View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Repository of the University of Namur

Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

Data-centered applications conversion using program transformations

Cleve, Anthony

Award date:
2004

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://core.ac.uk/display/326313626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/studentthesis/datacentered-applications-conversion-using-program-transformations(612100c2-2126-4955-87d0-401edae543f0).html

Facultés Universitaires Notre-Dame de la Paix
Institut d’Informatique

Data-centered Applications Conversion

using Program Transformations

Anthony Cleve

Mémoire présenté en vue de I'obtention
du grade de Maitre en Informatique.

Année Académique 2003-2004

Preface

This Master’s thesis is not a personal work at all. It is the result of an active collab-
oration with two research teams from two distinct scientific communities: the LIBD
laboratory of the University of Namur and the SEN1 group of the CWI of Amster-
dam. The LIBD team is specialized in database engineering, database reengineering
and database reverse engineering. The SEN1 group does research in the area of soft-
ware reverse engineering, software reengineering and software renovation. I would like
to acknowledge all the people working in those two teams for providing me a pleasant
and fruitful research environment.

In particular, I would like to thank Professor Jean-Luc Hainaut, my promotor, and
Professor Arie van Deursen, my CWI supervisor, for their precious ideas, feedback and
support. [also express my gratitude to Jean Henrard for his patience and time to
answer my questions and to read early versions of this work.

Working at the CWI has been an excellent experience. I would like to thank all
the people of the SEN1 group for being so nice colleagues. Many thanks to Paul
Klint, Mark van den Brand, Ralf Lammel, Jurgen Vinju and Magiel Bruntink for the
interest they expressed throughout the realization of this project. I also thank Steven
Klusener and Niels Veerman, from the Free University of Amsterdam, for their precious
collaboration.

Finally, none of this have been possible without the support of my family and
friends. Special thanks to Julie for her patience and support. I am particularly grateful
to my mother, Marc, Michael and Mathilde for being a so nice family. However, I could
not complete this preface without thinking of my father, Antoine, to whom I dedicate
this thesis. T am sure he would be proud of me.

Resume

L’un des défis le plus importants aujourd’hui est celui de la reingénierie des systémes
d’information vers des plateformes techniquement avancées. La réingénierie des données
consiste a dériver une base de données moderne & partir d’'une base de données ancienne
et & adapter les composants logiciels en conséquence. On dispose actuellement d’une
maitrise satisfaisante en ce qui concerne la conversion des données d’'un SGBD vers
un autre. Mais la transposition des programmes reste un probléme relativement peu
étudié. Ce mémoire s’attache & explorer des solutions & ce probléme, dans le cadre
particulier de la conversion de fichiers COBOL vers une base de données relationnelle.
Il présente deux stratégies de conversion de programmes et propose, pour chacune
d’elles, des outils de transformation automatique.

Mots clés: réingénierie des données, transformation de programme, COBOL.

Abstract

One of the most important challenges in software renovation is DBMS substitution.
Data reengineering consists of deriving a new database from a legacy database and
adapting the software components accordingly. This database migration process com-
prises three main steps, namely schema conversion, data conversion and program con-
version. While converting the legacy schema into the new DMS and migrating the data
instances according to the new schema have been studied for long, technical aspects
to data-centered program conversion has been neglected by the scientific community.
This Master’s thesis addresses this problem in the particular context of the conversion
of COBOL files into a relational database. It specifies two different program conversion
strategies and explores their automation, by using Program Transformation tools.

Keywords: data reengineering, program transformation, COBOL.

Contents

Contents v
List of Figures ix
List of Tables xi
1 Introduction 1
1.1 Problem Statement 1
1.2 Data Reengineering Strategies 3
1.2.1 Database dimension (D) 3

1.2.2 Program Dimension (P) 4

1.2.3 The <D2,P1> strategy 4

1.24 The <D1,P2> strategy 6

1.3 CASE Support for Database Conversion 7
1.3.1 DB-MAIN CASE Tool, 7

1.3.2 Database Conversion Support 8

1.4 Master’s thesis purpose Lo 9
1.5 Overview L 10

2 P1 and P2 Conversions with COBOL 11
2.1 Cobol File Management 11
2.1.1 The Cobol File 11

2.1.2 The Cobol DMS statements 13

2.2 The P1 conversion in the <D2,P1> Strategy, 18
2.2.1 Environment Division 18

2.22 DataDivision 19

2.2.3 Procedure Division 21

2.3 The P2 conversion in the <D1,P2> Strategy 21
2.3.1 Procedure Division 22

2.4 Transformation rules 25

3 A Programs Transformation Tool: the ASF+SDF Meta-Environment 27

3.1
3.2

Overview L 27
ASF+SDF Concepts o ..o 28

vi CONTENTS
3.2.1 Moduleso 28
3.2.2 SDF comment convention 29
3.23 TImports 29
3.24 Lexical syntax Lo 29
3.2.5 Context-free syntax L Lo o 30
3.2.6 Conditional Equations 30
3.2.7 Lexical Constructor Function 31
3.2.8 Term Rewriting oo 31
3.2.9 Traversal Functions oo 32

3.3 ASF+4SDF Tools 33
3.3.1 Parse Table Generation 33
3.3.2 Parsing 33
3.3.3 Obtaining equations Lo 34
3.3.4 Term Rewriting oo Lo 34
3.3.50 Term Unparsing 34

3.4 ASF+4SDF Library 34

4 Cobol Program Transformations 35

4.1 IBM-VSII Cobol Grammar 35

4.2 The Grammar Deployment Kit 36

4.3 Pre-processing 37

4.4 Pretty-printing 39

4.5 General Transformation Approach 40

5 Wrapper-based Implementation (P1) 43

5.1 Useful structures and functions 43

5.2 OVerview 44
5.2.1 Accumulators L 46
5.2.2 Transformers L 47

5.3 Selected Equations 48
5.3.1 PI1 transformation 48
5.3.2 Accumulators 49
5.3.3 Transformers 52

6 Statement Rewriting Implementation (P2) 57

6.1 D1 conversion strategyo 57

6.2 Additional variables 58

6.3 P2 generated paragraphso Lo 29
6.3.1 Cursor declarations paragraph 60
6.3.2 Last cursor closing paragraphs 61
6.3.3 OPEN paragraphs 62
6.3.4 START paragraphs 63
6.3.5 READ NEXT paragraphs 63

6.3.6 READ KEY IS paragraphs 64

CONTENTS vii
6.3.7 WRITE paragraphs 64

6.3.8 REWRITE paragraphs 67

6.3.9 DELETE paragraphs 67

6.4 Legacy code transformations Lo oL 67
6.5 Optimization 68
6.6 P2 conversion equation Lo 69
6.7 P11 vs P2 specification o 70

7 Case study 71
7.1 A Small Cobol Application 71
7.2 Wrapper Strategy 71
7.2.1 D2 Database Conversion 71

7.2.2 P1 Program Transformation 75

7.3 Statement Rewriting Strategy L. 76
7.3.1 D1 Database Conversion, 76

7.3.2 P2 Program Transformation, 78

7.4 Statistics oL 79

8 Evaluation and Recommendations 81
8.1 Approach 81
8.2 Suitability of ASF+SDFo 82
8.2.1 Merits 82

8.2.2 Limitations 84

8.3 Related Worko 84
8.4 Recommendations oL Lo L 87
8.4.1 Generic Conversion Strategy 88

842 Tools. 88

8.4.3 Wrapper-based architecture 0oL 89

9 Conclusions 91
9.1 Contributions 91
9.2 Future directions oL 92
Acronyms 93
Bibliography 95
A Abstract Transformation rules 99
B User Guide 105
C Wrapper-based Conversion of the Case Study 109
D Statement Rewriting Conversion of the Case Study 115

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

5.1
0.2
9.3
5.4
5.5
5.6
5.7
2.8
2.9

The six reference system migration strategies 4
The Conceptual database conversion (D2) 5
The Wrapper strategy (P1) 6
The Physical database conversion (D1) 6
The Statement Rewriting strateqgy (P2) 7
Ezample of DB-MAIN physical schema 9
Example of a SELECT clause 12
Example of an ¥D paragraph 12
The READ NEXT reference key 16
Example of ENVIRONMENT diwision o v v v v v v v o v o it 19
Example of DATA division transformation 20
D1 translation of a COBOL file into a SQL table 22
Transformation of a START/READ NEXT sequence 24
Ezample of an ASF+SDF module 28
Example of a module that imports another module 29
The SDF comment e 30
The DELETE FST script i e e 37
Comments Pre-processing phase 38
Inserted comments for pretty-printing L. 39
Before pretty-printing 41
After pretty-printing e 41
COBOL Transformation process« o v v v . 42
Module imports grapho 45
Example of a FILE section o i 50
Matching of the record-name-table equation 50
Example of a FILE-CONTROL section o oo oo v 51
Matching of the record-key-table equation 51
Matching of the datalist equation 52
Equation 1 of file-to-working 53
Equation 2 of file-to-working 53

Equation 8 of file-to-working 53

LIST OF FIGURES

5.10
0.11

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3

B.1
B.2

One equation of access-to-call 54
Effect of access-to-call 56
Definition of the file STUDENT o o7
Example of a DI conversion 58
A closing last cursor P2 paragraph 62
OPEN paragraph for the file STUDENT 63
OPEN QUTPUT paragraph for the file STUDENT 63
START key usages V.S SQL cursors 63
START paragraph for the file STUDENT 64
READ NEXT paragraph for the file STUDENT 65
READ KEY IS paragraph for the file STUDENT 66
WRITE paragraph for the file STUDENT 66
REWRITE paragraph for the file STUDENT 67
DELETE paragraph for the file STUDENT 67
Comparison of P1 and P2 conversions 68
P2 conversion equation oo 69
Definition of three COBOL files 72
Raw physical schema eztracted from the COBOL program 72
Complete logical schema of the database 74
Normalized conceptual schema of the database 74
Physical schema of the SQL database 75
DDL code of the SQL database (D2) 76
D1 conversion of the case study 7
DDL code of the SQL database (D1) 7
P2 conversion parameters oo 78
Overview of JJTraveler’s library 85
An example TXL program 87
Wrapper-based architecture for data reengineering 90
Example of D1 conversion 0 108

Example of dI-mapping 108

List of Tables

6.1
6.2

7.1
7.2

ASF+SDF specifications statistics 70
ASF+SDF specifications performance 70
Main abstraction rules for COBOL file structures 73

Statistics of the conversion of order.cob, 79

Chapter 1

Introduction

1.1 Problem Statement

Nowadays, software information systems play a crucial role in many organizations.
Often these systems have a very long life. While hardware can be replaced, soft-
ware systems and the data they process live on for many decades. This can lead to
maintenance problems. Software maintenance consists of keeping the software systems
up-to-date and responsive to user needs and changing environments. Maintenance of
software amounts to 60 to 85% of total software costs in industry [Wie95].

Legacy System When old software systems become inflexible and difficult to main-
tain, they are called legacy systems. Brodie and Stonebraker [BS95| define a legacy
system as follows:

A legacy system is any system that significantly resists modifications and
changes. Typically, a legacy system is big, with millions of lines of code,
and more than 10 years old.

On the one hand, the legacy systems are the lifeblood of the companies. They contain
the business knowledge and process mission-critical enterprise data. On the other hand,
the legacy systems pose important economical problems to their host organizations
[WLB'97]. Among them, let us mention:

e The maintenance of the software components is generally highly costly and time
consuming due to the lack of documentation. Often the legacy applications are
older than the maintenance programmers working one those applications.

e The legacy systems can hardly evolve to provide new functionalities required by
the organization.

e They usually run on obsolete hardware which is expensive to maintain and reduces
productivity due to its low speed.

2 Introduction

e The legacy systems often are isolated in that they do not easily interface with
other applications [HHTHO02|. Particularly, they do not integrate well with other
legacy systems or new systems.

e The legacy systems are typically written in old programming languages that the
young programmers do not learn anymore, e.g., COBOL.

Most of the legacy systems are written in COBOL. COBOL, the Common Business
Oriented Language, is a third-generation language created in 1950s. Today, there is an
estimated of 200 billion lines of COBOL code, representing more than 60 percent of
the world’s business active software [Ulr02, SPL03|.

Many companies have to deal with their existing legacy systems. Most of the legacy
systems work. But they were never designed for today’s business environments. We
identify two problematic situations. Firstly, the platforms and technologies around
which the legacy system has been built might become so obsolete that they are not
supported anymore. Keeping their system running around them can be highly risky.
Secondly, the organization might require the legacy system to provide new function-
alities, but the system significantly resists to these changes. In both situations, the
existing data and functionalities of the system do satisfy the business of the company
and are to be preserved.

System Migration Several solutions exist to face the lack of modifiability of legacy
systems. One of them, maybe the most popular, is the System Migration. Migrating
a system consists of replacing one or several of the implementation technologies. Typ-
ically, the migration moves the applications and the database to a new platform and
new technologies, thereby preserving the data and the functionalities of the system.

Two different migration strategies can be chosen. Firstly, the legacy system can be
rewritten from scratch. This strategy is often undesirable. It implies that the main-
tenance is duplicated while building the system, and it is also highly risky. Secondly,
the system can be migrated by small incremental steps. Businesses often choose this
second strategy, seeking to maximize their existing investment and preserve valuable
business knowledge.

The Database First migration method is one of the incremental migration strategies.
It involves the initial migration of the legacy data to a modern Data Management
System (DMS) and then incrementally migrating the legacy applications. Migrating
the data components first can be much more efficient than trying to deal with the
whole application. This incremental approach is also less risky since the permanent
data structures are generally the most stable part of the application.

Automatic Program Transformation In this thesis, we will focus on the second
step of a Database First migration method: the program conversion. Once the legacy
database has been migrated, the legacy programs are to be altered in such a way that
they access the new database instead of the legacy data. More specifically, the access
statements occurring in the programs must be changed accordingly.

1.2 Data Reengineering Strategies 3

The transformation process of the legacy programs depends on the way the database
has been previously converted. Furthermore, this process can (and should) be auto-
mated. Indeed, manually transforming source code could be very expensive and dan-
gerous, especially for applications with millions of lines of code.

Program transformation is the act of changing one program into another [PTW].
Automatic program transformation can be defined as a set of transformation rules (or
rewriting rules) that are applied to the source code.

It is essential that people trust the automatic program transformation. This leads
to two main requirements. Firstly, the program transformation must preserve the
semantics of the program. We say that the transformed program must be equivalent
to the initial program. Secondly, the transformation must be done in a traceable way.
For instance, the portions of the source code that have been rewritten must be easily
identifiable and completely documented.

1.2 Data Reengineering Strategies

Data Reengineering can be defined as the process of deriving a new database from a
legacy database and adapting the software components accordingly. Typically, data
reengineering comprises three main steps:

1. Schema conversion: the legacy data schema (or structure) is translated into an
equivalent schema expressed in the new technology.

2. Data conversion: the data instances are migrated from the legacy database to
the new one. This second step depends on the schema conversion, since the data
are to be converted according to the schema transformations.

3. Program conversion: the legacy programs are modified so that they access the
new database instead of the legacy one. The functionalities, the programming
language and the user interface of the programs are kept unchanged. The program
transformation step can be a complex process that depends on the two previous
steps.

Henrard et. al. [HHTHO02| identify six different data reengineering strategies to mi-
grate data-intensive applications from a legacy DMS to a modern DMS. They consider
2 dimensions of the migration: the database dimension (D) and the program dimension

(P).

1.2.1 Database dimension (D)

In order to convert the database, two extreme strategies can be chosen. The first one,
the Physical Conversion (or D1), consists of translating each construct of the source
database into the closest constructs of the target DMS. In the Physical conversion,
the semantics of the data is ignored. This conversion strategy is cheap, but it leads
to a poor quality database. The second strategy, called Conceptual Conversion (or

4 Introduction

A
conceptual <D2,P1> <D2,P2> <D2,P3>
physical <D1,P1> <D1,P2> <D1P3>
wrappet statements logic >

Figure 1.1: The siz reference system migration strategies

D2), comprises two main steps. First, it recovers the precise semantics description (i.e.,
the conceptual schema) of the legacy database, through a database reverse engineering
(DBRE) phase [Hen03|. Then, it develops the target database from that conceptual
schema, by following a standard database methodology. In this way, a good quality and
documented database can be obtained. Since the DBRE is often a complex process,
the Conceptual conversion can be much more expensive than the Physical conversion.

1.2.2 Program Dimension (P)

Once the database has been converted, the legacy programs are to be altered accord-
ingly. The program conversion consists of transforming the legacy application programs
so that they can access the migrated database instead of the legacy database. Three ref-
erence strategies can be followed. The first strategy (Wrapper or P1) relies on wrapper
technology to map the access primitives onto the new database. The legacy application
programs may now invoke the wrapper instead of the legacy DMS in order to access
the migrated data. In the second strategy (Statement Rewriting or P2), the access
statements are rewritten in order to make them process the new data through the new
DMS-DML!. These first two strategies do not change the program logic. The purpose
of the third strategy (Logic rewriting or P3) is to use the full power of the new DMS-
DML. This complex conversion process requires a deep understanding of the program
logic, since the latter will generally be changed.

The two dimensions define six information system migration strategies, as shown
in Figure 1.1. In this Master’s thesis, we will focus on two of them: the <D2P1>
strategy and the <D1,P2> strategy.

1.2.3 The <D2,P1> strategy

The Conceptual conversion (D2) Figure 1.2 depicts the methodology used to per-
form the Conceptual database conversion. The physical schema of the legacy database
(SPS) is extracted and transformed into a conceptual schema (CS), through a complex

DML standing for Data Management Language

1.2 Data Reengineering Strategies 5

Conceptualization| DB design

Sch. refinement

Coding

DDL analysis

Figure 1.2: The Conceptual database conversion (D2)

DBRE process. Then, the physical schema of the target database (TPS) is designed
from the CS, through standard database development techniques. The TPS is used
to generated the DDL of the target database. The DBRE methodology proposed in
[Hen03] consists of three main steps:

e DDL analysis: extracting the legacy physical schema (SPS) by parsing the DDL
code. The SPS includes all the data structures and constraints ezplicitly declared
in the DDL code.

e schema refinement: analyzing the SPS and the data management of the legacy
programs in order to discover implicit constructs and constraints to be added in
the schema.

e data structure conceptualization: interpreting the refined physical schema into
the conceptual schema (CS). Both schemas have the same semantics, but the CS
is independent from the data management system.

The Wrapper strategy (P1) The new database obtained through the Conceptual
conversion process is encapsulated by a data wrapper. A data wrapper is a data model
conversion component (i.e., a program) that is called by the application programs to
carry out operations on the database. Generally, a wrapper simulates the modelling
paradigm of a new database, providing a modern interface to a legacy database. In
the present context, the wrapper is actually an inverse wrapper. It converts all legacy
DMS requests from the legacy programs into new DMS requests. Conversely, it captures
results from the new DMS, converts them to the legacy format, and delivers them to
the calling programs.

Once the wrapper has been written, it has to be interfaced with the legacy appli-
cations. This can be done by replacing access statements with wrapper invocations.
In the case of COBOL files, each access statement (READ, WRITE, etc.) can be replaced
with a CALL statement invoking the wrapper. Figure 1.3 gives an example of such a
transformation applying to a COBOL sequential READ statement. The READ statement

6 Introduction

READ CUSTOMER NEXT CALL WR-CUSTOMER
AT END USING "read", CUS, WR-STATUS
DISPLAY "error" IF WR-STATUS-AT-END
NOT AT END DISPLAY "error"
DISPLAY CUS-CODE ELSE
DISPLAY CUS-DESCR DISPLAY CUS-CODE
DISPLAY CUS-HIST. DISPLAY CUS-DESCR

DISPLAY CUS-HIST.

a) before transformation b) after transformation

Figure 1.3: The Wrapper strategy (P1)

Sch. conversion

DDL analysis

Source DMS-DDL

Coding

arget DMS-DDL

Figure 1.4: The Physical database conversion (D1)

is replaced with a CALL to a wrapper (WR-CUSTOMER), followed by a test of the state of
that wrapper (WR-STATUS).

1.2.4 The <D1,P2> strategy

Physical conversion (D1) According to the Physical conversion strategy each ez-
plicit data structure of the legacy database is simply translated into the closest structure
in the target DMS. For instance, during the D1 conversion of COBOL files into a SQL
database, each record type becomes a table and each top-level field becomes a column.

Figure 1.4 shows the methodology used to perform the Physical database conversion
strategy. First, the physical schema of the source database (SPS) is extracted through
a DDL analysis process. Then, this schema is converted into its target DMS equivalent
TPS, through a straightforward one-to-one mapping. The TPS is finally coded into
the target DDL.

Statement Rewriting strategy (P2) As seen above, the data structure does not
change during the D1 database conversion, but it is just translated according to the
new DMS. The DMS statements of the legacy programs can easily be translated into
the new DML, such that they directly access the new database instead of the legacy
one (P2). For example, a COBOL sequential READ NEXT statement would become a
FETCH SQL query, as shown in Figure 1.5.

1.3 CASE Support for Database Conversion 7

READ CUSTOMER NEXT FETCH CURSOR-CUSTOMER
AT END INTO CUS-CODE, CUS-DESCR, CUS-HIST
DISPLAY "error" IF SQLCODE NOT = 0
NOT AT END DISPLAY "error"
DISPLAY CUS-CODE ELSE
DISPLAY CUS-DESCR DISPLAY CUS-CODE
DISPLAY CUS-HIST. DISPLAY CUS-DESCR

DISPLAY CUS-HIST.

a) before transformation b) after transformation
Figure 1.5: The Statement Rewriting strategy (P2)

1.3 CASE Support for Database Conversion

1.3.1 DB-MAIN CASE Tool

DB-MAIN is a data-oriented CASE environment [DBM]. Its objective is to support
most database engineering processes. It can help developers and analysts in the develop-
ment, re-engineering, migration and evolution of data-centered applications. DB-MAIN
is also a research, development and technology transfer project of the LIBD laboratory
of University of Namur. This project started in the early 90’s.

Functionalities DB-MAIN offers general functions and components that allow the
development of sophisticated processors supporting the data-centered application ren-
ovation. Among them:

e A generic model of schema representation based on the Generic Entity/Relationship
(GER) model to describe data structures in all abstraction levels and according
to all popular modelling paradigms.

e A graphical interface to view the repository and apply operations.

e A transformational toolbox rich enough to encompass most database engineering
and reverse engineering processes.

e A history processor to record, replay, save or inverse history.

Voyager 2 The Voyager 2 language (V2) is proposed to the user of DB-MAIN to
develop new functions which will be seamlessly incorporated in the tool. Voyager 2 is
a complete, 4th-generation, semi-procedural language which offers predicative access
to the repository of DB-MAIN, the analysis and the generation of external texts, the
definition of recursive functions and procedures, etcetera. For instance, a SQL generator
for relational compliant GER schema has been written in Voyager 2. Voyager 2 is also
used to support wrapper generation.

8 Introduction

1.3.2 Database Conversion Support

In the particular context of database conversion, DB-MAIN provides the developer with
a toolset for database reverse engineering, mappings definition and wrapper generation
[THO1].

Database Reverse Engineering support DB-MAIN offers functions and proces-
sors that are specific to database reverse engineering. Among them, let us mention:

e the data structures extractors, that identify and parse the data declaration parts
of the source code, and create corresponding abstractions of the data physical
structure (i.e., the physical schema). The data structures extractors support the
first phase of the DBRE process described above: the DDL analysis. Extractors
have been built for COBOL, CODASYL, IMS and RPG data structures. Fig-
ure 1.6 gives an example of a DB-MAIN physical schema, extracted from a small
COBOL program.

e the data dependency analyzer, that detects and displays the dependencies between
the objects of the program, i.e., variables, constants and records.

e the program slicer, that allows the analyst to reduce the search space when he
looks for definite information in large programs.

Considering program P, a point p in P (e.g. an instruction) and an
object V (a variable or a record), the backward program slice of P with
respect to the slicing criterion <p,V> is the set of all statements of P
that can contribute to the state of V at point p. [Hen03]

e a foreign key discovery assistant, which proposes some heuristics to find foreign
keys in legacy databases. The assistant consists of a set of processors helping the
analyst in the discovery of the implicit referential constraints (foreign keys).

The specific DBRE techniques, functions and processors are described in details in
[Hai02] and [Hen03].

Mapping Definition Support DB-MAIN can automatically generate and maintain
a history log of all the transformations that are successively applied to schemas when
the analyst carries out any engineering process, e.g., reverse engineering [THO1|. This
history is formalized in such a way that it can be analyzed and transformed. In a
history, each transformation is entirely specified by its signature, which specifies the
name of the transformation, the name of the objects concerned in the source schema
and the name of the new objects in the target schema [HHTHO02].

Particularly, the formalized history log can be analyzed in order to derive forward
and as well as backward mappings between the source physical schema (SPS) and the
target physical schema (TPS).

1.4 Master’s thesis purpose 9

ORD
ORD-CODE
ORD-DATE
ORD-CUSTOMER
ORD-DETAIL
id: ORD-CODE

acc
acc: ORD-CUSTOMER
acc: ORD-DATE

CUS STK
CUS-CODE STK-CODE
CUS-DESCR STK-NAME
CUS-HIST STK-LEVEL
id: CUS-CODE| | id: STK-CODE

acc acc

Figure 1.6: Fzample of DB-MAIN physical schema
In this schema, a box represents a physical entity type (record type or table).

The first compartment specifies its names, the second one gives its components
(fields or attributes) and the third one specifies the keys and other constraints:
id stands for primary identifier/key; acc stands for access key or index ; ref
stands for foreign key. A cylinder represents a data collection (e.g., a file).

Wrapper Generation Support The wrapper generation in the DB-MAIN environ-
ment is performed in two steps, namely history analysis (common to all generators)
and wrapper encoding (specific to a DMS family). The history analyzer parses the
schema transformation history and enriches the source/target physical schema with
target /source physical correspondences. At the end of this phase, both source and tar-
get physical schemas include, for each construct, the rule according which it has been
mapped into the other physical schema constructs. In this way, each schema holds all
the information required by the wrapper encoder. From the target physical schema
(TPS) and the source physical schema (SPS) obtained so far, the wrapper encoder pro-
duces the procedural code of the specific wrappers. DB-MAIN wrapper encoders for
COBOL files and relational data structures are available. They have been developed
in Voyager 2.

1.4 Master’s thesis purpose

We shown in Section 1.3 that sophisticated tools already exist to support the conversion
of a legacy database (D). This Master’s thesis contributes to the automation of the
second step of the system migration: the legacy programs conversion (P). In particular,
we will try to show that both the Wrapper and the Statement Rewriting strategies can
be fully automated. For each of these two program conversion strategies, we will propose
a prototype in the context of the conversion of COBOL files into a SQL database.

10 Introduction

1.5 Overview

Chapter 2 presents the COBOL file management system and defines both the program
conversion strategies in the particular case of the conversion of COBOL files into a
SQL database. In Chapter 3, we present the ASF+SDF Meta-Environment, that we
used to automate the COBOL program transformations. Chapter 4 proposes a general
methodology for COBOL program transformations, from pre-processing tasks to the
pretty-printing of the resulting program. In Chapters 5 and 6 we describe our approach
to implement both the program conversion strategies defined in Chapter 2. Both im-
plementations use the ASF+SDF Environment. In Chapter 7, we present a case study
by applying our results to a small COBOL application. In Chapter 8 we evaluate our
results, our methodology and the tools we used. Finally, Chapter 9 concludes this thesis
and presents the future perspectives.

Chapter 2

P1 and P2 Conversions with
COBOL

In this chapter, we specify both the Wrapper (P1) and the Statement Rewriting (P2)
program conversion strategies in the case of the conversion of COBOL applications.
We assume that (some of) the COBOL files used by the COBOL programs have been
migrated to a SQL database. We explain how the COBOL programs can be transformed
accordingly, so that they access the new SQL database instead of the migrated files.

This chapter is organized as follows. Section 2.1 introduces the COBOL file system
and defines the COBOL data access statements. In Section 2.2, we specify the P1
COBOL conversion strategy, by assuming that a <D2,P1> migration strategy has
been chosen. Section 2.3 specifies the P2 COBOL conversion strategy, by assuming
that a <D1,P2> migration strategy has been chosen.

2.1 Cobol File Management

2.1.1 The Cobol File

File A COBOL file is an organized collection of related data [Joh86]. A COBOL
program can read and write files. Each file is defined in two distinct parts of the
program source [Hen03]:

e The FILE-CONTROL paragraphs of the INPUT-0UTPUT section of the ENVIRONMENT
division declare the files used, their organization, their access mode, their access
keys and their identifiers. Figure 2.1 shows an example of such a paragraph, also
called "SELECT clause". The indexed file ORDERS is declared.

e The FD paragraphs of the FILE section of the DATA division declare the record
types with their fields decomposition and the type and the length of the fields.
Figure 2.2 shows an example of an FD paragraph. The file ORDERS is made up
records that are decomposed in four fields. The PIC clause gives the type and the

12 P1 and P2 Conversions with COBOL

SELECT ORDERS ASSIGN TO "c:\ORDERS.DAT"

ORGANIZATION IS INDEXED

ACCESS MODE IS DYNAMIC

RECORD KEY IS ORD-CODE

ALTERNATE RECORD KEY IS ORD-CUSTOMER
WITH DUPLICATES

ALTERNATE RECORD KEY IS ORD-DATE
WITH DUPLICATES.

Figure 2.1: Ezample of a SELECT clause

FD ORDERS.
01 ORD.
02 ORD-CODE PIC 9(10).
02 ORD-DATE PIC X(8).
02 ORD-CUSTOMER PIC X(12).
02 ORD-DETAIL PIC X(200).

Figure 2.2: Exzample of an FD paragraph

length of the fields. For instance, PIC 9(10) means numeric field of length 10 ;
PIC X(8) means alphanumeric field of length 8.

Record type A COBOL file is made up of records. A record is a collection of related
data items treated as a unit. The record type of a file is the set of indivisible data,
read or written during the access to the file. The data items that make up a record
are called fields. In the case of the file ORDERS in Figure 2.2, the record type is ORD.
Actually, the record type of a COBOL file is the data item declared at the level 01.

Organization A COBOL file can be organized with three different ways [Bro98]:

- SEQUENTIAL: The records are sequenced and are stored and accessed in consecutive
order according to this sequence.

- RELATIVE: Each record is identified with its order number in the file.

- INDEXED: The records may be accessed by the value of a key.

Access Mode The ACCESS MODE of a COBOL file is one of the following:
- SEQUENTIAL: It is the default. The records are read or written sequentially.
- RANDOM: It requires to supply a key to read or write a record.

- DYNAMIC: It allows the programmer to read the file with both SEQUENTIAL and
RANDOM accesses. Writing is always RANDOM.

2.1 Cobol File Management 13

Access keys For each SEQUENTIAL or INDEXED file, the programmer declares a RECORD
KEY, that is one of the fields identifying each record. For instance, the RECORD KEY of
the file ORDERS, declared in Figure 2.1, is the field ORD-CODE.

