
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

An exploratory analysis of an approach and prototype architecture for design
transformations

Deliège, Lionel

Award date:
2004

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. May. 2021

https://researchportal.unamur.be/en/studentthesis/an-exploratory-analysis-of-an-approach-and-prototype-architecture-for-design-transformations(a31c31b9-51c6-4cea-a3fb-a25672b37fc7).html

Facultés Universitaires Notre-Dame de la Paix, Namur

Institut d'Informatique

Année Académique 2003 - 2004

An exploratory analysis of an
approach and prototype architecture

for design transformations

Lionel Deliége

Mémoire présenté en vue de l'obtention du grade de Maître en Informatique.

Résumé

La modélisation d 'une base de données complexe, efficace et sans erreur

est une tâche complexe requièrant beaucoup de connaissances, tant d 'un

point de vue technique que d'un point de vue théorique. La méthodologie

de modélisation est claire, simple, unique et efficace. Les données sont

collectées et un schéma regroupant les concepts est crée. Il est ensuite

transformé en un schéma logique puis implémenté dans le système final.

La transformation du schéma conceptuel vers le schéma logique est une

action bien définie dans la théorie et peut être faite automatiquement

à l'aide d 'outils. Ces outils, appelés CASE pour Computer Aided Soft­

ware Engineering, sont sensés implémenter correctement la théorie des

transformations. Mais cette implémentation est-elle correcte? Et que se

passe-t-il quand on atteint les limites de la théorie?

mots-clés : Outil CASE, règles de transformation, OCL+.

Abstract

Modeling a complex, efficient and error free database is a complex task

requiring a lot of technical and theoretical knowledges. The methodology

is clear, simple, unique and efficient. Data are collected and, using these

data, a conceptual schema is designed. It is transformed into a logical

schema and the implementation on the final system is made.

The transformation from the conceptual schema to the logical schema

is a theoretically well defined action and could be made automatically

using tools. These tools, called CASE (Computer Aided Software En­

gineering), normally implement correctly the theory of transformations.

But what about the correctness of this implementation? And what ap­

pends when we are beyond the limit of the theory?

keywords : CASE tool, transformation rules , OCL+.

Acknowledgement:

The author wishes to thank Pr. V. Engle­

bert, Mrs. C. Moyen and Mrs. V. Deti­

enne {University of Namur, Belgium), Pr.

B. Lundell, Dr. H. Gustavsson, Mr. A. Re­

hbinder (University of Skovde, Sweden), Pr.

B. Lings (University of Exeter, UK), for

helpful discussions and supervision of this

work.

iii

---- -~------ - - ---------------- -----------------~

Contents

1 Introduction

1.1 Methodology and computer science

1.1.1 An efficiency problem

1.1. 2 Following a method .

1.2 CASE tool to implement methodologies

1.2.1 Computer should help to apply a method

1.3 CASE tool assistance for database design

1.3.1 Are tools really in adequacy to the reality?

1.4 Paper 's structure . .

2 Research methodology

2.1 Introduction

2.2 Identifying the schemes

2.3 Practice based schemes .

1

1

1

1

2

2

3

3

4

7

7

7

8

2.4 Methodology used for tool's assessment 14

2.4.1 Designing a database 14

2.4.2 Drawing the conceptual schema in a tool 15

2.4.3 Transforming from conceptual schema into relational

2.4.4

2.4.5

model schema

Analyzing the result

Commercial CASE tools used

3 Transformation rules and commercial CASE tools

3.1 Classical transformation rules

15

16

16

19

19

3.1.1 What do we call Classical transformation rules?. 19

V

3.1.2 Zero to many relationship

3.1.3 zero to one relationship

3.1.4 Many to many relationship

3.1.5 Is-a relationship

3.2 U ncommon and practice based transformation rules

3.2.1 What is an uncommon and practice based transfor-

mation rule?

3.2.2 Limitation due to the conceptual models .

3.2.3 Unstudied transformation rules

3.2.4 Information lost

3.3 CASE tools

3.3.1 What is a repository?

3.3.2 Transformation rules in CASE tools

4 CASE tools evaluation

4.1 Introduction
4.2 Classical transformation rules

4.2.1 Identifying vs non identifying relationship

4.2.2 Zero to many relationship

4.2.3 Zero to one relationship

4.2.4 Many to many relationship

4.2.5 Is-A relationship

4.3 Uncommon and practice based rules

4.3.1 Limitation due to the conceptual models .

4.3.2 Unstudied transformation rules

4.3.3 Information lost

4.4 Conclusion

5 U sing a novel rule approach for expressing transformation

rules

5.1 Introduction .

5.2 The repository system

5.2.1 UML as Repository language

5.2.2 A basic repository example .

VI

21

23

26

28

30

30

30

31

35

35

35

37

39

39

40

40

40

42

43

43

45

45

46

46

47

49

49

50

50

51

6

7

A

5.3 Transformation rules . 52

5.3.1 Introducing OCL and OCL+ as transformation rules . 52

5.3.2 The active repository system 56

5.3.3 A basic example of OCL+ rules using the basic reposi-

tory

5.3.4 An alternative: Action Semantic

Solving practice base case using OCL+

6.1 Used repository ...

6.1.1 Introduction

6.1.2 Repository 's description

6.1.3 Lacks

6.2 Classical transformation rules

6.2.1 Building the rules ..

6.2.2 Zero to many relationship

6.2.3 Zero to one relationship

6.2.4 Many to many relationship

6.2.5 Is-a relationship

6.3 Practice based rules ..

6.3.1 Limitation due to the conceptual models .

6.3.2 Unstudied transformation rules

6.3.3 Information lost

6.4 Conclusion

Conclusion

7.1 Purpose of this document

7.2 Future works

U sing CASE tools

A.1 Using ERwin

A.1.1 Conceptual phase .

A.1.2 Logical phase . . .

A.1.3 Generating SQL code

A.2 Using Rational Rose . . .

A.2.1 Conceptual phase .

vii

57

60

63

63

63

64

68

69

69

70

72

74

74

76

76

77

78

78

81

81

82

89

89

89

91

91

91

91

A.2.2 Logical phase 92

A.2.3 Generating SQL code 92

A.3 Using DB-main 93

A.3.1 Conceptual phase. 93

A.3.2 Logical phase . . . 93

A.3.3 Generating SQL code 94

B Testing tools 95

95 B .1 Result table

B .1.1 Zero to many non-identifying optional relationship 95

B.1.2 Zero to many non-identifying mandatory relationship 96

B.1.3 Zero to many identifying relationship . 96

B.1.4 One to many identifying relationship 97

B.1.5 Zero to one identifying relationship . 97

B.1.6 Many to many relationship 98

B.l. 7 Composition by two many to many relationship . 99

B.1.8 Is-a disjunctive relationship ...

B.1.9 Is-a non disjunctive relationship

B.1.10 Limitation in conceptual model

B .1.11 Temporal Is-a relationship .

B.1.12 Semantical information lost

C Architecture developed for the ASTRID project

C.l Repository.

C.2 Rules

viii

99

100

101

101

102

105

105

110

List of Figures

2.1 Description of the ER-win's [Chen and Carlis, 2003]. 10

2.2 A genomic schema fragment to manage sequence similarity

search [Chen and Carlis, 2003]. 10

2.3 A genomic schema fragment to manage sequence clustering

[Chen and Carlis, 2003]. 11

2.4 APS Entity Relationship diagram [Penicka and Friedsam, 2002]. 12

2.5 CLARA entity relationship diagram (redrawn in English) 14

2.6 Bus example (Kolp 2000). 18

3.1 Identifying relationship instances example

3.2 Zero to many's instances example ...

3.3 Zero to many identifying relationship .

3.4 Zero to many non identifying relationship

3.5 Zero to one's instance example . .

3.6 Zero to one identifying relationship

3. 7 Zero to one non-identifying relationship

3.8 Many to many's instances example ...

3.9 Many to many relationship's transformation .

3.10 Type of Is-A conceptual schemes

3.11 Type of Is-A logical schemes.

3.12 ERwin's Conceptual Schema

3.13 ERwin's Logical Schema

3.14 Biological example ...

3.15 Is-a temporal entity relationship diagram

3.16 Is-a temporal relational model diagram .

3.17 Legacy Entity-Relation model

ix

22

22

22

25

25

25

26

27

27

29

29

32

32

34

34

34

36

3.18 Legacy Relational Model with semantical informations lost 36

4.1 Transformation of an optional identifying relationship in Ra­

tional Rose

4.2 Zero to one relationship in ER-win

4.3 Many to many in Rational Rose .

5.1 A simple repository .

6.1 Repository version 1

6.2 Repository version 2

6.3 Repository version 3

C.l Original Metamodel

C.2 Metamodel version 1

C.3 Metamodel version 2

C.4 Metamodel version 3

X

41

44

44

53

65

79

80

106

107

108

109

List of Tables

3.1 ERwin's SQL code . 32

4.1

4.2

5.1

5.2

Rational Rose and optional primary key

SQL code for a zero to one relationship in ER-win

OCL quick specifications

OCL types, values and operations .

xi

41

44

54

54

Chapter 1

Introduction

1.1 M ethodology and computer science

1. 1.1 An efficiency problem

At the end of the 60's , software became a important problem if nothing

is clone. The cost of hardware steadily declined even as hardware perfor­

mance steadily increased but software seemed headed in the opposite di­

rection. Large software projects were consistently late, over budget, and

full of defects [Shapiro, 1997]. We are in the software crisis and software

developers addressed the adequacy of an engineering approach in their pro­

fession [Jackson, 1990]. Since 1968 and the NATO (North Atlantic Treaty

Organization) conference on Software Engineering, good development pro­

cess have to follow a method. Methodologies define each step of the cycle

of development of an application. Developers have to produce well defined

documents and diagrams in order to formalize the development process.

Classical methodologies are monolithic, every step has to be respected . The

theoretical result is an error free application with a shortest time of devel­

opment.

1.1.2 Following a m ethod

But this approach is criticized. Monolithic methodologies are considered as

a time consuming process with not enough result in term of software quality.

According to Hughes [Hughes and Wood-Harper, 2000]:

1

For example, the /aster 'metabolism ' of today's business environ­

ment means that developers do not have the luxury of being able

to follow all the detailed steps in a monolithic methodology.

Experts take their distances with methodologies, considering most of the

produced documents are not mandatory.

Anyway, according again to Hugues [Hughes and Wood-Harper, 2000]:

The study indicated that less-experienced developers relied more

on formalised methodologies than did their experienced colleagues.

These less-experienced developers did feel that the format method­

ologies provided a psychological security and the more experi­

enced developers, whilst cynical about standards and quality, recog­

nised the need to produce 'what the managers wanted '.

Methodologies should be viewed as a security to guarantee a good result in

the applications development process. N evertheless, the time consumed by

the product of each document, the exchange of these documents between

all developers of a project, the faster development required by the market

make the usage of classical methodologies impossible.

1.2 CASE tool to implement methodologies

1.2 .1 Computer should he lp to apply a method

In this context, CASE tool appears to support the development method.

The potential of this software is terrible in terms of quality and productiv­

ity improvement. A citation made by Dixon [Dixon, 1992] as an example,

the DuPost Corporation has ' . . created over 400 programs, all failure-free,

experiencing over 6:1 productivity gains.'. But in practice, this expectation

seems to be totally unrealistic. According to Butler [Butler, 2000]:

Recent research also lends support to the view that practitioners

are disillusioned with CASE; Kemerer {1992) reports that 70%

of CASE tools are not used 1 year after their intruduction and

only 5% are widely used, but not to their full capacity. Recent

2

studies indicate that the situation may not be as bas as Kemerer

suggests .. .

Possible reasons for this are CASE tool is another technology which au­

tomates a series of design practices and tasks. CASE tool helps to use

a development methodology. Logical modeling, generating documentation

etc. are not made easier. Another reason is actual CASE tools implement

methodology is a too strong way. The developer must follow each step de­

fined by t he tool without understanding exactly why the step must be clone.

Tools are not able to fit to a company and it is to t he developers to fit their

development processes to the tool. Tools help the developer to produce t he

right document to follow a defined methodology, but are not really able to

fit to t he development process of a company. Steps are hard-coded. If the

steps of t he used methodology of a company differ from t he steps used in a

tool, the company would have to change its methodology to adapt t his one

to the tool.

1.3 CASE tool assistance for database design

1.3.1 Are tools really in adequacy to the reality?

In this context , database modeling is separated from common CASE tool

usage. Methodology to design a database is clear, simple, unique and easy

to implement in a tool. All methods follow approximatively the same steps:

firstly requirements are collected from the relevant parts of an organiza­

tion, it will form a set of functional requirements affecting the database,

secondly using these requirements a conceptual schema is designed, thirdly

this schema is transformed into a logical schema doser of the implementa­

t ion and finally t he implementa t ion of the database on t he final system is

made.

One of the main point in this process is the transformation applied on

the conceptual schema to transform this one into a logical diagram. N umber

of authors considered the transformation based method is the best to get an

error free and efficient database. To transform the conceptual schema, we

use rules. These rules are well defined in the literature and CASE tools are

3

able to implement these rules.

But even in database modeling, CASE tools have limits. Transforma­

tion are most of the time hard-coded, rules produce sometimes wrong re­

sults, dropping some constraints for example. No CASE tool can claim to

cover any possible transformations and, even if tool provides a language to

write our own transformations, this one is proprietary and rules can not be

exported or used in another tool.

Transformation rules are well defined in the theory, but is this theory in

adequacy with the practice based needs? Furthermore, are CASE tools that

implement the theory in adequacy with the needs of its users? In this work,

we will try to response to these two questions.

1.4 Paper's structure

The purpose of this document is presenting some real life database problems.

Four examples present different usages of CASE tools in database design.

We do a systematic exploration of tools support for forward engineering with

specific schemes.

Chapter two introduces briefly the methodology used to conceive this

tool evaluation. It presents how we selected our practice based schemes, the

domain of each used schema and the assessed CASE tools.

Chapter three describes all tests used in the evaluation. The purpose of

the evaluation is double. We want to assess the quality of the implementa­

tion of the transformation rules used by CASE tools. These rules are well

defined in the theory and should be rightly implemented in each tool. We

secondly want to assess the capacity of tools to apply uncommon transfor­

mation rules. An uncommon transformation is a rule not studied in the

literature and required by the modeled domain. This chapter is the starting

point of the work.

Chapter four presents the result of the evaluation of three CASE tools ,

Rational Rose, Computer and Associate ER-win and DB-main.

Chapter five introduces the work of Henrik Gustavson. It presents his

transformation oriented language OCL+ and his system of active repository.

Using this combination of repositories, rules and active databases, we are

4

able to implement our own transformation rules.

Chapter six presents the result of the implementation of rules using

OCL+ and the evaluation of the prototype build as proof of concept tools.

5

Chapter 2

Research methodology

2.1 Introduction

An important point in our research was working following a methodology

in order to demonstrate we are systematic in what we claim. This project

has two different objectives: firstly, using modeling of real life problems,

we want to assess the capability of CASE tools to be able to model and

transform schemes. If some problems are unsolvable by current tools, we

present secondly another approach to model our schemes using a meta­

CASE tool with a transformation oriented language.

The first part of our research was a systematic examination of t he liter­

ature in order to find pract ice based schemes. By literature analysis, we do

not mean review of existing works about transformation rules in database

engineering but an examination of real problems undertaken with a specific

purpose in mind . These problems are already modeled using a specific mod­

eling language and using notations to define specific domain's constraints .

The second part of our research consist in the presentation of OCL+,

a transformation oriented language and in the implementation of rules to

solve our practice based examples.

2.2 ldentifying t he schem es

The first objective was to identify real life schemes. We do not want on ly

school examples. By school examples, we mean examples solving an imag-

7

inary problem using some good theoretical practices and producing a per­

fect database without redundancy. These examples are not based on real

specifications. These specifications are precise and without any ambigui­

ties. Furthermore, some of these examples are made to explain t heoretical

constructs.

It was important for us to assess the gap between theory and practice in

database engineering. Indeed, it not always possible to adapt real problem

to the theory. Sorne constraints are impossible to express using common

modeling languages. Furthermore, even if respecting the rules is the best

way to produce a strong and error free solution to a problem, we want to

demonstrate that is not always possible.

We selected four different papers modeling four diff erent real life prob­

lems. Each schema uses entity relation models. This selection was made

on two criteria: the schema's complexity, that means the number of entities

and the number of relationships linking theses entities, and the complexity

of the rules used to transform the conceptual schema into its logical schema.

For each schema, the result of the analysis is a list of transformation rules.

Each transformation will be tested in CASE tools to assess the quality of

each tool.

2.3 Practice based schemes

We selected finally four different papers and five different schemes. For each

selected schema, we present firstly its background and its studied domain

and secondly we summarize the important points we extracted from.

First article [Chen and Carlis, 2003] is about representation ofDNA data.

The goal of this paper is to represent biologists ' current understanding of

their biological knowledge and to support biologists ' subsequent biological

discovery activities. Number of researchers characterizes biological data as

more complex than business data, a biologie data is often heterogeneous

in data sources (Davidson 1995), uncertain, inconsistent, and complicated

[Willson, 1998]. New discoveries are regularly made and structure of data

could change due to t his fact .

8

Building a schema able to capture data efficiently is complicated and

furthermore , according to the authors, quality of schemes used in biology

is poor mainly because they are made by biologist them self without any

knowledges in database design. The result is most of time inefficient, wit h

redundancy and not enough constraints. Requests to extract data are slow

and diffi ult to write.

Two schemes, 2.2 and 2.3 , were extracted from this article. They were

created using ER-win, the semantic of the notation is illustrated by the

figure 2.1. We are mainly interested in the sub chema to manage sequence

similarity search and more precisely to the relationships between Query Set A

Member, Query Set B Member, Identification Set and Pa irwise Simila rity Hit.

The authors use foreign keys and call attributes member of these foreign

keys with special names. Furthermore, the schemes presented in this article

uses different relationships between the entities. Schemes are huge and the

transformation from entity relation to relational model is too complex to be

achieved without a tool.

The second article [Penicka and Friedsam, 2002] is about APS (Advanced

Photon Source) survey and alignment database. An important number of

data is needed for precise positioning of beamline components for the APS

accelerator systems. These data can not be stored in raw mode because users

need to access to them quickly and easily. The tool used until now (Geonet)

was developed under a DOS environment and became slowly obsolete in

every used domain (measure, digital system, operating system, database).

The subject is specific and no commercial tool exists to help them to achieve

their need. This paper presents a new database schema. Its goal of this was

to produce a 3 F schemes for efficiency and saving space goal.

The selected schema 2.4 uses entity relationship notation. An important

point appears in the used Is-a relationship linking Survey Point to 1D Survey

Point, 2D Survey Point, and 3D Survey Point.

Th Survey Point has three defined subtypes: 10 Survey Point, 20

Survey Point, and 3D Survey Point. The m indicates that Survey

Point may belong to anywhere from one to many subtypes. The

9

EntllyName

nullable

Biloglcal Function

Functlon 10

Structure ID (FK)
Sequence 10 (FK)

Chemlcal Compound
Compound ID

compound Name
Description

Bio Cdh,pound ID (FK)
Deseriplôh Relalionshlp

l Llnk Phrases lndependent

JÏdentifyin~ n on-ldentifying
~ lallons~f P 'i:'relatlonshlp

Entlty
~ name of mlgrated lorelgn key

@.grated forelgn key

Figure 2.1: Descript ion of t he ER-win 's [C hen and Carlis, 2003].

OJe Se A Momber

Set ld(FK)
Sequence Id (FK)

ldentiflcalion Set
Set Id

Desaiption
';!!!!2'.~~~~~·~--+icreallOO Date

Experiment Melhod

MethodCode

Sel ID(FK)
SeqAIO(FK)
Seq BIO(FK)
Sooce
Maxscoreperc
Pvalue Fraction Portion
Abs Pvalue Log Port,on

Slmilarltv Hit Oelall
Rl!\,lioorill

Creation Date
Min5COl'e
MinrMx!ICO<epArc
Mlnnlpvakle
Minmalchperc
Mlnspanperc -f- -
Oescripoon

$imolarity Oiscovery Result

Exponmeol 10
SeqAID(FK)

PWS Hi! ID (FK)

Subseo,e
Match Lenglh
Spanlength
MatchPerc

Soquonco Seq B 10 (FK)

Soquence 10 / Relate As Soquence A Method Code (FI()
l.:Oe~-~.~pt~ion~'..__f+__;...;.;.;;;.;.;.;;.;...;;;..;.;;.;:;;.;:.=;;.;.;.~ PWS H,r ID (FK)

=· 1-+-..:'..;.R.:.::e.:.::la;;;te;..;As..;;;..;Seq;;.;.;:.;;u;;;enee.;.;.;;.::B~ IEI Relahonshlp S1rong
Seq String Experiment Date
Parent Seq 10 (FK)

Seq A Strand Flag
Seq AS1art
SeqAEnd
Seq B Strand Aag
Soq 8Start
Seq BEnd

Figure 2.2: A genomic schema fragment to manage sequence similarity

search [Chen and Carlis , 2003].

