pk; ‘
Re.ImplByFk:=FK)

134