For each RELATIVE file having a RANDOM or a DYNAMIC access mode, the programmer
declares a RELATIVE KEY. The RELATIVE KEY is a data item apart from the record.
Given the current record, the value of its number order in the file is stored in the
RELATIVE KEY [Cla81].

The primary key of a file, also called identifier, is the data item used to identify
each record in the file. In this thesis, the primary key of a COBOL file means:

e cither its RECORD KEY, for a sequential or an indexed file
e cither its RELATIVE KEY, for a relative file.

Other data items used as keys are called ALTERNATE RECORD KEYs. These keys
may provide alternate paths for retrieval of records and are not required to be unique.
An ALTERNATE RECORD KEY clause can indeed be used WITH DUPLICATES, as shown in
Figure 2.1.

2.1.2 The Cobol DMS statements

As seen above, for both P1 and P2 conversions, the DMS statements have to be rewrit-
ten. The main COBOL file access statements are the following:

e OPEN

e CLOSE

e START

e READ

e WRITE

e REWRITE
e DELETE

We will now define the syntax and the effect of these DMS statements more precisely.

OPEN statement

Syntax OPEN open-option file-name

14 P1 and P2 Conversions with COBOL

Effect The option open-option affects the opening of file-name as follows:

INPUT: opens the file and positions it to its start point for reading.

OUTPUT: creates the file (if necessary) and positions it to its start point for writing.
I-0: opens the file for both reading and writing.

EXTEND: creates the file (if necessary) and positions it just past the last record

in the file for writing.

Note that by opening a file, the file buffer is made available for the program. But it
does not mean that this buffer is already initialized. Indeed, the OPEN statement does
not perform any initial reading.

CLOSE statement
Syntax CLOSE file-name

Effect It simply closes the file file-name. Closing files makes them ready for processing
by another application.

START statement

Syntax

START file-name [KEY IS relational-operator access-keyl]
INVALID KEY imperative-statements-1
[NOT INVALID KEY imperative-statements-2]
END-START

with relational-operator € {>,>= =}

Effect The START statement positions to a specific record in a relative or indexed file,
allowing the programmer to begin reading sequentially from that record. If the KEY
phrase is omitted, COBOL assumes the primary key of the file is used. The INVALID
KEY phrase provides statements to execute if a record with the specified key value
cannot be found. The optional NOT INVALID KEY phrase executes statements if such
a record is found. The INVALID/NOT INVALID clauses can also be used for the READ,
WRITE, REWRITE and DELETE statements, in the case of indexed or relative files.

READ statement

There are two kinds of read statement in COBOL, depending on the access mode of
the file to read. Moreover, there are two ways of reading a record. First, it can be read
INTO an identifier. Second, the INTO phrase can be omitted and the record is processed
directly in the record area; that is in the buffer.

A) Sequential access mode

2.1 Cobol File Management 15

Syntax

READ file-name NEXT [INTO identifier]

AT END imperative-statements-1

[NOT AT END imperative-statements-2]
END-READ

Effect In the SEQUENTIAL access mode, the records are read in the ascending order
based on their reference key (See below). The AT END phrase provides statements to
execute when the end of file is encountered. An end of file occurs when an attempt is
made to read a record after the last record has been read. The optional NOT AT END
phrase executes statements if no end of file is encountered, thus, if a record is read.

Reference Key By default, the reference key is the primary key of the file. The
reference key of an indexed file can be changed by the execution of a START or a random
READ statement. The specified access key becomes the reference key. Note that a simple
static analysis of the program may not allow to figure out which is the reference key of
a file at a given point of the program. For instance, the same READ NEXT statement can
be reached from two distinct START statements during the execution of the program.
Figure 2.3 gives such an example with the file ORDERS declared in Figure 2.1. The
reference key used by the sequential read located at line 20 can be either ORD-CODE
either ORD-DATE. It depends on the PERFORM statement from where the READ-ORD-NEXT
paragraph has been called (line 7 or line 16).

B) Random access mode

Syntax

READ file-name [INTO identifier] [KEY IS access-keyl]
INVALID KEY imperative-statements-1
[NOT INVALID KEY imperative-statements-2]
END-READ

Effect If the access mode is RANDOM, the programmer has to supply a key. If the KEY
phrase is omitted, COBOL assumes the primary key of the file is used. The INVALID
KEY phrase provides statements to execute if a record with the specified key cannot be
found. The optional NOT INVALID KEY phrase executes statements if such a record is
read.

WRITE statement

There are two ways of writing records. First, a record can be written FROM an identifier.
Second, the FROM phrase can be omitted and the record is moved directly from the
buffer.

16 P1 and P2 Conversions with COBOL

1 READ-ORD-CODE.

2 START ORDERS KEY IS > ORD-CODE
3 INVALID KEY

4 MOVE O TO END-FILE
5 NOT INVALID KEY

6 MOVE 1 TO END-FILE.
7 PERFORM READ-ORD-NEXT

8 UNTIL END-FILE = 0.

9

10 READ-ORD-DATE.

11 START ORDERS KEY IS > ORD-DATE
12 INVALID KEY

13 MOVE O TO END-FILE
14 NOT INVALID KEY

15 MOVE 1 TO END-FILE.
16 PERFORM READ-ORD-NEXT
17 UNTIL END-FILE = O.
18

19 READ-ORD-NEXT.

20 READ ORDERS NEXT

21 AT END

22 MOVE O TO END-FILE
23 NOT AT END

24

Figure 2.3: The READ NEXT reference key

A) Sequential access mode

Syntax WRITE record-name [FROM identifier]

Effect In the SEQUENTIAL access mode, records are written sequentially. The record-
name is the name of the level 01 entry, described in the FILE section of the DATA
division.

B) Random access mode

Syntax

WRITE record-name [FROM identifier]

INVALID KEY imperative-statements-1

[NOT INVALID KEY imperative-statements-2]
END-WRITE

Effect In the RANDOM access mode, INVALID KEY executes statements if a record al-
ready exists with the same record key value. The optional NOT INVALID KEY phrase
executes statements if the record is written.

2.1 Cobol File Management 17

REWRITE statement

A) Sequential access mode
Syntax REWRITE record-name [FROM identifier]

Effect The REWRITE statement locates a specified record in the file and replaces it
with the content current record value (or the content of identifier). For a SEQUENTIAL
access, a record must be read before it can be rewritten.

B) Random access mode

Syntax

REWRITE record-name [FROM identifier]

INVALID KEY imperative-statements-1

[NOT INVALID KEY imperative-statements-2]
END-WRITE

Effect When access is RANDOM or DYNAMIC, a value has to be moved to the record key
before rewriting the record. The INVALID KEY phrase executes statements if the file
does not contain any record with the same record key value. The optional NOT INVALID
KEY phrase executes statements if such a record is rewritten.

DELETE statement

The DELETE statement deletes records.
A) Sequential access mode
Syntax DELETE file-name [RECORD]

Effect When the file access is SEQUENTIAL, the record must be read successfully before
being deleted.

B) Random access mode

Syntax

DELETE file-name

INVALID KEY imperative-statements-1

[NOT INVALID KEY imperative-statements-2]
END-DELETE

18 P1 and P2 Conversions with COBOL

Effect For the RANDOM or DYNAMIC access modes, a value has first to be moved to the
record key, to indicate the record to delete. If the record key is invalid, the INVALID
KEY phrase executes the given statements.

2.2 The P1 conversion in the <D2,P1> Strategy

As seen above, the P1 program conversion strategy assumes that a wrapper encapsulates
the new database obtained through the database conversion step. The P1 conversion
applied to COBOL programs consists of replacing the COBOL DMS statements (access-
ing the files that have been migrated) with a wrapper invocation. Furthermore, the P1
conversion must reorganize other portions of the Cobol program, e.g., the declarations
of the migrated files.

A COBOL program contains 4 divisions:

e IDENTIFICATION DIVISION: containing comments identifying the program, its
author, and the date it was written

e ENVIRONMENT DIVISION: naming the source and object computer and describing
each file used by the program

e DATA DIVISION: describing all data items
e PROCEDURE DIVISION: containing the executable program statements

The P1 conversion transforms the last three divisions. We will now describe more
precisely what these divisions contain, and how they can be modified according to the
P1 strategy.

2.2.1 Environment Division

The ENVIRONMENT division consists of two optional sections: the CONFIGURATION section
and the INPUT-OUTPUT section. In the latter, we can find the file definitions. Each file
must be named in a separate SELECT clause. The SELECT clause associates the external
file name with the name used to reference it in the program. This association is made
in the ASSIGN clause. The SELECT clause may also provide information on:

e the organization of the file
e the access mode of the file
e the primary key of the file
e the ALTERNATE’s keys of the file

The Figure 2.4 shows an example of an ENVIRONMENT division.
Once the program has been transformed, it does not access the migrated files any-
more. Thus, their SELECT clauses can be removed from the ENVIRONMENT division.

2.2 The P1 conversion in the <D2,P1> Strategy 19

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CUSTOMER ASSIGN TO "c:\CUSTOMER.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS CUS-CODE.
SELECT ORDERS ASSIGN TO "c:\ORDERS.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS ORD-CODE
ALTERNATE RECORD KEY IS ORD-CUSTOMER
WITH DUPLICATES
ALTERNATE RECORD KEY IS ORD-DATE
WITH DUPLICATES.
SELECT STOCK ASSIGN TO "c:\STOCK.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS STK-CODE.

Figure 2.4: Example of ENVIRONMENT division

2.2.2 Data Division

The DATA division consists of the following sections:
e FILE SECTION: to specify each file and its records
e WORKING-STORAGE SECTION: to describe all data items and Working-Storage records

e LOCAL-STORAGE SECTION : to describe local storage used when the subprogram is
called

e LINKAGE SECTION: to describe parameters in a called subprogram

Two DATA division transformations are required. First, the record definitions of
the migrated files have to be moved from the FILE section to the WORKING-STORAGE
section. In this way, the old file buffers are declared as any other variable of the
program. Second, several new variables have to be declared in the WORKING-STORAGE
section. Figure 2.5 gives an example of a DATA division transformation. In this example,
we want to migrate the files CUSTOMER, ORDERS and STOCK. The three record definitions
(CUS, ORD and STK), previously located in the FILE section (lines [4-7], [10-14] and [17-
20] of Figure 2.5a), are moved to the WORKING-STORAGE section (lines [3-6], [8-12] and
[14-17] of Figure 2.5b). In this way, the three old file buffers are now considered as any
other variable of the program. The FD paragraphs of the files CUSTOMER, ORDERS and
STOCK, are removed from the FILE section, making this section empty. So the optional
FILE section can be removed from the DATA division.

20

P1 and P2 Conversions with COBOL

N e e e e e e
QO NDNDU R WNOHHFOOROIHUTUEWN —

[N)
N =

DO DD DN DD DN DN DD
OO0~ Ut~ W

DATA DIVISION.

FILE SECTION.

FD CUSTOMER.

01 CUS.
02 CUS-CODE PIC X(12).
02 CUS-DESCR PIC X(110).
02 CUS-HIST PIC X(1000).

FD ORDERS.
01 ORD.
02 ORD-CODE PIC 9(10).
02 ORD-DATE PIC X(8).
02 ORD-CUSTOMER PIC X(12).
02 ORD-DETAIL PIC X(200).

FD STOCK.

01 STK.
02 STK-CODE PIC 9(5).
02 STK-NAME PIC X(100).
02 STK-LEVEL PIC 9(5).

WORKING-STORAGE SECTION.
01 DESCRIPTION.
02 NAME PIC X(20).
02 ADDR PIC X(40).
02 COMPANY PIC X(30).
02 FUNCT PIC X(10).
02 REC-DATE PIC X(10).

a) before transformation

DATA DIVISION.
WORKING-STORAGE SECTION.
01 CUS.
02 CUS-CODE PIC X(12).
02 CUS-DESCR PIC X(110).
02 CUS-HIST PIC X(1000).

01 ORD.
02 ORD-CODE PIC 9(10).
02 ORD-DATE PIC X(8).
02 ORD-CUSTOMER PIC X(12).
02 ORD-DETAIL PIC X(200).

01 STK.
02 STK-CODE PIC 9(5).
02 STK-NAME PIC X(100).
02 STK-LEVEL PIC 9(5).

01 DESCRIPTION.
02 NAME PIC X(20).
02 ADDR PIC X(40).
02 COMPANY PIC X(30).
02 FUNCT PIC X(10).
02 REC-DATE PIC X(10).

b) after transformation

Figure 2.5: Exzample of DATA division transformation

2.3 The P2 conversion in the <D1,P2> Strategy 21

2.2.3 Procedure Division
Wrapper invocation

Remember that P1 has to replace each access statement with a call to a wrapper.
In COBOL, a wrapper (that is an external program) can be invoked using the CALL
statement. In this project, there is a wrapper for each record type, and thus for each
file used in the program. So the wrapper to call depends on the file to access. The
COBOL wrapper invocation has the following general form:

CALL wrapper-name USING operation
record-name
option
wrapper-status

such that:
- operation specifies the access operation to perform
- record-name is the record name of the COBOL file
- option specifies an optional parameter.
- wrapper-status indicates if the operation has been successfully performed.

The first, third and fourth arguments must be declared as new variables in the
WORKING-STORAGE section.

Wrapper specifications

The wrapper access the SQL database and simulates the DMS statement operation
used with the corresponding option. For instance, let us consider the following call:

CALL WR-CUSTOMER USING "read"
CUs
"KEY IS CUS-CODE"
WR-STATUS

The wrapper of the file CUSTOMER will preserve the semantics of the COBOL random
READ. It will move to the buffer (CUS) the first logical record having the same key value
as the current value of CUS-CODE. If a logical record with the specified key value cannot
be found, the INVALID KEY exception will be indicated into WR-STATUS.

2.3 The P2 conversion in the <D1,P2> Strategy

The P2 transformations of the ENVIRONMENT and DATA divisions are the same as in P1
strategy. They consist of reorganizing the files and data declarations in these divisions.

22 P1 and P2 Conversions with COBOL

FD ORDERS. create table ORD(

01 ORD. ORD_CODE numeric(10) not null,
02 ORD-CODE PIC 9(10). ORD_DATE char(8) not null,

02 ORD-DATE PIC X(8). ORD_CUSTOMER char(12) not null,
02 ORD-CUSTOMER PIC X(12). ORD_DETAIL char(200) not null,
02 ORD-DETAIL PIC X(200). primary key (ORD_CODE));

create index ORD_CUSTOMER
on ORD(ORD_CUSTOMER) ;

create index ORD_DATE
on ORD(ORD_DATE) ;

a) COBOL file declaration b) SQL table declaration

Figure 2.6: D1 translation of a COBOL file into a SQL table

2.3.1 Procedure Division

In the P2 conversion strategy, we rewrite each access statement of a legacy program,
according to the new Data Management System. In our project, the latter is SQL.
Basically, we have to replace the COBOL access statements described previously with
SQL statements. Each COBOL record type is now a SQL table, and that each top level
field of this record, is now a column of this table. Figure 2.6 shows an example of a
D1 translation. The COBOL file ORDERS, declared in Figures 2.4 and 2.5, becomes the
SQL table ORD. We can see that D1 does not change the data structure, and preserves
the access keys declaration. The primary key of the file ORDERS (ORD-CODE) is trans-
lated into a SQL column declared as primary key of the table ORD. The alternate keys
ORD-CUSTOMER and ORD-DATE are translated into two SQL indexes on the table ORD.
The SQL columns are required to be not null since the COBOL fields they translate
must be initialized in each record of the file.

SQL cursors We will now describe how we can transform the COBOL access state-
ments so that the program accesses the SQL tables instead of the migrated files. Actu-
ally, there is a difference between COBOL and SQL data access. In COBOL, the READ
returns a single record. In SQL, the SELECT clause returns a set of rows. This is
the reason why we have to use SQL cursors. A SQL cursor allows to select a set of
rows from a table, that can be fetched sequentially into COBOL variables. Here is an
example of a cursor declaration:

DECLARE GE_ORD_DATE CURSOR FOR
SELECT ORD_CODE, ORD_DATE, ORD_CUSTOMER, ORD_DETAIL
FROM ORD
WHERE ORD_DATE => :0RD-DATE
ORDER BY ORD_DATE

In this example, the file ORDERS (declared in Figures 2.4 and 2.5) has been converted
into the table ORD. Each column of this table is the translation of a field of the record
type ORD. The declared cursor selects the rows of the table ORD where the value of the
column ORD_DATE is greater or equal to the value of the field ORD-DATE.

2.3 The P2 conversion in the <D1,P2> Strategy 23

Before fetching a cursor, the latter has to be open. When opening a cursor, it
is evaluated in accordance with the current state of both the SQL database and the
COBOL variables. We can open the SQL cursor we declared above with the following
statement:

OPEN GE_ORD_DATE

Then we can fetch sequentially a row of this cursor, into the corresponding COBOL
variables:

FETCH GE_ORD_DATE
INTO :0RD-CODE, :0RD-DATE, : ORD-CUSTOMER, : ORD-DETAIL

Cursor-based loop The change of paradigm when moving COBOL files to relational
database induces problems such as the identification of the sequence scan. COBOL
allows the programmer to start a sequence based on an indexed key (START KEY IS
and READ KEY IS), then to go on in this sequence through READ NEXT statements. The
most obvious SQL translation is through a cursor-based loop. However, we shown in
Figure 2.3 that the READ NEXT statements can be scattered throughout the program,
so that the identification of initial START statement, specifying the reference key, is
complex. The technique illustrated in Figure 2.7 solves this problem. A cursor is
declared for each kind of access key usage (=, >, >=) in the program. For instance, the
table ORD gives six cursors, resulting of the combination of two access keys and three
keys usages. A START can be translated through the corresponding cursor opening.
The following READ NEXT is to be replaced with a FETCH of that cursor. The variable
LAST-CURSOR-0RD specifies the name of the currently open cursor on the table ORD. By
testing the value of this variable, we can figure out which cursor has to be fetched, with
respect to the current reference key.

Note that Figure 2.7 only gives an intuitive idea of the P2 transformation. For
instance, we omit here the simulation of the INVALID KEY and AT END exceptions. We
refer to Chapter 6, P2 Implementation, for more details.

Here are the other COBOL-SQL translation rules:

e A random READ KEY IS can be regarded as a READ NEXT that immediately follows
a START KEY IS EQUAL. So a random READ can be replaced with a cursor opening
and a FETCH of this cursor.

A COBOL WRITE can be simulated using a SQL INSERT

A COBOL REWRITE can be replaced with a SQL UPDATE.

A COBOL DELETE can be translated into a SQL DELETE.

The SQL translation of the COBOL OPEN consists of opening the cursor that
selects all the rows of the table in the ascending order based on the primary key.

There is no SQL correspondence for the COBOL CLOSE. In the <D1,P2> strategy,
the CLOSE statements can be removed or replaced with the CONTINUE statement.

24

P1 and P2 Conversions with COBOL

EXEC SQL
DECLARE CURSOR GE_ORD_DATE FOR
SELECT ORD_CODE,
ORD_DATE,
ORD_CUSTOMER,,
ORD_DETAIL
FROM ORD
WHERE ORD_DATE => :0RD-DATE
ORDER BY ORD_DATE

END-EXEC

START ORDERS => EXEC SQL
KEY IS => ORD-DATE OPEN GE_ORD_DATE

END-EXEC

MOVE "GE_ORD_DATE" TO LAST-CURSOR-ORD

READ ORDERS NEXT = IF LAST-CURSOR-ORD = "GE_ORD_DATE"
THEN
EXEC SQL
FETCH GE_ORD_DATE
INTO :0RD-CODE,
:0RD-DATE,
:ORD-CUSTOMER,,
:0RD-DETAIL
END-EXEC
ELSE IF LAST-CURSOR-ORD = "GE_ORD_CUSTOMER"
THEN
EXEC SQL
FETCH GE_ORD_CUSTOMER
INTO :0RD-CODE,

:0RD-DATE,
:ORD-CUSTOMER,
:0ORD-DETAIL
END-EXEC
ELSE IF...
END-IF

Figure 2.7: Transformation of a START/READ NEXT sequence

2.4 Transformation rules 25

Remarks

e For several reasons, that we will explain later, we decided to generate a separate
COBOL section containing all the new SQL code. Each paragraph of this addi-
tional section will translate into SQL a kind of COBOL DMS statement. In this
way, an access statement can be replaced with a PERFORM statement, executing
the corresponding paragraph. Instead of calling an external program (a P1 wrap-
per) we call an internal procedure (a P2 paragraph) to access the new database in
the new DML. For instance, we replace the statement "DELETE ORDERS" with the
statement "PERFORM P2-DELETE-ORDERS". The paragraph P2-DELETE-ORDERS is
a new generated paragraph containing the corresponding SQL DELETE.

e As shown in Figure 2.7, the SQL calls can be embedded in the COBOL source
code. This feature is provided by a lot of COBOL dialects. The standard syntax
of an embedded SQL piece of code is the following:

EXEC SQL
write here the SQL code
END-EXEC

2.4 Transformation rules

In appendix A, we give a summary of transformation rules, used to replace the COBOL
DMS statements according to both <D2/P1> and <D1,P2> strategies. Remember that

e In the <D2,P1> strategy, we locally replace the COBOL DMS statements with
a CALL statement to an inverse wrapper.

e In the <D1,P2> strategy, we locally replace the COBOL DMS statements with
a PERFORM statement executing a generated paragraph.

In both cases, these rules allow the program to access the SQL tables instead of
the migrated COBOL files. These rules are not exhaustive, we give one rule for each
kind of COBOL access statement (OPEN, CLOSE, START, sequential READ, random READ,
etc.). This is a high level representation of the transformations rules. For example, let
us consider a COBOL random READ statement.

Syntax

READ file-name KEY IS access-key
INVALID KEY statements-1
NOT INVALID KEY statements-2
END-READ

26 P1 and P2 Conversions with COBOL

<D2,P1>

CALL wrapper-name
USING “read ”
record-name
“KEY IS access-key”
wrapper-status
IF wrapper-status-invalid-key
THEN statements-1
ELSE statements-2
END-IF

<D1,P2>

PERFORM P2-READ-file-name-KEY-IS-access-key
IF p2-status-invalid-key

THEN statements-1

ELSE statements-2
END-TIF

In Chapter 6, we will describe precisely what the generated P2 paragraphs contain.

Chapter 3

A Programs Transformation Tool:
the ASF+SDF Meta-Environment

In this Chapter, we present the ASF+SDF Meta-Environment, that we used in order
to automate both P1 and P2 COBOL transformations. The ASF+SDF MetaEnviron-
ment is developed by the SEN1 research group of the CWI!. The SEN1 group performs
research in the area of software reverse engineering, software reengineering and soft-
ware renovation. In particular, one of the SENI main research topics is source code
transformation.

3.1 Overview

The ASF+SDF Meta-Environment is an interactive development environment for the
automatic generation of interactive systems for manipulating programs, specifications,
or other texts written in a formal language [4]. It is a complete system that can be
used for different purposes:

e To describe the syntax and semantics of programming languages

e To describe analysis and transformation of programs written in such programming
languages

ASF+SDF is a specification language for defining both the syntax and the seman-
tics of programming languages. It is the result of combining two formalisms: ASF
(Algebraic Specification Formalism) and SDF (Syntax Definition Formalism).

!The CWTI is the National Research Institute for Mathematics and Computer Science in the Nether-
lands.

28 A Programs Transformation Tool: the ASF-+SDF Meta-Environment

module migration
%% here starts the SDF syntax definition
exports
sorts Word

lexical syntax
[a-z]+ -> Word
[\ \t \nl -> LAYQUT

context-free syntax
cobol-to-sql(Word) -> Word

variables
"myword" -> Word

%% here starts the ASF equations definition
equations
[equl] cobol-to-sql(myword) = sql
when myword = cobol

[default-1] cobol-to-sql(myword) = myword
Figure 3.1: Ezample of an ASF+SDF module

3.2 ASF+SDF Concepts

3.2.1 Modules

An ASF+SDF specification consists of a collection of module declarations. Each module
may define syntax rules (SDF syntax) as well as semantics rules (ASF equations).
Conceptually, a module is a single logical unit. But, for technical reasons, the syntax
sections and the equations section are stored in physically separate files. For each
module M in a specification two files exist: "M .sdf’ containing the syntax sections of
M and "M .asf’ containing the equations section of M.

Example The Figure 3.1 shows a simple example of an ASF+SDF module. The
module migration exports one sort, Word. In the lexical syntaz, a Word is defined as a
non-empty sequence of alphabetic characters. A LAYOUT can be either a space (\), a
horizontal tabulation (\t) or a newline character (\n).

In the context-free syntaz, we define the function cobol-to-sql which takes a term
of sort Word as an argument and returns a term of sort Word as a result.

We define the variable myword, which is of sort Word. This variable will be used in
the equations section.

In the equation [equl], we learn that the function cobol-to-sql replaces a word
with "sql" if this word is "cobol". This equation is called a conditional equation.

3.2 ASF+SDF Concepts 29

module top-module
imports migration
exports
sorts Sentence

context-free syntax
Word+ "." -> Sentence

Figure 3.2: Ezample of a module that imports another module

The equation default-1 is a special equation. It will be applied only if no other
equation can successfully be applied. It expresses that in all other cases, words remain
unchanged.

We will now define precisely the different concepts of an ASF+SDF module. Be-
cause of the limited scope of this master’s thesis, we will only explain what is necessary
to understand the chapters that follow. See [vK03] for more details.

3.2.2 SDF comment convention

The comment convention within an SDF specification is that every character between
"%%" and the end of line is comment as well as every character between two "%" in-
cluding the newline character. Examples of comments are given in Figure 3.1.

3.2.3 Imports

The entities declared in a module may be visible or invisible to other modules. A
module can use another module from the specification by importing it. As a result, all
visible names of the imported module become available in the importing module. For
instance, the module migration in Figure 3.1 is imported by the module top-module
in Figure 3.2. It means that the entities defined in the exports section of the module
migration are available in the module top-module. In particular, the sort Word can
be used in the module top-module.

3.2.4 Lexical syntax

The lexical syntax describes the low level structure of text by means of lexical tokens.
A lexical token consists of a sort name and the actual text of the token. The sort name
is used to distinguish classes of tokens (e.g., identifiers, numbers, etc.).

The lexical syntax also defines which substrings of the text are layout symbols or
comments and are to be skipped during syntax analysis. The sort name LAYOQUT is
typically used for defining layout and comment conventions. The Figure 3.1 shows an
example of a LAYOUT definition. The module Layout in Figure 3.3 defines the SDF
comment convention.

30 A Programs Transformation Tool: the ASF-+SDF Meta-Environment

module Layout
%% In this module we define the
%% comment convention for SDF.

exports
lexical syntax
"%%" ~[\nl* [\n] -> LAYOUT
n%u ~[\n%]+ u%u _> LAYOQUT

Figure 3.3: The SDF comment

3.2.5 Context-free syntax

The context-free syntax describes the concrete and abstract syntactic structure of sen-
tences in a language. A context-free syntax contains a set of declarations for context-
free functions, each consisting of zero or more symbols followed by "->" and a result
symbol. The function cobol-to-sql in Figure 3.1 is an example of such a function.

3.2.6 Conditional Equations

In ASF+SDF, a conditional equation can be written in three syntactically different
ways, which are all semantically equivalent. Here is one of them:

[TagId] L = R when Cy, Co,..., Cy
where
- TaglId is a sequence of letters, digits, and/or minus signs.

L (left-hand side) and R (right-hand side) are of the same sort.

- C1,Cs,...,C, are conditions. Each condition consists of a left-hand side and a
right-hand side, and at most one of theses can introduce new variables.

L is not a single variable.

The variables that occur in R also occur in L or in one of the conditions.

The left-hand side and the right-hand side of the equation are terms in concrete syntax,
i.e., user defined syntax, augmented with sorted variables. The conditions can be
positive or negative. They are evaluated one after the other. Only if the evaluation
of a condition Cj is successful the rest of the conditions Cjy1,...,C), is evaluated. A
conditional equation is applied if:

1. the left-hand side matches and

2. all the conditions are successfully evaluated

3.2 ASF-+SDF Concepts 31

3.2.7 Lexical Constructor Function

For each sort L that appears as result sort in the lexical syntax a lexical constructor
function of the form 1 " (" CHAR+ ")" -> L is automatically added to the context-free
syntax of the specification. Here, 1 is the name of sort L written in lower-case letters.
In this way, you can get access to the characters of lexical tokens. For instance, let see
in Figure 3.1. The sort Word is defined in the lexical syntax of the module migration.
So the following lexical constructor function is automatically added to the context free
syntax:

word "(" CHAR+ ")" -> Word

In this way, we can get access to the characters of a Word. First, we define the variable
char+ as follows:

"char+"[0-9]* -> CHAR+

Thanks to this definition, we can use the variables char+1, char+2, char+3,... in the
equations of the same module. Here we will use the variable char+1.

[adds1] add-s(myword) = word(char+1 "s'")
when myword = word(char+1)

In the equation above, the function add-s adds the character "s" at the end of a Word.
By using the lexical function word in the condition, the variable char+1 contains the
sequence of the characters of the initial word myword. The resulting word, constructed
by the lexical constructor function, is simply obtained by adding the character "s" after
the variable char+1. For instance, if the initial word is "file", the variable char+1
will contain the following sequence of character: "f£" "i" "1" "e". Thus the word
constructed by word(char+1 "s"), is actually word ("£" "i" "1" "e" "g") 6 and will
be rewritten as the word "files".

3.2.8 Term Rewriting

Term rewriting is the exhaustive application of a set of rewrite rules to a term until no
rule can be applied anywhere in the term. This process is also called normalization.

In the ASF+SDF Meta-Environment, equations can be seen as (conditional) rewrite
rules. They are used to reduce some initial closed term? to a normal form? by repeatedly
applying rules from the specification.

For instance, the closed term "cobol-to-sql(cobol)" can be reduced to the normal
form "sql", by applying the rule defined in the equation [equl] in Figure 3.1.

A term is always reduced in the context of a certain module, say M. The rewrite
rules that may be used for the reduction of the term are the rules declared in M itself
and in the modules that are imported by M* [vK03].

Both interpretation and compilation of the rewrite rules are supported in the
ASF+SDF Meta-Environment. In our project, we used the interpretation. The reasons
are discussed in Chapter 4.

%i.e. a term not containing variables
3i.e. a term that is not reducible any further
“directly or indirectly

32 A Programs Transformation Tool: the ASF-+SDF Meta-Environment

3.2.9 Traversal Functions

Program analysis and program transformation usually take the syntax tree of a program
as starting point. The question is: how can the traversal of this tree be expressed ?

The kind of nodes that may appear in a program’s syntax tree are determined by
the grammar of its programming language. Generally, each rule in the grammar corre-
sponds to a node category in the syntax tree. Most of the programming languages are
described by grammars which can contain several hundred of grammar rules. For in-
stance, the COBOL grammar we used contains about 900 syntax productions. In these
conditions, a naive recursive traversal function should consider many node categories
and the size of its definition will grow accordingly.

This could become even worse since the traversal function usually do some real work
(extracting information, make some modifications) only for very few node categories.
For instance, in our project we mainly focus on the data access statements of the
COBOL program.