10

Clusle• Method
MelhodCode

Crootlon Date
Method Description

seciuenc<> Ctuster

Cluster ld
Cl.ister Method Code (FK)

C,eatlon Dale
Oescrlpilon
Discard Flag
Sequence Counl
Clusler Type
Paron! Clusler ID (FI<)

* j
1

1f i ___ l
1

1

4
Ctus1er S ,,cef\lember

-

s.quence A"8mbty

Cluster Method Code (FKJ
Assembly Method Code (FK}
Cluster Id (FK)

Description
Creatloc> Oate '1T-

J ~

At1en'lbl~ S~ulitf\Oi' Ar 110 \wn l

Cluster Method Code (Fl<)
Soquence ID (FK)
Assmbty Method Code (FI<)
Clu tor Id (FK)

AignStrand Flag

5e<iuenœ 10 (FI<) AlignStart
AliQnStop

Cluster Method Code (FK) Al'9nl&ngth
Ouster Id (FK) H-----Bl<il Annotation

Consens~'S Caling Mt>ihod

MelhodCode

Creation Date
Melhod Description

Consen,uo $,,qvence

Consensus ID (FK)

Consensus Method Code (FK
Cluster Method Code (FK)
Cluster !r;t (FK)
Assembty Melhod Code (FK)
Description
Seq Slrlng
Direction Fleg
Crealion Date

S ueoce
Sequence 10

Oescripllon Exemplar Flag '----------
SeqString

1>e,__--------------H parent Soquence ID (FK)

7
otscard Flag
Sequenœ Type
Description

1

___ I

Figure 2.3: A genomic schema fragment to manage sequence clustering

[Chen and Carlis, 2003].

11

LA TTICE-IDEAL IDEAL-FIDUCIAL

IDEAL

ROLL-COMP

COMP-FID

SVY_PT-TARGET TARGET-FID

2D_SURVEY _POINT

Figure 2.4: APS Entity Relationship diagram [Penicka and Friedsam, 2002].

12

subtypes are not mutually exclusive, because one specific instance

of a Survey Point can be measured with a level instrument as a 1D

Survey Point or with a laser tracker as a 30 Survey Point. This

generalization hierarchy contains an IS-A relationship, which im­

plies that the subtypes have the same identifier as the supertype

Survey Point, and they can also inherit many other attributes of

the Survey Point.

(..)

The 10 Survey Point, 20 Survey Point, and 30 Survey Point dif­

fer only in the number of coordinates and respective standard

deviations they contain. The primary key is point ID in com­

bination with measured date. These relations cover measured

point coordinates, measuring methods, and order of survey net­

works. In addition, they hold hyperlinks to measurement data

files, which will be stored in a hierarchical directory on a server.

[Penicka and Friedsam, 2002]

The third article [Lundell and Lings, 1999] was written to expose a legacy

problem. The company Skovde Systemutveckling AB (SSAB) has devel­

oped for an international corporation which is a supplier to the car-industry

a system (CLARA) to support the management of non-conforming prod­

uct in manufacturing. The first version of the system has been in use at

the company since May 1995 and evolved as new requirements have been

identified.

Schema 2.5 is an ER diagram using the Information Engineering no­

tation. We are particularly interested in the relation between Comment,

lndividualComment, MiscComment and MainActivity. Indeed, these four enti­

ties need to be merged into an unique entity for technical and legacy reasons.

Existing Tools using the database are made to use this unique entity and to

guarantee that every constraint is respected.

Last article [Kolp and Zimanyi, 2000] uses a school example. Schema 2.6

is used in the paper to test a system of schema optimization using prolog.

This schema is interesting for two reasons: it introduces recursive relation-

13

Admimstrat01

I
Code ~------Signalure , ,..

Comment
RapportNumber

Actiltty()ate
Cormient

UainA.ct' lndividualComment

ErrorSupeMS01 ----+-< CustltemNo
ErrorAn~4 NumberOErro~

MiscComment

1 Item

Customer

Code

Oe$içnation
Pu1ehaser

1 i Code
1

----- ~ ,:-----,-;+----J
Desgnation

1

1

1

L _ - - - - - -ê!-.f-- - -t-1-------J

Figure 2.5: CLARA entity relationship diagram (redrawn in English)

ships between the entities and uses different kind of basic relationships tha t

we did not found in the other papers. CASE tool is an implementation of

database design theory and we want to assess if this implementation is cor­

rect or not. We extract from this example all kinds of construct we did not

find in the other selected papers.

2.4 Methodology used for tool's assessment

2.4. 1 Designing a database

Designing a database always follows the same methodology. First , the de­

veloper draws the concepts, called the conceptual schema. It is an abstract

view of the problem, a high level design. The conceptual schema does not

keep out of any implementation tricks and of the platform 's destination.

Different models exist to represent a conceptual schema, for the moment ,

ER (Entity Relationship) and UML (Unified Modeling Language) are the

most used.

14

In this schema, the developer draws the entities, the attributes, chooses

which attributes identify entities (identifiers are not mandatory but highly

advised). The developer specifies too the relations between the entities and

the cardinalities of these relationships.

After that, the conceptual schema is transformed it into a logical schema.

Logical schema keeps out of the implementation and platform 's destination.

Actual databases use the relational model and schemes are coded using SQL

language. The relationships defined in the conceptual schema are mainly

transformed into foreign keys. Another possible transformation is to merge

entities part of the relation. Identifiers are transformed into primary key and

some constraints are added to guarantee the new schema represents exactly

t he same thing than the conceptual schema.

2.4.2 Drawing the conceptual schema in a tool

Designing a database with a CASE tool is different from one program to

another. In some cases, we have to enter all data when the conceptual

schema is drawn. Users choose which transformation has to be applied on

each kind of relationship. Sorne other tools ask when the transformation's

process is launched which transformation has to be applied on every kind of

relationship.

Nevertheless, whatever the used tool, designing a database in a tool has

to follow the two same steps. Firstly, developer has to enter all data and to

build his conceptual schema. Developers need to specify every information

used by the tool to transform a conceptual schema into logical schema with­

out any ambiguities. This step is based on an identification of the needs.

Secondly, developers effectively apply the transformations on the schema.

2.4.3 Transforming from conceptual schema into relational

model schema

Transformation is a strong theory and should be totally automatized. But in

order to automatize the transformation process, user has to add enough data

and has to have a high knowledge of the tool and transformations ' t heory.

To help the user to apply the transformations, some CASE tools like ER-win

15

prefer to unautomatize the process and to ask the users for transformation

that has to be applied on each construct or relationship using graphical

wizards.

From our point of view, the transformation process has to be totally

automatized. Conceptual schema are compound by many entities and many

relationships. Drawing the conceptual schema and identifying the needs are

complex steps. Transformation process needs a global view of the schema

to be applied properly. Graphical wizards hide the schema and only show

the problematic relationships. Users should be able to define which tran -

format ion shall be used to transform each relationship.

2.4 .4 Analy zing the result

For each studied transformation, we write the result of the transformation

in a table. This table records the name of the transformation, troubles

we met when we drew the conceptual schema, troubles we met when we

transformed the conceptual schema into the relational mode! and finally a

small note records additional information. Result tables are listed in annexe

B. For each line of the result table, we analyse the problem. Using these

conclusions, we are able to demonstrate if CASE tools are in adequacy with

practice based examples or not.

The next chapter presents for each studied transformation the result of

the assessment. The assessment has two goals: first ly we check if the tools

were able to transform the schema without asking any new information when

the transformation process is launched, secondly we check if the relational

model and the produced SQL code are correct.

2.4.5 Commercial CASE tools used

We decided to assess three different tools, with different characteristics.

ER-win version 4.1 uses two different models for logical and physical no-

tation: IDEFlx [IDE,] and Information Engineering [James and Finkelstein, 1981].

For the moment, this tool is developed by Computer and Associate. The

purpose of the tool is only database design. The transformation process is

divided in two steps: first user draws conceptual schema and decides which

16

transformation has to be applied on the sub-type relationship and secondly,

a graphical wizard helps user to transform the conceptual schema. There is

no language to create our own rules. The system is based on two synchro­

nized repositories. If a modification is made in one model, this modification

is automatically reflected on the other model.

DBmain is a forty persons/year project of the university of Namur di­

rected by Jean-Luc Hainaut. This tool uses the ERA notation and is able

to create, store and transform conceptual and logical schemes. It provides

tao a strong system of transformation rules with the possibility to script the

transformation process. Its repository can be updated to be able to store

new information or new models. It includes tao a proprietary language,

Voyage 2, to extend the functionalities of the tool. We use the version 6.5.

Rational Rose is our last tool. Part of the rational process, it uses UML

for modeling language. Unlike DB-main and ER-win, the purpose of the

tool is not only database design but the whole development of an applica­

tion. Rose uses two separate repositories without link between them. When

a schema is exported in the data modeler, modification of the conceptual

schema does not change anything in the logical schema. So, each modi­

fication of the conceptual schema induces the regeneration of the logical

schema.

For each tool, we explain the way we use it in the annexe A. The pur­

pose of this annexe is not to explain how to use a tool, but to explain how

we use each tool. The distinction is important, we want to provide every

information in order to demonstrate we are systematic in our method of as­

sessment. Using these information, everybody could reapply our assessment

and produce the same results.

17

~~ ··~ , , 1
[""'------

éÊJ
-~-dl!Pl•rotf

"""'"" ---
i ~ ,,,.,

,,.,

,_

EJ ...
~ ' ,, O.it_ t,ip ,..,

[~- fJ I• <e> ,,. [-- ~
,.., __

1 bit•"' ,. - ""'°"'-.,-~ -·,,,,_ e 'T_ Col') -jl11 -- Drtvtr't_lbf

- '-" ~
.... ,,,,__,. [<>-" -- N""" ,,.,. - --- CO..

__ .,,,,.

Figure 2.6: Bus example (Kolp 2000).

18

Chapter 3

Transformation rules and

commercial CASE tools

3.1 Classical transformation rules

3.1.1 What do we call Classical transformation rules?

Transformation based approach in database design is considered now by

number of authors as a good practice to transform an abstract specifica­

tion into a correct and efficient database structure. With the analysis of

database requirements, developer builds a conceptual schema. This con­

ceptual schema is subsequently transformed into logical schema and imple­

mented in the final system. A transformation rule is a correctness preserver

operator, that means the schema resulting of application of the transfor­

mation rules on a conceptual diagram expresses the same thing than the

original diagram.

Between conceptual and logical schemes, transformations have to be ap­

plied. In the DB-theory, the transformation concept can be defined as fol­

lows:

A Schema transformation is an operator that applies on a con­

struct C of a schema S, and that replaces it with other constructs

C' , leading to new schema S'. C ' is the target of source construct

C through T, i.e. C' = T(C).

(..)

19

To de.fine transformations more precisely, we need a second map­

ping l, that speci.fies how valid instances of construct C are trans­

lated into C' instances: if c is an instance of C , then c' = t(c)

is an instance of C'.

[J-1. Hainaut and Roland, 1996]

A special class of transformations is semantics-preserving. Through

the transformation, no semantical information is lost. U sing a semantics­

preserving transformation T, and a schema R, we obtain by the application

of Ton Ra new schema R' , i.e. R' = T(R). Each instance of R should be

recovered from an instance of R' using an algebraic or procedural operators.

A higher class of transformations is symmetrically reversible. Every

instance of C can be expressed in C' using mapping t and each instance of

C' can be expressed in C using the opposite mapping t '.

In order to limit the scope of this work, we choo e to di vide symmetrically

reversible transformations into four new classes, Zero to many, Zero to one,

Many to many and ls-a. Each one denotes a set of transformations with

common characteristics. They work on relationships with the same maximal

cardinalities, and, through a same class, variations are made on the minimal

cardinalities. Each relationship could be transformed using different rules.

We decide to transform relationships using only transformation rules found

in the selected practice based example presented in the previous chapter.

Identifying versus non identifying relationship

In classes Zero to many and Zero to one, the relationship could be identifying

or non identifying. That means, considering the relationship R between

the entity Parent and Child , if R is an identifying relationship, an instance

of Child is identified by an instance of Parent and by zero or more of its

attributes. Figure 3.1 illustrates an example of identifying relationship 's

instances. A and B are linked by a Zero to many identifying relationship R.

Each CASE tool uses its own representation for an identifying relation­

ship. DB-main adds the name of the relationship into the identifier of the

entity, in opposite to ER-win and Rational Rose which draw the identifying

relationship with a continuous line instead of a dotted line.

20

These different views have some advantages or disadvantages: the DB­

main system forces user to build completely the identifier of an entity in one

action, by selecting all attributes and relationships which are part of the

identifier. This system produces for us better schemes, user does not make

mistake when he creates the identifier.

The ER-win and Rational Rose system could cause mistakes in the

schema. For example, a child entity should have only one zero to many iden­

tifying relationship as identifier. With only one zero to many relationship as

identifier, all instances of the child entity must reference a different instance

of the parent entity. This constraint matches against the cardinalities of the

relationship.

3.1.2 Zero to many relationship

ldentifying relationship

A zero to ma ny identifying relationship links two entities A and B. Each

instance of A can be referenced by zero, one or many instance(s) of B and

each instance of B must reference one and only one instance of A. Figure 3.2

illustrates allowed and disallowed instances.

IdcnLifying mcans Lhis rcla Lion is a parL of Lhc B's identifier with other

attribuLcs or rclaLionships. For cxamplc. if Lhc B 's identifier is made up of

the attribute bl, for all instances Il and 12, if Jl.bl = 12.bl then Il.R must

reference another instance than 12.R.

The usual transformation 3.3 to implement this relationship into rela­

tional modcl consists in, for all aLLrihutcs of A's identifier, adding these

attributes into entity B referencing the entity A. These new attributes are

mandatory and are part of the primary key group with other B's attributes.

N on-Identifying relationship

A zero to many non identifying optional relationship links two entities A and

B. Each instance of A can be referenced by zero, one or man y instance(s)

of B and each instance of B can reference zero or one instance of A.

The usual transformation 3.4 used to implement this relationship into

rclational modcl consisL in. for all aLLribuLcs of A's identifier, adding these

21

A B
& A2 A.R 82

1 a 1

2 a 1 1

3 b 4 1

Allowed and disallowed instances

Figure 3.1: Identifying relationship instances example

Parent Child Parent Child

Allowed Disanowed

Figure 3.2: Zero to many's instances example

t B
A

ID A ______A
a 2....

id: A
id:ID A

bl
ace

ref: A

Figure 3.3: Zero to many identifying relationship

22

attributes into entity B referencing the entity A. These new attributes are

optional.

Variations

Sorne variations on minimal cardinalities can be made and combined. The

non identifying relationship can be mandatory instead of optional. ln this

case, each instance of A can be referenced by zero, one or many instance(s)

of B and each instance of B must reference one and only one instance of A.

The usual transformation used to implement this relationship into relational

model is similar to the optional relationship, but the attributes members of

the foreign key group are mandatory.

Bath relationship (identifying or non identifying) can be mandatory for

the parent entity. That means each instance of A can be referenced by

one or many instance(s) of B . Implementing this constraint directly in the

relational model is impossible. The only way is by adding a constraint in

the target database. In SQL, it can be made using a trigger or a check.

3.1.3 zero to one relationship

Identifying relationship

A zero to one identifying relationship links two entities A and B . Each

instance of A can be referenced to zero or one instance of B and each instance

of B must reference one and only one instance of A. Furthermore, the

rclalion is a part, of B's identifier. For example, if the B's identifier is made

up of the attribute bl , for all instances Il and 12, 11.R must reference

another instance than 12.R. Figure 3.5 illustrates allowed and disallowed

instances.

The usual transformation 3.6 used to implement this relationship into

rclalional modcl consist, in. for all attrihulcs of A's identifier, adding these

attributes in entity B referencing the entity A. These attributes are manda­

tory and are added to the B 's primary key. Furthermore, the group of

attributes constitut ing the foreign key is unique. That means if the primary

key of A entity is made up of two attributes al and a2, the union of B.al

23

and B .a2 referencing each instance of A entity must be different for each

instance of B.

N on-Ident ifying r elat ionship

A zero to one non-identifying relationship links two entities A and B. Each

instance of A can be referenced by zero or one instance of B and each

instance of B can reference zero or one instance of A.

The usual transformation 3. 7 to implement this relationship into rela­

tional mode! consists in, for ail attributes of A 's primary key, adding these

attributes in entity B referencing the entity A. These attributes are optional

and the group of attributes constituting the foreign key referencing entity

Ais unique.

Variat ions

Variations could be made on the minimal cardinalities. The non-identifying

relationship can be mandatory for the child entity. In this case, attributes

part of the foreign key are mandatory. For both relationships, the minimal

cardinalities for the parent entity can be one and only one. This constraint

can not be expressed directly in the relational model and must be imple­

mented by a trigger in SQL to guarantee each instance of A is referenced by

an instance of B.

Variations can be made by the way that we transform the relationship.

Usually, the studied example transformed the relationship using a foreign

key, but merging the child entity with the parent entity could be, in some

cases, more efficient. lt is the case when the parent entity must have one

and only one child which references each of its instances. Merging the enti­

ties consist in transferring ail attributes into the parent entity and adding

constraints on the attributes, depending of cardinalities of the original rela­

tionship.

24

J

~ 0-_ ---0--0-1 Çil
~ 70

t
A

B

b

Figure 3.4: Zero to many non identifying relationship

Parent Child Parent Child

Allowed Oisallowed

Figure 3.5: Zero to one's instance example

~ 0-1----©- -~
~ ~

A

J B
j

bl

~-~--~----_Jid: a
ref

F igure 3.6: Zero to one ident ifying relationship

25

R_O-i----0-l-l~
~ ~

A

J B

Q_
a

id: b l
r--s---------~_Jid: a

re.f

Figure 3. 7: Zero to one non-identifying relationship

3.1.4 Many to many relationship

R elationship

Many to many relationship links two entities A and B. Each instance of

A references zero, one or many instance(s) of B and each instance of B

references zero, one or many instance(s) of A . Figure 3.8 illustrates the

allowed and disallowed instances for a many to many relationship and one

of its variation.

It is impossible to implement directly this relationship using foreign keys.

The most usual implementation illustrates in figure 3.9 i the addition of a

entity R. This entity is linked with two zero to many relationships to entit ies

A and B.

Variations

Sorne variations can be made on minimal cardinalities inducing new con­

straints. The minimal cardinalit ies, zero at t he outset, mean each linked

entity can reference zero, one or many instance(s) of the other entity and

vice versa. But in some cases, t his minimal cardinality is one, that means

each linked entity can reference one or many instance(s) of the other entity.

26

1-n - 1-n
Parent Child

Allowed Allowed Disallowed

Figure 3.8: Many to many's instances example

Figure 3.9: Many to many rela tionship 's t ransformation

27

3.1.5 Is-a relationship

Is-a relationship is probably one of the most studied and one of the most

complicated relation we can meet in a conceptual schema. Is-a relationship

can be divided into four categories [J-1. Hainaut and Roland , 1996]. Firstly,

the relation can be total or partial. In a total Is-a relationship, each instance

of the parent entity must be referenced by an instance of at least one of its

children. Secondly, the relation can be disjoint or overlapping. In a disjoint

Is-a relationship, each instance of the parent entity can be referenced by one

and only one instance of one of its child. That means, if the parent entity

A has two children B and C, if an instance of B references the instance al

of A , there is only one instance of B which references al and no instance of

C references al.

Mixing up these two variations, we have a Total-Disjoint relationship, a

Partial-Disjoint relationship, a Total-Overlapping relationship and a Partial­

Overlapping relationship. Each variation can be transformed in different way

into the relational mode!. Conceptual schemes is illustrated by figure 3.10,

examples of logical transformation is illustrated by figure 3.11.

Partial Disjunctive relationship

An is-a disjunctive relationship is a relation between a super-type entity and

one or more subtype(s). Disjunctive relationship means no parent entity can

have the same value as any B or C entity, and so on for B and C.

There is two ways to implement this relationship. First , child entities

reference the parent entity using a unique foreign key. A constraint must

be added in the relational mode! to guarantee every instance of every child

references a different instance of the parent entity. Such a constraint can

not be implemeoted directly in the relational mode! and needs a trigger to

be implemented in SQL.

The other way to implement this relationship is to merge every child into

the parent entity. The child's attributes are grouped into optional group and

a constraint is added to guarantee the original is-a constraint is respected.

Such a constraint can not be implemented directly in the relational model

and needs too a trigger to be implemented in SQL.

28

B

A
J.

id:a

Figure 3.10: Type of Is-A conceptual schemes

Pa.rtia.1-0;eda

Partial- . ;joi:Jlt

A

-r:f

B
!
b
i.è: a

ref

B

!
b

reJ

Figure 3.11: Type of Is-A logical schemes

29

i.d: a
ref

C

!

reJ

Partial Overlapping relationship

An Is-a partial overlapping relationship is similar to the previous relationship

but there is no constraint between the child entities.

There is two ways to implement this relationship. First, child entities

reference the parent entity using a unique foreign key. The other way to

implements this relationship is to merge every child into the parent entity.

The child 's attributes are grouped into optional group.

3.2 Uncommon and practice based transformation

rules

3.2.1 What is an uncommon and practice based transforma­

tion rule?

Theoretical transformations try to cover every case w hich developer could

meet when he develops a database. But these transformations are not always

in adequacy with the real life . To demonstrate this hypothesis, we have read

some practice based schemes and analyse the applied transformations.

This analysis shows three categories of transformations that are not stud­

ied in the literature or not implemented in CASE tools. We do not daim

these categories cover each possible case of uncommon transformations, but

we daim there is some uncommon transformations. If actual CASE tools

are not able to t ransform schemes rightly, it could cause some problems.

3.2.2 Limitation due to the conceptual models

Limitation can appear due to the conceptual models. As we explained be­

fore , the transformation process has to be applied automatically. Users

should be able to choose the transformation to apply on each relationship

and eventually to add additional informations needed by the transformation.

The biological example illustrates this problem. The schema was drawn

using ER-win. This program has the particularity to be able to mix the

conceptual and logical models. User is able to see the migrated attributes

when he draws the conceptual schema and is able to change the name of

30

these attributes. Furthermore, if entities A and B have only one attribute

ID as identifier, and if entity C is linked to A and B with a zero to many

relationship, ER-win adds one attribute ID in the entity C to implement

this relation and this attribute is added to two different foreign key groups.

This example is illustrated by schema 3.12, schema 3.13 and SQL code 3.1.

This is a characteristic of the semantic used in the model IDEFlx.

sing this special notations, the authors of the example express a new

constraint. Conceptually, this constraint can be described as follows:

Each instance of Pairwise Similarity Hit, Query Set A Member and

Query Set B Member must refcrence an instance of Identification

Set. Each instance of Pairwise Similarity Hit can reference an

instance of Query Set A Member and Query Set B Member. If

an instance psh of Pairwise Similarity Hit references an instance

qsa of Query Set A Member and qsb of Query Set B Member then

qsa. qsb and psh refcrences Lhe same instance is of Identification

Set.

The proposed implementation 3.14 consists in adding only one attribute

Set ID in the entity Pairwise Similarity Hit to implements the three foreign

keys.

To transform correctly this schema, the user has to be able to choose the

name of attributes implementing the relationship.

3.2.3 Unstudied transformation rules

An unst udied transformation rule is a variation of an existing transformation

(in our example, a temporal is-a relationship).

Our example is based on a is-a partial overlapping relationship with a

temporal aspect. A temporal database records present and previous states

of the application domain. To achieve this goal, each modification of data

must be recorded with timestamps.

If an entity type is temporal, then, for each entity that existed

or still exists, the birth and death instants (if any) are known

(valid time}, and/ or the recording (in the database) and erasing

31

Figure 3.12: ERwin's Conceptual Schema

A B
ID: CHAR(18) -• ID: CHAR(18)

-,::::,--7

1 1

1 1

1 1

* 4

"'I

C

ident: CHAR(18)

ID: CHAR(18) (FK)

Figure 3.13: ERwin's Logical Schema

CREATE TABLE A (ID CHAR(18) NOT NULL PRIMARY KEY (ID));

CREATE TABLE B (ID CHAR(18) NOT NULL PRIMARY KEY (ID));

CREATE TABLE C (

ident CHAR(18) NOT NULL,

ID CHAR(18) NULL

PRIMARY KEY (ident)

FOREIGN KEY (ID) REFERENCES A

FOREIGN KEY (ID) REFERENCES B) ;

Table 3.1: ERwin's SQL code

32

instants (transaction time) are known. This information is im­

plicit and is not part of the attributes of the entity type. If an

attribute is temporal, then all the values associated with an en­

tity are known, together with the instants at which each value was

(is) active. The instants are from the valid and/or transaction

time dimensions according to the time-tag of the attribute. If a

relationship type is temporal, then the birth and death instants

are known. The two time dimensions are allowed, according to

the time-tag. [Detienne and Hainaut, 2001]

The article does not specify if we are in valid or transaction time but

the transaction time is useless in this domain. For each modificat ion, we

need a timestamp to record when the new data has been inserted in the

database. Each instance of 1D Survey Point, 2D Survey Point or 3D Su rvey

Point must reference a parent instance in Survey Point. A parent instance

can be referenced by one or more instance(s) of its children.

Common implementation of temporal databases uses two timestamps to

store the date of an instance (starting and ending date) . Between these

two dates , nothing changes in the instance. For example, using a database

recording every information about workers, the temporal table stores the

name, the address and the department of the worker. If one of these infor­

mations changes, a new instance is created, the lasted old instance receives

the date of today as the ending date and the new instance receives the date

of today as starting date.

In our example, such a reasoning is false. To position the beamline,

the same points are measured repeatedly many times by many different

methods. Between two dates , the value of the lasted recorded instance is

different and could change. We need to take a picture at regular moment

to see the evolution of the domain. We need one timestamps to record the

date of each instance. Figure 3.15 and figure 3.16 illustrate the applied

transformation.

33

0-

Ou<I Set A Membe<
Set Id (FK)
Sequenoe Id (FK}

Set IO(FK)
SeqA IO(FK)
Seq B IO(FK)
Sco<e
Maxsoorepe,c
Pvalue FractlOII POt1iOn
Ails l'vwe Log PortlOf>

Figure 3.14: Biological example

m

ID_SURVEY _POINT 3D_SURVEY_POINT

2D_SURVEY _POINT

Figure 3.15: Is-a temporal entity relationship diagram

30_SURVEY_POINT

-•IID

De•
z
X

2D_SURVEY_POINT y

P,,.11/0 sz
~ sx
l SY

X -sz Netwoll<Onlet

sx l.JnkT-

SURVEY_POINT Melhod
p, t ID N""°lf<Otdor

Machine LlokToFilt IO_SURVEY _POINT -DelClil)üOn

,.,., ID

Il'• }-o
T111r,t1L/O y

SY -lletwoll<Onlot

Linl<T-

Figure 3.16: Is-a temporal relational model diagram

34

3.2.4 Information lost

Unt il now, all applied transformations have to be symmetrically reversible.

But sometimes, this constraint is too strong and the developer accepts to

loose semantical information when he applies the transformation rules on the

conceptual schema. For example, the lost constraint could be implemented

directly in the software and does not need to be implemented in the database.

Our example is a legacy problem. The original schema, made for an old

database engine (paradox) was optimized and transformed to be usable on

the final system. The original conceptual schema was kept but the logical

schema is lœt. The first idea to get t he logical schema was to retro-engineer

the paradox database to reuse this database schema [Lundell and Lings, 1999],

but no tool at that t ime was able to do t his action correctly.

This test consists in merging four ent it ies: Comment, lndividua lComment,

MiscComment and MainActivity. No constraint is added to respect the cardi­

nalities of the original relationships, every constraint is already implemented

in tools using the database. Figure 3.17 and figure 3.18 illustrate the applied

transformation.

3.3 CASE tools

3.3.1 What is a repository?

Purpose of CASE tool is helping user to conceive a software. It provides tools

to share data between developers, notations to describe the behavior of the

application, notations to describe the classes , t he database, etc. To achieve

this goal, CASE tool uses different notations, different models. These models

are the description of the models. T hey are the underlying notations. We

call t hese notations t he meta-model. It contains the type definitions for

t he d ifferent data items used in the models. It describes what is an entity

or an attribute, relationship between an entity and its attributes etc. But

describing an application is useless if tool does not provide anything to store

this description. Case tools need a kind of database able to store models

without loosing information. We call t his database the repository.

The meta-model describes every characteristics of every items that user

35

MainActivit

ErrorSupervisor
ErrorAnalysis

Comment

RapportNumber

ActivityDate
Comment

lndividual Comment ,
~--+--i CustltemNo

Nu mberOfErrors

MiscComment

E3
Figure 3.17: Legacy Ent ity-Relation model

Comment

RapportNumber: NOT NULL

ActivityDate: NULL
Comment: NULL
CustltemNo: NULL
NumberOfErrors: NULL
ErrorSupervi sor: NULL
ErrorAnalysis: NULL

Figure 3.18: Legacy Relational Model with semant ical informations lost

36

could use to describe his model. A repository has a meta model to describe

the various types of information which it can store. These types of informa­

tion can be high level concepts common to every model (an attribute has a

name) or can be specific to a tool and is stored for internai reason by the

tool. A repository is a database, it must provide access' method to retrieve

stored data easily, probably support data versions and security restriction

as a classical database.

In our work, we limit the usage of the repository to its storing purposes.

We do not study the meta data exchange, the security restriction or the

versioning system.

3.3.2 Transformation rules in CASE tools

The first step of the conception of a database consists m collecting the

requirements from the relevant parts of an organization. It forms a set of

functional requirements affecting the database application, a set of database

requirements affecting the design of the database. These requirements are

used to form a conceptual schema of the system. Ideally, the conceptual

schema does not contain implementation details, and can therefore often be

understood by less technically oriented users. This conceptual schema is

mapped to a logical schema. This schema contains every implementation

details.

Mapping the conceptual schema to the logical schema is made using

transformation rules, as we already explain in the previous sections. CASE

tools provide system to help this mapping, by implementing transformation

rules. The transformation rules, using the conceptual schema stored in the

repository, create the logical schema and store it into the repository. Ideally,

this action is automatic, user does not have to do anything. Furthermore, the

schemes have to be synchronized, if a modification is made in the conceptual

schema, this modification must be reflected on the logical schema.

In this work, we pay attention to two characteristics of transformation

rules: rules must be applied automatically, using every information stored

in the repository by the user and must provide the right result regarding

transformation's theory.

37

Chapter 4

CASE tools evaluation

4.1 Introduction

Three CASE tools based on different meta models were used for this evalu­

ation. DB-main and ER-win are tools on ER model. Their purpose is only

databases design. Rational Rose is based on UML. Its purpose is the whole

cycle of development of an application. It implements the Rational Process '

methodology.

These programs have different ways to transform a conceptual schema

into a logical schema. DB-main is able to mix the relational notations with

the ER notations. To transform schemes, developer can transform by hand

every relationship and therefore choose the best transformation rule for each

relationship. U sers could too build a script to transform automatically every

relat ionship meeting a specific precondition.

ER-win works with a system of double linked repositories. Every mod­

ification made on a schema in the ER mode] is automatically reflected on

the schema in the relational model. Nevertheless, two exceptions are made

to transform Many to many relationships and ls-a relationships. Firstly, the

user can decide if subtypes have to be merged with their super type. Sec­

ondly, a wizard helps the user to choose which rule has to be applied on Many

to many relationships and on non merged ls-a relationships. Other relation­

ships are transformed automatically using foreign keys. The transformation

process is so divided into two independent phases.

39

- _ _J

Transformation process in Rational Rose is totally automatic. The ap­

plication adds automatically a technical identifier in each transformed en­

tity. All relationships are transformed using foreign keys. Rose is not able

to merge entities. There is no link between a conceptual schema and its

transformed version. If a modification is made, the whole schema must be

reexported.

4.2 Classical transformation rules

4 .2 .1 Identifying vs non identifying relationship

ER-win and Rose use a different notation to make the difference between an

identifying relationship (continuous line) and a non identifying relationship

(doted line). ER-win automatically disallows cardinalities that are against

the identifying concept. An identifying relationship can not be optional

for the child entity. Rose allows controversial cardinalities and is able to

producc an oplional primary key as illustrates in figure 4.1 and table 4.1.

DB-main does not use a different notation to make the difference between

identifying and non identifying relationship. A relationship can be a part

of the identifier of an entity. DB-main checks the cardinalities and does not

allow controversial cardinalities. Furthermore, DB-main does not allow an

identifier conflicting with the cardinalities of the relationship. That means

a zero to many relationship can not be the only identifier of an entity and a

zero to one relationship must be the unique identifier of an entity.

4.2.2 Zero to many relationship

ldentify ing and non-ident ify ing relationship

Every tool was able to transform zero to many identifying and non-identifying

relationship. In all cases the transformation and the produced SQL code are

correct.

40

ml füj

Figure 4.1: Transformation of an optional identifying relationship in Ratio­

nal Rose

CREATE TABLE T_Al (al SMALLINT NOT NULL, T-13LID INTEGER.

PRI:tvIARY KEY (T_BLID));

CREATE TABLE T-131 (bl Si\IALLINT NOT NULL, T_BLID INTEGER

NOT NULL, PRIMARY KEY (T_BLID));

Table 4.1: Rational Rose and optional primary key

41

Variations

Almost variations of zero to many relationship do not cause any troubles .

N evertheless, troubles appear when the relationship is manda tory for the

parent entity. Rational Rose and ER-win transform correctly this relation­

ship into the relational model, using a notation to specify this relationship is

mandatory but this constraint does not appear in the produced SQL code.

DB-main transforms the relationship correctly, using its own notation to

represent the constraint ('equ' next to the foreign key group) and adds a

trigger in the SQL code.

4.2.3 Zero to one relationship

Main characteristic

To implement a zero to one relationship, tools have to add a constraint of

uniqueness on the foreign key implementing the relationship. Rational Rose

and DB-main automatically add this unique constraint and produce the

right SQL code.

An important problem illustrated by figure 4.2 and table 4.2 appears

using ER-win. There is no difference between a zero to one relationship

and a zero to many relationship. To guarantee the constraint of uniqueness,

user has to add in the conceptual schema an alternate key group . This

group contains only the attribute member of the foreign key. The problem

is double, firstly the conceptual schema does not have to show migrated

attributes and secondly the information about the uniqueness is already

present in the cardinalities of the relationship and this alternate key group

is redundant .

Variations

The variations on the minimal cardinalities are similar to the variations of

zero to many relationship. The problem that occurs when the relationship is

mandatory for the parent entity appears again in Rational Rose and ER-win.

No constraint is added in the SQL code.

Foreign key is the only way to implement zero to one relationship m

42

ERwin and in Rational Rose. These tools can not merge entities linked by

such a relationship.

DB-main supports merging of entities and puts t he moved attribute to­

gether in an optional group. All attributes become optional and a constraint

guarantees that if an attribute member of the group get a value, other at­

tributes member of the group can not be null.

4.2.4 Many to many relationship

Rose, ER-win and DB-main do not have any problems to transform this

relationship. Anyway, a problem appears again in ER-win. This tool does

not support a many to many relationship mandatory for one or both entities.

Only the 0-N - 0-N is supported by t his tool.

Rational Rose ignores totally t he difference between 1-N - 1-N cardinali­

ties and 0-N - 0-N cardinalities . The result of the transformation is the same

for both relationships. Rose creates a new table to implement the relation­

ship and links this new table to the entities using 0-1 - 0-N relationships as

illustrated in figure 4.3.

Another problem appears in Rational Rose when two many to many

relationship link the same entities. For a unknown reason, the program

implements both relationship using only one table. This transformation is

probably an optimization, each relationship does ' t he same thing'. Never­

t heless, this optimization is wrong because the purpose of t hese relationships

is different.

4.2.5 Is-A relationship

Partial Overlapping relationship

Partial overlapping ls-a relationship is supported by every tool. The trans­

formation , using an unique foreign key, is correct and the produced SQL

code does not suffer of any problems.

Rational Rose does not support merging of entities. ER-win can merge

two entities linked by an partial overlapping is-a relationship but does not

add any constraints on t he merged attributes. These attributes have to be

optional and have to be put together in a group to guarantee that if one

43

Figure 4.2: Zero to one relationship in ER-win

CREATE TABLE A (a CHAR(18) NOT NULL,

PRJMARY KEY (a));

CREATE TABLE B (b CHAR(18) NOT NULL, a CHAR(18) NOT NULL,

PRJMARY KEY (b), FOREIGN KEY (a));

Table 4.2: SQL code for a zero to one relationship in ER-win

~ 1 _ _J
SB?

Ln

fül
6ÏJ <kl= . ",v>>

Figure 4.3: Many to many in Rational Rose

44

[Il

ffil

of these attributes gets a value, the other must not be null. DB-main can

merge entities and adds the needed constraint on the merged attributes.

Partial Disjoint relationship

P artial Disjoint relationship is supported only by ER-win and DB-main. In

both tools, the relationship could be transformed into an unique foreign key

or could be merged into an unique table. ln both cases, a constraint must

guarantee the uniqueness of each instance.

Nevertheless, even if ER-win uses a different notation in the concept ual

mode! to make the difference between an overlapping and a disjoint relation­

ship, t hese two relationships are transformed using t he same rule and the ,,
produced SQL code is the same. The disjoint constraint is not respected.

DB-main is able to transform and to merge partial disjoint relationship

and produces the right relational model and SQL code.

4.3 Uncommon and practice based rules

4.3.1 Limitation due to the conceptual models

The original schema was modeled using ER-win. ER-win implements IDEFlx

and according to the specification of this mode!:

A migrated attribute may be part of more than one foreign key

provided that the attribute always has the same value for these

foreign keys in any given instance of the entity. A role name

may be assigned fo r this migrated attribute.

[IDE, l

DB-main does not allow to choose t he name of the migrated attributes.

Furthermore, the logical schema could be drawn directly in the relational

model but this schema could not be retro-engineered to the ER model due

to its special foreign keys. The conceptual model is not able to store our

schema rightly due to lacks in the used ER model.

Rational Rose does not allow to choose t he name of the migrated at­

tributes. Furthermore, it does not allow to choose t he attributes identifying

45

an entity. This tool automatically adds a technical identifier. It was impos­

sible to mode! this schema rightly.

4.3.2 U nstudied transformation rules

Designing a temporal database is only possible in DB-main. ER-win and

Rational Rose totally ignore this concept. Furthermore, using ER-win, if

the attribute Date is added by hand in the logical schema, the attribute is

automatically added in the conceptual schema as an element of the primary

key. This new attribute induces a contradiction between the primary key

groups and the ls-a relationship.

Three temporal relationships are supported by DB-main: valid time,

transaction time and both. In valid time, user has to insert the timestamps

into each instance. In transaction time, user does not have to care about

the time, the system fills the timestamps automatically.

The example is valid time. To implement a valid time entity, DB-main

adds two attributes: starting and ending date. Between this two dates,

nothing has changed in the instance. As we already explained, we need

only one attribute to implement the time in our example, because of each

instance represents a snapshot of the position of a Survey Point. A snap­

shot transformation is not supported by DB-main but could be added using

the proprietary language Voyager 2. Nevertheless, this language is not a

transformation oriented language, it is not its purpose. We decided not to

explore this way.

4.3.3 Information lost

Rational Rose can not merge entities. Furthermore, it is impossible to define

the transformation by hand. The test is canceled with this tool for these

reasons.

ER-win can merge entities for sub/super type relationship, but can not

merge entities linked by a 0-1 - 1-1 relationship. Using a sub/super type

relationship instead of the 0-1 - 1-1, the transformation is made possible.

We already showed, ER-win does not add any constraints when it merges sub

type entities with its super type entity. In this example, this lack makes the

46

transformation possible. But user of the tool is not aware that semantical

information have been lost.

DB-main can merge entities linked by a ls-a relationship and a zero to one

relationship. Nevertheless, the transformation is not possible because DB­

main does not support to loose semantical informations. When we merge

entities MainActivity and lndividualComment, the tool adds a coexistence

constraint on attribute moved from MainActivity entity. Because of this

constraint, it does not accept to merge the new entity lndividualComment

with MiscComment and Comment. Indeed, this constraint would be lost.

The transformation could be made by deleting by hand the constraint but

no automation is possible.

4.4 Conclusion

U sing our practice based examples, we were able to demonstrate some lacks

in transformation rules implemented in studied CASE tools.

Firstly, lacks appear in the implementation of classical transformation

rules. ER-win and Rational Rose drop systematically some constraints.

ER-win does not implement rightly transformation rules even if these rules

are well defined in the theory (zero to one relationship). Rose does some

optimizations on the schema without asking anything to the user of the tool

and without providing any way to disable them.

Secondly, uncommon transformation rules have a mixed result, depend­

ing on the used tool. Rose and DB-main were notable to solve any of these

problems and ER-win was able to solve two of them. The biological example

was already conceptualized using ER-win and the special constraints can be

expressed with this tool due to its management of the foreign in the con­

ceptual schema. The legacy example was solved because of the tool looses

some semantical informations, but this loss was made without preventing

the user.

Thirdly, ER-win and Rational Rose every classical transformation rule

(merging entities linked by a ls-a relationship or a zero to one relationship).

In short , important differences of quality appears between studied tools.