Traversal functions in ASF+SDF solve this problem. In addition, they allow passing
additional parameters to the transformation and returning additional results.

There are three kinds of traversal functions [vKVO03|: the Accumulators, the Trans-
formers and Accumulating transformers. We will now define each of them, and explain
why they can be useful in our project.

Accumulator

An accumulator function is a mapping that traverses its first argument, and keeps the
accumulated value in its second argument.
The general definition of an accumulator is the following:

f(S1, 82, ..., Sp) — Sa{traversal(accu)}

An accumulator function does not change the first argument, only its accumulate ar-
gument. The accumulated value is an information we want to extract from a tree (i.e.
the first argument).

In our COBOL transformations, we need to know the record name corresponding to
each file, and the primary key declared for each file as well. By using an accumulator,
we can retrieve this information.

Transformer

A transformer function is a transformation that traverses and transforms its first argu-
ment.
The general definition of a transformer is the following:

f(S1, 82, ..., Sn) = Si{traversal(trafo)}

This is a type-safe transformation, i.e., it always returns the same sort.
In our COBOL transformations, we have to replace each access statement with a
call to a wrapper. For this purpose, we need additional data:

3.3 ASF+SDF Tools 33

1. the table <file : record-type>.
2. the table <file : primary-key>.

These additional arguments can be used during the traversal of a COBOL program,
but they cannot be modified.

Accumulating Transformer

An accumulating transformer is an accumulator and a transformer: it accumulates
information in its second argument while traversing its first argument.
The general definition of an accumulating transformer is the following:

f(S1,S2,...,8,) — Si#Se{traversal(accu,trafo)}

The return value of an accumulating transformer is the tuple consisting of the traversed
(and transformed) first argument and the accumulated value.

3.3 ASF+SDF Tools

The ASF+SDF Meta-Environment provides components that can be used indepen-
dently of the interactive environment. We will mention some of them in this section,
focusing on ones we used in our project.

3.3.1 Parse Table Generation

The parse table generator takes an SDF syntax definition as input and generates a
parse table used for parsing a term. Using the command pt-dump, we can construct
the parse table corresponding to a top-level module, say M.

pt-dump -m M -o M.tbl

The resulting parse table M.tbl contains a representation of the SDF syntax of the
module M.

3.3.2 Parsing

Once the parse table for module M has been constructed, terms can be parsed by using
the command sglr.

sglr -p M.tbl -i term.txt -o term.tree

If the term term.txt has been successfully parsed, the resulting syntax tree of the term
term.tree is constructed. If the input term contains a syntax error, the output of sglr
is an error message.

The sglr parser is a "Scannerless Generalized LR parser"[vK03].

e Scannerless means that no scanner is used to tokenize the input stream. Lexical
analysis (tokenization) and context-free analysis (parsing) are uniformly handled
by a single tool.

34 A Programs Transformation Tool: the ASF-+SDF Meta-Environment

e (leneralized means that the parser finds all possible derivations for a certain input
string. This implies that the parsing process may be indeterminate, i.e., can have
several equally correct results. In other words, the sglr parser does not complain
about conflicts in the parse table. In this way arbitrary context-free grammars
can be parsed.

e An LR parser "reads its input from Left to right and produces a Rightmost
derivation"[Wik].

3.3.3 Obtaining equations

In order to apply the rewrite rules defined for the module M, we need the equations
table of the module M. Using the command eqgs-dump we can construct this equations
table.

eqs-dump -m M -o M.eqgs
The resulting equations table M.eqs contains a representation of the ASF equations of the

module M and of the modules directly or indirectly imported by M.

3.3.4 Term Rewriting

Given the syntax tree of the term term.tree and the equations table M.eqgs, we can reduce
the terms using the command asfe.

asfe -i term.tree -e M.eqs -o reduct.tree

3.3.5 Term Unparsing

Using the command unparsePT the resulting normalized term reduct.tree can be converted
to a textual representation.

unparsePT -i reduct.tree -o reduct.txt

3.4 ASF+SDF Library

The ASF+SDF Meta-Environment provides a library of ASF+SDF specifications. This library
contains examples, reusable specifications such as data-structures and also some grammars for
programming-languages.

Chapter 4

Cobol Program Transformations

Before transforming a COBOL program, we need to parse it. We saw previously that we
can use the ASF+SDF Meta-Environment to achieve this task. So we need an SDF syntax
definition of the COBOL grammar. Such a definition already exists: the IBM-VSII COBOL
Grammar, discussed in Section 4.1. In Section 4.2, we discuss a related tool, allowing grammar
adaptation and deployment : the Grammar Deployment Kit.

In our project, we had to apply some pre-processors to COBOL programs in order to make
them parsable with the IBM-VSII grammar. We discuss these pre-processors in Section 4.3.

Once the COBOL programs have been parsed and transformed, they have to be printed
correctly. This pretty-printing task, consisting of indenting correctly the output COBOL source
program, is discussed in Section 4.4.

At the end of this chapter (Section 4.5) we summarize our approach for COBOL Program
Transformations by presenting a general methodology.

4.1 IBM-VSII Cobol Grammar

The IBM-VSII COBOL grammar has been derived from IBM’s V.S COBOL II Reference Sum-
mary in a semi automatic, formal process [LVO1]. The authors of this grammar are Ralf
Lammel and Chris Verhoef, from the Free University of Amsterdam. The IBM-VSII grammar
was expressed using a variant of EBNF (Extended Backus Naur Form), the so-called LLL gram-
mar format, that is the formalism of the Grammar Deployment Kit. The process started with
the master’s thesis of an undergraduate student. It took him four months to specify about 1100
production rules. It seems to be the largest specification of COBOL85! even written [vSV97].
Then, almost all the context-free grammar rules of the IBM syntax were translated into SDF
rules. This translation was a very complex process, especially because the grammar has to
be disambiguated and better restructured. The resulting COBOL IBM-VSII SDF grammar
consists of 16 modules, 552 sorts and 906 productions. A large number of test programs were
parsed by the generated parser, which validated the correctness and the completeness of the
resulting context-free grammar.

The authors of the grammar emphasize that their approach "is not just a reduction of an
ezisting COBOL85 grammar but it uses it as a reference. If constructs that are mot present in
the standard are located in the code we add those to our grammar" [vSV9T7]. They also used

1c0BOL8S5 is the third version of COBOL, released in 1985.

36 Cobol Program Transformations

this approach to define SQL syntax, in order to allow embedded calls occurring in programs
written in COBOL dialects.

4.2 The Grammar Deployment Kit

«Grammar deployment is the process of turning a given grammar specification into a working
parser.y [Kor03] The Grammar Deployment Kit (GDK) is a free software that provides tool
support for grammar adaptation and parser generation [KLV02].

Note that we did not use the Grammar Deployment Kit during our project. The available
IBM-VSIT COBOL syntax was suitable to parse the programs we had to transform. We present
GDK as an inspiring idea for future developments.

The Grammar Deployment Kit provides four important components:

e LLL: an EBNF-like grammar format.

e LLLimport: a tool to import grammars from another format to the LLL format (SDF,

YACC, etc.).
e FST: a tool to transform grammars. It provides 16 distinct operators.

e LLLexport: a tool to export grammars, from the LLL format to another format. In
particular, LLLexport can be used to export a LLL-grammar to SDF.

We will focus on the FST tool. Thanks to the latter, a LLL initial grammar which is still
ambiguous or incomplete, can be adapted and completed. This was the case of the first version
of COBOL IBM-VSII. Many problems in the IBM document have been detected and fixed in
a traceable way. For instance, ambiguities occurred because of the DELETE statement, defined
as follows:

delete-statement :
"DELETE" file-name "RECORD"?
invalid-key-statement-1list?
not-invalid-key-statement-1list?
"END-DELETE"? ;

With this syntax rule, we do not know how to parse the following piece of code.

DELETE CUSTOMER

INVALID KEY DISPLAY "ERROR"
ACCEPT REC-DATE
MOVE DESCRIPTION TO CUS-DESCR
PERFORM INIT-HIST.

Actually, an ambiguity is possible when the DELETE statement is not explicitly closed
with an END-DELETE. The piece of code above can be regarded as a single DELETE
statement as well as many statements. The GDK script, shown in Figure 4.1, solves
this problem, by restructuring the syntax definition of the DELETE statement. After the
grammar adaptation performed by the script, we know that an unclosed DELETE can
not be followed by other statements in the same sequence of statements (i.e., in the
same statement-list). Thus, there is now only one way to parse the portion of code
above: as an unclosed DELETE statement.

4.3 Pre-processing 37

%introduce %include
delete-statement-simple: statement-non-closed:
"DELETE" file-name "RECORD"7; delete-statement-non-closed;
%introduce %redefine
invalid-key-phrases: statement-list:
invalid-key-statement-list statement* ;
not-invalid-key-statement-1list? Yto
| not-invalid-key-statement-list; statement-list:
statementx*
%introduce statement-non-closed?;

delete-statement-non-closed:
delete-statement-simple
invalid-key-phrases;

%redefine

delete-statement :
"DELETE" file-name "RECORD"?
invalid-key-statement-1list?
not-invalid-key-statement-1list?
"END-DELETE"? ;

%to

delete-statement:
delete-statement-simple

| delete-statement-simple "END-DELETE"

| delete-statement-non-closed "END-DELETE";

Figure 4.1: The DELETE FST script

The script in Figure 4.1 uses three FST operators. The %introduce operator allows
to introduce a new rule in the grammar. The %redefine operator gives a new definition
for an existing rule. The %include operator adds the disjunction of the rule to the
existing one [Kor03].

In the scope of this work, the Grammar Deployment Kit can be regarded as an
ad-hoc tool to adapt grammars in a traceable manner. Imagine that we need to extend
our ASF+SDF specifications in order to deal with a specific COBOL dialect. For the
syntax part adaptation, we would recommend to use GDK. First, we would import
the SDF grammar to the LLL-format, using LLLimport. Second, we would transform
the grammar using the different operators of FST. Last, we would ezport the resulting
LLL-grammar to SDF, using LLLexport.

4.3 Pre-processing

The COBOL IBM-VSII grammar has to be seen as a specification rather than a realistic
parser description. Several issues, usually handled by a pre-processor, are not covered

38 Cobol Program Transformations

* I like writing comments %J%* I like writing comments

* in my program %%k* in my program
/ hh/

DISPLAY "NEW PAGE". DISPLAY "NEW PAGE".
a) before pre-processing b) after pre-processing

Figure 4.2: Comments Pre-processing phase

by the formal definition. An example is the case of the COBOL comments.

A COBOL comment is every character between an asterisk (*), written in column
7 of a line, and the end of this line. Typically, comments are used to enter explanations
about a portion of the program. Since comments may occur on every location in the
code, it would be a nightmare to incorporate them in the SDF context-free grammar.
It is the same problem with the slash (/) frequently written in the column 7, causing
a portion of the program to be listed on a new page on the printer.

Thus, in order to be able to parse programs that contain comments and slashes, a
pre-processing phase is required. The idea of the pre-processing phase is quite simple.
We replace all the COBOL comments and slashes in the program with SDF comments.
In such a way, these artificial SDF comments will be skipped by the parser. Figure 4.2
shows an example of such a transformation on a short portion of a COBOL program.
Note that this pre-processing is reversible, in the sense that the resulting SDF comments
can be easily replaced with COBOL comments during a post-processing phase.

Furthermore, in our project, we also had to deal with programs written in mixed-
case letters. The COBOL IBM-VSII SDF grammar is written in upper-case. The
sglr parser is case-sensitive, unlike the major part of the COBOL compilers. So we
had to transform the programs from mixed-case keywords to upper-case keywords. Of
course, we kept the comments and the strings in lower-case. Unlike the comments
pre-processor, this pre-processor is not reversible. Note that the two pre-processor

described above consist of two very simple Perl scripts.

Another typical pre-processing task is the reformulation [vSV97]. It consists of
eliminating syntactic variations, without changing the semantics of the code. An ex-
ample is to transform GREATER OR EQUAL to >=. There is a myriad of such syntactic
freedoms in COBOL. By dealing them with a preprocessor, we can reduce the size of
the COBOL SDF definition. In our project, we used the reformulation for other rea-
sons. For instance, COBOL allows the programmer to open or close several files with a
single statement. For instance we could find in a COBOL program the following open
statement:

OPEN INPUT ORDERS STOCK
I-0 CUSTOMER

Remember that we will have to transform only the OPEN statements opening the files that have
been migrated. So, using an ASF-+SDF pre-processing phase, we unfold the OPEN and CLOSE
statements. In this way the open statement above becomes three separate open statements, as
follows:

4.4 Pretty-printing 39

[TagId]
Left-hand side = * START NEW FRAGMENT
Right-hand side
* END NEW FRAGMENT

when Ci, Cpy..., C,

Figure 4.3: Inserted comments for pretty-printing

OPEN INPUT ORDERS
OPEN INPUT STOCK
OPEN I-O0 CUSTOMER

This pre-processing task is not reversible.

4.4 Pretty-printing

Once the COBOL program has been transformed, it must be printed correctly, especially
because the COBOL layout is semantically relevant. The most important COBOL pretty-
printing requirement is that the resulting program must be compilable. It means that each
portion of the code has to be printed in an allowed columns area. For instance, statements must
be written in columns 12-72 and each paragraph has to start with a paragraph-name beginning
in column 8. The comments must start with an asterisk in column 7, etc. Furthermore,
the transformed program must be recognizable by its authors. In order to achieve this goal,
we must guarantee that the unchanged code is still printed (i.e, indented) in the same way
as initially. This is the reason why we used the ASF+4SDF interpreter instead of the faster
ASF+SDF compiler. The interpreter, unlike the compiler, "keeps the layout of sub-terms that
are not rewritten" [vV00]. So, the interpreter guarantees to keep the layout of the portions of
the COBOL program that are not transformed. In our project, all the non-DMS statements
are printed in the transformed program exactly in the same way as in the initial program.
Moreover, the layout occurring in the right-hand side of a successfully equation is just left in
the normal form, i.e., in the rewritten code. It means that we can control the layout of the
rewritten pieces of code, except for the first line of the right-hand side that will be printed
according to the layout of the initial fragment.

Our local pretty-printing approach? focusses on the rewritten fragments of the program.
This approach consists of inserting special comments in the right-hand side of our equations in
order to identify the rewritten fragments in the output program. We add a comment "START
NEW FRAGMENT" at the beginning of the right-hand side and we add a comment "END NEW
FRAGMENT" at the end of the right-hand side. The Figure 4.3 shows the general structure of our
equations. The first asterisk in the rewritten sub-term is printed exactly in the same column as
the initial sub-term. Using a Perl script, we identify the new fragments, that we indent based
on the first asterisk. In Figure 4.4 and Figure 4.5 we show an example of the effect of our local
pretty-printer. In Figure 4.4, we can see that the first line of the right-hand side (RHS) of
the equation * START NEW FRAGMENT starts exactly in the same column as the rewritten READ
statement (line 5 of Figure 4.4). The others lines (lines 6-22) are written by keeping the layout

2Many thanks to Steven Klusener and Niels Veerman for their support in this purpose.

40 Cobol Program Transformations

occurring in the RHS, but they are not indented correctly. By applying our Perl script we
obtain the code shown in Figure 4.5.

4.5 General Transformation Approach

Here we will present our general transformation approach and summarize the different steps
of our COBOL source code transformations. This approach was used for both P1 and P2
implementations, discussed in Chapter 5 and Chapter 6 respectively. It could be used for other
COBOL transformations as well.

Transformation process In Figure 4.6, we propose a general methodology for COBOL
source code transformations. The transformation process is applied to a COBOL program,
that we assume to be correct (input.cob). The result of the transformation is the COBOL
program output.cob. output.cob has the same program logic as input.cob, but accesses the
new SQL database instead of the migrated COBOL files.

The process starts with a pre-processing phase, discussed in Section 4.3. In our case, a
Perl script is used to replace the COBOL comments with SDF comments. Note that the
reformulation of the closing/opening of multiple files is integrated into the Rewriting phase.

The pre-processing phase is followed by a parsing phase. The parsing is based on the
COBOL IBM-VSII SDF grammar, discussed in Section 4.1. The ASF+SDF Meta-Environment,
presented in Chapter 3, allows to generate a parse table from this syntax definition. Based on
the parse table, the sglr parser produces the syntax tree of the input program.

During the rewriting phase, the ASF conditional equations we defined are applied to the
input program. In particular, the function asfe transforms the syntax tree of the input program
into the rewritten syntax tree of the output program. Then, the latter is converted to a textual
form.

The post-processing phase consists of converting the remaining SDF comments into COBOL
comments in the transformed program.

Last, the pretty-printing phase, discussed in Section 4.4, prints the resulting program
correctly. In particular, the output program output.cob can be compiled immediately.

4.5 General Transformation Approach

41

O W N

IF REF-DET-STK(IND-DET) = 0
MOVE O TO END-DETAIL
ELSE
MOVE REF-DET-STK(IND-DET) TO STK-CODE
* START NEW FRAGMENT

6% READ STOCK

7
8
9
10
11
12
13

MOVE "read" TO SQL-ACTION
MOVE "KEY IS STK-CODE" TO SQL-OPTION
CALL "WR-STK"
USING SQL-ACTION
STK
SQL-OPTION
WR-STATUS

14% INVALID KEY

15
16
17

IF WR-STATUS-INVALID-KEY
THEN
DISPLAY "ERROR : UNKOWN PRODUCT"

18+ NOT INVALID KEY

19
20
21

ELSE
DISPLAY STK-NAME " " ORD-QTY(IND-DET)
END-IF

22x END NEW FRAGMENT

23

0 ~N O U P WN -

= = = O
N~ O

13
14
15
16
17
18
19
20
21

SET IND-DET UP BY 1

Figure 4.4: Before pretty-printing

IF REF-DET-STK(IND-DET) = 0
MOVE O TO END-DETAIL
ELSE
MOVE REF-DET-STK(IND-DET) TO STK-CODE
* READ STOCK
MOVE "read" TO SQL-ACTION
MOVE "KEY IS STK-CODE" TO SQL-OPTION
CALL "WR-STK"
USING SQL-ACTION
STK
SQL-OPTION
WR-STATUS
* INVALID KEY
IF WR-STATUS-INVALID-KEY
THEN
DISPLAY "ERROR : UNKOWN PRODUCT"
* NOT INVALID KEY
ELSE
DISPLAY STK-NAME " " ORD-QTY(IND-DET)
END-IF
SET IND-DET UP BY 1

Figure 4.5: After pretty-printing

42

Cobol Program Transformations

Pre-
processi ng

v

Par si ng
(salr)

v

Rewriting
(asfe)

v

Post -
processi ng

v

Pretty-
printing

v

out put . cob

Perl script

SDF synt ax

ASF equati ons

Perl script

Perl script

Figure 4.6: COBOL Transformation process

Chapter 5

Wrapper-based Implementation
(P1)

In this Chapter, we present our ASF-+SDF specification of the P1 COBOL program conversion
strategy, following a D2 database conversion strategy.

We assume that for each COBOL file that have been migrated, an inverse wrapper has
been generated. Each wrapper allows the legacy programs to access a migrated COBOL file
in the new SQL database, by providing them a legacy interface.

As already mentioned, the P1 conversion consists of replacing the DMS COBOL statements
accessing the migrated files, with wrapper invocations. The naming convention we used is the
following: the name of a wrapper has the form "WR-record-type", where record-type is the name
of the record type of the migrated file.

5.1 Useful structures and functions

In our P1 implementation, we frequently used some ASF+SDF structures and functions. This
is the reason why we will start this chapter by describing them.

Table

The generic structure Table[[Key,Valuel] is a kind of hash table, provided in the ASF+SDF
library. This built-in provides the usual hash table operators, including:

e store(Table[[Key,Valuell,key,value): stores a relation < key,value > in the table

e lookup(Table[[Key,Valuell,key): returns the value that corresponds to the given
key

e element(Table[[Key,Valuel],key): returns true if the table contains a relation with
the key value key, else it returns false

e []: represents the empty table

In our project, we have to keep track of relations between file names and record type
names, as well as relations between file names and primary key names. These COBOL
names have got the same low-level lexical sort: Lex-cobword. Thus, our specification uses
the Table[[Key,Valuel] container, where both Key and Value are Lex-cobword.

44 Wrapper-based Implementation (P1)

Mylist

The structure Mylist, that we implemented, is a list of Lex-cobword. Such a list has the
following form:

mylist (cobword, ,cobwords, . . . ,cobwordy)

The sort Mylist provides the usual functions of a list, including;:
e add (mylist,cobword): add the element cobword to the list

e elemt (mylist,cobword): returns true if cobword is in the list, else it returns false

add-comment

The function add-comment transforms a sequence of characters into a COBOL comment. For
instance "add-comment ("hello world")" will be rewritten as the comment "*hello world".
Here is the signature of this function:

add-comment (Nonnumeric-dq) -> ExplicitComment

open-and-close-unfolder

As explained in Section 4.3, we need to perform a reformulation pre-processing phase,
to unfold the OPEN and CLOSE statements. We defined a transformer traversal function,
called open-and-close-unfolder. Here is the SDF declaration of this function:

open-and-close-unfolder (Cobol-source-program)
-> Cobol-source-program {traversal (trafo)}

Here is one of its equations, unfolding the CLOSE statement:

[close-unfolder]
open-and-close-unfolder (statementx*1
CLOSE file-namel file-name+1
statement*2)
= statement*3
CLOSE file-namel
open-and-close-unfolder (CLOSE file-name+1)
statement*4
when statement*3 = open-and-close-unfolder (statement*1),
statement*4 = open-and-close-unfolder (statement*2)

5.2 Overview

Our P1 ASF+SDF specification consists of a module, called Traversal-functions, that
imports:

- the IBM-VSII COBOL SDF syntax definition

- the module Table[[Lex-cobword,Lex-cobword]]

5.2 Overview

45

" ASF+SDF Meta-Environment

[=]m]

8 e

100

- o =T emry

[} GEM-cobol_ibrmvs2 -Id-div

D CEM-cobol_ibmws2 -lo-sec

[y GEM-cobol_ibrmyvs2 -KEYWORDS
[} GEM-cobol_ibravs2 -Main

[} GEM-cobol_ibrmvs2 -Mys

[} GEM-cobol_ibravs2 -Proc-civ
[} GEM-cobol_ibrmwvs2 -Stat

[} GEM-cobol_ibrvs2 -v¥SC-main
D Laymaut

[Lex

DTra\rersaI functmns
@[] asf
@ [basic
@ [containers

|Tra\rersal—functions |

C

basm;’BooIeans

Traversal-functions

basm;’lnte'

ontainers/Table

contalners,’Llst

containers/ Table

Syntax

[Log Status

Figure 5.1: Module imports graph

46 Wrapper-based Implementation (P1)

Figure 5.1 shows the module imports graph, as it can be seen in the user interface
of the ASF+SDF Meta-Environment. The module Traversal-functions defines the P1
conversion, consisting of several traversal functions. First, we wrote accumulator func-
tions, allowing us to return some results during the traversal of the COBOL program.
Thanks to these accumulators, we are able to retrieve the information we need from
the program, in order to transform the latter. The P1 conversion itself is performed by
transformer functions, that use the results of the accumulator functions.

5.2.1 Accumulators

For the P1 conversion of a COBOL program, we particularly need to know:
1. the record type name of each migrated file defined in the program
2. the primary key name of each migrated file defined in the program
3. the record declarations of the migrated files defined in the program

So we defined the three corresponding accumulators as follows:

record-name-table

record-name-table(Cobol-source-program,
Table[[Lex-cobword,Lex-cobword]],
Mylist)
-> Table[[Lex-cobword,Lex-cobword]] {traversal(accu)}

record-key-table

record-key-table(Cobol-source-program,
Table[[Lex-cobword,Lex-cobword]],
Mylist)
-> Table[[Lex-cobword,Lex-cobword]] {traversal(accu)}

datalist

datalist (Cobol-source-program,
Data-description-entryx*,
Mylist)
-> Data-description-entry* {traversal(accu)}

Remember that the first argument of each accumulator is the traversed tree, i.e., a
COBOL program syntax tree. The second argument is the resulting accumulation value,
e.g., a hash table of sort Table[[Lex-cobword,Lex-cobword]]. The third argument,
of sort Mylist, is the list of the COBOL files that have been migrated into SQL tables.

5.2 Overview 47

5.2.2 Transformers

Once these three results have been built, we can use them as additional parameters
of our transformers. Allowing us to pass additional parameters is indeed one of the
greatest merits of the traversal functions. Let us recall what the P1 conversion does
change in a COBOL program:

1. removing the SELECT clause of the migrated files from the INPUT-0UTPUT section
in the ENVIRONMENT division

2. moving the record declarations of the migrated files from the FILE section to the
WORKING-STORAGE section in the DATA division

3. replacing each access statement with a wrapper invocation in the PROCEDURE
division

We can consider that there are two separate transformations to perform. Firstly, we
have to reorganize the ENVIRONMENT and DATA divisions. Secondly, we have to rewrite
the access statements accessing the migrated files in the PROCEDURE division. So we
defined two transformers, namely file-to-working and access-to-call.

file-to-working

file-to-working(Cobol-source-program,
Data-description-entryx*,
Mylist)
-> Cobol-source-program {traversal(trafo)}

The second argument of file-to-working is the sequence of record declarations con-
structed by the accumulator datalist. The third argument is the list of the COBOL
files that have been migrated into SQL tables.

The resulting program of
file-to-working(programi,record-declarations, files-list)

is the same program as programi, where:

1. the SELECT clauses of the migrated files have been removed from the INPUT-0UTPUT
section of the ENVIRONMENT division

2. the record declarations of the migrated files have been moved from the FILE
section to the WORKING-STORAGE section

The second argument record-declarations is the sequence of record declarations con-
structed by the accumulator datalist.

48 Wrapper-based Implementation (P1)

access-to-call

access-to-call(Cobol-source-program,
Table[[Lex-cobword,Lex-cobword]],
Table[[Lex-cobword,Lex-cobword]])
-> Cobol-source-program {traversal(trafo)}

The second and third arguments of the function access-to-call are respectively the

record-name table and the record-key table of the program to transform.
The resulting program of

access-to-call (programy,rn-table,rk-table)

is the same program as program,, where all the DMS statements accessing a migrated
file have been replaced with wrapper invocations. The second argument rn-table is
the table constructed by the accumulator record-name-table. The third argument
rk-table is the table constructed by the accumulator record-key-table.

5.3 Selected Equations

In this section, we will explain some of our equations. Note that some of them were sim-
plified in order to be more readable. We will start with the top-level P1 transformation
equation, before discussing in details the traversal functions it contains.

5.3.1 P1 transformation

The global pl transformation consists of applying our two transformers on the COBOL
program. This is exactly what the function finaltransfo does:

[finaltrans]
finaltransfo(programl, file-listl) = program4

when
datadecl* = datalist(programl,
01 WR-STATUS PIC 9(3).
88 WR-STATUS-NO-ERR VALUE O.
88 WR-STATUS-INVALID-KEY VALUE 1.
88 WR-STATUS-AT-END VALUE 100.

01 SQL-ACTION PIC X(100).

01 SQL-OPTION PIC X(100).,

file-listl),
rn-table = record-name-table(programl,[],file-1listl),
rk-table = record-key-table(programl,[],file-listl),
program2 = file-to-working(programl,datadecix,file-1ist1),

program3 = open-and-close-unfolder (program?),
program4 = access-to-call(program3,rn-table,rk-table)

5.3 Selected Equations 49

In the equation above, we produce the transformers’ arguments, by applying the accu-
mulators. We build the record-name table (rn-table), the record-key table (rk-table)
and the sequence of the record declarations (datadec1x*) of the migrated files (listed in
file-listl).

We apply our transformers functions successively on the initial program (programi).
We first apply the open-and-close-unfolder function. Then, we reorganize the
ENVIRONMENT and the DATA divisions, by applying file-to-working. Last, we replace
the DMS statements (accessing the migrated files) with wrapper invocations, by using
access-to-call.

Note that we can give some additional data declarations, as the initial value of the
accumulating argument of the datalist function. In this way, these declarations will
be added, with the record declarations, in the WORKING-STORAGE section, by the func-
tion file-to-working. The variable WR-STATUS will be used as a wrapper invocation
argument. It will contain the state of the called wrapper. For example, it will indicate
when the program tries to read the "file" with an invalid access key. SQL-ACTION and
SQL-0PTION will be two other arguments of the wrapper invocations. They will contain
the access type to perform (read, write,..) and the option of this access, respectively.

The resulting COBOL program (programé4) does not contain the migrated files
declarations anymore, and invokes wrappers instead of accessing these files.

5.3.2 Accumulators

record-name-table

[record-name-tablel]
record-name-table(FD file-namel.
01 record-namel.
datadecl* , tablel, file-listl)
= store(tablel,file-namel,record-namel)

when elemt(file-listl, file-namel) = true

In this equation, we store in the accumulating argument (tablel) the correspondence
between a file and its record type name. We can retrieve this information, by ana-
lyzing a file description. The description of each file starts with the name of the file
(file-namel), followed by some optional clauses, and declares the record type of the
file (record-namel) followed by all its sub-level fields description (data-decix).

We have to store the relation between the file (file-namel) and its record type
(record-namel), in the resulting table. Note that we store the relation in the table,
only if file-namel has been migrated, i.e., when elemt(file-listl,file-namel) is
true.

Example Let us consider a program containing the FILE section shown in Figure 5.2.
If all the files have been migrated, the resulting record-name-table is:

[<CUSTOMER, CUS>, <ORDERS,0RD>,<STOCK, STK>]

50 Wrapper-based Implementation (P1)

FILE SECTION.

FD CUSTOMER.
01 CUS.
02 CUS-CODE PIC X(12).
02 CUS-DESCR PIC X(110).
02 CUS-HIST PIC X(1000).

FD ORDERS.
01 ORD.
02 ORD-CODE PIC 9(10).
02 ORD-DATE PIC X(8).
02 ORD-CUSTOMER PIC X(12).
02 ORD-DETAIL PIC X(200).

FD STOCK.
01 STK.
02 STK-CODE PIC 9(5).
02 STK-NAME PIC X(100).
02 STK-LEVEL PIC 9(5).

Figure 5.2: Ezample of a FILE section

Left-hand side of the equation | File declaration

FD file-namel. FD ORDERS.
01 record-namel 01 ORD.
datadecl* 02 ORD-CODE PIC 9(10).

02 ORD-DATE PIC X(8).
02 ORD-CUSTOMER PIC X(12).
02 ORD-DETAIL PIC X(200).

Figure 5.3: Matching of the record-name-table equation

The equation [record-name-table] has been applied three times during the traversal
of the program. The three FD paragraphs of Figure 5.2 do match with the left-hand
side of that equation. For instance, the Figure 5.3 shows the matching between the FD
paragraph of the file ORDERS and the FD paragraph of the left-hand side of the equation
[record-name-table]. The variables of the left-hand side can be replaced by terms in
such a way that the result is precisely the parsed FD paragraph.

record-key-table

[record-key-table]
record-key-table (SELECT file-name assign-clause
fce-phrasex1
RECORD key? is? record-key
fce-phrase*2 . , tablel, file-listl)
= store(tablel,file-name,record-key)

when elemt(file-listl, file-name) = true

By parsing a SELECT clause, we can figure out what is the primary key of a file. For a se-
quential or an indexed file, the SELECT clause contains a RECORD KEY phrase, indicating

5.3 Selected Equations 51

FILE-CONTROL.