Rational Rose is the poorest tool for database design. It does not support

47

important concepts as entity's identifier, entities' merging and disjoint ls-a

relationship. ERwin is better but some lacks appear especially concerning

the constraint added in SQL code to respect relationships ' cardinalities.

The best results were obtained with DB-main. Theory is well implemented,

constraints are added in SQL code to respect cardinalities but this tool is

not able to apply our uncommon rules.

48

Chapter 5

U sing a novel rule approach

for expressing transformation

rules

5.1 Introduction

As we defined before, a CASE tool helps the developer to design its appli­

cation. To achieve this goal, a tool provides models (UML, ERA ...) and

developer designs its application using these models. Models defining other

models are called meta-model.

We can <livide models in three levels: meta-metamodel, metamodel and

model. Meta-metamodel is the higher level. It allows us to specify a meta­

model. Metamodel is the second highest level. It is the model of the models.

ln this level, we define for example what is an entity type, a relationship,

an attribute, etc. We define too the link between them. For example , an

entity can have zero, one or more attributes. An attribute must belong to an

entity. A relationship links an entity to another. U sing these information,

we can too define the structure to store models (the repository's structure).

The lowest level is the model. It is a description of the user data.

The proof of the concept tool [Guvstavsson, 2003] is a meta-case tool

(tool able to build its meta-model) based on a repository (formalized in

UML) and an active rules system. The purpose of this project is to share

49

conceptual schema with its transformation rules. To achieve this goal, the

author defines a transformation based language, OCL+, to implement eas­

ily transformation rules. This language is an extension of the Object Con­

straint Language defined by the OMG group to describe constraints in UML.

Schemes are exchanged using XML Metadata Interchange Language (XMI),

a standardized language able to export metadata information. So, to export

a schema (user model) from a tool to another one, we need to export the

meta-model, the rules used to transform the schema and the schema itself.

5.2 The repository system

5.2.1 U ML as R epository language

UML, for Unified Modeling Language, is considered now as a standard for

modeling applications. UML offers several diagrams for separating concerns

of different system views. The same conceptual framework and the same

notation can be used from specification through design to implementation.

Furthermore, UML is not a proprietary and closed language but is open and

fully extensible. If we need something else that is not present in UML, we

can easily change the UML specifications in order to add it.

In our work, we will use UML as meta-metamodel. We are particularly

interested in the class diagram to build our repository. A class diagram is

composed by three main components: class, binary association and gener­

alization.

C lass

A class is symbolized by a rectangle divided into three fields. The first

field contains the class' name, the second field contains the class' properties

and the third field contains definition of methods that are applicable in the

class. Each property has a name and a type of data. A property can have

an optional symbol representing its visibility (public, private or protected).

Each method has parameters and a return data type. A method has a

symbol representing its visibility too.

50

Binary association

A binary association is represented by a line linking two classes. A recursive

binary association is an association where both end lines are the same class.

At each end point, we find the role of the association and its multiplicity.

On the line's center, we find the name of the association. The multiplicity

can be* (zero or more) , I..* (one or more), 0 .. 1 (zero or one) or 1 (one).

Generalization and specialization

Generalization is represented by a triangle connected to the supertype. Each

subtype is linked to the triangle by a line. A subtype is by definition derived

from the supertype. There are four kinds of generalization: overlapping,

disjoint, complete or incomplete.

Using UML as meta-metamodel, we are able to build a metamodel and

to use it in the proof of the concept tool. Metamodel could be a subset of

UML or any other existing model. In our example, we will always use a

subset of ER and relational models. We considerer UML is not complete

enough to design database. The unexistance of identifier in entities is the

main reason.

5.2.2 A basic repository example

Our repository illustrated by figure 5.1 is divided into two parts: on the top

of the dotted line we have the conceptual part and on underneath we have

the logical part.

The conceptual section is made up of three entities. The entity At­

tributes stores every information about attributes. The entity Entities stores

every information about entities. An entity can have zero, one or more at­

tribute(s). This relation is represented by the relationship AttrToEnt. The

entity ERRelationship stores every information about relationships between

entities. A relationship has a cardinality, this cardinality represent the max­

imal number of instances that can be referenced by another instance. The

minimal cardinalities are always O in this example. A relationship links two

entities, the parent entity is linked with the relation FromRel and the child

entity is linked with the relation T oRel.

51

The logical section is made up of three entities. The entity colu mn stores

information about the columns of a tables. The entity Tables stores infor­

mation about the tables. A table can have zero, one or more column(s), this

relation is represented by the relationship ln. The entity ForeignKeys stores

information about table referencing another table. A foreign key links two

tables, the referenced table uses the relation From Table and the referencing

table uses the relation ToTable and is compounded by one or more column(s)

using the relation MemberOf.

Now, our repository is composed of the modeling of two simple models.

We need to link these models by relationships. A table is the implementation

of an entity, this relation is expressed by lmplementsTable. A column is the

implementation of an attribute, this relation is expressed by lmplementsAttr

and can be the implementation of a foreign key by the relation MemberOf

defined above. Finally, a relationship is implemented by a foreign key, this

relation is expressed by lmplementsRel.

5.3 Transformation rules

5.3.1 Introducing OCL and OCL+ as transformat ion rules

An UML diagram, such as a class diagram, is typically not re­

fined enough to provide all the relevant aspects of a specification.

There is, among other things, a need to describe additional con­

straints about the abjects in the model. Such constraints are of-

ten described in natural language. Practice has shown that this

will always result in ambiguities. In order to write unambigu-

ous constraints, so-called formal languages have been developed.

The disadvantage of traditional formal languages is that they are

usable to persans with a strong mathematical background, but dif­

ficult J or the average business or system modeler to use.

[OMG, 2003]

OCL, Object Constraint Language, helps the developer to fil) this gap.

OCL can be used to specify invariants on classes and types in the class

model, invariants for stereotypes, to describe pre and post-conditions on

52

Attributes
Name· String 0 .. 1
Keystate: Boolean franroll
Nullable: Boolean

0 .. 1 itillroll
ERRelationship

Name: String
IAttrToEnt

0 .1 FromRole: String 0 .. 11 Entlties O. •
franroll ToRole: String franrol~Name: String franroll FromCard: String

ToCard: String O .. • O .. •

0 .. 1 10 1
tillroll lillroll

franroll franroll
ToRel

FromRel
------------------- - - - - ------------------- - - - -

lmplementsAttr

lmplementsRel 0 .. 1 tillroll
lmplements Table Columns

0 .. 1 Name: String

Membe!Of tillroll Keystate: Boolean
O .. • franroll Nullable: Boolean

F oreignKeys 0 .. 1 tillroll

0 _ 1 Unique: Boolear

tillroll Tables
O .. • 0 .. 1

Name: String
tillroll franroll ln

O .. • rranr11~anroll
O .. • liO .. ~ tillroll

Relationnname

Relat1onnname

Figure 5.1: A simple repository

53

methods and metadata operations and to describe guards. An OCL rule

illustrated by the table 5.1 is composed by three fields: the context class,

the pre-condition and the post-condition. For all instances of the context

class, if the pre-condition is respected, the post-condition must be respected

too. OCL is a no sicle effect language. No action can change the system

when a rules is applied.

context Typename::operationName(paraml : Typel , ...): ReturnType

pre parameterOk: paraml = ...
post resultük: result = ...

Table 5.1: OCL quick specifications

Typ e o f data

OCL is a strongly typed language . It supports basic type data as integers,

floats, booleans and strings. Operations on each type are summarized in the

table 5.2.

Type Values 1 Operations

InLcgcr 1, -2, 504, ... * , +, -, /, abs()

Float 1.2. 2.5. 56.89 * , +, -, / , floor()

Boolcan true, false and, or, xor, not, implies, if-then-else

String 'This is a sLring' toUpper(), concat()

Table 5.2: OCL types, values and operations

Operations

Pre and post conditions allow us to make some basic operations such as the

addition on integers and floats, boolean operations and some modifications

on strings. Theses operations are allowed to check the value of each variable,

but can not change the system. There is no possibility to declare new

variables or to keep a value between two rules for example. Purpose of

an OCL rules is checking if all variables respect the precondition then the

produced result has to respect the post condition.

54

Extending OCL

OCL is an interesting language to express transformation rules. The system

of pre and post conditions with a context class defines clearly on which kind

of instance the rules have to be applied. But operations in OCL have no

sicle effect and we need, to apply a transformation, to be able to change the

data stored in the repository. Furthermore, we don't want to apply rules on

a fonction in a class but on the class itself.

To avoid this problem, some modifications are made. The post condition,

now known as Action, accept two new instructions: the assignment (:=) and

the separator of instructions(;). A new field appears, Declaration, to be able

to create new values and to declare variables.

Sorne other modifications are made too to complete the system. We keep

the Context class and the Precondition, now known as Condition. Context

class refers now to an entity in the repository system (in place of a fonction

signature).

With the field Evenl, we are able to define in which case the rule have to

be applied when t he condition are respected. There is three kinds of event:

insert, update and delete. A rules where the field Event is defined as Insert

will be used when a new tuple is added in the entity defined by the field

Context Glass and if and only if cvcr_v statcmcnt of the Condition field is

met. A rule must be declared for one and only one event.

To complete the event, three categories are added: normal, internai and

collection. A normal event is init iated when a tuple is inserted , updated

or deleted by the user. An internai event is an event initiated by another

event. A collection event is initiated when an action modifies a collection of

data.

An OCL+ rule is defined like this:

Context Class N ame of t he entity

Event type of event

Condition condition! [and/or] condition2 [and/or] ..

Declaration type: variable

Action actionl ;action2 ; .. ;actionN

55

The next example presents a rule which automatically add the string

'' Ent_" to the name of the ent ity and add an identifier "ID" to the entity.

Context Class Entity

Event Insert

Condition

Declaration Attributes A

Action A.Create;

A.Name:=ID;

A.Keystate:=true;

A.Nullable:=false;

sclf.namc := concat('" EnL'". sclf.namc);

self.AttrToEnt := A

5.3.2 The active repository system

With a repository and a set of rules, we need a system to apply the rules

on the components we add in the repository. To reach this goal, the author

has decided on an active database systems.

Active database systems allow users to create rules specify data

manipulation operation to be executed automatically whenever

certain events occur or condition are met.

[Widom, 1996]

U sing this idea, when an user adds an information in the repository,

if this information respects the conditions of one rule defined for the used

context class, the action of the rule is initiated. This action can initiate

some other rules (internal or collection) and these rules can initiate other

rules too, in every context class.

The proof of the concept tool admits multiple events, that means the user

adds all its information in one time and commit all changes. The system first

applies all 'Normal' rules and after applies all internal or collection rules.

The order is the order of the rules. If two rules could be applied, the system

applied the first one (i.e. the first in the list).

56

In order to reduce the scope of this work, we just study the event 'Insert'.

Actually, 'Update' and 'Delete' events are complex, due to the fact they

should change all the database schema. For example, if we allow an user

to change the cardinalities of a relationship, this change could induce the

deleting of a table (many to many relationship updated to a one to many

relationship) , could change the primary key of number of table (Identifying

relationship to a non identifying relationship) , etc. This kind of problem is

out of scope and should be the subject of another research.

5.3.3 A basic example of OCL+ rules using the basic reposi-

tory

Scope of the example

The basic repository supports only entities, attributes and relationships be­

tween two entities in the ER part and only tables, foreign keys and columns

for the relational part. We need two transformat ion rules: the first one

transforms a zero to many relationship with a foreign key pointing the pri­

mary key of the other table and the second one transforms a zero to one

relationship, adding a unique foreign key in the child table.

Building the rules

The purpose of a rule is not to replace t he developer in the identification of

t he needs but to help him to automatize the transformation of huge schemes

from one model to another. This distinction is important because of the

developer has to enter enough information when he builds his conceptual

schema to allow the tool to choose t he right rule. In the other way, each

rule must have a unique ·condition to be applicable.

Due to these two conditions, we demonstrate the importance of the link

between the rules and the repository. The repository has to be complete

enough to allow t he rules' developer to write unambiguous rules. It must

provide attributes to write the condition statement without ambiguity and

attributes to execute t he action statement without asking to the tool's user

any unknown information when the transformation is made.

57

Firstly, we need a rule to transform an entity to a corresponding table.

This transformation is the easiest, the action statement needed is divided in

two parts: we create first a new table using the instruction new, secondly

we copy all common attributes from the entity to the table (name ...).

Context Glass

Event

Condition

Declaration

Action

Entities

Insert

ImplementsTable-+isempty

Tables Tab

Tab.create;

Tab.Name := self.Name;

self.ImplementsTable := Tab;

Secondly, we need a rule to transform each attribute of an entity to a

column in the corresponding table. In this rule, we take care the fact an

attribute must belong to an entity (see the condition statement).

Context Glass Attributes

Event Insert

Condition ImplementsAttr-+isempty and AttrToEnt-+notempty

Declaration Columns Col

Action Col.create;

Col.Name := self.Name;

Col.Keytate := self.Keystate;

Col.N ullable := self.N ullable;

self.ImplementsAttr := Col;

Thirdly, for each relationship, we build the transformation rule. To make

the difference between each kind of relationships, we check the cardinalities

in the condition statement. In these rules, we need to create a new instance

of ForeignKeys. We need to add in the table implementing the child entity a

column for each attribute member of the identifier of the parent entity (i.e.

attribute with Keystate = true).

58

Context Class ERRelationships

Event Insert

Condition ImplementsRel-+isempty and FromCard="N" and ToCard="l"

Declaration ForeignKeys FK, Columns Col

Action FK.create;

FK.Unique:=false;

self.ImplementsRel:=FK;

self.FromRel.AttrToEnt-+ reject (Keystate=false)-+ iterate(

PKll

Col.Create;

Col.Keystate := false;

Col.Name := PKl.Name;

Col.In:=self. ToEntity.ImplementsTable;

Col.MemberOf:=FK)

Context Class ERRelationships

Event Insert

Condition ImplementsRel-+isempty and FromCard=" l" and ToCard=" l"

Declaration ForeignKeys FK, Columns Col

Action FK.create;

FK.Unique:=true;

self.ImplementsRel:=FK;

self.FromRel.AttrToEnt-+reject(Keystate=false)-+iterate(

PKll

Col.Create;

Col.Keystate := false;

Col.Name := PKl.Name;

Col.In:=self. ToRel.ImplementsTable;

Col.MemberOf:=FK)

Three remarks have to be made about the OCL+ language and the

used tool. First remark, loop, the statement able to examine a collection

of instance, is prefixed. That means the condition and the list of instance

to be examined is evaluated and created before the entrance of the loop.

During the analyze of each instance of a collection, if we add an instance in

59

the collection and if this instance respects the conditions of the loop, this

new element will not be analyzed. In our example, we need to analyze every

instance referenced by childAttribute of an entity. The condition of the loop

is Lhc rcjcc tion of cvcry attributc with lhc Keystate set to false. The first

word following iterate(is the variable painting to the current element to

analyze.

Second remark, the current version of the tool does not allow to use

the conditional instruction (if-then-else) in the action statement. For the

moment , the only way to do a condition in the action part is dividing the

rules in two new rules, using a different condition statement. This solution

is not complete enough, and some problems are unsolvable. We analyze

this problem in the next chapter. This is a known problem and it will be

corrected in the next version of the tool. This problem is not a bug, but the

author of the tool considered this instruction as optional.

Third remark, the current version of the tool does not allow to merge

two strings. This is a bug and it will be corrected in the next version.

5.3.4 An alternative: Action Semantic

Purpose of Action Semantic

Action Semantic is a language added in UML by the OMG in 2000. The

purpose of this language is to fill the gap between high level concept of

UML and the low level programming constructs found in the used oriented

language. One of the main lacks in UML is the absence of formai and precise

foundation for several constructs such as transition guards or method bodies.

These lacks cause the impossibility to simulate and validate an architecture.

Action Semantics (AS) was defined by the OMG to specify algorithms

in high level. Before AS was included in UML, the only way to specify

the behavior of a function was in an uninterpreted string. This solution is

problematic because of developers could misinterpreted the string. Further­

more, this string does not help to automate a formai proof of correctness

of a problem specification, does not make possible high-fidelity model-based

simulation and verification, does not help for the reusability of a component

without reading the whole low-level code.

60

Such precise action specifications, in conjunction with the UML, provide

a stronger basis for model design and eventual coding and could support

code generation to multiple software platforms. Action Semantics is a for­

mal language, platform independent, strongly typed, able to specify any

functionality of a software.

Relying on the fact that UML meta model is itself a UML model, authors

[G. Sunye and Jezequel, 2002] show how the AS can be used at the meta

model level to help the 00 designer carry on activities such as behavior­

preserving transformations, design pattern application and design level as­

pects weaving. This approach of AS is particularly interesting for us for

two reasons: the repository used to build OCL+ rules uses UML as meta

model and AS can be combined with OCL to verify if a transformation may

be applied, as the condition statement of OCL+. Furthermore, the authors

distinguish the same two steps in design level activities: identification of the

need to apply a given transformation on a UML model in actual transforma­

tion of that model, without forgetting the fact the purpose is not to replace

the developer in the first step but to automatize the second step.

Rules' example

A quick example helps to compare OCL+ and AS. The purpose of this rule

transforms an entity into a table. In OCL+, such a rule is defined like this:

Context Class

Event

Condition

Declaration

Action

Entity

Insert

ImplementsTable--+isempty

RelTable RT

RT.create;

RT .name:=self.name;

self. lm plementsTable: =RT

ln Action Semantic, there is no declaration field, new instances are cre­

ated directly in the action code. The same rule can be expressed like this:

61

Class: :Entity

Pre:

class.ImplementsTable-tisEmpty()

Action:

newTable := RelTable.new

newTable.name:=self.name;

newTable.addAssociationTo(self, 1, 1)

Post:

class.ImplementsTable-tnotEmpty()

Comparison to OCL+

OLC+ and AS with OCL are very similar, defined in UML and able to

realize the same kind of program. Furthermore, their syntax is nearly the

same.

But there are two big differences between them. Action Semantic does

not define a field Event. In our system of active rules, this is really problem­

atic. Without event, we need to reapply ail transformations to transform

the schema into the other mode!. Cascading the rules became impossible

(we can not make the difference between an internai event and a normal

event).

OCL+ replaces the post condition field with an action field. This action

field is able to modify the repository. By replacing this post condition,

OCL+ prevents the use a tool to check the final result. We can imagine a

system where action is realize and post condition is checked to verify if the

result of the transformation is correct. Such a system will help to debug

huge number of rules easily.

Purpose of these languages is similar hnt the absence of the Evenl field

in AS is too important to be used in the repository system describe above.

Furthermore, the absence of post condition field in OCL+ is not important,

it just helps the developer to create correct rules and to verify the behavior

of these.

62

Chapter 6

Solving practice base case

using OCL+

6.1 Used repository

6.1.1 Introduction

As we explained in the previous chapter, the purpose of a repository is

to store every information about a schema and to be able to express every

needed constraint. To this purpose, we add a second one: the repository has

to store every information to transform a schema from a model into another

model without requiring new information. This second purpose leads to add

extra information not present in the original models.

To be able to transform a schema, the tool presented in the previous

chapter uses a system of linked repositories modeled in UML. The repository

models two or more models, each model linked to each other. These links

are made using relationships between repository 's entities and with trans­

formation rules coded with a transformations oriented language (OCL+).

We divided transformation rules into two different classes: classical trans­

formation rules and uncommon transformation rules. Classical transforma­

tions are well defined in the theory and are symmetrically reversible. We crit­

icized CASE tools which are notable to transform rightly relationships using

these classical transformation rules. In order to implement these rules, our

work was based on [Hainaut, 2002] and [J-L. Hainaut and Roland, 1996].

63

About uncommon transformation rules, we implement the transformation

as presented in the selected papers.

The purpose of this work was not to make a perfect repository able

to store every kind of constructs and every possible transformation but to

have a repository complete enough to be able to store and to transform our

practice based schemes and furthermore to implement all classical transfor­

mation rules presented in the previous chapters. Building our repository as

and when we need it, we can study the incidence of the completeness of a

repository on transformation rules.

This chapter sums up the implementation of the different rules used

to solve our practice based schemes. Firstly, we describe the first ver­

sion of the used repository. This repository was made by Gustavsson in

[Guvstavsson, 2003] to solve the real life example of his thesis . This version

is illustrated in annexe C. Secondly, we sum up, for each class of transfor­

mations, the implemented transformation rules. They are listed in annexe

C.

6.1.2 Repository's description

Figure 6.1 represents the first version of the repository. The upper part is

the conceptual repository. lt is a simplified version of ER mode!. The lower

part is the logical part. lt is a modified version of the classical relational

model.

Entity Association Repository

The entity EREntity stores every information about entity type, that is its

name and if a table has to be created to implement it. The notable attribute

is used in case of merging of entities. This indicates that no relational table

is to be generated for the merged entity.