SELECT CUSTOMER ASSIGN TO "c:\CUSTOMER.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS CUS-CODE.

SELECT ORDERS ASSIGN TO "c:\ORDERS.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS ORD-CODE
ALTERNATE RECORD KEY IS ORD-CUSTOMER
WITH DUPLICATES

SELECT STOCK ASSIGN TO "c:\STOCK.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS STK-CODE.

Figure 5.4: Example of a FILE-CONTROL section

Left-hand side of the equation File declaration

SELECT file-name SELECT ORDERS
assign-clause ASSIGN TO "c:\ORDERS.DAT"
fce-phrase*l ORGANIZATION IS INDEXED

ACCESS MODE IS DYNAMIC

RECORD key? is? record-key | RECORD KEY IS ORD-CODE

fce-phrasex2 ALTERNATE RECORD KEY IS ORD-CUSTOMER
WITH DUPLICATES

Figure 5.5: Matching of the record-key-table equation

the name of the record field used as primary key. We simply store in the accumulating
table the relation between the file (file-name) and its primary key (record-key). For
a relative file, the RELATIVE KEY phrase indicates the data item used as primary key.
We wrote a second similar equation of the record-key-table accumulator, using the
RELATIVE KEY phrase instead of the RECORD KEY phrase.

Example Let us consider a program containing the FILE-CONTROL section shown in
Figure 5.4 in its ENVIRONMENT division: If all the files have been migrated, the resulting
record-key-table is:

[<CUSTOMER,CUS-CODE>, <ORDERS, ORD-CODE>, <STOCK , STK-CODE>]

The equation [record-key-table] has been applied three times during the traversal
of the program. The three SELECT clauses above do match with the left-hand side of
that equation. For instance, the Figure 5.5 shows the matching between the SELECT
clause of the file ORDERS and the SELECT clause of the left-hand side of the equation
[record-key-table].

52 Wrapper-based Implementation (P1)

Left-hand side of the equation | File declaration

FD file-namel. FD ORDERS.

datadecl+ 01 ORD.

02 ORD-CODE PIC 9(10).

02 ORD-DATE PIC X(8).

02 ORD-CUSTOMER PIC X(12).
02 ORD-DETAIL PIC X(200).

Figure 5.6: Matching of the datalist equation

datalist

[datalist]
datalist(FD file-namel.
datadecl+, datadec2*, file-listl)
= datadecl+
datadec2x*
when elemt(file-listl, file-namel) = true

Each entry of the FILE section, contains the declaration of the record type of the file
(datadec1+). If the file has been migrated, we add its record data declaration to the
accumulating argument. Thus, the returning value of the function is the sequence of
record declarations.

Example Let us consider a program containing the FILE section shown in Fig-
ure 5.2, that describes three files. If these three files have been migrated, the equation
[datalist] is applied three times. The resulting value consists of the three corre-
sponding record declarations. The Figure 5.6 shows the matching between the FD
paragraph of the file ORDERS and the FD paragraph of the left-hand side of the equation
[datalist].

5.3.3 Transformers

file-to-working The function file-to-working reorganizes the ENVIRONMENT and
DATA divisions.

First, it removes the SELECT clause of each migrated file from the INPUT-OUTPUT
section of the ENVIRONMENT division (Figure 5.7). Second, it removes the FD paragraph
of each migrated file from the FILE section of the DATA division (Figure 5.8). Last, it
declares the record descriptions of the migrated files, and the other additional variables,
in the WORKING-STORAGE section (Figure 5.9).

access-to-call Since it would be impossible to include here all the equations of
access-to-call, we have selected only one of them. The latter is shown in Fig-
ure 5.10. In order to make it more readable, we did not separate each character in the
constructor functions, as we normally should.

5.3 Selected Equations 53

[file-to-working-environment]
file-to-working(file-control-entry*1
SELECT file-namel assign-clause
fce-phrasex1.
file-control-entry*2 ,datadecl*,file-list1)
= file-to-working(file-control-entry*1,datadecl*,file-1ist1)
file-to-working(file-control-entry*2,datadecl*,file-1ist1)

when elemt(file-listl, file-namel) = true

Figure 5.7: Equation 1 of file-to-working

[file-to-working-file-section]
file-to-working(file-section-entry*1
FD file-namel.
datadecl+
file-section-entry*2,datadeclx*,file-1ist1l)
= file-to-working(file-section-entry*1,datadecl*,file-list1)
file-to-working(file-section-entry*2,datadecl*,file-list1)

when elemt(file-listl, file-namel) = true

Figure 5.8: Equation 2 of file-to-working

[file-to-working-working-storage]
file-to-working (WORKING-STORAGE SECTION.
datadec2*,datadeclx*)
= WORKING-STORAGE SECTION.
datadeclx*
datadec2x*

Figure 5.9: Equation 3 of file-to-working

54 Wrapper-based Implementation (P1)

[read-invalid-key]
access-to-call(statementx*1
READ file-namel
INVALID key?
statement-listi
NOT INVALID key?
statement-1list2
END-READ
statement*2, rn-table, rk-table)
= statement*3
add-comment (access-statement)
MOVE "read" TO SQL-ACTION
MOVE nonnumeric2 TO SQL-OPTION
CALL nonnumericl USING
BY CONTENT SQL-ACTION
BY REFERENCE record-namel
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS
add-comment ("INVALID KEY")
IF WR-STATUS-INVALID-KEY
THEN
statement-listil
add-comment ("NOT INVALID KEY")
ELSE
statement-list?2
END-IF
statement*4

when
file-namel = lex-cobword(char+1)
record-namel = lookup (rn-table,file-namel),
record-namel = lex-cobword(char+2),
nonnumericl = nonnumeric-dq("WR- char+2"),
record-keyl = lookup(rk-table,file-namel),
record-keyl = lex-cobword(char+3),
nonnumeric2 = nonnumeric-dq("KEY IS char+3"),
access-statement = nonnumeric-dq("READ char+1 KEY IS char+3"),
statement*3 = access-to-call(statement*1l, rn-table, rk-table),
statement*4 = access-to-call(statement*2, rn-table, rk-table)

Figure 5.10: One equation of access-to-call

5.3 Selected Equations 55

This equation replaces a random READ statement, located in a sequence of state-
ments, with a CALL to a wrapper. Remember that the arguments of such an invocation
are respectively:

e the sql action to perform (SQL-ACTION)

e the name of the record type of the file (record-namel)
e the option of the access (SQL-OPTION)

e the wrapper status (WR-STATUS)

In the context of a random READ, the sql action is "read", so we write the statement:
MOVE "read" TO SQL-ACTION. The sql option has the form: "KEY IS primary-key".
Indeed, this random READ does not specify an access key. Thus, the read has to be
performed using the primary key of the file. Thanks to the rk-table, we are able to
lookup the name of the primary key of the file (record-keyl). In the same way, we
can retrieve the name of the record type of the file (record-namel).

Note that we use lexical constructor functions to get access to the characters of
several tokens and to construct other ones. We apply access-to-call to the sequences
of statements that precede and follow the random READ. These sequences are represented
by the variable statement*1 and statement*2, respectively.

The function add-comment allows us to add a comment in the source code, by
giving its content as an argument. In this way, we can keep the trace of the rewritten
statements, by rewriting them as COBOL comments.

Example Let CUSTOMER be a file. Its record type is CUS and its primary record key
is CUS-CODE. The file CUSTOMER has been migrated through a D2 database conversion
phase. A wrapper has been written (WR-CUS) to provide a legacy interface for accessing
the migrated file CUSTOMER. Figure 5.11 shows the P1 transformation of a random READ
of the file CUSTOMER, using the access-to-call function.

56 Wrapper-based Implementation (P1)

READ CUSTOMER *READ CUSTOMER
INVALID KEY MOVE "read" TO SQL-ACTION
DISPLAY "ERROR" MOVE "KEY IS CUS-CODE" TO SQL-OPTION
MOVE 1 TO END-FILE CALL WR-CUS USING
NOT INVALID KEY BY CONTENT SQL-ACTION
PERFORM NEW-ORDER BY REFERENCE CUS
END-READ BY CONTENT SQL-OPTION

BY REFERENCE WR-STATUS
*INVALID KEY
IF WR-STATUS-INVALID-KEY
THEN
DISPLAY "ERROR"
MOVE 1 TO END-FILE
*NOT INVALID KEY
ELSE
PERFORM NEW-ORDER
END-IF

a) before transformation b) after transformation

Figure 5.11: Effect of access-to-call

Chapter 6

Statement Rewriting
Implementation (P2)

In this Chapter, we present our ASF+SDF specification of the P2 COBOL program con-
version strategy, following a D1 database conversion strategy, discussed in Section 6.1.
Remember that in this work the P2 COBOL conversion consists of replacing the DMS
COBOL statements accessing the migrated files, with the corresponding SQL queries.

As seen before, we decided to generate the SQL code translating the COBOL DMS
statements in a separate section of the program. The so-called P2-STRATEGY section
contains several P2 paragraphs accessing the new SQL database. The generation of
those paragraphs is discussed in details in Section 6.3.

6.1 D1 conversion strategy

The D1 database conversion strategy does not change the structure of the database.
We previously said that the D1 conversion strategy translates each COBOL record-type
into a SQL table and each top-level field into a column of this table. Actually, this is
only the D1 default rule. Let consider the file STUDENT declare in Figure 6.1. In this
case, the D1 default rule should not be applied. If we only translate the three top-level
fields into three SQL columns, we would not be able to define LAST-NAME as a SQL

SELECT STUDENT FD STUDENT.
ASSIGN TO "c:\student" 01 STUD.
ORGANIZATION IS INDEXED 02 NAME.
ACCESS MODE IS DYNAMIC 03 FIRST-NAME PIC X(12).
RECORD KEY IS NAME 03 LAST-NAME PIC X(16).
ALTERNATE RECORD KEY IS LAST-NAME 02 ADDRESS.
WITH DUPLICATES 03 STREET PIC X(20).

03 NUMBER PIC X(5).
03 CITY PIC X(10).
02 SCHOOL PIC X(20).

Figure 6.1: Definition of the file STUDENT

58 Statement Rewriting Implementation (P2)

STUD (COBOL) STUD (SQL)
NAME FIRST_NAME
FIRST-NAME LAST_NAME
LAST-NAME ADDRESS
ADDRESS SCHOOL
STREET id: FIRST_NAME
NUMBER LAST_NAME
CITY acc
SCHOOL acc: LAST_NAME
id: NAME
acc: NAME.LAST-NAME

Figure 6.2: Exzample of a D1 conversion

access key.

Thus, when a top-level field contains at least one sub-level field defined as an access
key, it is disaggregated before being translated into SQL. The requirement is that each
COBOL access key must become at least one SQL column in order to be declared as
a SQL access key. The record description above would be translated into a table of
four columns, as shown in Figure 6.2. As we can see, the top-level field NAME has been
disaggregated. Its two sub-level fields are translated into two SQL columns during the
D1 conversion. In this way, we can declare both the record key and the alternate key.
The first one consists of two columns.

6.2 Additional variables

In the following section, "P2 generated paragraphs", we will use several additional
variables in order to translate the COBOL DMS statements into the corresponding
SQL statements. As we saw in the previous chapter, we can easily add new variables
declarations in the WORKING-STORAGE section'. In this section, we will describe the
additional variables we need in our P2 implementation.

SQLCODE The SQLCODE is used as a status returning value of a SQL operation. For
instance, when its value is zero, it means that the operation was performed successfully.
The variable SQLCODE is one of the fields of the SQLCA structure. This structure can be
included in the WORKING-STORAGE section as follows:

EXEC SQL INCLUDE SQLCA END-EXEC

P2-COUNTER The variable P2-COUNTER is a simple counter, used as the resulting
value of a SQL SELECT COUNT(*) clause. For instance, by testing its value, we are able
to know the number of rows from a table having a given key value. If this number is
zero, there is an INVALID KEY exception.

'by using the initial value of the accumulator datalist and the transformer file-to-working

6.3 P2 generated paragraphs 59

P2-STATUS Remember that we used, in the previous chapter, the variable WR-STATUS
to keep the status of the called wrappers. In the case of P2, the transformed program
directly accesses the SQL database. The variable P2-STATUS will indicate if the ac-
cesses are performed successfully. By using P2-COUNTER and SQL-CODE, we can detect
the INVALID KEY and the AT END exceptions, and simulate them by modifying the value
of P2-STATUS. In such a way, the INVALID KEY and the AT END phrases can be replaced
with a test of the P2-STATUS value. Here is the declaration of this variable:

01 P2-STATUS PIC S9(9).
88 P2-STATUS-NO-ERR VALUE O.
88 P2-STATUS-INVALID-KEY VALUE 1.
88 P2-STATUS-AT-END VALUE 100.
88 P2-STATUS-SQL-ERROR VALUE 99.

Last cursor variables In order to simulate the START/READ NEXT sequence with a
cursor based loop, we need to store the current open cursor on each table of the new
database. So, for each table we declare one variable having the form "LAST-CURSOR-table".

6.3 P2 generated paragraphs

In this section, we will define as precisely as possible what the P2 paragraphs contain,
i.e., how we can translate COBOL DMS statements into SQL DMS statements.

Our starting point is the D1 conversion of a COBOL file. The D1 conversion does
not change the data structure, but just translates it in the new DML. Thus, there is
a one-to-one mapping between the legacy COBOL files and the new SQL tables. This
mapping can be defined as follows:

* Let file be a COBOL file

Let record be its record type

* Let table be the D1 SQL translation of record

table contains n columns, called ¢y, co, ..c,, that translates the fields fi, fa,..fn of
record. When file is a relative file, one column ¢; translates the RELATIVE KEY
as well.

file has one primary key, say prim-key.

* file has m ALTERNATE RECORD KEYs, called aky,ako,..ak,

Each access key (prim-key or ak;) has been translated into one or many columns
of table.

60 Statement Rewriting Implementation (P2)

6.3.1 Cursor declarations paragraph

As previously mentioned, we will use SQL cursors. All the SQL cursors declarations
are generated in a COBOL paragraph in the P2-STRATEGY section. For each access key
(prim-key or ak;), we declare three SQL cursors: the "order by" cursor, the "greater
than" cursor and the "not less" cursor.

Order by cursor

The order by cursor has the following general form:

EXEC SQL
DECLARE cursor-name CURSOR FOR
SELECT ¢y ,c¢2,...,.Cp,
FROM table
ORDER BY cky,cks,...,ck,
END-EXEC

where cky ,cks,...,ck, are the SQL columns the access key has been
translated into?

Example Here is the "order by" cursor declaration for the access key NAME described
in Figure 6.1. In this case, p = 2:

EXEC SQL
DECLARE ORDER_NAME CURSOR FOR
SELECT FIRST_NAME,LAST_NAME,ADDRESS,SCHOOL
FROM STUD
ORDER BY FIRST_NAME,LAST_NAME
END-EXEC

greater than cursor

The greater than cursor has the following general form:

EXEC SQL
DECLARE cursor-name" CURSOR FOR
SELECT cq,c2,-.-,Cn,
FROM table
WHERE (ck; > fki) OR
((Ckl = fkl) AND (Ck2 > fk2)) OR

((Ckl = fkl) ... AND (Ckp_l = fkp_l) AND (Ckp > fk'p))
ORDER BY ckj,cks,...,ck,
END-EXEC

where fki,fks,....,fk, are the disaggregated fields of the access key,
translated into cky,cks,...,ck,

2Most of the time, p =1

6.3 P2 generated paragraphs 61

Example

EXEC SQL
DECLARE GREATER_NAME CURSOR FOR
SELECT FIRST_NAME,LAST_NAME,ADDRESS,SCHOOL
FROM STUD
WHERE (FIRST_NAME > :FIRST-NAME) OR
((FIRST_NAME = :FIRST-NAME) AND (LAST_NAME > :LAST-NAME))

ORDER BY FIRST_NAME,LAST_NAME

END-EXEC

Remark Note that the names of the COBOL fields can be duplicated in several record
type descriptions. For instance, the name of the sub-level field FIRST-NAME could be
used in another record type such as TEACHER. This is the reason why we should use
the complete "path-names" of the fields used in the cursor declarations. In the case of
the example above, we should replace " :FIRST-NAME" with " :STUD.NAME.FIRST-NAME"
and ":LAST-NAME" with ":STUD.NAME.LAST-NAME". This is implemented correctly in
our P2 implementation. But, we will not use the complete names in our examples, in
order to make them more readable.

not less cursor

The not less cursor has the same form as the greater than cursor. But each ">" is
replaced with ">=".

6.3.2 Last cursor closing paragraphs

We said previously that before a SQL cursor can be opened, the current open cursor
used on the same table must be closed. So we generate, for each SQL table, a COBOL
paragraph that tests which is the current cursor of the table, and closes the latter. As
already mentioned, we declared several variables having the form LAST-CURSOR-table.
A last cursor paragraph simply tests the value of the corresponding variable and closes
the current cursor.

The generation of these paragraphs can be done correctly only if:

1. We define a naming convention for the cursors.
2. We respect this convention everywhere in the generated code.

3. When a cursor is open, its name is stored in the corresponding LAST-CURSOR-table
variable.

The Figure 6.3 shows an example of such a paragraph, in the case of the SQL table
STUD in Figure 6.2. We can see that we test the six possible values of the variable
LAST-CURSOR-STUD, that are the result of combining two access keys with three key
usages.

62 Statement Rewriting Implementation (P2)

P2-CLOSE-LAST-CURSOR-STUD.
IF (LAST-CURSOR-STUD = "ORDER_BY_NAME")

EXEC SQL
CLOSE ORDER_BY_NAME
END-EXEC.
IF (LAST-CURSOR-STUD = "GREATER_NAME")
EXEC SQL
CLOSE GREATER_NAME
END-EXEC.
IF (LAST-CURSOR-STUD = "NOT_LESS_NAME")
EXEC SQL
CLOSE NOT_LESS_NAME
END-EXEC.
IF (LAST-CURSOR-STUD="ORDER_BY_LAST_NAME")
EXEC SQL
CLOSE ORDER_BY_LAST_NAME
END-EXEC.
IF (LAST-CURSOR-STUD="GREATER_LAST_NAME")
EXEC SQL
CLOSE GREATER_LAST_NAME
END-EXEC.
IF (LAST-CURSOR-STUD="NOT_LESS_LAST_NAME")
EXEC SQL
CLOSE NOT_LESS_LAST_NAME
END-EXEC.

Figure 6.3: A closing last cursor P2 paragraph

6.3.3 OPEN paragraphs

We saw that the result of the COBOL 0OPEN statement depends on the opening option.
This option can be INPUT, OUTPUT, I-0 or EXTEND. These distinct opening modes can
be easily translated into SQL. Indeed, SQL allows the user to read, update and add
records, i.e., rOws.

There is a difference between the open option OUTPUT and the other ones. When a
COBOL file is opened with the OUTPUT mode, it is created (if necessary) and positioned
to its starting point for writing. It means that if the file already exists, it is overwritten.
For the other open options, the file is either read or updated.

Another important aspect is the COBOL access mode of the migrated file. When
the access mode is SEQUENTIAL, the records are read in the ascending order based on
their primary key. When the access mode is RANDOM or DYNAMIC, COBOL assumes the
primary key of the file is used if the programmer does not supply an access key.

Thus, in all the cases, the first "READ file" statement of the program execution
reads the first record of the file having the minimal primary key value. This is the
reason why a COBOL OPEN can be translated into a cursor opening. This cursor is
the order-by cursor corresponding to the primary key of the table. When the open
option is OUTPUT, we first delete the content of the table. Figure 6.4 shows the P2 open
paragraph for the file STUDENT discussed above. The Figure 6.5 shows the same open
paragraph, but with the QUTPUT open option.

6.3 P2 generated paragraphs 63

P2-0PEN-STUDENT .
PERFORM P2-CLOSE-LAST-CURSOR-STUD.
MOVE "ORDER_BY_NAME" TO LAST-CURSOR-STUD.
EXEC SQL
OPEN ORDER_BY_NAME
END-EXEC.

Figure 6.4: OPEN paragraph for the file STUDENT

P2-0PEN-0UTPUT-STUDENT.
PERFORM P2-CLOSE-LAST-CURSOR-STUD.
MOVE "ORDER_BY_NAME" TO LAST-CURSOR-STUD.
EXEC SQL
DELETE FROM STUD
END-EXEC.
EXEC SQL
OPEN ORDER_BY_NAME
END-EXEC.

Figure 6.5: OPEN OUTPUT paragraph for the file STUDENT

6.3.4 START paragraphs

Remember that the START statement positions an indexed or relative file to a specific
record. This can be translated in SQL by a cursor opening on the corresponding table.
There are three key usages that can be used with the start statement: equal, greater
than and not less. Since the START can be executed with an INVALID KEY, we first have
to test if there exists at least one row in the table for which the key value is equal to/
greater than/not less than the current value of the supplied key. If there is no such
row in the table, we have to simulate an INVALID KEY exception, by modifying the
variable P2-STATUS. If there is at least one such row, we can open the corresponding
cursor. The Figure 6.6 shows which kind of SQL cursor is opened in order to simulate
each START key usage. The Figure 6.7 shows the START GREATER paragraph for the file
STUDENT describe in Figure 6.1.

6.3.5 READ NEXT paragraphs

The sequential READ can be translated into a SQL FETCH of the current opened cursor.
Using the corresponding LAST-CURSOR variable, we can figure out which is the name of
the current opened cursor on the target table, and fetch that cursor. The INTO clause

key usage cursor

equal not less
greater than | greater than

not less not less

Figure 6.6: START key usages VS SQL cursors

64 Statement Rewriting Implementation (P2)

P2-START-STUDENT-GREATER-NAME.
PERFORM CLOSE-LAST-CURSOR-STUD
EXEC SQL
SELECT COUNT(*)
INTO :P2-COUNTER
FROM STUD
WHERE (FIRST_NAME > FIRST-NAME) OR
((FIRST_NAME = FIRST-NAME) AND
(LAST_NAME > LAST-NAME))
END-EXEC
IF (SQLCODE NOT = 0) %% SQL error
SET P2-STATUS-SQL-ERROR TO TRUE
ELSE
IF (P2-COUNTER = 0) %% invalid key !
SET P2-STATUS-INVALID-KEY TO TRUE
ELSE
EXEC SQL
OPEN GREATER_NAME
END-EXEC
MOVE "GREATER_NAME"
TO LAST-CURSOR-STUD
MOVE SQLCODE TO P2-STATUS
END-IF
END-IF.

Figure 6.7: START paragraph for the file STUDENT

of the FETCH query contains the fields that have been translated into SQL columns
(f1, f2, -, [n), in the right order.

The Figure 6.8 shows the READ NEXT paragraph for the file STUDENT described above.
Thanks to the last statement of this paragraph (MOVE SQLCODE TO P2-STATUS), we can
simulate the AT END exception. When the value of SQLCODE is equal to 100, it means
that the SQL fetch failed, which corresponds to the COBOL END OF FILE. In this
case, P2-STATUS-AT-END is set to TRUE.

6.3.6 READ KEY IS paragraphs

The random READ can be seen as a START with equal key usage, directly followed by a
READ NEXT. So, the READ KEY IS paragraphs consist of opening the not less cursor and
fetching it. Of course, we first test the INVALID KEY exception with a SELECT COUNT
clause, as shown in Figure 6.9.

6.3.7 WRITE paragraphs

The WRITE paragraph is very simple. It consists of inserting a rowin the table the
record was translated into, using the SQL INSERT query. We just have to mention in
the VALUES clause the fields that have been translated into SQL columns (f1, f2, ..., fn),
in the right order. In Figure 6.10, we give the example of the WRITE paragraph for the
file STUDENT described above.

6.3 P2 generated paragraphs 65

P2-READ-STUDENT-NEXT.
IF(LAST-CURSOR-STUD = "ORDER_BY_NAME")
EXEC SQL
FETCH ORDER_BY_NAME
INTO :FIRST-NAME,:LAST-NAME, :ADDRESS, : SCHOOL
END-EXEC.
IF(LAST-CURSOR-STUD = "GREATER_NAME")
EXEC SQL
FETCH GREATER_NAME
INTO :FIRST-NAME,:LAST-NAME, :ADDRESS, :SCHOOL
END-EXEC.
IF(LAST-CURSOR-STUD = "NOT_LESS_NAME")
EXEC SQL
FETCH NOT_LESS_NAME
INTO :FIRST-NAME,:LAST-NAME, :ADDRESS, :SCHOOL
END-EXEC.
IF(LAST-CURSOR-STUD="0RDER_BY_LAST_NAME")
EXEC SQL
FETCH ORDER_BY_LAST_NAME
INTO :FIRST-NAME,:LAST-NAME, :ADDRESS, :SCHOOL
END-EXEC.
IF(LAST-CURSOR-STUD="GREATER_LAST_NAME")
EXEC SQL
FETCH GREATER_LAST_NAME
INTO :FIRST-NAME,:LAST-NAME, :ADDRESS, : SCHOOL
END-EXEC.
IF(LAST-CURSOR-STUD="NOT_LESS_LAST_NAME")
EXEC SQL
FETCH NOT_LESS_LAST_NAME
INTO :FIRST-NAME,:LAST-NAME, :ADDRESS, : SCHOOL
END-EXEC.
MOVE SQLCODE TO P2-STATUS.

Figure 6.8: READ NEXT paragraph for the file STUDENT

66 Statement Rewriting Implementation (P2)

P2-READ-STUDENT-KEY-NAME.
PERFORM CLOSE-LAST-CURSOR-STUD.
EXEC SQL
SELECT COUNT (%)
INTO :P2-COUNTER
FROM STUD
WHERE FIRST_NAME = :FIRST-NAME AND
LAST_NAME = :LAST-NAME
END-EXEC.
IF (SQLCODE NOT = 0) %% SQL ERROR
SET P2-STATUS-SQL-ERROR TO TRUE
ELSE
IF (P2-COUNTER = 0) %% invalid key !
SET P2-STATUS-INVALID-KEY TO TRUE
ELSE
EXEC SQL
OPEN NOT_LESS_NAME
END-EXEC
MOVE "NOT_LESS_NAME" TO LAST-CURSOR-STUD
EXEC SQL
FETCH NOT_LESS_NAME
INTO :FIRST-NAME,
:LAST-NAME,
: ADDRESS,
:SCHOOL
END-EXEC
MOVE SQLCODE TO P2-STATUS
END-IF
END-IF.

Figure 6.9: READ KEY IS paragraph for the file STUDENT

P2-WRITE-STUD.
EXEC SQL
INSERT INTO STUD
VALUES (:FIRST-NAME,
:LAST-NAME,
: ADDRESS,
:SCHOOL)
END-EXEC
MOVE SQLCODE TO P2-STATUS.

Figure 6.10: WRITE paragraph for the file STUDENT

6.4 Legacy code transformations 67

P2-REWRITE-STUD.
EXEC SQL
UPDATE STUD
SET FIRST_NAME = :FIRST-NAME,
LAST_NAME = :LAST-NAME,
ADDRESS = :ADDRESS,
SCHOOL = :SCHOOL
WHERE FIRST_NAME = :FIRST-NAME AND
LAST_NAME = :LAST-NAME
END-EXEC.
MOVE SQLCODE TO P2-STATUS.

Figure 6.11: REWRITE paragraph for the file STUDENT

P2-DELETE-STUDENT.

EXEC SQL

DELETE

FROM STUD

WHERE FIRST_NAME = :FIRST-NAME AND

LAST_NAME = :LAST-NAME

END-EXEC.
MOVE SQLCODE TO P2-STATUS.

Figure 6.12: DELETE paragraph for the file STUDENT

6.3.8 REWRITE paragraphs

The REWRITE paragraph simply consists of a SQL update of the record (i.e., the row)
with the current primary key value. This is true for both sequential and random
accesses. For the sequential access, the record must be read before it can be rewritten,
such that the current value of the primary key is the key value of the record to rewrite.
For the random access, the programmer has first to move a value to the primary key.
In Figure 6.11, we give the example of the REWRITE paragraph for the file STUDENT
described above.

6.3.9 DELETE paragraphs

The DELETE statement can be simply translated into a SQL delete. The record (i.e.,
the row) to be deleted is the record having the same primary key value as the current
primary key value. This is true for both sequential and random DELETE. For the se-
quential access, the record must be read before it can be deleted, such that the current
value of the primary key is the key of the record to delete. For the random access, the
programmer has first to move a value to the primary key.

6.4 Legacy code transformations

Remember that we clearly separate the legacy code transformation and the new SQL
code generation. The reasons of doing this are quite easy to understand. First, it allows

68 Statement Rewriting Implementation (P2)

READ STUDENT KEY IS NAME
INVALID KEY MOVE 1 TO END-FILE

a)before conversion

*READ STUDENT KEY IS NAME *READ STUDENT KEY IS NAME
MOVE "read" TO SQL-ACTION PERFORM P2-READ-STUDENT-KEY-NAME
MOVE "KEY IS NAME"
TO SQL-OPTION *INVALID KEY
CALL "WR-STUD" USING IF P2-STATUS-INVALID-KEY
BY CONTENT SQL-ACTION THEN
BY REFERENCE ORD MOVE 1 TO END-FILE
BY CONTENT SQL-OPTION END-IF

BY REFERENCE WR-STATUS
c) access-to-perform
*INVALID KEY
IF WR-STATUS-INVALID-KEY
THEN
MOVE 1 TO END-FILE
END-IF

b) access-to-call
Figure 6.13: Comparison of P1 and P2 conversions

us to keep a higher control on the program transformation. Secondly, it guarantees an
easier maintenance of the generated code. Last, it allows us to reuse the same imple-
mentation approach as P1: "CALL+wrappers" becomes "PERFORM+paragraphs". Once
all the P2 paragraphs have been generated in the program, the COBOL access state-
ments accessing migrated files have to be replaced with the corresponding PERFORM
statements. As we defined the P1 transformer access-to-call, we defined the P2
transformer access-to-perform. These two transformers are very similar. As a com-
parison, Figure 6.13 shows both access-to-call and access-to-perform effects on a
COBOL random READ statement. The function access-to-perform replaces the ran-
dom READ of the file STUDENT using the access key NAME with the PERFORM statement
executing the paragraph P2-READ-STUDENT-KEY-NAME translating this random reading
into SQL. This generated paragraph is given in Figure 6.9.

6.5 Optimization

Some generated P2 paragraphs may not be effectively used by the transformed COBOL
program. The P2 section can be large, and only very few of its paragraphs could be
effectively called. This is the reason why we wrote another accumulator function, re-
turning the names list of the P2 paragraphs being effectively called from the legacy
rewritten code. In others words, the returning list contains the names of the P2 para-
graphs for which at least one PERFORM statement has been found. Here is the SDF
definition of that accumulator:

p2-called-parags(Cobol-source-program, Mylist)
-> Mylist {traversal(accu)}

6.6 P2 conversion equation 69

[final] finaltransfo(programl, myparam, file-listl) = programb

when
rn-table = record-name-table(programl, [],file-1istl),
rk-table = record-key-table(programl, [],file-1listl),
myparam = myparameters(rt(rt-table),
tc(tc-table),
rf(rf-table),
tk(tk-table)),
table-name*1 = values2(rt-table),
datadecl* = datalist(programi,
01 P2-STATUS PIC S9(9).
88 P2-STATUS-NO-ERR VALUE O.
88 P2-STATUS-INVALID-KEY VALUE 1.
88 P2-STATUS-AT-END VALUE 100.
88 P2-STATUS-SQL-ERROR VALUE 99.
01 P2-COUNTER PIC X(100).
last-cursor-decs(table-namex*1) ,file-1list1),

program2 = file-to-working(programl,
EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
datadeci*
EXEC SQL END DECLARE SECTION END-EXEC., file-listl),

program3 = open-and-close-unfolder (program?2),

program4 = access-to-perform(program3,rn-table,rk-table),

parags-listl = p2-called-parags(program4,mylist (P2-CURSORS-DECLARATION)),
programb = p2-section(program4,myparam,rn-table,rk-table,parags-listl)

Figure 6.14: P2 conversion equation

6.6 P2 conversion equation

The P1 transformer file-to-workingand the P1 accumulators datalist, record-name-table
and record-key-table are reused in P2 transformation. The Figure 6.14 shows the top-level
equation of the P2 transformation. This equation is very similar to the P1 top-level equation
presented in Section 5.3.1. The differences are the following:

e The function finaltransfo has got an extra argument (myparam) consisting of the
mapping needed to generate the P2 paragraphs

e We apply the function access-to-perform instead of the function access-to-call
e We construct the list of the effectively called P2 paragraphs (parags-list1).

e We add the P2 generated section at the end of the program, by using the function
p2-section. We generates only the P2 paragraphs that are needed.

e The additional data declarations we add in the program are different, and are declared
in a SQL DECLARE section

70 Statement Rewriting Implementation (P2)

Specification P1 P2
Measurement
top-module size (LOC) 3668 4312
SDF part (LOC) 160 381
Number of productions 21 63
Number of variables 71 122
Number of accumulators 3 4
Number of transformers 4 6
ASF part (LOC) 3508 3931
Number of equations 126 202
Parse table size 29MB | 3,2MB
Equations table size 95,3KB | 156,1KB

Table 6.1: ASF-+SDF specifications statistics

Specification P1 P2
Measurement
Parse table generation time 1 min 25 | 1 min 40
Equations table generation time | 4 min 35 | 4 min 25
Parsing time
385 LOC < 1 sec 1,9 sec
3128 LOC 3 sec 3,4 sec
31 000 LOC 18 sec 20 sec
213 600 LOC 2 min 2 min 10
Rewriting time
385 LOC 1,7 sec 1,8 sec
3128 LOC 9 sec 9,5 sec
31 000 LOC 2 min 40 | 2 min 44
213 600 LOC 70 min 15 | 71 min

Table 6.2: ASF-+SDF specifications performance

6.7 P1 vs P2 specification

Here we present some comparative statistics about our P1 and P2 ASF+SDF specifications.
Table 6.1 gives a comparison between the P1 and P2 specifications. We can see that they
are quite similar in size. The P2 specification is a bit more complex than the P1 specification
due to the P2 paragraphs generation. It defines more SDF productions and ASF equations.
Table 6.2 gives an idea of the performance of the ASF+SDF interpreter. Note that the
performance are similar between the two specifications. In order to parse a COBOL program
with sglr, we need the parse table of the COBOL syntax. The generation of this parse table
takes around 1 min 30. To apply the transformation rules to a program with asfe, we need
the table of the equations. Its generation takes around 4 min. We tested the transformations
on our case study (presented in Chapter 7). We artificially duplicated its PROCEDURE division

to have an idea of the parsing/rewriting time for large programs?.

3These tests were made on a laptop (Processor Intel Centrino 1,3GhZ - Memory 512MB DDR)

Chapter 7

Case study

In this Chapter, we present a case study, by applying a Database First migration strategy
to a small COBOL application. In Section 7.1 we present the COBOL application accessing
files that we want to migrate to a SQL database. In Section 7.2, we describe the migration
of the application with respect to the Wrapper Strategy (<D2,P1>). Section 7.3 presents the
migration of the application following the Statement Rewriting strategy (<D1,P2>). In both
cases, we first describe the database conversion step before illustrating the automatic program
conversion step.

7.1 A Small Cobol Application

The case study we will present is not a real program, but was designed to illustrate some
difficulties that are meet in real legacy COBOL applications. The same case study was used
in [Hai0O2] and [Hen03]. The COBOL program, called order. cob, contains almost 400 lines of
code and manipulates three indexed files:

e CUSTOMER : made up records related to the customers.
e ORDERS : made up records related to the orders of the customers.
e STOCK : made up records related to the stocks of products that can be ordered.

These files are defined in the program as shown in Figure 7.1.

7.2 Wrapper Strategy
7.2.1 D2 Database Conversion

The D2 database conversion strategy, or Conceptual Conversion, consists of:

1. recovering the conceptual schema of the legacy database, through a database reverse
engineering phase.

2. constructing the new database from this conceptual schema, by following a standard
database methodology.

The database reverse engineering of C-0RD is described in details in [Hen03]. We will briefly
discuss and illustrate the two main steps of this DBRE process, which are the data structure
extraction and the data structure conceptualization.

72 Case study

FILE-CONTROL. FILE SECTION.
SELECT CUSTOMER ASSIGN TO "c:\CUSTOMER" FD CUSTOMER.
ORGANIZATION IS INDEXED 01 CUS.
ACCESS MODE IS DYNAMIC 02 CUS-CODE PIC X(12).
RECORD KEY IS CUS-CODE. 02 CUS-DESCR PIC X(110).
SELECT ORDERS ASSIGN TO "c:\ORDERS" 02 CUS-HIST PIC X(1000).
ORGANIZATION IS INDEXED FD ORDERS.
ACCESS MODE IS DYNAMIC 01 ORD.
RECORD KEY IS ORD-CODE 02 ORD-CODE PIC 9(10).
ALTERNATE RECORD KEY IS ORD-CUSTOMER 02 ORD-DATE PIC X(8).
WITH DUPLICATES 02 ORD-CUSTOMER PIC X(12).
ALTERNATE RECORD KEY IS ORD-DATE 02 ORD-DETAIL PIC X(200).
WITH DUPLICATES. FD STOCK.
SELECT STOCK ASSIGN TO "c:\STOCK" 01 STK.
ORGANIZATION IS INDEXED 02 STK-CODE PIC 9(5).
ACCESS MODE IS DYNAMIC 02 STK-NAME PIC X(100).
RECORD KEY IS STK-CODE. 02 STK-LEVEL PIC 9(5).

Figure 7.1: Definition of three COBOL files

ORD
ORD-CODE: num (10) ORDERS
ORD-DATE: char (8)
ORD-CUSTOMER: char (12) ORD
ORD-DETAIL: char (200)
id: ORD-CODE
acc CUSTOMER
acc: ORD-CUSTOMER
acc: ORD-DATE cus
CUSs STK
CUS-CODE: char (12) STK-CODE: num (5) STOCK
CUS-DESCR: char (110) | | STK-NAME: char (100)
CUS-HIST: char (1000) || STK-LEVEL: num (5) STK
id: CUS-CODE id: STK-CODE
acc acc

Figure 7.2: Raw physical schema extracted from the COBOL program

Data Structure Extraction

The data structure extraction is the most crucial and difficult part of the DBRE.
Data structure extraction analyzes the existing (legacy) system to recover the com-
plete logical schema. [Hen03]

In short, the logical schema is the schema the programmer must understand to be able to modify
the legacy database and the programs that modify the data. So the logical schema includes all
the constraints that must be known by the programmer, e.g., the referential constraints.

The aim of the data structure extraction is to recover this logical schema. The data
structure extraction of the case study consists of the following steps:

1. DDL code analysis: By analyzing the DDL code shown in Figure 7.1, the raw physical
schema can be extracted. As shown in Figure 7.2, this physical schema contains all the
data structures declared, and only them. The data structure extraction is performed
with respect to the abstraction rules given in Table 7.1 [Hai02].

7.2 Wrapper Strategy 73

COBOL statement Physical abstraction
SELECT S ASSIGN TO P collection S assigned to physical file P
RECORD KEY IS F attribute F' is the primary identifier

and an access key

ALTERNATE RECORD KEY IS F | attribute F is a secondary identifier
and an access key

ALTERNATE RECORD KEY IS F' | attribute F'is an access key

WITH DUPLICATES

FD S. entity type R within storage S
01 R
05 F PIC 9(n) numeric attribute F' of size n, associated with
its parent structure (entity type or compound
attribute)
05 F PIC X(n) alphanumeric attribute F' of size n, associated

with its parent structure (entity type or

compound attribute)

05 Fi. compound attribute Fi, with sub-attribute
10 F5 ... Fs, etc.

Table 7.1: Main abstraction rules for COBOL file structures

2. Schema refinement: By analyzing the physical schema obtained, the analyst can discover
hypotheses about:

e the fine-grained structure of entity types and attributes;
e finding referential constraints (foreign keys);

e finding sets behind arrays;

e finding exact cardinalities of attributes ;

e finding identifiers of multi-valued attributes.

Each hypothesis is to be validated through program code and data analysis. The main
techniques and tools used to discover/validate hypothesis are the program slicing, the
data dependency analysis and the foreign key discovery assistant. Validated hypothesis
are added to the physical schema. For instance, the analyst discovered that the attribute
ORD-CUSTOMER of the entity type ORD is a reference key to the primary identifier CUS-CODE
of the entity type CUST. So this constraint is added to the schema.

3. Schema cleaning When the refinement of the physical schema is completed, it is cleaned
in order to obtain the complete logical schema, describing the programmer view of the
legacy database. The resulting logical schema of the case study is given in Figure 7.3.

Data Structure Conceptualization The Data Structure Conceptualization consists of
the conceptual interpretation of the logical schema. It consists for instance in detecting and
transforming or discarding non-conceptual structures, redundancies, technical optimizations
and DMS-dependent constructs and in interpreting them [Hen03].

In particular, the logical schema of the case study given in Figure 7.3 can be conceptualized
by the conceptual schema shown in Figure 7.4. The following transformations were applied:

Case study

CUS ORD-CODE: num (10)
CUS-CODE: char (12) ORD-DATE: char (8)
CUS-DESCR: compound (110) ORD-CUSTOMER: char (12)
NAME: char (20) ORD-DETAIL: compound (200)
ADDR: char (40) DETAILS[0-20]: compound (10) @
FUNCT: char (10) REF-DET-STK: num (5)
COMPANY: char (30) ___ORD-QTY: num (5)
REC-DATE: char (10) id: ORD-CODE
CUS-HIST: compound (1000) acc
PURCH[0-100]: compound (10) ref: ORD-CUSTOMER @
REF-PURCH-STK: num (5) acc
TOT: num (5) ref: ORD-DETAIL.DETAILS[*.REF-DET-STK “
id: CUS-CODE acc: ORD-DATE
acc
ref: CUS-HIST.PURCH[*.REF-PURCH-STK

STK
STK-CODE: num (5)
STK-NAME: char (100)
STK-LEVEL: num (5)
id: STK-CODE

acc

Figure 7.3: Complete logical schema of the database

CUSTOMER
CODE
NAME ORDER
ADRESS o-N PASS 11

COMPANY N - CODE
FUNCTION id: CODE
REC-DATE
id: CODE 0-20

STOCK
CODE
NAME
LEVEL
id: CODE

Figure 7.4: Normalized conceptual schema of the database

7.2 Wrapper Strategy 75

DETALS STOCK
D_O CODE: num (10) CODE: num (5)
CODE: num (5) NAME: char (100)
_‘3'1%83- num (5) STK_LEVEL: num (5)
[0 -
— 5.0 CODE id: CODE
_ ref: D_O_CODE
= . :
CUS_CODE: char (12) —(—IZO%E‘?OnEnE ghaf 12
|d:f.C((:DUDSECODE TOT: num (5)
ret: 5 CUSTOMER id: CODE
CODE: char (12) P_C_CODE
NAME: char (20) ref: CODE
ADDR: char (40) ref: P_C_CODE

COMPANY: char (30)
FUNCT: char (10)
REC_DATE: char (10)
id: CODE

Figure 7.5: Physical schema of the SQL database

e The names in the schema were changed to be more meaningful. For instance, the names
of the entity types (CUS,0RD and STK) were substituted by the names of their collection
(CUSTOMER,ORDER and STOCK).

e The physical constructs such as the access keys and the collections were discarded.

e The complex multi-valued attributes (PURCH and DETAILS) were transformed into entity
types.

e Finally, the schema was normalized. Through this process, the analyst tried to give
the schema the qualities of a good conceptual schema such as readability, concision,
minimality and expressiveness.

From the conceptual schema obtained through the DBRE phase (Figure 7.4), a SQL
database can be designed. Figure 7.5 gives the physical schema of the new SQL database.
Figure 7.6 gives the DDL code of the SQL database declaration.

7.2.2 P1 Program Transformation

An history log has been maintained during all the transformations that were applied from the
legacy COBOL physical schema to the new SQL physical schema. This formalized history log
can be seen as a mapping between the legacy physical schema and the new physical schema.
This mapping is used to generate a large part of the wrappers that will encapsulate the SQL
database.

In this case study, three wrappers have been generated, one for each migrated COBOL
file. The naming convention we used is the following: the name of a wrapper has the form

"WR-record-type", where record-type is the name of the record type of the migrated file. So the
wrappers are:

e WR-CUS, for the file CUSTOMER;
e WR-ORD, for the file ORDERS;
e WR-STK, for the file STOCK.

76

Case study

create table CUSTOMER (

CODE char(12) not null,
NAME char(20) not null,
ADDR char(40) not null,
COMPANY char(30),

FUNCT char(10),

REC_DATE char(10) not null,
primary key (CODE));

create table DETAILS (

D_0_CODE numeric(10) not null,
CODE numeric(5) not null,
ORD_QTY numeric(5) not null,
primary key (CODE, D_0_CODE));

create table ORDERS (

CODE numeric(10) not null,
ORD_DATE char(8) not null,
CUS_CODE char(12) not null,
primary key (CODE));

create table STOCK (
CODE numeric(5) not null,
NAME char(100) not null,
STK_LEVEL numeric(5) not null,
primary key (CODE));

alter table DETAILS add constraint FKDET_STO
foreign key (CODE)
references STOCK;

alter table DETAILS add constraint FKDET_ORD
foreign key (D_0_CODE)
references ORDERS;

alter table ORDERS add constraint FKCUSTOMER
foreign key (CUS_CODE)
references CUSTOMER;

alter table PURCH add constraint FKPUR_CUS
foreign key (P_C_CODE)

references CUSTOMER;
create table PURCH (
P_C_CODE char(12) not null,
CODE numeric(5) not null,
TOT numeric(5) not null,
primary key (CODE, P_C_CODE));

alter table PURCH add constraint FKPUR_STO
foreign key (CODE)
references STOCK;

Figure 7.6: DDL code of the SQL database (D2)

We applied our P1 rewrite rules to the program order.cob:
finaltransfo (order.cob, file-list)

The parameter of the transformation file-list is the list of three COBOL files that have been
migrated: mylist (CUSTOMER, ORDERS, STOCK)

All the COBOL access statements were successfully replaced by a CALL to the corresponding
wrapper. The ENVIRONMENT and DATA divisions were correctly reorganized. The resulting
program (after pretty-printing) is available in Appendix C. This program was tested for all
kind or access (read, write, rewrite,etc.). We concluded that the resulting program is equivalent
to the initial order.cob program.

7.3 Statement Rewriting Strategy

7.3.1 D1 Database Conversion

The D1 database conversion strategy, or the Physical conversion, is less complex than the D2
strategy. It just translates each construct of the source database into similar constructs of the
target DMS. Figure 7.7 shows the D1 conversion applied to our case study. The names are
changed to comply with the SQL syntax, but the data structure does not change. Figure 7.8
gives the DDL code of the SQL database declaration.

It exists a one-to-one mapping between the source COBOL schema and the target SQL
schema. This mapping is an argument of the P2 conversion of the program order.cob, used
in the generation of the P2 paragraphs.

7.3 Statement Rewriting Strategy

ORD ORDERS
ORD-CODE: num (10) ORD_CODE: num (10)
ORD-DATE: char (8) ORD_DATE: char (8)
ORD-CUSTOMER: char (12) D1 ORD_CUSTOMER: char (12)
ORD-DETAIL: char (200) ORD_DETAIL: char (200)
id: ORD-CODE > id: ORD_CODE
acc acc
acc: ORD-CUSTOMER acc: ORD_DATE
acc: ORD-DATE acc: ORD_CUSTOMER
cus STK CUSTOMER STOCK
CUS-CODE: char (12) STK-CODE: num (5) CUS_CODE: char (12) STK_CODE: num (5)
CUS-DESCR: char (110)| [STK-NAME: char (100) CUS_DESCR: char (110) | | STK_NAME: char (100)
CUS-HIST: char (1000) STK-LEVEL: num (5) CUS_HIST: char (1000) STK_LEVEL: num (5)
id: CUS-CODE id: STK-CODE id: CUS_CODE id: STK_CODE
acc acc acc acc

Figure 7.7: D1 conversion of the case study

create table CUSTOMER (create table STOCK (
CUS_CODE char(12) not null, STK_CODE numeric(5) not null,
CUS_DESCR char(110) not null, STK_NAME char(100) not null,
CUS_HIST char(1000) not null, STK_LEVEL numeric(5) not null,
primary key (CUS_CODE)); primary key (STK_CODE));
create table ORDERS (create index ORD_CUSTOMER
ORD_CODE numeric(10) not null, on ORDERS (ORD_CUSTOMER) ;
ORD_DATE char(8) not null,
ORD_CUSTOMER char(12) not null, create index ORD_DATE
ORD_DETAIL char(200) not null, on ORDERS (ORD_DATE);

primary key (ORD_CODE));

Figure 7.8: DDL code of the SQL database (D1)

78

Case study

myparameters (
rt ([<CUS,CUSTOMER>, <ORD, ORDERS>, <STK,STOCK>]),

tc([<CUSTOMER, c (CUS_CODE CUS_DESCR CUS_HIST)>,
<ORDERS, ¢ (ORD_CODE ORD_DATE ORD_CUSTOMER ORD_DETAIL)>,
<STOCK,c(STK_CODE STK_NAME STK_LEVEL)> 1),

rf ([<CUS, £ (CUS-CODE CUS-DESCR CUS-HIST)>,
<ORD,f (ORD-CODE ORD-DATE ORD-CUSTOMER ORD-DETAIL)>,
<STK,f (STK-CODE STK-NAME STK-LEVEL)>1),

tk ([<CUSTOMER,rk([<CUS-CODE, cf (CUS_CODE, CUS-CODE,CUS_CODE)>]1)>,
<ORDERS, rk ([<ORD-CODE, cf (ORD_CODE , ORD-CODE, ORD_CODE) >,
<ORD-CUSTOMER, cf (ORD_CUSTOMER , ORD-CUSTOMER, ORD_CUS) >,
<ORD-DATE, cf (ORD_DATE,ORD-DATE, ORD_DATE)>])>,
<STOCK,rk([<STK-CODE, cf (STK_CODE, STK-CODE,STK_CODE)>1)>]1)

Figure 7.9: P2 conversion parameters

7.3.2 P2 Program Transformation

We applied our P2 rewrite rules to the program order.cob:

finaltransfo (order.cob, d1-mapping , file-list)

The parameters of this transformation are:

o file-list: the list of the three COBOL files that have been migrated:

mylist (CUSTOMER, ORDERS, STOCK)

e d1-mapping: the representation of the D1 one-to-one mapping between the Cobol physi-

cal s

chema and the SQL physical schema (Figure 7.9). Theses parameters consist of four

tables:

The rt table gives the correspondences between COBOL records and SQL tables.
The tc table gives the columns of each SQL table.
The rf table gives the corresponding fields of each COBOL record.

The tk table gives, for each access key of each SQL table, the SQL columns com-
posing the access key, the corresponding COBOL fields, and a name to be used in
the cursor names (compatible for SQL)

The P2 section was fruitfully generated and optimized. All the COBOL access state-
ments were successfully replaced by a PERFORM of the corresponding generated paragraph. The
ENVIRONMENT and DATA divisions were correctly reorganized.

The resulting program (after pretty-printing) is available in Appendix D. This program

was tested

for all kind or access (read, write, rewrite, etc.). We concluded that the resulting

program is equivalent to the initial order.cob program.

7.4 Statistics 79

Measurement Program order.cob | pl.cob | p2.cob | p2-opt.cob
Size (LOC) 396 607 1785 1234
Size of P2 section (LOC) - - 1305 754
Size of wrappers (LOC) - 851 - -
Number of generated paragraphs 42 21
Number of declared files 0 0 0

Number of 0PEN
Number of CLOSE
Number of START
Number of READ
Number of WRITE
Number of REWRITE
Number of DELETE

DO | Qo OO DN Ot Ot Wof
1
1
1

Table 7.2: Statistics of the conversion of order.cob

7.4 Statistics

Table 7.2 shows the statistics of the P1 conversion and P2 conversion of the program order . cob.
The optimized P2 conversion consists of the P2 conversion where the generated P2 section only
contains the paragraphs being effectively called from the legacy rewritten code.

e pl.cob is the program order.cob transformed with respect to the Wrapper strategy.

e p2.cob is the program order. cob transformed with respect to the Statement Rewriting
strategy.

e p2-opt.cobisthe program order. cob transformed with respect to the Statement Rewrit-
ing strategy, where the number of generated paragraphs is minimal.

80

Case study

Chapter 8

Evaluation and Recommendations

In this chapter we present the global evaluation of our work consisting of automating the pro-
gram conversion step of a Database First migration method. In Section 8.1, we discuss our
general approach. Section 8.2 evaluates the suitability of the ASF+SDF formalisms and tech-
nologies for our data reengineering purposes. In Section 8.3 we present several other program
transformation systems. Finally, recommendations for future developments or improvements
are made in Section 8.4.

8.1 Approach

Our approach has been the same to automate both the Wrapper and the Statement Rewriting
strategies. In both the cases, we focussed on three key factors:

e Reusability.
e Traceability.

e Complexity Isolation.

Reusability In our ASF+SDF specifications, we clearly isolate the transformation steps
with respect to their specific task. The different tasks we identify are:

e Code Rewriting: replacing syntax constructs by other syntax constructs having the same
semantics. For example, the functions access-to-call and access-to-performachieve
this task. Even if a CALL statement has not the same semantics as a READ statement, it
allows to call a wrapper simulating the reading.

e Code Reorganization: moving (or removing) syntax constructs from a location in the
code to another. An example is the function file-to-working.

e Code Generation: generating new code to be added into the program. This is the case
of the function p2-section that generates an additional COBOL section and adds the
latter in the program.

e (ode Analysis: retrieving some information from the program. This is typically the role
of our accumulators.

82 Evaluation and Recommendations

In such a way, we allow these separate transformation steps to be reused. Particularly, we
were able to reuse several functions defined in the P1 specification while developing the P2
specification.

The other advantage is that we could use distinct tools to perform the separate transfor-
mation steps. For instance, using the ASF+SDF technology might not be the best way to
generate the P2 section. Indeed, this generation is based on the mapping that exists between
the legacy physical data structure and the new physical data structure. That mapping could be
directly used from its origin: the DB-MAIN environment. By using a Voyager 2 program that
can manipulate the mappings between the schemas, the generation could be done efficiently.

Traceability As we explained in the introduction of this thesis, the traceability of the
program transformation is essential. Firstly, it improves to maintenance of the transformed
application. Secondly, it improves the confidence of the people working on the initial system,
since they can easier recognize the transformed program. In our specifications, the traceability
consists of rewriting as comments the statements that have been transformed.

We also emphasized the way to adapt the grammar while extending a specification for
another COBOL dialect. We suggested in Section 4.2 to use the Grammar Deployment Kit.
The main reason is that GDK allows adapting grammar in a traceable manner.

Complexity Isolation In both program conversion strategies, the generated SQL code is
isolated from the legacy code. In the Wrapper strategy, the SQL code is encapsulated within
a wrapper. In the Statement Rewriting strategy, it is isolated in a separate section of the
program. This complexity isolation can improve the readability of the transformed program
since the alteration of the legacy code is minimal (and traceable). Consequently, this facilitates
the maintenance of the migrated application.

8.2 Suitability of ASF+SDF

In this section, we discuss the merits and the limitations of the ASF+SDF formalisms and
tools. In particular, we evaluate the suitability of ASF+SDF for COBOL transformations
purposes.

8.2.1 Merits

Formalisms The ASF+SDF formalisms are quite easy to learn and to use. The SDF’s
expressiveness allows defining syntax concisely and naturally. The ASF equations in concrete
syntax (i.e. user-defined syntax) are also very intuitive. The use of concrete syntax to specify
transformations rules closes the conceptual distance between the way of writing programs and
the way to represent them in the transformation system. The abstract transformations rules
given in Appendix A are actually very close to their specification in ASF.

Traversal functions We would emphasize the essential role of the Traversal Functions
built-in, provided by the ASF+SDF formalisms. As mentioned in Section 3.2.9, they facilitate
the writing of a specification for both program analysis and program transformation purposes.
This is a serious argument in favor of ASF+SDF. We refer to [vKV03] for more details.

8.2 Suitability of ASF+SDF 83

Modularity ASF+SDF supports modularity. We are convinced that this modularity is es-
sential for developing tools for a huge language like COBOL. Moreover, there are many dialects
of COBOL. The modular ASF+SDF formalisms can simplify the switching from one dialect to
another. For the syntax, as suggested in [vSV97], "we could store the dialect specific parts of a
grammar in separate modules and simply switch from one dialect to another by adapting the
import structure". For the rewriting rules, we could construct distinct top modules containing
the definitions of the traversal functions and their dialect specific equations. In the scope of
our project, the changes in the ASF part could be minimal. It would mainly consist of adding
some optional variables in the left-hand side of our equations. But, as far as we know, the
right-hand side would not change at all.

Furthermore, thanks to this modularity, it would be quite easy to define a context-free
grammar for COBOL-like languages. In the same way, we could easily incorporate the CODA-
SYL data description language (DDL), which is similar to COBOL in syntax [Joh86].

Technology The ASF+SDF formalisms are supported by the ASF+SDF Meta-Environment,
discussed in Chapter 3. We would like to emphasize several merits of this interactive program-
ming environment.

e It supports both interpretation and compilation of the ASF+SDF specifications. The
compiler generates very efficient C code, that can be immediately compiled into an
executable. The interpreter provides sufficient performances, and keeps the layout of
sub-terms that are not rewritten.

e Several key components can be used independently of the ASF+SDF Meta-Environment,
providing a high flexibility. See Section 3.3 for more details.

e The user interface, called MetaStudio, is user-friendly and provides multiple interactive
features. We especially mention the syntax-tree visualization, that is very convenient
when debugging a specification.

e It is an academic software product that can be obtained for free '. AS all software
developed by SEN1, the Meta-Environment, is released under the GPL license.

Generality ASF-+SDF support the development of arbitrary context-free grammars, even
ambiguous ones. The generalized sglr parser does not complain about conflicts in the parse
table. The user of the well-known Lex+ Yacc formalisms may be confronted with shift-reduce
and reduce-reduce conflicts, that have to be solved manually. This can be a severe limitation
when developing a specification for COBOL transformations. It would become even more
dramatic when extending such a specification to deal with another COBOL dialect.

Past Applications ASF+SDF has already been used for a myriad of programming lan-
guage, and for the specification of software engineering problems in diverse areas. Examples of
industrial applications of ASF+SDF are presented in [vvDKT96].

We particularly want to mention [Vee01], another master’s thesis on COBOL automatic
transformations. Its author has used the ASF+SDF Meta-Environment to restructure COBOL
source code "such that the modifiability and thus maintainability is improved"[Vee01]|. This
restructuring process consisted of eliminating GO-T0’s statements and isolating new paragraphs
in the source code. As case studies, very large COBOL systems were successfully transformed.
This project used the useful Traversal Functions and a sub-set of the IBM-VSII COBOL
grammar.

! Available at http://www.cwi.nl/projects/MetaEnv

84 Evaluation and Recommendations

Specification formalisms The ASF+SDF formalisms combination can also be considered
as a formal specification language. We particularly think of the P2 paragraphs generation.
We have already specified these paragraphs formally in ASF+SDF. Their generation can be
implemented using some other programming language.

8.2.2 Limitations

As seen above, one one the greatest merit of the ASF+SDF formalisms is the use of concrete
syntax to specify the transformation rules. But, in some cases, this could be a limitation as
well. In our project, conflicts occurred between the SDF COBOL syntax and the "syntax" of
the ASF equations. Let us give a short example. Remember that an ASF conditional equation
contains conditions. These ASF conditions are of sort Condition. In the COBOL syntax, the
sort Condition is defined as well, which can lead to surprising ambiguities while parsing the
ASF equations. We could give other examples of such conflicts, which do not come from a
bug of the ASF+SDF Meta-Environment. This problem is the price to pay for using concrete
syntax.

The way to solve this kind of problems consists of renaming the conflicting sorts in the user-
defined syntax. Once again, we recommend to use GDK in order to perform the renaming in a
traceable way. Another solution could be to change the import structure of the specification,
such that the sorts that interfere with the equations are hidden at the level of the equations.
A GDK-functionality allowing to relocate productions in other modules will be implemented.

8.3 Related Work

In this section, we briefly present several other program transformation systems. We refer to
[PTW] for further details.

Stratego/XT [Vis04] Stratego/XT is a framework for the development of transformation
systems aiming to support a wide range of program transformations. This framework consists
of

e the transformation language Stratego;

e the XT collection of transformations tools, providing facilities including parsing and
pretty-printing.

The syntax definition formalism used in Stratego/XT is SDF. The parsing is based on the
scannerless generalized LR parser sglr. Thus, if we want to use Stratego/XT to implement
our P1 and P2 transformations, we could reuse the IBM-VSII SDF grammar.

Stratego, as ASF+SDF, is based on term rewriting. The conditional rewrite rules are of
the form Label : LHS — RHS where s, with s a computation that should succeed in order
for the rule to apply. That computation can consist of a call to a library function.

The rewrite rule can contains terms written in concrete syntax. The use of concrete syntax
is indicated by quotation delimiters, e.g., the |[and]| delimiters. So if we wrote our COBOL
rewrite rules in Stratego they would be quite similar to ASF equations.