An entity could have zero, one or more attributes and an attribute is part

of zero or one entity. Therefore, EREntity is linked by a 0-1 - 0-* relationship

Lo the cnLiLy ERAttribute. This is a choice made by Gustavsson in his first

repository. From our point of view, it does not bring any problems, an

attribute without entity is present in the repository but has no sicle effect.

64

ERA!tribute

0 .1
Neme:String

lmplERA
Key~ate: lnteger
Nullable: Boolean

O .. • ChildA!tr

ERReletionship 0 .. 1 ParentEnttty

Name:::itnng EREntijy ERSubtyperel

IType:String o .. • 0 .. 1 N•me:String 0 .. 1 O .. • Constraints: String

Fromrole:S1ring ToRel Fromenttty
Notable: lnteger FromEntity ToSTRel

Ïrorole:String
0 .. 1 0 .. 1 O .. • FromCardMin:String o . .-

FromCardMax: String FromRel
ToEnttty ToEnttty FromSTRel

IToCardMin:String
IToCardMax:String O .. • o .. • DefByST

0 .1 lmplementsl el lmplementsEntrty

P .1 lmplem, ntsRel
O .. • lmp ementsRel

O .. • DefByRel

O .. 1 l □efinesDep ~

ERDependency
0 .. 1 Type:String

DefinesDep

;::JlmolDeo
PrimaryKeyDei

o .. •

tsFK
FromPKDep 0 .. 1 lmplementsîable
O .. • O .. t l!mplementsTable o . • lmplemen

ToPKDep RerTable ForeignKey
0 .. 1 Name:String 0 .. 1 o . .- Equ:Boolean

D .1 lmplementedbyDep Toîeble Fromîable ToFK
0 .. 1 0 .. 1 O .. *

Fromîeble Toîeble FromFK

0 .. 1 ParentT able 0 .. 1 lmplByfk

lm

o.: lmplemeLJ
RolAltributo

Name: String O._-
0 .. 1 KeyState:Boolean ChildAttribute

plementsAltr Nullable:Boolean O . ."
lmp!Altr

Figure 6.1: Repository version 1

65

An instance of ERAttribute has three characteristics: N ame, K eystate and

Nullable. K eystal e means the instance is an att ribute part of the identifier

of its entity. N ullable set to true means the value of the attribute is optional.

A relationship links two and only two entities (the entities could be the

same instance of EREntity) and an entity can be linked to zero, one or many

other entities. A relationship links a child entity to its parent entity. ER­

Entity is linked by two 0-1 - 0-* relationships to the entity ERRelationship.

The parent entity is linked to its child by the relation FromEntity and the

child entity is linked to its parent by the relation T oEntity. This notation

helps us to distinguish between two parts of a non-symmetrical relationship.

In case of a symmetrical relationship like a many to many relationship, this

distinction has of course no sens. A relationship is described by eight at­

tributes. N ame stores the name of the relationship. Type stores the type

of relationship. We make the choice to use this attribute to distinguish be­

tween identifying and non identifying relationships. Fromrole and Torole

give a name for each role played by the relationship. FromCardMin and

ToC ardM in store the minimal cardinalities of each side of the relationship

and FromCardM ax and ToCardM ax store the maximal cardinalities of

each side of the relationship. FromCard indicates the number of entities

which could reference the parent entity and the ToCard indicates the num­

ber of parent entity which a child could reference.

ERSubtyperel stores a sub-type relationship between a child (FromEntity)

and a parent (ToEntity). An ERSubtyperel relationship is only between two

entities. A super-type could have one or more children. To store this infor­

mation, we use ERDependency. It puts together ERSubtyperel instances and

allows to add constraints between these relations (dijunction etc.). A sub­

type relationship can be implemented using a zero to one relationship. The

rela tion DefineDep links the relationships implementing a sub-type relation

with the sub-type group in the ER model. A sub-type group is implemented

using zero, one or more relationships.

The original repository has two other relations 0-1 - 0-* linking ERDe­

pendency and EREntity. From our point of view, these relations were useless

and redundant with the relation linking ERSubtyperel and EREntity. We

choose to delete these two relationships in order to simplify the repository

66

and the rules.

R elational mode l R epository

RelTable stores information about table. A table can implement zero, one or

more entities or can implement a relationship (transformation of a many to

many relationship, for example). A table is characterized by a name. The

relation between RelTable and EREntity is a 0-1 - 0- * one in the repository

of Gustavsson. This relation allows a table to implement many entities and

is used when two entities are merged into an unique table. In theory, an

entity could be spitted into many tables. Nevertheless, we do not meet this

transformation in our practice based schemes. We keep the relation 0-1 -

0- * in order to keep the repository as simple as possible.

A table has zero, one or more attributes, stored in RelAttri bute. An

attribute has a name, a keystate (the attribute is member of the primary

key group) and can be nullable (for an instance of the table X, this attribute

can have the value null). A RelAtt ribu te is an implementation of an ER

attribute or an implementation of a relationship (attribute part of a foreign

key) .

Foreign Key puts together attributes into a foreign key group, to imple­

ment a relationship. If the boolean Equ is set to true, each instance of the

parent entity has to be referenced by an instance of the child entity.

PrimaryKeyDep puts together the attributes member of a foreign key im­

plementing an identifying relationship. This entity was originally present

in the first repository. ln order to access to the information as quickly as

possible, Gustavsson [Guvstavson, 2003] recommends to build a redundant

repository. ln a relational schema, the difference between the implementa­

tion of an identifying relationship and a non-identifying relationship is the

fact that all migrated attributes are members of the primary key group of the

child table. In the repository, that means these attributes have the boolean

keyslate set to true. To make the difference between the implementation

of an identifying and a non identifying relationship, we have to check the

keystate of each attribute member of a foreign key. In order to save us from

this heavy action, the entity type PrimaryKeyDep was added.

67

Another usage of PrimaryKeyDep is to puts together the attribute mem­

ber of the primary key group that are created to implement a kind relation­

ship but that are not in a foreign key group. This special attribute will be

studied in the section about unstudied transformation rules.

6.1.3 Lacks

We can already point at some lacks in the repository. It can not represent

ternary relationships. A relationship links two and only two entities. This

choice was made by Gustavsson to simplify the model. Modeling a repos­

itory able to store this kind of construct is possible but no practice based

schemes analyzed uses ternary relationships. Furthermore, rules based on

a repository able to store ternary (and more) relationships are more com­

plicated and impossible to implement without the conditional instruction.

Indeed, with only binary relationships we bypass the absence of the condi­

tional instruction by building a rule for each variation of the cardinalities.

With ternary relationship, the number of rules becomes too important to

be done.

The ER model does not support attributes and identifiers in a relation­

ship. Even if such a relationship appears in the bus example, we decided not

to care about this notation. Rules able to transform such a relationship are

easy to implement but without the conditional instruction, we need to <livide

all rules into two new different variations (with and without attributes) .

An attribute in the relational model could take part of one and only

one foreign key group. We selected the biological example because of an

attribute takes part of many foreign key groups. We will avoid this lacks in

the next sections and studying the incidence of the change on the already

made rules.

The relational model is not able to add constraints between the attributes

and between groups of attributes. This lack will be avoided in the next

sections .

68

6.2 Classical transformation rules

6.2.1 Building the rules

If-then-else problem

As we explain in the previous chapter, the proof of the concept tool does not

support the if-then-else instruction in the action statement . Due to this fact,

we have to build a new rule for each small modification of the cardinalities

and for each type of relationships.

The non existence of the if-then-else instruction causes another unex­

pected problem: the debugging of rules is more complicated. Rules are

really similar and doing a copy and past to create every small variation is

probably the best way to create an homogeneous set of rules. But if the

starting rule has a mistake, this mistake will be copied on all rules and de­

bugging will be multiplied by the number of variations made from the first

rule.

Entities and attributes

Before creating rules to transform relationships, we need some basic rules

to transform entities and attributes to the corresponding constructs in the

relational model.

A table has to be created if the relation lmplementsTable between ER­

Entity and RelTable does not exist. That means this entity is not already

implemented. Furthermore, a table must be created if the value of the at­

tribute notable is false. The notable attribute is used in case of merging of

entities. This indicates that no relational table is to be generated for the

merged entity. If these two conditions are respected, a table is created and

linked to the implemented entity.

Declaration:

RelTable RT

Action:

RT.create;

RT .name:=self.name;

self.ImplementsTable:=RT

69

The rule implementing an attribute is similar. We have to check if the

relation lmplementsAttr does not exist and if the attribute notable of the

parent's entity is set to false. Indeed, the notable is set to true, this entity

will be merged in another. We will create each instance of RelAttribute

for each attribute member of this kind of table in the rules that effectively

merge the entities. If the condition is respected, an inscance of RelAttribute

is created with the same characteristics than the instance of ERAttribute and

is linked to the implemented attribute.

Declaration:

RelAttribute RA

Action:

RA.Create; (Instantiation of the RelAttribute)

RA.ImplERA:=self;

RA.Name:=self.Name;

RA.KeyState:=self.KeyState; (all common characteristic are copied

from one model to another)

RA.ParentTable:=self.ParentEntity.ImplementsTable (link between

ERAttribute and Re/Attribute is made}

6.2.2 Zero to many relationship

Identifying relationship

We choose Lo use the a ttrihute type of ERRelationship to make the difference

between a non-identifying and an identifying relationship. We choose the

string "l" for an identifying relationship. The condition statement checks the

cardinalities of the relationship (both minimal and maximal cardinalities)

and the value of the attribute type .

The identifying relationship needs to migrate every attribute part of

the parent 's entity identifier to the table implementing the child entity. A

new instance of Foreign Key is created to put together all migrated attributes.

This is the foreign key group. As we explain in the previous section, in order

to make the difference between a foreign key group implementing an identi­

fying relationship and one implementing a non-identifying relationship, an

instance of PrimaryKeyDep is created. This instance puts together the same

70

attributes than the instance of ForeignKey. The instances of PrimaryKey­

Dep and Foreign Key are linked to the implemented relationships using the

relations lmplementsRel. Finally, all migrated attributes have their keystate

attribute set to true because they are members of the primary key group and

their attribute nullable is set to false because the relationship is mandatory.

Action:

FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self; (We link the instance to the imple­

mented relationship)

FK.FromTable:=self.FromEntity.lmplementsTable;

FK. ToTable:=self. ToEntity.lmplementsTable;

Pk.Create;

nal model. This entity stores, for each relatio PK.ToTable:=self.ToEntity.ImplementsTable;

Pk.lmplementsRel:=self; (We link the instance to the imple-

mented relationship)

self.FromEntity.ImplementsTable.childAttribute---+

reject (Keystate=false)---+

iterate(PKI / for each attribute member of the primary key group

of the parent entity, we copy these attributes in the table im­

plementing the child entity. PK1 refer to the current attribute

member of the identifier of the parent entity

Re.Create;

Re.Keystate:=true;

Re.N ullable:=false;

Re.N ame:=PK l .name;

Re.ParentTable:=self.ToEntity.lmplementsTable;

Re.lmplementedbyDep:=Pk;

Re.lmplByFk:=FK)

N on-identifying relationship

The transformation is nearly the same than the identifying relationship but

Lhc value of Lhc allributc lype is t he string " N" in order to make the differ-

71

ence with the identifying relationship.

An instance of Foreign Key is created to put together all migrated at­

tributes but no instance of PrimaryKeyDep is created, this relationship being

not part of the identifier of the child entity. The keystate of each migrated

attribute is set to false. The attribute nullable is set to true because the

relationship is not mandatory for the child ent ity.

Variations

An instance of the child entity could be linked to one and only one instance

of t he parent entity with a non-identifying relationship. In this case, the

boolean nullable is set to false for each attribute part of the foreign key

implementing the relationship.

A zero to many relationship (identifying or non-identifying) can be manda­

tory for the parent entity. Each instance of the parent entity must be refer­

eced by one or more instances of the child entity. In this case, the boolean

Equ of the instance of Foreign Key is set to true .

Briefly, a zero to many relationship is implemented by six different rules,

depending of their minimal cardinalit ies. Two of these rules implement iden­

tifying relationship. lndeed, an identifying relationship is always mandatory

for the child entity but could be optional or mandatory for t he parent entity.

The four other rules implement the non-identifying relationships.

6.2.3 Zero to one relationship

The zero to one relationship rules are similar to the zero to many rules ,

but t he value of the union of the attributes part of t he foreign key must be

unique. In order to guarantee this constraint, the repository needs to be

able to store constraints between attributes in the relational model. The

first version of the repository is not able to do this.

The first idea to implement this constraint was the addition of a new

attribute unique in the entity type ForeignKey. A foreign key group with

the attribute unique set to true means the union of the attributes members

of this group must be unique. Nevertheless, the implementation of the

different kinds of ls-A relationships will require other constraints between

72

attributes and between groups of attributes (unique, coexistence, exactly

one, exclusion, etc.). Furthermore, these attributes are not always members

of a foreign key group (case of merging for example). The unique attribute

is not general enough to be used.

In order to solve this problem, an entity AttrConstraint is added in the

repository. This entity is linked to RelAttribute by a relation many to many.

An attribute can be member of different constraints and a constraint can

contain zero, one or more attributes. Furthermore , we add a recursive zero to

many relationship to be able to add constraint between group of constraints.

For example, an entity A has four optional attributes. These attributes, we

are under the next constraints:

(Al IS NOT NULL AND A2 IS NOT NULL) XOR

(A3 IS NOT NULL AND A4 IS NOT NULL)

To implement these constraints, three instances of AttrConstraint are cre­

ated. The two first instances guarantee the coexistence constraints between

Al and A2 and between A3 and A4. The third constraint adds the exclusion

between the two first groups using the recursive relationship.

An instance of AttrConstraint could be created to implemente a relation­

ship or a constraint of an Is-a relation. This entity is linked to ERRelationship

and to ERDependency in order to keep this information.

The other transformation found in our practice based example consists

in implementing the zero to one relationship by merging the child entities

with its parent entity. All attributes of the child entity are added in the

table implementing the parent entity. All mandatory attributes of the child

entity become optional and are put together in a coexistence group using

the entity AttrConstraint. The optional attributes are simply added into the

parent table without any other constraints.

In case of a zero to one non-identifying relationship, the child entity could

have an identifier. In this case, a unique constraint must be added to put

together the attributes members of the identifier.

Finally, the parent table implements two different entities, this relation

is stored with the relation lmplementsTable.

One more time, the absence of the if-then-else instruction adds a new

problem. An unique constraint must be added if the child entity has an

73

l

identifier and a coexistence constraint must be added to put together the

mandatory attributes of the child entity. We decide to systematically create

these two instances of AttrConstraint even if there is no attribute referenced

by these constraints. It simply adds some useless data in the repository and

building a rule able to clean the repository is not complicated.

6.2.4 Many to many relationship

To implement a many to many relationship, we need to create a new table.

This table will be the component implementing the relationship. It is not

linked to an entity as other table but to the implemented relationship using

the relation lmplementsTable. The identifier of this table is compound by ail

attributes members of the identifier of both linked entities. Two instances of

PrimaryKeyDep and of ForeignKey are created to put together the migrated

attributes.

As in the variation of zero to many relationships, attribute Equ of the

entity Foreign Key has to be set to the right value, corresponding to the type

of minimal cardinality for each side of the relationship.

We explained in the previous section that a relationship is oriented from

the child entity to the parent entity. This orientation has no sens for a

symmetrical relationship such as the many to many. This relation can be

manda tory for one entity or for the other (one minimal cardinality is set to

1). We need to build two different rules to implement 0-N - 1-N, one for

each orientation, depending which side of the relationship has the minimal

cardinality set to 1.

6.2.5 Is-a relationship

Merging the entities or implementing by foreign keys

All ls-a relationships are stored in the repository using the same entities.

ERSubtyperel stores the relation between the parent and the child entities

and all relations are put together using an instance of ERDependency. ERDe­

pendency defines the type of ls-a relationship.

The first method presented in our practice based schemes to implement

an ls-a relationship consists in implementing each relation by a foreign key,

74

as the zero to one relationship. An instance of ERRelationship is created

for each ERSubtyperel referenced by the instance of ERDependency. This

ERRelationship is a zero to one relationship. The boolean N oTable of each

child entity is set to false. Each child references the parent entity using a

foreign key and all attributes implementing the foreign key are put together

under a constraint of uniqueness by an instance of AttrConstraint.

The second method presented in our practice based schemes to imple­

ment an ls-a relationship consists in merging the children entities with the

parent entity. The boolean N oTable of each child entity is set to true.

The table implementing the parent entity is linked to all child entities. All

attributes of each child become optional and are put together under a con­

straint of coexistence using entiLy AttrConstraint defined above.

In both implementations, depending on the constraints between the chil­

dren, some variations appear.

Overlapped

An overlapped relationship does not require any other constraints between

the children, whatever the method to implement this relationship (merging

or using foreign keys).

Disjoint

A disjoint relationship requires a constraint between the children, to respect

the disjunctive constraint. Using foreign keys to implement this relation­

ship, we add an attribute for each child entities in the parent table. All

these attributes are optional and under an exclusive constraint. The in­

stance of AttrConstraint implementing this constraint references the instance

of ERDependency.

Merging the entities to implement this relationship requires a exclusive

constraint between each coexistence group of attributes. A new instance of

AttrConstraint is created and references each constraint of coexistence.

75

6.3 Practice based rules

6.3.1 Limitation due to the conceptual models

AU problems we met until now with OCL+ were produced because of lacks

in the repository or because of the absence of the if-then-else instruction.

Our repository is a light version of the ER model and is intentionally not

able to store every type of constraints and every kind of relationships nor­

mally allowed by the ER model. But limitations are not always due to our

repository but to 'lacks' in the used model itself.

The model used to model the original schema (IDEFlx [IDE,]) allows

an attribute to be member of many foreign keys.

To be able to choose the future name of the attribute implementing the

foreign key, we need a new entity, an hybrid between the ER model and the

relational model. This entity stores, for each relationship, the name of the

migrated attribute for each attribute member of the identifier. If an attribute

with the same name already exists in the table, no new attribute is added

and this existing attribute is added in the foreign key group implementing

the current relationship.

The first idea to solve this problem was to read the information stored

by AttributRelation. But without the if-then-else instruction, it is impossible

to check if an attribute with the same name already exists in the table.

The second idea was the addition of a new rule with AttributRelation

as context class. When an information is stored in this entity, the rule

creates automatically an instance of RelAttribute if no attribute has the

same name in the table implementing the child entity. The rules which

transform effectively the relationships are changed. They create the instance

of ForeignKey and do not create t he instance of RelAttribute but make the

union between the foreign key group and the previously created attributes.

Condition:

self. U seAttr. ToEntity.Im plementsTable. ChildAttribute-+ forall(RA 1

RA.name <> self.Name)

Act ion:

RA.Create;

76

RA. ParentTable: =self. U seAttr. ToEntity.ImplementsTable;

RA.ImplERAFK := self;

RA.Name := self.Name;

RA.KeyState := false;

RA.Nullable := true;

Another lack in the repository appears during the implementation of

these rules. In this example, a relational attribute could be part of zero, one

or more foreign key groups. In order to be able to store this information,

we have to change the relation bewteen RelAttribute and ForeignKey from a

zero to many relationship to a many to many one. This change requires to

modify every already implemented rules. Indeed, in previous rule, we linked

an instance of RelAttribute and one of ForeignKey using this instruction

Re.lmplByFk:=FK;. This could not be used anymore due to the used many

to many relationship. Both sides of the relationship refers to a collection of

objects, we need to use the instruction union to add the attributes in the

foreign key group.

A third repository is created. This repository is not compatible with the

two first repositories used until now.

6.3.2 U nstudied transformation rules

This transformation is an update of the overlapped partial ls-a relationship,

studied in the previous section. The difference is we add a new attribute to

store the date in all child tables. This attribute is member of the primary key

group, has no corresponding attribute in the ER model is not member of the

foreign key group implementing the relationships between the parent entity

and its children and is added to implement the relationship. In order to keep

this information, this attribute is added in the instance of PrimaryKeyDep.

It is the only example of an attribute being member of a PrimaryKeyDep

without being member of a Foreign Key group.

We simply decide Lo use the aLLribuLe lype to make the difference between

a normal ls-a relationship or a temporal Is-a relationship. The transforma­

tion is exactly the same than the overlapping relationship.

77

6.3.3 Information lost

The purpose of this transformation is to merge entities Comment, lndividu­

alComment , Misc(omment and Ma inActivity. As we explain before, to merge

entities lndividua lComment and Ma inActivity, we need to create an optional

group of attributes in lnd ividualComment. But to merge the new entity with

its parent, we have to create an optional group and in this group, there is

another optional group. This transformation is impossible.

The used transformation does not care about optional groups. Every at­

tribute moved from the merged entities is optional, without any constraints

between them. The created rule moves all attributes, by cascading, to the

main parent entity. These rules consist in a lighter version of the merging

entity in ls-a and in zero to one relationships without implementing any con­

straints. The tool cascades automatically all transformations. AU rules able

to solve this example can be found in [Guvstavsson, 2003).