The specific functionality provided by Stratego/XT is the possibility to specify (explicitly)
where and in what order the rewrite rules are to be applied. This is the so-called Rewriting
Strategy, that Stratego makes explicit and programmable. For instance, the rewriting strategy
could consist of an exhaustive innermost normalization of the term, or could be a single pass
top-down transformation. Stratego provides basic strategy combinators for the composition of
such rewriting strategies.

8.3 Related Work 85

Name Args | Description

Identity Do nothing

Fail Raise VisitFailure exception

Not v Fail if v succeeds, and vice versa

Sequence v1,v2 | Do vy, then vy

Choice v1,v2 | Do vy, if it fails, do vs

All v Apply v sequentially to all immediate children
until it fails

One v Apply v sequentially to all immediate children

until it succeeds

IfThenElse ct,f | If ¢ succeeds, do t, otherwise do f
Try v Choice(v,Identity)

TopDown v Sequence(v,All(TopDown(v)))
BottomUp v Sequence(All(BottomUp(v)),v)
OnceTopDown | v Choice(v,0ne(OnceTopDown(v)))
OnceBottomUp | v Choice(One(OnceBottomUp(v))v)
AllTopDown v Choice(v,All(AllTopDoun(v)))
AllBottom Up v Choice(All(AllBottomUp(v))w)

Figure 8.1: Querview of JJTraveler’s library

JJTraveller [vDV04] JJTraveler is a combination of a framework and a library that
provide generic visitor combinators for Java. Visitor combinators are small, reusable classes
that carry out specific visiting steps. They are mainly used for building program understanding
tools, but they could be extended for program transformation purposes.

e The JJTraveler framework offers two generic interfaces, which are Visitor and Visitable.
Visitable provides the minimal interface for nodes that can be visited. Visitable nodes
should offer three methods:

— int getChildCount (): Returns the number of child nodes.
— Visitable getChildAt(int i) : Returns the i*" child node.
— Visitable setChildAt(int i, Visitable child): Modify the i*" child nodes.

The Visitor interface provides a single method that takes any visitable node as argu-
ment: Visitable visit(Visitable any). Each visit can succeed or fail, which can be
used to control traversal behavior. Failure is indicated by a VisitFailure exception.

e The JJTraveler library consists of several predefined visitor combinators, relying on the
generic Visitor and Visitable interfaces. Figure 8.1 gives an overview of the visitor
combinators available in the library. There are two kinds of combinators: basic combina-
tors and defined combinators. Basic combinators provide the primitive building blocks
for visitor combination (Identity, Fail, Sequence,Choice, etc.). Defined combinators can
be (recursively) described in terms of the basic combinators as shown in Figure 8.1. An
exhaustive overview of the JJTraveler’s library can be found in the online documenta-
tion? of JJTraveler.

%at http://homepages.cwi.nl/~jvisser/doc/jjtraveler/

86 Evaluation and Recommendations

JJTraveler can be used by instantiating the JJTraveler’s framework and then reusing the
visitor combinators in its library. The use of JJTraveler to transform a program P would
consist of:

1. parsing P in order to build the abstract syntax tree (AST) of P.

2. deriving a representation of this AST such that its nodes become wisitable. A visitable
syntax tree (VST) of the program is obtained.

3. traversing (and transforming) the VST using visitor combinators
4. deriving the transformed program.

Tools exist to support the step 2: ApiGen and JJForester. The initial version of ApiGen
is a tool that generates automatically implementations of abstract syntax trees in C. Then,
it has been extended (by different authors) to generate AST classes for Java as well. Apigen
generates the implementation of the Visitable interface in every generated class and some
convenience classes to support generic tree traversal with JJTraveler [vMV03].

JJForester is a combined parser generator, tree builder, and visitor generator for Java. It
takes language definitions in SDF as input and generates Java code that facilitates the con-
struction, representation, and manipulation of syntax trees in an object-oriented style [KV03].
It supports visitor combinators, using JJTraveler.

TXL [Cor04] TXL is a programming language specifically designed for manipulating and
experimenting with programming language notations and features using source-to-source trans-
formation.

An example of TXL program, given in [Cor04], is shown in Figure 8.2. A TXL program
typically consists of three parts:

e a context-free "base" grammar for the language to be manipulated.

e a set of context-free grammatical "overrides" (extensions or changes) to the base gram-
mar

e a set of source transformation rules to implement transformation of the extensions to
the base language.

The grammar specification uses of a notation close to BNF, with nonterminals referenced in
square brackets (e.g., [expression]) and terminal symbols directly representing themselves.

Overrides can either completely replace the original definition of the target nonterminal,
or they can refer to the previous definition using the "..." notation, which is read as "what
it was before". These grammar redefinitions (similar to the FST tools in GDK) are the key
idea that distinguishes TXL from most other program transformation tools. They increase
reusability while dealing with different dialects of a programming language. They also allow
for defining a suitable (sub)grammar to provide a parse more appropriate to each individual
application.

TXL transformation rules specify a pattern to be matched, and a replacement to substitute
for it. The nonterminal type of the pattern (e.g.,[statement]) is given at the beginning of the
pattern, and the replacement is implicitly constrained to be of the same type.

DMS [BPMO04] The DMS©? Software Reengineering Toolkit is a commercial program
analysis and transformations system. It consists of set of tools for automating customized

3DMS is a Registered TradeMark of Semantic Designs Inc. Information available at http://www.
semdesigns.com/

8.4 Recommendations 87

% Based on standard Pascal grammar
include "Pascal.Grm"

% Owerrides to allow new statement forms
redefine
statement

| [reference] += [expression]
end redefine

% Transformation rule
rule main
replace [statement]
V [reference] += E [expression]
by
V:=V + (E)
end rule

Figure 8.2: An example TXL program

source program analysis, modification or translation or generation of software systems. The
goal of DMS is to be able to deal with the scale problems of real software systems such as size
and multiple languages.

Here are some of the main DMS characteristics.

e DMS also uses Generalized LR parsing. DMS based parsers take streams of lexemes and
parse them according to context-free syntax. In other words, the parsing uses a lexer.

e The DMS rewrite rules are written in the DMS’s Rule Specification Language. They are
of the abstract form LHS — RHS if condition. The if condition is an optional phrase
referring to the variables that occur in the LHS. That condition can consist of a call to
a decision procedure, coded in PARLANSE. PARLANSE is the programming language
for coding DMS.

e DMS provides a pretty-printing facility, based of constructing and composing text boxes.
Prettyprinting rules can be associated with each grammar rules. The DMS prettyprinter
can operate in two distinct modes, which are the "prettyprinting" and the "fidelity"
mode. In prettyprinting mode, it applies the supplied prettyprinting rules. In fidelity
mode, it preserves the layout of the unchanged parts of the code, and honors the pretty-
printing rules while producing new code.

8.4 Recommendations

To conclude this chapter, we would like to express several recommendations for future devel-
opments in this research area. Those recommendations are justified by the three key factors
we identified above: reusability, traceability and complexity isolation. These factors can be
regarded at the level of the IS migration strategies as well as the tools to use to perform the
different steps of the migration.

88 Evaluation and Recommendations

8.4.1 Generic Conversion Strategy

Our approach to implement both P1 and P2 conversion strategies allow to derive a generic
program conversion strategy. Indeed, we implemented the Statement Rewriting strategy in
such a way that it becomes very close to the Wrapper strategy. The generated P2 section
can be regarded as an intern wrapper. As suggested above, this intern wrapper should be
generated in the same way as the extern wrappers called in the Wrapper strategy. The P2
section generated in the <D1,P2> strategy basically contains the same kind of code as an
extern <D2,P1> wrapper. The only difference is that the mapping between the COBOL data
structure and the SQL data structure is one-to-one, since the D1 conversion only translates
the data structure from COBOL to SQL. Conceptually, the two "wrappers" are identical in
the sense that the rules used to generate them are the same. Thus, we recommend to consider
the generation of the <D1,P2> intern wrapper as a particular case of the generation of the
<D2,P1> extern wrapper.

In this way, the generic program conversion strategy we propose does not depend on the
way the database has been migrated (D1 or D2). It would consists of the two following steps:

1. deriving an inverse wrapper from the mapping that exists between the source and the
target physical schemas. The mapping can be one-to-one (D1) or not (D2). The gener-
ated wrapper (that can consists of several programs) encapsulates the new database and
provides to the legacy programs a "legacy" interface for accessing the migrated data.

2. transforming the legacy programs with respect to the Wrapper strategy, consisting of
replacing the DMS statements with wrapper invocations.

In other words, we recommend to choose the P1 strategy instead of the P2 strategy. The
greatest merits of this solution are the following :

e Traceability: the alteration of the legacy code is minimal, making the transformed pro-
grams more readable, more understandable and therefore easier to maintain.

e Reusability: A unique wrapper can be used by all the programs of the system that access
the migrated data. In the P2 strategy, the generated SQL code (i.e., the P2 paragraphs)
would be duplicated.

o Complezity isolation: the complexity of the transformation is isolated and encapsulated
within the generated wrapper.

8.4.2 Tools

We are convinced that the DB-MAIN environment is efficient to support database migration,
database reverse engineering, database forward engineering and wrapper generation. We have
also shown that the ASF+SDF Meta-Environment is suitable for program transformations. So
we recommend to work with these technologies for further developments in data reengineering.
We also recommend the use of the Grammar Deployment Kit (GDK), for generating, adapting
and disambiguating the SDF syntax. Let us consider these tools with respect to our three key
factors:

o Traceability:

— The DB-MAIN history log keeps the trace of all the transformations that were
applied during the schema conversion.

8.4 Recommendations 89

— The ASF rewrite rules written in concrete syntax allow the reader to understand
the source code transformations that where applied. Moreover, the traceability can
be improved by rewriting the transformed statements as comments.

— The GDK tools allow the grammar to be adapted in a traceable manner.
e Reusability:

— The modularity of the ASF+SDF formalisms increases the reusability and it also
simplifies the switching from one dialect to another. Furthermore, the different
components of the ASF+SDF Meta-Environment (sglr, asfe, etc.) can be reused
independently of the environment.

— The set of DB-MAIN tools can be used in different data reengineering processes
(database engineering, DBRE, program analysis, wrapper generation, etc.). More-
over, the Voyager 2 language allows a high flexibility in the use of DB-MAIN.

— The GDK tools allow the reuse an existing grammar by adapting it to a particular
application.

o Complezity isolation: the DB-MAIN CASE tool, the ASF+SDF Meta-Environment and
GDK significantly reduce the work to be done manually while converting data-intensive
applications.

8.4.3 Wrapper-based architecture

Figure 8.3 depicts the Wrapper-based architecture we propose for data reengineering. The
migration starts with the database conversion process consisting of schema conversion and
data instances migration. To support this first process, we recommend to use the DB-MAIN
environment. Then, the program conversion step can start. From the transformations history
maintained by DB-MAIN, a data wrapper can be generated. This wrapper can be either
extern (recommended) either intern. Finally, the legacy programs are transformed, using an
ASF-+SDF specification, so that they access the new database instead of the legacy (migrated)
data. The SDF grammar used to parse the programs can be adapted thanks to GDK. Note
that the pre-processing and post-processing phases are ignored in that general architecture.

90 Evaluation and Recommendations

Database conversion

DB-MAIN

Legacy New
DB DB

—> Wrapper
Wrapper
generation

program II program’ II

Program conversion

ASF+SDF
Meta-Env

/

SDF ASF
grammar equations

A

GDK

Grammar adaptation

Figure 8.3: Wrapper-based architecture for data reengineering

Chapter 9

Conclusions

9.1 Contributions

In Chapter 1, we put the purpose of this thesis into context. We gave an overview of the Data
Reengineering strategies, focusing on two of them: the <D2,P1> and <D1,P2> strategies. In
Chapter 2, we presented the <D2,P1> and <D1,P2> strategies in the particular case of the
conversion of COBOL files into a SQL database. We introduced the COBOL file management
system and we explained how a COBOL program can be transform with respect to both P1
and P2 conversion strategies. In Chapter 3, we gave an overview of the ASF+SDF Meta-
Environment that we used in our project. In Chapter 4, we proposed a general approach
for COBOL programs transformation, from pre-processing to pretty-printing. In Chapter 5 we
presented our ASF+SDF specification of the COBOL P1 program conversion strategy, following
a D2 database conversion strategy. In Chapter 6, we presented our ASF+SDF specification
implementing the COBOL P2 program conversion strategy, following a D1 (COBOL to SQL)
database conversion strategy. In Chapter 7, we validated our results by applying them to a
small case study. In Chapter 8, we evaluated our approach and the suitability of the tools we
used. We gave some recommendations for further developments.

In conclusion, we have proved that both P1 and P2 program conversion strategies can be
fully automated. More generally, we have identified three key factors for program conversion
in the context of data reengineering, namely reusability, traceability and complezity isolation.
These three key factors justify our recommendations at different levels:

e The system migration approach: an incremental database first migration method allows
to maximize the reusability of the legacy data and functionalities.

e The data reengineering tools: we recommend to use DB-MAIN (database conversion
- wrapper generation), the ASF+SDF Meta-Environment (legacy code transformation)
and GDK (grammar adaptation).

e The program conversion strategy: the Wrapper strategy (P1) is an elegant conversion
approach. It minimizes the legacy programs alteration and it encapsulates the complex-
ity.

e The way of implementing the program conversion strategies: we recommend to clearly
separate code rewriting and code generation.

92 Conclusions

9.2 Future directions

We are aware that the tools we constructed are only first prototypes. Much improvements
are to be done to transform these prototypes into usable results. However, our work can be
seen as a starting point for further research developments. We anticipate three possible future
directions.

e The <D2,P1> and <D1,P2> strategies and tools have to be improved and validated with
"real-world" COBOL systems. In particular, our two ASF+4+SDF specifications should
be duplicated and adapted, in order to transform programs written in other COBOL
dialects.

e The automation of the other COBOL data reengineering strategies could be explored.
For instance, the <D2,P3> strategy produces a high quality renovated database and
transforms the legacy programs in order to to use the full power of the new DMS. So,
this expensive migration strategy can be justified if the whole system (database and
programs) have to be renovated for the long term.

The Logic Rewriting (P3) program conversion strategy requires a deep understanding
of the program logic, since the latter will generally be changed. The complexity of the
P3 transformation prevents its complete automation. However, program understanding
tools could be used in order to support the Logic Rewriting. Their goals would be to
detect patterns of statements that should be replaced and to give hints on how to rewrite
them. In this way, the manual work could be significantly reduced.

e The data reengineering tools could be extended for other data structures and languages.
For instance, the CODASYL Data Description Language (DDL), used in many COBOL
programs, is much more complex than the COBOL DDL. CODASYL data reengineering
seems to be another important challenge, especially at the level of wrapper generation.

Acronyms

ASF
AST
CASE
COBOL
CODASYL
CS
DBMS
DBRE
DDL
DML
DMS
DMS©
GER
GDK
IMS
SDF
SPS
TPS

V2

Algebraic Specification Formalism

Abstract Syntax Tree

Computed Aided Software Engineering

Common Business Oriented Language
Conference on Data Systems Languages
Conceptual Schema

DataBase Management System

DataBase Reverse Engineering

Data Description Language

Data Management Language

Data Management System

a Registered TradeMark of Semantic Designs Inc
Generic Entity-Relationship

Grammar Deployment Kit

Information Management System, non-relational Data Base System
Syntax Definition Formalism

Source Physical Schema

Target Physical Schema

Voyager 2

Bibliography

[Ben95] K.H. Bennett. Legacy Systems: Coping With Success. In IEEE Software, volume 12,
pages 19-23, 1995.

[BPM04] I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS®: Program Transformations for
Practical Scalable Software Evolution. In Proceedings of International Conference of Soft-
ware Engineering, 2004. http://www.cwi.nl/events/2002/GP2002/papers/baxter.
pdf.

[Bro98] G.DeWard Brown. Advanced Cobol For Structured and Object Oriented Programming.
John Wiley, third edition, 1998.

[Bru03] Magiel Bruntink. Testability of Object-Oriented Systems: a Metrics-based approach.
Master’s thesis, Faculty of Natural Sciences, Mathematics, and Computer Science, Uni-
versity of Amsterdam, September 2003.

[BS95] M.L. Brodie and M. Stonebraker. Migrating Legacy Systems. Gateways, Interfaces and
the incremental approach. Morgan Kaufmann Publishers, 1995.

[Cla81] Andre Clarinval. Comprendre, Connaitre et Maitriser le Cobol. Presses Universitaires
de Namur, second edition, 1981.

[Cor04] J.R. Cordy. TXL - A Language for Programming Language Tools and Applications.
In Proc. LDTA 2004, ACM 4th International Workshop on Language Descriptions, Tools
and Applications, pages 1-27, Barcelona, April 2004.

[DBM] The DB-MAIN official website. http://www.db-main.be, Last accessed 18 May 2004.

[HaiO0] Jean-Luc Hainaut. Bases de Données et Modéles de Calcul, Outils et Methodes pour
lutilisateur. Dunod, second edition, 2000.

[Hai02] Jean-Luc Hainaut. Introduction to Database Reverse Engineering. at http://www.
info.fundp.ac.be/~dbm/publication/2002/DBRE-2002.pdf, 2002.

[Hen03] Jean Henrard. Program Understanding in Database Reverse Engineering. PhD thesis,
University of Namur, 2003.

[HHTHO02] Jean Henrard, Jean-Marc Hick, Philippe Thiran, and Jean-Luc Hainaut. Strategies
for Data Reengineering. In Proc. of the 9th Working Conference on Reverse Engineering
(WCRE’02), pages 211-220. IEEE Computer Society Press, 2002.

[Joh86] L.F. Johnson. File Techniques for Data Base Organization in Cobol. Prentice-Hall
International, second edition, 1986.

[KLV02] Jan Kort, Ralf Lammel, and Chris Verhoef. The Grammar Deployment Kit. In
Mark van den Brand and Ralf Lammel, editors, Electronic Notes in Theoretical Computer
Science, volume 65. Elsevier Science Publishers, 2002.

96 BIBLIOGRAPHY

[Kor03] Jan Kort. Grammar Deployment Kit Reference Manual, May 2003.

[KV03] T. Kuipers and J. Visser. Object-oriented tree traversal with jjforester. Science of
Computer Programming, 47:59, April 2003.

[L401] Ralf Lammel. Grammar Adaptation. In Proc. Formal Methods Europe (FME) 2001,
volume 2021 of LNCS, pages 550-570. Springer-Verlag, 2001.

[LVO1] Ralf Limmel and Chris Verhoef. Semi-Automatic Grammar Recovery. Software Prac-
tice & Experience, 31(15):1395-1438, December 2001.

[PK81] A.S. Philippakis and Leonard J. Kazmier. Structured Cobol. McGraw-Hill, second
edition, 1981.

[PK82] A.S. Philippakis and Leonard J. Kazmier. Advanced Cobol. McGraw-Hill, 1982.

[PTW] The TWiki website dedicated to Program Transformation. http://wuw.
program-transformation.org, Last modified 06 May 2004, Last accessed 8 May 2004.

[SPL03] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing Legacy Systems.
SEI Series in Software Engineering. Addison-Wesley, 2003.

[THO1] Philippe Thiran and Jean-Luc Hainaut. Wrapper Development for Legacy Data Reuse.
In Proc. of the 8th Working Conference on Reverse Engineering (WCRE’01). IEEE Com-
puter Society Press, 2001.

[Ulr02] William M. Ulrich. Legacy Systems: Transformation Strategies. Prentice Hall PTR,
2002.

[vDV04] A. van Deursen and J. Visser. Source Model Analysis Using the JJTraveler Visitor
Combinator Framework. Software: Practice and Experience, 2004.

[VeeO1] Niels Veerman. Restructuring Cobol Systems using Automatic Transformations. Mas-
ter’s thesis, Vrije Universiteit Amsterdam, 2001.

[Vis04] Eelco Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and
systems in StrategoXT-0.9. In Lengauer et al., editors, Domain-Specific Program Gener-
ation, Lecture Notes in Computer Science. Spinger-Verlag, June 2004. (To appear).

[vK03] Mark G.J. van den Brand and Paul Klint. ASF+SDF Meta-Environment User Manual,
September 2003.

[VKV03] Mark G.J. van den Brand, Paul Klint, and Jurgen J. Vinju. Term Rewriting with
Traversal Functions. ACM Transactions on Software Engineering Methodoly, 12(2):152—
190, 2003.

[vMV03] Mark G.J. van den Brand, P.E. Moreau, and J.J. Vinju. A generator of ef-
ficient strongly typed abstract syntax trees in java. Technical Report SEN-E0306,
CWI, 2003. available at http://www.cwi.nl/themes/senl/twiki/pub/SEN1/ApiGen/
submitted-20-11-200%3.pdf.

[vSV97] Mark G.J. van den Brand, Alex Sellink, and Chris Verhoef. Obtaining a COBOL
Grammar from Legacy Code for Reengineering Purposes. In Proceedings of the 2nd Inter-
national Workshop on the Theory and Practice of Algebraic Specifications (ASF-+SDF’97),
1997.

[vV00] Mark G.J. van den Brand and J.J. Vinju. Rewriting with Layout. In Claude Kirchner
and Nachum Dershowitz, editors, Proceedings of RULE2000, 2000.

BIBLIOGRAPHY 97

[vvDK*96] Mark G. J. van den Brand, Arie van Deursen, Paul Klint, Steven Klusener, and
E. A. van der Meulen. Industrial Applications of ASF+SDF. In M. Wirsing and M. Nivat,
editors, Algebraic Methodology and Software Technology (AMAST’96), volume 1101 of
Lecture Notes in Computer Science, pages 9—18. Springer-Verlag, 1996.

[Wie95] G. Wiederhold. Modeling and System Maintenance. In Proceedings of the International
Conference on Object-Oriented and Entity-Relationship Modeling, 1995.

[Wik] the Free Encyclopedia Wikipedia. at http://en.wikipedia.org, Last modified 22 Mar
2004, Last accessed 06 Apr 2004.

[WLB*97] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wad, D. O’Sullivan, and R. Richard-
son. Legacy System Migration: A Legacy Data Migration Engine. In Ed. Czechoslo-

vak Computer Experts, editor, Proccedings of the 17th International Database Conference
(DATASEM ’97), pages 129-138, 1997.

98

BIBLIOGRAPHY

Appendix A

Abstract Transformation rules

In this appendix, we will give a summary of some transformation rules, used to replace the
COBOL DMS statements according to both <D2,P1> and <D1,P2> strategies. In both cases,
these rules allow the program to access the SQL tables instead of the migrated COBOL files.
Remember that in the <D2,P1> strategy, we locally replace the COBOL DMS statements
with a CALL statement to a generated wrapper. In the <D1,P2> strategy, we locally replace
the COBOL DMS statements with a PERFORM statement executing a generated paragraph.

These rules are not exhaustive, we give one rule for each kind of COBOL access statement
(OPEN, CLOSE, START, sequential READ, random READ, etc.).

100

Abstract Transformation rules

OPEN
Syntax

OPEN open-option file-name

<D2,P1>

CALL wrapper-name
USING
“open ”
record-name
open-option
wrapper-status

<D1,P2>

PERFORM
P2-0PEN-open-option- file-name

CLOSE
Syntax

CLOSE file-name

<D2,P1>

CALL wrapper-name
USING
“close ”
record-name
no-option
wrapper-status

<D1,P2>

No translation is necessary.

START
Syntax

START file-name KEY IS operator access-key

INVALID KEY statements-1
NOT INVALID KEY statements-2
END-START

<D2,P1>

CALL wrapper-name
USING “start ”
record-name

“KEY IS operator access-key ”

wrapper-status
IF wrapper-status-invalid-key
THEN statements-1
ELSE statements-2
END-IF

<D1,P2>

PERFORM

P2-START-file-name- operator- access-key

IF p2-status-invalid-key
THEN statements-1
ELSE statements-2

END-IF

101

sequential READ random READ
Syntax Syntax

READ file-name NEXT

AT END statements-1

NOT AT END statements-2
END-READ

<D2,P1>

CALL wrapper-name
USING “read ”
record-name
“no-option ”
wrapper-status
IF wrapper-status-at-end
THEN statements-1
ELSE statements-2
END-IF

<D1,P2>

PERFORM P2-READ- file-name-NEXT

IF p2-status-at-end
THEN statements-1
ELSE statements-2

END-IF

READ file-name KEY IS access-key
INVALID KEY statements-1

NOT INVALID KEY statements-2

END-READ

<D2,P1>

CALL wrapper-name
USING “read ”
record-name
“KEY IS access-key”
wrapper-status
IF wrapper-status-invalid-key
THEN statements-1
ELSE statements-2
END-IF

<D1,P2>

PERFORM P2-READ- file-name-KEY-1S-access-key

IF p2-status-invalid-key
THEN statements-1
ELSE statements-2

END-IF

102

Abstract Transformation rules

sequential WRITE
Syntax

WRITE record-name

<D2,P1>

CALL wrapper-name
USING “write ”
record-name
no-option
wrapper-status

<D1,P2>

PERFORM P2-WRITE-record-name

random WRITE
Syntax

WRITE record-name

INVALID KEY statements-1

NOT INVALID KEY statements-2
END-WRITE

<D2,P1>

CALL wrapper-name
USING “write ”
record-name
no-option
wrapper-status
IF wrapper-status-invalid-key
THEN statements-1
ELSE statements-2
END-IF

<D1,P2>

PERFORM P2-WRITE-record-name
IF p2-status-invalid-key

THEN statements-1

ELSE statements-2
END-IF

103

sequential REWRITE
Syntax

REWRITE record-name

<D2,P1>

CALL wrapper-name
USING “rewrite ”
record-name
no-option
wrapper-status

<D1,P2>

PERFORM P2-REWRITE- record-name

random REWRITE
Syntax

REWRITE record-name
INVALID KEY statements-1

NOT INVALID KEY statements-2
END-WRITE

<D2,P1>

CALL wrapper-name
USING “rewrite ”
record-name
no-option
wrapper-status
IF wrapper-status-invalid-key
THEN statements-1
ELSE statements-2
END-IF

<D1,P2>

PERFORM P2-REWRITE-record-name
IF p2-status-invalid-key

THEN statements-1

ELSE statements-2
END-IF

104 Abstract Transformation rules

sequential DELETE random DELETE
Syntax Syntax
DELETE file-name DELETE file-name
INVALID KEY statements-1
<D2,P1> NOT INVALID KEY statements-2
END-DELETE
CALL wrapper-name
USING “delete ”
record-name <Db2,P1>
no-option CALL wrapper-name
wrapper-status USING “delete ”
record-name
no-option
<D1,P2> wrapper-status
IF wrapper-status-invalid-key
PERFORM P2—DELETE—ﬁle—name THEN statements-1
ELSE statements-2
END-IF
<D1,P2>

PERFORM P2-REWRITE-record-name
IF p2-status-invalid-key

THEN statements-1

ELSE statements-2
END-IF

Appendix B

User Guide

In this appendix, we describe the way to use our COBOL program transformation tools.

Requirements

e The Meta-Environment must be installed!. It compiles and runs on most Unix platforms.

Note that we used an older version of the Meta-Environment than the current one. The
last release (Meta-Environment 1.5) contains many radical improvements of many as-
pects of ASF, SDF and the Meta-Environment. There are new features, some old features
have been replaced by new features, and some features have become deprecated with-
out replacement. Old ASF+SDF specifications (like our specifications) can be upgraded
automatically using the Upgrade menus in the environment.

e The use of the Perl scripts required a Perl interpreter.

CD-ROM

The CD-ROM available with this Master’s thesis contains:
e The full P1 ASF+SDF Specification
e The full P2 ASF+SDF Specification
e The case study order.cob

The content of the CD-ROM is also available at www.info.fundp.ac.be/~acleve/CD-ROM

P1 Specification
Files The directory "P1-Specification" of the CD-ROM contains :
e The subdirectory "IBM-VSII SDF", containing the full Cobol IBM-VSII SDF grammar.

e The subdirectory "Traversal-functions", containing both SDF syntax rules and ASF
equations of the top-module.

!See http://www.cwi.nl/htbin/sen1/twiki/bin/view/SEN1/MetaEnvironment for more details
about the installation requirements

106 User Guide

e The subdirectory "Case study", containing :

— the case study program: "order.cob";
— the transformation parameters: "file-1list.txt";

— the resulting program: "orderpl.cob".
e The subdirectory "P1-conversion script", containing:

— the shell script used to perform the P1 transformation: "pl-conversion";

the parse tables: "cobol_ibmvs2.trm.tbl" and "Traversal-functions.trm.tbl";

the equations table: "Traversal-functions.eqs;

the Perl scripts.

P1 conversion In order to apply our P1 transformation rules to a cobol program input.cob,
the shell script "pl-conversion" can be used. Make sure that pl-conversion is executable:

chmod +x pl-conversion
Then, a COBOL program input.cob can be transformed using the following command:
./pl-conversion input.cob files-list output.cob

where

e the file files-list contains the list of the migrated files. For instance, the file list used for
the conversion of the case study is mylist (ORDERS,CUSTOMER, STOCK).

o output.cob is the name of the resulting COBOL program.

P2 Specification
Files The directory "P2-Specification" of the CD-ROM contains :
e The subdirectory "IBM-VSII SDF", containing the full Cobol IBM-VSII SDF grammar.

e The subdirectory "Traversal-functions", containing both SDF syntax rules and ASF
equations of the top-module.

e The subdirectory "Case study", containing :

— the case study program: "order.cob";
— the transformation parameters: "file-list.txt and "myparameters.trm";

— the resulting program: "orderp2.cob".
e The subdirectory "P2-conversion script", containing:

— the shell script used to perform the P2 transformation: "p2-conversion";

— the parse tables: "cobol_ibmvs2.trm.tbl" and "Traversal-functions.trm.tbl";

the equations table: "Traversal-functions.eqgs;

the Perl scripts.

107

P2 conversion In order to apply our P1 transformation rules to a cobol program input.cob,
the shell script "p2-conversion" can be used. Make sure that p2-conversion is executable:

chmod +x p2-conversion

Then, a COBOL program input.cob can be transformed using the following command:

./p2-conversion input.cob d1-mapping files-list output.cob

where

e the file d1-mapping contains the D1 one-to-one mapping that exists between the COBOL
physical schema and the SQL physical schema. This mapping is of the following form:

myparameters (rt-table, tc-table, rf-table, tk-table)

where

The rt-table gives the correspondences between COBOL records and SQL
tables. It has the following form:

rt ([<recordy ,table>,<records, ,tables>, ... ,<record, ,table,>])
The tc-table gives the columns of each SQL table:
tc([<tabler,c(coliy ... colip)>, ... ,<table, ,c(col,i ... col,y)>1)
The rf-table gives the corresponding fields of each COBOL record:
rf ([<recordy ,f (fieldyy ... fieldip,)>, ... ,<record, ,f (field,; ... field,;)>1)

Note that each SQL column (col;;) occurring in the tc-table is the D1 trans-
lation of a COBOL field (field;;) occurring in the rf-table.