6.4 Conclusion

We demonstrate in this chapter OCL+ gives to the developer a powerful

language to build his own transformations for database engineering. We

demonstrate too the importance of the completeness of the repository. The

second version of the repository, illustrated by figure 6.2, and the differences

between this repository and the first version highlight clearly this need of

completeness. We show too with the third version 6.3 of the repository that

a repository could be totally incompatible with rules even if the change is

minimal. We demonstrate finally the importance of hybrid information in a

repository to be able to store every needed information to apply completely

a transformation.

We demonstrate the proof of the concept tool works but we demonstrate

too the importance of the if-then-else instruction in the action statement.

This instruction was not implemented fo llowing an old recommendation in

the OCL description from the OMG (this note does not exist anymore).

Sorne rules were impossible to implement due to the absence of this instruc­

tion.

78

AttributRelation
ERAllrilJul~ Name:String

0 .1
Name: String

0 .. 1 O .. •

lmplERA
Keystate: lnteger

lmplName AttrRel n lmplementsAttr
Nullable: Boolean

O .. • ChildAttr
O .. • lucodln

0 .. 1
1

LJ1
lmplERAFK

ERRelationship 0 .. 1 ParentEntity

Name:String EREntity ERSubtyperel

IType:String UseAttr 0 .. 1 Name:String 0 .. 1 0 _• Constraints:String

F romrole: String
U .. • Notable: lnteger
ToRel

Fromentity FromEntity ToSTRel
Torole:String o .. • 0 .. 1 0 .. 1 O .. *
F romCardMin:String

FromRel ToEntity ToEnfüy FromSTRel F romCardMax: String o .. •
ToCardMin:String
1T oCardMax:Gtring O .. lo .. 1 IFromEntlty o.: De1ByST

0 .1 lmplementsl el lmplementsEntity o .. • ToEntity
l:l..1 lmplem, ~tsRel O .. • ToDep b.: lmo "mentsRel

o.: De1ByRel

FromDep la.: b .. 1 loefinesDep '---

ERDependency
0 .. 1 IType:String

DefinesDep

o.: UseConst

;::i lmplDep

PrimaryKeyDep lmplementeRel

o.:
FromPKDep 0 .. 1 lmplementsTable Relationnname
o .. • 0 .. 1 llmplomontoTablo o.: lmplomont, K

ToPKDep Relîable ForeignKey
0 .. 1 Name: String 0 .. 1 o .. • Equ:Boolean

0 .1 lmplementedbyDep Ta Table FromTablo ToFK
0 .. 1 0 .. 1 O .. •

Fromîable Ta Table FromFK

0 .1 Parentîable o.: Composedby

O.: lmplemenu lmplementeERD
RolAttributo

Name:String o.:
0 .. 1 KeyState:Boolean ChildAttribute

Unique:Boolean □ -- 1
Nullable: Boolean Composed FKGroup

0 -· Const~tr 0 .. 1 o.: FromConst ConstBetC bnst

AltrConstralnt
0 .. 1 lmplementsAttr

!Type: String 0 .. 1
0 .. 1 ToConst

Undei{;onst 0 .. 1

lmplERD

Figure 6.2: Repository version 2

79

AltributRelation
ERA!tribute Namo:String

0 .1
Name:String

0 .. 1 o .. •
Keystate:lnte~•r

lmplName n lmplt~ Nullable:Boolean AttrHel
lmplementsAttr

o ChildAltr
O .. ~Usedln

0 .. 1
1

u ·1
lmplERAFK

ERRelationship 0 .1 ParentEntity

Name:81:ring EREntity ERSubtyperel

Type:S1ring UseAltr 0 .. 1 Name:String 0 .. 1 o.: Cons1raints:String

Fromrole:String u .. • Notable:lnteger Fromentny FromEntny ToSTRel
Torole: String ToRel

o .. • 0 .. 1 0 .. 1 o .. • FromCardMin:String
FromRel ToEntny FromCardMax:String o .. •

ToEntny FromSTRel

ToCardMin:String
ToCardMax:String o.: 0 .. 1 IFromEntny o .. • DefByST

0 .1 lmplementsl el lmplementsEntity o .. • ToEntny
b .. 1 lmplem, r,tsRel O .. * ToDep kJ .. • lmo lementsAal

o .. • De1ByRel

FromDep la.: 0 .. 1 f oefinesDep lmplementeRel ~

ERDependency
0 .. 1 ITypo:String

DefinesDep

o .. • UseConst

';:J1mplDep
PrimaryKeyDei

o.:
FromPKDep 0 .. 1 lmplementsTable Relationnname
O .. • 0 .. 1 llmplementsTable 0 .. lmplement, • K

ToPKDep Rerrable ForeignKey
0 .. 1 Name:String 0 .. 1 o .. • Equ·Boolean -

0 .1 lmplementedbyDep ToTable FromTable ToFK
0 .. 1 0 .. 1 o .. •

FromTable Tc Table FromFK

U .. 1 t-'arenll able o.: Composedhy

O . ." lmplemersAttr 1 lmplementeERD
RelAltribute

Name:String o .. •
□ .. 1 KeyS1ate:Boolean ChildAttribute

Unique:Boolean O .. N
Nullable:Ooolean Composed FKGroup

o.: Consrr 0 .. 1 o .. • FromConst ConstBetC lmst

AttrConstraint
0 .. 1 lmplementsAttr

tType: String 0 .. 1 ..__
0 .. 1 ToCons1

UnderCons1 0 .. 1

lmplERD

Figure 6.3: Repository version 3

80

Chapter 7

Conclusion

7 .1 Purpose of this document

The purpose of this document was the creation of a set of tests to assess

the quality of transformation rules implemented in CASE tools. These tests

had to be based on real life examples. To achieve this goal, we have read

number of papers and we selected four articles in four different domains each

one presenting a solut ion to a specific problem.

From the analyze of the articles, we extracted firstly classical relation­

ships. These classical relationships were divided into four different classes

depending of their maximal cardinalities. Each relationship has one or more

transformation rules to be implemented in the relational model. These

transformations are well defined in the literature. They are symmetrically

reversible, that means no semantical information is lost t hought the trans­

formation process.

We extracted secondly three categories of uncommon transformation

rules. First category contains relationships with constraints that can not

be expressed in the conceptual models. Second category contains relation­

ships that have to be transformed in using an unstudied transformation rule.

Last category contains relationships that have to be transformed with a rule

that looses semantical information through the transformation process.

The second part of the work was an evaluation of existing CASE tools

using the transformations extracted from the analyze of the selected articles.

81

For each transformation we assess the capability of each tool to apply the

rule. In case of problem in the process, we wrote a result table to sum up

the difficulties.

This part of the work highlights two main problems. Firstly, the quality

of the implementation of classical transformation rules in CASE tools is be­

low what we expected, excepted in DB-main. Sorne constraints are dropped,

some optimizations are made, some semantical information are lost and some

concepts are totally ignored (temporal relationship). Secondly, the studied

tools are completely static. There is no way to add users' transformation

rules.

In order to find a solution to this second problem, and implicitly a solu-

tion to the first one too, we have presented the work of Gustavsson [Guvstavsson, 2003]

with OCL+. The purpose of his proof of concept tool is to be able to share

a conceptual schema with its transformation rules. To reach this goal, the

author has defined an extension of OCL (Object Constraint Language) in

UML. OCL+ is a transformation oriented language making possible to write

our own transformation rules using OCL+ and a repository formalized in

UML and with an active database system.

Using OCL+, we were able to build rules to transform our practice based

schemes. By implementing our rules, we highlight the importance of com­

pleteness of the repository. We were notable to find a Jack in OCL+ for the

expression of transformation rules. Anyway, two bugs or lacks have been

found in the proof of the concept tool: the absence of if-then-else statement

and the absence of concatenation for string. Nevertheless, we finally showed

that the prototype works and is a good solution to solve uncommon design

problems.

7.2 Fut ure works

The goal of this work was not to assess every possible transformation rule

implemented in CASE tools. We limited our analyze to the rules used in

papers presenting database schemes.

Nevertheless, some types of relationships are not supported in most of

tested tools. Ternary relationships, relation linking three entities, or at-

82

tributes in relationships are not supported by ER-win and by Rational Rose

for example. We did not find a practice based example that is not a school

example using these relationships but, theoretical examples demonstrate

such relations should be useful and should be implemented. Transformation

of such relationships was not possible due to the absence of the if-then­

else instruction in the proof of concept tool, but using this instruction, the

implementation of such rules should be interesting.

We showed the importance of completeness of the repository. The repos­

itory have to be able to store every data needed by a model and every data

needed to apply the transformation rules. These data are not part of the

model and are used by the tool only for internal reasons. If the repository

is not able to store these data, some transformation rules should not be

applied. The used repository is based on a small part of ER model. The

study of a complete repository able to store every needed information to be

able to transform rightly a schema from one model to another should be

interesting.

83

Bibliography

[IDE,] Ideflx: Technical report. http: / /vrww . idet . com/Downloads/pdf /

Idef 1x . pdf .

[Butler, 2000] Butler, T. (2000). Transforming information systems devel­

opment through computer-aided system engineering (case): lessons from

practice. Information Systems Journal, 10(3):167- 193.

[Chen and Carlis, 2003] Chen, J. and Carlis, J. (2003). Genomic data mod­

eling. Information Systems, 28:287- 310.

[Detienne and Hainaut, 2001] Detienne, V. and Hainaut , J.-L. (2001). Case

tool support for temporal database design. In 20th international confer­

ence on conceptual modeling (ER 2001}.

[Dixon, 1992] Dixon, R. (1992). Winning with CASE: Managing Modem

Software Development. McGraw-Hill, New-York.

[G. Sunye and Jezequel, 2002] G. Sunye, A. L. G. and Jezequel , J .-M.

(2002). Using uml action semantics for model execution and transfor­

mation. Information Systems, 27:445- 457.

[Guvstavson, 2003] Guvstavson, H. (2003) . Oral discussion.

[Guvstavsson, 2003] Guvstavsson, H. (2003). Maintaining modelling trans­

parency in multi-tool environments through standards based interchange

of design transformation. submited to the University of Exeter, UK as

thesis for the degree of Doctor of Philosophy in Computer Science.

[Hainaut , 2002] Hainaut , J.-L. (2002). Syllabus of database engineering,

university of namur, belgium.

85

[Hughes and Wood-Harper, 2000] Hughes, J. and Wood-Harper, T. (2000).

An empirical model of the information systems development process: a

case study of an automotive manufacturer. Accounting Forum, 24(4):391-

406.

[J-1. Hainaut and Roland, 1996] J-1. Hainaut, J-M Rick, V. E. J. H. and

Roland, D. (1996). Understanding the implementation of is-a relation. In

Proc. of the 15th Int. Conf. on ER Approach, Cothbus, Springer-Verlag,

pages 42- 5 7.

[Jackson, 1990] Jackson, M. (1990). Case tools and development methods.

Spurr, K., Layzell, P. {Eds.}. CASE on trial. Wiley, Chichester, pages

95- 104.

[James and Finkelstein, 1981] James, M. and Finkelstein, C. (1981). Infor­

mation engineering: Technical report.

[Kolp and Zimanyi, 2000] Kolp, M. and Zimanyi, E. (2000). Enhanced er

to relational mapping and interrelational normalization. Information and

Software Technology, 42:1057- 1073.

[Lundell and Lings, 1999] Lundell, B. and Lings , B. (1999). Method sup­

port for developing evaluation frameworks for case tool evaluation. In

Khosrowpour, Mehdi {Ed.} Information Resources Management Associa­

tion International Conference, pages 350- 358.

[OMG, 2003] OMG, O. M. G. I. (2003). 0mg unified rnodeling language

specification. March 2003, Version 1.5.

[Penicka and Friedsam, 2002] Penicka, J. and Friedsam, H. (2002). New

database design for the aps survey and alignment data. In the 7th Inter­

national W orkshop on Accelerator Alignment, SPring-8.

[Shapiro, 1997] Shapiro, S. (1997). Splitting the difference: the historical

necessity of synthesis in software engineering. IEEE Annals of the History

of Computing, 19(1):20- 54.

[Widom, 1996] Widom, J. (1996). The starbust active database rule system.

IEEE transactions on Knowledge and data engineering, 8(4):583- 595.

86

[Willson, 1998] Willson, S. (1998). Measuring inconsistency in phylogenetic

trees. J. Theor. Biol., 190(1):15- 36.

87

Appendix A

U sing CASE tools

A.1 Using ERwin

A.1.1 Conceptual phase

Creating entities

An entity in ERwin is represented by a box divided in three parts. The

entity's name is written in the upper box, the primary key's attributes are

written in the middle box and the other attributes are written in the bottom

box.

A weak entity is an entity where the primary key is composed by one or

more relation(s). The entity is represented in ERwin by a box with rounded

corner.

Creating relationship

ERwin distinguishes between four kind of relationship: sub-category, non

identifying relationship, identifying relationship and many to many rela­

tionships. The three first relationships link two kind of entities: the parent

entity and the child entity. During the creation of a relationship, user clicks

first on the parent entity and clicks after on the child entity.

The sub-category relationship is a relation where the parent entity is the

super type and the child entity is the sub type. A child entity owns all the

characteristics of its super type. According to the IDEFlx [IDE,] definition:

89

rule A: A category entity can have only one generic entity. That

is, it can only be a member of the set of categories for one cate­

gory cluster.

(..)

rule D: The primary key attribute(s) of a category entity must

be the same as the primary key attribute(s) of the generic entity.

However, role names may be assigned in the category entity.

(..)

A category entity cannot be a child entity in an identifying con­

nection relationship unless the primary key contributed by the

identifying relationship is completely contained within the pri­

mary key of the category, white at the same time the category

primary key satisfies rule d above.

ERwin distinguishes between two kind of sub-category relationship: exclu­

sive and inclusive. Exclusive sub-category does not allow two children of

the same entity reference the same instance of their parent entity. Inclusive

sub-category accepts this construct .

Non identifying relationship creates a foreign key in the child attribute.

This foreign key isn't a part of the primary key. The group box cardinality

contains the cardinality for the child. The nulls group box contains the

minimal cardinality for the parent entity. Pay attention to 'zero or one '

cardinality, an alternate key have to be had.

The identifying relationship create a foreign key in the child attribute.

This foreign key is a part of the primary key. As in the non identifying

relationship, the group box cardinality contains the cardinality for the child.

The foreign key for this kind of relation can't be null, the nulls group isn't

actived. Pay attention to zero or one cardinality, an alternate key have to

be had.

The many to many relationship does not allow any configuration. The

minimal cardinality is zero for both side of the relation.

An alternate key have to be create if all instances of an attribute or a

group of attributes must be unique. During the creation of a relationship,

if the maximal cardinality is one (P), a alternate key must be added. We

90

click with the right mouse 's right button on the child entity-+key group. We

click on New button, we choose Alternate key. The Key is now added, we

add now all attribute coming from the foreign key.

A.1.2 Logical phase

The menu tool-+ Derive new model gives us the way to transform logical

schema to physical schema .

In the first wizard screen, we choose Physical in the New Type Model

group. We choose too Oracle 8. It's normally the default option.

On the second screen, we select M any-to-many relationship and Super­

type/ subtype in the Auto transform logical objects group.

There is no special action to do in the last screen.

A.1.3 Generating SQL code

The menu tool-+Forward Engineer /Schema Generation gives us the way to

generate SQL code from the physical schema.

In the wizard screen, we change the property of Referential Integrity and

we check the Unique (AK) property.

A.2 Using Rational Rose

A.2.1 Conceptual phase

Rational Rose use UML to represent schemes. UML editor allow to represent

classes for a oriented object application. For this reason, it is impossible to

create a primary key in a class (normally implicit for each class in oriented

object). The conceptual phase consist in creating a new package. This

package will contain all our entities.

Creating entities

We create each entity. In entity's option, we select Persistent. We add all

attributes, even if this attribute is a part of the primary key.

91

Creating relationship

As ERwin, Rose distinguishes four kinds of relationships: sub-category, non

identifying relationships, identifying relationships and many to many rela­

tionships. As in ERwin too, after selecting the kind of relationship, user click

first on the parent entity and secondly on the child entity. Translated in the

relational model, a foreign key is created in the child entity and references

t he parent entity.

Sub-category relationship is non-disjunctive and partial. Rose does not

allow another kind of sub-category.

For three others relationships, after creating the relationship, user defines

t he cardinality in relationship's option.

A.2.2 Logical phase

Datamodeler in rose is the logical phase. We transform the package to a

new datamodel. All persistent entity are added in t his new model, and all

links are created. A sub-category relationship is transformed to a unique

foreign key. For a many to many relationship, a new table is created with

two foreign keys referencing the initial ent ities. For all child entities with one

or more identifying relationship or with one sub-category, the foreign key

implementing the relationship is part of the primary key. For other entity,

a new attribute is added and implemented the primary key.

At this moment, some modification have to be made on the new model.

First we delete all automatically added attribute which are not a part of a

foreign key. Secondly, we recreate the real primary key group and we add all

attribute in this group. If the primary key is compounded by one attribute

part of a foreign key and another attribute, we simply add this attribute in

the primary key group.

A.2.3 Generating SQL code

We can generate SQL code of a data model with the data model context

menu: Data M odeler--t Forward Engineering.

92

A.3 Using DB-main

A.3.1 Conceptual phase

Schema creation

An entity is a box, divided in three parts. The first contains the entity's

name, the second contains the attribute's list and the last contains informa­

tion about this attribute (primary key ...). To create an entity, we click on

the entity's icon and click in the schema. To add attributes in the entity,

we click on the attribute's icon, and click on the entity, in the schema.

A relationship is an hexagon. Relationship 's name is written inside this

hexagon. To create a relationship, we click on the relationship's icon and

click in the schema. After that, we click on the link icon, click on the

relationship and finally on the entity to link. We redo this operation until

all wanted entities have been linked.

An Is-a relationship is represented by a triangle. The bold line links the

super type entity and the normal line links the subtype entity. To create an

Is-a relationship, we doubleclick on the subtype entity and we add all the

super type entity we want.

A.3.2 Logical phase

lndividual transformation

DBmain ensures to transform every relationships individually. To transform

a relationship, we select first the relation. The menu Transform- Rel-Type

is now accessible. We use systematically the -Attribute transformation.

To Transform an Is-a relationship, we select first the child entity. The

menu Transform-tEntity Type is now accessible. An Is-a relationship can be

transformed in different ways. We use mainly the Is-a- Rel-type fonction

(transform the Is-a to a relationship) and the split/merge fonction (merge

t he subtype with the super type.

93

To relation transformation

DBmain ensures to transform the EA schema directly in the relational

model. Every relationships are translated with a foreign key, all Is-a re­

lationships are translated to a unique foreign key and all many to many re­

lationships are translated in a table with foreign key's group referencing all

entities linked to this relationship. If a relationship was already transformed

individually into the relational modelas explain upper, this relationship does

not change.

Global Transformation

DBmain ensures to make a script to transform the EA schema. This script

is made up of one or more action to be made on each abject with a certain

precondition.

A.3.3 Generating SQL code

The SQL code generation can be made in different way. The menu File-+ Generate

ensures the generation in different codes. In all our example, we use the Aca­

demic SQL (check} fonction to generate the code.

94

Appendix B

Testing tools

B.1 Result table

B .1.1 Zero to many non-identifying optional relationship

• ERwin

Phase Rcsul t Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

• Rational Rose

Phase Rcsult Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

• DB-main

Phase Rcsult Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

95

B.1.2 Zero to many non-identifying mandatory relationship

• ERwin

Phase RcsulL Notes

ConccpLual Ok none

Logical Ok none

SQL Ok none

• Rational Rose

Phase RcsulL Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

• DB-main

Phase RcsulL Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

B.1.3 Zero to many identifying relationship

• ERwin

Phase RcsulL Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

• Rational Rose

Phase Rcsult Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

• DB-main

96

Phase Rcimlt Notes

Conccpt ual Ok none

Logical Ok none

SQL Ok none

B.1.4 One to many identifying relationship

• ERwin

Phase Rcsul t Notes

Conccptual Ok None

Logical Ok none

SQL Ko Mandatory constraint on parent entity is

not implemented

• Rational Rose

Phase Rcsult Notes

Conccptual Ok none

Logical Ok none

SQL Ko Mandatory constraint on parent entity is

not implemented

• DB-main

Phase Rcsult Notes

Conccplual Ok none

Logical Ok none

SQL Ok none

B.1.5 Zero to one identifying relationship

• ERwin

97

Phase Rcsult, Notes

Conccp l ual Ok A unique constraint must be added on the

foreign key. Normally, we don't have to

care about foreign key in the conceptual

phase

Logical Ok none

SQL Ok none

• Rational Rose

Phase Rcsult Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

• DB-main

Phase Rcsull Notes

Conccplual Ok none

Logical Ok none

SQL Ok none

B.1.6 Many to many relationship

• ERwin

Phase Rcsul l Notes

Conccp tual Ok none

Logical Ok none

SQL Ok none

• Rational Rose

Phase Rcsull Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

98

• DB-main

Phase Rcsult Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

B .1.7 Composition by two many to many relationship

• ERwin

Phase Rcsult Notes

Conccpt ual Ok none

Logical Ok none

SQL Ok none

• Rational Rose

Phase Rcsnlt Notes

Conccptual Ok none

Logical Ko Both relationship are implemented by a

unique table

SQL Ko NA

• DB-main

Phase Rcsult Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

B.1.8 Is-a disjunctive relationship

• ERwin

Phase Rcsult Notes

Conccptual Ok none

Logical Ok none

SQL Ok No trigger are created to implement the

disjunctive constraint.

99

• Rational Rose

Phase Rcsult Notes

Conccplual Ko Impossible to represent a disjunctive sub-

type

Logical Ko Constraint impossible to represent

SQL Ko NA

• DB-main

Phase Rcsult Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

B.1.9 Is-a non disjunctive relationship

• ERwin

Phase Rcs1tll Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

• Rational Rose

Phase Rcsult Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

• DB-main

Phase Rcsult Notes

Conccptual Ok none

Logical Ok none

SQL Ok none

100

B .1.10 Limitation in conceptual model

• ERwin

Phase Rcsult Notes

Conccptual Ok None

Logical Ok none

SQL Ok none

• Rational Rose

Phase Rc:;ult Notes

ConccpL ual Ko The constraints can't be expressed Prob-

lem with the primary key

Logical Ok none

SQL Ok none

• DB-main

Phase Rcsult Notes

Conccptual Ko The constraints can 't be expressed

Logical Ok none

SQL Ok none

B.1.11 Temporal Is-a relationship

• ERwin

Phase Rcsnlt Notes

Conccptual Ko ER-win doesn't support this entity type.

Logical Ko NA

SQL Ko NA

• Rational Rose

Phase Rcsult Notes

Conccptual Ko Rose doesn't support t his entity type

Logical Ko NA

SQL Ko NA

101

• DB-main

Phase Rcsult Notes

Conccptual Ok Three kind of temporal entity exist , Hain-

aut ...

Logical Ko A temporal entity is implemented with

two attributes (beginning date and end-

ing date) , we need one attribute

SQL Ko NA

B.1.12 Semantical information lost

• ERwin

Phase Rcsult Notes

Conccptual Ok none

Logical Ko Impossible to merge two entities linked by

a 0-1 relationship Using a sub-type instead

of 0-1 relationship between 'MainActivity'

and 'IndivudualComment', merging trans-

formation works, but we lose the 'Mise-

Comment' entity.

SQL Ok none

• Rational Rose

Phase Rcsult Notes

Conccptual Ko Disjunctive constraints can't be expressed

Logical Ko Using a non-disjunctive Is-a, Rose is not

able to merge two entities

SQL Ko NA

• DB-main

102

Phase Rcsult Notes

Conccptual Ok none

Logical Ko We are able to merge entities 'MainAc-

tivity' and 'IndivudualCornment' but we

are not able to merge the new entity with

'comment' because of semantic informa-

tion lost.

SQL Ko NA

103

Appendix C

Architecture developed for

the ASTRID project

C.1 Repository

Version 1 Original version of the repository

Version 1 First version of the repository

Version 2 Adds the possibility to add constraints on relational attribute.

Version 3 Used in the biological example.

105

ERA!tribute

0 .1
Name. String

lmplERA
Koy•tato:lntogor

O .. * ChildAttr

0 .. 1 ParentEntity
ERRelatlonshlp EREntlty ERSubtyperel

Name:String O .. • 0 .. 1 Name:S1ring 0 .. 1 O .. •
IType:String ToRel Fromenlity Notable:lnteger FromEntity ToSTRel
Fromrole:String

O .. • 0 .. 1 0 .. 1 O .. • ITorole:String
FromCard:String FromRel ToEntity ToEntity FromSTRel

Ïf'oCard: String

0 .. 1 lmf lementsf el o . .- 0 .. 1 IFromEntity o . .- DefByST
P .. lmplem1 ntsRel lmplementsEntity o . .- ToEntity O .. • lmo ementsRel

O .. • DelByRel O .. • ToDep

- FromDep lo.: O .. 1 1 DefinesDep
ERDependency

0 .. 1 Type:String
DefinesDep

ol1mplDep
PrimaryKeyDep

O .. •

ntsFK
FromPKDop 0 .1 lmplementsTable
O .. • 0 .. 1 llmplementsîable o . .- lmpleme

ToPKDep RerTable ForeignKey
0 .. 1 Name:String 0 .. 1 O .. • -

0 .1 ~tedbyDep
Toîable Fromîable ToFK

0 .. 1 0 .. 1 o .. •
O .. • 1mplamant~Attr

Fromîable Toîable FromFK

le

RelAllribute
0 .1 Paren!Table 0 .. 1 lmplByf k

Name:String o . .-
____E:.:.!. KeyStato:Boolean ChildAttribute

mentsAltr O .. •

lmplAllr

Figure C.l: Original Metamodel

106

ERAttributa

0
Name:String

.1 Keystate:lnteger
lmplERA Nullable:Boolean

O •• • ChildAttr

ERRelationship 0 .. 1 ParentEntrty

Name:String EREntltv ERSubtvoerel

Type String O .. • 0 .1 Name:String 0 .. 1 O •• • Constraints:String

Fromrole:String ToRel Fromentity
Notable:lnteger

FromEntrty ToSTRel
Torole:String
FromCardMin:Stri"!l O .. •

0 .. 1 0 .. 1 O • .'
FromCardMax:String

FromRel
ToEntity ToEntity FromSTRel

T oCardMin:String
ToCardMax:String

O .• • O •• 1IFromEntity O . .' DefByST

0 .1 lmplements el lmplementsEntrty 0 .' ToEntity
b .. 1 lmplem ntsRel O •. • ToDep O • .' lmi ementsRel

O . .' D•IByR•I
FromDep lo .. · 0 .. 1 IDefinesDep ~

ERDeoenden=
0 .. 1 Type:String

DefinesDep

;::ilmplDep
PrimarvKevDe

O . .'

FromPKDep 0 .. 1 lmplementsTable
O . .' 0 .. 1I1mplementsTable O .. • lmplemen tsFf

ToPKDep Re1T11ble ForeinnKev

0 .. 1 Name:String 0 .. 1 O . .' Equ:Boolean -
0 .. 1 lmplementedbyDep ToTable FromTable ToFK

0 .. 1 0 .. 1 O .. •

FromTable ToTable FromFK

0 . 1 ParemTable 0 .. 1 lmplByFk

O • .' lmplemeîsAttr 1
RelAttril>ute

Name:String O •

0 .. 1 KeyState:Boolean ChildAttribute
lm plementsAttr Unique:Boolean O . .'

N11llnh1P. AnolP.iln lmplAttr

O • .' ConstAttr
Constraints

Coex:boolean
0 .1

UnderConst

F igure C.2: Metamodel version 1

107

AttributRelation
ERAttribute NamQ:String

0 .1
Name:String

0 .. 1 O .. •

lmplERA
Keystate: lnteger

lmplName AttrRel n lmplementsAltr Nullable: Boolean

O .. * ChildAttr
o __ ;Jusedln 0 .. 1

1 LJ1 lmplERAFK
ERRelationship 0 .. 1 ParentEntity

Name:String EREntity ERSubtyperel

ITypo:String UseA!tr 0 .. 1 Name:String 0 .. 1 O .. • Constraints:String

Fromrolo:String
U .. • Notable: lnteger

ITorole:String ToRel
Fromentity FromEntity ToSTRel

O .. * 0 .. 1 0 .. 1 O .. •
FromCardMin:String

FromRel FromCardMax:String o .. •
ToEntity ToEnUy FromSTRel

IToCardMin:String
1T oCardMax:String O .. • tu IFromEntity o .. • DefByST

0 .1 lmplementsl el lmplementsEntity O .. * ToEntity
t1..1 lmplem, ~tsRel O .. * ToDep I:) .. • lmp ~mentsRel

O .. • DefByRel

FromDep la . .-b .. 1 l□efinesDep ~

ERDependency
0 .. 1 tîypo:String

DefinesDep

o . .- UseConst

~lmplDep
PrimaryKeyDei lmplementeRel

o . .-
FromPKDep 0 .. 1 lmplements Table Relationnname
O .. * 0 .. 1 llmplementsTable o . .- lmplements K

ToPKDep Relîable ForeignKey
0 .. 1 Name:String 0 .. 1 O .. • Equ:Boolean -

0 .1 lmplementedbyDep Toîable Fromîable ToFK
0 .. 1 0 .. 1 O .. ~

Fromîable ToTable FromFK

0 .1 IParenlTable O .. • Composed)

O .. • lmplemerAttr 1 lmplementeERD
RelAttribute

0
Name: String O . ."

-1 KeyState:Boolean ChildAttribute
Unique:Boolean O .. l
Nullable:Boolean Composod FKGroup

O .. • Consftr 0 .. 1 O .. * FromCons1 Con si Bel(bnst

AttrConstraint
0 .. 1 lmplementsAltr

!Type: String 0 .. 1
0 1 ToConst

UndorConst 0 .. 1

lmplERD

Figure C.3: Metamodel version 2

108

AltributRelation
ERAltributa Name:String

0 .1
Nama:String

0 .. 1 O .. •

lmplERA
Keystate:lnteger

lmplName Alt rRel l lmplementsA!tr
Nullable:Boolean

□ .. • ChildAltr
o.:[usadln

O ..
1

l11
lmplERAF

ERRelationship 0 .. 1 ParentEntrty

Name:S1 ring EREnfüy EASubtyporol

IType:String UseAttr 0 .. 1 Name:String 0 .. 1 O .. * Canstraints:St ri ng

Fromrole:String
u ... Notible :lnteger

ITorole:Stnng ToRel
Fromantity FromEntrty ToSTRel

□ .. • 0 .. 1 0 .. 1 □ .. • FromCardMin:String
FromRel ToEntity ToEntity FromSTRel FromCardMax:String o.:

tfoCardMin:String

K

tToCardMax:String o ... 0 .. 1 IFromEntity o.: De1ByST

0 .1 lmplementsl el lmplementsEntity o.: ToEntity
tJ .. 1 lmplem, 11tsRel o.: ToDep 0.: lmp ~mentsRal

□ .. • DafByRel
FromDep la ... □ .. 1 loefinesDep lmplementeRal -

ERDependency
0 .. 1 Typ~.Sl1Îny

DafinasOap

o.: UseConst

~ lmplDep
PrimaryKeyDep

o.:
FromPKDep 0 .1 lmplamantsTable Relationnname

o.: 0 .. 1 lmplementsTable o.: lmplamanh K

ToPKDep RelTable ForeignKey
0 .. 1 Name:String 0 .. 1 o.: Equ:Boolean -

0 .1 lmplementedbyDap Ta Table FromTable ToFK
0 .. 1 0 .. 1 O .. •

t- romlable lol able ~rom~K

0 .1 ParantTable o.: Composed

O .. • tmµl•m• ru lmplementeERD
RelAttribute

0
Name:Slring o.:

.1 KeySt ate:Boolean ChildAttribute
Unique:Boolean O .. N
Nullable: Boole an Composed FKGroup

o .. • Con$lrr 0 .. 1 O .. • FromCon91: ConstBetC bnst

.AJtrConstraint
0 .. 1 lmplementsA!tr

!Type: String 0 .. 1
0 .. 1 ToConst

UnderConst 0 .. 1

lmplERD

Figure C.4: Metamodel version 3

109

C.2 Rules

1. Entity to Table

Repository v. 1

Context Class EREntity

Event lnsert

Declaration RelTable RT

Condition lm plementsTable-isem pty and notable=false

Action RT .create;

RT .name:=self.name;

self.lm plementsTable: =RT

2. Attribute to RelAttribute

Repository v. 1

Context Class ERAttribute

Event Insert

Declaration RelAttribute RA

Condition ImplementsAttr-isempty and ParentEntity.notable=false

Action RA.Create;

RA.lmplERA:=self;

RA.N ame:=self.N ame;

RA.KeyState:=self.KeyState;

RA.N ullable=self.N ullable;

RA.ParentTable:=self.ParentEntity.ImplementsTable

3. 0-1 0-N non identifying relationship

Repository v. 1

Context Class ERRelationship

Event Insert

Declaration RelAttribute Re, ForeignKey Fk

110

Condition FromCardMin="O" and ToCardMin="O" and FromCardMax:=" N"

and ToCardMax:=" l " and Type<>" W"

Action FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self;

FK.FromTable:=self.FromEntity.ImplementsTable;

FK. ToTable:=self. ToEntity.ImplementsTable;

self.FromEnti ty.Im plemen tsTa b le. childA t tri bu te---+

reject(Keystate=false)-----+

iterate(PKll

Re.Create;

Re.Keystate:=false;

Re.N ullable:=true;

Re.N ame:=PKl .name;

Re.ParentTable:=self.ToEntity.ImplementsTable;

Re.ImplByFk:=FK)

4. 1-1 0-N non identifying relationship

Repository v. 1

Context Class ERRelationship

Event Insert

Declaration RelAttribute Re, ForeignKey Fk

Condition FromCardMin="O" and ToCardMin=" l " and FromCardMax:="N"

and ToCardMax:=" l " and Type="N"

Action FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self;

FK.FromTable:=self.FromEntity.ImplementsTable;

FK. ToTable:=self. ToEntity.Im plementsTable;

self.FromEntity.ImplementsTable.childAttribute-----+

reject(Keystate=false)-----+

iterate(PKll

Re.Create;

111

Re.Keystate:=false;

Re.N ullable:=false;

Re.N ame:=PK l .name;

Re.Parent Table: =self. ToEntity.ImplementsTable;

Re.ImplByFk:=FK)

5. 0-1 1-N non identifying relationship

Repository v. 1

Context Class ERRelationship

Event Insert

Declaration RelAttribute Re, ForeignKey Fk

Condition FromCardMin=" l " and ToCardMin=" O" and From CardMax=" N"

and ToCardMax=" l " and Type="N"

Action FK.Create;

FK.Equ:=true;

FK .ImplementsRel:=self;

FK.FromTable:=self.FromEntity.ImplementsTable;

FK. ToTable:=self. ToEntity.ImplementsTable;

self.FromEntity.ImplementsTable.childAttribute-----+

reject(Keystate=false)-----+

iterate(PKll

Re.Create;

Re.Keystate:=false;

Re.N ullable: =true;

Re.Name:=PKl.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;

Re.ImplByFk:=FK)

6. 1-1 1-N non identifying relationship

Repository v. 1

Context Class ERRelationship

Event Insert

112

Declaration RelAttribute Re, ForeignKey Fk

Condition FromCardMin=" l " and ToCardMin="l" and FromCardMax=" N"

and ToCardMax=" l " and Type="N"

Action FK.Create;

FK .Equ:=true;

FK.ImplementsRel:=self;

FK.FromTable:=self.FromEntity.ImplementsTable;

FK. ToTable:=self. ToEntity.ImplementsTable;

self.FromEntity.ImplementsTable.childAttribute­

reject(Keystate=false)-

iterate(PKll

Re.Create;

Re.Keystate:=false;

Re.N ullable:=false;

Re.Name:=PKl.name;

Re.ParentTable:=self.ToEntity.ImplementsTable;

Re.ImplByFk:=FK)

7. 1-1 0-N identifying relationship

Repository v. 1

Context Class ERRelationship

Event lnsert

Declaration RelAttribute Re, ForeignKey Fk, PrimaryKeyDep Pk

Condition FromCardMin="O" and ToCardMin=" l " and FromCardMax=" N"

and ToCardMax=" l " and Type="I"

Action FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self;

FK.FromTable:=self.FromEntity.ImplementsTable;

FK. ToTable:=self. ToEntity.Im plementsTable;

Pk.Create;

Pk.FromTable:=self.FromEntity.ImplementsTable;

113

PK. ToTable:=self. ToEntity.ImplementsTable;

Pk.ImplementsRel:=self;

self.FromEntity.ImplementsTable.childAttribute--t

reject (Keystate=false)--t

iterate(PKll

Re.Create;

Re.Keystate:=true;

Re.N ullable:=false;

Re.Name:=PKl.name;

Re.ParentTable:=self.ToEntity.ImplementsTable;

Re.ImplementedbyDep:=Pk;

Re.ImplByFk:=FK)

8. 1-1 1-N identifying relationship

Repository v. 1

Context Class ERRelationship

Event Insert

Declaration RelAttribute Re, ForeignKey Fk, PrimaryKeyDep Pk

Condition FromCardMin="l" and ToCardMin=" l" and FromCardMax="N"

and ToCardMax=" l " and Type="I"

Action FK.Create;

FK.Equ:=true;

FK.ImplementsRel:=self;

FK.FromTable:=self.FromEntity.ImplementsTable;

FK. ToTable:=self. ToEntity.ImplementsTable;

Pk.Create;

Pk.FromTable:=self.FromEntity.ImplementsTable;

PK. ToTable:=self. ToEntity.Im plementsTable;

Pk.Im plementsRel: =self;

self.FromEntity.ImplementsTable.childAttribute--t

reject (Keysta te= false)--t

iterate(PKll

Re.Create;

114

Re.Keystate:=true;

Re.N ullable:=false;

Re.N ame:=PKl .name;

Re.ParentTable:=self.ToEntity.ImplementsTable;

Re.ImplementedbyDep:=Pk;

Re.ImplByFk:=FK)

9. 1-1 0-1 non identifying relationship

Repository v. 2

Context Class ERRelationship

Event Insert

Declaration RelAttribute Re, ForeignKey Fk, AttrConstraint AC

Condition FromCardMin="O" and ToCardMin=" l " and FromCardMax=" l "

and ToCardMax=" l " and Type=" N"

Action FK.Create;

FK.Equ:=false;

FK .lm plementsRel: =self;

FK .From Table:=self.FromEntity.ImplementsTable;

FK. ToTable:=self. ToEntity.Im plementsTable;

AC.Create;

AC . Type=" unique"; self.FromEntity.ImplementsTable.childAttribute­

reject(Keystate=false)-

iterate(PKll

Re.Create;

Re.Keystate:=false;

Re.N ullable:=false;

Re.Name:=PKl .name;

Re.ParentTable:=self.ToEntity.ImplementsTable;

union(AC.underconst(Re)); Re.ImplByFk:=FK)

10. 1-1 1-1 non identifying relationship

Repository v. 2

Context Class ERRelationship

115

Event lnsert

Declaration ReIAttribute Re, ForeignKey Fk, AttrConstraint AC

Condition FromCardMin=" l " and ToCardMin=" l " and FromCardMax="l"

and ToCardMax="l" and Type="N"

Action FK. Create;

FK.Equ:=true;

FK .lm plementsRel:=self;

FK.FromTable:=self.FromEntity.lmplementsTable;

FK. ToTable: =self. ToEntity.Im plementsTable;

AC.Create;

AC. Type=" unique"; self.FromEntity.lmplementsTable.childAttribute­

reject(Keystate=false)-

iterate(PKlJ

Re.Create;

Re.Keystate:=false;

Re.N ullable:=false;

Re.N ame:=PK l .name;

Re.ParentTable:=self.ToEntity.lmplementsTable;

union(AC.underconst(Re)) ; Re.lmplByFk:=FK)

11. 0-1 0-1 non identifying relationship

Repository v. 1

Context Class ERRelationship

Event lnsert

Declaration ReIAttribute Re, ForeignKey Fk, AttrConstraint AC

Condition FromCardMin="O" and ToCardMin="O" and FromCardMax=" l "

and ToCardMax="l" and Type=" N"

Action FK.Create;

FK.Equ:=false;

FK.lmplementsRel:=self;

FK.FromTable:=self.FromEntity.lmplementsTable;

FK . ToTable:=self. ToEntity.lmplementsTable;

116

AC.Create;

AC. Type=" unique"; self.FromEntity.ImplementsTable.childAttribute---t

reject(Keystate=false)---t

iterate(PKl l

Re.Create;

Re.Keystate:=false;

Re.N ullable:=true;

Re.N ame:=PKl .name;

Re.ParentTable:=self. ToEntity.ImplementsTable;

union(AC.underconst(Re)) ; Re.lmplByFk:=FK)

12. 1-1 0-1 identifying relationship

Repository v. 1

Context Class ERRelationship

Event Insert

Declaration RelAttribute Re , ForeignKey Fk, PrimaryKeyDep Pk, AttrCon­

straint AC

Condition FromCardMin=" O" and ToCardMin=" l " and FromCardMax=" l "

and ToCardMax=" l " and Type=" l"

Action FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self;