The tk-table gives, for each access key of each SQL table, the SQL columns
(¢ij) composing the access key, the corresponding COBOL fields (f;;), and
a name to be used in the cursor names (compatible for SQL). The tk-table
has the following form:

tk ([<tabley, rk-table1>, ... ,<table, ,rk-table,>])
with rk-table of the form:

rk ([<access-key,, cf(ciy ... cix, f11 --- fik, cursor-namey)>,

<access-key,, cf(cpr ... Cprs fp1 ..o fpr, cursor-namep)>1)

Figure B.2 gives the example of the d1-mapping used in the case study order. cob
discussed in chapter 7. Figure B.1 depicts the translation of the three COBOL
files into three SQL tables.

e the file files-list contains the list of the migrated files. For instance, the file list
used for the conversion of the case study is mylist (ORDERS,CUSTOMER,STOCK).

e output.cob is the name of the resulting COBOL program.

108

User Guide

ORD ORDERS
ORD-CODE ORD_CODE
ORD-DATE ORD_DATE
ORD-CUSTOMER ORD_CUSTOMER
ORD-DETAIL D1 ORD_DETAIL
id: ORD-CODE id: ORD_CODE
acc acc
acc: ORD-CUSTOMER acc: ORD_DATE
acc: ORD-DATE acc: ORD_CUSTOMER
CUS STK CUSTOMER STOCK
CUS-CODE STK-CODE CUS CODE STK CODE
CUS-DESCR STK-NAME CUS_DESCR STK_NAME
CUS-HIST STK-LEVEL CUS_HIST STK_LEVEL
id: CUS-CODE| | id: STK-CODE id: CUS_CODE| |id: STK_CODE
acc acc acc acc

myparameters (

Figure B.1: Ezample of D1 conversion

rt ([<CUS,CUSTOMER>,<0RD,ORDERS>,<STK,STOCK>]) ,

tc ([<CUSTOMER, c (CUS_CODE CUS_DESCR CUS_HIST)>,

<ORDERS, c (ORD_CODE ORD_DATE ORD_CUSTOMER ORD_DETAIL)>,

<STOCK,c(STK_CODE STK_NAME STK_LEVEL)> 1),

rf ([<CUS, £ (CUS-CODE CUS-DESCR CUS-HIST)>,
<ORD, f (ORD-CODE ORD-DATE ORD-CUSTOMER ORD-DETAIL)>,
<STK,f (STK-CODE STK-NAME STK-LEVEL)>1),

tk ([<CUSTOMER,rk([<CUS-CODE, cf (CUS_CODE, CUS-CODE,CUS_CODE)>]1)>,
<ORDERS, rk ([<ORD-CODE, cf (ORD_CODE, ORD-CODE, ORD_CODE) >,

<ORD-CUSTOMER, cf (ORD_CUSTOMER , ORD-CUSTOMER , ORD_CUS) >,

<ORD-DATE, cf (ORD_DATE, ORD-DATE, ORD_DATE)>])>,
<STOCK,rk ([<STK-CODE, cf (STK_CODE, STK-CODE,STK_CODE) >1)>1)

Figure B.2: Ezample of d1-mapping

Appendix C

Wrapper-based Conversion of the
Case Study

This appendix contains the COBOL program obtained by transforming the case study program

order.cob with respect to the Wrapper conversion strategy. The source code fragments that

have been transformed begin by a COBOL comment indicating the rewritten statement.
Here is the naming convention we used for the names of the wrappers:

e WR-CUS: the wrapper for the file CUSTOMER
e WR-ORD: the wrapper for the file ORDERS
e WR-STK: the wrapper for the file STOCK

110

Wrapper-based Conversion of the Case Study

IDENTIFICATION DIVISION.
PROGRAM-ID. C-ORD.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.
01 STK.
02 STK-CODE PIC 9(5).
02 STK-NAME PIC X(100).
02 STK-LEVEL PIC 9(5).

01 ORD.
02 ORD-CODE PIC 9(10).
02 ORD-DATE PIC X(8).
02 ORD-CUSTOMER PIC X(12).
02 ORD-DETAIL PIC X(200).

01 CUS.
02 CUS-CODE PIC X(12).
02 CUS-DESCR PIC X(110).
02 CUS-HIST PIC X(1000).

01 WR-STATUS PIC 9(3).
88 WR-STATUS-NO-ERR VALUE 0.

88 WR-STATUS-INVALID-KEY VALUE 1.

88 WR-STATUS-AT-END VALUE 100.
01 SQL-ACTION PIC X(100).
01 SQL-OPTION PIC X(100).

01 DESCRIPTION.
02 NAME PIC X(20).
02 ADDR PIC X(40).
02 COMPANY PIC X(30).
02 FUNCT PIC X(10).
02 REC-DATE PIC X(10).

01 LIST-PURCHASE.
02 PURCH OCCURS 100 TIMES
INDEXED BY IND.
03 REF-PURCH-STK PIC 9(5).
03 TOT PIC 9(5).

01 LIST-DETAIL.
02 DETAILS OCCURS 20 TIMES
INDEXED BY IND-DET.
03 REF-DET-STK PIC 9(5).
03 DRD-QTY PIC 9(5).

01 ORDER-DATE.
02 ORDER-YYYY PIC X(4).
02 ORDER-MM PIC X(2).
02 ORDER-DD PIC X(2).

01 CHOICE PIC X.

01 END-FILE PIC 9.

01 END-DETAIL PIC 9.

01 EXIST-PROD PIC 9.

01 PROD-CODE PIC 9(5).

01 TOT-COMP PIC 9(5) COMP.
01 QTY PIC 9(5) COMP.
01 NEXT-DET PIC 99.

PROCEDURE DIVISION.
MAIN.
PERFORM INIT.
PERFORM PROCESS UNTIL CHOICE =
PERFORM CLOSING.
STOP RUN.

INIT.
OPEN I-0 CUSTOMER
MOVE "open" TO SQL-ACTION
MOVE "i-o" TO SQL-OPTION
CALL "WR-CUS" USING
BY CONTENT SQL-ACTION
BY REFERENCE CUS
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS.
OPEN I-D ORDERS
MOVE "open" TO SQL-ACTION
MOVE "i-o" TO SQL-OPTION
CALL "WR-ORD" USING
BY CONTENT SQL-ACTION
BY REFERENCE ORD
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS.
OPEN I-0 STOCK
MOVE "open" TO SQL-ACTION
MOVE "i-o" TO SQL-OPTION
CALL "WR-STK" USING
BY CONTENT SQL-ACTION
BY REFERENCE STK
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS.

PROCESS.
DISPLAY "1 NEW CUSTOMER".
DISPLAY "2 NEW STOCK".
DISPLAY "3 NEW ORDER".
DISPLAY "4 LIST OF CUSTOMERS".
DISPLAY "5 LIST OF STOCKS".

DISPLAY "6 LIST OF ORDERS (BY NUMBER)".
DISPLAY "7 LIST OF ORDERS (BY DATE)".

DISPLAY "8 DELETE CUSTOMER".
DISPLAY "O END".
ACCEPT CHOICE.
IF CHOICE = 1
PERFORM NEW-CUS.
IF CHOICE = 2
PERFORM NEW-STK.
IF CHOICE = 3
PERFORM NEW-ORD.
IF CHOICE = 4
PERFORM LIST-CUS.
IF CHOICE = 5
PERFORM LIST-STK.
IF CHOICE = 6
PERFORM LIST-ORD.

0.

111

IF CHOICE =7

PERFORM LIST-ORD-DATE.
IF CHOICE = 8

PERFORM DELETE-CUS.

CLOSING.

CLOSE CUSTOMER
MOVE "close" TO SQL-ACTION
MOVE " " TO SQL-OPTION
CALL "WR-CUS" USING

BY CONTENT SQL-ACTION

BY REFERENCE CUS

BY CONTENT SQL-OPTION

BY REFERENCE WR-STATUS.

CLOSE ORDERS
MOVE "close" TO SQL-ACTION
MOVE " " TO SQL-OPTION
CALL "WR-ORD" USING

BY CONTENT SQL-ACTION

BY REFERENCE ORD

BY CONTENT SQL-OPTION

BY REFERENCE WR-STATUS.

CLOSE STOCK
MOVE "close" TO SQL-ACTION
MOVE " " TO SQL-OPTION
CALL "WR-STK" USING

BY CONTENT SQL-ACTION

BY REFERENCE STK

BY CONTENT SQL-OPTION

BY REFERENCE WR-STATUS.

NEW-CUS.
DISPLAY "NEW CUSTOMER :".
DISPLAY "CUSTOMER CODE 7"
WITH NO ADVANCING.
ACCEPT CUS-CODE.

DISPLAY "NAME DU CUSTOMER : "
WITH NO ADVANCING.

ACCEPT NAME.

DISPLAY "ADDRESS OF CUSTOMER :
WITH NO ADVANCING.

ACCEPT ADDR.

DISPLAY "COMPANY OF CUSTOMER :
WITH NO ADVANCING.

ACCEPT COMPANY.

IF(COMPANY NOT= SPACE)

DISPLAY "FUNCTION OF CUSTOMER :

WITH NO ADVANCING
ACCEPT FUNCT
ELSE
MOVE SPACE TO FUNCT.
DISPLAY "DATE : "
WITH NO ADVANCING.
ACCEPT REC-DATE.
MOVE DESCRIPTION TO CUS-DESCR.
PERFORM INIT-HIST.
WRITE CUS
MOVE "write" TO SQL-ACTION
MOVE " " TO SQL-OPTION
CALL "WR-CUS" USING
BY CONTENT SQL-ACTION
BY REFERENCE CUS

BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS
* *INVALID KEY
IF WR-STATUS-INVALID-KEY
DISPLAY "ERROR"
END-IF.

LIST-CUS.
DISPLAY "LISTE DES CUSTOMERS".
* CLOSE CUSTOMER
MOVE "close" TO SQL-ACTION
MOVE " " TO SQL-OPTION
CALL "WR-CUS" USING
BY CONTENT SQL-ACTION
BY REFERENCE CUS
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS.
* OPEN I-0 CUSTOMER
MOVE "open" TO SQL-ACTION
MOVE "i-o" TO SQL-OPTION
CALL "WR-CUS" USING
BY CONTENT SQL-ACTION
BY REFERENCE CUS
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS.
MOVE 1 TO END-FILE.
PERFORM READ-CUS
UNTIL (END-FILE = 0).

READ-CUS.
* READ CUSTOMER NEXT
MOVE "read" TO SQL-ACTION
MOVE " " TO SQL-OPTION

CALL "WR-CUS" USING
BY CONTENT SQL-ACTION
BY REFERENCE CUS
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS
* *AT END
" IF WR-STATUS-AT-END
MOVE O TO END-FILE
* *NOT AT END
" ELSE
DISPLAY CUS-CODE
DISPLAY CUS-DESCR
DISPLAY CUS-HIST
" END-IF.

DELETE-CUS.

MOVE 1 TO END-FILE.

PERFORM READ-CUS-CODE
UNTIL END-FILE = 0.

PERFORM DELETE-CUS-ORD.

* DELETE CUSTOMER

MOVE "delete" TO SQL-ACTION

MOVE " " TO SQL-OPTION

CALL "WR-CUS" USING

BY CONTENT SQL-ACTION

BY REFERENCE CUS

BY CONTENT SQL-OPTION

BY REFERENCE WR-STATUS.

112 Wrapper-based Conversion of the Case Study

DELETE-CUS-0RD. BY REFERENCE STK

*

*

*

*

*

*

MOVE CUS-CODE TO ORD-CUSTOMER.
MOVE O TO END-FILE.
READ ORDERS KEY IS ORD-CUSTOMER
MOVE "read" TO SQL-ACTION
MOVE "KEY IS ORD-CUSTOMER" TO SQL-OPTION
CALL "WR-ORD" USING
BY CONTENT SQL-ACTION
BY REFERENCE ORD
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS

*INVALID KEY

IF WR-STATUS-INVALID-KEY

MOVE 1 TO END-FILE

END-IF.

PERFORM DELETE-ORDER
UNTIL END-FILE = 1.

DELETE-ORDER.

DELETE ORDERS
MOVE "delete" TO SQL-ACTION
MOVE " " TO SQL-OPTION
CALL "WR-ORD" USING
BY CONTENT SQL-ACTION
BY REFERENCE ORD
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS.
READ ORDERS NEXT
MOVE "read" TO SQL-ACTION
MOVE " " TO SQL-OPTION
CALL "WR-ORD" USING
BY CONTENT SQL-ACTION
BY REFERENCE ORD
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS

*AT END

IF WR-STATUS-AT-END
MOVE 1 TO END-FILE
*NOT AT END
ELSE
IF ORD-CUSTOMER NOT = CUS-CODE
MOVE 1 TO END-FILE
END-IF.

NEW-STK.

DISPLAY "NEW STOCK".

DISPLAY "PRODUCT NUMBER : "
WITH NO ADVANCING.

ACCEPT STK-CODE.

DISPLAY "NAME : "
WITH NO ADVANCING.
ACCEPT STK-NAME.

DISPLAY "LEVEL : "
WITH NO ADVANCING.
ACCEPT STK-LEVEL.

WRITE STK

MOVE "write" TO SQL-ACTION
MOVE " " TO SQL-OPTION
CALL "WR-STK" USING

BY CONTENT SQL-ACTION

BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS

* *INVALID KEY
IF WR-STATUS-INVALID-KEY
DISPLAY "ERREUR "
END-IF.

LIST-STK.
DISPLAY "LIST OF STOCKS ".

* CLOSE STOCK
MOVE "close" TO SQL-ACTION
MOVE " " TO SQL-OPTION
CALL "WR-STK" USING
BY CONTENT SQL-ACTION
BY REFERENCE STK
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS.
* OPEN I-0 STOCK
MOVE "open" TO SQL-ACTION
MOVE "i-o" TO SQL-OPTION
CALL "WR-STK" USING
BY CONTENT SQL-ACTION
BY REFERENCE STK
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS.

MOVE 1 TO END-FILE.
PERFORM READ-STK
UNTIL END-FILE = 0.

READ-STK.

* READ STOCK NEXT

MOVE "read" TO SQL-ACTION
MOVE " " TO SQL-OPTION
CALL "WR-STK" USING

BY CONTENT SQL-ACTION

BY REFERENCE STK

BY CONTENT SQL-OPTION

BY REFERENCE WR-STATUS

* *AT END

IF WR-STATUS-AT-END
MOVE O TO END-FILE

* *NOT AT END

ELSE

DISPLAY STK-CODE
DISPLAY STK-NAME
DISPLAY STK-LEVEL
END-IF.

NEW-0RD.
DISPLAY "NEW ORDER".
DISPLAY "ORDER NUMBER : "
WITH NO ADVANCING.
ACCEPT ORD-CODE.

DISPLAY "ORDER DATE".
DISPLAY " DAY "

WITH NO ADVANCING.
ACCEPT ORDER-DD.
DISPLAY " MONTH "

113

WITH NO ADVANCING.
ACCEPT ORDER-MM.
DISPLAY " YEAR (YYYY) "
WITH NO ADVANCING.
ACCEPT ORDER-YYYY.
MOVE ORDER-DATE TO ORD-DATE.
MOVE 1 TO END-FILE.
PERFORM READ-CUS-CODE
UNTIL END-FILE = 0.
MOVE CUS-DESCR TO DESCRIPTION.
DISPLAY NAME.
MOVE CUS-CODE TO ORD-CUSTOMER.
MOVE CUS-HIST TO LIST-PURCHASE.

SET IND-DET TO 1.
MOVE 1 TO END-FILE.
PERFORM READ-DETAIL

UNTIL END-FILE = O OR IND-DET = 21.

MOVE LIST-DETAIL TO ORD-DETAIL.

* WRITE ORD
MOVE "write" TO SQL-ACTION
MOVE " " TO SQL-OPTION

CALL "WR-ORD" USING

BY CONTENT SQL-ACTION

BY REFERENCE ORD

BY CONTENT SQL-OPTION

BY REFERENCE WR-STATUS
*xINVALID KEY

IF WR-STATUS-INVALID-KEY

DISPLAY "ERROR"

END-IF.

MOVE LIST-PURCHASE
TO CUS-HIST.
* REWRITE CUS
MOVE "rewrite" TO SQL-ACTION
MOVE " " TO SQL-OPTION
CALL "WR-CUS" USING
BY CONTENT SQL-ACTION
BY REFERENCE CUS
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS
**xINVALID KEY
IF WR-STATUS-INVALID-KEY
DISPLAY "ERROR CUS"
END-IF.

READ-CUS-CODE.
DISPLAY "CUSTOMER NUMBER : "
WITH NO ADVANCING.
ACCEPT CUS-CODE.
MOVE O TO END-FILE.
* READ CUSTOMER
MOVE "read" TO SQL-ACTION
MOVE "KEY IS CUS-CODE" TO SQL-OPTION
CALL "WR-CUS" USING
BY CONTENT SQL-ACTION
BY REFERENCE CUS
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS
**xINVALID KEY

IF WR-STATUS-INVALID-KEY
DISPLAY "NO SUCH CUSTOMER"
MOVE 1 TO END-FILE

END-IF.

READ-DETAIL.

DISPLAY "PRODUCT CODE (0 = END) : ".
ACCEPT PROD-CODE.
IF PROD-CODE = 0O

MOVE 0O

TO REF-DET-STK(IND-DET)

MOVE O TO END-FILE
ELSE

PERFORM READ-PROD-CODE.

READ-PROD-CODE.
MOVE 1 TO EXIST-PROD.
MOVE PROD-CODE TO STK-CODE.
* READ STOCK
MOVE "read" TO SQL-ACTION
MOVE "KEY IS STK-CODE" TO SQL-OPTION
CALL "WR-STK" USING
BY CONTENT SQL-ACTION
BY REFERENCE STK
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS
**INVALID KEY
IF WR-STATUS-INVALID-KEY
MOVE O TO EXIST-PROD
END-IF.
IF EXIST-PROD = 0O
DISPLAY "NO SUCH PRODUCT"
ELSE
PERFORM UPDATE-ORD-DETAIL.

UPDATE-ORD-DETAIL.
MOVE 1 TO NEXT-DET.
DISPLAY "QUANTITY ORDERED : "
WITH NO ADVANCING
ACCEPT ORD-QTY(IND-DET).
PERFORM UNTIL
(NEXT-DET < IND-DET

AND REF-DET-STK(NEXT-DET) = PROD-CODE)

OR IND-DET = NEXT-DET
ADD 1 TO NEXT-DET
END-PERFORM.
IF IND-DET = NEXT-DET
MOVE PROD-CODE
TO REF-DET-STK(IND-DET)
PERFORM UPDATE-CUS-HIST
SET IND-DET UP BY 1
ELSE
DISPLAY "ERROR : ALREADY ORDERED".
UPDATE-CUS-HIST.
SET IND TO 1.
PERFORM UNTIL
REF-PURCH-STK(IND) = PROD-CODE
OR REF-PURCH-STK(IND) = 0O
OR IND = 101
SET IND UP BY 1
END-PERFORM.

114 Wrapper-based Conversion of the Case Study

IF IND = 101 MOVE "read" TO SQL-ACTION
DISPLAY "ERR : HISTORY OVERFLOW" MOVE " " TO SQL-OPTION
EXIT. CALL "WR-ORD" USING
IF REF-PURCH-STK(IND) BY CONTENT SQL-ACTION
= PROD-CODE BY REFERENCE ORD
ADD ORD-QTY(IND-DET) TO TOT(IND) BY CONTENT SQL-OPTION
ELSE BY REFERENCE WR-STATUS
MOVE PROD-CODE **xAT END
TO REF-PURCH-STK(IND) IF WR-STATUS-AT-END
MOVE ORD-QTY(IND-DET) TO TOT(IND). MOVE O TO END-FILE
*xNOT AT END
LIST-ORD. ELSE
DISPLAY "LIST OF ORDERS (BY NUMBER)". DISPLAY "Order : " ORD-CODE " - " ORD-DATE
MOVE O TO ORD-CODE. DISPLAY "DRD-CUSTOMER " ORD-CUSTOMER
* START ORDERS KEY IS > ORD-CODE MOVE ORD-DETAIL TO LIST-DETAIL
MOVE "start" TO SQL-ACTION SET IND-DET TO 1
MOVE "KEY IS > ORD-CODE" TO SQL-OPTION MOVE 1 TO END-DETAIL
CALL "WR-ORD" USING PERFORM DISPLAY-DETAIL
BY CONTENT SQL-ACTION UNTIL END-DETAIL = 0
BY REFERENCE ORD END-IF.
BY CONTENT SQL-OPTION
BY REFERENCE WR-STATUS INIT-HIST.
**xINVALID KEY SET IND TO 1.
IF WR-STATUS-INVALID-KEY PERFORM UNTIL IND = 100
MOVE O TO END-FILE MOVE O TO REF-PURCH-STK(IND)
* *NOT INVALID KEY MOVE O TO TOT(IND)
ELSE SET IND UP BY 1
MOVE 1 TO END-FILE END-PERFORM.
END-IF. MOVE LIST-PURCHASE TO CUS-HIST.

PERFORM READ-ORD UNTIL END-FILE = O.
DISPLAY-DETAIL.

LIST-ORD-DATE. IF IND-DET = 21
DISPLAY "LIST OF ORDERS (BY DATE)". MOVE O TO END-DETAIL
DISPLAY "STARTING DATE". ELSE
DISPLAY " DAY " IF REF-DET-STK(IND-DET) = 0
WITH NO ADVANCING. MOVE O TO END-DETAIL
ACCEPT ORDER-DD. ELSE
DISPLAY " MONTH " MOVE REF-DET-STK(IND-DET) TO STK-CODE
WITH NO ADVANCING. * READ STOCK
ACCEPT ORDER-MM. MOVE "read" TO SQL-ACTION
DISPLAY " YEAR (YYYY) " MOVE "KEY IS STK-CODE" TO SQL-OPTION
WITH NO ADVANCING. CALL "WR-STK" USING
ACCEPT ORDER-YYYY. BY CONTENT SQL-ACTION
MOVE ORDER-DATE TO ORD-DATE. BY REFERENCE STK
* START ORDERS KEY IS > ORD-DATE BY CONTENT SQL-OPTION
MOVE "start" TO SQL-ACTION BY REFERENCE WR-STATUS
MOVE "KEY IS > ORD-DATE" TO SQL-OPTION *xINVALID KEY
CALL "WR-ORD" USING IF WR-STATUS-INVALID-KEY
BY CONTENT SQL-ACTION THEN
BY REFERENCE ORD DISPLAY "ERROR : UNKOWN PRODUCT"
BY CONTENT SQL-OPTION *xNOT INVALID KEY
BY REFERENCE WR-STATUS ELSE
**xINVALID KEY DISPLAY STK-NAME " " ORD-QTY(IND-DET)
IF WR-STATUS-INVALID-KEY END-IF
MOVE O TO END-FILE SET IND-DET UP BY 1.
*xNO0T INVALID KEY
ELSE
MOVE 1 TO END-FILE
END-IF.
PERFORM READ-ORD UNTIL END-FILE = O.
READ-ORD.

* READ ORDERS NEXT

Appendix D

Statement Rewriting Conversion of
the Case Study

This appendix contains the COBOL program obtained by transforming the case study
program order.cob with respect to the Statement Rewriting conversion strategy. The
source code fragments that have been transformed begin by a COBOL comment indi-
cating the rewritten statement.

Here is the naming convention we used for the P2 paragraphs generation:

1. Paragraphs names The name of a COBOL paragraph cannot exceed 30 char-
acters. So we used the following rules in order to minimize the names of the P2
generated paragraphs.

Cursors declaration: P2-CURSORS-DECLARATION
OPEN paragraph: P2-0PEN- file

OPEN QUTPUT paragraph: P2-0PEN-OUT- file
CLOSE paragraph: no paragraph

START KEY IS = paragraph: P2-S-file-E-key
START KEY IS > paragraph: P2-S-file-G-key
START KEY IS => paragraph: P2-S-file-N-key
READ NEXT paragraph: P2-R- file-NEXT

READ KEY IS paragraph: P2-R-file-K-key
WRITE paragraph: P2-WRITE-record

REWRITE paragraph: P2-REWRITE-record
DELETE paragraph: P2-DELETE- file

2. Cursor names The name of a SQL cursor cannot exceed 18 characters. So we
used the following rules in order to minimize the names of the cursors. The name
of a cursor is of the form: (0|E|G|N)key-name.

116 Statement Rewriting Conversion of the Case Study

0 stands for "order by"

E stands for "equal to"

G stands for "greater than"

N stands for "not less than"

e key-name is an argument of the P2 conversion giving a name to each access
key. (key-name contains less then 17 characters, and is compatible for SQL).

For instance, the key-name given for the access key ORD-DATE is ORD_DATE. So
the cursor name corresponding to "greater than ORD-DATE" is called GORD_DATE.

117

IDENTIFICATION DIVISION.
PROGRAM-ID. C-ORD.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.
EXEC SQL INCLUDE SQLCA END-EXEC.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 STK.
02 STK-CODE PIC 9(5).
02 STK-NAME PIC X(100).
02 STK-LEVEL PIC 9(5).

01 ORD.
02 ORD-CODE PIC 9(10).
02 ORD-DATE PIC X(8).
02 ORD-CUSTOMER PIC X(12).
02 ORD-DETAIL PIC X(200).

01 CUS.
02 CUS-CODE PIC X(12).
02 CUS-DESCR PIC X(110).
02 CUS-HIST PIC X(1000).
01 P2-STATUS PIC S9(9).
88 P2-STATUS-NO-ERR VALUE O.
88 P2-STATUS-INVALID-KEY VALUE 1.
88 P2-STATUS-AT-END VALUE 100.
01 P2-COUNTER PIC X(100).
01 LAST-CURSOR-CUSTOMER PIC X(100).
01 LAST-CURSOR-ORDERS PIC X(100).

01 LAST-CURSOR-STOCK PIC X(100).

EXEC SQL END DECLARE SECTION END-EXEC.

01 DESCRIPTION.
02 NAME PIC X(20).
02 ADDR PIC X(40).
02 COMPANY PIC X(30).
02 FUNCT PIC X(10).
02 REC-DATE PIC X(10).

01 LIST-PURCHASE.
02 PURCH OCCURS 100 TIMES
INDEXED BY IND.
03 REF-PURCH-STK PIC 9(5).
03 TOT PIC 9(5).

01 LIST-DETAIL.
02 DETAILS OCCURS 20 TIMES
INDEXED BY IND-DET.
03 REF-DET-STK PIC 9(5).
03 ORD-QTY PIC 9(5).

*

* *

01 ORDER-DATE.
02 ORDER-YYYY PIC X(4).
02 ORDER-MM PIC X(2).
02 ORDER-DD PIC X(2).

01 CHOICE PIC X.

01 END-FILE PIC 9.

01 END-DETAIL PIC 9.

01 EXIST-PROD PIC 9.

01 PROD-CODE PIC 9(5).

01 TOT-COMP PIC 9(5) COMP.
01 QTY PIC 9(5) COMP.
01 NEXT-DET PIC 99.

PROCEDURE DIVISION.
MAIN.
PERFORM INIT.
PERFORM PROCESS UNTIL CHOICE = O.
PERFORM CLOSING.
STOP RUN.

INIT.
*0PEN I-0 CUSTOMER
PERFORM P2-0PEN-CUSTOMER.
*0PEN I-0 ORDERS
PERFORM P2-0PEN-ORDERS.
*0PEN I-0 STOCK
PERFORM P2-0PEN-STOCK.

PROCESS.
DISPLAY "1 NEW CUSTOMER".
DISPLAY "2 NEW STOCK".
DISPLAY "3 NEW ORDER".
DISPLAY "4 LIST OF CUSTOMERS".
DISPLAY "5 LIST OF STOCKS".

DISPLAY "6 LIST OF ORDERS (BY NUMBER)".

DISPLAY "7 LIST OF ORDERS (BY DATE)".

DISPLAY "8 DELETE CUSTOMER".

DISPLAY "0 END".

ACCEPT CHOICE.

IF CHOICE = 1
PERFORM NEW-CUS.

IF CHOICE = 2
PERFORM NEW-STK.

IF CHOICE = 3
PERFORM NEW-ORD.

IF CHOICE = 4
PERFORM LIST-CUS.

IF CHOICE = 5
PERFORM LIST-STK.

IF CHOICE = 6
PERFORM LIST-ORD.

IF CHOICE =7
PERFORM LIST-ORD-DATE.

IF CHOICE = 8
PERFORM DELETE-CUS.

CLOSING.

*CLOSE CUSTOMER
*nothing to do
CONTINUE.

*CLOSE ORDERS
*nothing to do

118 Statement Rewriting Conversion of the Case Study
CONTINUE. END-TF.
* *CLOSE STOCK
* *nothing to do DELETE-CUS.
CONTINUE. MOVE 1 TO END-FILE.
PERFORM READ-CUS-CODE
NEW-CUS. UNTIL END-FILE = 0.
DISPLAY "NEW CUSTOMER :". PERFORM DELETE-CUS-ORD.
DISPLAY "CUSTOMER CODE 7" *DELETE CUSTOMER
WITH NO ADVANCING. PERFORM P2-DELETE-CUSTOMER.
ACCEPT CUS-CODE.
DELETE-CUS-ORD.
DISPLAY "NAME DU CUSTOMER : " MOVE CUS-CODE TO ORD-CUSTOMER.
WITH NO ADVANCING. MOVE 0 TO END-FILE.
ACCEPT NAME. *READ ORDERS KEY IS ORD-CUSTOMER
DISPLAY "ADDRESS OF CUSTOMER : " PERFORM P2-R-0RDERS-K-ORD-CUSTOMER
WITH NO ADVANCING. *INVALID KEY
ACCEPT ADDR. IF P2-STATUS-INVALID-KEY
DISPLAY "COMPANY OF CUSTOMER : " THEN
WITH NO ADVANCING. MOVE 1 TO END-FILE
ACCEPT COMPANY. END-TF.
IF (COMPANY NOT= SPACE) PERFORM DELETE-ORDER
DISPLAY "FUNCTION OF CUSTOMER : UNTIL END-FILE = 1.
WITH NO ADVANCING DELETE-ORDER.
ACCEPT FUNCT *DELETE ORDERS
ELSE PERFORM P2-DELETE-ORDERS.
MOVE SPACE TO FUNCT. *READ ORDERS NEXT
DISPLAY "DATE : * PERFORM P2-R-ORDERS-NEXT
WITH NO ADVANCING. *AT END
ACCEPT REC-DATE. IF P2-STATUS-AT-END
MOVE DESCRIPTION TO CUS-DESCR. THEN
PERFORM INIT-HIST. MOVE 1 TO END-FILE
* *WRITE CUS *NOT AT END
PERFORM P2-WRITE-CUS ELSE
* *INVALID KEY IF ORD-CUSTOMER NOT = CUS-CODE
IF P2-STATUS-INVALID-KEY MOVE 1 TO END-FILE
THEN END-TF.
DISPLAY “ERROR"
END-TF. NEW-STK.
DISPLAY "NEW STOCK".
LIST-CUS. DISPLAY "PRODUCT NUMBER : "
DISPLAY "LISTE DES CUSTOMERS". WITH NO ADVANCING.
* *CLOSE CUSTOMER ACCEPT STK-CODE.
* *nothing to do
CONTINUE. DISPLAY "NAME : ®
* *0PEN I-0 CUSTOMER WITH NO ADVANCING.
PERFORM P2-OPEN-CUSTOMER. ACCEPT STK-NAME.
MOVE 1 TO END-FILE.
PERFORM READ-CUS DISPLAY "LEVEL : "
UNTIL (END-FILE = 0). WITH NO ADVANCING.
ACCEPT STK-LEVEL.
READ-CUS.

*READ CUSTOMER NEXT
PERFORM P2-R-CUSTOMER-NEXT
*AT END
IF P2-STATUS-AT-END
THEN
MOVE O TO END-FILE
*NOT AT END
ELSE
DISPLAY CUS-CODE
DISPLAY CUS-DESCR
DISPLAY CUS-HIST

*WRITE STK
PERFORM P2-WRITE-STK
*INVALID KEY
IF P2-STATUS-INVALID-KEY
THEN
DISPLAY "ERREUR "
END-IF.

LIST-STK.
DISPLAY "LIST OF STOCKS ".

119

* *CLOSE STOCK

* *nothing to do MOVE LIST-PURCHASE
CONTINUE. TO CUS-HIST.
* *0PEN I-0 STOCK *xREWRITE CUS
PERFORM P2-0PEN-STOCK. PERFORM P2-REWRITE-CUS
**xINVALID KEY
MOVE 1 TO END-FILE. IF P2-STATUS-INVALID-KEY
PERFORM READ-STK THEN
UNTIL END-FILE = 0. DISPLAY "ERROR CUS"
END-IF.
READ-STK.
* *READ STOCK NEXT READ-CUS-CODE.
PERFORM P2-R-STOCK-NEXT DISPLAY "CUSTOMER NUMBER : "
* *AT END WITH NO ADVANCING.
IF P2-STATUS-AT-END ACCEPT CUS-CODE.
THEN MOVE O TO END-FILE.
MOVE O TO END-FILE *xREAD CUSTOMER
* *NOT AT END PERFORM P2-R-CUSTOMER-K-CUS-CODE
ELSE *xINVALID KEY
DISPLAY STK-CODE IF P2-STATUS-INVALID-KEY
DISPLAY STK-NAME THEN
DISPLAY STK-LEVEL DISPLAY "NO SUCH CUSTOMER"
END-IF. MOVE 1 TO END-FILE
END-IF.
NEW-0RD.
DISPLAY "NEW ORDER". READ-DETAIL.
DISPLAY "ORDER NUMBER : " DISPLAY "PRODUCT CODE (0 = END) : ".
WITH NO ADVANCING. ACCEPT PROD-CODE.
ACCEPT ORD-CODE. IF PROD-CODE = 0
MOVE O
DISPLAY "ORDER DATE". TO REF-DET-STK(IND-DET)
DISPLAY " DAY " MOVE O TO END-FILE
WITH NO ADVANCING. ELSE
ACCEPT ORDER-DD. PERFORM READ-PROD-CODE.
DISPLAY " MONTH "
WITH NO ADVANCING. READ-PROD-CODE.
ACCEPT ORDER-MM. MOVE 1 TO EXIST-PROD.
DISPLAY " YEAR (YYYY) " MOVE PROD-CODE TO STK-CODE.
WITH NO ADVANCING. *¥READ STOCK
ACCEPT ORDER-YYYY. PERFORM P2-R-STOCK-K-STK-CODE
MOVE ORDER-DATE TO ORD-DATE. **INVALID KEY
MOVE 1 TO END-FILE. IF P2-STATUS-INVALID-KEY
PERFORM READ-CUS-CODE THEN
UNTIL END-FILE = 0. MOVE O TO EXIST-PROD
MOVE CUS-DESCR TO DESCRIPTION. END-IF.
DISPLAY NAME. IF EXIST-PROD = 0O
MOVE CUS-CODE TO ORD-CUSTOMER. DISPLAY "NO SUCH PRODUCT"
MOVE CUS-HIST TO LIST-PURCHASE. ELSE

PERFORM UPDATE-ORD-DETAIL.
SET IND-DET TO 1.

MOVE 1 TO END-FILE. UPDATE-ORD-DETAIL.
PERFORM READ-DETAIL MOVE 1 TO NEXT-DET.
UNTIL END-FILE = O OR IND-DET = 21. DISPLAY "QUANTITY ORDERED : "
MOVE LIST-DETAIL TO ORD-DETAIL. WITH NO ADVANCING
ACCEPT ORD-QTY(IND-DET).

**xWRITE ORD PERFORM UNTIL

PERFORM P2-WRITE-ORD (NEXT-DET < IND-DET
*xINVALID KEY AND REF-DET-STK(NEXT-DET) = PROD-CODE)

IF P2-STATUS-INVALID-KEY OR IND-DET = NEXT-DET

THEN ADD 1 TO NEXT-DET

DISPLAY "ERROR" END-PERFORM.

END-IF. IF IND-DET = NEXT-DET

120 Statement Rewriting Conversion of the Case Study

MOVE PROD-CODE MOVE 1 TO END-FILE
TO REF-DET-STK(IND-DET) END-IF.
PERFORM UPDATE-CUS-HIST PERFORM READ-ORD UNTIL END-FILE = 0.
SET IND-DET UP BY 1 READ-ORD.
ELSE **READ ORDERS NEXT
DISPLAY "ERROR : ALREADY ORDERED". PERFORM P2-R-0RDERS-NEXT
**xAT END
UPDATE-CUS-HIST. IF P2-STATUS-AT-END
SET IND TO 1. THEN
PERFORM UNTIL MOVE O TO END-FILE
REF-PURCH-STK(IND) = PROD-CODE *xNOT AT END
OR REF-PURCH-STK(IND) = 0 ELSE
OR IND = 101 DISPLAY "Order : " ORD-CODE " - " ORD-DATE
SET IND UP BY 1 DISPLAY "DRD-CUSTOMER " ORD-CUSTOMER
END-PERFORM. MOVE ORD-DETAIL TO LIST-DETAIL
IF IND = 101 SET IND-DET TO 1
DISPLAY "ERR : HISTORY OVERFLOW" MOVE 1 TO END-DETAIL
EXIT. PERFORM DISPLAY-DETAIL
IF REF-PURCH-STK(IND) UNTIL END-DETAIL = 0
= PROD-CODE END-IF.
ADD ORD-QTY(IND-DET) TO TOT(IND)
ELSE INIT-HIST.
MOVE PROD-CODE SET IND TO 1.
TO REF-PURCH-STK(IND) PERFORM UNTIL IND = 100
MOVE ORD-QTY(IND-DET) TO TOT(IND). MOVE O TO REF-PURCH-STK(IND)
MOVE O TO TOT(IND)
LIST-ORD. SET IND UP BY 1
DISPLAY "LIST OF ORDERS (BY NUMBER)". END-PERFORM.
MOVE O TO ORD-CODE. MOVE LIST-PURCHASE TO CUS-HIST.
**xSTART ORDERS KEY IS > ORD-CODE
PERFORM P2-S-0RDERS-G-0RD-CODE DISPLAY-DETAIL.
**xINVALID KEY IF IND-DET = 21
IF P2-STATUS-INVALID-KEY MOVE O TO END-DETAIL
THEN ELSE
MOVE O TO END-FILE IF REF-DET-STK(IND-DET) = 0
* *NOT INVALID KEY MOVE O TO END-DETAIL
ELSE ELSE
MOVE 1 TO END-FILE MOVE REF-DET-STK(IND-DET) TO STK-CODE
END-IF. **xREAD STOCK
PERFORM READ-ORD UNTIL END-FILE = O. PERFORM P2-R-STOCK-K-STK-CODE
**xINVALID KEY
LIST-ORD-DATE. IF P2-STATUS-INVALID-KEY
DISPLAY "LIST OF ORDERS (BY DATE)". THEN
DISPLAY "STARTING DATE". DISPLAY "ERROR : UNKOWN PRODUCT"
DISPLAY " DAY " *xN0T INVALID KEY
WITH NO ADVANCING. ELSE
ACCEPT ORDER-DD. DISPLAY STK-NAME " " ORD-QTY(IND-DET)
DISPLAY " MONTH " END-IF
WITH NO ADVANCING. SET IND-DET UP BY 1.
ACCEPT ORDER-MM.
DISPLAY " YEAR (YYYY) " P2-STRATEGY SECTION.
WITH NO ADVANCING. P2-CURSORS-DECLARATION.
ACCEPT ORDER-YYYY. EXEC SQL
MOVE ORDER-DATE TO ORD-DATE. DECLARE 0CUS_CODE CURSOR FOR
**START ORDERS KEY IS > ORD-DATE SELECT CUS_CODE,
PERFORM P2-S-0RDERS-G-0RD-DATE CUS_DESCR,
**xINVALID KEY CUS_HIST
IF P2-STATUS-INVALID-KEY FROM CUSTOMER
THEN ORDER BY CUS_CODE
MOVE O TO END-FILE END-EXEC.

*xNO0T INVALID KEY
ELSE EXEC SQL

121

DECLARE ECUS_CODE CURSOR FOR
SELECT CUS_CODE,
CUS_DESCR,
CUS_HIST
FROM CUSTOMER
WHERE CUS_CODE = :CUS.CUS-CODE
ORDER BY CUS_CODE
END-EXEC.

EXEC SQL
DECLARE GCUS_CODE CURSOR FOR
SELECT CUS_CODE,
CUS_DESCR,
CUS_HIST
FROM CUSTOMER
WHERE CUS_CODE > :CUS.CUS-CODE
ORDER BY CUS_CODE
END-EXEC.

EXEC SQL
DECLARE NCUS_CODE CURSOR FOR
SELECT CUS_CODE,
CUS_DESCR,
CUS_HIST
FROM CUSTOMER
WHERE CUS_CODE >= :CUS.CUS-CODE
ORDER BY CUS_CODE
END-EXEC.

EXEC SQL
DECLARE 0ORD_CODE CURSOR FOR
SELECT ORD_CODE,
ORD_DATE,
ORD_CUSTOMER,
ORD_DETAIL
FROM DRDERS
ORDER BY ORD_CODE
END-EXEC.

EXEC SQL
DECLARE EORD_CODE CURSOR FOR
SELECT ORD_CODE,
ORD_DATE,
ORD_CUSTOMER,,
ORD_DETAIL
FROM ORDERS
WHERE ORD_CODE = :0RD.DRD-CODE
ORDER BY ORD_CODE
END-EXEC.

EXEC SQL
DECLARE GORD_CODE CURSOR FOR
SELECT ORD_CODE,
ORD_DATE,
ORD_CUSTOMER,,
ORD_DETAIL
FROM ORDERS
WHERE ORD_CODE > :0RD.ORD-CODE
ORDER BY ORD_CODE
END-EXEC.

EXEC SQL
DECLARE NORD_CODE CURSOR FOR
SELECT ORD_CODE,
ORD_DATE,
ORD_CUSTOMER,
ORD_DETAIL
FROM ORDERS
WHERE ORD_CODE >= :0RD.ORD-CODE
ORDER BY DORD_CODE
END-EXEC.

EXEC SQL

DECLARE 00RD_CUST CURSOR FOR

SELECT ORD_CODE,
ORD_DATE,
ORD_CUSTOMER,
ORD_DETAIL

FROM ORDERS

ORDER BY ORD_CUSTOMER

END-EXEC.

EXEC SQL
DECLARE EORD_CUST CURSOR FOR
SELECT ORD_CODE,
ORD_DATE,
ORD_CUSTOMER,,
ORD_DETAIL
FROM ORDERS

WHERE ORD_CUSTOMER = :0RD.0RD-CUSTOMER

ORDER BY ORD_CUSTOMER
END-EXEC.

EXEC SQL
DECLARE GORD_CUST CURSOR FOR
SELECT ORD_CODE,
ORD_DATE,
ORD_CUSTOMER,
ORD_DETAIL
FROM ORDERS

WHERE ORD_CUSTOMER > :0RD.0RD-CUSTOMER

ORDER BY ORD_CUSTOMER
END-EXEC.

EXEC SQL
DECLARE NORD_CUST CURSOR FOR
SELECT ORD_CODE,
ORD_DATE,
ORD_CUSTOMER,
ORD_DETAIL
FROM ORDERS

WHERE ORD_CUSTOMER >= :0RD.ORD-CUSTOMER

ORDER BY ORD_CUSTOMER
END-EXEC.

EXEC SQL

DECLARE 0ORD_DATE CURSOR FOR

SELECT ORD_CODE,
ORD_DATE,
ORD_CUSTOMER,,
ORD_DETAIL

FROM ORDERS

ORDER BY ORD_DATE

122 Statement Rewriting Conversion

END-EXEC.

EXEC SQL
DECLARE EORD_DATE CURSOR FOR
SELECT ORD_CODE,
ORD_DATE,
ORD_CUSTOMER,
ORD_DETAIL
FROM DRDERS
WHERE ORD_DATE = :0RD.ORD-DATE
ORDER BY ORD_DATE
END-EXEC.

EXEC SQL
DECLARE GORD_DATE CURSOR FOR
SELECT ORD_CODE,
ORD_DATE,
ORD_CUSTOMER,
ORD_DETAIL
FROM ORDERS
WHERE ORD_DATE > :0RD.DRD-DATE
ORDER BY ORD_DATE
END-EXEC.

EXEC SQL
DECLARE NORD_DATE CURSOR FOR
SELECT ORD_CODE,
ORD_DATE,
ORD_CUSTOMER,,
ORD_DETAIL
FROM ORDERS
WHERE ORD_DATE >= :0RD.0ORD-DATE
ORDER BY ORD_DATE
END-EXEC.

EXEC SQL
DECLARE 0STK_CODE CURSOR FOR
SELECT STK_CODE,
STK_NAME,
STK_LEVEL
FROM STOCK
ORDER BY STK_CODE
END-EXEC.

EXEC SQL
DECLARE ESTK_CODE CURSOR FOR
SELECT STK_CODE,
STK_NAME,
STK_LEVEL
FROM STOCK
WHERE STK_CODE = :STK.STK-CODE
ORDER BY STK_CODE
END-EXEC.

EXEC SQL
DECLARE GSTK_CODE CURSOR FOR
SELECT STK_CODE,
STK_NAME,
STK_LEVEL
FROM STOCK
WHERE STK_CODE > :STK.STK-CODE

ORDER BY STK_CODE
END-EXEC.

EXEC SQL
DECLARE NSTK_CODE CURSOR FOR
SELECT STK_CODE,
STK_NAME,
STK_LEVEL
FROM STOCK
WHERE STK_CODE >= :STK.STK-CODE
ORDER BY STK_CODE
END-EXEC.

P2-0PEN-STOCK.
PERFORM CLOSE-LAST-CURSOR-STOCK.

MOVE "OSTK_CODE" TO LAST-CURSOR-STOCK.

EXEC SQL
OPEN OSTK_CODE
END-EXEC.

P2-0PEN-ORDERS.
PERFORM CLOSE-LAST-CURSOR-ORDERS.

MOVE "OORD_CODE" TO LAST-CURSOR-ORDERS.

EXEC SQL
OPEN OORD_CODE
END-EXEC.

P2-0PEN-CUSTOMER.
PERFORM CLOSE-LAST-CURSOR-CUSTOMER.

MOVE "OCUS_CODE" TO LAST-CURSOR-CUSTOMER.

EXEC SQL
OPEN OCUS_CODE
END-EXEC.

P2-S-DRDERS-G-0RD-CODE.
PERFORM CLOSE-LAST-CURSOR-0ORDERS
EXEC SQL
SELECT COUNT (%)
INTO :P2-COUNTER
FROM ORDERS
WHERE ORD_CODE > :0RD.ORD-CODE

END-EXEC
IF (SQLCODE NQOT = 0)
THEN
MOVE SQLCODE TO P2-STATUS
ELSE
IF (P2-COUNTER = 0)
THEN
SET P2-STATUS-INVALID-KEY TO TRUE
ELSE
EXEC SQL
OPEN GORD_CODE
END-EXEC

MOVE "GORD_CODE"
TO LAST-CURSOR-ORDERS
MOVE SQLCODE TO P2-STATUS
END-IF
END-IF.

P2-S-0ORDERS-G-0RD-DATE.
PERFORM CLOSE-LAST-CURSOR-ORDERS
EXEC SQL

of the Case Study

123

SELECT COUNT (%)

INTO :P2-COUNTER

FROM ORDERS

WHERE ORD_DATE > :0RD.ORD-DATE

END-EXEC
IF (SQLCODE NOT = 0)
THEN
MOVE SQLCODE TO P2-STATUS
ELSE
IF (P2-COUNTER = 0)
THEN
SET P2-STATUS-INVALID-KEY TO TRUE
ELSE
EXEC SQL
OPEN GORD_DATE
END-EXEC

MOVE "GORD_DATE"
TO LAST-CURSOR-ORDERS
MOVE SQLCODE TO P2-STATUS
END-IF
END-IF.

P2-R-STOCK-NEXT.
IF(LAST-CURSOR-STOCK = "OSTK_CODE")

THEN
EXEC SQL
FETCH 0STK_CODE
INTO :STK.STK-CODE |,
:STK.STK-NAME
:STK.STK-LEVEL
END-EXEC
END-IF
IF(LAST-CURSOR-STOCK = "ESTK_CODE")
THEN
EXEC SQL
FETCH ESTK_CODE
INTO :STK.STK-CODE |,
:STK.STK-NAME
:STK.STK-LEVEL
END-EXEC
END-IF
IF(LAST-CURSOR-STOCK = "GSTK_CODE")
THEN
EXEC SQL
FETCH GSTK_CODE
INTO :STK.STK-CODE |,
:STK.STK-NAME
:STK.STK-LEVEL
END-EXEC
END-IF
IF(LAST-CURSOR-STOCK = "NSTK_CODE")
THEN
EXEC SQL
FETCH NSTK_CODE
INTO :STK.STK-CODE |,
:STK.STK-NAME
:STK.STK-LEVEL
END-EXEC
END-IF

MOVE SQLCODE TO P2-STATUS.

P2-R-0RDERS-NEXT.

IF(LAST-CURSOR-ORDERS = "QORD_CODE")

THEN
EXEC SQL
FETCH OORD_CODE
INTO :0RD.ORD-CODE
:0RD.ORD-DATE
:0RD.ORD-CUSTOMER
:0RD.0ORD-DETAIL
END-EXEC
END- IF
IF (LAST-CURSOR-ORDERS = "EORD_CODE")
THEN
EXEC SQL
FETCH EORD_CODE
INTO :0RD.ORD-CODE
:0RD.ORD-DATE
:0RD.ORD-CUSTOMER
:0RD.ORD-DETAIL
END-EXEC
END- IF
IF (LAST-CURSOR-ORDERS = "GORD_CODE")
THEN
EXEC SQL
FETCH GORD_CODE
INTO :0RD.ORD-CODE
:0RD.ORD-DATE
:0RD.ORD-CUSTOMER
:0RD.ORD-DETAIL
END-EXEC
END- IF
IF (LAST-CURSOR-ORDERS = "NORD_CODE")
THEN
EXEC SQL
FETCH NORD_CODE
INTO :0RD.ORD-CODE
:0RD.ORD-DATE
:0RD.ORD-CUSTOMER
:0RD.0ORD-DETAIL
END-EXEC
END- IF
IF(LAST-CURSOR-ORDERS = "OORD_CUST")
THEN
EXEC SQL
FETCH OORD_CUST
INTO :0RD.ORD-CODE
:0RD.ORD-DATE
:0RD.0ORD-CUSTOMER
:0RD.ORD-DETAIL
END-EXEC
END- IF
IF (LAST-CURSOR-ORDERS = "EORD_CUST")
THEN
EXEC SQL
FETCH EORD_CUST
INTO :0RD.ORD-CODE
:0RD.ORD-DATE
:0RD.ORD-CUSTOMER
:0RD.0ORD-DETAIL
END-EXEC
END- IF
IF (LAST-CURSOR-ORDERS = "GORD_CUST")
THEN

124 Statement Rewriting Conversion of the Case Study

EXEC SQL
FETCH GORD_CUST
INTO :0RD.ORD-CODE |,
:0RD.ORD-DATE ,
:0RD.ORD-CUSTOMER
:ORD.0ORD-DETAIL

END-EXEC
END-IF
IF(LAST-CURSOR-ORDERS = "NORD_CUST")
THEN
EXEC SQL
FETCH NORD_CUST
INTO :0RD.ORD-CODE |,
:ORD.ORD-DATE ,
:0RD.ORD-CUSTOMER
:ORD.DRD-DETAIL
END-EXEC
END-IF
IF (LAST-CURSOR-ORDERS = "OORD_DATE")
THEN
EXEC SQL
FETCH OORD_DATE
INTO :0RD.DRD-CODE |,
:0RD.ORD-DATE ,
:0RD.ORD-CUSTOMER
:0RD.ORD-DETAIL
END-EXEC
END-IF
IF(LAST-CURSOR-ORDERS = "EORD_DATE")
THEN
EXEC SQL
FETCH EORD_DATE
INTO :0RD.ORD-CODE |,
:ORD.ORD-DATE ,
:ORD.DRD-CUSTOMER
:ORD.ORD-DETAIL
END-EXEC
END-IF
IF(LAST-CURSOR-ORDERS = "GORD_DATE")
THEN
EXEC SQL
FETCH GORD_DATE
INTO :0RD.ORD-CODE |,
:ORD.ORD-DATE ,
:0RD.ORD-CUSTOMER
:ORD.DRD-DETAIL
END-EXEC
END-IF
IF(LAST-CURSOR-ORDERS = "NORD_DATE")
THEN
EXEC SQL
FETCH NORD_DATE
INTO :0RD.DRD-CODE |,
:0RD.ORD-DATE ,
:0RD.DRD-CUSTOMER
:0RD.ORD-DETAIL
END-EXEC
END-IF

MOVE SQLCODE TO P2-STATUS.

P2-R-CUSTOMER-NEXT .
IF(LAST-CURSOR-CUSTOMER = "OCUS_CODE")

THEN
EXEC SQL
FETCH 0CUS_CODE
INTO :CUS.CUS-CODE
:CUS.CUS-DESCR
:CUS . CUS-HIST
END-EXEC
END- IF
IF (LAST-CURSOR-CUSTOMER = "ECUS_CODE")
THEN
EXEC SQL
FETCH ECUS_CODE
INTO :CUS.CUS-CODE
:CUS.CUS-DESCR
:CUS . CUS-HIST
END-EXEC
END- IF
IF (LAST-CURSOR-CUSTOMER = "GCUS_CODE")
THEN
EXEC SQL
FETCH GCUS_CODE
INTO :CUS.CUS-CODE
:CUS.CUS-DESCR
:CUS . CUS-HIST
END-EXEC
END- IF
IF (LAST-CURSOR-CUSTOMER = "NCUS_CODE")
THEN
EXEC SQL
FETCH NCUS_CODE
INTO :CUS.CUS-CODE
:CUS.CUS-DESCR
:CUS . CUS-HIST
END-EXEC
END- IF

MOVE SQLCODE TO P2-STATUS.

P2-R-STOCK-K-STK-CODE.
PERFORM CLOSE-LAST-CURSOR-STOCK.
EXEC SQL
SELECT COUNT(%)
INTO :P2-COUNTER

FROM STOCK
WHERE STK_CODE = :STK.STK-CODE
END-EXEC.
IF (SQLCODE NOT = 0)
THEN
MOVE SQLCODE TO P2-STATUS
ELSE
IF (P2-COUNTER = 0)
THEN
SET P2-STATUS-INVALID-KEY TO TRUE
ELSE
EXEC SQL
OPEN NSTK_CODE
END-EXEC

MOVE "NSTK_CODE"
TO LAST-CURSOR-STOCK
EXEC SQL
FETCH NSTK_CODE
INTO :STK.STK-CODE
:STK.STK-NAME

125

:STK.STK-LEVEL
END-EXEC
MOVE SQLCODE TO P2-STATUS
END-IF
END-IF.

P2-R-0DRDERS-K-0RD-CUSTOMER .
PERFORM CLOSE-LAST-CURSOR-ORDERS.
EXEC SQL
SELECT COUNT (%)
INTO :P2-COUNTER
FROM ORDERS
WHERE ORD_CUSTOMER =
END-EXEC.
IF (SQLCODE NOT = 0)
THEN
MOVE SQLCODE TO P2-STATUS
ELSE
IF (P2-COUNTER = 0)
THEN
SET P2-STATUS-INVALID-KEY
ELSE
EXEC SQL
OPEN NORD_CUST
END-EXEC
MOVE "NORD_CUST"
TO LAST-CURSOR-ORDERS
EXEC SQL
FETCH NORD_CUST
INTO :0RD.ORD-CODE |,
:0RD.0ORD-DATE
:0RD.0ORD-CUSTOMER
:0RD.ORD-DETAIL
END-EXEC
MOVE SQLCODE
END-IF
END-IF.

:0RD . ORD-CUSTOMER

TO TRUE

TO P2-STATUS

P2-R-CUSTOMER-K-CUS-CODE.
PERFORM CLOSE-LAST-CURSOR-CUSTOMER.
EXEC SQL
SELECT COUNT (%)
INTO :P2-COUNTER
FROM CUSTOMER
WHERE CUS_CODE =
END-EXEC.
IF (SQLCODE NOT = 0)
THEN
MOVE SQLCODE TO P2-STATUS
ELSE
IF (P2-COUNTER = 0)
THEN
SET P2-STATUS-INVALID-KEY TO TRUE
ELSE
EXEC SQL
OPEN NCUS_CODE
END-EXEC
MOVE "NCUS_CODE"
TO LAST-CURSOR-CUSTOMER
EXEC SQL
FETCH NCUS_CODE
INTO :CUS.CUS-CODE |,

:CUS.CUS-CODE

:CUS.CUS-DESCR
:CUS.CUS-HIST
END-EXEC
MOVE SQLCODE TO P2-STATUS
END-IF
END-IF.

P2-WRITE-CUS.
EXEC SQL
INSERT INTO CUSTOMER
VALUES (:CUS.CUS-CODE
:CUS.CUS-DESCR
:CUS.CUS-HIST)
END-EXEC
MOVE SQLCODE TO P2-STATUS.

P2-WRITE-ORD.
EXEC SQL
INSERT INTO ORDERS
VALUES (:0RD.ORD-CODE ,
:0RD.0ORD-DATE ,
:0RD.0ORD-CUSTOMER ,
:0RD.0ORD-DETAIL)
END-EXEC
MOVE SQLCODE TO P2-STATUS.
P2-WRITE-STK.
EXEC SQL
INSERT INTO STOCK
VALUES (:STK.STK-CODE ,
:STK.STK-NAME ,
:STK.STK-LEVEL)
END-EXEC
MOVE SQLCODE TO P2-STATUS.

P2-REWRITE-CUS.
EXEC SQL
UPDATE CUSTOMER
SET CUS_CODE = :CUS.CUS-CODE ,
CUS_DESCR = :CUS.CUS-DESCR

CUS_HIST = :CUS.CUS-HIST
WHERE CUS_CODE = :CUS.CUS-CODE
END-EXEC.

MOVE SQLCODE TO P2-STATUS.

P2-DELETE-ORDERS.
EXEC SQL
DELETE
FROM ORDERS
WHERE ORD_CODE =
END-EXEC.
MOVE SQLCODE TO P2-STATUS.

:0RD.0ORD-CODE

P2-DELETE-CUSTOMER .
EXEC SQL
DELETE
FROM CUSTOMER
WHERE CUS_CODE =
END-EXEC.
MOVE SQLCODE TO P2-STATUS.

:CUS.CUS-CODE

CLOSE-LAST-CURSOR-CUSTOMER.

126

Statement Rewriting Conversion of the Case Study

IF(LAST-CURSOR-CUSTOMER = "OCUS_CODE")

THEN
EXEC SQL
CLOSE 0CUS_CODE
END-EXEC
END-IF

IF(LAST-CURSOR-CUSTOMER = "ECUS_CODE")

THEN
EXEC SQL
CLOSE ECUS_CODE
END-EXEC
END-IF

IF(LAST-CURSOR-CUSTOMER = "GCUS_CODE")

THEN
EXEC SQL
CLOSE GCUS_CODE
END-EXEC
END-IF

IF(LAST-CURSOR-CUSTOMER = "NCUS_CODE")

THEN
EXEC SQL
CLOSE NCUS_CODE
END-EXEC
END-IF.

CLOSE-LAST-CURSOR-0ORDERS .

IF(LAST-CURSOR-ORDERS = "OORD_CODE")
THEN
EXEC SQL
CLOSE OORD_CODE
END-EXEC
END-IF
IF(LAST-CURSOR-ORDERS = "EORD_CODE")
THEN
EXEC SQL
CLOSE EORD_CODE
END-EXEC
END-IF
IF(LAST-CURSOR-ORDERS = "GORD_CODE")
THEN
EXEC SQL
CLOSE GORD_CODE
END-EXEC
END-IF
IF(LAST-CURSOR-ORDERS = "NORD_CODE")
THEN
EXEC SQL
CLOSE NORD_CODE
END-EXEC
END-IF
IF(LAST-CURSOR-ORDERS = "OORD_CUST")
THEN
EXEC SQL
CLOSE OO0RD_CUST
END-EXEC
END-IF
IF(LAST-CURSOR-ORDERS = "EORD_CUST")
THEN
EXEC SQL
CLOSE EORD_CUST
END-EXEC
END-IF

IF (LAST-CURSOR-ORDERS = "GORD_CUST")
THEN
EXEC SQL
CLOSE GORD_CUST
END-EXEC
END- IF
IF(LAST-CURSOR-ORDERS = "NORD_CUST")
THEN
EXEC SQL
CLOSE NORD_CUST
END-EXEC
END- IF
IF (LAST-CURSOR-ORDERS = "OORD_DATE")
THEN
EXEC SQL
CLOSE OORD_DATE
END-EXEC
END- IF
IF (LAST-CURSOR-ORDERS = "EORD_DATE")
THEN
EXEC SQL
CLOSE EORD_DATE
END-EXEC
END- IF
IF(LAST-CURSOR-ORDERS = "GORD_DATE")
THEN
EXEC SQL
CLOSE GORD_DATE
END-EXEC
END- IF
IF (LAST-CURSOR-ORDERS = "NORD_DATE")
THEN
EXEC SQL
CLOSE NORD_DATE
END-EXEC
END-IF.

CLOSE-LAST-CURSOR-STOCK.

IF(LAST-CURSOR-STOCK = "OSTK_CODE")
THEN
EXEC SQL
CLOSE 0STK_CODE
END-EXEC
END-IF
IF(LAST-CURSOR-STOCK = "ESTK_CODE")
THEN
EXEC SQL
CLOSE ESTK_CODE
END-EXEC
END-IF
IF(LAST-CURSOR-STOCK = "GSTK_CODE")
THEN
EXEC SQL
CLOSE GSTK_CODE
END-EXEC
END-IF
IF(LAST-CURSOR-STOCK = "NSTK_CODE")
THEN
EXEC SQL
CLOSE NSTK_CODE
END-EXEC