FK.FromTable:=self.FromEntity.ImplementsTable;

FK. ToTable:=self. ToEntity.lmplementsTable;

Pk.Create;

Pk.FromTable:=self.FromEntity.lmplementsTable;

PK. ToTable :=self. ToEnti ty.lmplementsTable ;

Pk.ImplementsRel:=self;

AC.Create;

AC. Type=" unique"; self.FromEntity.lmplementsTable.childAttribute---t

reject(Keystate=false)---t

iterate(PKll

Re.Create;

117

Re.Keystate:=true;

Re.N ullable:=false;

Re.N ame:=PKl .name;

Re.ParentTable:=self.ToEntity.ImplementsTable;

Re.ImplementedbyDep:=Pk;

union(AC.underconst(Re)) ; Re.ImplByFk:=FK)

13. 1-1 1-1 identifying relationship

Repository v. 1

Context Class ERRelationship

Event Insert

Declaration RelAttribute Re, ForeignKey Fk, PrimaryKeyDep Pk, AttrCon­

straint AC

Condition FromCardMin=" l " and ToCardMin=" l " and FromCardMax=" l "

and ToCardMax=" l" and Type="I"

Action FK.Create;

FK.Equ:=true;

FK .ImplementsRel:=self;

FK.FromTable:=self.FromEntity.ImplementsTable;

FK. ToTable:=self. ToEntity.Im plementsTable;

Pk.Create;

Pk.FromTable:=self.FromEntity.ImplementsTable;

PK. ToTable:=self. ToEntity.ImplementsTable;

Pk.ImplementsRel:=self;

AC.Create;

AC. Type=" unique"; self.FromEntity.ImplementsTable.childAttribute­

reject(Keystate=false)-

iterate(PKl l

Re.Create;

Re.Keystate:=true;

Re.N ullable:=false;

Re.Name:=PKl .name;

Re.ParentTable:=self.ToEntity.ImplementsTable;

118

Re.lmplementedbyDep:=Pk;

union(AC .underconst(Re)); Re.lmplByFk:=FK)

14. merging 1-1 0-1 non identifying relationship

Repository v. 2

Context Class ERRelationship

Event Insert

Declaration RelAttribute Re, ForeignKey Fk, AttrConstraint ACI , AttrCon­

straint AC2

Condition FromCardMin="O" and ToCardMin=" l " and FromCardMax=" l "

and ToCardMax="l" and Type=" N"

Action ACI.Create;

ACI.Type=" coexistence";

AC2.Create;

AC2.Type=" unique";

self.FromEntity.lmplementsTable.childAttribute-+

reject(Keystate=false)-+

iterate(Attl

Re.Create;

Re.Keystate:=false;

Re.N ullable:=true;

Re.N ame:=Att.name;

Re.ParentTable:=self.ToEntity.lmplementsTable;

union(ACI.underconst(Re)) ; union(AC2.underconst(Re)) ; Re.lmplByFk:=FK) ;

self.FromEntity.lmplementsTable.childAttribute-+

reject(Keystate=true)-+

iterate(Attl

Re.Create;

Re.Keystate:=false;

Re.N ullable:=true;

Re.N ame:=Att.name;

Re.ParentTable:=self.ToEntity.lmplementsTable;

union(ACI.underconst(Re)); Re.lmplByFk:=FK)

119

15. merging 0-1 0-1 non identifying relationship

Repository v. 2

Context Class ERRelationship

Event Insert

Declaration RelAttribute Re, ForeignKey Fk, AttrConstraint AC2

Condition FromCardMin="O" and ToCardMin=" l " and FromCardMax="l"

and ToCardMax=" l " and Type=" N"

Action AC2.Create;

AC2. Type=" unique";

self.FromEntity.ImplementsTable.childAttribute--->

reject (Keystate=false)--->

iterate(Attl

Re.Create;

Re.Keystate:=false;

Re.N ullable:=true;

Re.N ame:=Att.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;

union(AC2. underconst(Re)); Re.lmplByFk:=FK); self.FromEntity.lmplementsTable.child1

reject(Keystate=true)--->

iterate(Attl

Re.Create;

Re.Keystate:=false;

Re.N ullable:=true;

Re.N ame:=Att.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;

Re.ImplByFk:=FK)

16. merging 1-1 0-1 identifying relationship

Repository v. 2

Context Class ERRelationship

Event Insert

Declaration RelAttribute Re, ForeignKey Fk, AttrConstraint ACl

120

Condition FromCardMin="O" and ToCardMin="l" and FromCardMax:=" l"

and ToCardMax:=" 1" and Type=" N"

Action ACl.Create;

AC l. Type=" coexistence" ;

AC2.Create;

AC2. Type=" unique";

self.FromEntity.ImplementsTable.childAttribute--+

iterate(Attl

Re.Create;

Re.Keystate:=false;

Re.Nullable:=true;

Re.N ame:=Att.name;

Re.ParentTable:=self. ToEntity.ImplementsTable;

union(ACl.underconst(Re)); Re.ImplByFk:=FK);

17. merging Is-a disjoint

Repository v. 2

Context Class ERDependency

Event Insert

Declaration RelAttribute Re, ERRelationship ER, AttrConstraint ACl , At­

trConstraint AC2

Condition Type=" D"

Action ACl.Create;

A Cl.Type=" exculsion";

self.DefByST--+

iterate(SubTypel

AC2.Create; AC2.Type=" coexistence";

Union(AC2.FromConst(AC1));

SubType.FromEntity.Implementstable := SubType.ToEntity.lmplementstable;

SubType.FromEntity.Implementstable.childAttribute--+

iterate(Attrl

Re.Create;

Re.Keystate:=false;

121

Re.N ullable:=true;

Re.N arne:=Attr .narne;

Re.ParentTable:=SubType.ToEntity.lrnplernentstable;

union(AC2.underconst(Re));

18. rnerging Is-a Overlapped

Repository v. 2

Context Class ERDependency

Event lnsert

Declaration RelAttribute Re, ERRelationship ER, AttrConstraint AC2

Condition Type=" D"

Action ACl.Create;

self.DefByST--+

iterate(SubTypeJ

AC2.Create; AC2.Type="coexistence";

SubType.FrornEntity.lrnplernentstable := SubType.ToEntity.lrnplernentstable;

SubType.FrornEntity.lrnplernentstable.childAttribute--+

iterate(Attrl

Re.Create;

Re.Keystate:=false;

Re.N ullable:=true;

Re.N arne:=Attr .narne;

Re.ParentTable:=SubType.ToEntity.lrnplernentstable;

union(AC2.underconst(Re));

19. 0-N 0-N relationship

Repository v. 1

Context Class ERRelationship

Event lnsert

Declaration RelTable Rt, PrirnaryKeyDep Pkl , PrirnaryKeyDep Pk2 , For­

eignKey Fkl, ForeignKey Fk2, RelAttribute Re

Condition FrornCardMin="0" and ToCardMin="0" and FrornCardMax="N"

and ToCardMax=" N" and Type=" N"

122

Action Rt.Create;

Rt.Name:=self.Name;

self.ImplementsTable:=Rt;

Pkl.Create;

Pkl .ImplementsRel:=self;

Pkl.FromTable:=self.FromEntity.ImplementsTable;

Pkl. ToTable: =RT;

Pk2.Create;

Pk2 .lm plementsRel:=self;

Pk2.FromTable:=self.ToEntity.ImplementsTable;

Pk2. ToTable: =Rt;

Fkl.Create;

Fkl .Equ:=false;

Fkl .ImplementsRel: =self;

Fkl .From Table: =self.FromEntity.ImplementsTable;

Fkl.ToTable:=Rt;

Fk2.Create;

Fk2.Equ:=false;

Fk2.ImplementsRel:=self;

Fk2 .From Table: =self. ToEntity.Im plementsTable;

Fk2. ToTable:=Rt;

self.FromEntity.ImplementsTable.childAttribute­

reject(Keystate=false)-

iterate(PKI

Re.Create;

Re.Keystate:=true;

Re.N ullable:=false;

Re.N ame:=PK.name;

Re.ParentTable:=Rt;

Re.ImplementedbyDep:=Pkl ;

Re.Imp!ByFk:=Fkl) ;

self.ToEntity.ImplementsTable.childAttribute­

reject(Keystate=false)-

iterate(PKI

123

Re.Create;

Re.Keystate:=true;

Re.N ullable:=false;

Re.N ame:=PK.name;

Re.ParentTable:=Rt;

Re.ImplementedbyDep:=Pk2;

Re.ImplByFk:=Fk2)

20. 1-N 1-N relationship

Repository v. 1

Context Class ERRelationship

Event Insert

Declaration RelTable Rt, PrimaryKeyDep Pkl , PrimaryKeyDep Pk2, For­

eignKey Fkl, ForeignKey Fk2, RelAttribute Re

Condition FromCardMin=" l" and ToCardMin=" l " and FromCardMax="N"

and ToCardMax=" N" and Type=" N"

Action Rt.Create;

Rt.N ame:=self.Name;

self.ImplementsTable:=Rt;

Pkl.Create;

Pkl .ImplementsRel:=self;

Pkl.FromTable:=self.FromEntity.ImplementsTable;

Pkl. ToTable: =RT;

Pk2.Create;

Pk2.ImplementsRel:=self;

Pk2.FromTable:=self.ToEntity.ImplementsTable;

Pk2.ToTable:=RT;

Fkl.Create;

Fkl.Equ:=true;

Fkl .ImplementsRel: =self;

Fkl .From Table: =self.FromEntity.Im plementsTable;

Fkl.ToTable:=RT;

Fk2.Create;

124

Fk2.Equ:=true;

Fk2.ImplementsRel:=self;

Fk2 .From Table: =self. ToEntity.Im plementsTable;

Fk2. ToTable:=RT;

self.FromEntity.ImplementsTable.childAttribute---+

reject(Keystate=false) ---+

iterate(PKI

Re.Create;

Re.Keystate:=true;

Re.N ullable:=false;

Re.N ame:=PK.name;

Re.ParentTable:=Rt;

Re.ImplementedbyDep:=Pkl;

Re.ImplByFk:=Fkl) ;

self. ToEn t i ty.Im p lementsTable. child At tri bu te-+

reject(Keystate=false)---+

iterate(PKI

Re.Create;

Re.Keystate:=true;

Re.N ullable:=false;

Re.N ame:=PK.name;

Re.ParentTable:=Rt;

Re.ImplementedbyDep:=Pk2;

Re.ImplByFk:=Fk2)

21. 0-N - 1-N relationship

Repository v. 1

Context Class ERRelationship

Event Insert

Declaration RelTable Rt , PrimaryKeyDep Pkl, PrimaryKeyDep Pk2, For­

eignKey Fkl , ForeignKey Fk2, RelAttribute Re

Condition FromCardMin="O" and ToCardMin=" l " and FromCardMax=" N"

and ToCardMax=" N" and Type=" N"

125

Action RT.Create;

Rt.N ame:=ERRelationship.N ame;

self.lmplementsTable:=Rt;

Pkl.Create;

Pkl .ImplementsRel: =self;

Pkl.FromTable:=self.FromEntity.ImplementsTable;

Pkl .ToTable:=RT;

Pk2.Create;

Pk2 .lm plementsRel:=self;

Pk2.FromTable:=self.ToEntity.lmplementsTable;

Pk2. ToTable:=RT;

Fkl.Create;

Fkl.Equ:=false;

Fkl .lmplementsRel:=self;

Fkl .From Table: =self.FromEntity.lm plementsTable;

Fkl .ToTable:=RT;

Fk2.Create;

Fk2.Equ:=true;

Fk2 .lm plementsRel: =self;

Fk2 .From Table: =self. ToEntity.Im plementsTable;

Fk2.ToTable:=RT;

self.FromEntity.lmplementsTable.childAttribute------>

reject(Keystate=false)------>

iterate(PKI

Re.Create;

Re.Keystate:=true;

Re.Nullable:=false;

Re.N ame:=PK .name;

Re.ParentTable:=Rt;

Re.ImplementedbyDep:=Pkl;

Re.ImplByFk:=Fkl) ;

self.ToEntity.lmplementsTable.childAttribute------>

reject(Keystate=false)------>

iterate(PKI

126

Re.Create;

Re.Keystate:=true;

Re.N ullable:=false;

Re.N ame:=PK.name;

Re.ParentTable:=Rt;

Re.lmplementedbyDep:=Pk2;

Re.lmplBy Fk: =Fk2)

22. 1-N - 0-N relationship

Repository v. 1

Context Class ERRelationship

Event Insert

Declaration RelTable Rt , PrimaryKeyDep Pkl , PrimaryKeyDep Pk2 , For­

eignKey Fkl , ForeignKey Fk2, RelAttribute Re

Condition FromCardMin="l" and ToCardMin="O" and FromCardMax=" N"

and ToCardMax=" N" and Type=" N"

Action Rt.Create;

Rt.N ame:=self.N ame;

self .lm plementsTable: =Rt;

Pkl.Create;

Pkl.lmplementsRel:=self;

Pkl .From Table:=self.FromEntity.lmplementsTable;

Pkl.ToTable:=RT;

Pk2.Create;

Pk2.lmplementsRel:=self;

Pk2.FromTable:=self.ToEntity.lmplementsTable;

Pk2.ToTable:=RT;

Fkl.Create;

Fkl .Equ:=true;

Fkl .lmplementsRel:=self;

Fkl .From Table:=self.FromEntity.lmplementsTable;

Fkl.ToTable:=RT;

Fk2.Create;

127

Fk2.Equ:=false;

Fk2.lmplementsRel:=self;

Fk2 .From Table:=self.FromEntity.lmplementsTable;

Fk2. ToTable:=Rt;

self.FromEntity.lmplementsTable.childAttribute--+

reject(Keystate=false)--+

iterate(PKI

Re.Create;

Re.Keystate:=true;

Re.N ullable:=false;

Re.N ame:=PK.name;

Re.ParentTable:=Rt;

Re.lmplementedbyDep:=Pkl;

Re.lmplByFk:=Fkl) ;

self. ToEnti ty.Im p lementsTa ble. childA t tri bu te-+

reject(Keystate=false)--+

iterate(PKI

Re.Create;

Re.Keystate:=true;

Re.N ullable:=false;

Re.N ame:=PK .name;

Re.ParentTable:=Rt;

Re.lmplementedbyDep:=Pk2;

Re.ImplByFk:=Fk2)

23. Is-a disjoint by FK

Repository v. 2

Context Class ERDependency

Event Insert

Declaration RelAttribute Re, ERRelationship ER, PrimaryKeyDep Pk, For­

eignKey Fk, AttrConstraint ACI

Condition Type="D"

Action ACl.Create;

128

AC l. Type=" exculsion";

self.DefByST ---t

iterate(SubTypel

ER.Create;

ER. N ame=" string";

ER. Type=" U";

ER. Fromrole:=" string" ;

ER. Torole:=" string";

ER.FromCardMin: =" l ";

ER.FromCardMax:=" l ";

ER. ToCardMin:=" O";

ER. ToCardMax: =" l ";

ER.FromEntity:=SubType.FromEntity;

ER. ToEntity:=Subtype. ToEntity;

ER.DefinesDep:= self);

self.DefByRel---+

iterate(Rell

Fk.Create;

Pk.Create;

Re.Create;

Re.N ame:=Re.Fromentity.N ame;

union(ACl.ConstAttr(Re) ;

Rel.FromEntity.lmplementsTable.childAttribute---+

reject(Keystate=false)---+

iterate(PKll

Re.Create;

Re.Keystate:= true;

Re.N ullable:=false;

Re.N ame:=PKl.name;

Re.ParentTable:=self. ToEntity.lmplementsTable;

Re.lmplementedbyDep:=Pk;

Re.ImplByFk:=FK)

24. Is-a overlapped by FK

129

- - ------------------

Repository v. 2

Context Class ERDependency

Event Insert

Declaration RelAttribute Re, ERRelationship ER, PrimaryKeyDep Pk, For­

eignKey Fk

Condition Type=" D"

Action self.DefByST---+

iterate(SubTypel

ER.Create;

ER.Name="string";

ER. Type=" U";

ER.Fromrole:=" string";

ER. Torole:=" string'';

ER.FromCardMin:=" l ";

ER.FromCardMax:=" l ";

ER. ToCardMin:=" O";

ER. ToCardMax: =" l ";

ER.FromEntity:=SubType.FromEntity;

ER. ToEntity:=Subtype. ToEntity;

ER.DefinesDep:= self);

self.DefByRel---+

iterate(Relj

Fk.Create;

Pk.Create;

Rel .FromEntity.ImplementsTable.childAttribute---+

reject(Keystate=false)---+

iterate(PKll

Re.Create;

Re.Keystate:=true;

Re.N ullable:=false;

Re.N ame:=PKl .name;

Re.ParentTable: = elf. ToEntity.ImplementsTable;

Re.ImplementedbyDep:=Pk;

130

Re.ImplByFk:=FK)

25. InsAttrRel

Repository v. 2

Context Class AttributRelation

Event Insert

Declaration RelAttribute RA

Condition self. UseAttr. ToEntity.ImplementsTable. ChildAttribute-tforall(RA 1

RA.name <> self.Name)

Action RA.Create;

RA. ParentTable:=self. U seAttr. ToEntity.ImplementsTable;

RA.ImplERAFK := self;

RA.Name := self.Name;

RA.KeyState := false;

RA.Nullable := true;

26. InsERRelnillO

Repository v. 2

Context Class ERRelationship

Event Insert

Declaration ForeignKey FK

Condition FromCardMin=" O" and ToCardMin=" l " and FromCardMax="N"

and ToCardMax="l" and Type=" N" and Usedln-tnotempty

Action FK.Create-

FK.Equ:=false;

FK.ImplementsRel:=self;

FK.FromTable:=self.FromEntity.ImplementsTable;

FK. ToTable: =self. ToEnti ty.Im plementsTable;

self. U sedln-t iterate(ARI

AR.N ullable:=false;

FK. Composed := FK. Composed-tunion(AR.ImplementAttr. ComposedBy(FK))

131

27. InsERRelniülON

Repository v. 2

Context Class ERRelationship

Event Insert

Declaration ForeignKey FK

Condition FromCardMin="O" and ToCardMin="O" and FromCardMax=" N"

and ToCardMax=" l " and Type=" N" and Usedin-notempty

Action FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self;

FK.FromTable:=self.FromEntity.ImplementsTable;

FK. ToTable: =self. ToEntity.Im plementsTable;

self.Usedin- iterate(ARI

FK.Composed := FK.Composed- union(AR.ImplementAttr.ComposedBy(FK)))

28. InsERRelillON

Repository v. 2

Context Class ERRelationship

Event Insert

Declaration ForeignKey FK, PrimaryKeyDep PK

Condition FromCardMin="O" and ToCardMin="l" and FromCardMax="N"

and ToCardMax="l" and Type="!" and Usedin-notempty

Action FK.Create;

FK.Equ:=false;

FK.ImplementsRel:=self;

FK.FromTable:=self.FromEntity.ImplementsTable;

FK. ToTable:=self. ToEntity.ImplementsTable;

Pk.Create;

Pk.FromTable:=self.FromEntity.ImplementsTable;

PK. ToTable:=self. ToEntity.ImplementsTable;

self. U sedin- iterate(ARI

132

ARN ullable: =false;

FK.Composed := FK.Composed- union(AR.ImplementAttr .ComposedBy(FK));

PK.ImplementsAttr := PK.ImplementsAttr- union(AR.Implementedby Dep(PK)))

29. Temporal Is-a overlapped by FK

Repository v. 2

Context Class ERDependency

Event Insert

Declaration Re!Attribute Re, ERRelationship ER, PrimaryKeyDep Pk, For­

eignKey Fk

Condition Type="TO"

Action self.DefByST­

iterate(SubTypel

ER.Create;

ER. ame=" string";

ER. Type=" U";

ER.Fromrole:=" string";

ER. Torole:=" string";

ER.FromCardMin:=" l ";

ER.FromCardMax:=" l ";

ER. ToCardMin:=" O" ;

ER. ToCardMax:=" l " ;

ER.FromEntity:=SubType.FromEntity;

ER. ToEntity:=Subtype.ToEntity;

ER.DefinesDep:= self);

self.DefByRel-

iterate(Rell

Fk.Create;

Pk.Create;

Re.Create·

Re.Keystate:=true;

Re.N ullalble:=faise;

133

Re.N ame:=Date·;·

Re.ParentTable:=self.ToEntity.ImplementsTable;

Re.ImplementedbyDep:=Pk;

Rel.FromEntity.ImplementsTable.childAttribute-+

reject(Keystate=false)-+

iterate(PKI I

Re.Create;

Re.Keystate:=true;

Re.N ullable:=false;

Re.N ame:=PKI.name;

Re.ParentTable:=self.ToEntity.ImplementsTable;

Re.ImplementedbyDep:=Pk;

Re.ImplByFk:=FK)

134

